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Abstract 

The research summarised in this thesis addresses the problem of determining the hy-

drodynamic properties of damaged ships subjected to forced oscillations in calm wa-

ter.  

Traditionally forces of hydrodynamic reaction acting on a rigid body moving through 

a fluid are derived either analytically or numerically. The former approach is usually 

restricted to small amplitude motions of the body moving through an unbounded 

domain of ideal fluid.  The methodology is relatively simple and computationally 

effective but, as experimental results suggest, accuracy of the prediction, particularly 

for roll motion is unsatisfactory even for intact ships. The advanced CFD-based 

techniques are more suitable in addressing this problem, particularly the case of a 

damaged ship, but they are computationally demanding. Therefore, in order to tackle 

the issue efficiently, there is a need for high-quality experimental data for validation 

of the numerical results. However, the experiments, particularly in roll, are very dif-

ficult and there is very little data available for the simpler case of intact ships and 

virtually none for damaged ships. As the problem involves complex nonlinear phe-

nomena, the physical tests should be performed in a controllable environment and 

therefore, the ‘classical’ sea-keeping tests have very limited applicability in this re-

spect. Furthermore, the calm-water experiments are usually performed with oscilla-

tions about a fixed axis and the adequacy of such an approach for investigating hy-

drodynamic properties of damaged ships can be questioned. That is, the physical 

tests on partially restricted models are of great value, particularly for validating ana-

lytical / numerical approaches, but the presence of constraints may introduce artifi-

cial conditions affecting the dynamical characteristics of the system. 

Accounting for this, the approach adopted in this thesis involves a freely-floating 

body subjected to harmonic excitations generated by an internal forcing mechanism. 

It is postulated that by removing all kinematic constraints the system can be analysed 

in the most realistic (achievable in calm water) and controllable configuration.  
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Although use of gyroscopic moment generators for forced roll experiments is not a 

novelty, this methodology has never been fully exploited for measurements of hy-

drodynamic reaction forces acting on an unconstrained model of a damaged ship. As 

the experiments were unprecedented, they resulted in a modest amount of collected 

data but provided great opportunity for examining the nature and scale of the under-

lying phenomena. Furthermore, in the course of the research the methodology has 

been refined and has eventually reached the point at which it can be utilised to pro-

duce large amount of experimental data in an accurate and efficient way. From this 

perspective, the research is prenormative. 
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Nomenclature 

,A P  - arbitrary points in space 

A - point on the natural axis of rotation 

iia  - added mass/inertia in i-th mode of motion 

ija  - added mass/inertia the coupling of j-th into i-th mode of motion 

iib  - damping i-th mode of motion 

ijb  - damping in the coupling of j-th into i-th mode of motion 

iic  - restoring coefficient in i-th mode of motion 

ijc  - restoring coefficient in coupling of j-th into i-th mode of motion 

B  - beam of the vessel 

B  - centre of buoyancy 

1, LB B  - linear term in damping moment 

2, QB B  - quadratic term in damping moment 

D  - Rayleigh’s dissipation function 

wE  - period-average total energy of a wave per unit area 

F  - body (mass) force 

Fn  - Froude number 

Fh  - depth Froude number 

2F  - horizontal force (to sustain motion) 

3F  - vertical force (to sustain motion) 

hf  - force of hydrodynamic reaction 

G  - centre of gravity 

g  - gravity acceleration 

h  - depth below free surface 

H  - depth of the fluid domain 

I  - unit matrix 

I  - moment of inertia 

44I  - inertia about the roll axis 

, ,i j k  - unit vectors of standard Cartesian basis 
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ii  - unit vectors of arbitrary orthonormal basis 

k  - wave number 

, IL L  - vector of angular momentum 

M  - metacentre 

ijM  - generalised mass 

44M  - moment to sustain roll motion 

hM  - moment of hydrodynamic reaction 

m - mass 

n  - normal vector 

Bn  - vector normal to a body surface 

Fn  - vector normal to a fluid surface 

O  - origin of the inertial coordinate system 

OA - elevation of the natural axis of rotation 

OG - vertical postion of centre of gravity above waterplane 

P  - point on the axis of gyro pivoting 

, IP P  - vector of linear momentum 

nP  - vector of normal stresses 

SP  - stress tensor 

p  - pressure 

kq  - generalised coordinates 

wR  - magnitude of a wave resistance force 

r  - radius vector  

Sr  - radius vector of a surface element 

BS  - surface of a body 

BS∂  - boundary curve 

FS  - surface bounding a fluid element 

SΣ  - surface bounding system comprising a fluid element and a body 

t  - time 

T  - kinetic energy 

T  - draught of the vessel 
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0T  - period of oscillations 

U  - gravitational potential 

u  - group velocity of a wave 

BV  - volume of a body 

FV  - volume of a fluid domain at the initial time0t =  

v  - velocity vector 

Ov  - translational velocity 

v  - magnitude of a velocity vector 

kv  - generalised velocities 

nBv  - magnitude of a velocity in direction normal to the body surface 

nFv  - magnitude of a velocity in direction normal to the fluid surface 

Sv  - velocity vector of a surface element 

0W  - work of dissipative forces 

, ,x y z - Cartesian coordinates 

1 2 3, ,x x x - rectangular coordinates 

, ,y zϕ  - sway, heave, roll 

ε  - phase angle 

Γ  - intensity of vortex filament 

Λ  - Lagrangian function 

λ  - wave length 

0ζ  - wave amplitude 

φ  - velocity potential 

ρ  - density 

µ  - viscosity 

ω  - vector of instantaneous angular velocity 

ω  - circular frequency 

Bω  - nondimensional frequency 

∇  - gradient operator 

⊗  - outer product 

×  - vector product 
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ɵ  - nondimensional quantity 

 [ ]. ij
 - experimental estimates of added inertia and damping 
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Chapter 1 Introduction 

Determining forces of hydrodynamic reaction acting on a damaged ship is a very im-

portant but complex task. To date, even accurate prediction of hydrodynamics of in-

tact ships is challenging. The existing analytical or numerical methods are either in-

accurate or so computationally demanding that they cannot be used in day-to-day 

engineering practice. On one hand, we are used to accept uncertainty as an inherent 

part of engineering and therefore we might accept the facts and assume that tools at 

our disposal offer ‘sufficient accuracy for engineering purposes’. However, in so do-

ing we admit that we do not know how - the expensive and technologically advanced 

ships we build, carrying often several thousands of people on board, will behave in a 

seaway. Concerning the dynamic response of ships carrying liquid cargo or being 

subjected to flooding in a consequence of a damage we know even less. This leads to 

a serious dissonance between technological advances and our knowledge about the 

dynamics of ships we design and build. The fundamental research carried out in the 

1960’s and 1970’s gave us great opportunities to benchmark our understanding of 

hydrodynamics of ships. We learnt that we could reproduce theoretical predictions 

obtained for basic geometries with reasonable accuracy. We learnt also, that the pre-

diction did not actually match up with reality and the differences were not small. In 

particular, we were unable to predict the hydrodynamic properties of a ship rolling 

with moderate and large amplitudes and subsequently we had to introduce empirical 

corrections to our predictions. Unfortunately, the corrections are applicable only to 

‘typical’ ships in intact condition. There is no such a methodology available for ships 

in damaged condition. Given the continuous advances in CFD techniques as well as 

always-increasing availability of computational power, we are capable of addressing 

many issues numerically, although not on an industrial scale. Moreover, CFD codes 

are not perfect either and they need to be benchmarked against some high-quality 

data. On the other hand, such reliable data is available only for simple cases – those 

for which we can obtain reasonable predictions with the use of simple techniques. 

The data for complex cases is either unreliable or not available at all. 
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The research presented in the following addresses this problem. It does not aim at 

proposing solutions to the problem of hydrodynamics of damaged ships but it at-

tempts to answer two fundamental questions. Firstly, it is the question of feasibility 

to perform simple, efficient and accurate measurements of hydrodynamic reaction in 

roll carried out on a floating body subjected to forced oscillations in calm water in 

intact and damaged conditions. Secondly, an attempt is made to reason on why con-

temporary ’theory’ and experiments do not match up. 

1.1 Research objectives 

The primary objective of this research is to demonstrate and discuss the feasibility of 

accurate measurements of hydrodynamic reaction in roll motion performed on an un-

constrained cylindrical model in the presence of an ‘open-to-sea’ compartment.  

This entails the following specific tasks: 

• Design and deployment of a gyroscopic roll generator 

• Validation of measurements of hydrodynamic reaction on the model in intact 

condition 

• Measurements of hydrodynamic reaction on the model in damaged condition 

• Post-processing and analysis of the results 

In the last stage, the data collected during the experiments is analysed and bench-

marked against available experimental and numerical results.  

It should be emphasised here that it was not an objective of the present research to 

investigate any particular theoretical model. The objective was to investigate – ex-

perimentally – a particular mechanical system (rigid body in forced roll - intact and 

damaged) and to discuss how the evidence collected during the measurements could 

be used to enhance knowledge of the hydrodynamic/dynamic properties of the sys-

tem in question.  
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1.2 Organisation of the thesis 

The thesis opens with a critical review of an available literature with particular atten-

tion paid to the experimental works on roll hydrodynamics. The review is presented 

in Chapter 2. 

Some brief introduction to dynamics of a floating body is presented in Chapter 3. 

In Chapter 4 some experimental works are discussed in some detail in order to ‘set a 

stage’ for presenting results of the current research. 

Chapter 4 addresses the experiments undertaken. A general discussion on the work 

undertaken and the key contributions of this research follows in Chapter 6, leading to 

specific conclusions and recommendations in Chapter 7. Finally, bibliography and 

references are given in Chapter 8. 
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Chapter 2 Critical Review 

While the matter of the research presented here is very specific and narrow, it inher-

its the complexity of several topics. In the most general terms, it can be encapsulated 

as interaction of a fluid and rigid body. Depending on a problem formulation, a vari-

ety of mathematical techniques can be employed to depict physics and study the na-

ture of the interaction. The diversity of mathematical tools expands further when the 

interaction involves actions of not only external but also internal fluids. While physi-

cal representation becomes more detailed, the models develop into very complex 

compositions, which can seldom be solved without help of numerous assumptions. 

This in turn, results in a countless number of scientific treatises and engineering pa-

pers. For that reason the résumé of available references cannot be, by any manner of 

means, complete. Contrary, the selection of papers presented here, whilst being very 

specific, it is dictated mainly by availability of the source and on personal critique. 

From the point of view of the research undertaken, those papers addressing physical 

tests are of key interest. Thus, it seems right to start with Froude and his experimen-

tal work on ‘resistance’ forces experienced  by the rolling ship as reported for exam-

ple in (Froude, 1861). Theoretically, the hydrodynamic reaction and the fluid-body 

interaction was investigated by many great researchers, e.g. as outlined in (Lamb, 

1932), but it was not until the mid-twentieth century before first, simplified but  

complete, solutions to the problem were obtained (Ursell, 1949). This allowed devel-

oping various methods based on distribution of hydrodynamic singularities and con-

formal mapping, e.g. Frank’s 2D source method (Frank, 1967), making use of the so-

called ‘strip theory’ and evolving further into slender-body models, e.g.(Wehausen, 

1969) or (Webster, 1975). Although based on an inviscid flow assumption, the mod-

els proved reasonably accurate, fast and very convenient to use, making them first-

choice tools for many sea-keeping computer applications, see for instance 

(Ankudinov, 1991) or (Journee, 1992).  

The numerical techniques for solving flow about ships advancing in waves have fur-

ther evolved towards more complex tools allowing better handling of nonlinear phe-

nomena, e.g. (Papanikolaou and Shellin, 1992), (Raven, 1997) or (Yasukawa, 2000). 
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The most advanced but requiring also significant computational power CFD tech-

niques are not yet used in full extent in sea-keeping calculations or numerical surviv-

ability assessment. Instead, they are employed to address some very specific prob-

lems of hydrodynamics (Gao et al., 2011a) or coupled with other sea-keeping codes 

for better performance (Gao et al., 2011b). 

Concerning physical experiments, it is impossible not to refer to impressive and 

highly appreciated experiments by Vugts, who investigated hydrodynamic reaction 

on cylinders swaying, heaving and rolling in free surface (Vugts, 1968). For more 

than half a century the experimental work of Vugts served as a yardstick for bench-

marking numerous theoretical and experimental studies on roll hydrodynamics. The 

works of Vugts were followed by an extensive research carried out in Japan in 

1970’s, aiming at determining damping due to bilge keels and viscous effects. The 

research had been reported in a series of detailed reports, e.g. (Ikeda et al., 1978a, 

Ikeda et al., 1978b, Ikeda et al., 1979) and later outlined by Himeno (Himeno, 1981). 

These studies provided empirical formulae for estimating various components of roll 

damping (friction, lift, wave and eddy making as well as components due to bilge 

keels). Although the so-called Ikeda’s method bears all disadvantages of statistical 

averaging and is applicable only to ‘typical’ ships, it has been in common use until 

today and has been incorporated into numerous computer codes.  

Obviously, the research activities on roll damping continue in Japan, e.g.  (Katayama 

et al., 2012), but the American researchers have also done some interesting work fo-

cusing on physical  experiments and CFD techniques to mention only (Seah and 

Yeung, 2003, Yeung et al., 1998) or (Bassler et al., 2012, Bassler et al., 2010). Par-

ticularly the former papers by Yeung and Seah and Yeung are of special interest as 

they report on numerical and experimental studies on rolling cylinders subjected to 

forced oscillations in a free surface of a viscous fluid. As shown, the numerical re-

sults obtained by means of Free-surface Random Vortex Method (FRVM) match 

very well the authors own experimental data as well as results of experiments by 

Vugts. Specifically, it is discussed in there that the viscous flow prediction provides 

higher estimate for roll damping and lower for roll added inertia, in line with Vugts 

findings. The numerical results presented in the second paper are benchmarked 
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against the experiments by (Na et al., 2002) on the optimised configuration of bilge 

keels of FPSOs operating in high seas.  

Interesting, although debatable, experiments on roll damping of unconventional mid-

ship sections have been reported in (Yuck et al., 2003). The controversy derives from 

the fact that the centre of gravity of the model was varied in such a way that any 

given excitation frequency corresponded to the natural frequency of the ship in the 

amended configuration. 

The nonlinear nature and aspects related to modelling of roll damping have attracted 

attention of researchers and scientists over decades, as summarised in (Cotton et al., 

2000), (Spyrou and Thompson, 2000), (Spyrou, 2004) and recently in (Bassler et al., 

2009). Generally, the driving factor for this research was interest in the stability of 

ships in intact and damaged condition, particularly in frequency ranges close to the 

roll natural frequency. In 1980 Cardo (Cardo et al., 1981) presented results of studies 

on sub- and ultra-harmonic resonances (where the response is dominated either by 

natural frequency lower or higher than excitation frequency) while taking into ac-

count nonlinearities in damping and restoring moments. It concluded that the ultra-

harmonic resonance would not compromise safety whilst the results indicated a sta-

bility hazard from sub-harmonic resonance. 

In the later paper, Cardo studied two distinct models of nonlinear damping (Cardo et 

al., 1982). The mixed linear-quadratic and linear-cubic formulae were discussed in a 

relation to predicting of roll response in free and forced motions. The meticulous in-

vestigation referred to many earlier research studies (including those by Froude) sug-

gesting (linear or) quadratic dependency of the roll damping on a motion amplitude. 

In particular, the point was made after (Dalzell, 1978) that the cubic dependency was 

used mainly for the reason of simpler mathematical manipulation. The author high-

lighted also that significant discrepancies could be expected while deriving critical 

damping based on free- or forced- oscillations due to distinctions in the underlying 

mathematical models. The author concluded that a set of experiments were needed in 

order to explore the problem further - free roll on ship models of the variable inertial 

moment and determination of maximum amplitude, based on forced oscillations, as a 

function of the excitation intensity. 
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In 1990’s Contento published a paper on the applicability of a constant coefficients 

roll equation for predicting large amplitude motions (Contento et al., 1996). The au-

thors investigated also the impact of the number of degrees of freedom (DoF) con-

sidered.  The work was supplemented by an extensive experimental campaign. Al-

though not entirely concluded, the research highlighted the need for expressing of the 

hydrodynamic coefficients as functions of frequency, amplitude and effective wave 

steepness. The authors underlined the necessity of further, extensive, experimental 

studies in order to derive empirical or semi-empirical multivariate coefficients.  

Some interesting studies were presented in (Taylan, 2000), where comparison of 

various models of nonlinear damping and restoring on roll response of a ship sub-

jected to regular wave excitation was presented. Also in (Kuroda and Ikeda, 2003) 

there is an experimental study on intact ship behaviour in heavy beam seas in relation 

to coupling with heave and large drift.  

More recently techniques for obtaining critical damping data were published in 

(Spyrou, 2004) and (Bulian, 2004). 

It is noteworthy that customarily, the ship equations of motions are usually given in 

the vectorial notation, e.g. see (Pawłowski, 2001, Pawłowski, 1999) or any handbook 

on basic ship theory. There are relatively few references where the Euler-Lagrange 

formulation of the problem is used, e.g. Hamiltonian formulation by (van Daalen et 

al.), effect of forward speed by (Marshall et al., 1982) or dynamics of floating bodies 

by (Sadeghi, 2005). 

One of the important nonlinear problems related to the stability of ships highlighted 

in (Spyrou and Thompson, 2000) is the presence of large free surfaces, e.g. on LNG 

carriers or other ship types. This inevitably leads to consideration of a sloshing phe-

nomenon i.e. movements of liquid in containers, which are usually subjected to ex-

ternal excitation. In principle, even relatively small motions of the containers may 

lead to significant deformations of free surface and violent motions of the fluid. This 

may lead to significant dynamic loads on the structure of the container and have seri-

ous impact on ship motions, in particular roll and sway. 
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An example of the early studies on the stability of a free surface can be found in 

(Benjamin and Ursell, 1954), where the deformation of a plane free surface of an 

ideal fluid is treated analytically. In 1960’s (Verhagen and Wijngaarden, 1965) stud-

ied hydraulic jumps forming in an oscillating open tank. Based on linearised equa-

tions (shallow water waves) the authors determined the resonant frequency at which 

(theoretically) the amplitude of oscillations would become infinite. Experiments 

showed good agreement with theory and observed wave formations (jumps) had pro-

files similar to those predicted, within expected accuracy. Furthermore, at the jump 

disappearance (at frequencies well beyond resonant frequency), a formation of a soli-

tary wave (travelling across the tank) was observed. 

It is noteworthy that damping properties of free-surface tanks on roll motion has been 

known for almost a century, and the passive anti-rolling tanks (ART) as we know 

them today, were studied already by Froude and his contemporaries. A comprehen-

sive review on the development of anti-rolling devices can be found in (Moaleji and 

Greig, 2007). However, due to the complexity of the problem advances in theoretical 

and experimental studies have been of rather limited nature. In mid-sixties there was 

a remarkable experimental campaign run at the TU of Delft, Netherlands, where the 

damping properties of some type of free-surface tanks were investigated by (van den 

Bosch and Vugts, 1966). 

In the research that followed, Chester investigated the theory describing the oscilla-

tions of a liquid in a tank near resonant frequency where linearised theory is invalid 

(Chester, 1968). It was shown by the author that although phenomena are described 

adequately by the classical wave equation the boundary conditions could not be satis-

fied unless nonlinear terms were included in the formulation. The nonlinear effects 

discussed comprised dissipation in boundary layer (only due to small amplitude) and 

dispersion, which introduced higher order harmonics. It was also shown there that  

the response spectrum became multivalued at some frequencies. The theoretical con-

siderations by Chester were benchmarked against experiments reported in the latter 

publication (Chester and Bones, 1968). In principle, the theory proved to be qualita-

tively in good agreement with the experimental results. Some discrepancies were ob-

served and explained by the insufficient dissipation in the boundary layer model 
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(where only sides of the tank were accounted for) and the fact that some calculated 

parameters diverged from the actual experimental values. Specifically, it was shown 

that the nonlinearities included in the mathematical model were well pronounced and 

the attained wave profiles were similar to those predicted. Furthermore, the response 

characteristics showed clearly the presence of several local maxima (where the re-

sponse curve was multivalued). It was postulated by the authors that the fact that the 

maximum on the response characteristics was attained and the response curve was 

connected indicated influence of dissipative components. 

Apart from purely theoretical studies there was some work carried out on full-scale 

ARTs, as for example trials addressing efficiency of anti-rolling tanks reported in 

(Plank et al., 1972),  where an attempt had been made to determine a transfer func-

tion of ART fitted onboard of the research vessel R/V Yaquina. 

The energy dissipation in sloshing was a subject to the series of papers by Demir-

bilek who studied energy dissipation in a rectangular tank undergoing roll motion 

about a fixed axis (Demirbilek, 1983a, Demirbilek, 1983b, Demirbilek, 1983c). The 

author derived the mathematical formulation to the problem and proposed a tech-

nique (based on a variant of Rayleigh dissipation function) for solving the equations. 

.From the point of view of ship dynamics, a matter of prime importance is a coupling 

of sloshing with ship motions.  Given the importance and complexity of the problem, 

there is a large volume of publications on the subject. This is partially due to the fact, 

that similar coupling effects are observed while studying the dynamics of a damaged 

ship. Indeed, the only formal difference between sloshing of liquid cargo and a hull-

floodwater interaction derives from the absence of damage opening in the former 

case.  

The principal difficulty in studying the coupling of sloshing with ship motions de-

rives from the fact that the resultant system is closed, i.e. by analogy to control sys-

tems it can be said that a ship with a partially filled compartment forms a feedback 

system. Furthermore, since both the oscillating ship and the water sloshing in the 

compartment are nonlinear systems (with the latter characterised by a particularly 

strong nonlinear characteristics) modelling of the responses becomes a very complex 
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task. Firstly, the nonlinearity of the problem defines the limit of applicability of lin-

earised approaches. Secondly, response analysis in a frequency domain is by defini-

tion inappropriate for the nonlinear systems. Instead, the analysis (particularly when 

the system is subjected to a random excitation and large amplitude motions) should 

be carried out in a time domain. For these reasons, a number of theoretical and ex-

perimental studies were performed in order to enhance the understanding of the cou-

pling of sloshing with ship motions. 

In their research (Ikeda and Yoshiyama, 1991) observed strong effect of a coupling 

of roll and sway and studied its impact on performance of ARTs. In principle, they 

suggested that sway decreases reduction of roll (effectiveness of ARTs) and length-

ens the natural period of oscillations of the tank. 

In another important paper authors investigated the effect of a liquid cargo on roll 

response (Francescutto and Contento, 1994). They compared experimental data with 

CFD results on the coupling of roll and sloshing. While considering a ‘frozen’ cargo 

they noticed a very similar behaviour to that observed during the present studies. 

Namely, they reported that a presence of a liquid mass caused a significant shift of 

the roll natural frequency towards lower frequencies compared to the ‘frozen’ mass. 

