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Abstract

Brain-computer interfaces (BCIs) are a fruit of an impressive and long collaboration

between fields of neuroscience and signal processing. The purpose of these complex sys-

tems is to interpret measured brain activity into useable commands and actions through

implementation of different feature extraction, selection, and classification techniques.

Depending on the application of a BCI and the exploited type of brain activity a

specific set of methods would be implemented. In this thesis, electroencephalogra-

phy (EEG) signals containing motor imagery (MI) information are analysed using a

spatial-temporal technique called dynamic mode decomposition (DMD).

MI-EEG signals can be mainly described through two different types of brain activ-

ities: event-related de-/synchronisation (ERD/S) and event-related potentials (ERPs).

The studies covered in this thesis focus on the former activity which exhibits strong

characteristics in temporal, spectral and spatial domains. Despite being well described

in the aforementioned domains, current state-of-the-art feature extraction techniques

focus either on spectral (power spectral density (PSD) or bandpower) or spatial (com-

mon spatial patterns, CSP) side or on the combination of temporal and spectral do-

mains (spectrograms and scalograms).

The introduction of DMD aims to address the lack of more spatial-oriented tech-

niques and three different feature types were explored to extract features based on

ERD/S phenomenon. Firstly, standard DMD modes are used to accomplish that task.

The measured performance, while being relatively low, still provided valuable informa-
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tion into the correct processing routes for DMD technique. With this knowledge, novel

DMD spectrum features were extracted to cover a spatial-spectral domain combination.

Despite the literature’s suggestions and links of DMD spectrum to average Fast-Fourier

transfroms (FFTs), the perceived performance clearly indicated that DMD spectrum

is unfit to extract ERD/S features from MI-EEG signals. Lastly, novel implementation

of DMD maps with convolutional neural network (CNN) aimed to fully exploit spatial

characteristics of ERD/S phenomenon was not able to successfully do so. Even though

all three proposed hypotheses were rejected based on the evidence seen from classifica-

tion accuracy and kappa values, the author argues that DMD technique is still at the

early stages of development and, given time and enough research, the performance of

DMD modes and maps can be greatly improved.
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Chapter 1

Introduction

The concept of being able to move something without physically interacting with it,

but by purely using the ’power of thought’, has been explored in both: fictional works

as well as in the scientific research. While fiction adopted the idea of psychokinesis and

attributed this skill to some ’superhero’ powers or other supernatural events, it also

explored more scientifically plausible ideas such as implementing some kind of interface

which would be able to translate one’s thoughts into some system-specific outputs or

actions.

The most notable example of the latter is seen in a popular comic series ”Spider-

Man”. There, one of the villains and enemies of Spider-Man, Dr Otto Octavius con-

structed a wearable harness with four tentacle-like arms which was controlled through

a computer chip embedded into the brain of the user. The user would then be able to

move the extra limbs through the same processes involved while moving ’regular’ arms,

as the embedded chip would be able to recognise the correct brain signals from the user

and interpret them into correct actions. Interestingly, the character of Dr Octavius

and his ’machine interface’ was introduced in 1963, which preceded the most impactful

introduction of the idea of motor imagery by several years (Richardson, 1967, 1969);

and almost a decade before the first scientific publication coining the term of brain-

computer interface (BCI) (Vidal, 1973), a system which is able to translate brain signals

into usable and interpretable commands by a computer. Since then the idea of such

sophisticated control of external robotic arms has been greatly explored in research,

although at much smaller scale mostly looking at the control of a single robotic arm

1
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(Hochberg et al., 2012; McMullen et al., 2014; Hortal et al., 2015; Meng et al., 2016).

Besides the idea of extending brain control into additional external limbs, BCIs have

been put to a great use in other applications, such as spellers and virtual keyboards

(Farwell & Donchin, 1988; Pinegger et al., 2017; Riccio et al., 2013; Cecotti & Gräser,

2011), mobile robots and wheelchairs (Millán et al., 2004; Galán et al., 2008). There,

they have created new means of communication and interaction for people who suffered

from a range of injuries or ailments which impaired the functionality of muscles, spinal

cord or brain.

A high-level representation of a typical BCI system reveals three main building

blocks: a signal acquisition block, a signal processing block, and the output or appli-

cation block. The signal acquisition block only concerns the method used on how and

what signals are recorded from the brain. Those signals can be either acquired through

invasive (needs physical access to the brain and thus requires surgical procedure) or

non-invasive (no need for any surgical procedures) methods (Buzsáki et al., 2012). The

two most prominent signals used in BCIs are electroencephalogram (EEG, non-invasive)

and electrocorticogram (ECoG, invasive) signals; however it must be noted that these

are not the only means through which brain activity can be measured. The appro-

priate modality from the aforementioned signals is chosen depending on the desired

application of the BCI. This could cover investigating rhythmic phenomena found in

continuous EEG, such as event-related de-/synchronisation (ERD/S) (Pfurtscheller &

Lopes Da Silva, 1999), or specific signals appearing in brain when the user is subjected

to an external stimulus, such as P300 (Riccio et al., 2013) or motor-related cortical

potentials (MRCPs) (Shibasaki & Hallett, 2006).

After the signal acquisition block, the recorded brain signals are transformed by var-

ious techniques employed in the signal processing block which comprises of few internal

submodules. These can be a selection of the following components: preprocessing,

feature extraction, feature selection and dimensionality reduction. Preprocessing steps

are often necessary when working with EEG signals, as these are known to have low

signal-to-noise ratio and therefore preprocessing requires a combination of frequency-

domain and spatial filtering techniques to increase the quality of the recorded signal.

Depending on what brain modality is investigated, raw EEG data often does not carry
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enough class-separable information in itself and additional computing methods must

be employed to extract more descriptive features from the original data. One will

see here popular techniques such as Fourier transforms, short-time Fourier transforms,

principal component analysis, common spatial patterns, as well as other standard sta-

tistical methods being used for that purpose. Some of these methods are also used

in the next module, where the best performing features are extracted and used as the

final feature set before training a classifier. Quite often the feature selection mod-

ule integrates dimensionality reduction techniques which help lower the complexity of

subsequent classification of the transformed signals. The author acknowledges that

’feature selection’ and ’dimensionality reduction’ terms might have separate meanings

in other fields; however in this thesis these two terms are grouped together and are

used interchangeably throughout the thesis but are always clarified when used.

Processed features are then ready to be utilised accordingly in the output block of

BCI. The essential component of this block is a classifier which is trained on the sup-

plied feature set, to learn how to separate between different classes present in the data,

allowing it to later classify any new incoming signals appropriately. A number of dif-

ferent methods are used for signal classification: from classical discriminant techniques

and support vector machines (Subasi & Gursoy, 2010; Bhattacharyya et al., 2010), to

modern machine learning approaches utilising the power of neural networks (Sakhavi

et al., 2015; Lawhern et al., 2018). Once the brain signals are processed accordingly,

the outputs of the classifier can be used to drive the end application. As mentioned

earlier that might be a mouse cursor, keyboard commands, control commands for a

mobile robot, wheelchair or a robotic arm.

However, not every BCI seen in the research must necessarily end with a hardware-

based application. Substantial amount of BCI research focuses on developing novel

methods for discerning some of the more demanding brain modalities and improving

the quality of the initial signal at the acquisition stage. In such cases the outputs of the

classifier are not translated into specific commands controlling hardware, but instead

focus on improving the classification accuracy of the investigated brain signals. In

the case of the signal acquisition block, the improvements are split between hardware-

and neurophysiology-based. Here, some of the research concerns development of new
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electrodes and recording systems, which for example might include the inclusion of

in-built amplification and filtering circuitry at individual electrode level (Müller-Putz,

2020). From the neurophysiological perspective, advancements can be made in gaining

better understanding of the organisation and structure of neurons in the brain and

the dynamics involved during various brain processes (Cohen, 2017). In the signal

processing and output (classifier only) blocks the innovation is purely software based

and revolves around the development of new algorithms, with the aim of discovering

new methods which would improve the overall performance of the BCI system. This

improvement can be measured in the accuracy of the classification or the rate, or speed,

of response at which the BCI can operate.

The work presented in this thesis focuses on the signal processing block by introduc-

ing a novel application of a processing technique called dynamic mode decomposition,

which is used to extract features from motor imagery EEG signals, by exploiting the

spectral and spatial nature of event-related de-/synchronisation (ERD/S) phenomenon.

Motor imagery is a profound type of activity found in the brain, which carries valuable

information addressing the idea of moving objects with the ’power of thought’. In short,

motor imagery manifests itself over the sensorimotor area of the brain when an individ-

ual voluntarily imagines motor movement of a limb. Most commonly, this activity can

be observed both in continuous (rhythmic) EEG and event-related potentials (ERPs)

appearing at specific individual electrodes. In the case of continuous EEG, motor im-

agery is well defined in the spectral domain, where it occupies α and β bands of brain

activity at 8-13Hz and 13-30Hz respectively (Pfurtscheller et al., 1997; Blankertz et al.,

2007), and is attributed to the ERD/S phenomenon which occurs on the contralateral

side of the brain with respect to the imagined movement, i.e. if an individual imagined

moving right hand, ERD/S would manifests on the left side of the sensorimotor cortex.

ERPs and more specifically motor-related cortical potentials (MRCPs) follow similar

spatial distribution of signals; however, they have much better defined temporal char-

acteristics than spectral ones: a sharp decrease of electric potential during imagination

of movement.

Since motor imagery can be observed in temporal, spectral and/or spatial domains

it comes as no surprise that numerous methods addressing a single or a combination of
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the aforementioned domains were transferred over from other disciplines, or were specif-

ically developed to extract features used for later classification of different imaginations

of movement. Temporal domain mostly relies on the use of classical statistical analy-

sis, such as averaging or kurtosis analysis; while spectral methods utilise fast Fourier

transforms (FFTs), power spectral density (PSD) analysis or, most frequently, average

bandpower in α and β frequency bands to observe changes in frequency. However, only

in the last 15 years spatial domain started receiving more attention from the research

community, which produced one of the most widely used methods nowadays: common

spatial patterns (CSP). Despite the excellent performance of features extracted with

CSP-based methods and their good interpretability of ERD/S phenomenon (Blankertz

et al., 2007), no new spatial methods were developed nor implemented after CSP, apart

from some derivations of CSP. While it might be argued that the recent rise in the

use of convolutional neural networks (CNNs) with spectro-temporal maps such as the

ones obtained from spectrograms or scalograms eliminates the need for spatial tech-

niques, since CNN looks for spatial relations between pixels in the supplied image data,

the author postulates that such maps do not reflect original spatial relations between

electrodes, since each spectrogram or scalogram is a time-frequency map for a single

electrode. Therefore, the author identified a clear gap and an opportunity to introduce

a novel application of a spatial technique used for extracting motor imagery features

from EEG signals.

The proposed Dynamic Mode Decomposition (DMD) technique was originally in-

troduced in the study of fluid flow and its non-linear dynamics, where it was used to

successfully extract and investigate spatial-temporal patterns emerging from the in-

coming data (Schmid, 2010). One of the noteworthy features of DMD is its ability to

describe the non-linear dynamics of the system without explicitly constructing sets of

equations explaining different dynamics present. DMD achieves that by stating that

the future state of the system can be approximated via linear transformation of present

state and some linear operator. Conventionally, this linear operator would take the

form of a tall matrix containing descriptions of infinitely long simultaneous equations,

attempting to describe all possible non-linear dynamics present as it is seen in the case

of Koopman analysis when computing Koopman operator. DMD mitigates this by di-
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rectly approximating the Koopman operator based solely on the available data from

the system, greatly decreasing computational time. The resultant low-rank matrix ap-

proximation is further exploited through eigendecomposition to obtain its eigenvalues

and eigenvectors, which allow to calculate DMD modes: a combination of spatial infor-

mation from PCA decomposition and temporal information extracted by DFT which,

when combined, describes the relative influence of each channel of multi-variate data

at specific characteristic frequencies dictated by relative eigenvalues. The temporal

information obtained from DFT allows to asses modes’ temporal evolution, i.e. the

growth/decay rates of each mode over time. It is therefore clear that all the possible

modalities of DMD should provide a substantial amount of valuable information com-

pared to other spatial methods such as PCA, ICA and CSP, which lack any temporal

information. Therefore, in the author’s view, it is clear that DMD has the potential to

fill the gap in providing valuable spatial-based features for motor imagery problems in

EEG signals.

1.1 Contributions

DMD has been gathering momentum in fluid flow research, however it remained

mostly unnoticed in other research areas, especially the ones concerning EEG and

motor imagery. The author notes that there is only a handful of academic publications

from the last five years which use DMD in the context of analysing brain signals, with

majority of the publications using DMD for seizure detection (Brunton et al., 2016;

Solaija et al., 2018; Seo et al., 2020; Shiraishi et al., 2020; Takeishi et al., 2021). Given

that DMD produces spatial-temporal modes and previous research has shown that

spatial-based features are well-suited for exploiting ERD/S phenomenon during motor

imagery, to address those two matters the author proposes a BCI system based on novel

spatial-based features extracted from different representations of DMD modes.

The author decided on exploiting the following three representations of DMD modes:

set of DMD mode vectors, DMD spectrum and DMD maps. Each of the representations

has been thoroughly tested on three publicly available datasets on motor imagery with

an addition of dataset available from the previous studies at the local laboratory. The
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contributions of this thesis are summarised as follows:

• First documented application of DMD technique to EEG recordings concerning

motor imagery to extract novel spatial-temporal features and their subsequent

classification, fully investigating and assessing the performance of DMD-based

features.

• Complete investigation of the effect of spatial filtering and different scaling meth-

ods on the obtained DMD modes — original data used in the study was only

filtered using band-pass filter without any spatial filters applied (Brunner et al.,

2008; Cho et al., 2017; Ofner et al., 2017). As part of the research, common

average reference method was implemented to investigate the effect of spatial fil-

ters on DMD modes. Following that, DMD modes were either scaled naturally

or scaled by their SVD energy. Finally, DMD modes were translated into more

appropriate format for RBF-SVM classifier with the help of two different projec-

tion methods, a recently developed Grassmanian projection kernel and PCA. The

performance of every possible combination has been assessed providing metrics

such as accuracy of the classification, specificity, sensitivity and kappa value.

• Investigation of DMD spectrum features — the power spectrum obtained from

the extracted DMD modes was assessed to see if this method produced viable

features for investigating ERD/S phenomenon in the frequency domain similarly

to PSD or average bandpower. The usefulness of the DMD spectrum features

was measured by the same accuracy, specificity, sensitivity and kappa metrics.

• A novel utilisation of DMD modes through DMD maps — an intensity map rep-

resenting the absolute values and phase of DMD modes was used for the first time

as an input to a convolutional neural network to create a novel image processing

pipeline. The usefulness of the DMD maps was measured by the same accuracy,

specificity, sensitivity and kappa metrics as the other two DMD approaches.
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1.2 Structure of the thesis

This thesis contains six chapters in total. The current introduction chapter is suc-

ceeded by a background chapter explaining the processes and signals involved in the

brain which provide modalities to drive BCIs. The third chapter provides a compre-

hensive overview of the current state-of-the-art signal processing tools involved in a

regular BCI system i.e. preprocessing, feature extraction, selection and classification

methods. Following this, the fourth chapter describes the proposed pipeline for the

new MI-BCI and the experiments performed, which allowed assessing the performance

of the proposed BCI. Furthermore all the datasets which have been used in the the-

sis are also described. Chapter five presents the results obtained from aforementioned

experiments. These results are discussed and compared to the performance of the

state-of-the-art systems. Lastly, chapter six recalls the initial statements and aims of

the thesis and provides a conclusion to the thesis. Additionally, future work suggestions

are provided with the intent of helping further research.



Chapter 2

Physiological background of brain

signals

In the introduction chapter BCIs were described as complex systems constructed

with several modules, whose purpose is to extract meaningful information from the

measured brain signals and translate them into correct commands through some form

of signal classification technique. This chapter will focus on expanding upon the back-

ground regarding type of brain signals generally used in BCIs and the chosen signal

modality used in this thesis. The signals acquired from the brain relate to a wide range

of activities and processes found in the brain; some reflect reaction to auditory or visual

stimulus, while others measure ongoing concentration. The background presented in

this section will be primarily looking at brain signals and their smaller subdivisions re-

lated to motor execution and imagination activity which is exploited in motor-imagery

(MI)-BCIs. However, some other signals will be briefly covered too for the sake of

completeness.

2.1 Brain activity signals

Measuring brain activity with the purpose of analysing it for motor execution or

imagination is a complicated process. After all, it is estimated that human brain

contains 100 billion minuscule neurons (0.004-0.1mm in size), where every neuron has

approximately 10,000 connections to other neurons (Müller-Putz, 2020). Thus it is

9
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evident that measuring activity of a single neuron or even a smaller population of

neurons is an incredibly demanding task. Complicating matters further, the layers

of dura, skull and scalp protecting the brain make it harder to measure the activity

originating from the network of neurons non-invasively.

Nonetheless, throughout the decades of research concerning BCIs, numerous meth-

ods were devised to record brain activity. These methods can be divided into two dis-

tinctive groups: electrophysiological- and haemodynamic-based methods (Shih et al.,

2012). Electrophysiological (electrical and magnetic) signals are directly related to the

neuronal activity as they observe changes of electric potential in the brain during neu-

ronal firing; while haemodynamic (metabolic) signals investigate blood flow changes in

the veins which occur as the result of neuronal firing.

2.1.1 Electrophysiological signals

Electrophysiological signals are generally preferred as they are easier and cheaper

to collect. The most popular types of such signals are surface electroencephalogram

(sEEG or simply EEG), electrocorticogram (ECoG), intracranial EEG (iEEG) (Hermes

& Miller, 2020) - also known as micro-depth EEG or local field potential (LFP) - and

lastly magnetoencephalogram. It must be noted that all the aforementioned signals in

fact refer to the same biophysical process taking place in the brain - LFPs (Buzsáki

et al., 2012; Heldman & Moran, 2020), with the difference between being the physical

depth of LFP acquisition.

In essence, an electrical current is generated as neurons exchange information be-

tween each other in a subnetwork, leading to extracellular potential changes Ve, which,

if superimposed, will generate LFPs. Coincidentally, measuring electric potential with

small-sized electrode in the brain is also called LFP, and this melapropism is high-

lighted in academic publications (Buzsáki et al., 2012). Hence to avoid confusion in

this thesis, those type of measurements are referred to as iEEG. While iEEG measures

LFPs in the cortex, ECoG measures LFPs on the cortical surface using a subdural

grid electrodes, and EEG measures LFPs from the scalp with appropriate electrodes

(disc, ring or pin electrodes), thus explaining the ”physical depth” or ”level” of signal

acquisition. magnetoencephalogram recordings are a special case of measuring LFPs,
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as they exploit the magnetic field produced by LFPs.

It can be seen from the above descriptions that neurophysiological signals can be

further divided into invasive and non-invasive methods, with iEEG and ECoG falling

into the former category, while EEG and magnetoencephalogram are part of the latter.

Invasive methods require direct access to the brain, which can only be achieved through

surgical means. The need to implant a micro-array of electrodes into the cortex, as it

is the case with iEEG, or a grid of electrodes on the surface of the brain, as seen with

ECoG, carries both short- and long-term risks. In the short-time scale, the most obvious

risks involve the surgical procedure itself and recovery afterwards, while in long-term

the biggest risks is the uncertainty of the functional stability of the implanted electrodes

(Buzsáki et al., 2012). Despite the superior signal quality offered by iEEG and ECoG,

they remain sparsely used in BCIs due to the risks just mentioned.

As a result, the non-invasive methods, with EEG in particular, are very common

in BCIs. While the popularity of EEG can be attributed to its long presence in re-

search (Berger, 1929), its safety, low cost and simplicity of implementation that makes

it so popular. Even though EEG signals are heavily affected by both internal and

external noise, researchers came up with various processing methods, allowing them

to extract meaningful information. Over the years, the hardware used for recording

EEG has greatly improved, allowing for much more compact and wireless systems to

be developed, such as the ones made by the company g.tec medical engineering 1. The

same however cannot be said about magnetoencephalogram, which uses cumbersome

equipment for recording, but offers a signal quality comparable to the one of iEEG.

2.1.2 Haemodynamic signals

While electrophysiological signals measure the electrical activity produced by single

or combined group of neurons, haemodynamic (also called cerebrovascular) recordings

measure brain activity through a principal known as neurovascular coupling, which

states that blood supply in the brain is connected to the local metabolic demand at

and near cortical tissue (Ramsey, 2020). Two most popular methods which exploit

this principal are functional magnetic resonance imaging (Sorger & Goebel, 2020) and
1https://www.gtec.at/product/

https://www.gtec.at/product/
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functional near-infrared imaging (Villringer & Chance, 1997); however they achieve

that through different means.

The principal of neurovascular coupling is based on the observations made on

few processes taking place during increased neuronal activity. Changes in cerebral

metabolic rate of oxygen, cerebral blood flow and cerebral blood volume lead to changes

in the concentration of oxy- and deoxyganted haemoglobin. On its own, measuring

the changes of concentration ratio does not provide meaningful information, however

Ogawa et al. (1990) showed that both oxy- and deoxygenated haemoglobin posses dia-

and paramagnetic magnetic properties respectively, which allow measuring brain activ-

ity through an effect called blood oxygenation level dependent. Due to those magnetic

properties oxygenated haemoglobin is repelled by the magnetic field and deoxygenated

haemoglobin is attracted by the magnetic field induced by the MRI scanner thus allow-

ing to measure the changes of haemoglobin concentration. In other words, as the blood

flow increases and vessels are drained of deoxygenated haemoglobin, the strength of

the MRI signal increases and vice versa, as the oxygen demand increases in vessels and

the levels of deoxygenated haemoglobin briefly increase causing the MRI signal to de-

crease. In comparison, functional near-infrared imaging measures the concentration of

the two states of haemoglobin by using an infrared light source and passing it through

the cortex. Since infrared light is capable of penetrating scalp and skull, functional

near-infrared imaging can be implemented non-invasively. As the light reaches the cor-

tical issue, oxy- and deoxygenated haemoglobin absorbs different infrared frequencies,

which as a result cause a decrease in the intensity of those frequencies indicating a

neural activity.

Both functional magnetic resonance imaging and functional near-infrared imaging

are non-invasive techniques which makes them more attractive and easier to use com-

pared to previously mentioned iEEG and ECoG. Despite that, functional magnetic

resonance imaging and functional near-infrared imaging suffer from a major drawback

which is rooted in the fundamental process governing them, the neurovascular coupling.

The metabolic processes involved in neurovascular coupling have particularly negative

effect on the temporal-based signals, such as the ones used in BCIs. As it is noted,

the usual haemodynamic response takes nearly 30s to return to the baseline reading of
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blood oxygenation level-dependent; however usually a 10s window is enough to detect

neural activity. Nonetheless, such a long window is unfavourable while working with

BCIs. Despite this, some efforts have been made in trying to adapt functional magnetic

resonance imaging to be usable in BCIs either on its own (Lee et al., 2009), or through

combining it with EEG (Goldman et al., 2002). Functional near-infrared imaging is

subject to a similar situation, where using functional near-infrared imaging on its own

has been shown to be able to recognise motor-related neural activity (Batula et al.,

2017), while the combination of functional near-infrared imaging and EEG has been

more widespread (Leamy et al., 2011; Blokland et al., 2014). Between the two, func-

tional near-infrared imaging is generally preferred over functional magnetic resonance

imaging due to its low cost and complexity of setup.

2.2 Electroencephalography

In this thesis, EEG signals are the chosen modality used to measure brain activity

due to the low cost of implementation, along with the pre-existing knowledge at the

research laboratory. While the general information on how EEG is produced has already

been provided, some more detail will be presented in this section to fully show the

complexity and obstacles faced while working with EEG.

Foremost, before the LFPs generated from neuronal activity can manifest at the

scalp level as EEG signals, they have to travel through layers of brain tissue, cerebral

fluids and skull. Such approximation of EEG as LFPs comes with two significant

assumptions:

• the aforementioned layers attenuate the signal such that the electric field produced

by LFP decays with the square of the distance from the original source; (Buzsáki

et al., 2012)

• volume conductance of the aforementioned layers causes spatial smoothing over

an approximate area of 10cm2 (Akhtari et al., 2002)

While these assumptions made it possible to understand, measure and interpret EEG

in a reliable fashion, it further shows the fragility of EEG and highlights the need for
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very careful choice of processing tools and techniques when working with EEG signals.

More recently, those assumptions and resultant views came under heavy scrutiny by the

research community (Cohen, 2017). For the most part of time LFPs were understood to

be mostly constructed of postsynaptic potentials leading to the assumption that EEG

reflect changes in extracellular currents, which themselves reflect changes in potential

of millions of pyramidal cells. However research from the last ten years has shown that

calcium and sodium spikes, glial cells, active and passive currents all contribute to LFPs

(Buzsáki et al., 2012), and therefore it has been argued that the general statement that

”EEG reflects integration of postsynaptic potentials across neural populations” is more

of a very basic explanation of no explanatory power of what is a much more complex

system (Cohen, 2017).

