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Abstract

In this thesis, our focus has been on enhancing the applicability and reliability of
the truncated Euler-Maruyama (EM) numerical method for stochastic differential
equations (SDEs) and stochastic delay differential equations (SDDEs), initially in-
troduced by Mao [21]. Building upon this method, our contributions span several
chapters. In Chapter 3, we pointed out its limitations in determining the conver-
gence rate over a finite time interval and established a new result for SDEs whose
diffusion coefficients may not satisfy the global Lipschitz condition. We extended
our exploration to include time delays in Chapter 4, allowing for varying delays
over time. The chapter also introduces additional lemmas to ensure the conver-
gence rates of the method to the solution at specific time points and over finite
intervals. However, the global Lipschitz condition on the diffusion coefficient is
currently required. In Chapter 5, we focused on the Lotka-Volterra model, intro-
ducing modifications such as the Positive Preserving Truncated EM (PPTEM) and
Nonnegative Preserving Truncated EM (NPTEM) methods to handle instances
where the truncated EM method generated nonsensical negative solutions. The
proposed adjustments, guided by Assumption 5.1.1, ensure that the numerical so-
lutions remain meaningful and interpretable. Chapter 6 extends these concepts to
the stochastic delay Lotka-Volterra model with a variable time delay, demonstrat-
ing the adaptability and applicability of our methods. Despite we also assume the
stronger condition 6.1.1 to prove the convergence of numerical solutions, future
research aims to explore relaxed conditions, broadening the applicability of these
numerical methods. Overall, this thesis contributes to establishing convergence
rates for SDEs under local Lipschitz diffusion coefficients, extending the method-
ology to address time delays and modifying the truncated EM method to ensure
positive and nonnegative numerical solutions. These advancements are demon-
strated through applications to the stochastic variable time delay Lotka-Volterra
model, emphasizing the meaningfulness and interpretability of the solutions.
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Notations

positive : > 0.
nonpositive : ≤ 0.
negative : < 0.
nonnegative : ≥ 0.
a.s. : almost surely, or with probaility 1.
A := B : A is defined by B or A is denoted by B.
A(x) ≡ B(x) : A(x) and B(x) are indentically equal, i.e. A(x) = B(x) for all x.
∅ : the empty set.
1A : the indicator function of a set A i.e. 1A(x) = 1 if x ∈ A or

otherwise 0.
Ac : the complement of A in Ω, i.e. Ac = Ω− A.
a ∧ b : min {a, b}.
a ∨ b : max {a, b}.
f : A → B : the mapping f from A to B.
R = R1 : the real line.
R+ : the set of all nonnegative real numbers, i.e. R+ = [0,∞).
Rd : the d-dimensional Euclidean space.
Rd

+ : =
{
x ∈ Rd : xi > 0, 1 ≤ i ≤ d

}
, i.e. the positive cone.

R̄d
+ : =

{
x ∈ Rd : xi ≥ 0, 1 ≤ i ≤ d

}
.

|x| : the Euclidean norm of a vector x.
AT : the transpose of a vector or matrix A.
traceA : the trace of a square matrix A = (ai,j)d×d, i.e. traceA =

∑
1≤i≤d aii.

|A| :
√

trace (ATA), i.e. the trace norm of a matrix A.
C(D;Rd) : the family of continuous Rd-valued

functions defined on D.
Cm(D;Rd) : the family of continuous m−times differentiable

Rd-valued functions defined on D.
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Cm
0 (D;Rd) : the family of functions in Cm(D;Rd) with compact

support in D.
C2,1(D × R+;R) : the family of all real-valued functions V (x, t) defined on

D × R+ which are continuously twice differentiable in
x ∈ D and once differentiable in t ∈ R+.

Vx : = (Vx1 , · · · , Vxd
) =

(
∂V
∂x1

, · · · , ∂V
∂xd

)
.

Vxx : =
(
Vxixj

)
d×d

=
(

∂2V
∂xi∂xj

)
d×d

.

∥ξ∥Lp : = (E |ξ|p)1/p.
Lp(Ω;Rd) : the family of Rd-valued random variables ξ with E |ξ|p < ∞.
Lp
Ft
(Ω;Rd) : the family of Rd-valued Ft-measurable random variables ξ

with E |ξ|p < ∞.
C([−τ, 0];Rd) : the space of all continuous Rd-valued functions φ

defined on [−τ, 0] with a norm ∥φ∥ = sup−τ≤θ≤0 |φ(θ)|.
Lp
F([−τ, 0];Rd) : the family of all C([−τ, 0];Rd)-valued random variables ϕ

such that E∥ϕ∥p < ∞.
Lp
Ft
([−τ, 0];Rd) : the family of all Ft-measurable C([−τ, 0];Rd)-valued

random variables ϕ such that E∥ϕ∥p < ∞.
Cb

Ft
([−τ, 0];Rd) : the family of all Ft-measurable bounded C([−τ, 0];Rd)

-valued random variables.
Lp([a, b];Rd) : the family of Borel measurable functions h : [a, b] → Rd

such that
∫ b

a
|h(t)|pdt < ∞.

Lp([a, b];Rd) : the family of Rd-valued Ft-adapted processes {f(t)}a≤t≤b

such that
∫ b

a
|f(t)|pdt < ∞.

Mp([a, b];Rd) : the family of processes {f(t)}a≤t≤b ∈ Lp([a, b];Rd) such
that E

∫ b

a
|f(t)|pdt < ∞.

Lp(R+;Rd) : the family of processes {f(t)}t≥0 such that for every
T > 0, {f(t)}0≤t≤T ∈ Lp([0, T ];Rd).

Mp(R+;Rd) : the family of processes {f(t)}t≥0 such that for every
T > 0, {f(t)}0≤t≤T ∈ Mp([0, T ];Rd).

Additional notations will be clarified when they first appear.
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Chapter 1

Introduction

A stochastic differential equation (SDE) is a mathematical framework used to
model systems affected by both deterministic and random factors. It extends
the principles of ordinary differential equations (ODEs) to encompass elements
of chance and is employed in fields like physics, finance, biology, and engineering
where randomness and unpredictable variations are significant.

A standard SDE is usually expressed as follows:

dX(t) = f(X(t), t)dt+ g(X(t), t)dB(t)

In this equation, X(t) is the stochastic process and represents the system’s chang-
ing state at time t > 0. f(X(t), t) characterizes the deterministic drift, signify-
ing the system’s expected behaviour, while g(X(t), t) describes stochastic diffu-
sion, modelling random fluctuations. And dB(t) denotes the incremental change
of a Wiener process or Brownian motion, capturing the inherent uncertainty,
[15, 19, 30]

If the drift and diffusion are complex, determining the explicit solutions of
SDEs is difficult. Numerical methods for SDEs have become a focal point of
research in this area. Until 2002, most of the existing strong convergence theory
in this area necessitated global Lipschitz continuous coefficients for SDEs (see,
e.g., [15, 19, 29]). In 2002, Higham, Mao, and Stuart’s publication [10] initiated a
new phase, focusing on the strong convergence issue for numerical approximations
under the local Lipschitz condition.

Given that the classical Euler-Maruyama (EM) method may struggle with
SDEs under the local Lipschitz condition but without the linear growth condition
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(i.e., highly nonlinear SDEs) (see, e.g., [11, 13]), implicit methods have naturally
been employed to study numerical solutions for highly nonlinear SDEs (see, e.g.,
[26, 33, 34]). Despite this, the explicit EM method possesses a straightforward
algebraic structure, cost-effectiveness, and an acceptable convergence rate under
the global Lipschitz condition. Several modified EM methods have recently been
developed for the highly nonlinear SDEs. These include the tamed EM method
[14, 31, 32], the tamed Milstein method [35] and the stopped EM method [18].

In 2015, Mao introduced the modified EM approximate method for SDEs which
is called the truncated EM method, [21]. Using this method, he demonstrated
that the truncated EM solution converges in the Lq norm to the exact solution
under both local Lipschitz and Khasminskii-type conditions. The following year,
Mao further presented the convergence rate at a finite time T > 0, see [22]. To
calculate the numerical solution with the rate of [22], unfortunately, the step size
is sometimes required very small, or we can say it is inapplicable.

In contrast, Hu, Li, and Mao (2018) asserted in [12] that the step size can be
flexible within the interval (0, 1], and the convergence rate at time T exhibits a
degree of similarity. In practical applications, a convergence rate at time T suffices
for scenarios, for example, requiring the approximation of European put or call
option values. Yet, for accurate estimations of path-dependent quantities, encom-
passing the entire lifespan of options like barrier options and bonds is essential,
for more information see [9].

Mao (2016) [22] previously established the convergence rate of the truncated
EM method over a finite time interval. However, the challenge persists as the small
step size requirement remains. Additionally, the proof of convergence rate over
a finite time interval in [22] relied on assuming global Lipschitz continuity in the
diffusion coefficient. Despite the enhancement seen in the truncated EM method,
as demonstrated in [12], it effectively addresses the challenge associated with the
step size. Generally, numerous financial models exhibit diffusion coefficients, as
exemplified by the Ait-Sahalia model [5], that do not adhere to the global Lipschitz
condition. In Chapter 3, we aim to relax the requirement of global Lipschitz conti-
nuity for the diffusion coefficient to achieve the convergence rate of the truncated
EM method over a finite time interval.

A stochastic differential delay equation (SDDE) expands the SDE framework by
introducing both stochastic components and time delays in the system’s dynamics.
SDDEs are used to model systems where the current state depends not only on

2



past states and random influences but also on states at previous time points.
A general form of a stochastic differential delay equation is as follows:

dX(t) = f(X(t), X(t− τ), t)dt+ g(X(t), X(t− τ), t)dB(t)

In this equation, X(t) represents the state of the system at time t. The term
f(X(t), X(t − τ), t)dt captures the deterministic part of the evolution, represent-
ing how the system changes over time based on its current state and a delayed
state. The delayed term X(t − τ) introduces a time lag, reflecting the impact of
past states on the current dynamics. The term g(X(t), X(t−τ), t)dB(t) introduces
stochasticity to the system. The function g quantifies how random fluctuations
affect the system, and dB(t) represents the differential increment of a Brownian
motion. The stochastic component accounts for inherent uncertainties and ex-
ternal influences in the system. The inclusion of time delays in SDDEs can lead
to intricate and diverse dynamics, making them especially suitable for modelling
systems exhibiting phenomena like feedback loops, memory effects, or history-
dependent behaviour, see more [19].

Similarly to SDEs, early research of SDDEs focuses on the numerical solutions
under conditions that their coefficients satisfy the linear growth condition and the
global Lipschitz condition. Consequently, to reduce the global Lipschitz condi-
tion, many researchers developed the numerical solution under the linear growth
condition and the local Lipschitz condition, [2, 3, 4, 16]. To apply more SDDE
models, the generalized Khasminskii-type condition was applied to SDDEs instead
of the linear growth condition, [20]. In 2018, Guo, Mao and Yue modified the trun-
cated EM method for SDDEs with a constant time delay under the generalized
Khasminskii-type condition and the local Lipschtiz condition. Fei et. al., in 2020,
fixed the problem that the step size required [8] too very small and also provided
the rate of convergence both at a time T and over a finite time interval.

According to the result in [25], Mao and Sabanis applied the EM numerical
method for SDDEs with variable time delay. In Chapter 4, we aim to find the
convergence rate of the SDDEs, with a variable time delay under the generalized
Khasminskii-type condition and the local Lipschtiz condition, at a specific time T

and over a finite time interval.
Although the truncated EM method is the new method that can be applied

to SDEs and SDDEs with the nonlinear coefficients as described above, on some
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SDE models, the truncated EM method can generate negative numerical solutions
which are uninterpretable. For example, the stochastic Lotka–Volterra model for
interacting multi-species in ecology should have positive solutions (see, e.g., [1, 23,
19]). The SDE SIS model in epidemiology also has positive solutions (see, e.g.,
[7]). These SDE models are all highly nonlinear. Therefore a positive solution is
important to make the meaningfulness and interpretability of the solution.

Chapter 5 mainly focuses on the modification of the truncated EM method
to create a new positivity preserving truncated EM (PPTEM) for the well-known
stochastic Lotka–Volterra model for interacting multi-species in ecology. The rea-
son why we will concentrate on this model is because it has typical features: highly
nonlinear, positive solution and multi-dimensional. It is not worthless to note that
our approach is to establish a new nonnegative preserving truncated EM (NPTEM)
and then the more desired PPTEM since some other SDE models, in applications,
have their solutions taking nonnegative values. Furthermore, it would be natu-
ral based on mathematics to determine the nonnegative solutions and follow the
positive ones.

As a consequence, in SDDE models, the truncated EM numerical solutions also
take a negative value. The next aim is to modify the truncated EM method to
have the positive preserving or the nonnegative preserving properties by applying
the stochastic delay Lokta-Volterra model. Additionally, we combine the idea of a
variable time delay to this model and describe the methodology in Chapter 6.

To be more clear about this thesis, we organise this thesis as follows: We pro-
vide mathematical background such as Probability theory, Itô formula and other
useful inequalities in Chapter 2. Chapter 3 is our first aim which is the conver-
gence rate over a finite time interval of SDEs with a nonlinear diffusion coefficient.
In Chapter 4, we investigate the rate of convergence of SDDEs with a variable
time delay. Chapter 5 is extracted from the paper Positivity Preserving Truncated
Euler-Maruyama Method for Stochastic Lotka-Volterra Competition Model, [27],
which I co-authored with Prof. Mao Xuerong and Prof. Wei Fengying. In this
chapter, we define the new methodologies PPTEN and NPTEM for the stochastic
Lokta-Volterra model. The last aim in Chapter 6 is an extension of PPTEM and
NPTEM to the stochastic delay Lokta-Volterra model with a variable time delay.
The thesis concludes by engaging in discussions that encompass the drawbacks,
limitations, potential further applications, and future extensions of the theoretical
discoveries outlined in Chapter 7.
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Chapter 2

Preliminaries

In order to make this thesis self-sufficient, we will cover the fundamental math-
ematical tools. In this chapter, we will explore the basics of SDEs by starting
with some concepts from the probability theory. Afterwards, we will introduce
the stochastic processes and dive into the essential ideas of Brownian motion,
stochastic integrals and Itô calculus. We will also introduce stochastic differential
equations and SDDEs, and end up with the well-known mathematical inequalities.
Just so you know, we’ve drawn inspiration and content from references [19], [28],
and [30].

2.1 Basic probability concepts
Let us begin with the fundamental mathematical principles of probability theory.
Let Ω be a given set. A family of subsets of Ω called as σ-algebra, F , on Ω if it
satisfies the following properties:

(i). ∅ ∈ F ;

(ii). if A ∈ F then Ac ∈ F ;

(iii). if {Ai}i≥1 ∈ F then ∪∞
i=1Ai ∈ F .

The pair of (Ω,F) is called a measurable space, and the individual elements within
F are referred to as F -measurable sets or simply events. If C is a family of subsets
of Ω, then there exists a smallest σ-algebra σ(C) on Ω which contains C. The
σ(C) is also called the σ-algebra generated by C. For a specific case Ω = Rd and
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Chapter 2 6

the family of all open sets C in Rd, Bd = σ(C) is called the Borel σ-algebra and
the elements of Bd are called the Borel sets.

A real-valued function X : Ω → R is said to be F -measurable if

{ω : X(ω) ≤ a} ∈ F for all a ∈ R.

The function X can also be referred to as a real-valued (F -measurable) random
variable. An Rd-valued function X(ω) = (X1(ω), X2(ω), · · · , Xd(ω))

T is said to be
F -measurable if all the elements Xi are F -measurable. Similarly, a d×m-matrix-
valued function X(ω) = (Xij(ω))d×m is said to be F -measurable if all the elements
Xij are F -measurable.

The indicator function 1A of a set A ⊆ Ω is defined by

1A(ω) =

1 for ω ∈ A,

0 for ω /∈ A.

The indicator function 1A is F -measurable if and only if A is an F -measurable
set, i.e. A ∈ F . If the measurable space is (Rd,Bd), a Bd-measurable function is
then called a Borel measurable function.

More generally, let (Ω′,F ′) be another measurable space. A mapping X : Ω →
Ω′ is said to be (F ,F ′)-measurable if

{ω : X(ω) ∈ A′} ∈ F for all A′ ∈ F .

The mapping X is then called an Ω′-valued (F ,F ′)-measurable (or simply, F -
measurable) random variable.

For a given function X : Ω → Rd, the σ-algebra σ(X) generated by X is the
smallest σ-algebra on Ω containing all the sets {ω : X(ω) ∈ U} , U ⊆ Rd open.
That is

σ(X) = σ({ω : X(ω) ∈ U} : U ⊆ Rdopen).

Clearly, in this case, X becomes σ(X)-measurable and σ(X) is the smallest σ-
algebra with the property. If X is F -measurable, then σ(X) ⊆ F , in other words,
X generates a sub-σ-algebra of F . If {Xi : i ∈ I} is a collection of Rd-valued
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functions, define

σ(Xi : i ∈ I) = σ

(⋃
i∈I

σ(Xi)

)

which is called the σ-algebra generated by {Xi : i ∈ I}. It is the smallest σ-algebra
with respect to which every Xi is measurable.

A probability measure P on a measurable space (Ω,F) is a function P : F →
[0, 1] such that

(i). P(Ω) = 1, and

(ii). if A1, A2, A3, . . . is a sequence in F such that Ai ∩Aj = ∅ for all i ̸= j, then

P

(
∞⋃
n=1

An

)
=

∞∑
n=1

P(An).

The triple (Ω,F ,P) is called a probability space.
If (Ω,F ,P) is a probability space, we set

F̄ = {A ∈ Ω : there exist B,C ∈ F such that B ⊆ A ⊆ C,P(B) = P(C)} .

Then F̄ is a σ-algebra and is referred to as the completion of F . If F = F̄ , the
probability space (Ω,F ,P) is said to be complete. In consequence, we refer to a
given complete probability space as (Ω,F ,P).

A random variable X is an F -measurable function X : Ω → Rd. Every random
variable induces a probability measure µX on the Borel measurable space (Rd,Bd),
defined by

µX(B) = P {ω : X(ω) ∈ B} for B ∈ Bd,

and µX is called the distribution of X.
If X is a real-valued random variable and is integrable with respect to the

probability measure P, then the number

EX =

∫
Ω

X(ω)dP(ω) =
∫
Rd

xdµX(x)
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is called the expectation of X with respect to P. The number

V(X) = E(X − E(X))2

is called the variance of X.
More generally, if f : Rd → Rm is Borel measurable and

∫
Ω
|f(X(ω))|dP(ω) < ∞,

then we have

Ef(X) =

∫
Ω

f(X(ω))dP(ω) =
∫
Rd

f(x)dµX(x).

The number E|X|p for p > 0 is called the pth moment of X i.e. E|X|p =∫
Ω
|X(ω)|pdP(ω). For p ∈ (0,∞), let Lp = Lp(Ω;Rd) be the family of Rd-valued

random variables X with E|X|p < ∞. In L1, we have |EX| ≤ E|X|. Moreover,
the following three inequalities hold true.

(i). Hölder’s inequality : if p > 1, 1/p+ 1/q = 1, X ∈ Lp and Y ∈ Lq, then

|E(XTY )| ≤ (E|X|p)1/p(E|Y |q)1/q;

(ii). Minkovski’s inequality : if p > 1 and X,Y ∈ Lp, then

(E|X + Y |p)1/p ≤ (E|X|p)1/p + (E|Y |p)1/p;

(iii). Chebyshev’s inequality : if c > 0, p > 0 and X ∈ Lp, then

P {ω : |X(ω)| ≥ c} ≤ 1

cp
E|X|p.

A simple application of Hölder’s inequality implies

(E|X|r)1/r ≤ (E|X|p)1/p

if 0 < r < p < ∞, X ∈ Lp.



Chapter 2 9

2.2 Stochastic processes
Let (Ω,F ,P) be a probability space. A filtration is a family {F}t≥0 of increasing
sub-σ-algebras of F (i.e. Ft ⊆ Fs ⊆ F for all 0 ≤ t < s < ∞). The filtration
is said to be right continuous if Ft = ∩s>tFs for all t ≥ 0. When the probability
space is complete, the filtration is considered to satisfy the usual conditions if it is
both right continuous and F0 contains all P-null sets.

From now on, unless otherwise specified, we assume that (Ω,F ,P) is a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions. We also
define F∞ = σ

(⋃
t≥0 Ft

)
, i.e. the σ-algebra generated by

⋃
t≥0 Ft.

A family {Xt}t∈I of Rd-valued random variables is called a stochastic process
with parameter set or index set I and state space Rd. The parameter set I is usually
the half-line R+ = [0,∞), but it may also be an interval [a, b], the non-negative
integers or even subsets of Rd. For each fixed t ∈ I, we have a random variable

Ω ∋ ω → Xt(ω) ∈ Rd

On the other hand, for each fixed ω ∈ Ω, we have a function

I ∋ t → Xt(ω) ∈ Rd

which is called a sample path of the process, and we shall write X•(ω) for the path.
For convenience, we often write X(t, ω) instead of Xt(ω). The stochastic process
can be seen as a function of two variables (t, ω), mapping from I × Ω to Rd. We
commonly represent the stochastic process {Xt}t≥0 as simply {Xt}, Xt or X(t).
In this work, we use the variable x(t) to refer to a stochastic process.

Let {Xt}t≥0 be an Rd-valued stochastic process. The stochastic process is said
to be continuous (resp. right continuous, left continuous) if for almost all ω ∈ Ω,
the function Xt(ω) is continuous (resp. right continuous, left continuous) on t ≥ 0.
It is said to be càdlàg (right continuous and left limit) if it is right continuous and
for almost all ω ∈ Ω, the left limit lims↑t Xs(ω) exists and is finite for all t > 0.
It is said to be integrable if for every t ≥ 0, Xt is an integrable random variable.
It is said to be {Ft}-adapted if for every t ≥ 0, Xt is Ft-measurable. It is said
to be measurable if the stochastic process regarded as a function of two random
variables (t, ω) from R+ × Ω to Rd is B(R+)×F -measurable, where B(R+) is the
family of all Borel sub-sets of R+. The stochastic process is said to be progressively
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measurable or progressive if for every T ≥ 0, {Xt}0≤t≤T regarded as a function of
(t, w) from [0, T ] × Ω to Rd is B([0, T ]) × FT -measurable, where B([0, T ]) is the
family of all Borel sub-sets of [0, T ].

A random variable τ : Ω → [0,∞] (it may take the value ∞) is called {Ft}
stopping time if {ω : τ(ω) ≤ t} ∈ Ft for any t ≥ 0.

Theorem 2.2.1. If {Xt}t≥0 is a progressively measurable process and τ is a stop-
ping time, then Xτ1{τ<∞} is Fτ -measurable. In particular, if τ is finite, then Xτ

is Fτ measurable.

Theorem 2.2.2. Let {Xt}t≥0 be an Rd-valued càdlàg {Ft}-adapted process, and
D an open subset of Rd. Define

τ = inf {t ≥ 0 : Xt /∈ D} ,

where we use the convention inf ∅ = ∞. Then τ is an {Ft}-stopping time, and is
called the first exit time from D. Moreover, if ρ is a stopping time, then

θ = inf {t ≥ ρ : Xt /∈ D}

is also called {Ft}-stopping time, and is called the first exit time from D after ρ.

An Rd-valued {Ft}-adapted integrable process {Mt}t≥0 is called a martingale
with respect to {Ft} (or simply, martingale) if

E(Mt|Fs) = Ms a.s. for all 0 ≤ s < t < ∞.

Keep in mind that every martingale has a càdlàg modification because we
consistently assume that the filtration Ft is right continuous.

If X = {Xt}t≥0 is a progressively measurable process and τ is a stopping time,
then Xτ = {Xτ∧t}t≥0 is called a stopped process of X. The following is the well-
known Doob martingale stopping theorem.

Theorem 2.2.3. Let {Mt}t≥0 be an Rd-valued martingale with respect to {Ft},
and let θ, ρ be two finite stopping times. Then

E(Mθ|Fρ) = Mθ∧ρ a.s.
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In particular, if τ is a stopping time, then

E(Mτ∧t|Fs) = Mτ∧s a.s.

holds for 0 ≤ s < t < ∞. That is, the stopped process Mτ = {Mτ∧t} is still
martingale with respect to the same filtration {Ft}.

A stochastic process X = {Xt}t≥0 is called square-integrable if it satisfies the
condition E|Xt|2 < ∞ for every t ≥ 0. If M = {Mt}t≥0 is a real-valued square-
integrable continuous martingale, then there exists a unique continuous integrable
adapted increasing process denoted by ⟨M,M⟩t such that {M2

t − ⟨M,M⟩t} is a
continuous martingale vanishing at t = 0. The process {⟨M,M⟩t} is called the
quadratic variation of M . In particular, for any finite stopping time τ ,

EM2
τ = E ⟨M,M⟩τ .

If N = {Nt}t≥0 is another real-valued square-integrable continuous martingale, we
define

⟨M,N⟩t =
1

2
(⟨M +N,M +N⟩t − ⟨M,M⟩t − ⟨N,N⟩t) ,

and call {⟨M,N⟩t} the joint quadratic variation of M and N . It is useful to
know that {⟨M,N⟩t} is the unique continuous integrable adapted process of finite
variation such that {MtNt − ⟨M,N⟩t} is a continuous martingale vanishing at
t = 0. In particular, for any finite stopping time τ ,

EMτNτ = E ⟨M,N⟩τ .

A right continuous adapted process M = {Mt}t≥0 is called a local martingale if
there exists a nondecreasing sequence τkk≥1 of stopping times such that τk ↑ ∞
a.s. Furthermore, for each k > 1 the process {Mτk∧t −M0}t≥0 is a martingale.
It’s worth noting that every martingale is also a local martingale, as indicated
by Theorem 2.2.3, but the converse is not necessary true. If M = {Mt}t≥0 and
N = {Nt}t≥0 are two real-valued continuous local martingales, their joint quadratic
variation {⟨M,N⟩}t≥0 is the unique continuous adapted process of finite variation.
This process has the property that {MtNt − ⟨M,N⟩t}t≥0 is a continuous local
martingale vanishing at t = 0. When M and N are equal, {⟨M,M⟩}t≥0 is known
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as the quadratic variation of M .
The next outcome is the valuable strong law of large numbers.

Theorem 2.2.4 (Strong law of large numbers). Let M = {Mt}t≥0 be a real-valued
continuous local martingale varnishing at t = 0. Then

if lim
t→∞

⟨M,M⟩t = ∞ a.s. then lim
t→∞

Mt

⟨M,M⟩t
= 0 a.s.

and also

if lim sup
t→∞

⟨M,M⟩t
t

< ∞ a.s. then lim
t→∞

Mt

t
= 0 a.s.

More generally, if A = {At}t≥0 is a continuous adapted increasing process such
that

lim
t→∞

At = ∞ and
∫ ∞

0

d ⟨M,M⟩t
(1 + At)2

< ∞ a.s.

then

lim
t→∞

Mt

At

= 0 a.s.

A real-valued {Ft}-adapted integrable process {Mt}t≥0 is called a supermartin-
gale (with respect to {Ft}) if

E(Mt|Fs) ≤ Ms,

and a submartingale (with respect to {Ft}) if

E(Mt|Fs) ≥ Ms a.s. for all 0 ≤ s < t < ∞.

Obviously, {Mt} is submartingale if and only if {−Mt} is a supermartingale.
For a real-valued martingale {Mt}, both

{
M+

t := max(Mt, 0)
}

and{
M−

t := max(0,−Mt)
}

are submartingales. In the case of a supermartingale
(or submartingale), the expected value EMt is monotonically decreasing (or in-
creasing). Furthermore, if p ≥ 1 and {Mt} is an Rd-valued martingale with
Mt ∈ Lp(Ω;Rd), then {|Mt|p} is a non-negative submartingale. It’s worth not-
ing that Doob’s stopping Theorem 2.2.3 can applies to supermartingales and sub-
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martingales as well.

2.3 Brownian motions
In 1828, the Scottish botanist Robert Brown made an observation that pollens
suspended in liquid exhibited irregular motion. This motion was later explained
as a result of random collisions with the molecules of the liquid. To mathematically
describe this motion, it is natural to employ the concept of a stochastic process
Bt(ω), which can be interpreted as the position of the pollen grain ω at a given
time t. This stochastic process is known as Brownian motion and is one of the
fundamental continuous-time stochastic processes. It finds valuable applications
in several stochastic systems and lays the groundwork for stochastic analysis. Let
us now provide the mathematical definition of Brownian motion.