In the case of a compartment filled with the liquid cargo two peaks were observed on 

the roll response curve. The first dominated by hydrostatic effects and the second by 

sloshing. The measured roll motion was heavily damped. 

Similar observations were made by (Francescutto et al., 1996), who presented a pre-

liminary comparison between hydrostatic and ‘fully’ hydrodynamic models for 

sloshing in a 2D roll-sloshing coupling problem. The studies highlighted significant 

differences in the mathematical formulations- in the case of a hydrostatic model the 

roll response was characterised by a single fundamental mode whereas the hydrody-

namic model implied two natural modes. The authors reported also a noticeable im-

pact of sloshing on roll damping. 

In their studies (Kambisseri et al., 1997) investigated damping effect of floodwater. 

The experiments were performed with the flooded compartment positioned below- 

and above the deck. In both cases, floodwater caused a significant increase in roll 
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damping. However, the authors concluded that more damping was experienced in the 

case of the flooded compartment positioned above the deck.  

The chaotic response of a box-shaped barge with partially filled (closed) compart-

ment oscillating in regular waves was investigated by (Murashige and Aihara, 1998). 

Their research originated from the observation made during the steady-state oscilla-

tions. Namely, during the steady-state oscillations the model was unintentionally im-

pinged with a stick. As a result, the amplitude of roll increased significantly while 

the period lengthened from T to 2T. The subsequent tests on a simplified cylindrical 

model (3DOF - sway, heave and roll) confirmed the chaotic behaviour and existence 

of strange attractors (not present in case of "dry" hull). Further analysis indicated that 

the chaotic behaviour could be a result of the highly nonlinear restoring moment in 

the ship-floodwater system. 

The complexity of transient behaviour in a closed system was also highlighted by 

(Rognebakke and Faltinsen, 2003). The authors studied the coupling of sway motion 

and sloshing, following a detailed experimental programme. They observed a har-

monic steady-state response even in the presence of violent sloshing inside the com-

partment. They concluded that the harmonic response allows employing simplified 

models for analysing the steady state sloshing problems. However, an attempt to use 

of simplified models to describe transient phenomena was unsuccessful. 

By late 1980s a simplified model of floodwater dynamics to be used in sea-keeping 

simulations was presented by Vassalos and Turan. The model was further improved 

by Letizia and Vassalos (Kaliningrad 1995) and (Papanikolaou and Spanos, 2002). 

This simple model proved sufficiently accurate for qualitative assessment of surviv-

ability of damaged ship. 

Dedicated studies on the impact of floodwater dynamics on behaviour of a damaged 

ship have been carried out by many researches in the pursuit for better understanding 

of underlying physics and more accurate mathematical modelling, e.g.  (Vassalos et 

al., 1998) or (Jasionowski, 2001a, Jasionowski et al., 2007, Jasionowski, 2010). In 

one of the attempts (Kong and Faltinsen, 2010) investigated the time-domain behav-

iour of a damaged ship with a large scale damage. They carried out physical tests and 
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performed numerical simulations in calm water and in regular waves. The simulated 

RAOs were checked against the ITTC benchmark study. The results showed that the 

unsatisfactory accuracy of the floodwater model and the authors concluded that the 

further theoretical studies should be supported by an extensive experimental cam-

paign. 

A comprehensive résumé on the impact of liquid cargo on ship dynamics can be 

found in (Journee, 2000). However, there have been very few attempts to derive an 

expression for a force of hydrodynamic reaction in the damaged condition in a way 

similar to the intact ship formulation. Customarily the models of a damaged ship hy-

drodynamics use a set of hydrodynamic coefficients derived for the intact vessel, e.g. 

(Letizia, 1996), (de Kat, 2000), (Dodworth, 2000) or (Jasionowski, 2001b). An at-

tempt to derive experimentally hydrodynamic coefficients of a damaged ship was 

reported in (Jasionowski and Vassalos, 2002). 

In case of a damaged ship, apart from the flooding model there is a need for model-

ling a flow through the shell openings. High accuracy (in terms of a flow rate predic-

tion combined with floodwater dynamics) of the flooding process can only be 

achieved with use of CFD techniques. If the interest is mainly on the rate of flow, 

there are various models based on the Bernoulli equation such as presented in 

(Vassalos et al., 2000). The simplified inflow/outflow models are easy to integrate 

with ship motions calculators, see for example (Jasionowski, 2001b) and offer rea-

sonable approximation of hydrostatic loads impressed by floodwater on the ship 

structure. An example of validation of the flooding modules based on Bernoulli 

equation can be found in (Ruponen, 2006). 

The list compiled here would be incomplete without mentioning the PhD theses of 

those who carried out physical tests on roll hydrodynamics. The studies by (Turan, 

1993) and (Chai, 2005) shall be discussed in a more detail in the following. 

The preliminary results of experiments discussed in the following have already been 

presented in (Cichowicz et al., 2009), (Cichowicz et al., 2010). (Cichowicz et al., 

2011). The content of these publications served as a starting point to the discussion 

presented in Chapter 4 and Chapter 6. 
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There is one publication that started it all - the report of forced roll experiments per-

formed with use of gyro-based roll generator (Spouge et al., 1986). Without it, the 

thesis would look different. 
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Chapter 3 Dynamics of a floating body 

3.1 Introductory remarks 

The following chapter addresses a specific problem of a floating body. The body in 

question shall be considered rigid and its boundaries shall be impenetrable to parti-

cles of surrounding fluid. Furthermore, the body and a surrounding fluid shall be 

treated generally as one dynamical system and thus the troublesome calculations of 

the effect of the fluid pressures on the surfaces of the solids is avoided (Lamb, 1932). 

Unless specified otherwise, the fluid, by which the rigid body is surrounded either 

entirely or in part, is assumed incompressible and irrotational, characterised by sin-

gle-valued velocity potential,φ , and motions of the fluid are due to those of the body. 

The fluid must satisfy continuity condition expressed by means of Laplace equation 

 (3.1) 

Additionally, a component of the fluid velocity normal to the surface of the body at 

any given point must be equal to the normal component of the velocity of the sur-

face. Finally, all components of the fluid velocity far from the body must vanish. 

This implies that a closed surface can be determined within the otherwise unbounded 

domain of the fluid surrounding the body, through which, on account of vanishing 

velocity, no flux of matter is observed. 

From formal point of view, both the rigid body and the fluid domain are described by 

the same mathematical model of continuum. It should be noted, however, that the 

model of continuum is an abstraction – physical matter is discrete, composed of ele-

mentary particles (Aris, 1962) although in many physical applications the micro-

scopic structure of matter is of secondary importance. Instead of looking into interac-

tions between molecules, the attention is paid to interactions between small but finite 

dimensions particles. These particles are characterised by properties (e.g. energy, 

momentum, velocity, temperature) taken as an average of the properties of the indi-

vidual molecules constituting the particle. The fundamental difference between a 

rigid body and a fluid is that it is assumed in the most physical applications that de-

2 0φ∇ =
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formation of the former is assumed negligible. This property is a consequence of 

very strong forces of interactions between molecules. Such forces are much weaker 

within fluids; furthermore, fluid molecules perform frequent, chaotic, “jumps” be-

tween points of a space. Subsequently, the molecules can respond fast to external 

forces of relatively small magnitudes by rearranging or deforming. Since a structure 

of fluid adapts “fast”, the deformation takes place with finite velocities, proportional 

to impressed forces. Such feature is called liquidity. 

3.2 Hydrodynamic reaction due to motion of a solid body 

In the most general case a force and moment of a hydrodynamic reaction can be ex-

pressed in the following form 

 (3.2) 

 
(3.3) 

These equations – the force of reaction and moment of it - portray interaction of 

some isolated fluid domainFV with the rest of the surrounding fluid. However, in the 

case of a floating body the expressions could be reformulated; if the integration of 

took place over surface of the solid,BS , these quantities would correspond to forces 

of interaction between the solid body and the surrounding fluid. Furthermore, since 

the body and the fluid constitute the same mechanical system they must, at any given 

point in time maintain the dynamical equilibrium. This also implies that it is irrele-

vant whether motions of fluid initiated motions of the solid or vice versa – the 

d’Alembert’s principle requires all the forces to be balanced, regardless of their na-

ture and origin. Thus, the problem can be formulated twofold – either as motions of 

the fluid in which the wetted surface of the body forms a part of the fluid boundary 

or as motions of the body in which the entire fluid domain reduces to the wetted sur-

face of the body. In the following, the problem will be addressed from the fluid per-

spective at first and then it shall be reformulated in order to derive description coher-

ent with the physical tests presented in the following chapters. 

F

h n

S

dS= − ∫f p�

F

h n

S

dS×= − ∫M r p�
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3.2.1 General formulation 

The principles of mechanics imply that the rate of change of linear momentum of the 

fluid domain must be equal to all the forces acting on in. These forces consist of 

body, or mass forces, and surface forces acting on the fluid domain through the 

bounding surface. In a presence of the body immersed in the fluid, the surface of the 

fluid domain will be a sum of the “outside” surface of the fluid domain FS and the 

surface of the body,BS  that is F BS S SΣ = + . Hence, conservation of linear momentum 

takes the following form 

 (3.4) 

Analogically, rate of change of angular momentum accommodates for  a presence of 

the body immersed in the fluid domain, that is 

 
(3.5) 

It should be noted that the differentiation operator could be applied to the integrand 

based on the assumption that the volume FV corresponds to volume of fluid at initial 

time 0t = .  

Bearing in mind that the normal stressesnp can be expressed as· SPn the surface inte-

grals of the above equations can be expanded by means of the body,BS , and fluid, FS

surfaces with normal vectorsFn and Bn , respectively. Thus, given that theFn and Bn

have opposite directions, it follows that 

 (3.6) 

and 

 (3.7) 

where SP denotes the stress tensor andhf and hM are a force and a moment of force of 

hydrodynamic reaction, respectively. 
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Coming back to the linear momentum equation, the LHS of the expression can be 

rewritten by expanding the material derivative of the velocity, namely 

 (3.8) 

The second integral on the RHS can be transposed into a surface integral by means of 

the Gauss’s divergence theorem, that is 

 (3.9) 

where nFv is magnitude of velocityv in direction normal to the fluid’s surfaceFS . 

Clearly, the above integral can be expressed in terms of the fluid, FS , and the body,

BS , surfaces, as in the following 

 (3.10) 

Combining these terms results in the following equality 

 
(3.11) 

Hence, the hydrodynamic reaction can be written as 

 

(3.12) 

whereP stands for the vector of linear momentum 

Proceeding analogically with the equation of angular momentum, the moment of the 

hydrodynamic reaction with respect to a stationary frame of reference can be ex-

pressed as 
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(3.13) 

These equations are valid for any kind of fluid but they express the force and mo-

ment at the given pointP of the fluid domain. Therefore, in order to obtain the resul-

tant force of hydrodynamic reaction and resultant moment of that force it is neces-

sary to calculate the force in every point of the fluid domain. The hydrodynamic 

force field can be obtained by means of CFD calculations but this is time consuming 

and requires a significant computational effort. Less accurate but much faster solu-

tion can be obtained if the velocity field is given as a potential field, i.e. the flow of 

the fluid caused by motions of the body can be determined as a gradient of some sca-

lar functionφ .  

3.2.2 Hydrodynamic reaction in a potential flow 

In the potential flow approach, it is assumed that the fluid is incompressible,· 0∇ =v , 

and inviscid, 0µ = . Specifically, assuming one of the axes of the global frame of ref-

erence aligned with a vector of the gravity acceleration (pointed from the centre of 

the Earth) the unit body forces become U g= −∇ = −F k , whereU gz= andg stands for a 

magnitude of the gravitational acceleration and k is an unit vector in a direction of 

the axis. Furthermore, in the inviscid fluid the stress tensorSP becomes a spherical 

tensor pI− , whereI is a unit matrix andpstands for the hydrodynamic pressure. 

Thus, the product ·F SPn becomes Fp− n and the force of hydrodynamic reaction can be 

written as 

 
(3.14) 

Bearing in mind that the fluid is incompressible and its velocity can be derived from 

a single scalar function, i.e. φ= ∇v , where the velocity potential is given as a function 

of coordinates and time ( ), , ,x y z tφ φ=  , the rate of change of linear momentum can be 

expressed as 
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(3.15) 

Based on the Gauss’s divergence1 theorem and on the fact thatφ is continuous func-

tion, the first integral can be transposed to a surface integral, that is 

 
(3.16) 

Following the same procedure, the volume integral of the body forces can be ex-

pressed by means of a surface integral as 

 (3.17) 

Therefore, substituting these relations into the expression for a hydrodynamic reac-

tion and grouping similar terms yields 

 
(3.18) 

Since the flow is potential and viscosity is neglected, the first integral can be ap-

proached with help of the Cauchy-Lagrange’s equation where a general solution to 

the equation of motion assumes the following form 

 (3.19) 
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Indeed, it can be assumed that if the fluid domain is sufficiently large, the fluid ve-

locity v must vanish at the far-field boundary and the velocity potential and pressure 

will assume some constant values0U and 0p , respectively. Thus, the integration con-

stant ( )C t in the Cauchy-Lagrange’s equation can be derived from the following iden-

tity 

 (3.20) 

From this, is it follows that the integral can be replaced with 

 
(3.21) 

However, since the integrand of the second integral on the RHS is constant for an 

incompressible fluid the integral must vanish, because
FS

dS=∫ n 0� . Thus, the hydrody-

namic reaction becomes 

 
(3.22) 

Furthermore, the kinematical condition implies that the velocity of the fluid on the 

surface of the body must be equal to the velocity of the body’s surface, i.e.nB nFv v= . 

From this2, it follows that 

 
(3.23) 

Moreover, as the assumption of an unbounded fluid domain implies vanishing of the 

velocity at far-field boundaries, the sum of the first two terms in the expression for 

                                                

2 The surface integral can be transposed to volume integral of integrand·
t

φ∂ ∇ + ⊗ ∂ 
v v . Then, mak-

ing use of continuity ofϕ it can be rewritten as ( )·
t

φ φ∂ ∇ + ∇ ∇ ⊗
∂

v , which makes generalised Rey-

nolds’s transport theorem applicable to the integral. 

( )·
BB B

nB B BB

S S S

B dS dS
t t

d
v dS

dt

φ φ φ∂ ∂ + = + ⊗ 
  = 
 ∂  ∂ ∫ ∫ ∫n v n v v n n� � �

( ) 0
0

p
C t U

t

φ
ρ

= + +∂
∂

( )
2

0 02
F F F

F F F

S SS

v
U dS dS p dp SU

t

φρ ρ ρ ρ∂ + + = +  +
∂ 

  ∫ ∫∫ n n n� ��

2

2
B BF F

F nF Bh B

S S

nB

S S

v
dS U dSdS v v

t
dS

φρ ρ ρ ρ  = − − + +  
 

∂ +
∂∫ ∫∫ ∫f n v n n v� �� �



30 

 

the hydrodynamic reaction must vanish, which reduces the equation to the following 

form 

 (3.24) 

It can be readily seen from the above equation, that if the body is completely sub-

merged in the unbounded domain of the inviscid and incompressible fluid character-

ised by the velocity potential, the hydrodynamic reaction assumes very simple form. 

The first term on the RHS corresponds to the mass forces produced by the gravita-

tional potential. The second, inertial, term corresponds simply to the rate of change 

of the linear momentum of the fluid.  

When the body moves in the free surface, the boundary condition on the undisturbed 

free surface is following 

 (3.25) 

Thus, the hydrodynamic reaction becomes  

 
(3.26) 

where BS denotes the wetted surface of the body andφ is the velocity potential given 

in the local, body-fixed, coordinate system. 

As shown in (Krężelewski, 1982) the first integral on the RHS can be expanded with 

help of a variant of the Reynolds’s transport theorem,3 and thus, the hydrodynamic 

reaction can be written as 
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(3.27) 

Therefore, after simple rearrangement, the equation can be rewritten as 

 
(3.28) 

where, ( )22 · ·v φ φ φ== ∇ ∇ = ∇v v and · · ·S B B B n

φφ= ∂= ∇ =
∂

v n v n n , based on the assumption 

that the surfaceBS is impenetrable to the fluid and there is no flow separation on the 

surface (and thus the condition of equal velocities holds).  

Similar formula can be obtained for moment of the hydrodynamic reaction which, 

bearing in mind that ( )0

W

h S B

S

p Sp dρ= − ×− ∫M r n , is given as 

 

(3.29) 

where Sr is a radius vector of the surface elementdS in the global, fixed in space, ref-

erence system. 

Comparing the above equations to that obtained for a solid moving through the un-

bounded fluid - equation (3.24) - shows clearly that the presence of the free surface 

introduces additional terms to the formulation of the hydrodynamic reaction. These, 

given as the last two terms on the RHS of the equation correspond to the system of 

waves generated by motions of the body in or in the proximity of the free surface of 

the fluid. It is noteworthy that even in the case of a submerged body ( 0WS∂ = ) only 

the line integral vanishes while the third term on the RHS remains.  

Although the above equation could be further transformed to reveal additional infor-

mation about a nature of the hydrodynamic reaction, it shall be left in the current 

form – sufficient to withdraw general conclusions on a flow caused by motions of a 

body in proximity of the free surface of the inviscid, incompressible and irrotational 

fluid.  
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3.2.3 Free surface deformation – energy radiation 

Motion of some hypothetical object, e.g. of an infinitely long circular cylinder or of a 

hydrodynamic singularity (e.g. infinitely long vortex filament), moving with constant 

velocity parallel to the undisturbed free surface at some small depthh below the sur-

face induces a pressure field in the fluid domain. Assuming the depthh sufficiently 

small, the movement must cause deformation of the free surface. More precisely, far 

away in front of the object, the free surface would remain undisturbed but far behind 

the body it would become a two-dimensional regular wave. The wave would propa-

gate away from the object with the group velocity equal to the velocity of the cylin-

der or the singularity. Generation of the wave is a consequence of transporting en-

ergy from the body to the free surface of the fluid. In the simple case, the amount of 

energy transferred from the body can be readily calculated.  

 
Fig.3.1:  The free surface deformation caused by motion of a hypothetical body 

Firstly, let a region of the fluid be contained between two flat surfaces of unit length,

1S and 2S , parallel to the axis of the cylinder and perpendicular to the undisturbed free 

surface. The surface1S is located far in front of the object while the surface 2S is lo-

cated far behind it. Then, as shown in (Pawłowski, 2005), the increase of energy of 

the fluid within one second is given aswE v, where wE is an average, per period, total 

energy of the wave per unit area of the free surface andv stands for a magnitude of 

the velocity of the object. The energy increase equals to a sum of power of pressure 

wE u in the surface2S and power of the wave resistance force induced on the object, wR

, that is 

h 

S1 S2 

v 
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 (3.30) 

whereu is a group velocity of the wave. Note that the vector of the wave resistance 

force is parallel but opposite to the velocity vectorv . 

Given that the average total energywE is given as 0
1

2wE gρ ζ= , where 0ζ stands for the 

amplitude of the wave, the wave resistance force per unit length of the object is given 

as 

 (3.31) 

wherek is the wave number 2
k

π
λ

= ,λ stands for length of the wave andH is depth of 

the fluid domain. 

It can be readily seen from the above that in the limiting case of 0H → the wave resis-

tance would vanish, i.e. 0wR → . Furthermore, if the object in question were a vortex 

filament of intensityΓ , then it would be that 

 (3.32) 

Hence, as shown in (Krężelewski, 1982) , for the singularity characterised by the 

depth Froude number 0.5, i.e. 0.5h
v

F
gh

= = , the exponential term would be very 

small (0.0003) and the wave resistance would virtually vanish. 

Before proceeding further to the case of oscillatory motion, it is noteworthy that, the 

assumptions made at the beginning of this chapter (i.e. inviscid and incompressible 

fluid) imply that the wave generated by the object would never decay – instead, in an 

unbounded fluid domain the radiated wave would propagate to infinity.  

Furthermore, the energy needed to generate the radiation wave was not dissipated but 

merely transferred from the body to the free surface. That is because dissipative 

forces assume a form of an antisymmetric tensor but taking 0µ = causes vanishing of 

the antisymmetric part of the fluid stress tensor. In the case of a viscid fluid, the av-

w w wv REE u= +

0 0
1 1 2

1 1
2 2 sinh 2w g

u kH
R

v kH
gρ ζ ρ ζ   = − = −   

   

2 2
expw

g gh
R

v v

ρ  = −


Γ 

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erage power dissipated by the two dimensional surface wave, can be given after 

(Krężelewski, 1982), as follows 

 (3.33) 

3.3 Added inertia and damping 

It has been shown in the previous section that one component of the hydrodynamic 

reaction can be identified as rate of change of linear momentum of the fluid and as 

such can be accounted for as an inertial force. Assuming again unbounded domain of 

ideal (i.e. inviscid, incompressible and irrotational fluid) the momentum is given by 

means of integral over surface of the body  

 (3.34) 

where the superscriptI is used to emphasise inertial character of the momentum. 

3.3.1 Added inertia 

In the linear formulation of the problem the velocity potentialφ is often expressed (in 

the Cartesian frame of reference) as a sum of so-called unit potentials, that is 

 
(3.35) 

The number of unit potentials and the terms( )iv t  are derived from the kinematical 

condition on the body surface. Namely, since the velocity of the surface element is 

given as S O S+ ×=v v ω r the scalar product ·S Bn

φ∂ =
∂

v n has six components, i.e. 

( ) ( )· · · · ·S B O B S B O B S B= × ×+ = +v n v n ω r n v n ω r n . Furthermore, the components of the ve-

locity vector Ov can be denoted bypv where 1,2,3p = while components of the angular 

velocityω can be substituted withqv where 4,5,6q = . Similarly, components of normal 

vector Bn can be represented by1 2,n n and 3n whereas4 5,n n and 6n are given by appropri-

ate components of the vector productS B×r n , e.g. 2 3 3 24n x n x n= − . Bearing in mind that 

the terms1 6,...,v v are independent on a location, the directional derivative of the veloc-

2
2 0

0
22 2

2
N kg gµ

ζµµ ζ π
ρ λ

 
=


= − 


−
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I
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S

dSρ φ= − ∫P n�

( ) ( ) ( )1 2 3 1
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=∑
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ity potential given by the equation above can be simply expressed as (summation 

over 1,2,...,6k = ) 

 (3.36) 

The above implies that following identity holds: k
kn

n

φ= ∂
∂

. 

The terms kn are often referred to as generalised directional cosines. 

Now, the linear momentum can be expressed in terms of components, as 

 
(3.37) 

Furthermore, given that j
Bj jn n

n

φ
= =

∂
∂

for 1,2,3j = and k kvφ φ= for 1,2,...,6k = and bearing 

in mind that the termskv depend only on time not on a position, the momentum equa-

tion expands as 

 
(3.38) 

where 1,2,3j = and 1,2,...,6k = . 