While gaining better understanding of the dynamics and interaction between cells

within the same and other layers would be without a doubt of great benefit to the

researcher community introduction of novel processing techniques to EEG-based BCIs

is equivalently beneficial. The most practical challenges of EEG signal processing are

its characteristics; the non-stationary, non-linear and non-gaussian properties of EEG

and its poor signal-to-noise ratio (SNR) makes the analysis difficult and limits the

use of conventional signal processing approaches. Despite those characteristics, there

are signal processing techniques that can still extract relevant information from EEG

signals. Such techniques will be discussed in the next chapter.

In terms of improving SNR, one of the most popular (physical) approaches is the use

of high-density EEG electrodes, which refers to the system used for electrode placement

during recording. The initial 10-20 system only allowed a handful of electrodes to be

placed around the scalp (sites located at 10% and 20% from the nasion, inion, left and

right preauricular points) (Jasper, 1958). Over the years more dense electrode systems

have been introduced, most notably 10-10 and 10-5 (Oostenveld & Praamstra, 2001),

with the latter offering a recording of up to 128 electrodes. The comparison of those

placement systems is shown in Figure 2.1.

Electrodes used in recordings also have a big impact on the quality of the recorded

EEG signal. Researchers have used different types of electrodes with hopes of improving

SNR more. While standard silver-silver chloride (Ag-AgCl) ring electrodes remain
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Figure 2.1: Comparison of 10-20 (black dots), 10-10 (grey dots) and 10-5 (white dots) electrode
placement systems. Figures obtained from Oostenveld & Praamstra (2001)

popular in use due to their low cost, more advanced electrodes have been created to

address some of the shortcomings or inconveniences present when using regular Ag-AgCl

ring electrodes. These regular electrodes are referred to as wet because of the use of skin

abrasive gel to firstly clean the scalp with subsequent application of electroconductive

gel in order to maintain a contact between scalp and the disc electrode, and passive

since they do not have any amplification circuitry at the individual electrodes. The

use of abrasive and electroconductive gels is one of the most significant drawbacks of

those traditional electrodes as the gels dry out between 30 and 45 minutes causing

an impedance drop at the electrodes, negatively affecting the recorded signal. This

becomes particularly problematic in long experiments as the gels would have to be

reapplied several times to maintain good quality of signal. A recent example of newer

electrodes which aim to tackle those problems are g.Sahara Hybrid electrodes offered by
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g.tec 2, which are active and dry/wet electrodes. One of the most favourable advantages

over regular Ag-AgCl electrodes is the lack of any gels as the needle-like pins on these

electrodes make a good connection on the scalp. In addition to that, the signal recorded

is being actively filtered and amplified at each electrode separately, cleaning up the

signal before it reaches the main amplification unit, thus producing a much cleaner

signal.

Research concerning EEG identified two major types of signals reflecting the brain

activity, which lead to incorporating them into EEG-based BCIs. It has been ob-

served that internally induced processes and mental tasks affect the ongoing EEG,

consequently leading those type of signals to be named as continuous (or spontaneous)

EEG. Additionally, exposure to external event or stimulus has been shown to lead to

appearance of another distinct brain activity called event-related potentials (ERPs).

2.2.1 Continuous signals

It has been noted that the majority of continuous EEG, in a healthy functioning

brain, take the form of rhythmic oscillations (rhythms or waves) which are found in

very particular frequency bandwidths, while their amplitude varies between tenths of

µV up to several µV . These bandwidths are referred to as follows: delta (δ, <1-4Hz),

theta (θ,4-8Hz), alpha (α,8-13Hz), beta (β,13-30Hz) and gamma (γ,30-200Hz).

The lowest frequency band is occupied by δ-waves which correspond to brain activity

observed at very low frequencies below 1Hz up to 4Hz, and are related to deep and

unconscious sleep. However, those waves are most commonly found in infants and their

strength diminishes with increasing age (Hobson & Pace-Schott, 2002), thus they are

not frequently utilised in BCIs. θ-oscillations are found in the next frequency band

covering 4-8Hz range. While θ-waves are mostly associated with different sleep states,

it has been reported that those waves do carry some information related to mental effort

(Cahn & Polich, 2006); however despite this θ-waves remain mostly unused in BCIs.

The next frequency band grouping α-waves (found between 8 and 13Hz) have been

generally used as an indicator of relaxed states in the brain, sometimes referred to as

cognitive inactivity or cortical idling. However, α-waves recorded from the sensorimotor
2https://www.gtec.at/product/g-sahara-hybrid-eeg-electrodes/

https://www.gtec.at/product/g-sahara-hybrid-eeg-electrodes/
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areas of the brain (sometimes referred to as µ-rhythms and refined to be between 7 and

12Hz) have been found to contain information related to both movement execution and

imagination (Schomer & Lopes da Silva, 2012). β-waves, which are located in the range

of 13-30Hz, have been found to be related to active concentration, task engagement

and attention. Similarly to α-waves, β-waves are an indicator of sensorimotor activity

(Pfurtscheller & Lopes Da Silva, 1999) and have been widely used in BCIs. The last

component of continuous EEG are γ-waves which occupy frequencies above 30Hz upto

200Hz, however non-invasive EEG only allows reliable detection of γ-waves up to 100Hz.

In general, those waves are associated with integration of different stimuli into an overall

coherent signal (Hughes, 2008). Due to closeness to power line (50Hz), γ-waves are not

widely used in BCIs since they can get contaminated by power line noise and notch

filtering might remove significant information from the signal.

Apart from the above frequency-dependent characteristics, continuous EEG has

another important property which must be accounted for when using those type of

signals in BCIs. While some components of continuous EEG are time-locked to some

events, it is not phase-locked, meaning that simple averaging techniques commonly

used to improve signal quality in brain activity analysis are not viable. Despite that,

as different trials are being analysed and their amplitude might appear similar, since

continuous EEG are rhythmic waves, the phases of EEG waves will be different. Thus

averaging over trials, particularly in time domain, would in fact remove any mean-

ingful information regarding continuous EEG from the analysed signal (Pfurtscheller,

2001). In the context of MI-BCIs a technique employed to mitigate shortcomings of

simple averaging is called event-related de-/synchronisation (ERD/S) introduced firstly

in 1970s and later defined more in-detail by Pfurtscheller (Pfurtscheller & Aranibar,

1977; Pfurtscheller & Lopes Da Silva, 1999). ERD/S exploits the previously described

relation of α- and β-waves involved in brain activity around the sensorimotor areas.

Firstly, a reference window during a resting period is established and band power val-

ues are calculated. Then, a sliding window is incorporated to move along the signal

and obtain band power values for each step. Comparing the values from reference and

activity windows yields a relative band power change expressed as percentages. Fur-

thermore, if this ERD/S calculation is to be extended over several frequency bands,
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then it is possible to represent ERD/S as time-frequency maps (Graimann et al., 2002).

It must be noted that in the literature, BCIs which utilise continuous EEG are often

referred to as sensorimotor-rhythms(SMR)-BCIs; however since the main focus in this

thesis is on motor imagery, MI-BCI naming will be used while providing reference to

what exact brain modality is being used.

2.2.2 Event-related potentials

The naming of ERPs might suggest that ERPs only appear when a person is exposed

to an external stimulus, however, in reality that is not fully accurate. While ERPs

mainly originate from evoked potentials which are a result of stimulating the brain

with either visual, auditory, somatosensory or olfactory stimuli, ERPs can also be

generated internally through person’s volition to perform a task. Analysing single-trial

recordings, that is looking at each trial recording on its own, shows that ERPs are very

hard to separate from continuous EEG as their potential is not high. However, since

ERPs are both time- and phase-locked, time averaging over multiple trials allows to

remove continuous EEG and emphasise any externally evoked brain activity.

2.2.2.1 Movement-related cortical potential

One of the most relevant ERPs which has found good application in MI-BCIs is the

Movement-Related Cortical Potential (MRCP). By definition MRCP is a slow cortical

potential preceding the onset of EMG signal by 500ms up to 2s during a voluntary ac-

tion. This particular potential is composed of several components which are split into

pre- and post-movement types. Initially, the former contained bereitschaftspotential

(BP), pre-motion positivity (PMP) and motor potential (MP), while the latter con-

tained reafferente Potentiale (RAP) (Kornhuber & Deecke, 1965). In later research,

BP was split into early BP and negative slope (NS’), while PMP and MP (see Fig-

ure 2.2) were given alternative names as P-50 and N-10 respectively to reflect the

polarity and time occurrence of those signals. The post-movement signals have also ex-

panded to include N+50, P+90 and N+160, while RAP was given a new name P+300

(Shibasaki et al., 1980). Topologically MRCPs are mostly distributed around the sen-

sorimotor cortex, however particular movements have their defined locations following
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the cortical homunculus representation of the brain. For example feet movements are

mainly concentrated on the midline precentral region with symmetrical distribution,

while hand movements have been observed to emerge contralaterally in the precentral

regions.

Figure 2.2: Diagram showing the main components of MRCPs. Note the reversed voltage
axis direction which is a common practice when plotting MRCPs.

Despite covering such a wide spectrum of different signals, BP and NS’ have been

exploited the most, primarily due to their much earlier emergence in time (between 1.2

and 0.5s before EMG onset) and having clear features (sudden negative slope as seen in

NS’ reaching maximum negativity between 0.5 and 0s before the EMG onset) (Shibasaki

& Hallett, 2006). Furthermore, BP and NS’ also have been noticed during attempt to

execute a movement or movement imagination, which led to incorporating BS and NS’

as low δ-frequency signal into MI-BCIs, either on their own or in combination with

ERD/S (Lew et al., 2012; López-Larraz et al., 2014; Ibáñez et al., 2014; Ofner et al.,

2017), boosting the overall performance of BCIs.

2.2.2.2 Error potential

While on the topic of improving BCI performance, one distinct type of ERP has been

of special interest. It has been postulated and later shown through brain recordings that

a specific signal related to perceiving errors exists. The error-related negativity (ERN)

or error-related potential (ErrP) is such signal which manifests itself on the frontal
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midline, located just above the anterior cingulate cortex, a part of the brain which

has also been shown to be involved in conflict monitoring and error processing (Carter

et al., 1998). In general, ErrP has been observed to develop after one perceives an

erroneous result or outcome, which varies between 100 and 500ms after response onset

as shown in Figure 2.2. The generation of ErrP is accomplished through one of the four

major actions: observation, feedback, response or interaction, where interaction ErrP

has been shown to be of most use in BCIs (Ferrez & Del R. Millán, 2008). Observation

ErrP manifests in the subject in the event when they observe an erroneous action or

choice being committed by someone or something else. Feedback ErrP appears when

the subject is informed by BCI that their action or choice was incorrect. Exposing a

subject to a stimulus and requiring them to respond to it as fast as possible will yield

response ErrP. Lastly, interaction ErrP is generated by the subject if they believe that

BCI misinterpreted the issued command.

It can be seen from the above definitions the preference of interaction ErrP and

its viability in MI-BCIs. In addition to being independent of external factors factors,

as it has been shown in research, ErrP also appears in asynchronous recordings, i.e.

experiments where subject decides for themselves when to perform an action and is not

guided by any clues (Lopes Dias et al., 2018). In comparison, the other modalities of

ErrP fail to appear while using such paradigms.

2.2.2.3 P300 component

Besides continuous EEG and MRCPs, P300 component (Figure 2.3) is the most

researched brain signal which has been widely utilised in some of the first complete

BCIs (Farwell & Donchin, 1988). It must be noted that P300 component described

here is a different type of a signal than the previously mentioned P+300 or RAP signal.

The P300 component is described as an indicator of processing information related to

attentional and memory mechanisms (Sutton et al., 1965), and the ongoing research

into P300 component has shown that it can be further split into two subcategories.

The novelty P300 or P3a manifests as a positive potential with maximum amplitude

appearing around 250-280ms post-stimulus over frontal/central electrode sites, and has

been attributed to engaging attention and processing novelty. The classic P300 or P3b
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is a positive potential with a maximum value appearing at 300ms over the midline

parietal brain areas, and has been linked to observing likelihood of events; for example

larger P3b is noticed when an event is less likely to occur. In practice, P300 component

is best measured through a use of matrix of different flashing elements, focusing on the

specific element (which would itself would be an intersection of a row and a column)

and then counting its flashing occurrences. This paradigm has been mostly used for

creating virtual keyboards enabling users to construct words and sentences with their

minds (Riccio et al., 2013). However, since P300 component appears post-stimulus, it

has not been as widely used in MI-BCIs as compared to other BCIs.

Figure 2.3: Example of brain signal showing different evoked potentials, including P300 re-
sponse.

2.2.2.4 Steady-state evoked potential

The least used ERP in BCIs is steady-state visual evoked potential (SSVEP). Its

most characteristic feature is the sinusoidal wave found in EEG recordings with the

frequency reflecting the stimulation frequency. In order to evoke SSVEP in brain,

subjects are exposed to multiple visual stimuli, which usually take form of a flashing

LEDs or boxes on a screen. Each of the flashing elements has its own specific flicker
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frequency which, when focused upon, will cause SSVEP to appear in the brain at

the same frequency (Guger et al., 2012). As it is an ocular-driven method, SSVEPs

are mainly recorded from the occipital lobe region of the brain, which is covered by

electrodes PO and O in 10-20 system (refer to Figure 2.1 for positions).

2.3 Conclusion

Throughout this chapter the complexity of measurable brain activity has been un-

folded and discussed. Two means of measuring brain signals were presented: elec-

trophysiological signals and exploitation of haemodynamics processes. Discussion and

presentation of current research regarding the two types of brain activity has revealed

that electrophysiological signals are much more common in the literature due to their

higher reliance and much greater ease of use. It has also been shown that electrophys-

iological signals are subdivided into more specific modalities out of which ECoG and

EEG are the most popular choices. As a result, the author narrowed down further

background to only concern EEG signals as they are the ones used in this thesis. The

ease of preparation of the recording and the non-invasive nature of EEG are some of

the most favourable characteristics of EEG despite its shortcomings observable in low

SNR and low spatial resolution of EEG recordings. Brain activity observed through

analysis of EEG signals in the context of motor imagery was split into two types: con-

tinuous signals and event-related potentials. The former was explained as continuous

and rhythmic oscillations perceived in a living and healthy brain occurring at specific

frequency bandwidths, while the latter grouped several sub-types of ERPs out of which

MRCPs were of the most interest. Further discussion revealed that when studying mo-

tor imagery, ERD/S phenomenon and MRCPs are the most often used EEG modalities,

and in the case of this thesis the author decided to exploit the ERD/S phenomenon in

EEG recordings to extract information related to motor imagery. The means on how to

prepare EEG signal for such analysis and the different methods used in the literature

to extract relevant information is presented in the following chapter.



Chapter 3

Review of EEG analysis methods

The reader should now appreciate the complexity of EEG signals and understand

the potential difficulties in working with such signals, especially when investigating

motor imagery. In this chapter, the author expands upon the previous high-level repre-

sentation of a typical BCI system (shown in Figure 3.1) and deconstructs said system

into its individual submodules, providing a much more in-depth explanation of various

techniques used in the literature. While the main focus of the thesis lies in the feature

extraction module of BCI, the whole system needs to be described as every module

plays an important part in the further performance assessment of the proposed feature

extraction methods. The literature review starts off by presenting and discussing var-

ious preprocessing techniques used widely in the research community to precondition

EEG signals. Preprocessing module is an essential part of a typical BCI as it helps

removing artefacts and noise, such as power line noise, muscle movements or drifting,

which are known to regularly contaminate EEG signals. Following this, the chapter

concentrates on different feature extraction methods, where DMD technique is intro-

duced. After that, feature selection and dimensionality reduction techniques currently

adopted in the BCI systems are explored. Finally, the overview of a BCI is concluded

with an outline of various classification techniques used in BCI systems nowadays.

23
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Figure 3.1: Diagram depicting the four main processing blocks in a typical BCI.

3.1 Preprocessing

The choice of methods in the preprocessing stage affects the quality of the recorded

EEG signals to process and, if configured incorrectly, can cause adverse effects. Recall-

ing the challenging nature of EEG signals and their susceptibility to different forms of

interference, the correct steps and methodologies must be provided. This is reflected

in the literature as researchers have proposed numerous methods and processes that

enhance the quality of EEG signals. In this section, two methods of filtering will be

discussed, namely frequency-domain filtering and spatial filtering, each of them having

a very distinct purpose in the preprocessing stages.

3.1.1 Frequency-domain filtering

The most common method of preprocessing any signal is applying Fourier-based

filtering on windowed EEG signals. This can take the form of either low- or high-pass

filter, or the combination of both, as a band-pass filter (Bigdely-Shamlo et al., 2015).

Low-pass filtering helps clean up the unwanted content found in the higher frequencies

in the signals, which is beneficial for applications which focus on the analysis of slower

brain dynamics e.g., δ-waves. High-pass filters have a similar function, where the low-

frequency content is removed from the signal. However, the rationale behind this is

to remove the DC offset and drifting, which is commonly found in the EEG signals

recorded over longer periods of time. Sometimes a band-pass filter is applied which

combines functionality of both aforementioned filters. Furthermore, band-pass filters

are routinely used for isolating particular bands of brain activity. Notch filtering is the

last method, used purely for removing the noise induced by the power lines (50 or 60

Hz depending on the world region).
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The result of removing any unwanted components from signals helps improve SNR,

however, it does produce a phase shift within the signal which is a frequently overlooked

side effect of such filtering process. Therefore, one must be cautious when filtering EEG

signals and the literature recommends the use a zero-phase filters in cases when one

wants to preserve original phase information (Bigdely-Shamlo et al., 2015). A thorough

review and discussion of different filtering methods is provided in de Cheveigné & Nelken

(2019), where the authors question the implementation of filtering techniques by the

research community while working with brain signals and urge to consider the exact

setting of each study. Most notably, the authors encourage to look for alternative

techniques for removing constant DC offset, drift and eye movement artefacts, such as:

robust detrending or regression techniques.

The ERD/S phenomenon considered in this thesis is known to produce spatio-

temporal patterns, therefore it is vital to preserve as much original temporal and spatial

relations while applying filtering. Additionally, ERD/S phenomenon is not phase-locked

to events (Section 2.2.1), thus if data processing is to be carried out offline, a non-causal

digital filter can be used. This can be implemented by using filtfilt() function in

MATLAB, which in turn can utilise Butterworth IIR digital filter, constructed with

butter() function, as input.

3.1.2 Spatial filtering

One of the biggest challenges faced when recording and working with EEG signals is

their low signal-to-noise ratio (SNR). Another characteristic of EEG signals which has

been discussed in the previous section is their low spatial resolution. This is attributed

to the problem of volume conduction, which becomes problematic in the study of faint

signals such as motor intention and imagination (Blankertz et al., 2008).

Thus, in theory the application of spatial filtering should be beneficial to the over-

all performance of the system, however, while reviewing the ERD/S phenomenon the

author did not find a conclusive answer specifying a need for applying spatial filters

to spatial feature extraction methods such as DMD or CSP. Some publications con-

cerning DMD did not implement any spatial filtering at all (Brunton et al., 2016; Seo

et al., 2020; Solaija et al., 2018), while others applied common average reference (CAR)
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(Shiraishi et al., 2020) or small Laplacian (Takeishi et al., 2021). Similarly with CSP,

majority of research did not implement any spatial filters at all (Grosse-Wentrup &

Buss, 2008; Ang et al., 2008, 2012) or only used small Laplacian (Müller-Gerking et al.,

1999; Blankertz et al., 2007). This is perplexing as earlier literature, which both CAR

and small Laplacian methods, showed that such filtering enhances the effects of ERD/S

phenomena (McFarland et al., 1997).

3.1.2.1 Bipolar filter

The simplest and least computationally demanding filter is the bipolar filter (Lou

et al., 2008). This method can be implemented in two ways. First approach requires

placing a pair of electrodes, one anterior and one posterior in relation to the area

of interest e.g., if considering C3 electrode, FC3 and CP3 electrodes will be used for

recording (see Figure 3.2). The difference in their potential yields an improved SNR

as the common noise is removed from the recording. The second method of applying

bipolar filter is performed by recording a full multi-channel EEG recording and then

iteratively testing all possible electrode combinations, which allows finding the most

suitable filter. However, this method in general is more computationally demanding

than the former method, and so the first method is preferable.

Figure 3.2: An example of a bipolar filtering. Signal at C3 electrode is derived from the
difference between the anterior and posterior electrodes, FC3 and CP3.
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3.1.2.2 Common average reference

The usual process of recording EEG signals includes an additional reference channel

with the purpose of removing common noise present across scalp channels. However,

as with any other electrodes, if the reference electrode makes a poor contact with the

skin surface (usually a mastoid or ear lobe), it will introduce significant artefacts to the

obtained recording (Bigdely-Shamlo et al., 2015). Additionally, those reference points

can still be affected by other muscle (electromyography, EMG) or heart (electrocar-

diogram, ECG) activity or any movement artefacts, which contaminate EEG signals

further. To help lower the impact of such artefacts a method called CAR was devel-

oped, and is frequently used as a post-recording step to remove the reference from the

recorded signals. It must be noted that CAR is the preferred method in settings where

high density EEG montages with equally spaced electrodes are used.

In the CAR algorithm, as an electrode of interest is chosen, the average contribution

of all other electrodes is calculated and then subtracted from it. One can think of

this process as high-passing EEG signals, which as a result amplifies local activity

components present at each individual electrode (McFarland et al., 1997). As seen in

(1), the average EEG activity of Vj is removed from an electrode of interest Vi, where

n is the total number of electrodes (Yu et al., 2014).

V CAR
i = Vi −

1
n

n∑
j=1

Vj (1)

3.1.2.3 Surface Laplacian

Another popular spatial filter commonly used in motor imagery problems is Surface

Laplacian (SL), also known as current source density. Similarly to CAR, SL provides

reference-free EEG readings which estimates radial current flow at the scalp level, by

calculating the second derivatives, ∂2V
∂x2 and ∂2V

∂y2 , of spatial voltage distribution. Over

the years two methods emerged as the most prominent ones, one proposed by Hjorth

(Hjorth, 1970, 1975) and the other one advocated by Perrin (Perrin et al., 1989).

Hjorth’s approximation uses a finite difference method which looks at the difference

in potential between the centre electrode Vi and the sum of weighted mean activity
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of the neighbouring electrodes Vj . For this approach to be feasible, first it must be

assumed that the scalp surface is locally flat and can be represented as a 3×3 grid

system and, secondly, that all electrodes are equidistant. This allows SL to be defined

in Cartesian coordinates as seen in (2) and subsequently approximated to the expression

in (3).

V LAP = ∂2V

∂x2 + ∂2V

∂y2 (2)

V LAP
ij ≈ 1

d2V(i−1,j) + V(i+1,j) + V(i,j−1) + V(i,j+1) − 4V(i,j) (3)

where, d is the distance between electrodes in cm. Alternatively, (3) can be ex-

pressed as follows:

V LAP
i = Vi −

∑
jεSi

gijVj (4)

where the weighting factor is defined as,

gij = 1/dij∑
jεSi 1/dij

(5)

and dij is Euclidean distance between electrode of interest and particular neigh-

bouring electrode, and Si is the set of the neighbouring electrodes. These could be

either nearest-neighbour (small Laplacian) or next nearest-neighbour (large Laplacian)

(McFarland et al., 1997) as seen in Figure 3.3.

Figure 3.3: Comparison of small Laplacian (left) and large Laplacian (right) configuration
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One of the biggest drawbacks of Hjorth’s approximation is its inability to estimate

activity of corner and edge electrodes. Therefore, it has been proposed to expand the

3×3 grid to a larger 9×9 grid, and introduce a SL matrix L (Equation (6)) which is

a sparse matrix with weights related to the contributions of each electrode in the said

9×9 grid setting. Each row shows the contributions of electrodes at a specific location,

i.e. first row represents weights for electrodes while considering top-left electrode in

the 9×9 grid, second row represents top-middle electrode and so on (Carvalhaes & De

Barros, 2015).