Definition 2.3.1. Let (Ω,F ,P) be a probability space with a filtration {Ft}t≥0.
A (standard) one-dimensional Brownian motion is a real-valued continuous Ft-
adapted process Btt≥0 with the following properties:

(i). B0 = 0 a.s.;

(ii). for 0 ≤ s < t < ∞, the increment Bt−Bs is normally distributed with mean
zero and variance t− s;

(iii). for 0 ≤ s < t < ∞, the increment Bt − Bs is independent of Fs.

(iv). Almost surely, the sample path t → Bt(ω) is continuous.

Let {Bt}0≤t≤T on [0, T ] for some T > 0. If {Bt}t≥0 is Brownian motion and
0 ≤ t0 < t1 < · · · < tk < ∞, then the increments Bti − Bti−1

, 1 ≤ i ≤ k are
independent, and we say that the Brownian motion has independent increments.
Moreover, the distribution of Bti − Bti−1

depends only on the difference ti − ti−1,
and we say that the Brownian motion has stationary increments. The filtration
{Ft} is a part of the definition of Brownian motion.

The following are important properties of Brownian motion.

(i). {−Bt} is a Brownian motion with respect to the same filtration {Ft}.

(ii). Let c > 0. Define Xt =
Bct√

c
for t ≥ 0. The {Xt} is a Brownian motion with

respect to the filtration {Fct}.
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(iii). {Bt} is a continuous square-integrable martingale and its quadratic variation
⟨B,B⟩t = t for all t ≥ 0.

(iv). The strong law of large numbers states that

lim
t→∞

Bt

t
= 0 a.s.

(v). For almost every ω ∈ Ω, the Brownian sample path B.(�) is nowhere differen-
tiable.

(vi). For almost every ω ∈ Ω, the Brownian sample path B•(ω) is locally Hölder
continuous with exponent δ if δ ∈ (0, 1/2). However, for almost every ω ∈ Ω,
the Brownian sample path B•(ω) is nowhere Hölder continuous with expo-
nent δ > 1/2.

2.4 Stochastic integrals
In this section, we introduce the mathematical framework for stochastic integral.
Now, let us establish the definition of the stochastic integral∫ t

0

f(s)dBs

with respect to an m-dimensional Brownian motion {Bt} for a class of d × m-
matrix-valued stochastic processes {f(t)}. Due to the fact that, for almost all
ω ∈ Ω, the sample path of Brownian motion B•(ω) exhibits infinite variation and
is nowhere differentiable, the integral cannot be defined using the usual methods.
The concept of this integral was first defined by K. Itˆo in 1949 and is now known
as Itô stochastic integral.

Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions. Let B = {Bt}t≥0 be a one-dimensional Brownian motion
defined on the probability space adapted to the filtration.

Definition 2.4.1. Let 0 ≤ a < b < ∞. Denote by M2([a, b];R) the space of all
real-valued measurable {Ft}−adapted processes f = {f(t)}a≤t≤b such that

∥f∥2a,b = E
∫ b

a

|f(t)|2dt < ∞.
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We identify f and f̄ in M2([a, b];R) if ∥f − f̄∥2a,b = 0. In this case, we say that f
and f̄ are equivalent and write f = f̄ .

The stochastic processes f ∈ M2([a, b];R) would help define the Itô stochastic
integral. The approach is quite intuitive: first we define the integral

∫ b

a
g(t)dBt for

a class of simple processes g. Then, we demonstrate that each f ∈ M2([a, b];R) can
be approximated by such simple processes g�s and we define the limit of

∫ b

a
g(t)dBt

as the integral of
∫ b

a
f(t)dBt. Let us introduce the concept of simple processes.

Definition 2.4.2. A real-valued stochastic process g = {g(t)}a≤t≤b is called a
simple (or step) process if there exists a partition a = t0 < t1 < · · · < tk = b of
[a, b], and bounded random variables ξi, 0 ≤ i ≤ k−1 such that ξi is Fti-measurable
and

g(t) = ξ01[t0,t1](t) +
k−1∑
i=1

ξi1(ti,ti+1](t). (2.1)

Denote by M0([a, b];R) the family of all such processes.

Evidently, M0([a, b];R) ⊆ M2([a, b];R). Now, we will proceed to present the
definition of Itô stochastic integral for these simple processes.

Definition 2.4.3. For a simple process g with the form of (2.1) in M0([a, b];R),
define

∫ b

a

g(t)dBt =
k−1∑
i=0

ξi
(
Bti+1

− Bti

)
(2.2)

and name it the stochastic integral of g with respect to the Brownian motion {Bt}
or the Itô integral.

It’s evident that the stochastic integral
∫ b

a
g(t)dBt is Fb-measurable. By ex-

tending the idea from Equation (2.2) into M2([a, b];R), we arrive at the following
definition.

Definition 2.4.4. Let f ∈ M2([a, b];R). The Itô integral of f with respect to
{Bt} is defined by ∫ b

a

f(t)dBt = lim
n→∞

∫ b

a

gn(t)dBt in L2(Ω;R),
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where {gn} is a sequence of simple processes such that

lim
n→∞

E
∫ b

a

|f(t)− gn(t)|2dt = 0.

Let present the following useful properties of Itô integral.

Theorem 2.4.5. Let f, g ∈ M2([a, b];R), and let α, β be two real numbers. Then

1.
∫ b

a
f(t)dBt is Fb-measurable;

2. E
∫ b

a
f(t)dBt = 0;

3. E
∣∣∣∫ b

a
f(t)dBt

∣∣∣2 = E
∫ b

a
|f(t)|2dt;

4.
∫ b

a
[αf(t) + βg(t)]dBt = α

∫ b

a
f(t)dBt + β

∫ b

a
g(t)dBt.

The indefinite Itô integral is defined below.

Definition 2.4.6. Let f ∈ M2([a, b];R). Define

I(t) =

∫ t

0

f(s)dBs for 0 ≤ t ≤ T,

where, by definition, I(0) =
∫ 0

0
f(s)dBs = 0. We call I(t) the indefinite Itô integral

of f .

Obviously, {I(t)} is {Ft}-adapted. We now present the crucial martingale
property of the indefinite Itô integral.

Theorem 2.4.7. Let f ∈ M2([a, b];R), then the indefinite Itô integral {I(t)}0≤t≤T

is a square-integrable martingale with respect to the filtration {Ft}. In particular,

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

f(s)dBs

∣∣∣∣2
]
≤ 4E

∫ T

0

|f(s)|2ds.

Theorem 2.4.8. If f ∈ M2([a, b];R), then the indefinite Itô integral {I(t)}0≤t≤T

has a continuous version.

Theorem 2.4.9. Let f ∈ M2([a, b];R). Then the indefinite Itô integral I =

{I(t)}0≤t≤T is a square-integrable continuous martingale and its quadatic variation
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is given by

⟨I, I⟩t =
∫ t

0

|f(s)|2 ds, 0 ≤ t ≤ T.

2.5 The Itô formula
We employ the Itô formula to evaluate the Itô integral, which allows us to simplify
stochastic integrals into Lebesgue integrals for easy evaluation. In this section, we
will begin by establishing the one-dimensional Itˆo formula and then generalise it
to the multi-dimensional case.

Let B = {Bt}t≥0 be a one-dimensional Brownian motion defined on the com-
plete probability space (Ω,F ,P) and adapted to the filtration {Ft}t≥0. Let L1(R+;Rd)

denote the family of all Rd-valued measurable {Ft}-adapted processes f = {f(t)}t≥0

such that ∫ T

0

|f(t)|dt < ∞ a.s. for every T > 0.

To define the Itô formula, we first need the Itô process. Let’s proceed to define
the Itô process.

Definition 2.5.1. A d-dimensional Itô process is an Rd-valued continuous adapted
process x(t) = (x1(t), · · · , xd(t))

T on t ≥ 0 of the form

x(t) = x(0) +

∫ t

0

f(s)ds+

∫ t

0

g(s)dB(s),

where f = (f1, · · · , fd)T ∈ L1(R+;Rd) and g = (gij)d×m ∈ L2(R+;Rd×m). We shall
say that x(t) has stochastic differential dx(t) on t ≥ 0 given by

dx(t) = f(t)dt+ g(t)dB(t).

Let C2,1(Rd × R+;R) denote the family of all real-valued functions V (x, t)

defined on Rd × R+ such that these functions exhibit continuous second-order
differentiability in x and first-order differentiability in t. If V ∈ C2,1(Rd ×R+;R),
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we set

Vt =
∂V

∂t
, Vx =

(
∂V

∂x1

, · · · , ∂V
∂xd

)
and

Vxx =

(
∂2V

∂xi∂xj

)
d×d

=


∂2V

∂x1∂x1
· · · ∂2V

∂x1∂xd... . . . ...
∂2V

∂xd∂x1
· · · ∂2V

∂xd∂xd

 .

Theorem 2.5.2 (The multi-dimensional Itô formula). Let x(t) be a d-dimensional
Itô process on t ≥ 0 with the stochastic differential

dx(t) = f(t)dt+ g(t)dB(t),

where f ∈ L1(R+;Rd) and g ∈ L2(R+;Rd×m). Let V ∈ C2,1(Rd × R+;R). Then
V (x(t), t) is again an Itô process with the stochastic differential given by

dV (x(t), t) =

[
Vt(x(t), t) + Vx(x(t), t)f(t) +

1

2
trace(gT (t)Vxx(x(t), t)g(t))

]
dt

+ Vx(x(t), t)g(t)dB(t) a.s.

Let us now present formally a multiplication table:

dtdt = 0, dBidt = 0,

dBidBi = dt, dBidBj = 0 if i ̸= j.

Then, for example,

dxi(t)dxj(t) =
m∑
k=1

gik(t)gjk(t)dt.

Moreover, the Itô formula can be written as

dV (x(t), t) = Vt(x(t), t)dt+ Vx(x(t), t)dx(t) +
1

2
dxT (t)Vxx(x(t), t)dx(t).
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2.6 Stochastic differential equations
Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions. Throughout this section, we let B(t) = (B1(t), · · · , Bm(t))

T ,
t ≥ 0 be an m-dimensional Brownian motion defined on the space. Let 0 ≤
t0 < T < ∞. Let x0 be an Ft0-measurable Rd-valued random variable such that
E|x0|2 < ∞. Let f : Rd × [t0, T ] → Rd and g : Rd × [t0, T ] → Rd×m be both
Borel measurable. Consider the d-dimensional stochastic differential equation of
Itô type

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) on t0 ≤ t ≤ T, (2.3)

with initial value x(t0) = x0. By the definition of stochastic differential, this
equation is equivalent to the following integral equation:

x(t) = x0 +

∫ t

t0

f(x(s), s)ds+

∫ t

t0

g(x(s), s)dB(s) on t0 ≤ t ≤ T. (2.4)

Let us now provide the definition of the solution.

Definition 2.6.1. An Rd-valued stochastic process {x(t)}t0≤t≤T is called a solution
of equation (2.3) if it has the following properties:

(i). {x(t)} is continuous and Ft-adapted;

(ii). {f(x(t), t)} ∈ L1([t0, T ];Rd) and {g(x(t), t)} ∈ L2([t0, T ];Rd×m);

(iii). equation (2.4) holds for every t ∈ [t0, T ] with probability 1.

A solution {x(t)} is said to be unique if any other solution {x̄(t)} is indistinguish-
able from {x(t)}, that is

P {x(t) = x̄(t) for all t0 ≤ t ≤ T} = 1.

The following theorem provides conditions to guarantee existence and unique-
ness of the solution to SDE (2.3)

Theorem 2.6.2. Assume that there exist two positive constants K̄ and K such
that
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(i). (Lipschitz condition) for all x, x̄ ∈ Rd and t ∈ [t0, T ]

|f(x, t)− f(x̄, t)|2
∨

|g(x, t)− g(x̄, t)|2 ≤ K̄|x− x̄|2; (2.5)

(ii). (Linear growth condition) for all (x, t) ∈ Rd × [t0, T ]

|f(x, t)|2
∨

|g(x, t)|2 ≤ K(1 + |x|2). (2.6)

Then there exists a unique solution x(t) to equation (2.3) and the solution belongs
M2([t0, T ];Rd).

The Lipschitz condition described in equation (2.5) implies that the coefficients
f(x, t) and g(x, t) do not change rapidly than a linear function of x when x changes.
This implies the continuity of f(x, t) and g(x, t) in terms of x for all t ∈ [t0, T ].
As a result, functions that are discontinuous with respect to x are excluded as
the coefficients. This shows that the Lipschitz condition is too restrictive. The
following theorem is the generalisation of Theorem 2.6.2 by replacing the (uniform)
Lipschitz condition with a local Lipschitz condition.

Theorem 2.6.3. Assume that the linear growth condition (2.6) holds. However,
instead of the Lipschitz condition (2.5), we apply the following local Lipschitz
condition: For every integer n ≥ 1, there exists a positive constant Kn such that,
for all t ∈ [t0, T ] and all x, x̄ ∈ Rd with |x| ∨ |x̄| ≤ n

|f(x, t)− f(x̄, t)|2
∨

|g(x, t)− g(x̄, t)|2 ≤ Kn|x− x̄|2. (2.7)

Then there exists a unique solution x(t) to equation (2.3) and the solution belongs
M2([t0, T ];Rd).

The local Lipschitz condition broadens the range of allowable functions signif-
icantly. Nonetheless, the linear growth condition still excludes some important
functions. The following result serves to enhance the situation.

Theorem 2.6.4. Assume that the local Lipschitz condition (2.7) holds. However,
insteasd of the linear growth condition (2.6), we replace the following monotone
condition: There exists a positive constant K such that for all (x, t) ∈ Rd × [t0, T ]

xTf(x, t) +
1

2
|g(x, t)|2 ≤ K(1 + |x|2). (2.8)
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Then there exists a unique solution x(t) to equation (2.3) in M2([t0, T ];Rd).

2.7 Stochastic differential delay equations
In this section, we will start with the stochastic functional differential equations
and consider the stochastic differential delay equations as a special case. We
set the notation same as the previous section (SDEs) as follow: (Ω,F ,P) is a
complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions.
{B(t)}t>0 is an m-dimensional Brownian motion defined on the space. Now, let
τ > 0 and denote 0 ≤ t0 < T < ∞. Let f : Rd × Rd × [t0, T ] → Rd and
g : Rd×Rd×[t0, T ] → Rd×m be both Borel measurable. Consider the d-dimensional
stochastic functional differential equation

dx(t) = f(xt, t)dt+ g(xt, t)dB(t) on t0 ≤ t ≤ T, (2.9)

where xt = {x(t+ θ) : −τ ≤ θ ≤ 0} ∈ C([−τ, 0];Rd) with the initial data

xt0 = ξ = {ξ(θ) : −τ ≤ θ ≤ 0} ∈ C([−τ, 0];Rd). (2.10)

Now, we provide the definition of the solution.

Definition 2.7.1. An Rd-valued stochastic process x(t)t0≤t≤T is called a solution
to equation (2.9) with initial data (2.10) if it has the following properties:

(i). it is continuous and {xt}t0≤t≤T is F-measurable;

(ii). {f(xt, t)} ∈ L1([t0, T ];Rd) and {g(xt, t)} ∈ L2([t0, T ];Rd×m);

(iii). xt0 = ξ and for every t0 ≤ t ≤ T ,

x(t) = ξ(0) +

∫ t

t0

f(xs, s)ds+

∫ t

t0

g(xs, s)dB(s) a.s.

A solution {x(t)} is said to be unique if any other solution {x̄(t)} is indistinguish-
able from {x(t)}, that is

P {x(t) = x̄(t) for all t0 − τ ≤ t ≤ T} = 1.
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Similarly with the SDEs, the existance and uniqueness of (2.9) can be ob-
tained if its coefficients satisfy the local Lipschitz condition and the linear growth
condition as the following theorem.

Theorem 2.7.2. Assume that for every integer n ≥ 1, there exists a positive
constant Kn such that, for all t ∈ [t0, T ] and all ϕ, φ ∈ C([−τ, 0];Rd) with ∥ϕ∥ ∨
∥φ∥ ≤ n

|f(ϕ, t)− f(φ, t)|2
∨

|g(ϕ, t)− g(φ, t)|2 ≤ Kn∥ϕ− φ∥2;

and there exists additionally a K > 0 such that for all (ϕ, t) ∈ C([−τ, 0];Rd) ×
[t0, T ],

|f(ϕ, t)|2
∨

|g(ϕ, t)|2 ≤ K
(
1 + ∥ϕ∥2

)
.

Then there exists a unique solution to equation (2.9) and the solution belongs to
M2([t0 − τ,∞];Rd).

Now, we define the an important special case of a stochastic functional differ-
ential equations is the SDDEs. And equations are defined as follow:

dx(t) = f(x(t), x(t− τ), t)dt+ g(x(t), x(t− τ), t)dB(t), (2.11)

on t ∈ [t0, T ] with initial data (2.10), where f : Rd × Rd × [t0, T ] → Rd and g :

Rd×Rd× [t0, T ] → Rd×m. As you can see, if we define f1(ϕ, t) = f(x(t), x(t−τ), t)

and g1(ϕ, t) = g(x(t), x(t−τ), t), the equation (2.11) can be transfered to equation
(2.9), so equation (2.11) can be applied the existance and uniqueness with this
equation. For example, let f and g satisfy the local Lipschitz condition and the
linear growth condition. That means, for every integer n ≥ 1, there exists a
positive constant Kn such that, for all t ∈ [t0, T ] and all x, x̄, y, ȳ ∈ Rd with
|x| ∨ |x̄| ∨ y ∨ ȳ ≤ n

|f(x, y, t)− f(x̄, ȳ, t)|2
∨

|g(x, y, t)− g(x̄, ȳ, t)|2 ≤ Kn

(
|x− x̄|2 + |y − ȳ|2

)
;

and there exists additionally a K > 0 such that for all (x, y, t) ∈ Rd ×Rd × [t0, T ],

|f(x, y, t)|2
∨

|g(x, y, t)|2 ≤ K
(
1 + |x|2 + |y|2

)
.
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Then there exists a unique solution to the delay equation (2.11).
In realisticity, the time delay can be depended up on a time t. We, hence,

let δ : [t0, T ] → [−τ, t0] be a Borel measurable function . Consider the stochastic
differential delay equation.

dx(t) = f(x(t), x(δ(t)), t)dt+ g(x(t), x(δ(t)), t)dB(t) (2.12)

on t ∈ [t0, T ] with intital data (2.10). By setting the f1(ϕ, t) = f(x(t), x(δ(t)), t)

and g1(ϕ, t) = g(x(t), x(δ(t)), t), we obtain the existance and uniqueness property
of equation (2.12).

2.8 Mathematical inequalities
Let us also present some useful inequalities which are used frequently in this thesis.
Let us start with the simplest inequality

2ab ≤ a2 + b2, for all a, b ∈ R.

From this follows

2ab ≤ εa2 +
1

ε
b2, for all a, b ∈ R and all ε > 0.

Let us also proceed to the Young inequality

|a|β|b|(1−β) ≤ β|a|+ (1− β)|b|, for all a, b ∈ R and all β ∈ [0, 1].

Theorem 2.8.1 (Jensen’s inequality). If φ : Ω → R is a convex function while
ξ : R → R is a random varaible on a probability space (Ω,F ,P) such that E|ξ| < ∞,
then

φ(Eξ) ≤ E(φ(ξ)).

Theorem 2.8.2 (Doob’s martingale inequalities). Let {Mt}t≥0 be an Rd-valued
martingale. Let [a, b] be a bounded interval in R+.
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(i). If p ≥ 1 and Mt ∈ Lp(Ω;Rd), then

P
{
ω : sup

a≤t≤b
|Mt(ω)| ≥ c

}
≤ E|Mb|p

cp

holds for all c > 0.

(ii). If p > 1 and Mt ∈ Lp(Ω;Rd), then

E
(

sup
a≤t≤b

|Mt|p
)

≤
(

p

p− 1

)p

E|Mb|p.

Theorem 2.8.3. Let p ≥ 2. Let g ∈ M2([0, T ];Rd×m) such that

E
∫ T

0

|g(s)|pds < ∞.

Then

E
∣∣∣∣∫ T

0

g(s)dB(s)

∣∣∣∣p ≤ (p(p− 1)

2

) p
2

T
p−2
2 E

∫ T

0

|g(s)|pds.

In particular, for p = 2, there is equality.

Theorem 2.8.4. Let p ≥ 2. Let g ∈ M2([0, T ];Rd×m) such that

E
∫ T

0

|g(s)|pds < ∞.

Then

E
(

sup
0≤t≤T

∫ t

0

|g(s)|pds
)
.

Theorem 2.8.5 (Burkholder-Davis-Gundy inequality). Let g ∈ L2(R+;Rd×m).
Define, for t ≥ 0,

x(t) =

∫ t

0

g(s)dB(s) and A(t) =

∫ t

0

|g(s)|2ds.

Then for every p > 0, there exist universal positive constants cp, Cp (depending on
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only p), such that

cpE|A(t)|
p
2 ≤ E

(
sup
0≤s≤t

|x(s)|p
)

≤ CpE|A(t)|
p
2

for all t ≥ 0. In particular, one may take

cp =
(
p
2

)p
, Cp =

(
32
p

) p
2 if 0 < p < 2;

cp = 1, Cp = 4 if p = 2;

cp = (2p)−
p
2 , Cp =

[
pp+1

2(p−1)p−1

] p
2 if p > 2.

Theorem 2.8.6 (Gronwall’s inequality). Let T > 0 and c ≥ 0. Let u(•) be a Borel
measurable bounded non-negative function on [0, T ], and let v(•) be a non-negative
integrable function on [0, T ]. If

u(t) ≤ c+

∫ t

0

v(s)u(s)ds for all 0 ≤ t ≤ T,

then

u(t) ≤ c exp

(∫ t

0

v(s)ds

)
for all 0 ≤ t ≤ T.
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Truncated Euler-Maruyama for
Stochastic Differential Equations
with non-linear coefficients

3.1 Introduction
In 2015, Mao introduced a modified method for approximating SDEs called the
truncated Euler-Maruyama approximate method, see [21]. With this method, he
proved that the truncated EM solution is Lq convergent to the exact solution for
q ≥ 2 under the local Lipschitz and Khasminskii-type conditions. The year after,
he also determined the rate of convergence at a finite time T > 0, see [22]. To
calculate the numerical solution with the rate of Mao (2016), unfortunately, the
step size is sometime required very small, or we can say it is inapplicable. Hu,
Li and Mao (2018), [12], showed the step size can be flexible in (0, 1] and the
convergence rate at the time T is slightly similar.

In application, the convergence rate at a time T is sufficient for applications
that need to approximate the European put or call option value. We, nevertheless,
need to approximate the path-dependent quantities that have to take all parts of
life of the option such as a barrier option, and a bond, see [9]. Mao (2016), [22],
established the convergence rate of the truncated EM method over a finite time
interval, but the result also got the problem that the step size is required very
small. Moreover, to prove the rate of convergence over a finite time interval, he
assumed the global Lipschitz on the diffusion coefficient. Even though there is an

26
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improvement for the truncated EM method, like [12], they just solved the step
size problem. There are, in general, many models in finance that the diffusion
coefficient does not satisfy the global Lipschitz such as the Ait-Sahalia model, see
[5]. In this research, we will relax the diffusion coefficient to not satisfy the global
Lipschitz for the strong convergence of the truncated EM method over a finite
time interval.

In this chapter, we consider a d-dimensional non-linear SDE,

dx(t) = f(x(t))dt+ g(x(t))dB(t), t ≥ 0, (3.1)

with the initial value x(0) = x0 ∈ Rd, where f : Rd → Rd and g : Rd → Rd×m are
Borel measurable. We assume two common assumptions for equation (3.1) which
are the local Lipschitz condition and the Khasminskii-type condition as follow.

Assumption 3.1.1 (Local Lipschitz condition). For every integer n ≥ 1, there
exists a positive constant Kn such that, for all x, y ∈ Rd with |x| ∨ |y| ≤ n,

|f(x)− f(y)|2 ∨ |g(x)− g(y)|2 ≤ Kn |x− y|2 . (3.2)

Assumption 3.1.2 (Khasminskii-type condition). For any p > 2 there is Kp > 0

such that for all x ∈ Rd

xTf(x) +
p− 1

2
|g(x)|2 ≤ Kp(1 + |x|2). (3.3)

Lemma 3.1.3. Under Assumptions 3.1.1 and 3.1.2, the SDE (3.1) has a unique
global solution x(t). Moreover,

sup
0≤t≤T

E |x(t)|p < ∞, ∀T > 0. (3.4)

To introduce the truncated EM method which is defined in [21], let R+ be a set
of positive real numbers and µ : [1,∞) → R+ be a strictly increasing continuous
function such that µ(u) → ∞ as u → ∞ and

sup
|x|≤u

(|f(x)| ∨ |g(x)|) ≤ µ(u), ∀u ≥ 1. (3.5)

Denote the µ−1 is an inverse function of µ which is a strictly increasing continuous
function from [µ(1),∞). We also choose a constant ĥ ≥ 1 ∨ µ(1) and a strictly
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increasing function h : (0, 1] → [µ(1),∞) such that

lim
∆→0

h(∆) = ∞ and ∆1/4h(∆) ≤ ĥ, ∀∆ ∈ (0, 1]. (3.6)

For a given step size ∆ ∈ (0, 1], define the truncated mapping π∆ : Rd → Rd by

π∆(x) =
(
|x| ∧ µ−1(h(∆))

) x

|x|
, (3.7)

where we set x/ |x| = 0 if x = 0. That means, π∆ truncates x to µ−1(h(∆))(x/ |x|)
if |x| > µ−1(h(∆)). Define the truncated functions

f∆(x) = f(π∆(x)) and g∆(x) = g(π∆(x)), (3.8)

for all x ∈ Rd. Hence, |f∆(x)| ∨ |g∆(x)| ≤ µ(µ−1(h(∆))) = h(∆) for all x ∈ Rd.
The discrete time truncated EM solutions X∆(tk) ≈ x(tk) for tk = k∆ are formed
by setting X∆(0) = x0 and computing

X∆(tk+1) = X∆(tk) + f∆(X∆(tk))∆ + g∆(X∆(tk))∆Bk

for k = 0, 1, . . . , where ∆Bk = Btk+1
− Btk . There are two versions of the

continuous-time truncated EM solution. The first one is defined by

x̄∆(t) =
∞∑
k=0

X∆(tk)I[tk,tk+1)(t), for t ≥ 0.

This is a simple step process so its sample paths are not continuous. We will refer
to it as the continuous-time step-process truncated EM solution. The other one is
defined by

x∆(t) =

∫ t

0

f∆(x̄∆(s))ds+

∫ t

0

g∆(x̄∆(s))dB(s) (3.9)

for t ≥ 0. We will refer to it as the continuous-time continuous-sample truncated
EM solution. Notice that x∆(tk) = x̄∆(tk) = X∆(tk) for all k ≥ 0. Moreover,
x∆(t) is an Itô process with its Itô differential

dx∆(t) = f∆(x̄∆(t))dt+ g∆(x̄∆(t))dB(t)
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The following lemma confirms that the truncated functions satisfy Assumption
3.1.2, see the proof in [12, 21]:

Lemma 3.1.4. Assume Assumption 3.1.2 hold. Then, for ∆ ∈ (0, 1], for any
p > 2 there is K̂p > 0 such that for all x ∈ Rd

xTf∆(x) +
p− 1

2
|g∆(x)|2 ≤ K̂p

(
1 + |x|2

)
.

Then, we can recall the useful lemmas in [21] as the following:

Lemma 3.1.5. For any ∆ ∈ (0, 1] and p > 0. Then, for all t > 0,

E |x∆(t)− x̄∆(t)|p ≤ Cp∆
p/2h(∆)p,

where Cp =


2p−1

(
1 +

(
p(p− 1)

2

) p
2

)
if p ≥ 2,

2p if p ∈ (0, 2).

Lemma 3.1.6. Let Assumptions 3.1.1 and 3.1.2 hold. Then,

sup
0<∆≤1

(
sup

0≤t≤T
E |x∆(t)|p

)
≤ Cp,

where Cp =

[
E |x0|p + 2pTK̂p + 2

p
2

(
1 +

(
p(p− 2)

8

) p
4

)
T

]
e2

p+1K̂p.

Lemma 3.1.7. Let p ≥ 2, ∆ ∈ (0, 1] and ε ∈
(
0, 1

4

]
be given. For a sufficiently

large interger n for which(
2n

2n− 1

)p

(T + 1)
p
2n ≤ 2 and 1

n
< ε, (3.10)

we obtain

E
(

sup
0≤t≤T

|x∆(t)− x̄∆(t)|p
)

≤ Cp∆
p
2
(1−ε) (h(∆))p , (3.11)

where Cp = 2p+1n
p
2 .