Hence, denoting components of the momentum asI
jP allows expressing the momen-

tum equation as 

 
(3.39) 

Similar procedure can be followed with respect to the moment of the hydrodynamic 

reaction, where the inertial angular momentum is given4 as  

 (3.40) 

                                                
4 See equation (3.29). 
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For example, component of the momentum along the axis 1i is given as 

 
(3.41) 

Hence, the term in parentheses can also be written shortly as kla where 1,2,...,6k = and

4,5,6l = . It can be readily seen the termskja and kla have the identical form hence, the 

components of the inertial momenta can be written a compact form, as in the follow-

ing 

 (3.42) 

where , 1,2,...,6j k = . 

The components of the [ ]6 6× matrix kja are called added mass or added inertia, as they 

have dimensions of a mass, static moments of mass and moments of inertia. 

In the case of the flow considered here matrixkja is symmetrical, i.e.kj jka a= so in total 

there are 21 different componentskja in the added inertia matrix.  

Furthermore, if the body has planes or axes of symmetry, some terms in the added 

inertia matrix will vanish. This could be proved directly by application of the 

Green’s theorem to integrals in the termskja but it could also be deducted if the com-

ponents kja are seen as coupling terms between different modes of motions.  

( )21
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3 3 2 4

B B B

k k k
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S S S
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Fig.3.2:  The body fixed coordinate system 

In the case of a body symmetrical with respect to the plane 1 3Ox x  of the body-fixed 

coordinate system motion in a direction of the axis1Ox cannot, due to symmetry of the 

body, induce any motion (and thus any reaction force opposing the motion) in a di-

rection of the axis 2Ox or a rotation about other two axes. Hence5, 21a , 41a and 61a must 

vanish. Similarly, rotations about an axis perpendicular to the plane of symmetry 

cannot produce any motions along the axis or a rotation about the axis 1Ox , therefore

25 45 0a a= = . Furthermore, pure rotations about the axis3Ox cannot induce motions 

along or rotations about the axis2Ox , perpendicular to the plane of symmetry - 

36 56 0aa = = . For the same reason translations about this axis cannot produce rotations 

about the axis 1Ox which results in43 0a = . Due to symmetry of the matrix the compo-

nents with the transposed indices must vanish too, and thus, in total there are twelve 

non-zero components of the added inertia matrix. 

The reasoning on symmetry of added inertia terms is particularly helpful in model 

tests when some of the assumptions made with respect to the ideal nature of the fluid 

are violated. In such a case, the inertial part of the hydrodynamic reaction force and 

                                                
5 The convention adopted here is that j-th mode of motion (i.e. second index) corresponds to “main” 

mode of motion whereas the k-th mode is induced motion.  

x1 

x2 

x3 

O 
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moment must still be associated with momenta of the fluid but the components of the 

reaction force could not be subjected to such a meticulous analytical treatment. The 

concept of an added momentum due to the fluid motions induced by movements of 

the rigid body would hold in principle but its mathematical formulation would be 

either much complex or unavailable at all.  

Before proceeding further to the case of motions in proximity of the free surface of 

the fluid it is noteworthy to show, that kinetic energy of the fluid can be conveniently 

expressed by components of the added inertia matrix, that is 

 (3.43) 

 

3.3.2 Oscillations in a free surface of an ideal fluid 

In the case of motions in or proximity of the free surface, the problem of determining 

forces of the hydrodynamic reaction becomes more complex. This derives from the 

formulation of the boundary condition on the free surface accounting for its deforma-

tion. In the linear approach, the problem is usually tackled by a superposition of the 

potential flow corresponding to steady motions of the body with some velocity0v and 

small oscillations of the body about its mean position. Furthermore, in problems ad-

dressing motions or responses of the body in waves, it is necessary to include wave 

and diffraction potentials – the former inducing a velocity field in the fluid domain 

(as without the body) and the latter describing disturbances introduced by steady mo-

tions of the body to the fluid’s velocity field associated with waves. Hereafter, only 

problem of body oscillations in the otherwise undisturbed fluid domain will be 

briefly presented. 

Analytically the problem of a body oscillating in proximity of the free surface is usu-

ally formulated as follows: 

- The fluid is inviscid and incompressible and its flow irrotational. 

- The effects of surface tensions can be neglected. 
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- The motion amplitudes are small so the generated waves are of small am-

plitudes and the boundary condition on free surface can be linearised. 

It follows from these assumptions that the flow must satisfy continuity equation 

given by the Laplace’s equation2 0φ∇ = . Furthermore, if the origin of global frame of 

reference is located in the plane of undisturbed free surface and 3Ox axis directed ver-

tically down, the free surface condition takes the following form

2 2

2 2
31

0Ov
xt x

g
φ φ φ∂ ∂ ∂

∂∂ ∂
− − = . The boundary condition accounts for the progressive velocity 

of the body of magnitudeOv in the direction of the body-fixed axis1 1O x . Additionally, 

it is assumed that the fluid is deep, thus the velocity vanish at large depth, i.e.

3

lim 0
x

φ
→∞

∇ = and the fluid velocity on the surface of the body must be equal to normal 

velocity component of the surface, i.e. ·S Bn

φ∂ =
∂

v n . The latter condition implies that the 

surface is impenetrable to the fluid and that the flow separation cannot occur. The 

final condition is that the wave generated by the oscillating body must have, in the 

far field, a form of a regular and progressive gravitational wave. 

The linear problem can be solved by means of superposition of individual solutions. 

For instance, the Kirhoff’s method of unit potentials can be employed in the same 

fashion as in solving the problem of the body moving through an unbounded fluid. 

The individual modes of motions could be considered separately, thus the velocity 

field in general motion of the body could be given by means of a sum of the poten-

tials obtained for the individual modes of motions, i.e. ( )
6

1

i

i

φ φ
=

=∑ . Obviously all the 

individual potentials must satisfy the specified boundary conditions. Furthermore, the 

excitation forces can be given by means of linear combination of harmonic compo-

nents, e.g. in terms of Fourier series. However, the problem may be quite challenging 

in the case of an arbitrarily shaped body, even in the domain of the ideal fluid, par-

ticularly at the presence of a progressive velocity. Thus, quite often components of 

the hydrodynamic reaction are obtained for individual cross-sections of the body and 

integrated along the body. The technique, often referred to as the strip theory, origi-
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nated in the mid-twentieth century6 and it remains in common use to date. Details on 

the strip theory (or more general on application of potential flow to the problem of a 

body moving through an unbounded domain of the ideal fluid) can be found in many 

textbooks and scientific publications see for example (Journee, 1992) or  (Dudziak, 

2008). In the following, however, equations of motion shall be derived with use of a 

very simple technique based on a variant of the Lagrangian formulation, as described 

by (Sadeghi, 2005). 

3.3.3 Equations of motions of a floating body in generalised coordinates 

The equation (3.43) demonstrates clearly, how conveniently kinetic energy of the 

system can be expressed by means of the components of the added inertia matrix. 

The terms 1 6,...,v v are nothing else than the time derivatives of the generalised coordi-

nates 1 6, ...,q q , thus, the equation (3.43) could be simply rewritten as 

 
(3.43).a 

The fact of upmost importance is that although the system is infinitely large (due to 

the infinitely large fluid domain), kinetic energy of the entire fluid domain can be 

expressed in terms finite number of dimensions. In simple terms, it is that kinetic en-

ergy of the entire fluid domain can be associated with the wetted surfaceBS of the 

body.  

In the procedure detailed by Sadeghi a complex potential (usually employed in the 

free-surface problems) ( )
6

1

c s
j

j
jiφ φ φ

=

= +∑  is replaced by a superposition of the real-

valued potentials (in phase with generalised displacements and velocities, respec-

tively) 

 
(3.44) 

                                                
6 Details can be found, for example, in (Ursell, 1949) or (Frank, 1967) 
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where the jπ and jψ are steady-state potentials, which satisfy all the necessary bound-

ary conditions. 

The dynamic pressure induced on the wetted surface of the body can be derived from 

the Bernoulli equation, hence 

 (3.45) 

From this, it follows that the generalised inertial/radiation force is given as 

 
(3.46) 

Thus, making the following substitutions
B

jk k j

S

da Snρ π= − ∫ and
B

jk k j

S

db Snρ ψ= − ∫ , results 

in the following 

 (3.47) 

Hence, kinetic energy of the system is given as 

 (3.48) 

However, by analogy to the equation (3.36) it is that k kk kq q
n n n

π ψφ = +∂ ∂∂
∂ ∂ ∂

ɺ ɺ and from the 

boundary condition it follows that k

n

ψ∂
∂

must vanish. Therefore, kinetic energy can be 

written as 

 
(3.49) 

After substituting jka and jkb in the place of the integrals, kinetic energy of the fluid 

can be expressed in a very compact way, as in the following 

 (3.50) 

( )j j
d j jqp q

t

φρ ρ π ψ= − +∂ = −
∂

ɺɺ ɺ

B B B B

j j

S S

R k k k k
j j k j k k k

S S

Q dS dSn q n q q qd
n n

S dS
π π

ρ π ρ ψ ρ π ρ ψ= − − = −
∂ ∂
∂ ∂

−∫ ∫ ∫ ∫ɺɺ ɺ ɺɺ ɺ

j
R k k
j jk ka qQ qb= +ɺɺ ɺ

2
BS

n
T dS

ρ φφ ∂
∂

= − ∫

( )
2 2 2 2

B B B BS S

j j k j k j kk
j j k j k

S S

jdS q q dST n dSq q n S
n

q q
n

q d
πρ φ ρ ρ ρφ π ψ π ψ∂∂

∂ ∂
= − = − + = − −∫ ∫ ∫ ∫ɺ ɺ ɺ ɺ ɺ

1 1

2 2
j k j k

jk jkT a qq bq q= +ɺ ɺ ɺ



42 

 

It can be readily seen from the above equation, when the body oscillates in the free 

surface, kinetic energy is a quadratic form of generalised velocities and generalised 

displacements. Most importantly, the scalar quantity associated with the wetted sur-

face of the body contains all the information about inertial and radiation components 

of the hydrodynamic reaction7. To see this, one can compute the Lagrangian of the 

above equation, which yields 

 (3.51) 

The first term in the above is nothing else than components of the rate of change of 

the momentum, wherej j

T

q
P

∂
∂

=
ɺ

as discussed in (Krężelewski, 1982) whereas the sec-

ond term stands for a generalised dissipative force. In fact, the term1

2
k

jkqb− ɺ is simply 

partial derivative of the Rayleigh dissipation function with respect to jqɺ , that is 

 (3.52) 

where D
jQ− is generalised dissipative force, as asserted8.  

The remaining part of derivation of the equations of motion involves the hydrostatic 

reaction forces (restoring forces). These forces can be expressed in a matrix form as 

k
jkc q where the nonzero componentsjkc are given as (Dudziak, 2008) 

 (3.53) 

where WA is the area enclosed by the contourBS∂ , 1Fx stands for the abscissa of the cen-

tre of floatation, 0h is the transverse metacentric height,0H is the longitudinal meta-

centric height, andBV  stands for the volume of the submerged part of the body. All 

the quantities correspond to the upright position of the body in the undisturbed free 

surface.  

                                                
7 It should be noted that in his thesis Sadeghi came to quite different conclusion.  
8 More details can be found in (Skalmierski, 1994) 
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It is assumed, that the generalised external forceE
jQ is applied directly to the body and 

not to the fluid and therefore motions of the fluid are induced by the body. Thus, ac-

tion of the external force is opposed by: 

- rate of change of generalised momentum of the rigid body alone, given as

k
jkM qɺɺ  

- generalised hydrodynamic reaction associated with the rate of change of 

the generalised momentum of the fluid k
jka qɺɺ and the generalised radiation 

force k
jkb qɺ  

- generalised hydrostatic reaction k
jkc q  

Given that no wave-induced forces act on the body, the generalised diffraction forces 

as well as the generalised Froude-Krylov forces can be ignored. Thus, the equation of 

motion has the following matrix form 

 (3.54) 

where components of the generalised external forceE
jQ are harmonic functions of 

time.  

This equation constitutes starting point for analysing results of experiments on forced 

oscillations of a floating body, detailed in the following chapter. 

3.4 Summary 

One of the most important implications of the d’Alembert’s principle is that a parti-

cle or a system of material particles can be replaced with an inertial force. In case of 

a floating body oscillating in an unbounded domain of an ideal fluid, the entire fluid 

domain is replaced with a force of hydrodynamic reaction. It has been show that ki-

netic energy of the entire fluid domain can be associated with kinetic energy of the 

wetted surface. This scalar quantity contains all the information about momenta of 

the fluid and about the energy radiated through the free surface deformation.  

( ) k k k
jk jk jk

E
jjkq qM a b c q Q+ + + =ɺɺ ɺ
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Chapter 4 Some physical experiments on roll hydrodynamics 

There have been many physical experiments addressing roll hydrodynamics but most 

of them have been performed solely to provide experimental data for benchmarking 

of the particular case. There are very few systematic studies involving comprehen-

sive test matrices and the most important of them are very briefly discussed in the 

following. 

4.1 Vugts (1968) 

The objective of Vugts’s work was to benchmark the prediction of roll hydrodynam-

ics (based on potential theory) with measurements. The experiments were carried out 

on cylindrical bodies subjected to forced oscillations in a free surface. Vugts investi-

gated three modes of motion – sway, heave and roll, and the measurements were 

conducted on the cylinders of different cross-sections: circle, rectangle (with three 

different beam-to-draught ratios, B/T: 2, 4 and 8), triangle and two Lewis forms (the 

Lewis sections were not tested in sway and roll). In roll, the cylinders were oscillated 

about a fixed axis of rotation passing through the sections’ centre of gravity. Apart 

from the rectangular sections of B/T-ratio 4 and 8 the sections’ centre of gravity was 

lying in the calm-water plane. 

In his paper, Vugts presented a detailed account of the experiments with particular 

attention paid to the accuracy of the measurements. The heave and sway experiments 

proved very reliable and matched closely the theoretical prediction. The roll meas-

urements, however, were less reliable. The measured characteristics deviated sub-

stantially from the prediction and the results were affected by significant uncertain-

ties. In particular, Vugts pointed out to the problems in an accurate assessment of the 

sections’ inertia in air causing substantial uncertainty in the added inertia estimates. 

An additional difficulty derived from the fact that cylinders of B/T-ratio 4 and 8 were 

oscillated about an elevated axis of rotation.  

The results obtained for the rectangle of B/T-ratio 2 showed good agreement with the 

prediction. The coupling terms followed closely theoretical curves. The roll added 
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inertia and damping terms deviated slightly from the predicted characteristics. An 

influence of viscosity was observed in the damping estimates resulting in differences 

increasing almost linearly with the roll amplitude. 

The measurements for the sections rolling about the elevated axis of rotation showed 

much larger discrepancies. For example, the estimated roll damping at the 0.05 rad 

roll amplitude was much higher that the estimates at 0.1 and 0.2 radians. The meas-

ured added inertia in turn exhibited an anticipated dependency on the roll amplitude 

but its magnitude was much smaller than predicted. Vugts reasoned that these results 

are overall highly unreliable. He accounted the discrepancies mainly for the inaccu-

rate estimates of the inertia in air and the fact that the roll motion was about the ele-

vated axis of rotation, but it he also pointed out that these explanations were rather 

speculative. In particular, he concluded that the B/T-ratio influences strongly the 

measured quantities with the roll damping almost vanishing in the practical range of 

draughts. Furthermore, he pointed out to the complex relationship between of the 

coupling terms (sway-into-roll and roll-into-sway) and the vertical position of the 

centre of gravity. 

The results for the rectangular cylinders of B/T-ratio 2 and 4 are presented in the fig-

ures below.  
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Fig.4.1:  Added inertia coefficient (B/T=2) 

 

 
Fig.4.2:  Roll damping coefficient (B/T=2) 
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Fig.4.3:  Added inertia coefficient in coupling of roll into sway (B/T=2) 

  

Fig.4.4:  Damping coefficient in coupling of roll into sway (B/T=2) 
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Fig.4.5:  Added inertia coefficient (B/T=4). Axis of rotation passes through centre of gravity lying B/4=0.1m 

above calm water-plane. 

 

 
Fig.4.6:  Roll damping coefficient (B/T=4) 
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Fig.4.7:  Added inertia coefficient in coupling of roll into sway (B/T=4) 

  

Fig.4.8:  Damping coefficient in coupling of roll into sway (B/T=4) 
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4.2 Ikeda (1970s) 

The research carried out in Japan in the 1970s aimed at developing empirical formu-

lae for individual damping components9, that is: radiation, skin friction, lift, eddy 

making as well as the components associated with bilge keels. The study involved 

considerable experimental programme, where not only two-dimensional but also 

three-dimensional models were tested. As a result, the empirical formulae were de-

veloped for individual damping components. The expressions, valid for “typical” 

ship geometries, are in use to date in many sea-keeping computer codes10 based oth-

erwise on the linear theory. These formulae allow estimating corrections terms ac-

counting for viscous effects and supplementing potential damping prediction (the 

formulae and even the original Fortran code developed by Ikeda can be found in 

(Himeno, 1981) ).  

It is noteworthy that the Ikeda’s method was not used in the present research to esti-

mate relevant damping components (i.e. eddy making and friction). The reason for 

this is that the additional damping components predicted by the Ikeda’s method need 

to be added to the predicted potential damping. However, the prediction presented in 

the following is used solely to provide reference for qualitative judgment of the ex-

perimental estimates. Therefore, given the substantial discrepancies between the pre-

diction and the experiments there is no point of adding corrective terms to the calcu-

lated damping. On the other hand, the comprehensive research carried out by Ikeda 

provides valuable information on the scale of the individual damping components 

and may help to understand the results of the present experiment. 

As mentioned above, from the results presented by Himeno, it follows that in the ab-

sence of forward speed and bilge keels the equivalent linear damping is a sum of the 

friction (BF), wave-(BW) and eddy-making (BE) components. It can be concluded 

from the figures below (reproduced from Himeno and based on the experimental 

data) that for a “typical” ship-like shape the eddy-making components is a linear 

                                                
9 Based on the assumption that equivalent linear damping can be given as a combination of several 

components. 
10 This includes the Proteus 3 mentioned earlier. 
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function of frequency of oscillation while the friction component is almost linear. 

The wave-making component is present only at higher frequencies and is strongly 

nonlinear. 

Considering the dependency on roll amplitude, it can be concluded that the friction 

and wave-making components are amplitude independent while the eddy-making 

component is almost linear function of the amplitude. This implies combined linear-

quadratic damping model, e.g.1 2B Bϕ ϕ ϕ+ɺ ɺ ɺ  where 1B contains friction and wave-

making components while2B includes the amplitude-dependent eddy-making compo-

nent. Furthermore, a rough estimate can be made, that implies that the skin-friction 

damping is much smaller (order of magnitude) than the wave damping. The ampli-

tude-dependent eddy-making component reaches similar amplitude to the friction 

component at about 5 degrees roll angle. This indicates that BF, BW and BE contribu-

tions to the total damping (given 0.0nF =  and no bilge keels) are approximately 10, 75 

and 15%.   Obviously, these figures are only indicative and must be approached with 

due reserve. 

 
Fig.4.9:  Components of total (effective) roll damping coefficient in function of frequency of oscillations 
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Fig.4.10:  Components of total (effective) roll damping coefficient in function of roll amplitude 

 

4.3 Standing (1992) 

The test performed by the BMT Fluid Mechanics Ltd. involved the 1:50 scale models 

of the cylindrical sections of a typical ocean-going barge used in the offshore and oil 

industry. The tests were carried out with three draughts: shallow (B/T=15), medium 

(B/T=10) and deep of B/T-ratio 5. The sections were fitted with 0, 10 and 20 mm 

bilge keels. Furthermore, the sections were made with different bilge (corner) curva-

ture of 0, 10 and 30mm. Additional tests were performed with bare hull sections at 

high rolling centre of 0.3 m. Breadth of all models was 0.6 m and their length chosen 

to allow 5-10 mm clearance each side  of the tank (of 1.2 m width). The test matrix 

covered significant number of configurations. 
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Fig.4.11:  Measured and predicted damping for section with the high roll centre, rounded corner and no bilge 

keels. 

 

 
Fig.4.12:  Measured and predicted damping for section with the high roll centre, sharp corners and no bilge 

keels. 



54 

 

As reported in (Standing et al., 1992) the forced roll experiments (with the fixed axis 

of rotation) tended to give lower damping estimates (at the roll natural frequency of 

0.67 Hz) than a free roll.  

The prediction by the discrete vortex method was very satisfactory for the sharp-

cornered sections and the sections fitted with bilge keels but seriously overestimated 

damping for the round-cornered sections. 

The experiments and predictions both showed linear or almost linear increase in 

damping with roll velocity amplitude. That is, the measured and predicted damping 

remained in agreement with the combined liner and quadratic terms of damping mo-

ment of the form: L QBB φ φ φ+ɺ ɺ ɺ  

In all the cases tested the friction damping was negligible and, as expected, the wave 

radiation independent of the velocity amplitude. 

4.4 Chai (2005) 

Results of the experiment were presented first in (Jasionowski and Vassalos, 2002) 

and elaborated further in (Chai, 2005). The measurements were performed on a 1:40 

scale model of RoPax ferry11. The tests comprised measurements in intact as well as 

damaged condition in heave and roll modes of motion but without considering cou-

pling between the modes in damaged condition. The motions were induced by exter-

nal forced mechanism, as shown in the figure below. In roll, the oscillations took 

place about a fixed axis passing through centre of gravity of the model. The exten-

sive test matrix covered frequencies12in range of 0.2-1.3 rad/s (with low frequency 

tests to determine restoring characteristics at 0.05 rad/s), 0, 10 and 20 degrees heel 

angles. The measurements were performed with two amplitudes of oscillations: 0.4 

and 1.0m in heave and 5 and 10 degrees in roll. 

                                                
11 The model, known as the PRR01, was extensively tested in many survivability studies, including 

EU project HARDER and ITTC benchmark studies. The cylinder tested during the research presented 

herein is a midship-section of the model tested by Chai. 
12 All data in full scale 
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Fig.4.13:  Forcing mechanism in experiments by Chai 

In spite of the robust instrumentation, the experiment proved very difficult not only 

in damaged but also in intact condition. One of the reasons for this was that the tests 

were performed on a 3D ship model and this must have introduced complex interac-

tions between various modes of motion. As such situation had been anticipated, 

forces were measured with use of state-of-the-art 6DoF load-cell. However, as it was 

learnt later, due to its large inertia and complex construction, the load-cell was source 

of the significant time lags. In addition to this, the measurements in higher frequen-

cies might have been affected by large and heavy construction of the forcing mecha-

nism. 

Nevertheless, although the experiments lacked in accuracy they provided very valu-

able insight, particularly into hull-floodwater interaction. Specifically, the following 

observations were made (Jasionowski and Vassalos, 2002) 

• The floodwater free surface undergoes oscillations of different amplitude than 

that of the roll motion and vary significantly with frequency of excitation. 

