
Visual feature extraction through brain
inspired algorithms: Towards efficiency,

accuracy and continual learning

Alex Vicente Sola

A thesis submitted for the degree of

Doctor of Philosophy

Neuromorphic Sensor Signal Processing Lab

Centre for Signal and Image Processing

Department of Electronic and Electrical Engineering

University of Strathclyde

Glasgow

2025

Declaration

Declaration

This thesis is the result of the author’s original research. It has been composed

by the author and has not been previously submitted for examination which has

led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the

United Kingdom Copyright Acts as qualified by University of Strathclyde Regu-

lation 3.50. Due acknowledgement must always be made of the use of any material

contained in, or derived from, this thesis.

Signed: Alex Vicente Sola

Date: 30th August 2024

ii

Acknowledgement

Acknowledgement

First, I want to express my gratitude to my PhD supervisor Dr Gaetano Di

Caterina, for his guidance, support, and the trust he always placed in me. He

was always there whenever I needed anything and always found time for his PhD

students.

I want to thank Dr Trevor J Bihl for his constant involvement in this PhD,

his guidance and his eagerness to collaborate, which he always approached with

an open mind and an interest for new research questions.

My appreciation also goes to Dr Marc Masana, for lending me his brains in

our collaboration, which I really enjoyed, and for the priceless help and guidance

he was always keen to give me. Also extended thanks to TU Graz University for

having me as visiting researcher during this collaboration.

To Dr Paul Kirkland, for being every single day there, I will always be grateful.

His passion and character inspired everyone in the lab, and he always went the

extra mile to help all of us. Together with future Doctors David Vint and Davide

Manna, they were my gang in the lab, and made my experience in Glasgow a

memory I will forever cherish.

Finally, deepest appreciation also to my family, who shared this journey with

me and endured me through highs and lows. Them, and all those friends, new

and old, who were there for me through these years, have really made a difference.

This research was funded by AFOSR under grant number FA8655-20-1-7037.

iii

Abstract

Abstract

Machine learning and Artificial intelligence have already revolutionised the world

we live in. Nevertheless, these technologies are expected to progress even fur-

ther and advance living standards far beyond today’s reality. To achieve this

revolution, several limitations of current AI need to be addressed. Demands on

computing resources and energy supply are a major obstacle, which ultimately

limit the capabilities of the AI we can deploy at the edge. Furthermore, current

systems are ill-suited for continual learning (CL) on real world data, as they re-

quire to train with all available data as an independent and identically distributed

(i.i.d.) set. This thesis focuses on these problems by working on visual feature

extraction, and contributing to more efficient and accurate algorithms, with the

capacity for CL.

With the objective of developing energy efficient feature extraction, a major

part of the thesis is focused on Spiking Neural Networks (SNNs). SNNs have be-

come an interesting alternative to conventional artificial neural networks (ANN)

thanks to their temporal processing capabilities and energy efficient implemen-

tations in neuromorphic hardware. However, the challenges involved in training

them have limited their performance in terms of accuracy and thus their applica-

tions. Improving learning algorithms and neural architectures for a more accurate

feature extraction is therefore a priority. Contributing towards this aim, this work

presents a study on the key components of modern spiking architectures, an in-

depth study on the possible implementations of spiking residual connections, and

a novel spiking version of the successful residual network architecture. Addition-

ally, the effect of different state of the art techniques are empirically compared in

image classification tasks to provide a state of the art guide to SNN design. Fi-

nally, the proposed network outperforms previous SNN architectures in multiple

datasets, while using less parameters.

In order to exploit SNNs for more efficient AI, it is also of interest to under-

stand the full scope of their exploitable properties. These networks are charac-

terised by their unique temporal dynamics, but the properties and advantages of

iv

Abstract

such computations are still not fully understood. In order to provide answers, in

this work it is demonstrated how spiking neurons can enable temporal feature ex-

traction in feed-forward neural networks without the need for recurrent synapses,

and how recurrent SNNs can achieve comparable results to LSTM with a smaller

number of parameters. This shows how their bio-inspired computing principles

can be successfully exploited beyond energy efficiency gains, and evidences their

differences with respect to conventional artificial neural networks. These results

are obtained through a new task, DVS-Gesture-Chain (DVS-GC), which allows,

for the first time, to evaluate the perception of temporal dependencies in a real

event-based action recognition dataset. Furthermore, this setup allows to reveal

the role of the leakage rate in spiking neurons for temporal processing tasks and

demonstrated the benefits of ”hard reset” mechanisms.

Finally, the focus is switched to the capacity for training feature extractors

in continual learning scenarios, a major milestone for the development of truly

autonomous systems and artificial general intelligence. The challenge in this

setup is to avoid catastrophic forgetting, where artificial systems forget previous

knowledge if they are trained in new data without revisiting the old. Often, the

methods used to alleviate forgetting make use of either rehearsal buffers, pre-

trained backbones or external indication of the task to solve. However, these re-

quirements result in severe limitations regarding scalability, privacy preservation

and efficient deployment. This work explores how to eliminate the need for such

requirements and proposes a new method, Low Interference Feature Extraction

Sub-networks (LIFES). Additionally, the study breaks down the Catastrophic

Forgetting (CF) problem into 4 causes, allowing to better understand the effect

of CL methods. The proposed LIFES algorithm achieves competitive results in

standard incremental learning scenarios, providing an alternative to approaches

with more restrictive requirements. Moreover, it provides solutions for specific

causes of the CF problem, making it complementary to other methods.

v

Contents

Contents

Declaration ii

Acknowledgement iii

Abstract iv

Contents vi

1 Introduction 1

1.1 Summary of Original Contributions 4

1.2 Thesis organisation . 5

2 Feature extraction and Spiking Neural Networks 7

2.1 Neural Networks and data-driven feature extraction 7

2.1.1 Visual feature extraction 8

2.2 Spiking Neural Networks . 12

2.2.1 Spiking Neurons . 13

2.2.2 Spiking Neural Network architectures 15

2.2.3 Training methods for spiking neural networks 16

2.2.4 Benchmarking of spiking neural networks 21

2.3 Conclusions . 23

3 Continual Learning 25

3.1 Incremental learning . 26

3.2 Families of methods . 28

3.2.1 Regularisation . 28

3.2.2 Replay . 30

3.2.3 Prompt learning . 32

3.2.4 Parameter isolation . 33

3.3 Conclusions . 35

vi

Contents

4 Advancing SNN feature extraction through residual networks 36

4.1 Introduction . 36

4.2 Spiking Residual Network . 37

4.2.1 Implementation of a spiking residual connection 38

4.2.2 Network topology . 42

4.2.3 Boosting strategies . 44

4.2.4 Training framework . 45

4.2.5 Input preprocessing . 46

4.2.6 Hyper-parameters . 47

4.3 Experiments: Empirical tests of components and strategies 47

4.4 Results . 54

4.4.1 State of the art comparison 54

4.4.2 The latency - accuracy compromise 55

4.5 Conclusions . 59

5 The advantage of Spiking Neural Networks for spatio-temporal

feature extraction 61

5.1 Introduction . 61

5.2 DVS Gesture Chain . 63

5.2.1 Event-based datasets . 63

5.2.2 Defining the DVS Gestures Chain task 64

5.3 Results . 67

5.3.1 Experimental setup: Neural network architectures 68

5.3.2 DVS-Gesture evaluation 69

5.3.3 DVS-Gesture-Chain evaluation 70

5.4 Analysis of temporal computations 74

5.4.1 Temporal attention analysis 75

5.4.2 Spiking neuron analysis . 77

5.5 Conclusions . 79

6 Towards scalable algorithms for continual learning 81

6.1 Introduction . 81

6.2 The LIFES algorithm . 83

6.2.1 Concurrent subnetworks 84

6.2.2 Interference Connections 85

6.2.3 Weight standardisation . 86

6.2.4 Lateral Classifier Regularisation 87

6.2.5 Complete LIFES method 88

vii

Contents

6.3 Experimental results . 89

6.3.1 State-of-the-art comparison 90

6.3.2 Lateral classifier regularisation ablation 92

6.3.3 Interference connection pruning ablation 93

6.3.4 Weight standardisation analysis 94

6.3.5 Capacity Analysis . 95

6.3.6 LIFES in alternative architectures 96

6.4 Conclusions . 99

7 Conclusions 101

7.1 Future work . 104

List of publications 106

References 108

viii

Ch.1 Introduction

Chapter 1

Introduction

The major factor for human progress and the advancement of living standards,

has historically been technological breakthrough [1, 2]. While social, political

and environmental factors mediate this progress, its ultimate potential is defined

by the limits of what humans can build. In the present day, the advent of a

new era of growth is becoming increasingly apparent, where machine intelligence

will enable an exponential increase of human capabilities. The improvement

of artificial intelligence (AI) will keep pushing forward the level of automation

in production processes and daily tasks, while allowing to develop superhuman

intelligence: first in specialised tasks [3, 4] and ultimately in the form of artificial

general intelligence (AGI) [5, 6].

To achieve this promised revolution, several limitations of modern AI systems

need to be addressed. Compared to biological brains, Artificial Neural Networks

(ANN) lack behind in robustness, generalisation capabilities, energy efficiency,

and capacity for online continuous learning, among others [7–9]. Specifically,

when focusing on the needs for future autonomous systems, demands on com-

puting resources and energy supply are a major obstacle, which ultimately limit

the capabilities of the AI we can deploy at the edge. Furthermore, current sys-

tems are ill-suited for continual learning on real world data, as they require to

train with all available data as an independent and identically distributed (i.i.d.)

set, hampering online adaptation to new environments and making the scaling to

life-long learning setups unfeasible in terms of data storage [10].

Research towards this future AI encounters a unique situation which is not

common in other engineering disciplines. The realisation of the desired systems

already exists: biological brains implement intelligence in an efficient and sustain-

able way, demanding low energy consumption and allowing continuous learning

from new environments, while demonstrating robustness and consistency in their

1

Ch.1 Introduction

performance.

Consequently, neuroscience has historically served as reference in AI develop-

ment [11], prompting the invention of many modern ANN components, sometimes

in the form of strict design guidelines and, more often, in a looser sense as source

of inspiration. Still, despite its logical nature, this research perspective is not

free from controversy. A part of the community has dedicated efforts to max-

imizing the similarities between AI and real brains, in an attempt to decipher

the ways in which biology implements those properties of intelligence which AI is

lacking. On the contrary, dissenting scholars argue that neuroscience might serve

as inspiration, but the evolution of AI is likely to diverge from the one of organic

intelligence, as it is not bounded to the same constraints, and therefore imitating

it imposes limits which hinder development [12].

Often, advocates for the divergence of neuroscience and AI recall the ”biolog-

ical vs. mechanical flight” argument, where aeroplanes are supposed to achieve

the same purpose as birds, flight, but through different means: instead of imi-

tating flapping wings, the human-engineered solution defied gravity by means of

fixed wings and propulsion engines. Still, this argument is an oversimplification,

as the two solutions to flight achieve very different purposes: birds are more nim-

ble and more energy efficient than a plane, while planes can cover large distances

at high speed while carrying heavy weight loads. This same logic applies to bio-

logical inspiration in AI, for use cases where the system is not subjected to the

same constraints as biological ones, development should be free to diverge from

organic intelligence. In contrast, autonomous systems with limited energy sup-

ply and requiring fast responses and online adaptation, are likely to benefit from

neuroscience insights. These systems intersect with biology in multiple require-

ments, while diverging in others due to their implementation in silicon, access to

batteries, communication networks and more. Therefore, optimal solutions are

likely to combine bio-inspired principles with ”silicon-specific” ones.

In this thesis, the approach of brain inspiration is taken in order to develop

more efficient and adaptable machine learning. This ”inspiration” label encom-

passes many levels of neuroscience influence. In the case of this work, the objective

is to identify benefits in neuroscience insights and port them to AI, while hard

”biological plausibility” constraints are avoided. This means that the objective

is not to replicate biology, but to distill useful principles.

Specifically, the work focuses on visual feature extraction with ANNs. Com-

puter vision applications are typically built on top of the best performing feature

extractors, therefore, advancements on this core component are key, as they de-

2

Ch.1 Introduction

fine the performance ceiling of all the rest. Examples of such applications include

object detection [13], semantic segmentation [14], action recognition [15], image

and video generation [16] among many others.

From an energy efficiency perspective, an increasingly popular approach has

been the use of Spiking Neural Networks (SNN). These are a kind of ANN which

closely replicate the workings of real neurons in the brain, porting their benefits

to the artificial domain. The first two contribution chapters of this thesis (4 and

5) focus on these networks.

SNN have demonstrated benefits in energy efficiency when implemented in

specialised neuromorphic hardware, but their limitation has often been the diffi-

culty added in training them and their lower accuracy compared to conventional

ANNs. In order to contribute to their usability as feature extractors, the work

presented in Chapter 4 studies the key strategies for the development of the SNN

architectures, including a novel study on residual connections, and then uses them

to propose a novel network, the Spiking ResNet (S-ResNet), which achieved state

of the art results at the time of publication. After that, Chapter 5 follows by

studying the unexplored advantages of SNN beyond energy efficiency. Specifically,

this piece of the work demonstrates how the bio-inspired computing paradigm of

SNNs can lead to advantages when processing temporal data, proposing a novel

task to evaluate them and studying their capacity for spatio-temoporal feature

extraction.

Finally, Chapter 6 switches the focus to the limitations of ANNs for continual

learning. Learning dynamically from natural non-i.i.d. distributions of data is

major need for machine learning, but avoiding catastrophic forgetting when doing

so has been a long-standing challenge [10, 17, 18]. Multiple solutions have been

proposed to reduce this undesired forgetting, but the most successful approaches

have requirements that impose severe limitations regarding scalability, privacy

preservation, and efficient deployment. The most common being the storage of

old data or the indication of which task is the system solving in a multi-task

scenario. These requirements are not found in real brains; therefore, the work

in this chapter proposes a system which does not use them, bypassing them by

creating specialised sub-networks that collaborate within the ANN. At a high

level, this sub-networks perspective can be considered biologically inspired, as it

is observed in neuroscience [19]. The resulting study breaks down catastrophic

forgetting into 4 distinct causes, and proposes solutions to mitigate 3 of them.

Moreover it clearly delineates the remaining challenges in catastrophic forgetting

prevention, paving the way for more scalable and efficient continual learning.

3

Ch.1 Introduction

1.1 Summary of Original Contributions

This thesis presents the following contributions to the machine learning field:

1. A novel study on spiking residual connections: In certain configura-

tions, spiking neurons can diminish the benefits of residual connections, a

kind of connection that has been key for the development of deep architec-

tures [20]. The proposed study analyses three different ways of implement-

ing residual connections for SNNs, highlighting their properties in terms of

accuracy, network activity, characteristics of their derivatives, and impli-

cations in hardware requirements. Two of these implementations already

existed [21, 22], where one of them was modified with respect to the version

found in previous work. The third one was proposed in this work. This

analysis demonstrates benefits and drawbacks of each kind of connection,

regarding, and allows to make the optimal choice depending on application

requirements.

2. A new SNN architecture, the S-ResNet: Through empirical experi-

mentation, testing multiple strategies, the configuration of a spiking residual

network was optimised. The resulting network is obtained by combining the

conclusions extracted from the study on residual connections with a com-

bination of the best performing methods from literature. At the time of

publication [23], the results demonstrated state of the art accuracy in mul-

tiple visual datasets with a smaller number of parameters than previous

approaches.

3. A new task for event-based action recognition: Rigorous evaluation

of spatio-temporal feature extraction in event-based data is challenging due

to the lack of suitable datasets. To solve this, a new task, DVS-Gesture-

Chains (DVS-GC), is proposed. Unlike previous tasks, DVS-GC explicitly

evaluates the perception of temporal order in chains of actions, which were

created as chains of human gestures recorded with a neuromorphic camera.

4. A novel study on the exploitable properties of spiking neurons

for spatio-temporal feature extraction: By means of the new DVS-

GC task, the capacity of SNNs for spatio-temporal processing are demon-

strated, showing how, unlike conventional ANNs, they enable temporal fea-

ture extraction without recurrent synapses and how their computations are

comparable to those of long short-term memory (LSTM) cells, but requiring

less synaptic weights. This demonstrates how the use of spiking neurons

4

Ch.1 Introduction

enables temporal feature extraction at no extra cost in computation; how

SNNs can serve as alternative to more complex memory cells when com-

putational requirements are a constraint; and how feed-forward networks

can be enabled to perform temporal feature extraction. Additionally, these

comparisons highlight similarities and differences between ANN and SNN

computations, facilitating the combination of principles of one into the other

in future research.

5. A new definition of catastrophic forgetting: Given a classification

task, the causes of catastrophic forgetting are broken down into 4 distinct

mechanisms. Mathematical formulation is provided, formalising the prob-

lem in a way that allows to evaluate these mechanisms in isolation, and

understand which of these forgetting mechanisms are addressed by contin-

ual learning methods. Such factorisation of the problem had not yet been

formalised in literature, therefore, doing so provides a guide for further re-

search, as it highlights the specific mechanisms which need addressing in

order to prevent forgetting.

6. A new continual learning method: Given the limitations imposed by

the requirements of existing continual learning methods, a new approach

is proposed (Low Interference Feature Extraction Sub-networks) which by-

passes them. The effects of catastrophic forgetting in this system are studied

and 3 novel components are proposed to alleviate its effects: Regularisation

with lateral classifiers, weight standarisation, and sub-network interference

connection pruning. The resulting system is compared to multiple state

of the art approaches and demonstrates competitive results with minimal

requirements. Additionally, it can be combined with other approaches, as

explained in Chapter 6, contributing to the development of more scalable

approaches to continual learning.

1.2 Thesis organisation

The remainder of this thesis is organised as follows. Chapter 2 provides

a literature review on feature extraction in conventional ANNs and SNNs.

Chapter 3 reviews the state of the art for continual learning and presents

contribution 5, as it is used to better describe existing CL methods. Chap-

ter 4 presents contributions 1 and 2 towards improved feature extraction

5

Ch.1 Introduction

with SNNs. Chapter 5 presents contributions 3 and 4, analysing the ex-

ploitable properties of SNN for temporal tasks. Then, Chapter 6 presents

the novel CL algorithm described in contribution 6. Finally, Chapter 7

closes the thesis with conclusions and directions for future work.

6

Ch.2 Feature extraction and Spiking Neural Networks

Chapter 2

Feature extraction and Spiking

Neural Networks

2.1 Neural Networks and data-driven feature ex-

traction

In recent years, the field of machine learning has become almost completely dom-

inated by the models known as Artificial Neural Networks, even coining a new

term, deep learning, for machine learning performed with deep neural networks

[24]. These ANN systems define simple computing units, the neurons, and create

networks by linking them with weighted connections. Their power lies in their ca-

pacity to learn from large datasets, potentially approximating any mathematical

function [25] and thereby creating any necessary input to output relationship.

The pivotal moment marking the advent of ANNs as the dominant approach

is often attributed to the success of the AlexNet network [26] which won the

ImageNet Large Scale Visual Recognition Challenge [27] in 2012. Prior to this,

the state of the art was often defined by handcrafted feature extraction, which was

then combined with approaches such as Support Vector Machines for classification

[28]. In contrast, ANNs are data driven approaches, which do not require expert

knowledge to define the features to extract, instead; they learn features directly

from the data. This is most often done by defining a task that involves mapping

a specific input to a known output (supervised learning), and then optimizing

the network configuration to minimise the error in this mapping for the given

training dataset [24]. With few exceptions, this minimisation is done by means

of the Backpropagation of error algorithm [29]. This algorithm formulates the

output error with a differentiable loss function and then calculates the gradient of

7

Ch.2 Feature extraction and Spiking Neural Networks

the loss with respect to the network weights by applying the chain rule, therefore

propagating the error backward from the output layer to the input layer. Then, by

means of gradient descent, the weights are adjusted iteratively, using a fraction

of the data (mini-batch) in each descent step. Like this, the value of the loss

function is minimised thereby improving the accuracy of the model.

2.1.1 Visual feature extraction

Convolutional Neural Networks

This work is focused on visual feature extraction. For this data modality, arguably

the biggest cornerstone was the development of Convolutional Neural Networks

(CNNs) [30]. Visual data is characterised by its high dimensionality, high spatial

redundancy and its correlation to the physical world. The visual representation of

a scene changes if objects move, but machine intelligence needs to understand that

this change is just in location, but not in content. CNNs made this understanding

easier for deep learning by defining local connectivity patterns for the network

weights, which enable translation invariant feature extraction.

Specifically, CNNs are designed to process data with a grid-like topology (such

as images). Their core building block is the convolutional layer, which consists of

a set of learnable filters (or kernels) that are convolved with the input data. Each

kernel K is a two dimensional array of dimension Dk1 × Dk2 and it is applied

across the entire input image to produce a feature map, hence the translation

invariance of the process, as the same set of weights will be applied to all spatial

locations.

The convolution operation for a single filter K over a 2D input I can be

described by:

(I ∗K)(x, y) =

Dk1∑
m

Dk2∑
n

I(x+m, y + n) ·K(m,n) (2.1)

Where I(x, y) is the pixel value at position (x, y) of the input and K(m,n) is

the kernel value at position (m,n).

Then, a convolutional layer is defined for an input of Sh×Sw×N dimensions,

where N corresponds to the number of channels or input dimensions (e.g., 3 for

an RGB image). The output Ok dimensions will be S ′
h × S ′

w ×M , where M is

the number of kernels (filters) used in the convolutional layer. Each of the M

output feature maps is generated by convolving each of the N input channels

8

Ch.2 Feature extraction and Spiking Neural Networks

with a corresponding set of M kernels and then summing their outputs:

Ok(x, y) =
N∑
c=1

Dk1∑
m

Dk2∑
n

Ic(x+m, y + n) ·Ki(m,n) (2.2)

The dimensions of the output feature map can be computed based on the

input dimensions, the kernel size, stride s, and padding p. For an input of size

Sh × Sw with a kernel size of Dk1 ×Dk2, the output size S ′
h × S ′

w is given by:

S ′
h =

⌊
Sh −Dk1 + 2p

s

⌋
+ 1 (2.3)

S ′
w =

⌊
Sw −Dk2 + 2p

s

⌋
+ 1 (2.4)

Here, ⌊·⌋ denotes the floor function, which ensures the output size is an integer.

These layers are then stacked hierarchically in a feed-forward manner [30], as

done for fully connected layers or any other variant. During training, each kernel

ki learns how to detect a distinct feature, and the number of channels in the layer

are referred to as the layer width, which defines the number of the feature maps

generated and the cost of the layer in parameters.

Spatio-temporal feature extraction

While convolutional layers allow for spatial feature extraction in visual data, they

do not address the extraction of temporal features, which is necessary when the

input changes over time such as in the case of video.

Extracting temporal features means combining information from different mo-

ments in time in order to extract meaning. For this, a property of cognitive

systems that is considered essential is working memory, which holds information

from previous events and allows to relate it to those perceived later [31, 32]. In

the field of neural network engineering, working memory has historically been im-

plemented by recurrent connections [33], and their memory capabilities have been

further enhanced by the use of advanced memory cells such as the widespread

Long Short-Term Memory (LSTM) [34]. Specifically, LSTM (Fig. 2.1) defines

an internal state Ct for each neuron which retains old information, called the cell

state, and controls the forgetting or retention of this information by means of

three gates, the Forget gate (ft), Input gate(it), and Output gate(ot), which are

implemented by an additive attention computation with Sigmoid activation σ.

This additive attention is controlled by a trainable layer, therefore, the network

9

Ch.2 Feature extraction and Spiking Neural Networks

can learn to interpret when to forget old information depending on the input and

its internal state.

× +

xt

Ct-1 Ct

ht

ht-1
tanh

×

σ σ

tanh

×

σ ht

itft ot

Fig. 2.1: Diagram of an LSTM memory cell. Yellow boxes indicate trainable layers,
red circles indicate operators. Ct is the cell state, ht the hidden state and output, the
yellow tanh is a layer of synaptic weights with Hyperbolic Tangent activation. σ stands
for the gating layer with Sigmoid activation.

More recently, temporal processing tasks have also been solved by the increas-

ingly popular Transformer architectures [35] (further explained in the following

subsection). When using these networks, temporal events are not presented in a

succession as they happen; instead, multiple time-steps are accumulated (or the

whole sequence in many cases) and then processed offline by the system. These

approaches can be considered to implement working memory outside of the neu-

ral network, by accumulating stimuli over time and then feeding them to the

network together as a single input. Transformers have achieved state of the art

accuracy in the majority of temporal tasks [36–38], but their computational and

memory complexity scales as O(L2) with the sequence length. Hence, research in

recurrent architectures is still of interest in order to create lighter systems with

dynamic memory management.

State of the art architectures

Since the advent of ANNs for visual feature extraction, a large body of work has

focused on improving their architectures, giving rise to a plethora of methods

which kept building on top of each other further enhancing performance.

For computer vision, the AlexNet breakthrough set the precedent for the use

10

Ch.2 Feature extraction and Spiking Neural Networks

of feed-forward CNNs when performing feature extraction on images. Later im-

provements came with networks such as the widespread VGG [39], which achieved

first and the second places in the localisation and classification tracks of the 2014

ImageNet challenge. These accuracy improvement was obtained by empirically

finding a better dimensionality configuration for convolutional layers and creating

deeper networks, up to 19 layers.

In 2015, a significant advancement in the performance of feed-forward ANNs

was achieved through Batch Normalization (BN) [40]. This module eases training

by reducing the internal covariance shift, where the distribution of each layer’s

inputs changes during training, making it harder to train effectively.

In order to do so, BN normalizes the output of a previous activation layer

by subtracting the batch mean and dividing by the batch standard deviation,

and then scales and shifts the normalized output using learned parameters. This

normalization is performed for each mini-batch during training. Given the mean

µk and standard deviation σk across the batch and the learnable weights γk and

βk, for an input of d dimensions xt = (x1,t...xd,t), the method normalises each

feature k (or convolutional channel in the case of CNNs) independently:

BN(xk) = γk
xk − µk√
(σk)2 + ϵ

+ βk (2.5)

In 2016, after the success of the first CNNs such as AlexNet and VGG [39],

the next big improvement came with the addition of residual connections. As

demonstrated in [20] with their ResNet architecture, residual connections allow

to successfully train much deeper architectures, up to 152 in their paper, giving

rise to a more accurate and efficient family of networks. They achieve this by

adding the original input x to the output of each layer block F (x):

H(x) = F (x) + x (2.6)

This reformulates the problem to learning residual mappings that modify the

input x. Doing so makes it easier for the learning algorithm to build identity

mappings, where the input to a layer block is equal to the output H(x) = x, as it

can be accomplished just by setting the weights in the layer to zero (F (x) = 0).

This allows the network to easily ignore unnecessary layers, therefore avoiding

accuracy degradation when the architecture becomes many layers deep. Alter-

natively, when the optimal solution is not an identity mapping it might still be

closer to it than to a zero mapping, making for a better initialization [20].

Later work [41] has proven that, in order for residual networks to be effective,

11

Ch.2 Feature extraction and Spiking Neural Networks

either Batch Normalization (BN) [40] or alternative strategies which replicate

its benefits (Weight Standardization [42]) are necessary. This is because BN

makes the contribution of the residual path increasingly smaller through depth

compared to the skip path at initialisation. This makes the network effectively

shallow at earlier training stages, and allows it to give deeper layers increasingly

more influence by increasing the variance in the weights as training goes on.

Additionally, it also neutralizes the mean shift activation caused by the Rectified

Linear Unit (ReLU) activation [43], increases the maximum affordable learning

rate and acts as an implicit regulariser.

After residual architectures, the next breakthrough came through attention

computations, which enabled improved accuracy for CNNs [44] in the form of

additive attention [45]. The self-attention blocks defined in [44] are still used

today in the EfficientNet family of networks [46], which are the best performing

CNNs to date, thanks to their optimised architecture which was found by means of

a reinforcement learning approach for neural architecture search [47]. In parallel,

attention also enabled the development of Transformers [35], which use multi-

head dot product attention layers interleaved with fully connected ones.

The essence of an attention computation is simply to define multiplicative

relationships between neuron outputs instead of the more common additive ones.

In most implementations , one of these values is constrained to a [0, 1] range by

means of a sigmoid [44, 45] or softmax function [35], acting as attention coefficient,

which modulates the output of a layer. These coefficients are obtained through

a fully connected layer in additive attention, while dot product attention obtains

them as the dot product between two feature vectors.

Regarding Transformer architectures, in the present day they have set the

state of the art results for most large datasets, and have become the standard

approach for massive computation applications. Still, their limitation, as previ-

ously mentioned, lies in their computational requirements, as they require inputs

to be broken down in a sequence of ”pieces” (time frames for temporal data or

image blocks for visual data), then their computational and memory complexity

scales as O(L2) with the sequence length.

2.2 Spiking Neural Networks

First coined in Carver Mead’s 1989 publication Analog VLSI and neural sys-

tems [48], the term neuromorphic engineering has become synonym of the in-

tersection between AI and neuroscience. Originally, the concept was introduced

12

Ch.2 Feature extraction and Spiking Neural Networks

as ”the use of very-large-scale integration (VLSI) systems containing electronic

analog circuits to mimic neuro-biological architectures present in the nervous sys-

tem”. In recent years, neuromorphic engineering has brought together computa-

tional neuroscientists and researchers on deep learning and computing hardware,

in a field that encompasses research trying to understand the brain by means of

AI, and research applying neuroscience insights to improve AI [8, 49].

The common denominator in this field is the use of Spiking Neural Networks,

a kind of ANN that closely replicate the inner workings of real neurons [50].

From an engineering perspective, SNNs’ sparse and asynchronous computations

have been demonstrated great gains in energy efficiency when implemented in

specialised neuromorphic hardware [51], which, unlike traditional von Neumann

architectures, can exploit activation sparsity, only transmitting signals coming

from active neurons. Serving as example, [52] demonstrate how the same network

consumes 11 times less energy in a neuromorphic implementation than its ANN

counterpart, while [51] finds a reduction of up to 100 times less.

2.2.1 Spiking Neurons

The defining factor of SNNs, which makes them differ from traditional ANNs, is

their neuron model, the spiking neuron, which replicates the behaviour of real

neurons. In short, biological neurons are characterised by possessing an electri-

cally charged cell membrane that accumulates voltage received from other neurons

in the network. When this voltage surpasses a set threshold, ion channels open,

further increasing the neuron’s voltage and triggering the emission of an action

potential or ”spike”. This spike is sent through the synapses which connect to

other neurons in the network, modifying their membrane potentials and thereby

communicating information.

Simulation of this behaviour can be achieved at multiple degrees of biological

realism. Hence, multiple neuron models with different levels of complexity have

been proposed [53]. This research uses the Leaky Integrate-and-Fire (LIF) model

[54]. Despite their simplicity, LIF neurons found great success in many state of

the art systems [22, 55, 56], while the use of more complex versions incurs in a

higher computational cost with no clear functional benefits.

The LIF model can be formulated as the differential equation seen in (2.7),

where U(t) is the membrane potential, Urest the resting potential, τ is the time

constant and I(t) is the input current. When the voltage U(t) surpasses a set

threshold Uth, the neuron emits a spike and the potential is reset by subtraction.

13

Ch.2 Feature extraction and Spiking Neural Networks

τ
du

dt
= − (U(t)− Urest) +RI(t) (2.7)

In order to easily program this behaviour in machine learning models, explicit

iterative versions of this differential equation are used. Let i be a post-synaptic

neuron, ui,t is its membrane potential, oi,t its spiking activation and λ the leak

factor. The index j belongs to the pre-synaptic neuron and the weights wi,j

dictate the value of the synapses between neurons (Fig. 2.2). Then, the iterative

update of the neuron activation is calculated as follows:

oi,t = g

(∑
j

(wijoj,t) + λ · ui,t−1

)
(2.8)

where g(x) is the thresholding function, which converts voltage to spikes:

g(x) =

 1, if x ≥ Uth

0, if x < Uth

(2.9)

After spiking, a reset is performed by the subtraction u∗i,t = ui,t − Uth, where

u∗i,t is the membrane potential after resetting.

Notice that when this neuron model is used without the leakage factor, it is

referred to as an Integrate-and-Fire (IF) model. This version will also be used

for this research.

Membrane potentials

Spiking
function

Spiking activations

Spiking activations

Conv modulated synapses Weights

. . .

ul,t

ol,t

ol-1,t

wi,j

g

Fig. 2.2: Diagram of the operations performed in a spiking layer.

14

Ch.2 Feature extraction and Spiking Neural Networks

2.2.2 Spiking Neural Network architectures

SNN architectures have been developed for multiple AI tasks, including reinforce-

ment learning [57], control systems [58], time series processing [59], and even text

generation [60]. Still, the most prevalent use case has been computer vision. In

this domain, the mainstream tasks used to develop and evaluate new feature ex-

tractors are image classification and action recognition. The objective of these

tasks is simply to assign the correct classification label to each data sample, im-

ages for the former and video for the latter. The extracted features will create

data representations that allow to discriminate between different classes, there-

fore higher classification accuracy will be linked to a feature extraction process

that better represents the properties of the data classes. Hence, these tasks are

considered a useful evaluation metric for feature extraction quality and will be

used in this thesis as benchmarking tool.