Recall from [12], they assumed the following conditions to their main result,
which is Theorem 3.1.10. Moreover, this result plays a significant roll to prove our
main theorem.
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Assumption 3.1.8. Assume that there is a pair of constants q > 2 and K1 > 0

such that for all x ∈ Rd

(x− y)T (f(x)− f(y)) +
q − 1

2
|g(x)− g(y)|2 ≤ K1(1 + |x|2).

Assumption 3.1.9. Assume that there is a pair of constants ρ and K2 > 0 such
that for all x, y ∈ Rd

|f(x)− f(y)|2 ∨ |g(x)− g(y)|2 ≤ K2(1 + |x|ρ + |y|ρ) |x− y|2 .

Theorem 3.1.10. Let Assumptions 3.1.1, 3.1.2, 3.1.8 and 3.1.9 hold and assume
that 2p > (2 + ρ)q. Then, for any q̄ ∈ [2, q) and ∆ ∈ (0, 1],

E |x(t)− x∆(t)|q̄ ≤ Cp

((
µ−1(h(∆))

)− 2p−(2+ρ)q̄
2 +∆q̄/2h(∆)q̄

)
,

and

E |x(t)− x̄∆(t)|q̄ ≤ Cp

((
µ−1(h(∆))

)− 2p−(2+ρ)q̄
2 +∆q̄/2h(∆)q̄

)
,

for all 0 ≤ t ≤ T and Cp is a constant independence with ∆.

3.2 Convergence over a finite time interval
Recall, in the introduction part, the convergence over a time interval is very im-
portant when it is applied with a barrier option or a bond. To point out our main
result, according to [22], Mao proved the convergence over a finite time interval
by assuming condition as follow.

Assumption 3.2.1. Assume there exists a pair of constants H0, γ0 > 0 such that
for any x, y ∈ Rd,

(x− y)T (f(x)− f(y)) ≤ H0 |x− y|2 (3.12)
|f(x)− f(y)|2 ≤ H0(1 + |x|γ0 + |y|γ0) |x− y|2 (3.13)
|g(x)− g(y)|2 ≤ H0 |x− y|2 . (3.14)

The inequality (3.14) implies that the diffusion coefficient satisfies the global
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Lipschitz condition. There are, however, a lot of SDEs with non global Lipschitz
diffusion coefficient. Our main result will prove the convergence over a finite time
interval for non global Lipschitz SDEs by modifying some conditions from 3.2.1.

Assumption 3.2.2. Assume there exist constants H, γ, β > 0 and q > 2 such that
for all x, y ∈ Rd

(x− y)T (f(x)− f(y)) +
q − 1

2
|g(x)− g(y)|2 ≤ H |x− y|2 (3.15)

|f(x)− f(y)|2 ≤ H(1 + |x|γ + |y|γ) |x− y|2 (3.16)
|g(x)− g(y)|2 ≤ H(1 + |x|β + |y|β) |x− y|2 .

(3.17)

On inequality (3.17), we allow the diffusion coefficient can be polynomials
such as x3/2 which is not global Lipschitz, in detail see in section Examples with
Simulations. So, we state the main result in the next theorem. Throughout this
thesis, we will further use C and Cp to stand for generic positive real constants
independent of the step size ∆, this means in each step the constants may be
different. Moreover, we also assume Cp is dependent on p whlie C is not.

Theorem 3.2.3. Let Assumptions 3.1.2 and 3.2.2 hold. For each q̄ ∈ [2, q), choose
a positive number p such that p > (2+(γ∨β))q

2
∨ (q+q̄)β

q−q̄
. Then, for any ∆ ∈ (0, 1] and

ε ∈ (0, 1
4
],

E
(

sup
0≤u≤T

|x(u)− x∆(u)|q̄
)

≤ Cp

((
µ−1(h(∆))

)− 4pq̄−(2+(γ∨β))(q+q̄)q̄
2(q+q̄) +∆q̄/2h(∆)q̄

)
,

(3.18)

E
(

sup
0≤u≤T

|x(u)− x̄∆(u)|q̄
)

≤ Cp

((
µ−1(h(∆))

)− 4pq̄−(2+(γ∨β))(q+q̄)q̄
2(q+q̄) +∆q̄(1−ε)/2h(∆)q̄

)
.

(3.19)

Proof. Fix q̄ ∈ [2, q), and let p > (2+(γ∨β))q̄
2

∨ (q+q̄)(β+1)
q−q̄

and ∆ ∈ (0, 1]. For any
n ≥ |x0|, define θn = inf {t ≥ 0 : |x(t)| ∨ |x∆(t)| ≥ n}. Let e∆(t) = x(t) − x∆(t)
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for t ≥ 0. By Itô’s formula,

d |e∆(s)|q̄

≤ q̄ |e∆(s)|q̄−2

[
eT∆(s)(f(x(s))− f∆(x̄∆(s)) +

q̄ − 1

2
|g(x(s))− g∆(x̄∆(s))|2

]
ds

+ q̄ |e∆(s)|q̄−2 eT∆(s)(g(x(s))− g∆(x̄∆(s)))dB(s)

Then, for 0 ≤ t ≤ T ,

E
(

sup
0≤u≤t∧θn

|e∆(u)|q̄
)

≤ E

(
sup

0≤u≤t∧θn

∫ u

0

q̄ |e∆(s)|q̄−2
[
eT∆(s)(f(x(s))− f∆(x̄∆(s))

+
q̄ − 1

2
|g(x(s))− g∆(x̄∆(s))|2

]
ds

)

+ E
(

sup
0≤u≤t∧θn

∫ u

0

q̄ |e∆(s)|q̄−2 eT∆(s)(g(x(s))− g∆(x̄∆(s)))dB(s)

)
≤ E

(
sup

0≤u≤t∧θn

∫ u

0

q̄ |e∆(s)|q̄−2
[
eT∆(s)(f(x(s))− f(x∆(s)))

+
q − 1

2
|g(x(s))− g(x∆(s))|2

]
ds

)

+ E
(

sup
0≤u≤t∧θn

∫ u

0

q̄ |e∆(s)|q̄−2 [eT∆(s)(f(x∆(s))− f∆(x̄∆(s)))
]
ds

)
+ E

(∫ t∧θn

0

(
q̄(q̄ − 1)(q − 1)

2(q − q̄)

)
|e∆(s)|q̄−2 |g(x∆(s))− g∆(x̄∆(s))|2 ds

)
+ E

([
sup

0≤u≤t∧θn
|e∆(u)|q̄

] 1
2
[
32q̄2

∫ t∧θn

0

|e∆(s)|q̄−2 |g(x(s))− g∆(x̄∆(s))|2 ds
] 1

2

)
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E
(

sup
0≤u≤t∧θn

|e∆(u)|q̄
)

≤ E

(
sup

0≤u≤t∧θn

∫ u

0

q̄ |e∆(s)|q̄−2
[
eT∆(s)(f(x(s))− f(x∆(s)))

+
q − 1

2
|g(x(s))− g(x∆(s))|2

]
ds

)

+ E
(

sup
0≤u≤t∧θn

∫ u

0

q̄ |e∆(s)|q̄−2 [eT∆(s)(f(x∆(s))− f∆(x̄∆(s)))
]
ds

)
+ E

(∫ t∧θn

0

(
q̄(q̄ − 1)(q − 1)

2(q − q̄)

)
|e∆(s)|q̄−2 |g(x∆(s))− g∆(x̄∆(s))|2 ds

)
+

1

2
E
(

sup
0≤u≤t∧θn

|e∆(u)|q̄
)

+ E
([

32q̄2
∫ t∧θn

0

|e∆(s)|q̄−2 |g(x∆(s))− g∆(x̄∆(s))|2 ds
])

+ E
([

32q̄2
∫ t∧θn

0

|e∆(s)|q̄−2 |g(x(s))− g(x∆(s))|2 ds
])

=
1

2
E
(

sup
0≤u≤t∧θn

|e∆(u)|q̄
)
+ J1 + J2 + J3 + J4,

where

J1 = E

(
sup

0≤u≤t∧θn

∫ u

0

q̄ |e∆(s)|q̄−2
[
eT∆(s)(f(x(s))− f(x∆(s)))

+
q − 1

2
|g(x(s))− g(x∆(s))|2

]
ds

)
,

J2 = E
(

sup
0≤u≤t∧θn

∫ u

0

q̄ |e∆(s)|q̄−2 [eT∆(s)(f(x∆(s))− f∆(x̄∆(s)))
]
ds

)
,

J3 = E
(∫ t∧θn

0

(
q̄(q̄ − 1)(q − 1)

2(q − q̄)
+ 32q̄2

)
|e∆(s)|q̄−2 |g(x∆(s))− g∆(x̄∆(s))|2 ds

)
J4 = E

([
32q̄2

∫ t∧θn

0

|e∆(s)|q̄−2 |g(x(s))− g(x∆(s))|2 ds
])

.
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By Assumption 3.2.2,

J1 = E

(
sup

0≤u≤t∧θn

∫ u

0

q̄ |e∆(s)|q̄−2
[
eT∆(s)(f(x(s))− f(x∆(s)))

+
q − 1

2
|g(x(s))− g(x∆(s))|2

]
ds

)
,

≤ q̄HE
(∫ t∧θn

0

|e∆(s)|q̄ ds
)

≤ q̄H

∫ t

0

E
(

sup
0≤u≤s∧θn

|e∆(u)|q̄ ds
)
,

J2 = E
(

sup
0≤u≤t∧θn

∫ u

0

q̄ |e∆(s)|q̄−2 [eT∆(s)(f(x∆(s))− f∆(x̄∆(s)))
]
ds

)
≤ E

(
sup

0≤u≤t∧θn

∫ u

0

q̄H |e∆(s)|q̄−1 |f(x∆(s))− f∆(x̄∆(s))| ds
)

≤ E
(

sup
0≤u≤t∧θn

∫ u

0

q̄H
(
|e∆(s)|q̄

)1−1/q̄ (|f(x∆(s))− f∆(x̄∆(s))|q̄
)1/q̄

ds

)
≤ E

(
sup

0≤u≤t∧θn

∫ u

0

H
(
(q̄ − 1) |e∆(s)|q̄ + |f(x∆(s))− f∆(x̄∆(s))|q̄

)
ds

)
≤ E

(∫ t∧θn

0

H
(
(q̄ − 1) |e∆(s)|q̄

+
[
(1 + |x∆(s)|γ + |π∆(x̄∆(s))|γ)

q̄
2 |x∆(s)− π∆(x̄∆(s))|q̄

] )
ds

)

≤ (q̄ − 1)H

∫ t

0

E |e∆(s ∧ θn)|q̄ ds

+ 3q̄/2−1HE

(∫ t∧θn

0

[
(1 + |x∆(s)|

γq̄
2 + |π∆(x̄∆(s))|

γq̄
2 )

× |x∆(s)− π∆(x̄∆(s))|q̄
]
ds

)

≤ (q̄ − 1)H

∫ t

0

E |e∆(s ∧ θn)|q̄ ds

+ 3q̄/2−1H

∫ T

0

E
[
(1 + |x∆(s)|

γq̄
2 + |π∆(x̄∆(s))|

γq̄
2 ) |x∆(s)− π∆(x̄∆(s))|q̄

]
ds
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By Hölder’s inequality, Lemma 3.1.6 and the fact that |π∆(x)|p ≤ |x|p,

J2 ≤ (q̄ − 1)H

∫ t

0

E |e∆(s ∧ θn)|q̄ ds

+ 3q̄/2−1H

∫ T

0

([
3

2p
γq̄

−1 (1 + E |x∆(s)|p + E |x̄∆(s)|p)
] γq̄

2p

×
[
E |x∆(s)− π∆(x̄∆(s))|

2pq̄
2p−γq̄

] 2p−γq̄
2p

)
ds

≤ (q̄ − 1)H

∫ t

0

E
(

sup
0≤u≤s∧θn

|e∆(u)|q̄
)
ds

+
[
3

q̄
2
− γq̄

2pH (1 + 2Cp)
γq̄
2p

] ∫ T

0

[
E |x∆(s)− π∆(x̄∆(s))|

2pq̄
2p−γq̄

] 2p−γq̄
2p

ds.

Let consider the last integral
∫ T

0

[
E |x∆(s)− π∆(x̄∆(s))|

2pq̄
2p−γq̄

] 2p−γq̄
2p

ds. Noting that
by the definition of π∆, we obtain the inequality |π∆(x)− π∆(y)|p ≤ |x− y|p,∫ T

0

[
E |x∆(s)− π∆(x̄∆(s))|

2pq̄
2p−γq̄

] 2p−γq̄
2p

ds

≤ 2
γq̄
2p

∫ T

0

(
E
[
|x∆(s)− π∆(x∆(s))|

2pq̄
2p−γq̄

]) 2p−γq̄
2p

ds

+ 2
γq̄
2p

∫ T

0

(
E
[
|π∆(x∆(s))− π∆(x̄∆(s))|

2pq̄
2p−γq̄

]) 2p−γq̄
2p

ds

≤ 2
γq̄
2p

∫ T

0

(
E
[
I{|x∆(s)|>µ−1(h(∆))} |x∆(s)|

2pq̄
2p−γq̄

]) 2p−γq̄
2p

ds

+ 2
γq̄
2p

∫ T

0

(
E
[
|x∆(s)− x̄∆(s)|

2pq̄
2p−γq̄

]) 2p−γq̄
2p

ds

≤ 2
γq̄
2p

∫ T

0

([
P
{
|x∆(s)| > µ−1(h(∆))

}] 2p−(2+γ)q̄
2p−γq̄ [E |x∆(s)|p]

2q̄
2p−γq̄

) 2p−γq̄
2p

ds

+ 2
γq̄
2p

∫ T

0

(
E
[
|x∆(s)− x̄∆(s)|

2pq̄
2p−γq̄

]) 2p−γq̄
2p

ds

≤ 2
γq̄
2p

[∫ T

0

([
E |x∆(s)|p

(µ−1(h(∆)))p

] 2p−(2+γ)q̄
2p

[E |x∆(s)|p]
2q̄
2p

)
ds

+

∫ T

0

(
E
[
|x∆(s)− x̄∆(s)|

2pq̄
2p−γq̄

]) 2p−γq̄
2p

ds

]
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∫ T

0

[
E |x∆(s)− π∆(x̄∆(s))|

2pq̄
2p−γq̄

] 2p−γq̄
2p

ds

≤ 2
γq̄
2p

[∫ T

0

([
1

(µ−1(h(∆)))p

] 2p−(2+γ)q̄
2p

[E |x∆(s)|p]
2p−γq̄

2p

)
ds

+

∫ T

0

(E |x∆(s)− x̄∆(s)|p)
q̄
p ds

]
.

By Lemma 3.1.5 and Lemma 3.1.6,∫ T

0

[
E |x∆(s)− π∆(x̄∆(s))|

2pq̄
2p−γq̄

] 2p−γq̄
2p

ds

≤ 2
γq̄
2pT

[
(Cp)

2p−γq̄
2p
(
µ−1(h(∆))

)− 2p−(2+γ)q̄
2 + (Cp)

q̄/p ∆q̄/2h(∆)q̄
]
.

Substituting this into J2,

J2 ≤ (q̄ − 1)H

∫ t

0

E
(

sup
0≤u≤s∧θn

|e∆(u)|q̄
)
ds

+ Cp

[(
µ−1(h(∆))

)− 2p−(2+γ)q̄
2 +∆q̄/2h(∆)q̄

]
.

By Assumption 3.2.2, we can derive J3 similarly J2, so

J3 =

(
q̄(q̄ − 1)(q − 1)

2(q − q̄)
+ 32q̄2

)
E
(∫ t∧θn

0

|e∆(s)|q̄−2 |g(x∆(s))− g∆(x̄∆(s))|2 ds
)

≤ C

∫ t

0

E
(

sup
0≤u≤s∧θn

|e∆(u)|q̄
)
ds+ Cp

[(
µ−1(h(∆))

)− 2p−(2+β)q̄
2 +∆q̄/2h(∆)q̄

]
.

Consider J4, by Hölder’s inequality, let q1 =
q+q̄
2

,

J4 = E
[
32q̄2

∫ t∧θn

0

|e∆(s)|q̄−2 |g(x(s))− g(x∆(s))|2 ds
]

≤ 32q̄2H

(∫ T

0

E
(
|e∆(s)|q̄ (1 + |x(s)|β + |x∆(s)|β)

)
ds

)
≤ 32q̄2H

(∫ T

0

(E |e∆(s)|q1)q̄/q1
(
E(1 + |x(s)|β + |x∆(s)|β)

q1
q1−q̄

) q1−q̄
q1 ds

)
≤ 32q̄2H

(∫ T

0

(E |e∆(s)|q1)q̄/q1 31−β/p(1 + E |x(s)|p + E |x∆(s)|p)β/pds
)
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J4 ≤ 32q̄2H31−β/p(1 + Cp)
β/p

(∫ T

0

(E |e∆(s)|q1)q̄/q1 ds
)
.

By Theorem 3.1.10, let ρ = γ ∨ β

(E |e∆(s)|q1)q̄/q1 ≤ Cp

((
µ−1(h(∆))

)− 2p−(2+ρ)q1
2 +∆q1/2h(∆)q1

)q̄/q1

≤ Cp

((
µ−1(h(∆))

)− 2pq̄−(2+ρ)q1q̄
2q1 +∆q̄/2h(∆)q̄

)
.

Then,

J4 ≤ 32q̄2H31−β/p(1 + Cp)
β/pTCp

((
µ−1(h(∆))

)− 2pq̄−(2+ρ)q1q̄
2q1 +∆q̄/2h(∆)q̄

)
= Cp

((
µ−1(h(∆))

)− 4pq̄−(2+ρ)(q+q̄)q̄
2(q+q̄) +∆q̄/2h(∆)q̄

)
.

Combine J1, J2, J3 and J4,

E
(

sup
0≤u≤t∧θn

|e∆(u)|q̄
)

≤ 1

2
E
(

sup
0≤u≤t∧θn

|e∆(u)|q̄
)

+ q̄H

∫ t

0

E
(

sup
0≤u≤s∧θn

|e∆(u)|q̄ ds
)

+ (q̄ − 1)H

∫ t

0

E
(

sup
0≤u≤s∧θn

|e∆(u)|q̄
)
ds

+ Cp

[(
µ−1(h(∆))

)− 2p−(2+γ)q̄
2 +∆q̄/2h(∆)q̄

]
+ C

∫ t

0

E
(

sup
0≤u≤s∧θn

|e∆(u)|q̄
)
ds+ Cp

[(
µ−1(h(∆))

)− 2p−(2+β)q̄
2 +∆q̄/2h(∆)q̄

]
+ Cp

((
µ−1(h(∆))

)− 4pq̄−(2+ρ)(q+q̄)q̄
2(q+q̄) +∆q̄/2h(∆)q̄

)
≤ C

∫ t

0

E
(

sup
0≤u≤s∧θn

|e∆(u)|q̄
)
ds+ Cp∆

q̄/2h(∆)q̄

+ Cp

[ (
µ−1(h(∆))

)− 2p−(2+ρ)q̄
2 +

(
µ−1(h(∆))

)− 4pq̄−(2+ρ)(q+q̄)q̄
2(q+q̄)

]
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By the Gronwall inequality and 4pq̄−(2+ρ)(q+q̄)q̄
2(q+q̄)

≤ 2p−(2+ρ)q̄
2

,

E
(

sup
0≤u≤t∧θn

|e∆(u)|q̄
)

≤ Cp

((
µ−1(h(∆))

)− 4pq̄−(2+ρ)(q+q̄)q̄
2(q+q̄) +∆q̄/2h(∆)q̄

)

Using the Fatou lemma, we can let n → ∞ to get equation (3.18). Moreover,
equation (3.19) follows from lemma 3.1.7.

Observing inequalities (3.16) and (3.17), |f(x)| ∨ |g(x)| ≤ Hx(2+(γ∨β))/2.

Corollary 3.2.4. Assume Assumptions 3.1.2 and 3.2.2 hold and ε ∈ (0, 1/4] be
arbitrary. Let ρ = γ ∨ β. If µ(u) = Hu(2+ρ)/2 for u ≥ 0 and h(∆) = ∆−ε and
ĥ ≥ 1. Then, for any q̄ ∈ [2, q)

E
(

sup
0≤t≤T

|x(t)− x∆(t)|q̄
)

= O
(
∆

q̄
2
(1−2ε)

)
(3.20)

E
(

sup
0≤t≤T

|x(t)− x̄∆(t)|q̄
)

= O
(
∆

q̄
2
(1−3ε)

)
(3.21)

Proof. By definition of µ(u), we get the inverse µ−1(h(∆)) = C (∆)−
2ε
2+ρ . It follows

from Theorem 3.2.3 that

E
(

sup
0≤u≤t∧θn

|e∆(u)|q̄
)

≤ Cp

((
µ−1(h(∆))

)− 4pq̄−(2+ρ)(q+q̄)q̄
2(q+q̄) +∆q̄/2h(∆)q̄

)

≤ Cp

(
∆

ε(4pq̄−(2+ρ)(q+q̄)q̄)
(q+q̄)(2+ρ) +∆

q̄
2
(1−2ε)

)

Since p is arbitrary, we can choose

p >
(q + q̄)(2 + ρ)

8ε
.

We can assert equations (3.20) and get (3.21) as similar.

3.3 Comparisons with known results
First of all, we will compare our result Theorem 3.2.3 with the result in [12],
namely Theorem 3.1.10. Recall that Assumptions 3.1.1, 3.1.8, and 3.1.9 are sim-
ilar with Assumption 3.2.2, which means that our contribution uses the common
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conditions same with the main result in [12]. Theorem 3.2.3, therefore, also keep
some properties which are the step size ∆ can be arbitrary in (0, 1] and the rate
of convergence is almost similar with Theorem 3.1.10. There are, however, some
differences as follow:

• The key improvement of Theorem 3.2.3 is that the convergence over a finite
time interval under the slightly stronger conditions with Theorem 3.1.10.

• Theorem 3.2.3 needs to use the Khasminskii-type condition that holds for
any parameter p as defined in Assumption 3.1.2, while Theorem 3.1.10 can
hold for some p > (2 + ρq)/2, see more [12].

Recall the result in [22],

Theorem 3.3.1. Let Assumption 3.2.1 hold. Let R > |x0| be a real number
and let ∆ ∈ (0, 1) be sufficiently small such that µ−1(h(∆)) ≥ R. Let θ∆,R =

inf {t ≥ 0 : |x(t)| ∨ |x∆(t)|} ≥ R. Let q ≥ 2 be arbitrary. Then,

E

(
sup

0≤u≤T∧θ∆,R

|x(t)− x∆(t)|q
)

≤ C∆q/2 (h(∆))q , ∀T > 0. (3.22)

Moreover, define µ(u) = Hu1+γ0 , u ≥ 0 and h(∆) = ∆−ε/2,∆ ∈ (0, 1] be sufficiently
small. Then, for any ε ∈ (0, 1/2)

E
(

sup
0≤t≤T

|x(t)− x∆(t)|q
)

= O
(
∆

q
2
(1−ε)

)
, (3.23)

E
(

sup
0≤t≤T

|x(t)− x̄∆(t)|q
)

= O
(
∆

q
2
(1−ε)

)
. (3.24)

Now, let compare the convergence over a finite time interval, that means we
will compare Theorem 3.2.3 with Theorem 3.3.1. So, we let show the differences
as follow:

• Theorem 3.2.3 holds for non global Lipschitz diffusion coefficient while The-
orem 3.3.1 needs the diffusion coefficient to satisfy the global Lipschitz, as
you can see (3.17) and (3.14) respectively.

• The assertions of Theorem 3.2.3 hold for any ∆ ∈ (0, 1] while the assertions
of Theorem 3.3.1 hold for a sufficiently small ∆.
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• Theorem 3.2.3 needs a stronger condition on Khasminskii-type condition,
namely Khasminskii-type condition needs to satisfy for any parameter p.

• Even though the rate of convergence of Theorem 3.2.3 looks worse than
Theorem 3.3.1, if p is large enough then the rate of convergence of both
theorems is the same.

The key advantage of our Theorem 3.2.3 is that the diffusion coefficient is not
required to satisfy the global Lipschitz. That means we are allowed to apply more
functions with the SDEs, and we will show the example in the next section.

3.4 Examples with simulations
In this section, we will illustrate the example of the non global Lipschitz diffusion
coefficient SDE, which is the special case of the Ait-Sahalia model as the following
equation. Let a, b, c be positive constants,

dx(t) = ax(t)− bx3(t)dt+ cx3/2(t)dB(t) (3.25)

To apply with our Theorem 3.2.3, we write equation (3.25) as the SDE (3.1)
in R by defining f(x) = ax− bx3, g(x) = cx3/2 for x ≥ 0,

f(x) = g(x) = 0 for x < 0.
(3.26)

We will show (3.26) satisfies Assumptions 3.1.2 and 3.2.2. For any p > 2

xf(x) +
p− 1

2
|g(x)|2 = ax2 − bx4 +

p− 1

2
c2 |x|3 =

(
a− bx2 +

p− 1

2
c2 |x|

)
|x|2 ,

for all x ∈ R. Since a− bx2+ p−1
2
c2 |x| is bounded above by some positive constant

Kp,

xf(x) +
p− 1

2
|g(x)|2 ≤ Kp |x|2 ≤ Kp(1 + |x|2).

Then, equation (3.26) satisfies Assumption 3.1.2. Now, any x, y ∈ R, By the Mean
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Value Theorem,

|f(x)− f(y)|2 ≤
((
a+ 3b |x|2 + 3b |y|2

)
|x− y|

)2
≤
(
3a2 + 27b2 |x|4 + 27b2 |y|4

)
|x− y|2 .

|g(x)− g(y)|2 ≤
(
3c

2

∣∣∣|x|1/2 + |y|1/2
∣∣∣ |x− y|

)2

≤ 9c2

2
(|x|+ |y|) |x− y|2 .

Then, equation (3.26) satisfies inequalities (3.16) and (3.17). Therefore, we will
show equation (3.26) satisfies (3.15) by letting q = 3, let x, y ∈ R. If x, y < 0, it
is obvious. Then, assume x or y is negative, without loss of generality, we assume
x ≤ 0 < y, so

(x− y)T (f(x)− f(y)) + |g(x)− g(y)|2

= (x− y)
(
−ay + by3

)
+ c2y3

= −axy + bxy3 − by2

((
y − c2

2b

)2

+
c4 − 4ab

4b2

)

≤ −axy − y2
(
c4 − 4ab

4b

)
≤ a

2
|x− y|2 + |x− y|2

∣∣∣∣c4 − 4ab

4b

∣∣∣∣
=

(
a

2
+

∣∣∣∣c4 − 4ab

4b

∣∣∣∣) |x− y|2 .

Assume x, y ≥ 0, then

(x− y)T (f(x)− f(y)) + |g(x)− g(y)|2

≤ (x− y)
(
ax− bx3 − ay + by3

)
+

9c2

2
(|x|+ |y|) |x− y|2

= a(x− y)2 − b(x− y)2
(
x2 + xy + y2

)
+

9c2

2
(|x|+ |y|) |x− y|2

= |x− y|2
[
a− 0.5b

(
x2 + y2 + (x+ y)2

)
+

9c2

2
|x|+ 9c2

2
|y|
]

≤ |x− y|2
[
a− 0.5b

(
|x|2 + |y|2

)
+

9c2

2
|x|+ 9c2

2
|y|
]
.
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Since
[
a− 0.5b

(
|x|2 + |y|2

)
+ 9c2

2
|x|+ 9c2

2
|y|
]

is bounded, we can bound this term
by some constant H. Then, equation (3.25) satisfies Assumption 3.2.2. We apply
Theorem 3.2.3 to see what we get. Obvious that for each q̄ ∈ [2, 3), we can choose
p such that p > 2+4(3)

2
∨ 3+q̄

3−q̄
. It’s follow from (3.26) that |f(x)| ∨ |g(x)| ≤ H1x

3

for all x > 1 and some positive constant H1. Now, we can let µ(u) = H1u
3 and

h(∆) = ∆−1/8 and q̄ = 2, by Corollary 3.2.4, we get

E
(

sup
0≤t≤T

|x(t)− x∆(t)|2
)
∨ E

(
sup

0≤t≤T
|x(t)− x̄∆(t)|2

)
≤ C∆

3
4 .

