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Abstract

Free Electron Lasers can generate high power transversely coherent tunable
radiation. X-ray radiation can be generated in the Self Amplified Spontaneous
Emission regime, however this radiation has poor temporal coherence. The
Echo-Enabled Harmonic Generation method can improve the radiation’s tem-
poral coherence in x-ray. In this thesis analysis of the Echo-Enabled Harmonic
Generation technique reveals that electron pulse has a modal density profile.
This density profile when matched to amplification profile of an undulator-
chicane lattice generates a train of coherent radiation spikes. The interaction
of multiple electron pulses is investigated in this thesis. Propagating multi-
ple electron pulses through an undulator produce a train of radiation spikes.
The temporal separation of the radiation spikes can be manipulated using
magnetic chicanes. Two new techniques are then proposed to improve FEL
performance when the electron pulse has a large energy spread, such as those
produced in plasma accelerators. These techniques use seeded-undulators and
chicanes to manipulate the electron phase space prior to injection through an
undulator-chicane lattice.

i



Acknowledgements

Thanks must go to my supervisor, Dr Brian McNeil, for his guidance and pa-
tience. I must also thank Dr Lawrence Campbell for his support and kindness.
Thanks to EPSRC and STFC for the funding that made this PHD possible.
And thanks to my friends and family for their encouragement and support.
Love and thanks to Claire.

ii



Contents

1 Introduction 1
1.1 Free Electron Lasers . . . . . . . . . . . . . . . . . . . . . . . 1

2 Basic FEL physics 3
2.1 Qualitative description . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Slippage and the resonance condition . . . . . . . . . . . . . . 5
2.3 Outline of the 1D FEL equations . . . . . . . . . . . . . . . . 6

2.3.1 Electron trajectory through the undulator . . . . . . . 7
2.3.2 Interaction with a co-propagating radiation field . . . . 11
2.3.3 The pondermotive well equation . . . . . . . . . . . . . 16
2.3.4 The 1D wave equation . . . . . . . . . . . . . . . . . . 20

2.4 1D equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Puffin and the 3D undulator 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Outline of FEL equations . . . . . . . . . . . . . . . . . . . . 34
3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Novel schemes 44
4.1 Review of novel FEL schemes . . . . . . . . . . . . . . . . . . 44
4.2 EEHG modelocking . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Echo Enabled Harmonic Generation . . . . . . . . . . . 51
4.2.2 EEHG pre-radiator stage . . . . . . . . . . . . . . . . . 52
4.2.3 EEHG radiator . . . . . . . . . . . . . . . . . . . . . . 58

iii



4.2.4 Simple undulator . . . . . . . . . . . . . . . . . . . . . 59
4.2.5 undulator-chicane lattice . . . . . . . . . . . . . . . . . 59

5 Beamlets 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Beat notes . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Multiple beamlets . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Simple undulator . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 An undulator-chicane lattice . . . . . . . . . . . . . . . 75

6 Chirped Beamlets 82
6.1 Chirped Beamlets . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Real Beamlets . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 RF function electron beams 107
7.1 Rectangular electron pulses . . . . . . . . . . . . . . . . . . . 107

7.1.1 The Model - Rectangular Electron Pulses . . . . . . . . 107
7.1.2 Results - Rectangular Electron Pulses . . . . . . . . . . 108

8 Conclusions and Future Work 118

A 3D undulator derivation i
A.1 Transverse electron momentum . . . . . . . . . . . . . . . . . ii
A.2 Longitudinal electron momentum . . . . . . . . . . . . . . . . viii
A.3 The Field Equation . . . . . . . . . . . . . . . . . . . . . . . . xx
A.4 electron positions . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

A.4.1 longitudinal coordinate . . . . . . . . . . . . . . . . . . xxvii
A.4.2 transverse coordinates . . . . . . . . . . . . . . . . . . xxviii

A.5 final equations . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxii
A.5.1 electron energy conservation . . . . . . . . . . . . . . . xxxiii

iv



B Useful FEL derivations xxxvi
B.1 Rescaling of EEHG . . . . . . . . . . . . . . . . . . . . . . . . xxxvi
B.2 Undulator-chicane modes . . . . . . . . . . . . . . . . . . . . . xl
B.3 Converting wave equations derivatives to scaled notation . . . xli
B.4 undulator dispersion compensation . . . . . . . . . . . . . . . xlv
B.5 rf-func beam distribution function . . . . . . . . . . . . . . . . xlviii

C Publications xlix

v



List of Figures

2.1 Diagram of planar undulator . . . . . . . . . . . . . . . . . . . 4
2.2 Diagram illustrating of the FEL mechanism . . . . . . . . . . 31

3.1 Electron pulse rotation in curved-pole undulator . . . . . . . . 38
3.2 Electron pulse hard edge variation for curved-pole undulator . 39
3.3 Electron pulse rotation in plane-pole undulator . . . . . . . . 41
3.4 Electron pulse hard edge variation for plane-pole undulator . . 42
3.5 Electron pulse radius for plane pole and curved undulators . . 43

4.1 Diagram of SASE and HGHG schemes . . . . . . . . . . . . . 47
4.2 Diagram of EEHG scheme . . . . . . . . . . . . . . . . . . . . 48
4.3 Mode-locking diagram . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Centre of electron beam in EEHG scheme . . . . . . . . . . . 54
4.5 Head of electron pulse in EEHG scheme . . . . . . . . . . . . 55
4.6 Figure demonstrating the formation of current bands . . . . . 56
4.7 Figure showing the intrinsic modal structure of EEHG electron

beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.8 EEHG with a simple undulator . . . . . . . . . . . . . . . . . 61
4.9 EEHG in a mode-locking undulator . . . . . . . . . . . . . . . 62

5.1 Beat note example . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 2nd beat note example . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Diagram of multiple beamlets . . . . . . . . . . . . . . . . . . 71
5.4 Five beamlets with a simple undulator . . . . . . . . . . . . . 72
5.5 Ten beamlets with a simple undulator . . . . . . . . . . . . . . 73

vi



5.6 Five beamlets with a simple undulator increased separation . . 74
5.7 Single electron pulse with simple undulator . . . . . . . . . . . 75
5.8 Beamlets with an undulator-chicane lattice . . . . . . . . . . . 77
5.9 Diagram illustrating slippage effects of chicanes on beamlets . 78
5.10 Beamlets with an undulator-chicane lattice, shorter undulators 80
5.11 Beamlets with an undulator-chicane lattice, single radiation spike. 81

6.1 Chirped beamlets diagram . . . . . . . . . . . . . . . . . . . . 83
6.2 Chirped beamlets average radiation power comparison . . . . . 88
6.3 Beamlets near saturation . . . . . . . . . . . . . . . . . . . . . 89
6.4 Beamlets near saturation, with dispersive chicanes . . . . . . . 90
6.5 Beamlets near saturation, longer undulators . . . . . . . . . . 91
6.6 Beamlets near saturation with negative chicanes . . . . . . . . 93
6.7 Beamlets generating chicane side-band radiation modes . . . . 94
6.8 Beamlets, combining chicane and undulator-chicane side-band

modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.9 Generating beamlets from a single electron pulse . . . . . . . . 99
6.10 Comparison of beamlet energy spreads . . . . . . . . . . . . . 100
6.11 Beamlet radiation field comparison . . . . . . . . . . . . . . . 103
6.12 Beamlet radiation field comparison total radiation energy . . . 104
6.13 Beamlet microbunching at beamlet tail . . . . . . . . . . . . . 105
6.14 Beamlet microbunching at beamlet head . . . . . . . . . . . . 106

7.1 Rectangular beams through a simple undulator . . . . . . . . 109
7.2 Compensation for undulator dispersion of rectangular beams . 111
7.3 A comparison of the total radiation field energy for various sim-

ulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4 A comparison of idealised and normal chicane. . . . . . . . . 115
7.5 Simplified rf-function beam simulation . . . . . . . . . . . . . 116

vii



Chapter 1

Introduction

1.1 Free Electron Lasers
The Free Electron Laser [1, 2] (FEL) is a unique radiation source offering
many advantages over conventional laser systems. Free Electron Lasers pro-
duce highly tunable radiation that is 8-10 orders of magnitude brighter [1, 2]
than the radiation produced by conventional laser systems. In 1971, John
Madey [3] invented the FEL when he published his seminal work on small
signal gain theory. Madey was then involved in the first experimental demon-
stration of the Free Electron Laser [4] at Stanford in 1977. In the FEL an
electron beam and radiation field co-propagate through a magnetic undulator.
The interaction of electron beam, undulator and radiation field will amplify
a small radiation field to saturation after many undulator periods. A number
of review articles [1, 2, 5, 6] describe the history of the Free Electron Laser
and current FEL projects in greater detail than this thesis. High gain FELs
typically operate in the Self Amplified Spontaneous Emission regime [7]. The
Self Amplified Spontaneous Emission [7, 8] (SASE) FEL amplifies spontaneous
radiation (produced by electron shot-noise) to saturation in a long undulator.
The SASE FEL has a wide operational bandwidth, with few practical limita-
tions. However, SASE radiation lacks temporal coherence, its temporal radi-
ation profile containing of a series of uncorrelated coherent radiation spikes.
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The FEL process can be initiated with a coherent seed laser, in seeded FELs
the output radiation retains the good coherence properties of the seed laser.
However, seeding is not an option x-ray FEL as there is lack of high quality
seed lasers in the x-ray [1, 2]. Therefore hard x-ray FELs almost exclusively
operate in the SASE regime.

The second chapter of this thesis will discuss basic FEL theory and derive
a set of simplified differential equations to describe the FEL interaction. Then
chapter 3 will discuss the 1D FEL simulation code hpFull [9, 10] and the 3D
Puffin [11]. Modifications to Puffin [11, 12] will be described, these modifica-
tions allow a more realistic undulator field to be modelled. Novel FEL meth-
ods will then be discussed in the fourth chapter, methods that improve the
FEL temporal coherence in x-ray have become increasingly important in FEL
community. One such scheme Echo-Enabled Harmonic Generation [13, 14] is
explored in detail and improvements to the scheme investigated using numer-
ical simulations. The results of this work was published in [15], a copy of this
paper can be found in the appendix. In chapter 5 the interaction of multi-
ple electron pulses is investigated. When sufficiently separated in energy, each
electron pulse will perform its own FEL interaction, this results in the gen-
eration of multiple side-band radiation modes. Delicate manipulation of these
side-band radiation modes can be achieved using chicane delay sections. The
remaining chapters of this thesis are dedicated to improving performance of the
FEL when the electron pulse has a large energy spread. Chapter 6 describes
the interaction of multiple chirped electrons pulse [16]. A similar structure
can be generated from a single electron pulse, with a large energy spread,
and is investigated in chapter 6. By propagating such a structure through an
undulator-chicane lattice the FEL radiation power is shown to increase by 2-3
order of magnitude. The beam-by-design [17] manipulation/Fourier-synthesis
of electron pulses is studied to increase the FEL efficiency for electron pulses
with large energy spread. One such method that uses ‘rf-function’ [17, 18] rect-
angular electron pulse is studied in chapter 7, and shows 4-6 orders of magni-
tude improvement to the FEL radiation power when propagated through an
appropriate undulator-chicane lattice.
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Chapter 2

Basic FEL physics

2.1 Qualitative description
In the Free Electron Laser (FEL) a magnetic undulator couples a radiation
field to a relativistic (γ > 1) electron pulse. This electron-radiation-field cou-
pling results in a collective instability (a feed-back loop), which exponentially
amplifies a small initial radiation field. A planar undulator consists of two rows
of alternating polarity dipole magnets, see figure 2.1 where the blue poles are
the south poles and the brown the north poles. This arrangement of magnets
produces a sinusoidal magnetic field along the undulator axis.

FELs can operate in two distinct regimes. In the low gain regime an undu-
lator is placed inside a cavity and the radiation field is amplified to saturation
over many passes of the cavity by the electron pulse. However, in the high
gain regime radiation is amplified to saturation in a long undulator

The radiation field creates an energy modulation in the electron pulse. The
natural dispersion action of the undulator will convert this energy modulation
into a density modulation. This density modulation is known as electron mi-
crobunching. The microbunches are periodic at the resonant radiation wave-
length, therefore they can emit radiation collectively and coherently at the
resonant wavelength. As the radiation field grows the level of microbunching
increases in a collective feed-back loop. However, the electron microbunches
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form around the zero crossing of the radiation field and as such cannot amplify
radiation. In low gain FELs [19] this results in the FEL lasing off-resonance.
On the other hand, in high gain FELs [1] the phase of the radiation field
evolves, in effect this shifts the electron microbunches to a phase where the
radiation field can be further amplified.

Figure 2.1: An undulator consists of two sets of alternating dipole magnets. The elec-
tron pulse propagates through the undulator which combined with a radiation field
bunches the beam at the resonant wavelength. These electron bunches then produce
coherent emission exponentially amplifying the radiation. This figure is from [1]. This
is an example of planar undulator, however an undulator can be constructed with
two sinusoidally varying, perpendicular, magnetic field known as a helical undulator.
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FEL radiation is centred around the resonant wavelength, which is calcu-
lated from the FEL resonance condition. This condition is often stated as,

λr = λu
2γ2

r

(1 + a2
u), (2.1)

where γr =< γj >, and shows the inherent tunability of the FEL. For example
increasing the electron pulse’s resonant energy γr will decrease the resonant
wavelength by a factor 1/γ2

r . The resonant wavelength can also be tuned by
adjusting the undulator period λu and the undulator parameter au ∝ B0λu,
where B0 is the peak undulator magnetic field.

2.2 Slippage and the resonance condition
As electrons are massive particles their velocity is less than the speed of light.
The electrons’ longitudinal velocity is further reduced because they take a si-
nusoidal trajectory through the undulator. Because the radiation pulse prop-
agates faster than the electron pulse, the electrons are seen to slip backwards
with respect to the radiation pulse. In the FEL [19], a continuous interaction
can be maintained if there is a fixed phase relationship between the radiation
pulse and the electron pulse’s perpendicular velocity. In other words, if the
radiation pulse’s electric field and the electron perpendicular velocity are in
the same direction in each undulator period then energy can be continuously
passed from electron to radiation field. This can be achieved [1] by ensuring
that an electron slips an integer number of radiation periods behind the radi-
ation field in one undulator period. This condition is derived using a time of
flight argument. The time of flight for a electron and radiation pulse in one
undulator period are equated,

tr = te (2.2)
λu + nλrj

c
= λu
βzjc

(2.3)

5



here λrj is the resonant wavelength for the jth electron, n is an integer and
βzjc = vzj is the electron velocity in z.

λu + nλrj
c

− λu
βzjc

= 0 (2.4)

λu
c

(
βzj − 1
βzj

)
+ nλrj

c
= 0 (2.5)

nλrj = λu

(1− βzj
βzj

)
(2.6)

λrj = λu
n

(1− βzj
βzj

)
(2.7)

This is the resonant wavelength for a single electron, in an electron pulse
there will be a spread of electron energies (and velocities vzj). Therefore it
more useful to consider the average resonant wavelength defined as,

λr = λu
n

1− β̄z
β̄z

 (2.8)

where β̄zc = v̄z is the average electron velocity for the electron pulse. For
an electron pulse with a correlated energy chirp the electron pulse will have
correlated resonant frequency. Equation 2.1 is in fact a useful approximation
of the above expression and can be derived by considering the on-axis injection
of resonant electron.

2.3 Outline of the 1D FEL equations
In this section a set of simplified 1D FEL differential equations are derived in
the classical limit, which is sufficient for most Free Electron Lasers. Most FEL
simulation codes are simply integrators of the Lorentz force and Maxwell’s
wave equations. To understand this we shall first consider the electron motion
in the undulator and then derive some simple expressions for the radiation-
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electron energy exchange. In the following derivation the on-axis injection of a
cold electron pulse is assumed. Furthermore, the electron pulse’s perpendicular
momentum is assumed to be constant with respect to the radiation field,
therefore it can be written as a simple function of the undulator’s magnetic
field.

2.3.1 Electron trajectory through the undulator

The trajectory of the electron pulse through the undulator is first derived. A
helical undulator is assumed, the helical magnetic field will force the electron
pulse to take a helical path through the undulator. A 1D approximation to an
undulator magnetic field is given by,

Bu = B0

2
(
ue−ikuz + c.c.

)
(2.9)

where u = uxx̂ + iuyŷ describes the undulator polarization, ux,y = 1 for a
helical undulator.

Bu = B0

2
[
(uxx̂ + iuyŷ)e−ikuz + (uxx̂− iuyŷ)eikuz

]
(2.10)

Bu = B0

2
[
uxx̂(eikuz + e−ikuz)− iuyŷ(eikuz − e−ikuz)

]
(2.11)

applying Euler’s relations 2 cosx = eix + e−ix and 2i sin x = eix − e−ix.

Bu = B0 [uxx̂ cos(kuz) + uyŷ sin(kuz)] (2.12)

Now, assume a helical undulator (ux,y = 1)

Bu = B0 [x̂ cos(kuz) + ŷ sin(kuz)] (2.13)
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The Lorentz force equation will determine the electron pulse’s transverse mo-
tion. Consider the force experienced by the jth electron,

Fj = −e(E + cβj ×B) (2.14)

The electron pulse’s transverse motion is calculated in the absence of the ra-
diation pulse’s electric and magnetic fields. This assumption allows the FEL
equations to be simplified. However, this does assume that the electric field, of
the radiation pulse, does not affect the electron pulse’s perpendicular momen-
tum (p⊥) which is incorrect but it is a good enough approximation for this 1D
model.

Fj = −e(cβj ×B) (2.15)
Fj = −ecβj ×Bu (2.16)

Following Newton’s third law, where the relativistic momentum is pj = γjmcβj,
and βjc = vj,

dγjmcβj
dt

= −e(cβ ×Bu) (2.17)

mc

(
βj
dγj
dt

+ γj
dβj
dt

)
= −e(cβj ×Bu) (2.18)

By neglecting the electric field zero energy exchange can be assumed, i.e.,
dγj
dt = 0. This assumption comes from the fact that a charged particle’s energy
cannot be changed by a magnetic field. This fact will be demonstrated later,
now equation 2.18 becomes,

mcγj
dβj
dt

= −e(cβj ×Bu) (2.19)
dβj
dt

= − e

γjm
βj ×Bu, (2.20)
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now calculating the cross product,

βj ×Bu =

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ
βxj βyj βzj
Bx By Bz

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ
βxj βyj βzj

B0 cos(kuz) B0 sin(kuz) 0

∣∣∣∣∣∣∣∣
β ×Bu = −x̂βzjB0 sin(kuz) + ŷβzjB0 cos(kuz) + ẑ(βxjBy − βyjBx)

and recombining with the above to give,

dβj
dt

= − e

γjm
(−x̂βzjB0 sin(kuz) + ŷβzjB0 cos(kuz) + ẑ(βxjBy − βyjBx))

(2.21)

now separating the individual components

dβxj
dt

= e

γjm
βzB0 sin(kuz)

dβyj
dt

= − e

γjm
βzB0 cos(kuz)

dβzj
dt

= − e

γjm
(βxjBy − βyjBx))

ignoring the z-component for now, and transform the derivatives into z using
d
dt = cβzj

d
dz

dβxj
dz

= e

γjmc
B0 sin(kuz)

dβyj
dz

= − e

γjmc
B0 cos(kuz)
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these equations easily integrate to give,

βxj = − e

γjmcku
B0 cos(kuz) (2.22)

βyj = − e

γjmcku
B0 sin(kuz). (2.23)

The scaled undulator parameter can be defined as,

au = eB0

mcku
(2.24)

therefore,

βxj = −au
γj

cos(kuz) (2.25)

βyj = −au
γj

sin(kuz). (2.26)

Restating the above in vector form,

β = −au
γj

(cos(kuz)x̂ + sin(kuz)ŷ) + βzẑ (2.27)
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2.3.2 Interaction with a co-propagating radiation field

Now, an expression for the interaction of a co-propagating radiation field with
the electron pulse is derived. The Lorentz force equation is considered, while
remembering that the relativistic momentum is given by pj = γjmcβj,

Fj = −e(E + cβj ×B) (2.28)
dγjmcβj

dt
= −e(E + cβj ×B) (2.29)

mc
dγjβj
dt

= −e(E + cβj ×B) (2.30)

multiplying both sides by β and rearranging to give,

mc
dγjβj
dt
· βj = −e(E + cβj ×B) · β (2.31)

mc(γj
dβj
dt

+ βj
dγj
dt

) · βj = −e(E + cβj ×B) · βj (2.32)

γj
dβj
dt
· βj + β2

j

dγj
dt

= − e

mc
(E + cβj ×B) · βj (2.33)

γj
2
dβ2

j

dt
+ β2

j

dγj
dt

= − e

mc
(E + cβj ×B) · βj (2.34)

γj is defined as γ2
j = 1/(1−β2

j) and should be rearranged γ2
j = 1/(1−β2

j) =>
γ2
j (1 − β2

j) = 1 => γ2
j = 1 + γ2

jβ
2. γ2

j is now differentiated with respect to

11



time,

dγ2
j

dt
= d

dt
(1 + γ2

jβ
2
j) (2.35)

2γj
dγj
dt

= d

dt
γ2
jβ

2
j (2.36)

2γj
dγj
dt

= 2γjβ2
j

dγj
dt

+ 2γ2
jβj

dβj
dt

(2.37)
dγj
dt

= β2
j

dγj
dt

+ γjβj
dβj
dt

(2.38)

dγj
dt

= γj
2
dβ2

j

dt
+ β2

j

dγj
dt

(2.39)

The above expression is combined with equation 2.34 to give,

dγj
dt

= − e

mc
(E + cβj ×B) · β (2.40)

now focus on the (cβj×B) ·β part. The cross product βj×B will be perpen-
dicular to both βj and B. Therefore the dot product (cβj × B) · β must be
zero, this tells us that a magnetic field cannot change the energy of a charged
particle. Setting (cβj ×B) · β to zero leaves

dγj
dt

= − e

mc
E · βj. (2.41)

The radiation field is defined as,

E = 1√
2
(
êξei(krz−ωrt) + c.c.

)
(2.42)

where ξ is the complex field envelope [11] and the unit vector ê is given by
ê = 1√

2(x̂ + iŷ), hence ê · ê = 1
2(x̂2 − ŷ2) = 0 and ê · ê∗ = 1

2(x̂2 + ŷ2) = 1.
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The definition of ê is useful because, β ·
√

2ê∗ = βx − iβy = β⊥ and
E ·
√

2ê∗ = E⊥, etc.

E = 1√
2

( 1√
2

(x̂ + iŷ)ξei(krz−ωrt) + c.c.

)
(2.43)

E = 1
2
(
(x̂ + iŷ)ξei(krz−ωrt) + (x̂− iŷ)ξ∗e−i(krz−ωrt)

)
(2.44)

E = 1
2
(
x̂(ξei(krz−ωrt) + ξ∗e−i(krz−ωrt)) + iŷ(ξei(krz−ωrt) − ξ∗e−i(krz−ωrt))

)
(2.45)

the electron’s normalised velocity vector is given by

β = −au
γj

(cos(kuz)x̂ + sin(kuz)ŷ) + βzẑ (2.46)

now the E · βj term is calculated, this is simplified since x̂,ŷ and ẑ are unit
vectors, i.e., x̂ · x̂ = 1 and x̂ · ŷ = 0 etc.

E · βj = −1
2
au
γj

(
(ξei(krz−ωrt) + ξ∗e−i(krz−ωrt)) cos(kuz)+ (2.47)

i(ξei(krz−ωrt) − ξ∗e−i(krz−ωrt)) sin(kuz)
)

(2.48)

rearranging terms and removing common factors of ξ and ξ∗

E · βj = −1
2
au
γj

(
(ξei(krz−ωrt))(cos(kuz) + i sin(kuz))+ (2.49)

(ξ∗e−i(krz−ωrt))(cos(kuz)− i sin(kuz))
)

(2.50)

now again using Euler’s relations eix = cosx+ i sin x and e−ix = cosx− i sin x,

E · βj = −1
2
au
γj

(
(ξei(krz−ωrt))eikuz + (ξ∗e−i(krz−ωrt))e−ikuz

)
(2.51)
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E · βj = −1
2
au
γj

(
(ξei(krz+kuz−ωrt)) + (ξ∗e−i(krz+kuz−ωrt))

)
(2.52)

defining the pondermotive phase as, θj = krz + kuz − ωrt

E · βj = −1
2
au
γj

(
(ξeiθj) + (ξ∗e−iθj)

)
(2.53)

therefore equation 2.41 becomes,

dγj
dt

= 1
2
e

mc

au
γj

(
(ξeiθj) + (ξ∗e−iθj)

)
(2.54)

now change to a derivative in z, i.e., d
dt = cβzj

d
dz

dγj
dz

= 1
2

e

mc2βzj

au
γj

(
(ξeiθj) + (ξ∗e−iθj)

)
. (2.55)

The gain length is defined as lg = 1/2kuρ, where the FEL (Pierce) [1] pa-

rameter is given by ρ = 1
γr

(
auωp
4cku

)2/3, ku = 2π
λu

and ωp =
(
e2np
ε0m

)1/2
is the

non-relativistic plasma frequency. The derivative in z can be transformed into
scaled notation using dz̄

dz = 1/lg where z̄ = z/lg,

dγj
dz̄

= lg
1
2

e

mc2βzj

au
γj

(
(ξeiθj) + (ξ∗e−iθj)

)
(2.56)

the scaled energy parameter is defined as, pj = γj−γr
ργr

therefore ργr dpjdz̄ = dγj
dz̄ ,

dpj
dz̄

= lg
1
2

e

mc2βzj

au
γjγrρ

(
(ξeiθj) + (ξ∗e−iθj)

)
(2.57)
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now assuming γr−γj
ργr
� 1, and setting γj = γr and βzj = 1

dpj
dz̄

= lg
1
2

e

mc2
au
γ2
rρ

(
ξeiθj + ξ∗e−iθj

)
. (2.58)

The scaled electric field is defined by,

A(z̄, z̄1) = eξ

mcωp
√
ργr

(2.59)

where ρ = 1
γr

(
auωp
4cku

)2/3, now rearranging the definition of ρ

ρ = 1
γr

(
auωp
4cku

)2/3
(2.60)

(ργr)3/2 = auωp
4cku

(2.61)

1
ωp

= au

4cku (ργr)3/2 (2.62)

e

mcωp
√
ργr

= aue

4mc2ku (ργr)2 (2.63)

using the above expression to rearrange equation 2.59,

A(z̄, z̄1) = aueξ

4mc2ku (ργ)2 (2.64)

the gain length is defined by lg = 1
2kuρ , which with the above definition of A
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is used to rearrange equation 2.58,

dpj
dz̄

= 1
2kuρ

1
2

e

mc2
au
γ2
rρ

(
ξeiθj + ξ∗e−iθj

)
(2.65)

dpj
dz̄

= aue

4mc2ku(ργr)2

(
ξeiθj + ξ∗e−iθj

)
(2.66)

dpj
dz̄

=
(
Aeiθj + A∗e−iθj

)
(2.67)

dpj
dz̄

=
(
Aeiθj + c.c.

)
(2.68)

this expression describes the change in the electron energy along the undulator.

2.3.3 The pondermotive well equation

An equation describing the evolution of the pondermotive well is now derived.
By setting the time derivative of the pondermotive phase θj to zero the reso-
nance condition is recovered, this is shown below. The resonance condition is
a condition for continuous energy exchange between radiation field and elec-
trons.

θj = (kr + ku)z − ωrt (2.69)
dθj
dt

= (kr + ku)
dz

dt
− ωr = 0 (2.70)

dθj
dt

= (kr + ku)vzj − krc = 0 (2.71)

(kr + ku)βzj − kr = 0 (2.72)
kuβzj + kr(βzj − 1) = 0 (2.73)

kuβzj = kr(1− βzj) (2.74)
kr
ku

= βzj
1− βzj

(2.75)

λr
λu

= 1− βzj
βzj

(2.76)
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The on-axis resonance condition, equation 2.7, for the fundamental is recov-
ered. An equation to describe the pondermotive well’s evolution along the
undulator is now derived by differentiating equation 2.69 w.r.t z and using
kc = ω

θj = (kr + ku)z − ωrt (2.77)
dθj
dz

= (kr + ku)− kr
1
βzj

(2.78)

dθj
dz

= ku + kr(1−
1
βzj

) (2.79)

now rearranging γ2
j

1
γ2
j

= 1− β2
j (2.80)

now consider the electron velocity vector βj,

βj = −au
γj

(cos(kuz)x̂ + sin(kuz)ŷ) + βzj ẑ (2.81)

β2
j = a2

u

γ2
j

(
cos(kuz)2 + sin(kuz)2

)
+ β2

zj (2.82)

β2
j = a2

u

γ2
j

+ β2
zj (2.83)
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since sin(x)2 + cos(x)2 = 1, now inserting the above expression into equa-
tion 2.80 to give,

1
γ2
j

= 1− a2
u

γ2
j

− β2
zj (2.84)

1
γ2
j

+ a2
u

γ2
j

= 1− β2
zj (2.85)

1− β2
zj = 1 + a2

u

γ2
j

(2.86)

β2
zj = 1− 1 + a2

u

γ2
j

(2.87)

1
βzj

=
(

1− 1 + a2
u

γ2
j

)−1/2
(2.88)

performing a Binomial expansion to the first order, i.e., (1− x)−1/2 = 1 + 1
2x,

which assumes x� 1 i.e., γ2
j � 1 + a2

u

1
βzj

=
(

1 + 1 + a2
u

2γ2
j

)
(2.89)

By combining this expression with equation 2.76 and setting γj = γr one
can derive the approximate resonance condition given by equation 2.11. Now,
equation 2.1 is rearranged to give,

γ2
r = kr

2ku
(1 + a2

u) (2.90)

ku
kr
γ2
r = (1 + a2

u)
2 (2.91)

1First take 1
βzj

=
(

1 + 1+a2
u

2γ2
r

)
and rearrange 1−βzj

βzj
= 1+a2

u

2γ2
r

, now combine with λr

λu
= 1−βzj

βzj
to

get λr

λu
= 1+a2

u

2γ2
r

=> λr = λu

2γ2
r
(1 + a2

u) as stated by equation 2.1.
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and combining with equation 2.89,

1
βzj

=
(

1 + ku
kr

γ2
r

γ2
j

)
(2.92)

Inserting the above expression into equation 2.79.

dθj
dz

= ku + kr(1− (1 + ku
kr

γ2
r

γ2
j

)) (2.93)

dθj
dz

= ku − kr(
ku
kr

γ2
r

γ2
j

) (2.94)

dθj
dz

= ku − ku
γ2
r

γ2
j

(2.95)

dθj
dz

= ku

(
1− γ2

r

γ2
j

)
(2.96)

now introduce ∆γ = γj − γr => γj = ∆γ + γr and looking at the γ2
r/γ

2
j term

γ2
r

γ2
j

= γ2
r

(∆γ + γr)2 = γ2
r

γ2
r

1
(∆γ/γr + 1)2 = (1 + ∆γ/γr)−2 (2.97)

another Binomial expansion, which assumes ∆γ � γr, gives,

γ2
r

γ2
j

= 1− 2∆γ
γr

(2.98)

1− γ2
r

γ2
j

= 2∆γ
γr

(2.99)

substituting this expression into equation 2.96 and remembering ∆γ = γj−γr
yields,

dθj
dz

= 2ku
(γj − γr

γr

)
. (2.100)
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Remembering the gain length is defined as lg = 1/2kuρ and using dz̄
dz = 1/lg

to rearrange the above expression

dθj
dz̄

= 2kulg
(γj − γr

γr

)
(2.101)

dθj
dz̄

= γj − γr
ργr

(2.102)

inserting the scaled energy parameter pj = γj−γr
ργr

dθj
dz̄

= pj. (2.103)

2.3.4 The 1D wave equation

To simulate the evolution of the radiation field, the 1D Maxwell wave equation
is introduced,

( ∂2

∂z2 −
1
c2
∂2

∂t2

)
E = µ0

∂J
∂t

(2.104)

The radiation field was previously defined as,

E = 1√
2
(
êξei(krz−ωrt) + c.c.

)
(2.105)

where ê = 1√
2(x̂ + iŷ) is defined such that, ê · ê = 1

2(x̂2 − ŷ2) = 0 and
ê · ê∗ = 1

2(x̂2 + ŷ2) = 1. The transverse electric field and transverse current are
given by

√
2ê∗ ·E = E⊥ = Ex− iEy = ξei(krz−ωrt) and

√
2ê∗ ·J = J⊥ = Jx− iJy

now, projecting equation 2.104 onto
√

2ê∗ and integrating over the x-y plane
(assuming equal cross sectional areas σ between radiation field and electron
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pulse) gives

∫∫
A
dxdy

( ∂2

∂z2 −
1
c2
∂2

∂t2

)
E · ê∗

√
2 = µ0

∫∫
A

∂J
∂t
dxdy · ê∗

√
2 (2.106)

σ
( ∂2

∂z2 −
1
c2
∂2

∂t2

)
E · ê∗

√
2 = µ0

∂J
∂t
· ê∗
√

2 (2.107)( ∂2

∂z2 −
1
c2
∂2

∂t2

)
E · ê∗

√
2 = µ0

σ

∂J
∂t
· ê∗
√

2 (2.108)

here ∫∫A ∂J
∂t dxdy = ∂J

∂t , because the current vector J contains implicit factors
of δ(x− xj) and δ(y − yj) which both integrate to unity.