Image classification

SNN architectures for image classification have followed a similar path as conven-

tional ANNs; still, their alternative computing paradigm has posed a challenge

when porting certain deep learning structures to spiking format, making them lag

behind. On the other hand, these differences have also motivated the development

of alternative solutions, usually more biologically plausible.

Up to 2021, the highest SNN image classification accuracies were reported

with networks basing their topology on VGG [61–63]. This was achieved by

reusing the original network topology and substituting the conventional neurons

and their ReLU activation with IF or LIF spiking neurons.

The first attempts to replicate ResNet architectures in SNNs, are attributed

to Lee et al. [21] and Zheng et al. [55], which implemented the first trainable

spiking ResNets. These networks achieved competitive results, but were still

outperformed by non-residual approaches in some scenarios. In 2021, Spiking

ResNets achieved state of the art results through the work presented by Fang

et al. [22], and the one presented by the first contribution of this thesis [23]

(Chapter 4). After that contribution, in 2023, further accuracy improvement has

been reported in literature by implementing Visual Transformers [64] in spiking

format [56]. Performance comparisons can be found in Section 2.2.4

15

Ch.2 Feature extraction and Spiking Neural Networks

Action recognition and temporal processing

The state of the art for SNNs in temporal tasks has been historically based

on Recurrent Neural Network (RNN) architectures, which implement recurrent

connections that create a path between a layer’s output and its input. The

authors in [65] proposed Recurrent SNNs (RSNNs) of Leaky integrate-and-fire

(LIF) neurons with neuronal adaptation, a process that reduces the excitability

of neurons based on preceding firing activity. Their resulting network is tested in

the Sequential MNIST (S-MNIST) [66] and TIMIT tasks [67]. Subsequent work

applied LSTM cells to SNN networks, achieving higher performance in S-MNIST

[68].

Still, for the processing of visual event-based datasets such as DHP19 [69]

or DVS-Gesture [70], the state of the art has been set by feed-forward SNNs

with no recurrency [22, 55, 71]. The question is then whether these feed-forward

SNNs implement working memory or, on the contrary, the aforementioned tasks

do not require a network with temporal feature extraction. Chapter 5 answers

this question, proving how both statements are true.

Finally, with the recent efforts on developing Transformer architectures in

spiking format, since 2023 some examples have appeared where spiking Trans-

formers achieve state of the art results in temporal tasks. The authors in [56]

obtain comparable performances to the best systems on DVS-Gestures by means

of a spiking Transformer, while in [60], the ”SpikeGPT” network recorded the

best SNN performance for language generation. Given that SNNs are usually

employed to achieve computational efficiency, the future adoption of these SNN

Transformer systems is not yet guaranteed due to their higher computational

cost. The next few years will define whether these research direction meets the

desired computational limits in target applications.

2.2.3 Training methods for spiking neural networks

The binary and sparse nature of SNN gives great computational advantages, but

at the same time these properties create some challenges at training time. That

is why the development of learning algorithms for these networks is a very active

field.

Conventional non-spiking neural networks owe most of their success to the

backpropagation (BP) of error algorithm [24], where the optimal synaptic weights

are found by minimising an error function with respect to these same weights.

In order to apply the BP algorithm, the whole network needs to be expressed

16

Ch.2 Feature extraction and Spiking Neural Networks

as a differentiable function. In the case of SNNs, the spiking behaviour inside

the neurons creates a non-differentiable function, therefore learning through BP

requires additional workaround strategies. Moreover another difference between

SNNs and regular Deep Learning is the fact that SNNs use the time dimension for

their computations, therefore the neuronal states also have time dependencies. In

the case of non-spiking ANNs, the time dimension is used when processing tempo-

ral streams, but it is not used for time invariant tasks such as image classification

or object detection.

Given these properties and their challenges, several approaches to SNN train-

ing have been proposed, each with their own advantages and disadvantages. In

computer vision, there are three main categories: direct supervised training, con-

version methods and unsupervised training.

Direct supervised training

Directly training the SNN allows one to exploit all its valuable properties, in-

cluding its sparsity and its capacity to process asynchronous inputs. However,

the challenge then becomes to successfully train it given that gradient descent

based methods cannot be applied to non-differentiable spiking functions. The

most common strategy in state of the art methods is the use of surrogate gradi-

ents [63, 72], a method where the spiking function is used in the forward path,

but when calculating its derivative in the backwards path, a continuous tractable

function is used, which tries to approximate the behaviour of the real derivative.

Another option is to use a version of the SNN model that is directly differ-

entiable. Some examples can be found in [73]. We can find models using soft

non-linearities [74], probabilistic models [75] or latency-based networks [76].

Alternatively, supervised learning can also be performed without the differen-

tiation of the whole network. Some examples use local approaches with algorithms

such as [77], where the loss is computed locally in each neuron, or by using three

factor learning rules [78].

When talking about final task accuracy, surrogate gradient BP is the best

performing method so far. All the best SNN feature extractors consistently use

this method [55, 56, 79], but the BP implementations and the surrogate functions

they use vary between them.

Concerning the BP implementation, different variations can be found among

the best performing networks. Most works choose to use Backpropagation Through

Time (BPTT) [80], the mainstream algorithm also used for the training of RNNs

and other time-dependent networks. BPTT ”unrolls” the network in time, mean-

17

Ch.2 Feature extraction and Spiking Neural Networks

ing that, given a fixed number of time-steps for which training will be performed,

a copy of the network is created for each of them and the temporal dependen-

cies between time-steps are explicitly defined. Considering an integrate and fire

model, as previously defined, where the output ol,t of a layer l depends on the

output of a previous layer ol−1,t and its own membrane state ul,t−1 in the previ-

ous time-step t− 1, then the derivative of the loss function E can be unrolled as

follows:

∂E

∂W
=

∂E

∂ol,t

∂ol,t
∂ul,t

∂ul,t
∂W

(2.10)

where the gradient
∂ul,t

∂W
depends on previous states which are computed recur-

sively:
∂ul,t
∂W

=
∂ul,t
∂ul,t−1

∂ul,t−1

∂W
+

∂ul,t
∂ol−1,t

∂ol−1,t

∂W
(2.11)

This expression shows how computing this gradient requires to access the state

of the network at all time-steps t, hence its cost in memory requirement.

Alternatively, a slightly different implementation is found in [21], where the

authors use a Spike-based BP algorithm which proposes a novel way of accounting

for the leak factor of Leaky Integrate-and-Fire (LIF) neurons. Finally, there are

also BP approaches where the input spikes are convolved with spike response

kernels like in [81], which allows for convenient spike response implementations

at the cost of saving more spike time-stamps in memory.

For the choice of surrogate functions, there is no consensus on a better choice.

The derivatives of any continuous function that approximates a step function

can be a valid surrogate. Some examples are triangle shape surrogates in [63],

rectangular shaped in [55], and arc-tangent shaped in [22, 79].

The main disadvantage of BPTT is its computational cost, as with its ”net-

work unrolling” it requires to explicitly define all temporal dependencies and

store the neuron states at every point in time. In order to make the process more

efficient, approaches such as e-prop [82] or Eventprop [83] have been proposed,

which approximate the optimal credit assignment obtained by BPTT without

storing all activation history. This comes at the cost of less precise updates and

therefore, for most cases, lower final accuracy.

Conversion methods

In most machine learning tasks, the highest accuracy figures are reported by

non-spiking deep learning networks which outperform their spiking counterparts.

18

Ch.2 Feature extraction and Spiking Neural Networks

Therefore, conversion methods propose to train a non-spiking neural network and

then convert it to spiking format to make them suitable for implementation in

neuromorphic hardware and reduce energy consumption.

There are different methods that allow such a conversion. These techniques

create an approximation of the original network that is accurate up to a certain

approximation error, and with a certain cost in terms of floating point operations

per second (FLOPS) and latency. This approximation needs to reconstruct each

non-spiking neurons in the original network through a set spiking neurons, and

therefore the key challenge is to represent continuous activation values using the

binary outputs of spiking neurons.

Comparing to direct training of an SNN, the spiking system resulting from

the conversion has higher latency and energy consumption. As an example, the

authors in [21] demonstrated how high performance was achieved with 30 time-

steps for directly trained networks, while conversion based ones needed more

than 100. Another disadvantage is that one cannot perform online training or

low power training directly in a neuromorphic device, as the network can only

be deployed onto the neuromorphic device once it is trained and converted. On-

chip training is a topic of interest in current research [84, 85], which is key for

applications requiring further learning after deployment.

Finally, also the temporal resolution of the system is affected, as the training

is done with discrete time frames instead of a flow of input spikes. This is likely

to cause under-performance in neuromorphic datasets as proved by [86].

Nonetheless, the advantage of using conversion techniques is the possibility

to approximate the accuracy performance of non-spiking deep learning networks.

If the non-spiking ANN can perform the task, converting it to SNN provides

guarantees of success without having to manage the more complex SNN training.

Rate based methods – This is the most common conversion approach [87, 88],

where the rate of spiking mimics the activation value that the original non-spiking

neuron would have had. This approach can only be used to convert networks

which employ the ReLu activation function, and the conversion is performed just

by switching the ReLU activation function for the spiking function. The weights

and connectivity are kept the same. Then, the input is fed to the network for

N time-steps. The firing rate of each neuron becomes an approximation of the

original activation value if enough time steps are allowed. In a feedforward archi-

tecture, the output approximation of a given layer is affected by its presynaptic

neurons, therefore until the previous layer converges, the next one will not be able

to do so; and then, the deeper the architecture, the more time steps the system

19

Ch.2 Feature extraction and Spiking Neural Networks

needs and the more approximation error is accumulated.

Rueckauer et al. [89] show how a converted SNN with reset by subtraction

(the alternative to a hard reset to 0) can approximate the original ith activation a1i

with an additive error, which is time dependent and proportional to the threshold,

as in (2.12).

r1i (t) = a1i rmax −
V 1
i (t)

t · Vthr
(2.12)

Instead, Kugele et al. [90] propose to perform conversion by first constraining

the original ANN to work in a streaming rollout fashion [91]. Typically RNNs

are considered to to have a time delay of one time step in their recurrent connec-

tions, meaning that the recurrent output will come to the neuron’s input in the

next time step. At the same time, the feedforward connections are considered

to be instantaneous without any time delay. This model is called a sequential

rollout. Alternatively, in a streaming rollout, feedforward and skip connections

are also considered to take time when propagating information. This work is

able to mimic the time based dynamics of SNN in the training of the original

ANN. This, together with DenseNet as architecture of choice, allows to process

neuromorphic sequences, give early approximates, and to obtain one of the most

accurate systems for the DVS gestures dataset.

Time based methods – Stockl et al. [92] propose an alternative to the typical

rate based conversion with the “At Most One Spike per neuron” (AMOS) method.

Rate based methods perform a one to one conversion, where each original neuron

is approximated by one spiking neuron. Alternatively, AMOS approximates one

neuron with a circuit of spiking neurons. By summing the contribution of several

neurons, this circuit is able to approximate the original continuous activation

value using the binary outputs of spiking neurons.

In contrast with rate based conversions, where only the rectified linear unit

activation function can be approximated, AMOS can work with any activation

function, as the parameters of the circuit can be optimised to approximate any

function. This is why the authors are able to convert the best performing CNN

architecture to the spiking domain, EfficientNet [46], and beat the 2019 state of

the art in image classification. Moreover this method has a higher throughput

than rate methods, as each neuron spikes just once per input, and therefore a new

input can be fed after each timestep. On the other hand, the resulting converted

network has a higher complexity and memory cost compared to the original one

or rate based conversions.

20

Ch.2 Feature extraction and Spiking Neural Networks

Unsupervised training

Thanks to their biologically plausible computations, SNNs can implement Spike-

timing-dependent plasticity (STDP), a learning algorithm observed in the brain,

that uses spike timings to modulate the weight of the synapses between neurons.

This method is the standard for unsupervised training in SNN [93] and, for shallow

architectures, it can compete in terms of accuracy with self-supervised methods

such as auto-encoders in non-spiking deep learning [94].

The STDP algorithm modulates synaptic plasticity in a neural network, us-

ing the Hebbian learning principle ”neurons that fire together, wire together”.

This means that, in the scenario with presynaptic neuron feeding its output to a

postsynaptic neuron, a correlated activation of the pre and post neurons results

in a strengthening of their synapse. In the case of STDP, the timing of the spikes

dictates this correlation: if the presynaptic neuron spikes, and after a window

of time the postsynaptic neuron also spikes, a causality relation is assumed and

Long Term Potentiation (LTP) occurs, where the synapse is strengthened. On

the contrary, if the postsynaptic neuron spikes before the presynaptic one does,

Long Term Depression (LTD) occurs and the synapse weight decreases.

This methodology allows a network to statistically learn patterns on a source

of information, for example visual information. While the system does not have

an explicit guide of what its purpose is, the learning rule implicitly forces it to

extract patterns from the information it receives.

On top of the base STDP principle, successful implementations need to im-

plement regulatory mechanisms to prevent runaway synaptic dynamics, which is

a cycle of indefinite increase or decrease in synaptic weight [95]. This mecha-

nisms find a stable operating regime achieving homeostasis. The most common

methods are intrinsic plasticity, adjusting the excitation threshold of the neurons,

or synaptic scaling, adjusting synaptic efficacy. Additionally, ”winner takes all”

schemes are usually employed in feed-forward networks so that the neurons are

forced to specialise.

2.2.4 Benchmarking of spiking neural networks

To finalise the prerequisites on the state of the art for SNN feature extraction, in

this section the performances of the most notable SNN methods are presented.

Table 2.1 presents image classification accuracy on MNIST [96], N-MNIST [97],

Cifar10, Cifar100 [98], DVS-CIFAR10 [99] and Imagenet [100]. Notice that DVS-

CIFAR10 is a dataset resulting from a screen recording of the original frame-based

21

Ch.2 Feature extraction and Spiking Neural Networks

CIFAR10, acquired with a neuromorphic camera which performed regular motion.

Architecture and training method are briefly specified for each of them. For

brevity, commonly known architectures are referred by name, full specifications

can be found in the citation. Conversion training is specified for SNNs, as well

as other unconventional training procedures. Those with no reference to training

methodology indicate that the network was trained through BPTT. Additionally,

the table also presents performances for non-spiking ANNs (in blue) in order to

showcase the gap in performance and compare the differences regarding architec-

tures used.

This summary is specially relevant for the contribution described in Chapter

4, serving as context and motivation for the developement of the novel S-ResNet

network. This work was published in 2022 [23] motivated by the state of the

art up to late 2021. Examples of the most relevant systems after the date of

publication have also been added for completeness.

Up to 2021, the best performing methods were usually trained by conversion.

Later works, including the one in this thesis, obtained competitive results by

directly training the SNN with BPTT and surrogate gradient and by proposing

adaptations of the ResNet architecture to spiking format. In 2023, the visual

transformer architecure was adapted to spiking networks [56], porting the superior

accuracy from these architecture to SNN. Apart from that, it is also noticeable

how Qiu (2024) [101] obtained high accuracy with a ResNet architecture, by

changing the encoding procedure to their Gated Attention Coding, which applies

additive attention to the first convolution, which encodes the continuous image

values into spiking format.

Ultimately, the table also shows how non-spiking networks still outperform

Spiking ones in terms of accuracy. These networks are not constrained to binary

communication and are easier to train for image classification tasks. Bridging this

gap is an important objective for SNN research, but it is still important to realise

that image classification is more suited for non-spiking ANNs than SNNs. Spiking

computations encode information in the temporal dimension, making up for the

reduced expressiveness of binary communication, this means that their training

complexity is the same in image classification than when processing dynamic data

such as video, and their expressiveness is bound to the amount of time they run

for. On the contrary, ANNs can perform inference for static data in a single time-

step, easing training and defining this same expressiveness with the resolution of

their floating point operations. Additionally the differentiability issues in SNNs

make training less precise than in their conventional counterparts.

22

Ch.2 Feature extraction and Spiking Neural Networks

These differences seem to indicate that SNNs might never outperform ANNs

in accuracy for mainstream tasks such as image classification. Instead, they repre-

sent a more efficient embodiment of the Neural Network computing paradigm. As

previously discussed, this embodiment has its constraints, which impose limita-

tions, but in exchange other benefits arise. Energy efficiency is the most notable,

while further research is trying to unveil more of them. An example is Chapter

5, which demonstrates benefits for spatio-temporal feature extraction.

2.3 Conclusions

In this section, the preliminaries on neural networks and feature extraction have

been established, followed by a review on the state of the art for SNN applied to

visual feature extraction.

The parallelism between SNN and ANN developments have often been alluded

to in this review, as SNNs are just one possible embodiment of the ANN paradigm.

As discussed in Section 2.2.4, ANNs are easier to design and train, making for

more accurate feature extractors. Still, spiking computations have exploitable

benefits due to their sparsity and asynchronous computing. Hence, it is a priority

to further develop SNN network architectures in order to make their performance

competitive (Chapter 4), while it is also of interest to discover and demonstrate

more of their exploitable benefits (Chapter 5).

23

Ch.2 Feature extraction and Spiking Neural Networks

Tab. 2.1: Image classification accuracy for supervised methods. Blue coloured text
indicates a non-spiking method. Method lists the architecture used and any non-
conventional training procedure. If no training specification is given, regular BP /
BPTT was used.

Model Method Dataset Accuracy
Byerly (2020) [102] Multi-path + capsule networks MNIST 99.84%
Rueckauer (2017) [89] 7-layer |Conversion MNIST 99.44%
Fang (2021) [79] 2Conv 2Fc + PLIF Neurons MNIST 99.72%
Kaiser(2020) [77] 3-layer |Deep continuous local learning N-MNIST 99.04%
Kugele (2020) [90] Densnet |Conversion N-MNIST 99.54%
Wu (2019) [103] AlexNet + NeuNorm N-MNIST 99.53%
Fang (2020) [79] 2Conv 2Fc + PLIF Neurons N-MNIST 99.61%
Dosovitskiy (2021)[64] Visual Transformer CIFAR-10 99.5%
Kolesnikov [104] Big Transfer CIFAR-10 99.37%
Rueckauer (2017) [89] AlexNet Conversion SNN CIFAR-10 90.85%
Wu (2019) [103] CifarNet + NeuNorm CIFAR-10 90.53%
Kim(2020) [105] VGG9 + BNTT CIFAR-10 90.5%
Lee(2020)[106] Spiking ResNet11 CIFAR-10 90.95%
Esser (2016) [87] 9-layer CNN |Conversion CIFAR-10 89.32%
Zheng (2020) [107] ResNet18 + Fc + tdBN CIFAR-10 93.15%
Lee (2020) [21] 10-layer Residual SNN + FC CIFAR-10 90.95 %
Zheng (2020) [55] 19-layer Residual SNN + FC CIFAR-10 93.15 %
Fang (2021) [79] CifarNet + PLIF neurons CIFAR-10 93.50%
Wu (2021) [108] VGG-11 |conversion CIFAR-10 91.24%
Sengupta (2019)[62] VGG-16 |conversion CIFAR-10 91.55%
Deng (2021)[109] ResNet20 Conversion CIFAR-10 93.58%
Han (2020)[61] VGG16 Conversion CIFAR-10 93.63%
This work (2022) S-ResNet38 CIFAR-10 94.14%
Zhou (2023) [56] Spiking Transformer CIFAR-10 95.19%
Qiu (2024) [101] MS-ResNet18 + Gated Attention Coding CIFAR-10 96.46%
Kugele (2020) [90] Densnet |Conversion DVS -CIFAR-10 65.61%
Wu (2019) [103] CifarNet + NeuNorm DVS -CIFAR-10 60.50%
Kim(2020) [105] VGG7 + BNTT DVS -CIFAR-10 63.2%
Samadzadeh(2020) [110] 18-layer CNN DVS -CIFAR-10 69.2%
Zheng (2020) [107] ResNet18 + Fc + tdBN DVS -CIFAR-10 67.8%
Fang [22] (2021) Wide-7B-Net DVS-CIFAR10 74.4%
Fang [79] (2021) CifarDVSNet + PLIF Neurons DVS-CIFAR10 74.8%
This work (2022) S-ResNet38 DVS-CIFAR-10 72.98%
Zhou [56] (2023) Spiking Transformer DVS-CIFAR-10 80.90%
Kolesnikov [104] Big Transfer CIFAR-100 93.51%
Esser (2016) [87] 9-layer CNN |Conversion CIFAR-100 65.48%
Kim(2020) [63] VGG9 + BNTT CIFAR-100 66.6%
Han [61] (2020) VGG16 Conversion CIFAR-100 70.97%
Deng [109] (2021) VGG-16 Conversion CIFAR-100 72.34%
This work (2022) S-ResNet38 CIFAR-100 74.65%
Zhou [56] (2023) Spiking Transformer CIFAR-100 77.86%
Qiu [101] (2024) MS-ResNet18 + Gated Attention Coding CIFAR-100 80.45%
Touvron(2020) [111] FixEfficientNet-L2 ImageNet 88.5%
Dosovitskiy (2021) [64] Visual Transformer ImageNet 88.36%
Tan and Lee (2019) [112] EfficientNet-B7 + RandAugment ImageNet 85%
Stockl (2020)[92] Efficientnet-B7 |AMOS Conversion ImageNet 80.97%
Fang (2021) [113] SEW ResNet50 + PLIF neurons ImageNet 63.55%
Zheng (2020) [107] ResNet34(large) + tdBN ImageNet 67.05%
Stockl (2020)[92] ResNet50 ImageNet 75.22%
Stockl (2020)[92] ResNet50 |AMOS Conversion ImageNet 75.10%
Szegedy (2015) Inception V3 ImageNet 78.8%
Rueckauer (2017) [89] Inception V3 Subset-ImageNet 76.12%
Rueckauer (2017) [89] Inception V3 |Conversion Subset-ImageNet 74.60%
Fang [22] (2021) SEW-ResNet152 ImageNet 69.26%
Zhou [56] (2023) Spiking Transformer ImageNet 74.81%
Yao [114] (2024) Spiking Transformer ImageNet 77.07%
Qiu [101] (2024) MS-ResNet34 + Gated Attention Coding ImageNet 70.42%

24

Ch.3 Continual Learning

Chapter 3

Continual Learning

Artificial Neural Networks have achieved great success when trained in indepen-

dent and identically distributed (i.i.d.) data, where data points are sampled with

identical probability as independent events. However, this requirement for i.i.d.

inputs limits the adaptability of AI systems, as it becomes unfeasible to train

them on dynamic streams of data where, over time, older data might become

unavailable, new classes might appear, or domains might shift their distribu-

tion [115].

Overcoming this constraint is one of the great challenges in machine learning,

and one of the current priorities. Humans (and most animals) are able to con-

tinuously learn through life, accumulating knowledge from all past experiences

and only forgetting that which is not often used or considered unimportant [116].

Building this knowledge base improves generalisation capabilities, as knowledge

from previous experiences can transfer to new ones, while it also allows for faster

learning (few shot learning [117]). These are key properties for any future AI

systems, which would enable them to adapt to new situations and achieve higher

overall intelligence. However, under the i.i.d. data constraint, this requires to

collect all this life-long learning data into one dataset and randomly sample it.

This poses a scalability problem, due to data storage and training cost, alongside

with privacy preservation violations when data cannot be stored. Moreover, this

is also a limitation to deployment: If the system is placed in a new scenario and

needs to learn online, training on new data without revisiting examples of the

old one would cause undesired forgetting. This problem is commonly known as

Catastrophic Forgetting (CF) [10, 17, 18].

In order to address this limitation and promote more scalable models, there

is a need to develop systems capable of learning and adapting to new tasks while

maintaining previously acquired knowledge. Therefore, the main objective of

25

Ch.3 Continual Learning

continual learning (CL) approaches is to find a balance for the stability-plasticity

dilemma: preserving performance in previous tasks, while still allowing the system

to learn new ones [118].

3.1 Incremental learning

In order to evaluate the capacity of machine learning systems in continual learning

scenarios, a common approach is framing the problem as an Incremental Learning

(IL) challenge. In IL, the system tries to learn a sequence of tasks, one at a time,

without access to data from previous or future ones [10, 17, 119, 120]. In this

thesis, incremental learning with image classification tasks is used, and the setup

is defined without overlap, meaning that each class only appears in a single task.

During training, since labelled data is available, access to the task-id is granted.

However, during evaluation, IL methods can be classified as task-aware and task-

agnostic. The first assumes that the task-id is known at test time, while the

latter does not allow its use (at test time) [121]. In this scenario, some of the best

performing methods are the ones using rehearsal, which store a subset of samples

from each task and class in a memory buffer and access them throughout the

training sessions [119, 120]. In recent years, the usage of these exemplars has been

questioned, with a growing preference for more privacy preserving methods, which

also can scale better over large number of classes [115]. However, as explained in

following sections, this exemplar-free incremental learning approaches struggle to

tackle some of the causes of CF.

The causes of catastrophic forgetting

As one of the original contributions of this thesis, a definition of catastrophic

forgetting is proposed, which allows to identify the specific mechanism that cause

accuracy degradation in previous classification tasks. This allows for a better

understanding of the contribution of different continual learning approaches and

highlights which issues still need addressing when preventing CF. Therefore, this

contribution is presented early in the thesis so that the nomenclature it defines

can be used when reviewing CL methods in the literature.

The definition decomposes the problem into the following sub-components:

• Weight degradation: including weight over-writing and weight inter-

ference.

26

Ch.3 Continual Learning

• Representation interference: including representational overlap and class-

energy imbalance.

Consider a typical classification problem, where the target distribution for a

cross-entropy loss function is a one-hot encoded vector yc with value 1 for the

correct class c and 0 elsewhere. The unormalized output oc of the network is

passed through a softmax function ôc =
eoc∑
i e

oi
and the resulting distribution ôc is

forced to match yc by the loss.

Given the activation of the last layer of the network aL(x), and a classifier

layer ψ, the network output for a class c is calculated as the inner product between

the classifier weights connected to its logit ψoc and the activation aL(x):

oc = ψoc · aL(x) =| ψoc || aL(x) | cos(ψoc , aL(x)) (3.1)

In an incremental learning scenario, after learning the mapping from x to

ôc, later training can modify these output probabilities ôc, causing catastrophic

forgetting when it makes P (ôc | x) and P (yc | x) diverge.
Considering an incremental learning sequence with t tasks (or training ses-

sions) the activation of a given layer l can be defined as:

al(x) = x · (W∈t
l +W ̸∈t

l) , (3.2)

where W∈t
l are the weights trained during task t and W ̸∈t

l the weights which were

not active while learning that task (because they were deactivated or because

they were added in a later stage). Then, in later training sessions, catastrophic

forgetting will be caused by weight overwriting if W∈t
l is modified and by

weight interference if W ̸∈t
l becomes active.

Furthermore, since the value of oc will be defined by the product in equation

(3.1), the representation overlap problem is identified in the cosine similarity

calculation, as the overlap between representations of different classes will trans-

late into higher logit values for the incorrect ones, increasing the probability of

misclassification. Classes learnt in different training sessions are the main cause

of this problem, as they are not trained together and, therefore, their separability

is not taken into account.

Finally, the class-energy imbalance problem can be found in the | ψoc |
term, as some classes might have higher weights, promoting interference by scaling

the effect of the representational overlap.

27

Ch.3 Continual Learning

3.2 Families of methods

Through the years, many approaches have been proposed to alleviate CF. Com-

paring them is not always straightforward, given that continual learning scenarios

can be defined with different constraints depending on the desired application.

The use of exemplars and task-id, as previously mentioned, are examples of re-

quirements that can be made available to the system in certain scenarios, but in

others, we might want to avoid. Other examples of properties that influence the

usability of methods are: Extra computation during training or inference, grow-

ing of network parameters through training or the requirement for pretrained

models, among others. To better categorise methods alongside those of similar

requirements, the following subsections categorise them in ”families of methods”

where the strategy is based on a common principle.

3.2.1 Regularisation

Regularisation methods add additional terms to the loss function which promote

preservation of previous knowledge. Usually they require storing a copy of the

model which serves as checkpoint, then, updates on the model are limited by the

regularisation loss, which promotes staying close to the checkpoint model. The

more weight this loss has, the more stability and less plasticity the model will

have.

These approaches show promising results in task-aware IL, but usually require

to be paired with rehearsal [122] or external datasets [123] when not having access

to the task-id, as reported in [119].

Weight regularisation

One approach is weight regularisation, which calculates an importance measure

for each weight in the network, indicating how critical they are for the perfor-

mance of previous tasks. Then, the regularisation loss penalises changes to the

weights with respect to the network checkpoint proportionally to this importance

metric. Popular examples of this approach are Elastic Weight Consolidation

(EWC) [124], which estimates importance as the diagonal approximation of the

Fisher Information Matrix; Memory Aware Synapses (MAS) [125] which do so by

means of the magnitude of the gradient; or Path Integral (PathInt) [126], which

accumulates the changes applied to each parameter, which is correlated to the

gradient value.

28

Ch.3 Continual Learning

Equation 3.3 exemplifies this with the EWC loss function. Given the current

weight matrix θi and the weights of the checkpoint θ∗t−1,i, saved at task t− 1, the

regularisation term calculates the diagonal of the Fisher information matrix F

for each parameter i.

L(θ) = Lt(θ) +
∑
i

λ

2
Fi

(
θi − θ∗t−1,i

)2
(3.3)

Where F is calculated by means of the expectation E[·] over training data of

the derivative of the log-likelihood of the output y given an input x (3.4). As

explained in [127], F is equivalent to the second derivative of the loss near a

minimum while it can be computed from first order derivatives and is guaranteed

to be positive semi-definite. Therefore, it is used to estimate the influence of each

parameter in the loss, making the loss give more cost to the changes in those

parameters with higher influence.

Fi = E

[(
∂ log p(y | x, θ)

∂θi

)2
]

(3.4)

These approaches usually create the network checkpoint when training for

a task is completed and a new one starts. This can represent a limitation for

scenarios where task boundaries are not defined, therefore [128] proposes to adapt

MAS to such setup by estimating when the network has reached a learning plateau

through the mean and standard deviation of the loss.

Activation regularisation

Activation regularisation imposes its penalty on activation changes, instead of

weight values. The most widely used method for this is Learning Without For-

getting (LWF) [129]. The strategy is based on a method originally proposed for

network distillation [130], where the logits of a teacher network are used as ob-

jective for a student one, in order to transfer knowledge from the former to the

latter.

LWF creates a checkpoint of the network upon task transition and uses it as

teacher network for the updated model, constraining the new model to solutions

that are close to the logits that the old network returns for the current data.

The loss then adds a Ldistill term which calculates a modified cross-entropy

loss with the targets y
′(i)
o being the recorded probabilities.

29

Ch.3 Continual Learning

Ldistill(yo, ŷo) = −
l∑

i=1

y′(i)o log ŷ′(i)o (3.5)

where a temperature parameter T is used to smooth logit values as:

y′(i)o =

(
y
(i)
o

)1/T
∑

j

(
y
(j)
o

)1/T , ŷ′(i)o =

(
ŷ
(i)
o

)1/T
∑

j

(
ŷ
(j)
o

)1/T . (3.6)

Knowledge distillation has since been added to multiple methods as a knowl-

edge preservation measure [131–133] such as Co2L [133], which learns more trans-

ferable representations through contrastive learning and performs knowledge dis-

tillation to preserve feature representations close to the ones from the checkpoint.

3.2.2 Replay

Instead of accumulating all data seen in a life-long learning process, replay meth-

ods propose approaches which store memory buffers with a limited number of

examples and use them to prevent forgetting in the distributions they represent.

Experience replay

The most obvious approach for this is experience replay, which adds the exemplars

to the training batch [134]. The challenge then becomes how to select the most

representative exemplars, how to update them, augment them and compress them

for efficiency. Examples of this are the exemplar selection strategy used in the

Icarl method [122], which selects those closer to the class mean in feature space,

or the Adaptive Quantization Modules [135] for exemplar compression, which

encodes them with discrete autoencoders.

Gradient constraint

Instead of using exemplar buffers for replay, the Gradient Episodic Memory

(GEM) [136] constrains the learning process so that the minimisation of the cur-

rent loss does not increase the loss for the saved exemplars. Both this method,

and its later and more efficient version A-GEM [137], alleviate catastrophic for-

getting while allowing for backward transfer, as increasing the loss for previous

tasks is restricted but minimising it is allowed.

Still, storing buffers of data, both for experience replay and gradient con-

straint, imposes limitations: Scalability is limited, as the number of exemlpars

30

Ch.3 Continual Learning

will continuously grow with as new data arrives or, alternatively, if the exemplar

pool is limited in space, the method’s performance will decay as the data seen

increases. Additionally, when data cannot be stored due to privacy preservation

issues, these methods are also not suitable.

Generative replay

An alternative approach to explicit exemplars has been to train generative models

which are able to learn the distribution of previous data and generate examples

to add as rehearsal examples [138]. These approaches take the problem of catas-

trophic forgetting into the generative model, which still needs to be updated.

Some approaches try to prevent this by applying weight regularisation [139, 140]

or using exemplar buffers [141].