L = 1
d2



2 −2 1 −2 0 0 1 0 0

1 −1 1 0 −2 0 0 1 0

1 −2 2 0 0 −2 0 0 1

1 0 0 −1 −2 1 1 0 0

0 1 0 1 −4 1 0 1 0

0 0 1 1 −2 −1 0 0 1

1 0 0 −2 0 0 2 −2 1

0 1 0 0 −2 0 1 −1 1

0 0 1 0 0 −2 1 −2 2



(6)

Another shortcoming of Hjorth’s approximation is the assumption of local flat sur-

faces on the scalp. This led to the development of mesh-free methods, out of which

spherical splines implementation (Perrin et al., 1989) became the most popular. To

start off, scalp electrode positions must be firstly projected onto a sphere model. This

is done by converting 3-D positions of the electrodes from Cartesian into unit sphere

space, followed by calculating angles between electrodes with

cos(ri, rj) = 1− (xi − xj)2 + (zi − zj)2 + (zi − zj)2

2 (7)

where ri and rj are electrode coordinates. With the appropriate projection of the

electrodes one may use the following smoothing/interpolating function, which utilizes

spherical splines:
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fsph(r) =
n∑
i=1

cig(cos(r, ri)) + d (8)

where,

g(x) = 1
4π

∞∑
n=1

2n+ 1
nm(n+ 1)mPn(x) (9)

Function g(x) allows calculating the geodesic distance between two electrodes based on

their previously calculated angle. Parameter m is typically specified between 2 and 6,

and Pn is the nth degree Legendre polynomial. It is worth noting that summation over

Legendre polynomials as seen in (9) act as a Butterworth filter, which downweights

high-frequency spatial components. A complete solution for SL with spherical splines

is shown in (10)

Laps(f(r)) = − 1
r2

N∑
i=1

cigm−1(r, ri) (10)

3.2 Feature extraction methods

The core module of any BCI system is the method used for extracting meaningful

patterns from EEG signals. Those patterns, called features, can be expressed in dif-

ferent forms and the methodologies behind feature extraction cover a variety of signal

processing topics. Depending on the choice of EEG characteristic being analysed it can

be necessary to transform the original signals into a different domain. While ERPs can

contain useful temporal features (majority of which use statistical approaches), spec-

tral domain is the preferred choice whilst employing ERD/S phenomenon. That said

however, features from different domains (temporal, spectral or spatial) can be com-

bined and used together and in some cases have been shown to improve performance

of BCIs (López-Larraz et al., 2014; Ibáñez et al., 2014; Kevric & Subasi, 2017). In this

section the most popular feature extraction techniques will be introduced and concisely

discussed in order to provide general understanding of the current state-of-the-art in

BCI field.
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3.2.1 Bandpower

One of the first introduced techniques when working with ERD/S involves calcu-

lating bandpower of the signal. In some earlier papers this process refers to calculating

power values at α and β bands (Pfurtscheller et al., 1997) and looking for decreases or

increases in power, while later papers are more specific about the process. Usually, the

first step requires filtering the raw signal with a band-pass filter so a band specific (α

or β) signal is obtained. This is followed by squaring each amplitude sample which,

as a result, produces power samples. The final step of averaging power samples over

all trials produces bandpower values along the original time window from which the

relative power can be then calculated as

ERD% = A−R
R× 100 (11)

where A is the bandpower value at a specific sample and R is the average bandpower

value from a reference period before activity, and the relative power ERD% is expressed

in percentages. Alternatively, averaging over trials can be omitted and replaced by

taking the log of the power samples. This would result in the instantaneous bandpower

values. In addition to that, another method of calculating bandpower based on power

spectral density (PSD) is available (Bhattacharyya et al., 2010). Firstly, a smaller

window of bandpass filtered signal is transformed to spectral domain, where PSD can

be calculated, and average bandpower is subsequently computed from the integration

of the provided PSD estimate.

3.2.2 Fourier-based

Fourier transforms (FT) and additional extensions to FT have been particularly

well-suited for motor imagery problems as they are the simplest techniques for trans-

forming signals from temporal to spectral domain. FTs show frequency components

of a windowed signal and their amplitude, and thus showing their contribution to the

original signal. Two popular techniques used in BCIs are Fast Fourier Transforms

(FFTs) and power spectral density (PSD). The former is an optimised algorithm for

calculating discrete Fourier transforms (DFT) and the latter is the FT of the windows
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signal’s autocorrelation function. One must note that this is only applicable if the

signal is stationary. In case of EEG, which is non-stationary in its nature, a sliding

window approach must be used to create a pseudo-stationary scenario. PSD, which

usually measures signal’s power against frequency, in particular has been a useful fea-

ture as its estimation can be integrated and used as an average bandpower feature (as

mentioned in the previous subsection), forming feature vectors containing such average

band powers at specific electrodes as the entries (Bhattacharyya et al., 2010).

The main and biggest drawback of FFT and PSD approaches is their inability to

provide temporal information regarding the frequency components. Time-frequency

analysis overcomes this issue by implementing one of the following techniques, namely

Short-time Fourier Transform (STFT) and wavelets. While the STFT is explained

below, the latter will be discussed in the next section. STFT provides time-localized

frequency information by firstly dividing a longer signal into shorter, often overlapping,

windows of equal length followed by calculating FT for each window. However, it must

be noted that STFT is subject to Heisenberg’s uncertainty principle or Gabor limit,

which states that the transformed signal cannot have good resolution in time and

frequency simultaneously. Therefore, one must make a decision between either sharper

temporal and wider spectral resolution, or vice versa. STFTs are usually presented as

time-frequency maps called spectrograms, which in recent years have been exploited

in neural networks following the rise of image processing techniques (Mammone et al.,

2020; Xu et al., 2019; Wang et al., 2018b).

3.2.3 Wavelets

Despite STFT being able to deal with time-localisation issues, the aforementioned

Gabor limit still holds back STFT from fully realising the potential of time-frequency

analysis. Wavelets, the alternative method for implementing time-frequency analy-

sis, are able to overcome this limitation and are particularly effective in dealing with

nonstationary signals. They can be classified as either continuous or discrete wavelet

transforms. The core of any wavelet implementation is the choice of the mother wavelet,

which acts as a band-pass function. Over the years several popular mother wavelets

have been developed and adopted in the field of signal processing; Haar, Morlet, Symlet
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and Daubechies are some of the most commonly used (Li & Chen, 2014). Each of these

mother wavelets have their own properties making them suitable for more particular

scenarios. A continuous wavelet transform (CWT) can be described as a convolution

of the original signal x(t) with dilated and shifted versions of wavelet function ψ(t)

X(a, b) = 1√
a

∫ ∞
−∞

x(t)ψ (t− b)
a

dt (12)

where a is the scaling factor of the wavelet (dilation or compression of the signal)

and b is time shift factor of the wavelet. However, the constant change of scaling

and time shifting factors combined with integration carries a heavy computational

cost. Therefore, the discrete wavelet transform (DWT) was introduced. Instead of

scaling and shifting the mother wavelet, DWT decomposes the signal into two new

representations using two filters: a low-pass h[n] and a high-pass g[n], which in turn

are downsampled by a factor of two. The downsampled result of g[n], called the detail

D and formulated as in (13), is kept as is, and its values represent the coefficient of

the wavelet for this level; while result of h[n], called the approximation A (14), is fed

to another decomposition level and the process is repeated until the desired level of

decomposition is reached. The resulting wavelet coefficients found in the detail signals

D are then used as features for classification.

Dj [i] =
∑
k

x[k] · g[2 · i− k] (13)

Aj [i] =
∑
k

x[k] · h[2 · i− k] (14)

A further extension to DWT called wavelet packet decomposition is a proposed

alternative allowing a better frequency resolution, as wavelet packet decomposition

decomposes the detail coefficients as well and as a result increasing the total number

of coefficient sets from j + 1 to 2j .
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3.2.4 Common spatial patterns

Despite spectral domain carrying valuable information, as evident from the litera-

ture so far, it is the spatial domain methods that have been shown to be particularly

useful in MI-BCI systems which utilise ERD/S signals. One of the most renown and

frequently used such methods are common spatial patterns (CSP). Since its introduc-

tion (Koles et al., 1990) and further popularisation by Pfurtscheller (Müller-Gerking

et al., 1999; Ramoser et al., 2000; Brunner et al., 2007), CSP became a fundamental

approach used in many BCI systems and a solid benchmark for comparisons with newer

techniques in the following years (Ang et al., 2008, 2012).

At the core, CSP is a spatial filter which allows projecting raw EEG signals to

new time series through a linear transform as shown in (15). The variances of those

new time series components provide optimal features for discriminating between two

different conditions (classes).

XCSP = W TX (15)

CX1W = (CX1 + CX2)WΛ (16)

The spatial filter (or projection matrix) W is obtained through solving an eigenvalue

decomposition problem (16) based on the covariance matrices of the two classes CX1

and CX2 . The subsequent projection of the original data transforms it in such a way

that the first new ’channel’1 maximises the variance of the first class, while minimising

it for the second class. A common practice while using CSP is to choose first and

last two ’channels’ and calculate their log-variance, which are then used to construct a

4-by-1 feature vector XP (17).

XP = log

(
var(Xi

CSP )∑2m
i=1 var(Xi

CSP )

)
(17)

While being a highly effective technique, the basic CSP algorithm is only capable of
1”Channel” is used here as a reference to the original orientation of data. If in the original data

channels were rows then CSP filtered data will have rows as channels too. However, it must be noted
that channels of CSP are not the same as the original channels in terms of location e.g., if channel 1 of
Xorig represents a particular electrode, channel 1 of XCSP will not.
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working with two-class problems. Alternative approaches have been proposed to deal

with this shortcoming; one-versus-rest (OVR) and joint-approximate diagonalization

(JAD) are two of the most prevalent techniques in the literature (Grosse-Wentrup &

Buss, 2008). The former calculates the eigendecomposition for every possible combina-

tion of classes using (16) and creates a new projection matrix WOV R, which stores first

and last filter values (which hold the maximum variance for each class combination).

Equation (15) is then used as in the case of basic CSP to filter all original signals,

followed by (17), which generates features for multi-class CSP.

JAD approach is based on the fundamental understanding of CSP as a diagonal-

ization of two covariance matrices and expands it so that an approximate of the diag-

onalization of multiple covariance matrices, WJAD, can be obtained such that

W T
JADCXiWJAD = Dci (18)

where Dci is a diagonal matrix for the ith class. However, this method, as introduced

by Ziehe et al. (2004), relies on a heuristic approach and does not provide meaningful

information in regards to which spatial filters are the most optimal for further pro-

cessing. Grosse-Wentrup & Buss (2008) complements JAD method by incorporating

calculation allowing to approximate mutual information (19) and then extract L spa-

tial filters, which have shown to contain maximum mutual information. This allows to

create WJAD with optimal spatial filters.

I(c,W T
j x) ≈ −

M∑
i=1

P (ci)log
√
wTj Cx|ci

wj −
3
16

(
M∑
i=1

P (ci)((wTj Cx|ci
wj)2 − 1)

)2

(19)

In the above final equation from Grosse-Wentrup & Buss (2008), the mutual infor-

mation I(), which is based on the class information c and the spatially filtered signal

W T
j x, is the approximation of the difference between entropy of recorded data x (the

first term) and the sum of the product between the probability score of a certain class

P (ci) and the entropy of the recorded data x given class ci (second term). However,

since there is no closed-form solution of directly calculating entropy ox x, it can be

defined and approximated through negentropy of x. For the complete steps and expla-
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nation please refer to the original work by Grosse-Wentrup & Buss (2008).

In addition to the multi-class CSP extensions discussed above, a popular practice is

to include a filter bank prior to executing CSP algorithm, thus creating a Filter-Bank

CSP (FBCSP) (Ang et al., 2008). Instead of band-pass filtering the signal between

7-30Hz, a filter bank is set up such that multiple signals are obtained. This allows a

more neurophysiologically-based analysis of the signals, as they can separated into their

own respective bands e.g., α or β bands. Implementing this procedure has been shown

to provide significant improvements to the accuracy of the BCI (Ang et al., 2012). In

recent years FBCSP methods have surged in popularity, as they have been paired with

neural networks as a method for further feature selection and dimensionality reduction

(Wu et al., 2019; Olivas-Padilla & Chacon-Murguia, 2019; Wang et al., 2020).

3.2.5 Principal component analysis

Continuing the trend of reliable spatial techniques with applications in EEG, prin-

cipal component analysis (PCA) was found to be a very powerful and flexible statistical

method with many different uses in BCIs. While in BCI field, PCA is predominantly

used as a feature selection method (or a dimensionality reduction technique), there are

instances where PCA is used as a feature extraction method. Nonetheless, the processes

involved in both feature extraction and selection are the same (see 3.3.3.1).

PCA is a linear transformation technique which converts a set of measurements

that might be correlated to some degree, to a new set of orthogonal values, which are

linearly uncorrelated and they are called principal components. In literature, PCA

is often referred to as a Karhunen-Loéve transform, Hotelling transform, or proper

orthogonal decomposition (which itself is also an alternative name for singular value

decomposition, SVD). It is also referred to be a blind source separation technique (BSS).

In this thesis to keep consistent naming, PCA will be simply called ’PCA’ and if

PCA is calculated with the SVD method, it will be referred to as ’PCA through SVD’.

Furthermore, there are two methods through which PCA can be calculated: through

eigendecomposition of the covariance matrix (Yu et al., 2014) or through SVD (Lee &

Choi, 2002). The prerequisite for either of the methods is to have the original data

matrix X centred, i.e. with removed mean. Following this, one of the aforementioned
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approach can be used.

Algorithm 1 PCA through eigendecomposition of covariance matrix CX
Require: X ∈ Rm×n . m-channels, n-samples
Ensure: Xnew = X − X̄ . X̄ is mean of X
CXW = ΛW
PC = Xnew × inv(diag(Λ)T )

Algorithm 1 provides an overview of performing PCA using the eigendecomposition

method. Starting with the original data matrix X and subsequent centring of data,

the covariance of the zero-mean data matrix Xnew is calculated. It must be stressed

that for PCA to work well, the mean must be removed. This is because the aim of

PCA is to obtain eigenvalues which maximise the variance of different sources present

in the data. That ensured, eigenvalues Λ can be obtained from the eigendecomposition

as shown in Algorithm 1. Lastly, principal components (PCs) are the projections of

the calculated eigenvalues onto Xnew. A common practice at this stage is to select a

specific number of eigenvalues which describe the most important features and thus

further reduce dimensionality of data. This number is equivalent to the number of

eigenvalues which contribute to either 95% or 99% of total explained variance of PCs.

Algorithm 2 PCA through SVD
Require: X ∈ Rm×n . m-channels, n-samples
Ensure: Xnew = X − X̄ . X̄ is mean of X
Xnew = UΣV T

PC = U × ΣT

To calculate PCs with the help of SVD, the data centring operation is still required.

Then SVD is performed on the centred data matrix Xnew as outlined in Algorithm 2,

where the resultant U,Σ and V are unitary matrix, diagonal matrix of singular values

and right singular values respectively. Finally, PCs are calculated by projecting singular

values Σ onto the unitary matrix U . Here, the same dimensionality reduction technique

can be used as in the previous approach for PCA. In general, calculating PCA with SVD

is favoured as it provides a more stable and reliable numerical method for obtaining

PCs.
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3.2.6 Independent component analysis

While PCA focused on exploiting the second moment of statistics (variance), in-

dependent component analysis (ICA) looks at higher order statistical moments and

provides source separation of equally important components called independent com-

ponents (ICs). That said, PCA is often used as a preprocessing tool for ICA (Bugli

& Lambert, 2007), however that became an object of scrutiny in recent years with

some researchers suggesting that this process adversely affects the performance of ICA

(Artoni et al., 2018).

ICA problem is synonymous to the ”cocktail-party problem”, where the aim is to

separate a mixture of all signals into their own respective sources. This is achieved

by assuming a linear matrix model x = As, where the only known is the matrix of

observables x which is used to then estimate the mixing matrix A and statistically

independent components s. Once A is estimated, ICs can be expressed as s = Wx,

where W is the inverse of the mixing matrix A. The main measurement used for

discerning between the sources is their non-Gaussian nature, meaning that Gaussian

signals would not be suitable for any ICA methods (Hyvärinen & Oja, 2000). The

resultant ICs have several uses; sometimes ICs are used for removing noisy sources

and therefore help clean up signal from artefacts (mainly electrooculographic signals,

EOG), while in other cases ICs can be selected as features and then used for subsequent

classification.

An important part of ICA is the choice of the solving algorithm used for estimating

the unmixing matrix and infomax. FastICA, Joint Approximation Diagonalization

of Eigenmatrices (JADE) and Second Order Blind Identification (SOBI) approaches

are two of the most well-known ones; however the focus here will be on Infomax and

FastICA methods.

Infomax algorithm implements a function derived from neural networks which max-

imises the output entropy resulting in minimisation of the mutual information of the

outputs thus yielding ICs. Those outputs take the form of φi(wTi x), where the input

x and the weight vectors of the neurons wi are used in a non-linear scalar function φi.

Using cumulative distribution function as φi allows to obtain ICs, as shown in (20),
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through a method that is equivalent to maximum likelihood estimation (Hyvärinen &

Oja, 2000).

L2 = H(φ1(wT1 x), ..., φn(wTnx)) (20)

Algorithm 3 FastICA algorithm
Require: Centred and whitened matrix of mixed signals x

Choose initial random weight vector wi
repeat

while wi not converged do
w+
i = E

{
xg(wTi x)

}
− E

{
xg′(wTi x)

}
wi

wi = w+
i /||w

+
i ||

if i = 1 then
if wi converged then break
end if

else
w+
i = wi − Σi−1

j=1w
T
i wjwj

wi = w+
i /||w

+
i ||

end if
end while
i = i+ 1
return wi

until all wi are obtained

Based on the idea of utilising neural network learning rules as seen in Infomax

approach, FastICA method introduced by Hyvärinen is a fixed-point iteration of such

process (Hyvärinen & Oja, 1997). In comparison to Infomax, FastICA does not require

any user-defined parameters and boasts a great performance boost (Sahonero-Alvarez &

Calderon, 2017). As stated before, the aim of ICA is to look at the nongaussianity of the

signals which then allows for extracting ICs. As such, FastICA uses the approximation

of negentropy J(wTx) as means of measuring the nongaussianity.

FastICA offers two methods of calculating ICs: either through one-by-one esti-

mation (equivalent to projection pursuit method) or through symmetric decorrelation

allowing for parallel estimation of the weight matrix w. Before application of FastICA,

the matrix of observables x must be firstly centred, which simplifies running of the

algorithm, and then whitened, so that the calculated ICs will be uncorrelated and have

unit variance. Following that, a random weight vector wi is initialised and new w+
i

is obtained. The negentropy is approximated by using first and second derivatives (g
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and g′) of a nonquadratic function G chosen before executing the ICA algorithm. The

choice of G mostly affects the robustness of the obtained ICs as it controls the speed

of the convergence of the weight vector wi. This vector is then normalised and checked

if it has converged: if it did, the weight vector wi is returned as ICs and the algorithm

is repeated again as shown in Algorithm 3.

3.2.7 Empirical mode decomposition

Empirical mode decomposition (EMD) is a data-driven method highly suitable for

working with non-linear and nonstationary signals, something that Fourier based meth-

ods are known to struggle with (due to windowing constraints). Compared to other

methods discussed so far, EMD is a relatively new technique in signal processing only

introduced in 1998 (Huang et al., 1998) with its first uses in EEG analysis presented

just in 2004 to assess synchronisation of neuronal activity (Sweeney-Reed et al., 2004).

x(t) =
n∑
i=1

IMFi(t) + r(t) (21)

EMD is a decomposition technique which is described as a sum of finite number

of intrinsic mode functions (IMFs) with the addition of residual signal as seen in (21).

Those IMFs are functions extracted from the data through an iterative sifting process

during which the candidate IMFs have to satisfy the following two conditions in order

for them to be valid:

(1) number of extrema in the whole data set must be either equal or differ at most by

one to the number of zero crossings

(2) mean value of the envelope defined by both local maxima and minima is equal to

zero at any data point

In practice those conditions are fulfilled by firstly identifying extrema of the sig-

nal and then applying a cubic spline interpolation between local maxima and minima

producing the upper and lower envelopes as a result. A valid IMF is acquired if the

difference between the signal and the mean of the envelopes is close or equal to zero.

Otherwise the sifting process is repeated until this condition is satisfied. Once the
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desired number of IMFs has been extracted the original signal can be expressed with

equation (21), where r(t) is the residual signal left after extracting the last IMF. It

must be noted that the first IMF corresponds to the highest frequency component of

x(t).

Algorithm 4 General EMD
Provide a desired number i of IMFs to be extracted
for i times do

let h = x
identify extrema in h
while h− µ 6= 0 do

identify local maxima and minima
fit cubic spline to create envelopes eU and eL
µ = eU +eL

2
h1 = h− µ

end while
IMFi = h1
if last i then

r = h− h1 . where r is the residual signal left
else

x = h− h1
end if

end for

A common method for extracting features from IMFs is to obtain the instantaneous

frequency of each respective IMF using Hilbert Transform which in turn is calculated

according to (22). From there a new analytic signal Zt is formed from input signal

Xt and its Hilbert Transform Yt. This new analytic signal can also be expressed in

polar coordinates, as seen in (23), where at is the series of instantaneous amplitudes

and the instantaneous phase is θt. Finally, instantaneous frequency ft is described as

the rate of change of θt and is commonly used to construct a feature vector for further

classification.

Yt = 1
π
P

∫ ∞
−∞

Xt′

t− t′
dt′ (22)

Zt = Xt + iYt = ate
iθt (23)

However, the basic formulation of EMD has some significant drawbacks, most no-
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tably its reliance on the existence of extrema in data (either in amplitude or in curva-

ture) and the inability to appropriately deal with multivariate data. Two methods were

developed to tackle those shortcomings: ensemble EMD its extension multi-dimensional

ensemble EMD and multivariate EMD.

Soon after the introduction of EMD some researchers have noticed that a phe-

nomenon named ”mode mixing” was occurring during the extraction of IMFs (Wu &

Huang, 2009). It was found that sometimes the extracted IMFs contained hugely dif-

ferent oscillations leading to IMFs forfeiting useful physical meaning as they would

suggest a presence of false modes in data. Thus, it has been proposed to obtain an

ensemble of IMFs and use the mean of such ensemble as the final IMF for a particu-

lar level of decomposition. The ensemble is calculated through an iterative process of

adding different white noise to the original signal and then decomposing according to

normal EMD procedure (as seen in Algorithm 4). Since white noise is used in ensemble

EMD, the final IMF will not contain any white noise as it will cancel itself out during

calculating the final mean.

Development of multivariate EMD (Rehman & Mandic, 2010) followed some earlier

attempts of dealing with multivariate signals, such as bivariate EMD and trivariate

EMD. As the direct definition of local maxima and minima is not possible for mul-

tivariate signals, multivariate EMD approach solves this problem by projecting the

p-variate signal xi(t) onto a (p− 1) hypersphere. This process generates p-dimensional

envelopes eθk(t) of the projections qθk(t) through the interpolation of the local extrema.

Projections are defined here as qθk(t) = xi(t) · (vθk)T , where vθk is the projection vector

along the direction given by angle θk and k = 1, 2, . . . ,K with K being the number

of uniformly distributed θk. As the projections are calculated, the time instants of

maxima found in qθk are obtained and used for later interpolation producing eθk(t) as

a result. Averaging those envelopes with (24) yields the mean of envelope curves m(t)

which is used in a similar way as in general EMD method. A candidate IMF can be

obtained as s(t) = xi(t) −m(t) and if it satisfies the sifting stopping criterion, s(t) is

set as one of the multivariate IMFs (MIMFs) and the whole process is repeated until

exhaustion of meaningful multivariate IMFs.
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m(t) = 1
K

K∑
k=1

eθk(t) (24)

3.2.8 Dynamic mode decomposition

A new decomposition technique recently emerged from the field of fluid dynam-

ics analysis (Schmid, 2010) called Dynamic Mode Decomposition (DMD). Similarly

to EMD technique, DMD is a purely data-driven method well suited for non-linear

and dynamic systems with multivariate signals. DMD decomposes data into dynamic,

spatio-temporal modes which reflect low-rank dynamics present in the data. Those

low-rank dynamics are approximated without using any equations to directly describe

the dynamics of the systems. Over the last five years, DMD has been gradually gaining

momentum in the field of analysing brain signals thanks to the initial paper presenting

the application of DMD to ECoG recordings (Brunton et al., 2016) in the context of

analysis of movement tasks. Since that first publication, DMD has seen few more no-

table academic works relevant to these topics: application of DMD in seizure detection

(Solaija et al., 2018), studying epilepsy (Seo et al., 2020), decoding movement from

ECoG signals (Shiraishi et al., 2020). Additionally, work done by Bito et al. (2019)

lays down a foundation in how DMD can be used to separate and identify clusters of

human activities from movement data. In the context of applying DMD to MI signals

found in EEG only one paper has been found (Takeishi et al., 2021).

DMD problem is formulated on the basis of a dynamical system being described by

a set of differential equations, however, describing non-linear signals such as EEG with

differential equations is a near impossibility. Therefore, a proxy is introduced which

attempts to instead approximate a locally linear dynamic system as shown:

dx

dt
= f(x, t) ≈ Ax (25)

which can be also represented in a discrete-time system as:

X2 ≈ AX1 (26)
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Here, the pair of state matrices X1 and X2 are single-sample shifted matrices of the

original matrix X ∈ Rc×m, which in case of usual EEG recordings is a matrix of column

vectors xk ∈ Rc, where c is the number of recorded channels and m is the number of

samples in the matrix X.