• The amplitude of floodwater free surface varies with the direction of roll, i.e. 

it depends on whether the ship rolls towards the damage side or away from it. 

• The phase angle between roll motion and floodwater free surface oscillation 

varies with frequency and amplitude of excitation. 
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Fig.4.14:  Roll added inertia coefficient (intact condition, upright ship) 

 
Fig.4.15:  Roll damping coefficient (intact condition, upright ship) 
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Fig.4.16:  Roll added inertia coefficient (damaged condition, upright ship) 

 
Fig.4.17:  Roll damping coefficient (damaged condition, upright ship) 
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Chapter 5 Experiments on a floating body 

5.1 Introductory remarks 

The methodology for forced oscillations of an unconstrained cylindrical body as well 

as its validation for intact ship measurements have been already presented13 in the 

series of conference papers (Cichowicz et al., 2009, 2010, 2011). In the following, 

the matter will be discussed in a detail with particular attention paid to the interpreta-

tion of results.  

Undoubtedly, the measurements on a floating body have certain disadvantages, such 

as limitation in imposed modes of oscillation, but on the other hand, they offer a 

unique possibility to study complex, multi-modal response of the vessel without im-

posing extra constraints on the system. This aspect is of a particular importance in 

measurements in a damaged condition where ship-floodwater interaction may as-

sume very complex form.  

5.2 Experimental set-up and the test programme 

The experiments reported in the ensuing were conducted at the Kelvin Hydrodynam-

ics Laboratory (KHM), testing facilities of the University of Strathclyde14. Main di-

mensions of the towing tank at the KHM are (length, breadth and depth respec-

tively): 76.0×4.6×2.5 m. The tank is equipped with a modern four-paddle wave 

maker and on opposite end of the tank there is an adjustable beach allowing tests at 

variable water depths. Additionally, for the purpose of the tests reported herein, two 

sets of pool booms (swimming pool line-markers) were fitted alongside of the tank. 

                                                
13 Some sections in the following are largely based on these publications. Contents of the first paper, 

comprised mainly mathematical model and design principles of the forcing apparatus, and this is de-

tailed in the Appendix A The paper presented in 2010 reported the first successful measurements in 

intact conditions (details on these are given in the section 5.8). The last paper, presented in 2011, dis-

cussed preliminary results of the measurements carried out on the flooded model as elaborated further 

in the section 5.9. 
14  http://www.strath.ac.uk/na-me/facilities/cmh/ 
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The reason for fitting the line-markers was to diffract radiation waves from the side-

walls of the tank when the model was not positioned accurately across the tank. In 

fact, given that the wave-damping beach was fitted on one end of the tank only, it has 

been observed that positioning the model “diagonally” had a positive impact on re-

peatability of measurements, particularly while testing at low frequencies.  

 
Fig.5.1:  The model and main dimensions of the tank (meters) 

 
Fig.5.2:  Main dimensions and the internal arrangement of the model 
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The model was manufactured of fibreglass about 5mm thick and fitted with the 

acrylic-glass bulkhead deck. Below the deck, two transverse bulkheads divided the 

internal space into three watertight compartments. The midship compartment was 

floodable through the prismatic (SOLAS-type) opening, penetrating the shell and the 

deck up to B/5. The width of the opening was 0.203 m, which corresponded to 8.1m 

full scale. During the measurements in the intact condition, the opening was sealed 

with a detachable piece of the hull shell.  

Particular dimensions of the model are presented in the table below: 

Table 1 Particular dimensions of the model 

 Dim. Intact Dam. 

L m 1.500 1.500 

B m 0.695 0.695 

T m 0.158 0.157 

KMT  m 0.343 0.344 

KG (dry) m 0.220 0.297 

KG (flooded) m - 0.232 

GM m 0.123 0.047 

Mass kg 156.8 116.7 

kxx Nm/rad 189.2 53.79 

Roll inertia (air)  kg.m2 10.4 4.8 

Radius of in. (ixx) m 0.258 0.251 

ixx/B - 0.370 0.36 

Scale - 40 40 

 

The unconstrained, freely floating, model was forced to roll in calm water by an in-

ternal gyroscopic device (see Appendix A for details). The device was pivoted (an 

axis of pivoting is schematically represented in the figure below by the point P) on a 

stiff frame attached to the steel structure reinforcing uppermost part of the model. 

The supporting frame comprised of three longitudinal and two transverse Bosch pro-

files of considerable stiffness. The rolling moment generated by the forcing appara-

tus was impressed upon the model through a torque arm (the L-shaped plate attached 
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to the side of the mechanism) through a 500lb load-cell fixed to one of the longitudi-

nal beams of the supporting frame (positioned 0.212m off the centre of the model). 

The apparatus was intentionally pivoted with a minimal clearance above the deck in 

order to maintain position of the centre of gravity of the model close to the water-

plane.  

 
Fig.5.3:  The configuration of the system (values in parentheses as in damaged condition, all dimensions in mil-

limetres). In the upright position, stationary and body-fixed frames of reference overlap. 

Motions of the model were recorded with use of an optical motion capture system 

(Qualisys TM). In order to monitor possible deflection of the forcing mechanism two 

“rigid bodies” were defined (with use of reflective markers) in the optical tracker – 

one associated with the model and one “attached” to the forcing mechanism. Motions 

of the markers were recorded by a set of four, high-speed, infrared cameras. Motions 

of the individual markers were combined into translations and rotations of the “rigid 

bodies” resulting in 6DoF recordings. For the reference estimate of the phase lag (be-

tween excitation and response), a single axis accelerometer was also fitted to the 

model.  
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The model was ballasted to the draught marks with ballast weights located in the 

“forward” and “aft” compartments. Some small weights were placed on the deck to 

allow correcting trim and heel of the model. The weights were secured in their posi-

tions with use of silicon adhesive.  Additionally, for tests in the intact condition, 

some weights were placed in the middle compartment. These weights were used to 

make up for amount of floodwater inside of the compartment (in static equilibrium) 

while testing in the damaged condition. Tests were carried out at virtually the same 

draught in both conditions (dry and flooded hull). However, due to some inaccuracy 

in positioning of the replacement masses (i.e. weights placed inside the floodable 

compartments) the estimated position of the centre of gravity of the flooded system 

was 0.012 m (0.48 m full scale) higher than in the case of the intact ship. Freeboard 

in the flooded condition was 0.071 m (2.82 m full scale) – sufficient to realise roll 

motions of an amplitude of about 10 degrees without submerging of the bulkhead 

deck. 

 

Fig.5.4:  The arrangement of the forcing apparatus 

5.3 Calibration, data acquisition and data processing 

The motion capture system was calibrated in two stages as described in the system’s 

manual (Qualisys, 2009). At the first stage, the measurement volume was specified 

by placing a calibration frame (an L-shaped reference structure) in the calm-water 

plane in such a way that one of the arms of the reference frame was aligned with the 

longitudinal axis of the tank. The static calibration aimed at determining axes of the 
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global (Earth-fixed) coordinate system. In the second stage, dynamic calibration was 

performed with use of a calibration wand moved within the measurement volume in 

some random way. Once the calibration was completed, the aforementioned “rigid 

bodies” were defined by identifying appropriate markers on the model. 

The model was weighted with use of a standard industrial scale with +/- 0.050 kg 

accuracy. Estimates of the model’s centre of gravity were based on a standard inclin-

ing test. 

The final stage of model preparation involved estimating of the model’s inertia in air. 

This was carried out by swinging the model on a purpose-built platform and measur-

ing a period of natural oscillations. The platform was suspended from a frame with 

use of a “knife-edge” support. Bearings were not used in the suspension. 

The load-cell measuring a component of the moment to sustain motion was cali-

brated before and after each series of measurements. The calibration involved plac-

ing the forcing apparatus (along with its supporting frame) “upside-down” on a rigid 

horizontal surface (a table of a CNC router was used for this purpose). Once the sup-

porting frame of the forcing mechanism was fastened to the table the calibration 

weights were placed on a steel rod fitted to the torque arm. The load-cell was cali-

brated up to 150% of an anticipated load. The procedure involved up- and download-

ing and a characteristics obtained this way did not indicate any substantial hysteresis 

error. The load-cell output was amplified so maximum and minimum loads corre-

sponded to +/- 5V analogue output. The amplifier settings were held fixed between 

the calibrations. 

In total, there were thirteen signals recorded:  

• the moment to sustain motion (channel 1); 

•  six components of the model motions (i.e. surge, sway, heave, roll, pitch and 

yaw; channels 2-7); 

• the roll component of the gyro frame (in order to monitor possible system de-

flection at large loads; channel 8); 
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•  the inclinometer output (channel 9); 

•  spin velocities of the gyros (channels 10 and 11); 

•  the reference signal of the frequency of the excitation (channel 12); 

• the output of the MEM single axis gyro (channel 13). 

All the channels were sampled with the Cambridge Electronic Design 

(Power1401 mk II), 16-bit ADC (Analogue to Digital Converter) at the sampling 

rate of 150.08 Hz. The analogue input signals were sampled sequentially but, ac-

cording to the manufacturer’s data, ADC’s chip holds a built-in “sample-and-

hold” circuit. Therefore, it is expected15 that the time latency of the sampling 

could be considered negligible. 

Sampled signals were exported to the text files and processed in the Matlab envi-

ronment. The process was carried out in few steps: 

• filtering with a digital, low-pass filter (Butterworth) of cut-off frequency 

5Hz; 

• manual selection of the steady-state part of the waveforms; 

• least-square fitting of the steady-state signals to determine frequency, 

amplitudes and phases of the signals; 

• correcting of the phases of motion signals based on the inclinometer’s 

phase estimate. 

5.4 Equations of equilibrium 

As shown in the previous chapter, the equation of a body oscillating in undisturbed 

free surface of the fluid can be expressed in terms of generalised coordinates as fol-

lows 

                                                
15 The latency in the ADC sampling was also investigated at the early stage of the research. It was 

verified that the ADC does not introduce any significant lags. 
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 (3.54) 

where ( ). jk
are6 6× matrices and( ). j are6 1× column vectors. 

 
Fig.5.5:  Free-body diagram of the cylinder during forced roll. In the sketch the assumed rotation takes place 

about the axis passing through the pointG and therefore it is thatOA OG=  

In the case of a cylindrical body rolling about an axis perpendicular to the cylinder’s 

cross-section, the above equation can be re-written with help of3 3× matrices and3 1×

vectors 

 

 
(5.1) 

wheremstands for the mass of the model (dry hull), whereas displacements (and their 

time derivatives) , ,y z ϕ and external forces2 3 44, ,F F M are harmonic functions of the 
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(5.2) 

The subscripta denotes amplitude, ω stands for circular frequency andε is a phase of 

the waveform. All the coordinates are expressed in the inertial (or simply stationary 

in this case) frame of reference, as shown in the Fig.5.3. 

Given that the tested model has two planes of symmetry, 1 3Ox x and 2 3Ox x , it can be 

reasoned that the vertical displacements induce a symmetric pressure field, and there-

fore 23 43 23, ,a a b and 43b should vanish. On the other hand, while flooded, the model was 

no longer symmetrical with respect to the1 3Ox x plane so the coupling of heave into 

roll and sway might have taken place, due to the presence of the opening. However, 

this contribution could be expected small compared to the other modes of motion and 

therefore, it has been neglected. Furthermore, sinkage and heel are opposed by non-

zero hydrostatic forces. In the case of two coupled displacements, i.e.34c and 43c , it is 

apparent that the latter should not generate any restoring moment, due to symmetry 

of the model, however static heel may generate a non-zero restoring force along the

Ozaxis. Thus, in the case of oscillations about the axis passing through the point O, 

the equations take the following form 

 

 
(5.3) 

It is noteworthy, that the above equation implies that the external forces impressed 

on a body do not have any vertical or lateral components. This assumption is based 

on the mathematical model of the forcing apparatus, as discussed in detail in the ap-

pendix A.1.  

Furthermore, no assumption is being made on the symmetry of added inertia and 

damping matrices, hence, the equation contains fifteen unknowns (fourteen compo-
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nents of added inertia and damping matrices and one component of the restoring ma-

trix) while the 33c and 44c  are approximated by the formulae presented in the previous 

chapter.  

The above equation has been derived for the case of oscillation about the axis pass-

ing through the pointO . However, an unconstrained body experiences rotations about 

the so-called natural axis of rotation (Balcer, 2004). In fact, the natural axis is associ-

ated with instantaneous rotation, which, in principle, can change direction and loca-

tion during the motion. However, in the case investigated here, the pitch angle ob-

served during the motion was at least one order of magnitude smaller than roll and 

could be considered negligible (see the graph below).  Similarly, when the forcing 

apparatus was properly set the model did not experienced any significant yaw mo-

tion, thus it could be safely assumed that the instantaneous axis of rotation lies on a 

cylindrical surface with an axis parallel to the longitudinal axis of the model.   

 

Fig.5.6:  Roll and pitch time histories for low-frequency oscillations of intact model. 

In his paper, Balcer has shown that the location of the natural rolling axis could be 

quite easily determined based on the homogeneous sway equation. This procedure 

requires however, prior knowledge of the added mass22a and the coupling term of 

added inertia of roll into sway24a . This makes the procedure inapplicable for mathe-

matical modelling presented in this section (the formula derived by Balcer shall be 

discussed later).   

At this stage, it has been decided that an average (per cycle) elevation of the axis of 

rotation above the calm-water plane can be approximated as 

 (5.4) 
( )sin
a

a

OA
y

ϕ
=
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It is expected, that the above relation should hold for small amplitudes and small 

phase difference between roll and sway.  

 

 
Fig.5.7:  Approximated elevation of the rolling axis above the calm-water plane – intact (left) and flooded model 

(right). Solid line represents elevation of centre of gravity in upright position of floating model. 
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The hydrodynamic forces (see Fig.5.5) are assumed to act at the fixed in space loca-

tion, corresponding to the originOof the stationary frame of reference, and therefore 

components of added inertia and damping matrices should be expressed in this coor-

dinates system.  The rigid body equations of motions are, on the other hand, most 

conveniently expressed as translations of and rotations about the body’s centre of 

gravity, G .  However, following the assumptions made with respect to the elevation 

of the axis of rotation and the fact that the moment to sustain motion was measured 

about the pointP , it seems reasonable to treat the pointAas an effective centre of 

gravity of the system. This allows expressing the following relationships between 

coordinates 

 

 (5.5) 

It should be noted that if roll motion were about fixed axis of rotation the first equa-

tion in the above would read that 0Ay = .  

If the magnitude of roll is small (i.e. ( )sin ϕ ϕ≈ and ( )cos 1ϕ ≈ ) the dynamic equilib-

rium condition could be expressed by means of three scalar equations 

 

 (5.6) 

where ( ) 44mg mGP MP Gg M c− == , '
44I stands for the inertia of the body about the axis 

passing throughA, hyF  are hzF  are components of the hydrodynamic force along the 

appropriate axes of the global coordinate system and hM is a moment of the hydrody-

namic force about the pointO .  

Based on the equation (5.3) hydrodynamic forces can be expanded in terms of com-

ponents of added inertia and damping matrices, that is 
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Substituting these identities into the equation (5.6) leads to the set of governing equa-

tions 

 

 

(5.8) 

5.5 Estimates of added inertia and damping 

The first two expressions in the set given by the equation (5.8) are coupled roll-sway 

equations containing eight unknown coefficients (added inertia and damping terms). 
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equation can be expanded into a system of four linearly independent equations with 
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where ( ) ( )44 0 sin MM t M ε= = and 44 sin
2 2 MM t M
π π ε
ω

   = = +   
   

, M stands for an ampli-

tude of the measured moment andMε is a phase angle of the excitation. All other de-

rivatives are computed in the similar fashion. 

Proceeding analogically with the heave equation, it is possible to express it in matrix 

form as:D G=E , where 
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The systems of equations are under-determined and cannot be solved analytically. 

Numerically, the problem could by attacked from various directions. One of the 

strategies would be to employ a method based on the least-squares fitting methodol-

ogy and apply it directly to the scalar equations (5.8) to minimise error in fits. How-

ever, the problem with the least-squares estimations is that some of the unknown 

added inertia and damping terms are in phase with each other e.g.22a and 42a in the 

moment equation. Obviously, the coupling term42a could be determined from the 

sway equation, which does not contain waveforms exactly in phase, but this imposes 

an assumption of symmetry of the added inertia and damping matrices, i.e.42 24a a= , 

etc. Clearly, the symmetry assumption is acceptable in the case of intact measure-

ments but does not have to remain valid in the case of the flooded cylinder. This is 

one of the main reasons, for which it had been decided to derive estimates of added 

inertia and damping terms with use of the Lagrange’s multipliers method. The 

method will be discussed from more formal perspective later, when the results will 

be analysed. At this point, it should suffice to state that applying the Lagrange’s mul-

tiplier method to the present problem would result in finding such components of the 

vectorsB andE  which would minimise length of the vectors. The equations of motion 

are given as a constraint to the problem. Namely, taking for instance the coupled roll-
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sway equation, the constraint is given asA =B C and components of the vectorB must 

minimise its magnitude16 

 (5.11) 

The corresponding Lagrangian function( ),Λ b λ is given as 

 (5.12) 

whereλ is a vector of Lagrange multipliers. 

The multipliersλ corresponding to the minimal17 solution can be determined by find-

ing the stationary value of the Lagrangian function, i.e. by solving the following 

equation 

 (5.13) 

From this, it follows that  

 (5.14) 

Hence, assuming that the matrixTAA is not singular, the required multipliersλ can be 

given as 

 (5.15) 

However, it is also that 2TA =λ B and therefore after multiplying both sides of the 

above equation byTA and dividing by 2 leads to the solution vectorB  

 (5.16) 

where ( ) 1T TA AA
−

is a pseudo-inverse of the matrixA. 

                                                
16 The procedure found here follows an (unnamed) article found on the website: 

http://people.csail.mit.edu/bkph/articles/Pseudo_Inverse.pdf 
17 Strictly speaking, the solution obtained with use of the Lagrange’s multiplier method corresponds to 

an extremum, i.e. the vector may be of either minimum or maximum length. The exact nature of the 

solution could be determined by an additional tests (McQuarrie, 2003). 
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It needs to be emphasised that the components of the vectorsB andE are not added 

inertia or damping terms. They are just some coefficients, which happen to satisfy the 

equations of motion. However, the estimates are likely to be closely related to their 

hydrodynamic counterparts and to emphasise that relationship they will be printed in 

square brackets, i.e.[ ]22
a denotes the estimate of the sway added inertia22a . 

5.6 Dissipation of energy 

It has been already shown that damping matrix contains information on dissipative 

forces. More specifically, the radiation force can be expressed by means of the 

Rayleigh dissipation function, which in turn can be constructed with use of the sym-

metrical part of the damping matrix. It has been stated in the foregoing that symme-

try of the added inertia and damping matrices should not be assumed thus, for the 

purpose of the energy dissipation the damping matrix could be decomposed into 

symmetrical jkh and anti-symmetrical jkh (parts) matrices. As shown in (Skalmierski, 

1994) the antisymmetric matrixjkh is associated with the gyroscopic forces, which are 

not dissipative (their work vanish). Hence, the dissipative forces are associated only 

the symmetrical matrixjkh . The matrix jkh is given as 

 

(5.17) 
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(5.19) 

where no summation overa takes place. 

Based on the trigonometric identities the above integral can be rewritten as 

 

(5.20) 

Hence, the amount of work dissipated over one period of oscillations can be simply 

expressed as 

 
(5.21) 

Making use of the symmetry of thejkh matrix, the sum can be expanded as follows 

 
(5.22) 

Interestingly, as the rate of change of work is a scalar quantity (zero-order tensor) of 

the form given by j k
jk

w
q q

d
h

dt
= − ɺ ɺ this implies18 that jkh must be a second-order tensor in 

the case of the system of 3DoF (sway-heave-roll), as investigated herein. 

 

5.7 Non-dimensional forms of added mass and damping 

In the ensuing, the estimates (as well as theoretically or numerically derived compo-

nents) of added inertia and damping matrices will be given in the form of non-

dimensional hydrodynamic coefficients, plotted against the non-dimensional circular 

frequency Bω . These coefficients, are obtained by multiplying appropriate terms by 

the normalising factors as shown below 

                                                
18 By means of the quotient rule (Borisenko and Tarapow, 1976) 
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5.8  Intact ship measurements 

The measurements in the intact condition were performed mainly in order to provide 

data for validation against the theoretical prediction and other experimental data. It is 

clear that the quantitative judgment is difficult in both cases, as neither the prediction 

nor the available experimental data maintain one-to-one correspondence with the 

present measurements. Both – the theory and the previous experiments - deal with 

oscillations about the fixed axis. In the case of floating body, the axis of rotation is 

instantaneous and even its “average” elevation varies with the frequency. Further-

more, as indicated already, the estimates of added inertia and damping are merely 

related to their analytical counterparts by the fact that they are components of the hy-

drodynamic reaction. Mainly for these reasons, the theoretical prediction is given 

here simply as a guidance, in order to verify whether the data collected follow ex-

pected trends.  

5.8.1 Summary 

The measurements were performed at about19 2 and 5 degrees roll amplitudes. How-

ever, due to very small magnitude of the hydrodynamic force, the results for 2 de-

grees roll should not be considered reliable, particularly at the low-frequency part of 

                                                
19 The inaccuracy in roll amplitude may be significant at some points. However, the results indicate 

that estimates of added inertia and damping are relatively insensitive to the errors in the attained roll 

amplitude (see section 5.10 for details). For this reason, it was decided to carry out measurements in a 

wide range of frequencies on the expense of an absolute accuracy. 
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the spectrum. Indeed, some 10% of the measurements had to be disregarded due to 

observed irregularities in motion caused by the imprecise setting of the forcing appa-

ratus. 

The roll RAO and phase lag characteristics20 indicate clearly that the system is 

lightly damped – the near resonance amplitude is very high and the phase lag transi-

tion very rapid. Outside the 0.75-1.25 frequency band the roll damping is very low.  

The elevationOAof the axis of rotation above the waterplane suggests that the verti-

cal position of the centre of gravity of the model has been slightly underestimated. 

The less likely but still possible explanation for rotations about the axis lying above 

the estimated KG is that at the low frequencies the body might have undergone some 

sidewise translations resulting in higher than expected amplitudes of sway.  

Roll and sway motions are generally out of phase, practically over the entire range of 

frequencies. In fact, the phase lag of sway becomes quite significant at frequencies 

where the largest damping occurs. 

The vertical motions induced by roll were, where present at all, so small, that it vir-

tually prohibited any realistic estimates of heave coefficients. Therefore, at the fur-

ther stages, the heave motion has been disregarded and the entire attention focused 

on the coupled roll-sway motion. There, the main question was whether the added 

inertia and damping matrices should be considered symmetrical. In order to compare 

the estimates it has been assumed at first that the symmetry assumption holds, and 

the results were obtained for that case with slightly modified equations (5.8). Then 

the analysis was performed without assuming symmetry of the matrices. As antici-

pated, the results produced by either of method are different. 