( ∂2

∂z2 −
1
c2
∂2

∂t2

)
ξei(krz−ωrt) = µ0

σ

∂J⊥
∂t

(2.109)( ∂
∂z
− 1
c

∂

∂t

)( ∂
∂z

+ 1
c

∂

∂t

)
ξei(krz−ωrt) = µ0

σ

∂J⊥
∂t

(2.110)

converting to scaled units using, where z̄1lg = z−cβ̄zt
(1−β̄z)

and z̄lg = z ,

(
∂

∂z̄
+ ∂

∂z̄1

)
= lg

(
∂

∂z
+ 1
c

∂

∂t

)
(2.111)

and

2 β̄z

1− β̄z

1− β̄z
2β̄z

(
∂

∂z̄1
+ ∂

∂z̄

)
+ ∂

∂z̄1

 = lg

(
∂

∂z
− 1
c

∂

∂t

)
(2.112)

see appendix B.3 for a derivation of the above expressions. Now,

2 β̄z

1− β̄z

1− β̄z
2β̄z

(
∂

∂z̄1
+ ∂

∂z̄

)
+ ∂

∂z̄1

( ∂

∂z̄
+ ∂

∂z̄1

)
ξei(krz−ωrt) (2.113)

= l2g
µ0

σ

∂J⊥
∂t

(2.114)
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z̄1 can be rearranged to give2 z̄1 = 2ρz(kr + ku) − 2ρkrct, combining with
z̄ = 2kuρz, z̄1 − z̄ = 2ρkrz − 2ρkrct to give (z̄1 − z̄)/2ρ = krz − ωrt

2 β̄z

1− β̄z

1− β̄z
2β̄z

(
∂

∂z̄1
+ ∂

∂z̄

)
+ ∂

∂z̄1

( ∂

∂z̄
+ ∂

∂z̄1

)
ξei

z̄1−z̄
2ρ (2.115)

= l2g
µ0

σ

∂J⊥
∂t

(2.116)

expanding the square brackets,
1− β̄z

2β̄z

(
∂

∂z̄1
+ ∂

∂z̄

)
+ ∂

∂z̄1

 ξei z̄1−z̄2ρ (2.117)

ei
z̄1−z̄

2ρ

1− β̄z
2β̄z

(
∂ξ

∂z̄1
+ ∂ξ

∂z̄

)
+ ∂ξ

∂z̄1
+ i

2ρξ
 (2.118)

the 1−β̄z
2β̄z

(
∂ξ
∂z̄1

+ ∂ξ
∂z̄

)
term can be ignored if,

∣∣∣∣∣∣1− β̄z2β̄z

(
∂ξ

∂z̄1
+ ∂ξ

∂z̄

)∣∣∣∣∣∣�
∣∣∣∣∣ ∂ξ∂z̄1

+ i

2ρξ
∣∣∣∣∣ , (2.119)

hence the square brackets are replaced with,
1− β̄z

2β̄z

(
∂

∂z̄1
+ ∂

∂z̄

)
+ ∂

∂z̄1

 ξei z̄1−z̄2ρ = ei
z̄1−z̄

2ρ

[
∂ξ

∂z̄1
+ i

2ρξ
]

(2.120)
1− β̄z

2β̄z

(
∂

∂z̄1
+ ∂

∂z̄

)
+ ∂

∂z̄1

 ξei z̄1−z̄2ρ = ∂

∂z̄1
ξei

z̄1−z̄
2ρ (2.121)

2z̄1 = 2kwρ z−cβ̄zt
(1−β̄z) = 2kwρz

(1−β̄z) −
2kwρcβ̄zt
(1−β̄z) now kr

kw
= β̄z

1−β̄z
and using 1−β̄z

1−β̄z
= 1, kr

kw
+ 1 = β̄z

1−β̄z
+

1−β̄z

1−β̄z
→ kr+kw

kw
= 1

1−β̄z
→ kr + kw = kw

1−β̄z
combining these expressions z̄1 = 2(kw + kr)ρz − 2krρct
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therefore,

2 β̄z

1− β̄z
∂

∂z̄1

(
∂

∂z̄
+ ∂

∂z̄1

)
ξei

z̄1−z̄
2ρ = l2g

µ0

σ

∂J⊥
∂t

(2.122)

now rewrite the RHS in scaled units, using,

β̄z

1− β̄z
∂

∂z̄1
= − lg

c

∂

∂t
(2.123)

2 β̄z

1− β̄z
∂

∂z̄1

(
∂

∂z̄
+ ∂

∂z̄1

)
ξei

z̄1−z̄
2ρ = −lgc

β̄z

1− β̄z
µ0

σ

∂J⊥
∂z̄1

(2.124)

∂

∂z̄1

(
∂

∂z̄
+ ∂

∂z̄1

)
ξei

z̄1−z̄
2ρ = −lgc

µ0

2σ
∂J⊥
∂z̄1

(2.125)

∂

∂z̄1

(
∂

∂z̄
+ ∂

∂z̄1

)
ξei

z̄1−z̄
2ρ + lgc

µ0

2σ
∂J⊥
∂z̄1

= 0 (2.126)

∂

∂z̄1

[(
∂

∂z̄
+ ∂

∂z̄1

)
ξei

z̄1−z̄
2ρ + lgc

µ0

2σJ⊥
]

= 0 (2.127)

then assuming energy conservations i.e. the transverse radiation field is driven
by the transverse current, and therefore the bracketed terms must equal zero,

(
∂

∂z̄
+ ∂

∂z̄1

)
ξei

z̄1−z̄
2ρ + lgc

µ0

2σJ⊥ = 0 (2.128)(
∂

∂z̄
+ ∂

∂z̄1

)
ξei

z̄1−z̄
2ρ = −lgc

µ0

2σJ⊥ (2.129)

the transverse current density can be written as,

J⊥ = −ec
N∑
j=1

β⊥δ(z − zj(t)) (2.130)
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and is combined with the above expression
(
∂

∂z̄
+ ∂

∂z̄1

)
ξei

z̄1−z̄
2ρ = elgc

2 µ0

2σ
N∑
j=1

β⊥δ(z − zj(t)) (2.131)

where β⊥ is defined as, taking β from equation 2.27. The Dirac delta function
has the useful property ∫ T+ε

T−ε f(t)δ(t− T )dt = f(T ),

√
2ê∗ · β = (x̂− iŷ)

(
−au
γj

(cos(kuz)x̂ + sin(kuz)ŷ) + βzẑ
)

(2.132)

β⊥ = −au
γj

(
cos(kuz)− i sin(kuz)

)
(2.133)

β⊥ = −au
γj

exp(−ikuz) (2.134)

using this definition of β⊥
(
∂

∂z̄
+ ∂

∂z̄1

)
ξei

z̄1−z̄
2ρ = −elgc2 µ0

2σ
N∑
j=1

au
γj

exp(−ikuz)δ(z − zj(t)) (2.135)
(
∂

∂z̄
+ ∂

∂z̄1

)
ξei

z̄1−z̄
2ρ = −elgc2au

γj

µ0

2σ
N∑
j=1

exp(−ikuz)δ(z − zj(t)) (2.136)
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the delta function transforms as δ(z − zj(t)) = δ(t− tj)
βzjc

= 2krρ
δ(z̄1 − z̄1j)

βzj
,

since z̄ = 2kuρz and z̄1lg = z−cβ̄zt
(1−β̄z)

=> z̄1 = −ct/lc

(
∂

∂z̄
+ ∂

∂z̄1

)
ξei

z̄1−z̄
2ρ = −elgc2au

γj

µ0

2σ
N∑
j=1

e(−i z̄2ρ )2krρ
δ(z̄1 − z̄1j)

βzj
(2.137)

(
∂

∂z̄
+ ∂

∂z̄1

)
ξei

z̄1−z̄
2ρ = −e2krρlgc2au

γj

µ0

2σ
1
βzj

N∑
j=1

e−i
z̄
2ρ δ(z̄1 − z̄1j) (2.138)

(
∂

∂z̄
+ ∂

∂z̄1

)
ξ = −e2krρlgc2au

γj

µ0

2σ
1
βzj

N∑
j=1

e−i
z̄1
2ρ δ(z̄1 − z̄1j) (2.139)

now using 1/c2 = µ0ε0 => µ0 = 1/(ε0c2)
(
∂

∂z̄
+ ∂

∂z̄1

)
ξ = −e2krρlg

au
γjε0

1
2σ

1
βzj

N∑
j=1

e−i
z̄1
2ρ δ(z̄1 − z̄1j) (2.140)

the plasma frequency ωp is now rearranged,

ωp =
(
e2np
ε0m

)1/2

(2.141)

ω2
p =

(
e2np
ε0m

)
(2.142)

ω2
p

np
= e2

ε0m
(2.143)

m

e

ω2
p

np
= e

ε0
(2.144)
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now inserting into equation 2.140 and rearranging,
(
∂

∂z̄
+ ∂

∂z̄1

)
ξ = −2krρlg

m

e

ω2
p

np

au
γj

1
2σ

1
βzj

N∑
j=1

e−i
z̄1
2ρ δ(z̄1 − z̄1j) (2.145)

(
∂

∂z̄
+ ∂

∂z̄1

)
ξ = −2krρ

1
2kuρ

m

e

ω2
p

np

au
γj

1
2σ

1
βzj

N∑
j=1

e−i
z̄1
2ρ δ(z̄1 − z̄1j) (2.146)

(
∂

∂z̄
+ ∂

∂z̄1

)
ξ = −2krρ

1
ρ

m

e

ωp
np

1
γj

2cauωp4cku
1

2σ
1
βzj

N∑
j=1

e−i
z̄1
2ρ δ(z̄1 − z̄1j) (2.147)

now ρ can be rearranged,

ρ = 1
γr

(
auωp
4cku

)2/3
(2.148)

(ργr)3/2 = auωp
4cku

(2.149)

(
∂

∂z̄
+ ∂

∂z̄1

)
ξ = −2krρ

1
ρ

m

e

ωp
np

1
γj

2c (ργr)3/2 1
2σ

1
βzj

N∑
j=1

e−i
z̄1
2ρ δ(z̄1 − z̄1j)

(2.150)

now, assuming γr−γj
γr
� 1, then setting γj = γr and βzj = 1

(
∂

∂z̄
+ ∂

∂z̄1

)
ξ = −2krρ

1
ρ

m

e

ωp
np

1
γr

2c (ργr)3/2 1
2σ

N∑
j=1

e−i
z̄1
2ρ δ(z̄1 − z̄1j)

(2.151)(
∂

∂z̄
+ ∂

∂z̄1

)
ξ = −2krρ

m

e

ωp
np

2c (ργr)1/2 1
2σ

N∑
j=1

e−i
z̄1
2ρ δ(z̄1 − z̄1j)

(2.152)(
∂

∂z̄
+ ∂

∂z̄1

)
eξ

mcωp
√
ργr

= −2krρ
1
np

1
σ

N∑
j=1

e−i
z̄1
2ρ δ(z̄1 − z̄1j) (2.153)
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the scaled radiation field was defined as, A(z̄, z̄1) = eξ
mcωp

√
ργr

(
∂

∂z̄
+ ∂

∂z̄1

)
A(z̄, z̄1) = −2krρ

npσ

N∑
j=1

e−i
z̄1
2ρ δ(z̄1 − z̄1j) (2.154)

The scaled linear density is defined as, n̄p = npσ
2krρ = lcnpσ

(
∂

∂z̄
+ ∂

∂z̄1

)
A(z̄, z̄1) = − 1

n̄p

N∑
j=1

e−i
z̄1
2ρ δ(z̄1 − z̄1j) (2.155)

Now, the wave equation is converted into form suited to numerical integration.
This done by integrating the wave equation over one resonant radiation period
(4πρ),

∫ z̄1+2πρ

z̄1−2πρ

(
∂

∂z̄
+ ∂

∂z̄1

)
A(z̄, z̄1)dz̄1 =

∫ z̄1+2πρ

z̄1−2πρ
− 1
n̄p

N∑
j=1

e−i
z̄1
2ρ δ(z̄1 − z̄1j)dz̄1

(2.156)

The local radiation field is defined as, over the integration window, Ā(z̄, z̄1) =
[A(z̄, z̄1 + 2πρ) + A(z̄, z̄1 − 2πρ)]/2

(
∂

∂z̄
+ ∂

∂z̄1

)
Ā(z̄, z̄1)

∫ z̄1+2πρ

z̄1−2πρ
dz̄1 =

∫ z̄1+2πρ

z̄1−2πρ
− 1
n̄p

N∑
j=1

e−i
z̄1
2ρ δ(z̄1 − z̄1j)dz̄1

(2.157)(
∂

∂z̄
+ ∂

∂z̄1

)
Ā(z̄, z̄1)4πρ = − 1

n̄p

Nλ∑
j=1

e−i
z̄1j
2ρ (2.158)

(
∂

∂z̄
+ ∂

∂z̄1

)
Ā(z̄, z̄1) = − 1

Nλ

Nλ∑
j=1

e−i
z̄1j
2ρ (2.159)
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however the pondermotive phase was given by θj = (kr + ku)z − ωrtj and the
scaled coordinate z̄1j = 2ρz(kr + ku)− 2ρkrctj, therefore θj = z̄1j/2ρ

(
∂

∂z̄
+ ∂

∂z̄1

)
Ā(z̄, z̄1) = − 1

Nλ

Nλ∑
j=1

e−iθj (2.160)

2.4 1D equations
The 1D FEL equations are restated here,

dpj
dz̄

=
(
Aeiθj + c.c.

)
(2.161)

dθj
dz̄

= pj (2.162)(
∂

∂z̄
+ ∂

∂z̄1

)
A(z̄, z̄1) = − 1

Nλ

Nλ∑
j=1

e−iθj (2.163)

where pj = γj−γr
ργr

is scaled energy parameter and θj = (ku + k)z − ωt the
pondermotive phase. However, now the steady state approximation is made
by ignoring the d

dz̄1
derivatives, here we have replaced A = −A

dpj
dz̄

= −(A exp[iθj] + c.c.) (2.164)
dθj
dz̄

= pj (2.165)
d

dz̄
A =< exp[−iθj] > (2.166)

here, < exp[−iθj] >= 1
Nλ

∑Nλ
j=1 e

−iθj .
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The complex radiation field can be written as A = |A| exp[iφ] with phase
φ which is allowed to evolve and |A| is the radiation field amplitude. Inserting
this definition in equation 2.166 gives,

d

dz̄
(|A| exp[iφ]) =< exp[−iθj] > (2.167)

exp[iφ]d|A|
dz̄

+ i|A| exp[iφ]dφ
dz̄

=< exp[−iθj] > (2.168)
d|A|
dz̄

+ i|A|dφ
dz̄

=< exp[−iθj] > exp[−iφ] (2.169)
d|A|
dz̄

+ i|A|dφ
dz̄

=< exp[−i(θj + φ)] > (2.170)
d|A|
dz̄

+ i|A|dφ
dz̄

=< cos(θj + φ) > −i < sin(θj + φ) > (2.171)

now separating the real and imaginary parts,

d|A|
dz̄

=< cos(θj + φ) > (2.172)
dφ

dz̄
= − 1
|A|

< sin(θj + φ) > (2.173)

inserting the new scaled radiation field with phase φ into equation 2.164,

dpj
dz̄

= −(|A| exp[iφ] exp[iθj] + c.c.) (2.174)
dpj
dz̄

= −|A|(exp[i(θj + φ)] + exp[−i(θj + φ)]) (2.175)

applying Euler’s relations 2 cosx = eix + e−ix.

dpj
dz̄

= −2|A| cos(θj + φ) (2.176)

restating the FEL equations once more with the radiation phase equation in
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the steady state regime,

dpj
dz̄

= −2|A| cos(θj + φ) (2.177)
dθj
dz̄

= pj (2.178)
d|A|
dz̄

=< cos(θj + φ) > (2.179)
dφ

dz̄
= − 1
|A|

< sin(θj + φ) > (2.180)

To understand the FEL mechanism, consider the above set of equations and
assume initially φ = 0. Electrons in the region π/2 < θ < 3π/2 will experi-
ence a small increase in energy, as can be seen from equation 2.177. However,
electrons located between 3π/2 < θ < 2π will experience a small decrease in
energy. This can be seen figure 2.2(a-b), where the − cos(θj +φ) part of equa-
tion 2.177 is plotted with an initially cold electron pulse. Now, equation 2.178
tells us that the electrons will bunch around θ = 3π/2, as can be seen in fig-
ure 2.2(c). However, at this phase the electron microbunches cannot increase
the radiation field amplitude |A|, i.e., for the electrons at θj = 3π/2, as d|A|

dz̄ = 0
in accordance with equation 2.179. This can be seen figure 2.2(d), where the
cos(θj +φ) part of equations 2.179 is plotted with the electron pulse. But, the
radiation phase φ which is initially zero will increase (see equation 2.180), such
that the increased electron density at 3π/2 will result in dφ

dz̄ > 0, as seen in fig-
ure 2.2(e). Therefore the phase φ and argument of equation 2.179 will increase
(see figure 2.2(f)). Hence the radiation field amplitude |A| increases d|A|

dz̄ > 0,
see figure 2.2(f). This then increases the bunching, which further amplifies the
radiation field, this is basic mechanism of the FEL. This feedback loop will
continue until the radiation field saturates. Linear analysis [8] of the 1D FEL
equations shows that FEL high gain amplification process is characterised by
the gain length lg, where an initial radiation power P0 is exponentially ampli-
fied as a function of distance through the undulator as P = P0 exp(

√
3z/lg).
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Figure 2.2: The Free Electron Laser mechanism is illustrated above. (a) overlap of the
initial cold electron pulse and the functional part of equation 2.177 (b) the electron
pulse will experience an energy modulation described by equation 2.177 (c) this
energy modulation cause the electron to bunch around 3π/2, 7π/2, etc. (d) electrons
bunched around 3π/2 cannot amplify the radiation field i.e. the functional part of
equation 2.179 will be zero (e) however the radiation field phase φ will increase due
the increased electron density around 3π/2 (see equation 2.180) (f) as the radiation
phase increases the argument of equation 2.179 will increase such that d|A|

dz̄
> 0 and

radiation field amplitude will increase. Increasing the radiation field amplitude |A|
will then increase the bunching which in turn increase the radiation field amplitude
in a collective feed back loop.

31



For the simulations presented in this thesis a larger set of equations, than
the simplified equations 2.177-2.180, are integrated numerically. In hpFull [10]
for example the electron pulse’s transverse trajectory is not assumed to be a
simple function of the undulator magnetic field and must be calculated self-
consistently. Two different FEL codes are used in the rest of this thesis. The
first code is the 1D FEL simulation hpFull, and was used to obtain the results
given in section 4.2. The parallelized 3D FEL code Puffin which will be dis-
cussed in chapter 3 was used to obtain the results given in chapters 5-7 in the
1D limit. In these codes the slow varying envelope approximation is not made,
however the paraxial approximation is and the backwards propagating wave is
neglected. These two codes do not apply period averaging in their analytical
models unlike more industrious codes, such as Genesis [20]. Genesis is very
likely the most popular FEL code in the world. Genesis makes a number of
limiting assumptions to reduce the computation time. One of the most impor-
tant of these assumptions is period averaging. In Genesis the electron pulse
and radiation field are discretized at the resonant period, the FEL equations
are then solved for each self-contained resonant period/slice. To model slip-
page effects the radiation field is slipped ahead of the electron pulse by one
resonant period/slice after one resonant period of numerical integration. This
period averaging gives a large improvement in computational time. Genesis
also applies the paraxial and slow varying envelope approximation. Genesis
(and any averaged FEL simulator) cannot model sub-period phenomena such
as coherent spontaneous emission and is limited in range of frequencies that
can be modelled. The simulations presented in this thesis were performed in
the unaveraged FEL codes hpFull and Puffin. hpFull combines the unaveraged
FEL simulation code of [10] with the macroparticle loading algorithm of [9].
Puffin [11] is reviewed in chapter 3 and the inclusion of physically correct 3D
undulator magnetic fields is discussed. The implementation of 3D undulator
magnetic field was reported in [12].
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Chapter 3

Puffin and the 3D undulator

3.1 Introduction
The equations integrated by hpFull [9, 10] can be derived in a similar fash-
ion to those found in chapter 2. However, the electron transverse momentum
and trajectory are not assumed to be simple of functions of the undulator
magnetic field. Hence, the electron transverse momentum must be calculated
self-consistently. The equation describing the evolution of p⊥, can be derived if
the electric field is not ignored in equation 2.14. By including the electric field
this equation does not easily integrate and must be solved numerically and self-
consistently, with the rest of hpFull’s equations. In hpFull the electron longitu-
dinal momentum is calculated self-consistently instead of its energy. Puffin [11]
is basically a three dimensional version of hpFull, however the equations are
scaled to radiation frame. This allows Puffin to simulate the interaction of 6D
electron beams (3 dimensions in momentum space and 3 spatial dimensions)
and 3D radiation fields. Puffin is integrating in a 6D phase space, which is very
computational intensive. To overcome this, Puffin is implemented in Fortran
90 under the MPI-standard. The MPI-standard (Message Passage Interface)
allows Puffin to run on a high performance machine, a supercomputer, across
many computational nodes. This can drastically reduce computation time. It
is also necessary to run Puffin on a high performance machine, because Puf-
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fin’s 6D phase space can require a large amounts of local memory (10-100GB),
which typically exceeds what is available on desktop machines. Even in the 1D
limit it is useful to run Puffin on a cluster to reduce computation time from
days to hours and free up local computing power.

Puffin was originally written with a simple 1D dimensional undulator mag-
netic field. Since, electron pulses’ have a non-zero transverse velocity, they
expand during propagation through an undulator, therefore Puffin’s working
equations included an artificial focusing channel [11]. Undulators can be de-
signed to have off-axis parabolic magnetic fields. Such a magnetic field will
induce a focusing force in both transverse directions, which counteracts the
electron pulse’s expansion. Canted pole, those producing parabolic magnetic
fields, and plane pole magnetic undulator fields are now included in Puffin’s
working set of equations [12]. In, doing so the artificial focusing channel was
removed, allowing a more physically correct description of the FEL phenom-
ena to emerge in simulations. The inclusion of the 3D undulator magnetic
fields is discussed in the proceeding sections of this chapter, with a derivation
of the new Puffin equations with the 3D undulator given in appendix A.

3.2 Outline of FEL equations
The derivation of the original FEL system of equations modelled by Puffin is
given in [11], using a magnetic undulator field Bu = B0

2 (ueikuz + c.c.), where
u = uxx̂ + iuyŷ defines the polarization of the undulator. Following a similar
derivation, which is given in appendix A, but using a general 3D magnetic
field of the form B = Bxx̂ + Byŷ + Bzẑ, one obtains the following system of
equations:

dp2j

dz̄
= ρ

η
L2
j

(
(p̄∗⊥jA⊥ + c.c)ηp2j − iα2(1 + ηp2j)(p̄⊥jb∗ω⊥ − c.c.)

)
(3.1)

dp̄⊥j
dz̄

= 1
2ρ

(
ibw⊥ −

ηp2j

α2 A⊥

)
− iαp̄⊥jLjbz (3.2)
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the preceding differential equations describe the electron momentum through
the undulator, and the field equation is given by,

1
2

(
∂2

∂x̄2 + ∂2

∂ȳ2

)
A⊥ −

∂2

∂z̄∂z̄2
A⊥ = −Lj

n̄p

∂

∂z̄2

N∑
j=1

p̄⊥jδ(x̄j, ȳj z̄2j) (3.3)

the evolution of electron axial coordinates are described by,

dz̄2j

dz̄
= p2j (3.4)

dx̄j
dz̄

= 2ρα
√
η
Lj<(p̄⊥j) (3.5)

dȳj
dz̄

= −2ρα
√
η
Lj=(p̄⊥j) (3.6)

where

p̄⊥ = p⊥
mcau

, A⊥ = eaulg
2γ2

rmc
2ρ
E⊥,

ρ = 1
γr

(
auωp
4cku

)2/3
, au = eB0

mcku
,

α = au
2ργr

, bw⊥ = bx − iby,

Lj = γr
βzjγj

, n̄p = lgl
2
cnp (3.7)

and bx,y,z = Bx,y,z/B0 are the scaled magnetic fields in x, y and z, respectively,
and B0 is the peak on-axis magnetic field. Other parameters are defined in
appendix A. In contrast to section 2 and hpFull, these equations are scaled
in the radiation frame not the electron pulse frame. The radiation frame is
described by z̄2 = β̄z

(1−β̄z)
(ct−z)
lg

. And the scaled longitudinal velocity is given by
ηp2j = 1−βzj

βzj
, where η = 1−β̄z

β̄z
.

Using the above system of equations, one may use bx, by and bz to define
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a static 3D magnetic field with which to simulate the FEL interaction. The
model is still subject to the same limitations as the original Puffin model [11],
i.e. the paraxial approximation and the neglect of the backwards propagating
wave.

Currently, two 3D undulator fields have been implemented in Puffin using
this model, both derived from [21, 22]. The first is an undulator field with
canted, or curved, pole faces, providing electron beam focusing in both trans-
verse directions:

bx =kx̄
kȳ

sinh(kx̄x̄) sinh(kȳȳ) sin(z̄/2ρ),

by = cosh(kx̄x̄) cosh(kȳȳ) sin(z̄/2ρ), (3.8)

bz =
√
η

2ρkȳ
cosh(kx̄x̄) sinh(kȳȳ) cos(z̄/2ρ),

where kx̄,ȳ give the hyperbolic variation of the magnetic field in x̄, ȳ, and must
satisfy

k2
x̄ + k2

ȳ = η

4ρ2 . (3.9)

this can be seen by applying Gauss’s Law for magnetism to the above magnetic
fields.1

The second undulator type is a planar undulator with plane pole faces,
described by:

bx =0,
by = cosh(√ηȳ/2ρ) sin(z̄/2ρ), (3.10)
bz = sinh(√ηȳ/2ρ) cos(z̄/2ρ),

which produces a focusing force in one transverse direction.
1i.e. ∇ ·B = 1√

lglc

(
dBx

dx̄ + dBy

dȳ

)
+ 1

lg
dBz

dz̄ = B0√
lglc

k̄2
x

k̄y
+ B0√

lglc
k̄y − B0

lg

√
η

4ρ2k̄y
= 0 where

√
lc
lg

= √η

36



3.3 Simulations
The electron transport through both of these undulator types is well known.
Some simple tests can therefore be designed to see if the electron motion in
Puffin exhibits the correct behaviour.

As described in [21, 22], a natural focusing channel arises from the off-
axis variation of the magnetic field in the curved-pole undulator. From this
so-called ‘natural’ focusing, one expects a slow oscillation, shown in figures
3.1-3.2, characterised by betatron wavenumbers and corresponding matched
beam radii in x̄ and ȳ, given, in the scaled notation, as:

kβx̄ = aukx̄√
2ηγr

, kβȳ = aukȳ√
2ηγr

, (3.11)

σ̄x =
√√√√ρε̄x
kβx̄

, σ̄y =
√√√√ρε̄y
kβȳ

. (3.12)

respectively. For the curved pole simulation, ρ = 0.0017, au = 4.404, ε̄x,y =
1 and γr = 575.63. The electron pulse hard edges in x̄ and ȳ, matched at
injection, are are seen to be oscillating throughout propagation however the
radii σ̄x,y remains constant. σ̄x is plotted against z̄ in figure 3.2. In this case,
kx̄ = kȳ, which, from condition (3.9) and equation (3.11), results in

kβx̄ = kβȳ = au
4ργr

, (3.13)

and, from (3.12), matched beam radii of σ̄x,y = 0.039, giving good agreement
with figure 3.2.
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Figure 3.1: Demonstration of the rotation in transverse phase space of a matched
electron beam using a curved-pole undulator. Top plots show a transverse plane of
the beam at the start of the undulator and at z̄ ≈ λ̄β/8, the electron pulse maintains
a constant transverse area. The middle plots show the px̄ by x̄ phase space, it is seen
that the electron pulse has completed a 1/8th rotation. In the bottom plots the show
the pȳ by ȳ phase space, which also demonstrates a rotation of 1/8.
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Figure 3.2: The electron pulse rotates in the transverse phase space. This rotation
results in an oscillation of the hard edge of the electron beam radius (i.e. maximum
and minimum x̄ and ȳ) with a period of λ̄β/4. In the top plot the wiggle motion of
the electron pulse is also seen with a period of 4πρ = 0.0214. The rms beam radius
σ̄x,y is approximately constant in z̄
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Similar to the curved-pole undulator, a natural focusing channel also arises
in the plane-pole undulator, this time exclusively in the ȳ direction. For this
simulation, the parameters used are identical to the curved pole case, except
the beam energy and the undulator parameter are adjusted to γr = 238.04 and
au = 1.8197, to give the same transverse radii for comparison to the curved
pole case.

The betatron period and matched beam radius in ȳ are now:

kβȳ = au

2
√

2ργr
, (3.14)

σ̄y =
√√√√ρε̄y
kβȳ

, (3.15)

and electron motion in the (x̄, p̄x) dimension should undergo free space dis-
persion when averaged over an undulator period, resulting in an expansion of
the beam in the x̄ dimension. The radius in x̄ during propagation is plotted
in figure 3.4, showing the beam expansion. The initial radius in x̄ is here set
to the matched radius in ȳ, so σ̄x = σ̄y = 0.0327. The radius in ȳ remains
constant, as expected.

In figure 3.4 the electron electron pulse expands in x, the expansion can
be calculated by considering the evolution of electron axial coordinates as
described by,

dx̄j
dz̄

= 2ρα
√
η
Lj<(p̄⊥j) (3.16)

∆x̄j
∆z̄ = 2ρα

√
η
Ljσp̄xj (3.17)

where σp̄xj = max(p̄xj) − min(p̄xj). For these simulations ρ = 0.0017, η =
1.6140× 10−5, α = au

2ργr , γr = 238.04, au = 1.8197, Lj ≈ 1, and σp̄xj = 0.1162.
The increase in x̄j is given as ∆x̄j

∆z̄ = 0.2217 and is in agreement with simulation
results presented in figure 3.4. A comparison of the electron pulse radii in x
for plane pole and curved pole undulators is made in figure 3.5.
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Figure 3.3: Demonstration of the rotation in the pȳ by ȳ phase space of a matched
electron beam using a plane-pole undulator in the . Top plots show a transverse
plane of the beam at the start of the undulator and at z̄ ≈ λ̄β/8, the electron pulse
maintains a constant transverse area. The middle plots show the px̄ by x̄ phase space,
that the electron pulse expands as there is no focusing in this direction. In the bottom
plots the show the pȳ by ȳ phase space, which demonstrates a rotation of 1/8.
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Figure 3.4: The electron pulse rotates in the pȳ by ȳ phase space. This rotation results
in an oscillation of the hard edge of the electron beam radius (i.e. maximum and
minimum ȳ) with a period of λ̄β/4 and is seen in the bottom plot. In the top plot
the wiggle motion of the electron pulse is also seen with a period of 4πρ = 0.0214,
the emittance driven expansion in x̄ is also shown in this plot and is estimated as
∆x̄j

∆z̄ = 0.2217. The rms beam radius σ̄x,y is approximately constant in z̄
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Figure 3.5: The electron pulse radius σ̄x plotted as a function of distance through
the undulator. The plane pole undulator does not produce a focussing force in the x
direction, however the curved pole undulator does. Therefore, the radius in x when
propagated through a plane pole undulator will expand however in the curved pole
undulator this expansion is supressed.
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Chapter 4

Novel schemes

4.1 Review of novel FEL schemes
Current x-ray Free Electron Lasers lack temporal coherence [6, 13, 14]. Typi-
cally Free Electron Lasers operating below the x-ray [1, 6] are either seeded or
operate in a cavity configuration. However, conventional seed lasers operating
in the x-ray lack the necessary intensity to seed an FEL [1]. Similarly, in the
cavity configuration mirrors with a high enough reflectance are not available
in the x-ray. Therefore, x-ray FELs operate in Self-Amplified Spontaneous
Emission regime (SASE).

In the SASE [23, 24] regime a series of uncorrelated radiation spikes are
generated. The SASE FEL requires a long undulator, in which spontaneously
emitted radiation is amplified to saturation. Spontaneous radiation is produced
because of electron shot-noise [9], i.e., the electrons are randomly distributed
in phase. Since the electrons are randomly distributed in phase the radiation
spikes generated in SASE do not have a fixed phase relationship.

A number of techniques have been proposed to improve the FEL’s temporal
coherence in the x-ray. Many of these techniques favour the beam by design [17]
approach, where a combination of undulators, long wavelength seed lasers and
chicanes are used to precondition the electron pulse. This preconditioning often
involves generating a density modulation, at higher frequency, in the electron
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pulse.
A chicane [25] is a magnetic device that alters an electron’s trajectory in

proportion to its energy. In standard chicanes, those with a positive disper-
sion, higher energy electrons take a shorter path through the chicane than
their lower energy counterparts. Therefore, high energy electrons traverse the
chicane in a shorter time than low energy electrons, hence the electrons are
seen to disperse. i.e. high energy electrons move ahead of low energy electrons.
This dispersion is very similar to undulator dispersion. However, chicane dis-
persion is proportional to the electron energy and for an undulator the electron
dispersion is related to the electron velocity (as described by equation 3.5)
along the undulator. Undulator dispersion allows electron microbunching to
develop, which is key to the FEL interaction, and was discussed in section 2
and illustrated in figure 2.2. Therefore, chicanes can be used to increase the
microbunching and improve the FEL interaction when inserted between un-
dulator modules. By, improving FEL efficiency the total undulator length can
be reduced and radiation field power increased, such an approach is known as
the Optical Klystron (OK) FEL [23]. Just as the radiation pulse slips in front
of the electron pulse in an undulator, and since electron velocity must be less
than the speed of light, the radiation field will also slip in front of the electron
pulse in a chicane section, this distance is known the chicane’s slippage length.

Using the correct configuration of magnetic elements, the dispersive strength
and slippage length of a chicane section can be precisely controlled [25].
In [25] the design and implementation of isochronous chicanes was described,
an isochronous chicane does not disperse the electron pulse however there is
still slippage between the radiation field and electron pulse. Isochronous, or
slippage-only, chicanes can be desirable when chicanes are required but a del-
icate phase space structure must be preserved. A negatively dispersed chicane
is another possibility [25], in such a chicane low energy electrons will move
ahead of high energy electrons, i.e. there is a negative dispersion.

One of first techniques proposed, to improve the FEL’s temporal coherence
in the x-ray, was the High Gain Harmonic Generation (HGHG) [26] method,
shown in figure 4.1. In the HGHG method, the electron beam is energy mod-
ulated with a long wavelength seed laser and dispersed in a chicane section.
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The chicane section converts this large energy modulation into a density mod-
ulation. This density modulation is a form of the electron microbunching phe-
nomena that is key to the FEL mechanism, discussed chapter 2. The electron
pulse, which was originally bunched at a long wavelength, also will have bunch-
ing components at the high harmonics of this wavelength. In the final section,
a radiator (undulator) is tuned to one of these harmonics, and by doing will
produce a radiation field with high temporal coherence. However, HGHG [26]
has a limited range, such that for harmonics greater than ten the correspond-
ing bunching is very much diminished. The reduced bunching at the higher
harmonics will reduce radiation field’s temporal coherence at those harmonics.

The Echo Enabled Harmonic Generation [13, 14] technique (figure 4.2)
was proposed to overcome this limitation. Echo Enabled Harmonic Genera-
tion (EEHG) requires two consecutive modulator(seeded undulator)-chicane
sections. The interplay of these sections imprints a fine micro structure on the
electron pulse phase space. This microstructure contains bunching components
at very high harmonics of the modulator seed lasers. The first modulator-
chicane section generates a number of phase-space energy bands. The sec-
ond modulator-chicane section then converts these energy bands into current
bands. These current bands are equispaced and separated by some high har-
monic of the seed lasers. The advantage of this scheme is that it can pre-bunch
the electron pulse at harmonics greater 10. This allows temporally coherent
radiation fields to be generated at very high harmonics of the initial seed laser
when passed through a final radiator-undulator.
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Figure 4.1: Diagram of SASE and HGHG schemes from [26]. In the SASE scheme
spontaneous radiation is amplified to saturation in a long undulator. However, in the
HGHG method the electron pulse is energy modulated by a long wavelength seed
laser. Then, the energy modulation is converted to a density modulation, known as
microbunching. A Fourier transform of the electron pulse’s density profile will reveal
large density modulations at the harmonics of the initial seed laser. A radiator-
undulator can be tuned to one these harmonic density modulations, to generate a
large temporally coherent radiation field.
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In conventional laser physics short radiation pulses can be generated by
enforcing a fixed phase relationship between cavity radiation modes [27], this
is technique is known as mode-locking. The simplest method of mode-locking
is to apply a field modulation at a frequency determined by the cavity round
trip time, ωL = 2πc/2L, where L is the cavity length. Such a mode-locking
set-up will result in a series of temporal radiation spikes separated by T =
2π/ωL. Taking the Fourier transform of such a mode-locked laser pulse reveals
a number side-band radiation modes separated by ωL.

The technique of mode-locking can be applied to the Free Electron Laser [28,
29]. This can be done by sending the electron pulse through an undulator-
chicane lattice, constructed from a series of consecutive undulator-chicane
modules. Here, the cavity round trip time is equivalent to the slippage length of
an undulator-chicane module. An undulator-chicane lattice will amplify side-
band radiation modes separated by ∆ω = 2πc/s. s is the total slippage length
for an undulator-chicane module, which is constant throughout the lattice.

In the mode-locking technique for free electron lasers, shown in figure 4.1,
chicane sections provide a series of periodic slips to the radiation field. There-
fore, the only radiation wavelengths that can survive a number of these slips
will be an integer divisor of undulator-chicane slippage length, see appendix
B.2 for a short derivation. Hence, the undulator-chicane lattice will amplify
side-band radiation modes that are separated by,

∆ω = 2πc
s
. (4.1)

s is the sum of the undulator slippage l and the chicane slippage δ, i.e., s = l+δ.
The mode-locking technique will generate a series of temporal radiation spikes.
These spikes will be separated by T = 2π/∆ω = s/c. To fully lock the modes
the electron pulse must be premodulated in current or energy at the frequency
∆ω, otherwise the scheme is known as mode-coupling. Mode-locking can also
be achieved when the electron pulse has a density modulation at the frequency
∆ω, an example of this is discussed in the next section.

Furthermore, undulator-chicane lattices have other uses, such as the High
Brightness SASE [30]. In the HB-SASE FEL variable slippage length undulator-
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chicane modules are used to extend the FEL instability from localised SASE
spikes to encompass the entire electron pulse. By doing so the temporal coher-
ence of the HB-SASE FEL is improved. Another use of an undulator-chicane
lattice is the mode-locked afterburner [31] which can be attached to the end of
a long undulator to produce mode-locked radiation. Such a technique maybe
useful in a pre-existing facility to generate mode-locked radiation without large
expense.