X = [x0, x1, x2, . . . , xm]

X1 = [x0, x1, x2, . . . , xm−1] (27)

X2 = [x1, x2, x3, . . . , xm]

While the above arrangement of data matrices X1 and X2 would be acceptable

for the originally intended fluid flows as the measured data has c � m (the preferred

combination for DMD algorithm) in the case of windowed EEG signals the opposite

c� m holds. Therefore, in order to satisfy this requirement, X1 and X2 are augmented

by shift-stacking column vectors and producing respective Hankel matrices (28) as a

result. These new matrices are constant in skew diagonal and their new ”height” is

controlled by a stacking factor h, which is the smallest integer satisfying the following

hc > 2m inequality. This is based on the findings from Tu et al. (2014) where it has

been shown that dynamics of standing wave can be determined by DMD algorithm if

such time shift-stacking method is applied and then was expanded to cover data which

does not meet c� m criteria (such as EEG data).

X1,aug =



x0 x1 · · · xm−h

x1 x2 · · · xm−h+1
...

xh xh+1 · · · xm−1


, X2,aug =



x1 x2 · · · xm−h+1

x2 x3 · · · xm−h+2
...

xh+1 xh+2 · · · xm


(28)

The last undefined left from (26) is the linear operator A. As stated earlier, this

operator attempts to describe non-linear dynamics which relate the two state matrices.

In the literature this method of analysing signal is often called Koopman spectral analy-

sis. There, a linear operator named Koopman operator is an infinite-dimensional linear

operator which represents finite-dimensional, non-linear dynamics of the system. DMD
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heavily relies on this approach and the aim of DMD algorithm is to approximate this

Koopman operator into a matrix representation and exploit its eigenvalues and eigen-

vectors to then calculate DMD modes. Therefore, Equation (26) must be transformed

such that A can be found. As seen in Equation (29) the Moore-Penrose pseudoinverse of

X1 is obtained by calculating its SVD, through the built-in MATLAB function svd(),

thus allowing A to be determined. However, the size of A must be noted here and taken

into the account of computing time. Given that A will be hc×hc, it can yield very big

matrices which then will lead to longer computation time of the eigendecomposition,

therefore, it has been proposed to find a low-rank approximation Ã instead. This is

achieved by r-rank truncation of X1,SV D allowing to obtain Ã of size hc × r which is

much more suitable for the subsequent eigendecomposition.

A ≈ X2X
†
1 , X2V Σ−1U∗, Ã = U∗rX2VrΣ−1

r (29)

In the case of this thesis, r-rank number was set to 100 ranks. Although approaches

that can calculate optimal number of r-ranks exist (Gavish & Donoho, 2014), the

calculated optimal r-rank tends to vary across different data windows. Therefore, to

keep all decomposed trials equal, a single set value has been provided instead. While

selecting 100 ranks might seem arbitrary, the reasoning behind the chosen value is that

such number of ranks should be more than enough to capture approximately 95% of

the total SVD energy in the analysed window. Furthermore, preserving too many ranks

has corruptive effect on the quality of the computed DMD modes as noted in Chapter

8 of Kutz et al. (2016).

Algorithm 5 DMD algorithm, based on Brunton et al. (2016)
Require: X ∈ Rc×m

Build X1 and X2 based on Hankel shift-stacking method
X1,SV D = UΣV ∗
Ã = U∗rAUr = U∗rX2VrΣ−1

r

ÃW = WΛ
Φ = X2VrΣ−1

r W

The eigendecomposition problem is formulated as ÃW = WΛ, where W are eigen-

vectors and Λ is a diagonal matrix of eigenvalues λ. Lastly, DMD modes can be com-

puted. Two methods for computation are prevalent in the literature: projected DMD
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modes and exact DMD modes (Tu et al., 2014), where the former projects the modes

onto the initial state matrix X1 through use of Ur matrix meaning that DMD modes

ϕproj are not the direct eigenvectors of Ã (Equation (30)). Exact DMD modes ϕexc

take into consideration projection onto the next state matrix X2, meaning that ϕexc

are direct eigenvectors of Ã and have been proven as such (Tu et al., 2014). Because

of the exact modes being calculated in the image of the future state matrix X2 only

exact DMD modes (Equation (31)) are used in this thesis, and will be represented as

Φ when referring to the full matrix of modes or as φi when referring to an individual

mode.

ϕproj , UrW (30)

ϕexc , X2VrΣ−1
r W (31)

Calculated DMD modes Φ are non-orthogonal, will have the same size as Ã i.e.,

hc ×m however only first c rows of Φ are considered for the later analysis as the rest

of the modes are just shift-stacked copies (Brunton et al., 2016). Each column is a

mode corresponding to its i-th eigenvalue and it comes in conjugate pairs, therefore

the matrix Φ can be further pruned by selecting every second mode giving the final

size of Φ to be c × r
2 . Since a single mode ϕi is a complex number its magnitude and

phase provides valuable information which can be exploited for feature extraction. The

magnitude provides information regarding the relative influence of all channels on the

associated mode frequency, which in turn is obtained from the relative eigenvalue as

shown below

fi = abs

(
log(λi)
2π∆t

)
(32)

where, ∆t is the sampling period of the signal. It must be noted that the mode fre-

quency is characteristic to the specific window and not fixed across trials and therefore

appropriate methods must be incorporated to find the similarities between modes of

different trials. These methods will be discussed later in the ”Methodology” chapter of
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this thesis. One way of visualising the effect of modes on their characteristic frequencies

is by producing a DMD spectrum which is a plot of |Φ| against f .

Following the described method from Algorithm 5 will produce DMD modes in

unit norm. This normalized state shows which modes contribute the most dynamically

at the specific characteristic frequencies and modes with greater magnitudes can be

seen as more dynamically important. Findings by Tu et al. (2014) have shown that

DMD modes can be scaled through alternative means. The authors of the referenced

paper presented that under certain conditions modes obtained by DMD are related

to modes obtained by eigensystem realization algorithm (ERA). In particular, when

system under investigation has been subjected to shift-stacking procedure outlined

earlier a similarity is found between approaches used for calculating the low-dimensional

approximation Ã of DMD and low-dimensional approximation AERA of ERA. Let H

and H ′ be Hankel matrices of some data similar to matrices X1,aug and X2,aug. In

ERA, the low-rank approximation AERA can be then calculated as follows:

AERA = Σ−1/2
r U∗rH

′VrΣ−1/2
r (33)

where Ur, Σr and Vr are r-rank truncated SVD of H = UΣV ∗. As Tu et al.

(2014) points out, if the same H ′ matrix was to be used to compute DMD modes by

substituting X2,aug in (29) such that Ã = U∗H ′V Σ−1 then it becomes apparent that

AERA and Ã can be related by a similarity transform

AERA = Σ−1/2ÃΣ1/2 (34)

It must be noted here that eigenvalues of AERA and Ã are equal and because of

that the eigenvectors of those low-rank approximations have a special relation too. If

AERAWERA = λERAWERA (35)

and λERA = Λ then by looking at the relation below it can be clearly seen that

eigenvectors of Ã are W = Σ1/2WERA
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ÃW = ÃΣ1/2WERA = Σ1/2AERAWERA = λΣ1/2WERA = λW (36)

This method is incorporated by Brunton et al. (2016) where the authors call it

scaling modes by SVD energy and in this thesis the author refers to such scaled modes as

energy- or SVD-scaled DMD modes. This results in mode’s magnitude now displaying

their energy content rather than relative influence over channels as with modes in

unit norm. Additionally, the authors showed that by using the relations of AERA and

Ã the subsequent calculation of the mode amplitude P which is the square of modes’

magnitude can be plotted against the characteristic frequencies f with the result closely

resembling the shape of average FFT of the exact same windowed signal. Notably, DMD

spectrum corresponds only to the energy of a single specific mode across all channels

while FFT power spectrum is calculated for each channel individually.

Pi = |φi|22 (37)

Algorithm 6 modified DMD algorithm
Require: X ∈ Rc×m

Build X1 and X2 based on Hankel shift-stacking method
X1,SV D = UΣV ∗
Ã = U∗rAUr = U∗rX2VrΣ−1

r

Â = Σ−1/2
r ÃΣ1/2

r

ÂŴ = ŴΛ
W = Σ1/2

r Ŵ
Φ = X2VrΣ−1

r W

3.3 Feature selection methods

After extracting features from the signals under investigation, it is often desired to

further reduce the size of the feature space to improve the speed of subsequent training

and classification. Depending on what the initial features are, feature selection methods

might look for a set of particularly influential channels or frequencies that according

to some algorithm carry the most significant data which can be used for classification.

These algorithms could be either purely statistical in their nature or rely on some
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alternative methods (mostly projection-based methods). This section aims to provide

an overview of the most commonly used methods for feature selection found in the

literature.

As highlighted in the introduction, the author decided to group feature selection

and dimensionality reduction techniques together as they achieve similar goals: feature

selection selects a subset of most useful features from the initial feature vector thus

reducing the initial dimensions in the process.

3.3.1 Mutual information-based

Mutual information-based feature selection (MIBFS) methods are one of the biggest

accumulations of feature selection methods and they can be separated into two main

approaches: feature scoring and feature subset selection algorithms (Pohjalainen et al.,

2015). The former techniques evaluate the usefulness of features by calculating score

values of each individual feature and returning their ranking based on different criteria,

however, they do not provide information regarding how many of the features should

be selected for the most optimal performance. On the other hand, feature subset

selection techniques aim to rectify that shortcoming by combining information from the

previously mentioned approach with an additional intrinsic determination of feature set

size.

The basis for MIBFS is the fundamental formulation of obtaining mutual information

(MInf), which is a measure of mutual dependence between two variables and is part of

feature scoring approaches. When using MInf in the context of EEG features, feature

values are expressed as x and class labels corresponding to those features are y. The

value for MInf is the product of pair joint probability density function of feature x and

its class label y and the log of the ratio between pair joint probability density function

and the product of individual probability density functions as seen in Equation (38).

Since MInf is a feature scoring method the returned results contain scoring and relative

ranking of each feature leaving the number of chosen features up to personal judgement.

MInf =
∑
x∈X

∑
y∈Y

p(x, y)log
(
p(x, y)
p(x)p(y)

)
(38)



CHAPTER 3. REVIEW OF EEG ANALYSIS METHODS 50

Moving onto feature subset selection algorithms, a group of closely related and

well known methods called sequential feature selection algorithms are found. Every

method from this family-tree contains two essential building blocks: objective function

and a sequential search algorithm. One of the earliest and still widely used nowadays

sequential feature selection techniques is the sequential forward selection (SFS) method

(Whitney, 1971). Here, the best features X are obtained through iteratively populating

an initially empty feature subset vector X0 with best feature candidates x+ which

maximise the specified criterion function argmaxJ(). The procedure is repeated until

the desired number of features p is obtained as seen in Algorithm 7. Another popular

method is sequential backward selection (SBS) which is SFS but in reverse i.e., features

are iteratively removed from the initial feature set so that eventually only the best

features remain in the new subset.

Algorithm 7 SFS algorithm
repeat

X0 = ∅, k = 0
x+ = argmaxJ(Xk + x) . x ∈ Y −Xk

Xk+1 = Xk + x+

k = k + 1
until k = p

A feature subset selection algorithm which addresses this drawback is a filter-based

technique called minimal-redundancy maximum-relevance (MRMR) (Peng et al., 2005).

Through analysis of the correlation and mutual information, MRMR simultaneously

minimises redundancy and maximises relevance between features and the provided

class information. This allows MRMR to select a subset of features which have the

most correlation with a class (maximising relevance of the features Vs with respect to

the class labels) and the least correlation between the features themselves (addressing

the redundancy Ws). The criterion controlling determination of the best feature is

mutual information quotient and it is calculated as seen in Equation (41).

VS = 1
|S|

∑
x∈S

I(x, y) (39)
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WS = 1
|S|2

∑
x,z∈S

I(x, z) (40)

maxMIQx = max
Vx
Wx

= max
I(x, y)

1
|S|
∑
z∈S I(x, z)

(41)

3.3.2 Linear discriminant analysis

Linear discriminant analysis (LDA), while mostly used as a classification technique

(see section 3.4.1), has been shown that with slight modifications LDA can be turned

into a simple and efficient feature selection technique (Song et al., 2010). The approach

exploits a particular step of LDA calculation where eigenvalues and eigenvectors are

calculated. Assuming that the LDA-based feature can be expressed as the product of

i-th eigenvector W and sample x such that:

z = xTW =
N∑
i=1

xiWi (42)

it has been noted that the magnitude of Wi statistically reflects to the contribution

of the i-th sample, thus Song et al. (2010) postulated that removing xiWi with small

|Wi| will have negligible effect on the accuracy of the classification and therefore such

features are safe to be removed from the initially calculated features z. Algorithmically

it has has been proposed to calculate individual contributions of eigenvectors based on

the selection of m largest corresponding eigenvalues, denoting the selected eigenvectors

as V1, . . . , Vm. The newly introduced term for contribution is denoted as cj as seen

in Equation (43) and it reflects the contribution of the j-th sample based on the j-th

element of p-th eigenvector Vpj , where j = 1, 2, . . . , N and p = 1, 2, . . . ,m.

cj =
m∑
p=1
|Vpj | (43)

3.3.3 Projection methods

An alternative method of feature selection involves projecting the obtained features

onto another space representation. This is the preferred method of selecting features
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in the cases where for single trial a matrix of features is produced instead of a vector

and where vectorisation of matrices could remove important data from the extracted

features.

3.3.3.1 Principal Component Analysis

Feature selection using PCA is accomplished by projecting feature matrix X onto

its left singular values U to obtain a projected matrix of new features corresponding.

This is accomplished by first obtaining SVD of feature matrix X and then selecting d-

elements of U which correspond to d number of biggest energy found in singular values

Σ. The most notable examples of such successful projections can be seen in Brunton

et al. (2016) and Seo et al. (2020).

SV D(X) = UΣV ∗, a = UTd X (44)

In practice, individual DMD modes ϕi are vectorised and stacked vertically to create

tall matrices MPCA, (45). Each vectorised trial Φt is stacked column-wise to create a

new feature set FPCA, (46). This newly created feature matrix replaces X matrix to

form (47), allowing to select best features from DMD modes using PCA method.

MPCA = vec(Φt) =



ϕ1

ϕ2
...

ϕr/2


∈ Ccr/2×1 (45)

FPCA = [M1,PCAM2,PCA · · ·Mt,PCA] ∈ Ccr/2×t (46)

|FPCA| = UΣV ∗, ad = UTd |FPCA| (47)
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3.3.3.2 Riemannian manifold

Riemannian manifolds are a part of studies concerning Riemannian geometry which

investigates smoothly curved spaces (manifolds) that locally exhibit behaviour to the

one seen in Euclidean spaces. At each point of the manifold a linear approximation

can be calculated creating a tangent space. This tangent space can be equipped with

some metric, which varies from point to point and can be then exploited in feature

selection process. In the context of application of Riemannian manifolds in BCI, the

introduction and popularisation of the method can be traced to A. Barachant who has

extensively studied Riemannian manifolds and paved a way for their implementation

in MI-BCIs (Barachant et al., 2010, 2012, 2013; Congedo et al., 2017). In those works

a connection between CSP filters, covariance matrices and Symmetric Positive Definite

(SPD) matrices has been made while proposing the use of Riemannian distance δr and

mean P̄ as the metrics used on the tangential space for feature separation and selection.

Figure 3.4: Representations of Riemannian manifold M. On the top, a tangential space P
seen at point G shows two points P1 and P2 being connected by their geodesic distance δr.
These points can be mapped on P as straight lines instead. On the bottom, the Riemannian
mean P̄ of set of Pi points is shown

Recalling Equation (16), the covariance matrices found there have been shown to

be SPD matrices (Barachant et al., 2010) and therefore can be used to populate the

tangential space Pn at points P . Since points P would be spread on the Riemannian

manifoldM, two points P1 and P2 can be related by their shortest path i.e., the geodesic

distance δr as seen below.

δr(P1, P2) = ||log(P−
1
2

1 P2)||F (48)
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While tangential space P is regarded to be locally Euclidean, using Euclidean dis-

tance to measure separation of two points P1 and P2 does not produce the correct

representation of the distance since Euclidean distance would ignore the shape of the

manifold. Instead, δr accounts for the geometry of the manifold, producing the correct

distance of the two aforementioned points. Possession of δr also allows to calculate the

Riemannian mean (also known as geometric mean) through an optimisation problem

as shown in Equation (49). The recommended optimisation method is the gradient-

descent method (Barachant et al., 2010).

P̄ = arg min
P∈Pn

N∑
i=1

δ2
r (Pi, P ) (49)

3.3.3.3 Grassmannian manifold

It is evident from the literature that Riemannian manifolds are only useful in EEG

analysis and BCI applications if the features extracted are SPD or covariance matrices.

This greatly limits the type of features that can be utilised leading researchers to ex-

plore and investigate alternatives. While Lotte et al. (2018) observed that Stiefel and

Grassmann manifolds have been shown to be well suited for subspace projections and

orthogonal matrices, the latter was seen particularly attractive. Although Grassmann

manifolds have been well defined and offer a variety of different metrics (Hamm, 2008;

Hamm & Lee, 2008, 2009) they remain mostly unutilised. This was clearly reflected in

the quick diminish of the publications following the initial ones. Despite Grassmann

being explored with the established metrics (Chevallier et al., 2014) or incorporat-

ing additional metrics based on Mahalanobis distance (Washizawa & Hotta, 2012) or

geodesic distance (Li et al., 2014) the field has seen lack of interest until recently. With

the rising popularity of DMD methods, it would seem that Grassmann manifolds might

have found much better suited features than the ones offered by CSP (Bito et al., 2019;

Shiraishi et al., 2020).

Grassmann manifold works particularly well when it is supplied with orthogonal

matrices or if it is tasked with looking for similarity between different subspaces. By

definition, a Grassmann manifold G(m,D) is a m(D−m)-dimensional compact Rieman-
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Figure 3.5: Span of subspaces Yi and Yj in a Euclidean space (left) and their representation
on a Grassmaninan manifold (right).

nian manifold which consists of a set of m-dimensional linear subspaces of a Euclidean

space RD. Considering two different subspaces which are represented in G(m,D) as

orthonormal matrices Yi and Yj , their span in Euclidean space can be seen on the left

of Figure 3.5, while their location on the Grassman manifold is shown on the right of

Figure 3.5.

Previously, when investigating Riemannian manifolds the geodesic distance (Equa-

tion (48)) was used to relate two points on the manifold. Since the Euclidean space

here was defined as a collection of linear subspaces, they can be related in RD by the

principal angle, θ, between the span of two subspaces Yi and Yj and then can be directly

used on Grassmann manifold G(m,D) as simply:

d(Yi, Yj) = ||θ||2 (50)

In order to obtain the principal angles, SVD of the two subspaces can be performed

in the following manner:

Y ′i Yj = U(cosΘ)V ′ (51)

where U = [u1 . . . um], V = [v1 . . . vm] and cosΘ is a diagonal matrix containing

the cosines of the principal angles cosθm . . . cosθm, which are known in the literature

as principal correlations or canonical correlations. Based on these principal angles, a

set of different distance metrics and kernels has been developed which are presented in
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Table 3.1 and 3.2.

Table 3.1: Grassmannian subspace distances as defined by Hamm & Lee (2008)

Distance equation

Projection distance dP (Y1, Y2) =
(∑m

i=1 sin
2θi
)1/2 =

(
m−

∑m
i=1 cos

2θi
)1/2

Binet-Cauchy dBC(Y1, Y2) =
(
1−Πicos

2θi
)1/2

Max Correlation dMax(Y1, Y2) =
(
1− cos2θ1

)1/2

Min Correlation dMin(Y1, Y2) =
(
1− cos2θm

)1/2

Table 3.2: Grassmannian subspace kernels as defined by Hamm & Lee (2008)

Distance equation

Projection metric kP (Yi, Yj) = ||Y ′i Yj ||2F
Binet-Cauchy kBC(Yi, Yj) = (detY ′i Yj)2

Following the example of Bito et al. (2019), collection of dynamic modes can be

regarded as a set of feature vectors representing bases for a subspace. Firstly, matrices

of DMD modes can be vectorised and stacked horizontally, as shown in (52), where ΦT

is a vectorised DMD matrix for a trial t, and ϕi are individual modes. From a complete

feature set Fpk, two trials Φi and Φj can be selected and represent two linear subspaces

Yi and Yj .

Mpk = vec(Φt)′ = [ϕ′1ϕ′2 · · ·ϕ′r/2] ∈ C1×cr/2, Fpk =



M1,pk

M2,pk
...

Mt,pk


∈ Ct×cr/2 (52)

However, before any distance metrics explaining separation between the two sub-

spaces can be calculated, DMD modes have to be orthogonalised. Method presented

in Bito et al. (2019) specifies the use of QR decomposition to accomplish that, and is

shown as:

Yi = QiRi, Yj = QjRj (53)
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where Q is c×c orthonormal basis for the respective subspace and R is c×r/2 upper-

triangular matrix containing Gram-Schmidt coefficients, relating original Y matrix to

the new Q orthonormal basis. A critical note must be made here: for the above QR

decomposition to be valid, Y must satisfy c ≥ r/2 condition, otherwise QR decompo-

sition will not produce valid orthonormal matrix Q. From there, the new orthonormal

matrices Qi and Qj can be used in the calculation of the projection kernel to find the

distance between two subspaces using the equation below, extracted from Table 3.2.

The result of the iterative calculation process between every trial modes yields a t× t

symmetric Gram matrix, which then can be used as features for training a classifier.

kP (Qi, Qj) = ||Q′iQj ||2F (54)

3.4 Classification

A BCI system is completed with a classification module which is responsible for

assigning features into respective classes through some discriminative process. How-

ever, for a classifier to be able to do that it must be firstly trained which is usually

accomplished by supplying training features and correct class labels. Once the train-

ing process is complete, the whole system can be tested with testing samples to assess

its performance. Here, some of the most popular classification methods used will be

reviewed.

3.4.1 Discriminant analysis

One of the oldest and most popular methods used for classification is a generalisation

of Fisher’s linear discriminant called linear discriminant analysis (LDA) (Fisher, 1936;

Lotte et al., 2007). The fundamental idea behind this approach is to approximate

special boundaries using hyperplanes which allow the best separation between classes

and are characterised as:

[w1, . . . , wp]T [x1, . . . , xp] + w0 = wTx + w0 = 0 (55)

where, w is the normal vector of the hyperplane, w0 is the threshold and x is the
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input p-dimensional feature vector. The two main assumptions in 2-class LDA are

that class-conditional distributions are normal distributions with some mean µc and

covariance Σc for two classes c ∈ {1, 2}, and where the class covariances are set to be

equal i.e. Σ1 = Σ2 = Σ. A class label y = +1 or y = −1 is assigned to a new feature

vector x according to Equation (56) if the linear projection wTx is above or below a

threshold c as shown in Equation (57).

y = sign(wTx + w0) (56)

wTx > c (57)

w = Σ−1(µ1 − µ2) (58)

c = wT (µ1 + µ2)/2 (59)

In addition to the standard formulation of LDA there are two other popular alter-

natives: regularized linear discriminant analysis (RLDA) and quadratic discriminant

analysis (QDA). In the former, the only alteration concerns the common covariance

which now becomes regulated by an additional parameter λ such that new covariance

becomes as

Σλ = (1− λ)Σ + λI (60)

In the case of QDA, the biggest difference is the assumption that the class covariance

varies between the classes thus resulting in a quadratic decision boundary and not a

simple linear one. Thus the boundary expression from Equation (55) is now different

and is defined as the square of the Mahalanobis distance mcas:

mc(x) = (x− µc)TΣ−1
c (x− µc) (61)

which subsequently leads to an alternative way of classification changing from Equa-

tion (56) to the one shown below

y = sign(m1(x)−m2(x)− T ) (62)
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where T is a predetermined threshold.

3.4.2 Support vector machines

The second very popular method used for classification are Support Vector Machines

(SVMs) which have been exceptionally useful in both offline and online BCIs and, to

this day, are considered as one of the best classifier types for BCIs (Lotte et al., 2018).

SVMs have been shown to be a remarkably versatile type of classifier, working very

well with both linearly and non-linearly separable data. The basic implementation

of SVM is similar to the idea shown in the approach used for LDA (Equation (55)),

where a hyperplane was chosen to separate two classes. It has been observed that such

hyperplane could be one of potentially infinite possibilities and therefore SVM addresses

that issue by looking for a separation hyperplane for which the margin (separation)

between two classes, or the gap, is maximised. This concept was developed further

by introducing the idea of a soft margin (Sain & Vapnik, 1996; Vapnik, 1999) which

allowed SVM to work on data which is not linearly separable. The soft margin is an

optimisation problem which incorporates the use of a slack variable ξi to measure the

misclassification distance of the i-th input features described as follows:

w,
min
ξ , w0

{1
2 ||w||

2
2 + C

K
||ξ||1

}
(63)

yi(wTxi + w0) ≥ 1− ξi (64)

where C is the softening, regularisation or strength of penalty parameter, K is the

number of input features for ξi ≥ 0, i = 1, . . . ,K (Rao & Scherer, 2010). While this is a

useful modification to SVM, the biggest strength of SVMs lies in the use of kernel trick.