Firstly, both methods failed to give realistic estimates of sway coefficients[ ]� 22
. . The 

estimates are not random (they follow clear trends) but are about two orders of mag-

nitude smaller than predicted by the theory. The coupling term[ ]�24
b is practically un-

affected by the choice of the method. Remaining quantities, i.e. roll added inertia and 

                                                
20 Graphs illustrating the results can be found at the end of the section. 
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damping as well as coupling added inertia coefficient of roll into sway, are strongly 

influenced by the assumed symmetry of the matrices. In the case when the assump-

tion is dropped, not only sway coefficients but also the coupling terms of sway into 

roll virtually vanish. This results in the slightly higher roll damping and in the sig-

nificantly lower added inertia. The coupling added inertia,[ ]� 24
a , has similar distribu-

tion but much lower magnitude than in the case of the “unconstrained” equations. 

Although results of the exercise do not provide any definitive answer as to which 

method is “better” they do offer some “hints”. The first indication is that the sway 

added mass and damping vanish by both methods. Furthermore, if the symmetry of 

the matrices is not imposed the coupling terms of sway into roll vanish as well. In 

this case only the roll and roll-into-sway quantities remain, all in phase with roll ve-

locity and displacement (acceleration). It is an important observation, because unlike 

in the case of the fixed-axis oscillations, here sway and roll are generally, out of 

phase and yet, the contribution of hydrodynamic forces associated with sway and 

sway into roll is negligible. 

Those “hints” lead to the conclusion that there is no evidence supporting the assump-

tion of the symmetrical matrices. This is so, not because those matrices are not sym-

metrical but because such information is not present in the measured moment. This is 

a direct consequence of yet another “hint”, already formulated in the previous sec-

tion. Namely, it has been stated there that there is an assumed functional relationship 

between roll and sway, in the form of the identity( ) ( ) ( )Ay t y t A tO ϕ= − . However, if 

the phase difference between roll and sway is small the relation reduces to

( ) ( )y t tOAϕ=  and this implies that sway is completely determined by roll. More for-

mally, the last identity is a geometrical constraint. The functional relation between 

coordinates is finite (holonomic) and as such reduces number of degrees of freedom 

of the system. Initially, the analysed system had three degrees of freedom – sway, 

heave and roll. Heave motion was disregarded as the observed heave amplitude was 

practically zero and thus, only two degrees of freedom remain – sway and roll. How-

ever, the number of degrees of freedom has been further reduced by introducing the 
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constraint ( ) ( )y t tOAϕ= . Hence, the analysed system is a single degree of freedom os-

cillator.  

5.8.2 Applicability of the multipliers method 

The conclusion on number of degrees of freedom brings the discussion back to the 

method chosen for deriving the estimates of added inertia and damping. In analytical 

mechanics the Lagrange’s multiplayer method is usually employed for handling sys-

tems with constraints (Lanczos, 1986).  Formally, the equilibrium conditions com-

bined with kinematical constraints form an over-determined system of equations. In a 

simple case of holonomic constraints, i.e. given by the finite relationships between 

coordinates, the constraints can be used to eliminate some variables but the arbitrary 

process of reduction may violate symmetry of the variables. The multipliers method 

works even if the constraints are non-holonomic, so the variables cannot be elimi-

nated arbitrarily but far more important is their physical interpretation – they give a 

force of reaction necessary to maintain the constraint.  

In the problem of determining added inertia and damping components, the con-

straints are given in the form of equilibrium equations. The system is in dynamic 

equilibrium and the multipliers method is employed to derive the force of reaction 

necessary to maintain the equilibrium at any given time. There is however one im-

portant question, namely whether the assumed kinematical condition given as 

( ) ( ) ( )Ay t y t A tO ϕ= −  could be maintained in the equilibrium or not? If the constraint is 

not violated, the number of degrees of freedom should be reduced. Indeed, in the 

case discussed here the multipliers method resulted in vanishing of the components 

associated with sway. Only quantities associated with roll remain and hence it was 

stated that the system is a single degree of freedom oscillator, as reasoned earlier.  

The fact of upmost importance is that the results were obtained without imposing any 

partiality – roll was not underscored as a main or preferred mode of motion. Based 

on this it has been concluded that the Lagrange’s multipliers method is an appropri-

ate technique for estimating added inertia and damping in the case studied here. Fur-

thermore, fact that the system has single degree of freedom implies that the measured 
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moment does not contain information on the hydrodynamic quantities associated 

with sway. 

5.8.3 Experimental estimates vs. prediction 

The added mass and potential damping components have been calculated with use of 

in-house developed sea-keeping code Proteus 3 ( details on the development can be 

found in (Jasionowski, 2001b)). 

The prediction of hydrodynamic quantities produced by the software is based on the 

strip theory discussed already in the section 3.3. The 2D pressure field induced by 

harmonic oscillations of a body is calculated on a basis of linearised momentum 

equation with the velocity potentials derived from the boundary element method 

(BEM). The viscous effects can be accounted for by means of the Ikeda method but 

they were not included in the prediction.  

The added mass and the potential damping in roll are derived for oscillations about 

the axis passing through the centre of gravity. Hence, system’s configuration in the-

ory and during the experiments was very similar, at least in the low-frequency part of 

the spectrum. Yet, the experimental estimates depart significantly from the predicted 

components of the hydrodynamic reaction. Although all hydrodynamic coefficients 

preserve (to some extent) trends of the theoretical distribution, quantitatively the re-

sults are completely different. Specifically, the roll damping[ ]44
b is much larger and 

the added inertia[ ]24
a much smaller than predicted. Noticeably, the discrepancies are 

large irrespective of whether the assumed symmetry of the added inertia and damp-

ing matrices was investigated.  
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Fig.5.8:  Roll RAO. Intact condition, amplitude 5 degrees 

 
Fig.5.9:  Roll phase lag, amplitude 5 degrees 
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Fig.5.10:  Elevation of the axis of rotation above waterplane (solid line represents elevation of the centre of grav-

ity in the upright position); amplitude 5 degrees. 

 
Fig.5.11:  Phase difference between sway and roll, amplitude 5 degrees 
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Fig.5.12: Roll added inertia coefficient [ ]44a  

 

Fig.5.13: Roll damping coefficient [ ]44b  
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Fig.5.14: Roll into sway coupling coefficient 24[ ]a  

 

Fig.5.15: Roll into sway coupling coefficient [ ]24b  
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Fig.5.16:  The 24[.] and 42[.] coefficients as derived while allowing asymmetry of the added inertia and the damp-

ing matrices. Similar results were obtained for the (virtually) vanishing 22[.] coefficients, i.e. the coefficients were 

much smaller but preserved theoretical distributions (although might be of opposite sign as in the case of the

24[ ]b above. 
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Fig.5.17:  The 44[ ]a coefficients obtained with, (S), and without assumption on the symmetry of added inertia and 

damping matrices. 

 

Fig.5.18:  Roll damping coefficient 44[ ]b calculated with and without symmetry assumption. 
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Fig.5.19:  Coupling coefficient 24[ ]a calculated with and without symmetry assumption. 

 

Fig.5.20:  Coupling coefficient 24[ ]b calculated with and without symmetry assumption. 
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5.9  Damaged ship measurements 

The estimates of added inertia and damping in the flooded conditions have been de-

rived with use of the same technique as in the case of the intact hull. The only differ-

ence derives from the fact that the mathematical model accounts for the drift result-

ing from the asymmetric pressure distribution due to sloshing.  

5.9.1 Summary 

The amplitude-phase characteristics show clearly that although the effective mass of 

the system (i.e. the resultant mass of the hull and the floodwater) did not change the 

hull natural frequency shifted from about 0.5Bω ≈ to 0.5Bω ≈ . However, the maximum 

measured RAO (at the hull natural frequency) indicates similar (to the case of intact 

hull) amount of critical damping. 

Impact of the floodwater and sloshing is more pronounced in the phase characteris-

tics.  Firstly, a large decrease (in absolute terms) of the phase lag can be observed in 

the frequency range of ( )1;1.25Bω = . Furthermore, at the frequencies exceeding1.6Bω =

there is a phase jump in the characteristics. In the graph, the phase angle is wrapped 

to the 180;180− degrees but in fact, the response phase angle at these frequencies 

simply exceeds -180 degrees. Generally, at frequencies over 0.75Bω > the response is 

dominated by the floodwater dynamics.  

The phase difference between sway and roll in the range of frequencies dominated by 

the hull dynamics( )0.75Bω < , has similar characteristics to that of the dry hull. At 

higher frequencies, where the sloshing starts to play a dominant role the difference 

undergoes rapid changes from the significant lag to the noticeable phase advance. 

The observed difference is much higher there than observed for the intact hull and 

this indicates relatively high damping in the coupled mode.  

Basic characteristics of the system in with flooded compartment indicate clearly that 

its hydrodynamic properties must be completely different to those associated with the 

intact hull, particularly at the frequencies where motions of the body are significantly 
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affected by sloshing and the intensive flow through the opening occurs. Inside the 

flooded compartment, fluid pressure acts on both sides of the shell and this, com-

bined with the presence of the opening, must results in a very complex flow. Waves 

are not only radiated from the body but also diffracted while passing the opening. 

This makes the direct comparison of intact and damaged measurements difficult even 

in qualitative terms.  

At low frequencies, where impact of slosh dynamics is much smaller, the response 

can be affected by the asymmetry in the restoring moment caused by the presence of 

the opening. The asymmetry undermines adequacy of the single harmonic model of 

the response. This is particularly important at small-amplitude motions where the 

error in the fitting model may result in the relatively large uncertainties. 

5.9.2 Estimates of added inertia and damping 

Although the estimates of the sway added mass and damping (in particular) are gen-

erally smaller than the intact ship prediction, the results indicate that in the flooded 

case sway plays more important role than during the oscillations of the intact hull. 

Specifically, there is a visible dip on the added mass characteristics at the sloshing 

resonance. On the other hand, this region corresponds to the observed maximum drift 

velocity and it could be that the sway added mass “contribution” might be due to the 

drift forces, which are not accounted for in the mathematical model. In any case, 

simplicity of the model is a certain drawback. Although the overall performance of 

the model is satisfactory, it is incapable of accounting for more complex phenomena 

occurring at the range of significant sloshing or at very high frequencies. Thus, since 

the drift forces21 are not accounted for in the equations of motions it can only be as-

sumed that any sway or sway-into-roll contribution is not genuine but comes from 

the fact that the equations of motion are incomplete. 

Similar comments apply to the coupling terms[ ]42
a and [ ]42

b  where damping is virtu-

ally unaffected by sloshing but impact of sloshing is clearly visible on the added 

                                                
21 A comprehensive briefing to the mathematical modelling of drift forces can be found in (Journee 

and Massie, 2001) 
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mass characteristics.  Here again it is assumed that the effect is caused by the incom-

pleteness of the mathematical model.  

The roll-into-sway[ ]24
. characteristics comprise of three distinct regions. At low fre-

quencies, below 0.5Bω =  added inertia and damping are determined by motions of the 

body. In the higher, relatively broad range of frequencies, the quantities are affected 

by sloshing and undergo dramatic changes. Added inertia and damping both vanish 

at about 1.35Bω =  . In the range of the highest frequencies (beyond the 1.35Bω = ) 

damping becomes positive and the magnitude of added inertia begins to increase. 

The roll added inertia, [ ]44
a  is much higher than in the case of the intact hull. It un-

dergoes changes similar to the coupling term[ ]24
a . 

In the roll damping characteristic there are also three regions worth attention. At the 

lowest frequency range ( 0.5Bω < ) the damping magnitude is similar to that of the in-

tact ship. Above the 0.5Bω = the roll damping decreases gradually but rises again at 

frequencies 0.6Bω > . At the frequencies below the 0.6Bω = , damping is comparable to 

that of the intact hull. At higher frequencies, dominated by the sloshing phenomena 

up to almost 1.5Bω = the damping is very large. At its peak, it is almost tenfold higher 

than maximum damping corresponding to the dry hull. At 1.5Bω >  the roll damping 

becomes negative. The phase lag characteristics shows clearly that in that range of 

frequencies there is a phase jump in the response – the roll lag exceeds -180 degrees. 

This may indicate instability of the system and such possibility cannot be disregarded 

as the recorded time series were not tested against any stability criteria. However, the 

phase jump can occur due to changes in the vortex shedding formations. Such phe-

nomena has been reported by some authors, particularly those investigating the vor-

tex-induced vibrations of the offshore structures, see for example (Bearman and 

Currie, 1979) or (Ongoren and Rockwell, 1988).  

At the high frequency range ( 1.6Bω > ), work of the dissipative forces becomes posi-

tive and this fact is a serious indication that the dissipation model based on the 
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Rayleigh dissipation function is not sufficient to describe the phenomena observed at 

the high-frequency oscillations.  

The results obtained for the flooded model show much stronger dependency of the 

hydrodynamic quantities on the roll amplitude. 

The coupling added inertia term,[ ]24
a , is most sensitive to changes in the roll ampli-

tude at the frequencies below sloshing resonance and the dependency on the motion 

amplitude diminishes gradually at higher frequencies. 

In the case of the coupling term in damping, there is an indication of small nonlin-

earities in the sloshing region but more pronounced deviations could be observed in 

the very high frequency range, where presumed change in the vortex shedding for-

mation takes place.  

Roll added inertia is affected by the change in the motion amplitude over the entire 

frequency range except the relatively narrow band around the sloshing resonance. 

The roll damping coefficient,[ ]44
b , is most notably influenced by the magnitude of 

motion in the region between the hull natural frequency and sloshing resonance. In 

the remaining part of the spectrum, impact of the amplitude on roll damping is rather 

insignificant.  
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Fig.5.21:  Roll RAO- damaged condition, amplitude 5 degrees 

 
Fig.5.22:  Roll phase lag, damaged condition, amplitude 5 degrees 
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Fig.5.23:  Sway phase with respect to the excitation, damaged condition, amplitude 5 degrees 

 
Fig.5.24:  Phase difference between sway and roll, damaged condition,  amplitude 5 degrees 
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Fig.5.25:  Elevation of axis of rotation above waterplane (solid line represents elevation of centre of gravity in 

upright position), damaged condition, amplitude 5 degrees 

 
Fig.5.26:  Drift velocity, damaged condition, amplitude 5 degrees 
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Fig.5.27:  Sway added mass[ ]22
a , 5 degrees roll, damaged condition. The solid curve represents the theoretical 

prediction (intact ship). 

 

Fig.5.28:  Damping coefficient [ ]22
b , 5 degrees roll, damaged condition 
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Fig.5.29:  Coupling added inertia coefficients [ ]24
a and[ ]42

a , 5 degrees roll, damaged condition 

 
Fig.5.30:  Coupling damping coefficients [ ]24

b and[ ]42
b , 5 degrees roll, damaged condition 
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Fig.5.31:  Added inertia coefficient [ ]44
a , 5 degrees roll, damaged condition 

 

Fig.5.32:  Damping coefficient [ ]44
b , 5 degrees roll, damaged condition 
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Fig.5.33:  Roll phase (unwrapped) in the region of significant sloshing 

 

Fig.5.34:  Impact of roll amplitude on[ ]24
a  
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Fig.5.35:  Impact of roll amplitude on[ ]24
b  

 

Fig.5.36:  Impact of roll amplitude on[ ]44
a  
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Fig.5.37:  Impact of roll amplitude on[ ]44
b  

 
Fig.5.38:  Work of dissipative forces per period per squared roll amplitude – intact hull, 5 degrees roll 
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Fig.5.39:  Work of dissipative forces per period per squared roll amplitude – flooded hull 

 
Fig.5.40:  Added inertia of the flooded hull – CFD and measured. Direct comparison to CFD is impossible be-
cause of the different configurations. Qualitatively the results demonstrate similar trends and scale. Dashed lines 
correspond to components of added inertia associated with the hull (external) and internal compartment. 
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Fig.5.41:  Roll damping of the flooded hull – CFD and measured.  
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#8

 

#7
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Fig.5.42: Sequence of video frames (numbered) showing pattern of the waves created by the flow 
through the opening at 1.69 Hz roll frequency (approximately 1 cycle) 
 

5.10  Notes on uncertainty 

The studies on uncertainty in the coupled roll-sway model have been presented in 

(Cichowicz et al., 2010). Similar assessment has been performed for the mathemati-

cal model derived in this thesis. However, due to the time-consuming symbolic op-
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erations22 the analysis was carried out only for several points. Nevertheless, since the 

both methods resulted in comparable error estimates the uncertainty assessment will 

be demonstrated with use of the simpler, 2DoF, model. 

The 2DoF mathematical model comprise coupled roll-sway equations with the as-

sumed symmetry in coupling terms, as shown below  

 
(5.23) 

The added mass and damping components were derived for oscillations about the 

natural axis of rotation with help of the following identities 

 
(5.24) 

The roll added inertia and damping have been derived with use of the orthogonal de-

composition, where sway coefficients were assumed known quantities, that is 

 

(5.25) 

where the superscript 0 denotes amplitude of the appropriate harmonic function, I is 

hull inertia about axis passing throughAandε stands for the phase lag of roll with re-

spect to excitation. 

The assessment aimed at the systematic uncertainties only and it was assumed that 

the measured variables are not correlated and therefore the total systematic error can 

be estimated with use of the following scheme (Coleman and Steele, 1999) 

                                                
22 The[.] jk obtained by means of Lagrange’s multipliers method are functions of several variables de-

rived from the pseudo-inverse matrix ( ) 1T TA AA
−

. In order to compute errors the components of the 

total differentials of these functions had to be calculated. 
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(5.26) 

where f is a functional relation between measured variablesix  , ( ).Su  denote system-

atic errors in derived quantities and measured variables; n stands for number of vari-

ables. Partial derivatives in the above formula are referred to as sensitivity coeffi-

cients.  

The results based on the errors in the measured variables obtained for roll added iner-

tia and damping are presented in the figures below 

 
Fig.5.43:  Systematic errors in roll added inertia estimate 
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Fig.5.44:  Systematic errors in roll damping estimate 

It can be readily seen in the above graphs that the biggest uncertainties can be ex-

pected at the very low and the very high frequencies. In particular, the two points at 

the lowest frequency should be disregarded as unreliable. In this case the negative 

added inertia derives from the fact that the moment of inertia of the hull was not cor-

rected to account for the location of the axis of rotation. Negative damping, in turn, is 

a consequence of the uncertainty in phase lag assessment. 

The contribution of individual components to the total error can be more systemati-

cally analysed with use of the following ratio 

 

(5.27) 

Individual contributions, expressed in terms of percentage, are presented in the fol-

lowing figures 
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Fig.5.45:  Contributions of individual components in total bias error estimated for roll added inertia coefficient 

 
Fig.5.46:  Contributions of individual components in total bias error estimated for roll damping coefficient 

There are four major contributors to the error in added inertia estimate, namely: re-

storing coefficient, external moment amplitude, roll amplitude and hull inertia. Fur-

thermore, the influence of coefficients (except the restoring coefficient) varies sig-

nificantly with the frequency. At the low-frequency range, major contributors are the 
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quantities derived from the recorded time series – the moment amplitude and the roll 

amplitude. At the high-frequency range, the error is mostly dominated by the dry hull 

inertia. 

In the case of roll damping, the picture is monochromatic – the entire error is caused 

virtually by one quantity – the phase lag, with the exception of near resonance fre-

quencies, where the moment amplitude error is playing some role (i.e. where the 

measured moment is very small and the corresponding errors large). 

As stated before, the analysis performed on several points estimated with use of the 

Lagrange’s multipliers method resulted in comparable (in terms of magnitude and 

distribution) systematic errors. However, one has to bear in mind that the matter is 

more complex when it comes to the flooded hull where the mathematical model is 

incomplete.  Therefore, the error estimates based on the simple model are underesti-

mated.   

 
Fig.5.47:  Time history of force measured by load cell, run 217, damaged condition, 5 degrees roll,

[ ]9.6379 /rad sω =  

For instance, the time history in the graph above shows that the signal (the measured 

moment to sustain motion) is not harmonic. It is a periodic function and the simple 

sinusoidal fit removes the information carried by the higher order harmonics. On the 

other hand, it is clear from the graph that when the body starts to roll away from the 

damage (just beyond the maximum of the load curve) there is some substantial (al-

though short-lasting) change in the flow characteristics. Similarly, when the hull ap-

proaches maximum roll, away from the damage (the minimum on the load curve) 

there is symmetrical variation in the induced flow. Unfortunately, although the in-
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formation is there, it cannot be easily extracted due to sampling rate insufficient for 

use of the spectral techniques.  On the other hand, the sinusoidal fitting is an averag-

ing process and therefore the data carried with higher harmonics is not completely 

lost– it results in the local trend’s variations or residuals. Obviously, such incomplete 

information is of limited use but it indicates order of magnitude of the higher-order 

effects. 
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Chapter 6 Analysis of Results 

6.1 Introductory remarks 

As discussed in the foregoing, the problem of deriving forces of hydrodynamic reac-

tion acting on a body moving in or below the free surface of the fluid is often ad-

dressed by means of the linear theory. In a consequence, motions of the body are re-

quired to be small in order to allow neglecting higher order velocity-terms. Further-

more, the linearised free-surface condition requires the radiated wave to be of small 

steepness (small amplitude to wave-length ratio). Undoubtedly, the linear models 

have many advantages – they are computationally efficient, relatively simple and 

reasonably accurate in predicting the hydrodynamic reaction of typical ship-like ob-

jects. Moreover, linearity of the models allows employing the superposition principle 

– the usual complexity of the time-domain analysis can be eased by approaching the 

problem in the frequency domain.  

Clearly, the notion of small-amplitude motions bears all the drawbacks of arbitrari-

ness. For instance, in the original Frank’s paper (Frank, 1967) it is stated that 

“[...]  the motion amplitudes and velocities are all small enough that all but the linear 

terms of the free surface condition, the kinematic boundary condition on the cylinder, 

and the Bernoulli equation may be neglected.” 

Although not particularly specific, such definition is sufficient in analytical formula-

tion, where arbitrariness can indeed be an advantage (e.g. customary assumption of 

the infinitesimal motion amplitudes).  However, when it comes to physical experi-

ments the perception of smallness is different. It is not dictated by the boundary con-

dition or a conformance with relevant mathematical formulae but determined by the 

ability to measure the requisite physical entity. It is always desirable to maintain one-

to-one correspondence between the theory and the experiment but this seldom can be 

achieved. Even if most physical constraints could be overcome, there always are pa-

rameters that could not be controlled and the quantities, which could not be directly 

measured. Finally, there is a question concerning the mathematical modelling and 
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data processing - the question of uncertainty assessment and the inherent necessity 

for reasoning on the errors that cannot be formally quantified. 

6.2 Dealing with errors - intact ship  

In the theoretical approach, the rigid body is modelled as an impenetrable to the fluid 

boundary, a surface upon which certain kinematical constraints have to hold. Hence, 

the body is a massless entity subjected to prescribed motions in the fluid domain. 