Prototype replay

For those scenarios where the use of exemplar memories needs to be avoided,

some recent approaches have chosen to substitute the use of data exemplars with

pseudo-feature representations, which are generated by storing the statistics of the

representation of each class after being encoded by the feature extractor. Then

these statistics are used to generate synthetic pseudo-samples, which represent

previous distributions and are added to the training batch [142–145]. As with

the other replay based methods, these examples allow to avoid representational

overlap, as they include samples from previous distributions which will allow the

classifier to learn more discriminative classification boundaries.

To further enhance the effectiveness of these prototype based approaches,

PASS [142] proposes a self-supervised class augmentation by rotating images 90◦.

This increases the number of classes by a factor of four, encouraging orientation-

robust features during training. Similarly, IL2A [144] applies the self-supervision

technique by combining two samples within a batch to form an augmented learn-

able class. SSRE [143] proposes to apply a selection mechanism to the proto-

types, which decides when a sample is learned only with the cross-entropy loss

(plasticity) or also with a distillation loss (stability). Furthermore, they tem-

porarily increase the model capacity during training and afterwards introduce

a reparametrization to reduce back to the original model size. PRAKA [145]

extends PASS by solving some of its shortcomings, introducing prototype remi-

niscence which replaces the prototypes being represented from a normal distribu-

tion, to a more dynamic one that takes into account the position of other classes

in the latent representation.

31

Ch.3 Continual Learning

Finally, FeTrIL [146] proposes a prototype variant that relies in a translation

of the features f (cn) of the new classes Cn into the centroid position of an older

class Cp by subtracting the mean of the current distribution µ (Cn) and adding

the one from the older class to generate µ (Cp), as seen in equation (3.7). When

multiple classes are available in the current training session, the method shows the

best results by selecting the source class Cn which is closest in centroid distance

to the target class µ (Cn).

f̂ t (cp) = f (cn) + µ (Cp)− µ (Cn) (3.7)

FeTrIL reports superior performance to other prototype based approaches

such as SSRE and PASS in incremental learning scenarios of varying length.

Still, the intrinsic limitation of all these approaches is that the representation

of older classes is required to be constant for the prototypes to remain valid.

Therefore, many methods use a distillation regularization to minimise this differ-

ence [142, 143], while FetrIL completely freezes the backbone. Additionally, the

synthetic generation process requires to assume a certain distribution for the old

classes, such as a Gaussian distribution centered around their mean. Therefore,

these methods will be subject to an approximation error caused by the difference

with respect to the real distribution.

3.2.3 Prompt learning

It is a well-known fact in machine learning that, when training for a new task,

a pretrained model can serve as a better initialisation, reducing training time

and achieving higher overall performance (forward transfer) [147]. This happens

when the pretrained weights extract features that are usable for the new task,

something that will be bound to happen if the data distribution used for the

pretraining stage overlaps with the one for the new task. In the field of natural

language processing this has been taken even further, where a large foundational

model can be use as knowledge source, and it can be adapted to new tasks by

appending a prompt to the input [148], without need for retraining. This strategy

is applied to transformer architectures, where the prompt is an additional piece

of input, in the form of additional tokens, which provides the context of the task

to solve, allowing the network to retrieve the correct answer given its knowledge

base. The approach works well when there is high overlap between pretraining

tasks and the one to solve, but it has inferior performance compared to fine tuning

[149].

32

Ch.3 Continual Learning

Inspired by this approach, recent work has adapted prompting strategies to

continual learning, leveraging large pretrained models. Specifically, they use

prompt learning, which learns the optimal prompt for the current task and leaves

the backbone unchanged.

Learning to Prompt [150] and its successor DualPrompt [151] were the first

instances of this approach. In these methods, a query vector is calculated for

each input as its encoding after going through the backbone. Then, given a set

of randomly initialised prompts and a key vector associated to each of them, the

cosine distance between the prompt keys and the query is calculated. Finally the

N prompts with lowest distance are appended to the input and trained to reduce

the task loss (and the cosine distance of the keys with respect to the query are

also minimised). Later improvement came with [152], which made the training

process fully differentiable and added a learnable attention vector to the query, to

boost adaptability by attending to the relevant parts of this fixed representation.

3.2.4 Parameter isolation

Parameter isolation approaches explicitly define task-specific parameters, associ-

ating parameters to a given task and, therefore, allowing to preserve performance

on those classes by preventing weight overwriting in them. Additionally, this

separation of parameters can also make interference between parameters learnt

for different tasks more obvious, facilitating its mitigation.

Methods such as [153–155], often referred to as ’architecture growing ap-

proaches’, choose to add additional parameters to the network when a new task

needs to be learnt, growing the network size and allowing the allocation of an

arbitrary size of knowledge as long as the memory and computational require-

ments are affordable. On the contrary, mask-based parameter isolation, such as

HAT [156], PackNet [157], TFM [158] or WSN [159], fix the network size and

dynamically allocates parts of the network to different tasks.

Taking HAT as example, for each task t, every layer l learns a sub-network by

defining a mask mt
l over its activations a

t
l . The mask acts as a gating mechanism,

defining which activations are inhibited or active (by means of the point-wise

multiplication defined in equation 3.8):

ãl = al ⊙ml (3.8)

Whereml is generated by means of a learnt embedding el which is passed through

33

Ch.3 Continual Learning

an anhealed sigmoid function σ.

ml = σ(s · el) (3.9)

The scaling factor s is calculated as a function of the N total number of training

epochs for the task, the current epoch n, and a maximum scaling value smax

following sn = (n · smax)/N .

This procedure solves the scalability problem of continuously growing net-

works, at the cost of being bounded by the limits of the network’s capacity [157,

158]. This is because, if the number of tasks grows past a certain limit, the

number of parameters in this fixed network might not be enough to allocate sub-

networks of the optimal size for new tasks, and performance will start declining

until no more learning is possible.

A key aspect to make this methods more parameter efficient is feature reuse

between tasks. Allowing sub-networks to reuse features from previously learnt

tasks reduces the capacity requirement of these later tasks and can boost perfor-

mance thanks to knowledge sharing. The influence learning in old tasks has on

later tasks is known as forward transfer, which is a desirable property in param-

eter isolation. The opposite would be backwards transfer, where later training

influences older tasks, but positive backwards transfer is difficult to achieve with-

out exemplars of previous distributions.

In recent years, parameter isolation methods have been the predominant ap-

proach for task-aware IL [10]. Given than in this setup task-id can be accessed

during inference, this allows to execute only the sub-system defined for the cur-

rent task, achieving in many cases zero-forgetting. Furthermore, since the task-id

is known, classes from other tasks can be ruled out from classification, therefore

there are no issues with representational overlap between classes that were not

learned together, neither there is weight interference.

Lately, there has been a growing interest in applying parameter isolation to

task-agnostic setups. Deploying these methods without the use of task ID would

allow to port their weight overwriting prevention to the challenging task-agnostic

setup, but without task-id, the sub-network for the current task can not be se-

lected for deployment. MORE [160] and ROW [161] are two approaches, devel-

oped in 2022 and 2023 respectively, where each sub-network selection is framed

as a inter-task classification, where exemplars from previous tasks are saved and

used to learn a task classifier that can asses whether a sub-network is out of distri-

bution (OOD) or in distribution, meaning that, if the sub-network is in distribu-

tion, the data belongs to its task, therefore finding the task-id. These approaches

34

Ch.3 Continual Learning

bypass the task-id requirement at the cost of storing exemplars. Alternatively,

the Supermask in Superposition (SupSup) [162] approach has targeted this same

problem by defining a network of non-learnable weights, which are kept frozen

from their random initialisation and defining a mask per task. Then, a combi-

nation of masks is selected as a weighted sum of all of the sub-networks, where

the weight coefficients are those minimising the output entropy. The coefficients

are found through gradient based optimisation, which incurs in extra computing

cost and latency during inference, but, for a simple task (Permuted MNIST [163])

demonstrates results approximating task-aware performance.

Still, the deployment of parameter isolation in exemplar-free and task-agnostic

setups is an unsolved problem. Currently solutions are still bounded to the use

of exemplar memories or, in the case of SupSup, not allowing for backbone train-

ing, incurring in extra compute and demonstrated only for simple tasks. Hence,

part of the research presented in this thesis (Chapter 6) will study the advan-

tages and limitations of parameter isolation for exemplar-free class incremental

learning without task-id, and propose a novel method. This method alleviates

the limitations of task agnostic parameter isolation with a trainable backbone,

without extra compute, and without extra memory requirements.

3.3 Conclusions

This chapter has introduced the the causes of catastrophic forgetting in incre-

mental learning (which represents one of the contributions of this thesis), and

reviewed the state of the art for continual learning methods, which aim at pre-

venting this forgetting. The summaries for those methods which are referenced

in later chapters were expanded, fully defining their functionality.

From the ’Families of methods’ summary, it can be seen how an ample variety

of methods is available to achieve CL, where each group presents unique prop-

erties in terms of requirements, and these requirements define which scenarios

the method is suitable for. This same summary also established the limitations

imposed by keeping exemplar buffers and task-aware inference, justifying how,

looking forward, developments on exemplar-free and task-agnostic incremental

learning are key. This motivates the work presented in Chapter 6, which explores

this setup and proposes new solutions.

35

Ch.4 Advancing SNN feature extraction through residual networks

Chapter 4

Advancing SNN feature

extraction through residual

networks

4.1 Introduction

As discussed in Chapter 2, SNNs provide substantial computational benefits, in-

cluding energy efficiency, asynchronous processing, and more. Currently, improv-

ing their accuracy performance is a major priority, as this will ultimately define

which tasks one can afford to solve with this more efficient computing paradigm.

As seen in Section 2.2.2, conventional ANN are easier to design and train, there-

fore, they are likely to achieve higher accuracies. Still, on the downside, they

are less suitable for deployment in energy constraint systems. Hence, it is nec-

essary to develop better architectures and training algorithms for SNNs, which

will contribute to closing the accuracy gap between ANNs and SNNs, allowing

SNNs and neuromorphic computing to serve as the alternative to conventional

deep learning when efficiency is needed.

With the objective of improving the feature extraction process of SNNs for

visual tasks, the work presented in this chapter focuses on the development of

residual networks in spiking format, presenting a study on the key components

of modern spiking architectures, and using its conclusions to propose a novel and

highly optimized SNN. Results prove how directly training SNNs can outperform

training by conversion methods, allowing to exploit all the benefits of spiking

computations without compromising accuracy. Additionally, the lessons learnt

from the experiments can also be valuable for those designing new SNN feature

extractors in the future.

36

Ch.4 Advancing SNN feature extraction through residual networks

Specifically, the contributions of this chapter are as follows: First, it presents

an in-depth study on the possible implementations of spiking residual connec-

tions, which highlights their properties in terms of accuracy, network activity,

characteristics of their derivatives and implications of the computations in hard-

ware requirements. This study introduces a novel residual connection for SNN,

which has been named the “Voltage to Voltage” connection, and a revamped

implementation of the “Spikes to Spikes” connection.

Then, it provides empirical results demonstrating the effects of different net-

work design choices on the final accuracy. These include network size, batch

normalization strategies, boosting methods, spike generation for frame-based

datasets, hyper-parameter optimization and fine-tuning. When designing an

SNN, the conclusions drawn from these experiments allow to make optimal design

choices maximising the accuracy of the system.

Finally, a new spiking network is defined, which achieves higher accuracy than

the previous state of the art (in 2022 at the time of publication) in CIFAR-10

and CIFAR-100, and matching it for DVS-CIFAR10 with many less parameters

than previous methods1.

Additionally, a study on the compromise between latency and accuracy is

presented. Through the experiments performed in it, results are obtained which

demonstrate a relationship between the processing time and the optimal leakage

factor for a leaky integrate-and-fire model.

4.2 Spiking Residual Network

In this chapter, SNNs are developed using the LIF neuron model [54], as in-

troduced in Section 2.2.1. Then, regarding the network architecture, in order to

build the most accurate SNN feature extractor, the starting point is to implement

a spiking residual network (S-ResNet).

The motivation to choose this architecture is that almost all the non-spiking

state of the art ANNs make use of residual connections in order to allow for the

training of very deep networks [20, 35, 46, 164]. On the contrary, in the SNN

domain, the state of the art was still based in VGG-like architectures for datasets

such as CIFAR-10, CIFAR-100 and DVS-CIFAR10 [61, 62]. Therefore, a new

S-ResNet is defined that allows to outperform the previous state of the art and

justifies the use of residual connections also in the SNN domain.

1The code was publicly released at https://github.com/VicenteAlex/Spiking_ResNet.

37

https://github.com/VicenteAlex/Spiking_ResNet

Ch.4 Advancing SNN feature extraction through residual networks

4.2.1 Implementation of a spiking residual connection

In order to design the S-ResNet, the first step is to define the implementation of

the spiking residual connection. The skip connection in a non-spiking network

just sums the activation value of a previous layer to the activation of the current

one (2.6); however when using spiking neurons, this sum can be performed in

several ways.

Given a multilayered feed-forward SNN of LIF neurons, the membrane state

vector ul,t of a layer l at time t is given by equation (4.1), where ol,t is the layer’s

spiking activation and Wl the synaptic weight matrix. These spiking activations

are obtained by means of the spiking function g (4.2).

ul,t = Wl−1ol−1,t + λ · ul,t−1 (4.1)

ol,t = g(ul,t) (4.2)

Then, the residual information coming from a previous layer at position l−n
can be integrated to the current layer l using one of the following strategies:

Spike output to membrane (S2M): The spiking output of a previous layer

l − n feeds the membrane potential of the neurons in layer l. A set of synaptic

weights W ′
l−n will be needed to define the amount of voltage communicated by

these spikes (4.3). These weights will typically be a non-learnable parameter,

then if W ′
l−n = Uth, the residual connection will implement an identity mapping

when Wl−1ol−1,t + λ · ul,t−1 = 0. In any other case, the final activations are not

guaranteed to be ol,t = ol−n,t.

ol,t = g(Wl−1ol−1,t + λ · ul,t−1 +W ′
l−nol−n,t) (4.3)

Regarding its training through back-propagation, the properties of the resid-

ual connection can be observed in the network’s derivative. Consider a generic

residual block where the residual input W ′
l−nol−n,t has n = 2 (4.3), skipping the

intermediate layer l − 1, and where l − 1 has no residual input:

ol−1,t = g(Wl−2ol−2,t + λ · ul−1,t−1) (4.4)

Then, deriving (4.3) with respect to ol−2,t, we get:

∂ol,t
∂ol−2,t

=
∂ol,t
∂ul,t

∂ul,t
∂ol−2,t

=
∂ol,t
∂ul,t

(Wl−1
∂ol−1,t

∂ol−2,t

+W ′
l−2) (4.5)

38

Ch.4 Advancing SNN feature extraction through residual networks

Equation (4.5) shows how the residual connection adds an extraW ′
l−2

∂ol,t
∂ul,t

term to

the gradient, a term which is not influenced by the value of the learnable weights

Wl−1, in contrast to Wl−1
∂ol−1,t

∂ol−2,t
. This is the reason why this residual connection

will alleviate the vanishing gradient problem even when Wl−1 is arbitrarily small.

Still, given that
∂ol,t
∂ul,t

will be the derivative of the spiking function, the skip con-

nection defined by this implementation will have its gradient scaled by the value

of the surrogate function, which might introduce noise in the backpropagation

process.

The authors in [22] argue that the surrogate derivative g′ of g(ul,t) will typ-

ically not implement a function such that g′(W ′
l−nol−n,t) = 1 when ol−n,t = 1.

Therefore, scaling the derivative of the residual stream by this value could con-

tribute to the vanishment or explosion of the gradient.

This kind of connection has previously been used in [21] with W ′
l−n = Uth = 1

and in [55] weighted by their threshold-dependent batch normalization (poten-

tially compromising the identity mapping). The S2M connection is represented

in Fig. 4.1 as the green connection.

Spike output to spike output (S2S): The spiking output of a previous

layer l− n is added to the spiking output of layer l (4.6). If o′l,t = 0, this residual

connection will successfully implement an identity mapping ol,t = ol−n,t.

o′l,t = g(Wl−1ol−1,t + λ · ul,t−1)

ol,t = o′l,t + ol−n,t

(4.6)

Additionally, this implementation avoids applying the thresholding function to

the residual path. Therefore, when using back-propagation, the contribution of

the residual connection will be unaltered by the value of the surrogate function:

∂ol,t
∂ol−2,t

=
∂o′l,t
∂ul,t

∂ul,t
∂ol−2,t

+
∂ol−2,t

∂ol−2,t

=
∂o′l,t
∂ul,t

Wl−1
∂ol−1,t

∂ol−2,t

+ 1 (4.7)

Regarding the information flow inside the SNN, this kind of connection has

some implications that are worth noticing. It is implemented as an addition

between activation maps, which is a different operation than adding voltages to

a membrane and needs to be supported in the substrate implementing it (or

else extra synapses will be needed). Moreover, it allows for the generation of

non-binary activation maps, as the sum between activations could result in a

value bigger than 1. In order to implement this, it will require to either sum

activation maps and communicate non-binary values in the spike activation (as

some neuromorphic hardware already supports [165]) or to avoid grouping spikes

39

Ch.4 Advancing SNN feature extraction through residual networks

in one synapse by defining multiple individual connections such that:

ol,t + (ol−n,t + ol−m,t) = ol,t + ol−n,t + ol−m,t (4.8)

Finally, in network topologies such as the proposed S-ResNet (defined in the

following section), we can find situations where the number of neurons d1 in

o′l,t ∈ Nd1 is different than d2 in ol−n,t ∈ Nd2 . As proposed in [20], this is solved

by applying a 1×1 convolution f to ol−n,t such that f : Nd2 → Nd1 . This is

relevant for the S2S connection because, as seen in Equation (4.9), by applying

this convolution ol−n,t gets now multiplied by the learnableW ′′, which weights the

activations transforming them into non-binary voltage values. The implications

of these non-binary spiking activations are no different than that of the multiple

spikes, it can be implemented as graded spikes in neuromorphic hardware (which

communicate non-binary values) or by defining extra synapses. The formulation

for the later can be seen in equation (4.10), where the contribution of o′l,t and

ol−n,t to the membrane ul+1,t is split as two different incoming connections.

ol,t = o′l,t +W ′′
l−nol−n,t (4.9)

ul+1,t = Wlol,t + λ · ul+1,t−1

= Wlo
′
l,t +WlW

′′
l−nol−n,t + λ · ul+1,t−1

(4.10)

This kind of connection has been used in [22]. Its implementation is the same

than the one in this work for maps at the same resolution, but it differs in the

downsample paths. Unlike this work, the authors add a spiking neuron layer

after the 1×1 convolution. This was avoided in this work in order to eliminate

the effect of the thresholding in the residual path, including the reduction of

granularity in the communication and the effect of the surrogate function in the

derivatives of the residual path.

The S2S connection is represented in Fig. 4.1 as the purple arrow.

Voltage to voltage (V2V): The previous two implementations created a

residual mapping in the activation map. This residual mapping can also be

enforced at the membrane potential level if a V2V connection is defined.

Let the spiking input to a layer l − n be Wl−n−1ol−n−1 plus a residual input

rl−n,t. Then, in a V2V implementation, the input that feeds a layer l−n will also

become the residual input to the layer l (4.12). Like this, if Wl−1ol−1,t = 0 and

ul,t−1 = ul−n,t−1 the residual will implement an identity mapping of the membrane

40

Ch.4 Advancing SNN feature extraction through residual networks

potentials such that ul,t = ul−n,t. This will also cause ol,t = ol−n,t if the thresholds

of the two layers are the same.

rl,t = Wl−n−1ol−n−1,t + rl−n,t (4.11)

ol,t = g(Wl−1ol−1,t + λ · ul,t−1 + rl,t) (4.12)

Regarding the derivative of the network, deriving with respect to ol−n−1,t in the

same setup as before (n = 2) we get:

∂ol,t
∂ol−3,t

=
∂ol,t
∂ul,t

∂ul,t
∂ol−3,t

=
∂ol,t
∂ul,t

(Wl−1
∂ol−1,t

∂ol−3,t

+Wl−3) (4.13)

As it happened for the S2M, the derivative of the residual path will also depend

on the surrogate function. Still, in the context of a hierarchical network, compared

to an S2M implementation, the surrogate derivative will have less influence on

this residual path, as rl,t is a function of rl−n,t, which does not depend on
∂ol−n−1,t

∂ul−n−1,t
.

In the case of the S2M implementation, the residual is rl,t = W ′
l−nol−n,t which

fully depends on
∂ol−n,t

∂ul−n,t
, adding an additional spiking function into the residual

path with each residual block.

Finally, notice that implementing the V2V connection will have the same effect

in the information flow as S2S. This is caused by the dependency of Eq.4.11 on

rl−n,t. In Eq.4.14 this expression is unraveled in order to show how the voltage

sent by the residual connection rl,t is just a sum of post-synaptic potentials (PSP)

from previous layers Wl−i·n−1ol−i·n−1,t. Therefore, this can be implemented either

by defining (l/n) − 1 extra connections per each rl,t, or by summing the PSPs

together and then communicating the voltage value through graded spikes.

rl,t =

(l/n)−1∑
i=1

Wl−i·n−1ol−i·n−1,t (4.14)

The V2V connection is represented in Fig. 4.1 as the red connection.

From an implementation point of view, this analysis showed how an S2M

connection can be accomplished by a single conventional synapse, while S2S and

V2V require either to define multiple synapses or to perform a special kind of

computation. This computation requires to sum spiking activations together for

the S2S connection and to sum PSPs together in the case of V2V. Then the

resulting value is transmitted to the membrane of the target neuron. With the

neuromorphic hardware available in the present day, this could be implemented

41

Ch.4 Advancing SNN feature extraction through residual networks

Fig. 4.1: The three possible residual connections in an SNN. In red: Membrane to
membrane connection. Purple: Spike output to spike output. Green: Spike output to
membrane. Note that the layers are displayed in one dimensional fashion for simplicity,
but it is equivalent to a three-dimensional convolutional map if the synapses are defined
by a convolutional layer.

by an intermediate neuron which performs the sum and then transmits graded

spikes [165].

In this work, the three approaches are tested (section 4.3) analysing their

spiking activity (Fig. 4.3) and final accuracy (Table 4.2). S2S is chosen for the

final implementation, as it provides the most accurate results. This is consistent

with the previous theoretical analysis, as S2S is the only solution avoiding spiking

functions in the residual path.

4.2.2 Network topology

With the residual connection implementation defined, the next choice to be made

is the global network architecture. In the non-spiking domain, it has already

42

Ch.4 Advancing SNN feature extraction through residual networks

Tab. 4.1: Table defining the CNN architecture of the original ResNet proposed for
the CIFAR datasets. The variable n allows to control the depth of the network.

output map size 32×32 16x16 8x8
layers 1+2n 2n 2n
filters 16 32 64

been proven how the original ResNet architecture [20] outperforms feed-forward

architectures without residuals; therefore, in order to test if the same principles

apply to SNN, the obvious choice is to reuse the same topology.

Depending on the resolution and complexity of the dataset to target, the

optimal architecture can vary; that is why in [20] the architecture used for the

ImageNet dataset and for CIFAR-10 are different. CIFAR images have a res-

olution of 32×32, while the images are 224×224 for ImageNet (after resizing),

meaning that more downsampling operations will be needed in the latter in order

to have a comparable receptive field. As the targets are CIFAR-10, CIFAR-100

and DVS-CIFAR10, the chosen global network architecture is the smaller ResNet

proposed for these datasets. The architecture is defined in [20] in a table, such

as Table 4.1.

Regarding the batch normalization (BN) layers in the architecture, regular

BN can be used in an SNN, but improved performance has been reported by

using a time-dependent version of BN. As originally proposed in [166] for con-

ventional recurrent networks, a time-varying BN can be defined where different

statistics are learnt for each time-step, as the statistics of different time-steps can

differ significantly. When adapted to SNNs, this approach has been called Batch

Normalization Through Time (BNTT) [63].

The final architecture defined in this work uses BNTT. As proof of its bene-

fits, Table 4.5 in Section 4.3 demonstrates the performance gains when using it

compared to regular BN. A diagram of the final architecture can be found in Fig.

4.2.

To the best of the author’s knowledge, this work is the first to implement

the aforementioned architecture for SNN training. [21, 55] implement alternative

topologies with extra fully connected layers and larger amounts of channels in

convolutional layers (see the difference in parameters in Fig. 4.4 in Section 5.3).

The authors in [22] define their main network for ImageNet and reuse the original

ResNet’s topology for this dataset which is different from the CIFAR-10 one. Ad-

ditionally, they propose a residual network targeting DVS-CIFAR10. Compared

to the one developed in this work, their network is wider and shallower (result-

ing in a larger parameter count), instead of strided convolution, it relies on max

43

Ch.4 Advancing SNN feature extraction through residual networks

Fig. 4.2: Example architecture for an S-ResNet with n = 2 and 16 base filters. SF
stands for spiking function.

pooling for downsampling and it processes inputs of 128×128 resolution.

Apart from that, those three networks differ from the proposed one in the

normalization strategies, as they use time averaged statistics instead of BNTT,

and also in the residual connection implementation.

4.2.3 Boosting strategies

Boosting techniques allow to combine the predictions of multiple weak classifiers

to create a stronger one. Previous work in SNNs [79] has already applied simple

versions of this strategy by converting the classification layer into a voting layer.

In this chapter, the same approach [79] was tested by adapting the last fully-

44

Ch.4 Advancing SNN feature extraction through residual networks

connected to have 10 × C neurons, where C is the number of classes. Then an

average pooling layer of kernel size 10 and stride 10 reduces the dimension back

to the number of classes C. This process computes the score of each class as the

average of 10 neuron states, which can be seen as a voting scheme for 10 different

sub-networks.

In Section 4.3, Tables 4.7 and 4.6 demonstrate the effects of adding the boost-

ing layer. Some networks provided improved performance when using this strat-

egy, while others did not, so the layer is kept only in those cases where it is

beneficial. In the final results, only the CIFAR-10 network uses it.

4.2.4 Training framework

The networks are trained to perform image classification through supervised

learning (by means of stochastic gradient descent with momentum of 0.9). In

order to allow for this classification, the last neuron layer is defined with no leak

and cannot spike. Then the voltage accumulated in the layer after T time-steps

divided by T is considered the output value.

The output class scores are compared to the ground truth by means of a cross-

entropy loss (4.15), where C is the number of classes, ui,T the voltage of neuron

i after the last time-step, and yi are the ground truth labels:

L = −
C∑
i

yilog(
eui,T∑C
j e

uj,T

) (4.15)

With the loss defined, the weight updates for the learning process are calcu-

lated through BPTT.

The final voltage at each layer is dependent of the contribution of all previous

time-steps, therefore the derivative of the loss function with respect to the network

weights can be defined as the sum in (4.16), for neurons in the output layer, and

as the sum in (4.17) for neurons in the hidden layers.

∂L

∂wi,j

=
T∑
t=1

∂L

∂ut,i

∂ut,i
∂pt,i

∂pt,i
∂wi,j

(4.16)

∂L

∂wi,j

=
T∑
t=1

∂L

∂ot,i

∂ot,i
∂ut,i

∂ut,i
∂pt,i

∂pt,i
∂wi,j

(4.17)

where pi,t is the current transmitted through the synapses after applying the

45

Ch.4 Advancing SNN feature extraction through residual networks

weights:

pi,t =
∑
j

wi,joj,t (4.18)

Then, taking into account the temporal dependency of the membrane potential

along with its dependency on input spikes, we obtain:

∂L

∂ut,i
=

∂L

∂ot,i

∂ot,i
∂ut,i

+
∂L

∂ut+1,i

∂ut+1,i

∂ut,i
(4.19)

Notice that
∂ot,i
∂ut,i

requires to compute the derivative of the thresholding func-

tion, which is non-differentiable. This is addressed by using a triangle shaped

surrogate gradient with α = 0.3.

∂ot,i
∂ut,i

= αmax{0, 1− |ut,i|} (4.20)

In practice this can be easily implemented using auto-differentiation tools such

as Pytorch [167].

4.2.5 Input preprocessing

Frame-based datasets: Frame-based images need to be encoded into spikes in

order for an SNN to process them. Works like [63] use a Poisson spike generation

process which transforms the image frame into a sequence of spikes. Other works

[55, 79] feed the unprocessed frame to the first SNN layer, making the pixel

intensity equivalent to a constant input voltage for the first neurons.

The latter allows for better results, as all of the information is presented

at each time-step, while the former will require many steps to represent all of

the information and will add variability to the data through the randomness

in its computation. Still, using a spike generation process is arguably a better

representation of a scenario where the input data is spiking information (such

as the data coming from event cameras), so choosing one method or another

should depend on the objective of the simulation. Therefore, in this work, both

approaches are used in order to compare results. The best performing networks

are trained without Poisson encoder in order to maximise accuracy. Additionally,

images are always normalised with respect to the statistics of the dataset.

Neuromorphic datasets: Data produced by neuromorphic cameras [168,

169] represent the changes in the scene, and these are often presented in event

format. An event is a discrete package of information indicating location, time-

stamp and polarity (i.e. change in brightness).

46

Ch.4 Advancing SNN feature extraction through residual networks

Events are used to build frames containing spiking activations, which accu-

mulate all events occurring in a time window, and where the frames have two

channels: one for positive polarity and one for negative. The size of the time

window is defined by the amount of time-steps one wants to have for each se-

quence. The process is implemented using the SpikingJelly library [170].

Data augmentation: Frame-based datasets were augmented using random

horizontal flips and random crops.

4.2.6 Hyper-parameters

The performance of the proposed network depends on certain hyper-parameters,

such as the leak factor of the membrane, the number of time-steps or the learning

rate for training. The optimal value of these parameters varies depending on the

architecture of the network, the training procedure and the task at hand. That

is why in order to properly asses how useful an architecture or a training method

is, it is first needed to find its optimal hyper-parameter setup.

The challenge is addressed here by using BOHB [171], a hyper-parameter op-

timization technique that combines Bayesian Optimization (BO) and Hyperband

(HB), a multi-armed bandit strategy. Using this method, the hyper-parameters

for an S-ResNet of 38 layers (S-ResNet38) in the CIFAR-100 dataset were opti-

mised. The learning rate for this training is divided by 10 at 70%, 80% and 90%

of the training process. The resulting hyper-parameters are also used for the rest

of networks and datasets, as with the hardware available it could not be afforded

to run an individual search per setup.

The best performing parameters are: leak = 0.874, time-steps = 50, learning

rate = 0.0268 for a batch size of 21.

Notice that the target of the search was only to optimize accuracy, therefore

the number of time-steps tends to be maximized as it has a monotonically non-

decreasing relationship with the accuracy. Section 4.4.2 demonstrates the effects

of reducing the number of time-steps.

4.3 Experiments: Empirical tests of components

and strategies

In order to maximize the accuracy of the method, a search was conducted to

find the key components in state of the art architectures that allow for improved

performance. In this section the empirical results, obtained from testing these

47

Ch.4 Advancing SNN feature extraction through residual networks

components, are presented. The results from these comparisons allow to compose

a network which outscores previous approaches in multiple datasets.

Residual connection implementation: In section 4.2.1 three ways of im-

plementing residual connections in SNN were defined. Table 4.2 reports the

performance of S-ResNet38 with each one of them. The highest accuracy is

obtained by the S2S connection. This result is consistent with the previous theo-

retical analysis, as the residual path in S2S does not go through spiking functions,

therefore it allows a better flow of the gradient during back-propagation. Still,

the performance of the V2V implementation is very close. On the other hand,

the S2M implementation has a substantially lower accuracy. This decrease in

accuracy could potentially be attenuated with further hyper-parameter search

and improved optimization, but it can be hypothesized that such setup is more

difficult to find due to the less convenient gradient properties of S2M.

Apart from that, by adding any of these three residual connections, the net-

work is expected to propagate more spikes to deeper layers. In order to analyse

this effect, the spiking activity of the networks is averaged across the test set

of the CIFAR-100 dataset (Fig. 4.3). The spiking activation obtained with a

non-residual network (spiking VGG11) is also displayed for comparison.

Before starting the comparison, it is important to realise the effect of BNTT

in the spiking activation. As observed by [63], by allowing to learn a different

learnable weight γ per time-step, the network is allowed to scale the activation

of each layer depending on the time-step. Because of this, it tends to localise the

spiking activity of each layer in a certain time range. The value of this weight for

each network is visualized in the second row of Fig.4.3.

When looking at the S-ResNet networks, it can be seen how there are more

layers active at each time-step, as the spiking connections propagate activations

to deeper layers bypassing the BNTT weighing. The effect of BNTT is more

noticeable in the S2M implementation and less in V2V and S2S. Still, all of

them learn a time-dependent weight distribution, indicating that, according to

back-propagation, that is the optimal solution for image classification.

Apart from that, S-ResNet activity maps show a characteristic striped pattern.

This is caused by how the residual connections always skip one layer, connecting

only even-numbered layers (as defined in [20]).

Finally, the more abrupt changes in activation percentage localized in layer

14 and 26 are caused by the resolution change, which changes the number of

total neurons in the layer and makes the residual connection go through a 1×1
convolution.