Figure 4.3: This mode-locking diagram was taken from [28]. (a) an illustration of
the SASE FEL (b) mode-coupling FEL scheme, a series of chicane slippage sections
are used (c) the electron pulse is pre-modulated before injection into the undulator-
chicane lattice
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4.2 EEHG modelocking

4.2.1 Echo Enabled Harmonic Generation

In this section the technique of Echo Enabled Harmonic Generation is dis-
cussed and improvements to the scheme investigated. The results of this work
was published in [15]. The EEHG method can be approximated by four simple
particle transformations, given by following four equations:

γ
(1)
j = γ

(0)
j + ∆γ1 sin(z(0)

j k1) (4.2)

z
(1)
j = z

(0)
j +R

(1)
56

γ(1)
j − γr
γr

 , (4.3)

γ
(2)
j = γ

(1)
j + ∆γ2 sin(z(1)

j k2) (4.4)

z
(2)
j = z

(1)
j +R

(2)
56

γ(2)
j − γr
γr

 , (4.5)

where the bracketed superscripts (0, 1, 2) referring to the initial conditions, and
to the exit from the first and second modulation/dispersive stages respectively;
γ is the electron energy in units of the electron rest-mass energy and ∆γ1,2 is
the energy modulation.

The method of EEHG manipulates electron pulse phase space using two
temporally coherent, long wavelength seed lasers, two undulators and two
dispersive chicanes, as can be seen in figure 4.2. The electrons are first mod-
ulated by a seed laser in an undulator and then dispersed in a chicane, i.e.
equations 4.2 and 4.3 are applied to the electron pulse. This process is then
repeated (equations 4.4-4.5) and a fine microbunching structure in the elec-
tron pulse is generated at a shorter wavelength, this microstructure retains a
high level of the temporal coherence from the long wavelength lasers. When
propagated through a final radiator undulator, the electron beam emits ra-
diation at the shorter wavelength, of the electron microbunching, and with
an improved temporal coherence over that generated by Self Amplified Spon-
taneous Emission. Previous models of EEHG [13, 14] have applied periodic
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boundary conditions to the electron phase space, i.e. electrons leaving the
right of the electron pulse window are returned to the left of the window and
vice-versa. These simulation codes also average the electron pulse and radia-
tion field over a radiation period, the so-called ‘period averaging’. By using the
unaveraged FEL code, hpFull [9, 10], these limiting assumptions are removed.

Using this model, simulations of EEHG up to before the final undulator re-
veal a frequency comb of modes (side-band modes) in the electron microbunch-
ing parameter, with adjacent modes being separated by the second seed laser
frequency. This frequency comb may then be matched to an undulator-chicane
lattice as the final radiator stage to lock the radiation modes as discussed ear-
lier.

4.2.2 EEHG pre-radiator stage

To demonstrate the process, EEHG was simulated with the following parame-
ters for a cold beam with no intrinsic shot-noise. The cold beam approximation
refers to an electron pulse of zero energy spread and uniform electron energy. A
uniform ‘flat top’ current profile electron pulse was used with electron energy
Er = 1.2GeV, charge Q = 100pC and initial pulse length of 12µm (which is
equivalent to a current of 2.5 kA). The first and second seed laser wavelengths
are λ1,2 = 240nm with the final radiating resonant wavelength λr = 10nm.
The electron energy modulation in the first and second modulating stages are
∆E1 = 750 keV and ∆E2 = 150 keV respectively. The dispersive strength of
the corresponding chicanes are R(1)

56 = 8.25 mm and R
(2)
56 = 0.34 mm. The

electrons are modelled by macroparticles [9] each assigned a weight Nj cor-
responding to the number of electrons the macroparticle represents. A FEL
parameter of ρ = 10−3 was used as a typical value for the simulations at this
resonant wavelength.

Applying the four transforms of equations 4.2-4.5 develops a microstruc-
ture in the electron pulse that contains significant microbunching at higher
harmonics of the seed radiation fields.

In demonstrating the principle of EEHG, the work of [13, 14] applied pe-
riodic boundary conditions in the position of the electrons across a region of
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the longitudinal z-axis. Here, no such boundary conditions are applied and the
electron positions are transformed according to equations 4.2-4.5. The removal
of the boundary condition has little effect around the centre of the electron
pulse where the dispersive effects are symmetric. This can be seen figure 4.4
which shows the phase space of the centre of the electron pulse at exit of
EEHG scheme and is very similar to that of reported in [13, 14]. However,
the higher and lower energy electrons, from the extrema (peaks/troughs) of
the energy modulated beam, form tight (single) ‘current bands’, whereas elec-
trons close to the initially un-modulated beam energy form a looser (double)
current band structure. This picture changes towards the head and tail of the
electron pulse where dispersion causes predominantly single current bands to
form by the higher and lower energy electrons respectively. This effect is seen
for the the case of the head of the electron pulse in figure 4.5. In the bot-
tom of figure 4.5 single current bands can be seen in the region 5600-5615 nm
whereas the double current bands occupy the region 5620-5830 nm, this patten
is repeated longitudinally along the electron pulse as is seen in figure 4.7.
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Figure 4.4: Electron phase space (top) and histogram of electron numbers (bottom)
about the centre of the electron pulse at z = 0. The particle density is increased for
the high and low energy electrons as is indicated by the top right plot.
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Figure 4.5: Electron phase space (top) and histogram of electron numbers (bottom)
at the head of the electron pulse. The particle density is increased for the higher
energy electrons as is indicated by the top right plot.
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Figure 4.6: The single and double-current bands can be seen to evolve during the pre-
radiator EEHG process (top-to-bottom, left-to-right.) The shift in electron positions
from left-to-right is due to the chicanes.
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The underlying process is detailed in figure 4.6 which shows the effects
of the EEHG process upon the higher energy electrons of the initially mod-
ulated beam. The higher energy electrons are seen to form relatively tight
energy bands which are then transformed into single current bands around
the maxima following the second energy modulation. This creates a series of
higher energy current bands at the head of the electron pulse separated by
the wavelength of the second seed laser. At the tail of the electron pulse, the
EEHG process causes similar single current bands to be formed, but around
the minima of second energy modulation. Thus, dispersion causes the high
(low) energy electrons to be dispersed to the head (tail) of the pulse.

A histogram of the full electron number distribution is shown in figure 4.7
together with a (unitary) Fourier transform of the electron bunching param-
eter about the resonant frequency ωr of the final radiator stage. The Fourier
bunching parameter is simply derived from the driving term of the scaled wave
equation of [9], i.e. the macroparticle version of the wave equation given in
basic FEL theory section (see appendix), and may be written:

b(z, ω) = 1√
2π

1
np‖

Nm∑
j=1

Nje
−iz(kr+ku)ei(ωr−ω)tj , (4.6)

where np‖ is the peak linear electron density, Nm is the total number of
macroparticles used in the simulation, ku is the undulator wavenumber, tj =
−zj/cβz is the arrival time of the macroparticle at the undulator entrance
at z = 0 and βz = vz/c is the mean scaled speed of the electron pulse
along the undulator z-axis. It is seen that a well defined modal structure
is present in the electron bunching parameter with mode separation given of
∆ω/ωr = 10/240 ≈ 0.042 corresponding to the seed modulation frequency.
The modes are relatively well phase-matched as seen from the well defined
peaked periodic microstructure in the electron density histogram.
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Figure 4.7: Histogram of electron numbers (top) normalised with respect to the peak,
and the Fourier transform of the bunching parameter b(z, ω) for the full electron
beam distribution showing the modal structure at the end of the EEHG pre-bunching
process.

4.2.3 EEHG radiator

The pre-bunched electron distribution above was propagated through a two
different undulator systems, a simple undulator and an undulator-chicane lat-
tice, both tuned to the resonant frequency ωr using the unaveraged simulation
code of [9, 10]. The transformations of (4.2-4.5) may be rewritten in the uni-
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versal scaling of [23, 24, 32, 33] as used in the simulations as:

p
(1)
j = p

(0)
j + ∆p(1) sin

 z̄
(0)
1j

2ρh1

 (4.7)

z̄
(1)
1j = z̄

(0)
1j + 2ρD(1)p

(1)
j (4.8)

p
(2)
j = p

(1)
j + ∆p(2) sin

 z̄
(1)
1j

2ρh2

 (4.9)

z̄
(2)
1j = z̄

(1)
1j + 2ρD(2)p

(2)
j (4.10)

where ∆p(1,2) = ∆γ(1,2)/ργr; D(1,2) = krρR
(1,2)
56 ; h1,2 = ωr/ω1,2 and β̄z ≈ 1 is

assumed. At the beginning of the undulator: z̄ ≡ 2ρkuz = 0; z̄1j = −2krρctj
and pj = (γj − γr)/ργr.

Performing the Fourier transform of the with respect to z̄1 defines the scaled
frequency as ω̄ = −ω/2ρωr so that:

b(z̄, ω̄) = b(z, ω) c
lc

exp
(
i
ωz

c

)
. (4.11)

4.2.4 Simple undulator

EEHG was first simulated in a simple undulator configuration of scaled length
z̄ = 1.1. The scaled radiation and electron pulse parameters are plotted in
figure 4.8. It is seen that while the radiation generated had some temporal
structure, no modal structure is present in Fourier space with emission confined
to the resonant frequency. This is consistent with the previous results of [13,
14].

4.2.5 undulator-chicane lattice

Here an undulator-chicane lattice is constructed so that the radiation modes
amplified by the lattice will match the properties of the electron bunching
above. Using the notation of [28], each undulator has four periods so that
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a radiation wavefront will propagate four resonant wavelengths through the
electron pulse in each undulator. Each chicane delays the electron pulse by a
further twenty wavelengths so that the total slippage of a resonant wavefront
in traversing one undulator-chicane module is s = (4 + 20)λr = 240nm, which
is equal to the second seed laser wavelength. In this way the relative slippage
between radiation and electrons in each undulator-chicane module matches
the strong periodic electron microbunching. It is seen from figure 4.9 that
this matching generates of a periodic train of short radiation pulses (∼106
attoseconds full width at half maximum duration) separated by the second
seed laser wavelength λ2 = 240nm with a corresponding set of modes equally
spaced by the same corresponding frequency ∆ω/ωr ≈ 0.042. Note that peak
powers generated by the higher energy electrons at the head of the radiation
pulse train envelope are greater than those generated at the tail by the lower
energy electrons. While the higher energy electrons lose energy and fall into
resonance to emit strongly, those at lower energies continually fall away from
resonance and strong radiation emission. The visibility of radiation pulse train
structure is defined as V = (|A|2max − |A|2min)/(|A|2max + |A|2min), were the
maximum and minimum values are defined between two adjacent peaks. The
effect of introducing an energy spread σE in the initial electron pulse energy
decreases the visibility gradually from V = 0.93 at 1 keV (σE/ρEr = 0.0008)
to V = 0.78 at 150 keV (σE/ρEr = 0.125).
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Figure 4.8: Electron and radiation pulse at saturation in a simple undulator at z̄ ≈ 1.1
for the normal EEHG case. Plots on the left are: top - normalised electron number
histogram (bin size = λr/5); bottom - Fourier transform of bunching b(z̄, ω̄). On the
right: top - radiation field amplitude |A|2 as a function of z̄1; bottom - scaled Power
Spectral Density showing emission at resonance dominates.
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Figure 4.9: As figure 4.8, but for the MLOK undulator at saturation (z̄ ≈ 0.6). Inset
top-right shows detail expanded in z̄1. A well defined set of phase-matched radiation
modes has developed resulting in a train of short radiation pulses. In unscaled units
the individual pulse widths are ∼106 attoseconds (FWHM) and separated by approx.
0.8 femtoseconds.
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Chapter 5

Beamlets

5.1 Introduction
In the previous chapter, an FEL technique that produced a train of coherent
radiation spikes was discussed. However, there is a demand [31, 34] in the FEL
community to produce so-called ‘single spike’ radiation pulses as opposed to a
train of radiation pulses. A few techniques [31, 34] have already been proposed
to generate ‘single spike’ radiation pulses.

In this chapter a method to produce ‘single spike’ radiation pulses is pre-
sented, this method is based on the interaction of multiple short electron
pulses or beamlets. The interaction of multiple electron pulses was explored
experimentally in [35]. The beamlets investigated here have flat-top current
profiles, therefore the large current gradients produced by their hard edges act
as coherent radiation sources [36, 37]. This phenomenon is known as coherent
spontaneous emission [36, 37] (CSE) and cannot be correctly modelled by aver-
aged FEL codes such as Genesis, hence the need for unaveraged codes such as
hpFull and Puffin. Coherent radiation from the head of the beamlet will prop-
agate in free space and receive no amplification. However, coherent radiation
generated at the beamlet tail will propagate through and interact [11, 36, 37]
with the beamlet. This will amplify the coherent radiation field and increase
the electron bunching in the beamlet. This amplification process is known as
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Self Amplified Coherent Spontaneous Emission (SACSE) [36, 37].
For these simulations an electron pulse is split into a number of reduced

current electron pulses, which are called beamlets. These beamlets are then
equispaced in energy and temporally overlapped, as shown in figure 5.3. The
system of equations describing the FEL interaction is scaled by the FEL pa-
rameter ρ given as,

ρ = 1
γr

(
auωp
4cku

)2/3
(5.1)

more importantly the equations are scaled by the plasma frequency,

ωp =
√√√√e2np
ε0m

. (5.2)

Therefore, the FEL equations are scaled to the peak number density np of the
electron pulse. Similar to hpFull, that was used in the previous chapter, Puffin
uses macroparticles. Puffin’s macroparticles are assigned a χ-weighting factor
given by,

χj = nj
np

(5.3)

where nj is the electron number density of the jth macroparticle. For the
beamlets, the peak number density np, when calculating χj, is taken to be the
peak number density of the ensemble of beamlets, instead of the individual
beamlet. Therefore, the simulations are scaled as if the ensemble of beamlets
is just one electron pulse. Effectively each beamlet now has a reduced current.
Therefore each beamlet’s scaled saturation power is reduced and gain length
increased. And since the radiation power in an FEL exponentially amplifies
as P = P0 exp(

√
3z/lg), large increases to the gain length are prohibitive to

FEL gain. The change to the beamlet saturation power and gain length can be
calculated analytically, and is good agreement with this model. This was done
by redefining the FEL parameter for an individual beamlet as ρb = ρ/N

1/3
b ,
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where Nb is the number of beamlets.
The beamlets have zero energy spread i.e., all electrons have the same

energy. When sufficiently separated in energy (see figure 5.3), i.e. the beamlet’s
energy separation ∆γ satisfies the following condition,

∆γ
γr
≥ 2ρb, (5.4)

each beamlet will have a distinct resonant frequency or mode. This condition
comes from the linear analysis of [32, 33], which shows for an electron to remain
part of the FEL interaction it must not deviate from the resonant energy by
more than 1.89ρbγr. Therefore, electrons outside this range can perform their
own separate FEL interaction. Here, the condition is approximated to 2ρbγr
and this condition verified by the work of [35].

When propagated through a simple undulator each beamlet will generate
and amplify a radiation field at it’s own unique resonant frequency. The in-
terference of these radiation fields will produce a train of temporal radiation
spikes. The width of these radiation spikes can be controlled by adjusting the
beamlet energy separation or changing the number of beamlets in the sys-
tem. The temporal separation of the radiation spikes can be manipulated by
propagating the beamlets through an undulator-chicane lattice, constructed
with slippage-only (isochronous) chicanes. Using slippage-only chicanes, which
were discussed in chapter 3, can increase the radiation spikes’ temporal sepa-
ration. The slippage-only chicanes prevent the beamlets from dispersing from
each other, while radiation field is still slipped forward. By increasing the
temporal separation of the radiation spikes, the frequency separation of the
radiation modes is decreased. In other words, the radiation mode separation
is frequency compressed. However, the natural side-band mode amplification
action of an undulator-chicane lattice will result in the formation of side-band
radiation modes for each of the compressed radiation modes. Therefore, for
certain undulator-chicane module configurations, packets of compressed radia-
tion modes are formed in frequency space, with two unique mode separations.
This leads to the possibility of generating a single radiation pulse. This is
achieved by adjusting the relative beamlet positions/phases in a dispersive
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chicane section, so that when passed through a short undulator the beamlets
will generate coherent radiation fields that interfere to form a single radiation
spike.

5.1.1 Beat notes

To understand the interaction of multiple beamlets, it is useful to consider the
interaction multiple coherent radiation fields. By representing coherent radia-
tion fields by simple monochromatic sine-waves and using simple trigonometric
relations, one can predict the interference of multiple coherent radiation fields.
When two frequencies interfere, such as f1,2 = A sin(ω1,2t), two beat notes are
produced,

fT = f1 + f2 = A sin(ω1t) + A sin(ω2t) (5.5)

fT = 2A cos
[ω1 − ω2

2 t
]

sin
[ω1 + ω2

2 t
]

(5.6)

fT contains a fast oscillation at
[
ω1+ω2

2

]
, the sum frequency, which is modu-

lated by the 2A cos
[
ω1−ω2

2 t
]
term, the difference frequency, and is shown in

figure 5.1. However, as seen in figure 5.1 the amplitude of fT oscillates at a
frequency given by |ω1− ω2|. However, adding many sine waves together that
are separated by the same frequency, ∆ω = |ωn − ωn+1|, leads to an increase
of the |ω1 − ωn+1| oscillation as this will be constant for all n. In contrast,
there will be a decrease in the

∣∣∣ωn+ωn+1
2

∣∣∣ oscillation, as this oscillation, the sum
frequency, is not constant for all n. This is seen is figure 5.2(a), where 10 sine
waves for equal frequency separation have been superimposed. The beat note
produced takes the form of a series of spikes. Two important effects should be
noted, 1 - increasing the frequency difference will decrease the spike width (see
figure 5.2(b)) and 2 - increasing the number of sine waves will also decrease
the spike width (see figure 5.2(c)).
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Figure 5.1: An example of a beat note: the fast oscillation is in blue and envelope
in red. This is the simplest example of a beat note as it is constructed from two
frequency components. The amplitude of yT oscillates at frequency of |ω1 − ω2|.
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Figure 5.2: (a) An example of beat note produced by the sum of 50 sine waves. The
difference frequency between adjacent modes dominates the various sum frequencies
of adjacent modes. (b) An example of beat note produced by the sum of 10 sine
waves. In this case the frequency difference between the modes is ten times that of
(a) this increases the beat note frequency and also decreases the spike (peak) width.
(c) An example of beat note produced by the sum of 100 sine waves. The additional
modes has the effect of decreasing width of each spike.



5.2 Multiple beamlets
The interaction of multiple beamlets was investigated using the unaveraged
FEL simulation code Puffin [11], this code was discussed in chapter 3. In
these simulations the FEL parameter was ρ = 0.001 and undulator parameter
aw = 0.0511. Here, the undulator parameter aw is uncharacteristically small;
however simulations using more feasible parameters produce similar results
and will the subject of a future publication. The beamlets had mean resonant
energy of γr = 176, a scaled length of 1, and a flat top current profile. In
regimes [36, 37] with short electron pulses, flat top current profiles, and long
undulators coherent radiation from electron pulse tail will propagate through
the electron pulse and be amplified. For this reason it is expected that the
amplification of coherent emission will dominate the amplification of spon-
taneous emission [36, 37] resulting from electron shot-noise [9]. The electron
pulse parameters are constant for all simulations presented in this section.
Puffin’s working equations are solved in the z̄2 radiation rest frame. Hence,
the radiation pulse does not propagate in z̄2 instead the electrons slip with
respect to the radiation field in z̄2. In z̄2 frame (figure 5.3) the head of the
beamlets is the left therefore the electrons are seen to slip to the right.

5.2.1 Simple undulator

Five short beamlets (see figure 5.3), are propagated through a simple undu-
lator lattice. In doing so they generate and amplify coherent radiation fields
with five distinct resonant frequencies. The condition placed on the beamlet’s
energy separation is satisfied, equation 5.4, by setting the energy separation to
∆γ/γr = 2ρ. The interference of these distinct resonant frequencies produce a
beat note with a frequency separation of,

∆ωbeat = |ωn − ωn−1| (5.7)
∆ωbeat
ωr

≈ 2∆γ
γr

(5.8)
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were n = 2,3,4,5, see figure 5.3 and ∆γ = |γn−γn−1| is the difference of resonant
beamlet energies. This can be seen by performing a 1st order expansion of the
resonance condition, equation 2.11. In figure 5.4 the results of a simulation
are presented where five short beamlets are passed through an undulator. The
interference of coherent radiation fields produced by the beamlets create a
beat note with a frequency ∆ωbeat/ωr ≈ 0.004, which is approximately 3 in
the scaled units of z̄2. The frequency and spike width of the beat note generated
in the undulator by multiple beamlets can be controlled in a similar manner
to figure 5.2 (b)-(c). This can achieved by increasing the number of beamlets
(figure 5.5) or by increasing the beamlet energy separation ∆γ (figure 5.6).

1λr = λu

2γ2
r
(1 + a2

u) → ωr = 2γ2
rωu

(1+a2
u) → ωr + ∆ω = 2(γr+∆γ)2ωu

(1+a2
u) → expand and ignoring 2nd

order terms in ∆γ, as ∆γ � γr. ωr + ∆ω = 2(γ2
r +2γr∆γ+∆γ2)ωu

(1+a2
u) → ωr + ∆ω = 2(γ2

r +2γr∆γ)ωu

(1+a2
u) now

cancelling out the initial resonance condition ∆ω = 2(2γr∆γ)ωu

(1+a2
u) again cancelling out the resonance

condition ∆ω = 2(2γr∆γ)ωu

(1+a2
u) → ∆ω = 2∆γ ωr

γr
→ ∆ω

ωr
= 2∆γ

γr
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Figure 5.3: Diagram of multiple beamlets. The beamlets are separated by ∆γ in
energy. For the simulations presented in this section the energy separation of the
beamlets satisfies the condition ∆γ ≥ 2ρbγr. The beamlets have flat-top current
distributions, therefore the discontinuities of a beamlet current profile will generate
coherent spontaneous emission.
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Figure 5.4: Five beamlets equispaced in energy are propagated through a simple un-
dulator. The beamlet have hard edges will act as sources of coherent spontaneous
emission. The coherent emission from the beamlet tails will propagate through beam-
lets and be amplified. In this simulation the beamlets are separated in energy by
∆γ/γr = 2ρ, where ρ = 0.001. Therefore, the radiation modes produced should sep-
arated by ∆ω/ωr ≈ 0.004, see equation 5.8. The radiation modes combine to form a
beatnote whose frequency is equal to the frequency separation ∆ω/ωr ≈ 0.004. This
beatnote has a period of 3 in the scaled units of z̄2.
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Figure 5.5: Ten beamlets equispaced in energy are propagated through a simple un-
dulator. As beamlet’s are sufficiently separated in energy they each produce radiation
at their own distinct resonant frequency. Again the difference frequency between ad-
jacent pulses is equal to the beat note produced. In this case the number of beams
is increased from 5 to 10 and just as in figure 5.2(c) this reduces the radiation spike
width.
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Figure 5.6: Five beamlets equispaced in energy are injected into a simple undula-
tor, each beamlet produces radiation at it’s own independent frequency. Just as in
figure 5.4 the five radiation fields interfere to produce a beat note whose frequency
is given by equation 5.8. However, in this case the beam’s separation in energy has
been increased by a factor 5, this not only increases the beat note frequency from
0.004ωr to 0.02ωr it also decreases the radiation spike width.
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5.2.2 An undulator-chicane lattice

Figure 5.7: An electron pulse injected is through a lattice consisting of undulator-
chicane modules. A radiation pulse is generated with side-band radiation modes sep-
arated by ∆ωmodal = 2πc/s. The electron microbunching has increased the electron
pulse energy spread.

Simulations where beamlets are propagated through an undulator-chicane
lattice are now discussed. As described in chapter 4 and elsewhere [28, 29],
when a single electron pulse sent through an undulator-chicane lattice it will
amplify side-band radiation modes, the separation of these side-band radiation
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mode is,

∆ωmodal = 2πc
s
, (5.9)

where, is s is the sum of undulator slippage l and chicane slippage δ, i.e.
s = l + δ. The chicanes used in these simulations do not apply any elec-
tron dispersion, and will be called slippage-only chicanes. Slippage-only or
isochronous chicanes have been experimentally demonstrated [25]. In figure 5.7
a single electron pulse has been propagated through an undulator-chicane
lattice. The slippage per module of this undulator-chicane was s = 240λr
therefore the lattice amplified side-band radiation mode that are separated by
∆ωmodal/ωr = 0.0042.

However, injecting five beamlets (like those in figure 5.4) through the
undulator-chicane lattice used in figure 5.7 will generate side-band radiation
modes with a ‘frequency compressed’ separation of,

∆ωc = ∆ωbeat/Se (5.10)

Se, the slippage enhancement factor is defined as Se = s/l. For figure 5.8 s =
240λr, l = 80λr and Se = 3, therefore the modal separation (and corresponding
beat note) is given by ∆ωc/ωr ≈ 0.0013 (9 in units of z̄2, i.e., T = 4πρωr

∆ωc )
To understand this modal compression figure 5.4 and figure 5.8 should be

compared. In figure 5.4 the radiation spikes have a temporal separation of 3,
however in figure 5.8 this separation is now 3×Se = 9. The undulator-chicane
lattice, consisting of slippage-only chicanes, increases the temporal separation
of the radiation spikes. The slippage-only chicanes are delaying the electron
dispersion of the beamlets. Because the beamlets have different energies they
disperse from one another. However, as they are equispaced in energy, they
can align periodically to emit radiation that interferes to form a radiation
spike (see figure 5.4). Using slippage-only chicanes allows a radiation spike to
slip ahead of the beamlets, hence when the next radiation spike is formed the
previous spike has been slipped further ahead than would normally happen
with a simple undulator, this process is illustrated in figure 5.9. The ratio of
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slippage experienced by the radiation field to equivalent beamlet dispersion
is given by Se = s/l, commonly known as the slippage enhancement factor.
Hence, the temporal separation of radiation spikes is increased by a factor Se.
And, also the side-band radiation mode separation is reduced by a factor 1/Se.

Figure 5.8: Combining five beamlets with an undulator-chicane lattice leads to a new
modal structure forming were ∆ωc = ∆ωbeat/Se ≈ 0.0013ωr is the mode separation.
In this example the slippage enhancement factor was Se = 3 and the beatnote
frequency ∆ωbeat ≈ 0.004.
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Figure 5.9: The slippage-only chicane causes the lead radiation spike to slip forward
while stopping the beamlets from dispersing. This means that when the next radi-
ation spike is generated the previous spike has already been slipped forward. The
spike separation is increased by original separation multiplied by the ratio of the
total undulator-chicane slippage to the undulator slippage s/l. This increase in the
radiation spike separation results in a decrease in the mode separation in frequency
space.
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Decreasing the slippage per undulator-chicane module s reveals that the
modes are actually formed in packets of five, corresponding to the number of
beamlets. In each packet the modal separation is ∆ωc = ∆ωbeat/Se and the
packets are separated by ∆ωmodal = 2πc/s, this can be seen in figure 5.10 where
∆ωc/ωr = 0.0014 and ∆ωmodal/ωr = 0.0167, as l = 20 and δ = 40. Therefore,
each compressed frequency mode has side-band radiation modes separated
by ∆ωmodal/ωr = 0.0167. In figure 5.8, these distinct sets of radiation modes
overlapped as the range of the compressed side-band modes 4∆ωc = 0.0052 was
greater than the separation of modes amplified by undulator-chicane lattice
∆ωmodal = 0.0042.

In figure 5.11 five short beamlets are propagated through an undulator-
chicane-undulator module, where the chicane section applies a large disper-
sion to the beamlets. In first undulator, of length l = 800, coherent radiation
generated at the beamlet’s tail is amplified when propagating through the
beamlets. This also generates strong electron microbunching in the beamlets.
Then the strong chicane section increases the microbunching. The strong chi-
cane also through electron dispersion causes the beamlets to align such that
upon passing through the second undulator a large radiation spike is produced.
Simulations have shown that the FEL interaction is key to the processes de-
scribed in this section, i.e. turning off the FEL interaction by forcing A⊥ = 0
in the electron equations 3.1-3.2 will produce very different results.
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Figure 5.10: Five beamlets injected along an undulator-chicane lattice with a
small value of slippage per module. In this case packets of modes (5 per packet)
have formed, with the inter packet modal separation given as ∆ωc = ∆ωbeat/Se
(= 0.0013ωr) and the packet to packet separation ∆ωmodal = 2πc/s (= 0.0167ωr).
Both modal separations are visible in the temporal domain (top plot) as beat notes.
The pulse separation is energy is equivalent to ∆ωbeat = 0.004ωr, Se = 3 and s = 60λr
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Figure 5.11: Five beamlets injected through one undulator-chicane- undulator mod-
ule can produce a single radiation pulse. The dispersive chicane shifts the relative
phases of the beamlets altering the arrival time of beamlets in the undulator. By
altering the arrival time of the beamlets, they can be aligned such their coherent
emission will interfere to produce a single radiation spike in the undulator.
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Chapter 6

Chirped Beamlets

6.1 Chirped Beamlets

6.1.1 The Model

Now, the interaction of a number of overlapping co-propagating chirped beam-
lets is investigated [16]. A schematic of the chirped beamlets is shown in fig-
ure 6.1. The scheme has been designed so that at an instantaneous position
in z̄2 each beamlet has its own distinct FEL bandwidth and equation 5.4 is
satisfied. Hence, the separation of the beamlets in energy should satisfy equa-
tion 5.4, in this case ∆γ = 2.5ργr. The head of the electron pulse is to the left
in z̄2 (see figure 6.1), and the electrons slip to the right in z̄2.

Figure 6.1 illustrates the basic principle of this model, a radiation pulse is
allowed to propagate through a beamlet in an undulator section. After exiting
the undulator section the radiation pulse is passed (or slipped) to the next
beamlet in a chicane slippage section. The advantage of this scheme is that
the range of electron energies experienced by a radiation pulse can be kept
constant throughout the undulator-chicane lattice. The range of electron en-
ergies experienced by a radiation pulse is dependent upon the electron pulse’s
energy gradient and the undulator module slippage length l.

The simulations of this section use the same macroparticle model of the
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Figure 6.1: Diagram showing the initial electron pulse phase space. Five cold electron
pulses (beamlets) with a linear energy chirp are overlapped and separated in energy
by 2.5ργr. The chirp gradient is dγ

dz̄2
= −γrρ and the temporal separation is 2.5 lg.

Scaled coordinate z̄2 is in the radiation rest frame and the head of the electron pulse
is to the left. Electrons slip to the right in z̄2, at a rate of one resonant period per
undulator period, as the electron pulse and radiation field co-propagate through the
undulator. The scaled energy parameter is defined as pj = γj−γr

ργr
, and ∆p = ∆γ

ργr
. In

the undulator a radiation pulse will propagate through a beamlet then the chicane
will slip the radiation pulse forward to the next beamlet. By doing so the range of
electron energies experienced by a radiation pulse is kept constant.

previous chapter. Therefore these simulations are scaled to the peak number
density of the ensemble of beamlets

An electron will slip one resonant wavelength per undulator period in ac-
cordance with the resonance condition 2.1. For example in a four period un-
dulator, a resonant electron will slip four resonant wavelengths behind the
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radiation field. This quantity is known as the undulator’s slippage length l.
The resonance condition that determines the resonant wavelength of an elec-
tron for a given γr, au and λu is restated here,

λr = λu
2γ2

r

(
1 + a2

u

)
(6.1)

where λu is the undulator period and au is the scaled undulator parameter.
In addition to communicating radiation from beamlet to beamlet, an undulator-

chicane lattice will amplify side-band radiation modes, as was discussed in
chapter 4. The side-band radiation mode separation given by equation 4.1 is
rewritten in the scaled notation,

∆ω/ωr = 4πρ/s̄, (6.2)

where s̄ is the scaled slippage length in an undulator-chicane module, s̄ = s/lc.
Where s is slippage length, in real units, of an undulator-chicane module. Here,
the undulator-chicane slippage length s̄ is equal to the sum of the undulator
l̄ and chicane δ̄ slippage lengths, i.e., s̄ = l̄ + δ̄.

In [28] the concept of ‘locking’ the modes is described, mode-locking is
achieved by either energy or current modulating the electron pulse at the mode
separation ∆ω frequency. However, in this scheme mode-locking is achieved
by matching the energy separation of the beamlets to the mode separation
∆ω/ωr = 4πρ/s̄. The energy separation of the beamlets can be rewritten as a
difference in resonant frequencies. This is done by performing a perturbative
expansion to resonance condition (equation 6.1), as was shown in chapter
5. The following expression results from this expansion; ∆ω/ωr ≈ 2∆γ/γr,
which relates a difference in beamlet energies to a difference in frequency. To
lock the modes this frequency difference is equated to equation 6.2 to give
∆γ/γr ≈ 2πρ/s̄. As the slippage length s̄ is equal to beamlet separation, the
electron chirp gradient is given by;

dγ

dz̄2
= 2πργr

s̄2 . (6.3)
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Note that these expressions limit the choice of beamlet simulation parameters
for a mode-locking scheme. For example choosing the beamlet energy separa-
tion, determines the beamlet’s temporal separation and energy gradient.

The energy chirp of a beamlet can be problematic, because as the beam-
let propagates through the undulator it will stretch, reducing the local cur-
rent density. This stretching can be understood by considering the resonance
(equation 6.1) condition. The resonance condition shows that higher energy
electrons will have a shorter resonant wavelength, and lower energy electrons a
longer resonant wavelength. Therefore high energy electrons will have a shorter
undulator slippage length than low energy electrons. Since high energy elec-
trons are at the beamlet head and low energy electrons at the tail, electrons
at the beamlet tail slip further behind the radiation field than electrons at
the beamlet head. Therefore the beamlet stretches as it propagates through
the undulator, this stretching is normally referred to as electron dispersion.
The electron pulse’s energy chirp will also result in the radiation drifting out
of resonance as the radiation propagates into electrons that have a different
resonant wavelength. In [34] it was shown that such a electron chirp can be
compensated for using a tapered undulator. In a tapered undulator, the un-
dulator parameter will change along the interaction region, in doing so the
radiation can kept in resonance with the electrons. Here, in series undulator-
chicane modules are used to compensate for the beamlet energy chirp.

A chicane will delay the electrons with respect to the radiation pulse. This
delay (or slippage) is proportional to the electron energy. Therefore, electrons
at the tail of the beamlet will have a longer slippage length than those at
the head, since the beamlet chirp is positive. Hence, the slippage length of an
undulator-chicane module will be energy dependent and is given by,

s̄γ ≈ 2
(
γr − γj
γr

)
(l̄ +D) + s̄. (6.4)

This expression is an approximation and only valid for small energy deviations,
see appendix B.4 for a derivation. The (l̄+D) term is associated with the un-
dulator and chicane dispersion,D was defined in chapter 4 asD = krρR56. The
slippage length in an undulator-chicane module is dependent on the electron
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energy. Therefore the side-band radiation modes (∆ωγ/ωr = 4πρ/s̄γ) that can
be amplified the undulator-chicane lattice are also energy dependent. Such
that the tail of the beamlets will amplify a different set of side-band radiation
modes from those amplified at the head. Because of the decreased slippage
length, a radiation pulse at head of a beamlet cannot be passed to electrons of
the same energy in the next beamlet. Therefore resonant interactions cannot
be maintained. This is also the case at the tail of the beamlets. The combina-
tion of these effects will disrupt the formation of side-band radiation modes.

These effects will be increased for long undulators, strong chicanes and large
energy chirps, as s̄γ will change more rapidly for these cases. It is possible to
suppress the energy dependence of the slippage length by applying a negative
dispersion in each chicane, whenD = −l̄ the energy dependence of the slippage
length is negated (i.e. s̄γ = s̄).