Furthermore, the velocity field resulting from the motion of the wetted surface is in-

duced in the fluid instantaneously as a series of pressure impulses, which in the limit 

become a continuous function of time. In such a configuration, neither inertia nor 

hydrostatic forces have to be accounted for, as the hydrodynamic reaction is obtained 

by means of surface integration of the hydrodynamic pressure impressed by the fluid 

upon the wetted surface of the body. In a case of harmonic motions, the derived 

forces are usually expressed by means of orthogonal components in phase with ac-

celeration and in phase with velocity in the coordinate system corresponding to the 

mean position of the wetted surface. 

Similarly, in the ‘classical’ experiment, the forces of hydrodynamic reaction are de-

rived from measurements performed on a model undergoing prescribed motions but 

the measured forces and moments to sustain the motion include the body’s inertia as 

well as hydrostatic forces, which need to be subtracted from the total load recorded. 

As the motions of the body are prescribed, the experiments on constrained body re-

semble well the configuration of the mathematical model. However, some theoretical 

assumptions must be violated during the physical tests. Firstly, the real fluid is vis-

cous and therefore energy is not only radiated from the system but it is also dissi-

pated through friction and eddy making components. It is often assumed that effects 

of water viscosity are small for small velocities of the body but again, the notion of 

"smallness" is inconveniently arbitrary. In fact, the significant deviation of the hy-

drodynamic forces derived experimentally from prediction is rather a rule than an 

exception. As demonstrated by Seah and Yeung accounting for viscosity brings the 

theoretical prediction closer to the measured values (Seah and Yeung, 2003). Similar 

results were reported by Standing in (Standing et al., 1992).  
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Nevertheless, although in principle impact of the fluid viscosity on the hydrody-

namic quantities is obvious, the question of the accuracy of the prediction is still 

open particularly in the case of smooth bodies.  Specifically, the experiments by 

Vugts indicate relatively strong dependency of roll hydrodynamic coefficients on the 

amplitude of motion whereas the present measurements show much lesser sensitivity 

to increase in the motion amplitude, at least in the case of the intact ship. Similarly, 

experiments by Ikeda and Standing show that the viscous roll damping can be accu-

rately predicted for sections fitted with bilge keels or sharp corners but Standing’s 

prediction fails in case of the round-cornered sections without bilge keels. It is 

unlikely that a simple and straightforward explanation could be given to these dis-

crepancies but it is possible that in the case of smooth, lightly damped bodies, the 

viscous effects are strongly influenced by the system configuration, i.e. presence of 

physical constraints.  

In forced sway, the model is allowed to move only in the calm-water plane with the 

roll constrained. In such configuration, the measurements of the lateral force and the 

moment to maintain the constraint are sufficient for deriving sway coefficients( )22
.

and coupling coefficients of sway into roll( )42
. . 

In forced roll, the model undergoes prescribed rotations about a fixed axis – in this 

case, sway is the constrained motion. This configurations allows deriving roll,( )44
. , 

and roll into sway,( )24
. coefficients. Intuitively, if the body is a symmetrical cylinder 

the symmetry in coupling terms should also be maintained. Furthermore, in both 

cases the presence of the constraint results single degree of freedom oscillations. 

In the case of the measurements on the floating cylinder, the oscillations take place 

about the natural, variable, axis of rotation. There is no physical constraint present in 

the system and apparently the body has two (if heave can be neglected) degrees of 

freedom. Yet, as shown in the foregoing, effectively the system is also a single de-

gree of freedom oscillator. That is because in the investigated case sway and roll 

could be linked by means of the identityy OAϕ= . The finite relationship between the 

coordinates forms a holonomic constraint and therefore it reduces number of degrees 

of freedom. However, during the forced roll about the fixed axis the constraint is no 
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longer y OAϕ=  but 0y = . These two systems are not mechanically equivalent, as 

maintaining of the different constraints requires different forces.  

Furthermore, there is a principal difference between numerical and physical experi-

ments. Namely, in the former case, the system comprises of a fluid domain bounded 

(entirely or partially) by a set of surfaces and the wetted surface of the body is just 

one of the boundaries. The velocity field inside the fluid domain is determined by the 

physical properties of the fluid and the kinematical conditions imposed upon bounda-

ries. The resultant hydrodynamic reaction must fulfil not only the boundary condition 

on the wetted surface but also the “global” condition that 0y = . In the linear theory 

approach, where the flow separation cannot occur but the amplitudes are finite, the 

constraint may lead to local singularities in the boundary condition on the wetted sur-

face. In fact the integrability issues are inherent to the linear approach and a variant 

of such the problem was addressed by Frank23, who discussed the presence of dis-

crete ‘eigenfrequencies’ in certain formulations of 2D and 3D potential problems, for 

which Green’s equations would fail to provide unique solutions. Although such the 

problem did not have to be caused by the boundary condition on the free surface 

alone, one can speculate that in some cases the constraint, or rather the forces to 

maintain the constraint may be a factor determining the flow around the wetted sur-

face. Subsequently, the constraint may cause significant “deformations” in the pre-

dicted hydrodynamic quantities. 

In the physical system the flow separation can occur hence, maintaining of the con-

straint may lead to the local flow conditions resulting in the flow separation, which 

might not happen if the constraint were different. Noticeably, the fixed-axis experi-

ments discussed in the Chapter 4 show clearly that measurements are in good agree-

ment with the theory where the system characteristics is “bold”, i.e. for small B/T 

ratios, for sharp-rounded hulls or for the models fitted with bilge keels. In virtually 

all other configurations, large discrepancies occur and these differences are not only 

due to an inaccuracy of the measurements. 

                                                
23 Frank reported the problem after (John, 1950). He concluded that in case of slender bodies the prob-

lem is practically irrelevant. 
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In experiments on the floating body there are no constraints imposed on the system. 

The system has six degrees of freedom, but only three of these need to be considered. 

That is, the excitation – a pure moment - does not produce surge, pitch and yaw of 

the cylinder. Furthermore, sinkage resulting from small roll angles did not exceed 1 

mm and the heave motion could be neglected. The sway motion is a consequence of 

rolling about the axis lying above the calm-water plane. However, as shown earlier 

there is a conceptual constraint imposed on the system, apparently identical to that of 

rolling about a fixed axis of rotation:y OAϕ= . The constraint is not physical – we 

simply assume that since there is no excitation in the lateral plane sway is caused by 

the roll motion. Therefore, since the coupling into heave can be neglected, the system 

can be considered as having two degrees of freedom – sway and roll. However, es-

tablishing functional relation between sway and roll makes the system a single-

degree-of-freedom oscillator. The constraint is not violated by large amount because 

it would require large forces although it does not hold exactly - when the phase dif-

ference between the roll and sway motion increases the sway motion becomes more 

“independent” and the sway coefficients start to play some role. The system still has 

single degree of freedom but the conditiony OAϕ=  describes the relationship between 

roll and sway inaccurately.  

The amplitude of sway varies with the frequency of oscillations and it is that the 

identity OA OG= holds at low frequencies. However, maintaining that condition 

would require an additional force as it changes the natural path along which the mo-

tion would be realised in the configuration space. Instead, the elevation of the axis of 

rotation changes – a striking example of the principle of least action.  

There can be another constraint imposed on the system – the assumed symmetry of

( )24
. and( )42

. coefficients. The first question is whether such information can be ac-

quired from the forced roll experiments performed on the floating body. The question 

is valid as it determines the form of equations of motion. The second question is 

whether assuming the symmetry is appropriate to describe the mechanical system in 

question. Eventually, the constraint has been dropped – it has been postulated that 

such information cannot be derived without performing additional sway experiments. 

It has been reasoned – based on comparison of roll added inertia and damping coeffi-
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cients – that the symmetry assumption resulted in an unrealistic prediction of these 

two coefficients.  

In any case, there is a certain ambiguity in experimentally derived hydrodynamic. 

This derives directly from the fact that the axis of rotation does not lie in the calm-

water plane. From the point of view of the rigid-body configuration, it does not really 

matter how we describe the motion – whether it is translation of the body-fixed ori-

gin followed by a rotation about that point, or whether it is pure rotation about some 

elevated axis of rotation. However, since sway motion results from roll and both mo-

tions are practically in phase - how to distinguish between components in phase with 

lateral and angular accelerations?  

In his report, Vugts provided the equations he employed for deriving the estimates of 

hydrodynamic coefficients for rolling about a fixed axis passing through the centre of 

gravity of the model - OG . In particular the22a and 24a were given as 

 

(6.1) ( )
24 222

c
·

ososc YY
a OG a

ε
ω ϕ

= − −  

where oscaY stands for amplitude of the horizontal force,Yε is phase angle between the 

force and sway,y and aϕ denote amplitude of sway and roll, respectively. 

Resolving both equations for ( )
2

cososca YY ε
ω

− and combining the expressions yields in 

the following 

 (6.2) 

However, when the cylinder oscillates about the fixed axis of rotation the expression

OG
y

ϕ
 

− 
 

vanishes and hence the coupling term cannot depend on the 22a coefficient.  

( )
22 2

cososc YY
a m

y

ε
ω

= − −

22 24OG
y y

a a m
ϕ ϕ
 

− − = 
 
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Regarding the axis of rotation, Balcer showed in his paper (Balcer, 2004) that the 

vertical position of the axis of rotation above the calm-water surface is in the case of 

two degrees of freedom given as 

 (6.3) 

However, taking the experimental results forOAand[ ]24
a , and solving the equation for

22a resulted approximately in22a m≈ . Therefore, it is proposed to modify the formula, 

so the following holds (for a cylinder rolling in undisturbed free surface) 

 
(6.4) 

In this case, the following should hold, at least for small roll angles 

 (6.5) 

Obviously, the modification to the Balcer’s equation was arbitrary and should not be 

generalised but it shows the physical significance of the[ ]24
a . That is, it shows that 

the axis of rotation was completely determined by the coupling term[ ]24
a and the 

model’s mass distribution.  

[ ] ( )24
2 2a m m

y
OG OA OG

ϕ
 

= − −=  
 

24

22

mOG a
OA

m a

−=
+

[ ] [ ]24 241

2 2

mOG a a
OA OG

m m

 −
= = −  

 
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Fig.6.1:  Coupling term 24a estimated by Lagrange’s 

multipliers method and derived from (6.5) – denoted by 

asterix (*). Intact condition-top, damaged-bottom, 5 

degrees roll. 

Fig.6.2:  Observed elevation of axis of rotation and 

derived from (6.4) – denoted by asterix (*). Intact 

condition-top, damaged-bottom, 5 degrees roll. 

  

Interestingly, the original formula presented by Balcer gives the correct prediction 

when applied to the results obtained with the presumed symmetry in coupling coeffi-

cients but with [ ]22a  zero.  

6.3 Key findings 

The key findings (valid in the particular case tested) could be summarised as follows: 

• The system, i.e. the unconstrained cylindrical body forced to roll in the undis-

turbed free surface, is a single degree of freedom oscillator. This is a conse-

quence of the holonomic constrainty OAϕ= . 

• The roll motion is practically unaffected by sway coefficients( )22
. and( )42

. .  

• The cylinder is rolling about the natural axis of rotation lying in distanceOA

above the calm-water plane.  

• Elevation of natural the axis of rotation,OA, is completely determined by the 

coupling term of added inertia,[ ]24
a , mass of the cylinder and vertical position 

of its centre of gravityOG . There is no indication that damping has any im-

pact on the roll axis, although this may not necessarily hold in principle. Ele-

vation of the axis is a function of frequency. It may be dependent on motion 
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amplitude (although there is no such evidence) if dependency on amplitude is 

observed in[ ]24
a . 

• The damping term in coupling of roll-into-sway,[ ]24
b  determines the phase 

difference between roll and sway. When the damping is low, the lateral com-

ponent of the hydrodynamic reaction is completely determined by terms in 

phase with roll acceleration and velocity. As damping increases, correction 

terms appear in phase with sway acceleration and velocity. These corrective 

terms are of much smaller magnitude than the predicted( )22
. and( )42

. terms. 

• The question of symmetry of coupling terms cannot be answered without 

dedicated sway experiments 

6.4 Dealing with Errors - Damaged Ship 

It is apparent that the above conclusions should, in principle, hold also in the case of 

the flooded cylinder. Nevertheless, the measurements on the flooded cylinder pro-

vided some interesting observations, as briefed below.  

Firstly, the asymmetry in a pressure distribution due to the presence of the damage 

opening causes significant drift at some, relatively broad, frequency range.  

The damping characteristics become bimodal. At the lower frequency range, it is 

dominated by the ‘hull dynamics’. As the frequency increases towards the first natu-

ral frequency of sloshing the damping increases dramatically – its magnitude is about 

ten-fold larger than the maximum observed at low frequencies. Subsequently, the 

increase in motion amplitude (RAO) is almost negligible. Furthermore, the hydrody-

namic coefficients exhibit a slight nonlinearity although the nonlinear behaviour is 

somehow smaller than expected. 

As in the intact condition, the system has a single degree of freedom, but the impact 

of sway is much more pronounced, particularly at sloshing resonance and higher fre-

quencies. This is a consequence of a much larger coupling term in damping and cor-

responding phase difference between roll and sway. 
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Most importantly, the flow viscosity starts to play significant role, particularly during 

the high-frequency oscillations. At 1.5Bω > work of dissipative forces is positive – en-

ergy in the system increases. This is because damping in the principal mode of mo-

tion – roll – becomes negative and the increase in the coupling term is insufficient to 

maintain the balance. The mathematical model used to derive the coefficients as-

sumed that the dissipative force is a linear form of velocity (Rayleigh’s dissipation 

function in mechanical system or the symmetric part of the velocity gradient tensor 

in viscous flow formulation). Clearly, such a description is insufficient – the energy 

dissipation function must involve higher order terms. Furthermore, the phase jump in 

both roll and sway observed at this frequency indicates that an abrupt change in the 

mechanism of vortex shedding must have taken place.  

However, it has been concluded that this complex phenomena cannot be fully inves-

tigated by the adopted research methodology. Some information, although present in 

the recordings, could not be retrieved from the recorded signals because of the insuf-

ficient sampling rate but some quantities were not measured at all (e.g. waves pat-

terns). On the other hand, the complexity of observed phenomena requires much 

more systematic studies, where scale of individual facts could be properly assessed. 

In the case of the damaged ship, there are many factors to be taken into account – 

such as shape, size and configuration of the opening and the flooded compartment, 

an effect of end conditions or mass properties of the model. Furthermore, some fun-

damental questions cannot be answered without performing of a dedicated forced 

sway experiment. 

It has been anticipated that behaviour of a damaged ship must deviate significantly 

from that observed in the intact condition. This has been confirmed by the measure-

ments but on the other hand, there is very little overlap in what was expected and 

what was observed. In particular, the observed scale of nonlinearity did not meet the 

anticipation – before commencing the experiments, it was thought that sloshing 

might have some very significant impact on the roll response. It clearly has but it ap-

pears that the impact of higher-order effects was diminished to some extent by the 

sloshing-induced drift. 



119 

 

Furthermore, it had been expected that the asymmetry of the model (e.g. large open-

ing) would result in a strong non-harmonic response. Indeed, as discussed in the pre-

vious chapter, the measured moment to sustain motion was periodic but not harmonic 

at some frequencies but the deviations from the single-frequency response assump-

tion were relatively small. Nevertheless, the time histories contain valuable informa-

tion about instantaneous changes in the flow pattern. In the course of data post-

processing, the information is lost but if the sampling frequency were higher, the data 

could provide high-quality figures for studying the complex nature of the flow. This 

could be particularly useful while comparing the experimental results with CFD pre-

diction and therefore the issue of sampling frequency should be taken into account in 

future studies. 
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Chapter 7 Conclusions and future work 

7.1 Summary 

The present research shows significant discrepancies between the linear theory pre-

diction and measurements in roll hydrodynamics but similar discrepancies are dem-

onstrated by another experimental works. An attempt could be made to calculate the 

viscous corrections but it is unlikely that corrective terms, would bridge the gap. Ob-

viously, there is a possibility that neglecting the viscous effects combined with the 

measurements error results in these substantial differences. However, the results are 

very consistent and therefore the differences would have to occur due to some sys-

tematic error. On the other hand, similar discrepancies are experienced in the most 

experimental works on roll hydrodynamics, thus it might be that the linear theory is 

deficient. Alternatively, it could be that the theoretical and experimental problems 

are different, or, as put by professor Pawłowski in private discussion 

“[...]  in my opinion, the linear approach is consistent with reality as long as we do 

not make conceptual errors in its application” 

Hence, assuming that the linear theory is consistent with reality what are those con-

ceptual errors? 

The research behind this thesis cannot provide answer to this question. It can only 

indicate possible sources of discrepancies.  

Firstly, in the analytical approach, we consider individual modes of motion sepa-

rately – the wetted surface is subjected to a single mode oscillations. Such configura-

tion is usually reproduced during the fixed-axis oscillations. Nevertheless, from the 

perspective of a floating body the configuration is artificial. A cylinder (to stay in the 

realm of two dimensions) of an arbitrary cross-section and an arbitrary centre of 

gravity will not realise the single mode oscillations. In the case studied here there 

were two modes of oscillations – sway and roll. It was demonstrated that from the 

mechanical perspective the oscillations were of single degree of freedom as the sway 

motion was completely determined by roll. The system was kinematically con-
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strained and it was stated that the forces necessary to maintain the constraint are 

strong. In the investigated system, the only strong forces are inertia and restoring, 

both dependent on the mass distribution. The present research and the CFD studies 

(Gao et al., 2011a) indicate that in the unconstrained motion the hydrodynamic ef-

fects have different scale than in oscillations about the fixed axis. It would be specu-

lative to judge to what extent these discrepancies are caused by the viscous effects 

but it is worth considering whether the strong nonlinearities reported in some ex-

periments are not caused by the physical constraints resulting from the fixed axis of 

rotation. In fact, Ikeda carried out some of its experiments on vertical cylinders to 

minimise the impact of restoring and buoyancy on measurements. 

Finally there is an interesting question concerning the tensor character of the added 

inertia and damping matrices as discussed in (Sadeghi and Incecik, 2005). Sadeghi 

and Incecik considered the6 6× added inertia and damping matrices as partitioned ma-

trices comprising of 3 3× block. They tested characters of the these blocks and con-

cluded that some of them transformed like tensors, some like pseudotensors and 

some were just matrices. However, when the problem is reduced to the natural con-

figuration of the sway-heave-roll (as in the present research) the3 3× matrices in the 

equation of motion are second-order tensors. This follows directly from the quotient 

rule. Therefore, in the natural configuration the equations of motion are invariant un-

der coordinate transformation. They hold in any frame of reference. It is noteworthy 

that after the heave motion was neglected, the system became a single degree of 

freedom oscillator. The single equation of motion was again expressed terms of ten-

sor quantities. These simple facts are additional indication that the configuration of a 

system is very important. Irrespective of whether the system is subjected to the 

physical tests or to the analytical treatment, departing from the natural configuration 

introduce a risk that the measurements and the theory will diverge. The research pre-

sented here was also an adventure that started in a strong desire to find similarities in 

the experiment and the theoretical prediction but it happened that: 

 “[...] he expected to find Piglet warming his toes in front of his fire, but to his sur-

prise he saw that the door was open, and the more he looked inside the more Piglet 

wasn’t there.” (A.A. Milne: The House at Pooh Corner) 
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7.2 Conclusions 

All the objectives have been met. In particular: 

• The gyroscopic roll generator proved to be readily controllable device pro-

ducing pure, virtually harmonic, roll moment. The initial problems with stiff-

ness of the apparatus required only minor amendments following which the 

device performed very well within entire range of loads. 

• The measurements were very difficult with particular problems concerning 

uncertainty in the phase angle estimation (caused by a random time latency of 

the motion capture system). This has been resolved by employing of an ac-

celerometer as a reference for phase lag derivation. 

Results of the final stage of measurements can be summarised as follows 

• In the tested configuration, the measured hydrodynamic reaction (particularly 

damping) was very small which resulted in the relatively large uncertainties. 

• Although it was anticipated that viscous effects might play significant role the 

experimentally derived coefficients exhibit weak dependency on roll ampli-

tude (within the tested range).  

• Results obtained for the flooded cylinder indicate rapid change in the vortex-

shedding pattern observed at high frequencies where the phase jump occurs 

and the mathematical model inappropriately points to the negative work of 

dissipative forces. 

• During the damaged ship measurements, significant drift of the model is ob-

served at frequencies in proximity of the sloshing resonance. Impact of the 

drift on the hydrodynamic reaction cannot be easily assessed but it is pre-

sumed that it might be significant if tests are performed on a constrained 

model. 

• The differences between theory and experiment are not easily explainable but 

there is an indication that the difference may be due to the system configura-

tion in theoretical treatment and during the experiments. In principle, during 

physical tests a floating body oscillates about the ‘natural’ axis of rotation. 

Elevation of the axis varies with frequency and is determined by the position 
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of the centre of gravity of the body and coupling term (roll into sway) in the 

added inertia. Therefore, in ‘natural’ configuration body cannot oscillate 

about ‘theoretical’ axis lying in the calm-water plane without imposing addi-

tional constraints. 

• Results show clearly that the tested model was a single degree of freedom os-

cillator. Entire sway contribution is rendered by the coupling coefficients of 

roll-into-sway. 

 

7.3 Future work 

The systematic research involving both CFD and experimental techniques is needed 

to address points raised in this thesis. In particular: 

• Experiments should be performed on constrained and unconstrained model 

• Roll experiments should be supplemented with forced sway measurements 

• Experiments should be performed on cylinders of distinct shapes 

• Study on viscous effects require broader range of roll amplitudes 

• Effect of bilge keels should be investigated on an unconstrained body 

• Experiments in flooded condition should allow testing in various configura-

tions (geometries) of  the flooded compartments and should involve varia-

tions in opening size 

• Direct comparison with theory is possible only when configuration of the 

system is preserved by both methods. For that reason the vertical centre of 

gravity of the model should be adjusted in order to perform oscillations about 

axis lying in the calm-water plane 
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Appendix A Forcing mechanism 

A.1 Design 

An idea of using gyroscope to generate (or to counteract to) rolling moment is 

not entirely new. Such a device was built and successfully run at British Maritime 

Technology Ltd. during 1980’s (Spouge et al., 1986) to carry out the experiments 

with large amplitude roll in calm water. The gyroscopic devices are also in use at the 

Vienna Model Basin (SVA) in Austria and at the MARIN in Netherlands. 

 A principal advantage of using gyroscopic roll generators for calm water tests 

is that the model can be oscillated by an internal device. Among the others, this fea-

ture allows the model to oscillate around “natural” (determined by hull geometry and 

its hydrodynamic characteristic) axis of rotation24 (Balcer, 2004), which is of utmost 

importance if unsteady states or dynamics of systems with time-varying configura-

tion (e.g. ship subjected to progressive flooding) are to be investigated. 