48

Ch.4 Advancing SNN feature extraction through residual networks

Tab. 4.2: Image classification test performance on CIFAR-10 and CIFAR-100. S-
Resnet38 stands for the architecture defined in Section 4.2.2 with n = 6 and 32 base
filters, trained for 70 epochs.

Residual connection CIFAR-10 Accuracy CIFAR-100 Accuracy
S-ResNet38 S2M 89.27 % 68.64 %
S-ResNet38 S2S 94.01 % 74.54 %
S-ResNet38 V2V 93.83 % 73.79 %

Fig. 4.3: Average activation maps of different networks in the CIFAR-100 test set (first
row). The values represent the percentage of neurons active for each convolutional layer
at each time. The second row displays the average value (over channels) of the learnable
BNTT weight γ per each layer and time-step. Column (a) uses a non-residual VGG11
architecture, (b),(c),(d) use S-ResNet38 with 32 base filters.

Overall the contribution of the residual connections behaves as expected.

It propagates the spiking activations to deeper layers, which allows the back-

propagation algorithm to successfully train deeper architectures. Additionally,

it can be seen how the spiking activity is higher for S2S implementations com-

pared to V2V or S2M, as the “multiple spikes” behaviour favours sending higher

amounts of voltage between layers. This can be relevant for applications which are

sensible to the volume of spiking activity. In those tasks, the optimal choice for

the residual implementation can vary, as there is a compromise between accuracy

and volume of spikes.

In cases where a lower network activation is needed V2V poses an efficient

alternative to S2S with a very similar accuracy. Regarding their implementation,

S2S and V2V require to define extra synapses per residual connection or to imple-

ment spike/PSP sum, therefore, S2M is the most suitable option for applications

which want to avoid this.

Network depth: The residual connections in S-ResNet allow to increase the

49

Ch.4 Advancing SNN feature extraction through residual networks

depth of the network without the concern of catastrophic accuracy degradation.

As expected, this allowed to train very deep architectures. Table 4.3 presents

the classification accuracy in CIFAR-10 achieved by the S-ResNet with differ-

ent depths and the same training hyper-parameters. The results show how the

accuracy grows from 20 to 38 layers, but stays roughly the same from 38 to 44.

Tab. 4.3: Image classification test performance on CIFAR-10. S-Resnet stands for the
architecture defined in Section 4.2.2 with 16 base filters, trained for 70 epochs.

Network CIFAR-10 Accuracy
S-ResNet20 90.89 %
S-ResNet38 91.97 %
S-ResNet44 91.96 %

Given these results, for the rest of the experiments S-Resnet38 was taken as

the default network. Still, the optimal depth of the network changes depending on

the dataset and task to solve, therefore, for those researchers looking for optimal

performance, it is encouraged to tune this parameter for their specific task.

Spike generation for frame-based datasets: As mentioned in Section

4.2.5, when working with frame-based datasets, two different methods were tested

for the spike encoding process. One consists in transforming the intensity values

into spikes by means of a Poisson spike generation process. The other consists in

transforming them by means of the first convolutional layer (i.e. feeding the raw

image to the network).

As expected, the results in Table 4.4 show how encoding by means of the

first convolutional layer gives a better result than generating spikes as a Poisson

process. In order to maximize accuracy, for the rest of experiments the encoding

by convolution approach was used.

Tab. 4.4: Image classification test performance on CIFAR-100. Except for the spike
generation process, both architectures and training procedures are identical. Trained
for 100 epochs.

Network CIFAR-100 Accuracy
S-ResNet38 Poisson spike generation 64.96 %
S-ResNet38 Raw image 69.03 %

Batch normalization strategies: Performances using time-dependent BN

statistics versus time averaged statistics were compared. Table 4.5 shows how

BNTT outperforms regular BN for the same network.

Boosting layer: As introduced in Section 4.2.3, a simple boosting layer can

improve the accuracy of the system in some cases. Tables 4.6 and 4.7 show

50

Ch.4 Advancing SNN feature extraction through residual networks

Tab. 4.5: Image classification test performance on CIFAR-100. Except for the batch
normalization module, both architectures and training procedures are identical. S-
ResNet stands for the architecture defined in Section 4.2.2 with n = 6 and 32 base
filters. Trained for 70 epochs.

Network CIFAR-100 Accuracy
S-ResNet38 BNTT 74.54 %
S-ResNet38 BN time averaged 70.82 %

the effect of this component in the accuracy of the networks. In the CIFAR-10

datasets the accuracy is improved by using this technique, while in the CIFAR-100

one, where there are more classes, increasing the size of the last fully connected

in order to perform boosting ends up being detrimental.

Tab. 4.6: Image classification test performance on CIFAR-100. S-Resnet38 stands
for the architecture defined in Section 4.2.2 with n = 6 and 16 base filters. Wider
architectures use 32 base filters and “boosting” indicates the use of a boosting layer
(Section 4.2.3). Wider architectures trained for 70 epochs, regular architectures trained
for 200 epochs.

Network Parameters CIFAR-100 Accuracy
S-ResNet38 639,760 68.71 %
S-ResNet38 + boosting 697,360 64.60 %
S-ResNet38 wider 2,399,776 74.46 %
S-ResNet38 wider + boosting 2,514,976 73.21 %

Tab. 4.7: Image classification test performance on CIFAR-10. S-Resnet38 stands
for the architecture defined in Section 4.2.2 with n = 6 and 16 base filters. Wider
architectures use 32 base filters and “boosting” indicates the use of a boosting layer
(Section 4.2.3). Wider architectures trained for 70 epochs, regular architectures trained
for 200 epochs.

Network Parameters CIFAR-10 Accuracy
S-ResNet38 634,000 91.97 %
S-ResNet38 + boosting 639,760 92.00 %
S-ResNet38 wider 2,388,256 92.66 %
S-ResNet38 wider + boosting 2,399,776 93.77 %

Parametric Leaky Integrate-and-Fire: The authors in [79] propose to

learn the leak coefficient of the LIF neurons directly through back-propagation

as another parameter of the network. By doing this they can also afford to

learn a different leak value for each layer. They call this method the Parametric

Leaky integrate-and-fire (PLIF) neuron. Table 4.8 shows the results after training

S-ResNet38 with PLIF and with a single leak coefficient learned through hyper-

parameter search.

51

Ch.4 Advancing SNN feature extraction through residual networks

Tab. 4.8: Image classification test performance on CIFAR-100. Except for the learn-
able leak factor, both architectures and training procedures are identical. Trained for
200 epochs.

Network CIFAR-100 Accuracy
S-ResNet38 LIF 68.71 %
S-ResNet38 Parametric LIF 64.93 %

The best results are not achieved using the PLIF neuron; still, this strategy is

arguably a very efficient way of finding this hyper-parameter, and it is against in-

tuition that the best value is not found through gradient descent, a phenomenon

probably related to sub-optimal gradient descent hyper-parameters. For this rea-

son, it was tested again for the search of a shared leak value instead of calculating

a different one per layer. Table 4.9 shows the difference between the leak value

found through hyper-parameter search and the one found by back-propagation.

It is interesting to see how the two values differ by a considerable amount, having

the one found by back-propagation a slower leakage than the one found through

the BOHB method.

Tab. 4.9: Optimal leak coefficient for ResNet38 in CIFAR-100 obtained through
two different methods (A single coefficient shared by all layers). “Hyper-parameter
search” uses BOHB algorithm to optimize the parameter. The value for this method
corresponds to the mean among the 6 best performing configurations found with its
corresponding standard deviation in parenthesis. “Learned through PLIF” learns the
value by backpropagation during training, the value corresponds to the result after 70
epochs of training.

Method Leak coefficient
Hyper-parameter search 0.889 (± 0.003)
Learned through PLIF 0.986

Still, both values perform well when the network adapts its weights to work

with them. The performance comparison between them can be found in Table

4.10, where the network trained with the BOHB optimized value is compared to

an identical network which learned the shared leak value through PLIF.

Tab. 4.10: Image classification test performance on CIFAR-100. In “S-ResNet38 wider
+ Boost Single PLIF” one single leak value is learned for all layers. Except for the
learnable leak factor, both architectures and training procedures are identical. Trained
for 70 epochs.

Network CIFAR-100 Accuracy
S-ResNet38 wider + Boost LIF 73.21 %
S-ResNet38 wider + Boost Single PLIF 72.44 %

52

Ch.4 Advancing SNN feature extraction through residual networks

Extra training data: In the deep learning domain, most state of the art

performances in computer vision are achieved by means of fine tuning. This

strategy consists in taking a network that has already been trained in a different

dataset and then training it further for the task at hand. In the visual domain

this strategy works well, as visual data has many transferable features.

This strategy was tested by pre-training the networks with CIFAR-100 and

then fine-tunning for DVS-CIFAR10 and CIFAR-10. The results are presented

in Table 4.11 and Table 4.12. This yields higher accuracy results in all cases

except for the larger S-ResNet in CIFAR-10. Moreover, these trainings converge

faster, making it a great solution for any further work building on top of these

feature extractors. In the public code associated to this work, users can find the

pre-trained weights to perform fine-tunning in any future system building from

this one.

Tab. 4.11: Image classification test performance on DVS CIFAR-10. Pre-train column
indicates if the network was trained from scratch or pre-trained with a certain dataset.
S-Resnet38 stands for the architecture defined in Section 4.2.2 with n = 6 and 16 base
filters. Wider architectures use 32 base filters and “boosting” indicates the use of a
boosting layer (Section 4.2.3). Trained for 70 epochs with learning rate reduction at
50%, 70% and 90% of the training process.

Network Pre-train DVS CIFAR-10 Acc
S-ResNet38 No 63.3 %
S-ResNet38 CIFAR-100 70.4 %
S-ResNet38 wider + boosting No 65.5 %
S-ResNet38 wider + boosting CIFAR-100 69.8 %

Tab. 4.12: Image classification test performance on CIFAR-10. Pre-train column
indicates if the network was trained from scratch or pre-trained with a certain dataset.
S-Resnet38 stands for the architecture defined in Section 4.2.2 with n = 6 and 16 base
filters. Wider architectures use 32 base filters and “boosting” indicates the use of a
boosting layer (Section 4.2.3). S-Resnet38 Trained for 200 epochs from scratch and for
100 when fine-tuned. Wider architectures trained for 70 epochs.

Network Pre-train CIFAR-10 Acc
S-ResNet38 No 91.97 %
S-ResNet38 CIFAR-100 92.44 %
S-ResNet38 wider + boosting No 93.77 %
S-ResNet38 wider + boosting CIFAR-100 93.59 %

DVS-CIFAR10 image resolution: The event streams found in the DVS-

CIFAR10 dataset were generated by recording 10,000 images from the original CI-

FAR10 dataset with a DVS camera while applying a repeated closed-loop smooth

53

Ch.4 Advancing SNN feature extraction through residual networks

movement [99]. Despite the resolution of CIFAR-10 being 32×32, the DVS cam-

era resolution was 128×128 and therefore the resulting event maps have also

a 128×128 resolution. As the S-ResNet architecture is optimized for inputs of

size 32×32, in the previously presented experiments, DVS-CIFAR10 frames were

downsampled to that resolution.

In most datasets, downsampling the input causes information loss and there-

fore accuracy degradation. In order to test if this applies to the unique case of

DVS-CIFAR10, the performance using 64×64 and 128×128 input resolution is

also tested. The architecture of the network was adapted for the new input sizes

by adding, in the case of 64×64 a stride=2 in the first convolution (c32k3s2),

and in the case of 128×128 a stride=2 and kernel=5x5 in the first convolution

(c32k5s2) followed by a Max Pooling of stride=2 and kernel=2 (MPk2s2).

Table 4.13 presents the test results with the three resolutions. It can be seen

how the best performance is obtained when using a 64×64. No improvement

was found by using the full 128×128 resolution. The best architecture for full

resolution uses a bigger kernel and max pooling, similarly to how [20] handles the

bigger ImageNet frames. A possible hypothesis is that this setup does not bring

improved performance because the down-scaled 64×64 events already contain

the necessary information and therefore the bigger 128×128 network just brings

unnecessary complexity.

Tab. 4.13: Image classification test performance on DVS-CIFAR10. S-Resnet stands
for the architecture defined in Section 4.2.2 with 32 base filters, trained for 70 epochs
and with CIFAR100 pre-training.

Network Resolution CIFAR-10 Accuracy
S-ResNet38 32×32 71.80 %
S-ResNet38 c32k3s2 64×64 72.98 %
S-ResNet38 c32k5s2 MPk2s2 128×128 72.51 %

4.4 Results

4.4.1 State of the art comparison

In this section the final results are compared to the current state of the art for

image classification in the CIFAR-10, CIFAR-100 and DVS-CIFAR10 datasets.

As noted in [79], most previous works train on the training set, evaluate the

test set at each step, and then report the highest test accuracy obtained. This

approach can be considered to be reporting validation accuracy rather than test.

54

Ch.4 Advancing SNN feature extraction through residual networks

For these experiments, the test set is evaluated after all the training epochs,

without using its value for tuning the training. Additionally, validation accuracy

is evaluated in the same manner than the previous methods in order to make a

fair comparison.

The developed S-ResNet outperforms all previous SNN methods in classifica-

tion accuracy for the CIFAR-10 and CIFAR-100 datasets (Table 4.14). In the

DVS-CIFAR10 dataset, the validation accuracy for the best performing network

outperforms it, but when measuring test score, the new S-ResNet is superior.

One potential reason for the slight reduction of performance in DVS-CIFAR10

can be the choice of hyper-parameters, which were tunned for the CIFAR-100

dataset and transfered to the rest.

Before this work, in the CIFAR-10 and CIFAR-100 datasets, the most accu-

rate network was a conversion method. These new results prove how directly

training an SNN can perform better without the need of imitating non-spiking

computations.

Moreover, in Table 4.15 the performance of the new S-ResNet is compared to

its non-spiking ANN version. Specifically, the version with 16 and 32 base filters

without boosting was used. It can be seen how the performance on the trained

SNN is not far from its non-spiking counterpart, demonstrating how improve-

ments in SNN training can push these technologies to comparable levels with

conventional deep learning.

Comparing to the previous trainable SNN architectures, the newly proposed

network uses many less parameters. Fig. 4.4, 4.5 and 4.6 show a map of the

accuracy versus the number of parameters. The main cause for the difference in

parameters is that the S-ResNet has a smaller number of channels in convolutional

layers and only a single fully-connected layer. Then, even when this network is

deeper than the others, it is actually lighter in terms of synaptic connections.

4.4.2 The latency - accuracy compromise

Apart from raw accuracy, the efficiency of algorithms is a major factor when

deploying systems in the real world. For image classification in SNN, the number

of time-steps used for prediction regulates a trade-off between accuracy and time

or volume of computations.

In order to elucidate the effect of this trade-off in the system, in Table 4.16 the

accuracy of S-ResNet38 is presented with different numbers of time-steps. Start-

ing from the best network trained with 50 time-steps, accuracy degradation is

tested when dropping the last 10/20/30/40 steps. Additionally, this is compared

55

Ch.4 Advancing SNN feature extraction through residual networks

0 5000 10000 15000 20000 25000 30000 35000
Number of Parameters (Thousands)

90.0

90.5

91.0

91.5

92.0

92.5

93.0

93.5

94.0

CI
FA

R-
10

 A
cc

ur
ac

y
(%

)

Kim's S-VGG9

Lee's S-ResNet'11

Zheng's S-ResNet'19
Fang's CifarNet

Ours S-ResNet38

Ours S-ResNet38_boost

Fig. 4.4: CIFAR-10 accuracy versus number of parameters. The proposed network
is compared to the best performing trainable SNNs and the other spiking ResNets.
“S-ResNet38 boost” uses the wider architecture with 32 base filters. The number of
parameters for other works was counted using their publicly available code.

2000 4000 6000 8000 10000 12000
Number of Parameters (Thousands)

67

68

69

70

71

72

73

74

75

CI
FA

R-
10

0
Ac

cu
ra

cy
 (

%
)

Kim's S-VGG11

Ours S-ResNet38

Ours S-ResNet38

Fig. 4.5: CIFAR-100 accuracy versus number of parameters. The proposed network
is compared to the best performing trainable SNN in this dataset. The two results for
S-ResNet38 correspond to the same network with 16 or 32 base filters (where 32 base
filters has more parameters than 16). The number of parameters for other works was
counted using their publicly available code.

56

Ch.4 Advancing SNN feature extraction through residual networks

Tab. 4.14: Image classification validation performance on CIFAR-10, CIFAR-100 and
DVS-CIFAR10. The S-Resnet38 in CIFAR-10 and CIFAR-100 stands for the wider
version of the architecture defined in Section 4.2.2 with n = 6, 32 base filters, and
boosting layer. In DVS-CIFAR10 the 16 filters version without boosting and with the
pre-training step was used. S-ResNet’ stands for the residual network in [55], as it
follows a different architecture than this work’s S-ResNet.

Network Method Dataset Accuracy
Kim [63] S-VGG9 Spiking BP CIFAR-10 90.05 %
Lee [21] Residual SNN (11) Spiking BP CIFAR-10 90.95 %
Zheng [55] S-ResNet’19 Spiking BP CIFAR-10 93.15 %
Fang [79] CifarNet Spiking BP CIFAR-10 93.50%
Wu [108] VGG-11 SNN conversion CIFAR-10 91.24%
Sengupta [62] VGG-16 SNN conversion CIFAR-10 91.55%
Stockl [172] ResNet-50 SNN conversion CIFAR-10 92.42%
Deng [109] ResNet-20 SNN conversion CIFAR-10 93.58%
Han [61] VGG16 SNN conversion CIFAR-10 93.63%
This work S-ResNet38 Spiking BP CIFAR-10 94.14%
Kim [63] S-VGG9 Spiking BP CIFAR-100 66.6 %
Han [61] VGG16 SNN conversion CIFAR-100 70.97%
Deng [109] VGG-16 SNN conversion CIFAR-100 72.34%
This work S-ResNet38 Spiking BP CIFAR-100 74.65%
Kim [63] S-VGG9 Spiking BP DVS-CIFAR10 63.2 %
Zheng [55] S-ResNet’19 Spiking BP DVS-CIFAR10 67.8 %
Fang [22] Wide-7B-Net Spiking BP DVS-CIFAR10 74.4%
Fang [79] CifarDVSNet Spiking BP DVS-CIFAR10 74.8%
This work S-ResNet38 Spiking BP DVS-CIFAR10 72.98%

to the result obtained by directly training with less time-steps.

The results show how for CIFAR-100, the network trained with 20 steps per-

forms better than dropping the last 30 steps of a 50-step network. Still this same

experiment in the CIFAR-10 dataset shows the opposite results by a close margin,

indicating that the 50-step network had a more complete training.

At 10 steps, the degrading of the 50-step network becomes more obvious.

Interestingly the network trained with 20 time-steps does not degrade as much,

as it is only losing half of its computations and therefore still managing to extract

the core visual features.

Finally, it is a plausible hypothesis that the optimal leakage coefficient for the

neurons might be correlated to the number of time-steps the network is ran for.

Given that the leak factor used was obtained through the hyper-parameter search

process, and given that this process prioritized large amounts of time-steps, the

optimal leak factor for 20-step inferences could be different from the one used in

previous experiments. This was empirically tested by training the network again

57

Ch.4 Advancing SNN feature extraction through residual networks

Tab. 4.15: Image classification performance on CIFAR-10 comparing the ANN version
of ResNet to the newly developed S-ResNet. All architectures trained for 70 epochs and
the same hyper-parameters. S-Resnet38 stands for the architecture defined in Section
4.2.2 with n = 6 and 16 base filters. Wider architectures use 32 base filters.

Network Method CIFAR-10 Accuracy
ResNet38 ANN 92.33 %
ResNet38 wider ANN 93.56 %
S-ResNet38 SNN 91.97 %
S-ResNet38 wider SNN 92.66 %

0 2500 5000 7500 10000 12500 15000 17500
Number of Parameters (Thousands)

64

66

68

70

72

74

D
VS

 C
IF

AR
-1

0
Ac

cu
ra

cy
 (

%
)

Kim's S-VGG11

Zheng's S-ResNet'19

Val - Fang's CIFARDVSNet

Test - Fang's CIFARDVSNet

Val - Ours S-ResNet38
Test - Ours S-ResNet38

Val - Fang's Wide-7B-Net

Fig. 4.6: DVS CIFAR-10 accuracy versus number of parameters. The proposed net-
work is compared to the best performing trainable SNNs and the other spiking ResNets.
The number of parameters for other works was counted using their publicly available
code. The “Val” prefix stands for validation accuracy while “Test” stands for testing
accuracy.

58

Ch.4 Advancing SNN feature extraction through residual networks

Tab. 4.16: Influence of the number of time-steps in the validation accuracy. Results
of the evaluation of the best performing S-ResNet38 with boosting. Training time-steps
specifies the number of steps used during training, inference time-steps the steps used
for inference. If the inference number is smaller than the training one, early stopping
is applied and the last N time-steps (and learned BNTT layers) are not used. For
comparison, the training is reproduced also with 20 time-steps. Clarification: The
architecture is the same but the results for CIFAR-100 use the weights trained in
CIFAR-100 and the CIFAR-10 results use the weights trained in CIFAR-10.

Inference t-steps Training t-steps CIFAR-100 Acc CIFAR-10 Acc
50 50 73.40 % 94.10 %
40 50 73.14 % 93.96 %
30 50 71.75 % 93.61 %
20 50 65.78 % 91.93 %
20 20 67.70 % 91.28 %
10 50 15.15 % 63.86 %
10 20 62.28 % 90.45 %

Tab. 4.17: CIFAR-10 validation accuracy for inferences of 20 time-steps. The first
network was trained with 50 time-steps in training time, the others were trained with 20
time-steps. The first two networks use the leak value learned through hyper-parameter
optimization done for the 50-step network. The third one optimizes the leak value
during its training through PLIF neurons.

Leak factor Inference t-steps Training t-steps CIFAR-10 Acc
0.874 20 50 91.93 %
0.874 20 20 91.28 %
0.995 20 20 92.8 %

with PLIF neurons, a process that allows to optimize the leak value in a single

training run. The results, as seen in Table 4.17, prove how a better performance

is obtained when the leak coefficient is optimized for the number of inference

steps, confirming the hypothesis.

This study shows how the optimal solution is to perform training with the

same number of time-steps that will be used at inference time and to optimize

hyper-parameters such as the leak factor for this same objective. Still, the tested

SNNs can withstand the effect of early stopping, retaining most of their accuracy

even when big percentages of their computation steps are dropped. This allows

to provide early estimates in time sensible tasks or to reduce computational cost.

4.5 Conclusions

In this chapter a new SNN architecture was presented, which outperforms the pre-

vious state of the art in different image classification datasets. This system is the

59

Ch.4 Advancing SNN feature extraction through residual networks

product of an in-depth study on spiking residual connections and design choices

based on the empirical results from multiple experiments, which demonstrate the

effects of different design choices in the final performance. On top of that, the

analysis performed on residual connections sheds new light on the effects of these

connections in terms of network activity and hardware requirements. The lessons

learned from these studies also serve as a guide for SNN design, as they allow to

make informed choices when building a new SNN feature extractor.

The results of this work demonstrate how SNNs do not need to use conversion

methods in order to maximize their accuracy. Additionally, they contribute to

pushing their performance closer to that of non-spiking deep learning. From here,

I hope that new applications can benefit from increased accuracy by fine tuning

the newly developed networks and more experiments can follow in order to keep

pushing the SNN state of the art.

60

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

Chapter 5

The advantage of Spiking Neural

Networks for spatio-temporal

feature extraction

5.1 Introduction

From an application point of view, SNN’s sparse and asynchronous computa-

tions have been demonstrated to provide great gains in energy efficiency when

implemented in neuromorphic hardware [51], hence becoming their major selling

point. Still, their differences with respect to conventional ANNs go beyond, as

their event-driven temporal dynamics provide an alternative paradigm for tem-

poral processing. The potential advantages of this paradigm have often been

overlooked, therefore, a study demonstrating its exploitable properties demands

attention.

To provide such demonstration, this chapter focuses on the task of event-based

action recognition. This is motivated by the fact that SNNs are naturally suited

for the processing of event-based data. These networks are able to integrate

input over time and their neurons are activated in an event-based manner, hence

their application to event-based data has been a topic of interest [70, 88, 173].

Additionally, given the recent surge in popularity of event-based cameras, research

on event-based action recognition is a major priority, making neuromorphic video

[168, 169] the perfect target.

Despite the ample variety of conventional frame-based action recognition datasets,

the options for event-based action recognition are very limited [70, 174], forc-

ing many researchers to resort to artificially generated datasets, which either

convert frame sequences to events [175, 176] or generate them from simulations

61

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

[177, 178]. Alternatively, those works employing real data from an event camera

[79, 81, 179, 180] have mainly resorted to IBM’s DVS Gesture Dataset [70].

In this chapter, it will be proven how solving the action recognition task in the

DVS Gesture dataset does not require a network implementing temporal feature

extraction. Accumulating events into frames and processing them with an image

classifier yields >95% accuracy.

To bypass the limitation of DVS Gesture, a new task is proposed1, DVS-

Gesture-Chain (DVS-GC), which can only be solved by those systems capable of

perceiving the ordering of events in time.

Perception of order is a fundamental part of many temporal tasks. Specifically,

in action recognition the time dependencies defined by relative order are of critical

importance. Often, actions have a sequential nature, where they are composed of

a smaller set of sub-actions, and perceiving their ordering is essential to identify

the overall action. Further to that, the context of an action and its relationships of

causality are also based on the perception of order between actions. Consequently,

evaluating this capacity is crucial when designing action recognition systems.

In order to evaluate the aforementioned capacity, DVS-GC leverages the DVS-

Gesture data and combines its gestures into chains of gestures, making the chain

the actual action class to recognise.

Using this new task, it will be shown how Spiking Neurons enable spatio-

temporal feature extraction without the need for recurrent synapses, demonstrat-

ing a form of temporal computation which is different from the one in conventional

ANNs and providing an alternative approach to time processing. Additionally,

the presented study also analyses the differences between this new computing

paradigm and conventional Recurrent Neural Networks (RNN), and further de-

velops the current understanding of it by demonstrating the effects of membrane

potential leak and reset mechanism. Specifically, it is shown how the reset by

subtraction approach [181] can cause slow adaptation to incoming inputs. Then

it is proven how this can be alleviated by voltage leak or by using a reset to zero

strategy, leading to improved action recognition accuracy.

Finally, the role of temporal attention is explored, which arises when time-

dependent weights and normalization are used to perceive order, and allows to

illustrate the difference between time-dependent and time-invariant feature ex-

traction.

1Code is made available at https://github.com/VicenteAlex/DVS-Gesture-Chain

62

https://github.com/VicenteAlex/DVS-Gesture-Chain

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

5.2 DVS Gesture Chain

5.2.1 Event-based datasets

The event-based sensor market is still in its infancy and its still limited commercial

adoption has not allowed to collect large volumes of event-based data. Currently,

many of the datasets used in computer vision are artificially created from frame-

based data or simulations. N-MNIST, N-Caltech101 [97] and DVS-CIFAR10 [99]

are three popular datasets created through screen recordings of the original frame-

based data with a neuromorphic camera. Alternatively, frame-based datasets

have also been converted into events directly through software [175, 176, 182].

Finally, [178, 183] provide simulators for the generation of synthetic event data.

Still, the most desirable option for the development of event-based systems

is to use data from a real-world acquisition. In the present day, most of the

available natively neuromorphic datasets are still simple compared to traditional

frame-based ones. For classification tasks we can find: N-CARS [184] a binary

classification dataset, ASL-DVS [185] a 24 class sign language classification task,

NEFER [186] with 7 classes for facial expression recognition, DailyActionDVS

[187] a 12 class action recognition task and DVS-Gesture [70] the widely used 11

class action recognition dataset. Other available datasets are the DHP19 [69] pose

estimation dataset, the Gen1 [188] and 1 Mpx [189] object detection datasets, and

DSEC [190] for optical flow estimation.

A study on the relevance of neuromorphic datasets for SNN evaluation was

presented in [191]. In this work, it was proven that collapsing all events into a

single frame and performing recognition with an image classifier did not affect

classification performance in N-MNIST or N-Caltech101, but did decrease it in

DVS-Gestures. The results in this chapter will show how, when the event inte-

gration is done in multiple frames instead of just one, DVS-Gestures can also be

solved by a non-temporal image classifier, evidencing its lack of temporal com-

plexity.

Regarding non-classification datasets, the available options are ill-suited for

rigorous evaluation of temporal processing. Despite temporal information being

exploitable to gain improvements in accuracy, object detection or pose estimation

tasks can still be solved by accumulating events in time-windows and performing

inference in one frame. In the same way, optical flow estimation can be performed

using two frames of accumulated events.

63

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

5.2.2 Defining the DVS Gestures Chain task

The objective is to define an action recognition task in event-based sequences

that requires the perception of temporal dependencies, i.e., relationships where

the meaning of an action is contingent to those that happened previously. To

create such temporal dependencies, DVS-GC leverages the DVS-Gesture dataset

and combines N of its gestures G = {g1, g2, ..., gN} into chains of gestures Gc =

{(gi, gj, ..., gk) | gi, gj, ..., gk ∈ G}, where each g is a gesture from G. Then each of

these chains is considered as its own class, meaning that (in an example with 2

gesture long chains) a chain composed of gesture A and then B will be labelled as

class AB, and a chain composed of gesture B and then A will be labelled as class

BA. Therefore, to correctly identify a class, it is essential not only to recognise

the individual gestures but also to understand the sequence in which they occur,

making DVS-GC an action recognition task that demands perception of temporal

order.

Event data processing

When using neural networks to process streams of asynchronous events, it is

common practice to discretise the time dimension by accumulating events in

frames using a constant time window [55, 77, 79, 192]. This allows to process

the sequence with an arbitrary number of discrete time-steps and to train using

methods such as Backpropagation Through Time (BPTT).

Representing the event sequence as a function et,x,y,p, which has value 1 when

the position (ti, xi, yi, pi) is active, and 0 otherwise, its discretised frame repre-

sentation Fj,x,y,p can be calculated as:

Fj,x,y,p =

Wj∑
t=W (j−1)

et,x,y,p, (5.1)

where j is the frame index (or time-step), W the time window, t represents time,

x and y are the spatial coordinates and p the polarity.

Naturally, the cost of this discretisation is that it makes it impossible to

distinguish the precise timing or the relative order of occurrence of events within

a frame.

This strategy is used for all experiments, both with DVS-Gestures and DVS-

GC. Then, at each time-step j a new frame Fj will be fed to the network.

When this quantisation is applied to the input of an SNN, the result is an

approximation of the one obtained in an asynchronous implementation with infi-

64

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

nite time resolution, as the effect is simply a reduction of time resolution, where

groups of events are collapsed into the same time-stamp. In this scenario, the

SNN’s voltage leak can be represented as the percentage of voltage lost from one

time-step to the next, meaning that this leak coefficient will be conditioned by

the number of simulation time-steps.

On the contrary, non-temporal ANNs cannot accumulate information from

different time-steps, therefore collating events into frames is the only way in

which they can combine information from events happening at different instants.

This is further discussed in the results section.

Creation of the action classes

The creation of classes in DVS-GC is parametrised by the length of the gesture

chain L and the number of gestures N used in the chain. Then the number of

classes generated C will be equal to all possible combinations (5.2). Alternatively,

a class generation method is also provided which does not allow to repeat the same

gesture in consecutive positions of the chain, reducing the possible permutations

of the chain (5.3). By using different values of N , L and the methodology with

and without repetition, different datasets were created in order to evaluate the

studied networks (results shown in Section 5.3).

C = NL (5.2)

C = N(N − 1)L−1 (5.3)

Chaining of events

Given the stream of 4-dimensional events (x, y, time, polarity) provided by the

DVS-Gesture dataset, they are transformed into frames by accumulating events

in a time window, as done in most state of the art systems [55, 77, 79, 192]. The

initial number of generated frames F per sequence is user defined and will be

constant for all instances in the dataset. The resulting frames have two channels,

one for positive polarity and one for negative.

Given that the gesture instances are obtained from a set of users under differ-

ent lighting conditions, the gesture chains are created combining the gestures from

the same user under the same lighting condition. This avoids sudden changes in

illumination or the appearance of the user, which could help the system identify

the transition between a gesture and the next. It is also worth noting that the

65

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

Fig. 5.1: Example gesture chain with variable Fg duration (α1 = 0.2 and α2 = 1).
The coloured underscores represent, for each gesture in the chain, the temporal window
in which they could appear given the values of α1 and α2. This allows to understand
why the gesture transition is not predictable and most time-steps have no guarantees
of belonging to a certain position in the chain.

subjects are split in the Training and Testing sets following the original DVS-

Gesture split, therefore, users appearing in the test set do not appear in the

training set.

When building the gesture chains, having a constant number of frames for each

gesture can also allow the machine to know when the transition will happen. To

solve this, the duration in frames of each gesture Fg is made variable. Let F

be the initial number of frames that the gesture sequences have, and Ftotal the

target number of frames for the final gesture chains, which is user defined. Then,

as seen in equation (5.4), the duration of each gesture Fg will be a fraction of F

(parameterised by the coefficients α1 and α2) which satisfies that the total sum

is equal to Ftotal.