6.1.2 Results

The simulations in this section were performed in Puffin using an electron
pulse of charge 3pC, ρ = 0.001, γr = 176.2, and a scaled length of lb = 80.
An undulator parameter of aw = 0.511 was selected. Although the electron
pulse has a flat-top current profile, since the electron pulse is larger than
the total undulator slippage length it is expected the SASE should dominate
SACSE [9, 11]. It should be noted that the choice of parameters in this section
are purely for demonstrative purposes, and are not intended to represent a real
FEL.

For these simulations three distinct types of chicane are required, one of
which is a purely theoretical device. (1) a chicane that can provide negative or
positive dispersion [25]. (2) an isochronous chicane [25], which has zero electron
dispersion, i.e. it will only supply slippage to radiation field, which is referred
to as a slippage-only (CS) chicane. (3) a chicane that disperses the electron
pulse, but does not slip the radiation field, referred to as a dispersion only (CD)
chicane. To the author’s knowledge dispersion only (CD) chicanes are purely
theoretical devices, here they are only used to demonstrate the importance of
dispersion in the energy dependent slippage length, equation 6.4.
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The effects of an energy dependent slippage length (see equation 6.4) are
demonstrated with long undulators and positive dispersion chicanes. How-
ever, the slippage length can be made energy independent by using negatively
dispersed chicanes. Slippage-only (isochronous) chicanes can generate an ad-
ditional set of radiation modes with a separation that is proportional to the
chicane slippage length.

In mode-locking Free Electron Lasers [29] increasing the number of undu-
lator periods per undulator-chicane module will increase the average radia-
tion power. Therefore the average power produced in a beamlets simulation
should also increase also with increasing number of undulator periods. This
is shown in figure 6.2, where five different simulation set-ups are shown. An
order of magnitude increase in radiation power is achieved when increasing
from 20 to 150 undulator periods per undulator module. To ensure that ra-
diation pulse passed between beamlet sections of the same energy, the total
slippage per undulator-chicane module is kept constant for these simulations.
The undulator-chicane lattice will amplify side-band radiation modes that are
separated by ∆ω/ωr = 4πρ/s̄. An example of this in seen in figure 6.3 where a
series of chirped beamlets have been propagated through an undulator-chicane
lattice. This undulator-chicane lattice has 20 undulator periods and 180 chi-
cane slippage periods per module, in the scaled notation this can be written
as l̄ = 0.2513 and δ̄ = 2.2619. Therefore this lattice will amplify side-band
radiation modes with a separation of ∆ω/ωr = 0.005. The energy dependent
slippage length sγ does not vary enough to stop the formation of the side-band
radiation modes, because slippage-only (isochronous) chicanes are used and l̄
is relatively small.

Now, if the undulator-chicane lattice is composed of (positive) dispersive
chicanes, the energy dependent slippage length (equation 6.4) will have a
greater variation with energy and as such will be prohibitive to the forma-
tion of side-band radiation modes, as shown in figure 6.4.
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Figure 6.2: Comparison of different simulation setups. The average radiation power is
plotted against z̄ (i.e. undulator position). For a large section of the FEL interaction
the average radiation power is a factor of ten greater when chicane slippage sections
are used. Using longer undulator sections will produce higher average radiation pow-
ers. For example increasing the undulator length from 20 to 150 undulator periods,
increases the average radiation power by an order of magnitude.

The side-band radiation modes are also destroyed when using a long undu-
lator (figure 6.5). As the undulator dispersion over a large number of periods
is significant enough to disrupt the formation of side-band radiation modes.
However, the slippage-only (isochronous) chicanes generate an extra set of
side-band radiation modes separated by δω/ωr = 4πρ/δ̄ = 0.02 are generated.
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Figure 6.3: At z̄ = 40 the radiation field is near saturation (top panel), electron
microbunching is well developed (middle), and the radiation field spectrum is shown
in the bottom panel. In a normal FEL amplifier z̄ = 40 would be considered post-
saturation, however here the macroparticle weight is scaled differently. Such that the
simulation is scaled as if only one electron pulse were modelled, instead of multiple
electron pulses. Therefore each beamlet has a reduced gain length. In this simulation
l̄ = 0.2513 and δ̄ = 2.2619. This gives a modal separation of ∆ω/ωr = 4πρ/s̄ = 0.005.

These new radiation modes are generated because the beamlets will produce
radiation pulses before and after the slippage-only chicane that are similar
(nearly identical). Therefore the only modes that can survive this chicane slip
are those separated by δω/ωr = 4πρ/δ̄ = 0.02.
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Figure 6.4: This simulation is identical to figure 6.3, except that the chicanes now
apply dispersion to the electron pulse. This chicane dispersion is equivalent to the
chicane slippage lengthn δ as in normal chicanes. This chicane dispersion prevents
the formation of side-band radiation modes. This is because an electron pulse with
such a large energy chirp will have an energy dependent slippage length. For example
the slippage length of a low energy electron will be greater than that of a high energy
electron. Using a dispersive chicane will increase the difference in slippage lengths
between high and low energy electrons. Therefore modes generated at the head of
the pulse will have different s̄γ than at the tail and a different ∆ωγ/ωr = 4πρ/s̄γ
(see equation 6.4),as such the modes are not matched (locked).
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Figure 6.5: In this simulation longer undulator modules are used, l̄ = 1.885, and
slippage-only chicanes δ̄ = 0.6283, compared to figure 6.3. Using a longer undula-
tor results more electron dispersion, which makes the difference in slippage lengths
between electrons of different energies greater. Therefore, the side-band radiation
modes do not form. However, the slippage-only chicanes produce additonal modes
separated δω/ωr = 4πρ/δ̄. This is because the electron pulse does not evolve in the
slippage-only chicane. And therefore will produce similar (nearly identical) radiation
pulses, in the undulator, before and after the slippage-only chicane. Therefore the
only modes that can survive the U-CS-U section are given by δω/ωr = 4πρ/δ̄ = 0.02.

The slippage-only chicane modes can be replaced by the original undulator-
chicane lattice side-band radiation modes, those separated by ∆ω/ωr = 4πρ/s̄,
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by using negative dispersion chicanes (figure 6.6). Here, the dispersion in each
chicane is such that the total dispersion in an undulator-chicane module is now
zero, i.e. D = l̄. Having zero-dispersion undulator-chicane modules makes the
slippage length energy independent (see equation 6.4). Using zero-dispersion
undulator-chicane modules is prohibitive to the development of electron mi-
crobunching, reducing the radiation intensity.

Now, the modes of figure 6.5 can also be generated by using a short undu-
lator (U), a dispersion only chicane (CD) and a slippage-only (isochronous)
chicane (CS). For this simulation (figure 6.7) an undulator-chicane lattice was
constructed from modules of U-CD-U-CS. However, each undulator has half
the number of periods (10 periods) compared to the undulators used in fig-
ure 6.3. The dispersion only chicane will supply the equivalent of 130 periods
of undulator dispersion. This gives a total dispersion of 150 periods per mod-
ule just as in figure 6.5 and just as in figure 6.5 the slippage-only chicane
generates modes separated by δω/ωr = 4πρ/δ̄ = 0.02

Finally, the side-band radiation modes amplified by an undulator-chicane
lattice and those generated by slippage-only chicanes can be combined, as
shown in figure 6.8. For this example it was necessary to double the beam-
let length, to increase the energy bandwidth of the beamlets. Here, a similar
undulator-chicane lattice was set-up, consisting of U-C-U-CS modules. In each
module there are two 5-period undulator sections, a chicane that applies 170
periods of slippage and the equivalent of 10 periods of negative undulator
dispersion. Applying a negative dispersion in the chicane will increase the
radiation mode visibility, as was shown in figure 6.6. The slippage-only chi-
cane will supply 20 periods of slippage to the radiation field. Therefore the
undulator-chicane lattice will amplify side-band radiation modes separated by
∆ω/ωr = 0.005 and the slippage-only chicane will generate radiation modes
with a separation of δω/ωr = 0.05. There is a significant difference in the
mode separation for the two cases, this was done to highlight the different
mode types in figure 6.8. This simulation was also performed with a single
‘cold’ electron pulse and produced these two distinct type of side-band radia-
tion modes (not shown), and is worthy of further investigation.
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Figure 6.6: The side-band radiation modes that where destroyed in figure 6.5, can
be restored by using chicanes that apply negative dispersion. The magnitude of
dispersion applied is equal to the amount dispersion experienced in the preceding
undulator section. Therefore in each undulator-chicane module there is effectively
zero dispersion electron dispersion. In this simulation l̄ = 1.885, δ̄ = 0.6283. Note
the reduced radiation intensities, which is due to the negative dispersion chicanes
hindering the formation of microbunches. However, the side-band radiation mode
visibility has improved as zero dispersion undulator-chicane modules are being used.
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Figure 6.7: The slippage-only chicane side-band radiation modes shown in figure 6.5
can generated using a unique undulator-chicane lattice. This was done to demon-
strate the slippage-only chicane modes are due solely to the interplay of slippage-only
chicanes and undulators. The lattice was constructed from dispersion only chicanes
(CD), slippage-only chicanes (CS), and undulator sections(U). The lattice is con-
structed from blocks of U-CD-U-CS arranged in series. The following lattice paramers
were used; for the undulators l̄ = 0.1257 (10 periods), in the dispersion only chicane
(CD) the equivalent of δ̄ = 1.6336 (130 periods) of dispersion is applied and in the
slippage-only chicane (CS) a slippage of δ̄ = 0.6283 (50 periods) is used. Therefore
the dispersion is the same per module as it is in figure 6.5. As in figure 6.5 the
slippage-only chicane generates modes given by δω/ωr = 4πρ/δ̄ = 0.02.

94



Figure 6.8: The side-band radiation modes generated by slippage-only chicanes and
by an undulator-chicane lattice can be combined, i.e., those shown in figures 6.5
and 6.6. In this simulation the electron pulse is doubled in length to accommo-
date more side-band radiation modes. Here, a similar undulator-chicane lattice was
set-up, consisting of U-C-U-CS modules. In each module there are two 5-period un-
dulator sections, a chicane that applies 170 periods of slippage and the equivalent of
10 periods of negative undulator dispersion. Applying a negative dispersion in the
chicane will increase the radiation mode visibility, as was shown in figure 6.6. The
slippage-only chicane will supply 20 periods of slippage to the radiation field. There-
fore the undulator-chicane lattice will amplify side-band radiation modes separated
by ∆ω/ωr = 0.005 and slippage-only chicane will generate radiation modes with a
separation of δω/ωr = 0.05.
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6.2 Real Beamlets
A method to generate beamlets from a single electron pulse is now presented.
This method is aimed at electron pulses with large energy spreads. More im-
portantly when the electron pulse’s energy spread is greater than the FEL
bandwidth, σγ ≥ 2ργr. The beamlet method follows the beam-by-design ap-
proach [17]; first the electron pulse receives a large energy modulation in a
seed-undulator (modulator), then the electron pulse is dispersed in a chicane.
The resulting phase-space structure (figure 6.9) now contains a series of beam-
lets with reduced local ‘slice’ energy spreads. For optimum performance the
beamlets slice energy spread should be reduced and the slice FEL parameter
ρb maximised. For useful FEL gain the beamlet ‘slice’ energy spread should
satisfy σγb < ρbγr. Now, using an undulator-chicane lattice radiation can be
passed between adjacent beamlet sections of the same energy to sustain the
FEL interaction.

6.2.1 The Model

The electron pulse is first modulated in a seeded-undulator (modulator) and
then dispersed in a chicane section. These transformations can be approxi-
mated by the following point-transforms,

γ = γ0 −∆γ sin
(
z̄0

2
2ρn + φ

)
(6.5)

z̄2 = z̄0
2 − 2D

(
γ − γr
γr

)
(6.6)

where n = λ1/λr is the ratio of the modulation λ1 and resonant λr wavelengths.
γ0 and z̄0

2 are the initial energy and position coordinates. ∆γ is the modulation
amplitude and D = krρR56 is the chicane dispersive strength.

In simulations it has been observed for regimes with extreme electron dis-
persion that the noise statistics in the electron beam can become incorrect.
This is due to the fact that, the electron beam has different sampling require-
ments before and after dispersion which can generate non-physical CSE. The
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sampling in the p2 dimension is translated into a sampling in the z̄2 dimension.
Puffin’s macroparticle model, for most realistic cases, requires a larger num-
ber of macroparticles in the temporal dimension z̄2 than the energy dimension
p2. The macroparticles are generated on a grid, however as the sampling re-
quirements are greater in z̄2 than in p2 the electron phase space takes the
appearance of electron rows separated in energy. This is a physically, and sta-
tistically, correct description of the electron pulse. However, when the electron
pulse is subject to a large energy modulation and dispersion the rows of elec-
trons are converted to columns of electrons, each of which is a current source
producing unphysical CSE.

To overcome this and reduce computational time a functional form of the
beamlet phase space is derived. By using a functional form of the beamlet
phase space the electron pulse can be correctly sampled after the energy mod-
ulation and dispersion transformations have been performed. An initial nor-
malised electron distribution is assumed,

f(z̄2, γ) = 1
2πσγσz̄2

exp
−(γ − γr)2

2σ2
γ

 exp
[
−(z̄2 − z̄c)2

2σ2
z̄2

]
(6.7)

in the above distribution z̄c is the electron pulse centre, σγ,z̄2 is the standard
deviation in γ and z̄2 respectively. By making similar substitutions to those
outlined in [13], a final distribution function is arrived at,

f(z̄2, γ) = 1
2πσγσz̄2

exp
−1

2σ2
γ

(
γ + ∆γ sin

[ 1
2ρn

(
z̄2 +2D

(
γ − γr
γr

))
+ φ

]
− γr

)2
exp

 −1
2σ2

z̄2

(
z̄2 + 2D

(
γ − γr
γr

)
− z̄c

)2 .
(6.8)

Upon exiting the chicane the electron pulse has a unique phase-space structure,
which is shown in figure 6.9. In figure 6.9 equation 6.8 is plotted, where the
false colour represents normalised electron density. The electron pulse is now
composed of a number of beamlets with a reduced energy slice energy spread.
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The beamlet’s reduced energy spread is now within the FEL bandwidth, .i.e.,
σγ < 2ρbγr. However, the beamlet’s slice FEL parameter ρb is reduced, which
increases the FEL gain length. In figure 6.10 the beamlet slice energy spread σpb
and slice FEL parameter ρb are plotted at the beamlet head and the beamlet
centre for the beamlets delineated by the white dashed lines. The beamlet
slice FEL parameter is calculated as ρb = 1

γr

(
auωpb
4cku

)2/3 where ωpb =
(
e2npb
ε0m

)1/2

and npb is beamlet slice number density. σpb and ρb are calculated between
the dashed white lines. So called ‘single’ beamlets are generated at the head
(and tail) of the beamlets. At the beamlets centre these single beamlets split
into the double beamlets. This can be seen in figure 6.10 where ρb and σpb
are calculated at the beamlet head and centre. The beamlet ‘slice’ energy
spread is σpb < 1 at the beamlet head (and tail) and centre. However, the
beamlet ρb has also been reduced, this reduction is greater at the centre as
only one of the double beamlets is examined. At the beamlet centre the energy
separation of the beamlets is not constant and the condition ∆γ ≥ 2ρbγr is not
always satisfied. However, at the beamlet head and tail the beamlets’ energy
separation is approximately constant and meets the requirement ∆γ ≥ 2ρbγr
therefore the FEL gain should be greater at the beamlet heads and tails.

After the modulator-chicane section the beamlets are propagated through
an undulator-chicane lattice. This allows radiation to be passed from beamlet
to beamlet sustaining the FEL interaction throughout the electron pulse. The
slippage in a undulator-chicane module is equal to the energy modulation
wavelength, λ1 = 2π/k1. In doing so radiation is passed between beamlet
sections of the same energy.
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Figure 6.9: An example of the beamlet method shown here by plotting equation 6.8,
the false colour indicates normalised electron density. An electron pulse (see inset),
with a large energy spread, is energy modulated (∆γ = 0.04γr) and dispersed (D =
268.51) by applying transforms 6.5 and 6.6. This results in the formation of beamlets,
that have a reduced local energy spread. Now, radiation can then be passed from
beamlet to beamlet sustaining the FEL interaction. The electron pulse has a Gaussian
current distribution and Gaussian energy distribution. The macroparticle model of
Puffin eliminates marcoparticles whose weight is below a certain threshold, as such
the particles at the corners of the pulse (in phase space) have the lowest weight and
are eliminated. This leaves the outer beamlets less dense and less able to contribute
to the FEL interaction. The initial electron pulse distribution function is shown in
the inset.
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Figure 6.10: Comparison of the beamlet slice ρb and energy spread σpb
at the beamlet

head and centre. ρb and σpb
are calculated for the beamlets delineated by white dashed

lines in each case. In both cases the condition on the beamlet energy spread is satisfied
σpb

< 1. And in both cases there is a reduction in ρb. Near the beamlet extremities
z̄2 < 105 the electron pulse is diffuse which increases the beamlet energy spread and
decreases ρb. At the centre of the beamlets, where the beamlets spilt, only a single
beamlet is considered. The energy spread is much less here but the energy separation
of the beamlet is not constant and does always satisfy the condition ∆γ > 2ρbγr.
Therefore, the FEL gain at the beamlet will be diminished.
.
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6.2.2 Results

1D simulations were performed in Puffin which was first modified to read
in particle distribution files. Currently particle distribution files can be gen-
erated in Matlab or Python. Puffin applies noise statistics to the particle
distributions. Therefore one particle distribution file can be used for many
simulation runs, where having good noise statistics is important. Two particle
files were generated; one using the initial electron beam distribution func-
tion (equation 6.7) and one using the beamlet distribution function given by
equation 6.8. Macroparticles with low weight are eliminated by Puffin. Con-
sequently the electron pulse’s phase space is rounded, as there is a Gaussian
distribution in current and energy.

For these simulations an energy spread of σr = 2ργr was chosen with
ρ = 1.6 × 10−2 and γr = 1200. The total beam charge of Q = 1nC with
a standard deviation of current in z̄2 of σz̄2 = 28.97 was selected. To be
consistent with other simulation parameters a scaled undulator parameter
of āu = 3 was used. A modulation amplitude of ∆γ = 0.04γr and dispersion
of D = 268.51 was selected with a modulation period of λ1 = 68λr. In the
undulator-chicane lattice there are 20 undulator periods (l̄ = 4.02) and 48 chi-
cane (δ̄ = 9.65) slippage periods per module. This gives a total of 68 slippage
periods per undulator-chicane module to match the modulation period. The
electron pulse’s Gaussian current profile generates coherent emission at the
lower frequencies. Therefore, the radiation field filtered around the resonant
frequency 0.5 < ω/ωr < 1.5. Due to the electron pulse’s large energy spread it
cannot produce and amplify radiation to significant intensities. At z̄ = 30 in
the post saturation regime, significant radiation is not present (figure 6.11).
However, the beamlets simulation (at z̄ = 30) shows an approximately two-
three orders of magnitude improvement, as is shown in figure 6.11-6.12. How-
ever, the radiation intensity is seen to be higher for radiation frequencies below
resonance, see figure 6.11. This can by explained by considering how the ‘slice’
FEL parameter was calculated ρb = 1

γr

(
auωpb
4cku

)2/3. In this expression γr is the
average energy of the entire electron pulse, therefore this does not take into
account variations in the electron pulse energy. Since the electron energy varies
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from 0.8γr to 1.2γr the gain length can be up to 50% larger for higher energy
electrons compared to lower energy electrons. Therefore, lower energy elec-
trons, those at the beamlet tail, should generate more radiation. As the lower
energy beamlets generate more radiation the lower energy beamlet should have
a higher degree of microbunching. This can be seen by comparing figures 6.13
and 6.14, where microbunching for low energy beamlet is greater than it is for
high energy beamlet.
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Figure 6.11: A comparison of simulations involving a unmodified beam (a-b) and
beamlets (c-d), when propagated through an undulator and an undulator-chicane
lattice respectively. The beamlet structure (panel c) when propagated through an
undulator gives a small improvement to the output radiation over the unmodified
beam (a-b). But this improvement is increased when the beamlets are propagated
through an undulator-chicane lattice, shown in panel d. The improvement is seen to
be greater when comparing the unmodified beam (b) and beamlets (d) propagated
through the same undulator-chicane lattice. The undulator-chicane lattice amplifies
side-band radiation modes separated by ∆ω = 0.147 as shown in panel d’s inset. For
all results shown in this figure the radiation field has been filtered around the resonant
wavelength, to eliminate low frequency coherent emission, i.e. 0.5 < ω/ωr < 1.5.
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Figure 6.12: Comparison of the radiation field energy for the untransformed beam
when propagated through an undulator (figure 6.11(a)) and the beamlets propagated
through an undulator-chicane lattice (figure 6.11(d)) is shown here. The radiation
field energy has increased by two orders of magnitude using the beamlets scheme.
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Figure 6.13: Plotted in the top panel is the electron phase-space of a lower energy
beamlet section at z̄ = 30. The bunching factor calculated at the fundamental and
the Fourier transform of the electron for a lower energy (tail) beamlet. The instan-
taneous bunching factor for the resonant (fundamental) frequency is shown in the
middle panel indicating strong bunching for this beamlet. The Fourier transform of
the electrons, shown in the bottom panel, contains side-band bunching modes as
expected. These side-band modes become clearer when taking the Fourier transform
of the full electron pulse. The electron microbunching is larger for the lower energy
beamlets. And this microbunching occurs at below the resonant frequency.
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Figure 6.14: Plotted in the top panel is the electron phase-space of an upper beamlet
section at z̄ = 30. The bunching factor calculated at the fundamental and the Fourier
of the electron for a upper energy (head) beamlet. The Fourier transform of the
electrons contains side-band bunching modes as expected. These side-band modes
become clearer when taking the Fourier transform of the full electron pulse. The
electron microbunching is smaller for the higher energy beamlets. The microbunching
at the higher energy beamlet is generated above the resonant frequency.
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Chapter 7

RF function electron beams

7.1 Rectangular electron pulses
The electron pulse’s current profile can be altered to improve FEL perfor-
mance using a combination of seeded-undulators and chicanes. This type
of phase space manipulation of the electron pulse is typically called beam-
by-design [17]. An electron pulse consisting of a series of rectangular wave
forms [18] can be generated. Such an electron pulse will contain a series of
current spikes. These current spikes will produce coherent emission which can
amplified to saturation by propagating through a series of undulator-chicane
modules. The following simulations use the same electron pulse parameters
as section 6.2. Therefore the electron pulse’s energy spread is prohibitive to
FEL gain. The results of this chapter and section 6.2 have been submitted for
publication with the arXiv draft included in the appendix.

7.1.1 The Model - Rectangular Electron Pulses

A new approach to produce so-called ‘rf-function’ electron beams was intro-
duced in [18]. An rf-function generator produces simple repeated wave forms
by combining many sine-waves of different frequencies much like a Fourier
series. In a similar fashion an electron pulse can be created that consists of
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repeated ‘waveforms’.
Following the notation of [18] so-called rf-function electron pulses can be

modelled in Puffin, these beams are generated in a triple modulator-chicane
scheme. Of particular interest here is the case of an electron pulse containing
a series of rectangular beams. In [18] a infinity long electron pulse distribution
was assumed. However to model the FEL interaction in Puffin, a finite electron
beam is required, therefore equation 6.7 is again used. Then, using similar
substitutions to those outlined in [18] with equations 6.5 and 6.6 the final
distribution function (given in appendix B.5) is arrived at.

To generate a series of rectangular wave-forms in the electron pulse the
following parameters were used, ∆γ1 = 10σγ,∆γ2 = ∆γ1/4,∆γ3 = ∆γ2/16,
D1 = n1ργr

√
3π/(2∆γ1), D2 = −3D1, D3 = −3D2/4, n1,2,3 = 20 and φ2 =

0, φ3 = π. Discontinuous regions of the rectangular wave-form will produce
regions of enhanced current, current spikes. Therefore each rectangular wave-
form will contain two current spikes. These current spikes will produce co-
herent emission [36], however the current spikes will quickly disperse. This
dispersion will reduce the amount of coherent emission produced by the cur-
rent spikes. By using negatively dispersed chicanes the current spike dispersion
can be compensated for, allowing for sustained coherent emission throughout
the undulator-chicane lattice. The slippage per undulator-chicane module is
set equal to the current spike separation so that radiation is passed from cur-
rent spike to current spike. This allows the coherent radiation to constructively
interfere in each new undulator section.

7.1.2 Results - Rectangular Electron Pulses

Puffin was set-up in the manner described in section 6.2. A particle distribution
file was first generated in Matlab, using the distribution function found in
appendix B.5, and then read into Puffin.

The initial current profile of the electron pulse contains a number of spikes
at half the modulation period with larger spikes at the full modulation period.
These current spikes (figure 7.1) will act a series of phase correlated coherent
emitters producing a train of coherent radiation spikes. Taking the Fourier



transform of this reveals a number of side-band radiation modes. The temporal
separation of the radiation spikes is given by half the initial modulation period
(10× 4πρ ≈ 2) with larger spikes present at the full modulation period (20×
4πρ ≈ 4).

Figure 7.1: An electron pulse with an initially large energy spread has been trans-
formed into an electron pulse that contains a number of rectangular waveforms (see
the second plot on the left). The electron pulse structure now contains a train of
current spikes. When this electron pulse is passed through an undulator each cur-
rent spike will act a source of coherent emission. Taking the Fourier transform of
this radiation reveals a number of side-band radiation modes that are separated by
∆ω
ωr

= 0.05. As the electron pulse propagates along the undulator, the rectangular
waveforms will disperse and reduce the current spike widths and amplitudes. As the
current spikes’ ’sharpness’ decrease the coherent radiation produced by the current
spikes will decrease. Because of this no amplification is seen when passing such an
electron pulse through a long undulator, see r.h.s. of this figure.
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The large energy modulation of the rectangular electron beam will cause
the electron beam to disperse in the undulator (figure 7.1) which degrades
the current spikes. As the current spikes lose their sharpness and decrease in
amplitude the coherent emission they produce is diminished.

The electron pulse dispersion can be compensated for, using an undulator-
chicane lattice where each chicane [25] has a negative dispersion. In each
undulator-chicane module the total dispersion is set to zero, this is achieved
by setting the dispersion part of equation 6.4 to zero i.e. D = −l̄.

In the following simulation (figure 7.2) an undulator-chicane lattice where
l = 5λr and δ = 5λr was chosen to match the separation of the current spikes.
Therefore, coherent radiation is passed from current spike to current spike,
this allows the coherent radiation fields to constructively interfere. In this
lattice the electron pulse will disperse for 5 undulator periods and then this
dispersion will be partly reversed by the chicane. Equation 6.4 is only valid
for small energy deviations therefore a large energy modulation’s dispersion
cannot be fully reversed.

In figure 7.2 the effect of using a negative dispersion chicane is shown.
After each chicane section the electron current profile is ’effectively reset’,
therefore these large current spikes can emit more coherent radiation in each
new undulator section.

In this simulation each new undulator section simply generates a new co-
herent radiation field which constructively interferes with the coherent radia-
tion field of the previous undulator section. To produce a coherent radiation
field only one undulator period is required, therefore the number of undulator
periods per undulator module can be reduced without reducing the output
radiation power. Hence, for a smaller number of undulator periods a larger
radiation field can be generated (figure 7.3).
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Figure 7.2: By using negatively dispersed chicane sections the undulator dispersion
of the rectangular sections of the electron beam can be compensated for. In doing so
the electron pulse can continue to emit coherent emission in each new undulator sec-
tion. Therefore, the radiation field can be amplified to saturation. In this simulation
an undulator-chicane lattice is used, where each undulator section has 5 periods and
the chicane slippage is 5 resonant periods, to match the current spike separation.
However, the chicane applies the equivalent of 5 periods of negative undulator dis-
persion to counteract the undulator dispersion, i.e., the undulator-chicane modules
are dispersionless. This allows the rectangular electron pulses to emit more coherent
radiation in each new undulator section. Hence, coherent radiation fields are added,
constructively interfered, in each new undulator section until saturation is achieved.
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Figure 7.3: A comparison of the total radiation field energy of beamlet, rectangular
beams and original beam simulations is given above. The radiation is filtered around
the resonant frequency, 0.5 < ω/ωr < 1.5. Around 2 orders of magnitude improve-
ment has been achieved for beamlets at z̄ = 30 and about 5-6 orders of magnitude
improvement is shown for rectangular beams at z̄ = 10. Small to no FEL gain is seen
for the rectangular beam scheme, and this is due to the prohibitively large energy
spread of the electron beam. The numbers listed in the legend refer to the number
of undulator periods and chicane slippage period respectively for the rectangular
beams case. For example rectangular beams 5-5 refers to a lattice with 5 undulator
period and 5 chicane slippage periods per module. The unmodified and beamlet plots
are based on the simulations of the previous section. For the unmodified beam case
propagating the electron beam through a simple undulator lattice is shown. For the
beamlets case the propagation of the beamlets through an undulator-chicane lattice
is displayed. To reduce memory requirements of these simulations Puffin was set to
produce output data at the end of every undulator-chicane module. Each undulator-
chicane module has a length of 1 in z̄, therefore no data was written out before
z̄ = 1.
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In figure 7.3 a comparison is made of the radiation field’s total energy for
the simulations of section 6.2 (normal beam and beamlets) and the rectangu-
lar beam scheme. In all the simulations shown in figure 7.3, the same initial
electron beam parameters have been used. Two rectangular beam simulations
are shown in figure 7.3 using two different undulator-chicane lattices; (1) 5
undulator periods and 5 chicane slippage periods, (2) 1 undulator period and
9 chicane slippage periods. In both these simulations the undulator-chicane
modules have a total dispersion of zero, i.e. D = −l̄. Case (2) which has 1
undulator period per undulator module shows more gain per unit z̄. After one
undulator period the electron pulse’s current distribution is reset in the chi-
cane, allowing coherent emission to be produced again in the next undulator
period/section. The scaled coordinate z̄ does not take into account the chicane
slippage length. Figure 7.3 shows that an improvement of 6 orders magnitude
can be achieved with the new rectangular beam scheme when using the single
period undulator modules (however impractical) lattice.

The radiation power [1] can be approximated by considering the superpo-
sition of multiple coherent radiation fields, the total radiation power is given
by,

Prad ∝
n∑
i

A2
i = (

n∑
i

Ai=j)2 + 2
n∑
i6=j
i,j

AiAj (7.1)

where n is the number of superposition, which in this case is the number of
undulator modules. If there is no phase correlation between radiation fields,
the cross term 2∑n

i6=j
i,j

AiAj is zero, and the total radiation power would be nA2
0

assuming A0 = Ai. However, if the radiation fields are fully phase correlated
then the total radiation power should scale as n2A2

0. In the rectangular beam
system with negative chicanes, if radiation fields generated in each undulator
are phase correlated the total radiation power should scale as n2A2

0. However,
if the radiation fields are not phase correlated then the radiation power should
scale nA2

0. This brings up an important point about the chicanes. The electron
pulse’s undulator dispersion is proportional to p2 (see equation 3.4). However,
the chicanes disperse in γ, and the electron change in position is given by
∆z̄2 = 2

(
γr−γj
γr

)
D + δ̄. Therefore the electron pulse’s current structure can’t
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not be fully restored by the negatively dispersed chicane. Because of this the
radiation pulse that is generated in each undulator section is significantly
different (uncorrelated in phase) such that the radiation power will scale as
n|A0|2, where n is the number of undulator modules. However, if the chicane
could disperse in p2, i.e. the electron change in position is given by ∆z̄2 =
(1− p2j)D + δ̄, see appendix B.4 for more detail, then the current profile
can fully restored. By fully restoring the current spikes, the emitted radiation
fields can interfere coherently and the radiation power will scale as square of
the undulator-module number, n2|A0|2, as demonstrated in figure 7.4.
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Figure 7.4: A comparison of idealised p2 and normal γ dispersive chicane. Here,
log 10(E) is plotted against log 10(z̄), therefore gradient of this plot is radiation power
scaling factor, i.e. |A0|2nm where m is the gradient. Here, a transition is observed
from a system where the radiation energy scales as the number of undulator-chicane
modules n|A0|2 to one that scales as the square of the number of modules n2|A0|2,
i.e. the gradient changes from 1 to 2.
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The triple modulator-chicane scheme can be simplified to a double modulator-
chicane scheme with the following parameters; ∆γ1 = 10σγ,∆γ2 = ∆γ1/4,
D1 = n1ργr

√
3π/(2∆γ1), D2 = −D1 n1,2 = 20 and φ2 = 0. This scheme gener-

ates a similar (figure 7.5) rectangular beam profile and does not greatly reduce
the radiation field intensity when compared to figure 7.2.

Figure 7.5: A simplified two-stage scheme can produce similar results to the three-
stage scheme, shown in figure 7.2. Here, the dispersive strength factor of the second
chicane is the negative of the first chicane.
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Puffin along with all classical FEL codes, does not simulate spontaneous
emission correctly. When spontaneous emission is generated the electrons do
not lose the equivalent energy. This limitation may be overcome with a fully
quantum description [38] of the FEL process. Part of the issue is believed
to be related to momentum recoil i.e., each spontaneously emitted photon
must carry away momentum from the electron. This can only be understood
in quantum context as there is no physically correct classical description. In
the SASE regime this momentum loss by the electrons may be insignificant.
For example the FERMI@Elettra [39] FEL operates at 1.2GeV and produces
resonant radiation at 10nm. 10nm is equivalent to 124eV and is approxi-
mately 6 orders of magnitude less than the electron energy. However, it is not
known that this will be the case for coherent spontaneous emission where the
initial radiation field intensity is significantly higher. And, this may prove a
limitation of this rectangular beam scheme. Furthermore, the propagation of
such an ‘exotic’ beam structure through undulators and chicanes is not well
understood.
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Chapter 8

Conclusions and Future Work

Upgrades to the 3D FEL simulation code Puffin have been implemented. Puffin
is now able to simulate the Free Electron Laser interaction in the presence
of 3D undulator magnetic field. Two 3D undulator magnetic fields are now
implemented in Puffin which both have off-axis magnetic field terms, these
off-axis terms produce a natural focusing force in either one or both transverse
directions. By implementing the 3D undulator the previously applied artificial
focusing channel was removed.

Detailed analysis of the Echo Enabled Harmonic Generation scheme, in the
absence of boundary conditions, revealed modal structure in the longitudinal
density modulation, in the microbunching, of the electron pulse. By matching
this bunching profile to amplification profile of an undulator-chicane lattice,
mode-locking can be achieved.

The interaction of multiple of short electron pulse has been studied. When
sufficiently separated in energy, each electron pulse (beamlet) will generate
radiation at its own resonant frequency. The interference of these frequen-
cies results in a series of temporal radiation spikes. The separation of these
temporal spikes can be manipulated using isochronous chicanes. Changes to
the temporal separation of the radiation spikes produce a similar change in
the frequency separation of the radiation modes. By using isochronous chi-
cane packets of radiation modes can be produced which are equispaced in
the frequency domain. Furthermore, the manipulation of the beamlets in a
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chicane, can force the beamlets to emit a single radiation spike in a radiator
undulator. Here, the radiation spike temporal separation is increased which
decreases the mode frequency separation. However, an interesting possibil-
ity exists of using positive dispersion to decrease temporal separation of the
radiation spikes, which would increase the frequency separation. This could
possibly be achieved by using longer beamlets and seed lasers to pre bunch
the beamlets. In doing so, it may possible, by increasing frequency separation
of the radiation modes, to generate x-ray radiation from beamlets that are
resonant in uv or gamma-ray radiation from x-ray radiation.

With a view to operating the Free Electron Laser with a large energy
spread electron pulse. The interaction of multiple chirped beamlets was then
investigated. This revealed the importance of electron energy variation in
mode-locking schemes. As such, a new expression for the slippage length in
undulator-chicane module was derived. This new slippage length is dependent
on electron energy, however this dependence can be eliminated by using neg-
ative dispersion chicanes. The importance of negative dispersion chicanes was
demonstrated and has proved useful in later work.