 Major downside of gyro-based forcing apparatus is that it, principally, allows 

generating only single degree of freedom angular oscillations. Furthermore, setting 

desired amplitude of motions involves usually “trial and error” approach. Neverthe-

less, performing measurements on freely floating body offers great opportunity to 

study dynamics of rolling motion of damaged ship in the most natural conditions and 

this seem to overrule other drawbacks of the approach.  

A.1.1 Mechanical principles 

The mechanical principles of the gyroscopic roll generator are very simple. They are 

based on a well-known fact that if the direction of the spin axis (of an axially- sym-

metrical body) is being changed (so-called torque induced precession) a reaction 

                                                
24 It is thought that constraining the model may introduce various changes to the flow around the body 

of difficult to assess impact on hydrodynamics. This is particularly important during large amplitude 

motions or in a case of a flooded body.   
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force (moment) will be induced. The reaction is proportional to the rate of change of 

the angular momentum (caused by the angular displacement of the spin axis). 

Schematic picture of the two-axis gyro is presented in the figure A.1.1. 

 

Fig. A.1.1: Coordinate frames used to derive equations of motion. 

 

A rotor of the gyroscope is pivoted in the inner gimbal, which in turn is allowed for 

an angular displacement within the outer gimbal. For convenience, equations of mo-

tion of the system are usually expressed with use of three distinct co-ordinate frames, 

as shown in the figure A.1.1. 

 

Fig. A.1.2: Free-body diagram for system r(otor)+[inner]g(imbal). 
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The system can be decomposed on two subsystems: first comprising the rotor and the 

inner gimbal and the second made up of the rotor and both gimbals25. Free-body dia-

grams of these sub-systems are shown below 

 

Fig. A.1.3: Free-body diagram of the system r+g+o(uter gimbal). 

Angular velocities of the gimbals can be conveniently expressed as 

 
(A.1.1) 

where α denotes inner subsystem (rotor+inner gimbal), r denotes rotor, and β refers 

to the outer frame. 

Inertial forces of the system components can be expressed by means of a vector 

equations 

 

 

(A.1.2)  

 

where denote inertial moments, stands for angular momentum, r, g and o de-

note rotor, inner system (rotor+inner gimbal) and outer (r+g+o) system respectively. 

                                                
25 More detailed derivation of the mathematical model can be found in (Cannon, 1967).  
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Greek indices above the symbols of angular momentum ( ) indicate time deriva-

tives computed with respect to appropriate reference frames. 

With the help of figure A.1.1 equations of equilibrium for the inner and outer gimbals 

can be defined as 

 

(A.1.3) 
 

Time derivatives of the angular momentum in the rotating frames of refernce are 

given as 

 

(A.1.4)  

 

The vector products can be expanded as 

 

(A.1.5) 
 

 

where J denotes mass moment of inertia of the rotor (r), inner gimbal (g) and outer 

gimbal (hull) (o) with respect to appropriate axes (subscript indices). 

The above equations can be further simplified with help of the following identities 

 (A.1.6) 

where h stands for constant “spin” momentum of the rotor. 

L

( ) ( )
:

0 r g o
i i i c

ZZ

for system r g o+ +

= = + + +∑M M M M M

( ) ( )sin cos cos sing g g g
x x y y z zJ J J

α
ψ θ ψθ θ θ ψ θ ψθ θ= − − + + −L e e eɺ ɺɺ ɺɺɺ ɺ ɺɺ ɺ

o o
Z ZJ

β
ψ=L eɺɺ

( ) ( ) ( )2cos sin cos sing g g g g g g
z y x z x y x y zJ J J J J Jα ψθ θ ψ θ θ ψθ θ× = − + − + −Ω L e e eɺ ɺɺ ɺ ɺ

oβ × =Ω L 0

( ) ( )
:

0 r g
i i b

yy

for system r g+

= = + +∑M M M M

( ) ( )sin cos cos sinr r r r
x x y y z zJ J J

α
ψ θ ψθ θ θ ψ θ ψθ θ= − − + + −L e e eɺ ɺɺ ɺɺɺ ɺ ɺɺ ɺ

( ) ( )( )
( )( )

2cos sin cos cos

sin

r r r r r r
z y x z x x y

r r r
x y x z

J J J J J n

J J J n

α ψθ θ ψ θ θ ψ θ

ψθ θ θ

× = − + − + +

+ − −

Ω L e e

e

ɺɺ ɺ ɺ

ɺ ɺɺ

D D D D
r g r g r g r

x x x y y x z z z xJ J J J J J J J J J n h+ = + = + = ⋅ =



135 

 

Equations (A.1.4), (A.1.5) and (A.1.6) can be substituted into (A.1.3), which leads to 

the set of two scalar equations 

 
(A.1.7) 

 

The above equations determine configuration of the gyroscopic mechanism for 

forced roll experiments. That is, the gyroscope should be fitted to the hull model with 

the OZ axis parallel to the roll axis. The outer gimbal should be rigidly connected to 

the model while the inner gimbal should be displaced with the torque Mb (about OY 

axis). Thus, given that there is no external moment applied about axis OZ (Mc=0), the 

second equation of the (A.1.7) could be rewritten in the form 

 (A.1.8) 

The RHS of the above equation represents the (“external”) rolling moment and the 

LHS corresponds to hull response26. 

However, careful investigation of the equations (A.1.4) and (A.1.5) reveals that sin-

gle gyroscope would also produce a moment component about the OX axis. In order 

to cancel this undesired coupling second gyroscope of the same inertia parameters 

has to be fitted to the model – its rotor’s precession and spin equal in magnitude but 

opposite in direction to the precession and spin of the first gyroscope. The rolling 

moment produced by the coupled gyroscopes with kinematical constrain in ψ is 

given as 

 (A.1.9) 

The kinematic constrain imposed on the system is valid only for conditions of sta-

tionary calibration, and therefore during actual rolling the quadratic and double27 an-

                                                
26 This equation describes motion of the pivoted hull rolling about OZ axis. In the case of single DoF 

oscillations of a floating body it should be supplemented with corresponding added inertia, damping 

and restoring forces. 
27 Products  
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gle harmonic terms in the equation (A.1.7) would be present. Their impact on actual 

forcing moment can be assessed as shown in the following section. 

A.1.2 Design 

The design objectives had been primarily pre-defined by the fact that the existing 

model was to be used in the experiment. Total displacement of the model was about 

150 kg at the hull mass of about 50 kg. This limited maximum mass of the device to 

about 50 kg (the reserve of 50kg was necessary to accommodate for the floodwater 

inside the flooded compartment). The mechanism was required to generate the roll-

ing moment (at roll amplitude 2 degrees) within 0.1-5 Hz28 frequency range. The 

maximum rotors’ speed should not exceed 10 000 rpm.  

 

 

Fig. A.1.4:  Design concept 

 

The calculations based on the predicted hydrodynamic and hydrostatic properties of 

the model indicated that two rotors of mass 5kg each and spinning at rate of 7 000 

rpm should generate sufficient momentum to maintain the required roll amplitude at 

                                                
28 Upper boundary used for strength calculations not for an actual rolling experiment. 
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the lowest frequency. For safety reasons rotors it was decided to enclose rotors in the 

thick-walled aluminium casings. 

In order to maintain equal precession of the gimbals a synchronous belt transmission 

driven by one DC motor was used. In order to reduce mass of the device it was de-

cided not to use any additional reduction gearbox at the motor shaft and therefore 

gear ratio had been determined by the size of timing pulleys (~1:4)29. 

The rotors were directly driven by small, high speed (7000 rpm at 100V), DC mo-

tors. Power feed and control signals were transmitted to motors through the low-

noise slip rings with gold-on-gold contacts. 

Transmission and gimbals bearing housings were fitted to the side plates of the 

bolted aluminium case (frame). 

The assembled device had maximum dimensions of 680x340x220 mm (these include 

transmission and slip rings). Mass of the generator did not exceed 50 kg. 

Special attention was paid to the fitting of the device to the model – in order to 

minimise possibility of lateral loads on the load-cell the gyro was pivoted on a sepa-

rate frame (with bearings axis lying in the centre-plane of the model) with rotation 

about the pivoting axis constrained by the transducer. The frame was then fixed to 

the top of the model. Another advantage of the pivoting was that it allowed for some 

adjustments in the vertical position of centre of gravity of the model – the mecha-

nism could be fixed to either side of the frame and therefore about 1/3 of the model 

mass can be easily moved by about 60 mm in a vertical direction. 

Gimbals and rotors were design in a way ensuring negligible contribution of quad-

ratic and double angle harmonic terms to the generated moment (see equation 

(A.1.7)). The estimates show that the magnitude of the periodic inertia variations was 

about 0.006 and 0.013 kgm2 for the quadratic and double-angle terms respectively 

                                                
29 At later stages, the low-speed DC motor has been replaced with digitally controlled AC motor fitted 

with 1:10 mechanical gearbox. 
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(calculated about the axes of precession)30. This corresponds to about 0.06 and 

0.12% of the dry hull inertia. Therefore, it can be assumed that impact of the instan-

taneous changes of inertia is negligible.  

A.1.3 Operational aspects 

The first runs of the mechanism showed that the device was easy to set and control-

lable. Nevertheless, the deployment phase exposed number of problems that could be 

split into two categories: mechanical and control-related. Mechanically, the gyro-

scope’s case proved to be insufficiently stiff and its twisting could be observed even 

at moderate loads. Furthermore, use of single torque arm fitted on the pivoting shaft 

led to a damage of the keyway connection. The problems were resolved by reinforc-

ing middle part of the case frame and fitting a torque arm made of thick L-shaped 

plate fixed to the side of the case at the reinforcing rib. 

The control related problems had serious operational implications. Most importantly, 

the drives for the high speed motors recommended by the motors’ manufacturer al-

lowed for running them with only 70% of nominal speed (4900 instead of 7000 rpm) 

reducing output moment at the lowest (and most crucial) frequencies from expected 

7.4 to 5.2 Nm. 

Furthermore, the controllers did not perform well at higher gain settings. It was very 

difficult to tune (synchronise) the gyroscopes (in terms of gain-current couple set-

tings needed to attain the same acceleration-deceleration pattern at dynamic load 

changes). Eventually it was decided to use the maximum safe settings for gain but 

“by-pass” the controllers and use the power supplies31 in order to set the voltage and 

to control the speed adjustment dynamics. 

                                                
30 Although gyroscopes are balanced, during gimbals’ rotation (precession) the mass distribution of 

the hull with fitted gyroscopes changes. This produces time variations of the total inertia about roll 

axis.  
31 The drives kept tripping the motors while accelerating at the high gain/current settings. This often 

led to some potentially dangerous situations with model suddenly forced to conical motion (roll in-

phase with yaw).  
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Another difficulty related to high-speed motors was the lack of control dynamics in 

the feedback loop observable particularly at lower speeds. This can be solely en-

dorsed to the fact that Hall sensors instead of digital encoders were used for speed 

feedback.  

Low-speed motor (driving synchronous transmission) worked generally very well, 

except predictable difficulties while running at very low speeds. However, bearing in 

mind that target minimal roll frequency corresponds to 0.1 Hz, it requires, at gear 

ratio 1:4, the motor to run with 24 rpm. During high frequency runs, the only ob-

served issue was acoustic noise of the transmission. Nevertheless, due to winding 

damage, the low-speed motor had to be replaced with an AC motor fitted with the 

1:10 mechanical gearbox (the results presented here are obtained with use of this mo-

tor). This undesired change in the configuration resulted in much better operability of 

the device over the whole frequency range.  

The single point force measurement proved to be one of the most reliable compo-

nents. The force measurements were performed with use of a simple 500lb strain 

transducer calibrated over entire range. It is assumed that due to plain construction of 

the gauge the readings were satisfactorily precise and unaffected by transducer’s own 

inertia and damping. 

 
Fig. A.1.5: Characteristics of the forcing mechanism obtained for rotors’ spin within range 500-4000 rpm with 
500 rpm step. 

                                                                                                                                     

The by-passing (the term is used here colloquially) of controllers means that drives’ output current 

was limited by the supply output. This temporary solution worked well and such arrangement pre-

vented accidental overloads and subsequent unintentional tripping of the motors. 
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A.2 Construction 
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Note: the part manufactured of brass not aluminium as in the drawing.  
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Appendix B Results summary 

 

 

 

  

Frequency  Moment ampl. Moment phase  Roll ampl.  Roll phase  Sway ampl.  Sway phase  Drift

Run name [rad/s] [Nm] [deg] [deg] [deg] [mm] [deg] [mm/s]

Run21 6.0049 8.5559 276.1963 2.0604 99.473 1.8667 87.1666 -0.3712

Run23 4.1236 0.5311 120.2816 3.1971 -42.3 3.4982 -50.9887 0.646

Run24 3.6656 1.5633 -7.1666 2.6524 -9.6271 3.1471 -9.8798 0.0087

Run26 7.4375 16.5065 1063.0464 2.0227 884.4209 1.6611 877.7362 0.228

Run27 8.0476 24.2383 232.8645 2.3741 54.1825 2.073 52.2858 0.6412

Run30 10.6458 39.8077 146.8878 1.9152 -32.5304 1.4985 -29.6223 -0.0391

Run31 10.6431 39.8263 210.2713 1.9429 30.6819 1.2427 40.3092 0.0078

Run35 8.3099 25.0593 128.9789 2.2663 -49.5642 2.0182 -51.1932 0.1565

Run36 8.4547 25.5953 122.485 2.2103 -56.2631 1.9657 -56.7854 0.0017

Run37 7.2786 16.4308 210.6466 2.1558 32.3829 2.0154 26.8907 0.0186

Run38 7.2809 16.4167 306.5093 2.1414 128.5207 2.0539 123.1893 0.153

Run39 2.1808 6.1806 -168.4813 2.5311 -168.3983 2.9019 -167.1329 -0.027

Run45 5.4712 5.8162 126.3054 2.0401 -50.0651 2.2929 -60.6284 0.0399

Run46 5.4669 5.8244 308.2113 2.0219 131.5566 2.2621 122.8626 -0.0587

Run48 5.3834 5.4619 250.2858 2.0281 74.5024 1.959 66.6394 0.0685

Run50 5.18 4.6401 34.046 2.0894 -141.301 2.0212 -150.2524 0.0508

Run52 4.8118 3.3744 42.7634 2.3384 -132.6366 2.7366 -140.3603 0.0044

Intact, 2 deg, symmetric coefficients

[a22] [a24] [a42] [a44] [b22] [b24] [b42] [b44] Dissipation work

[kg] [kg.m] [kg.m] [kg.m^2] [kg/s] [kg.m/s] [kg.m/s] [kg.m^2/s] [J]

-0.622 1.8 1.8 1.2168 -0.5568 -10.3467 -10.3467 3.3362 -0.0558

-0.2486 0.0188 0.0188 1.2452 -0.4073 -6.0869 -6.0869 1.4712 -0.0288

-0.0696 -0.9329 -0.9329 1.2916 -0.0135 -0.1714 -0.1714 0.4189 -0.0098

-0.1577 2.4012 2.4012 1.2057 -0.2966 -6.3674 -6.3674 2.0969 -0.0437

0.0603 1.8783 1.8783 1.3397 -0.1089 -2.0849 -2.0849 1.8798 -0.0725

0.0279 2.7 2.7 1.4876 0.1681 3.7897 3.7897 0.7969 -0.0425

-0.5182 4.0748 4.0748 1.2338 0.3701 10.1808 10.1808 0.0545 -0.0304

0.059 1.7215 1.7215 1.3163 -0.1034 -1.8853 -1.8853 2.1322 -0.0792

0.0815 1.7281 1.7281 1.3311 -0.036 -0.6143 -0.6143 1.7773 -0.0678

-0.1577 1.3693 1.3693 1.2487 -0.3186 -5.8282 -5.8282 2.4404 -0.0589

-0.1679 1.1509 1.1509 1.3122 -0.3217 -5.8059 -5.8059 2.7491 -0.0675

-0.0394 -0.5733 -0.5733 0.0375 0.0329 0.4938 0.4938 -0.158 0.0012

-0.6901 -0.1624 -0.1624 1.3681 -0.6502 -10.0416 -10.0416 3.167 -0.0412

-0.4732 -0.1852 -0.1852 1.4539 -0.5366 -8.2468 -8.2468 2.8127 -0.0378

-0.2134 1.1365 1.1365 1.297 -0.3569 -6.3628 -6.3628 2.8047 -0.0446

-0.2655 1.1507 1.1507 1.2332 -0.3911 -6.9714 -6.9714 2.757 -0.0431

-0.3568 -0.674 -0.674 1.4066 -0.457 -6.7534 -6.7534 2.2776 -0.0347
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Frequency  Moment ampl. Moment phase  Roll ampl.  Roll phase  Sway ampl.  Sway phase  Drift

Run name [rad/s] [Nm] [deg] [deg] [deg] [mm] [deg] [mm/s]

Run98 8.0737 43.9378 215.8886 4.3263 37.003 3.7605 34.2842 0.1851

Run96 7.5076 38.8023 261.2656 4.6602 82.7929 3.6138 76.1269 -0.0978

Run93 5.6618 16.8834 319.1751 5.1177 142.7281 5.3436 131.9243 -0.1198

Run92 2.5472 9.8118 -69.1908 4.7221 -69.5738 5.5121 -69.3634 0.078

Run91 2.5484 9.7956 -1218.7401 4.7247 -1219.1262 5.5337 -1219.1674 0.0574

Run90 2.7134 8.5672 -35.638 4.5004 -36.0372 5.2095 -34.8099 0.1023

Run89 2.7081 8.4458 149.7945 4.457 149.6209 5.1461 150.1623 0.2075

Run87 3.1881 5.659 35.3565 4.3136 34.4887 4.8445 33.059 0.0543

Run86 3.1868 5.6372 101.8391 4.3411 101.3058 4.8702 99.5947 0.1514

Run85 3.5402 4.5928 -29.9877 5.7614 -31.2388 6.8892 -31.194 0.0035

Run84 3.5437 4.2942 136.3702 5.4413 134.7278 6.2843 134.801 -0.0579

Run83 3.5941 2.6294 103.5976 3.7632 100.9605 4.5593 97.7575 0.0222

Run79 4.0108 0.3411 583.4946 4.2415 529.957 4.8959 523.4239 0.1849

Run77 4.1395 0.9275 127.1989 5.3242 -31.3229 6.134 -38.4461 0.4356

Run76 4.1401 0.9491 315.9371 5.2771 154.7185 6.2177 147.7556 0.2536

Run75 4.3197 2.5218 302.1382 4.9142 129.3043 5.8734 123.4149 0.0596

Run72 4.5478 4.6553 143.7834 5.1684 -31.0748 5.7849 -38.9663 0.0466

Run71 4.545 4.6516 172.5915 5.1339 -2.9272 5.8806 -9.2716 -0.0981

Run70 4.8946 7.5851 65.2651 4.7339 -110.2497 5.2704 -120.3101 -0.0347

Run69 4.89 7.5583 232.7061 4.6872 57.3664 4.9831 48.2956 -0.0186

Run68 4.865 7.4514 340.3992 4.8374 165.0714 4.941 155.3348 0.1022

Run67 5.0912 10.1162 51.7428 5.0176 -124.1916 5.1602 -134.1049 0.2693

Run66 5.0903 10.1025 67.3575 5.0296 -108.1622 5.1163 -118.3201 0.0225

Run65 5.1351 10.2807 121.6351 4.8609 -53.9729 5.2088 -64.6371 0.1338

Run63 5.3231 12.8405 269.0458 5.1026 93.0457 5.3195 83.3577 0.8434

Run62 5.3431 12.819 35.4505 5.0169 -140.8939 5.3567 -150.4684 0.4729

Run61 6.0507 19.8772 240.3902 4.7074 63.3306 4.665 52.9651 1.2065

Intact, 5 deg, asymmetric coefficients

[a22] [a24] [a42] [a44] [b22] [b24] [b42] [b44] Dissipation work

[kg] [kg.m] [kg.m] [kg.m^2] [kg/s] [kg.m/s] [kg.m/s] [kg.m^2/s] [J]

-0.3492 -5.8778 0.1137 1.6929 -0.1462 -2.9766 0.0764 1.5448 -0.2025

-0.4174 -4.1543 0.144 1.5488 -0.2648 -6.0437 0.0855 1.9543 -0.2638

-1.1436 -8.8195 0.2793 1.9028 -0.5645 -9.8494 0.1521 2.6386 -0.2933

-0.75 -11.2139 0.0772 1.157 0.0045 0.0973 0.0207 0.3045 -0.017

-0.7572 -11.2842 0.0802 1.1942 -0.0028 -0.019 0.0212 0.3139 -0.0171

-0.7341 -11.0368 0.0794 1.2115 0.0348 0.5992 0.0166 0.2391 -0.0147

-0.7272 -10.9863 0.0869 1.3161 0.0131 0.2634 0.0072 0.1036 -0.0063

-0.6744 -10.4211 0.0978 1.4872 -0.045 -0.7963 0.0253 0.4066 -0.0203

-0.6739 -10.3985 0.1024 1.5681 -0.0526 -0.9516 0.0164 0.2774 -0.0125

-0.8034 -11.7268 0.1264 1.8457 0.0018 0.0294 0.0191 0.2784 -0.0317

-0.7277 -10.9974 0.1182 1.7883 0.0028 0.0465 0.024 0.361 -0.0367

-0.8604 -11.979 0.1456 1.9686 -0.1366 -2.1643 0.0435 0.6593 -0.0249

-0.858 -10.9051 0.1621 1.9032 -0.2856 -4.688 0.0764 1.2275 -0.0637

-0.8894 -10.8567 0.1654 1.8917 -0.3303 -5.2607 0.0781 1.2232 -0.0991

-0.937 -11.3239 0.1704 1.961 -0.3263 -5.2594 0.0723 1.1499 -0.0884

-0.9363 -11.6467 0.1775 2.0869 -0.3008 -4.7104 0.0757 1.1649 -0.0846

-0.9002 -10.2514 0.176 1.8831 -0.3761 -6.2187 0.086 1.4077 -0.1182

-0.8702 -10.7541 0.1682 1.9621 -0.316 -5.1191 0.0763 1.2216 -0.1022

-1.0941 -10.0725 0.2312 1.9504 -0.5078 -8.4604 0.1206 1.9927 -0.154

-0.8971 -9.2189 0.2077 1.9164 -0.421 -7.2959 0.1146 1.9675 -0.1577

-0.8485 -8.4616 0.1953 1.7962 -0.4126 -7.4853 0.1057 1.9046 -0.161

-0.9124 -8.5789 0.2137 1.8403 -0.4514 -8.0249 0.117 2.0686 -0.1973

-0.9058 -8.3735 0.2202 1.8072 -0.4499 -8.1309 0.1242 2.2263 -0.2175

-1.0901 -9.313 0.2526 1.9184 -0.5296 -9.0524 0.1384 2.3463 -0.2098

-0.9648 -8.8329 0.237 1.8702 -0.4544 -8.3123 0.131 2.371 -0.2504

-1.0188 -9.2815 0.237 1.903 -0.4927 -8.44 0.1322 2.2484 -0.2246

-1.0343 -7.8925 0.26 1.8009 -0.5083 -9.6007 0.1372 2.5784 -0.2628
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Frequency  Moment ampl. Moment phase  Roll ampl.  Roll phase  Sway ampl.  Sway phase  Drift