Fg ∈ [α1F, α2F] |
L∑

g=1

Fg = Ftotal (5.4)

Then, the value for Fg is chosen randomly from the set that was just defined,

and the resampling from F to Fg is carried out by taking the first Fg frames of

the original sequence (Fig. 5.1 demonstrates this variability, visually). In the

experiments, two datasets are designed with α1 = 0.5, α2 = 0.7 and one with

α1 = 0.2, α2 = 1. Both work well when using the sequences in DVS-Gesture

because each gesture is repeated several times per recording, and therefore it is

recognisable even after discarding a substantial part of the sequence.

Finally, when targeting a specific Ftotal, the number of initial frames F that

will allow the values of Fg to have a uniform distribution between α1F and α2F

66

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

is given by:

F =
Ftotal

L

2

α1 + α2

(5.5)

To further clarify the generation of chains of variable gesture lenght, Algorithm

1 provides pseudo-code for an implementation of equation 5.4, which returns

gesture chains.

Algorithm 1 Implementation of equation 5.4

1: min len← F × α1

2: max len← F × α2

3: previous len← 0

4: frames← [] ▷ Initialize list to store frames for each gesture

5: for g = 0 to L− 1 do ▷ Iterate over each gesture in the sequence

6: if g = L− 1 then ▷ If last gesture, complete remaining frames

7: current len← Ftotal − previous len

8: else

9: low limit← Ftotal − previous len− (L− 1− g)×max len

10: high limit← Ftotal − previous len− (L− 1− g)×min len

11: current len← random.uniform(max(min len, low limit),min(max len, high limit))

12: end if

13: current frames← Frame sequence of gesture g

14: frames.append(current frames[0 , current len])

15: previous len← previous len + current len

16: end for

17: save frames to output file

5.3 Results

In this section, it is first proven how a network without the capability for temporal

feature extraction (ANN-BN) can solve the classification task in DVS-Gesture

but fails to do so in the new DVS-GC, which demands a perception of temporal

order. Then it is demonstrated how, in contrast, an SNN of the same architecture

learns to perceive the temporal dependencies in DVS-GC. From there, the effects

of the membrane potential reset strategy, voltage leak, time-dependent weights,

and time-dependent normalization are evaluated. Finally, SNNs are compared to

conventional RNNs.

67

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

5.3.1 Experimental setup: Neural network architectures

For the experiments, the S-ResNet developed in Chapter 4 is used, which in its

initial form uses a LIF neuron model, reset by subtraction and BNTT.

As seen in equation (5.6), for a time-dependent input of d dimensions xt =

(x1,t...xd,t), the method defines an individual BN module per time-step. This not

only normalizes each feature k (or convolutional channel in the case of CNNs)

independently, as regular BN would do, but also defines independent statistics

(mean µk,t and standard deviation σk,t) and learnable weights (γk,t and βk,t) per

time-step t.

BNTT (xk,t) = γk,t
xk,t − µk,t√
(σk,t)2 + ϵ

+ βk,t (5.6)

In order to compare to non-spiking ANNs, a non-spiking version of the same

architecture is defined. The neuron model is substituted by the Rectified Linear

Unit (ReLU) activation function, and regular BN is used instead of BNTT. With

these changes, the network becomes a conventional feed-forward ResNet. These

networks process the input instantaneously, without temporal dynamics, which

means that, for a sequence classification task such as action recognition, they can

give an output per time-step but not a global one for the whole sequence. This

was solved by adding the same output layer used by the SNN, which can be seen

as a voting system that accumulates the outputs for all time-steps by summing

them together. In the following experiments, this network will be referred to as

ANN-BN.

Additionally, in order to study the effect of the learnable weights in BNTT,

an additional network is defined, the ANN-TW (ANN with temporal weight),

which is a modified version of the non-temporal ANN. This version adds a learn-

able weight wl,t ∈ R1 per time-step t at each layer l, which is used to scale the

activation map after the convolution (Conv) and BN layers as:

yl,t = BN(Conv(xl,t)) · wl,t (5.7)

As an alternative, a version where each channel learns a different temporal

weight is also defined. This network is referred to as ANN-TWC.

Finally, for the RNN vs SNN comparisons in Section 5.3.3, a different archi-

tecture is defined with the objective of disentangling temporal processing from

spatial processing. A non-spiking ResNet14 acts as spatial feature extractor, then

(1 or 2) fully connected ”temporal layers” of 128 features are appended before

the final classification layer, to act as temporal feature extractor. As temporal

68

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

Tab. 5.1: Test performance on DVS-Gesture. SNN* was initialized with pre-trained
weights as proposed in [192]. Training and testing were run for 3 times, accuracies
presented as mean ± std.

Network Normalization DVS-Gesture Accuracy
SNN BN 70.31 ± 3.27 %
SNN BNTT 89.82 ± 1.50%
SNN* BNTT 94.84 ± 1.06 %
ANN BN 97.35 ± 0.45 %
ANN BNTT 96.95 ± 0.61%

layers, the following are tested: feed-forward SNN layers, recurrent SNN layers

(RSNN), vanilla RNN, and LSTM.

5.3.2 DVS-Gesture evaluation

As in Chapter 4, the experiments are performed by only evaluating the test set

after the training is complete, without using test evaluations to tune the training.

Table 5.1 shows how both SNN and ANN achieve high accuracy in the DVS-

Gestures task. As previously stated, the ANN final prediction is just a sum of

the individual predictions made at each time-step. Each of these is made using

the information from a frame which integrates the events received within a time

window; for this set of experiments, the time window is 1
50

of the total number of

events for each frame.

The ANN has no way of combining information from different frames and has

no notion of the timing in which they occurred, hence, it does not perceive the

timing or relative order of the events. Still, it cannot be said that the features

it uses are strictly non-temporal. When accumulating these events into frames,

only the ones which are close in time will be integrated into the same frame,

meaning that the spatial features the network will calculate are still dependent

on event timing. This makes the appropriate wording a sensible matter: the ANN

does not implement working memory neither does it implement temporal feature

extraction; still, the spatial features it extracts in this scenario are dependent

on event timing, therefore, given that a temporal feature is any attribute of

the data that is explicitly related to time, these features can be considered a

type of temporal feature. This explains why a network without temporal feature

extraction can solve the DVS-Gestures task, and how solving this task does not

require to perceive the temporal ordering of events, but only to integrate events

which are close in time so that spatial features become apparent. Then, a system

designed for the classification of static images can perform the task.

69

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

For completeness, the table also reports the accuracy obtained by the SNN

with conventional BN (SNN-BN) and the accuracy of the ANN with BNTT

(ANN-BNTT). It can be seen how the ANN does not benefit from the time-

dependent computations of BNTT and obtains a very similar result. On the

contrary, the SNN performance decreases when using regular BN, demonstrating

how, for a system where activity statistics change through time such as SNN,

timing-aware normalization is beneficial.

5.3.3 DVS-Gesture-Chain evaluation

Using the methodology described in the previous Section 5.2, three DVS-GC

datasets were created, as summarised in Table 5.2. Datasets 81-p and 96-p define

a smaller variability for the duration Fg of each individual gesture (α1 = 0.5,

α2 = 0.7), while 96-u defines a larger one, making it much harder to predict

the transition between gestures in time (Fig. 5.1 demonstrates this variability

visually).

All three datasets are defined with a validation set of 20% of the training data

which is evaluated at every epoch. The test performance is then evaluated using

the weights with the highest validation accuracy.

Tab. 5.2: Parameters per dataset. In the naming convention, -p stands for predictable
time windows while -u stands for unpredictable time windows.

Name N L α1 α2 Repetition # classes
81-p 3 4 0.5 0.7 Yes (5.2) 81
96-p 3 6 0.5 0.7 No (5.3) 96
96-u 3 6 0.2 1 No (5.3) 96

ANN vs SNN and time-dependent weights

First, the networks are run on the 81-p and 96-p datasets. As seen in Table

5.3, now that the task requires distinguishing the ordering of the events, the non-

temporal ANN (ANN-BN) fails to solve it. Moreover, its accuracy value implicitly

reveals the computations performed by the network: taking the 81 class data set

as an example, one can see how the ANN accuracy (16.91%±0.5) is higher than

random chance (1.23%). This is because the network is capable of detecting the

gestures present in the sequence and the number of times they appear, but is

unable to perceive their ordering. With such conditions, and assuming a perfect

accuracy in gesture detection, the probability of correctly classifying a sequence

70

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

Tab. 5.3: Test performance on DVS-GC. Training and testing were run for 3 times,
accuracies presented as mean ± std.

Network Normalization Dataset Accuracy
ANN BN 81-p 16.91 ± 0.50 %
ANN BNTT 81-p 99.52 ± 0.31 %
ANN BN + TW 81-p 89.44 ± 5.74 %
ANN BN + TWC 81-p 91.08 ± 8.10 %
SNN BN 81-p 86.00 ± 2.38 %
SNN BNTT 81-p 95.83 ± 0.62 %
ANN BN 96-p 12.96 ± 0.74 %
ANN BNTT 96-p 99.52 ± 0.55 %
SNN BN 96-p 80.62 ± 2.76 %
SNN BNTT 96-p 96.32 ± 0.02 %
ANN BNTT 96-u 74.66 ± 0.64 %
SNN BNTT 96-u 91.16 ± 1.30 %

for the 81 class dataset is pd = 16.05%. This probability can be calculated as

follows:

Assuming a system with perfect gesture classification but no perception of

order that is evaluated in DVS-GC, this system will know which gestures are

present in the sequence and the number of times they appear, but will be unable

to perceive their ordering. For this system, depending on the number of detected

gestures, the candidates to be the correct output are reduced. Therefore, to

calculate its accuracy, one can calculate the probability of correctly classifying

each individual class xi in the dataset and then, assuming a constant number of

class examples, their average will be the final accuracy. For the 81-class DVS-GC

dataset, it can be calculated as in equation 5.8.

p(x) =

1, if gesture repeated 4 times

1
4
, if gesture repeated 3 times

1
6
, if 2 gestures repeated 2 times

1
36
, otherwise

Pd =
1

C

C∑
i

p(xi) =

=
1

81
(3 · 1 + 24 · 1

4
+ 18 · 1

6
+ 36 · 1

36
) = 0.1605 (5.8)

On the other hand, the results show how the SNN still achieves high accuracy

on these same datasets, implying that its temporal dynamics allow to perceive

71

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

order in time. In order to analyse which components of the network enable this

capacity, the experiments also report the performance of the SNN with conven-

tional BN (SNN-BN) and the accuracy of the ANN with BNTT (ANN-BNTT).

The accuracies obtained by both systems indicate that they are successfully learn-

ing to perceive order, meaning that both, spiking neurons and BNTT can enable

a neural network to recognise temporal sequences on their own. Additionally, it

is also worth noticing how, for the 81-p and 96-p datasets, the ANN with BNTT

is more accurate than the SNN.

In BNTT, the perception of order is gained by learning time-dependent val-

ues that are used to scale the activation maps of the network, providing temporal

attention. In order to decorrelate this capacity from the normalization strategy,

two modified versions of the non-temporal ANN were created, which use regu-

lar BN and implement learnable temporal weights, ANN-TW and ANN-TWC

(introduced in Section 5.3.1).

The performance of ANN-TW (Table 5.3) proves how a single time-dependent

weight per layer is enough to recognise the temporal sequences in 81-p, and how

the learned value does not need to be different between channels for temporal

perception purposes. Still, the ANN-TWC obtains a slightly higher accuracy.

Apart from that, the performances of both networks are lower than those of the

systems using time-dependent normalization statistics, proving how these are not

essential but indeed beneficial.

Finally, the performances of the networks with the 96-u configuration are

evaluated, where the variability of the duration Fg of each individual gesture is

higher. The results (last two rows of Table 5.3) demonstrate how this set-up

greatly decreases the performance of the ANN-BNTT, meaning that temporal

attention is not enough for the task. In contrast, SNN-BNTT exhibits a smaller

decrease and still solves the task with high accuracy, proving how the capacity

of SNNs for spatio-temporal feature extraction goes beyond that of temporal

attention. The complete analysis justifying these results is provided in Section

5.4.

Leak and reset mechanism

When using regular BN, the SNN does not have temporal weights, making voltage

leak the only time-aware component in the network. This motivates us to explore

its relevance to solving the task.

Table 5.4 compares the results of the same network trained with LIF neurons

and IF neurons (no leak). Because the performance comparison between LIF

72

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

and IF can be affected by the chosen leak coefficient, its optimal value was found

through hyper-parameter search. The best results are obtained with 0.87 for the

81 class dataset and 0.80 for the 96 class one.

The original network, which uses reset by subtraction, suffers a major per-

formance drop when not equipped with leak. After analysing this behaviour, it

was found that the reason behind this is the excess of voltage in neurons reset

by subtraction, which can trigger delayed spikes that slow down adaptation to

newer inputs. The results table quantifies this effect by means of what was called

”repetition error” (R-error). The R-error is measured as the percentage of wrong

classifications where at least one of the miss-classified gestures in the chain has

been predicted to be the same as the preceding one. As there are three different

gestures to choose from at each position in the chain, the standard R-error is

33.3%. Values higher than this one will indicate a tendency towards repeating

previous predictions. (Notice that the 96-class dataset does not allow repetition

in its classes and therefore cannot present R-error, still, not clearing old voltage

also decreases the performance in it)

These results demonstrate how voltage leak prevents old information from

corrupting current calculations by solving the voltage stagnation problem caused

by the reset by subtraction. Additionally, a reset to zero strategy was also tested

as an alternative. Its results demonstrated how this reset mechanism also prevents

the issue (Table 5.4), as it does not retain any voltage after spiking, and therefore

does not generate delayed spikes.

Interestingly, reset to zero consistently achieves the best performance when

paired with IF neurons, while implementing leak decreases its accuracy. Not

implementing voltage leak will mean that neurons close to reaching the spiking

threshold will remain in that state, even after the stimulus that was triggering

them is long finished. This will make them prone to spiking prematurely in later

processing, arguably causing noisier computations. On the other hand, leakage

represents the progressive loss of the short-term memory of the network, which

also has the potential to disrupt computations. The fact that leak is not beneficial

for the task at hand might indicate that the former issue is not prevalent. One

possible explanation can be that, when a new gesture appears, initial noise in

the spiking pattern is still superseded by later detections due to data redundancy

through time (the gesture can be continuously detected throughout a window of

time).

73

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

Tab. 5.4: Test accuracy and R-error of the SNN-BN under different setups. IF neurons
do not leak. Zero stands for reset to zero and Sub for subtraction. LIF neurons use a
leakage factor of 0.87 except for LIF-Sub in 96-u, which uses 0.80. Training and testing
were run for 3 times, accuracies presented as mean ± std.

Neuron Reset Dataset Accuracy R-error
LIF Sub 81-p 86 ± 2.38 % 33.54 ± 5.20 %
IF Sub 81-p 48.27 ± 1.38 % 70.41 ± 2.44 %
LIF Zero 81-p 82.31 ± 2.14 % 35.30 ± 8.09 %
IF Zero 81-p 92.59 ± 2.67 % 31.01 ± 2.15 %
LIF Sub 96-u 68.74 ± 1.45 % n/a
LIF Zero 96-u 63.58 ± 3.09 % n/a
IF Zero 96-u 71.40 ± 4.55 % n/a

RNN vs SNN

After demonstrating how SNNs can perform temporal computations without the

need for recurrent connections, results are further validated by comparing their

performance with that of RNNs. For this, as introduced in Section 5.3.1, a

different architecture is defined, which is based on a non-spiking ResNet14, which

acts as spatial feature extractor, and (1 or 2) fully connected ”temporal layers”

(SNN, RSNN, RNN or LSTM) which are added before the final classification

layer as temporal feature extractor.

Table 5.5 shows how, for 96-u, SNNs outperform vanilla RNNs while LSTMs

outperform SNNs. The RSNN demonstrates a substantial improvement with re-

spect to the SNN when using two layers, getting closer to the LSTM performance.

On the other hand, in the dataset with predictable time windows, 81-p, all net-

works perform at a similar level, implying that all networks manage to exploit

its predictable time windows, arguably, demonstrating time-dependent feature

extraction.

The performance differences between SNN, RSNN, RNN, and LSTM are well

justified by their computing principles, which are analysed in Section 5.4.2.

5.4 Analysis of temporal computations

After proving through empirical results how spiking neurons and time-dependent

weights enable temporal order perception, in this section the in-depth mechanics

that implement this capability are analysed.

74

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

Tab. 5.5: Test accuracy in DVS-GC 81-p and 96-u. SNNs use IF neurons and reset
to zero. Training and testing were run for 3 times, accuracies presented as mean ±
std. ”# TL” stands for number of temporal layers.”# params” presents the number
of parameters used in the temporal layers as a factor of the parameters of a 128-
dimensional dense layer. *RNN presents the maximum accuracy instead of the mean,
as numerous trials failed to learn.

Temporal layers # TL # params Dataset Accuracy
SNN 1 ×1 96-u 61.53 ± 3.27 %
SNN 2 ×2 96-u 67.09 ± 1.57 %
RSNN 1 ×2 96-u 64.62 ± 0.69 %
RSNN 2 ×4 96-u 77.80 ± 1.92 %
RNN 1 ×2 96-u 44.08* %
RNN 2 ×4 96-u 65.58* %
LSTM 1 ×8 96-u 87.31 ± 2.79 %
LSTM 2 ×16 96-u 88.80 ± 3.47 %
SNN 2 ×2 81-p 84.60 ± 3.08 %
RSNN 2 ×4 81-p 86.47 ± 1.44 %
RNN 2 ×4 81-p 72.32 ± 16.91 %
LSTM 2 ×16 81-p 89.83 ± 3.34 %

5.4.1 Temporal attention analysis

Networks with time-dependent weights such as ANN-TW or those using BNTT

use temporal attention to store the time at which a visual detection occurred.

This is achieved by constraining the activation of certain layers or channels to a

time window, then the feature detected by those neurons will be known to happen

within that time-window.

In order to prove how the networks are using this strategy, in Fig. 5.2, the

value of the temporal weight in ANN-TW is visualised when trained in the 81-p

dataset. Notice that, when designing DVS-GC, the gesture chaining procedure

was made variable in time, so that the transition between gestures does not always

happen in the same time-step. Now, visualising the graph, it can be seen how the

network learned to reduce the weight in the uncertainty zone of the transition and

defined its detection time windows between the time-steps which are guaranteed

to belong to the n-th gesture. Then, it can be seen how the weight restricts the

last layers to only be active in time windows corresponding to specific positions

in the 4-gesture chain. This specializes different layers in detecting gestures at

certain positions in the chain, acting as a temporal attention coefficient. This

is equivalent to associating timestamps to the detected spatial features and then

combining this information in the last layer by accumulation. This last layer is the

only element in the system implementing memory for the non-spiking networks.

75

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

Fig. 5.2: Value of the time weight in TW-ANN. Dotted lines highlight the gesture
transition zone. The last two layers of the graph correspond to the layers in the residual
connection downsampling. Trained in the 81-p DVS-GC.

For ANN-BNTT, the same mechanism can be observed. Fig. 5.3 (a) displays

the value of BNTT’s β weight, which scales neuron activations. Unlike the ANN-

TW graph, this one does not show large changes in the coefficient value. This

is because the β weight has a different value per channel, something that is not

visible in Fig. 5.3 (a), as it averages through channels. Therefore, in order to

visualize the temporal windowing of the BNTT weight, Fig. 5.3 (b) plots the

center of mass m in the time dimension for the weights at each channel as:

m =
1

T

T∑
t

(xt −min(x))t (5.9)

Where x is a vector that contains a weight value xt per time-step t.

With a uniform distribution of weight through the time-steps, the center of

mass would have a value equal to T/2, which in the case of our network would

be 30. Consequently, all the values in Fig. 5.3 (b) that are far from this number

are indicators of the existence of a time window. It can be seen how the centre

of mass varies among different channels, demonstrating how they specialise on

detecting features inside different temporal windows. This proves how BNTT

hard-codes a different temporal attention for each channel in a layer.

Given this computational logic, it is then clear why in the 96-u dataset the

performance of these networks dropped. With α1 = 0.2 and α2 = 1 time-steps

are not guaranteed to contain a specific position in the chain (except for the first

76

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

and last gestures), since the transition zones now overlap. Therefore, in that

scenario, time-dependent features calculated using temporal attention are not a

reliable descriptor.

Fig. 5.3: (A): Bias weight average value across channels in the BNTT layers of ANN-
BNTT. (B): Value of the center of mass in the time dimension (60 time-steps) of the bias
weight of the BNTT layers in ANN-BNTT. The last two layers of all graphs correspond
to the layers in the residual connection downsampling. Trained in the 81-class DVS-
GC.

5.4.2 Spiking neuron analysis

Unlike temporal attention, spiking neurons achieve high accuracy in all three

datasets. This shows how SNN can perform two types of spatio-temporal tasks:

1. Sequence recognition with predictable action time windows in the 81-p

dataset.

2. Sequence recognition with unpredictable time windows in the 96-u dataset.

Task 1 can be solved by means of time-dependent features, as shown by the

analysis performed on temporal weights. Moreover, as this dataset allows repeti-

tion, these kinds of features are indispensable in order to distinguish individual

gestures when the same one is repeated in succession.

Task 2, to the best of the author’s knowledge, can only be solved by recognising

each gesture transition in the chain, as the timing of an action is not enough to

find its chain location and, therefore, the relative order of appearance is the only

usable information.

Following that logic, by performing successfully in Task 2, SNNs demonstrate

that they can detect gesture transitions in a time-invariant manner, while in

Task 1, they demonstrate the ability to localise gestures in time. Such behaviour

implies that spiking neurons enable time-invariant spatio-temporal feature ex-

traction, as well as time-dependent feature extraction.

77

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

Fig. 5.4: (A): Diagram of a layer of LIF neurons. layer are the synaptic weights,
SF the spiking function, Vres the voltage reset value. Gray lines show the architecture
with recurrent connections, without them, the architecture is feed-forward. (B): LSTM
diagram. Ct is the cell state, ht the hidden state and output, the yellow tanh is a layer
of synaptic weights with Hyperbolic Tangent activation. σ stands for the gating layer
with Sigmoid activation.

Comparing SNN to RNN

A layer of spiking neurons can be seen as a recurrent cell where the current

input xt passes through a layer and is summed to the previous state vt−1. The

contribution of vt−1 is weighted by the leak factor, and the final voltage vt is

decreased by subtracting voltage in the event of a spike. Therefore, they retain

memory by integrating inputs over time until the threshold is surpassed. Then,

when the information is released in form of a spike, it is deleted from memory

through the reset mechanism. On the contrary, in a non-spiking vanilla RNN,

the neuron itself has no memory, recurrency is implemented only at layer level

by defining a recurrent synapse from each neuron to itself and lateral synapses

within the layer. Therefore, it is to be expected for SNN/RSNN to have better

performance than RNNs.

On the other hand, LSTM adds a cell state to their computations to integrate

inputs through time, like spiking neurons do, but, as seen in Fig. 5.4, it has three

differences: first, the integration is weighted by two gating layers, the input and

forget gates, while LIF neurons compute which information to forget through

the reset mechanism and the leak factor; second, in LSTM the non-linearity

is applied before integration, while the spiking neuron applies its non-linearity

(thresholding) only to the output; finally, in an LSTM the output is weighted by

another gating layer. This side by side comparison illustrates how spiking neurons

define a computing principle similar to LSTM units, but without the use of gating

layers, resulting in a lighter network. Additionally, it allows to understand how,

as seen in the experiments, an internal state can be enough to calculate temporal

features. Recurrent connections can be beneficial, but they are not indispensable.

78

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

5.5 Conclusions

This chapter showed how spiking neurons can be exploited to solve temporal

tasks without the need of recurrent synapses. This proves how their temporal

dynamics are not only a vehicle for computational efficiency, but also a tool for

the extraction of temporal features. This can allow to bypass the need for re-

current connections when a lighter network is needed and to reuse feed-forward

networks for temporal tasks. Moreover, the parallelism drawn between LSTM

and SNN allows to appreciate how SNN computation is closer to LSTM than to

vanilla RNNs. Understanding their similarities and differences allows to make

informed choices when designing temporal processing systems and paves the way

to distilling more biologically inspired principles into machine learning. Addi-

tionally, it also contributes to closing the gap between neuroscience and machine

learning knowledge.

The performed experiments evaluated the two components that allow an SNN

to clean its memory, the leak and reset mechanism. The effect of the leak factor

has been previously evaluated in static data [193], but understanding its relevance

for temporal computations was still necessary. The obtained results contribute

to develop this understanding by showing how voltage leak prevents old informa-

tion from stagnating in the network when using reset by subtraction. Looking

at the reset strategy, it was found that zero-reset also solves the aforementioned

problem. Reset by subtraction has been a popular option given that it prevents

loss of information, and has proven especially useful in ANN to SNN conversion

approaches [194]. Still, results indicate that retaining such information can come

at the cost of slower adaptation to dynamic inputs. Therefore, this effect should

be taken into account when designing SNNs for temporal processing tasks, and

appropriately handling it will lead to improved results, as shown in the experi-

ments.

Additionally, the analysis of temporal weights demonstrated a clear use case

for temporal attention, showing how time-dependent features are learned by a

network when the meaning of the events is dictated by their timing. In this

work, the implementation of temporal weights and time-dependent normalization

requires learning a parameter per time-step, which would be a limitation for

inputs of variable length. Still, it is enough to demonstrate the aforementioned

computing principle. Moreover, it serves as a tool to prove which tasks can be

solved with time-dependent features without the need for time-invariant ones.

These insights were obtained thanks to the newly proposed DVS-GC, a task

which was created by means of a novel chaining technique. The relevance of this

79

Ch.5
The advantage of Spiking Neural Networks for spatio-temporal

feature extraction

task is that, first, it fulfils the current need for event-based action recognition

datasets. Apart from that, it provides an approach that allows the creation of

controlled scenarios in order to evaluate specific capacities of a learning system.

The datasets built in this work serve as examples, where 81-p and 96-p could

be solved by timing-aware features, and 96-u could only be solved with time-

invariant spatio-temporal features. Moreover, the chains can be made arbitrarily

long, which allows to test the limits of a system’s memory. Looking ahead, the

results provided in the proposed DVS-GC configurations can serve as a baseline

when evaluating new systems. Finally, if a more challenging task is needed, the

method allows to build longer sequences with more gestures.

80

Ch.6 Towards scalable algorithms for continual learning

Chapter 6

Towards scalable algorithms for

continual learning

6.1 Introduction

As previously discussed, achieving life-long continual learning is a major prior-

ity for AI. This requires the avoidance of the catastrophic forgetting problem

through scalable and efficient methods, like the human brain does [195, 196]. In

recent years, multiple methods have been developed to alleviate CF in incremen-

tal learning setups. Significant success has been achieved by storing samples of

previously seen data in exemplar memories, and through the use of parameter

isolation methods when the task-id is known. However, the requirement for exem-

plar memories or knowledge of the task-id result in severe limitations regarding

scalability, privacy preservation and deployment. It is arguable that more effi-

cient and sustainable solutions can be achieved, given that biological brains are

known to retain knowledge seamless through life, while allowing for continuous

learning. Therefore, it is of great interest to explore the feasibility of alterna-

tive AI solutions which bypass the aforementioned limitations, aiming at scalable

algorithms that can lead to robust life-long learning.

To this end, this chapter proposes a method that avoids requirements which

hamper scalability in incremental learning scenarios, such as exemplar memories

or task-id knowledge. This method is tested on conventional ANNs, as opposed

to the previous two chapters which employed SNNs. This was necessary to make

results comparable to other works in continual learning, which also use non-

spiking ANNs, while it also allowed to avoid the use of BPTT making training

much faster and allowing for a larger volume of experiments.

At a high level, the strucuture of biological brains can be seen as a set of

81

Ch.6 Towards scalable algorithms for continual learning

Tr
ai

n

(2) Concurrent deployment

Subnetwork 2Subnetwork 1

Te
st

(1) Using task-id

Subnetwork 2Subnetwork 1

Fig. 6.1: Parameter isolation when using task-id vs the proposed concurrent subnet-
work deployment. (1) Requires task-id at test time to deploy the correct subnetwork
depending on the task at hand, (2) deploys a subnetwork that contains both, regardless
of the task, hence ignoring task-id.

collaborating subnetworks, each specialised in different functions [19]. Such mod-

ular behaviour facilitates the preservation of consolidated knowledge, as one can

choose to update only the relevant sub-system when training on new data. In

the AI domain, parameter isolation methods to CL (Section 3.2.4) take this same

approach, defining independent or semi-independent systems to solve each task.

Still, as previously explained, these methods usually rely on knowledge of the

task-id during inference time. A research direction of interest is then to enable

parameter isolation methods to work without task-id or exemplars, while also

bypassing the aforementioned requirements. To this end, this chapter proposes

a new method: Low Interference Feature Extraction subnetworks (LIFES). The

proposed algorithm trains subnetworks within a neural network of fixed capacity.

Then, at inference time, it deploys the full network without selecting any spe-

cific subparts, hence executing all subnetworks concurrently with a single forward

path (Figure 6.1).

Deploying all subnetworks concurrently represents the most ambitious sce-

nario for parameter isolation, as it is optimal in terms of requirements and

computational cost, but faces the challenge of interference between subnetworks.

Therefore, the focus of this work is to study the implications of this challenge and

to propose solutions that make it a viable alternative to current CL strategies.

The proposed LIFES method (Figure 6.2), prevents weight overwriting, but the

concurrent activation of subnetworks causes weight interference and representa-

tional overlap. To mitigate these, the following work in this chapter focuses on

the feature extractor and proposes the use of Lateral Classifiers Regularisation

82

Ch.6 Towards scalable algorithms for continual learning

(LCR) and weight standarisation for the alleviation of representational overlap,

and subnetwork Interference Connection Pruning (SICP) for weight interference.

These components are tested through multiple ablation studies, and the final

method is compared to relevant strategies in the literature [124, 129, 146, 156],

reproducing them under a common framework.

Results show how LIFES achieves competitive results in class-incremental

sequences on CIFAR100 [98] and Tiny-ImageNet [197], demonstrating how con-

current subnetwork deployment can be a viable alternative to task selection.

Additionally, it provides solutions that alleviate two specific components of the

CF problem, representational overlap and weight interference, allowing to extend

them to other methods in the future, and contributing to a better understanding

of the challenges that need to be addressed in task-agnostic continual learning.

6.2 The LIFES algorithm

The newly developed LIFES algorithm extends the parameter isolation approach

to task-agnostic inference by learning subnetworks within a neural network model

and deploying them concurrently during inference (Section 6.2.1). However, by

doing so, two challenges arise: weight interference and representational over-

lap. These other catastrophic forgetting components are tackled by reducing

subnetwork interference (Section 6.2.2), introducing weight standardization (Sec-

tion 6.2.3), and through the novel lateral classifier regularization (Section 6.2.4).

LIFES is designed to have minimal requirements, prioritising computing effi-

ciency and its adaptability to multiple incremental learning scenarios. Table 6.1

compares its properties and requirements to the most related approaches in liter-

ature. This summary clarifies how LIFES is the most flexible parameter isolation

method in terms of requirements, as it does not rely on task-id for inference, ex-

emplars, frozen backbones or extra compute during inference. This puts LIFES

at the level of regularisation approaches in terms of requirements, while still being

a parameter isolation method.

As presented in Section 3.1, Incremental Learning challenges will be used in

order to evaluate continual learning capabilities, where the system will learn a

sequence of tasks, one at a time, without access to data from previous or future

ones.

83

Ch.6 Towards scalable algorithms for continual learning

Tab. 6.1: Method comparison on different requirements for incremental learning.

Type Rehearsal Task-id Frozen ∆ params ∆ compute

EWC [124], MAS [125] Regulariz. No No1 No No No
LFL [198], LWF [129] Regulariz. No No No No No
iCaRL [122], EEIL [199] Regulariz. Yes No No No No
PASS [142], SSRE [143] Proto + Reg. No No No No No
FeTrIL[146] Proto No No Yes No No
HAT[156], TFM[158] Param isol. No Yes No Masks (feat.) No
PackNet[157], WSN[159] Param isol. No Yes No Masks (weight) No
ROW [161], MORE[160] Param isol. Yes No No Masks (feat.) OoD classifier
SupSup [162] Param isol. No No2 Yes Masks (weight) Yes
LIFES (this work) Param isol. No No No3 No No
1Original proposed for task-aware, but commonly adapted to task-agnostic.
2Proposes versions of the method for task-aware and task-agnostic.
3The best performing version freezes the first three convolutional layers to increase stability.

6.2.1 Concurrent subnetworks

Similarly to other task-aware mask-based approaches [156, 159, 200, 201], LIFES

learns a subnetwork for each task t and layer l by defining a mask mt
l over the

activations atl . The mask acts as a gating mechanism, defining which activations

are inhibited or active via ãl = al ⊙ ml. These are learnt during training as

in [156] by passing an embedding el through an anhealed sigmoid function σ

following ml = σ(s · el). The scaling factor s is calculated as a function of the N

total number of training epochs for the task, the current epoch n, and a maximum

scaling value smax following sn = (n · smax)/N .