The use of kernel functions in SVM allows mapping feature samples from one space

to another without the need of transforming the whole data set into higher dimension,

which is an often occurrence when data is not separable at a specific dimension. In

the case of BCI, the most used and useful kernel K is radial basis function (RBF)

kernel which forms RBF-SVM classifier (Lotte et al., 2007) and uses a radial width

σ. In cases where the analysed data contains multiple classes, fitcecoc() MATLAB
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function can be used to construct an ensemble of SVM classifiers (since they lack ability

to classify more than two classes at time), where each SVM classifier is created using

templateSVM() function, with specifically set kernel parameters.

K(x, y) = exp

(
−||x− y||2

2σ2

)
(65)

3.4.3 k-Nearest Neighbour

An example of a discriminative non-linear classifier would be a family of nearest

neighbour classifiers, from which k-nearest neighbours (kNN) is the most popular. As

the name suggest, the idea behind those type of classifiers is to simply assign feature

vectors based on their nearest neighbours, synonymous to clustering methods. Here,

Euclidean distance is used to find the nearest neighbours for the corresponding feature

vectors. While kNN might appear to be a very tempting option for BCI applications, it

is well documented that kNN suffers from ”curse of dimensionality” (Blankertz et al.,

2002; Müller et al., 2004; Lotte et al., 2007). Research concerning machine learning often

faces the aforementioned ”curse”, which states that as the number of dimensions grows

the feature space grows exponentially. This directly affects data points as with every

dimension the data points get farther apart which becomes problematic for approaches

such as kNN as it loses its predictive powers if the datapoints are far away from each

other. The only counter-measure for such a problem is for the original dataset to follow

the same exponential growth in size, however, it quickly becomes apparent that it is a

non-desirable solution for BCIs as very often it is impossible to provide more data to

meet this exponential growth requirement.

3.4.4 Neural networks

As opposed to the other approaches presented in this section, neural networks (NNs)

are by nature a non-linear technique which produce non-linear decision boundaries.

Those non-linear characteristics of NNs have been sought after by the BCI research

field for a very long time, with some first papers implementing NNs in BCI as early as

1990s (Hiraiwa et al., 1990; Anderson & Sijercic, 1996). However, the limitations of the
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computing power in the early days made it hard to realise the potential of NNs, as it was

also observed in other fields such as speech processing or image recognition (Lotte et al.,

2018). With the rapid technological advancement and significant increase of available

computational power in the recent years, variations of NNs have seen a similar increase

in the implementation in the aforementioned fields and BCI systems were not excluded.

Three particular variants of NNs have been widely used in the research: multi-layer

perceptron (MLP, sometimes referred to as artificial neural networks), convolutional

neural networks (CNNs) and recurrent neural networks (RNNs) (Craik et al., 2019).

Figure 3.6: An example of an MLP network with 4 input neurons, 10 neurons in the hidden
layer and 2 output neurons

One of the oldest and simplest networks used is MLP which is constructed from

different layers of neurons: an input layer, several hidden layers and an output layer,

where the outputs of each layer are connected directly to the inputs of the next layer,

a classic example of a feed-forward network, as seen in Figure 3.6. On the interesting

note, if the hidden layers were to be removed from an MLP, the resulting network

simply called a perceptron is equivalent to LDA. MLP are classified as universal ap-

proximators meaning they can approximate any continuous function given a sufficient

number of neurons is provided. However, this also has its drawbacks as such univer-

sal approximators are very sensitive to overtraining. Therefore a special care must be

taken when implementing MLP with EEG data as its noisy and non-stationary nature
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can have adverse effects on the performance of the classifier (Lotte et al., 2007).

A CNN is a slight modification of an MLP where in addition to a hidden layer

a convolution and pooling layers are included in the architecture (see Figure 3.7 and

3.8). Due to the addition of those convolution layers, CNNs are particularly well-suited

for image-based problems and thus have been particularly popular in BCIs which use

spectrograms or scalograms as features (Sakhavi et al., 2015; Mammone et al., 2020;

Bassi & Attux, 2021), however, raw EEG in combination with CNNs has also been

observed in the last few years (Schirrmeister et al., 2017; Lawhern et al., 2018; Sakhavi

et al., 2018; Zhao et al., 2019; Ingolfsson et al., 2020; Lashgari et al., 2021; Ko et al.,

2021).

Figure 3.7: A diagram showing a simple CNN. Blocks to the left of the black dashed line are
part of the feature extraction part of CNN and blocks on the right of the dashed line are part
of the classification part of CNN

The convolutional layer employs a n × n kernel filter which convolves the input

matrix and comes with three distinctive parameters: number of filters, stride and

padding. Number of kernels dictates the depth of the output convolution layer e.g.,

if three kernels were chosen, the convolution layer would yield three different n × n

feature maps. Stride controls the distance that kernel moves over the input matrix e.g.,

a value of one would cause the kernel to move pixel by pixel over the input matrix

while a value of two would mean that kernel moves every two pixels. Lastly, padding

controls the size of the output matrix. If valid or zero-padding is used then the last
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Figure 3.8: Example of convolution and pooling layers with their kernels at work. A 3 ×
3 convolution kernel (red boundary box on blue image input) maps the convolution feature
(orange). Subsequently a pooling layer reduces the dimension further by using a 2 × 2 kernel
and maps the result on the pooling feature map (green)

convolution operation is dropped in the case that dimensions of the kernel and input

do not align. Same padding ensures that the size of the output matrix is equal to the

size of the input matrix. Full padding augments the input matrix by adding a border

around it comprised of zero values and thus increases the size of the output matrix

(Lotte et al., 2018).

A common practice is to include a non-linearity (activation function) in the convo-

lution layer which is usually placed after convolution operations and transforms con-

volved matrices into their feature maps. Some of the examples of such functions would

be sigmoid functions, tanh function or a rectified linear unit (ReLU) which is the most

popular transformation used in CNNs. Following this transformation a further dimen-

sionality reduction is possible by employing pooling layers. These work in the similar

fashion as the convolution layers i.e. they use a kernel filter which creates a smaller

feature map based either on the maximum value in a given kernel (max-pooling) or the

mean of all the values (average pooling). The reduced features are then ready to be

classified (usually through softmax algorithm), which in the case of a traditional CNN

involves feeding features into a fully-connected layer, which in fact is just an MLP

network. The more fully-connected layers the CNN contains the ”deeper” the network

is, leading to the idea of deep CNNs.
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The last popular architecture used for NNs is an RNN (Figure 3.9) (Dutta, 2019)

and its variant long short-term memory (LSTM) (Wang et al., 2018a; Tayeb et al.,

2019; Freer & Yang, 2020) which excel at working with sequential and time series data

such as speech and language processing. In the contrast to other network types, RNNs

rely on the prior outputs of the network from the supplied sequence. Since EEG is time

series data and motor-related EEG signals have been shown to have a specific temporal

structure (particularly ERPs), the motivation for using RNNs for classification of such

signals becomes very clear.

Figure 3.9: An example of a one-to-one RNN. The general diagram for RNN can be seen on
the left, while on the right an unrolled RNN is presented

The architecture of RNN is similar to that of an MLP where the neurons in the

hidden layer are replaced with ”recurrent” cells containing neurons with addition of

hidden states and loops, which allows storing past information of the input sequence.

Moreover, RNN contains two sets of weights between neurons to fully exploit the past

information, one for the inputs (as in a standard NN) and the second one for the

hidden state. Thus, the output of the network is then based on the combination

of the current input and the hidden state. As appealing as RNN might sound, it

suffers from a lack of long-term dependency as well as due to being trained by a back-

propagation RNN can experience a vanishing or exploding gradient problem where the

network weights become either very small or large, decreasing the effectiveness of the

classification. The previously introduced variant of an RNN, LSTM, overcomes the issue
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of vanishing gradients by modifying the recurrent cell and employing additional memory

cells which allow control of what sequence information is remembered or forgotten as

seen in Figure 3.10 (Hochreiter & Schmidhuber, 1997). Here, the hidden state and

input sequence are combined together before being processed by few sigmoid function

layers. Memory cell from the previous step of the sequence is compared along in the

cell. The memory cell and hidden state are updated and produced as outputs of LSTM

cell.

Figure 3.10: An example of an LSTM cell

As it is evident from the literature review, utilising NNs for BCIs is highly appealing

as they are able to combine feature extraction, selection, dimensionality reduction and

classification in a single module and thus simplify the overall system. However one must

be aware of caveats found in NNs (especially CNNs), in particular the extensive use

of back-propagation can lead to false sense of robustness of the system. Supplying la-

belled data with pre-extracted features can lead to a bias while using back-propagation

meaning that neural network under training might then omit some other valuable fea-

tures present in the data or completely misinterpret data. This situation would be

synonymous to stating that all cars are of single specific colour, where in terms of NNs

functionality the discriminant feature of a car would be its colour therefore leading to

misclassification in cases where a car of a different colour was supplied to the network.

It is obvious that this is not the case in the real world, as cars have other, much bet-
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ter and more apparent features which differentiate them from other objects or vehicles.

Therefore, while working with CNNs or RNNs, it is important to be aware of what kind

of EEG data is being fed into the training thus raw EEG data is often recommended

(Chiarelli et al., 2018; Amin et al., 2019a,b).

3.4.5 Performance metrics

In order to measure how well the classifier performs the author suggests to in-

corporate frequently used metrics in machine learning problems, namely: accuracy,

sensitivity and specificity (Hudson & Cohen, 1999; Seliya et al., 2009) which can be

conveniently extracted from a confusion matrix (example seen in Figure 3.11). Another

metric that is very often used in MI-EEG analysis is Cohen’s kappa (κ) value (Brunner

et al., 2008; McHugh, 2012). When investigating a confusion matrix four terms are

used to describe possible outcomes of the classifier: a True Positive (TP), a True Nega-

tive (TN), a False Positive (FP) and a False Negative (FN). These refer to an outcome

correctly indicating a presence of a certain condition, a correctly observed absence of a

certain condition, incorrectly indicating presence of a certain condition and incorrectly

indicating absence of a certain condition respectively.

Figure 3.11: Example of a simple confusion matrix.
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The total number of all positive outcomes is denoted as P and, similarly, the total

number of all negative outcomes is denoted as N. In binary classification problems

accuracy is defined as the ratio between sum of TP and TN and sum of all P and N

and it depicts how well the classifier correctly identifies conditions. Sensitivity, also

referred to as recall or true positive rate, shows the ratio between TP and the sum of

TP and FN. It indicates the probability of the observed true outcome to be definitely

true, an important metric to be considered when implementing a BCI since a higher

sensitivity would mean that the BCI definitely issued to correct command leading to

less frustration from the user. Specificity, also referred to as true negative rate, can

be seen as the opposite of sensitivity where it indicates the probability of the observed

negative outcome to be definitely negative. Lastly, kappa value is used to measure the

reliability of the used data. Low scores indicate that there is no obvious connection in

the provided data which would allow robust classification. It is described as the ratio

between the difference of observed and expected accuracy (po and pe respectively) and

the probability of a random guess (1 − pe). The advantage of using kappa value to

measure performance is that it also indicates how much better the classifier performs

than a simply guess classifier. For the convenience and future reference all the metrics

discussed above are summarised in Table 3.3.

Table 3.3: Metrics used for evaluating performance of the classifier.

Equation

Accuracy, % TP+TN
P+N

Sensitivity TP
TP+FN

Specificity TN
TN+FP

Cohen’s kappa po−pe

1−pe

Calculating accuracy, sensitivity and specificity becomes a bit more challenging

when tackling multiclass problems. Figure 3.12 shows how a multiclass confusion matrix

can be interpreted allowing to still implement the equations from Table 3.3 in order

to calculate the aforementioned performance metrics. As seen in Figure 3.12 TP can

be any diagonal entry in the confusion matrix. FPs are now regarded as all entries in

the same column as TP and FNs are all entries in the same row as TP. Lastly, TNs
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Table 3.4: Interpretation of kappa values, κ, per McHugh (2012)

κ value Level of
agreement

% of reliable
data (κ2)

0 - 0.20 None 0-4%
0.21 - 0.39 Minimal 4-15%
0.40 - 0.59 Weak 15-35%
0.60 - 0.79 Moderate 35-63%
0.80 - 0.90 Strong 64-81%
> 0.90 Almost perfect 82-100%

are all other entries in the confusion matrix that do not fall into any of the mentioned

places. While accuracy can still be easily extracted from a multiclass confusion matrix

as it is just a sum of all the diagonal outcomes divided by the number of all outcomes,

specificity can be a subject to calculating — not necessarily incorrect, but slightly

misleading probabilities. This is due to an inflated number of TNs as seen in Figure 3.12.

Sensitivity does not suffer from such problems and can be calculated as previously.

Figure 3.12: Example of a confusion matrix in a multiclass problem: green square represents a
certain true class (TP), other values at that row are the false negatives (FN), while the column
values represent false positives (FP). All dark squares are treated as true negatives (TN)
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3.5 Conclusion

The presented literature in this chapter shows that analysing EEG signals is not a

trivial task and requires a sophisticated and complex systems to accurately translate

the incoming data into comprehensible commands or outputs. Due to the complexity

of a BCI and many interconnected factors within the system dictating its performance,

focusing on a single submodule would most likely not provide a substantial increase in

the performance. Therefore, a BCI needs to be worked on as a whole. The first module

touched upon preprocessing methods: temporal and spatial filtering. In general, the

reviewed literature agreed on the need of filtering; however there were instances where

this topic came under great scrutiny arguing potential loss of important data in the

said process. However, the author notes that in some sense this dilemma cannot be

fully solved, as extracting spatial-based features from motor imagery works best when

the initial EEG signal is band-pass filtered into a meaningful bandwidth i.e., 7-30Hz,

which enhances the ERD/S phenomenon. Following the preprocessing module, differ-

ent feature extraction techniques were discussed. There, the author fully introduced

DMD method fully explaining its functionality and possible means of extracting valu-

able features. The next module concerned different techniques used for choosing the

best features or transforming features into more suitable representations. Along with

statistical methods, the author also reviewed feature selection using PCA method as

well as introduced a recent technique which involved projecting initial features onto

a Grassmanian manifold which in turn allowed to calculate a new matrix based on

distance between DMD modes on the said manifold. This was followed by a discussion

concerning different classifiers, from classic methods such as LDA and SVM to newer

and more advanced techniques of neural networks. Lastly, the author introduced four

performance metrics: accuracy, sensitivity, specificity and kappa value, which are used

to measure how well the implemented systems perform. Next chapter utilises the tech-

niques discussed in this chapter to propose new processing pipelines for a BCI system

based on the DMD approach.



Chapter 4

Methodology

The literature discussed in the background chapter presented a number of different

methods for measuring and recording brain signals. That knowledge combined with the

remarks concerning EEG signal in the introductory chapter of this thesis makes a valid

case for using EEG signals. Furthermore, the discussion about the use of ERPs and

continuous EEG for investigating imagination of movement showed that continuous

EEG, ERD/S phenomenon specifically, is a better suited modality for this purpose.

This is due to its neurophysiological processes and characteristics, especially the ability

to appear in recordings which do not employ a cue-based system, i.e. the user executes

or imagines actions at their own pace without any external cues.

Further investigation into the methods commonly used in analysing and extracting

features from such signals revealed that the most popular method is a spatial-based

CSP approach. Thus, the proposed DMD method, which produces spatio-temporal

patterns from the analysed signals, is a justifiable approach as it builds on the previ-

ously successful spatial-based methods. In addition, the literature review showed only

few academic publications which considered DMD in some brain signal analysis tasks,

strengthening the novelity of DMD in the analysis of MI signals.

An essential part of the work required during the doctoral studies covered in this

thesis was data collection through experimental means. Initially, the author intended

to carry out a medium scale experiment recording self-paced (asynchronous) EEG sig-

nals from 10 subjects. Such experiments allow the volunteers to execute an action at

their own pace without the need for waiting for a cue to appear, making the experiment

70
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much closer to how BCI would operate in real-life situations. During the recordings

the subjects would have been asked to perform and imagine (in separate trials) any of

the 4 movements: elbow flexion, shoulder flexion, extension or abduction. Throughout

the duration of the trials, EEG signals would have been recorded from the sensorimo-

tor cortex area with Ag-AgCl disc electrodes placed according to 10-10 system. Such

experimental paradigm was devised as the experiment was intended to be a collabo-

rative effort with a project focusing on the development of upper-limb exoskeleton for

rehabilitation purposes.

However, a number of factors made it impossible to perform the experiments de-

scribed. At the start of the doctoral studies in October 2017, the entire Biomedical

Engineering Department had to vacate the main building as renovation works began.

These were meant to take only 3 months, however, this period overextended to almost

3 years (until November 2020). In theory, this should not have had such an impact on

the experiments, however the temporary substitute facilities, which were assigned to

the research group, suffered from great power line noise rendering any recorded EEG

signals unreadable and unusable.

A suitable room was found only in November 2019, however it required to be appro-

priately converted to facilitate the requirements for recordings, thus it only became fully

functional in January 2020. By the time all the necessary arrangements and ethics1

were amended appropriately to accommodate the new recording room, entire UK went

into the first lockdown in March 2020 due to COVID-19 pandemic and all the work

had to be halted. The prolonged lockdown and restriction measures made it impossible

to recruit any participants for the outlined study. By the time the university campus

reopened in August 2021 it was too late to conduct any experiments due to the time

constraints of the PhD.

The uncertainty associated with the development of the pandemic forced the author

to explore alternative data collection methods. This led the author to decide to use

3 publicly available datasets: BCI Competition IV Dataset 2a (Brunner et al., 2008),

BNCI Horizon 2020 (Ofner et al., 2017) and GIST-MI (Cho et al., 2017), with the
1Initial ethics application was granted on the 23rd of January 2020 (ID:1394, ”Study of free-will

movement intention using brainwave analysis”.
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addition of data recorded at the local laboratory from a previous study (Syam, 2017).

All these datasets are summarised in the section 4.1, providing the general information

regarding: the electrode setup, recording parameters and the paradigm used for ex-

periments. In the next parts of this chapter, the author introduces the proposed BCI,

outlining the complete structure of the processing pipelines. All preprocessing steps

are explained in detail, following the recommendations from the previous chapter. Af-

ter that, the author presents three different pipelines based on three different DMD

features: DMD modes, DMD spectrum and DMD maps. In each case, the full process

is thoroughly explained in terms of how each feature is extracted and transformed,

before appropriate feature selection technique is shown. Each processing pipeline is

then concluded with a choice of a classifier, outlining the parameters used during the

training.

4.1 Dataset description

Thorough and rigorous testing is a common practice in literature, and demonstrates

sufficient robustness of the presented approaches to different types of data and lack of

bias. The first dataset, BCI Competition IV Dataset 2a (see 4.1.1), can be considered to

be the MI-EEG equivalent of ’MNIST’ database2. Just as ’MNIST’ is regarded to be the

fundamental dataset used for training various image processing systems and machine

learning, BCI Competition IV Dataset 2a holds the same level of importance in MI-EEG

field. Second dataset used (BNCI Horizon 2020, see 4.1.2) comes from an in-depth study

exploring multiple classes of movement and imagination. It is worth noting that both of

those datasets come from world renown BCI laboratories and have been widely used in

the research community, thus showing their credibility and reliance. The third dataset

(GIST-MI, see 4.1.3) is from an extensive study on motor-imagery containing additional

recordings on non-task related EEG such as rest or facial movement. The last dataset

(see 4.1.4) comes from past experiments carried out at the Neurophysiology Laboratory

in the Department of Biomedical Engineering at the University of Strathclyde.
2http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
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4.1.1 BCI Competition IV Dataset 2a

This dataset recorded by the laboratory in Graz (Brunner et al., 2008) consists of

EEG data obtained from 9 healthy subjects. A cue-based paradigm was employed to

record four different motor-imagery tasks which involved left hand (class 1), right hand

(class 2), both feet (class 3) and tongue (class 4). EEG signals were recorded with 250

Hz sampling frequency, bandpass filtering between 0.5 Hz and 100 Hz, with twenty-two

Ag/AgCl electrodes placed according to the international 10-20 system (Figure 4.1).

In addition to the mentioned EEG, three EOG channels were recorded as well to be

used for artefact rejection. These signals were sampled at the same 250 Hz frequency

as EEG signals.

Figure 4.1: Electrode montage used in BCI Competition IV Dataset 2a. Green-coloured
electrodes are the electrodes which were used for recording EEG signals.

Each trial started with a fixation cross on a black screen and an audible beep

(t = 0s). A cue corresponding to one of the four motor-imagery tasks appeared on

the screen after 2 seconds (t = 2s) and stayed on for the next 1.25 seconds. This

in turn prompted the subjects to perform the displayed task and sustain it until the

disappearance of the cue at t = 6s. The subjects then were given few seconds break

before the onset of the next trial. Subjects had 6 experimental runs, where each run
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contained 48 trials (12 for each class), meaning that each subject performed 288 trials

in total. The diagram for this paradigm can be seen in Figure 4.2.

Figure 4.2: Paradigm used in BCI Competition IV Dataset 2a recordings. Sourced from
Brunner et al. (2008).

4.1.2 BNCI Horizon 2020

A more recent dataset from the Graz Laboratory contains recordings from 15

healthy subjects performing both motor execution and motor imagery tasks. The num-

ber of classes has been extended to six and now accommodate the following tasks: elbow

flexion, elbow extension, forearm supination, forearm pronation, hand close and hand

open with additional ’rest’ (non-task activity) class. The EEG signals were recorded

with 61 electrodes covering frontal, central, parietal and temporal scalp areas with

surface active electrodes from g.tec medical engineering, with referenced placed on the

right mastoid and the ground placed on AFz location. Sampling frequency was set to

512 Hz and an 8th order Chebyshev bandpass filter between 0.01 Hz and 200 Hz with

addition of a notch filter at 50 Hz was applied. Arm joint angles and finger positional

data were also recorded with the help of an exoskeleton with anti-gravity support and

5DT Data Glove. The location of EEG channels used in this dataset is seen Figure 4.3

and their description can be found in the supportive documents in Ofner et al. (2017).
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Figure 4.3: Electrode montage used in BNCI Horizon 2020. Green-coloured electrodes are
the electrodes which were used for recording EEG signals.

A cue-based paradigm similar to the one from Brunner et al. (2008) was used to

record trial runs in this experiment. The start of the trial was marked by a beep sound

and an appearance of a fixation cross on the screen in front of the seated subject at

t = 0s. At t = 2s the subject was presented with a pictorial cue showing the required

task and was asked to sustain it for the next 3 seconds until t = 5s. In the motor

execution trials the subject would move from neutral position to the required position,

sustaining it until moving back to neutral position after the disappearance of the cue

at t = 5s. In the motor imagery trials the subjects would similarly sustain the thought

of the movement until the disappearance of the cue. Subjects were given a few second

break before starting the next trial. Each subject had 10 experimental runs with 42

trials per run. This resulted in recording 60 trials for each class (including the resting

class) for each subject. The diagram for this paradigm is shown in Figure 4.4.
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Figure 4.4: Cue-based paradigm used in BNCI Horizon 2020 for the EEG recordings. Sourced
from Ofner et al. (2017).

4.1.3 GIST-MI

A rich dataset focusing on recording motor imagery movement signals is presented

by Cho et al. (2017). A total of 52 healthy subjects took part in this substantial study.

64 Ag/AgCl active electrodes placed according to the international 10-10 system were

used to record EEG signals with sampling rate of 512 Hz, with addition of four EMG

electrodes placed on the subjects’ forearms to monitor muscular activity. The placement

of the EEG electrodes and their relative channel numbers in the dataset can be seen in

Figure 4.5.

Figure 4.5: Electrode placement used in GIST-MI. Green-coloured electrodes are the elec-
trodes which were used for recording EEG signals.
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The significance of this dataset is such that it in addition to motor execution and

imagination recordings, it also contains non-task continuous EEG data for six ’noise’

signal types: eye blinking, eyeball movement (horizontal and vertical), head movement,

jaw clenching and resting state for all 52 subjects recorded in 20 trials . The motor

execution recordings only covered a two class problem between left and right hand

movement; while during motor imagery recordings the subjects were asked to imagine

finger movements as shown in Figure 4.6, other publications treat the data as a two-

class problem between left and right hand movement, disregarding individual finger

movement as separate classes. However, each class was recorded with 100 or 120 trials

depending on a subject.

Figure 4.6: Instructions for the motor imagery recordings as seen in Cho et al. (2017).

The recording paradigm used in this study is synonymous to the one used in Brunner

et al. (2008) and Ofner et al. (2017), although a different time notation is used. Each

trial started with a fixation cross on the black screen in the front of the seated subject

at t = −2s with a cue appearing on the screen at t = 0s. The cue would specify which

hand movement is to be moved (left or right) and would stay on the screen for the

duration of 3 seconds, during which the subject would maintain the shown task. At

t = 3s the fixation cross reappeared and the subject could return to neutral position

and have a few second break before the start of the next trial. Figure 4.7 shows the

described paradigm.
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Figure 4.7: Paradigm used in GIST-MI for the EEG recordings. Sourced from Cho et al.
(2017).

4.1.4 Syam (2017)

The author also had access to data previously recorded at the local laboratory.