For numerical simulations, we compare our method with the numerical solution
by the backward Euler-Maruyama (BEM) and we let a = 10, b = 1, c = 0.5 and
x0 = 3 and choose the step size ∆ = 10−3 for the left and ∆ = 10−4 for the
right in Figure 3.1. These show both sample paths generated by the truncated
EM method are very closed to the BEM. More precisely, these simulations are
desired to produce the squares of the maximum differences of solutions between
the truncated EM X∆(tk) and the BEM Y∆(tk):

max
0≤k≤103

|X∆(tk)− Y∆(tk)|2 = 0.03853134

and max
0≤k≤104

|X∆(tk)− Y∆(tk)|2 = 0.002820902,

where ∆ = 10−3 and ∆ = 10−4 respectively.
For wide application, we model another example in more than one-dimension

as the following:

dS(t) = (V (t)− 4S3(t))dt+ V (t) sin(V (t))dB(t),

dV (t) = (3S(t)− 8V 3(t))dt+ S(t) cos(S(t))dB̃(t).
(3.27)

Therefore, we have the coefficients

f

([
x1

x2

])
=

[
x2 − 4x3

1

3x1 − 8x3
2

]
and g

([
x1

x2

])
=

[
x2 sin x2 0

0 x1 cos x1

]
. (3.28)

To apply with our Theorem 3.2.3, we will show (3.28) satisfies Assumptions 3.1.2
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Figure 3.1: The computer simulations of the sample paths of the solution of equa-
tion (3.25) by the BEM and the truncated EM. Left: ∆ = 10−3. Right: ∆ = 10−4.

and 3.2.2. For any x ∈ R2,

xTf(x) =
[
x1 x2

] [ x2 − 4x3
1

3x1 − 8x3
2

]
= x1x2 − 4x4

1 + 3x1x2 − 8x4
2 = 4x1x2 − 4x4

1 − 8x4
2.

|g(x)|2 = trace
([

x2 sin x2 0

0 x1 cos x1

][
x2 sin x2 0

0 x1 cos x1

])
= x2

1 cos
2 x1 + x2

2 sin
2 x2

≤ x2
1 + x2

2.

Therefore, for any p > 2,

xTf(x) +
p− 1

2
|g(x)|2 ≤ 4x1x2 − 4x4

1 − 8x4
2 +

p− 1

2

(
x2
1 + x2

2

)
≤ 2x2

1 + 2x2
2 − 4x4

1 − 8x4
2 +

p− 1

2

(
x2
1 + x2

2

)
.

Since 2x2
1 − 4x4

1 +
(
p−1
2

)
x2
1 and 2x2

2 − 8x4
2 +

(
p−1
2

)
x2
2 are bounded above, there is
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Kp > 0 such that

xTf(x) +
p− 1

2
|g(x)|2 ≤ Kpx

2
1 +Kpx

2
2 = Kp |x|2 ≤ Kp

(
1 + |x|2

)
.

Now before we show conditions (3.16) and (3.17) hold, define h1, h2 : R → R by
h1 (x) = x sin x and h2(x) = x cos x. Then, for any x ∈ R, h′

1(x) = x cos x + sin x

and h′
2(x) = cos x − x sin x. By the Mean Value Theorem, for any x ≤ y there

exists a constant k ∈ (x, y) such that

|h1(x)− h1(y)|2 ≤ |h′
1(k)|

2 |x− y|2 = (k cos k + sin k)2 |x− y|2

≤ (1 + |x|+ |y|)2 |x− y|2 ,

|h2(x)− h2(y)|2 ≤ |h′
2(k)|

2 |x− y|2 = (cos k − k sin k)2 |x− y|2

≤ (1 + |x|+ |y|)2 |x− y|2 .

Then, let consider

|f(x)− f(y)|2 =

∣∣∣∣∣ (x2 − y2)− 4(x3
1 − y31)

2(x1 − y1)− 8(x3
2 − y32)

∣∣∣∣∣
2

= ((x2 − y2)− 4(x3
1 − y31))

2 + (3(x1 − y1)− 8(x3
2 − y32))

2

≤
(
2(x2 − y2)

2 + 8(x1 − y1)
2(x2

1 + x1y1 + y21)
2
)

+
(
6(x1 − y1)

2 + 16(x2 − y2)
2(x2

2 + x2y2 + y22)
2
)

≤ 36(1 + x4
1 + y41)(x1 − y1)

2 + 72(1 + x4
2 + y42)(x2 − y2)

2

≤ 72(1 + |x|4 + |y|4) |x− y|2

|g(x)− g(y)|2 =

∣∣∣∣∣x2 sin x2 − y2 sin y2 0

0 x1 cos x1 − y1 cos y1

∣∣∣∣∣
2

= (x2 sin x2 − y2 sin y2)
2 + (x1 cos x1 − y1 cos y1)

2

≤ (1 + |x2|+ |y2|)2(x2 − y2)
2 + (1 + |x1|+ |y1|)2(x1 − y1)

2

≤ 3(1 + |x|2 + |y|2) |x− y|2

Then, equations (3.16) and (3.17) assert. To show equation (3.28) satisfies (3.15),
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let x, y ∈ R2. Therefore,

(x− y)T (f(x)− f(y))

= (x− y)T

∣∣∣∣∣ (x2 − y2)− 4(x3
1 − y31)

3(x1 − y1)− 8(x3
2 − y32)

∣∣∣∣∣
=
(
(x2 − y2)− 4(x3

1 − y31)
)
(x1 − y1) +

(
3(x1 − y1)− 8(x3

2 − y32)
)
(x2 − y2)

= 4(x1 − y1)(x2 − y2)− 4(y21 + y1x1 + x2
1)(x1 − y1)

2

− 8(y22 + y2x2 + x2
2)(x2 − y2)

2

≤ 2(x1 − y1)
2 + 2(x2 − y2)

2 − 2(x2
1 + y21)(x1 − y1)

2 − 4(x2
2 + y22)(x2 − y2)

2

≤ (2− 2 |x1|2 − 2 |y1|2)(x1 − y1)
2 + (2− 4 |x2|2 − 4 |y2|2)(x2 − y2)

2.

Now, we will show equation (3.27) satisfies condition (3.15), by letting q = 7
3
, we

have

(x− y)T (f(x)− f(y)) +
2

3
|g(x)− g(y)|2

≤ (2− 2 |x1|2 − 2 |y1|2)(x1 − y1)
2 + (2− 4 |x2|2 − 4 |y2|2)(x2 − y2)

2

+
2

3

[
3(1 + |x2|2 + |y2|2)(x2 − y2)

2 + 3(1 + |x1|2 + |y1|2)(x1 − y1)
2
]

= 4(x1 − y1)
2 + (4− 2 |x2|2 − 2 |y2|2)(x2 − y2)

2

Since 4−2 |x2|2−2 |y2|2 is bounded above, there exists a positive constant H such
that

(x− y)T (f(x)− f(y)) +
2

3
|g(x)− g(y)|2 ≤ H(x1 − y1)

2 +H(x2 − y2)
2 = H |x− y|2 .

We compare our method with the numerical solution by the backward Euler-
Maruyama (BEM) of the equations

dX(t) = (Y (t)− 4X3(t))dt+ Y (t) sin(Y (t))dB(t),

dY (t) = (3X(t)− 8Y 3(t))dt+X(t) cos(X(t))dB̃(t).
(3.29)

We let x0 = −0.5 = s0 and y0 = 0.5 = v0 for the step size ∆ = 10−3 in Figure 3.2
and ∆ = 10−4 in Figure 3.3, respectively. These show the truncated EM numerical
solutions are very closed to the BEM numerical solutions. More precisely, these
simulations are desired to produce the squares of the maximum differences of solu-
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tions between the truncated EM S∆(tk) with the BEM X∆(tk) and the truncated
EM V∆(tk) with the BEM Y∆(tk):

max
0≤k≤104

|S∆(tk)−X∆(tk)|2 = 0.00204972

and max
0≤k≤104

|V∆(tk)− Y∆(tk)|2 = 0.002800053,

where ∆ = 10−3, and

max
0≤k≤105

|S∆(tk)−X∆(tk)|2 = 0.0002813802

and max
0≤k≤105

|V∆(tk)− Y∆(tk)|2 = 0.0002510902,

where ∆ = 10−4.

3.5 Summary
In this chapter, we relaxed the global Lipschitz condition on the diffusion coefficient
over a finite time interval to be the local Lipschitz condition by using a bit stronger
Khasminskii-type condition. Moreover, we also showed the convergence rate of the
truncated Euler-Maruyama numerical solutions in Lq closed to q/2, a half of the
order.
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Figure 3.2: The computer simulations of the sample paths of the solution of equa-
tion (3.27) by the BEM and the truncated EM with ∆ = 10−3.

Figure 3.3: The computer simulations of the sample paths of the solution of equa-
tion (3.27) by the BEM and the truncated EM with ∆ = 10−4.
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Truncated Euler-Maruyama for
Stochastic Differential Delay
Equations with non-constant
delay

4.1 Introduction
In the previous chapter, we showed the result of stochastic differential equations.
Nevertheless, there are a lot of phenomena which have some delay of time before
their occurrence, i.e. the delay of illustrating an illness of infected patients. Fei,
W. et.al. (2020) studied the convergence rate of non-linear stochastic differential
delay equations (SDDEs) with a constant delay, as shown in equation (4.1), by
utilizing the truncated Euler-Maruyama numerical approach, [6].

dx(t) = f(x(t), x(t− τ))dt+ g(x(t), x(t− τ))dB(t) (4.1)

In realistic situations, however, the time-delay is not necessary to be constant
all the time. Mao, X. and Sabanis, S. (2003) studied the SDDEs with non-constant
time delay under the global Lipschitz coefficients by using the Euler-Maruyama
numerical method, see [25]. In this chapter, we get inspiration from [6, 8, 25].
We apply the truncated EM method with the variable time delay SDDEs. We,
moreover, find the convergence rate of the truncated numerical solutions at a time

48
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T and over a finite time interval.
Throughout this chapter, let τ and T be positive constants. We consider the

d-dimensional stochastic differential delay equation,

dx(t) = f(x(t), x(δ(t)))dt+ g(x(t), x(δ(t)))dB(t), t ≥ 0, (4.2)

with the initial data {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ C
(
[−τ, 0];Rd

)
and functions

f : Rd×Rd → Rd and g : Rd×Rd → Rd×m. As the standing hypothesis we always
assume that the Lipschitz continuous function δ : [0,∞) → R stands for the time
delay satisfying

−τ ≤ δ(t) ≤ t and |δ(t)− δ(s)| ≤ γ |t− s| , ∀t, s ≥ 0 (4.3)

for some positive constant γ.
We also assume the following assumptions to guarantee the existence and

uniqueness of the solution.

Assumption 4.1.1 (Local Lipschitz condition). For every integer n ≥ 1, there is
a positive constant Kn such that, for all x, y, x̄, ȳ ∈ Rd with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ n,

|f(x, y)− f(x̄, ȳ)|2 ∨ |g(x, y)− g(x̄, ȳ)|2 ≤ Kn

(
|x− x̄|2 + |y − ȳ|2

)
. (4.4)

Assumption 4.1.2 (Khasminskii-type condition). For any p > 2 there is Kp > 0

such that for all x, y ∈ Rd

xTf(x, y) +
p− 1

2
|g(x, y)|2 ≤ Kp(1 + |x|2 + |y|2). (4.5)

By the result of [24], we can state the following lemma.

Lemma 4.1.3. Under Assumptions 4.1.1 and 4.1.2, equation (4.2) has a unique
global solution x(t) on t ∈ [−τ,∞). Moreover,

sup
−τ≤t≤T

E |x(t)|p < ∞, ∀T > 0. (4.6)

To introduce the truncated EM method for SDDEs which defined in [6, 8], let
R+ be a set of positive real numbers and µ : [1,∞) → R+ be a strictly increasing
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continuous function such that µ(u) → ∞ as u → ∞ and

sup
|x|∨|y|≤u

(|f(x, y)| ∨ |g(x, y)|) ≤ µ(u), ∀u ≥ 1. (4.7)

Therefore, an inverse function µ−1 of µ is a strictly increasing continuous function
from [µ(1),∞). We, additionally, set a constant ĥ ≥ 1 ∨ µ(1) and a strictly
increasing function h : (0, 1] → [µ(1),∞) satisfying

lim
∆→0

h(∆) = ∞ and ∆1/4h(∆) ≤ ĥ, ∀∆ ∈ (0, 1]. (4.8)

For a given step size ∆ ∈ (0, 1], define the truncated mapping π∆ : Rd → Rd by

π∆(x) =
(
|x| ∧ µ−1(h(∆))

) x

|x|
, (4.9)

where we set x/ |x| = 0 if x = 0. That means, x is restricted at µ−1(h(∆)) (x/ |x|)
if x > µ−1(h(∆)). Therefore, the truncated functions can be defined by

f∆(x, y) = f(π∆(x), π∆(y)) and g∆(x, y) = g(π∆(x), π∆(y)), (4.10)

for all x, y ∈ Rd. Hence, |f∆(x, y)| ∨ |g∆(x, y)| ≤ µ(µ−1(h(∆))) = h(∆) for all
x, y ∈ Rd.

From now on, we will define the step size ∆ be a fraction of τ . That means,
∆ = τ/M for some positive integer M . Define tk = k∆ for all k = −M,−(M −
1), · · · , 0, 1, 2, · · · . Define the discrete time truncated EM solutions X∆(tk) = ξ(tk)

for k = −M,−(M − 1), · · · , 0 and compute, for k = 0, 1, . . . ,

X∆(tk+1) = X∆(tk) + f∆(X∆(tk), X∆(I∆[δ(tk)]∆))∆

+ g∆(X∆(tk), X∆(I∆[δ(tk)]∆))∆Bk,

where ∆Bk = Btk+1
−Btk and I∆[u] is the largest integer less than or equal to u/∆

for u in R. Then,

−τ ≤ I∆[δ(tk)]∆ ≤ tk for k ≥ 0. (4.11)

Before defining the continuous-time truncated EM solution, let us define two step
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processes

z1(t) =
∞∑
k=0

X∆(tk)1[tk,tk+1)(t),

z2(t) =
∞∑
k=0

X∆(I∆[δ(tk)]∆)1[tk,tk+1)(t),

for t ≥ 0. These are simple step processes so their sample paths are not continuous.
Now, we refer to the continuous-time (continuous process) truncated EM solution
defining by x∆(t) = ξ(t) for t ∈ [−τ, 0], and

x∆(t) = ξ(0) +

∫ t

0

f∆(z1(s), z2(s))ds+

∫ t

0

g∆(z1(s), z2(s))dB(s) for t ≥ 0.

(4.12)

Notice that x∆(tk) = X∆(tk) for all k ≥ −M . Moreover, x∆(t) is an Itô process
on t ≥ 0 with its Itô differential

dx∆(t) = f∆(z1(t), z2(t))dt+ g∆(z1(t), z2(t))dB(t).

The following lemma is a result from [24] to confirm that the truncated func-
tions satisfy Assumption 4.1.2. The proof of this Lemma is straightforward similar
to Lemma 3.1.4.

Lemma 4.1.4. Assume Assumption 4.1.2 holds. Then, for each p > 2 there exists
K̂p > 0 such that for all x ∈ Rd

xTf∆(x, y) +
p− 1

2
|g∆(x, y)|2 ≤ K̂p

(
1 + |x|2 + |y|2

)
.

Recall the following notation and assumptions on both the initial data and the
coefficients which are required for illustrating the convergence rate of the numerical
solution, [6, 8].

Assumption 4.1.5. There is a pair of constants K1 > 0 and β ∈ (0, 1] such that
the initial data ξ satisfies

|ξ(u)− ξ(v)| ≤ K1 |u− v|β , for − τ ≤ v < u ≤ 0. (4.13)

Let U be the family of continuous functions U : Rn × Rn → R+ such that for
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each b > 0, there is a positive constant Kb for which

U(x, x̄) ≤ Kb |x− x̄|2 , for x, x̄ ∈ Rn with |x| ∨ |x̄| ≤ b. (4.14)

Assumption 4.1.6. There is a pair of constants α and K2 > 0 and a function
U ∈ U such that for all x, y, x̄, ȳ ∈ Rd and positive constants λ1, λ2

(x− x̄)T (f(x, y)− f(x̄, ȳ)) +
1 + α

2
|g(x, y)− g(x̄, ȳ)|2

≤ K2(|x− x̄|2 + |y − ȳ|2)− λ1U(x, x̄) + λ2U(y, ȳ). (4.15)

Assumption 4.1.7. There is a pair of constants ρ and K3 > 0 such that for all
x, y, x̄, ȳ ∈ Rd

|f(x, y)− f(x̄, ȳ)|2 ∨ |g(x, y)− g(x̄, ȳ)|2

≤ K3

(
|x− x̄|2 + |y − ȳ|2

)
(1 + |x|ρ + |x̄|ρ + |y|ρ + |ȳ|ρ). (4.16)

By the definition of x∆, we obtain three of the following lemmas which have
an important role to prove our main Theorems 4.2.1 and 4.3.2.

Lemma 4.1.8. There is a positive constant Cp independent of ∆ such that

E |x∆(t)− z1(t)|p ≤ Cp∆
p/2 (h(∆))p for p > 0 and t ≥ 0. (4.17)

This Cp may be different from the Cp before but we use Cp to stand for generic
constants dependent on p and they may change from place to place.
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Proof. For each t ∈ [0, T ], choose a k such that t ∈ [tk, tk+1]. Then, let p ≥ 2

E |x∆(t)− z1(t)|p = E |x∆(t)−X∆(tk)|p

≤ E
∣∣∣∣∫ t

tk

f∆(z1(s), z2(s))ds+

∫ t

tk

g∆(z1(s), z2(s))dB(s)

∣∣∣∣p
≤ 2p−1

[
∆p−1E

∫ t

tk

|f∆(z1(s), z2(s))|p ds

+

(
p(p− 1)

2

) p
2

∆
p−2
2 E

∫ t

tk

|g∆(z1(s), z2(s))|p ds

]

≤ 2p−1

[
∆p (h(∆))p +

(
p(p− 1)

2

) p
2

∆
p
2 (h(∆))p

]

≤ 2p−1

(
1 +

(
p(p− 1)

2

) p
2

)
∆

p
2 (h(∆))p .

For 0 < p < 2, by Hölder’s inequality,

E |x∆(t)− z1(t)|p ≤
(
E |x∆(t)− z1(t)|2

) p
2 ≤

(
4∆ (h(∆))2

) p
2 ≤ 2p∆

p
2 (h(∆))p .

By setting Cp be the coefficient before ∆
p
2 (h(∆))p, (4.17) is done.

Lemma 4.1.9. There is a positive constant C∆ dependent of ∆ such that

E |x∆(δ(t))− z2(t)|p ≤ Cp

(
∆pβ +∆

p
2 (h(∆))p

)
for p > 0 and t ≥ 0. (4.18)

Proof. For each t ∈ [0, T ], choose a k such that t ∈ [tk, tk+1]. Then,

x∆(δ(t))− z2(t) = x∆(δ(t))−X∆(I∆[δ(tk)]∆) = x∆(δ(t))− x∆(I∆[δ(tk)]∆)

Note that δ(tk)−∆ ≤ I∆[δ(tk)]∆ ≤ δ(tk). Let p ≥ 2.
Case 1 : If δ(t) ≥ I∆[δ(tk)]∆ ≥ 0, then by the Lipschitz property of δ

δ(t)− I∆[δ(tk)]∆ ≤ δ(t)− δ(tk) + ∆ ≤ γ |t− tk|+∆ ≤ (γ + 1)∆.
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Then,

E |x∆(δ(t))− z2(t)|p

= E

∣∣∣∣∣
∫ δ(t)

I∆[δ(tk)]∆

f∆(z1(s), z2(s))ds+

∫ δ(t)

I∆[δ(tk)]∆

g∆(z1(s), z2(s))dB

∣∣∣∣∣
p

≤ 2p−1((γ + 1)∆)p−1E
∫ δ(t)

I∆[δ(tk)]∆

|f∆(z1(s), z2(s))|p ds

+ 2p−1

(
p(p− 1)

2

) p
2

((γ + 1)∆)
p−2
2 E

∫ δ(t)

I∆[δ(tk)]∆

|g∆(z1(s), z2(s))|p ds

≤ 2p−1((γ + 1)∆)p (h(∆))p + 2p−1

(
p(p− 1)

2

) p
2

((γ + 1)∆)
p
2 (h(∆))p

≤ Cp∆
p
2 (h(∆))p .

Case 2 : If 0 ≤ δ(t) ≤ I∆[δ(tk)]∆, then by the Lipschitz property of δ,

I∆[δ(tk)]∆− δ(t) ≤ δ(tk)− δ(t) + ∆ ≤ γ |tk − t| ≤ γ∆.

Then,

E |x∆(δ(t))− z2(t)|p

= E

∣∣∣∣∣
∫ I∆[δ(tk)]∆

δ(t)

f∆(z1(s), z2(s))ds+

∫ I∆[δ(tk)]∆

δ(t)

g∆(z1(s), z2(s))dB

∣∣∣∣∣
p

≤ 2p−1(γ∆)p−1E
∫ I∆[δ(tk)]∆

δ(t)

|f∆(z1(s), z2(s))|p ds

+ 2p−1

(
p(p− 1)

2

) p
2

(γ∆)
p−2
2 E

∫ I∆[δ(tk)]∆

δ(t)

|g∆(z1(s), z2(s))|p ds

≤ 2p−1(γ∆)p (h(∆))p + 2p−1

(
p(p− 1)

2

) p
2

(γ∆)
p
2 (h(∆))p

≤ Cp∆
p
2 (h(∆))p .

Case 3 : If 0 ≥ δ(t) ≥ I∆[δ(tk)]∆ or 0 ≥ I∆[δ(tk)]∆ ≥ δ(t), then

0 ≤ δ(t)− I∆[δ(tk)]∆ ≤ δ(t)− δ(tk) + ∆ ≤ (γ + 1)∆,

or 0 ≤ I∆[δ(tk)]∆− δ(t) ≤ δ(tk)− δ(t) ≤ γ∆ ≤ (γ + 1)∆.
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Then,

E |x∆(δ(t))− z2(t)|p = E |x∆(δ(t))− x∆(I∆[δ(tk)]∆)|p

≤ E |ξ(δ(t))− ξ(I∆[δ(tk)]∆)|p

≤ K2E |δ(t)− I∆[δ(tk)]∆|pβ

≤ K2 ((γ + 1)∆)pβ .

Case 4 : If I∆[δ(tk)]∆ ≥ 0 ≥ δ(t), then

0 ≤ I∆[δ(tk)]∆ ≤ δ(tk) ≤ δ(tk)− δ(t) ≤ γ∆,

and 0 ≤ −δ(t) ≤ δ(tk)− δ(t) ≤ γ∆.

Then,

E |x∆(δ(t))− z2(t)|p

= E |ξ(δ(t))− x∆(I∆[δ(tk)]∆)|p

≤ 2p−1E |ξ(δ(t))− ξ(0)|p + 2p−1E |ξ(0)− x∆(I∆[δ(tk)]∆)|p

≤ 2p−1K2 (γ∆)pβ

+ 2p−1E

∣∣∣∣∣
∫ I∆[δ(tk)]∆

0

f∆(z1(s), z2(s))ds+

∫ I∆[δ(tk)]∆

0

g∆(z1(s), z2(s))dB

∣∣∣∣∣
p

≤ 2p−1K2 (γ∆)pβ + Cp∆
p
2 (h(∆))p .

Case 5 : If δ(t) ≥ 0 ≥ I∆[δ(tk)]∆, then

0 ≤ −I∆[δ(tk)]∆ ≤ −δ(tk) + ∆ ≤ δ(t)− δ(tk) + ∆ ≤ (γ + 1)∆,

and 0 ≤ δ(t) ≤ δ(t)− δ(tk) ≤ γ∆.
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Then,

E |x∆(δ(t))− z2(t)|p

= E |x∆(δ(t))− ξ(I∆[δ(tk)]∆)|p

≤ 2p−1E |x∆(δ(t))− ξ(0)|p + 2p−1E |ξ(0)− ξ(I∆[δ(tk)]∆)|p

≤ 2p−1E

∣∣∣∣∣
∫ δ(t)

0

f∆(z1(s), z2(s))ds+

∫ δ(t)

0

g∆(z1(s), z2(s))dB

∣∣∣∣∣
p

+ 2p−1K2 ((γ + 1)∆)pβ

≤ Cp∆
p
2 (h(∆))p + 2p−1K2 ((γ + 1)∆)pβ .

By combining the above cases, (4.18) is claimed. For 0 < p < 2, (4.18) is held by
using the Hölder inequality with the above result.

Lemma 4.1.10. Let Assumptions 4.1.1 and 4.1.2 hold. Then,

sup
0<∆≤1

(
sup

−τ≤t≤T
E |x∆(t)|p

)
≤ Cp. (4.19)

Proof. Again we need only to prove for p ≥ 2. Let ∆ ∈ (0, 1] and T > 0. By Itô’s
formula, we have, for 0 ≤ t ≤ T ,

E |x∆(t)|p

≤ E |ξ(0)|p + E
∫ t

0

p |x∆(s)|p−2

(
xT
∆(s)f∆(z1(s), z2(s)) +

p− 1

2
|g∆(z1(s), z2(s))|2

)
ds

= E |ξ(0)|p + E
∫ t

0

p |x∆(s)|p−2

(
zT1 (s)f∆(z1(s), z2(s)) +

p− 1

2
|g∆(z1(s), z2(s))|2

)
ds

+ E
∫ t

0

p |x∆(s)|p−2 (x∆(s)− z1)
Tf∆(z1(s), z2(s))ds.

By Young’s inequality and Lemma 4.1.4,

E |x∆(t)|p ≤ E |ξ(0)|p + E
∫ t

0

p |x∆(s)|p−2 K̂p

(
1 + |z1(s)|2 + |z2(s)|2

)
ds

+ E
∫ t

0

[
(p− 2) |x∆(s)|p + 2 |x∆(s)− z1(s)|p/2 |f∆(z1(s), z2(s))|p/2

]
ds

≤ E |ξ(0)|p + K̂pE
∫ t

0

[2(p− 2) |x∆(s)|p + 3p + 3p |z1(s)|p + 3p |z2(s)|p] ds

+ 2(h(∆))p/2
∫ T

0

E |x∆(s)− z1(s)|p/2 ds
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E |x∆(t)|p

≤ E |ξ(0)|p + K̂p

∫ t

0

[2(p− 2)E |x∆(s)|p + 3p + 3pE |z1(s)|p + 3pE |z2(s)|p] ds

+ Cp∆
p/4(h(∆))pT

≤ E |ξ(0)|p + 3pTK̂p + K̂p (2(p− 2) ∨ 3p)

∫ t

0

[E |x∆(s)|p + E |z1(s)|p + E |z2(s)|p] ds

+ Cp∆
p/4(h(∆))p

≤ Cp

∫ t

0

(
sup

0≤u≤s
E |x∆(u)|p

)
ds+ Cp∆

p/4(h(∆))p.

Hence, by the definition of h which is ∆1/4h(∆) ≤ 1,

sup
0≤u≤t

E |x∆(u)|p ≤ Cp + Cp

∫ t

0

(
sup

0≤u≤s
E |x∆(u)|p

)
ds.

By Gronwall’s inequality,

sup
0≤u≤T

E |x∆(u)|p ≤ Cp.

For −τ ≤ t < 0, by definition of x∆, E |x∆(t)|p is bounded, so

sup
−τ≤u≤T

E |x∆(u)|p ≤ Cp.

Since ∆ is arbitrary on (0, 1] the right hand side is independence of ∆,

sup
0<∆≤1

(
sup

−τ≤t≤T
E |x∆(t)|p

)
≤ Cp.

By Lemma 4.1.10, it can be implied that

sup
0<∆≤1

(
sup

0≤t≤T
E |z1(t)|p

)
≤ Cp (4.20)

sup
0<∆≤1

(
sup

0≤t≤T
E |z2(t)|p

)
≤ Cp. (4.21)
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4.2 Convergence rate at a finite time T

Now, we state the main theorem by assuming some conditions to fit with the
variable time delay, as shown.

Theorem 4.2.1. Let Assumptions 4.1.2, 4.1.5, 4.1.6 and 4.1.7 hold. Assume that
dδ(t)
dt

≥ λ2

λ1
for all t ∈ [−τ, T ] and p ≥ ρ+ 2. Then, for ∆ ∈ (0, 1],

E |x(T )− x∆(T )|2 ≤ Cp

((
µ−1(h(∆))

)−(p−ρ−2) ∨∆h(∆)2 ∨∆2ρ

)
, (4.22)

E |x(T )− z1(T )|2 ≤ Cp

((
µ−1(h(∆))

)−(p−ρ−2) ∨∆h(∆)2 ∨∆2ρ

)
. (4.23)

Proof. Let n ≥ |x0|, define θn = inf {t ≥ 0 : |x(t)| ∨ |x∆(t)| ≥ n}. Let e∆(t) =

x(t)− x∆(t) for −τ ≤ t ≤ T . By Itô’s formula,

d |e∆(t)|2 ≤ 2

[
eT∆(t) (f(x(t), x(δ(t)))− f∆(z1(t), z2(t)))

+
1

2
|g(x(t), x(δ(t)))− g∆(z1(t), z2(t))|2

]
dt

+ 2eT∆(t) (g(x(t), x(δ(t)))− g∆(z1(t), z2(t))) dB(t).