Previous methods such as HAT [156] use the task-id t to select and apply

mt
l when solving a task, both in training and evaluation. On the contrary, this

work proposes to use a cumulative mask m≤t
l (for training and evaluation) which

combines the neurons activated by the current embedding and the ones active in

previously learnt masks:

m≤t
l = max(mt

l ,m
≤t−1
l), (6.1)

Afterwards, both m≤t−1
l and mt

l can be discarded. After all training is complete,

evaluation can be performed without the need to store any extra mask since mt
l

can be used to prune the weights assigned to inhibited activations. Therefore,

the method is not affected by the growing memory problem. The only increase

in memory is the (strictly necessary) classifier weights, which need to be added

in any class-incremental method when new classes appear.

During training, to prevent subnetworks from claiming all activations, a mask

capacity regularisation term is introduced, promoting sparsity and inhibition of

84

Ch.6 Towards scalable algorithms for continual learning

activations within the subnetwork. The cost of this regularisation is defined as:

LM =

∑L−1
l=1

∑Nl

i=1m
t
l,i

(
1−m<t

l,i

)∑L−1
l=1

∑Nl

i=1(1−m<t
l,i

) , (6.2)

adding all mask values across all activations i and layers l. The previously unused

activation masks (1−m<t
l,i) are used to nullify the cost of reusing previously trained

activations.

Therefore, by learning a sparse mask with each new task and adding them

to a cumulative mask, one obtains a parameter isolation strategy that allows to

learn a subnetwork per task while being able to evaluate without the need of the

task-id.

6.2.2 Interference Connections

Parameter isolation methods prevent weight overwriting by constraining the gra-

dient ∇l of the weights which are relevant to previous subnetworks. Usually, a

mask per task is stored, requiring the task-id to know which one to apply [156–

158]. Therefore, subnetworks learnt for later tasks will not interfere with the

ones for older tasks. Thus, these connections are not frozen, and the gradient

constraint is defined by:

∇′
l,ij =

(
1−min

(
m<t

l−1,i,m
<t
l,j

))
∇l,ij , (6.3)

where i is the neuron index at layer l−1 and j the one for layer l. In contrast, the

experiments in this work (Section 6.3.3) show how when multiple subnetworks are

active at the same time, these connections can cause forgetting. This is because

the subnetwork from task t will train with m<t, but after training for later tasks

t+n, the cumulative mask m<t+n will activate extra neurons, which could modify

the activations j in m<t
l if i ̸∈ m<t

l−1∧ i ∈ m
<t+n
l−1 . This results in future subnetwork

interference, which represents part of the weight interference component defined

in Section 3.1. With LIFES, the remaining weight interference is caused by the

activations which at task t were inhibited j ̸∈ m<t
l , but are active in the later

mask j ∈ m<t+n
l . This second part cannot be easily prevented, since it is still

necessary to allow the training of new subnetworks. However, future subnetwork

interference can be removed by modifying the gradient constraint so that the

aforementioned connections are frozen:

∇′
l,ij = (1−m<t

l,j)∇l,ij . (6.4)

85

Ch.6 Towards scalable algorithms for continual learning

Moreover, since weights will still have non-zero values from the network initial-

isation, the proposed algorithm sets them to zero so that future pre-synaptic

activations i do not affect older subnetworks. This process will be referred to

as subnetwork Interference Connection Pruning (SICP). An intuitive representa-

tion of the effect of this constraint can be found in the coloured weights WL in

Fig. 6.2. where the dashed black arrow indicates the weights pruned by SICP

(which would have been trainable in other parameter isolation approaches).

6.2.3 Weight standardisation

Weight standardisation (WS) [42] was proposed as an alternative to Batch Nor-

malisation [40] to enable training with smaller batch sizes. For each layer acti-

vation, WS forces the weights connected to it to be normal. This provides two

benefits, smoothing of the loss landscape and avoiding the creation of elimination

singularities (i.e. weights/convolutional kernels under constant inhibition due to

being mapped to the null gradient region of the non-linearity). Moreover, learning

normalized layers promotes a more controlled signal scaling [41].

Learning feature representations under this constraint can influence the repre-

sentational overlap between subnetworks in methods such as the one in this work,

as shown in Section 6.3.4. Experimental results were obtained with different WS

setups. As a result of this analysis, LIFES implements WS for its frozen layers,

but not in the trainable ones.

The implementation of WS in frozen layers follows the original one [42]. Let

W be the original weights of a given layer, µW its mean, and σW its standard

deviation (both calculated across the fan-in neurons). Then, the standardized

weights Ŵi,j are calculated as:

Ŵi,j =
Wi,j − µW·,j

σW·,j

. (6.5)

For trainable layers, the process is adapted to suit the proposed incremental

learning scenarios. For weights Wi,j where the connection from i to j has been

frozen to preserve performance in a previous task, applying equation (6.5) would

cause forgetting, as the calculation of µWi,· and σWi,· depends on all j, and some

of this weights are not yet frozen and will change in later tasks. Therefore, the

weights of the frozen subnetwork would be modified.

To correct this, the weights that belong to the current subnetwork are stan-

darised only with respect to themselves, by maskingWi,j withm
t
l,j and calculating

the mean and the standard deviation only with respect to the weights selected by

86

Ch.6 Towards scalable algorithms for continual learning

this mask (j ∈ mt
l,j). Weights not belonging to the subnetwork defined by mt

l,j

are not standardized during task t training:

Ŵi,j = (mt
l,j

(Wi,j − µW·,j∈mt
l,j

)

σW·,j∈mt
l,j

+ (1−mt
l,j)Wi,j) (6.6)

Then, after training, weights in the subnetwork defined by mt
l,j are frozen

with standardisation applied to them. Therefore, when equation (6.6) is applied,

weights which are not in mt
l,j, but are still active because they are in m≤t

l,j , will

have mean 0 and standard deviation 1, and therefore the whole Ŵi,j will too.

6.2.4 Lateral Classifier Regularisation

The main contribution of this work towards the mitigation of representational

overlap is the Lateral Classifiers Regularisation (LCR). When minimising the loss

for a set of classes, the solution space will contain different distributions for the

feature representations. All of them maximise separability between the current

classes being learned, however, separability with respect to classes from other

tasks is not taken into account in the loss minimisation. Still, some solutions

might be more prone than others to overlapping with the representations learnt

for classes in other tasks.

In order to learn a distribution for current classes with lower probability of

overlapping with future ones, the distribution is enforced to have more discrim-

inative features across all layers by adding a lateral classifier to each of them.

This classifier is as a linear layer ϕl which is only used during training. Then,

given the ground truth labels y, each of these classifiers are learned through the

regularisation loss LLCR, which is an average of the cross-entropy loss LCE across

all lateral classifiers:

LLCR =
1

L

L∑
l=1

LCE(ϕl · atl , y) . (6.7)

This promotes more discriminative feature representations even in earlier layers.

Intuitively, earlier layers might learn more general features, which are used to

build the representations of multiple classes. With LCR, these layers will also be

forced to have some class-specific neurons to aid the lateral classifier, therefore

creating a more separable representation.

The results in Section 6.3.1 and 6.3.2 show how the representations learnt by

LCR considerably reduce representational overlap, providing the same inter-class

distance as the upper bound (joint training), and even higher in the experiments

87

Ch.6 Towards scalable algorithms for continual learning

in Section 6.3.3.

6.2.5 Complete LIFES method

Legend

Active in m<t

Active in mt

Not active
Concatenate

Frozen weight
Trained weight
Pruned weight
Inactive weight

LM

. . .

input

W1

WL-1

a1

aL-1

WL

aL

m1

mL-1

mL

φL

φL-1

φ1

LCE

LCE

LCE

. . .

LLCR

Ψ

LCE

Fig. 6.2: LIFES diagram. Layer activations ai are masked by m<t
l and mt

l , and
weights which could modify values masked by m<t

l are frozen. Weights WL are coloured
to demonstrate this, which is the result of the gradient restriction and SICP. Classifier
weights (ψ and ϕl) are divided into groups (or classifier heads) for each set of classes
corresponding to a task. Colouring in the classifier weights indicates that only the
weights of the classes being learnt are modified.

The complete LIFES algorithm implements the previously explained concur-

rent subnetwork strategy with SICP and LCR. Then, its loss is comprised of

three components, the cross-entropy loss (LCE), the mask capacity regularisa-

tion (LM) and the LCR regularisation (LLCR), which use λ hyper-parameters to

88

Ch.6 Towards scalable algorithms for continual learning

balance their weight:

L = LCE + λMLM + λLCRLLCR (6.8)

Regarding WS, as justified by the results in Section 6.3.4, it applies it only to

the first three convolutional layers. These three layers are frozen after training

the first task, as the basic shapes they learn are general features which can be

reused for later tasks [147, 202, 203].

A diagram of the LIFES training algorithm is presented in Figure 6.2, illus-

trating the process of training submasks and the integration of SICP and LCR

into the process. For further clarification, Algorithm 2 depicts the order of oper-

ations upon the arrival of a new task. Notice how training ψoc∈t and ϕoc∈t means

that only the weights connected to the logits of the classes being trained (oc∈t)

are modified.

Algorithm 2 LIFES’ incremental learning loop

Initialize m<t as all zeros
for each new task t do

• Add new classes c ∈ t to the classifiers ψ and ϕl

• Jointly train W , mt, ψoc∈t and ϕl,oc∈t subject to the gradient constraint
(6.4)

• Aggregate the current mask mt to m<t (6.1)

• Prune according to SICP (Section 6.2.2)

end for

6.3 Experimental results

For the experiments, class-incremental scenarios are defined as a sequence of T

tasks with C classes each, shortened to C×T , using the CIFAR-100 [98] and Tiny-

ImageNet [197] datasets (e.g.: CIFAR-100 (10×10) for CIFAR with 10 tasks of

10 classes each). The main network architecture used in these experiments is

the one proposed by [156], which adapts an AlexNet architecture for 32×32 in-

puts. This allows to easily compare performance to EWC [124], LwF [129] and

HAT [156], which are classic references for task-aware approaches. Additionally,

performance was also tested for the AllCNN [204] and ResNet [20] architectures

(Section 6.3.6). Accuracy is reported over all classes at the end of the sequence,

in task aware (TAw Acc) and task agnostic (TAg Acc) format. The former only

89

Ch.6 Towards scalable algorithms for continual learning

uses class outputs for the current task, while the latter concatenates all class

outputs without using the task-id. Task forgetting (Forg) [205] is also evaluated,

calculated as the difference in performance with respect to the initial accuracy

when the task was learned. Given that this work focuses on task agnostic meth-

ods, TAg Acc is the metric used to rank the performance of the methods, while

TAw metrics are complementary information. Notice that in cases where the

average accuracy is similar but one method has higher forgetting than the other,

this indicates that the one with higher forgetting has also higher plasticity, as it

obtained higher accuracy in later tasks but lost more on the earlier ones.

Finally, an inter-class distance is proposed, which is calculated by obtaining

the average activation per class, calculating the pair-wise cosine distances between

all classes, and reporting the mean across all of them. Notice that the standard

deviation for inter-class distance is not across the multiple seeds as in the other

metrics, instead, it is calculated across all the pair-wise distances between classes,

and afterwards, its mean across all seeds is reported. All reported approaches are

reproduced under the same framework with fixed initialisation and training batch

order, for a fairer comparison.

Training across all methods is performed using stochastic gradient descent

for 300 epochs per task, with a momentum of 0.9, learning rate of 0.01, batch

size of 256 for CIFAR-100 and 64 for TinyImageNet, and gradient clipping with

a threshold of 1000. For method specific parameters, a search was performed

(manual grid-search) to find the best hyperparameter configuration: EWC with

λ = 500, LWF with λ = 8, T = 2, HAT with λ = 0.75, FeTrIL with the most-

similar-new-class pseudo-feature generation heuristic and a fully-connected as

classification layer. Finally, LIFES uses λM = 1 and λLCR = 1. The performance

of methods from the literature are consistent with the ones obtained in the original

papers and previous surveys such as [206].

6.3.1 State-of-the-art comparison

To contextualize the performance of the tested methods, three baselines are pro-

vided: fine tuning, which sequentially trains each task without any CF prevention;

freezing, which freezes the network backbone after training the first task, and then

just trains classifier heads; and joint, which adds the data from previously seen

tasks to the current task, training in i.i.d. format and therefore defining the up-

per bound. Continual learning methods will prove useful for a specific setup if

their performance in it is superior to fine tuning and freezing, while joint serves as

reference for the maximum achievable performance. Additionally, Table 6.2 and

90

Ch.6 Towards scalable algorithms for continual learning

Tab. 6.2: Results for CIFAR-100 (10×10) and CIFAR-100 (50×1 + 10×5) presented
as mean (± standard deviation) across 5 random seeds.

CIFAR-100 10×10
Approach TAw Acc ↑ TAg Acc ↑ TAw Forg ↓ TAg Forg ↓ Inter-class dist ↑

Finetuning 53.16 (± 1.88) 13.56 (± 1.14) 29.68 (± 2.30) 67.60 (± 1.31) 0.41 (± 0.18)
Freezing 63.46 (± 0.60) 21.22 (± 0.76) 0.00 (± 0.00) 14.92 (± 0.61) 0.27 (± 0.18)
Joint 83.50 (± 0.41) 56.30 (± 0.33) -0.46 (± 0.36) 5.22 (± 0.19) 0.55 (±0.16)

EWC [124] 60.18 (± 0.86) 17.56 (± 1.26) 20.48 (± 0.92) 56.70 (±1.82) 0.45 (±0.18)
LWF [129] 27.08 (± 0.53) 9.32 (± 0.43) 57.22 (± 0.20) 72.74 (±0.39) 0.15(±0.09)
FeTrIL [146] 51.82 (± 1.59) 17.52 (± 1.11) -0.34 (± 0.16) 24.16 (± 1.17) 0.29 (±0.17)
HAT [156] 71.30 (± 0.77) N/A 0.00 (± 0.00) N/A N/A
LIFES (Ours) 73.38 (± 0.68) 31.60 (± 0.33) 0.34 (± 0.10) 7.76 (± 0.85) 0.54 (±0.17)

CIFAR-100 50×1 + 10×5
Approach TAw Acc ↑ TAg Acc ↑ TAw Forg ↓ TAg Forg ↓ Inter-class dist ↑

Finetuning 66.08 (± 1.68) 18.98 (± 1.71) 14.60 (± 1.25) 25.18 (± 3.38) 0.47 (± 0.18)
Freezing 71.98 (± 0.83) 38.30 (± 1.36) 0.00 (± 0.00) 11.16 (± 0.45) 0.47 (± 0.17)
Joint 79.74 (± 0.55) 54.66 (± 1.10) -0.70 (± 0.20) 0.96 (± 0.45) 0.55 (± 0.16)

EWC [124] 70.50 (± 1.25) 20.86 (± 1.20) 8.62 (± 0.62) 19.82 (± 4.26) 0.51 (± 0.17)
LWF [129] 35.53 (± 1.03) 17.30 (± 0.95) 50.23 (± 0.93) 69.13 (± 0.73) 0.19 (± 0.11)
FeTrIL [146] 67.72 (± 0.83) 36.16 (± 1.41) -0.28 (± 0.37) 15.26 (± 0.67) 0.47 (± 0.17)
HAT [156] 70.54 (± 0.80) N/A 0.00 (± 0.00) N/A N/A
LIFES (Ours) 77.80 (±0.39) 42.78 (±0.72) 0.20 (±0.09) 5.64 (±0.59) 0.55 (±0.16)

Figure 6.3 present the results obtained with other methods when reproduced with

the same network and in the same training conditions. EWC is used as represen-

tation of regularisation methods, LWF for distillation, FeTrIL for prototype-based

and HAT for task aware parameter isolation.

CIFAR-100 results in Table 6.2 show how the proposed method achieves com-

petitive results, surpassing the performance of the reference task-agnostic ap-

proaches in the proposed setup. Regarding inter-class distance, LIFES demon-

strates the highest amongst the methods tested. It is specially relevant how

it matches the one from the joint upper bound, which trains with i.i.d. data.

Following sections provide analysis on how this is achieved.

Comparing CIFAR-100 (10×10) to CIFAR-100 (50×1 + 10×5), the main differ-

ence is the performance of freezing, which is lower in 10×10, having lower average

accuracy and less inter-class distance. This is to be expected, as the first task is

the only one used to train the feature extractor in the freezing approach and it

has less classes in the 10×10 setup. Moreover the task sequence is longer, giving

more importance to plasticity.

Results with TinyImageNet are shown in Figure 6.3 as the average task-

agnostic accuracy across the test sets of all trained tasks. This is calculated

after training each task, reporting the evolution of this average accuracy as more

tasks are added to the incremental learning sequence. Taking into account the

91

Ch.6 Towards scalable algorithms for continual learning

Fig. 6.3: Graphical representation of the average task-agnostic accuracy after each
task (x-axis) with Tiny Imagenet (50×1 + 15×10), reshaped to 64×64 images. Results
presented as mean across 5 random seeds.

accuracy achieved by the joint upper bound, which is considerably lower than the

one achieved for CIFAR-100, the results are consistent with previous experiments

and LIFES is shown to retain knowledge for longer than the other task-agnostic

methods. Apart from that, it is noticeable that LIFES is the only method with

a different accuracy than the rest in the first task, this is because of its two

regularisation terms, LM and LLCR, which affect how the first task is learnt.

Finally, it is worth noticing that TAw Forgetting is close to 0 in LIFES.

This means that when the correct classifier head is chosen (which is equivalent

to discarding the classes trained in other tasks) most interference disappears,

even when all subnetworks are active concurrently. This shows that, when using

the LIFES approach, it is not necessary to mask out subnetworks for irrelevant

tasks. Then, the method can be used to reduce the CF problem to classifier head

selection. If a reliable method for this selection is proposed, combining it with

LIFES becomes a very promising approach.

6.3.2 Lateral classifier regularisation ablation

In order to analyse the influence of the proposed Lateral Classifier Regularisa-

tion loss on improving representational overlap, an ablation study is performed

where LIFES is evaluated with and without this component (see Table 6.3).

Furthermore, the table include results for freezing, the zero-forgetting baseline

that represents maximum stability and minimal plasticity by freezing the model

(except the classifier) after the first task. Additional measures are included in-

dicating the mean and maximum activation across all non-masked neurons and

92

Ch.6 Towards scalable algorithms for continual learning

the sparsity of the last layer. Sparsity is calculated as the percentage of neu-

rons with an activation greater than a threshold. Eight different thresholds

are used, calculated as a percentage p of the maximum activation value, where

p ∈ {1.0, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 20.0}(%). The reported value is the Area

Under the Curve calculated by means of the trapezoidal rule.

The results show a consistent improvement in TAg accuracy when using LCR,

with an improvement in plasticity at the cost of a small increase in forgetting.

This is likely a result of forcing more discriminative representations in each layer,

which makes the inter-class distance higher, therefore reducing representational

overlap. This interpretation is further reinforced by the fact that TAw accuracy

is not improved by LCR, since representational overlap between classes learnt at

different training times is already solved by choosing the correct classifier head

and therefore ignoring classes from other tasks. It is also noticeable how LCR

achieves almost the same inter-class distance in the 10×10 and 50×1 + 10×5 setups,
but without it, the longer 10×10 sequence sees a larger reduction, indicating that

LCR trained representations are most useful for longer and more challenging

sequences.

The remaining reported values give an idea of the difference in distribution

of the feature representations. The mean activation is similar with and without

LCR, but sparsity is consistently higher when using it, and so it is the mean

maximum activation, indicating a distribution with more salient features.

6.3.3 Interference connection pruning ablation

An ablation study for the subnetwork Interference Connection Pruning compo-

nent (Section 6.2.2) is also provided. Table 6.4 shows how for the 50×1 + 10×5
sequence the accuracy with and without SICP is very close, while for the 10×10
sequence, the improvement in stability proves most useful, and obtains a higher

final accuracy. The LIFES algorithm implements this mechanism in order to

prioritise performance in longer sequences and enable scalability.

Interestingly, inter-class distance is higher when SICP is not applied, due to

the cost of interference connection pruning being a reduction in capacity and

plasticity. The results show higher accuracy for newly learnt tasks when SICP

is not used, since their subnetworks have more weights available. However, this

comes at the cost of performance degradation in pre-existing subnetworks.

Finally, it is worth noting how the higher inter-class distance of LIFES without

SICP is even higher than the one for the joint upper-bound. This indicates that

the representations learnt through LCR are even more separable than those learnt

93

Ch.6 Towards scalable algorithms for continual learning

Tab. 6.3: Results for CIFAR-100 (10×10) and CIFAR-100 (50×1 + 10×5). Accuracies,
forgetting and statistics for the LCR study. Presented as mean (± standard deviation)
across 5 random initialisation seeds.

CIFAR-100 10×10
Approach TAw Acc ↑ TAg Acc ↑ TAw Forg ↓ TAg Forg ↓

Freezing 63.64 (± 0.60) 21.22 (± 0.76) 0.00 (± 0.00) 14.92 (± 0.61)
LIFES w/o LCR 73.43 (±0.58) 28.65 (±0.69) 0.20 (±0.00) 5.80 (±1.38)
LIFES with LCR 73.38 (± 0.68) 31.60 (± 0.33) 0.34 (± 0.10) 7.76 (± 0.85)

Inter-class dist ↑ Mean Max Sparsity AUC

Freezing 0.27 (±0.17) 0.04 (±0.00) 0.54 (±0.06) 4.84 (±0.11)
LIFES w/o LCR 0.37 (±0.15) 0.08 (±0.00) 1.51 (±0.10) 3.90(±0.13)
LIFES with LCR 0.54 (±0.17) 0.08 (±0.01) 3.41 (±0.07) 1.89 (±0.08)

CIFAR-100 50×1 + 10×5
Approach TAw Acc ↑ TAg Acc ↑ TAw Forg ↓ TAg Forg ↓

Freezing 72.04 (±0.58) 38.08 (±0.41) 0.00 (±0.00) 12.04 (±1.43)
LIFES w/o LCR 77.44 (±0.60) 34.64 (±1.47) 0.14 (±0.08) 3.92 (±0.43)
LIFES with LCR 77.80 (±0.39) 42.78 (±0.72) 0.20 (±0.09) 5.64 (±0.59)

Inter-class dist ↑ Mean Max Sparsity AUC

Freezing 0.47 (±0.18) 0.05 (±0.00) 0.81 (±0.03) 3.98 (±0.17)
LIFES w/o LCR 0.44 (±0.15) 0.09 (±0.00) 1.11 (±0.04) 4.90 (±0.16)
LIFES with LCR 0.55 (±0.16) 0.10 (±0.00) 2.25 (±0.11) 2.94 (±0.20)

when training all classes in the same session, but this effect is reduced when SICP

is applied to prevent the aforementioned source of catastrophic forgetting.

6.3.4 Weight standardisation analysis

Weight standardisation limits the solution space of weights to those of mean 0

and std 1, reducing plasticity. In Table 6.5 different combinations of layer freezing

are evaluated, showcasing how applying WS to all layers is detrimental, since it

causes the task-agnostic accuracy of the first task to be preserved at the cost of

having it close to zero for any subsequent tasks. When WS is applied only to the

frozen layers, results show consistent improvement, with higher average TAg Acc,

lower forgetting, and higher inter-class distance. This seems to indicate that, for

layers that are not used to generate task-specific features (due to being frozen),

the representations learnt with the WS constraint incur in less representational

overlap. Consequently, for LIFES, the first three layers are frozen after learning

the first task and WS is applied to them.

94

Ch.6 Towards scalable algorithms for continual learning

Tab. 6.4: Results for CIFAR-100 (10×10) and CIFAR-100 (50×1 + 10×5).

CIFAR-100 10×10
Approach TAw Acc ↑ TAg Acc ↑ TAw Forg ↓ TAg Forg ↓ Inter-class dist ↑

Joint 83.50 (± 0.41) 56.30 (± 0.33) -0.46 (± 0.36) 5.22 (± 0.19) 0.55 (±0.16)
LIFES w/o SICP 66.56 (± 1.29) 25.70 (± 1.13) 8.12 (± 0.77) 40.78 (± 1.35) 0.73 (±0.18)
LIFES with SICP 73.38 (± 0.68) 31.60 (± 0.33) 0.34 (± 0.10) 7.76 (± 0.85) 0.54 (±0.17)

CIFAR-100 50×1 + 10×5
Approach TAw Acc ↑ TAg Acc ↑ TAw Forg ↓ TAg Forg ↓ Inter-class dist ↑

Joint 79.74 (± 0.55) 54.66 (± 1.10) -0.70 (± 0.20) 0.96 (± 0.45) 0.55 (± 0.16)
LIFES w/o SICP 75.68 (± 0.82) 44.18 (± 0.60) 3.04 (± 0.62) 34.12 (± 0.82) 0.68 (±0.17)
LIFES with SICP 77.80 (±0.39) 42.78 (±0.72) 0.20 (±0.09) 5.64 (±0.59) 0.55 (±0.16)

Tab. 6.5: Results with different weight standardization (WS) configurations for
CIFAR-100 (10×10) and CIFAR-100 (50×1 + 10×5) presented as mean (± standard
deviation) across 5 random seeds.. Frozen describes which layers are frozen or stan-
dardized is indicated with a range of indexes, ”All”, or ”None”.

CIFAR-100 10×10
WS layers Frozen TAw Acc ↑ TAg Acc ↑ TAw Forg ↓ TAg Forg ↓ Inter-class dist ↑

None [1, 3] 67.58 (± 0.49) 27.16 (± 0.40) 0.34 (± 0.17) 9.14 (± 1.07) 0.51 (± 0.18)
[1, 3] [1, 3] 73.38 (± 0.68) 31.60 (± 0.33) 0.34 (± 0.10) 7.76 (± 0.85) 0.54 (±0.17)

CIFAR-100 50×1 + 10×5
WS layers Frozen TAw Acc ↑ TAg Acc ↑ TAw Forg ↓ TAg Forg ↓ Inter-class dist ↑

None [1, 3] 74.64 (± 0.27) 40.36 (± 0.42) 0.34 (± 0.12) 6.56 (± 0.29) 0.36 (±0.16)
[1, 3] [1, 3] 77.80 (±0.39) 42.78 (±0.72) 0.20 (±0.09) 5.64 (±0.59) 0.55 (±0.16)
All [1, 3] 70.44 (± 0.39) 10.90 (± 0.11) 0.12 (± 0.07) 0.12 (± 0.04) 0.36 (±0.16)
None [1] 70.16 (± 0.71) 32.38 (± 1.29) 0.28 (± 0.07) 8.24 (± 1.19) 0.52 (±0.17)
[1, 3] [1] 71.22 (± 0.27) 31.58 (± 1.04) 0.18 (± 0.13) 2.98 (± 0.32) 0.45 (±0.16)
All [1] 65.60 (± 2.77) 13.02 (± 8.64) -0.02 (± 0.12) 0.70 (± 1.40) 0.43 (±0.18)

6.3.5 Capacity Analysis

When studying representation overlap, it is important to take into account the

dimensionality of the representations. It is a well-known fact in High-Dimensional

Computing, that the orthogonality between a set of random representations will

scale with its dimensionality, and decrease the more representations are placed in

its space [207]. Motivated by this observation, this section studies the effect of

changing the dimensionality of the last layer of the feature extractor, projecting

to the original 2048, and also to 1024 and 4096 (see Table 6.6).

Results show how there is a slight improvement in inter-class distance when

dimensionality is increased, but this benefit seems to come from better plasticity,

rather than a reduction in forgetting. Specifically, the improvement comes from

having more capacity available to allocate into the subnetworks, since later tasks

have lower accuracy as the number of non-frozen neurons becomes increasingly

smaller. Therefore, growing network capacity does not show a correlation with

reducing representational overlap. However, it still shows accuracy improvements,

95

Ch.6 Towards scalable algorithms for continual learning

Tab. 6.6: Performance of the method for different dimensionalities of the last layer
for CIFAR-100 (10×10), (50×1 + 10×5), and Tiny Imagenet (50×1 + 15×10) . Last layer
dimensionality indicated besides the name. All other layers remain the same.

CIFAR-100 10×10
Approach TAw Acc ↑ TAg Acc ↑ TAw Forg ↓ TAg Forg ↓ Inter-class dist ↑

LIFES 1024 72.04 (± 0.55) 30.14 (± 0.33) 0.44 (± 0.10) 6.60 (± 0.49) 0.50 (±0.16)
LIFES 2048 73.38 (± 0.68) 31.60 (± 0.33) 0.34 (± 0.10) 7.76 (± 0.85) 0.54 (±0.17)
LIFES 4096 73.46 (± 0.65) 32.52 (± 0.38) 0.22 (± 0.07) 9.40 (± 0.61) 0.55 (±0.17)

CIFAR-100 50×1 + 10×5
Approach TAw Acc ↑ TAg Acc ↑ TAw Forg ↓ TAg Forg ↓ Inter-class dist ↑

LIFES 1024 77.28 (± 0.35) 40.56 (± 0.36) 0.42 (± 0.15) 4.90 (± 0.32) 0.51 (±0.15)
LIFES 2048 77.80 (±0.39) 42.78 (±0.72) 0.20 (±0.09) 5.64 (±0.59) 0.55 (±0.16)
LIFES 4096 78.18 (± 0.64) 45.32 (± 0.35) 0.20 (± 0.09) 7.00 (± 0.46) 0.58 (±0.16)

Tab. 6.7: LIFES performance for different architectures in CIFAR-100 (50×1 +
10×5). Presented as mean (± standard deviation) across 5 random seeds.

Network Parameters TAg Acc ↑ TAg Forg ↓ Inter-class dist ↑

AlexNet 6.5M 42.78 (±0.72) 5.64 (±0.59) 0.55 (±0.16)
AllCNN 5.4M 42.62 (± 1.29) 10.62 (± 1.46) 0.32 (± 0.13)
ResNet20 4.8M 39.98 (±2.48) 6.94 (±0.95) 0.31 (±0.12)

as the capacity of the network is fixed, and it eventually saturates when multiple

subnetworks have been learnt.

6.3.6 LIFES in alternative architectures

In order to test whether the benefits of LIFES are consistent when applying it

to alternative architectures, results were also evaluated for two more networks:

AllCNN [204] and ResNet [20]. As a summary, Table 6.7 presents the performance

of LIFES in each of these networks along with the parameter count, demonstrating

how the method works in different architectures.

LIFES with AllCNN

The fully connected layers in AlexNet architectures account for most of their

parameters. Therefore, it is of interest to test whether the masking strategy

proposed by LIFES behaves in the same way for networks which are fully convo-

lutional and do not depend on densely connected layers.

To test this, the AllCNN architecture was chosen. Specifically, the configu-

ration of Model C from the original article [204] is used, which employs 8 con-

volutional layers as feature extractor and a 1×1 convolutional layer followed by

96

Ch.6 Towards scalable algorithms for continual learning

Tab. 6.8: Results with the AllCNN network for CIFAR-100 (10×10) and CIFAR-100
(50×1 + 10×5) presented as mean (± standard deviation) across 5 random seeds.

CIFAR-100 10×10
Approach TAw Acc ↑ TAg Acc ↑ TAw Forg ↓ TAg Forg ↓ Inter-class dist ↑

Finetuning 49.08 (± 1.67) 13.76 (± 0.46) 28.94 (± 2.07) 54.98 (± 2.00) 0.26 (± 0.01)
Freezing 56.74 (± 1.88) 17.26 (± 0.93) 0.00 (± 0.00) 7.20 (± 1.55) 0.13 (± 0.01)
Joint 82.68 (± 0.43) 54.90 (± 0.76) 0.28 (± 0.57) 5.52 (± 0.97) 0.37 (± 0.01)

EWC [124] 64.56 (± 2.14) 21.36 (± 2.19) 13.54 (± 1.54) 30.98 (± 3.25) 0.23 (± 0.01)
LWF [129] 42.42 (± 0.99) 13.26 (± 0.29) 35.94 (± 0.80) 57.88 (± 2.86) 0.12 (± 0.01)
FeTrIL [146] 51.26 (± 2.30) 18.28 (± 1.46) 0.60 (± 0.44) 19.00 (± 0.61) 0.13 (± 0.01)
HAT [156] 66.46 (± 1.02) N/A 0.00 (± 0.00) N/A N/A
LIFES (Ours) 65.30 (± 1.78) 24.98 (± 0.69) 3.08 (± 0.56) 13.78 (± 1.21) 0.21 (± 0.01)

CIFAR-100 50×1 + 10×5
Approach TAw Acc ↑ TAg Acc ↑ TAw Forg ↓ TAg Forg ↓ Inter-class dist ↑

Finetuning 58.44 (± 2.15) 22.34 (± 1.26) 19.84 (± 1.43) 37.12 (± 2.72) 0.27 (± 0.01)
Freezing 72.40 (± 1.06) 34.74 (± 1.68) 0.00 (± 0.00) 6.94 (± 1.18) 0.22 (± 0.01)
Joint 78.34 (± 0.67) 54.14 (± 1.16) 0.40 (± 0.71) 2.80 (± 0.98) 0.33 (± 0.01)

EWC [124] 69.52 (± 0.84) 26.00 (± 0.83) 6.52 (± 0.79) 12.82 (± 1.92) 0.26 (± 0.01)
LWF [129] 60.14 (± 1.19) 26.42 (± 0.49) 22.14 (± 0.84) 42.72 (± 2.96) 0.16 (± 0.01)
FeTrIL [146] 67.86 (± 0.89) 37.68 (± 1.39) 0.64 (± 0.50) 16.50 (± 0.71) 0.23 (± 0.01)
HAT [156] 54.20 (± 3.86) N/A 0.00 (± 0.00) N/A N/A
LIFES (Ours) 77.06 (± 0.58) 42.62 (± 1.29) 2.66 (± 0.73) 10.62 (± 1.46) 0.32 (± 0.01)

global pooling as classification layer. To make comparisons fairer, the width of

the feature extraction layers was doubled with respect to the dimensionality de-

fined in [204]. This creates a 5.4M parameter network, which is closer to the 6.5M

parameters of the AlexNet used for the other experiments.