A series of chirped beamlets can be generated from an electron pulse with
a large energy spread, using a seeded-undulator and chicane. These beam-
lets when propagated through an undulator-chicane lattice produce radiation
powers that are 2-3 orders greater than the radiation power produced by the
initial untransformed electron pulse.

Taking advantage of the current spikes present in a series of rectangular
beams can significantly (4-6 orders of magnitude) increase the FEL’s output
radiation power, for electron beams with large energy spreads. Here, negative
dispersion chicanes were used to reset the electron pulse current profile af-
ter each undulator module. This allows the coherent emission to be emitted
in each new undulator module and superimpose to produce a large radiation
field. Although chapter 7 focused on rf-function beams for so called ’dirty’
electron beams (with large energy spread) such a scheme may have uses for
normal ’FEL optimised’ electron beams. The next step is simulate the rf-
function beams with more realistic electron pulses. For example the electron
pulse generated by a plasma accelerator. The intriguing possibility of produc-
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ing an rf-function electron pulse in cross-planar two colour undulator should
be investigated. The rf-function technique is capable of generating a variety
interesting pulse shapes in the electron phase space, such as triangular, saw-
tooth etc. and should be investigated using Puffin. It may also possible to
produce such an rf-function electron pulse in single planar undulator. This
maybe possible by injecting multiple seed lasers at the harmonics of the reso-
nant frequency as in Fourier series.
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Appendix A

3D undulator derivation

In this appendix the equations governing the electron motion through the un-
dulator are derived in a general way. The equations replace the working equa-
tions of Puffin [11], to simulate FEL interaction with various undulator types.
The current Puffin electron equations assume a 1D undulator which does not
satisfy Gauss’s Law because the undulator field does not have a z-component.
A 3D undulator field with a z-component will produce in a focusing force per-
pendicular to z and the electron’s transverse wiggle in accordance with Lorentz
force equation. The two different undulators will be considered, a plane-pole
undulator (i.e. a standard planar undulator that satisfies Gauss’s Law) which
produces a focusing force in one transverse direction. A curved-pole (decanted
poles) undulator shall also be considered as this undulator offers focusing in
both transverse directions, and therefore removes the need for external focus-
ing elements (such as quadrupoles).
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A.1 Transverse electron momentum
The Lorentz force for the electron pulse is calculated in two parts first the
transverse part is derived.

Fj =
dpj
dt

= −e(Ej +
pj
γjm

×B) (A.1)

define a unit vector ê = 1√
2(x̂ + iŷ) such that ê · ê = ê∗ · ê∗ = 0 and ê · ê∗ =

ê∗ · ê = 1 therefore x̂ = 1√
2(ê + ê∗) and ŷ = − i√

2(ê − ê∗) hence
√

2ê∗ · p =
px − ipy = p⊥ and

√
2ê · p = px + ipy = p∗⊥j. Similarly for the electric field√

2ê∗ ·E = Ex− iEy = E⊥ and
√

2ê ·E = Ex + iEy = E∗⊥ now take the scalar
product of

√
2ê∗ and equation A.1.

√
2ê∗ ·

dpj
dt

= −e(Ej +
pj
γjm

×B) · ê∗
√

2 (A.2)

dp⊥j
dt

= −e(E⊥ +
√

2ê∗ ·
( pj
γjm

×B
)

) (A.3)

now look at the second part of the above equation,

√
2ê∗ ·

( pj
γjm

×B
)

(A.4)

using the vector identity A · (B × C) = C · (A×B)
√

2ê∗ · (pj ×Bj) = Bj · (
√

2ê∗ × pj)

√
2ê∗ · (pj ×Bj) = Bj ·

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ
1 −i 0
pxj pyj pzj

∣∣∣∣∣∣∣∣ (A.5)

√
2ê∗ · (pj ×Bj) = Bj · (x̂(−ipz)− ŷpz + ẑ(py + ipx))

ii



using ip⊥j = py + ipx

√
2ê∗ · (pj ×Bj) = Bj · (−ipzx̂− pzŷ + ip⊥j ẑ) (A.6)

now, the magnetic field takes the form Bj = Bxjx̂+Byjŷ+Bzj ẑ and is inserted
into the above equation to give,

√
2ê∗ · (pj ×Bj) = (−ipzBxj − pzByj + ip⊥jBzj) (A.7)

the perpendicular magnetic field is given by B⊥ = Bx−iBy which is rearranged
to give iB⊥ = By + iBx

√
2ê∗ · (pj ×Bj) = (−ipzB⊥j + ip⊥jBzj) (A.8)
√

2ê∗ · (pj ×Bj) = ip⊥jBzj − ipzB⊥j (A.9)
√

2ê∗ ·
( pj
γjm

×B
)

= 1
γjm

(iBzp⊥j − ipzjB⊥j) (A.10)

recombine with equation A.3

dp⊥j
dt

= −e(E⊥ +
√

2ê∗ ·
( pj
γjm

×B
)

) (A.11)

dp⊥j
dt

= −e(E⊥ + 1
γjm

(iBzp⊥j − ipzjB⊥j)) (A.12)

now convert to z̄ using d
dt = 2kuρcβzj ddz̄

dp⊥j
dz̄

= −e
2kuρcβzj

(E⊥ + 1
γjm

(iBzp⊥j − ipzjB⊥j)) (A.13)

separate the perpendicular magnetic field into wiggler and radiation compo-
nents B⊥ = Bw⊥ + Br⊥ the radiation in z is ignored as the paraxial approxi-
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mation is made.

dp⊥j
dz̄

= −e
2kuρcβzj

(E⊥ + 1
γjm

(iBzp⊥j − ipzj(Bw⊥ +Br⊥j))) (A.14)

now Br⊥j = Brxj − iBryj these component can be rewritten in terms of the
electric field Brx ≈ −Ey/c and Bry ≈ Ex/c by applying Faraday’s Law.

Br⊥j = Brxj − iBryj (A.15)
Br⊥j = −(Eryj + iErxj)/c (A.16)
Br⊥j = −i(−iEryj − i2Erxj)/c (A.17)
Br⊥j = −i(−iEryj + Erxj)/c (A.18)
Br⊥j = −i(Erxj − iEryj)/c (A.19)
Br⊥j = −iE⊥/c (A.20)

were E⊥ = Erxj − iEryj

dp⊥j
dz̄

= −e
2kuρcβzj

(E⊥ + 1
γjm

(iBzp⊥j − ipzj(Bw⊥ − iE⊥/c))) (A.21)

dp⊥j
dz̄

= −e
2kuρcβzj

(
E⊥ + 1

γjm

(
iBzp⊥j − ipzjBw⊥ − pzj

E⊥
c

))
(A.22)

dp⊥j
dz̄

= −e
2kuρ

(
E⊥
cβzj

+ 1
γjmcβzj

(
iBzp⊥j − ipzjBw⊥ − pzj

E⊥
c

))
(A.23)
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pzj = γjmcβzj

dp⊥j
dz̄

= −e
2kuρ

(
E⊥
cβzj

+ 1
pzj

(
iBzp⊥j − ipzjBw⊥ − pzj

E⊥
c

))
(A.24)

dp⊥j
dz̄

= −e
2kuρ

(
E⊥
cβzj

+
(
iBz

p⊥j
pzj
− iBw⊥ −

E⊥
c

))
(A.25)

dp⊥j
dz̄

= −e
2kuρ

(
E⊥
cβzj

+ iBz
p⊥j
pzj
− iBw⊥ −

βzj
βzj

E⊥
c

)
(A.26)

dp⊥j
dz̄

= −e
2kuρ

(
E⊥
c

1− βzj
βzj

+ iBz
p⊥j
pzj
− iBw⊥

)
(A.27)

use ηp2j = 1−βzj
βzj

dp⊥j
dz̄

= −e
2kuρ

(
E⊥
c
ηp2j + iBz

p⊥j
pzj
− iBw⊥

)
(A.28)

introduce p̄⊥j = p⊥
mcau

=> p⊥j = mcaup̄⊥j,

mcau
u

dp̄⊥j
dz̄

= −e
2kuρ

(
E⊥
c
ηp2j + i

mcau
u

Bz
p̄⊥j
pzj
− iBw⊥

)
(A.29)

use scaled electric field of A⊥ = eaulg
2γ2
rmc2ρ

E⊥ which rearranged gives, E⊥ =
2γ2
rmc

2ρ
eaulg

A⊥

mcāu
dp̄⊥j
dz̄

= −e
2kuρ

(2γ2
rmcρ

eaulg
A⊥ηp2j + imcauBz

p̄⊥j
pzj
− iBw⊥

)
(A.30)

dp̄⊥j
dz̄

= 1
mcāu

−e
2kuρ

(2γ2
rmcρ

eaulg
A⊥ηp2j + imcauBz

p̄⊥j
pzj
− iBw⊥

)
(A.31)

v



dp̄⊥j
dz̄

= −e
2kuρ

(2γ2
rmcρ

eaulg

1
mcau

A⊥ηp2j + iBz
p̄⊥j
pzj
− i 1

mcau
Bw⊥

)
(A.32)

dp̄⊥j
dz̄

= −e
2kuρ

( 2γ2
rρ

ea2
ulg
A⊥ηp2j + iBz

p̄⊥j
pzj
− i 1

mcau
Bw⊥

)
(A.33)

dp̄⊥j
dz̄

= −e
2kuρ

( 2γ2
rρ

ea2
ulg
A⊥ηp2j + iBz

p̄⊥j
pzj
− i 1

mcau
Bw⊥

)
(A.34)

lg = 1
2kuρ

dp̄⊥j
dz̄

= −e
2kuρ

(2γ2
rρ2kuρ
ea2

u

A⊥ηp2j + iBz
p̄⊥j
pzj
− i 1

mcau
Bw⊥

)
(A.35)

dp̄⊥j
dz̄

= −e
2kuρ

(4γ2
rρ

2ku
eā2

u

A⊥ηp2j + iBz
p̄⊥j
pzj
− i 1

mcau
Bw⊥

)
(A.36)

dp̄⊥j
dz̄

= −e2ρ

(4γ2
rρ

2

ea2
u

A⊥ηp2j + iBz
p̄⊥j
pzj

1
ku
− i 1

mcauku
Bw⊥

)
(A.37)

define α = au
2ργr

dp̄⊥j
dz̄

= −e2ρ

( 1
eα2A⊥ηp2j + iBz

p̄⊥j
pzj

1
ku
− i 1

mcauku
Bw⊥

)
(A.38)

dp̄⊥j
dz̄

= 1
2ρ

(
−A⊥

ηp2j

α2 − ieBz
p̄⊥j
pzj

1
ku

+ ie
1

mcauku
Bw⊥

)
(A.39)

the undulator parameter was given by au = eB0
mcku

, now rearranging to give
B0 = aumcku

e → e
aumcku

= 1
B0

dp̄⊥j
dz̄

= 1
2ρ

(
−A⊥

ηp2j

α2 − e
iBzp̄⊥j
kupzj

+ i
Bw⊥
B0

)
(A.40)
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Lj ≡ γr
βzjγj

pzj = γjmcβzj => 1
γjβzj

= mc
pzj

, Lj = γrmc
pzj

=> Lj
γrmc

= 1
pzj

dp̄⊥j
dz̄

= 1
2ρ

(
−A⊥

ηp2j

α2 − e
iBzp̄⊥j
ku

Lj
γrmc

+ i
Bw⊥
B0

)
(A.41)

again using e
mcku

= au
B0

dp̄⊥j
dz̄

= 1
2ρ

(
−A⊥

ηp2j

α2 −
iBz
B0

aup̄⊥j
Lj
γr

+ i
Bw⊥
B0

)
(A.42)

define bz,ω⊥ = Bz,ω⊥/B0

dp̄⊥j
dz̄

= 1
2ρ

(
−A⊥

ηp2j

α2 − ibzaup̄⊥j
Lj
γr

+ ibw⊥

)
(A.43)

α = au
2ργr → 2ρα = au

γr

dp̄⊥j
dz̄

= 1
2ρ

(
−A⊥

ηp2j

α2 − ibz2ραp̄⊥jLj + ibw⊥

)
(A.44)

dp̄⊥j
dz̄

= 1
2ρ

(
ibw⊥ −

ηp2j

α2 A⊥

)
− iαp̄⊥jLjbz (A.45)
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A.2 Longitudinal electron momentum
Now, looking at the longitudinal part of the Lorentz equation,

Fj =
dpj
dt

= −e(Ej +
pj
γjm

×B) (A.46)

the z-component is given by,

dpzj
dt

= −e
γjm

(pxjByj − pyjBxj) (A.47)

Puffin applies the paraxial approximation, therefore the radiation’s electric
field in z can be ignored. Now, focus on the pxjByj − pyjBxj term and use the
substitution p⊥j = px − ipy, px = p⊥j+p∗⊥j

2 , py = p∗⊥j−p⊥
2i and B⊥ = Bx − iBy

pxjByj − pyjBxj =
p⊥j + p∗⊥j

2 Byj +
p⊥j − p∗⊥j

2i Bxj (A.48)

pxjByj − pyjBxj =
p⊥j + p∗⊥j

2 Byj −
i(p⊥j − p∗⊥j)

2 Bxj (A.49)

= 1
2[p⊥j(Byj − iBxj) + p∗⊥j((Byj + iBxj)] (A.50)

= 1
2[−ip⊥j(iByj − i2Bxj) + ip∗⊥j((−iByj − i2Bxj)] (A.51)

= 1
2[−ip⊥j(iByj +Bxj) + ip∗⊥j((−iByj +Bxj)] (A.52)

= 1
2[−ip⊥j(Bxj + iByj) + ip∗⊥j((Bxj − iByj)] (A.53)

= 1
2[−iB∗⊥jp⊥j + iB⊥jp

∗
⊥j] (A.54)

= 1
2[iB⊥jp∗⊥j − iB∗⊥jp⊥j] (A.55)

= 1
2[iB⊥jp∗⊥j + c.c.] (A.56)
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separate the perpendicular magnetic field into wiggler and radiation compo-
nents B⊥ = Bw⊥ − iE⊥/c

pxjByj − pyjBxj = 1
2[(iBw⊥ + E⊥

c
)p∗⊥j + c.c.] (A.57)

dpzj
dt

= −e
2γjm

[(iBw⊥ + E⊥
c

)p∗⊥j + c.c.] (A.58)

now convert to z̄ using d
dt = 2kuρcβzj ddz̄

dpzj
dz̄

= −e
4kuρcβzjγjm

[(iBw⊥ + E⊥
c

)p∗⊥j + c.c.] (A.59)

pzj = γjmcβzj

dpzj
dz̄

= −e
4kuρpzj

[(iBw⊥ + E⊥
c

)p∗⊥j + c.c.] (A.60)

pz is defined as pzj = γjmcβzj therefore,

dpzj
dz̄

= d

dz̄
(γjmcβzj) (A.61)

= mcγj
dβzj
dz̄

+mcβzj
dγj
dz̄

(A.62)

Now, an expression for the interaction of a co-propagating radiation field with
the electron pulse is derived. The Lorentz force equation is considered, while
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remembering that the relativistic momentum is given by pj = γjmcβj,

Fj = −e(E + cβj ×B) (A.63)
dγjmcβj

dt
= −e(E + cβj ×B) (A.64)

mc
dγjβj
dt

= −e(E + cβj ×B) (A.65)

(A.66)

multiplying both sides by β and rearrange,

mc
dγjβj
dt
· βj = −e(E + cβj ×B) · β (A.67)

mc(γj
dβj
dt

+ βj
dγj
dt

) · βj = −e(E + cβj ×B) · βj (A.68)

γj
dβj
dt
· βj + β2

j

dγj
dt

= − e

mc
(E + cβj ×B) · βj (A.69)

γj
2
dβ2

j

dt
+ β2

j

dγj
dt

= − e

mc
(E + cβj ×B) · βj (A.70)

γj is defined as γ2
j = 1/(1−β2

j) and should be rearranged γ2
j = 1/(1−β2

j) =>
γ2
j (1 − β2

j) = 1 => γ2
j = 1 + γ2

jβ
2. γ2

j is now differentiated with respect to
time,

dγ2
j

dt
= d

dt
(1 + γ2

jβ
2
j) (A.71)

2γj
dγj
dt

= d

dt
γ2
jβ

2
j (A.72)

2γj
dγj
dt

= 2γjβ2
j

dγj
dt

+ 2γ2
jβj

dβj
dt

(A.73)
dγj
dt

= β2
j

dγj
dt

+ γjβj
dβj
dt

(A.74)

dγj
dt

= γj
2
dβ2

j

dt
+ β2

j

dγj
dt

(A.75)
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The above expression is combined with equation A.70 to give,

dγj
dt

= − e

mc
(E + cβj ×B) · β (A.76)

now focus on the (cβj × B) · β part. The cross product βj × B will be per-
pendicular to both βj and B. Therefore the dot product (cβj × B) · β must
be zero, this fact tells us that a magnetic field cannot alter the energy of a
charged particle. Setting (cβj ×B) · β to zero leaves

dγj
dt

= − e

mc
E · βj (A.77)

changing to the scaled z̄ using d
dt = 2kuρcβzj ddz̄

dγ

dt
= − e

mc
E · βj (A.78)

dγ

dz̄
= − e

2kuρmc2βzj
E · βj (A.79)

E · βj =
pj
γjmc

· Ej (A.80)

E · βj = 1
γjmc

pj · Ej (A.81)

E · βj = 1
γjmc

(pxjExj + pyjEyj) (A.82)

(A.83)
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now use p⊥j = px − ipy, px = p⊥j+p∗⊥j
2 , py = p∗⊥j−p⊥j

2i and E⊥ = Ex − iEy,
Ex = E⊥+E∗⊥

2 , Ey = E∗⊥−E⊥
2i

E · βj = 1
γjmc

(
p⊥j + p∗⊥j

2
E⊥ + E∗⊥

2 +
p⊥j − p∗⊥j

2i
E⊥ − E∗⊥

2i ) (A.84)

E · βj = 1
4γjmc

((p⊥j + p∗⊥j)(E⊥ + E∗⊥)− (p⊥j − p∗⊥j)(E⊥ − E∗⊥)) (A.85)

E · βj = 1
4γjmc

(p⊥jE⊥ + p∗⊥jE⊥ + p⊥jE
∗
⊥ + p∗⊥jE

∗
⊥

− p⊥jE⊥ + p∗⊥jE⊥ + p⊥jE
∗
⊥ − p∗⊥jE∗⊥) (A.86)

E · βj = 1
2γjmc

(p∗⊥jE⊥ + p⊥jE
∗
⊥) (A.87)

=> dγj
dz̄

= − e

2kuρmc2βzj

1
2γjmc

(p∗⊥jE⊥ + p⊥jE
∗
⊥) (A.88)

dγj
dz̄

= − e

4kuργjm2c3βzj
(p∗⊥jE⊥ + p⊥jE

∗
⊥) (A.89)

now substitute back into equation A.62, shown below

dpzj
dz̄

= mcγj
dβzj
dz̄

+mcβzj
dγj
dz̄

dpzj
dz̄

= γjmc
dβzj
dz̄
−mcβzj

e

4kuργjm2c3βzj
(p∗⊥jE⊥ + p⊥jE

∗
⊥) (A.90)

dpzj
dz̄

= γjmc
dβzj
dz̄
− e

4kuργjmc2 (p∗⊥jE⊥ + p⊥jE
∗
⊥) (A.91)
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now reintroduce equations A.60, shown below

dpzj
dz̄

= −e
4kuρpzj

[(iBw⊥ + E⊥
c

)p∗⊥j + c.c.]

−e
4kuρpzj

[(iBw⊥ + E⊥
c

)p∗⊥j + c.c.] = γjmc
dβzj
dz̄
− e

4kuργjmc2 (p∗⊥jE⊥ + p⊥jE
∗
⊥)

and rearrange for dβzj
dz̄

γjmc
dβzj
dz̄

=
e

4kuργjmc2 (p∗⊥jE⊥ + p⊥jE
∗
⊥)− e

4kuργjmcβzj
[(iBw⊥ + E⊥

c
)p∗⊥j + c.c.] (A.92)

moving the c
βzj

inside the brackets

γjmc
dβzj
dz̄

=
e

4kuργjmc2 (p∗⊥jE⊥ + p⊥jE
∗
⊥)− e

4kuργjmc2 [ c
βzj

(iBw⊥ + E⊥
c

)p∗⊥j + c.c.]

(A.93)

γjmc
dβzj
dz̄

=
e

4kuργjmc2

(
(p∗⊥jE⊥ + c.c)− [ c

βzj
(iBw⊥ + E⊥

c
)p∗⊥j + c.c.]

)
(A.94)
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γjmc
dβzj
dz̄

=
e

4kuργjmc2

(
(p∗⊥jE⊥ + c.c)− ( c

βzj

E⊥
c
p∗⊥j + c.c.)− [ c

βzj
(iBw⊥p∗⊥j + c.c.)]

)
(A.95)

rearranging the βzj’s

γjmc
dβzj
dz̄

=
e

4kuργjmc2

(
(p∗⊥jE⊥ + c.c)βzj

βzj
− 1
βzj

(p∗⊥jE⊥ + c.c.)− [ c
βzj

(iBw⊥p∗⊥j + c.c.)]
)

(A.96)

γjmc
dβzj
dz̄

=
e

4kuργjmc2

(
(p∗⊥jE⊥ + c.c)

(
βzj − 1
βzj

)
− [ c

βzj
(iBw⊥p∗⊥j + c.c.)]

)
(A.97)

γjmc
dβzj
dz̄

=
−e

4kuργjmc2

(
(p∗⊥jE⊥ + c.c)

(1− βzj
βzj

)
+ [ c

βzj
(iBw⊥p∗⊥j + c.c.)]

)
(A.98)
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use ηp2j = 1−βzj
βzj

γjmc
dβzj
dz̄

= −e
4kuργjmc2

(
(p∗⊥jE⊥ + c.c)ηp2j + [ c

βzj
(iBw⊥p∗⊥j + c.c.)]

)
(A.99)

dβzj
dz̄

= −e
4kuργ2

jm
2c3

(
(p∗⊥jE⊥ + c.c)ηp2j + [ c

βzj
(iBw⊥p∗⊥j + c.c.)]

)
(A.100)

now changing to p2j

p2j = 1
η

1−βzj
βzj
→ p2j = 1

η

(
1
βzj
− 1

)
→ dp2j

dz̄ = − 1
ηβ2

zj

dβzj
dz̄

−ηβ2
zj

dp2j

dz̄
= −e

4kuργ2
jm

2c3

(
(p∗⊥jE⊥ + c.c)ηp2j + [ c

βzj
(iBw⊥p∗⊥j + c.c.)]

)
(A.101)

dp2j

dz̄
= 1
ηβ2

zj

e

4kuργ2
jm

2c3

(
(p∗⊥jE⊥ + c.c)ηp2j + [ c

βzj
(iBw⊥p∗⊥j + c.c.)]

)
(A.102)

Since p2j is p2j = 1
η

1−βzj
βzj
→ 1

βzj
= 1 + ηp2j → 1

β2
zj

= (1 + ηp2j)2

dp2j

dz̄
= 1
ηβ2

zj

e

4kuργ2
jm

2c3

(
(p∗⊥jE⊥ + c.c)ηp2j + [(1 + ηp2j)(icBw⊥p∗⊥j + c.c.)]

)
(A.103)
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introduce p̄⊥j = 1
mcau

p⊥j => p⊥j = mcaup̄⊥j, use scaled field E⊥ = 2γ2
rmc

2ρ
eaulg

A⊥

p∗⊥jE⊥ = mcaup̄
∗
⊥j

2γ2
rmc

2ρ

eaulg
A⊥

p∗⊥jE⊥ = p̄∗⊥j
2γ2

rm
2c3ρ

elg
A⊥

p∗⊥jE⊥ = p̄∗⊥j
2γ2

rm
2c3ρ

elg
A⊥

the gain length is defined as lg = 1
2kuρ

p∗⊥jE⊥ = p̄∗⊥jA⊥
4γ2

rkum
2c3ρ2

e

now inserting into the above

dp2j

dz̄
= 1
ηβ2

zj

e

4kuργ2
jm

2c3(4γ2
rkum

2c3ρ2

e
(p̄∗⊥jA⊥ + c.c)ηp2j + [(1 + ηp2j)(icBw⊥p∗⊥j + c.c.)]

)
(A.104)

dp2j

dz̄
= 1
ηβ2

zj

e

4kuργ2
jm

2c3
4γ2

rkum
2c3ρ2

e(
(p̄∗⊥jA⊥ + c.c)ηp2j + e

4γ2
rkum

2c3ρ2 [(1 + ηp2j)(icBw⊥p∗⊥j + c.c.)]
)

(A.105)

cancelling terms

dp2j

dz̄
= 1
ηβ2

zj

√
2γ2

rρ

γ2
j

(
(p̄∗⊥jA⊥ + c.c)ηp2j + e

4
√

2γ2
rkum

2c3ρ2 [(1 + ηp2j)(icBw⊥p∗⊥j + c.c.)]
)

(A.106)
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dp2j

dz̄
= 1
ηβ2

zj

√
2γ2

rρ

γ2
j

(
(p̄∗⊥jA⊥ + c.c)ηp2j + e

4
√

2γ2
rkum

2c3ρ2 [(1 + ηp2j)(icBw⊥p∗⊥j + c.c.)]
)

(A.107)

Lj ≡ γr
βzjγj

dp2j

dz̄
= ρ

η
L2
j

(
(p̄∗⊥jA⊥ + c.c)ηp2j + e

4γ2
rkum

2c3ρ2 [(1 + ηp2j)(icBw⊥p∗⊥j + c.c.)]
)

(A.108)

again use p̄⊥j = 1
mcau

p⊥j => p⊥j = mcaup̄⊥

dp2j

dz̄
= ρ

η
L2
j

(
(p̄∗⊥jA⊥ + c.c)ηp2j + e

4γ2
rkum

2c3ρ2mcauc[(1 + ηp2j)(iBw⊥p̄∗⊥j + c.c.)]
)

(A.109)

dp2j

dz̄
= ρ

η
L2
j

(
(p̄∗⊥jA⊥ + c.c)ηp2j + emc2au

4γ2
rkum

2c3ρ2 [(1 + ηp2j)(iBw⊥p̄∗⊥j + c.c.)]
)

(A.110)

dp2j

dz̄
= ρ

η
L2
j

(
(p̄∗⊥jA⊥ + c.c)ηp2j + eau

4γ2
rkumcρ

2 [(1 + ηp2j)(iBw⊥p̄∗⊥j + c.c.)]
)

(A.111)

now define au = eB0
mcku

=> au
mcku
e = B0 therefore aumckue = B0 → au

B0
mcku
e = 1

dp2j

dz̄
= ρ

η
L2
j

(
(p̄∗⊥jA⊥ + c.c)ηp2j + eau

4γ2
rkumcρ

2
au
B0

mcku
e

[(1 + ηp2j)(iBw⊥p̄∗⊥j + c.c.)]
)

(A.112)
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dp2j

dz̄
= ρ

η
L2
j

(
(p̄∗⊥jA⊥ + c.c)ηp2j + e

4γ2
rρ

2
a2
u

B0e
[(1 + ηp2j)(iBw⊥p̄∗⊥j + c.c.)]

)
(A.113)

further cancelling of terms

dp2j

dz̄
= ρ

η
L2
j

(
(p̄∗⊥jA⊥ + c.c)ηp2j + a2

u

4ρ2γ2
r

1
B0

[(1 + ηp2j)(iBw⊥p̄∗⊥j + c.c.)]
)

(A.114)

again using α = au
2ργr

dp2j

dz̄
= ρ

η
L2
j

(
(p̄∗⊥jA⊥ + c.c)ηp2j + α2

B0
[(1 + ηp2j)(iBw⊥p̄∗⊥j + c.c.)]

)
(A.115)

dp2j

dz̄
= ρ

η
L2
j

(
(p̄∗⊥jA⊥ + c.c)ηp2j + α2

B0
[(1 + ηp2j)(iBw⊥p̄∗⊥j + c.c.)]

)
(A.116)

dp2j

dz̄
= ρ

η
L2
j

(
(p̄∗⊥jA⊥ + c.c)ηp2j + α2[(1 + ηp2j)(i

Bw⊥
B0

p̄∗⊥j + c.c.)]
)

(A.117)

remembering bω⊥ = Bω⊥/B0

dp2j

dz̄
= ρ

η
L2
j

(
(p̄∗⊥jA⊥ + c.c)ηp2j + α2(1 + ηp2j)(ibw⊥p̄∗⊥j + c.c.)

)
(A.118)

dp2j

dz̄
= ρ

η
L2
j

(
(p̄∗⊥jA⊥ + c.c)ηp2j + α2(1 + ηp2j)(ibw⊥p̄∗⊥j + c.c.)

)
(A.119)
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using ibω⊥p̄∗⊥j + c.c. = −i(b∗ω⊥p̄⊥j − c.c.)

dp2j

dz̄
= ρ

η
L2
j

(
(p̄∗⊥jA⊥ + c.c)ηp2j − iα2(1 + ηp2j)(p̄⊥jb∗ω⊥ − c.c.)

)
(A.120)
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A.3 The Field Equation
The 3D Maxwell wave equation, ignoring space charge, is given by,

∇2E− 1
c2
∂2E
∂t2

= µ0
∂J
∂t

(A.121)

Puffin makes the paraxial approximation, therefore (Ez = 0) the radiation’s
electric field is purely transverse. Hence, the above equation is projected over√

2ê∗ = x− iy. Here,
√

2ê∗E = E⊥ = Ex − iEy and
√

2ê∗J = J⊥ = Jx − iJy
(
∇2E⊥ −

1
c2
∂2E⊥
∂t2

)
= µ0

∂J⊥
∂t

(A.122)(
∇2 − 1

c2
∂2

∂t2

)
E⊥ = µ0

∂J⊥
∂t

(A.123)(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 −
1
c2
∂2

∂t2

)
E⊥ = µ0

∂J⊥
∂t

(A.124)(
∂2

∂x2 + ∂2

∂y2 +
(
∂2

∂z2 −
1
c2
∂2

∂t2

))
E⊥ = µ0

∂J⊥
∂t

(A.125)(
∂2

∂x2 + ∂2

∂y2 +
(
∂

∂z
+ 1
c

∂

∂t

)(
∂

∂z
− 1
c

∂

∂t

))
E⊥ = µ0

∂J⊥
∂t

(A.126)

converting to scaled units using, where z̄2 = β̄z
(1−β̄z)

(ct−z)
lg

and z̄ = z
lg
,

∂

∂z̄
= lg

(
∂

∂z
+ 1
c

∂

∂t

)
(A.127)

and

∂

∂z̄
− 2β̄z

1− β̄z
∂

∂z̄2
= lg

(
∂

∂z
− 1
c

∂

∂t

)
(A.128)
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see appendix B.3 for a derivation of the above expressions.
 ∂2

∂x2 + ∂2

∂y2 + 1
l2g

∂

∂z̄

 ∂

∂z̄
− 2β̄z

1− β̄z
∂

∂z̄2

E⊥ = µ0
∂J⊥
∂t

(A.129)

now using β̄z
1−β̄z

∂
∂z̄2

= lg
c
∂
∂t

 ∂2

∂x2 + ∂2

∂y2 + 1
l2g

∂

∂z̄

 ∂

∂z̄
− 2β̄z

1− β̄z
∂

∂z̄2

E⊥ = β̄z

1− β̄z
c

lg
µ0
∂J⊥
∂z̄2

(A.130)

Here, the backwards propagating wave is neglected i.e.
∣∣∣∂E⊥
∂z̄

∣∣∣� ∣∣∣∣ β̄z
1−β̄z

∂E⊥
∂z̄2

∣∣∣∣
 ∂2

∂x2 + ∂2

∂y2 −
1
l2g

2β̄z
1− β̄z

∂

∂z̄

∂

∂z̄2

E⊥ = β̄z

1− β̄z
c

lg
µ0
∂J⊥
∂z̄2

(A.131)
 ∂2

∂x2 + ∂2

∂y2 −
1
l2g

2β̄z
1− β̄z

∂2

∂z̄∂z̄2

E⊥ = β̄z

1− β̄z
c

lg
µ0
∂J⊥
∂z̄2

(A.132)

using lg = β̄z
1−β̄z

lc

(
∂2

∂x2 + ∂2

∂y2 −
1
lglc

2∂2

∂z̄∂z̄2

)
E⊥ = c

lc
µ0
∂J⊥
∂z̄2

(A.133)

now using a 3D perpendicular current density

J⊥ = −ec
N∑
j=1

β⊥jδ(xj, yj, zj) (A.134)
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where δ(xj, yj, zj) = δ(x− x(t)j)δ(y − y(t)j)δ(z − z(t)j)
(
∂2

∂x2 + ∂2

∂y2 −
1
lglc

2∂2

∂z̄∂z̄2

)
E⊥ =

−µ0
ec2

lc

∂

∂z̄2

N∑
j=1

β⊥jδ(x− x(t)j)δ(y − y(t)j)δ(z − z(t)j) (A.135)

the dirac delta function is transformed into scaled variables using

δ(z − zj) = 1
βzj

1
lg

β̄z

1− β̄z
δ(z̄2 − z̄2j) (A.136)

δ(x− xj) = 1√
lglc

δ(x̄− x̄j) (A.137)

δ(y − yj) = 1√
lglc

δ(ȳ − ȳj) (A.138)

therefore

δ(x− xj)δ(y − yj)δ(z − zj) = 1√
lglc

δ(x̄− x̄j)
1√
lglc

δ(ȳ − ȳj)
1
βzj

1
lg

β̄z

1− β̄z
δ(z̄2 − z̄2j)

(A.139)

δ(x− xj)δ(y − yj)δ(z − zj) = 1
l2glc

δ(x̄− x̄j)δ(ȳ − ȳj)
1
βzj

β̄z

1− β̄z
δ(z̄2 − z̄2j)

(A.140)

δ(x− xj)δ(y − yj)δ(z − zj) = 1
l2glc

1
βzj

β̄z

1− β̄z
δ(x̄− x̄j)δ(ȳ − ȳj)δ(z̄2 − z̄2j)

(A.141)
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using lg = β̄z
1−β̄z

lc

δ(x− xj)δ(y − yj)δ(z − zj) = 1
lgl2c

1
βzj

δ(x̄− x̄j)δ(ȳ − ȳj)δ(z̄2 − z̄2j) (A.142)

now inserting into equation 136
(
∂2

∂x2 + ∂2

∂y2 −
1
lglc

2∂2

∂z̄∂z̄2

)
E⊥ =

−µ0
ec2

lc

∂

∂z̄2

N∑
j=1

β⊥j
1
lgl2c

1
βzj

δ(x̄− x̄j)δ(ȳ − ȳj)δ(z̄2 − z̄2j) (A.143)

now δ(x̄j, ȳj z̄2j) = δ(x̄− x̄j)δ(ȳ − ȳj)δ(z̄2 − z̄2j)
(
∂2

∂x2 + ∂2

∂y2 −
1
lglc

2∂2

∂z̄∂z̄2

)
E⊥ = −µ0

ec2

lc

∂

∂z̄2

N∑
j=1

β⊥j
1
lgl2c

1
βzj

δ(x̄j, ȳj z̄2j)

(A.144)(
∂2

∂x2 + ∂2

∂y2 −
1
lglc

2∂2

∂z̄∂z̄2

)
E⊥ = −µ0

ec2

l3c lg

1
βzj

∂

∂z̄2

N∑
j=1

β⊥jδ(x̄j, ȳj z̄2j) (A.145)

(A.146)

now change the partial derivatives in x and y to scaled notation using ∂2

∂x2 =
1
lglc

∂2

∂x̄2 and ∂2

∂y2 = 1
lglc

∂2

∂ȳ2

( 1
lglc

∂2

∂x̄2 + 1
lglc

∂2

∂ȳ2 −
1
lglc

2∂2

∂z̄∂z̄2

)
E⊥ = −µ0

ec2

l3c lg

1
βzj

∂

∂z̄2

N∑
j=1

β⊥jδ(x̄j, ȳj z̄2j)