Then, for 0 ≤ t ≤ T ,

E |e∆(t ∧ θn)|2

= E

{∫ t∧θn

0

[
2eT∆(s)(f(x(s), x(δ(s)))− f∆(z1(s), z2(s)))

+ |g(x(s), x(δ(s)))− g∆(z1(s), z2(s))|2
]
ds

}
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E |e∆(t ∧ θn)|2

≤ E

{∫ t∧θn

0

[
2eT∆(s)(f(x(s), x(δ(s)))− f(x∆(s), x∆(δ(s))))

+ (1 + α) |g(x(s), x(δ(s)))− g(x∆(s), x∆(δ(s)))|2
]
ds

+

∫ t∧θn

0

(
2eT∆(s)(f(x∆(s), x∆(δ(s)))− f∆(z1(s), z2(s)))

)
ds

+

∫ t∧θn

0

(
1 + α−1

)
|g(x∆(s), x∆(δ(s)))− g∆(z1(s), z2(s))|2 ds

}

≤ E

{∫ t∧θn

0

[
2K2

(
|x(s)− x∆(s)|2 + |x(δ(s))− x∆(δ(s))|2

)
− 2λ1U(x(s), x∆(s)) + 2λ2U(x(δ(s)), x∆(δ(s)))

]
ds

+

∫ t∧θn

0

2
∣∣eT∆(s)∣∣ |(f(x∆(s), x∆(δ(s)))− f∆(z1(s), z2(s)))| ds

+

∫ t∧θn

0

(
1 + α−1

)
|g(x∆(s), x∆(δ(s)))− g∆(z1(s), z2(s))|2 ds

}

≤ E

{∫ t∧θn

0

[
2K2

(
|e∆(s)|2 + |e∆(δ(s))|2

)
+ |e∆(s)|2

− 2λ1U(x(s), x∆(s)) + 2λ2U(x(δ(s)), x∆(δ(s)))
]
ds

}

+ E
∫ t∧θn

0

|(f(x∆(s), x∆(δ(s)))− f∆(z1(s), z2(s)))|2 ds

+ E
∫ t∧θn

0

(
1 + α−1

)
|g(x∆(s), x∆(δ(s)))− g∆(z1(s), z2(s))|2 ds

≤ E

{∫ t∧θn

0

[
2K2

(
|e∆(s)|2 + |e∆(δ(s))|2

)
+ |e∆(s)|2

− 2λ1U(x(s), x∆(s)) + 2λ2U(x(δ(s)), x∆(δ(s)))
]
ds

}

+ E
∫ t∧θn

0

(
2 + α−1

)
K3

(
|x∆(s)− π∆(z1(s))|2 + |x∆(δ(s))− π∆(z2(s))|2

)
(1 + |x∆(s)|ρ + |π∆(z1(s))|ρ + |x∆(δ(s))|ρ + |π∆(z2(s))|ρ) ds

≤ H1 +H2,
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where

H1 = E

{∫ t∧θn

0

[
2K2

(
|e∆(s)|2 + |e∆(δ(s))|2

)
+ |e∆(s)|2

− 2λ1U(x(s), x∆(s)) + 2λ2U(x(δ(s)), x∆(δ(s)))
]
ds

}

H2 = E
∫ t∧θn

0

(
2 + α−1

)
K3

(
|x∆(s)− π∆(z1(s))|2 + |x∆(δ(s))− π∆(z2(s))|2

)
× (1 + |x∆(s)|ρ + |π∆(z1(s))|ρ + |x∆(δ(s))|ρ + |π∆(z2(s))|ρ) ds.

Since
∫ 0

−τ
|e∆(s)|2 ds = 0, we can derive by setting a = δ(s)

∫ t∧θn

0

|e∆(δ(s))|2 ds =
∫ δ(t∧θn)

δ(0)

|e∆(a)|2 da ·
(
dδ(s)

ds

)−1

≤
∫ t∧θn

−τ

|e∆(s)|2 ds
(
λ1

λ2

)
=

∫ t∧θn

0

|e∆(s)|2 ds
(
λ1

λ2

)
.

Note that U(x(s), x∆(s)) = 0 for all s ∈ [−τ, 0], then∫ t∧θn

0

U(x(δ(s)), x∆(δ(s)))ds =

∫ δ(t∧θn)

δ(0)

U(x(a), x∆(a))da ·
(
dδ(s)

ds

)−1

≤
(
λ1

λ2

)∫ t∧θn

−τ

U(x(s), x∆(s))ds

=

(
λ1

λ2

)∫ t∧θn

0

U(x(s), x∆(s))ds.

Hence,

H1 ≤ E
∫ t∧θn

0

(
2K2

(
1 +

λ1

λ2

)
+ 1

)
|e∆(s)|2 ds

≤
(
2K2

(
1 +

λ1

λ2

)
+ 1

)∫ t

0

E |e∆(s ∧ θn)|2 ds.
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By Lemmas 4.1.8, 4.1.9, 4.1.10 and the fact that |π∆(x)|p ≤ |x|p,

H2

= E
∫ t∧θn

0

(
2 + α−1

)
K3

(
|x∆(s)− π∆(z1(s))|2 + |x∆(δ(s))− π∆(z2(s))|2

)
× (1 + |x∆(s)|ρ + |π∆(z1(s))|ρ + |x∆(δ(s))|ρ + |π∆(z2(s))|ρ) ds

≤ E
∫ t∧θn

0

2
(
2 + α−1

)
K3

[(
|x∆(s)− π∆(x∆(s))|2 + |π∆(x∆(s))− π∆(z1(s))|2

+ |x∆(δ(s))− π∆(x∆(δ(s)))|2 + |π∆(x∆(δ(s)))− π∆(z2(s))|2
)

× (1 + |x∆(s)|ρ + |π∆(z1(s))|ρ + |x∆(δ(s))|ρ + |π∆(z2(s))|ρ)

]
ds

≤ 2
(
2 + α−1

)
K3

∫ T

0

E

[(
|x∆(s)− π∆(x∆(s))|2 + |π∆(x∆(s))− π∆(z1(s))|2

+ |x∆(δ(s))− π∆(x∆(δ(s)))|2 + |π∆(x∆(δ(s)))− π∆(z2(s))|2
)

× (1 + |x∆(s)|ρ + |z1(s)|ρ + |x∆(δ(s))|ρ + |z2(s)|ρ)

]
ds

≤ Cp

∫ T

0

[
4

ρ
p

(
E |x∆(s)− π∆(x∆(s))|

2p
p−ρ + E |π∆(x∆(s))− π∆(z1(s))|

2p
p−ρ

+ E |x∆(δ(s))− π∆(x∆(δ(s)))|
2p
p−ρ + E |π∆(x∆(δ(s)))− π∆(z2(s))|

2p
p−ρ

) p−ρ
p

× 5
p−ρ
p (1 + E |x∆(s)|p + E |z1(s)|p + E |x∆(δ(s))|p + E |z2(s)|p)

ρ
p

]
ds

≤ Cp

∫ T

0

(
E |x∆(s)− π∆(x∆(s))|

2p
p−ρ + E |x∆(s)− z1(s)|

2p
p−ρ

+ E |x∆(δ(s))− π∆(x∆(δ(s)))|
2p
p−ρ + E |x∆(δ(s))− z2(s)|

2p
p−ρ

) p−ρ
p

ds

≤ Cp

∫ T

0

[(
E |x∆(s)− π∆(x∆(s))|

2p
p−ρ

) p−ρ
p

+
(
E |x∆(δ(s))− π∆(x∆(δ(s)))|

2p
p−ρ

) p−ρ
p

+∆(h(∆))2 +
(
∆2β +∆(h(∆))2

) ]
ds
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H2 ≤ Cp

∫ T

0

(
E |x∆(s)− π∆(x∆(s))|

2p
p−ρ

) p−ρ
p

ds+ Cp

(
∆2β +∆(h(∆))2

)
+ Cp

∫ T

0

(
E |x∆(δ(s))− π∆(x∆(δ(s)))|

2p
p−ρ

) p−ρ
p

ds.

Consider the integral
∫ T

0

(
E |x∆(s)− π∆(x∆(s))|

2p
p−ρ

) p−ρ
p

ds,

∫ T

0

(
E |x∆(s)− π∆(x∆(s))|

2p
p−ρ

) p−ρ
p

ds

≤
∫ T

0

(
E
[
I{|x∆(s)|>µ−1(h(∆))} |x∆(s)|

2p
p−ρ

]) p−ρ
p

ds

≤
∫ T

0

([
P
{
|x∆(s)| > µ−1(h(∆))

}] p−ρ−2
p−ρ [E |x∆(s)|p]

2
p−ρ

) p−ρ
p

ds

≤
∫ T

0

([
E |x∆(s)|p

(µ−1(h(∆)))p

] p−ρ−2
p

[E |x∆(s)|p]
2
p

)
ds

≤
∫ T

0

([
1

(µ−1(h(∆)))p

] p−ρ−2
p

[E |x∆(s)|p]
p−ρ
p

)
ds.

By Lemma 4.1.10,∫ T

0

(
E |x∆(s)− π∆(x∆(s))|

2p
p−ρ

) p−ρ
p

ds ≤ Cp

(
µ−1(h(∆))

)−(p−ρ−2)
.

Similarly, we can derive∫ T

0

(
E |x∆(δ(s))− π∆(x∆(δ(s)))|

2p
p−ρ

) p−ρ
p

ds ≤ Cp

(
µ−1(h(∆))

)−(p−ρ−2)
.

Hence,

H2 ≤ Cp

((
µ−1(h(∆))

)−(p−ρ−2)
+∆2β +∆(h(∆))2

)
.

Now combine H1 and H2,

E |e∆(t ∧ θn)|2 ≤ Cp

∫ t

0

E |e∆(s ∧ θn)|2 ds

+ Cp

((
µ−1(h(∆))

)−(p−ρ−2) ∨∆2β ∨∆(h(∆))2
)
.
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By the Gronwall inequality,

E |e∆(t ∧ θn)|2 ≤ Cp

((
µ−1(h(∆))

)−(p−ρ−2) ∨∆2β ∨∆(h(∆))2
)
.

By letting n → ∞, (4.22) is proved. Hence, (4.23) is done by Lemma 4.1.8.

4.3 Convergence rate over a finite time interval
To find the rate of convergence over a finite time interval, we also need a strong
condition on the diffusion coefficient.

Assumption 4.3.1. There is a pair of constants ρ and K4 > 0 such that for all
x, y, x̄, ȳ ∈ Rd

|f(x, y)− f(x̄, ȳ)|2 ≤ K4

(
|x− x̄|2 + |y − ȳ|2

)
(1 + |x|ρ + |x̄|ρ + |y|ρ + |ȳ|ρ)

and

|g(x, y)− g(x̄, ȳ)|2 ≤ K4

(
|x− x̄|2 + |y − ȳ|2

)
.

Theorem 4.3.2. Let Assumptions 4.1.2, 4.1.5, 4.1.6 and 4.3.1 hold. Assume that
dδ(t)
dt

≥ λ2

λ1
for all t ∈ [−τ, T ] and p ≥ ρ+ 2. Then, for any ∆ ∈ (0, 1],

E
(

sup
0≤u≤T

|x(u)− x∆(u)|2
)

≤ Cp

((
µ−1(h(∆))

)−(p−ρ−2) ∨∆h(∆)2 ∨∆2ρ

)
.

(4.24)

Proof. For any n ≥ |x0|, define θn = inf {t ≥ 0 : |x(t)| ∨ |x∆(t)| ≥ n}. Let e∆(t) =
x(t)− x∆(t) for t ≥ 0. By Itô’s formula,

d |e∆(t)|2 ≤ 2

[
eT∆(t) (f(x(t), x(δ(t)))− f∆(z1(t), z2(t)))

+
1

2
|g(x(t), x(δ(t)))− g∆(z1(t), z2(t))|2

]
dt

+ 2eT∆(t) (g(x(t), x(δ(t)))− g∆(z1(t), z2(t))) dB(t)
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Then, for 0 ≤ t ≤ T ,

E
(

sup
0≤u≤t∧θn

|e∆(u)|2
)

≤ H3 +H4,

where,

H3 = E sup
0≤u≤t∧θn

{∫ u

0

[
2eT∆(s)(f(x(s), x(δ(t)))− f∆(z1(s), z2(s)))

+ |g(x(s), x(δ(s)))− g∆(z1(s), z2(s))|2
]
ds

}

H4 = E
(

sup
0≤u≤t∧θn

∫ u

0

2eT∆(s)(g(x(s), x(δ(t)))− g∆(z1(s), z2(s)))dB(s)

)
.

We now estimate H3 and H4, respectively.

H3 ≤ E sup
0≤u≤t∧θn

{∫ u

0

[
2eT∆(s)(f(x(s), x(δ(s)))− f(x∆(s), x∆(δ(s))))

+ (1 + α) |g(x(s), x(δ(s)))− g(x∆(s), x∆(δ(s)))|2
]
ds

+

∫ u

0

(
2eT∆(s)(f(x∆(s), x∆(δ(s)))− f∆(z1(s), z2(s)))

)
ds

+

∫ u

0

(
1 + α−1

)
|g(x∆(s), x∆(δ(s)))− g∆(z1(s), z2(s))|2 ds

}

≤ E sup
0≤u≤t∧θn

{∫ u

0

[
2K2

(
|x(s)− x∆(s)|2 + |x(δ(s))− x∆(δ(s))|2

)
− 2λ1U(x(s), x∆(s)) + 2λ2U(x(δ(s)), x∆(δ(s)))

]
ds

+

∫ u

0

2
∣∣eT∆(s)∣∣ |(f(x∆(s), x∆(δ(s)))− f∆(z1(s), z2(s)))| ds

+

∫ u

0

(
1 + α−1

)
K4

(
|x∆(s)− π∆(z1(s))|2 + |x∆(δ(s))− π∆(z2(s))|2

)
ds

}
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H3 ≤ E sup
0≤u≤t∧θn

{∫ u

0

[
2K2

(
|e∆(s)|2 + |e∆(δ(s))|2

)
+ |e∆(s)|2

− 2λ1U(x(s), x∆(s)) + 2λ2U(x(δ(s)), x∆(δ(s)))
]
ds

}

+ E sup
0≤u≤t∧θn

∫ u

0

|(f(x∆(s), x∆(δ(s)))− f∆(z1(s), z2(s)))|2 ds

+ E
∫ t∧θn

0

(
1 + α−1

)
K4

(
|x∆(s)− π∆(z1(s))|2 + |x∆(δ(s))− π∆(z2(s))|2

)
ds

≤ E sup
0≤u≤t∧θn

{∫ u

0

[
2K2

(
|e∆(s)|2 + |e∆(δ(s))|2

)
+ |e∆(s)|2

− 2λ1U(x(s), x∆(s)) + 2λ2U(x(δ(s)), x∆(δ(s)))
]
ds

}

+ E
∫ t∧θn

0

K4

(
|x∆(s)− π∆(z1(s))|2 + |x∆(δ(s))− π∆(z2(s))|2

)
(1 + |x∆(s)|ρ + |π∆(z1(s))|ρ + |x∆(δ(s))|ρ + |π∆(z2(s))|ρ) ds

+ E
∫ t∧θn

0

(
1 + α−1

)
K4

(
|x∆(s)− π∆(z1(s))|2 + |x∆(δ(s))− π∆(z2(s))|2

)
ds

≤ H31 +H32,

where

H31 = E sup
0≤u≤t∧θn

{∫ u

0

[
2K2

(
|e∆(s)|2 + |e∆(δ(s))|2

)
+ |e∆(s)|2

− 2λ1U(x(s), x∆(s)) + 2λ2U(x(δ(s)), x∆(δ(s)))
]
ds

}

H32 = E
∫ t∧θn

0

K4

(
|x∆(s)− π∆(z1(s))|2 + |x∆(δ(s))− π∆(z2(s))|2

)
×
((
2 + α−1

)
+ |x∆(s)|ρ + |π∆(z1(s))|ρ + |x∆(δ(s))|ρ + |π∆(z2(s))|ρ

)
ds.
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Since
∫ 0

−τ
|e∆(s)|2 ds = 0, we can derive by setting a = δ(s)

∫ u

0

|e∆(δ(s))|2 ds =
∫ δ(u)

δ(0)

|e∆(a)|2 da ·
(
dδ(s)

ds

)−1

≤
∫ u

−τ

|e∆(s)|2 ds
(
λ1

λ2

)
=

∫ u

0

|e∆(s)|2 ds
(
λ1

λ2

)
.

Note that U(x(s), x∆(s)) = 0 for all s ∈ [−τ, 0], then∫ u

0

U(x(δ(s)), x∆(δ(s)))ds =

∫ δ(u)

δ(0)

U(x(a), x∆(a))da ·
(
dδ(s)

ds

)−1

≤
(
λ1

λ2

)∫ u

−τ

U(x(s), x∆(s))ds

=

(
λ1

λ2

)∫ u

0

U(x(s), x∆(s))ds.

Hence,

H31 ≤ E sup
0≤u≤t∧θn

(∫ u

0

(
2K2

(
1 +

λ1

λ2

)
+ 1

)
|e∆(s)|2 ds

)
≤
(
2K2

(
1 +

λ1

λ2

)
+ 1

)∫ t

0

E
(

sup
0≤u≤s∧θn

|e∆(u)|2
)
ds.

By Lemmas 4.1.8, 4.1.9, 4.1.10 and the fact that |π∆(x)|p ≤ |x|p,

H32 = E
∫ t∧θn

0

K4

(
|x∆(s)− π∆(z1(s))|2 + |x∆(δ(s))− π∆(z2(s))|2

)
×
((
2 + α−1

)
+ |x∆(s)|ρ + |π∆(z1(s))|ρ + |x∆(δ(s))|ρ + |π∆(z2(s))|ρ

)
ds

≤ E
∫ t∧θn

0

2K4

[(
|x∆(s)− π∆(x∆(s))|2 + |π∆(x∆(s))− π∆(z1(s))|2

+ |x∆(δ(s))− π∆(x∆(δ(s)))|2 + |π∆(x∆(δ(s)))− π∆(z2(s))|2
)

×
((
2 + α−1

)
+ |x∆(s)|ρ + |π∆(z1(s))|ρ + |x∆(δ(s))|ρ + |π∆(z2(s))|ρ

) ]
ds



Chapter 4 67

≤ 2K4

∫ T

0

E

[(
|x∆(s)− π∆(x∆(s))|2 + |π∆(x∆(s))− π∆(z1(s))|2

+ |x∆(δ(s))− π∆(x∆(δ(s)))|2 + |π∆(x∆(δ(s)))− π∆(z2(s))|2
)

×
((
2 + α−1

)
+ |x∆(s)|ρ + |z1(s)|ρ + |x∆(δ(s))|ρ + |z2(s)|ρ

) ]
ds

≤ 2K4

∫ T

0

[
4

ρ
p

(
E |x∆(s)− π∆(x∆(s))|

2p
p−ρ + E |π∆(x∆(s))− π∆(z1(s))|

2p
p−ρ

+ E |x∆(δ(s))− π∆(x∆(δ(s)))|
2p
p−ρ + E |π∆(x∆(δ(s)))− π∆(z2(s))|

2p
p−ρ

) p−ρ
p

× 5
p−ρ
p
((
2 + α−1

)
+ E |x∆(s)|p + E |z1(s)|p + E |x∆(δ(s))|p + E |z2(s)|p

) ρ
p

]
ds

≤ Cp

∫ T

0

(
E |x∆(s)− π∆(x∆(s))|

2p
p−ρ + E |x∆(s)− z1(s)|

2p
p−ρ

+ E |x∆(δ(s))− π∆(x∆(δ(s)))|
2p
p−ρ + E |x∆(δ(s))− z2(s)|

2p
p−ρ

) p−ρ
p

ds

≤ Cp

∫ T

0

(
E |x∆(s)− π∆(x∆(s))|

2p
p−ρ

) p−ρ
p

ds

+ Cp

∫ T

0

(
E |x∆(δ(s))− π∆(x∆(δ(s)))|

2p
p−ρ

) p−ρ
p

ds+ Cp

(
∆2β +∆(h(∆))2

)
.

Consider the integral
∫ T

0

(
E |x∆(s)− π∆(x∆(s))|

2p
p−ρ

) p−ρ
p

ds,

∫ T

0

(
E |x∆(s)− π∆(x∆(s))|

2p
p−ρ

) p−ρ
p

ds

≤
∫ T

0

(
E
[
I{|x∆(s)|>µ−1(h(∆))} |x∆(s)|

2p
p−ρ

]) p−ρ
p

ds

≤
∫ T

0

([
P
{
|x∆(s)| > µ−1(h(∆))

}] p−ρ−2
p−ρ [E |x∆(s)|p]

2
p−ρ

) p−ρ
p

ds

≤
∫ T

0

([
E |x∆(s)|p

(µ−1(h(∆)))p

] p−ρ−2
p

[E |x∆(s)|p]
2
p

)
ds

≤
∫ T

0

([
1

(µ−1(h(∆)))p

] p−ρ−2
p

[E |x∆(s)|p]
p−ρ
p

)
ds.
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By Lemma 4.1.10,∫ T

0

(
E |x∆(s)− π∆(x∆(s))|

2p
p−ρ

) p−ρ
p

ds ≤ Cp

(
µ−1(h(∆))

)−(p−ρ−2)
.

Similarly, we can derive∫ T

0

(
E |x∆(δ(s))− π∆(x∆(δ(s)))|

2p
p−ρ

) p−ρ
p

ds ≤ Cp

(
µ−1(h(∆))

)−(p−ρ−2)
.

Hence,

H32 ≤ Cp

((
µ−1(h(∆))

)−(p−ρ−2)
+∆2β +∆(h(∆))2

)
.

Now we consider H4,

H4 = E
(

sup
0≤u≤t∧θn

∫ u

0

2eT∆(s)(g(x(s), x(δ(s)))− g∆(z1(s), z2(s)))dB(s)

)

≤ 4
√
2E
(∫ t∧θn

0

∣∣2eT∆(s)(g(x(s), x(δ(s)))− g∆(z1(s), z2(s)))
∣∣2 ds) 1

2

≤ 8
√
2E
(∫ t∧θn

0

|e∆(s)|2 |g(x(s), x(δ(s)))− g∆(z1(s), z2(s))|2 ds
) 1

2

≤ E
([

sup
0≤u≤t∧θn

|e∆(u)|2
]) 1

2

×
(
128

∫ t∧θn

0

|g(x(s), x(δ(s)))− g(π∆(z1(s)), π∆(z2(s)))|2 ds
) 1

2

≤ 1

2
E
(

sup
0≤u≤t∧θn

|e∆(u)|2
)

+ 64E
∫ t∧θn

0

|g(x(s), x(δ(s)))− g(π∆(z1(s)), π∆(z2(s)))|2 ds

≤ 1

2
E
(

sup
0≤u≤t∧θn

|e∆(u)|2
)

+ 128E
∫ t∧θn

0

|g(x(s), x(δ(s)))− g(x∆(s), x∆(δ(s)))|2 ds

+ 128E
∫ t∧θn

0

|g(x∆(s), x∆(δ(t)))− g(π∆(z1(s)), π∆(z2(s)))|2 ds
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H4 ≤
1

2
E
(

sup
0≤u≤t∧θn

|e∆(u)|2
)

+ 128K4E
∫ t∧θn

0

(
|x(s)− x∆(s)|2 + |x(δ(s))− x∆(δ(s))|2

)
ds

+ 128K4E
∫ t∧θn

0

(
|x∆(s)− π∆(z1(s))|2 + |x∆(δ(s))− π∆(z2(s))|2

)
ds

≤ 1

2
E
(

sup
0≤u≤t∧θn

|e∆(u)|2
)
+ 128K4

(
1 +

λ1

λ2

)
E
∫ t∧θn

0

|e∆(s)|2 ds

+ Cp

(
∆2β +∆(h(∆))2

)
≤ 1

2
E
(

sup
0≤u≤t∧θn

|e∆(u)|2
)
+ 128K4

(
1 +

λ1

λ2

)∫ t

0

E
(

sup
0≤u≤s

|e∆(u)|2
)
ds

+ Cp

(
∆2β +∆(h(∆))2

)
.

Combining the estimates of H3 and H4, one has

E
(

sup
0≤u≤t∧θn

|e∆(u)|2
)

≤ C

∫ t

0

E
(

sup
0≤u≤s

|e∆(u)|2
)
ds

+ Cp

((
µ−1(h(∆))

)−(p−ρ−2) ∨∆2β ∨∆(h(∆))2
)
.

By the Gronwall inequality and letting n → ∞, this theorem is proved.

In practice, calculating the solution using continuous time continuous process
can sometimes be difficult. Therefore, the next lemma becomes crucial in de-
termining the solution using the continuous time step process. Additionally, the
proof of the next lemma is straightforward following from [6].

Lemma 4.3.3. Let ∆ ∈ (0, 1] and ε ∈ (0, 1/4]. Let ν be a sufficiently large integer
for which (

2ν

2ν − 1

)p

(T + 1)p/2ν ≤ 2 and 1

ν
< ε. (4.25)

Then, for p ≥ 2

E
(

sup
0≤u≤T

|x∆(u)− z1(u)|p
)

≤ Cp

(
∆(p/2)(1−ε)(h(∆))p

)
. (4.26)

We therefore obtain the following corollary illustrating that the solution can
be computed by the step process.



Chapter 4 70

Corollary 4.3.4. Let Assumptions 4.1.2, 4.1.5, 4.1.6 and 4.3.1 hold. Assume that
dδ(t)
dt

≥ λ2

λ1
for all t ∈ [−τ, T ] and p ≥ ρ+ 2. If µ(u) = Cu(2+ρ)/2 and h(∆) = ∆−ε,

then

E
(

sup
0≤u≤T

|x(u)− z1(u)|2
)

≤ Cp

(
∆2ρ∧(1−3ε)

)
. (4.27)

4.4 Comparision and Summary
In this chapter, we have enhanced the truncated EM numerical approach for
stochastic differential delay equations with a variable time delay denoted as δ(t).
This improvement combines the truncated EM method, as defined in [6] and [8],
with the model involving varying time delays presented in [25]. Furthermore, we
have calculated the convergence rate at specific time points and over finite time
intervals using some techniques in the previous chapter. When comparing our
results to those of [6], we observed that the convergence rate in both cases of the
solution with variable delay are similar to the results obtained in the case of con-
stant delay as demonstrated in [6]. However, it is essential to emphasize that our
method imposes specific conditions that must be satisfied in the case of variable
delay.
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Positive Preserving Truncated
Euler-Maruyama Numerical
Method

5.1 Introduction
SDE models in applications have their special properties. For example, the square
root process and mean-reverting square root process in finance have nonnegative
solutions (see, e.g., [17, 19]). The stochastic Lotka–Volterra model for interacting
multi-species in ecology has positive solutions (see, e.g., [1, 23, 19]). The SDE SIS
model in epidemiology has positive solutions (see, e.g., [7]). These SDE models are
all highly nonlinear. If we apply the modified EM methods (including the tamed
EM method [14, 31, 32], the tamed Milstein method [35], the stopped EM method
[18], the truncated EM method [21, 22]) to these SDEs, they do not maintain the
non-negativity or positivity of the solutions.

Therefore the aim of this chapter is to modify the truncated EM method to
establish a positivity preserving truncated EM (PPTEM). We, moreover, focus on
applying this technique to the well-known stochastic Lotka-Volterra model, which
describes the dynamics of interacting multiple species in ecology. The rationale
for selecting this model is because its characteristic features: highly nonlinear,
positive solution and multi-dimensional. Consequently, the methods developed
in this chapter can be applied for broader applications, extending to other SDE
models, such as the SDE SIS model.

71
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Our approach is to establish a new nonnegative preserving truncated EM
(NPTEM) and then the more desired PPTEM. Although the solution of the
stochastic Lotka–Volterra model is positive, there are some SDE models whose
solutions remain the nonnegative values. For instance, in finance, well-known
models like the square root process and mean-reverting square root process neces-
sitate nonnegative solutions, (see, e.g., [17, 19]). Moreover, from a mathematical
perspective, the way to prove the convergence of the PPTEM solution to the true
solution would be more natural if we start to establish the convergence of the
NPTEM solutions as an intial step.