This data was part of a previous doctoral study concerning BCIs for spinal cord injury

patients (Syam, 2017), in which a total of 29 subjects were involved. Eleven of those

were healthy subjects, four were paraplegic and fourteen were tetraplegic patients. The

recordings were split into two types: motor execution and motor imagination, during

which various movements of the right fist were investigated. A specifically designed

manipulandum was used to investigate extension, flexion and ulnar/radial deviation of

the right wrist. EEG signals were recorded with 28 Ag/AgCl sinterted ring electrodes

placed according to the international 10-10 system (shown in Figure 4.8), with reference

electrode placed on the earlobe and the ground placed at AFz electrode. Signals were

recorded with 2000 Hz sampling rate and a bandpass filter between 0.05 Hz and 500 Hz.

In addition, 4 EMG channels were used to monitor muscular activity in the subject’s

forearm.
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Figure 4.8: Electrode placement used in Syam (2017). Green-coloured electrodes are the
electrodes which were used for recording EEG signals.

The paradigm employed in this study slightly differed from the others presented

before. The trials were split into two phases A and B. During Phase A an instruction

was shown indicating which direction the fist should move, while during Phase B the

subject was resting. In terms of timing the paradigm proceeded as follows: 7 seconds

after the display of Cue B (representing return to neutral position), Cue A would be

displayed with the cue for the direction of movement. This cue would last for 3 seconds,

after which Cue B (return to neutral position) would be displayed. The next movement

trial would take place as described in Figure 4.9. This paradigm was used during both

motor execution and imagination trials. In total every user performed 50 trials for each

movement class (200 trials in total).

The original intent was to utilise this dataset in the thesis to extend the viability of

the proposed DMD methods on signals recorded from patients who suffered from either

tetraplegia or quadriplegia, as the brain signatures tend to be much harder to discern.

However, during the investigation of this dataset few serious issues were noticed, making



CHAPTER 4. METHODOLOGY 80

Figure 4.9: Timeline of the implemented paradigm. Sourced from Syam (2017).

the dataset unfit for further analysis. Most importantly, almost half of the data was

contaminated with wire movement artefacts during the activity window, which meant

that features extracted from them would not be accurate. In addition to that, other

artefacts were also present in the activity window, which could be attributed to poor

connection between the electrodes and the scalp area.

4.2 Preprocessing

The processing pipeline used in this thesis follows the standard structure of a BCI, as

outlined in the previous chapters, and its complete structure can be seen in Figure 4.10.

However, before the EEG data could have been used for extracting valuable features,

the trials from the used datasets were firstly put through standard preprocessing steps:

epoching and filtering, where filtering was implemented through a combination of var-

ious spectral and spatial filters. This preprocessing pipeline was fully implemented in

MATLAB 2020b.

Figure 4.10: The processing pipelines used in this thesis
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Before any of the preprocessing operations took place the datasets had to be firstly

imported to MATLAB environment. Since the available datasets were either stored in

*.gdf or *.cnt file format, sload() function from BioSig toolbox was used to load the

files into MATLAB.

4.2.1 Epoching

All of the datasets used in this thesis were provided as continuous EEG signals

therefore epoching was necessary so that exact windows of interest i.e. when motor

imagination took place, could be extracted and used for the subsequent feature extrac-

tion. The initial window for a complete trial and the extracted activity window varied

between datasets thus those values were collected and recorded in Table 4.1 for ease of

reference. Once the trials were epoched, they were stored in a cell array which had

size of s× l, where s was the number of subjects and l was the number of classes in a

given dataset. Each entry in the cell array contained a 3-D matrix of epoched data

from a single run such that its dimensions were c×m× n, where c was the number of

EEG channels, m was the number of recorded samples and n was the number of trials.

Table 4.1: Time values used for window extraction from datasets, where the 0s reference point
is set to the appearance of cue.

Trial
window

Extracted
activity
window

BCI IV 2a -2s− 4s 1s− 4s
BNCI 2020 -2s− 3s 0s− 3s
GIST-MI -2s− 3s 0s− 3s

4.2.2 Filtering

This thesis analysed motor imagery as an oscillatory EEG signal recorded at specific

electrode positions, where such activity could be found in distinctive frequency bands

(α- and β-bands). The author would like to note here that while this interpretation of

motor imagery signals might suggest use of ERD/S it is critical to understand that at

no point in this thesis conventional methods of calculating ERD/S are used, such as
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the ones seen in Pfurtscheller & Lopes Da Silva (1999). Instead, the effects of ERD/S

phenomenon on the previously mentioned frequency bands were exploited following the

example of Blankertz et al. (2007), where it has been shown that CSP algorithm was

well fit to detect ERD/S effects in α and β waves if filtered accordingly. Based on that

evidence the choice of applying a bandpass filter between 7Hz and 30Hz was made.

Following that, spatial filtering was applied to investigate the effect of spatial filter-

ing on DMD modes. For that purpose spatialfilter() function from BioSig toolbox

with the appropriate input arguments was used. After completing the preprocessing

steps the windowed signals were narrowed down to the activity window size (as noted

in Table 4.1) to trim any discontinuities (transients) usually left over after applying

Fourier-based filtering. The trimmed data was then moved to the feature extraction

module, where it was processed by the DMD algorithm to extract three different types

of features: DMD modes, DMD spectrum and DMD maps. The obtained features were

then paired with appropriate feature selection methods, before finally being classified

with a fitting technique. Each of the feature extraction processes is described in the

following sections.

4.3 DMD modes processing protocol

The first type of features which were investigated in this thesis were DMD modes.

These modes also served later as the basis for the other explored features, DMD spec-

trum and DMD maps. The extracted modes had hc × r size, where h is the stacking

factor, c is the number of channels and r is the r-rank truncation value; however c× r
2

matrix was used for subsequent analysis, as additional rows past c− th row were shift-

stacked copies and every second mode was selected since DMD modes come in conjugate

pairs (Section 3.2.8). These modes were then passed through two different feature se-

lection methods: projection kernel and PCA. Lastly, the final features were used to

train an SVM classifier. The full processing pipeline is depicted if Figure 4.11

Firstly, DMD modes were extracted using both natural and SVD-energy scaling

methods in order to determine which technique produced better features. Speculatively,

if natural scaling was to be used, then the spatial characteristics of motor imagery could
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Figure 4.11: Diagram showing the processing pipeline for DMD modes. The effect of spatial
filtering is assessed by extracting both normalised and SVD scaled DMD modes. Projection
kernel and PCA techniques are then used to transform DMD modes features before being used
to train an SVM classifier.

be exploited, where most dynamic importance should be found in central belt of elec-

trodes, especially C1-C3 and C2-C4 electrodes. Alternatively, assessing modes scaled

by their SVD energy should theoretically uncover information regarding ERD/S phe-

nomenon, as the ’power’ changes of modes located at α and β bands can be examined.

Therefore, investigating both scaling techniques would allow to assess the two stated

conjectures.

With the two scaling techniques applied, exact DMD modes were calculated as

shown in (31) with the addition of a vector of eigenvalue frequencies (see (32)), so that

relative DMD modes could be sorted in an ascending frequency order. After those

operations, DMD modes for a given trial were a matrix of hc×r size. Lastly, conjugate

DMD modes were removed from the matrix and c number of rows was extracted, so

that the final matrix of DMD modes for a given trial was c× r
2 .

Secondly, the extracted DMD modes were subjected to two feature selection meth-

ods which have been reviewed in the previous chapter: PCA and a Grassmanian man-

ifold projection techniques. In the case of PCA method, the process was followed just

as described earlier, however when using Grassmanian manifold a small modification

to the process had to be made. Originally, it has been stated that for the QR decom-

position to be valid, the size of the matrix has to satisfy c ≥ r/2 condition. Given the

size of the calculated DMD matrices was c < r/2, the author applied a mode binning

technique to reduce the number of r/2. Region spanning between 7Hz and 31Hz was

split into equal 2Hz bins and modes which fell into each bin were averaged, such that
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each bin was described by an average mode. By doing so, r was reduced to 12, thus

satisfying the c ≥ r/2 condition.

Lastly, the selected features were classified using an SVM classifier. For the multi-

class problem, firstly a binary classifier template had to be created. The binary SVM

classifier was specified to use RBF kernel which calculated the elements of the Gram

matrix based on the supplied features, and the scale of the kernel was set to be au-

tomatically determined during the training process. The best-fit hyperplanes used to

separate the data during the training were optimised with the help of l1 soft-margin

minimisation solver.

Using the ’one versus one’ approach for multiclassification mean that the classifi-

cation model stored n(n − 1)/2 binary SVM classifiers; a classifier for each possible

binary combination of the supplied classes. The optimal hyperparameters used for

training of the multiclass model were found with bayesian optimisation technique. The

performance of the trained models was monitored using an acquisition function which

evaluated the expected amount of the improvement in the optimiser, where the addi-

tional ’plus’ parameter allowed escaping a local minima during computation. The list

of the parameters can be found in Table 4.2.

Table 4.2: Parameters used for the binary SVM classifier and the multiclass classification
model.

binary SVM classifier Multiclass model

Kernel
function ’rbf’ Coding ’onevsone’

Kernel scale ’auto’ Optimizer ’bayesopt’

Solver ’L1QP’ Acquisition
Function Name

’expected-
improvement-

plus’
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4.4 DMD spectrum processing protocol

The second type of features investigated in this thesis are the power values of the

DMD spectrum. As per Chapter 8 and 12 of Kutz et al. (2016) and earlier sections

of this thesis, power spectrum of DMD modes which are scaled by their SVD energy

resembles the average FFT of the same windowed signal. Therefore, similarly to the

motivation presented when looking into DMD modes, the author proposes assessment of

DMD spectrum with the aim of discovering valuable features which could be attributed

to ERD/S phenomena. The experimental procedure involving DMD power spectrum

features is shown in Figure 4.12 below.

Figure 4.12: Diagram showing the processing pipeline for DMD spectrum.

SVD-scaled and frequency sorted DMD modes obtained from Section 4.3 were in-

spected further to extract the DMD power spectrum for Φt which can be calculated by

using (37) such that Pt = ||Φt||. The resultant power vector Pt is a 1× r/2 row-vector,

which can be plotted against the related frequency values to obtain a spectrum similar

to average FFT power spectrum. Since the characteristic frequency of each mode can

vary between trial, the calculated power values were averaged in 1Hz bins between

7-30Hz bandwidth, to keep frequencies consistent over different trials. The above bin-

ning process reduces Pt vector to 1× 24 size allowing to create a feature space FP by

horizontally stacking power vectors Pt such that

FP =



P1

P2
...

Pt


∈ Rt×24 (66)
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Three different approaches have been employed for feature selection in addition

to supplying unmodified FP as it is to the classifier. Firstly, MRMR technique was

implemented to find the most important features from FP ; the in-built Matlab function

fscmrmr() was used to extract 5 most important features. In a similar fashion an MI

algorithm was deployed to extract 5 most important features. For this an external

function MI() provided by Pohjalainen et al. (2015) was used. Both of the functions

operate as stated in Section 3.3.1.

The author initially planned to also include LDA as an additional feature selec-

tion, which throughout the literature is found to be a common choice for dealing with

bandpower or FFT power spectrum feature vectors. An LDA model was created by

supplying FP features and the associated class labels to a fitcdiscr() function. To

maximise the accuracy of the classifier, a 10-fold cross validation was additionally im-

plemented. After the training was completed, the structure of the best performing

model was explored to obtain DeltaPredictor values, which measure importance of

the supplied predictors.

The values from DeltaPredictor were further checked for statistical importance

in order to extract the most meaningful features. Firstly, the mean was removed from

all the extracted values. This was followed by finding predictors which value was equal

or more than that of double of standard deviation. The choice of double of standard

deviation follows the idea of normal distribution, where 95% of data is contained within

two standard deviations, meaning that data with higher standard deviation values

would be of importance, and thus could be selected as meaningful features. Originally,

the predictors which met the above criteria indices of the three best performing features

were supposed to be chosen as the final ones; however during testing stages the author

discovered that this method was highly unreliable and very often DeltaPredictor

would be empty, meaning that the LDA mode failed to create a correct classifier from

the provided features. Because of that the author decided to not include LDA as a

feature selection method.
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4.5 DMD maps processing protocol

Throughout the thesis, the author has highlighted the importance of spatial rela-

tions in EEG signals multiple times. The highly localised nature of ERD/S phenomena

and its almost exclusive appearance at specific areas of the scalp should be enough to

encourage development of some form of image-based analysis for motor imagery appli-

cations. As it was noted in Section 3.4.4, the rise of neural networks, and especially

CNNs, allowed such analytical approaches to be researched and developed, since CNNs

excel at looking for spatial features and relations in images. Recalling further, it has

also been shown that maps extracted from FFT, STFT or scalogram features were

indeed quite successful in classifying motor imagery problems. Therefore, the author

decided to investigate whether maps produced by DMD modes could be equally well

understood by CNNs and yield a satisfactory performance in terms of accuracy of classi-

fication. Thus, the last explored feature type assessed in this thesis are maps produced

by DMD modes. The processing pipeline is shown in Figure 4.13. Both normalised and

energy-scaled DMD modes were used to assess which scaling method performs better.

Intensity maps were then obtained for both scales, before being utilised as input to

CNN.

Figure 4.13: Diagram showing the processing pipeline for DMD maps.

Matrices containing both normalised and energy-scaled DMD modes were obtained

as in Section 4.3, ensuring that complex conjugates were removed, as they do not

provide valuable information in the case of maps; their magnitudes are the same, with

the only difference being opposite phases of the modes. Furthermore, the modes have

also been ensured to be sorted in ascending order of their characteristics frequencies;
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however, they were not binned as in Sections 4.3 and 4.4. Each mode Φt was separated

into two matrices: matrix containing absolute values Φt,abs and the second matrix

containing phase information Φt,∠. The phases were extracted using angle() function

in Matlab, which returned a matrix of phase values.

The matrices containing magnitude and phase information of Φt were then converted

into greyscale images with the help of mat2gray() Matlab function. This function also

rescaled the incoming matrices to 0 − 1 value range so that all Φt,abs and Φt,∠ had

consistent scale across different trials. The output of mat2gray() is the same as the

size of the supplied matrix which in this case was c × r/2. Lastly, each greyscale

image was saved as ’*.png’ file with the correct corresponding name using imwrite()

function. The saved image had the same c × r/2 size so that each pixel corresponded

to a single entry in the DMD mode matrix.

In order to investigate the usefulness of phase maps, the author proposes two dif-

ferent networks: one allowing investigating the effectiveness of using absolute maps on

their own and another one combining information extracted from absolute and phase

maps. The author constructs a ’processing’ layer which is a recurrent block used in

both of the implemented networks. This layer, seen in Figure 4.14, is comprised of a

convolutional layer which contains five filters of 3 × 3 size, batch normalization layer,

ReLU layer and max pooling layer of 2 × 2 size. A batch normalization layer is a

recommended addition between convolutional layers and non-linearities, which helps to

stabilise the network and speed up the training process. ReLU layer (Rectified Linear

Unit) is chosen over sigmoid or tanh activation functions as it greatly helps omitting

the vanishing gradient problem, often experienced when using the other two activation

functions.
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Figure 4.14: The structure of the proposed processing layer used as a building block in the
implemented neural networks.

Using the described processing block, the network used for processing absolute

maps is constructed as shown in Figure 4.15. The input layer accepted images with

single channel (greyscale) data in c× r/2 size, which then were processed by the three

aforementioned processing layers. The output of the last max pooling layer is connected

to a fully-connected layer with size equal to the number of classes present in the supplied

data. Before reaching the output neurons, the data is processed by the softmax layer,

which calculates the probability for every possible class present in data and assigns the

obtained values accordingly.

Figure 4.15: The structure of the neural network used for processing absolute DMD maps.

When combining absolute and phase maps, the structure of the implemented neural

network is similar to the first one; all layers up to the fully-connected layer are imple-

mented twice as seen in Figure 4.16, to form two neural network branches and thus
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allow multi-image input. The outputs of the last max pooling layers are multiplied

together and then connected to the fully-connected layer. During the implementation

stages the author found out that multiplying the two outputs provided the best classi-

fication results compared to adding the outputs or simply concatenating the outputs.

Following the common structure of neural networks, the outputs of the fully-connected

layer are fed to the softmax layer before terminating at the classification layer.

Figure 4.16: The structure of the neural network used for processing absolute and phase
DMD maps.

Lastly, the author provides the parameters used for training the proposed neural

networks. In order to select the best parameters for the network a series of different

processes have been used. Firstly, data was split into 70-30% ratio, such that 70% of

data was used for training and 30% of data was used for validation of the network. Fol-

lowing this, the initial learning rate was optimised by using the ”Experiment Manager”

module in MATLAB. Exhaustive sweeps were run between 0.001 and 0.01 values for

two solver types: stochastic gradient descent with momentum (SGDM) and adaptive

moment estimation (ADAM). Lastly, the number of max epochs was found through ob-

serving 20 training processes and finding the most common epoch at which the network

would stop improving further. The optimised parameters can be found in Table 4.3.
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Table 4.3: Optimised values for the CNN used in the experiment concerning DMD maps.

Solver name Max epochs Initial learning
rate

ADAM 150 0.0042

4.6 Conclusion

The author outlined different datasets used in the study presented in this thesis

and has shown the preprocessing steps taken to prepare them for the subsequent anal-

ysis by the three proposed pipelines. After epoching EEG data, temporal filtering was

applied between 7-30Hz to emphasize ERD/S phenomenon. As mentioned, the litera-

ture was not fully clear upon the effect of spatial filtering on DMD features, therefore

the author decided to investigate this problem in the initial study concerning absolute

values of DMD modes as the extracted features. In this case PCA and projection ker-

nel methods were employed as feature translation methods and their implementation

was fully described. The second experiment aimed to investigate the viability of DMD

spectrum as features for detecting motor imagery. The feature vector was formed as

an average mode power between specific frequency bins to keep consistency between

trials. This vector was also reduced in dimension through the use of MInf and MRMR

approaches with the intent on finding the most suitable technique for DMD spectrum

features. Lastly, a novel approach has been proposed based on creating intensity maps

of DMD modes and using those maps as input to a CNN. A range of performance met-

rics has also been introduced which will be used in the next section, when presenting

the findings obtained from the three above experiments.



Chapter 5

Results

Following the implementation of the experimental designs outlined in the previ-

ous methodology chapter, the results for the protocols exploring the proposed different

DMD features were obtained, and are presented here accompanied by a thorough dis-

cussion concerning the findings. This chapter is comprised of four subsections: initial

investigation into the best classifier for DMD modes features, and then individual re-

sults for each proposed feature extraction approach: DMD modes, DMD spectrum

and DMD maps. These subsections all follow the same layout: accuracy results are

shown first, followed by sensitivity, specificity and lastly kappa values along with brief

description of the findings.

5.1 Selection of the appropriate classifier

Before testing of the proposed processing routes was carried out, the author carried

out an initial investigation to assess what classifier would be the most suitable for

the later experiments. Three candidate classifiers were tested in MATLAB: quadratic

linear discriminant analysis (QLDA), naive Bayes (NB) and RBF-SVM using processing

routes 2a and 2b (refer to Table 5.3 for the description of the processing route).

Average classification accuracy was measured and then used to identify the best

performing classifier for both projection kernel and PCA features. Tables 5.1 and 5.2

show the obtained results; all of the classifier tests were validated with 10-fold cross

validation technique to ensure that the results were more accurate. RBF-SVM was

92
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found to be the best performing classifier overall, achieving the best results in 4 out of

6 tests. NB achieved best results in 2 tests and QLDA performed at chance level; a

clear sign that this classifier is not reliable in distinguishing classes in high-dimensional

feature spaces. It was also observed that in some cases, during the testing, QLDA

classifier would show warning about returning empty confusion matrices, which meant

that it was not able to discern between multiple classes.

Following those findings, the author implemented RBF-SVM classifier in the final

processing pipeline. This concluded this small investigation and allowed for the main

investigation of DMD modes and spectrum based features to be carried out.

Table 5.1: Average classification accuracy obtained for the three tested classifiers on features
extracted using projection kernel method.

Average accuracy for projection kernel, (%)

RBF-SVM QLDA NB

BCI IV 2a 48.85 25.79 33.82
GIST-MI 62.9 50.85 55.35
BNCI 2020 17.2 16.7 17.8

Table 5.2: Average classification accuracy obtained for the three tested classifiers on features
extracted using PCA method.

Average accuracy for PCA, (%)

RBF-SVM QLDA NB

BCI IV 2a 35.92 25.79 36.5
GIST-MI 57.89 50.85 57.44
BNCI 2020 17.8 16.7 17.3
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5.2 Using DMD modes as features

Implementing the steps outlined in section 4.3 as depicted in Figure 4.11 allowed

to firstly explore the viability of DMD modes as features describing motor imagery in

EEG, and secondly, investigate what is the effect, if any, of spatial filtering using CAR

method on the performance of the system. Surprisingly, the initial experiments revealed

an unexpected behaviour after mode binning and the subsequent feature selection using

projection kernel method. In total, 8 different processing combinations were explored

for DMD modes. To refer to those combinations more easily, Table 5.3 contains shorter

reference names used in this chapter.

Table 5.3: Average classification accuracy for the proposed processing routes with normalised
DMD modes.

Processing combination name

Projection
kernel, CAR

filtering, mode
binning

PCA, CAR
filtering, mode

binning

Projection
kernel, CAR
filtering, no

mode binning

PCA, CAR
filtering, no

mode binning

Reference
name 1a 1b 2a 2b

Processing combination name

Projection
kernel, no

CAR filtering,
mode binning

PCA, no CAR
filtering, mode

binning

Projection
kernel, no

CAR filtering,
no mode
binning

PCA, no CAR
filtering, no

mode binning

Reference
name 3a 3b 4a 4b

Accuracy. Figures 5.1 and 5.2 show the distribution of the subjects’ classification

accuracy results in different datasets in the form of boxplots. Examining the plots

reveals that neither normalised nor scaled DMD modes perform particularly well with

mean accuracy, suggesting performance of just above chance level (25%, 50% and 16.7%

for BCI IV 2a, GIST-MI and BNCI 2020 respectively). However, it is fairly clear that

the processing combinations which use the projection kernel as the feature selection

tend to perform slightly better than PCA selection method.
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Figure 5.1: Classification accuracy for normalised DMD modes. Red dashed line indicates
the chance level for each dataset (25%, 50%, 16.7% respectively).

Figure 5.2: Classification accuracy for scaled DMD modes. Red dashed line indicates the
chance level for each dataset (25%, 50%, 16.7% respectively).

To have a clearer understanding of the effect of CAR filtering on the performance of

the proposed processing combinations, and better investigate the differences between

the different methods, the mean classification accuracies were extracted from the box-

plots and tabulated in Table 5.4 and 5.5. The best performing processing routes are

highlighted in bold face.
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Overall, the best performing processing combination based on the average classifi-

cation accuracy is method 2a. However, an exception to that was found when testing

BNCI 2020 dataset, where in case of normalised DMD modes, combination 4a performs

the best. Nonetheless, it can be seen that scaled DMD modes perform better than nor-

malised DMD modes offering +11.5%, +1.7% and +0.8% (respectively to the order

of datasets seen in Tables 5.4 and 5.5) increase in the average classification accuracy,

which was the expected outcome. On that note, the accuracy of scaled DMD modes is

23.5%, 14.3% and 3.5% higher than the chance level respectively for each dataset used.

Analysing average classification accuracy also shows that implementing CAR fil-

tering has an overall positive impact on the performance, offering the highest boost

of 14.4%, 2.4% and 0.1% (respectively for each dataset) in the case of scaled DMD

modes (2a vs 4a). This positive trend is followed by the other processing combinations,

however it is not as impactful as in the case of the aforementioned processing method.

The most surprising finding is the effect of the mode binning process on the perfor-

mance of DMD modes features. Recalling the requirements for orthogonal subspaces

on Grassmannian manifolds from Section 3.3.3.3 and further description of how DMD

modes can be orthogonalised outlined in Section 4.3, the results obtained in the ex-

periments concerning DMD modes are conflicting with the requirements presented in

the literature. In terms of normalised DMD modes, not applying mode binning and

thus disregarding orthogonal requirement for calculating projection kernel induced a

+1.6%, +4.3% and -0.1% change in the classification accuracy (CAR filtered data),

while for scaled DMD modes the change is even more impactful: +13.1%, +5.4% and

+3.7%(CAR filtered data), respectively for each dataset.

Table 5.4: Average classification accuracy for the proposed processing routes with normalised
DMD modes.

Average accuracy for normalised DMD modes, (%)

1a 1b 2a 2b 3a 3b 4a 4b

BCI IV 2a 35.4 26.1 37 31.3 33.1 26.3 29.8 29.7
GIST-MI 58.3 56.1 62.6 58.6 57.8 55.3 61.5 57.7
BNCI 2020 18.1 18 18 17.9 18.7 17.8 19.4 18.5
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Table 5.5: Average classification accuracy for the proposed processing routes with scaled DMD
modes.