(A.147)(
∂2

∂x̄2 + ∂2

∂ȳ2 −
2∂2

∂z̄∂z̄2

)
E⊥ = −µ0

ec2

l2c

1
βzj

∂

∂z̄2

N∑
j=1

β⊥jδ(x̄j, ȳj z̄2j)

(A.148)
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use scaled electric field of A⊥ = eaulg
2γ2
rmc2ρ

E⊥ which rearranged gives, E⊥ =
2γ2
rmc

2ρ
eaulg

A⊥

2γ2
rmc

2ρ

eaulg

(
∂2

∂x̄2 + ∂2

∂ȳ2 −
2∂2

∂z̄∂z̄2

)
A⊥ = µ0

ec2

l2c

1
βzj

∂

∂z̄2

N∑
j=1

β⊥jδ(x̄j, ȳj z̄2j)

(A.149)

the perpendicular momentum is given by p⊥j = γjmcβ⊥j , β⊥j = p⊥j
γjmc

,

2γ2
rmc

2ρ

eaulg

(
∂2

∂x̄2 + ∂2

∂ȳ2 −
2∂2

∂z̄∂z̄2

)
A⊥ = −µ0

ec2

l2c

1
βzj

∂

∂z̄2

N∑
j=1

p⊥j
γjmc

δ(x̄j, ȳj z̄2j)

(A.150)
2γ2

rmc
2ρ

eaulg

(
∂2

∂x̄2 + ∂2

∂ȳ2 −
2∂2

∂z̄∂z̄2

)
A⊥ = −µ0

ec2

l2c

1
γjmcβzj

∂

∂z̄2

N∑
j=1

p⊥jδ(x̄j, ȳj z̄2j)

(A.151)

again use p̄⊥j = 1
mcau

p⊥j => p⊥j = mcaup̄⊥j

2γ2
rmc

2ρ

eaulg

(
∂2

∂x̄2 + ∂2

∂ȳ2 −
2∂2

∂z̄∂z̄2

)
A⊥ = −µ0

ec2

l2c

1
γjmcβzj

∂

∂z̄2

N∑
j=1

mcaup̄⊥jδ(x̄j, ȳj z̄2j)

(A.152)
2γ2

rmc
2ρ

eaulg

(
∂2

∂x̄2 + ∂2

∂ȳ2 −
2∂2

∂z̄∂z̄2

)
A⊥ = −µ0

ec2

l2c

au
γjβzj

∂

∂z̄2

N∑
j=1

p̄⊥jδ(x̄j, ȳj z̄2j)

(A.153)(
∂2

∂x̄2 + ∂2

∂ȳ2 −
2∂2

∂z̄∂z̄2

)
A⊥ = − eaulg

2γ2
rmc

2ρ
µ0
ec2

l2c

au
γjβzj

∂

∂z̄2

N∑
j=1

p̄⊥jδ(x̄j, ȳj z̄2j)

(A.154)(
∂2

∂x̄2 + ∂2

∂ȳ2 −
2∂2

∂z̄∂z̄2

)
A⊥ = − e2c2a2

ulg
2γ2

rmc
2ρl2c

µ0
1

γjβzj

∂

∂z̄2

N∑
j=1

p̄⊥jδ(x̄j, ȳj z̄2j)

(A.155)
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1/c2 = µ0ε0 => µ0 = 1/(ε0c2)
(
∂2

∂x̄2 + ∂2

∂ȳ2 −
2∂2

∂z̄∂z̄2

)
A⊥ = e2c2a2

ulg
2γ2

rmε0c
4ρl2c

1
γjβzj

∂

∂z̄2

N∑
j=1

p̄⊥jδ(x̄j, ȳj z̄2j)

(A.156)

from this ωp is rearranged,

ωp =
(
e2np
ε0m

)1/2

(A.157)

ω2
p =

(
e2np
ε0m

)
(A.158)

ω2
p

np
= e2

ε0m
(A.159)

(
∂2

∂x̄2 + ∂2

∂ȳ2 −
2∂2

∂z̄∂z̄2

)
A⊥ = −

ω2
p

np

c2a2
ulg

2γ2
r c

4ρl2c

1
γjβzj

∂

∂z̄2

N∑
j=1

p̄⊥jδ(x̄j, ȳj z̄2j)

(A.160)

using lg = 1
2kuρ

(
∂2

∂x̄2 + ∂2

∂ȳ2 −
2∂2

∂z̄∂z̄2

)
A⊥ = −

ω2
p

np

a2
u

4kuργ2
r c

2ρl2c

1
γjβzj

∂

∂z̄2

N∑
j=1

p̄⊥jδ(x̄j, ȳj z̄2j)

(A.161)
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now ρ can be rearranged,

ρ = 1
γr

(
auωp
4cku

)2/3
(A.162)

(ργr)3 =
(
auωp
4cku

)2
(A.163)

(ργr)3 4ku =
 a2

uω
2
p

4c2ku

 (A.164)

(
∂2

∂x̄2 + ∂2

∂ȳ2 −
2∂2

∂z̄∂z̄2

)
A⊥ = (ργr)3 4ku

1
np

1
γ2
rρ

2l2c

1
γjβzj

∂

∂z̄2

N∑
j=1

p̄⊥jδ(x̄j, ȳj z̄2j)

(A.165)(
∂2

∂x̄2 + ∂2

∂ȳ2 −
2∂2

∂z̄∂z̄2

)
A⊥ = 4ku

1
np

1
l2c

ργr
γjβzj

∂

∂z̄2

N∑
j=1

p̄⊥jδ(x̄j, ȳj z̄2j) (A.166)
(
∂2

∂x̄2 + ∂2

∂ȳ2 −
2∂2

∂z̄∂z̄2

)
A⊥ = 2 1

np

2kuρ
l2c

γr
γjβzj

∂

∂z̄2

N∑
j=1

p̄⊥jδ(x̄j, ȳj z̄2j) (A.167)

the gain length is defined lg = 1/2kuρ

1
2

(
∂2

∂x̄2 + ∂2

∂ȳ2

)
A⊥ −

∂2

∂z̄∂z̄2
A⊥ = − 1

np

1
lgl2c

γr
γjβzj

∂

∂z̄2

N∑
j=1

p̄⊥jδ(x̄j, ȳj z̄2j)

(A.168)

the scaled peak number density is n̄p = lgl
2
cnp and Lj = γr

γjβzj

1
2

(
∂2

∂x̄2 + ∂2

∂ȳ2

)
A⊥ −

∂2

∂z̄∂z̄2
A⊥ = −Lj

n̄p

∂

∂z̄2

N∑
j=1

p̄⊥jδ(x̄j, ȳj z̄2j) (A.169)
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A.4 electron positions

A.4.1 longitudinal coordinate

The electron scaled coordinate z̄2 is given by,

z̄2j = 2krρ(ctj − z) (A.170)

this is differentiated with respect to z,

dz̄2j

dz
= 2krρ(cdtj

dz
− 1) (A.171)

dz̄2j

dz
= 2krρ(c 1

vzj
− 1) (A.172)

dz̄2j

dz
= 2krρ( 1

βzj
− 1) (A.173)

dz̄2j

dz
= 2krρ(1− βzj

βzj
) (A.174)

(A.175)

now changing to z̄ using d
dz = 2kuρ d

dz̄

dz̄2j

dz̄
= kr
ku

(1− βzj
βzj

) (A.176)

(A.177)

using 1
η = β̄z

1−β̄z
= kr

ku

dz̄2j

dz̄
= 1
η

(1− βzj
βzj

) (A.178)

(A.179)
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now p2j = 1
η (1−βzj

βzj
)

dz̄2j

dz̄
= p2j (A.180)

A.4.2 transverse coordinates

The momentum in x is given by,

pxj = γjmcβxj (A.181)

converting to scaled units p̄⊥j = 1
mcau

p⊥j => p⊥j = mcaup̄⊥j

p̄xj = γjvxj
auc

(A.182)

p̄xj = γj
auc

dxj
dt

(A.183)

now changing to z̄ using d
dt = 2kuρcβzj ddz̄

p̄xj = 2kuρcβzj
γj
auc

dxj
dz̄

(A.184)

p̄xj = 2kuρβzj
γj
au

dxj
dz̄

(A.185)

dxj
dz̄

= au
2kuρβzjγj

p̄xj (A.186)
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changing to a scaled x, i.e. dx̄dx = 1√
lglc

√
lglc

dx̄j
dz̄

= au
2kuρβzjγj

p̄xj (A.187)

dx̄j
dz̄

= 1√
lglc

au
2kuρβzjγj

p̄xj (A.188)

dx̄j
dz̄

=
√

4krkuρ2 au
2kuρβzjγj

p̄xj (A.189)

dx̄j
dz̄

=
√
krku

au
kuβzjγj

p̄xj (A.190)

dx̄j
dz̄

= au
√
kr√

kuβzjγj
p̄xj (A.191)

using 1
η = β̄z

1−β̄z
= kr

ku

dx̄j
dz̄

= aup̄xj√
ηβzjγj

(A.192)

now using Lj = γr
γjβzj

dx̄j
dz̄

= Lj
aup̄xj√
ηγr

(A.193)

again using α = au
2ργr

dx̄j
dz̄

= 2ρα
√
η
Lj p̄xj (A.194)

now since p̄⊥j = p̄xj − ip̄yj therefore <(p̄⊥j) = p̄xj

dx̄j
dz̄

= 2ρα
√
η
Lj<(p̄⊥j) (A.195)
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The momentum in y is given by,

pyj = γjmcβyj (A.196)

converting to scaled units p̄⊥j = 1
mcau

p⊥j => p⊥j = mcaup̄⊥j

p̄yj = γjvyj
auc

(A.197)

p̄yj = γj
auc

dyj
dt

(A.198)

now changing to z̄ using d
dt = 2kuρcβzj ddz̄

p̄yj = 2kuρcβzj
γj
auc

dyj
dz̄

(A.199)

p̄yj = 2kuρβzj
γj
au

dyj
dz̄

(A.200)

dyj
dz̄

= au
2kuρβzjγj

p̄yj (A.201)

changing to a scaled x, i.e. dȳdy = 1√
lglc

√
lglc

dȳj
dz̄

= au
2kuρβzjγj

p̄yj (A.202)

dȳj
dz̄

= 1√
lglc

au
2kuρβzjγj

p̄yj (A.203)

dȳj
dz̄

=
√

4krkuρ2 au
2kuρβzjγj

p̄yj (A.204)

dȳj
dz̄

=
√
krku

au
kuβzjγj

p̄yj (A.205)

dȳj
dz̄

= au
√
kr√

kuβzjγj
p̄yj (A.206)
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using 1
η = β̄z

1−β̄z
= kr

ku

dȳj
dz̄

= aup̄yj√
ηβzjγj

(A.207)

now using Lj = γr
γjβzj

dȳj
dz̄

= Lj
aup̄yj√
ηγr

(A.208)

again using α = au
2ργr

dȳj
dz̄

= 2ρα
√
η
Lj p̄yj (A.209)

now since p̄⊥j = p̄xj − ip̄yj therefore =(p̄⊥j) = −p̄yj

dȳj
dz̄

= −2ρα
√
η
Lj=(p̄⊥j) (A.210)
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A.5 final equations
The final set of Puffin equation are given as

dp2j

dz̄
= ρ

η
L2
j

(
(p̄∗⊥jA⊥ + c.c)ηp2j − iα2(1 + ηp2j)(p̄⊥jb∗ω⊥ − c.c.)

)
(A.211)

and

dp̄⊥j
dz̄

= 1
2ρ

(
ibw⊥ −

ηp2j

α2 A⊥

)
− iαp̄⊥jLjbz (A.212)

And the field equation is given by,

1
2

(
∂2

∂x̄2 + ∂2

∂ȳ2

)
A⊥ −

∂2

∂z̄∂z̄2
A⊥ = −Lj

n̄p

∂

∂z̄2

N∑
j=1

p̄⊥jδ(x̄j, ȳj z̄2j) (A.213)

the electron axial coordinates are described by,

dz̄2j

dz̄
= p2j (A.214)

dx̄j
dz̄

= 2ρα
√
η
Lj<(p̄⊥j) (A.215)

and

dȳj
dz̄

= −2ρα
√
η
Lj=(p̄⊥j) (A.216)
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A.5.1 electron energy conservation

The equations describing the electron motion in the FEL are now checked for
energy conservation. Taking the unscaled versions of the electron equations we
can apply conservation of energy when the radiation field is neglected. Using
the unscaled version of the equations A.60 and A.28

pzj
dpzj
dz̄

= −e
4kuρ

[p∗⊥j(iBw⊥ + E⊥
c

) + c.c.)] (A.217)

now neglecting the radiation field E⊥ = 0

pzj
dpzj
dz̄

= −elg2 [p∗⊥jiBw⊥ + c.c.] (A.218)

dp⊥j
dz̄

= −e
2kuρ

(E⊥
c

(1− βzj
βzj

)
+ iBzp⊥j

pzj
− iBw⊥) (A.219)

again neglecting the radiation field E⊥ = 0

dp⊥j
dz̄

= −elg(
iBzp⊥j
pzj

− iBw⊥) (A.220)
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now taking the definition of relativistic momentum p = γmβc→ β = p/γmc.
γ is defined as,

1/γ2 = 1− β2 (A.221)

1/γ2 = 1−
(

p
γmc

)2
(A.222)

1 = γ2 −
( p
mc

)2
(A.223)

γ2 = 1 +
( p
mc

)2
(A.224)

γ2 = 1 + p · p
m2c2 (A.225)

γ2 = 1 +
p2
x + p2

y + p2
z

m2c2 (A.226)

now rearranging the perpendicular momentum, p⊥ = px − ipy → |p⊥|2 =
(px − ipy)(px + ipy) = p2

x + p2
y

γ2
j = 1 +

|p⊥j|2 + p2
zj

m2c2 (A.227)

as there is no field in these equations we can apply conservation of energy to
the electron equations (dγjdz̄ = 0) γ2

j = 1 + |p⊥j |2+p2
zj

m2c2 use |p⊥j|2 = p∗⊥jp⊥j

dγ2
j

dz̄
= 2γj

dγj
dz̄

= 0 (A.228)

d|p⊥j|2

dz̄
+
dp2

zj

dz̄
= 0 (A.229)

dp∗⊥jp⊥j

dz̄
+
dp2

zj

dz̄
= 0 (A.230)

p∗⊥j
dp⊥j
dz̄

+ p⊥j
dp∗⊥j
dz̄

+ 2pzj
dpzj
dz̄

= 0 (A.231)
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now insert equations A.218 and A.220

−p∗⊥jelg(
iBzp⊥j
pzj

− iBw⊥)− p⊥jelg(
−iBzp∗⊥j
pzj

+ iB∗w⊥)

−elg[p∗⊥jiBw⊥ + c.c.] = 0 (A.232)

p∗⊥j(
iBzp⊥j
pzj

− iBw⊥) + p⊥j(
−iBzp∗⊥j
pzj

+ iB∗w⊥) + [p∗⊥jiBw⊥ + c.c.] = 0

(A.233)

(iBzp⊥j
pzj

p∗⊥j − iBw⊥p∗⊥j) + (
−iBzp∗⊥j
pzj

p⊥j + iB∗w⊥p⊥j)+

p∗⊥jiBw⊥ − p⊥jiB∗w⊥ = 0 (A.234)

−iBw⊥p∗⊥j + iB∗w⊥p⊥j + p∗⊥jiBw⊥ − p⊥jiB∗w⊥ = 0 (A.235)

All of the terms cancel therefore
dγ2

j

dz̄
= 0 and energy conservation is satisfied.
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Appendix B

Useful FEL derivations

B.1 Rescaling of EEHG
In Stupakov’s notation p is defined differently from the scaled notation. Four
coordinate transformations are made two modulation and two dispersive trans-
formations. E0 is replaced by Er and p is defined as,

p = E − Er
σE

(B.1)

p′ = p+ A1,2 sin(zk1,2) (B.2)

z′ = z + p
R

(1,2)
56 σE
Er

(B.3)

Er - mean energy (resonant) σE r.m.s. energy spread and A = ∆E
σE

. E is in eV.
inserting equation B1 into equation B2

E′ − Er
σE

= E − Er
σE

+ ∆E1,2

σE
sin(zk1,2) (B.4)

E ′ = E + ∆E1,2 sin(zk1,2) (B.5)
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equation 1 into equation 3

z′ = z + E − E0

σE

R
(1,2)
56 σE
Er

(B.6)

z′ = z +R
(1,2)
56

E − Er
E0

(B.7)

assume compton limit ρ � 1 and βz ≈ 1 therefore z = ct getting rid of the
primes introduce E0 and t0, then equations 4 and 5 become.

E = E0 + ∆E1,2 sin(ω1,2t) (B.8)

t = t0 + R
(1,2)
56
c

E − Er
Er

(B.9)

redefine in terms of γ = Ee
mc2 , introduce j for the jth electron.

γj = γj0 + ∆E1,2
e

mc2 sin(ω1,2t) (B.10)

tj = tj0 + R
(1,2)
56
c

γj − γr
γr

(B.11)

introduce scaled variables

z̄1j = z − cβ̄ztj
β̄zlc

(B.12)

pj = γj − γr
ργr

(B.13)
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taking z = 0 and rearranging to give,

z̄1j = −ctj
lc

(B.14)

z̄1j = −2krρctj (B.15)
γj = ργrpj − γr (B.16)

equation B.8 becomes

ργrpj = ργrpj0 + ∆E(1,2) e

mc2sin

(
−ω1,2z̄1j

2krcρ

)
(B.17)

pj = pj0 −
∆E(1,2)

ργr

e

mc2 sin
(

z̄1j

2ρn1,2

)
(B.18)

where n1,2 = ωr
ω1,2

equation B.9 become

z̄1j

−2krcρ
= z̄1j0

−2krcρ
+ pjρ

R
(1,2)
56
c

(B.19)

z̄1j = z̄1j0 − 2krρR(1,2)
56 ρpj (B.20)

define new variables,

p(1,2)
amp = ∆E(1,2)

ρ

e

γrmc2 (B.21)

or as

p(1,2)
amp = ∆E(1,2)

ρEr
(B.22)

xxxviii



or

p(1,2)
amp = ∆γ(1,2)

γrρ
(B.23)

and

R̄
(1,2)
56 = 2krρR(1,2)

56 (B.24)
D(1,2) = krρR

(1,2)
56 (B.25)

finally we are left with

pj = pj0 − p(1,2)
amp sin

(
z̄1j

2ρn1,2

)
(B.26)

z̄1j = z̄1j0 − ρpjR̄(1,2)
56 (B.27)

z̄1j = z̄1j0 − 2ρpjD(1,2) (B.28)

Which are written as four transformations

pj = pj0 − p(1)
amp sin

(
z̄1j

2ρn1

)
(B.29)

z̄1j = z̄1j0 − 2ρpjD(1) (B.30)

pj = pj0 − p(2)
amp sin

(
z̄1j

2ρn2

)
(B.31)

z̄1j = z̄1j0 − 2ρpjD(2) (B.32)
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B.2 Undulator-chicane modes
Assume that the slippage in an undulator chicane module will be an integer
multiple of the wavelengths, (i.e the only wavelength that survive are integer
divisors of s),

s = nλ (B.33)

λ = s

n
(B.34)

Now ∆ω, difference between adjacent side-band radiation modes, is calculated
as,

∆ωmodal = ωn − ωn−1 (B.35)

as ω = 2πc/λ = n2πc/s,

∆ωmodal = 2πc
s

(n− (n− 1)) (B.36)

∆ωmodal = 2πc
s
. (B.37)
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B.3 Converting wave equations derivatives to scaled
notation

The 1D wave equation’s partial derivatives in time and space are converted to
scaled notation. First of all using the scaling of z̄1. Rearranging the definition
of z̄1 and using the definition of z = lgz̄,

z̄1 = z − cβ̄zt
β̄zlc

(B.38)

z̄1 = lgz̄ − cβ̄zt
β̄zlc

(B.39)

β̄zlcz̄1 = lgz̄ − cβ̄zt (B.40)

t = lg

cβ̄z
z̄ − lc

c
z̄1 (B.41)

now differentiating t and z w.r.t z̄ and z̄1

∂t

∂z̄
= lg

cβ̄z
(B.42)

∂t

∂z̄1
= − lc

c
(B.43)

∂z

∂z̄
= lg (B.44)

∂z

∂z̄1
= 0 (B.45)

Now using the chain rule for partial derivatives,

∂

∂z̄
= ∂t

∂z̄

∂

∂t
+ ∂z

∂z̄

∂

∂z
(B.46)

∂

∂z̄
= lg

cβ̄z

∂

∂t
+ lg

∂

∂z
(B.47)
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and

∂

∂z̄1
= ∂t

∂z̄1

∂

∂t
+ ∂z

∂z̄1

∂

∂z
(B.48)

∂

∂z̄1
= − lc

c

∂

∂t
+ 0 (B.49)

Now using lg
β̄z

= lg + lc;1

∂

∂z̄
+ ∂

∂z̄1
= lg + lc

c

∂

∂t
+ lg

∂

∂z
− lc
c

∂

∂t
(B.50)(

∂

∂z̄
+ ∂

∂z̄1

)
= lg

(
∂

∂z
+ 1
c

∂

∂t

)
(B.51)

now take ∂
∂z̄1

= − lc
c
∂
∂t and use lc

lg
= 1−β̄z

β̄z
to give, ∂

∂z̄1
= − lg

c
1−β̄z
β̄z

∂
∂t . Now

combining with the above expression,
(
∂

∂z̄
+ ∂

∂z̄1

)
+ 2 β̄z

1− β̄z
∂

∂z̄1
= lg

(
∂

∂z
+ 1
c

∂

∂t

)
− 2 lg

c

∂

∂t
(B.52)

(
∂

∂z̄
+ ∂

∂z̄1

)
+ 2 β̄z

1− β̄z
∂

∂z̄1
= lg

(
∂

∂z
− 1
c

∂

∂t

)
(B.53)

2 β̄z

1− β̄z

1− β̄z
2β̄z

(
∂

∂z̄
+ ∂

∂z̄1

)
+ ∂

∂z̄1

 = lg

(
∂

∂z
− 1
c

∂

∂t

)
(B.54)

1This comes from rearranging the resonance condition kw

kr
= lc

lg
= 1−β̄z

β̄z
, lc
lg

+ 1 = 1−β̄z

β̄z
+ 1 →

lc+lg
lg

= 1
β̄z
→ lc + lg = lg

β̄z
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Now looking at the partial derivatives in z̄2,

z̄2 = β̄z

(1− β̄z)
(ct− z)

lg
(B.55)

z̄2 = (ct− z)
lc

(B.56)

z̄2lc = ct− z (B.57)
z̄2lc = ct− z̄lg (B.58)
ct = z̄2lc + z̄lg (B.59)

t = z̄2
lc
c

+ z̄
lg
c

(B.60)

now differentiating w.r.t z̄ and z̄2

∂t

∂z̄
= lg
c

(B.61)
∂t

∂z̄2
= lc
c

(B.62)

and

∂z

∂z̄
= lg (B.63)

∂z

∂z̄2
= 0 (B.64)

again using the chain rule for partial derivatives

∂

∂z̄
= ∂t

∂z̄

∂

∂t
+ ∂z

∂z̄

∂

∂z
(B.65)

∂

∂z̄
= lg

(
∂

∂z
+ 1
c

∂

∂t

)
(B.66)
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and

∂

∂z̄2
= ∂t

∂z̄2

∂

∂t
+ ∂z

∂z̄2

∂

∂z
(B.67)

∂

∂z̄2
= lc
c

∂

∂t
+ 0 (B.68)

now using lc
lg

= 1−β̄z
β̄z

∂

∂z̄2
= 1− β̄z

β̄z

lg
c

∂

∂t
(B.69)

2 β̄z

1− β̄z
∂

∂z̄2
= 2 lg

c

∂

∂t
(B.70)

now combining equation B.70 with B.66

∂

∂z̄
− 2 β̄z

1− β̄z
∂

∂z̄2
= lg

(
∂

∂z
+ 1
c

∂

∂t

)
− 2 lg

c

∂

∂t
(B.71) ∂

∂z̄
− 2 β̄z

1− β̄z
∂

∂z̄2

 = lg

(
∂

∂z
− 1
c

∂

∂t

)
(B.72)
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B.4 undulator dispersion compensation
The dispersion in the undulator can compensated for by using a chicane with
a negative dispersion. To show this the energy dependent slippage length is
derived. To begin, in the undulator the electron pulse’s longitudinal coordinate
evolves according to,

dz̄2

dz̄
= p2j (B.73)

therefore an electron will change its position in proportion to p2,

∆z̄2u = p2j∆z̄ (B.74)

hence if the slippage in an undulator is l̄ then ∆z̄2u = p2j l̄, in a chicane the
change in position of an electron is given by

∆z̄2c = −(1− p2)D + δ̄ (B.75)

therefore the combining the undulator and chicane slippages gives,

∆z̄2u+c = ∆z̄2u + ∆z̄2c (B.76)
∆z̄2u+c = p2j l̄ − (1− p2j)D + δ̄ (B.77)
∆z̄2u+c = p2j l̄ −D + p2jD + δ̄ (B.78)
∆z̄2u+c = p2j(l̄ +D)−D + δ̄ (B.79)

if D = −l

∆z̄2u+c = l̄ + δ̄ (B.80)
∆z̄2u+c = s̄ (B.81)

then the p2 dependence of slippage in undulator-chicane module is suppressed,
i.e. the slippage is s̄ regardless of the electron energy. The undulator-chicane
module slippage can be written in terms of γ by using the approximation

xlv



p2j = 1− 2
(
γj−γr
γr

)
, however this only valid for small energy variations

∆z̄2u+c =
(

1− 2
(
γj − γr
γr

))
(l̄ +D)−D + δ̄ (B.82)

∆z̄2u+c = (l̄ +D)−
(

2
(
γj − γr
γr

))
(l̄ +D)−D + δ̄ (B.83)

∆z̄2u+c = l̄ −
(

2
(
γj − γr
γr

))
(l̄ +D) + δ̄ (B.84)

∆z̄2u+c = −
(

2
(
γj − γr
γr

))
(l̄ +D) + l̄ + δ̄ (B.85)

∆z̄2u+c = 2
(
γr − γj
γr

)
(l̄ +D) + s̄ (B.86)

s̄γ = 2
(
γr − γj
γr

)
(l̄ +D) + s̄ (B.87)

if D = −l̄ then

s̄γ = s̄ (B.88)

therefore the energy dependence of the slippage in undulator chicane modules
has been suppressed. The above expression of chicane slippage in p2 is an
approximation which is only valid for small energy deviations. Real chicanes
apply a dispersion in γ i.e. the change in z̄2 for a chicane is given by

∆z̄2c = 2
(
γr − γj
γr

)
D + δ̄ (B.89)

therefore the change in z̄2 for an undulator-chicane module is given by,

∆z̄2u+c = ∆z̄2u + ∆z̄2c (B.90)

∆z̄2u+c = p2j l̄ + 2
(
γr − γj
γr

)
D + δ̄ (B.91)
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now if D = −l̄

∆z̄2u+c = p2j l̄ − 2
(
γr − γj
γr

)
l̄ + δ̄ (B.92)

in order to eliminate the energy dependence of the undulator-chicane slippage
length here, the following approximation must hold p2j = 1− 2

(
γj−γr
γr

)

∆z̄2u+c =
(

1− 2
(
γj − γr
γr

))
l̄ − 2

(
γr − γj
γr

)
l̄ + δ̄ (B.93)

∆z̄2u+c =
(

1 + 2
(
γr − γj
γr

))
l̄ − 2

(
γr − γj
γr

)
l̄ + δ̄ (B.94)

∆z̄2u+c = l̄ + δ̄ = s̄ (B.95)

however the above approximation only holds for small variations in energy.
But in expression B.79 the p2 dependence can always be eliminated by setting
D = −l̄ regardless of variations in p2. Therefore using a chicane that disperse
in p2 can fully reverse the dispersion of an undulator regardless of energy
variation, however a chicane that disperses in γ can not. This fact is illustrated
in figure 7.4 where to produce coherent phase-correlated radiation in each new
undulator section, the chicane must fully reverse the undulator dispersion. By
doing so, the coherent radiation fields can coherently superimpose and the
radiation field power scales as the square of the number of undulator-chicane
modules. If the radiation fields do not coherently superimpose, e.g. the chicane
disperses in γ, the radiation field power scales as the number of undulator-
chicane modules.
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B.5 rf-func beam distribution function
The final distribution function of a triple-modulator-chicane scheme is given
below.

f(z̄2, γ) = 1
2π

1
σγ

1
σz̄2

exp
(
−1
2σ2

γ

(
[((γ + ∆γ3 sin( 1

2n3ρ
(z̄2 + 2D3(γ − γr)/γr) + φ3))

+∆γ2 sin( 1
2n2ρ

((z̄2 + 2D3(γ − γr)/γr) + 2D2((γ + ∆γ3 sin( 1
2n3ρ

(z̄2 + 2D3(γ − γr)/γr) + φ3))− γr)/γr) + φ2))

+∆γ1 sin( 1
2n1ρ

(((z̄2 + 2D3(γ − γr)/γr) + 2D2((γ + ∆γ3 sin( 1
2n3ρ

(z̄2 + 2D3(γ − γr)/γr) + φ3))− γr)/γr)

+2D1(((γ + ∆γ3 sin( 1
2n3ρ

(z̄2 + 2D3(γ − γr)/γr) + φ3)) + ∆γ2 sin( 1
2n2ρ

((z̄2 + 2D3(γ − γr)/γr)

+2D2((γ + ∆γ3 sin( 1
2n3ρ

(z̄2 + 2D3(γ − γr)/γr) + φ3))− γr)/γr) + φ2))− γr)/γr) + φ1)]− γr
)2
)

exp
(
−1

2σ2
z̄2

(
[((z̄2 + 2D3(γ − γr)/γr) + 2D2((γ + ∆γ3 sin( 1

2n3ρ
(z̄2 + 2D3(γ − γr)/γr) + φ3))− γr)/γr)

+2D1(((γ + ∆γ3 sin( 1
2n3ρ

(z̄2 + 2D3(γ − γr)/γr) + φ3)) + ∆γ2 sin( 1
2n2ρ

((z̄2 + 2D3(γ − γr)/γr)

+2D2((γ + ∆γ3 sin( 1
2n3ρ

(z̄2 + 2D3(γ − γr)/γr) + φ3))− γr)/γr) + φ2))− γr)/γr]− z̄c
)2
)

The energy modulation parameters ∆γ1,2,3, modulation frequencies n1,2,3 =
k1,2,3/kw and modulation phases φ1,2,3 are associated with first, second and
third modulator sections respectively. SimilarlyD1,2,3 are the dispersion factors
for chicane 1,2 and 3. σγ,z̄2 is the standard deviations in γ and z̄2. The resonant
energy is defined as γr =< γ > |z̄=0 and the electron pulse centre is given by
z̄c.
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Appendix C

Publications

• New Journal of Physics Paper (submitted on 24/04/15)

• FEL 2014 Paper 1 (presented as poster)

• FEL 2014 Paper 2 (presented as talk)

• Europhysics Letters Paper
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Free Electron Lasers using ‘Beam by Design’ 2

Abstract. Several methods have been proposed in the literature to improve Free

Electron Laser output by transforming the electron phase-space before entering the

FEL interaction region. By utilising ‘beam by design’ with novel undulators and other

beam changing elements, the operating capability of FELs may be further usefully

extended. This paper introduces two new such methods to improve output from

electron pulses with large energy spreads and the results of simulations of these methods

in the 1D limit are presented. Both methods predict orders of magnitude improvements

to output radiation powers.

PACS numbers: 41.60.Cr

1. Introduction

The Free Electron Laser (FEL) is an important scientific research tool that uses a

relativistic electron beam to generate coherent radiation from the microwave through

to the hard X-ray. At shorter wavelengths into the X-ray, this is unlocking many new

areas of science in diverse fields such as: Warm-Dense matter studies [1]; short pulse

protein diffraction [2] and medicine/surgery [3]. Current X-ray FELs [4, 5] and those

under construction [6], are unique laboratory sources of high power coherent X-rays.

They are driven by electron beams generated from Radio-Frequency linear accelerators,

which can be up to a few kilometres long.

Many ideas are now being proposed to enhance and improve FEL output, towards

shorter wavelengths, shorter output pulse durations, improved temporal coherence [7]

and multi-colour operation [8]. These improvements extend the original high-gain

FEL design where the electron beam from an accelerator is simply injected into a

long undulator where the collective FEL interaction generates coherent output. The

new methods rely upon manipulation of the electron beam in phase-space, using laser

modulators and magnetic chicanes, either prior to injection into the FEL, or sequentially

along the undulator as the FEL interaction progresses.

Proposals also exist to reduce the overall lengths of FEL facilities by replacing

the RF-linacs with plasma-wakefield accelerators [9, 10]. These accelerators have large

accelerating gradients about 103−104 times larger than RF-linacs. However, the electron

bunches generated so far are limited by a relatively large energy spread which inhibits

any useful FEL interaction. As with the above proposed enhancements, methods

that manipulate the electron beams have been proposed that may help mitigate the

detrimental effects of energy spread. These include stretching the beam longitudinally

before injection into the FEL to reduce the localised energy spread [11], or transversely

dispersing the electron beam to give a correlated transverse energy distribution and then

matching this into a transverse gradient undulator [12].

Using a combination of modulators and chicanes, it is also possible to fourier-

compose electron pulses of simple geometric shapes in longitudinal electron beam phase

space e.g. rectangular, triangular, and sawtooth [13]. Such waveform synthesis of

the electron beam can also be utilised to generate phase-correlated harmonic beam



Free Electron Lasers using ‘Beam by Design’ 3

structures that can then perform analogous waveform synthesis of the coherent light

emission from the beam structures.

The electron beam parameters and manipulations described above can be very

difficult, if not impossible, to model using conventional FEL simulation codes, which

average the FEL interaction over a resonant radiation wavelength limiting both the

radiation bandwidth that can be modelled and the range of electron energies, correlated

or uncorrelated, within the beam.

In this paper the un-averaged FEL simulation code PUFFIN [14] is used to simulate

potentially useful electron beam undulator emission that would not be possible using

conventional averaged FEL simulation codes.

Firstly, a new method using electron beam phase-space manipulation is

investigated, that may allow a FEL to operate with larger electron beam energy spreads

which, for example, may assist the drive towards plasma-accelerator driven FELs. The

method constructs a series of energy-chirped electron pulses (beamlets), each of different

mean energy, vertically stacked in energy in phase space. The localised, or ‘slice’, energy

spread of each beamlet is smaller than the original, unmodified beam from which the

beamlets are constructed. Previous work has used multiple beams generated individually

by a photocathode illuminated by multiple light pulses to generate different colour pulses

from a FEL [15]. Here, however, the beamlets are generated from a single electron pulse.

Secondly, an example is presented of what may be possible using fourier-synthesised

electron beams [13]. This is the first simulation of the output from such waveforms

in a FEL-type system. A fourier-synthesised electron pulse with a rectangular wave

structure in phase space is used to generate radiation in a series of undulator-chicane

modules similar to those used in a mode-locked FEL amplifier [16]. The ‘discontinuous’

regions of the square electron pulse form larger current regions that can emit significant

coherent spontaneous emission (see e.g. [17]). This coherent emission is periodically

superimposed using a sequence of undulator-chicane modules and is shown to be able to

generate significant output powers. This cannot strictly be called a FEL as little FEL

interaction takes place.

The methods simulated here are clearly not to be considered as specific FEL design

proposals, rather they are intended to demonstrate future possibilities and potential as

electron beam generation advances beyond that of a simple linear beam model.

2. Beamlets

2.1. Beamlets - Description of Method

In the Free Electron Laser (FEL), a relativistic electron beam of mean electron energy

γrmec
2 amplifies radiation in an undulator of period λu and rms magnetic field strength

Bu. The resonant radiation wavelength amplified is given by λr = λu(1 + a2
u)/2γ

2
r . The

high-gain amplification process is characterised by the gain length lg, where an initial

radiation power P0 is amplified exponentially as a function of the distance z through
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the undulator as P (z) = P0 exp(
√

3z/lg) [18]. With an electron beam energy of γr, the

gain length may be written, neglecting radiation diffraction and for no electron beam

energy spread σγ = 0, as:

lg =
λu

4πρ
=

1

2kuρ
, (1)

where: ku = 2π/λu,

ρ =
1

γr

(
āuωp
4cku

)2/3

∝ I
1/3
pk , (2)

is the is the FEL (or Pierce) parameter, āu ∝ Buku is the undulator parameter, ωp is

the peak (non-relativistic) plasma frequency of the beam, and Ipk is the peak current.