As explained in the previous, we consider the d-dimensional stochastic Lotka–
Volterra model (see, e.g., [1, 19])

dx(t) = diag(x1(t), x2(t), ..., xd(t))[(b− Ax(t))dt+ σdB(t)], (5.1)

where x(t) = (x1(t), · · · , xd(t))
T is the state of the d interacting species and the

system parameters b = (b1, · · · , bd)T ∈ Rd, σ = (σ1, · · · , σd)
T ∈ Rd, A = (aij)d×d ∈

Rd×d. It is worth noting that the scalar Brownian motion B(t) in this chapter
can be generalised into a multi-dimensional one without any difficulty. We impose
the following assumption as a standing hypothesis, which is the only one for this
chapter.

Assumption 5.1.1. All elements of A are nonnegative, namely aij ≥ 0 for all
1 ≤ i, j ≤ d.

From the ecological point of view, this assumption means that the d interacting
species are competitive. The SDE (5.1) has been studied intensively by many
authors. For example, it is known (see, e.g., [19]) that under Assumption 5.1.1,
for any initial value x(0) ∈ Rd

+, the SDE (5.1) has a unique global solution x(t)

on t ≥ 0 and the solution will remain to be in Rd
+ with probability one (namely,

x(t) ∈ Rd
+ a.s. for all t ≥ 0).

Throughout this chapter, we set

b̄ = max
1≤i≤d

|bi|, σ̄ = max
1≤i≤d

|σi|, ā = max
1≤i,j≤d

aij. (5.2)

From now on, we will fix the initial value x(0) ∈ Rd
+ arbitrarily and, of course,

x(t) is the corresponding solution. We will also fix two real numbers T > 0 and
p ≥ 2 arbitrarily. Let us present two lemmas which will play their useful role in
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this chapter. And recalling that we use C and Cp to stand for generic positive real
constants which Cp is dependent on p whlie C is not.

Lemma 5.1.2. Under Assumption 5.1.1,

E
(

sup
0≤t≤T

|x(t)|p
)
≤ Cp. (5.3)

Proof. Recalling that x(t) ∈ Rd
+ and applying the Itô formula and Assumption

5.1.1, we can easily show from (5.1) that

d(xi(t))
p ≤ p[b̄+ 0.5(p− 1)σ̄2](xi(t))

pdt+ pσi(xi(t))
pdB(t),

for t ≥ 0 and every i = 1, · · · , d. By the Burkholder–Davis–Gundy inequality, it
is straightforward to show that

E
(

sup
0≤u≤t

(xi(u))
p
)
≤ Cp + Cp

∫ t

0

E
(

sup
0≤u≤s

(xi(u))
p
)
ds, for all t ∈ [0, T ].

An application of the well-known Gronwall inequality gives

E
(

sup
0≤u≤T

(xi(u))
p
)
≤ Cp.

This implies the required assertion (5.3).

Lemma 5.1.3. Under Assumption 5.1.1,

E
(

sup
0≤t≤T

[xi(t)− 1− log(xi(t))]
)
≤ C, 1 ≤ i ≤ d. (5.4)

Proof. For each i, by the Itô formula, we have

d[xi(t)− 1− log(xi(t))]

≤
(
− bi + 0.5σ2

i + bixi(t) +
d∑

j=1

aijxj(t)
)
dt+ σi(xi(t)− 1)dB(t).

By Lemma 5.1.2, the first and second moments of the solution is bounded (by C)
for t ∈ [0, T ]. Applying the Burkholder–Davis–Gundy inequality again, we can
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then derive that

E
(

sup
0≤t≤T

[xi(t)− 1− log(xi(t))]
)

≤C + E
(

sup
0≤t≤T

∫ t

0

σi(xi(s)− 1)dB(s)
)

≤C + 3E
(∫ T

0

|σi(xi(s)− 1)|2ds
)1/2

≤C + 3σ̄
(∫ T

0

2(E|xi(s)|2 + 1)ds
)1/2

≤C + 3σ̄
√

2T (C + 1),

which is the desired assertion (5.4).

5.2 Definitions of New Numerical Schemes
In this section, we will develop two numerical schemes. The first one will be called
the NPTEM scheme, while the second one the PPTEM scheme. We have explained
in the previous why we do not only study the PPTEM but also the NPTEM in
this chapter, although the solution of the underlying SDE (5.1) is positive with
probability one.

5.2.1 Nonnegativity preserving truncated EM method

To define the NPTEM scheme, it would be convenient to treat the SDE (5.1) in Rd

instead of Rd
+. For this purpose, we need to extend the definition of the coefficients

of the SDE from Rd
+ to Rd. We denote the coefficients by

F1(x) = (b1x1, · · · , bdxd)
T , F2(x) = −diag(x1, · · · , xd)Ax, G(x) = (σ1x1, · · · , σdxd)

T

for x ∈ R̄d
+. Define a mapping π0 : Rd → R̄d

+ by

π0(x) = (x1 ∨ 0, · · · , xd ∨ 0)T for x ∈ Rd.

Define f1, f2, g : Rd → Rd by

f1(x) = F1(π0(x)), f2(x) = F2(π0(x)), g(x) = G(π0(x)) for x ∈ Rd.
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Obviously, f1(x) = F1(x) etc. if x ∈ R̄d
+. In other words, f1, f2, g are the extended

functions of F1, F2, G, respectively. Recalling that the solution of the SDE (5.1)
has the property that x(t) ∈ Rd

+ a.s. for all t ≥ 0, we can therefore write the SDE
(5.1) as the following equation

dx(t) = [f1(x(t)) + f2(x(t))]dt+ g(x(t))dB(t) (5.5)

in Rd. We observe that f1 and g are linearly bounded, namely

|f1(x)| ≤ b̄|x|, |g(x)| ≤ σ̄|x|, for all x ∈ Rd, (5.6)

but f2 is not. The classical EM method is therefore not applicable to the SDE
(see, e.g., [11, 14]). The truncated EM method established by [21, 22] may be
applied but it cannot preserve nonnegativity, not mentioning positivity.

The aim of this subsection is to modify the truncated EM method in order
to create a new NPTEM method. For this purpose, we first choose a strictly
increasing continuous function µ : [1,∞) → R+ such that µ(u) → ∞ as u → ∞
and

sup
x∈Rd, |x|≤u

|f2(x)| = sup
x∈R̄d

+, |x|≤u

|F2(x)| ≤ µ(u), for all u ≥ 1. (5.7)

Denote by µ−1 the inverse function of µ and we see that µ−1 is a strictly increasing
continuous function from [µ(1),∞) to R+. We also choose a constant ĥ ≥ 1 ∨
µ(1) ∨ |x(0)| and a strictly decreasing function h : (0, 1] → [µ(1),∞) such that

lim
∆→0

h(∆) = ∞ and ∆1/4h(∆) ≤ ĥ, for all ∆ ∈ (0, 1]. (5.8)

Note that for x ∈ R̄d
+,

|F2(x)|2 =
d∑

i=1

x2
i

( d∑
j=1

aijxj

)2
≤

d∑
i=1

x2
i

( d∑
j=1

a2ij

)
|x|2 ≤ |A|2|x|4,

where |A| =
√

trace(ATA) is the trace norm of a matrix A. We can hence let
µ(u) = |A|u2, while let h(∆) = ĥ∆−θ for some θ ∈ (0, 1/4]. In other words, there
are lots of choices for µ(·) and h(·).

For a given step size ∆ ∈ (0, 1], let us define the truncation mapping π∆ : Rd →
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{x ∈ Rd : |x| ≤ µ−1(h(∆))} by

π∆(x) =
(
|x| ∧ µ−1(h(∆))

) x

|x|
,

where we set x/|x| = 0 when x = 0. That is, π∆ maps x to itself or µ−1(h(∆))x/|x|
depending on |x| ≤ µ−1(h(∆)) or not. It is useful to see that for all x ∈ Rd,

f2(π0(π∆(x))) = F2(π0(π0(π∆(x)))) = F2(π0(π∆(x))) = f2(π∆(x)). (5.9)

Hence
|f2(π0(π∆(x)))| = |f2(π∆(x))| ≤ µ(µ−1(h(∆))) = h(∆). (5.10)

Moreover, noting π0(π∆(x)) = (|x| ∧ µ−1(h(∆)))π0(x)/|x|, we also have

xTf2(π0(π∆(x))) = xTf2(π∆(x)) = (π0(x))
TF2(π0(π∆(x))) ≤ 0. (5.11)

We can now form the discrete-time NPTEM solutions X∆(tk) ≈ x(tk) for
tk = k∆ by setting X̄∆(0) = X∆(0) = x(0) and computing

X̄∆(tk+1) = X̄∆(tk) + [f1(X̄∆(tk)) + f2(X∆(tk))]∆ + g(X̄∆(tk))∆Bk, (5.12)
X∆(tk+1) = π0(π∆(X̄∆(tk+1))), (5.13)

for k = 0, 1, · · · , where ∆Bk = B(tk+1) − B(tk). Please note that X̄∆(tk+1) is an
intermediate step in order to get the NPTEM solution X∆(tk+1). We extend the
definitions of both X̄∆(·) and X∆(·) from the grid points tk to the whole t ≥ 0 by
defining

X̄∆(t) =
∞∑
k=0

X̄∆(tk)1[tk,tk+1)(t) (5.14)

and
X∆(t) =

∞∑
k=0

X∆(tk)1[tk,tk+1)(t) (5.15)

for t ≥ 0. Clearly, X∆(t) = π0(π∆(X̄∆(t))) so it preserves the nonnegativity
although X̄∆(t) does not.
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5.2.2 Positivity preserving truncated EM method

For each step size ∆ ∈ (0, 1], define one more truncation mapping π+ : Rd → Rd
+

by
π+(x) = (∆ ∨ x1, · · · ,∆ ∨ xd)

T , x ∈ Rd.

Please note that π+ maps Rd to Rd
+ while π0 to R̄d

+ so they are different. The
PPTEM solution is defined by

X+
∆(t) = π+(π∆(X̄∆(t))), t ≥ 0, (5.16)

where X̄∆(t) has already been defined by (5.14).
At this step, the upcoming question is that can we define the PPTEM is a

similar fashion at the NPTEM, namely by replacing π0 in (5.13) with π+ while
keeping everything else unchanged. This is certainly possible but the mathemat-
ics will become slightly more complicated because π+ does not preserve the nice
property that π∆ has while π0 does. More precisely, π∆ maps Rd into the ball in
Rd with center 0 and radius µ−1(h(∆)) but π+ may map some x in the ball outside
the ball. For a mathematical reason, we have

|π∆(x)| ≤ µ−1(h(∆)), ∀x ∈ Rd

but we may have
|π+(π∆(x))| > µ−1(h(∆))

for some x ∈ Rd with |x| ≤ µ−1(h(∆)). For example, if x = (µ−1(h(∆)), 0, · · · , 0)T ,
then π+(π∆(x)) = (µ−1(h(∆)),∆, · · · ,∆)T and

|π+(π∆(x))| =
√
(µ−1(h(∆)))2 + (d− 1)∆2 > µ−1(h(∆)).

5.3 Main Theorems
Our aim of this chapter is to show that both NPTEM solution X∆(t) and PPTEM
solution X+

∆(t) converge to the true solution x(t) in Lp for any p ≥ 2 as described
in the following theorems.
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Theorem 5.3.1. Under Assumption 5.1.1, one has

lim
∆→0

E
(

sup
0≤t≤T

|X∆(t)− x(t)|p
)
= 0. (5.17)

Theorem 5.3.2. Under Assumption 5.1.1, one has

lim
∆→0

E
(

sup
0≤t≤T

|X+
∆(t)− x(t)|p

)
= 0. (5.18)

The proof of these theorems are highly technical. To make it more understand-
able, we break it into a number of lemmas in the next subsection and prove the
theorems afterward.

5.3.1 Lemmas

For the mathematical analysis, we need to define a new process

x∆(t) = x(0) +

∫ t

0

[f1(X̄∆(s)) + f2(X∆(s))]ds+

∫ t

0

g(X̄∆(s))dB(s) (5.19)

for t ≥ 0. We observe that x∆(tk) = X̄∆(tk) for all k ≥ 0. Moreover, x∆(t) is an
Itô process with its Itô differential

dx∆(t) = [f1(X̄∆(t)) + f2(X∆(t))]dt+ g(X̄∆(t))dB(t). (5.20)

We also denote the ith component of x∆(t), X∆(t) or X̄∆(t) by x∆,i(t), X∆,i(t) or
X̄∆,i(t), respectively.

By (5.6) and (5.10), it is easy to see from (5.12) that for any q ≥ 2, E|X̄∆(t1)|q <
∞ and then, by induction, E|X̄∆(tk)|q < ∞ for all k ≥ 1. By (5.19) we can then
further see that E|x∆(t)|q < ∞ for all t ≥ 0. But we will show a better result (see
Lemma 5.3.4).

We start with the following lemma which shows that x∆(t) and X̄∆(t) are close
to each other in the sense of Lp.

Lemma 5.3.3. For any ∆ ∈ (0, 1], we have

E|x∆(t)− X̄∆(t)|p ≤ Cp∆
p/2(h(∆))p, ∀t ∈ [0, T ]. (5.21)
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Consequently
lim
∆→0

E|x∆(t)− X̄∆(t)|p = 0. (5.22)

Proof. By (5.10),

|f2(X∆(t))| = |f2(π0(π∆(X̄∆(t))))| ≤ h(∆). (5.23)

Using this and (5.6), we can easily show from (5.19) that

E|x∆(t)|p ≤ Cp(h(∆))p + Cp

∫ t

0

E|X̄∆(s)|pds

for t ∈ [0, T ]. This implies

sup
0≤u≤t

E|x∆(u)|p ≤ Cp(h(∆))p + Cp

∫ t

0

E|X̄∆(s)|pds

≤ Cp(h(∆))p + Cp

∫ t

0

(
sup

0≤u≤s
E|x∆(u)|p

)
ds.

The well-known Gronwall inequality shows

sup
0≤u≤T

E|x∆(u)|p ≤ Cp(h(∆))p. (5.24)

Now, for any t ∈ [0, T ], there is a unique k ≥ 0 such that t ∈ [tk, tk+1) and hence
X̄∆(t) = X̄∆(tk) = x∆(tk). It then follows from (5.19) that

E|x∆(t)− X̄∆(t)|p = E|x∆(t)− x∆(tk)|p

≤ Cp∆
p−1E

∫ t

tk

[|f1(X̄∆(s)|p + |f2(X∆(s))|p]ds+ Cp∆
(p−2)/2

∫ t

tk

|g(X̄∆(s)|pds.

This, along with (5.6), (5.10) and (5.24), implies

E|x∆(t)− X̄∆(t)|p ≤ Cp∆
p(h(∆))p + Cp∆

p/2(h(∆))p ≤ Cp∆
p/2(h(∆))p

which is the first assertion. Noting from (5.8) that ∆p/2(h(∆))p ≤ ∆p/4, we obtain
the second assertion from the first one immediately.

The following lemma shows a much better result than (5.24).
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Lemma 5.3.4. Let Assumption 5.1.1 hold. Then

sup
0<∆≤1

E
(

sup
0≤t≤T

|x∆(t)|p
)
≤ Cp. (5.25)

Proof. Fix any ∆ ∈ (0, 1]. By the Itô formula and the Burkholder-Davis-Gundy
inequality etc., it is almost routine (see, e.g., [19, pp.59-63]) to show that

E
(

sup
0≤u≤t

|x∆(u)|p
)
≤ Cp + Cp

∫ t

0

E
(

sup
0≤u≤s

|x∆(u)|p
)
ds+ J1(t) (5.26)

for t ∈ [0, T ], where

J1(t) = E
(

sup
0≤u≤t

∫ u

0

p|x∆(s)|p−2xT
∆(s)f2(X∆(s))ds

)
.

By (5.10) and (5.11), we have

xT
∆(s)f2(X∆(s)) =

(
[x∆(s)− X̄∆(s)]

T + X̄T
∆(s)

)
f2(π0(π∆(X̄∆(s))))

≤ h(∆)|x∆(s)− X̄∆(s)|.

Hence
J1(t) ≤ E

∫ t

0

p|x∆(s)|p−2h(∆)|x∆(s)− X̄∆(s)|ds.

Using the Young inequality

pap−2b ≤ (p− 2)ap + 2bp/2, ∀a, b ≥ 0,

as well as Lemma 5.3.3, we can then derive that

J1(t) ≤ E
∫ t

0

[
(p− 2)|x∆(s)|p + 2(h(∆))p/2|x∆(s)− X̄∆(s)|p/2

]
ds

≤ (p− 2)

∫ t

0

E|x∆(s)|pds+ 2(h(∆))p/2
∫ T

0

(E|x∆(s)− X̄∆(s)|p)1/2ds

≤ (p− 2)

∫ t

0

E|x∆(s)|pds+ Cp∆
p/4(h(∆))p

≤ (p− 2)

∫ t

0

E
(

sup
0≤u≤s

|x∆(u)|p
)
ds+ Cp,
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where we have used (5.8) in the last step. Substituting this into (5.26) yields

E
(

sup
0≤u≤t

|x∆(u)|p
)
≤ Cp + Cp

∫ t

0

E
(

sup
0≤u≤s

|x∆(u)|p
)
ds.

An application of the Gronwall inequality gives

E
(

sup
0≤u≤T

|x∆(u)|p
)
≤ Cp.

As this holds for any ∆ ∈ (0, 1] while Cp is independent of ∆, we see the required
assertion (5.25).

The following lemma improves the second assertion in Lemma 5.3.3.

Lemma 5.3.5. Let Assumption 5.1.1 hold. Then

lim
∆→0

E
(

sup
0≤t≤T

|x∆(t)− X̄∆(t)|p
)
= 0. (5.27)

Proof. Let m be the integer part of T/∆. Then, by (5.6) and (5.23) as well as
Lemma 5.3.4, we derive that

E
(

sup
0≤t≤T

|x∆(t)− X̄∆(t)|p
)

≤E
(

max
0≤k≤m

sup
tk≤t≤tk+1

∣∣[f1(X̄∆(tk)) + f2(X∆(tk))](t− tk) + g(X̄∆(tk))(B(t)− B(tk))
∣∣p)

≤CpE
(

max
0≤k≤m

[|X̄∆(tk)|p + (h(∆))p]∆p
)
+ J2

≤Cp∆
pE
(

max
0≤k≤m

|x∆(tk)|p + (h(∆))p
)
+ J2

≤Cp∆
p[C + (h(∆))p] + J2 ≤ Cp∆

p(h(∆))p + J2, (5.28)

where
J2 = CpE

(
max
0≤k≤m

[
|X̄∆(tk))|p sup

tk≤t≤tk+1

|B(t)− B(tk)|p
])

.

Now, choose a sufficiently large integer n ≥ 3∨p, dependent on p and T , for which( 2n

2n− 1

)p
(T + 1)p/2n ≤ 2. (5.29)
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But, by the Hölder inequality,

J2 ≤ Cp

{
E
(

max
0≤k≤m

[
|X̄∆(tk))|2n sup

tk≤t≤tk+1

|B(t)− B(tk)|2n
])}p/2n

≤ Cp

( m∑
k=0

E
[
|X̄∆(tk))|2n sup

tk≤t≤tk+1

|B(t)− B(tk)|2n
])p/2n

.

But, by Lemma 5.3.4 (replacing p there by 2n though n here depends on p),
E|X̄∆(tk))|2n is bounded by Cp for every tk. Note also that for each k, X̄∆(tk) is
independent of suptk≤t≤tk+1

|B(t)− B(tk)|2n. We hence have

J2 ≤ Cp

( m∑
k=0

E|X̄∆(tk))|2n E
[

sup
tk≤t≤tk+1

|B(t)− B(tk)|2n
])p/2n

≤ Cp

( m∑
k=0

E
[

sup
tk≤t≤tk+1

|B(t)− B(tk)|2n
])p/2n

.

By the Doob martingale inequality (see, e.g., [19, Theorem 4.8 on p.14], we further
derive that

J2 ≤ Cp

( m∑
k=0

[ 2n

2n− 1

]2n
E|B(tk+1)− B(tk)|2n

)p/2n
≤ Cp

( m∑
k=0

[ 2n

2n− 1

]2n
(2n− 1)!!∆n

)p/2n
≤ Cp

([ 2n

2n− 1

]2n
(T + 1)(2n− 1)!!∆n−1

)p/2n
,

where (2n− 1)!! = (2n− 1)× (2n− 3)× · · · × 3× 1. But

[(2n− 1)!!]1/n ≤ 1

n

n∑
i=1

(2i− 1) = n.

Thus
J2 ≤ Cpn

p/2
( 2n

2n− 1

)p
(T + 1)p/2n∆p(n−1)/2n.

Using (5.29) while noting (n− 1)/2n ≥ 1/3 as we choose n ≥ 3, we obtain

J2 ≤ Cp∆
p/3.
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Substituting this into (5.28) gives

E
(

sup
0≤t≤T

|x∆(t)− X̄∆(t)|p
)
≤ Cp(h(∆))p∆p + Cp∆

p/3 ≤ Cp(h(∆))p∆p/3.

But, by (5.8),
(h(∆))p∆p/3 = ∆p/12(∆1/4h(∆))p ≤ ∆p/12.

We hence obtain
E
(

sup
0≤t≤T

|x∆(t)− X̄∆(t)|p
)
≤ Cp∆

p/12.

This implies the required assertion (5.27).

In the remaining of this section, we need a couple of new notations. For each
r > |x0|, define the stopping times

τr = inf{t ≥ 0 : |x(t)| ≥ r}

and
ρ∆,r = inf{t ≥ 0 : |x∆(t)| ≥ r},

where throughout this thesis we set inf ∅ = ∞. Moreover, we set

θ∆,r = τr ∧ ρ∆,r

and define the closed ball

Sr = {x ∈ Rd : |x| ≤ r}.

The following lemma shows both x(t ∧ θ∆,r) and x∆(t ∧ θ∆,r) are close to each
other.

Lemma 5.3.6. Let Assumption 5.1.1. Then for each r > |x0|, there is a ∆1 =

∆1(r) ∈ (0, 1] such that

E
(

sup
0≤t≤T

|x(t ∧ θ∆,r)− x∆(t ∧ θ∆,r)|p
)
≤ Cr∆

p/2, for all ∆ ∈ (0,∆1], (5.30)

where Cr is a positive constant dependent on r, p, T etc. but independent of ∆.

Proof. Define
f2,r(x) = f2

(
(|x| ∧ r)x/|x|

)
for x ∈ Rd.
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Obviously, f2,r(·) is bounded and globally Lipschitz continuous in Rd but its Lip-
schitz constant depends on r. Consider the SDE

dy(t) = [f1(y(t)) + f2,r(y(t))]dt+ g(y(t))dB(t) (5.31)

on t ≥ 0 with the initial value y(0) = x(0). It has a unique global solution y(t)

on t ≥ 0. For each step size ∆ ∈ (0, 1], we can apply the EM method to the SDE
(5.31). That is, we form the EM solutions Y∆(tk) ≈ y(tk) for tk = k∆ by setting
Y∆(0) = x(0) and computing

Y∆(tk+1) = Y∆(tk) + [f1(Y∆(tk)) + f2,r(Y∆(tk))]∆ + g(Y∆(tk))∆Bk, (5.32)

for k = 0, 1, · · · . Extend the definitions of Y∆(·) from the grid points tk to the
whole t ≥ 0 by setting

Y∆(t) =
∞∑
k=0

Y∆(tk)1[tk,tk+1)(t), (5.33)

and then define the Itô process

y∆(t) = x(0) +

∫ t

0

[f1(Y∆(s)) + f2,r(Y∆(s))]ds+

∫ t

0

g(Y∆(s))dB(s) (5.34)

for t ≥ 0. It is well known (see, e.g., [15, 19]) that

E
(

sup
0≤t≤T

|y(t)− y∆(t)|p
)
≤ Cr∆

p/2. (5.35)

Let us relate y(t) and y∆(t) to x(t) and x∆(t), respectively. It is straightforward
to see that

x(t ∧ τr) = y(t ∧ τr) a.s for all t ∈ [0, T ]. (5.36)

We now choose ∆1 ∈ (0, 1] sufficiently small for µ−1(h(∆1)) ≥ r. Obviously, for
all ∆ ∈ (0,∆1],

f2(π∆(x)) = f2,r(x), ∀x ∈ Sr.

This, together with (5.9), yields

f2(π0(π∆(x))) = f2,r(x), ∀x ∈ Sr.
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Comparing (5.12), (5.19) with (5.32),(5.34), we then see that

x∆(t ∧ ρ∆,r) = y∆(t ∧ ρ∆,r) a.s for all t ∈ [0, T ] (5.37)

provided ∆ ∈ (0,∆1]. Combining (5.35) - (5.37), we obtain the desired assertion
(5.30) immediately.

5.3.2 Proof of Theorem 5.3.1

We are finally in a position to prove our main theorems. We prove Theorem 5.3.1
first in this subsection and then Theorem 5.3.2 next. Obviously,

E
(

sup
0≤t≤T

|X∆(t)− x(t)|p
)
≤ 3p−1(J3(∆) + J4(∆) + J5(∆)), (5.38)

where

J3(∆) = E
(

sup
0≤t≤T

|X∆(t)− X̄∆(t)|p
)
,

J4(∆) = E
(

sup
0≤t≤T

|X̄∆(t)− x∆(t)|p
)
,

J5(∆) = E
(

sup
0≤t≤T

|x∆(t)− x(t)|p
)
.

By Lemma 5.3.5, we already have that J4(∆) → 0 as ∆ → 0. To complete the
proof, we hence only need to show both J3(∆) and J5(∆) tend to 0.

Let us first show J5(∆) → 0. Let ε ∈ (0, 1) be arbitrary. By Lemmas 5.1.2 and
5.3.4,

P(θr,∆ ≤ T ) ≤ P(τr ≤ T ) + P(ρr,∆ ≤ T )

=
1

rp

[
E
(
|x(τr)|p1{τr≤T}

)
+ E

(
|x∆(ρr,∆)|p1{ρr,∆≤T}

)]
≤ 1

rp

[
E
(

sup
0≤t≤T

|x(t)|p
)
+ E

(
sup

0≤t≤T
|x∆(t)|p

)]
≤Cp

rp
.

We can hence choose a real number r = r(ε) so large that

P(θr,∆ ≤ T ) ≤ ε2.
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For this r, by Lemma 5.3.6, we have

E
(

sup
0≤t≤T

|x(t ∧ θ∆,r)− x∆(t ∧ θ∆,r)|p
)
≤ Cr∆

p/2, for all ∆ ∈ (0,∆1],

where ∆1 now depends on ε (as r dependent on ε). Thus, for ∆ ∈ (0,∆1], we
derive

J5(∆) = E
(
1{θr,∆≤T} sup

0≤t≤T
|x∆(t)− x(t)|p

)
+ E

(
1{θr,∆>T} sup

0≤t≤T
|x∆(t)− x(t)|p

)
≤
[
P(θr,∆ ≤ T )

]1/2[E( sup
0≤t≤T

|x∆(t)− x(t)|2p
)]1/2

+ E
(

sup
0≤t≤T

|x∆(t ∧ θr,∆)− x(t ∧ θr,∆)|p
)

≤ Cpε+ Cr∆
p/2.

But, by Lemma 5.3.4 (recalling p is arbitrary once again),[
E
(

sup
0≤t≤T

|x∆(t)− x(t)|2p
)]1/2

≤2(p−1)/2
[
E
(

sup
0≤t≤T

|x∆(t)|2p
)
+ E

(
sup

0≤t≤T
|x(t)|2p

)]1/2
≤ Cp.

We then have
J5(∆) ≤ Cpε+ Cr∆

p/2, ∀∆ ∈ (0,∆1].

This implies
lim sup

∆→0
J5(∆) ≤ Cpε.

As ε is arbitrary, we must have that J5(∆) → 0 as ∆ → 0.
Let us finally show J3(∆) → 0 to complete our proof of Theorem 5.3.1. By

Lemmas 5.1.2 and 5.3.4, we can find a positive number r = r(ε) so large that

P(Ω1) ≥ 1− ε/3, (5.39)

where
Ω1 = {|x(t)| ∨ |x∆(t)| < r for all 0 ≤ t ≤ T}.
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For a sufficiently small δ ∈ (0, 1), define

ζδ,i = inf{t ≥ 0 : xi(t) ≤ δ}, 1 ≤ i ≤ d.