Average accuracy for scaled DMD modes, (%)

1a 1b 2a 2b 3a 3b 4a 4b

BCI IV 2a 35.4 31.7 48.5 36.5 34.4 28.5 34.1 29.7
GIST-MI 58.9 56.1 64.3 59.9 58.5 53.7 61.9 57.9
BNCI 2020 17.5 18.4 20.2 18 18 18.2 20.1 19.1

Sensitivity. Observing results for normalised and scaled modes in Figures 5.3

and 5.4 reveals that the sensitivity closely follows the trend seen in the accuracy plots

(5.1, 5.2). While it can be seen that the sensitivity increases if the dataset contains

smaller number of classes, it generally still remained low and, in the case of the BNCI

2020 dataset, the difference in sensitivity between different processing routes is almost

non-distinguishable.

Figure 5.3: Sensitivity for normalised DMD modes.

Investigating the average sensitivity values which are presented in Tables 5.6 and 5.7

supports the initial findings from the accuracy data, which revealed that using method

2a yields the best results from all the proposed processing combinations. Features

extracted from scaled DMD modes provide slightly better sensitivity than features
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Figure 5.4: Sensitivity for scaled DMD modes.

obtained from normalised DMD modes, offering an +0.12, +0.02 and +0.02 increase

respectively for each dataset.

While analysing the effect of CAR filtering, taking the best performing processing

route into consideration shows that, when compared to a route which did not use

CAR filtering, the sensitivity increased by +0.14 and +0.02 for BCI IV 2a and GIST-

MI datasets and in the case of BNCI 2020 dataset no change in the sensitivity was

noted. In the case of mode binning, it can be seen that for normalised DMD modes

the sensitivity increased by 0.02 and 0.04 for the first two datasets and no change was

noted for the last dataset, whereas for scaled DMD modes the sensitivity increased by

0.14, 0.06 and 0.02 for each dataset.

Table 5.6: Average sensitivity for the proposed processing routes with normalised DMD modes.

Average sensitivity for normalised DMD modes

1a 1b 2a 2b 3a 3b 4a 4b

BCI IV 2a 0.35 0.26 0.37 0.31 0.33 0.26 0.3 0.3
GIST-MI 0.58 0.56 0.62 0.58 0.57 0.55 0.61 0.57
BNCI 2020 0.18 0.18 0.18 0.18 0.19 0.18 0.19 0.19
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Table 5.7: Average sensitivity for the proposed processing routes with scaled DMD modes.

Average sensitivity for scaled DMD modes

1a 1b 2a 2b 3a 3b 4a 4b

BCI IV 2a 0.35 0.32 0.49 0.37 0.34 0.28 0.35 0.3
GIST-MI 0.58 0.56 0.64 0.6 0.58 0.53 0.62 0.58
BNCI 2020 0.18 0.18 0.2 0.18 0.18 0.18 0.2 0.19

Specificity. Figures 5.5 and 5.6 contain boxplots showing specificity for every pro-

cessing route when using normalised or scaled DMD modes respectively. Analysing the

figures yields interesting findings: BCI IV 2a and BNCI 2020 datasets have high speci-

ficity, while GIST-MI dataset has a mediocre specificity, almost at the exact same level

as sensitivity. A reason for such behaviour is because of the particular way that speci-

ficity and sensitivity are calculated in multiclass problems as described in section 4.3,

leading to higher specificity number being calculated.

The effect on the system’s specificity of either of the three investigated components

cannot be clearly seen on Figures 5.5 and 5.6, thus the average specificities were ex-

tracted for both normalised and scaled DMD modes and tabulated in Tables 5.8 and

5.9.

Figure 5.5: Specificity for normalised DMD modes.
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Figure 5.6: Specificity for scaled DMD modes.

The tabulated results reveal straight away that in the case of the BNCI 2020 dataset

the specificity is constant and is completely unaffected by any of the processing routes,

nor by using normalised or scaled DMD modes. In the case of BCI IV 2a and GIST-MI

datasets the difference between different processing routes and normalised or scaled

modes is minimal. Nonetheless, extracting scaled DMD modes from CAR filtered EEG

signals and subsequently using projection kernel without mode binning (method 2a),

displayed the highest performance out of all the explored approaches again, offering

+0.04 and +0.02 increase in specificity when compared to the exact processing route,

when extracting normalised DMD modes.

Investigating the average specificity values further shows that implementing CAR

filtering on EEG signals provides only a +0.02 and +0.01 increase in specificity for

normalised DMD modes for the first two datasets, while scaled DMD modes benefited

slightly more, gaining +0.05 and +0.02 average specificity. Lastly, analysing the effect

of mode binning further indicates that not implementing mode binning provides a

specificity increase of +0.01 and +0.04 for normalised DMD modes and +0.05 and

+0.06 for scaled DMD modes.
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Table 5.8: Average specificity for the proposed processing routes with normalised DMD modes.

Average specificity for normalised DMD modes

1a 1b 2a 2b 3a 3b 4a 4b

BCI IV 2a 0.78 0.75 0.79 0.77 0.78 0.75 0.77 0.77
GIST-MI 0.58 0.56 0.62 0.58 0.57 0.55 0.61 0.57
BNCI 2020 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84

Table 5.9: Average specificity for the proposed processing routes with scaled DMD modes.

Average specificity for scaled DMD modes

1a 1b 2a 2b 3a 3b 4a 4b

BCI IV 2a 0.78 0.77 0.83 0.79 0.78 0.76 0.78 0.76
GIST-MI 0.58 0.56 0.64 0.59 0.58 0.53 0.62 0.58
BNCI 2020 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84

Kappa value. The last metric investigated for this experiment is Cohen’s kappa

value; the results obtained from each dataset are shown in Figures 5.7 and 5.8. Low

classification accuracy seen in Figures 5.1 and 5.2 is reflected in the calculated kappa

values, which prove that the supplied features in BCI IV 2a and BNCI 2020 dataset

are almost not reliable for multiclass classification at all; while in the case of binary

classification present in GIST-MI dataset some subjects’ data was almost perfect (at-

taining kappa value above 0.9), while other subjects performed just as poorly as in

the case of the other two datasets (kappa value below 0.1). Despite this wide range

of performance, the boxplots indicate that the average kappa value remained fairly

low for GIST-MI dataset (≈0.2). Additionally, one can see a clear advantage of using

scaled DMD modes instead of the normalised DMD modes, as scaled DMD modes offer

a substantial increase in the data reliability, particularly for BCI IV 2a dataset.

Looking closer at the average kappa values for normalised and scaled DMD modes

in Tables 5.10 and 5.11, the differences between using scaled DMD modes becomes more

visible especially for the first dataset; data obtained through those modes is shown to

be +0.15, +0.03 and +0.02 more reliable on average for the best performing processing

route. This route has been shown again to be the one which used projection kernel

method with no mode binning on CAR filtered EEG signals (method 2a).
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Figure 5.7: Kappa values for normalised DMD modes.

Figure 5.8: Kappa values for scaled DMD modes.

Investigating the difference in performance between CAR filtered and unfiltered

processing routes solidifies the advantage of spatial filtering for DMD modes as it yields

an increase in data reliability. For normalised DMD modes, when using projection

kernel with no mode binning (method 2a), it has been found that kappa value increases

by +0.09 and +0.03 points for the first two datasets, while for BNCI 2020 dataset the
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absence of CAR filtering (method 4a) yielded better performance by +0.02 points. In

the case of scaled DMD modes, filtering signals with CAR improved kappa value by

+0.19 and +0.05 points for BCI IV 2a and GIST-MI datasets, while BNCI 2020 dataset

was unaffected.

Lastly, it can be seen from Tables 5.10 and 5.11 the positive impact of omitting mode

binning step. While for normalised DMD modes this only resulted in slight increase in

kappa value, i.e. +0.02, +0.09 and 0 for each dataset respectively, examining scaled

DMD modes shows that kappa value doubled for almost all datasets: +0.17, +0.11 and

+0.03 kappa value increase.

Table 5.10: Average kappa values for the proposed processing with normalised DMD modes.

Average kappa values for normalised DMD modes

1a 1b 2a 2b 3a 3b 4a 4b

BCI IV 2a 0.14 0.02 0.16 0.09 0.11 0.02 0.07 0.06
GIST-MI 0.16 0.12 0.25 0.17 0.15 0.1 0.22 0.15
BNCI 2020 0.02 0.03 0.02 0.02 0.03 0.02 0.04 0.03

Table 5.11: Average kappa values for the proposed processing routes with scaled DMD modes.

Average kappa values for scaled DMD modes

1a 1b 2a 2b 3a 3b 4a 4b

BCI IV 2a 0.14 0.1 0.31 0.15 0.12 0.05 0.12 0.07
GIST-MI 0.17 0.12 0.28 0.19 0.16 0.07 0.23 0.16
BNCI 2020 0.01 0.02 0.04 0.02 0.02 0.02 0.04 0.03
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5.3 Using DMD spectrum as features

Implementation of CAR filtering on EEG signals is based on the findings from

the previous experiment, which have shown the positive performance impact of CAR

filtering on DMD modes. Each dataset had three different processing routes which were

based on three different feature selection methods, as shown before in Figure 4.12: raw

spectrum, MRMR and MInf methods.

Accuracy. The performance of DMD spectrum features in terms of classification

accuracy is shown in Figure 5.9. Investigating the boxplots reveals a poor performance

of DMD spectrum features with accuracy reaching just above chance levels again, sim-

ilarly to DMD modes features. Furthermore, the choice of feature selection has almost

negligible effect on the performance; however MInf seems to provide the best accuracy

alas by a very small margin.

Figure 5.9: Classification accuracy for DMD spectrum. Red dashed line indicates the chance
level for each dataset (25%, 50%, 16.7% respectively)
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Inspecting the average accuracy values found in Table 5.12 confirms that MInf

method does indeed provide higher accuracy, albeit the increase is small: 2.3% and 1.8%

increase over raw features and MRMR approach respectively for BCI IV 2a dataset, 2%

and 1.1% increase for GIST-MI dataset. For BNCI 2020 dataset, MRMR performed

better although only by 0.4% over raw features and MInf.

Table 5.12: Average accuracy for the proposed processing routes with DMD spectrum features.

Average accuracy for DMD spectrum, %

Raw features MRMR MInf

BCI IV 2a 29.5 29.9 31.8
GIST-MI 53.1 54 55.1
BNCI 2020 19 19.4 19

Sensitivity. Sensitivity results for DMD spectrum experiment presented in Fig-

ure 5.10 show a similar distribution to the one seen for DMD modes. Similarly to the

accuracy plots, it is hard to notice any significant differences in sensitivity between the

three feature selection methods, although MInf seems to perform slightly better.

Figure 5.10: Sensitivity for DMD spectrum.
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After extracting average sensitivity from the boxplots data and tabulating it in

Table 5.13, it becomes more evident that DMD spectrum features are almost unaffected

by the feature selection method. While MInf still turned out to produce the best results,

although it only provided a very modest +0.03 and +0.02 sensitivity gain for the BCI

IV 2a dataset when compared to raw features and MRMR method respectively. The

performance gain is almost the same for the GIST-MI dataset, offering an increase of

+0.03 and +0.01 over raw features and MRMR respectively. Notably, no change in

sensitivity was noted in the case of the BNCI 2020 dataset.

Table 5.13: Average sensitivity for the proposed processing routes with DMD spectrum.

Average sensitivity for DMD spectrum

Raw features MRMR MInf

BCI IV 2a 0.29 0.30 0.32
GIST-MI 0.52 0.54 0.55
BNCI 2020 0.19 0.19 0.19

Specificity. Figure 5.11 shows the calculated specificity values for experiments us-

ing DMD spectrum features. Higher specificity observed for BCI IV 2a and BNCI 2020

dataset is again attributed to the way in which specificity is calculated for mutliclass

classification problems. After inspecting the boxplots, it can be safely said that the

choice of feature selection method has close to no effect on the specificity, as it was the

case with sensitivity.

Investigating the average values found in Table 5.14 confirms the observations made

from Figure 5.11. For the BCI IV 2a dataset, choosing either MRMR or MInf increases

the specificity by 0.01 points over using raw DMD spectrum. GIST-MI dataset favours

use of MInf as it provided a gain of 0.03 and 0.02 specificity compared to raw fea-

tures and MRMR selected features respectively. In the BNCI 2020 dataset specificity

remained completely unaffected by the choice of feature selection method, following the

behaviour noticed in sensitivity results.
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Figure 5.11: Specificity for DMD spectrum.

Table 5.14: Average specificity for the proposed processing routes with DMD spectrum.

Average specificity for DMD spectrum

Raw features MRMR MInf

BCI IV 2a 0.76 0.77 0.77
GIST-MI 0.52 0.53 0.55
BNCI 2020 0.84 0.84 0.84

Kappa value. Lastly, the obtained kappa values from each dataset are shown

in Figure 5.12. The observed classification accuracies which are just slightly above

the chance level when using DMD spectrum as features are appropriately reflected in

equivalently low kappa values, with none of the processing routes seemingly breaking

an average kappa value of 0.10, clearly indicating that features extracted from DMD

spectrum are not reliable at all (≤ 1% reliability).
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Figure 5.12: Kappa values for DMD spectrum.

Investigating the average kappa values closer in Table 5.15 confirms the previous

results where MInf feature selection method was seen performing the best out of the

three approaches. For BCI IV 2a dataset, MInf offered an increase by 0.02 and 0.04

kappa compared to raw features and features proposed by MRMR respectively. In

GIST-MI dataset, kappa increased by 0.04 and 0.01 while in BNCI 2020 dataset MInf

gained 0.01 kappa compared to raw features and no change was noted between average

kappa values when using MInf or MRMR.

Table 5.15: Average kappa values for the proposed processing routes with DMD spectrum.

Average kappa values for DMD spectrum

Raw features MRMR MInf

BCI IV 2a 0.08 0.06 0.10
GIST-MI 0.06 0.09 0.10
BNCI 2020 0.03 0.04 0.04
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5.4 Using DMD maps as features

The last experiment performed in this thesis focused on the novel exploitation of

DMD modes. As described in Section 4.5 the author proposed to represent DMD

modes as intensity maps and use neural networks to extract features and classify them

accordingly. While use of heatmaps to present DMD modes is common in the literature,

the author has not seen any academic publication using such maps as features in any

way or form; such heatmaps were previously only used as visual aid to concisely present

the matrices of DMD modes.

In total four different processing routes were proposed which utilised DMD maps

with the aim of finding the best performing approach. Two pipelines used normalised or

scaled absolute mode values as maps while the other two pipelines used a combination

of phase maps and absolute maps for both normalised and scaled DMD modes.

Accuracy. Figure 5.13 shows the classification accuracy reached by each of the

proposed processing routes in the three datasets used in this thesis. Initial observation

of the resultant boxplots firstly indicates that maps acquired from energy-scaled DMD

modes provide better accuracy than the ones obtained from normalised DMD modes,

demonstrating once again that such scaled modes are better at discovering MI-EEG

related features. Secondly, contrary to the author’s expectations, the addition of phase

maps has a notably negative impact on the classification accuracy. This trend seems

to hold true for BCI IV 2a and GIST-MI datasets, however in the case of BNCI 2020

dataset it is not entirely clear.

Further examination of the average classification accuracies collected in Table 5.16

reveals the following: using only absolute maps from energy-scaled DMD modes pro-

vides highest average accuracy of 39.5% and 61.7% for the first and second datasets

while including phase maps in the processing route provides highest average accuracy

of 17.3% for the last dataset. That said, in the case of the last dataset the difference

between presence and absence of phase maps in the processing route is only +0.4% and

−0.8% for normalised and energy-scaled DMD maps respectively, where positive per-

centage indicates difference favouring absence of phase maps and negative percentage

differences favours presence of phase maps. This difference is much bigger for the first
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two datasets as noted when examining Figure 5.13: +5.1% and +10.2% for the first

dataset and +4.6% and +5.1% for the second dataset.

Figure 5.13: Classification accuracy for DMD maps. Red dashed line indicates the chance
level for each dataset (25%, 50%, 16.7% respectively)

Table 5.16: Average classification accuracy for the proposed processing routes with DMD
maps.

Average accuracy, %

Normalised
absolute maps

Normalised
absolute &
phase maps

Scaled
absolute maps

Scaled
absolute &
phase maps

BCI IV 2a 29 23.9 39.5 29.3
GIST-MI 60.9 56.3 61.7 56.6
BNCI 2020 16 15.6 16.5 17.3
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Sensitivity. The sensitivity of the proposed processing routes is investigated. From

Figure 5.14 it can be seen that the sensitivity distribution follows the trend seen in

accuracy results. Maps obtained from energy-scaled DMD modes have the highest

sensitivity out of all the proposed approaches. As it was the case with accuracy of the

explored processing routes, including phase maps lowered the sensitivity of the system.

Figure 5.14: Average sensitivity for DMD maps.

Average sensitivity results can be seen in Table 5.17. The advantage of using energy-

scaled maps over normalised ones is very clear in BCI IV 2a dataset, where a sensitivity

increase of 0.10 is noted. This is not the case for GIST-MI and BNCI 2020 dataset

where no change is observed at all. Furthermore in BNCI 2020 dataset, both absolute

and phase maps were the most sensitive, offering a minimal increase of 0.01.

Table 5.17: Average sensitivity for the proposed processing routes with DMD maps.

Average sensitivity

Normalised
absolute maps

Normalised
absolute &
phase maps

Scaled
absolute maps

Scaled
absolute &
phase maps

BCI IV 2a 0.29 0.24 0.39 0.29
GIST-MI 0.61 0.56 0.61 0.56
BNCI 2020 0.16 0.16 0.16 0.17
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Specificity. Figure 5.15 shows the obtained specificity results from DMD maps

experiments. Investigating the plots reveals more supportive evidence in favour of not

combining phase and absolute maps. While this observation is noticeable for BCI IV

2a and GIST-MI datasets, it is completely unclear if that is the case for BNCI 2020

dataset. In addition, the author notes that in the case of the second dataset some of

the subjects achieved very high specificity values (seen as red crosses on the plots).

Figure 5.15: Average specificity for DMD maps.

Average specificity results presented in Table 5.18 clarify that in the case of BNCI

2020 dataset, none of the proposed routes offer any advantage in terms of specificity.

The results also revealed some other interesting findings. While overall, using absolute

maps from energy-scaled DMD modes yielded the highest specificity, in the first dataset

the increase from normalised maps was only noted to be 0.04 and in the second dataset

no difference between normalised and energy-scaled maps was noted.
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Table 5.18: Average specificity for the proposed processing routes with DMD maps.

Average specificity

Normalised
absolute maps

Normalised
absolute &
phase maps

Scaled
absolute maps

Scaled
absolute &
phase maps

BCI IV 2a 0.76 0.75 0.80 0.76
GIST-MI 0.61 0.56 0.61 0.56
BNCI 2020 0.83 0.83 0.83 0.83

Kappa value. Kappa value was the last metric explored in the experiment con-

cerning DMD maps and the obtained results are presented in Figure 5.16. Observing

the results for BCI IV 2a dataset clearly confirms that scaled absolute maps provide

much more reliable features than the other proposed approaches. The situation however

changes when looking at GIST-MI dataset, where it can be seen that scaled absolute

maps obtained lower median kappa value than normalised maps or scaled maps with

phase information. In the case of BNCI 2020 dataset the plots indicate no difference

between either of the proposed approaches.

Figure 5.16: Kappa values for DMD maps.
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Closer examination of average kappa values found in Table 5.19 reveals a significant

kappa gain for scaled absolute maps over any other method (+0.12 over normalised

absolute maps and +0.14 over combination of absolute and phase maps) for the first

dataset. Table 5.19 also confirms that for the second dataset average kappa value

for the normalised absolute maps is higher than scaled absolute maps by 0.03 points.

Furthermore, in the case of the last dataset scaled absolute maps have the lowest kappa

value (0.03), albeit it is only lower by 0.01 compared to other three methods.

Table 5.19: Average kappa values for the proposed processing routes with DMD maps.

Average kappa value

Normalised
absolute maps

Normalised
absolute &
phase maps

Scaled
absolute maps

Scaled
absolute &
phase maps

BCI IV 2a 0.10 0.06 0.22 0.08
GIST-MI 0.31 0.22 0.28 0.23
BNCI 2020 0.04 0.04 0.03 0.04

5.5 Conclusion

The author has showed the justification for the selected RBF-SVM classifier through

a comparison study between other two classifiers: QLDA and NB. RBF-SVM outper-

formed the other classifiers and was able to classify supplied features in cases where

other approaches were not able to do so. Following that, the results for the three pro-

posed DMD pipelines were presented and brief overview was provided which serves as

the basis for the discussion in the next chapter.
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Discussion

Observations made in the results chapter regarding the performance of the three

proposed features based on DMD method are discussed in the following subsections,

where each individual behaviour is scrutinised by the author offering the best possible

explanation for the functioning of the proposed processing pipelines. At the end of this

discussion chapter a comparison between the best performing approaches from DMD

modes, spectrum and maps are compared to the state-of-the-art techniques used for

each assessed dataset.

The best processing routes from each experiment are firstly listed below and the

metrics for average classification accuracy and kappa values have been gathered and

tabulated in Table 6.1. Most interestingly ’plain’ DMD modes performed the best out

of all three proposed types of features. They were closely followed by the novel use of

DMD maps and DMD spectrum coming last.

• DMD modes: CAR filtering, energy-scaled DMD modes, no mode binning and

selecting features with projection kernel (combination 2a)

• DMD spectrum: use of MInf approach to select best features from the provided

DMD spectrum vector

• DMD maps: using only absolute maps obtained from energy-scaled DMD modes

115



CHAPTER 6. DISCUSSION 116

Table 6.1: Best results obtained from the three proposed experiments.

Average accuracy %, (kappa value)

DMD modes DMD
spectrum DMD maps

BCI IV 2a 48.5 (0.31) 31.8 (0.10) 39.5 (0.22)
GIST-MI 64.3 (0.28) 55.1 (0.10) 61.7 (0.28)
BNCI 2020 20.2 (0.04) 19 (0.04) 16.5 (0.03)

6.1 DMD modes

The presented results have provided valuable information regarding the validity of

DMD modes as features, their general performance as well as currently the best possible

processing route maximising the performance. Furthermore, performed experiments

provided numerical evidence showing the importance of CAR spatial filtering and the

surprising negative influence of mode binning on the system performance.

All the evidence shown unanimously agrees that filtering EEG signals with CAR

method, followed by extracting energy-scaled DMD modes and skipping mode binning

process, with final feature projection using projection kernel achieves the best perfor-

mance out of all the proposed processing routes. Despite this, the achieved classification

accuracy and kappa values are lower than state-of-the-art techniques, leading the author

to reject the hypothesis that DMD modes provide meaningful features. However, the

author notes that the proposed method utilising DMD modes is still at very early stages

of development, especially in EEG and MI-BCI problems, and suggests that DMD has

a potential to perform better if researched further in this particular application.

In terms of the differences between individual variables in the processing pipeline,

the clearest change was seen in the type of DMD modes used as features; scaled DMD

modes provided better performance than normalised DMD modes. Initially, the author

speculated that normalised DMD modes should provide better performance, since in-

dividual normalised modes show relative influence of each electrode within a particular

mode. This, in theory, should have produced a matrix of modes in which electrodes

within sensorimotor cortex would have carried the most influence on modes, due to
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strong spatial characteristics of the ERD/S phenomenon. However in practice, as seen

from the experimental data, it was the energy-scaled DMD modes which provided bet-

ter features in terms of classification accuracy and kappa value. This leads the author

to infer that DMD approach is better suited in finding the energy-related changes in

MI-EEG signals rather than the spatial ones.

The evidence seen in the presented results shows that applying CAR filtering to

EEG signals before extracting DMD modes has a positive impact and increases overall

performance of the system. This finding coincides with the similar findings made in

Hirsh et al. (2020) and Seenivasaharagavan et al. (2021). While the mentioned studies

did not look specifically on the effect of spatial filtering on DMD modes, they inves-

tigated the effect of mean subtraction and data centring processes on the extracted

DMD modes. Since, CAR filtering subtracts global mean at an electrode of interest

from a given trial, the resultant filtered signal has zero mean meaning that data is cen-

tred (Section 3.1.2). The existing knowledge of the benefits related to spatial filtering

combined with the information found in the two mentioned studies, and the numeri-

cal results obtained in this thesis allows the author to fully recommend usage of CAR

filtering when extracting DMD modes from MI-EEG signals.

The most perplexing finding however was discovered in the feature selection part

of the system. As mentioned in the results section, at the early stage of experiments

the author has noticed that skipping mode binning step increased the classification

accuracy, meaning that features used for classification contained more meaningful data.

This is further supported by the calculated kappa values for different processing routes.

While this type of behaviour would be certainly expected when using PCA as the feature

selection method, as it performs dimensionality reduction on its own through selection

of only first few principal components, in the case of projection kernel the observed

behaviour was against the constraints present in the subspace projection process.