Table 6.8 presents the results with AllCNN, which are consistent with those

obtained with AlexNet in Table 6.2, and considerably close in average accuracy.

The most notable differences are LIFES in the 10×10 sequence, where it is 7%

more accurate with AlexNet than AllCNN, and LWF in the 50×1 + 10×5 sequence,
where it is 9% more accurate with AllCNN than AlexNet. Apart from that,

the inter-class distance is lower for all methods with AllCNN, probably due to

the lower dimensionality of its last feature extraction layer (384 compared to

AlexNet’s 2048).

LIFES with ResNets

When designing neural network architectures, it is a well known fact that resid-

ual connections are necessary to ease the training of deep feed-forward structures,

and therefore they have become the common denominator among deep network

architectures [23, 35, 46, 164]. These connections reformulate the problem to

learning residual mappings by adding a skip path that sums the input of a block

of layers to its ouptut. This makes it easier for the learning algorithm to build

97

Ch.6 Towards scalable algorithms for continual learning

identity mappings and prevent depth induced accuracy degradation [20]. Later

work [41] has proven that, in order for residual networks to be effective, either

Batch Normalisation (BN) [40] or alternative strategies which replicate its bene-

fits (weight standardisation) are necessary. This is because BN makes the contri-

bution of the residual path increasingly smaller through depth compared to the

skip path at initialisation. This makes the network effectively shallow at earlier

training stages, and allows it to give deeper layers increasingly more influence by

increasing the variance in the weights as training goes on. Additionally, it also

neutralizes the mean shift activation caused by ReLU, increases the maximum

affordable learning rate and acts as an implicit regularizer.

When using these architectures in incremental learning without task-id, imple-

menting strategies such as BN or the WS proposed in NF-ResNets [208] becomes

a challenge due to the changes in data distribution. In the case of BN, activation

statistics will be updated for the most recent task, degrading the performance on

older distributions in the style of weight overwriting. This issue has less of an

impact in task-aware methods, where the task-id is available and used to choose

the statistics for the current task [158]. Even when ignored, in task-aware pa-

rameter isolation, masks are not active concurrently, neurons will be active only

in their relevant tasks, therefore having more consistent statistics.

To address this issue, the main idea from NF-ResNets is adopted, and WS is

adapted to the proposed incremental learning scenario. This is done as explained

in the WS experiments (Section 6.2.3). To make the comparison fairer with

respect to the AlexNet architectures, a wider NF-ResNet20 is tested, which uses

a width multiplicative factor of k = 4. The number of parameters is then 4.3M

compared to the 6.5M of the AlexNet used for the rest of experiments.

Results show how, consistent with the analysis done in Sec. 4.4, WS reduces

plasticity 6.9. Therefore, task-agnostic accuracy when all layers are standardized

is very low, and only the first task achieves high accuracy. Therefore, performance

when reducing the number of WS layers was tested. Eliminating standarisation

caused unstable training, due to the ResNet’s need for WS or BN (as previously

explained). In such conditions, the optimizer struggled to find good weight con-

figurations and often caused forgetting due to exploding gradients.

To solve the limitation in plasticity when using WS, a fully-connected layer

of 2048 units is added after the convolutional feature extractor. This expanded

network has 4.9M parameters and achieves competitive accuracy, since it now has

now enough plasticity. Additionally, for this network, it can be seen how freez-

ing the convolutional layers reduces plasticity along with forgetting, achieving a

98

Ch.6 Towards scalable algorithms for continual learning

better balance for this setup and therefore higher average accuracy.

These experiments highlight the challenge of adapting normalisation or stan-

dardisation in ResNet architectures to task-agnostic parameter isolation. First,

WS needs to be adapted to incremental learning (as defined in Section 6.2.3)

in order to prevent forgetting. Then, the remaining challenge is the limit WS

imposes on plasticity, which in this work is compensated by means of an addi-

tional fully-connected layer. Looking forward, it is of interest to find alternative

solutions that circumvent this limitation, as adding extra layers is arguably a

sub-optimal solution.

Additionally, Table 6.9 also reports the accuracy obtained with the expanded

NF-ResNet20 and other methods, including the three baselines: Finetuning,

Freezing, and Joint. These results allow to contextualize how the accuracy for

LIFES is still competitive but the aforementioned effect of WS on plasticity lim-

its the benefit of using ResNet. Other approaches such as LWF and FeTrIL

demonstrated a greater improvement with the architecture change, with FeTrIL

obtaining the highest accuracy in the (50×1 + 10×5) setup. These results are to

be expected, as the WS challenge does not apply when the backbone is frozen,

and the higher number of classes in the first task favours its freezing strategy.

Regarding LWF, with the NF-ResNet there was a great reduction in its amount

of forgetting compared to when it was used in other architectures. This seems

to indicate that the plasticity reduction of WS provided the necessary stability

to this method, while the additional FC layer provided enough plasticity. Addi-

tionally, it is also possible that part of the benefit is due to ResNet architectures

being more suited for the knowledge distillation approach.

Apart from that, it is also interesting how Finetuning improved performance

with this network. A hypothesis is that the limitation in plasticity caused by WS

promoted, again, more stability, making this approach, which does not implement

any CF prevention, find a better stability-plasticity balance.

6.4 Conclusions

This chapter presented a method which allows to expand parameter isolation

from task-aware to task-agnostic IL without the use of rehearsal. By referring

to the CF definition previously proposed in this thesis, the study clarified how

this new task-agnostic paradigm prevents weight overwriting, but can suffer from

representation overlap and weight interference. Therefore, solutions to alleviate

their effect were proposed. SICP reduced weight interference, while LCR and WS

99

Ch.6 Towards scalable algorithms for continual learning

Tab. 6.9: Results for LIFES with NF-ResNet in CIFAR-100 (50×1 + 10×5). Additional
methods also reported for reference. NF-ResNet20 uses a wider architecture of k = 4.
One extra FC layer is added when indicated in the network column. Frozen stands
for frozen layers. Which layers are frozen or standardized is indicated with a range of
indexes or ”All”.

Approach Network WS layers Frozen TAw Acc ↑ TAg Acc ↑ TAw Forg ↓ TAg Forg ↓

LIFES NF-ResNet20 All [1,14] 67.53 (± 2.74) 13.78 (± 0.60) 9.08 (± 2.72) 1.00 (± 0.34)
LIFES NF-ResNet20 [1,18] [1,14] 8.96 (± 0.23) 1.76 (± 0.23) 14.06 (± 1.12) 15.68 (± 1.38)
LIFES NF-ResNet20 + FC All [1,14] 74.48 (± 0.47) 34.98 (± 2.77) 4.78 (± 0.73) 13.98 (± 4.42)
LIFES NF-ResNet20 + FC All [1,20] 78.98 (± 0.43) 39.08 (± 0.54) 0.35 (± 0.21) 5.95 (± 0.69)

Finetuning NF-ResNet20 + FC All None 74.74 (± 0.65) 27.38 (± 1.90) 10.68 (± 0.77) 23.20 (± 3.62)
Freezing NF-ResNet20 + FC All [1,20] 78.94 (± 0.29) 26.06 (± 0.75) 0.00 (± 0.00) 1.08 (± 0.29)
Joint NF-ResNet20 + FC All None 85.26 (± 0.43) 64.52 (± 0.79) -0.50 (± 0.36) 3.60 (± 0.75)
HAT [156] NF-ResNet20 + FC All None 65.66 (± 0.62) N/A 0.0 (± 0.00) N/A
EWC [124] NF-ResNet20 + FC All None 75.86 (± 0.98) 23.72 (± 2.18) 9.30 (± 1.22) 17.26 (± 5.22)
LWF [129] NF-ResNet20 + FC All None 78.74 (± 0.91) 38.42 (± 3.52) 0.48 (± 0.25) 5.14 (± 2.13)
FeTrIL [146] NF-ResNet20 + FC All [1,20] 75.84 (± 0.24) 48.30 (± 0.50) 1.56 (± 0.22) 20.98 (± 0.31)

were proven to alleviate representational overlap. Specifically, LCR showed in

some cases even higher inter-class distance than the joint training upper bound,

making it a promising stand-alone component which could be added to other

methods to reduce representational overlap.

Competitive results were obtained, surpassing the performance of the refer-

ence task-agnostic approaches is several setups. This proves that the concurrent

deployment of subnetworks can be a way forward as long as the relevant CF com-

ponents are addressed. Moreover, it demonstrates how LIFES can serve as an

alternative to current IL approaches when minimal requirements are needed.

Further improvement can be achieved by addressing the class-energy imbal-

ance problem in the classifier layer, something that was out of the scope for

this work, but has been addressed by complementary approaches such as [209].

Additionally, another way forward is the extrapolation of the method to larger ar-

chitectures. ResNets were analysed for this purpose, demonstrating the challenge

imposed by task-agnostic normalisation / standardisation. Despite finding a so-

lution through the addition of an additional layer, it is most likely a sub-optimal

workaround, as the plasticity of the network is still limited in the convolutional

layers. Solutions enabling better plasticity or the use of a different network are

of interest for the future.

Finally,as previously discussed, the capacity of LIFES for reducing the prob-

lem to selection of a classifier head is arguably a promising starting point for

future approaches. An algorithm working with the classifier head information,

such as out of distribution detection algorithms, can potentially fulfil this role.

100

Ch.7 Conclusions

Chapter 7

Conclusions

Feature extraction is at the core of Artificial Intelligence, defining the way in

which AI algorithms build representations that allow them to perceive the world.

As it was previously argued, this defines the limits of what these AI systems can

achieve, therefore making it a topic of major relevance. As seen through the liter-

ature review, the feature extraction processes in state of the art machine learning

achieve impressive results, but are still far from perfect. Therefore, this thesis

aimed at identifying aspects of feature extraction which require further develop-

ment in the path towards a fully automated future with ubiquitous AI. With this

target in mind, the work was focused on the efficiency of visual feature extrac-

tion and the capacity for continuously learning new features without catastrophic

forgetting. The former is necessary for deploying larger systems at the edge and

democratizing AI. The latter is critical for deployed systems which need to adapt

to new scenarios, and to make training with increasingly large bodies of data a

feasible feat in the path to AGI.

To argue that such improvements are attainable, biological intelligence was

used as reference, given that, compared to artificial systems, real brains demon-

strates superior energy efficiency and capacity for continual learning. Following

this line of thought, the first two contribution chapters took on the neuromorphic

computing approach, making use of Spiking Neural Networks in order to achieve

more efficient ANN implementations.

When using SNNs, a major concern is often the lower accuracy they achieve

compared to conventional deep learning. This is caused by the implicit limi-

tations in spiking computations (Section 2.2.4), but also by the lack of more

advanced network architectures. Hence, Chapter 4 targeted this problem, focus-

ing in the development of better residual architectures for SNN, and contributing

with both, a novel study on residual connections and a new network configura-

101

Ch.7 Conclusions

tion that achieved state of the art results at the time of publication. After the

publication of this work, later developments confirmed how this is indeed a topic

of interest for the community, as many works kept pursuing this same objective.

Finally, from the contribution in Chapter 4, it is also relevant how it analysed the

requirements of different types of residual connections in terms of computing and

hardware. This analysis is often omitted in SNN publications when the proposed

algorithms are not tested in neuromorphic hardware. Nevertheless, providing this

information is of great importance to ensure usability in future neuromorphic im-

plementations, and to guide future hardware developments.

To make SNNs a solution towards efficient feature extraction, not only it

is needed to optimise their accuracy, but also to understand the full scope of

their properties, which can be then exploited to gain further benefits. Chapter 5

addressed this topic by demonstrating how SNNs have an inherent capacity for

the extraction of temporal features, even without recurrent connections, enabling

the design of architectures with less parameters. The work discussed how SNNs

achieve this through integration of data over time in their membranes, and it

demonstrated how they can calculate both, time-dependent and time-invariant

temporal features (Section 5.4.2). The distinction between these two types of

features is often ignored when analysing temporal tasks, but it is relevant in

order to properly asses the capacity of a system for temporal processing. Time-

dependent features were equated to the creation of time-stamps, which requires

the quantification of time passed between events. Time-invariant features, on the

contrary, require to detect sequences of events independently of their location in

time, the same way convolutions are translation invariant in space. To evaluate

these capacities in a neuromorphic vision dataset, it was necessary to create a new

task, as preexisting ones did not allow for this analysis (Section 5.2.1). Hence,

the gap was filled with the creation of DVS-GC. This novel task has been publicly

released and can be used by researchers to asses the capacity of their systems for

spatio-temporal feature extraction in an event-based scenario.

Furthermore, the work in Chapter 5 also studied the effect of the leak factor in

the proposed task. Results demonstrated that this leakage is critical when spiking

neurons are implemented with reset by subtraction, as they retain voltage after

spiking. Interestingly, it also showed how an SNNs can extract the aforementioned

temporal features without using leak, as the reset to zero strategy paired with IF

neurons achieved high performance in DVS-GC. Still, this does not imply that

other tasks different from DVS-GC might not leverage the leak factor for their

temporal feature extraction. The requirements to solve DVS-GC intersect with a

102

Ch.7 Conclusions

wide range of temporal tasks, that need to understand the order in which events

happen. However, it does not represent all of them. For example, alternative tasks

might implement delays between the relevant events, while in DVS-GC, when one

finishes the following one starts. Alternatively, actions could be displayed with

varying speeds, which might create a requirement for variable integration times in

the neurons. Studying the implications of these modified scenarios is of interest

for the future, and will complement the conclusions extracted in this chapter.

For this purpose, other tasks can be defined, or modifications of DVS-GC can be

proposed.

Following the work with SNNs, Chapter 6 switched the focus to continual

learning. As discussed, this is also a core need for future AI systems, which not

only need to extract features accurately and efficiently, but also need to do it in

natural environments, where data is not presented as an i.i.d. distribution, and

the system needs to learn from new information while retaining the relevant old

knowledge. For its experiments, this chapter made use of conventional ANNs, as

opposed to the previous two. This allowed to make results comparable to other

works in continual learning, which also use non-spiking ANNs. Additionally,

it made image classification training much faster, as SNNs still need to process

images through time, requiring more expensive training algorithms such as BPTT.

Training speed was a relevant factor, as the larger volume of experimental results

allowed for more robust and well-proven conclusions. Nevertheless, continual

learning methods, including the one developed in this thesis, can in principle

be applied to either conventional ANNs or SNNs, the same way many other

training algorithms are applied seamlessly to any neuron model, such as loss

regularisations like weight decay [62, 210], or fine-tuning (Section 4.3).

The approach followed to design the novel continual learning algorithm started

from the requirements of the method. Future systems must not depend on having

an external input that indicates which task they are solving, neither can they rely

on collecting examples of all previously seen distributions. Therefore, a system

without these requirements was defined. Given that the brain can be seen as

a modular system with specialised sub-networks, it is an attractive approach to

base artificial algorithms in this same principle. The proposed LIFES algorithm

instantiated this sub-network approach, executing all of them concurrently. This

allowed to study what happens in such scenario, and to judge whether it can be

a way forward for continual learning. The work proposed a novel definition of

the causes of catastrophic forgetting (Section 3.1), which allowed to identify how

concurrent sub-network deployment suffers from weight interference and repre-

103

Ch.7 Conclusions

sentational overlap. Then, the LIFES algorithm was designed to alleviate this

two causes of CF, through SICP, WS and LCR, making concurrent sub-networks

a viable approach which demonstrated competitive performance in multiple in-

cremental learning setups. Additionally, the effect of LCR in inter-class distance

was noteworthy, making it a viable stand-alone regularisation for the reduction

of representational overlap, which other methods can incorporate.

Overall, this thesis presented a set of contributions towards visual feature

extraction, striving for efficiency, accuracy and learning adaptability to natural

environments. In the short term, these contributions enable the design of more

efficient, accurate and adaptable systems. In the greater journey towards ubiqui-

tous AI and AGI, these represent just tiny incremental steps in specific research

directions. Some of these research directions might be superseded and aban-

doned, while others may become vital parts of the path towards higher artificial

intelligence. Regardless of the future, all research directions will have their value,

as exploration is necessary to find what works and what does not. Hence it is the

author’s hope that the steps taken in this thesis will contribute to this mission

and prove useful for future research.

7.1 Future work

Following the novel SNN architecture presented in Chapter 4, the energy effi-

ciency of the S-ResNet was demonstrated in a later publication [52] by imple-

menting a version of it in a Loihi [211] neuromorphic chip. Still, further testing

on neuromorphic hardware is of interest for future work, as only one of the pro-

posed residual connections was tested in the aforementioned work. Therefore,

an efficiency comparison between the three types of residual connections would

be valuable. Additionally, the requirements for S2S and V2V implementations

are better suited for later neuromorphic chips such as Loihi 2 [165], hence an

implementation on it is also of interest.

Regarding the work presented in Chapter 5, as previously discussed, DVS-GC

defines a task with a specific set of properties. Expanding DVS-GC to create

alternative tasks, such as one implementing delays between gestures or including

actions with varying speeds, is a promising direction to contribute to this line of

research. Doing so would allow to create new scenarios where certain components

of SNNs, such as the leak factor, might have a different role. Therefore, an

expanded DVS-GC would contribute to extracting additional conclusions on the

capacity of SNNs for spatio-temporal feature extraction, and the role of their

104

Ch.7 Conclusions

components.

Finally, Chapter 6 proposed the novel LIFES algorithm, and discussed how

this new approach has potential to be further improved. A promising way for-

ward is to combine it with other CL approaches tackling class-energy imbalance,

as LIFES only works on the feature extraction process and this CF cause is found

in the classifier weights. Alternatively, it was also proposed to combine LIFES

with an algorithm for classifier head selection, as task-aware accuracy suffered

almost no forgetting. Finally, its application to deeper networks is also a major

necessity for future work, as the proposed solution for NF-ResNets was proven to

constrain plasticity, and therefore alternative solutions with improved plasticity

or alternative architectures are needed. In conclusion, the approach can be seen

as the first instantiation of a new class of parameter isolation approaches, which

have minimal requirements, while further work has the potential to push the per-

formance of this new paradigm to higher levels. Such performance improvements

are necessary in the AI roadmap: LIFES perform well enough to replace existing

task-agnostic approaches in the tested setups, but life-long learning requires much

higher robustness to forgetting, as this is the first step towards truly adaptable

AI.

105

List of publications

List of publications

Published

1. P. Kirkland, D. Manna, A. Vicente-Sola, and G. Di Caterina, “Unsu-

pervised spiking instance segmentation on event data using stdp features,”

IEEE Transactions on Computers, 2022.

2. A. Vicente-Sola, D. L. Manna, P. Kirkland, G. Di Caterina, and T. J.

Bihl, “Keys to accurate feature extraction using residual spiking neural

networks,” Neuromorphic Computing and Engineering, 2022.

3. D. L. Manna, A. Vicente-Sola, P. Kirkland, T. J. Bihl, and G. Di Cate-

rina, “Simple and complex spiking neurons: perspectives and analysis in a

simple stdp scenario,” Neuromorphic Computing and Engineering, vol. 2,

no. 4, p. 044009, 2022.

4. T. J. Bihl, P. Farr, G. Di Caterina, P. Kirkland, A. Vicente Sola, D.

Manna, J. Liu, and K. Combs, “Exploring spiking neural networks (snn)

for low size, weight, and power (swap) benefits,” Hawaii International Con-

ference on System Sciences 2024 (HICSS-57), 2023.

5. D. L. Manna, A. Vicente-Sola, P. Kirkland, T. J. Bihl, and G. Di Cate-

rina, “Frameworks for snns: A review of data science-oriented software and

an expansion of spyketorch,” in Engineering Applications of Neural Net-

works, pp. 227–238, Springer Nature Switzerland, 2023.

6. P. Chaudhari, A. Vicente-Sola, A. Basu, D. L. Manna, P. Kirkland, and

G. D. Caterina, “Sign language recognition using spiking neural networks,”

Procedia Computer Science, vol. 235, pp. 2674–2683, 2024. International

Conference on Machine Learning and Data Engineering (ICMLDE 2023).

7. D. L. Manna, A. Vicente-Sola, P. Kirkland, T. J. Bihl, and G. Di Cate-

rina, “Time series forecasting via derivative spike encoding and bespoke loss

106

List of publications

functions for spiking neural networks,” Computers, vol. 13, no. 8, 2024.

8. G. Bent, C. Davies, M.R. Vilamala, Y. Li, A. Preece, G. Di Caterina, A.

Vicente-Sola, P. Kirkland, G. Pearson, and B. Tutcher. ”A demonstration

of vector symbolic architecture as an effective integrated technology for AI

at the network edge”. In Artificial Intelligence for Security and Defence

Applications II (Vol. 13206, pp. 421-436). SPIE, 2024.

9. G. Bent, C. Davies, M.R. Vilamala, Y. Li, A. Preece, G. Di Caterina, A.

Vicente-Sola, P. Kirkland, G. Pearson, and B. Tutcher. ”The transfor-

mative potential of vector symbolic architecture for cognitive processing

at the network edge”. In Artificial Intelligence for Security and Defence

Applications II (Vol. 13206, pp. 404-420). SPIE, 2024.

10. A. Vicente-Sola, D. L. Manna, P. Kirkland, G. Di Caterina, and T. J.

Bihl, ”Spiking Neural Networks for event-based action recognition: A new

task to understand their advantage” Neurocomputing, vol. 611, p. 128657,

2024

11. D. L. Manna, G. Di Caterina, A. Vicente-Sola, and P. Kirkland. ”An

approach to time series forecasting with derivative spike encoding and spik-

ing neural networks.” Hawaii International Conference on System Sciences

2025

Under review

1. A. Vicente-Sola, P. Kirkland, M. Aquilina, and A. Lyons, “Single photon

event-driven 3d imaging,” researchsquare preprint 10.21203/rs.3.rs-4351302/v1,

2024

2. A. Vicente-Sola, P. Kirkland, G. Di Caterina, T. Bihl, and M. Masana,

“From task-aware to task-agnostic parameter isolation for incremental learn-

ing”

107

References

References

[1] O. Galor, Unified growth theory. Princeton University Press, 2011. 1

[2] D. Comin, W. Easterly, and E. Gong, “Was the wealth of nations determined in 1000
bc?,” American Economic Journal: Macroeconomics, vol. 2, no. 3, pp. 65–97, 2010. 1

[3] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al., “A general reinforcement learning algorithm that
masters chess, shogi, and go through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144,
2018. 1

[4] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasu-
vunakool, R. Bates, A. Ž́ıdek, A. Potapenko, et al., “Highly accurate protein structure
prediction with alphafold,” nature, vol. 596, no. 7873, pp. 583–589, 2021. 1

[5] M. R. Morris, J. Sohl-Dickstein, N. Fiedel, T. Warkentin, A. Dafoe, A. Faust, C. Farabet,
and S. Legg, “Position: Levels of agi for operationalizing progress on the path to agi,” in
Forty-first International Conference on Machine Learning, 2024. 1

[6] Y. Bengio, G. Hinton, A. Yao, D. Song, P. Abbeel, T. Darrell, Y. N. Harari, Y.-Q. Zhang,
L. Xue, S. Shalev-Shwartz, et al., “Managing extreme ai risks amid rapid progress,”
Science, vol. 384, no. 6698, pp. 842–845, 2024. 1

[7] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T.
Lee, Y. Li, S. Lundberg, et al., “Sparks of artificial general intelligence: Early experiments
with gpt-4,” arXiv preprint arXiv:2303.12712, 2023. 1

[8] D. V. Christensen, R. Dittmann, B. Linares-Barranco, A. Sebastian, M. Le Gallo,
A. Redaelli, S. Slesazeck, T. Mikolajick, S. Spiga, S. Menzel, et al., “2022 roadmap on
neuromorphic computing and engineering,” Neuromorphic Computing and Engineering,
vol. 2, no. 2, p. 022501, 2022. 13

[9] F. Zenke and E. O. Neftci, “Brain-inspired learning on neuromorphic substrates,” Pro-
ceedings of the IEEE, vol. 109, no. 5, pp. 935–950, 2021. 1

[10] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, and
T. Tuytelaars, “A continual learning survey: Defying forgetting in classification tasks,”
IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 7, pp. 3366–
3385, 2021. 1, 3, 25, 26, 34

[11] D. Hassabis, D. Kumaran, C. Summerfield, and M. Botvinick, “Neuroscience-inspired
artificial intelligence,” Neuron, vol. 95, no. 2, pp. 245–258, 2017. 2

[12] T. Poggio, D. Hassabis, and D. S. I. S. Geoffrey Hinton, Pietro Perona, “Panel discussion
at cbmm10.” Presented at CBMM10 - A Symposium on Intelligence: Brains, Minds, and
Machines, MIT, Cambridge, MA, August 2023. 2

108

References

[13] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detec-
tion with region proposal networks,” Advances in neural information processing systems,
vol. 28, 2015. 3

[14] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation,” in Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015,
proceedings, part III 18, pp. 234–241, Springer, 2015. 3

[15] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model and the
kinetics dataset,” in proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6299–6308, 2017. 3

[16] W. Peebles and S. Xie, “Scalable diffusion models with transformers,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023. 3

[17] R. M. French, “Catastrophic forgetting in connectionist networks,” Trends in cognitive
sciences, vol. 3, no. 4, pp. 128–135, 1999. 3, 25, 26

[18] R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan, “Measuring catastrophic
forgetting in neural networks,” in Proceedings of the AAAI conference on artificial intel-
ligence, vol. 32, 2018. 3, 25

[19] O. Sporns, G. Tononi, and G. Edelman, “Connectivity and complexity: the relationship
between neuroanatomy and brain dynamics,” Neural Networks, vol. 13, no. 8, pp. 909–
922, 2000. 3, 82

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–
778, 2016. 4, 11, 37, 40, 43, 48, 54, 89, 96, 98

[21] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, and K. Roy, “Enabling spike-based back-
propagation for training deep neural network architectures,” Frontiers in neuroscience,
vol. 14, p. 119, 2020. 4, 15, 18, 19, 24, 39, 43, 57

[22] W. Fang, Z. Yu, Y. Chen, T. Huang, T. Masquelier, and Y. Tian, “Deep residual learning
in spiking neural networks,” Advances in Neural Information Processing Systems, vol. 34,
2021. 4, 13, 15, 16, 18, 24, 39, 40, 43, 57

[23] A. Vicente-Sola, D. L. Manna, P. Kirkland, G. Di Caterina, and T. Bihl, “Keys to accurate
feature extraction using residual spiking neural networks,” Neuromorphic Computing and
Engineering, vol. 2, no. 4, p. 044001, 2022. 4, 15, 22, 97

[24] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–
444, 2015. 7, 16

[25] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are univer-
sal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989. 7

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks,” Advances in neural information processing systems, vol. 25,
2012. 7

[27] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,”
International journal of computer vision, vol. 115, pp. 211–252, 2015. 7

109

References

[28] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector
machines,” IEEE Intelligent Systems and their applications, vol. 13, no. 4, pp. 18–28,
1998. 7

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986. 7

[30] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel,
“Handwritten digit recognition with a back-propagation network,” Advances in neural
information processing systems, vol. 2, 1989. 8, 9

[31] A. Diamond, “Executive functions,” Annual review of psychology, vol. 64, pp. 135–168,
2013. 9

[32] N. Cowan, “What are the differences between long-term, short-term, and working mem-
ory?,” Progress in brain research, vol. 169, pp. 323–338, 2008. 9

[33] R. M. Schmidt, “Recurrent neural networks (rnns): A gentle introduction and overview,”
arXiv preprint arXiv:1912.05911, 2019. 9

[34] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997. 9

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing
systems, vol. 30, 2017. 10, 12, 37, 97

[36] S. Takase and S. Kiyono, “Lessons on parameter sharing across layers in transformers,”
arXiv preprint arXiv:2104.06022, 2021. 10

[37] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond
efficient transformer for long sequence time-series forecasting,” in Proceedings of AAAI,
2021.