By Lemma 5.1.3,

P(ζδ,i ≤ T ) = E
(
1{ζδ,i≤T}

xi(ζδ,i)− 1− log(xi(ζδ,i))

δ − 1− log(δ)

)
≤ 1

δ − 1− log(δ)
E
(

sup
0≤t≤T

[xi(t)− 1− log(xi(t))]
)
≤ C

δ − 1− log(δ)
.

Noting that δ − 1− log(δ) → ∞ as δ → 0, we can find a δ = δ(ε) so small that

P(ζδ,i ≤ T ) ≤ ε

3d
, 1 ≤ i ≤ d.

Set ζδ = min1≤i≤d ζδ,i. Then

P(ζδ ≤ T ) ≤ P
(
∪d

i=1 {ζδ,i ≤ T}
)
≤

d∑
i=1

P(ζδ,i ≤ T ) ≤ ε/3.

So P(ζδ > T ) ≥ 1− ε/3. This implies

P(Ω2) ≥ 1− ε/3, (5.40)

where
Ω2 =

{
min
1≤i≤d

inf
0≤t≤T

xi(t) > δ
}
.

On the other hand, for the pair of chosen r and δ, define

Ω∆ =
{

sup
0≤t≤T

|x(t ∧ θ∆,r)− x∆(t ∧ θ∆,r)| < δ/2
}
.

By Lemma 5.3.6 and the Chebyshev inequality, we see that there is a ∆1 = ∆1(ε)

(as r = r(ε)) such that µ−1(h(∆1)) ≥ r and

P(Ωc
∆) = P

(
sup

0≤t≤T
|x(t ∧ θ∆,r)− x∆(t ∧ θ∆,r)| ≥ δ/2

)
≤ Cr∆

p/2

(δ/2)p
, ∀∆ ∈ (0,∆1].
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Consequently, there is a ∆2 = ∆2(ε) ∈ (0,∆1] such that

P(Ω∆) ≥ 1− ε/3, ∀∆ ∈ (0,∆2]. (5.41)

Set Ω3,∆ = Ω1 ∩ Ω2 ∩ Ω∆. Combining (5.39) - (5.41) gives

P(Ω3,∆) ≥ 1− ε, ∀∆ ∈ (0,∆2]. (5.42)

From now on, we consider any step size ∆ ∈ (0,∆2]. Note that for every ω ∈ Ω3,∆,
θ∆,r > T ,

sup
0≤t≤T

|X̄∆(t)| ≤ sup
0≤t≤T

|x∆(t)| ≤ r ≤ µ−1(h(∆1)) ≤ µ−1(h(∆)), (5.43)

and

inf
0≤t≤T

X̄∆,i(t) ≥ inf
0≤t≤T

x∆,i(t) ≥ inf
0≤t≤T

xi(t)− sup
0≤t≤T

|xi(t)− x∆,i(t)|

> δ − sup
0≤t≤T

|x(t)− x∆(t)| > δ − δ/2 = δ/2. (5.44)

In other words, for every ω ∈ Ω3,∆, X̄∆(t) ∈ Rd
+ with |X̄∆(t)| ≤ µ−1(h(∆)), whence

X∆(t) = π0(π∆(X̄∆(t))) = X̄∆(t) for all t ∈ [0, T ]. Consequently,

J3(∆) = E
(
1Ωc

3,∆
sup

0≤t≤T
|X∆(t)− X̄∆(t)|p

)
≤
[
P(Ωc

3,∆)
]1/2[E( sup

0≤t≤T
|X∆(t)− X̄∆(t)|2p

)]1/2
≤ 2p

√
ε
[
E
(

sup
0≤t≤T

|x∆(t)|2p
)]1/2

≤ Cp

√
ε

provided ∆ ∈ (0,∆2], where Lemma 5.3.4 has been used once again. As ε is
arbitrary, we must have that J3(∆) → 0 as ∆ → 0. This completes our proof of
Theorem 5.3.1.
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5.3.3 Proof of Theorem 5.3.2

Once again, it is obvious that

E
(

sup
0≤t≤T

|X+
∆(t)− x(t)|p

)
≤ 3p−1(J4(∆) + J5(∆) + J6(∆)), (5.45)

where J4(∆), J5(∆) have been defined before and

J6(∆) = E
(

sup
0≤t≤T

|X+
∆(t)− X̄∆(t)|p

)
.

Clearly, all we need to do is to show that J6(∆) → 0 as ∆ → 0. Let ∆ ∈
(0,∆2 ∧ (δ/2)] be arbitrary. We see from (5.43) and (5.44) that for every ω ∈
Ω3,∆, X̄∆(t) ∈ Rd

+ with |X̄∆(t)| ≤ µ−1(h(∆)) and inf0≤t≤T X̄∆,i(t) > δ/2, whence
X+

∆(t) = π+(π∆(X̄∆(t))) = X̄∆(t) for all t ∈ [0, T ]. Consequently,

J6(∆) = E
(
1Ωc

3,∆
sup

0≤t≤T
|X+

∆(t)− X̄∆(t)|p
)

≤
[
P(Ωc

3,∆)
]1/2[E( sup

0≤t≤T
|X+

∆(t)− X̄∆(t)|2p
)]1/2

≤ 2p
√
ε
[
E
(

sup
0≤t≤T

|X+
∆(t)|

2p
)
+ E

(
sup

0≤t≤T
|X̄∆(t)|2p

)]1/2
.

But, by Lemma 5.3.4,
E
(

sup
0≤t≤T

|X̄∆(t)|2p
)
≤ Cp.

On the other hand, for any x ∈ Rd,

|π+(x)|2p =
( d∑

i=1

(∆ ∨ xi)
2
)p

≤
( d∑

i=1

(∆2 + |xi|2)
)p

≤ (d+ |x|2)p ≤ dp−1(dp + |x|2p).

So

|X+
∆(t)|

2p = |π+(π∆(X̄∆(t)))|2p ≤ 2pdp−1(dp + |π∆(X̄∆(t))|2p)

≤ dp−1(dp + |X̄∆(t)|2p).
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Consequently
E
(

sup
0≤t≤T

|X+
∆(t)|

2p
)
≤ Cp.

In other words, we have showed that

J6(∆) ≤ Cp

√
ε

provided ∆ ∈ (0,∆2 ∧ (δ/2)]. As ε is arbitrary, we must have that J6(∆) → 0 as
∆ → 0. This completes our proof of Theorem 5.3.2.

5.4 An Example with Simulations
To illustrate as well as to verify our new PPTEM scheme, we consider the scalar
stochastic Lotka–Volterra competitive model

dx(t) = x(t)[(b− ax(t))dt+ σdB(t)] (5.46)

for a single species, where individuals within the species are competitive, x(t) ∈
(0,∞), b, a, σ are all positive numbers. The main reason we discuss this model is
because it has an explicit solution so that we can compare it with the NPTEM
numerical solution in order to verify the NPTEM scheme.

We write the Lotka–Volterra model (5.46) as the SDE (5.5) in R by definingf1(x) = bx, f2(x) = −ax2, g(x) = σx for x ≥ 0,

f1(x) = f2(x) = g(x) = 0 for x < 0.
(5.47)

Define µ : R+ → R+ by µ(u) = au2 for u ≥ 1. Its inverse function of µ : [a,∞) →
R+ has the form µ−1(u) =

√
u/a. Let ĥ = 1 ∨ a ∧ x(0) and define the strictly

decreasing function h : (0, 1] → [µ(1),∞) by h(∆) = ĥ∆−θ for some θ ∈ (0, 1/4].
Hence µ−1(h(∆)) =

√
ĥ/a∆θ. The mapping π+(π∆(·)) : R →

[
∆,

√
ĥ/a∆θ

]
has

the form
π+(π∆(x)) = (∆ ∨ x) ∧

√
ĥ/a∆θ, for x ∈ R.

We first apply the NPTEM to the Lotka–Volterra model (5.46) (namely the SDE
(5.5) with f1, f2 and g being defined by (5.47)). That is, set X̄∆(0) = X∆(0) = x(0)
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and compute

X̄∆(tk+1) = X̄∆(tk) + [f1(X̄∆(tk)) + f2(X∆(tk))]∆ + g(X̄∆(tk))∆Bk, (5.48)

X∆(tk+1) = (0 ∨ X̄∆(tk+1)) ∧
√

ĥ/a∆θ (5.49)

for k = 0, 1, · · · , and then extend the definitions of X∆(·) from the grid points tk

to the whole t ≥ 0 by (5.15). The PPTEM solution is then defined by

X+
∆(t) = (∆ ∨X∆(t)) ∧

√
ĥ/a∆θ, t ≥ 0.

By Theorem 5.3.2, we can conclude that X+
∆(T ) converges to x(t) defined by (5.51)

in the sense that

lim
∆→0

E
(

sup
0≤t≤T

|X+
∆(t)− x(t)|p

)
= 0. (5.50)

Given an initial value x(0) > 0, the solution x(t) remains to be positive. Let
z(t) = 1/x(t). By the Itô formula,

dz(t) = [a+ (σ2 − b)z(t)]dt− σz(t)dB(t).

By the variation-of-constants formula (see, e.g., [19, Theorem 4.1 on p.96]),

z(t) = exp
(
− [b− 0.5σ2]t− σB(t)

)(
z(0) + a

∫ t

0

exp
(
[b− 0.5σ2]s+ σB(s)

)
ds
)
.

This gives the explicit solution of (5.46):

x(t) = exp
(
[b− 0.5σ2]t+ σB(t)

)( 1

x(0)
+ a

∫ t

0

exp
(
[b− 0.5σ2]s+ σB(s)

)
ds
)−1

.

(5.51)
Although the integration in this formula cannot be calculated analytically, it can
be approximated numerically by the Riemann sum. More precisely, define

ϕ(t) = exp
(
[b− 0.5σ2]t+ σB(t)

)
, 0 ≤ t ≤ T. (5.52)

In the remaining of this example, we set ∆ = T/N for an integer N > T and



Chapter 5 92

tk = k∆ for 0 ≤ k ≤ N . We approximate
∫ tk
0

ϕ(s)ds by

Ψ∆(tk) =
k−1∑
i=0

0.5∆[ϕ(ti) + ϕ(ti+1)], 0 ≤ k ≤ N (5.53)

and of course set Ψ(t0) = 0. We then form the discrete-time Riemann approximate
solutions Y∆(tk) ≈ x(tk) by

Y∆(tk) = ϕ(tk)/(1/x(0) + aΨ∆(tk)), 0 ≤ k ≤ N. (5.54)

We will show in appendix A that

lim
N→∞

E
(

sup
0≤k≤N

|Y∆(tk)− x(tk)|2
)
= 0. (5.55)

Although it is sufficient to compare our new PPTEM solutions X+
∆(tk) with

Y∆(tk), we will do better by comparing it with the well-known backward Euler-
Maruyama (BEM) scheme (see, e.g., [10]) as well. To be more precise, the BEM
applied to the Lotka–Volterra model is to form the discrete-time BEM solutions
Z∆(tk) ≈ x(tk) by setting Z∆(0) = x(0) and computing

Z∆(tk+1) = Z∆(tk) + [f1(Z∆(tk)) + f2(Z∆(tk+1))]∆ + g(Z∆(tk))∆Bk

for k ≥ 0. It is known that

lim
N→∞

E
(

sup
0≤k≤N

|Z∆(tk)− x(tk)|2
)
= 0.

For numerical simulations, we let b = 10, a = 1, σ = 0.5, x(0) = 6 and choose
θ = 1/4, ĥ = 1000, whence µ−1(h(∆)) =

√
ĥ/∆θ. The simulations in Figure

4.1 show the sample paths of the solution for t ∈ [0, 10] by three schemes of the
PPTEM, Riemann and BEM. The simulations in the left graph use ∆ = 10−3

while in the right ∆ = 10−4.
The simulations show that three sample paths generated by the three schemes

are very close to each other. More precisely, the simulations are designed to pro-
duce the squares of the max differences between PPTEM and Riemann as well as
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Figure 4.1: The computer simulations of the sample paths of the solution to equation
(5.46) by PPTEM, Riemann and BEM. Left: ∆ = 10−3. Right: ∆ = 10−4.

BEM and Riemann:

max
0≤k≤104

|X+
∆(tk)− Y∆(tk)|2 = 0.002809 and sup

0≤k≤104
|Z∆(tk)− Y∆(tk)|2 = 0.005086

when ∆ = 10−3; while

max
0≤k≤105

|X+
∆(tk)−Y∆(tk)|2 = 0.0002235 and sup

0≤k≤105
|Z∆(tk)−Y∆(tk)|2 = 0.0002527
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when ∆ = 10−4. These seem to indicate that PPTEM is closer to Riemann
than BEM. To confirm this, we repeat the above simulations 100 times (namely,
simulate 100 sample paths for each of the three scheme) and produce the mean
squares (MS) of the max differences:

1

100

100∑
j=1

(
sup

0≤k≤N
|X+,j

∆ (tk)− Y j
∆(tk)|

2
)

and 1

100

100∑
j=1

(
sup

0≤k≤N
|Zj

∆(tk)− Y j
∆(tk)|

2
)
,

where j stands for the jth sample paths. To reduce the time of simulations without
losing any necessary illustration, we only simulate the paths for t ∈ [0, 1] but
we make comparisons for ∆ = 10−2, 10−3, 10−4 and 10−5. The outcomes of the
simulations are shown in Figure 4.2. They show that our new PPTEM solutions
are closer to Riemann solutions than BEM slightly. They also indicates that our
new PPTEM solutions converge to the true solution with the rate of order 0.5,
though we have not proved this in theory yet but we will tackle it in the future.



Chapter 6

Positive Preserving Truncated
Euler-Maruyama Numerical
Method for Stochastic Delay
Differential Equations

6.1 Introduction
In the previous chapter, we introduced modifications to the truncated EM method,
namely PPTEM and NPTEM, for the stochastic Lotka-Volterra model, which de-
scribes the population growth of d interacting species. In reality, ecological systems
often exhibit time lags and delayed responses to changes in population dynam-
ics, resource availability, environmental conditions, and other factors. The delay
Lotka-Volterra model is better suited to capture these real-world complexities by
accounting for delays in predator-prey interactions and other ecological processes,
see [1, 19].

In this chapter, we apply the ideas from Chapter 5 to establish the PPTEM
and NPTEM numerical solutions for the stochastic delay Lotka–Volterra model.
We also adopt the concepts of the variable time delay from Chapter 4 to the
delay equations. Our approach follows a similar procedure as before, starting with
NPTEM and then PPTEM. Nonetheless, it’s worth noting that we encounter the
need for slightly stronger conditions, which may be subject to relaxation in future
research, to establish the convergence of these two models.

95
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Now, let us introduce the d-dimensional stochastic delay Lotka–Volterra model
(see, e.g., [1, 19])

dx(t) = diag(x1(t), x2(t), ..., xd(t))[(b− Ax(t)− Āx(δ(t)))dt+ σdB(t)], (6.1)

where x(t) = (x1(t), · · · , xd(t))
T is the state of the d interacting species and the

system parameters b = (b1, · · · , bd)T ∈ Rd, σ = (σ1, · · · , σd)
T ∈ Rd, A = (aij)d×d ∈

Rd×d, Ā = (āij)d×d ∈ Rd×d. We define the initial condition {x(θ) : −τ ≤ θ ≤ 0} =

ξ ∈ C
(
[−τ, 0] : Rd

+

)
and −τ ≤ δ(t) ≤ t (including condition that there are γ > 0

and β ∈ (0, 1], |ξ(u)− ξ(v)| ≤ γ |u− v|β for u, v ∈ [−τ, 0]).

Assumption 6.1.1. All elements of A and Ā are nonnegative, namely aij ≥ 0

and āij ≥ 0 for all 1 ≤ i, j ≤ d.

It is known that, to confirm the existence and uniquness of equation (6.1), it is
sufficient to assume only A are nonnegative with the initial value {x(θ) : −τ ≤ θ ≤ 0}.
However, in this thesis, we add a condition Ā is nonnegative to Assumption 6.1.1
as well to help us model the PPTEM and NPTEM for equation 6.1, see, e.g., [19].

Throughout this chapter, we set

b′ = max
1≤i≤d

|bi|, σ′ = max
1≤i≤d

|σi|, a′ = max
1≤i,j≤d

aij, ā′ = max
1≤i,j≤d

āij. (6.2)

From this point forward, we choose an arbitrary initial data x(θ) ∈ Rd
+ for θ ∈

[−τ, 0] and naturally, x(t), represent the corresponding solution. We will also select
two real numbers T > 0 and p ≥ 2 arbitrarily. Recalling that we also continue to
use C and Cp to stand for generic positive real constants independent on the step
size ∆. Now, we introduce two lemmas which will serve a valuable purpose in this
chapter.

Lemma 6.1.2. Under Assumption 6.1.1, we then have

E
(

sup
−τ≤t≤T

|x(t)|p
)

≤ Cp. (6.3)

Proof. As we know that x(t) ∈ Rd
+, by applying the Itô formula and Assumption
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6.1.1, we can easily show from (6.1) that

d(xi(t))
p ≤

[
p (xi(t))

p−1

(
bixi(t)−

d∑
j=1

aijxi(t)xj(t)−
d∑

j=1

āijxi(t)xj(δ(t))

)

+
1

2
p(p− 1)σ2

i ](xi(t))
p

]
dt+ pσi(xi(t))

pdB(t)

≤ p[b̄+ 0.5(p− 1)σ̄2](xi(t))
pdt+ pσi(xi(t))

pdB(t),

for t ≥ 0 and every i = 1, · · · , d. By the Burkholder-Davis-Gundy inequality, it is
straightforward to show that

E
(

sup
−τ≤u≤t

(xi(u))
p
)
≤ Cp + Cp

∫ t

0

E
(

sup
−τ≤u≤s

(xi(u))
p
)
ds, ∀t ∈ [0, T ].

An application of the Gronwall inequality gives

E
(

sup
−τ≤u≤T

(xi(u))
p
)
≤ Cp.

This implies the required assertion (6.3).

Lemma 6.1.3. Under Assumption 6.1.1,

E
(

sup
0≤t≤T

[xi(t)− 1− log(xi(t))]
)
≤ C, 1 ≤ i ≤ d. (6.4)

Proof. For each i, by the Itô formula, we have

d[xi(t)− 1− ln(xi(t))]

≤
(
− bi + 0.5σ2

i + bixi(t) +
d∑

j=1

aijxj(t) +
d∑

j=1

āijxj(δ(t))
)
dt+ σi(xi(t)− 1)dB(t).

By Lemma 6.1.2, the first and second moments of the solution is bounded (by C)
for t ∈ [0, T ]. Applying the Burkholder–Davis–Gundy inequality again, we can
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derive the boundary in a manner similar to that in Theorem 5.1.3, that is

E
(

sup
0≤t≤T

[xi(t)− 1− log(xi(t))]
)
≤C + E

(
sup

0≤t≤T

∫ t

0

σi(xi(s)− 1)dB(s)
)

≤C + 3E
(∫ T

0

|σi(xi(s)− 1)|2ds
)1/2

≤C + 3σ̄
(∫ T

0

2(E|xi(s)|2 + 1)ds
)1/2

≤C + 3σ̄
√

2T (C + 1),

which is the desired assertion (6.4).

6.2 Definitions of New Numerical Schemes
We are now going to develop two numerical methods: NPTEM for the first and
PPTEM for the second.

6.2.1 Nonnegativity preserving truncated EM method

To define the NPTEM scheme, it would be advantageous to work with the SDDE
(6.1) in Rd rather than Rd

+. We, therefore, must expand the definition of the SDDE
coefficients from Rd

+ to Rd. These coefficients are denoted as follows:

F1(x) = (b1x1, · · · , bdxd)
T , F2(x) = −diag(x1, · · · , xd)Ax,

F3(x, y) = −diag(x1, · · · , xd)Āy, G(x) = (σ1x1, · · · , σdxd)
T

for x ∈ R̄d
+. Define a mapping π0 : Rd → R̄d

+ by

π0(x) = (x1 ∨ 0, · · · , xd ∨ 0)T for x ∈ Rd.

Define f1, f2, g : Rd → Rd by

f1(x) = F1(π0(x)), f2(x) = F2(π0(x)),f3(x, y) = F3(π0(x), π0(y)) g(x) = G(π0(x))

for x ∈ Rd. Obviously, f1, f2, f3, g represent the extended functions of F1, F2, F3, G,
respectively. Considering that the solution of the SDDE (6.1) obtains the property
that x(t) ∈ Rd

+ a.s. for all t ≥ 0, we can express the SDDE (6.1) as the following
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equation

dx(t) = [f1(x(t)) + f2(x(t)) + f3(x(t), x(δ(t))]dt+ g(x(t))dB(t) (6.5)

in Rd. We observe that f1 and g are linearly bounded, namely

|f1(x)| ≤ b̄|x|, |g(x)| ≤ σ̄|x|, ∀x ∈ Rd, (6.6)

while f2 and f3 are not.
We, then, choose a strictly increasing continuous function µ : [1,∞) → R+

such that µ(u) → ∞ as u → ∞ and

sup
x∈Rd, |x|≤u

|f2(x)| = sup
x∈R̄d

+, |x|≤u

|F2(x)| ≤ µ(u), (6.7)

and sup
x,y∈Rd, |x|∨|y|≤u

|f3(x, y)| = sup
x,y∈R̄d

+, |x|∨|y|≤u

|F3(x, y)| ≤ µ(u). (6.8)

for all u ≥ 1 Denote by µ−1 the inverse function of µ and we see that µ−1 is a strictly
increasing continuous function from [µ(1),∞) to R+. We also choose a constant
ĥ ≥ 1 ∨ µ(1) ∨ |x(0)| and a strictly decreasing function h : (0, 1] → [µ(1),∞) such
that

lim
∆→0

h(∆) = ∞ and ∆1/4h(∆) ≤ ĥ, ∀∆ ∈ (0, 1]. (6.9)

Note that for x ∈ R̄d
+,

|F2(x)|2 =
d∑

i=1

x2
i

(
d∑

j=1

aijxj

)2

≤
d∑

i=1

x2
i

(
d∑

j=1

a2ij

)
|x|2 ≤ |A|2|x|4,

|F3(x, y)|2 =
d∑

i=1

x2
i

(
d∑

j=1

aijyj

)2

≤
d∑

i=1

x2
i

(
d∑

j=1

a2ij

)
|y|2 ≤ |A|2|x|2|y|2

We can hence let µ(u) = |A|u2, while let h(∆) = ĥ∆−θ for some θ ∈ (0, 1/4]. In
other words, there are lots of choices for µ(·) and h(·).

For a given step size ∆ ∈ (0, 1], let us define the truncation mapping π∆ : Rd →
{x ∈ Rd : |x| ≤ µ−1(h(∆))} by

π∆(x) =
(
|x| ∧ µ−1(h(∆))

) x

|x|
,
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where we set x
|x| = 0 when x = 0. In other word, π∆ maps x to itself or µ−1(h(∆)) x

|x|

based on whether |x| ≤ µ−1(h(∆)) or not. It is beneficial to note that for any
x, y ∈ Rd,

f2(π0(π∆(x))) = F2(π0(π0(π∆(x)))) = F2(π0(π∆(x))) = f2(π∆(x)), (6.10)
f3(π0(π∆(x)), π0(π∆(y))) = F3(π0(π0(π∆(x))), π0(π0(π∆(y))))

= F3(π0(π∆(x)), π0(π∆(y)))

= f3(π∆(x), π∆(y)). (6.11)

Hence

|f2(π0(π∆(x)))| = |f2(π∆(x))| ≤ µ(µ−1(h(∆))) = h(∆), (6.12)
|f3(π0(π∆(x)), π0(π∆(y)))| = |f3(π∆(x), π∆(y))| ≤ µ(µ−1(h(∆))) = h(∆). (6.13)

Moreover, noting π0(π∆(x)) = (|x| ∧ µ−1(h(∆)))π0(x)
|x| , we also have

xTf2(π0(π∆(x))) = xTf2(π∆(x)) = (π0(x))
TF2(π0(π∆(x))) ≤ 0, (6.14)

xTf3(π0(π∆(x)), π0(π∆(y))) = xTf3(π∆(x), π∆(y))

= (π0(x))
TF3(π0(π∆(x)), π0(π∆(y))) ≤ 0. (6.15)

From now on, let ∆ be a faction of τ , that means ∆ = τ
M

for some positive
integer M , and also define tk = k∆ for all k = −M,−M + 1, · · · , 0, 1, 2, · · · . We
can now form the discrete-time NPTEM solutions X0

∆(tk) ≈ x(tk) for tk = k∆ by
setting X0

∆(tk) = X̄∆(tk) = X∆(tk) = x(tk) = ξ(tk) for k = −M,−M + 1, · · · , 0.
Then, we compute

X̄∆(tk+1) = X̄∆(tk) + [f1(X̄∆(tk)) + f2(X∆(tk)) + f3(X∆(tk), X∆(I∆[δ(tk)]∆))]∆

+ g(X̄∆(tk))∆Bk, (6.16)
X∆(tk+1) = π0(π∆(X̄∆(tk+1))), (6.17)

for k = 0, 1, · · · , where ∆Bk = B(tk+1) − B(tk). Please note that X̄∆(tk+1) is an
intermediate step in order to get the NPTEM solution X0

∆(tk+1). We extend the
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above definitions from the grid points tk to the whole t ≥ 0 by defining

X̄∆(t) =
∞∑
k=0

X̄∆(tk)1[tk,tk+1)(t) (6.18)

z1(t) =
∞∑
k=0

X∆(tk)1[tk,tk+1)(t) (6.19)

z2(t) =
∞∑
k=0

X∆(I∆[δ(tk)]∆)1[tk,tk+1)(t) (6.20)

for t ≥ 0. Clearly, X0
∆(t) = z1(t) = π0(π∆(X̄∆(t))) so it preserves the nonnegativ-

ity.
We define one more truncation mapping π+ : Rd → Rd

+ by

π+(x) = (∆ ∨ x1, · · · ,∆ ∨ xd)
T , x ∈ Rd.

Hence, the Positive preserving truncated EM (PPTEM) solution is defined by

X+
∆(t) = π+(π∆(X̄∆(t))), t ≥ 0, (6.21)

where X̄∆(t) has already been defined by (6.18).

6.3 Main Results

6.3.1 Statement of main results

The objective of this section is to show that both NPTEM solution X0
∆(t) and

PPTEM solution X+
∆(t), which are defined in the previous section converge to the

true solution x(t) in Lp for any p ≥ 2.

Theorem 6.3.1. Under Assumption 6.1.1, it holds that

lim
∆→0

E
(

sup
0≤t≤T

|X0
∆(t)− x(t)|p

)
= 0. (6.22)

Theorem 6.3.2. Under Assumption 6.1.1, it holds that

lim
∆→0

E
(

sup
0≤t≤T

|X+
∆(t)− x(t)|p

)
= 0. (6.23)
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For clarity, we will divide this process into multiple lemmas in the following
subsection and then proceed to prove the theorems.

6.3.2 Lemmas

For the mathematical analysis, we define a new process starting with x∆(t) = ξ(t)

for t ∈ [−τ, 0] and

x∆(t) = ξ(0) +

∫ t

0

[f1(X̄∆(s)) + f2(z1(s)) + f3(z1(s), z2(s))]ds+

∫ t

0

g(X̄∆(s))dB(s)

(6.24)
for t ≥ 0. It’s worth to noting that x∆(tk) = X̄∆(tk) for all k ≥ 1. Additionally,
x∆(t) is an Itô process with its Itô differential

dx∆(t) = [f1(X̄∆(t)) + f2(z1(t)) + f3(z1(t), z2(t)]dt+ g(X̄∆(t))dB(t). (6.25)

We also use the notation of the ith component of x∆(t) or X̄∆(t) by x∆,i(t) or
X̄∆,i(t), respectively.

From (6.6) and (6.12), it is straightforward to deduce from (6.16) that, for any
q ≥ 2, E|X̄∆(tk)|q < ∞ for all k ≥ 1. By (6.24), we can consequently establish
that E|x∆(t)|q < ∞ for all t ≥ 0. However, the better result will be obtained (see
Lemma 6.3.4).

Before showing Lemma 6.3.4, we will start by proving that x∆(t) and X̄∆(t)

are close to each other in the sense of Lp.