In order to find the distance (through principal angle) between two subspaces on

a Grassmannian manifold, the two subspaces have to be orthogonal. Furthermore,

one can recall that extracted DMD modes are stated to be non-orthogonal. As a

workaround, previous literature suggested that matrices of DMD modes can be orthog-

onalised through employing QR decomposition process such that Φ = QR, where Q is
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the orthonormal representation of the matrix Φ. In the case of Bito et al. (2019), the

number of modes preserved for analysis seems to have been chosen arbitrarily (r = 9),

which allowed to satisfy the requirement for a valid QR decomposition: c ≥ r. Con-

veniently the code from the said publication along with the used dataset are publicly

available. The author investigated the available code and compared it with the version

used in the current thesis, and found no differences between the two, thus leading to

conclusion that problem does not lie in the code interpretation of the DMD algorithm,

but potentially in the nature of signals. Keeping that remark in mind, investigating

another recent publication by Shiraishi et al. (2020), which used DMD to extract MI

features from ECoG signals, reveals another technique for orthogonalisation of DMD

modes. The researchers in the aforementioned study seem to completely disregard or-

thogonalisation through QR decomposition and they firstly normalize each DMD mode

by its l2-norm; then use such normalised matrices of DMD modes, as the new subspaces

meaning that (54) effectively becomes:

kp(Φi,Φj) = ||Φ′iΦj ||2F

The research presented in this thesis is not able to fully explain the discrepancies found

in the literature as the obtained results are conflicting with the reviewed literature.

Most notably, using the above equation with non-orthogonalised DMD modes provided

better performance than following the orthogonalisation procedure described in Bito

et al. (2019). The author offers some potential explanations for such peculiar behaviour.

Firstly, the author notes that during mode binning process all modes within a

certain frequency bin are averaged, which can lead to some data loss, especially if there

is a wide range in data i.e. modes with both low and high energy. Therefore, the

author speculates that application of another metrics such as higher-order statistics

could potentially better describe the data within the frequency bin. A suggestion

would be to potentially look at the skewness and kurtosis of the modes within a certain

frequency bin and find which modes hold more significance.

Additionally, the author suggests that the issue might lie within the core idea of

mode projection itself. Orthogonalising DMD modes through mode binning and sub-
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sequent QR decomposition could potentially remove the previously present separation

between the modes in the process. Following this reasoning, the author offers another

explanation as to why, generally, energy-scaled DMD modes perform better than nor-

malised DMD modes: the differences between relative influences between electrodes in

modes are not as clearly separable as the differences between individual modal energies.

Lastly, the author acknowledges that Bito et al. (2019) used phone sensor signals,

which are much clearer, and differences between different activities can be seen with

small amount of further signal processing. That cannot be said about EEG recordings,

particularly the ones measuring MI activity, as the signals are almost blended with

background brain activity or noise. This argument gains more strength when investi-

gating Shiraishi et al. (2020) and even the original publication in Brunton et al. (2016),

as both of the papers implemented DMD in ECoG recordings, which are known to have

a much greater SNR and overall readability compared to EEG.

6.2 DMD spectrum

Building upon the findings from the experiment concerning use of ’pure’ DMD

modes, the author implemented a novel approach by extracting DMD spectrum with

the purpose of utilising it as features from MI-EEG signals. The author notes that

according to his current knowledge, it is the first ever such utilisation of DMD method

in this field.

From the three proposed routes used for processing DMD spectrum features, using

MInf to select best features yields the best results overall. Alas, as noted in Section 5.3

the difference between either of the approaches is minimal. While accuracy results are

comparable to the ones obtained for DMD modes as seen in Table 6.1, comparing kappa

values instead reveals that features from DMD spectrum are the least useful (κ ≤ 0.10),

indicating that less than 1% of data is reliable, and consequently meaning there is no

agreement in the supplied features. With such low kappa values the author confidently

rejects the hypothesis that DMD spectrum is able to extract any meaningful features

from MI-EEG signals based on the ERD/S phenomenon.

The author offers some explanation as to why, despite extracting DMD spectrum
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from energy-scaled DMD modes obtained from CAR filtered EEG signals (the best pro-

cessing route as shown in the first experiment), the measured performance metrics for

DMD spectrum features are unsatisfactorily low. The potential problem lies within the

DMD spectrum itself. Recall that the DMD spectrum qualitatively resembles average

FFT spectrum (over all electrodes), as described in Section 3.2.8 and Kutz et al. (2016).

As such, calculated power in the DMD spectrum is equivalent to the contribution of all

electrodes in a particular mode, which as a result leads to loss of vital information from

individual electrodes. Indeed previous literature forms feature vectors by calculating

FFT or bandpower (average or logarithmic) for each of the electrodes independently

(López-Larraz et al., 2014; Sburlea et al., 2015; Majkowski et al., 2017).

The author also notes that another factor negatively impacting the performance of

DMD spectrum features is the use of mode binning. As it was the case in the experiment

concerning DMD modes, mode binning leads to loss of information. Unfortunately, the

author is not able to recommend an effective alternative to mode binning. Simply

extracting DMD modes from a certain frequency range could be a viable alternative

allowing to preserve all the modes, however during the experiments the author noted

that each trial produced modes at different characteristic frequencies, leading to situa-

tions that the number of modes within 7-30Hz for one trial was different to number of

modes within the same frequency range for another trial. Thus mode binning through

simple averaging was necessary to ensure that each feature vector has the same length.

6.3 DMD maps

The results obtained in the culminating experiment of this thesis provided solid ev-

idence allowing the author to reject the last hypothesis formed in this study, which the-

orised if the spatio-temporal maps extracted from DMD modes would produce valuable

features and provide satisfactory performance. Nonetheless, few remarkable discoveries

were made which, in the author’s opinion, are a valuable addition to the knowledge and

could help shaping the future research. Two main comparisons under scrutiny are the

differences found between the use of normalised or energy-scaled maps and the effect

of inclusion of phase maps in the system.
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Similarly to the first experiment, the author initially postulated that maps obtained

from normalised DMD modes could be more beneficial and perform better than maps

from energy-scaled modes, especially when using a convolutional neural network to

look for patterns in the most influential electrodes and modes. However, as seen in the

results, information contained within the energy-scaled DMD modes still provided the

best performance, even when transformed into intensity maps.

From average classification accuracy found in Table 5.16, energy-scaled maps no-

ticed a 10.5%, 0.8% and 0.5% increase across the tested datasets compared to nor-

malised maps. However, looking at the obtained kappa values in Table 5.19 reveals

some anomalies which do not fully align with the classification accuracy results. While

for the first dataset energy-scaled maps have more than a double kappa value than this

of normalised maps (+0.12 gain), which is in agreement with the previous accuracy

results, in the second and third dataset normalised maps attained higher kappa values,

alas by minimal margin (+0.03 and +0.01), despite having lower classification accu-

racy. The author cannot explain this peculiarity, as assessing average sensitivity and

specificity shows that both normalised and energy-scaled maps have the exact same

values in second and third dataset.

Nonetheless, the general trend is in favour of energy-scaled maps, which in the au-

thor’s view this solidifies the premise that the most suitable DMD modes for MI-EEG

signals are energy-scaled ones. Furthermore, this would indicate that DMD approach

describes ERD/S phenomenon better by its energy distribution across the modes (fol-

lowing the spectral characteristics), rather than the localised influence of individual

electrodes (strictly spatial characteristic).

Assessing the provided results also revealed that the proposition made by the author

concerning the inclusion of phase maps in the system turned out to have an overall

negative impact on the performance. From Table 5.16 it can be seen that across the

tested datasets accuracy dropped by 5.1%, 3.6% and 0.4% respectively for normalised

maps. Whereas, for the energy-scaled maps including phase maps resulted in a 10.2%,

5.1% drop for the first two datasets. Unexpectedly for the third dataset, the inclusion of

phase maps increased classification accuracy by 0.8%. Apart from this single measured

abnormality, the negative trend associated with the inclusion of phase maps is clearly
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seen across the used data. Kappa values confirm that as recalling Table 5.19 shows

that normalised maps saw a kappa decrease of 0.04 and 0.09 for the first two datasets,

while no change was noted for the last dataset.

Considering the discussed points regarding type of scaling used and incorporation

of phase information, the author suggests that a possible rearrangement of the DMD

modes, specifically the order of channels, and slight adjustments to the filter parameters

in the proposed CNN, could potentially be of benefit. Ensuring that the data channels

are arranged in a more ’anatomically correct’ order e.g., frontal, central and parietal

areas, could possibly bring more cohesion to data and thus allow the CNN to find

better spatial relations in the provided maps. Consequently, the vertical stride of the

convolutional filters should be altered such that it would appropriately accommodate

the aforementioned areas specifically.

6.4 Comparison to the state-of-the-art

The performance of the proposed approaches is compared to the current state-of-

the-art methods observed in the literature. This process is completed per dataset basis,

which allows to discuss specifics of the analysed dataset.

Firstly, the BCI Competition IV Dataset 2a from Brunner et al. (2008) is assessed.

As observed in Table 6.2, all three proposed DMD based methods have almost half the

performance of the current state-of-the-art. DMD modes which produced the highest

results in this thesis fall behind CSP approach by −25.2% and by −28.9% compared to

EEG-TCNet (Ingolfsson et al., 2020), a CNN approach using raw EEG signals. Inter-

estingly enough the approach used by Hersche et al. (2018) is conceptually quite close

to the idea of utilising DMD modes with the projection kernel. There, a multiscale

CSP approach is applied by splitting EEG signal into multiple temporal and spectral

components and using CSP to calculate a set of features, clearly tackling all three do-

mains to maximise gathered information just as proposed in this thesis. Furthermore,

Hersche et al. (2018) also applies Riemannian manifold projection to spectral informa-

tion extracted from EEG signals to obtain Riemannian covariance matrices. On the

contrary, the approaches presented in Shallow ConvNet by Schirrmeister et al. (2017),
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EEGNet by Lawhern et al. (2018) and the previously mentioned EEG-TCNet only use

raw EEG data and allow the convolution filters present in neural networks to find their

own features in EEG signals, rather than supply ’man-made’ CSP or spectral features.

The results show that CNNs are able to perform just as well as classic CSP approach

and much better than the proposed DMD based methods. The supplied kappa values

for the three CNNs also reveal that features extracted from raw EEG signals have more

than double the value, and are much more reliable.

The results for dataset from Cho et al. (2017) reveal an interesting case for DMD

modes as shown in Table 6.3. Compared to the original approach utilising CSP features

in Cho et al. (2017), DMD modes suffered only a −3.2% decrease in accuracy with DMD

maps falling behind by −5.8% which is much smaller than the difference observed in

the first dataset. Furthermore, DMD modes managed to outperform both Shallow

ConvNet and EEGNet by +1.3% and +0.3% respectively, while DMD maps fell behind

only by −1.3% and −2.3%. The author notes that Shallow ConvNet and EEGNet with

the addition of Parallel CRNN (originally by Zhang et al. (2018)) were implemented

in Ko et al. (2021) to specifically explore their performance on the examined dataset

as the original papers did not utilise it and only took into account dataset by Brunner

et al. (2008). Parallel CRNN ends the good streak of DMD modes by providing an

impressive 79% accuracy, only to be superseded by MSNN proposed by Ko et al. (2021)

with 81% accuracy. Unfortunately, none of the explored studies provided any kappa

values therefore it is not possible to assess the reliability of the features used in those

publications. Those findings are of significance because the dataset under investigation

only offers 2 classes of signals, which would mean that DMD is almost as capable as

CSP approach in the case of simple binary classification problems.

Comparing the performance of the proposed DMD based features in the the last

dataset could not be accomplished fully due to some certain issues. Recalling from

Chapter 4, dataset by Ofner et al. (2017) recorded a staggering number of 6 different

classes with addition of separate rest (inactivity) class. In this thesis the author chose

to follow the original paper by Ofner et al. (2017) and train a classifier which would

be able to deal with 6 different classes (omitting the rest class). During the literature

review, the author was able to find only one other publication which followed the same
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methodology, i.e. including all movements in the classifier (Mammone et al., 2020),

while the other two publications included in Table 6.4 use specific pairings of actions

and classify them against rest class. Examining the results in Table 6.4, DMD modes

lose 4.8% and 6.8% accuracy compared to the two original methods used by Ofner

et al. (2017): single time point and time window, respectively. It is important to note

that the two mentioned methods used time signals which were examined and processed

specifically to extract MRCPs instead of exploiting ERD/S phenomena as it has been

done in this thesis. The deep CNN implemented by Mammone et al. (2020) outperforms

DMD modes by more than triplefold (42.3% gain over DMD modes). The Hierarchical

Flow CNN (HF-CNN) achieved an accuracy of 51%; however it only used the forearm

supination and pronation actions and compared them against rest class, therefore it

cannot be directly compared to the score achieved by DMD modes. Similarly, DCNN

approach (Ieracitano et al., 2021) only used opening and closing hand actions against

rest class; this method reached an accuracy of 90% but, again, cannot be directly

compared to DMD modes. As it was seen in the second dataset, the publications

reviewed here did not provide any kappa values, therefore the author was not able

to compare the reliability of the extracted features from the presented state-of-the-art

methods.
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Table 6.2: Comparison of the proposed techniques to the current state-of-the-art approaches in literature for the BCI IV 2a dataset

DMD modes DMD spectrum DMD maps CSP (Hersche
et al., 2018)

Riemannian
(Hersche et al.,

2018)

Shallow
ConvNet

(Schirrmeister
et al., 2017)

EEGNet
(Lawhern

et al., 2018)

EEG-TCNet
(Ingolfsson
et al., 2020)

Accuracy % 48.5 31.8 39.5 73.7 74.8 74.3 72.4 77.4

κ 0.31 0.10 0.22 - - 0.66 0.63 0.70

Table 6.3: Comparison of the proposed techniques to the current state-of-the-art approaches in literature for the GIST-MI dataset

DMD modes DMD spectrum DMD maps CSP (Cho
et al., 2017)

Shallow
ConvNet EEGNet Parallel CRNN MSNN (Ko

et al., 2021)

Accuracy % 64.3 55.1 61.7 67.5 63 64 79 81

κ 0.28 0.10 0.28 - - - - -
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Table 6.4: Comparison of the proposed techniques to the current state-of-the-art approaches in literature for the BNCI 2020 dataset

DMD modes DMD spectrum DMD maps
Single time

point (Ofner
et al., 2017)

Time window
(Ofner et al.,

2017)

Deep CNN
(Mammone
et al., 2020)

HF-CNN*

(Jeong et al.,
2020)

DCNN**

(Ieracitano
et al., 2021)

Accuracy % 20.2 19 16.5 25 27 62.5 51 90

κ 0.04 0.04 0.03 - - - - -

* - only comparing forearm supination and pronation actions against rest, ** - only comparing opening and closing hand actions against rest
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6.5 Conclusion

Despite the initially observed poor performance by all three proposed DMD based

features, a number of valuable discoveries have been made for which the author has pre-

sented discussion in this chapter. Even though none of the approaches i.e. DMD modes,

DMD spectrum and DMD map have attained a satisfactory level of performance, the

author argues that both DMD modes and DMD maps cannot be completely disre-

garded. Given the very early stage of DMD-based research in general, the author sees

a potential in this technique, particularly for DMD modes. The author suggests that

further investigation into the projection kernel method would be beneficial to the DMD

method, and would allow it to reach higher performance. However, in the case of DMD

spectrum the author stands by discouraging the use of this method, as the results

clearly show that it is not suitable for extracting MI-EEG based features. Through

the examination of current state-of-the-art and comparing their performance in the

three used datasets, the author found out that the performance of DMD modes was

quite close to state-of-the-art in two out of three datasets. In the case of the GIST-MI

dataset, DMD modes managed to even outperform two state-of-the-art methods.



Chapter 7

Conclusion and future work

This research utilised a novel signal decomposition technique DMD to the field of

MI-EEG in order to fill out the identified lack of spatial domain based approaches when

investigating ERD/S phenomenon. DMD produces the so-called DMD modes which

are in fact spatio-temporal patterns describing the low-rank dynamics present in the

examined window of signal. After researching the use of this method in the literature,

the author proposed an in-depth investigation into three different types of features:

DMD modes, DMD spectrum and DMD maps and presented the findings regarding

classification performance.

7.1 Conclusion

A number of experiments were performed while using DMD modes, in order to

firstly identify the importance of spatial filtering of the original EEG signal and its

effect on the classification. This investigation revealed that applying CAR spatial filter

was able to greatly enhance the signal and the resultant DMD modes, leading to a

notable increase in classification accuracy and kappa value. Secondly, the author com-

pared the two scaling methods used for DMD modes: normalised method and scaling by

SVD energy. While initially the author made the assumption that normalised scaling

would lead to better performance, as ERD/S phenomenon is heavily localised across

the electrodes and such scaling enhances the relative influence of channels (electrodes)

on the calculated modes, the obtained results disproved that claim and showed a sig-

128
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nificant increase in performance when SVD-energy scaling was used instead. Lastly, an

appropriate feature selection method for DMD modes was studied. The analysed lit-

erature revealed two methods suggested for such process, namely PCA and projection

kernel used on Grassmannian manifold. The author confirmed through thorough inves-

tigation that the use of projection kernel produced more accurate and reliable features

compared to the ones selected by PCA.

Additionally, the author discovered an anomaly in the process involved with the prepa-

ration of DMD modes, so they can be used with projection kernel. Specifically, DMD

modes which are used as subspaces for the later projection are required to be orthogo-

nal, which is problematic as by nature DMD modes are non-orthogonal. The literature

suggests to use Q matrix obtained from QR decomposition as an orthogonal represen-

tation of the DMD modes; however it was found out that for such decomposition to be

valid the number of channels in DMD modes has to be higher than the rank number.

This was challenging as in this study the number of channels was smaller than the

rank number. Implementing mode binning process which allowed to satisfy the QR

decomposition requirement was shown to have drastically negative impact on the final

classification accuracy. Consequentially, breaking that requirement and using DMD

modes without orthogonalisation to calculate projection kernels provided a superior

performance.

In the case of DMD spectrum, the author wished to explore the spectral information

contained in the DMD modes, to look for patterns in the modal energy distribution,

with the intent of finding patterns reflecting ERD/S phenomenon. In addition to using

raw DMD spectrum, MRMR and MInf feature selection methods were employed with

hopes of further narrowing down the feature vector to only contain the most useful data.

However, the experimental results revealed little to no difference between using one of

the aforementioned selection techniques and supplying raw spectrum to the classifier.

Nonetheless, MInf method performed marginally better, but the author stated that in

general DMD spectrum method is not useful due to the obtained very low kappa values,

clearly suggesting DMD spectrum did not contain any reliable information regarding

ERD/S phenomenon.

The last representation of DMD based features explored in this thesis were DMD
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maps where, initially the author suggested that spatial patterns would be discovered by

a developed CNN on the su pplied maps reflecting the absolute and phase information of

DMD modes. As it was the case with DMD modes investigation, the difference between

normalised and energy-scaled maps was examined, where at the start the author was in

favour of the normalised approach. The results showed again that scaling DMD modes

by SVD energy provided more reliable maps than normalised ones. Furthermore, the

results also revealed that using absolute maps on their own instead of combing map

information from absolute and phase data was more accurate and reliable.

Gathering the findings from the experiments on the three proposed features revealed

that DMD modes were able to achieve the highest performance out of all investigated

approaches. While this performance did not seem very satisfactory at the beginning,

comparing it to the current state-of-the-art led to some surprising discoveries. In the

case of the BCI IV 2a dataset, all DMD modes were nowhere near the performance

achieved by the classic CSP approach, or much more modern CNN methods. This how-

ever changed when GIST-MI dataset was investigated, as DMD modes only minimally

fell behind CSP method while also outperforming other state-of-the-art techniques, al-

beit by small fraction. Although DMD maps are not being able to beat any of the

state-of-the-art, they still managed to perform relatively well. Similarly in the case of

the BNCI 2020 dataset, DMD modes were able to perform very closely to the method

used in the original paper, but then fell off by a big margin compared to a modern

CNN approach.

7.2 Future work

Lastly, the author wishes to share a number of suggestions for future work, which

are the result of the observations made throughout the research discussed in this thesis.

The most obvious suggestion is further development of the DMD technique. As the

research community has been gaining a better understanding of DMD and its associated

processes, more robust techniques for extracting modes can be developed (Scherl et al.,

2020; Abolmasoumi et al., 2021). For certain, the current approach to calculate DMD

is not suitable for real-time applications, which is limited by the lack of efficient and
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reliable methods to update eigenvalues in real-time, and the computational speed of

calculating SVD for bigger windows of data. Thus, to allow DMD to be used in real-time

BCIs, more work would have to be carried out to address the described limitations.

From the outcomes presented in the results section, the author can make more

specific suggestions for future work. As the results showed, DMD spectrum does not

produce any reliable features for ERD/S classification, and therefore the author would

stand by the claims made earlier in the thesis, and discourage any work in that direc-

tion. However, the experiments involving DMD modes and maps revealed a number of

potential future improvements.

From the studies concerning DMD modes, the author would like to propose a num-

ber of ideas. It is evident that feature selection through projection kernel works very well

with DMD modes. However, as pointed out earlier in the thesis, the results obtained

in the discussed research do not align with the literature on this subject. Therefore it

would be of the highest importance to further investigate the issues involved with or-

thogonalisation of DMD mode matrices. This naturally pairs up with evaluating more

reliable methods for extracting the most meaningful modes to reduce the size of DMD

matrix, adhering to the requirements of QR decomposition.

Regarding DMD maps, the author suggests that the absolute and phase information

of the extracted DMD modes should be investigated further as the acquired results

indicate a potential of the proposed technique. For certain, implementing a suitable

mode selection technique, as it was suggested previously with DMD modes, could be

beneficial for the DMD maps as only the most important modes would be retained.

For the last suggestion, the author proposes a deeper research into neural networks

utilised for classifying DMD maps and further research into hyperparameter tuning of

the associated networks.
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Berger, H. (1929). Über das Elektrenkephalogramm des Menschen. Archiv für Psychi-

atrie und Nervenkrankheiten, 87 (1), 527–570.

Bhattacharyya, S., Khasnobish, A., Chatterjee, S., Konar, A., & Tibarewala, D. N.

(2010). Performance analysis of LDA, QDA and KNN algorithms in left-right limb

movement classification from EEG data. In International Conference on Systems in

Medicine and Biology, ICSMB 2010 - Proceedings, (pp. 126–131).

Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K. M., & Robbins, K. A. (2015). The



BIBLIOGRAPHY 134

PREP pipeline: Standardized preprocessing for large-scale EEG analysis. Frontiers

in Neuroinformatics, 9 (JUNE), 1–19.

Bito, T., Hiraoka, M., & Kawahara, Y. (2019). Learning with Coherence Patterns in

Multivariate Time-series Data via Dynamic Mode Decomposition. In Proceedings of

the International Joint Conference on Neural Networks, vol. 2019-July, (pp. 1–8).

IEEE.

Blankertz, B., Curio, G., & Müller, K. R. (2002). Classifying single trial EEG: Towards

brain computer interfacing. Advances in Neural Information Processing Systems.

Blankertz, B., Dornhege, G., Krauledat, M., Müller, K. R., & Curio, G. (2007). The

non-invasive Berlin Brain-Computer Interface: Fast acquisition of effective perfor-

mance in untrained subjects. NeuroImage, 37 (2), 539–550.

Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., & Müller, K. R. (2008). Op-

timizing spatial filters for robust EEG single-trial analysis. IEEE Signal Processing

Magazine, 25 (1), 41–56.

Blokland, Y., Spyrou, L., Thijssen, D., Eijsvogels, T., Colier, W., Floor-Westerdijk,

M., Vlek, R., Bruhn, J., & Farquhar, J. (2014). Combined EEG-fNIRS decoding of

motor attempt and imagery for brain switch control: An offline study in patients with

tetraplegia. IEEE Transactions on Neural Systems and Rehabilitation Engineering,

22 (2), 222–229.

Brunner, C., Leeb, R., Müller-Putz, G. R., Schlögl, A., & Pfurtscheller, G. (2008). BCI
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Chevallier, S., Barthélemy, Q., & Atif, J. (2014). Subspace metrics for multivariate

dictionaries and application to EEG. ICASSP, IEEE International Conference on

Acoustics, Speech and Signal Processing - Proceedings, (pp. 7178–7182).

Chiarelli, A. M., Croce, P., Merla, A., & Zappasodi, F. (2018). Deep learning for hybrid

EEG-fNIRS brain-computer interface: Application to motor imagery classification.

Journal of Neural Engineering, 15 (3).

Cho, H., Ahn, M., Ahn, S., Kwon, M., & Jun, S. C. (2017). EEG datasets for motor

imagery brain–computer interface. GigaScience, 6 (7), 1–8.

Cohen, M. X. (2017). Where Does EEG Come From and What Does It Mean? Trends

in Neurosciences, 40 (4), 208–218.



BIBLIOGRAPHY 136

Congedo, M., Barachant, A., & Bhatia, R. (2017). Riemannian geometry for EEG-

based brain-computer interfaces; a primer and a review. Brain-Computer Interfaces,

4 (3), 155–174.

Craik, A., He, Y., & Contreras-Vidal, J. L. (2019). Deep learning for electroencephalo-

gram (EEG) classification tasks: A review. Journal of Neural Engineering, 16 (3),

28.
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