[38] C. Wei, H. Fan, S. Xie, C.-Y. Wu, A. Yuille, and C. Feichtenhofer, “Masked feature
prediction for self-supervised visual pre-training,” arXiv preprint arXiv:2112.09133, 2021.
10

[39] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” in 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (Y. Bengio and
Y. LeCun, eds.), 2015. 11

[40] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by re-
ducing internal covariate shift,” in International conference on machine learning, pp. 448–
456, PMLR, 2015. 11, 12, 86, 98

[41] A. Brock, S. De, and S. L. Smith, “Characterizing signal propagation to close the per-
formance gap in unnormalized resnets,” arXiv preprint arXiv:2101.08692, 2021. 11, 86,
98

[42] S. Qiao, H. Wang, C. Liu, W. Shen, and A. Yuille, “Micro-batch training with batch-
channel normalization and weight standardization,” arXiv preprint arXiv:1903.10520,
2019. 12, 86

[43] K. Fukushima, “Visual feature extraction by a multilayered network of analog threshold
elements,” IEEE Transactions on Systems Science and Cybernetics, vol. 5, no. 4, pp. 322–
333, 1969. 12

110

References

[44] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 7132–7141, 2018. 12

[45] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to
align and translate,” arXiv preprint arXiv:1409.0473, 2014. 12

[46] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural
networks,” in International Conference on Machine Learning, pp. 6105–6114, PMLR,
2019. 12, 20, 37, 97

[47] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le,
“Mnasnet: Platform-aware neural architecture search for mobile,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 2820–2828, 2019.
12

[48] C. Mead, “Analog vlsi and neural systems,” 1989. 12

[49] G. Indiveri, Neuromorphic Engineering, pp. 715–725. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015. 13

[50] E. M. Izhikevich, “Which model to use for cortical spiking neurons?,” IEEE transactions
on neural networks, vol. 15, no. 5, pp. 1063–1070, 2004. 13

[51] M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. F. Guerra, P. Joshi, P. Plank,
and S. R. Risbud, “Advancing neuromorphic computing with loihi: A survey of results
and outlook,” Proceedings of the IEEE, vol. 109, no. 5, pp. 911–934, 2021. 13, 61

[52] T. J. Bihl, P. Farr, G. Di Caterina, P. Kirkland, A. Vicente Sola, D. Manna, J. Liu,
and K. Combs, “Exploring spiking neural networks (snn) for low size, weight, and power
(swap) benefits,” Hawaii International Conference on System Sciences 2024 (HICSS-57),
2023. 13, 104

[53] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics: From single
neurons to networks and models of cognition. Cambridge University Press, 2014. 13

[54] L. F. Abbott, “Lapicque’s introduction of the integrate-and-fire model neuron (1907),”
Brain research bulletin, vol. 50, no. 5-6, pp. 303–304, 1999. 13, 37

[55] H. Zheng, Y. Wu, L. Deng, Y. Hu, and G. Li, “Going deeper with directly-trained larger
spiking neural networks,” in AAAI, 2021. 13, 15, 16, 17, 18, 24, 39, 43, 46, 57, 64, 65

[56] Z. Zhou, Y. Zhu, C. He, Y. Wang, S. YAN, Y. Tian, and L. Yuan, “Spikformer: When
spiking neural network meets transformer,” in The Eleventh International Conference on
Learning Representations, 2023. 13, 15, 16, 17, 22, 24

[57] W. Potjans, A. Morrison, and M. Diesmann, “A spiking neural network model of an
actor-critic learning agent,” Neural Computation, vol. 21, pp. 301–339, 2009. 15

[58] Z. Bing, C. Meschede, F. Röhrbein, K. Huang, and A. Knoll, “A survey of robotics control
based on learning-inspired spiking neural networks,” Frontiers in Neurorobotics, vol. 12,
2018. 15

[59] D. Reid, A. J. Hussain, and H. Tawfik, “Financial time series prediction using spiking
neural networks,” PloS one, vol. 9, no. 8, p. e103656, 2014. 15

[60] R.-J. Zhu, Q. Zhao, G. Li, and J. K. Eshraghian, “Spikegpt: Generative pre-trained
language model with spiking neural networks,” arXiv preprint arXiv:2302.13939, 2023.
15, 16

111

References

[61] B. Han and K. Roy, “Deep spiking neural network: Energy efficiency through time based
coding,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part X 16, pp. 388–404, Springer, 2020. 15, 24, 37, 57

[62] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in spiking neural
networks: Vgg and residual architectures,” Frontiers in neuroscience, vol. 13, p. 95,
2019. 24, 37, 57, 103

[63] Y. Kim and P. Panda, “Revisiting batch normalization for training low-latency deep
spiking neural networks from scratch,” Frontiers in neuroscience, p. 1638, 2020. 15, 17,
18, 24, 43, 46, 48, 57

[64] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth 16x16 words:
Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020. 15,
24

[65] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass, “Long short-term
memory and learning-to-learn in networks of spiking neurons,” Advances in neural infor-
mation processing systems, vol. 31, 2018. 16

[66] A. M. Lamb, A. G. ALIAS PARTH GOYAL, Y. Zhang, S. Zhang, A. C. Courville,
and Y. Bengio, “Professor forcing: A new algorithm for training recurrent networks,”
Advances in neural information processing systems, vol. 29, 2016. 16

[67] e. a. Garofolo, John S., “Timit acoustic-phonetic continuous speech corpus,” Linguistic
Data Consortium, Philadelphia, 1983. 16

[68] A. Lotfi Rezaabad and S. Vishwanath, “Long short-term memory spiking networks and
their applications,” in International Conference on Neuromorphic Systems 2020, pp. 1–9,
2020. 16

[69] E. Calabrese, G. Taverni, C. Awai Easthope, S. Skriabine, F. Corradi, L. Longinotti,
K. Eng, and T. Delbruck, “Dhp19: Dynamic vision sensor 3d human pose dataset,”
in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
workshops, pp. 0–0, 2019. 16, 63

[70] A. Amir, B. Taba, D. J. Berg, T. Melano, J. L. McKinstry, C. di Nolfo, T. K. Nayak,
A. Andreopoulos, G. Garreau, M. Mendoza, J. A. Kusnitz, M. V. DeBole, S. K. Esser,
T. Delbrück, M. Flickner, and D. S. Modha, “A low power, fully event-based gesture
recognition system,” 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7388–7397, 2017. 16, 61, 62, 63

[71] Y. Kim and P. Panda, “Optimizing deeper spiking neural networks for dynamic vision
sensing,” Neural Networks, vol. 144, pp. 686–698, 2021. 16

[72] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropagation for training
high-performance spiking neural networks,” Frontiers in neuroscience, vol. 12, p. 331,
2018. 17

[73] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in spiking neural
networks: Bringing the power of gradient-based optimization to spiking neural networks,”
IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 51–63, 2019. 17

[74] D. Huh and T. J. Sejnowski, “Gradient descent for spiking neural networks,” in Ad-
vances in Neural Information Processing Systems (S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), vol. 31, Curran Associates, Inc.,
2018. 17

112

References

[75] H. Mostafa and G. Cauwenberghs, “A learning framework for winner-take-all networks
with stochastic synapses,” Neural computation, vol. 30, no. 6, pp. 1542–1572, 2018. 17

[76] H. Mostafa, “Supervised learning based on temporal coding in spiking neural networks,”
IEEE transactions on neural networks and learning systems, vol. 29, no. 7, pp. 3227–3235,
2017. 17

[77] J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic plasticity dynamics for deep continuous
local learning (decolle),” Frontiers in Neuroscience, vol. 14, p. 424, 2020. 17, 24, 64, 65

[78] L. Kuśmierz, T. Isomura, and T. Toyoizumi, “Learning with three factors: modulating
hebbian plasticity with errors,” Current opinion in neurobiology, vol. 46, pp. 170–177,
2017. 17

[79] W. Fang, Z. Yu, Y. Chen, T. Masquelier, T. Huang, and Y. Tian, “Incorporating learnable
membrane time constant to enhance learning of spiking neural networks,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 2661–2671, 2021.
17, 18, 24, 44, 46, 51, 54, 57, 62, 64, 65

[80] P. J. Werbos, “Backpropagation through time: what it does and how to do it,” Proceedings
of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990. 17

[81] S. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment in time,” in NeurIPS,
2018. 18, 62

[82] G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein, and W. Maass,
“A solution to the learning dilemma for recurrent networks of spiking neurons,” Nature
communications, vol. 11, no. 1, p. 3625, 2020. 18

[83] T. C. Wunderlich and C. Pehle, “Event-based backpropagation can compute exact gra-
dients for spiking neural networks,” Scientific Reports, vol. 11, no. 1, p. 12829, 2021.
18

[84] S. Schmitt, J. Klähn, G. Bellec, A. Grübl, M. Guettler, A. Hartel, S. Hartmann, D. Hus-
mann, K. Husmann, S. Jeltsch, et al., “Neuromorphic hardware in the loop: Training a
deep spiking network on the brainscales wafer-scale system,” in 2017 international joint
conference on neural networks (IJCNN), pp. 2227–2234, IEEE, 2017. 19

[85] E. Van Doremaele, X. Ji, J. Rivnay, and Y. Van De Burgt, “A retrainable neuromor-
phic biosensor for on-chip learning and classification,” Nature Electronics, vol. 6, no. 10,
pp. 765–770, 2023. 19

[86] L. Deng, Y. Wu, X. Hu, L. Liang, Y. Ding, G. Li, G. Zhao, P. Li, and Y. Xie, “Rethinking
the performance comparison between SNNS and ANNS,” Neural Networks, vol. 121,
pp. 294–307, 2020. 19

[87] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. Andreopoulos,
D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch, et al., “Convolutional networks for
fast, energy-efficient neuromorphic computing,” Proceedings of the national academy of
sciences, vol. 113, no. 41, pp. 11441–11446, 2016. 19, 24

[88] A. Kugele, T. Pfeil, M. Pfeiffer, and E. Chicca, “Efficient processing of spatio-temporal
data streams with spiking neural networks,” Frontiers in Neuroscience, vol. 14, p. 439,
2020. 19, 61

[89] B. Rueckauer, I.-a. Lungu, Y. Hu, and M. Pfeiffer, “Conversion of Continuous-Valued
Deep Networks to Efficient Event-Driven Networks for Image Classification,” vol. 11,
no. December, pp. 1–12, 2017. 20, 24

113

References

[90] A. Kugele, T. Pfeil, M. Pfeiffer, and E. Chicca, “Efficient Processing of Spatio-Temporal
Data Streams With Spiking Neural Networks,” Frontiers in Neuroscience, vol. 14,
no. May, pp. 1–13, 2020. 20, 24

[91] V. Fischer, J. Köhler, and T. Pfeil, “The streaming rollout of deep networks - Towards
fully model-parallel execution,” Advances in Neural Information Processing Systems,
vol. 2018-Decem, no. Nips, pp. 4039–4050, 2018. 20

[92] C. Stöckl and W. Maass, “Recognizing images with at most one spike per neuron,” arXiv
preprint arXiv:2001.01682, 2019. 20, 24

[93] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition using spike-timing-
dependent plasticity,” vol. 9, no. August, pp. 1–9, 2015. 21

[94] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial Autoen-
coders,” 2015. 21

[95] K. D. Carlson, M. Richert, N. Dutt, and J. L. Krichmar, “Biologically plausible models
of homeostasis and stdp: stability and learning in spiking neural networks,” in The 2013
international joint conference on neural networks (IJCNN), pp. 1–8, IEEE, 2013. 21

[96] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010. 21

[97] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, “Converting static image datasets
to spiking neuromorphic datasets using saccades,” Frontiers in neuroscience, vol. 9,
p. 437, 2015. 21, 63

[98] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,”
2009. 21, 83, 89

[99] H. Li, H. Liu, X. Ji, G. Li, and L. Shi, “Cifar10-dvs: an event-stream dataset for object
classification,” Frontiers in neuroscience, vol. 11, p. 309, 2017. 21, 54, 63

[100] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255, Ieee, 2009. 21

[101] X. Qiu, R.-J. Zhu, Y. Chou, Z. Wang, L.-j. Deng, and G. Li, “Gated attention coding for
training high-performance and efficient spiking neural networks,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 38, pp. 601–610, 2024. 22, 24

[102] A. Byerly, T. Kalganova, and I. Dear, “A Branching and Merging Convolutional Network
with Homogeneous Filter Capsules,” 2020. 24

[103] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, “Direct Training for Spiking Neural
Networks: Faster, Larger, Better,” 2019. 24

[104] A. Kolesnikov, L. Beyer, X. Zhai, and C. V. May, “General Visual Representation Learn-
ing,” 24

[105] Y. Kim and P. Panda, “Revisiting batch normalization for training low latency deep
spiking neural networks from scratch,” no. Burkitt 2006, pp. 1–14, 2020. 24

[106] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, and K. Roy, “Enabling Spike-Based Back-
propagation for Training Deep Neural Network Architectures,” Frontiers in Neuroscience,
vol. 14, no. February, pp. 1–22, 2020. 24

[107] H. Zheng, Y. Wu, L. Deng, Y. Hu, and G. Li, “Going Deeper With Directly-Trained
Larger Spiking Neural Networks,” 2020. 24

114

References

[108] J. Wu, C. Xu, X. Han, D. Zhou, M. Zhang, H. Li, and K. C. Tan, “Progressive tandem
learning for pattern recognition with deep spiking neural networks,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021. 24, 57

[109] S. Deng and S. Gu, “Optimal conversion of conventional artificial neural networks to
spiking neural networks,” in International Conference on Learning Representations, 2021.
24, 57

[110] A. Samadzadeh, F. Sadat, T. Far, A. Javadi, and A. Nickabadi, “Convolutional Spiking
Neural Networks for Spatio-Temporal Feature Extraction,” 2020. 24

[111] H. Touvron, A. Vedaldi, M. Douze, and H. Jégou, “Fixing the train-test resolution dis-
crepancy: Fixefficientnet,” arXiv preprint arXiv:2003.08237, 2020. 24

[112] M. Tan and Q. V. Le, “EfficientNet : Rethinking Model Scaling for Convolutional Neural
Networks,” 2019. 24

[113] W. Fang, Z. Yu, T. Masquelier, Y. Chen, T. Huang, and Y. Tian, “Spike-based residual
blocks,” arXiv preprint arXiv:2102.04159, 2021. 24

[114] M. Yao, J. Hu, Z. Zhou, L. Yuan, Y. Tian, B. Xu, and G. Li, “Spike-driven transformer,”
Advances in Neural Information Processing Systems, vol. 36, 2024. 24

[115] E. Verwimp, S. Ben-David, M. Bethge, A. Cossu, A. Gepperth, T. L. Hayes, E. Hüller-
meier, C. Kanan, D. Kudithipudi, C. H. Lampert, et al., “Continual learning: Applica-
tions and the road forward,” arXiv preprint arXiv:2311.11908, 2023. 25, 26

[116] R. L. Davis and Y. Zhong, “The biology of forgetting—a perspective,” Neuron, vol. 95,
no. 3, pp. 490–503, 2017. 25

[117] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few examples: A
survey on few-shot learning,” ACM computing surveys (csur), vol. 53, no. 3, pp. 1–34,
2020. 25

[118] M. Mermillod, A. Bugaiska, and P. Bonin, “The stability-plasticity dilemma: Investigat-
ing the continuum from catastrophic forgetting to age-limited learning effects,” Frontiers
in psychology, vol. 4, p. 54654, 2013. 26

[119] M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov, and J. van de Weijer,
“Class-incremental learning: Survey and performance evaluation on image classification,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 5, pp. 5513–
5533, 2023. 26, 28

[120] E. Belouadah, A. Popescu, and I. Kanellos, “A comprehensive study of class incremental
learning algorithms for visual tasks,” Neural Networks, vol. 135, pp. 38–54, 2021. 26

[121] G. M. van de Ven and A. S. Tolias, “Three continual learning scenarios,” NeurIPS Con-
tinual Learning Workshop, vol. 9, 2018. 26

[122] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: Incremental classifier
and representation learning,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pp. 2001–2010, 2017. 28, 30, 84

[123] J. Zhang, J. Zhang, S. Ghosh, D. Li, S. Tasci, L. Heck, H. Zhang, and C.-C. J. Kuo, “Class-
incremental learning via deep model consolidation,” in Proceedings of the IEEE/CVF
winter conference on applications of computer vision, pp. 1131–1140, 2020. 28

115

References

[124] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Mi-
lan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al., “Overcoming catastrophic for-
getting in neural networks,” Proceedings of the national academy of sciences, vol. 114,
no. 13, pp. 3521–3526, 2017. 28, 83, 84, 89, 91, 97, 100

[125] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars, “Memory aware
synapses: Learning what (not) to forget,” in Proceedings of the European conference on
computer vision (ECCV), pp. 139–154, 2018. 28, 84

[126] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic intelligence,”
in International conference on machine learning, pp. 3987–3995, PMLR, 2017. 28

[127] R. Pascanu and Y. Bengio, “Revisiting natural gradient for deep networks,” arXiv
preprint arXiv:1301.3584, 2013. 29

[128] R. Aljundi, K. Kelchtermans, and T. Tuytelaars, “Task-free continual learning,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 11254–11263, 2019. 29

[129] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions on pattern analysis
and machine intelligence, vol. 40, no. 12, pp. 2935–2947, 2017. 29, 83, 84, 89, 91, 97, 100

[130] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv
preprint arXiv:1503.02531, 2015. 29

[131] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin, “Lifelong learning via progressive
distillation and retrospection,” in Proceedings of the European Conference on Computer
Vision (ECCV), pp. 437–452, 2018. 30

[132] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin, “Learning a unified classifier incremen-
tally via rebalancing,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 831–839, 2019.

[133] H. Cha, J. Lee, and J. Shin, “Co2l: Contrastive continual learning,” in Proceedings of the
IEEE/CVF International conference on computer vision, pp. 9516–9525, 2021. 30

[134] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H. Torr, and
M. Ranzato, “On tiny episodic memories in continual learning. arxiv,” Learning, vol. 6,
no. 7, 2019. 30

[135] L. Caccia, E. Belilovsky, M. Caccia, and J. Pineau, “Online learned continual compression
with adaptive quantization modules,” in International conference on machine learning,
pp. 1240–1250, PMLR, 2020. 30

[136] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual learning,” Ad-
vances in neural information processing systems, vol. 30, 2017. 30

[137] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient lifelong learning
with a-gem,” arXiv preprint arXiv:1812.00420, 2018. 30

[138] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep generative replay,”
Advances in neural information processing systems, vol. 30, 2017. 31

[139] A. Seff, A. Beatson, D. Suo, and H. Liu, “Continual learning in generative adversarial
nets,” arXiv preprint arXiv:1705.08395, 2017. 31

[140] L. Wang, K. Yang, C. Li, L. Hong, Z. Li, and J. Zhu, “Ordisco: Effective and efficient us-
age of incremental unlabeled data for semi-supervised continual learning,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5383–
5392, 2021. 31

116

References

[141] C. He, R. Wang, S. Shan, and X. Chen, “Exemplar-supported generative reproduction
for class incremental learning.,” in BMVC, vol. 1, p. 2, 2018. 31

[142] F. Zhu, X.-Y. Zhang, C. Wang, F. Yin, and C.-L. Liu, “Prototype augmentation and
self-supervision for incremental learning,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5871–5880, 2021. 31, 32, 84

[143] K. Zhu, W. Zhai, Y. Cao, J. Luo, and Z.-J. Zha, “Self-sustaining representation ex-
pansion for non-exemplar class-incremental learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9296–9305, 2022. 31, 32,
84

[144] F. Zhu, Z. Cheng, X.-Y. Zhang, and C.-l. Liu, “Class-incremental learning via dual aug-
mentation,” Advances in Neural Information Processing Systems, vol. 34, pp. 14306–
14318, 2021. 31

[145] W. Shi and M. Ye, “Prototype reminiscence and augmented asymmetric knowledge ag-
gregation for non-exemplar class-incremental learning,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1772–1781, 2023. 31

[146] G. Petit, A. Popescu, H. Schindler, D. Picard, and B. Delezoide, “Fetril: Feature trans-
lation for exemplar-free class-incremental learning,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 3911–3920, 2023. 32, 83, 84,
91, 97, 100

[147] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep
neural networks?,” Advances in neural information processing systems, vol. 27, 2014. 32,
89

[148] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train, prompt, and
predict: A systematic survey of prompting methods in natural language processing,”
ACM Computing Surveys, vol. 55, no. 9, pp. 1–35, 2023. 32

[149] H. Liu, D. Tam, M. Muqeeth, J. Mohta, T. Huang, M. Bansal, and C. A. Raffel, “Few-shot
parameter-efficient fine-tuning is better and cheaper than in-context learning,” Advances
in Neural Information Processing Systems, vol. 35, pp. 1950–1965, 2022. 32

[150] Z. Wang, Z. Zhang, C.-Y. Lee, H. Zhang, R. Sun, X. Ren, G. Su, V. Perot, J. Dy, and
T. Pfister, “Learning to prompt for continual learning,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 139–149, 2022. 33

[151] Z. Wang, Z. Zhang, S. Ebrahimi, R. Sun, H. Zhang, C.-Y. Lee, X. Ren, G. Su, V. Perot,
J. Dy, et al., “Dualprompt: Complementary prompting for rehearsal-free continual learn-
ing,” in European Conference on Computer Vision, pp. 631–648, Springer, 2022. 33

[152] J. S. Smith, L. Karlinsky, V. Gutta, P. Cascante-Bonilla, D. Kim, A. Arbelle, R. Panda,
R. Feris, and Z. Kira, “Coda-prompt: Continual decomposed attention-based prompting
for rehearsal-free continual learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11909–11919, 2023. 33

[153] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu,
R. Pascanu, and R. Hadsell, “Progressive neural networks,” arXiv preprint
arXiv:1606.04671, 2016. 33

[154] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, “Lifelong learning with dynamically expand-
able networks,” arXiv preprint arXiv:1708.01547, 2017.

117

References

[155] J. Hurtado, A. Raymond, and A. Soto, “Optimizing reusable knowledge for continual
learning via metalearning,” Advances in Neural Information Processing Systems, vol. 34,
pp. 14150–14162, 2021. 33

[156] J. Serra, D. Suris, M. Miron, and A. Karatzoglou, “Overcoming catastrophic forget-
ting with hard attention to the task,” in International conference on machine learning,
pp. 4548–4557, PMLR, 2018. 33, 83, 84, 85, 89, 91, 97, 100

[157] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a single network by iter-
ative pruning,” in Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pp. 7765–7773, 2018. 33, 34, 84

[158] M. Masana, T. Tuytelaars, and J. Van de Weijer, “Ternary feature masks: zero-forgetting
for task-incremental learning,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 3570–3579, 2021. 33, 34, 84, 85, 98

[159] H. Kang, R. J. L. Mina, S. R. H. Madjid, J. Yoon, M. Hasegawa-Johnson, S. J. Hwang,
and C. D. Yoo, “Forget-free continual learning with winning subnetworks,” in Proceedings
of the 39th International Conference on Machine Learning (K. Chaudhuri, S. Jegelka,
L. Song, C. Szepesvari, G. Niu, and S. Sabato, eds.), vol. 162 of Proceedings of Machine
Learning Research, pp. 10734–10750, PMLR, 17–23 Jul 2022. 33, 84

[160] G. Kim, B. Liu, and Z. Ke, “A multi-head model for continual learning via out-of-
distribution replay,” in Conference on Lifelong Learning Agents, pp. 548–563, PMLR,
2022. 34, 84

[161] G. Kim, C. Xiao, T. Konishi, and B. Liu, “Learnability and algorithm for continual
learning,” in International Conference on Machine Learning, pp. 16877–16896, PMLR,
2023. 34, 84

[162] M. Wortsman, V. Ramanujan, R. Liu, A. Kembhavi, M. Rastegari, J. Yosinski, and
A. Farhadi, “Supermasks in superposition,” in Advances in Neural Information Processing
Systems (H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds.), vol. 33,
pp. 15173–15184, Curran Associates, Inc., 2020. 35, 84

[163] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, “An empirical in-
vestigation of catastrophic forgetting in gradient-based neural networks,” arXiv preprint
arXiv:1312.6211, 2013. 35

[164] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted
residuals and linear bottlenecks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 4510–4520, 2018. 37, 97

[165] G. Orchard, E. P. Frady, D. B. D. Rubin, S. Sanborn, S. B. Shrestha, F. T. Sommer,
and M. Davies, “Efficient neuromorphic signal processing with loihi 2,” in 2021 IEEE
Workshop on Signal Processing Systems (SiPS), pp. 254–259, IEEE, 2021. 39, 42, 104

[166] T. Cooijmans, N. Ballas, C. Laurent, Ç. Gülçehre, and A. C. Courville, “Recurrent batch
normalization,” in 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, OpenReview.net,
2017. 43

[167] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance deep
learning library,” Advances in neural information processing systems, vol. 32, pp. 8026–
8037, 2019. 46

118

References

[168] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128× 128 120 db 15 µs latency asyn-
chronous temporal contrast vision sensor,” IEEE Journal of Solid-State Circuits, vol. 43,
no. 2, pp. 566–576, 2008. 46, 61

[169] T. Delbrück, B. Linares-Barranco, E. Culurciello, and C. Posch, “Activity-driven, event-
based vision sensors,” Proceedings of 2010 IEEE International Symposium on Circuits
and Systems, pp. 2426–2429, 2010. 46, 61

[170] W. Fang, Y. Chen, J. Ding, D. Chen, Z. Yu, H. Zhou, and Y. Tian, “and other contrib-
utors. spikingjelly,” 2020. 47

[171] S. Falkner, A. Klein, and F. Hutter, “Bohb: Robust and efficient hyperparameter op-
timization at scale,” in International Conference on Machine Learning, pp. 1437–1446,
PMLR, 2018. 47

[172] C. Stöckl and W. Maass, “Optimized spiking neurons can classify images with high ac-
curacy through temporal coding with two spikes,” Nature Machine Intelligence, vol. 3,
no. 3, pp. 230–238, 2021. 57

[173] P. Kirkland, D. Manna, A. Vicente-Sola, and G. Di Caterina, “Unsupervised spiking
instance segmentation on event data using stdp features,” IEEE Transactions on Com-
puters, 2022. 61

[174] J. Lee, T. Delbrück, M. Pfeiffer, P. K. J. Park, C.-W. Shin, H. Ryu, and B.-C. Kang,
“Real-time gesture interface based on event-driven processing from stereo silicon retinas,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 25, pp. 2250–2263,
2014. 61

[175] Y. Bi and Y. Andreopoulos, “Pix2nvs: Parameterized conversion of pixel-domain video
frames to neuromorphic vision streams,” 2017 IEEE International Conference on Image
Processing (ICIP), pp. 1990–1994, 2017. 61, 63

[176] D. Gehrig, M. Gehrig, J. Hidalgo-Carri’o, and D. Scaramuzza, “Video to events: Re-
cycling video datasets for event cameras,” 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3583–3592, 2020. 61, 63

[177] E. Mueggler, H. Rebecq, G. Gallego, T. Delbrück, and D. Scaramuzza, “The event-camera
dataset and simulator: Event-based data for pose estimation, visual odometry, and slam,”
The International Journal of Robotics Research, vol. 36, pp. 142 – 149, 2017. 62

[178] H. Rebecq, D. Gehrig, and D. Scaramuzza, “Esim: an open event camera simulator,” in
Proceedings of The 2nd Conference on Robot Learning (A. Billard, A. Dragan, J. Peters,
and J. Morimoto, eds.), vol. 87 of Proceedings of Machine Learning Research, pp. 969–982,
PMLR, 29–31 Oct 2018. 62, 63

[179] D. L. Manna, A. Vicente-Sola, P. Kirkland, T. J. Bihl, and G. Di Caterina, “Simple and
complex spiking neurons: perspectives and analysis in a simple stdp scenario,” Neuro-
morphic Computing and Engineering, vol. 2, no. 4, p. 044009, 2022. 62

[180] Y. Xing, G. Di Caterina, and J. Soraghan, “A new spiking convolutional recurrent neural
network (scrnn) with applications to event-based hand gesture recognition,” Frontiers in
neuroscience, vol. 14, p. 590164, 2020. 62

[181] A. S. Cassidy, P. Merolla, J. V. Arthur, S. K. Esser, B. Jackson, R. Alvarez-Icaza,
P. Datta, J. Sawada, T. M. Wong, V. Feldman, A. Amir, D. B.-D. Rubin, F. Akopyan,
E. McQuinn, W. P. Risk, and D. S. Modha, “Cognitive computing building block: A
versatile and efficient digital neuron model for neurosynaptic cores,” in The 2013 Inter-
national Joint Conference on Neural Networks (IJCNN), pp. 1–10, 2013. 62

119

References

[182] A. Z. Zhu, Z. Wang, K. Khant, and K. Daniilidis, “Eventgan: Leveraging large scale image
datasets for event cameras,” in 2021 IEEE International Conference on Computational
Photography (ICCP), pp. 1–11, IEEE, 2021. 63

[183] D. Joubert, A. Marcireau, N. Ralph, A. Jolley, A. van Schaik, and G. Cohen, “Event
camera simulator improvements via characterized parameters,” Frontiers in Neuroscience,
p. 910, 2021. 63

[184] A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and R. Benosman, “Hats: Histograms
of averaged time surfaces for robust event-based object classification,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1731–1740, 2018.
63

[185] Y. Bi, A. Chadha, A. Abbas, E. Bourtsoulatze, and Y. Andreopoulos, “Graph-based
object classification for neuromorphic vision sensing,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 491–501, 2019. 63

[186] L. Berlincioni, L. Cultrera, C. Albisani, L. Cresti, A. Leonardo, S. Picchioni, F. Becat-
tini, and A. Del Bimbo, “Neuromorphic event-based facial expression recognition,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 4109–4119, 2023. 63

[187] Q. Liu, D. Xing, H. Tang, D. Ma, and G. Pan, “Event-based action recognition us-
ing motion information and spiking neural networks,” in Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21 (Z.-H. Zhou, ed.),
pp. 1743–1749, International Joint Conferences on Artificial Intelligence Organization, 8
2021. Main Track. 63

[188] P. De Tournemire, D. Nitti, E. Perot, D. Migliore, and A. Sironi, “A large scale event-
based detection dataset for automotive,” arXiv preprint arXiv:2001.08499, 2020. 63

[189] E. Perot, P. De Tournemire, D. Nitti, J. Masci, and A. Sironi, “Learning to detect objects
with a 1 megapixel event camera,” Advances in Neural Information Processing Systems,
vol. 33, pp. 16639–16652, 2020. 63

[190] M. Gehrig, W. Aarents, D. Gehrig, and D. Scaramuzza, “Dsec: A stereo event camera
dataset for driving scenarios,” IEEE Robotics and Automation Letters, 2021. 63

[191] L. R. Iyer, Y. Chua, and H. Li, “Is neuromorphic mnist neuromorphic? analyzing the
discriminative power of neuromorphic datasets in the time domain,” Frontiers in neuro-
science, vol. 15, p. 608567, 2021. 63

[192] A. Vicente-Sola, D. L. Manna, P. Kirkland, G. Di Caterina, and T. J. Bihl, “Keys to accu-
rate feature extraction using residual spiking neural networks,” Neuromorphic Computing
and Engineering, 2022. 64, 65, 69

[193] S. S. Chowdhury, C. Lee, and K. Roy, “Towards understanding the effect of leak in spiking
neural networks,” Neurocomputing, vol. 464, pp. 83–94, 2021. 79

[194] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conversion of continuous-
valued deep networks to efficient event-driven networks for image classification,” Frontiers
in Neuroscience, vol. 11, 2017. 79

[195] R. Bisaz, A. Travaglia, and C. M. Alberini, “The neurobiological bases of memory forma-
tion: from physiological conditions to psychopathology,” Psychopathology, vol. 47, no. 6,
pp. 347–356, 2014. 81

120

References

[196] C. Ortega-de San Luis and T. J. Ryan, “Understanding the physical basis of memory:
Molecular mechanisms of the engram,” Journal of Biological Chemistry, vol. 298, no. 5,
2022. 81

[197] Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS 231N, vol. 7, no. 7,
p. 3, 2015. 83, 89

[198] H. Jung, J. Ju, M. Jung, and J. Kim, “Less-forgetting learning in deep neural networks,”
arXiv preprint arXiv:1607.00122, 2016. 84

[199] F. M. Castro, M. J. Maŕın-Jiménez, N. Guil, C. Schmid, and K. Alahari, “End-to-end
incremental learning,” in Proceedings of the European conference on computer vision
(ECCV), pp. 233–248, 2018. 84

[200] A. Mallya, D. Davis, and S. Lazebnik, “Piggyback: Adapting a single network to multiple
tasks by learning to mask weights,” in Proceedings of the European conference on computer
vision (ECCV), pp. 67–82, 2018. 84

[201] H. Jin and E. Kim, “Helpful or harmful: Inter-task association in continual learning,” in
European Conference on Computer Vision, pp. 519–535, Springer, 2022. 84

[202] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, Septem-
ber 6-12, 2014, Proceedings, Part I 13, pp. 818–833, Springer, 2014. 89

[203] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, “Decaf:
A deep convolutional activation feature for generic visual recognition,” in International
conference on machine learning, pp. 647–655, PMLR, 2014. 89

[204] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity:
The all convolutional net,” arXiv preprint arXiv:1412.6806, 2014. 89, 96, 97

[205] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr, “Riemannian walk for in-
cremental learning: Understanding forgetting and intransigence,” in Proceedings of the
European conference on computer vision (ECCV), pp. 532–547, 2018. 90

[206] M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov, and J. van de Wei-
jer, “Class-incremental learning: survey and performance evaluation,” arXiv preprint
arXiv:2010.15277, 2020. 90

[207] D. Kleyko, D. A. Rachkovskij, E. Osipov, and A. Rahimi, “A survey on hyperdimensional
computing aka vector symbolic architectures, part i: Models and data transformations,”
ACM Computing Surveys, vol. 55, no. 6, pp. 1–40, 2022. 95

[208] A. Brock, S. De, S. L. Smith, and K. Simonyan, “High-performance large-scale image
recognition without normalization,” in International Conference on Machine Learning,
pp. 1059–1071, PMLR, 2021. 98

[209] B. Zhao, X. Xiao, G. Gan, B. Zhang, and S.-T. Xia, “Maintaining discrimination and
fairness in class incremental learning,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 13208–13217, 2020. 100

[210] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint
arXiv:1711.05101, 2017. 103

[211] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi,
N. Imam, S. Jain, et al., “Loihi: A neuromorphic manycore processor with on-chip learn-
ing,” Ieee Micro, vol. 38, no. 1, pp. 82–99, 2018. 104

121

	Declaration
	Acknowledgement
	Abstract
	Contents
	1 Introduction
	1.1 Summary of Original Contributions
	1.2 Thesis organisation

	2 Feature extraction and Spiking Neural Networks
	2.1 Neural Networks and data-driven feature extraction
	2.1.1 Visual feature extraction

	2.2 Spiking Neural Networks
	2.2.1 Spiking Neurons
	2.2.2 Spiking Neural Network architectures
	2.2.3 Training methods for spiking neural networks
	2.2.4 Benchmarking of spiking neural networks

	2.3 Conclusions

	3 Continual Learning
	3.1 Incremental learning
	3.2 Families of methods
	3.2.1 Regularisation
	3.2.2 Replay
	3.2.3 Prompt learning
	3.2.4 Parameter isolation

	3.3 Conclusions

	4 Advancing SNN feature extraction through residual networks
	4.1 Introduction
	4.2 Spiking Residual Network
	4.2.1 Implementation of a spiking residual connection
	4.2.2 Network topology
	4.2.3 Boosting strategies
	4.2.4 Training framework
	4.2.5 Input preprocessing
	4.2.6 Hyper-parameters

	4.3 Experiments: Empirical tests of components and strategies
	4.4 Results
	4.4.1 State of the art comparison
	4.4.2 The latency - accuracy compromise

	4.5 Conclusions

	5 The advantage of Spiking Neural Networks for spatio-temporal feature extraction
	5.1 Introduction
	5.2 DVS Gesture Chain
	5.2.1 Event-based datasets
	5.2.2 Defining the DVS Gestures Chain task

	5.3 Results
	5.3.1 Experimental setup: Neural network architectures
	5.3.2 DVS-Gesture evaluation
	5.3.3 DVS-Gesture-Chain evaluation

	5.4 Analysis of temporal computations
	5.4.1 Temporal attention analysis
	5.4.2 Spiking neuron analysis

	5.5 Conclusions

	6 Towards scalable algorithms for continual learning
	6.1 Introduction
	6.2 The LIFES algorithm
	6.2.1 Concurrent subnetworks
	6.2.2 Interference Connections
	6.2.3 Weight standardisation
	6.2.4 Lateral Classifier Regularisation
	6.2.5 Complete LIFES method

	6.3 Experimental results
	6.3.1 State-of-the-art comparison
	6.3.2 Lateral classifier regularisation ablation
	6.3.3 Interference connection pruning ablation
	6.3.4 Weight standardisation analysis
	6.3.5 Capacity Analysis
	6.3.6 LIFES in alternative architectures

	6.4 Conclusions

	7 Conclusions
	7.1 Future work

	List of publications
	References