Lemma 6.3.3. For any ∆ ∈ (0, 1], we have

E|x∆(t)− X̄∆(t)|p ≤ Cp∆
p/2(h(∆))p, ∀t ∈ [0, T ]. (6.26)

Consequently
lim
∆→0

E|x∆(t)− X̄∆(t)|p = 0. (6.27)

Proof. By (6.12) and (6.13), we have

|f2(z1(t))| = |f2(π0(π∆(X̄∆(t))))| ≤ h(∆), (6.28)
|f3(z1(t), z2(t))| =

∣∣f3(π0(π∆(X̄∆(t))), π0(π∆(X̄∆(I∆[δ(t)]∆))))
∣∣ ≤ h(∆). (6.29)
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We can easily show that

sup
−τ≤u≤T

E|x∆(u)|p ≤ Cp(h(∆))p. (6.30)

Now, for any t ∈ [0, T ], there is a unique k ≥ 0 such that t ∈ [tk, tk+1) and hence
X̄∆(t) = X̄∆(tk) = x∆(tk), z1(t) = π0(π∆(X̄∆(tk))), z2(t) = π0(π∆(X̄∆(I∆[δ(tk)]∆))).
It then follows from (6.24) that

E|x∆(t)− X̄∆(t)|p = E|x∆(t)− x∆(tk)|p

≤ Cp∆
p−1E

[∫ t

tk

(∣∣f1(X̄∆(s))
∣∣p + |f2(z1(s))|p + |f3(z1(s), z2(s))|p

)
ds

+ Cp∆
p−2
2

∫ t

tk

|g(X̄∆(s))|pds

]
.

This, along with (6.6), (6.12), (6.13) and (6.30), implies

E|x∆(t)− X̄∆(t)|p ≤ Cp∆
p(h(∆))p + Cp∆

p
2 (h(∆))p ≤ Cp∆

p
2 (h(∆))p

which is the first assertion. Noting from (6.9) that ∆
p
2 (h(∆))p ≤ ∆

p
4 , we obtain

the second assertion from the first one immediately.

Now, we can state the lemma which is the better result than (6.30).

Lemma 6.3.4. Let Assumption 6.1.1 hold. Then

sup
0<∆≤1

E
(

sup
0≤t≤T

|x∆(t)|p
)
≤ C. (6.31)

Proof. Fix any ∆ ∈ (0, 1]. By the Itô formula and the Burkholder-Davis-Gundy
inequality, it is staightforward to show that

E
(

sup
0≤u≤t

|x∆(u)|p
)
≤ Cp + Cp

∫ t

0

E
(

sup
0≤u≤s

|x∆(u)|p
)
ds+ J1(t) + J2(t) (6.32)
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for t ∈ [0, T ], where

J1(t) = E
(

sup
0≤u≤t

∫ u

0

p|x∆(s)|p−2xT
∆(s)f2(z1(s))ds

)
,

J2(t) = E
(

sup
0≤u≤t

∫ u

0

p|x∆(s)|p−2xT
∆(s)f3(z1(s), z2(s))ds

)
.

By applying (6.12), (6.14) and Lemma 6.3.3, we can derive J1 in the same way as
Lemma 5.3.4 was prove that

J1(t) ≤ (p− 2)

∫ t

0

E
(

sup
0≤u≤s

|x∆(u)|p
)
ds+ Cp,

By (6.13) and (6.15), we have

xT
∆(s)f3(z1(s), z2(s))

=
(
[x∆(s)− X̄∆(s)]

T + X̄T
∆(s)

)
f3(π0(π∆(X̄∆(s))), π0(π∆(X̄∆(I∆[δ(s)]∆))))

≤ h(∆)|x∆(s)− X̄∆(s)|.

Then J2 can be derived that

J2(t) ≤ (p− 2)

∫ t

0

E
(

sup
0≤u≤s

|x∆(u)|p
)
ds+ Cp.

Substituting these into (6.32) yields

E
(

sup
0≤u≤t

|x∆(u)|p
)
≤ Cp + Cp

∫ t

0

E
(

sup
0≤u≤s

|x∆(u)|p
)
ds.

By the Gronwall inequality, we can conclude

E
(

sup
0≤u≤T

|x∆(u)|p
)
≤ Cp.

As this holds for any ∆ ∈ (0, 1] while Cp is independent of ∆, we see the required
assertion (6.31).

The following result mimics Lemma 5.3.5, demonstrating the improvement of
the second assertion in Lemma 6.3.3. We, however, present the proof as follows.
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Lemma 6.3.5. Let Assumption 6.1.1 hold. Then

lim
∆→0

E
(

sup
0≤t≤T

|x∆(t)− X̄∆(t)|p
)
= 0. (6.33)

Proof. Let ℓ be an integer such that tℓ ≤ T < tℓ+1. Then, by (6.6) and (6.28) as
well as Lemma 6.3.4, we derive that

E
(

sup
0≤t≤T

|x∆(t)− X̄∆(t)|p
)

≤ E
(
max
0≤k≤ℓ

sup
tk≤t≤tk+1

∣∣∣[f1(X̄∆(tk)) + f2(X∆(tk)) + f3(X∆(tk), X∆(I∆[δ(tk)]∆))](t− tk)

+ g(X̄∆(tk))(B(t)− B(tk))
∣∣∣p)

≤ CpE
(
max
0≤k≤ℓ

[|X̄∆(tk)|p + (h(∆))p]∆p
)
+ J3

≤ Cp∆
pE
(
max
0≤k≤ℓ

|x∆(tk)|p + (h(∆))p
)
+ J3

≤ Cp∆
p[Cp + (h(∆))p] + J3 ≤ Cp∆

p(h(∆))p + J3, (6.34)

where
J3 = CpE

(
max
0≤k≤ℓ

[
|X̄∆(tk))|p sup

tk≤t≤tk+1

|B(t)− B(tk)|p
])

.

Now, choose a sufficiently large integer n ≥ 3∨p, dependent on p and T , for which( 2n

2n− 1

)p
(T + 1)p/2n ≤ 2. (6.35)

But, by the Hölder inequality,

J3 ≤ C
{
E
(
max
0≤k≤ℓ

[
|X̄∆(tk))|2n sup

tk≤t≤tk+1

|B(t)− B(tk)|2n
])}p/2n

≤ C
( ℓ∑

k=0

E
[
|X̄∆(tk))|2n sup

tk≤t≤tk+1

|B(t)− B(tk)|2n
])p/2n

.

But, by Lemma 6.3.4 (replacing p there by 2n though n here depends on p),
E|X̄∆(tk))|2n is bounded by C for every tk. Note also that for each k, X̄∆(tk) is



Chapter 6 106

independent of suptk≤t≤tk+1
|B(t)− B(tk)|2n. We hence have

J3 ≤ C
( ℓ∑

k=0

E|X̄∆(tk))|2n E
[

sup
tk≤t≤tk+1

|B(t)− B(tk)|2n
])p/2n

≤ C
( ℓ∑

k=0

E
[

sup
tk≤t≤tk+1

|B(t)− B(tk)|2n
])p/2n

.

By the Doob martingale inequality, we can derive that

J3 ≤ C
( ℓ∑

k=0

[ 2n

2n− 1

]2n
E|B(tk+1)− B(tk)|2n

)p/2n
≤ C

( ℓ∑
k=0

[ 2n

2n− 1

]2n
(2n− 1)!!∆n

)p/2n
≤ C

([ 2n

2n− 1

]2n
(T + 1)(2n− 1)!!∆n−1

)p/2n
,

where (2n− 1)!! = (2n− 1)× (2n− 3)× · · · × 3× 1. But

[(2n− 1)!!]1/n ≤ 1

n

n∑
i=1

(2i− 1) = n.

Thus
J3 ≤ Cnp/2

( 2n

2n− 1

)p
(T + 1)p/2n∆p(n−1)/2n.

Using (6.35) while noting (n− 1)/2n ≥ 1/3 as we choose n ≥ 3, we obtain

J3 ≤ C∆p/3.

Substituting this into (6.34) gives

E
(

sup
0≤t≤T

|x∆(t)− X̄∆(t)|p
)
≤ C(h(∆))p∆p + C∆p/3 ≤ C(h(∆))p∆p/3.

But, by (6.9),
(h(∆))p∆p/3 = ∆p/12(∆1/4h(∆))p ≤ ∆p/12.

We hence obtain
E
(

sup
0≤t≤T

|x∆(t)− X̄∆(t)|p
)
≤ C∆p/12.
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This implies the required assertion (6.33).

In the remaining of this section, we set a few notations. For each r > |x0|,
define the stopping times

τr = inf{t ≥ 0 : |x(t)| ≥ r}

and
ρ∆,r = inf{t ≥ 0 : |x∆(t)| ≥ r},

where throughout this paper we set inf ∅ = ∞. Moreover, we set

θ∆,r = τr ∧ ρ∆,r

and define the closed ball

Sr = {x ∈ Rd : |x| ≤ r}.

The following lemma shows both x(t ∧ θ∆,r) and x∆(t ∧ θ∆,r) are close to each
other.

Lemma 6.3.6. Let Assumption 6.1.1. Then for each r > |x0|, there is a ∆1 =

∆1(r) ∈ (0, 1] such that

E
(

sup
0≤t≤T

|x(t ∧ θ∆,r)− x∆(t ∧ θ∆,r)|p
)
≤ Cr

(
∆pβ +∆

p
2 (h(∆))p

)
, (6.36)

for all ∆ ∈ (0,∆1] and Cr is a positive constant independent of ∆.

Proof. Define for x ∈ Rd

f2,r(x) = f2

(
(|x| ∧ r)

x

|x|

)
, f3,r(x, y) = f3

(
(|x| ∧ r)

x

|x|
, (|y| ∧ r)

y

|y|

)
.

Therefore, f2,r and f3,r are bounded and globally Lipschitz continuous in Rd but
their Lipschitz constant depend on r. Consider the SDDE

dy(t) = [f1(y(t)) + f2,r(y(t)) + f3,r(y(t), y(δ(t)))]dt+ g(y(t))dB(t) (6.37)

on t ≥ 0 with the initial value y(θ) = x(θ) for −τ ≤ θ ≤ 0. There exists the unique
global solution y(t) on t ≥ 0. For each step size ∆ ∈ (0, 1], we can apply the EM
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method to the SDDE (6.37). This involves generating approximate EM solutions
Y∆(tk) ≈ y(tk) for tk = k∆ by initializing Y∆(θ) = x(θ) and computing

Y∆(tk+1) = Y∆(tk) + [f1(Y∆(tk)) + f2,r(Y∆(tk)) + f3,r(Y∆(tk), Y∆(I∆[δ(tk)]∆))]∆

+ g(Y∆(tk))∆Bk, (6.38)

for k = 0, 1, · · · . Extend the definitions of Y∆ from the grid points tk to the whole
t ≥ 0 by setting

z1(t) =
∞∑
k=0

Y∆(tk)I[tk,tk+1)(t),

z2(t) =
∞∑
k=0

Y∆(I∆[δ(tk)]∆)I[tk,tk+1)(t),

and then define the Itô process

y∆(t) = x(0) +

∫ t

0

[f1(z1(s)) + f2,r(z1(s)) + f3,r(z1(s), z2(s))]ds+

∫ t

0

g(z1(s))dB(s)

(6.39)
for t ≥ 0. By applying Lemma 4.1.8 and 4.1.9, for an arbitrary T1 ∈ [0, T ],

E
(

sup
0≤t≤T1

|y(t)− y∆(t)|p
)

≤ E sup
0≤t≤T1

∣∣∣∣∣
∫ t

0

f1(y(s))− f1(z1(s)) + f2,r(y(s))− f2,r(z1(s))

+ f3,r(y(s), y(δ(s)))− f3,r(z1(s), z2(s))ds

∣∣∣∣∣
p

+ E sup
0≤t≤T1

∣∣∣∣∫ t

0

g(y(s))− g(z1(s))dB(s)

∣∣∣∣p
≤ CE sup

0≤t≤T1

[∫ t

0

|f1(y(s))− f1(z1(s))|p ds+
∫ t

0

|f2,r(y(s))− f2,r(z1(s))|p ds

+

∫ t

0

|f3,r(y(s), y(δ(s)))− f3,r(z1(s), z2(s))|p ds

]

+ CE
∫ T1

0

|g(y(s))− g(z1(s))|p ds
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E
(

sup
0≤t≤T1

|y(t)− y∆(t)|p
)

≤ CrE
∫ T1

0

|y(s)− z1(s)|p + |y(δ(s))− z2(s)|p ds

≤ CrE
∫ T1

0

|y(s)− y∆(s)|p + |y∆(s)− z1(s)|p + |y(δ(s))− y∆(δ(s))|p

+ |y∆(δ(s))− z2(s)|p ds

≤ Cr

∫ T1

0

E sup
0≤u≤s

|y(u)− y∆(u)|p ds+ Cr

(
∆pβ +∆

p
2 (h(∆))p

)
By Gronwall’s inequality,

E
(

sup
0≤t≤T1

|y(t)− y∆(t)|p
)
≤ Cr

(
∆pβ +∆

p
2 (h(∆))p

)
. (6.40)

Let us relate y(t) and y∆(t) to x(t) and x∆(t), respectively. It is straightforward
to see that

x(t ∧ τr) = y(t ∧ τr) a.s for all t ∈ [0, T ]. (6.41)

We now choose ∆1 ∈ (0, 1] sufficiently small for µ−1(h(∆1)) ≥ r. Obviously, for
all ∆ ∈ (0,∆1],

f2(π∆(x)) = f2,r(x), f3(π∆(x), π∆(y)) = f3,r(x, y), for all x, y ∈ Sr.

This, together with (6.10) and (6.11), yields

f2(π0(π∆(x))) = f2,r(x), f3(π0(π∆(x)), π0(π∆(y))) = f3,r(x, y), for all x, y ∈ Sr.

Comparing (6.16), (6.24) with (6.38),(6.39), we then see that

x∆(t ∧ ρ∆,r) = y∆(t ∧ ρ∆,r) a.s for all t ∈ [0, T ] (6.42)

provided ∆ ∈ (0,∆1]. Combining (6.40) - (6.42), we obtain the desired assertion
(6.36) immediately.
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6.3.3 Proof of Theorem 6.3.1

We are ready to prove our main theorems. Same as Chapter 5, we start to prove
Theorem 6.3.1 first in this subsection and then Theorem 6.3.2 next. Obviously,

E
(

sup
0≤t≤T

|X0
∆(t)− x(t)|p

)
≤ 3p−1(J4(∆) + J5(∆) + J6(∆)), (6.43)

where

J4(∆) = E
(

sup
0≤t≤T

|X0
∆(t)− X̄∆(t)|p

)
,

J5(∆) = E
(

sup
0≤t≤T

|X̄∆(t)− x∆(t)|p
)
,

J6(∆) = E
(

sup
0≤t≤T

|x∆(t)− x(t)|p
)
.

According to Lemma 6.3.5, it has already been proved that J5(∆) → 0 as
∆ → 0. To finalize the proof, we only need to demonstrate that both J4(∆) and
J6(∆) converge to 0.

Let us first show J6(∆) → 0. Let ε ∈ (0, 1) be arbitrary. By Lemmas 6.1.2 and
6.3.4, we have shown in Chapter 5 that

P(θr,∆ ≤ T ) ≤ Cp

rp
.

By choosing a real number r = r(ε) so large, we obtain

P(θr,∆ ≤ T ) ≤ ε2.

For this r, by Lemma 6.3.6, we have

E
(

sup
0≤t≤T

|x(t ∧ θ∆,r)− x∆(t ∧ θ∆,r)|p
)
≤ Cr

(
∆pβ +∆

p
2 (h(∆))p

)
,

for all ∆ ∈ (0,∆1]. Note that ∆1 depends on ε (as r dependent on ε). Thus, for
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∆ ∈ (0,∆1], by Lemma 6.3.4 (recalling p is arbitrary once again), we derive

J6(∆) = E
(
1{θr,∆≤T} sup

0≤t≤T
|x∆(t)− x(t)|p

)
+ E

(
1{θr,∆>T} sup

0≤t≤T
|x∆(t)− x(t)|p

)
≤
[
P(θr,∆ ≤ T )

]1/2[E( sup
0≤t≤T

|x∆(t)− x(t)|2p
)]1/2

+ E
(

sup
0≤t≤T

|x∆(t ∧ θr,∆)− x(t ∧ θr,∆)|p
)

≤
[
P(θr,∆ ≤ T )

]1/2
2(p−1)/2

[
E
(

sup
0≤t≤T

|x∆(t)|2p
)
+ E

(
sup

0≤t≤T
|x(t)|2p

)]1/2
+ Cr

(
∆pβ +∆

p
2 (h(∆))p

)
≤ Cε+ Cr

(
∆pβ +∆

p
2 (h(∆))p

)
.

We then have

J6(∆) ≤ Cε+ Cr

(
∆pβ +∆

p
2 (h(∆))p

)
, for all ∆ ∈ (0,∆1].

This implies
lim sup

∆→0
J6(∆) ≤ Cε.

Since ε is arbitrary, we must have that J6(∆) → 0 as ∆ → 0.
Let us finally show J4(∆) → 0 to complete our proof of Theorem 6.3.1. In this

proof, we apply the similar technique with Theorem 5.3.1. By Lemmas 6.1.2 and
6.3.4, we can find a positive number r = r(ε) so large that

P(Ω1) ≥ 1− ε

3
, (6.44)

where
Ω1 = {|x(t)| ∨ |x∆(t)| < r for all 0 ≤ t ≤ T}.

For a sufficiently small α ∈ (0, 1), define

ζα,i = inf{t ≥ 0 : xi(t) ≤ α}, 1 ≤ i ≤ d.



Chapter 6 112

By Lemma 6.1.3,

P(ζα,i ≤ T ) = E
(
1{ζα,i≤T}

xi(ζα,i)− 1− log(xi(ζα,i))

δ − 1− log(α)

)
≤ 1

α− 1− log(α)
E
(

sup
0≤t≤T

[xi(t)− 1− log(xi(t))]
)

≤ C

α− 1− log(α)
.

Noting that α− 1− log(α) → ∞ as α → 0, we can find a α = α(ε) so small that

P(ζα,i ≤ T ) ≤ ε

3d
, 1 ≤ i ≤ d.

Set ζα = min1≤i≤d ζα,i. Then

P(ζα ≤ T ) ≤ P
( d⋃
i=1

{ζα,i ≤ T}
)
≤

d∑
i=1

P(ζα,i ≤ T ) ≤ ε

3
.

So P(ζα > T ) ≥ 1− ε
3
. This implies

P(Ω2) ≥ 1− ε

3
, (6.45)

where
Ω2 =

{
min
1≤i≤d

inf
0≤t≤T

xi(t) > α
}
.

On the other hand, for the pair of chosen r and α, define

Ω∆ =
{

sup
0≤t≤T

|x(t ∧ θ∆,r)− x∆(t ∧ θ∆,r)| < α/2
}
.

By Lemma 6.3.6 and applying the Chebyshev inequality, there exists a ∆1 = ∆1(ε)

(as r = r(ε)) such that µ−1(h(∆1)) ≥ r and

P(Ωc
∆) = P

(
sup

0≤t≤T
|x(t ∧ θ∆,r)− x∆(t ∧ θ∆,r)| ≥ α/2

)
≤

Cr

(
∆pβ +∆

p
2 (h(∆))p

)
(α/2)p

, for all ∆ ∈ (0,∆1].
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Consequently, there is a ∆2 = ∆2(ε) ∈ (0,∆1] such that

P(Ω∆) ≥ 1− ε

3
, for all ∆ ∈ (0,∆2]. (6.46)

Set Ω3,∆ = Ω1 ∩ Ω2 ∩ Ω∆. Combining (6.44) - (6.46) gives

P(Ω3,∆) ≥ 1− ε, for all ∆ ∈ (0,∆2]. (6.47)

From now on, we consider any step size ∆ ∈ (0,∆2]. Note that for every ω ∈ Ω3,∆,
θ∆,r > T ,

sup
0≤t≤T

|X̄∆(t)| ≤ sup
0≤t≤T

|x∆(t)| ≤ r ≤ µ−1(h(∆1)) ≤ µ−1(h(∆)), (6.48)

and

inf
0≤t≤T

X̄∆,i(t) ≥ inf
0≤t≤T

x∆,i(t) ≥ inf
0≤t≤T

xi(t)− sup
0≤t≤T

|xi(t)− x∆,i(t)|

> α− sup
0≤t≤T

|x(t)− x∆(t)| > α− α

2
=

α

2
. (6.49)

In other words, for every ω ∈ Ω3,∆, X̄∆(t) ∈ Rd
+ with |X̄∆(t)| ≤ µ−1(h(∆)), whence

X0
∆(t) = π0(π∆(X̄∆(t))) = X̄∆(t) for all t ∈ [0, T ]. Consequently,

J4(∆) = E
(
1Ωc

3,∆
sup

0≤t≤T
|X0

∆(t)− X̄∆(t)|p
)

≤
[
P(Ωc

3,∆)
]1/2[E( sup

0≤t≤T
|X0

∆(t)− X̄∆(t)|2p
)]1/2

≤ 2p
√
ε
[
E
(

sup
0≤t≤T

|x∆(t)|2p
)]1/2

≤ Cp

√
ε

provided ∆ ∈ (0,∆2], where Lemma 6.3.4 has been used once again. Since ε is
arbitrary, we must have that J4(∆) → 0 as ∆ → 0. This completes our proof of
Theorem 6.3.1.
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6.3.4 Proof of Theorem 6.3.2

Once again, it is obvious that

E
(

sup
0≤t≤T

|X+
∆(t)− x(t)|p

)
≤ 3p−1(J5(∆) + J6(∆) + J7(∆)), (6.50)

where J5(∆), J6(∆) have been defined before and

J7(∆) = E
(

sup
0≤t≤T

|X+
∆(t)− X̄∆(t)|p

)
.

Clearly, all we need to do is to show that J7(∆) → 0 as ∆ → 0. Let ∆ ∈ (0,∆2 ∧
(α/2)] be arbitrary. By equations (6.48) and (6.49), we obtained that for every
ω ∈ Ω3,∆, X̄∆(t) ∈ Rd

+ with |X̄∆(t)| ≤ µ−1(h(∆)) and inf0≤t≤T X̄∆,i(t) > α/2,
whence X+

∆(t) = π+(π∆(X̄∆(t))) = X̄∆(t) for all t ∈ [0, T ]. Consequently,

J6(∆) = E
(
1Ωc

3,∆
sup

0≤t≤T
|X+

∆(t)− X̄∆(t)|p
)

≤
[
P(Ωc

3,∆)
]1/2[E( sup

0≤t≤T
|X+

∆(t)− X̄∆(t)|2p
)]1/2

≤ 2p
√
ε
[
E
(

sup
0≤t≤T

|X+
∆(t)|

2p
)
+ E

(
sup

0≤t≤T
|X̄∆(t)|2p

)]1/2
.

But, by Lemma 6.3.4,
E
(

sup
0≤t≤T

|X̄∆(t)|2p
)
≤ Cp.

On the other hand, for any x ∈ Rd,

|π+(x)|2p =
( d∑

i=1

(∆ ∨ xi)
2
)p

≤
( d∑

i=1

(∆2 + |xi|2)
)p

≤ (d+ |x|2)p ≤ dp−1(dp + |x|2p).

So

|X+
∆(t)|

2p = |π+(π∆(X̄∆(t)))|2p ≤ 2pdp−1(dp + |π∆(X̄∆(t))|2p)

≤ dp−1(dp + |X̄∆(t)|2p).
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Consequently
E
(

sup
0≤t≤T

|X+
∆(t)|

2p
)
≤ Cp.

In other words, we have showed that

J7(∆) ≤ Cp

√
ε

provided ∆ ∈ (0,∆2 ∧ (α/2)]. As ε is arbitrary, we must have that J7(∆) → 0 as
∆ → 0. This completes our proof of Theorem 6.3.2.
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Conclusion

In this chapter, we summarize the contributions made in this thesis. This thesis we
mainly focus on a numerical method for stochastic differential equations (SDEs),
namely the truncated Euler-Maruyama (EM) numerical method, and their conver-
gence rates. This method was introduced in [21]. However, there are many points
to improve about this method for applying more situations. For example, in [22],
to find the rate of convergence over a finite time interval, they required the global
Lipschitz property on the diffusion coefficient however we improved this in Chap-
ter 3. Furthermore, we also modified the truncated EM numerical method with
the stochastic delay differential equations (SDDEs) by combining concepts of the
variable time delay and provides their convergence rate over a finite time interval,
as shown in Chapter 4. However, the truncated EM method could generates the
negative solutions which do not have meanings to some SDE models. In Chapter
5 and 6, we modified the new methods, called positive preserving truncated EM
(PPTEM) method and nonnegative preserving truncated EM (NPTEM) method,
to apply for SDEs and SDDEs that their solution cannot be negative.

The truncated Euler-Maruyama (EM) method, introduced in [21], provides a
novel approach to address SDEs with nonlinear coefficients. However, limitations
in determining the convergence rate over a finite time interval were identified in
previous research, as indicated in [22]. We, in Chapter 3, apply the concepts from
[12] to establish convergence over a finite time interval. As a result, our main
theorem, namely Theorem 3.2.3, provides the rate of convergence over a finite
time interval which is similar to the rate of convergence at a time T in [12]. To
achieve a stronger result, we also need a stronger condition on the Khasminskii-
type condition that is satisfied for any parameter p as shown in Assumption 3.1.2.

116
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Furthermore, we apply Theorem 3.2.3 to SDEs with nonlinear diffusion coefficient
to determine the rate of convergence over a finite time interval, a capability not
present in the results of [22].

Considering the widespread application of SDEs to real-world systems, we ex-
tend our exploration by incorporating time delays into these equations, following
the insights from [6, 8]. This extension forms the basis of our contribution in
Chapter 4. We not only apply the truncated EM method to SDDEs but also allow
the time delay to vary over time, represented by δ(t) as defined in equation (4.3).
On the way to find the rate of convergence, we need some extra Lemmas 4.1.8 and
4.1.9, illustrating that both non-delay and delay parts are close to the numerical
solution. Both lemmas also play an important role in providing convergence rates
of the truncated EM method to the solution at both a specific time point T , and
over a finite time interval. In this work, we also require the global Lipschitz condi-
tion on the diffusion coefficient of the SDDE models to collect the convergence rate
over a finite time interval. Nevertheless, we hope to reduce the global Lipschitz
condition to the local Lipschitz condition in future research.

The subsequent contribution unfolds in Chapter 5, where we delve into the
numerical solutions of a population model, which is the Lotka-Volterra model.
Recognizing that the truncated EM method may generate nonsensical negative
solutions in certain instances, we introduce modifications, resulting in the positiv-
ity preserving truncated EM (PPTEM) and nonnegative preserving truncated EM
(NPTEM) methods. From a mathematical point of view, it would be natural to
define the NPTEM method before the PPTEM method. To define the NPTEM
method, we begin with extending the domain of the population model to the entire
Rd, mapping negative values to be 0 (represented by π0). We can, consequently,
apply the idea of the normal truncated EM method with the extended model.
As we focus on obtaining a nonnegative numerical solution, we ensure, at each
step, to map the numerical solution with π0 again to confirm the nonnegative pre-
serving property. After iterating this process, we obtain the NPTEM numerical
solution. For the PPTEM method, we employ a similar idea as NPTEM, mapping
the positive delta (denoted as π+) into each step of the iteration to guarantee
the positive preserving property. Again, this process results in the creation of
the PPTEM numerical solution. Additionally, to demonstrate the convergence of
both numerical solutions, we assume only one assumption which is Assumption
5.1.1. These adjustments ensure that the numerical solutions remain meaningful
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and interpretable.
In Chapter 6, we applied the concepts from Chapter 5 to derive PPTEM and

NPTEM numerical solutions for the stochastic delay Lotka-Volterra model with
a variable time delay. Therefore, the idea to approach the PPTEM and NPTEM
methods is slightly similar to Chapter 5. We also have to deal with the term of
variable time delay. However, we apply the methodology in Chapter 4 to separately
approximate the numerical solutions for non-delay and delay terms, say z1 and z2

respectively. We, moreover, assume the strong Assumption 6.1.1, which forces that
the matrix coefficients have all positive elements. In practice, Assumption 5.1.1 is
sufficient for the stochastic delay Lotka-Volterra model to have a unique solution.
Although Assumption 6.1.1 provides favourable properties and allows us to assert
theorems and lemmas similar to those in Chapter 5, in future research, we also aim
to explore the relaxation of these conditions to broaden the scope of applicability.

In summary, we follow the aims to establish the rate of convergence over a
finite time interval of SDEs under the local Lipschitz diffusion coefficient. We fur-
ther extended our exploration to incorporate time delays, addressing SDDEs and
allowing time delays to vary over time. Moreover, we also modified the truncated
EM method to be PPTEM and NPTEM for positive and nonnegative numeri-
cal solutions to maintain the meaningfulness and interpretability of the solutions.
These modifications are also extended to the stochastic variable time delay Lotka-
Volterra model.
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