For good amplification, the electron beam energy spread σγ must satisfy the ‘cold beam’

limit of:

σp =
σγ
ργr
� 1. (3)

Optimal FEL gain is seen to occur when Ipk is maximised and σγ minimised. The

method described below uses electron beam phase space manipulation to modify both

of these parameters in an attempt to improve the FEL output potential of beams with

large energy spreads (σp & 1).

The method first generates a series of energy chirped beamlets stacked vertically

in longitudinal phase space before they are injected into the FEL amplifier. As the

FEL interaction occurs within the undulator further manipulation is required to ensure

the radiation interaction with the chirped electron beamlets maintains a resonant

interaction.

In the first stage before injection into the FEL, the electron beam is passed through

a modulating undulator and dispersive chicane, resulting in the beam phase space shown

in figure 1. This phase space is similar to the first modulator-chicane section used in the

Echo Enhanced Harmonic Gain method [19]. The modulator-chicane sections perform

the following consecutive transforms on the electron beam phase space coordinates:

γ = γ0 −∆γ sin

(
z̄20

2ρn
+ φ

)
(4)

z̄2 = z̄20 − 2D

(
γ − γr
γr

)
, (5)

where the subscript 0 denotes the initial, untransformed coordinates, z̄2 = (ct− z)/lc is

the coordinate in a window travelling at the speed of light scaled with respect to the

cooperation length lc = λr/4πρ of the FEL interaction, ∆γ is the energy modulation

amplitude, n = λ1/λr is the modulation period scaled with respect to the resonant

wavelength and D = krρR56 is the scaled dispersive strength of the chicane. With this

scaling, a resonant electron of energy γr will fall behind a resonant radiation wavefront

a distance lc on propagating one gain length lg through the undulator [20].
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It has been observed that in regimes where large dispersion is applied that the noise

statistics of the macroparticles that simulate the electrons in the dispersed beam can

become incorrect. This occurs as the beam sampling in z̄2 is transformed into the γ

dimension when rotated in phase space, and vice-versa. To ensure the correct noise is

modelled, the functional form of the final electron beam phase space is used to initialize

the beam before application of the noise algorithm [21] and simulation using Puffin.

A gaussian distribution for both dimensions of the initial beam phase space is

assumed:

f(z̄2, γ) =
1

2πσγσz̄2
exp

[
−(γ − γr)2

2σ2
γ

]
exp

[
−(z̄2 − z̄c)2

2σ2
z̄2

]
, (6)

where: z̄c is the electron pulse centre and σγ,z̄2 are the standard deviations in γ and z̄2

respectively.

By applying similar modulation and dispersive transforms to those outlined in [19],

the final beam distribution function obtained is:

f(z̄2, γ) =
1

2πσγσz̄2
exp

[
− 1

2σ2
γ

(
γ + ∆γ sin

[
1

2ρn

(
z̄2 +2D

(
γ − γr
γr

))
+ φ

]
− γr

)2
]

× exp

[
− 1

2σ2
z̄2

(
z̄2 + 2D

(
γ − γr
γr

)
− z̄c

)2
]
. (7)

Figure 1 plots the scaled longitudinal phase space distribution function of the

electrons after the modulation-dispersive section and before injection into the FEL

undulator using the scaled energy parameter pj = (γj − γr)/ργr with the following

parameters: ∆γ = 0.04γr, D = 268.51, n = 68, φ = 0, σγ = 2ργr (or σp = 2),

γr = 1200, ρ = 1.6× 10−2 and σz̄2 = 28.97. The modulation and dispersion of the beam

is seen to create a stacked structure of energy chirped ‘beamlets’, slice sections of which

are seen to have an energy spread which is reduced from the initial un-transformed

beam with σp = 2. Under certain conditions, each beamlet may then emit and amplify

radiation independently of the other beamlets. The combined output from each of the

beamlets may then give improved radiation output over the un-transformed beam.

To illustrate how the method functions in the FEL undulator, a simplified version

of the beamlet phase space is shown in figure 2, which consists of a series of chirped, zero

energy spread, electron beamlets of different mean energies stacked in phase space. The

chirp causes the radiation from one section of the chirped beam to drift out of resonance

as it propagates into electrons which are resonant at a different wavelength. This

impedes the FEL gain process. This effect may be successfully counteracted by using

an appropriate undulator tapering to maintain the electron-radiation resonance [22].

(These results have been reproduced using the simulation methods used here and are

in very good agreement [23].) Here, a different approach is demonstrated using a

periodic series of undulator-chicane modules with multiple beamlets. The beamlets

are periodically delayed by the chicanes so as to maintain a resonant interaction with

the radiation generated by electrons of the same energy from the other beamlets.
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Figure 1. The scaled longitudinal electron beam phase space distribution function

given by equation (7) f(z̄2, p) (using p rather than γ) after transformation by a beam

modulator and dispersive chicane.

(Simulations using this method on the simple beamlet structure of figure 2 have been

performed and presented elsewhere [23].) In the electron beam frame therefore, the

radiation is passed from beamlet to beamlet so that it always interacts with electrons

of a similar energy so maintaining a resonant interaction and giving an improved FEL

interaction. This is achieved by making the slippage of a radiation wavefront through

the electrons in each undulator-chicane module equal to the spatial separation of the

beamlets. The enhanced slippage can also be expected to result in the generation of a

series of modes in the radiation spectrum similar to that of [16] which demonstrated that

an undulator-chicane lattice will amplify side-band radiation modes that are separated

by:

∆ω/ωr = 4πρ/s̄, (8)

where s̄ is the slippage length in scaled units of z̄2 in one undulator-chicane module [16].

The FEL parameter ρ ∝ I
1/3
pk , where Ipk is the electron pulse peak current, and is a

measure of FEL efficiency. When considering individual beamlets a FEL parameter may

also be defined for each beamlet: ρb ∝ I
1/3
b where Ib is localised (slice) current of the

beamlet. (Note that as the beamlet energy is chirped, the mean pulse energy γr, is used

in the definition of ρb.) Other beamlet parameters are also defined as pb = (γj−γr)/ρbγr
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Figure 2. Scaled longitudinal phase space of the electrons for the simplified beamlet

model. For a given energy the beamlets are separated spatially by ∆z̄2 and for a given

z̄2 the beamlets are separated by ∆p = ∆γ/ργr. A chicane delay of the electrons

corresponds to a positive shift in z̄2. A series of chicanes slip the electrons forward in

z̄2 so that they interact with the same resonant wavelength as emitted by the previous

beamlet.

and a beamlet scaled slice energy σpb . For a beamlet to lase independently its slice energy

spread must then satisfy:

σpb =
σγb
ρbγr

< 1. (9)

(Note here, that the mean pulse energy γr is used in the definition of σpb rather than

a local ‘slice’ value γb. This can be considered a reasonable approximation for the

inequality (9), so long as γb does not differ significantly from γr.) The beamlet slice

energy spread σpb and instantaneous fractional FEL parameter ρb/ρ0, where ρ0 is the

FEL parameter of the un-transformed beam, can be calculated and are shown in figures 3

and 4 towards the higher energy and mid-sections of the electron pulse respectively.

The energy spread condition for FEL lasing of equation (9) may be used with the

FEL radiation bandwidth saturation ∆ω/ωr ≈ 2ρ [24] to define the minimum energy

separation ∆γ of the beamlets so that the gain bandwidths of each beamlet do not
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overlap:

∆γ

ρbγr
& 2. (10)

At the centre of the electron pulse the beamlets split into pairs [25], i.e. two per half

modulation period, while for the electron pulse higher and lower energies, formed by the

modulation extrema, the beamlet pairs merge into single beamlets as seen in figures 3

and 4.

Both the energy spread condition (9) and beamlet separation condition (10) are seen

in figure 3 to be satisfied for the higher energy regions of the beamlets. (These conditions

are also satisfied at the lower energy regions of the beamlets, but are not shown.)

However, the condition placed on the beamlets’ energy separation (10) is not always

satisfied at the pulse centre where the beamlets are formed in pairs, as seen in figure 4.

Hence, the undulator-chicane slippage length is set equal to the beamlet separation for

the higher and lower energy regions of the pulse where the energy separation of the

beamlets is approximately a constant.

Results of a FEL interaction using an un-transformed (no beamlets) pulse with

large energy spread σp = 2 and of the transformed (beamlet) pulse are shown in figure 5.

As expected, for the pulse without beamlets and the large energy spread, only small

scaled peak powers of |A|2 ∼ 10−4 are observed in the simulation. However, for the

transformed pulse with beamlets that have smaller energy spread, σpb < 1, and that are

matched to the undulator-chicane modules, powers 2-3 orders of magnitude greater are

observed. For the modulation period of 68λr used here (n = 68), matching was achieved

using undulator modules of 20 periods and isochronous chicane slippages of 48λr. It is

seen that the FEL lasing is greater for the lower energy beamlets of the pulse around

z̄2 ∼ 400. This preferential FEL interaction and amplification of the lower frequency is

consistent with the scaling of the FEL parameter ρ ∝ γ−1 which gives greater values

and so strength of interaction, for lower beam energies. In the simulations here, the gain

length of the higher to lower energy beamlets is up to ∼50% larger. Evidence of the

modal structure in the spectrum is also observed in the scaled power spectrum (inset),

consistent with the undulator-chicane system which from (8) gives a mode spacing of

∆ω = 0.0147.

Significant bunching of the electrons in one of the lower energy beamlets, with a

mean value of scaled energy < p >= (< γ > −γr)/ργr ≈ −5, is also observed as shown

in figure 6. Note from the lower plot for the spectrum that the electrons are bunched at

a lower frequency ω/ωr ≈ 0.85 than the mean resonant frequency of the electron pulse.

This frequency shift from resonance is consistent with the lower mean energy of the

electrons as ∆ω/ωr ≈ 2ρ < p >= 0.16 and is in agreement with the radiation frequency

spectrum of figure 5. Electron bunching is also observed in a higher energy beamlet of

mean scaled energy < p >≈ 4, shown in figure 7. Here, the bunching is seen to be at

a less advanced stage, but can be expected to reach saturation on further propagation

through the undulater-chicane lattice.
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Figure 3. Top panel: Detail of the higher energy beamlet phase space distribution

function of equation 7 with a single beamlet delineated by white dashed lines. The

values of the scaled energy spread σpb (middle) and ρb/ρ0 (bottom) were calculated

for the single beamlet as a function of z̄2. Towards the pulse head (z̄2 < 105) the

electron pulse is diffuse with a larger energy spread σpb and smaller ρb. Nearer the

centre of the pulse (105 < z̄2 < 125), the scaled energy spread decreases as the local

density, and ρb increase. However, further towards the pulse centre z̄2 > 125 the energy

spread increases further as the beamlet spilts into two identifiably separate beamlets,

while the value of ρb tends towards a more constant value. The condition for lasing

of the beamlet of σpb < 1 is seen to be satisfied within this the head of the pulse

(and is also satisfied at the lower energy beamlets of the tail). The energy separation

between beamlets is also seen to satisfy condition (10) so that each beamlet can lase

independently. The energy separation between beamlets does not change significantly

with z̄2, as neither does the longitudinal separation of beamlet regions with the same

energy. Towards the centre of the pulse however, the beamlet structures have a more

complicated phase space structure.

3. Fourier Synthesised Electron Beams

Further types of phase-space transformation of an electron pulse prior to generating

radiation have been proposed and called ‘beam-by-design’ [7]. An example is

investigated here to demonstrate the potential of such beam transformation prior to

injection into the FEL and the subsequent transformation in the FEL emission stage

using a series of undulator-chicane modules. An electron pulse consisting of a series
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Figure 4. As figure 3, but around the centre of the electron pulse about the mean

pulse energy. The beamlets are seen to ‘spilt’ into two separate beamlets. While

the scaled energy spread requirement for lasing σpb < 1, is satisfied, the beamlet

energy separation condition (10) is only satisfied for a small region of beamlets about

the pulse centre. The beamlets are therefore unlikely lase independently with non-

overlapping bandwidths, so that the effective energy spread for the interaction is

increased, decreasing the ability of achieving significant FEL lasing.

rectangular shaped distributions in phase-space can be generated [13] and contains

a periodic series of current ‘spikes’. These current spikes are a source of coherent

spontaneous emission which may, through a series of periodic superpositions enabled

by chicanes, generate significant radiation output from an undulator-chicane lattice.

We note that other methods can generate similar beam structures, e.g. the E-SASE

approach [26], however the methods of [13] are used here to demonstrate the types of

more exotic interaction that may be modelled using non-averaged simulation codes such

as PUFFIN.

3.1. The Model - Coherent Emission from Rectangular Electron Pulses

A new approach to produce so-called ‘RF-function’ electron beams was introduced

in [13]. An RF-function generator produces a series of repeated wave forms by combining

sine-waves of different frequencies as in a Fourier series. In a similar fashion, an

electron pulse can be created with a phase-space that consists of repeated ‘waveforms’
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Figure 5. A comparison of the scaled radiation temporal power and spectral power

(insets) for an un-transformed electron pulse (panels a and b) and transformed pulse

of beamlets (panels c and d), when propagated through an simple undulator and an

undulator-chicane lattice respectively and interaction length of z̄ ≈ 30. The (red)

box shows the position of the electron pulse relative to the radiation (the head of

the pulse is to the left.) Note the different lengths of the electron pulses due to

differing dispersive effects of the chicanes. The beamlets propagating through a simple

undulator (panel c) is seen to give a small improvement to the output from the un-

transformed beam through both an simple undulator and an undulator-chicane system

(a and b respectively.) The improvement in output from the beamlets is increased

significantly when they are propagated through the matched undulator-chicane lattice

as shown in panel d. The undulator-chicane lattice amplifies side-band radiation modes

generated by the undulator-chicane modules and are separated by ∆ω = 0.0147 as seen

from the panel d inset and in agreement with the mode-spacing relation of (8). For

all results shown in this figure the radiation field has been filtered about the resonant

frequency 0.5 < ω/ωr < 1.5 to eliminate low frequency coherent spontaneous emission.

by modulation the electron beam using a series of seeded undulator modulators using

different seed wavelengths, amplitudes and phases. Following the notation of [13], here

a rectangular beam shape in phase space using a triple modulator-chicane lattice is

synthesized and subsequent radiation generation following injection into an undulator

chicane-lattice is modelled using PUFFIN.

While in [13] an infinity long electron beam was assumed, here, a finite electron

pulse with an initial Gaussian distribution in both z̄2 and γ is assumed, as given by
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Figure 6. Electron bunching in a lower energy beamlet at z̄ ≈ 30. The top panel plots

the charge-weighted electron phase space distribution ; the middle plots the bunching

parameter of the beamlet at the fundamental radiation frequency, and the bottom

plots the bunching spectrum of the beamlet.

equation (6). As detailed in the Appendix, the same Fourier synthesis as outlined

in [13] is applied using the beam modulation transforms given by equation (4) and the

energy dispersion transforms of equation (5).

In electron phase-space, the vertical segments of the rectangular waveform generate

regions of enhanced current, albeit with a larger energy spread. Each period therefore

contains two current ‘spikes’ which can generate significant coherent spontaneous

emission when their width is of a similar scale to a resonant wavelength [17]. However,

due to electron beam dispersion in the undulator, the sharpness of the current spikes

reduce on propagation, resulting in diminishing coherent emission. This dispersion of

the current spikes may be compensated for by the use of chicane systems with a negative

dispersion to allow for more prolonged coherent emission. The design of chicane delay

systems with negative dispersion have been previously designed and tested as part of

an accelerator lattice [27] and are also necessary for generating the RF-function beam

shapes [7, 13]. If the slippage per undulator-chicane module is also made equal to the

current spike separation, then the radiation is propagated from spike to spike and, if

correctly phased, can facilitate the constructive interference of the coherent emission

from each current spike in each new undulator module.
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Figure 7. Electron bunching in a higher energy beamlet at z̄ ≈ 30. The top panel plots

the charge-weighted electron phase space distribution; the middle plots the bunching

parameter of the beamlet at the fundamental radiation frequency; and the bottom

plots the bunching spectrum of the beamlet.

3.2. Results - Coherent Emission from Rectangular Electron Pulses

The following simulations use the same electron pulse parameters as the previous

section, i.e., the electron pulse’s large energy spread is prohibitive to FEL gain.

The phase-space distribution of the electron beam for the rectangular waveform was

constructed from the analysis of the Appendix for three undulator-chicane modules

using the following parameters in [∆γ,D]: [∆γ1 = 10σγ;D1 = n1ργr
√

3π/(2∆γ1)];

[∆γ2 = ∆γ1/4;D2 = −3D1]; [∆γ3 = ∆γ2/16;D3 = −3D2/4 = 9D1/4], with n1,2,3 = 20,

φ1,2 = 0 and φ3 = π.

The initial current profile of the electron pulse contains a series of current spikes

at half the modulation period corresponding to 10 resonant radiation wavelengths or

10×4πρ ≈ 2 in units of z̄2. On injection into an undulator, these spikes act as a periodic

series of phase correlated coherent emitters which, for a relatively short interaction

length of z̄ ≈ 1), generate a broad modal radiation spectrum as seen figure 8. However,

it is seen that alternate current spikes have dispersed to leave a series of more prominent

current spikes at twice the initial spacing of ∆z̄2 ≈ 4. This is reflected in the temporal

separation of the larger radiation spikes separated by ∆z̄2 ≈ 4). This also agrees with to
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Figure 8. The evolution of a rectangular electron beam in an undulator showing

top-to-bottom, the scaled radiation power |A|2 as a function of z̄2, electron phase

space (γ/γr, z̄2) with detail inset, the scaled electron current as a function of z̄2 and

the logarithm of the scaled radiation power spectrum |Ã|2 as a function of the scaled

frequency ω/ωr. The series on the left plot the output for a scaled distance through

the undulator of z̄ ≈ 1 and on the right for z̄ ≈ 20.1 An electron pulse with an initially

large energy spread has been transformed into an electron pulse that contains a number

of rectangular waveforms (see second plot on the left). The electron pulse structure

now contains a series of current spikes of spacing ∆z̄2 ≈ 4. When this electron pulse is

passes through an undulator each current spike acts as a source of coherent spontaneous

emission. The radiation spectrum (bottom panels) show a broad bandwith modal

structure with modes separation ∆ω/ωr ≈ 0.05. As the electron pulse propagates

along the undulator, the rectangular waveforms will disperse, and increase the current

spike widths and reduce current spike amplitudes. As the current spikes’ ’sharpness’

decrease the coherent radiation produced by the current spikes will decrease. Because

of this no amplification is seen when passing such an electron pulse through a long

undulator, as shown in the r.h.s. of this figure.

the spectrum in which a series of modes are generated with separation, from equation (8),

of ∆ω/ωr ≈ 0.05 about the resonant frequency.

On propagating further through the interaction region to larger values of z̄ ≈ 20,

the right hand panels of figure 8 show that the energy modulation of the rectangular

electron beam causes the electron beam to disperse in the undulator degrading the

visibility of the current spikes and so decreasing the coherent spontaneous emission

generated. Clearly, these dispersive effects mean that there is no benefit in increasing

the interaction length over that of z̄ = 20πρ ≈ 1.
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Figure 9. By using chicanes with a negative dispersion, the undulator dispersion

of the rectangular sections of the electron beam can be partially compensated for as

seen here for z̄ ≈ 10. In doing so the electron pulse can continue to emit coherent

emission in each undulator module. Here, each undulator module has 5 periods and

each chicane delays the electron pulse by approximately 5 resonant periods, to match

the current spike separation. Note that there is small FEL interaction as evidence by

electron microbunching (not shown).

By using chicanes with a negative dispersion it is possible to partially compensate

for the undulator dispersion and maintain a spiked current profile that can continue to

emit CSE over a larger number of modules. An example of this is shown in figure 9

were the chicane dispersion is set equal the negative of the undulator dispersion, i.e.

D = −l̄ [23]. The total undulator-chicane slippage for the radiation was again set

equal to the current-spike separation, s̄ = 10 × 4πρ. For this case, undulator-chicane

modules of 5 undulator periods and 5 chicane slippage periods were used. In this way,

the CSE from successive undulator-chicane modules superimpose and constructively

interfere increasing the radiation power emitted.

However, the radiation fields from each undulator-chicane do not superimpose

coherently and the radiation energy is seen (not shown) to scale approximately as the

number of undulator-chicane modules - a phase-matched coherent superposition would

give a radiation energy which scales as the square of the number of undulator-chicane

modules. The reason for this non-coherent superposition is that the dispersion of the

large energy modulated beam in the undulators cannot be perfectly compensated for

by the negative dispersion in the chicanes. (Phase space dispersion of electrons in the
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Figure 10. As figure 9, but now using an optimised chicane which maintains the

rectangular waveform electron pulse structure in phase space as it propagates through

the undulator-chicane lattice. The rectangular electron waveform emits coherent

radiation in each new undulator module which constructively interferes with the

radiation in subsequent undulator modules.

undulator is due to differences in the axial speed vz, while electron dispersion in the

chicanes is due to differences in the electron energy, γ.) This is observed from the slight

‘bowing’ of the rectangular structure of the electrons in phase space in figure 9. Two

possible methods to improve this are to reduce the initial energy modulation of the

rectangular wave (the results here are for a relatively large energy modulation) or to

use a (hypothetical) optimised chicane design which has a non-linear dispersive strength

as a function of γ. Here the latter is used and the results shown in figure 10. Now,

the bowing of the rectangular structure of the electrons in phase space is seen to be

removed and the power of the radiation increased. The coherent radiation from each

undulator-chicane module is now phase matched and is superimposing coherently after

each module. The radiation energy is now also observed to increase in proportion to

the square of the number of modules.

A comparison of a normal (untransformed beam) FEL amplifier with the methods

of beamlets of the previous Section and that of the fourier synthesised rectangular beam

of this section is given in figure 11 which plots how the scaled energy E of the radiation
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Figure 11. The total radiation field energy E(z̄) of the normal (untransformed,

no chicanes) FEL, beamlet FEL, and rectangular beams with linear and optimised

chicanes. The radiation is filtered around the resonant frequency, 0.5 < ω/ωr < 1.5.

pulses evolves with the interaction length z̄, where:

E(z̄) =

∫ +∞

−∞
|A(z̄, z̄2)|dz̄2. (11)

Before performing the integral in (11) the field was first fourier bandpass filtered so that

only contributions about resonance in the interval 0.5 < ω/ωr < 1.5 are considered

(this removes the significant low-frequency CSE content.) The introduction of the

phase=space transform to generate electron beamlets is seen to increase the exponential

growth rate over the normal FEL interaction by a factor of approximately two. While

the rectangular electron beams are seen not to have an exponential gain, it is essentially

a Coherent Spontaneous Emission process, the starting powers are much greater than

the FEL processes which start from spontaneous shot noise. It should be noted that

when the CSE simulations predict radiation powers that are a significant fraction of the

electron beam energy, that the effects of photon recoil should be included in the model.

These effects are not included in the classical simulations presented here.

4. Conclusion

This paper has sought to demonstrate what may be possible when electron beams are

transformed to alter their properties before injection into an FEL-type system. It is
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stressed that the methods demonstrated here are not proposals for any specific design

or operational wavelength. Rather, they are used to demonstrate possible research

directions towards future light sources, some of which have already been envisaged [7].

Here, the focus was to generate significant radiation output from electron beams

that have insufficient beam quality to lase under normal FEL operation. These methods

may be developed further and made more specific e.g. to the electron beams generated

from plasma accelerator sources which, to date, tend to have relatively high energy

spreads. Other possibilities, such as multiple frequency generation, ultra-short pulses,

chirped pulses (possibly shorter wavelengths) and others, are potential research areas.

One topic that is apparent, but has not been explored here, is the introduction of

tapered undulators into the design process. For example, the introduction of tapered

undulators, matched to compensate for the chirped beamlets of above, instead of using

chicanes, can be expected to produce interesting radiation output.

It is noted that the simulations presented here cannot be modelled effectively, or

at all, using simulation codes that are used to successfully model the ‘normal’ types

of FEL interactions. Unaveraged FEL codes, such as the PUFFIN code used here, are

required.
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Appendix

The final distribution function of a triple-modulator-chicane scheme is given below.

f(z̄2, γ) =
1

2π

1

σγ

1

σz̄2
exp

(
−1

2σ2
γ

(
[((γ + ∆γ3 sin(

1

2n3ρ
(z̄2 + 2D3(γ − γr)/γr) + φ3))

+∆γ2 sin(
1

2n2ρ
((z̄2 + 2D3(γ − γr)/γr) + 2D2((γ + ∆γ3 sin(

1

2n3ρ
(z̄2 + 2D3(γ − γr)/γr) + φ3))− γr)/γr) + φ2))

+∆γ1 sin(
1

2n1ρ
(((z̄2 + 2D3(γ − γr)/γr) + 2D2((γ + ∆γ3 sin(

1

2n3ρ
(z̄2 + 2D3(γ − γr)/γr) + φ3))− γr)/γr)

+2D1(((γ + ∆γ3 sin(
1

2n3ρ
(z̄2 + 2D3(γ − γr)/γr) + φ3)) + ∆γ2 sin(

1

2n2ρ
((z̄2 + 2D3(γ − γr)/γr)

+2D2((γ + ∆γ3 sin(
1

2n3ρ
(z̄2 + 2D3(γ − γr)/γr) + φ3))− γr)/γr) + φ2))− γr)/γr) + φ1)]− γr

)2
)

exp

(
−1

2σ2
z̄2

(
[((z̄2 + 2D3(γ − γr)/γr) + 2D2((γ + ∆γ3 sin(

1

2n3ρ
(z̄2 + 2D3(γ − γr)/γr) + φ3))− γr)/γr)

+2D1(((γ + ∆γ3 sin(
1

2n3ρ
(z̄2 + 2D3(γ − γr)/γr) + φ3)) + ∆γ2 sin(

1

2n2ρ
((z̄2 + 2D3(γ − γr)/γr)

+2D2((γ + ∆γ3 sin(
1

2n3ρ
(z̄2 + 2D3(γ − γr)/γr) + φ3))− γr)/γr) + φ2))− γr)/γr]− z̄c

)2
)

The energy modulation parameters ∆γ1,2,3, modulation frequencies n1,2,3 =

k1,2,3/kw and modulation phases φ1,2,3 are associated with first, second and third

modulator sections respectively. Similarly D1,2,3 are the dispersion factors for chicane

1,2 and 3. σγ,z̄2 is the standard deviations in γ and z̄2. The resonant energy is defined

as γr =< γ > |z̄=0 and the electron pulse centre is given by z̄c.
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Abstract
The FEL simulation code Puffin is modified to include 3D

magnetic undulator fields. Puffin, having previously used a
1D undulator field, is modified to accommodate general 3D
magnetic fields. Both plane and curved pole undulators have
been implemented. The electron motion for both agrees with
analytic predictions.

INTRODUCTION
Puffin [1] is an unaveraged 3D FEL code which does not

make the Slowly Varying Envelope Approximation (SVEA)
or period averaging in its analytical model. As such, it is
capable of modelling the a broad radiation field spectrum,
full longitudinal broadband electron beam transport through
the undulator, and Coherent Spontaneous Emission (CSE)
emerging from current gradients in the beam.

However, although Puffin models a 6D electron beam and
3D radiation field, it does not employ a 3D magnetic undu-
lator field. Instead, it implements a 1D undulator field with
no off-axis variation. Superimposed, is an external focusing
channel which is an approximation of the natural focusing
found in a helical undulator. This focusing channel may be
strengthened or weakened through the use of a ‘focusing
factor’ [2] to obtain a desired betatron frequency.

Such a model does not simulate the detuning of the reso-
nance condition in the transverse dimensions. Nor does it
allow the focusing to emerge naturally from the off-axis vari-
ation of the magnetic fields. The resulting electron motion
is an approximation in the case of a helical or curved-pole
undulator; it is inaccurate in the case of an undulator with
plane poles. Furthermore, the betatron motion as derived
in Puffin is only valid when the electron beam is close to
mono-energetic.
There is a need to model more realistic undulator fields;

in particular, plane pole and curved pole undulators are more
common than helical undulators for UV/X-ray FELs. There
is therefore a requirement that various 3D planar undulator
types be implemented in Puffin.
In the following, the Puffin model is first generalized to

include general undulator magnetic fields. This model also
allows a helical field description to be developed. Note
also that this general magnetic field description need not be
limited to undulators, and may allow future alternative appli-
cations of the Puffin code, to solve other radiation-electron
interactions in static magnetic fields.

This general description is then used to implement both a
generic plane pole and curved (canted) pole undulator FEL.
Results are presented to demonstrate the correct electron
motion and radiation characteristics are being solved.

MODIFIED MATHEMATICAL MODEL
The derivation of the FEL system of equations modelled

by Puffin is given in [1], using a magnetic undulator field
Bu =

Bu

2
(ueiku z + c.c.), where u = ux x̂ + iuy ŷ defines the

polarization of the undulator. Following the same derivation,
but using a general 3D magnetic field of the form B = Bx x̂+
By ŷ + Bz ẑ, one obtains the following system of equations:

[1
2
( ∂2
∂ x̄2
+

∂2

∂ ȳ2

)
−

∂2

∂ z̄∂ z̄2

]
A⊥ =

−
1

n̄p

∂

∂ z̄2

N∑
j=1

p̄⊥ j L jδ
3( x̄ j , ȳ j , z̄2 j ) (1)

dp̄⊥ j
dz̄
=

1
2ρ

[
ib⊥ −

ηp2 j
α2 A⊥

]
− iα p̄⊥ j L jbz (2)

dp2 j
dz̄
=
ρ

η
L2
j

[
ηp2 j (p̄⊥ j A∗⊥ j + c.c.)

− i(1 + ηp2 j )α2(p̄⊥ jb∗⊥ j − c.c.)
]

(3)
dz̄2 j
dz̄
= p2 j (4)

dx̄ j

dz̄
=

2ρα
√
η

L j<(p̄⊥ j ) (5)

d ȳ j
dz̄
= −

2ρα
√
η

L j=(p̄⊥ j ). (6)

where

p̄⊥ =
p⊥

mcau
, A⊥ =

euau lg

2
√
2γ2rmc2ρ

E⊥,

ρ =
1
γr

(
auωp

4cku

)2/3
, au =

eB0
mcku

,

α =
au

2ργr
, b⊥ = bx − iby , (7)

and bx,y,z = Bx,y,z/B0 are the scaled magnetic fields in x, y
and z, respectively, and B0 is the peak on-axis magnetic field.
Other parameters remain as defined in [1]. The FEL param-
eter ρ above is defined using the peak undulator parameter,
rather than the r.m.s. undulator parameter.
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Using the above system of equations, one may use bx ,by
and bz to define a static 3D magnetic field with which to sim-
ulate the energy exchange between a co-propagating electron
beam and radiation field. The model is still subject to the
same limitations as in [1], i.e. the paraxial approximation
and the neglect of the backwards propagating wave.

Currently, two 3D undulator fields have been implemented
in Puffin using this model, both derived from [3, 4]. The
first is an undulator field with canted, or curved, pole faces,
providing beam focusing in both transverse dimensions:

bx =
k̄x
k̄y

sinh(k̄x x̄) sinh(k̄y ȳ) sin( z̄/2ρ),

by = cosh(k̄x x̄) cosh(k̄y ȳ) sin( z̄/2ρ), (8)

bz =
√
η

2ρk̄x
cosh(k̄x x̄) sinh(k̄y ȳ) cos( z̄/2ρ),

where k̄x,y give the hyperbolic variation of the magnetic
field in x̄, ȳ, and must satisfy

k̄2x + k̄2y =
η

4ρ2
. (9)

The second undulator type is a planar undulator with plane
pole faces, described by:

bx =0,
by = cosh(

√
η ȳ/2ρ) sin( z̄/2ρ), (10)

bz = sinh(
√
η ȳ/2ρ) cos( z̄/2ρ).

SIMULATIONS
The electron transport through both of these undulator

types is well known. Some simple tests can therefore be
designed to see if the electron motion in Puffin exhibits the
correct behaviour.

As described in [3], a natural focusing channel arises from
the off-axis variation of the magnetic field in the curved-pole
undulator. From this so-called ’natural’ focusing, one ex-
pects a slow oscillation characterised by betatron wavenum-
bers and correspondingmatched beam radii in x̄ and ȳ, given,
in the scaled notation, as:

k̄βx =
au k̄x√
2ηγr

, k̄βy =
au k̄y√
2ηγr

, (11)

σ̄x =

√
ρε̄ x

k̄βx
, σ̄y =

√
ρε̄ y

k̄βy
. (12)

respectively.
For the curved pole simulation, ρ = 0.0017, au = 4.404,

ε̄ x,y = 1 and γr = 575.63. A small electron pulse is used
to generate a significant amount of coherent spontaneous
emission (CSE) [5], to avoid a noisy transverse intensity dis-
tribution, allowing an simple check of the emitted radiation
properties.

The radii in x̄ and ȳ, matched at injection, are are seen to
be constant throughout propagation. σ̄x is plotted against z̄

0 0.5 1 1.5 2
0.02

0.04

0.06

0.08

0.1

σ̄
x

z̄

 

 

Plane Poles

Curved Poles

Figure 1: The electron pulse radius σ̄x plotted as a function
of distance through the undulator.

in Figure 1. In this case, k̄x = k̄y , which, from condition (9)
and equation (11), results in

k̄βx = k̄βy =
au

4ργr
, (13)

and, from (12), matched beam radii of σ̄x,y = 0.039, giving
good agreement with Figure 1.
Similar to the curved-pole undulator, a natural focusing

channel also arises in the plane-pole undulator, this time
exclusively in the ȳ direction. For this simulation, the pa-
rameters used are identical to the curved pole case, except
the beam energy and the undulator parameter are adjusted
to γr = 238.04 and au = 1.2876, to give the same betatron
wavelength and transverse radii for comparison to the curved
pole case.
The betatron period and matched beam radius in ȳ are

now:

k̄βy =
au

2
√
2ργr

, (14)

σ̄y =

√
ρε̄ y

k̄βy
, (15)

and electron motion in the (x̄, p̄x ) dimension should undergo
free space dispersion when averaged over an undulator pe-
riod, resulting in an expansion of the beam in the x̄ dimen-
sion.

The radius in x̄ during propagation is plotted in Figure 1,
showing the beam expansion. The initial radius in x̄ is here
set to the matched radius in ȳ, so σ̄x = σ̄y = 0.0327. The
radius in ȳ remains constant, as expected.
Another test which can be made on the electron motion

is that, again from [4], | p̄⊥ |2 = 0.5 remains constant for all
electrons when averaged over an undulator period, which
maintains a constant resonance condition throughout their
betatron oscillations. This condition is seen to be satisfied
in Puffin.
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Figure 2: Transverse intensity profile of the 1st harmonic.
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Figure 3: Transverse intensity profile of the 2nd harmonic.

Puffin, being and unaveraged, non-SVEA code, is capable
of the self-consistent simulation of the full radiation field
spectrum in the FEL. The transverse intensity distributions
of the first 2 harmonics in the plane-pole case from CSE
is shown in Figures 2 and 3, showing the expected on-axis
emission for the first harmonic and the off-axis emission for
the second harmonic [6].

CONCLUSION
The system of equations (1 - 6) have been derived in

order to implement more realistic 3D undulators in Puffin,
increasing the scope of the code.
The betatron oscillation of each electron arises naturally

and self-consistently from the motion of the electrons in
the specified undulator fields - it is not an approximation of
the motion, which would only be valid for electrons close
to a given energy, super-imposed on top of another system
of equations. Consequently, the functionality reported here
will allow the simulation of broadband electron beams trans-
ported correctly through the FEL.