Run name [rad/s] [Nm] [deg] [deg] [deg] [mm] [deg] [mm/s]

Run107 8.002 14.9765 317.2276 1.7739 137.4349 2.6968 141.528 0.0324

Run110 8.0664 14.8955 279.5137 1.7683 99.6378 2.5989 105.2499 -0.0231

Run112 7.4139 13.4892 238.8897 1.9429 61.1892 2.7079 60.9234 -0.8821

Run113 6.1533 9.4341 257.2546 2.1003 102.2077 4.8317 74.0924 -9.0783

Run114 6.1527 9.3636 297.6562 2.1956 143.4228 4.8114 115.0078 -6.8234

Run118 6.2844 8.6013 7.0564 1.9749 -149.3705 4.0188 -181.7658 -5.5949

Run121 4.6864 5.63 206.5607 2.1737 31.6373 4.6502 31.5702 -1.3498

Run122 4.2272 4.1769 20.7175 2.2894 -156.1981 4.609 -155.2861 -0.9383

Run123 4.2126 4.3752 193.2797 2.2893 16.3287 4.688 16.2496 -0.8306

Run124 3.841 3.4781 205.6604 2.4364 29.6611 4.8878 29.018 -0.4642

Run125 3.8569 2.8925 106.0846 2.2052 -68.3017 4.2707 -68.5686 -0.4251

Run126 3.6116 2.3218 279.9728 2.1322 104.8191 4.2099 103.3994 0.1138

Run127 3.613 2.0839 69.1811 2.1534 -102.8836 4.3302 -103.736 0.012

Run128 3.6114 2.2917 194.4077 2.1307 19.5586 4.3338 18.2892 0.009

Run129 3.1262 1.1396 283.3237 2.3965 119.7155 4.5692 117.082 -0.3749

Run136 2.607 0.0938 -25.5895 1.9327 -81.7179 3.4569 -85.5164 -0.3047

Run137 1.8578 1.2763 -12.6371 2.5065 -17.9489 6.6612 -31.7078 -0.0423

Run138 1.7511 1.1658 -144.3638 2.0475 -149.5138 5.7245 -155.2711 -0.3227

Run139 1.7474 1.2897 1254.2734 2.1257 1246.8016 6.019 1235.8049 -0.4519

Run146 5.4424 7.1329 -1084.7537 1.8506 -1256.2924 4.4477 -1265.0887 -1.4218

Run147 5.4405 7.1689 61.2224 1.7679 -109.1726 4.3079 -110.1394 -1.8905

Run148 6.1333 8.8553 48.2997 2.013 -104.7753 4.8039 -134.1378 -4.9681

Run149 6.1397 8.9765 233.9495 2.0292 79.9901 4.7732 52.1308 -4.1651

Run150 6.1709 8.6951 228.4713 2.0335 73.6059 4.3403 44.0843 -4.698

Run151 5.8235 8.9274 16.1412 1.95 -144.7661 5.2274 -158.9706 -3.9114

Run152 5.8359 9.0209 147.8843 1.9799 -11.9085 5.3319 -24.891 -4.2419

Run153 5.5957 9.2606 182.8192 2.1747 16.2628 5.7286 11.5526 -3.6539

Run154 4.9485 8.3531 107.2087 3.2207 -66.7701 6.7284 -66.913 -2.5313

Run155 4.9393 7.9562 342.3938 3.0664 166.9589 6.368 166.6323 -2.3892

Run156 4.9314 6.9586 254.7304 2.4867 79.2243 5.2614 81.1472 -1.4874

Run157 6.7802 9.7635 150.2344 1.8783 -20.9434 2.6792 -37.3718 -1.9788

Run158 6.8053 10.0923 137.4149 1.89 -34.1498 2.6615 -51.2939 -1.5369

Run159 6.5535 9.6335 64.1556 2.0705 -104.6884 3.1175 -130.6411 -4.2864

Run160 6.553 9.4612 272.8225 2.0449 105.7871 2.985 79.652 -4.3003

Run162 6.4139 9.3061 334.5024 2.1266 172.7825 3.8303 141.515 -7.2333

Run165 8.7306 20.8067 -25.7862 2.1122 152.9318 3.5085 158.445 -0.6011

Run166 9.0193 22.7255 -206.5407 1.9865 -27.3343 3.2664 -20.0781 -0.0783

Run167 9.0224 22.9399 -221.9969 2.053 -42.9214 3.3995 -31.8129 -0.1053

Run168 9.938 26.7674 -82.005 1.9655 97.1149 3.4747 107.038 -0.2961

Run169 9.928 26.8992 -231.4786 1.9441 -52.1999 3.4129 -41.6432 -0.7452

Run172 2.2227 0.5764 134.7583 1.7857 121.8725 2.9831 105.8533 -0.2382

Run173 2.4022 0.3756 136.0649 2.0539 124.1748 3.5297 116.8951 0.0017

Run174 2.3846 0.4398 -87.0472 2.1049 -103.6327 3.6551 -110.979 -0.0759

Run175 2.3982 0.4585 53.237 2.4466 43.443 4.2558 34.2285 -0.6191

Damaged, 2 deg, asymmetric coefficients
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[a22] [a24] [a42] [a44] [b22] [b24] [b42] [b44] Dissipation work

[kg] [kg.m] [kg.m] [kg.m^2] [kg/s] [kg.m/s] [kg.m/s] [kg.m^2/s] [J]

-0.6252 -3.9138 0.3249 3.5855 0.4939 5.7319 -0.0205 -0.2691 -0.0056

-0.7768 -3.207 0.3123 3.3309 0.6384 7.6471 -0.0385 -0.4993 -0.0034

-0.1835 -2.287 0.2576 3.1511 -0.0272 -0.3178 0.1776 2.1633 -0.0576

-15.6382 -10.8274 8.0248 3.5222 -6.1188 -37.6223 3.2518 19.9247 -0.4105

-14.5662 -9.6552 7.4877 3.0213 -5.4392 -36.7241 2.9048 19.4613 -0.4437

-16.0505 -7.2432 7.3717 2.6148 -4.0878 -39.0709 1.9077 18.1231 -0.3379

-1.4823 -12.0924 0.7081 5.7617 -0.0354 -0.0733 0.3453 2.7697 -0.0594

-1.2116 -10.446 0.5828 5.1351 0.1178 0.8824 0.1368 1.2144 -0.0283

-1.2791 -10.9008 0.6525 5.5532 -0.0241 -0.076 0.1643 1.3728 -0.0292

-1.193 -10.3556 0.6325 5.4368 -0.0712 -0.5642 0.1777 1.5288 -0.0324

-1.0487 -9.447 0.5307 4.7483 -0.0193 -0.2285 0.2021 1.9092 -0.0342

-1.1354 -9.9365 0.5902 5.0781 -0.1202 -1.1563 0.1709 1.568 -0.0229

-1.2044 -10.4164 0.5445 4.6097 -0.0768 -0.7064 0.2481 2.1699 -0.0339

-1.2583 -10.7152 0.6165 5.1607 -0.116 -1.0628 0.1863 1.6314 -0.024

-1.0145 -9.0389 0.5009 4.2134 -0.1913 -1.7937 0.2907 2.6188 -0.0421

-0.8006 -7.4767 0.3729 3.4592 -0.1722 -2.0345 0.0934 1.0814 -0.0082

-3.2036 -18.2376 0.9208 5.0676 -0.7557 -7.5247 0.2771 2.5469 -0.0163

-3.3447 -20.4295 0.9072 5.316 -0.2382 -3.1512 0.273 2.1289 -0.0117

-3.6098 -20.6225 0.9474 4.7675 -0.5823 -6.0179 0.4845 3.4786 -0.0195

-3.5192 -15.147 1.715 6.3135 -1.7446 -12.7207 1.0382 7.4672 -0.1042

-2.243 -15.9353 1.0528 6.8811 -0.1432 -1.4479 0.9336 7.1969 -0.1159

-17.9041 -11.4571 9.1235 3.3989 -3.9549 -40.2196 2.1259 21.2019 -0.3944

-16.1329 -11.4105 8.3786 3.4778 -5.07 -38.2049 2.751 20.5962 -0.3938

-14.8224 -8.8015 7.422 2.8896 -4.4681 -37.3427 2.2981 19.1327 -0.3744

-7.789 -17.8441 4.7228 6.3128 -3.3925 -23.3827 2.5772 17.2356 -0.2979

-7.1444 -18.1521 4.5572 6.2361 -2.6803 -21.8259 2.2247 17.8933 -0.3258

-3.2931 -18.3367 1.8244 7.0487 -1.0992 -7.7125 1.5398 11.0187 -0.2549

-1.3699 -11.4429 0.5679 4.7061 -0.0065 -0.1696 0.3328 3.1339 -0.1549

-1.3434 -11.28 0.5699 4.7223 -0.0326 -0.3822 0.3046 2.4006 -0.1063

-1.4725 -11.7757 0.5997 5.3198 0.2596 2.2786 0.2967 2.238 -0.0745

-2.9476 -2.1213 1.4417 2.4563 -1.1816 -17.7476 0.5267 7.9707 -0.1514

-3.1044 -1.8417 1.4661 2.5424 -1.2311 -18.3028 0.5222 7.8468 -0.1505

-6.8718 -2.2673 2.5714 2.252 -1.7289 -27.0625 0.6057 9.6867 -0.2049

-6.4912 -1.7093 2.7326 2.0797 -2.5708 -26.3557 1.0358 10.6717 -0.2295

-12.5506 -4.9477 5.1577 2.3231 -4.2463 -35.2617 1.7323 14.4164 -0.3166

-1.2695 -5.7074 0.5204 3.58 0.8823 9.1292 -0.2174 -2.2705 0.0529

-1.8163 -5.3966 0.6127 4.1408 1.1311 12.2244 -0.1903 -2.1033 0.033

-3.543 -5.2748 0.8306 3.942 1.7036 18.5049 -0.2524 -2.8111 0.0399

-4.0277 -6.7296 0.9403 4.0983 1.9369 19.3491 -0.3011 -3.0633 0.042

-4.3698 -6.513 0.9564 4.2113 1.9387 20.3651 -0.2751 -2.9518 0.034

-0.9013 -5.4945 0.3942 2.7097 -0.5896 -6.7416 0.2079 2.4682 -0.0126

-0.7364 -6.4826 0.3449 3.156 -0.3028 -3.4459 0.103 1.2227 -0.0087

-0.7685 -6.7165 0.3585 3.0918 -0.3031 -3.4871 0.1546 1.7594 -0.0144

-0.8271 -6.6977 0.3566 3.1647 -0.4106 -4.3946 0.1063 1.1828 -0.0104
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Frequency  Moment ampl. Moment phase  Roll ampl.  Roll phase  Sway ampl.  Sway phase  Drift

Run name [rad/s] [Nm] [deg] [deg] [deg] [mm] [deg] [mm/s]

Run193 1.5595 3.6742 -2.8811 5.1878 -4.9151 13.1251 -6.177 0.0302

Run194 1.5602 3.6458 67.8685 5.2044 65.8638 12.976 64.6444 -0.2656

Run195 1.8711 3.1615 -5.105 5.862 -10.3533 14.3423 -20.5024 -1.1911

Run197 2.2124 2.1646 53.8859 6.4384 43.075 12.8789 32.0059 -1.9829

Run198 2.2118 1.3162 -106.9171 4.1199 -117.5785 7.7458 -128.9378 -1.3383

Run199 2.4517 0.7392 5.9292 4.4714 -13.5472 8.4344 -20.4108 -0.9757

Run200 2.4502 0.8326 71.4922 4.8115 51.6116 9.509 37.8394 -1.7227

Run201 2.5742 0.3547 -95.4774 4.4773 -138.5499 8.3648 -146.9373 -1.4446

Run202 2.573 0.4111 22.9809 4.9496 -22.0438 8.3925 -26.9768 -0.7035

Run203 2.7846 0.6966 1044.5953 4.99 891.3874 10.0689 888.3017 -0.7922

Run205 3.2864 2.6938 299.219 4.4342 126.609 8.4688 122.6807 -1.0138

Run206 3.2881 3.0506 -1084.6268 4.7899 -1256.9024 8.8246 -1259.5146 -1.9895

Run208 3.6587 5.6137 24.0907 5.3291 -149.2827 10.1445 -151.2668 -2.0143

Run209 3.549 5.28 203.2525 5.6267 30.2596 11.686 28.1 -3.4072

Run211 4.2721 9.5156 214.2866 4.9978 40.908 10.1314 42.371 -4.5403

Run212 5.0723 14.6661 78.421 4.6522 -95.0072 9.8261 -95.7005 -6.9731

Run213 5.076 14.7941 196.7171 4.4669 23.264 10.8709 22.7784 -7.3516

Run215 10.6373 64.776 -207.8023 3.8776 -28.2666 6.4243 -15.2753 -4.6203

Run217 9.6379 59.3207 -100.6573 4.5265 78.5444 7.7793 88.343 -4.4152

Run218 9.3785 57.4187 -219.4532 4.7654 -40.4898 8.0297 -30.34 -5.7497

Run219 8.8433 53.928 -11.1801 4.924 168.4078 7.4672 179.9415 -3.2021

Run220 8.6889 53.0843 -217.7791 4.9798 -37.7936 8.062 -28.1018 -2.5131

Run221 8.69 52.8605 -122.2575 4.9778 57.4237 7.7569 67.311 -2.9682

Run222 7.9221 44.3387 340.3405 5.4488 161.9278 7.7629 165.7512 -3.2556

Run223 8.3856 46.2729 69.5507 4.8111 -110.205 7.5733 -107.2943 -2.7872

Run224 8.2535 45.4847 249.5447 5.1943 70.3756 7.4786 79.5275 -2.3382

Run225 7.784 39.3492 253.4479 4.9952 75.1798 7.3786 77.1534 -2.6507

Run226 7.6984 38.8988 1433.9839 5.1556 1255.641 7.4277 1257.2126 -3.0491

Run227 6.8719 30.0811 299.1174 5.3952 126.2165 7.3264 110.9106 -12.0583

Run228 7.0229 30.8891 297.4743 5.3158 122.6012 6.8142 112.5753 -8.4873

Run229 6.692 26.3835 219.2957 5.3879 48.7217 6.6199 29.4853 -17.3502

Run230 6.4359 25.2471 34.1181 5.6067 -131.5433 8.7472 -159.298 -34.1391

Run231 6.4979 24.4336 45.798 5.2604 -121.5285 7.8472 -147.3489 -29.001

Run232 6.3957 21.3466 194.939 4.7818 31.0895 8.1365 1.8322 -30.9539

Run233 6.3877 22.405 53.1974 5.0407 -110.8698 8.1152 -139.103 -30.4268

Run234 6.2412 19.3579 243.8739 4.5041 85.2401 8.6138 56.3374 -30.5211

Run235 6.2572 19.9017 6.366 4.6043 -153.2963 8.7367 -182.4596 -31.7816

Run237 6.164 20.1581 273.5584 4.7413 115.8115 9.6296 87.4726 -30.5299

Run238 6.0962 20.5747 236.7283 4.8501 79.591 10.243 53.9584 -28.0234

Run240 5.9957 20.8823 693.5701 4.9788 536.826 11.2263 517.4654 -28.1522

Run241 5.9117 20.6768 192.5252 4.8876 35.4319 11.4126 14.4024 -23.7762

Run242 5.814 21.3526 208.967 5.1544 50.5762 12.0601 33.8474 -24.2638

Run243 5.673 19.8644 101.7496 4.7777 -60.0182 11.8747 -72.2732 -14.2878

Run244 5.4473 19.5229 15.186 5.2913 -150.9695 12.5307 -157.75 -13.7569

Run245 5.5687 19.1036 327.5825 4.7083 164.5092 11.5728 154.8778 -16.058

Run246 5.293 17.9642 111.5814 4.9761 -58.0268 11.3607 -61.3089 -10.9319

Run247 5.1341 16.8095 -330.3622 4.8539 -501.6777 11.907 -504.3339 -9.2796

Run248 4.8222 14.5835 235.7389 5.562 64.3845 12.0198 63.0494 -8.4113

Run249 4.7062 13.4533 215.2091 5.5456 44.4504 11.7365 42.7092 -6.2721

Run251 7.3492 31.6336 189.7933 4.7441 12.8276 6.2548 9.9143 -3.8266

Damaged, 2 deg, asymmetric coefficients
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[a22] [a24] [a42] [a44] [b22] [b24] [b42] [b44] Dissipation work

[kg] [kg.m] [kg.m] [kg.m^2] [kg/s] [kg.m/s] [kg.m/s] [kg.m^2/s] [J]

-2.4887 -17.1535 0.4565 3.1158 -0.0443 -0.5622 0.1363 0.9858 -0.0371

-2.3851 -16.6826 0.4598 3.1873 -0.0705 -0.5321 0.1365 0.9572 -0.0364

-2.4245 -15.824 0.6479 3.9566 -0.5152 -5.2143 0.2468 2.2058 -0.0929

-1.3991 -10.0369 0.4876 3.3672 -0.5733 -5.5488 0.2343 2.2356 -0.1431

-1.1453 -8.4543 0.4439 3.277 -0.4245 -5.3794 0.1644 2.0839 -0.0549

-1.0483 -8.6987 0.4231 3.4532 -0.3346 -3.6285 0.1549 1.6588 -0.0601

-1.5481 -9.561 0.5372 3.5691 -0.7779 -7.519 0.2217 2.1898 -0.0748

-1.0762 -8.4153 0.4442 3.559 -0.4063 -4.604 0.1427 1.6739 -0.0591

-0.6577 -6.2458 0.3412 3.1848 -0.2133 -2.4745 0.1338 1.5325 -0.0787

-1.2464 -10.5001 0.5066 4.1633 -0.2018 -1.9767 0.1654 1.5004 -0.0855

-1.0595 -9.0701 0.5012 4.2199 -0.3045 -2.814 0.1801 1.6442 -0.0837

-0.8941 -8.2072 0.4703 4.2108 -0.1725 -1.8125 0.1705 1.6602 -0.1072

-1.0051 -9.0205 0.5218 4.5274 -0.1464 -1.5822 0.2129 2.0489 -0.1887

-1.3707 -11.2847 0.6206 4.947 -0.2369 -1.808 0.2468 2.0311 -0.1981

-1.2536 -10.6389 0.5697 5.2055 0.1163 1.4491 0.3394 2.7407 -0.3012

-1.428 -11.749 0.7064 5.5841 -0.0441 -0.8515 0.4146 4.1315 -0.4284

-2.2227 -15.9122 0.9643 6.7316 -0.1592 -0.6661 0.5857 4.2783 -0.4133

-6.1192 -4.9814 1.0768 4.3252 2.0778 24.9274 -0.2401 -2.9811 0.1039

-3.5196 -6.1522 0.8579 4.2187 1.8228 18.095 -0.2718 -2.7773 0.1947

-3.4066 -5.711 0.8494 3.9426 1.5083 17.949 -0.2443 -2.9751 0.2606

-2.961 -3.4998 0.6292 3.8566 1.5563 17.3339 -0.1703 -1.9582 0.0995

-2.538 -4.9416 0.5715 4.1716 1.3248 15.3751 -0.1138 -1.401 -0.0012

-2.3785 -4.153 0.5778 4.0095 1.3373 15.1114 -0.1411 -1.6898 0.0747

-0.4322 -2.6722 0.2155 3.2909 0.4315 4.9761 0.107 1.2188 -0.3682

-0.5896 -4.6586 0.3561 3.9068 0.3885 4.4252 -0.0099 -0.11 -0.054

-1.5594 -2.6815 0.2733 3.1793 1.0264 12.3832 -0.0044 -0.1325 -0.1881

-0.3464 -3.3931 0.2569 3.4453 0.2255 2.6201 0.1364 1.522 -0.3265

-0.2756 -2.9148 0.2419 3.2378 0.1764 2.0138 0.1256 1.4489 -0.3185

-2.3552 -1.3399 1.1569 2.635 -1.6117 -15.9751 0.6807 6.7963 -1.0792

-0.9702 -0.6165 0.6222 2.5045 -0.9302 -10.3083 0.4404 4.9114 -0.7962

-2.6977 0.5361 1.3519 1.9018 -1.2138 -17.6105 0.5492 7.8956 -1.2556

-7.979 -2.7494 3.3346 2.2868 -2.1073 -28.9706 0.8348 11.7716 -1.8425

-6.5852 -2.1478 2.7642 2.3001 -1.5825 -26.54 0.6148 10.6956 -1.4939

-10.1968 -4.1005 4.2431 2.4321 -2.132 -32.3163 0.8776 13.245 -1.4746

-8.6396 -3.2482 3.7751 2.3216 -1.4437 -30.0484 0.6016 12.8665 -1.6235

-11.8209 -6.5113 5.6595 2.6522 -5.1892 -33.8734 2.504 16.3526 -1.6044

-11.9523 -6.3973 5.529 2.7185 -4.0685 -34.2233 1.8958 15.9004 -1.6186

-12.5073 -7.9569 6.078 2.9493 -6.2271 -34.3404 3.0805 16.9639 -1.8079

-11.4811 -9.27 5.9951 3.2492 -5.0263 -32.8091 2.7048 17.6759 -1.9609

-8.3952 -12.0312 5.0615 3.9361 -4.637 -26.9823 3.1292 17.8425 -2.1094

-10.0531 -12.6011 5.7851 4.2521 -3.4376 -29.8769 2.1193 18.5124 -2.0231

-7.1325 -13.3796 4.4634 4.6529 -3.3139 -24.1351 2.3436 17.2321 -2.1228

-5.4407 -15.7957 3.4234 5.7935 -1.7363 -18.9088 1.4521 15.262 -1.5855

-2.8544 -14.8705 1.6797 5.787 -1.2721 -9.7497 1.4428 10.3137 -1.3383

-4.0703 -15.775 2.6174 6.0644 -2.4722 -14.3282 2.4108 13.531 -1.3965

-1.9976 -13.9277 1.0943 6.09 -0.4013 -4.5075 0.7204 7.5411 -0.8829

-2.3913 -16.1362 1.1687 6.8414 -0.4266 -3.7614 0.847 6.2238 -0.6721

-1.5551 -12.3865 0.7273 5.3377 -0.2614 -1.5673 0.6563 4.7875 -0.6668

-1.4644 -11.8012 0.7092 5.1495 -0.2773 -1.9646 0.6106 4.9026 -0.6557

-0.1887 -1.2774 0.2991 2.8509 -0.2319 -3.271 0.2119 2.9773 -0.4345