The work here may be combined with the model presented
in [7], which describes how to employ a taper in the equa-
tions, to taper an undulator module’s magnetic fields to and
from zero over the first and last few undulator periods in each
module. As well as more closely modelling a ‘realistic’ un-
dulator, this avoids the task of calculating the correct initial
conditions of the electron beam macroparticles that ensures
a stable propagation along the undulator. This calculation
can non-trivial, particularly for beams with a large energy
spread.

Other static magnetic fields, such as quadrupoles, may be
added to the equations. They would be subject to the same
scalings presented here, which are specific to the FEL - for
example, z is scaled to lg , the FEL gain length. It is intended
this will be done in the future.
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ABSTRACT
A potential method to improve the free electron laser’s

output when the electron pulse has a large energy spread is

investigate and results presented. A simplified model is the

first given, in which there are a number of linearly chirped

beamlets equally separated in energy and time. By using

chicanes, radiation from one chirped beamlet is passed to

the next, helping to negate the effect of the beamlet chirps

and maintaining resonant interactions. Hence the addition of

chicane allow the electrons to interact with a smaller range

of frequencies (Δω < 2ργr ), sustaining the FEL interaction.
One method to generate such a beamlet structure is presented

and is shown to increase FEL performance by two orders of

magnitude.

INTRODUCTION
Free Electron Lasers are already important research tools

and have started to unlock many new areas of science in

diverse fields such as; Warm-Dense matter studies, short

pulse protein diffraction and medicine/surgery. Current Free

Electron Lasers rely on linear accelerators to provide the

electron bunch, for an x-ray FEL the accelerator can be kilo-

metres long. The potential for plasma-wakefield accelerators

to drive the Free Electron Laser has been of theoretical and

experimental interest for many years. Plasma accelerators

generate accelerating gradients on the order of 103 times

greater traditional linear accelerators, which offers the po-

tential to reduce the total length of the FEL. Electron pulses

used in free electron lasers can exhibit a large energy chirp

(greater than 1 % of mean electron beam energy) which can

degrade the FEL interaction. Linear energy chirps have been

previously studied in [1] the results of this work have been

recreated here using Puffin [2] an unaveraged 3D parallel

FEL simulator. The results of these chirped pulse simula-

tions are in good agreement with [1] showing the flexibility

of Puffin. Electron pulses from plasma accelerators are lim-

ited by a large energy spread, this is also issue with older

accelerators were energy spread is sacrificed for a larger

rho (a measure of FEL efficiency) and higher pulse ener-

gies. A method that may allow the free electron laser to

operate with a large energy spread is proposed, simulations

were performed using Puffin. In this method a chirped elec-

tron pulse is split in a number of chirped electron beams or

beamlets. To sustain the FEL interaction radiation is passed

from beamlet to beamlet by applying a series of chicane slip-

page sections. By making the slippage in undulator-chicane

module equal the beam separation the radiation pulse will

continuously interact with electrons within the same energy

range. One method to generate a similar beamlet structure,

the beamlet method, is presented. In the beamlet method a

modulator-chicane section is used to generate a set of beam-

lets which have a smaller local (slice) energy spread than

the initial electron pulse. Radiation is then passed from

these areas of reduced energy spreads to sustain the FEL

interaction. This method shows an approximate two-fold

improvement in the radiation field intensity and a four-fold

improvement when the radiation field is filtered around the

resonant frequency.

SINGLE CHIRPED PULSE
When an electron pulse is given an energy chirp, the

effects can be both beneficial and detrimental to the FEL

interaction depending upon the gradient of the chirp [1].

Figure 1: Chirped electron pulse: the scaled saturation power

|A|2 is plotted as a function of the energy chirp, the energy
chirp parameter [1] is given by α̂ = − 2

ργr

dγ
dz̄2

, were |Asat |2
is the saturation intensity at α̂ = 0. This agrees with Figure
2 of [1] where matching parameters parameters have been

used. |A|2/|Asat |2 is equivalent to η from [1].

The results of [1] are reproduced using Puffin. Puffin uses

the scaled notation of [3, 4],were z̄2 defines a position in the
electron bunch and is given by z̄2 = (ct − z)/lc where the
cooperation length is defined as lc = λr/4πρ. The scaled
radiation is field is given by, A⊥ =

euāu lg

2
√
2γ2rmc2ρ

E⊥, where u
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describes the undulator polarization (i.e. u = 1 planar or
u =

√
2 helical), which in this case is helical. At saturation

in the free electron laser exhibits temporal spikes of the order

A⊥A∗⊥ = |A|2 = 1.
Figure 1 shows the normalised saturation power

(|A|2/|Asat |2) against energy chirp parameter α̂, where
|Asat |2 is the average radiation field at saturation for the
unchirped electron pulse. The resonant energy is defined

as the initial average energy γr =< γ j > |z̄=0 and the gain
length is defined as lg = λu/4πρ. The saturation length for
various chirps was estimated from Figure 1 of [1]. It should

be noted that extending the simulation along a long undulator

can generate large power spikes of |A|2 = 25 (see Figure 2).
This result was not included in [1]. The electron pulse’s

energy chirp is beneficial, with a flat-top (non-chirped) elec-

tron pulse, the electron pulse loses energy as the radiation

field grows after a number of undulator periods the elec-

trons are no longer resonant with the initial radiation field

(i.e. the electron pulse can now only amplify radiation at a

lower frequency). With a chirped pulse the interaction can

be sustained, when the radiation pulse propagates through

the electron pulse it will find electrons at a higher energy

(which are not resonant with it) and electrons that have lost

energy which are now resonant with this radiation pulse.

This technique is similar to undulator tapering, wherein the

undulator’s magnetic field is longitudinally tapered to main-

tain a resonant interaction along the undulator. The resonant

FEL interaction continues as the radiation pulse propagates

through the electron pulse allowing the generation of large

radiation spikes.

Figure 2: Comparison of chirped electron pulses with differ-

ent gradients at z̄ = 25, for α̂ = 1.3 larger radiation spikes
are generated. The energy chirp is beneficial to the FEL

interaction because the energy chirp is matched to the rate

of energy loss by the electrons so maintaining resonance

as the spike propagates through the electron pulse. Larger

radiation spikes are present when α̂ = 1.3 because as the
radiation pulse as propagates through the electron pulse it

will interact with more electrons within it’s FEL bandwidth

than it will with a larger energy chirp.

MULTIPLE CHIRPED PULSES -
BEAMLETS

In this Section multiple chirped pulses equally spaced in

energy are presented. We call this a system of ’beamlets’.

Five beamlets are linearly chirped in energy and then equi-

spaced in energy. A schematic of the chirped beamlets is

shown in Figure 3 The energy separation of Δγ = 2.5ργr
with a gradient

dγ
dz̄2
= ργr .

In Puffin each macroparticle is given a macroparticle

charge weight χ j defined as χ j = n j/np [2], n j is the

macroparticle charge density and np is peak macroparti-

cle density of the electron beam. In the beamlet model here,

the chi-value of each macroparticle is given by χn = χ j/Nb

where Nb is the number of electron beams and χ j is the chi-
value if only one beam were modelled. Therefore if all the

electron pulses have the same resonant energy (i.e. Δγ = 0)
and then the pulses would be indistinguishable.

Table 1 lists all the relevant simulation parameters.

The Model - Multiple Chirped Pulses

Figure 3: This diagram shows the initial electron pulse phase

space. Five cold electron pulses with a linear energy chirp

are overlapped and separated in energy by 2.5ργr . The chirp

gradient is
dγ
dz̄2
= γr ρ and the temporal separation is 2.5 lg .

The basic principle of this model is to pass radiation from

beamlet to beamlet. This is achieved by using a undulator-

chicane lattice, the range of electron energies experienced

by a radiation pulse can be controlled by changing number

of undulator periods per undulator-chicane module.

Standard mode-locking free electron laser theory [5, 6]

states that an undulator-chicane lattice will amplify modes

which are separated by Δω/ωr = 4πρ/s̄ , where s̄ is the
scaled slippage in an undulator-chicane module s̄ = s/lc .
The undulator-chicane slippage is the sum of slippages in

the undulator l̄ and chicane δ̄ i.e s̄ = l̄ + δ̄. The beamlets
are are separated by Δγ in energy which can be rewritten as
a frequency difference of Δω/ωr ≈ 2Δγγr using the reso-
nance condition. To lock the modes these two frequencies

are equated; 2Δγ/γr ≈ 4πρ/s̄. The chirp gradient is given
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by the ratio of the beamlets energy and temporal separation.

In this case the temporal separation is given by s̄ to ensure
that the radiation always interacts with electrons of the same

energy range. Therefore the electron chirp gradient is given

as,

dγ
dz̄2
=
Δγ

Δz̄2
=
4πργr
2s̄

1

s̄
dγ
dz̄2
=
2πργr

s̄2
. (1)

In Figure 3 the initial electron pulse phase space is shown, the

cold beam approximation is made, the beamlets are separated

by 2.5ργr and have energy chirp such that
dγ
dz̄2

≤ ργr . This
condition ensures that for 1lg (gain-length) of interaction the
radiation field only interacts with electrons within the FEL

bandwidth, a value of
dγ
dz̄2
= ργr was chosen. Temporally

the beams are now separated by 2.5lc . By using an undulator-
chicane lattice radiation can be passed from one beamlet

to the next. The undulator-chicane slippage is set equal to

the temporal separation of the beamlets, by doing so the

radiation pulse at the start of each undulator module can

interact with electrons of the same energy. This allows the

radiation field to continuously interact with electrons of the

same energies sustaining the FEL interaction.

An electron pulse with a linear energy chirp will have

an energy dependent slippage length, sγ , because electrons
travelling at different speeds will arrive at the end of the

undulator at different times. Therefore the separation of

the modes amplified by an undulator-chicane lattice will be

energy dependent Δω/ωr = 4πρ/s̄γ , where s̄γ = l̄γ + δ̄γ .
Here l̄γ and δ̄γ are the energy dependent slippages in the
undulator and chicane respectively. The energy dependent

slippage can be written as,

s̄γ = (l̄ + D)p2 j − D + δ̄ (2)

were p2 j ≈ 1 − 2(γ j − γr )/γr , or in terms of γ j ,

s̄γ = 2
(
γr − γ j
γr

)
(l̄ + D) + s̄ (3)

.

As the modal separation of the undulator-chicane modes

is now energy dependent this can reduce the mode visibility

for large energy chirps and long undulators. It is possible

to overcome this by applying a negative dispersion in the

chicane , when D = −l̄ the effect of the energy dependent
slippage is negated (i.e. s̄γ = s̄). Equation 3 also explains
why using a long undulator (large l̄) can destroy the mode-
locking by increasing the energy dependence of the slippage

length. Similarly a large dispersion D also increases the

effect of the energy dependent slippage.

Results - Multiple Chirped Pulses
The simulations that follow were performed using Puffin

with the parameters stated in Table 1. Numerous simulations

were performed to demonstrate the effects of changing the

Table 1: Simulation Parameters for Multiple Chirped Pulses

Parameter Value description

Q 3E-12 C charge per electron pulse

ρ 0.001 FEL parameter

γr 176.2 mean energy of beamlets

lb 80 lc bunch length

aw 0.511 undulator parameter

Δγ 2.5 ργr beam separation in energy

Δz̄2 2.5 beam separation in time
dγ
dz2

−ργr linear electron pulse chirp

α 2 Saldin chirp parameter

undulator-chicane configuration. The effect of the energy

dependent slippage is demonstrated, by destruction of the

modes when increasing l̄ and D (see equation 3). It is will

also be shown that modes normally destroyed by a long un-

dulator (large l̄) can be recovered by applying a negative
dispersion such that each undulator-chicane module has zero

dispersion, i.e. D = −l̄, in accordance with equation 3. In
addition to this previous unknown chicane modes are gener-

ated after the undulator-chicane modes are destroyed. The

additional modes are generated by a slippage only chicane.

Figure 4: Comparison of a simulation using chicane slip-

page sections to a simulation without chicane sections. The

average radiation power is plotted against z̄ (i.e. undulator
position). For a large section of the FEL interaction the av-

erage radiation power is a factor of ten greater when chicane

slippage sections are used.

Figure 4 shows that the average power from beamlets

is dependent on the undulator-chicane lattice step-up, in-

creasing the undulator length (while decreasing the chicane

slippage) produces higher radiation powers, as happens in

normal mode-locking free electron lasers.

In Figure 5 five beamlets are sent through an undulator-

chicane lattice. This lattice amplifies modes that are sep-

arated by Δω/ωr = 4πρ/s̄ = 0.005 where s̄ is the scaled
slippage in an undulator-chicane module. Electron pulses

with an energy chirp have an energy dependent slippage

(equation 3), i.e. higher energy electrons slip less than low
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Figure 5: At z̄ = 40 the radiation is high (top panel), electron
microbunching is well developed (middle), the spectrum of

the field is shown in the bottom panel. In this case l̄ =
0.2513, δ̄ = 2.2619. Giving a modal separation is given by
Δω/ωr = 4πρ/s̄ = 0.005, which matches the numerical
result well.

Figure 6: This simulation is identical to Figure 5 , expect

that the chicanes now apply a small dispersion to the electron

pulse which disrupts mode formation. The reason for this

is that an electron pulse with such a large energy chirp will

have an energy dependent slippage length. For example

the slippage of a low energy electron will be greater than

that of a higher energy electron. Using a dispersive chicane

will increase the difference in slippage lengths between high

and low energy electrons. Therefore modes generate at the

head of the pulse will have different s̄ than at the tail and
hence a different Δωγ/ωr = 4πρ/s̄ (see Eq. 3), such that
the modes start overlapping each other. However using a

non-dispersive chicane means that the difference in modal

separation is due solely to undulator dispersion, which is

small enough to allow the modes to form.

energy electrons. The result of this is that any mode-locking

that occurs at the high energy part of the pulse will involve a

different set of modes than low energy part of the pulse. The

energy dependent slippage (equation 3) can counteracted

by using a short-undulator and a slippage only chicane as

is seen Figure 5. However using a dispersive chicane will

increase the effect of this energy slippage (equation 3), as

higher higher electrons will propagate more than low energy

electrons increasing the difference in their slippage lengths.

This difference in slippage lengths means that radiation field

cannot be passed to the same energy range from one elec-

tron pulse to the next. The combination of these effects

destroys the modes as is shown in Figure 6. The modes are

also destroyed when using a long undulator (Figure 7), as

the undulator dispersion over a large number of periods is

significant enough to disrupt the mode formation.

In Figure 7 a dispersionless chicane generates an extra

set of modes separated by δω = 4πρ/δ̄ = 0.02, these
modes are generated because the beamlets will produce a

radiation pulse before and after the dispersionless chicane

that are similar (nearly identical), therefore the only modes

Figure 7: In this simulation longer undulator modules are

used, l̄ = 1.885, δ̄ = 0.6283 and slippage only chicanes.
Using a longer undulator will produce more dispersion in

the electron pulse, this makes the energy dependent slippage

between electron of various energies greater. Therefore the

radiation modes now overlap. However the slippage only

chicanes will produce modes separated δω/ωr = 4πρ/δ̄,
this because the electron pulse will produce similar (nearly

identical) radiation pulse before and after the slippage only

chicane. Therefore the only modes that can survive the U-

CS-U section are given by δω/ωr = 4πρ/δ̄ = 0.02.

that can survive this chicane slip are those separated by

δω = 4πρ/δ̄ = 0.02. These modes can be replaced by the
original modes by applying a negative dispersion in the chi-

canes (Figure 8), the dispersion is in a chicane is such that

the total dispersion by an undulator-chicane module is now

zero. Having zero-dispersion undulator-chicane modules

negates the effects of the energy dependent slippage (see

equation 3); as energy dependent slippage and dispersion

are the same thing. Using zero-dispersion undulator-chicane

modules hinders the development of the bunching, reducing

the radiation intensity. The modes of Figure 7 can also be

generated by using a short undulator (U), a dispersion only
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chicane (CD) and a slippage only (dispersionless) chicane

(CS). For this simulation (Figure 9) of an undulator-chicane

lattice was constructed frommodules of U-CD-U-CS, where

each undulator has half the number of periods (10 periods)

of the undulator used in Figure 5. The dispersion only chi-

cane will supply the equivalent of 130 periods of undulator

dispersion. This gives a total dispersion of 150 periods per

module just as in Figure 7 and then the slippage only chicane

generates modes separated by δω = 4πρ/δ̄ = 0.02.

Figure 8: The modes that where destroyed in Figure 7, can be

restored by using a chicane that applies a negative dispersion.

The magnitude of dispersion applied is equal to the amount

dispersion experienced in the preceding undulator section,

therefore in an undulator-chicane module there is effectively

zero dispersion. In this simulation l̄ = 1.885, δ̄ = 0.6283.
The modes are more clear in this case because of the zero dis-

persion undulator-chicane modules, where as in Figure 7 the

undulator dispersion causes a differential slippage whereby

the mode separation varies with energy. Note the reduced

radiation intensities, which is due to the negative dispersion

chicanes that prevents the formation of microbunches.

A full understanding of the interaction of multiple elec-

tron pulses (beamlets) is important when modelling more

advanced ’novel’ FEL schemes. The effect of undulator

length, energy dependent slippage and dispersion has been

analysed, and will impact different FEL schemes where large

variation in electron energies are present.

BEAMLETS
In this section a technique to generate chirped electron

pulses from a single electron pulse is presented. The beamlet

technique is a two stage method which involves an undulator

and a chicane. The electron pulse is modulated in energy

and then dispersed. This generates a series of beamlets

with reduced local energy spreads, passing radiation from

beamlet to beamlet can sustain the FEL interaction.

The Model - Beamlets
The electron pulse is first modulated in an undulator and

then dispersed by a chicane section, these transformations

Figure 9: Using a unique undulator-chicane lattice, con-

sisting of dispersion only chicanes (CD) and slippage only

chicanes (CS). The lattice is constructed from blocks of U-

CD-U-CS arranged in series. In the undulator l̄ = 0.1257
(10 periods), in the dispersion only chicane (CD) the equiva-

lent of δ̄ = 1.6336 (130 periods) of dispersion is applied and
in the slippage only chicane (CS) a slippage of δ̄ = 0.6283
(50 periods) is used. Therefore the dispersion is the same per

module as it is in Figure 7. As in Figure 7 the slippage only

chicane generates modes given by δω/ωr = 4πρ/δ̄ = 0.02.

are performed by applying the point-transforms given below,

γ j = γ j + γm sin

(
z̄2 j
2ρ

)
(4)

z̄2 j = z̄2 j + 2D
(
γ j − γr
γr

)
. (5)

Upon exiting the chicane the electron pulse has a unique

phase-space structure. In Figure 10 this phase space struc-

ture is shown and is similar to series of chirped electron

pulse or beamlets. After the undulator-chicane section the

beamlets are passed through an undulator-chicane lattice,

this allows radiation to be passed from beamlet to beamlet,

similar to the chirped electron pulses method present ear-

lier, sustaining the FEL interaction throughout the electron

pulse. The slippage in a undulator-chicane module is there-

fore equal to the period of energy modulation. A modulation

amplitude of γm = 0.04γr and dispersion of D = 200 was
selected.

Results - Beamlets
An electron pulse with a large energy spread and Gaus-

sian current profile is initially generated (σγ ≈ 2.5γr ρ, were
ρ = 0.01). Applying a Gaussian distribution in energy and
space will reduce the charge density at the electron pulse

corners (in phase space) see Figure 10. Macroparticles with

such a low weight are eliminated by Puffin, consequently

the electron pulse’s phase space is rounded. The electron

pulse’s Gaussian current profile generates coherent emission

at the lower frequencies consequently this radiation has been

filtered out. Due to the electron pulse’s large energy spread
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Figure 10: The EEHG beamlet scheme, an electron pusle of

a large energy spread is energy modulated (γm = 0.04γr )
and dispersed (D = 200) by applying transform 4 and 5.

This results in the formation of beamlets with a reduced local

energy spread. Radiation can then be passed from beamlet to

beamlet sustaining the FEL interaction. The electron pulse

was given gaussian distribution in space to cut down on

coherent emission from the pulse edges. The macroparticle

model of Puffin eliminates marcoparticles whose weight is

below a certain threshold, as such the particles at the corners

of the pulse (in phase space) have the lowest weight and are

eliminated. This leaves the outer beamlets less dense and

therefore less able to contribute to the FEL interaction.

it cannot produce and amplify FEL radiation to useful in-

tensities, at z̄ = 40 generally consider to beyond saturation
significant radiation is not present (Figure 11 ). However

by applying equations 4 and 5 the electron pulse is trans-

formed into beamlets. These beamlets (at z̄ = 40) show

an approximately two-orders of magnitude improvement

as can be seen in Figures 12 and 11. For these simula-

tions ρ = 0.01 and the undulator-chicane lattice had 50
undulator periods per module (l̄ = 6.2832) and 18 chicane
(δ̄ = 2.2619) slippage periods. In Figure 13 a comparison is
made between the beamlet case and the original beam, the ra-

diation field has been filtered around the resonant frequency

0.8 < ω/ωr < 1.2.

CONCLUSION
The interaction of multiple electron pulses has been anal-

ysed and this understanding should prove useful when de-

signing more novel FEL techniques. A potential scheme for

generating radiation from an electron pulse of large energy

spread has been demonstrated. However many improvement

(optimisations) should be possible. Using dispersive chi-

canes further along the undulator-chicane lattice may help

improve the FEL interaction. Due the energy dependent

slippage of the beamlets, it may be useful (when using large

undulator sections) to match the slippage of various sec-

tions of the beam. For example decreasing the slippage per

module to counteract the increased slippage for lower en-

Figure 11: An electron pulse with a large energy spread that

exceeds the FEL operational range. This pulse also has a

gaussian distribution in space, this was done to minimize

coherent spontaneous from the pulse edges.

Figure 12: Beamlets near saturation, the radiation field is ap-

proaching saturation and the electron microbunching highly

developed. Comparing with Figure 11 shows an increase in

peak field intensity of 200.

ergy electrons may prove beneficial. The modulation and

dispersion parameters of the beamlets scheme can also be

optimised and requires further study. The use of the two-

colour FEL technique to preferentially amplify modes from

the high and low energy regions of the pulse may produce

higher radiation powers.
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Figure 13: A comparison of the average filtered power of

beamlet and original beam is given above. The radiation

is filtered around the resonant frequency, 0.8 < ω/ωr <
1.2. Around 2-3 orders of magnitude improvement has been
achieved and may be further optimized.
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Abstract – Echo Enabled Harmonic Generation (EEHG) is a method of harmonic up-shifting
proposed to extend the temporal coherence properties of Free Electron Lasers (FEL) at shorter
wavelengths where coherent laser seed fields are not available. Previous theoretical studies of
EEHG have applied periodic boundary conditions to the electron distribution in phase space. It is
shown that when these periodic boundary conditions are removed a temporal comb of enhanced
electron microbunching is revealed. By matching this comb structure in the electron microbunching
to the radiation modes that are generated in a Mode-Locked Optical Klystron (MLOK) FEL
configuration, a train of short radiation pulses can be generated.

Copyright c© EPLA, 2012

Introduction. – X-ray Free Electrons Lasers [1]
(FEL) are now generating high-brightness, X-ray pulses
that are opening up many new areas of science in fields
as diverse as the creation of warm dense matter [2],
high energy pumping of atoms to population inversion
to create an atomic X-ray laser [3] and the making
of “molecular movies” of biological processes [4]. The
latter processes require femtosecond timescale pulses to
investigate transient molecular structure in, e.g. protein
nanocrystallography [5] and single virus imaging [6],
succinctly described as “dynamic biology” [4].
The general capability of capturing and possibly

altering faster electronic processes that guide chemical
pathways in the attosecond regime, would help further
transform this research area to include imaging of catal-
ysis, graphene, carbon nanotechnology and nanostructure
development [7] and the nascent field of quantum biol-
ogy [8]. This imaging of the faster electronic motion
at the quantum level is ultimately the key to a more
complete understanding of the functioning of complex
molecular and biological systems [9]. There is therefore
considerable interest in developing high-brightness, X-ray
attosecond duration pulses that would allow the study
of these ultra-fast atomic and molecular processes. This
letter proposes a method of achieving this by combining
the two previously unrelated FEL methods of Echo

Enabled Harmonic Generation (EEHG) [10,11] and the
Mode-Locked Optical Klystron (MLOK) [12].
The method of EEHG manipulates electron pulse phase

space using two temporally coherent, long wavelength
seed lasers and two dispersive chicanes. The electrons
are first modulated by a seed laser in an undulator and
then dispersed in a chicane. This process is then repeated
and a fine microbunching of the electron beam is created
at a shorter wavelength while retaining a high level of
the temporal coherence from the long wavelength lasers.
When propagated through a final radiator undulator, the
electron beam emits X-rays at the shorter wavelength
of the electron microbunching and with an improved
temporal coherence over that generated by self-amplified
spontaneous emission which starts from intrinsic shot-
noise in the electron beam [13]. Previous models of EEHG
have used periodic boundary conditions applied to the
electron phase space and simulation codes that average
the electron and radiation properties over a radiation
wavelength.
In this letter, these limiting assumptions are removed

by using the unaveraged FEL simulation code of [14]
with the macroparticle loading algorithm of [15]. Using
this model, simulations of EEHG up to before the final
undulator reveal a frequency comb of modes in the
electron microbunching parameter, with adjacent modes
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being separated by the second seed laser frequency. This
frequency comb may then be matched to and seed a
MLOK undulator-chicane lattice as the final radiator stage
of the process to generate a seeded Attosecond Pulse Train
(APT).

EEHG pre-radiator stage. – To demonstrate the
process, EEHG was simulated with the following parame-
ters for a cold beam with no intrinsic shot-noise. A uniform
“flat top” current profile electron pulse was used with elec-
tron energy Er = 1.2GeV, charge Q= 100 pC and initial
pulse length of 12µm (which is equivalent to a current
of 2.5 kA). The first and second seed laser wavelengths
are λ1,2 = 240 nm with the final radiating resonant wave-
length λr = 10nm. The electron energy modulation in the
first and second modulating stages are ∆E1 = 750 keV
(∆E1/ρEr = 0.625) and ∆E2 = 150 keV (∆E2/ρEr =
0.125) respectively, where the bracketed terms are scaled
with respect to the FEL ρ-parameter [1] of the final radi-
ator stage. The dispersive strength of the correspond-

ing chicanes are R
(1)
56 = 8.25 mm and R

(2)
56 = 0.34 mm.

The electrons are modelled by macroparticles [15] each
assigned a weight Nj corresponding to the number of elec-
trons the macroparticle represents. A FEL parameter of
ρ= 10−3 was used as a typical value for the simulations at
this resonant wavelength.
Each of the two modulation-dispersion processes of

EEHG prior to the radiator stage were simulated by
applying an energy modulation to the electron distribution
and then dispersing the distribution using the following
transformations applied to the initial distribution:

γ
(n+1)
j = γ

(n)
j +∆γn+1 sin(z

(n)
j kn+1), (1)

z
(n+1)
j = z

(n)
j +R

(n+1)
56

[
γ
(n+1)
j − γr
γr

]
, (2)

where n= 0, 1, and bracketed superscripts (0, 1, 2) refer-
ring to the initial conditions, and to the exit from the first
and second modulation/dispersive stages, respectively; γ
is the electron energy in units of the electron rest-mass
energy and ∆γ is the energy modulation.
Applying the four transforms of eqs. (1) and (2) develops

a microstructure in the electron pulse that contains signif-
icant microbunching at higher harmonics of the seed radi-
ation fields used to modulate the electron beam energy.
In demonstrating the principle of EEHG, the work

of [10,11] applied periodic boundary conditions in the posi-
tion of the electrons across a region of the longitudinal
z-axis. Here, no such boundary conditions are applied and
the electron positions are transformed according to (2).
The removal of the boundary condition has little effect
around the centre of the electron pulse where the disper-
sive effects are symmetric. The effects of the two modu-
lation and dispersive sections are seen in fig. 1 and result
in a phase space that is very similar to that of reported
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Fig. 1: Electron phase space (top) and histogram of electron
numbers (bottom) about the centre of the electron pulse at
z = 0. The particle density is increased for the high and low
energy electrons as is indicated by the top right plot.
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Fig. 2: Electron phase space (top) and histogram of electron
numbers (bottom) at the head of the electron pulse. The
particle density is increased for the higher energy electrons as
is indicated by the top right plot. Single current bands can
be seen in the region around z = 5600–5615 nm with double
current bands around z = 5620–5830 nm.

in [10,11]. The higher and lower energy electrons, from
the extrema of the energy modulated beam, form tight
(single) “current bands”, whereas electrons close to the
initially unmodulated beam energy form a looser (double)
current band structure. This is not the case towards the
head and tail of the electron pulse where dispersion causes
predominantly single current bands formed by the higher
and lower energy electrons, respectively. This effect is seen
for the case of the head of the electron pulse in fig. 2.
The underlying process is detailed in fig. 3 which shows

the effects of the EEHG process upon the higher energy
electrons of the initially modulated beam. The higher
energy electrons are seen to form relatively tight energy
bands which are then transformed into single current
bands around the maxima following the second energy
modulation. This creates a series of higher energy current
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Fig. 3: Both single and double current-bands can be seen
to evolve during the pre-radiator EEHG process (left-to-
right, top-to-bottom): 1) first beam energy modulation, 2)
first chicane dispersion, 3) second beam energy modulation,
4) second chicane dispersion. Notice the relatively large shift
in the electron positions in z due to the first chicane.

bands at the head of the electron pulse separated by the
wavelength of the second seed laser. At the tail of the
electron pulse, the EEHG process causes similar single
current bands to be formed, but around the minima of
the second energy modulation. Thus, dispersion causes the
high (low) energy electrons to be dispersed to the head
(tail) of the pulse and also a phase difference of π(λ2/2)
between the current bands at the head and tail.
A histogram of the full electron number distribution is

shown in fig. 4 together with a (unitary) Fourier transform
of the electron bunching parameter about the resonant
frequency ωr of the final radiator stage. The Fourier
bunching parameter is simply derived from the driving
term of the scaled wave equation of [15] and may be
written as

b(z, ω) =
1√
2π

1

np‖

Nm∑
j=1

Nje
−iz(kr+ku)ei(ωr−ω)tj , (3)

where np‖ is the peak linear electron density, Nm is the
total number of macroparticles used in the simulation, ku
is the undulator wavenumber, tj =−zj/cβ‖ is the arrival
time of the macroparticle at the undulator entrance at
z = 0 and β‖ = vz/c is the mean scaled speed of the elec-
tron pulse along the undulator z-axis. It is seen that
a well-defined modal structure is present in the elec-
tron bunching parameter with mode separation given of
∆ω/ωr = 10/240≈ 0.042 corresponding to the seed modu-
lation frequency. The modes are relatively well phase-
matched as seen from the well-defined peaked periodic
microstructure in the electron density histogram.

EEHG radiator. – The pre-bunched electron distrib-
ution above was propagated through two different undula-
tor systems, a simple undulator and an undulator-chicane
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Fig. 4: Histogram of electron numbers (top) normalised with
respect to the peak, and the Fourier transform of the bunching
parameter b(z, ω) for the full electron beam distribution show-
ing the modal structure at the end of the EEHG pre-bunching
process.

system of the MLOK type, both tuned to the resonant
frequency ωr using the unaveraged simulation code of [14].
The transformations of (1,2) may be rewritten in the
universal scaling of [16] as used in the simulations as

p
(n+1)
j = p

(n)
j +∆p

(n+1) sin

(
z̄
(n)
1j

2ρhn+1

)
, (4)

z̄
(n+1)
1j = z̄

(n)
1j +2ρD

(n+1)p
(n+1)
j , (5)

where ∆p(1,2) =∆γ(1,2)/ργr; D
(1,2) = krρR

(1,2)
56 ; h1,2 =

ωr/ω1,2 and β‖ ≈ 1 is assumed. At the beginning
of the undulator: z̄ ≡ 2ρkuz = 0; z̄1j =−2krρctj and
pj = (γj − γr)/ργr.
Performing the Fourier transform with respect to z̄1

defines the scaled frequency as ω̄=−ω/2ρωr so that

b(z̄, ω̄) = b(z, ω)
c

lc
exp
(
i
ωz

c

)
, (6)

where lc = λr/4πρ is the cooperation length [16].

Simple undulator. EEHG was first simulated in a
simple undulator configuration of scaled length z̄ = 1.1.
The scaled radiation and electron pulse parameters are
plotted in fig. 5. It is seen that while the radiation gener-
ated had some temporal structure, no modal structure is
present in Fourier space with emission confined to the reso-
nant frequency. This is consistent with the previous results
of [10,11].

MLOK undulator. Here an MLOK undulator-chicane
lattice is constructed so that the radiation modes will
match the properties of the electron bunching above.
Using the notation of [12], each undulator has four periods
so that a radiation wavefront will propagate four resonant
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Fig. 5: Electron and radiation pulse at saturation in a simple
undulator at z̄ ≈ 1.1 for the normal EEHG case. Plots on the
left are: top, normalised electron number histogram (bin size =
λr/5); bottom, Fourier transform of bunching b(z̄, ω̄). On the
right: top, radiation field amplitude |A|2 as a function of z̄1;
bottom, scaled Power Spectral Density (PSD) showing that
emission at resonance dominates.
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Fig. 6: As fig. 5, but for the MLOK undulator at saturation
(z̄ ≈ 0.6). The inset (top, right) shows more detail expanded
in z̄1. A well-defined set of phase-matched radiation modes
has developed resulting in a train of short radiation pulses.
In unscaled units the individual pulse widths are ∼106 atto-
seconds (FWHM) and separated by ∼ 0.8 femtoseconds corre-
sponding to s̄= 0.3 in scaled units of z̄1.

wavelengths through the electron pulse in each undula-
tor. Each chicane delays the electron pulse by a further
twenty wavelengths so that the total slippage of a resonant
wavefront in traversing one undulator-chicane module is
s= (4+20)λr = 240 nm, which is equal to the second seed
laser wavelength, λ2. In the scaled units of z̄1 this corre-
sponds to s̄= s/lc ≈ 0.3. In this way the relative slippage
between radiation and electrons in each undulator-chicane
module matches the strong periodic electron microbunch-
ing. It is seen from the inset of fig. 6 that this matching

generates a periodic train of short radiation pulses (corre-
sponding to full width half-maximum duration of ∼106 as)
separated by the second seed laser wavelength. This pulse
train is equivalent in frequency space to the observed set
of modes equally spaced by the frequency of the second
seed laser, ∆ω/ωr ≈ 0.042. It is easily shown from the
FEL resonance relation [1] that the frequency range of
radiation emission due to the electron energy modulations
∆γ1,2 is negligible in comparison with the mode spacing
when (∆γ1+∆γ2)/γr�∆ω/2ωr. Here, this condition is
satisfied as (∆γ1+∆γ2)/γr ≈ 4× 10−2∆ω/2ωr. Note that
peak powers generated by the higher energy electrons at
the head of the radiation pulse train envelope are greater
than those generated at the tail by the lower energy elec-
trons. While the higher energy electrons lose energy and
fall into resonance to emit strongly, those at lower energies
continually fall away from resonance and strong radiation
emission. The visibility of radiation pulse train structure is
defined as V = (|A|2max− |A|2min)/(|A|2max+ |A|2min), were
the maximum and minimum values are defined between
two adjacent peaks. The effect of introducing an energy
spread σE in the initial electron pulse energy decreases
the visibility gradually from V = 0.93 at 1 keV (σE/ρEr
= 0.0008) to V = 0.78 at 150 keV (σE/ρEr = 0.125).

Conclusions. – By removing previous simplifying
assumptions in EEHG modelling, a previously unreported
temporal structure in the electron pulse microbunching
was revealed. This structure can be matched to a mode-
lock FEL (MLOK) configuration which can generate
trains of ∼106 attosecond (FWHM) duration pulses at
10 nm wavelength. The parameters used here are similar
to those used previously to demonstrate EEHG. However,
there are no intrinsic reasons why the resonant wavelength
and pulse durations cannot be scaled down further into
the hard X-ray.
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