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SUMMARY 

 

Children with severe malnutrition typically suffer from numerous associated 

complications. Among these, septicaemia, especially with Gram-negative organisms, 

remains the major concern because it is associated with a high mortality rate. The 

World Health Organization (WHO) has been releasing standard guidelines for the 

treatment of bacterial infections for many years; however, it has been found that the 

mortality rate remains high even if these guidelines are followed. Ciprofloxacin is a 

fluoroquinolone antimicrobial agent that has been considered as alternative treatment 

option. However, to date, data around the pharmacokinetics (PK) of ciprofloxacin, as 

well as other drugs, are limited in malnourished children. The aim of this thesis was 

to develop pharmacokinetic models for describing and predicting the PK of drugs in 

such children. 

 

A population analysis was performed by using ciprofloxacin concentration-time data 

obtained from 52 malnourished children. It was found that a one-compartment 

model, with first-order absorption and a lag, adequately described the data. The final 

population model included the effect of body weight, high mortality risk and serum 

sodium concentration on clearance (CL), and the effect of body weight and sodium 

concentration on volume of distribution (V). Inclusion of these factors reduced inter-

individual variability in CL from 50% to 38%, and in V from 49% to 43%. 

Absorption rate (ka) was poorly estimated and highly variable.  

 

Internal validation techniques, including nonparametric bootstrap, a visual predictive 

check, normalised prediction distribution error and a jackknife analysis, were used to 

assess the stability and robustness of the final population model. The results of these 

analyses indicated that the model was stable and had a favourable predictive 

performance for CL and V.  

 

To develop new dosage regimens, the population model was used to perform a 

10,000-patient Monte Carlo simulation. The probabilities of achieving the 

therapeutic target AUC0-24/MIC ratio and the expected population response were then 



iv 

 

determined. The results showed that PK-PD breakpoints were 0.06-0.125 mg/L and 

0.25-0.5 mg/L for Gram-negative and Gram-positive organisms, respectively. The 

overall response with the 30 mg/kg/day dose was 80% for Escherichia coli, 

Klebsiella pneumoniae and Salmonella species, but <60% for Pseudomonas 

aeruginosa and Streptococcus pneumoniae. The results suggested that an oral dose of 

ciprofloxacin 10 mg/kg three times daily (30 mg/kg/day) may be appropriate for the 

management of septicaemia in severely malnourished children. Discrepancies of 

susceptibility breakpoints between reference sources were also found, i.e., PK-PD, 

CLSI and EUCAST, and these discrepancies were most pronounced for P. 

aeruginosa and S. pneumoniae.   

 

The population model was also used to determine optimal design for future 

population PK studies. A number of design options and design variables were 

examined. The results suggest that the optimal number of groups was three and two 

for three- and four-sample designs, respectively. When using two groups, it was 

possible to vary the number of individuals in each group. If permission was given to 

obtain up to five samples from each patient, one group of participants would be 

adequate. Only samples taken after the first dose gave sufficient information. The 

expected coefficient of variation (CV) of all parameters was under 10% with sample 

sizes of 25 and 40 for five- and four-sample designs, respectively. For three samples, 

the CV for ka remained above 20%, although the sample size was increased to 100. It 

was also found that the optimal designs were highly dependent on the prior 

information, so prior knowledge of drug concentration-time profiles should be used 

with optimal design methods when designing population PK studies. 

 

In order to predict the disposition of other drugs in a malnourished population, whole 

body physiologically based pharmacokinetic (WBPBPK) models were developed by 

using ciprofloxacin as a model drug. The WBPBPK model was initially developed 

for healthy adults and then scaled to healthy and malnourished children. Kp values 

were calculated using the Poulin method, the Rodgers method and empirical method. 

The results showed that, for healthy adults and children, the predicted versus 

observed concentration-time profiles were well described with intravenous (IV bolus 
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and short infusion) models. Oral predictions were also in good agreement with the 

data from the literature, but peak concentrations were more rapidly achieved with a 

higher dose. Unlike the Poulin method, the concentration-time profiles predicted 

using Kp from the Rodgers method and the empirical methods were similar, and 

closely resembled the observed data. When models were scaled for malnutrition, 

inter-individual variability was higher, especially during the absorption phase. 

However, PK profiles were still adequately described. 

 

The models developed in this thesis are useful tools for describing and predicting 

drug PK in malnourished children. However, due to the scarcity of data, further 

studies to characterise the alteration of drug kinetics, particularly during the 

absorption process, might improve the performance of the models. Application of 

these models to other drugs and data is also required to substantiate the predictive 

performance of the model.  
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INTRODUCTION TO CHAPTER 

This chapter gives a general background to the research conducted in this thesis. 

Firstly, a concept of drug therapy individualisation is described in Section 1.1. 

Section 1.2 gives a brief introduction to pharmacokinetics (PK) and 

pharmacodynamics (PD), followed by Section 1.3, which provides information on 

how to use the PK-PD approach to optimise antimicrobial therapy, focusing mainly 

on the fluoroquinolone antibiotics. A background review of ciprofloxacin, the 

antimicrobial agent that is the focus of this thesis, is given in Section 1.4. Section 1.5 

provides information on malnutrition in children, which is the patient population 

used in this research. Finally, the influences of age, particularly neonates and 

children, and malnutrition on the pharmacokinetics of drugs are reviewed.  

 

1.1    CONCEPT OF DRUG THERAPY INDIVIDUALISATION 

The goal of antimicrobial therapy is to eradicate pathogens at the site of infection 

while minimizing toxicities and the emergence of bacterial resistance. The 

antimicrobial dosage regimen should be selected to achieve this goal effectively. 

There are numerous references that provide excellent sources of drug information 

and dosage recommendations; however, these references of drug information may be 

ill-suited for clinical use. This was highlighted in the study of Vidal et al. (2005), 

who conducted a systemic comparison of four references commonly used in clinical 

practice: American Hospital Formulary Service Drug Information, the British 

National Formulary, Drug Prescribing in Renal Failure, and Martindale: The 

Complete Drug Reference. They found a remarkable variation in recommendations, 

and a lack of primary literature in these references. The results from this work 

suggest a need for a more consistent, quantitative approach to dosage regimen 

design. 

 

1.2    PHARMACOKINETICS AND PHARMACODYNAMICS 

Pharmacokinetics is the study of the disposition of drugs within the body, which 

depend on the processes of drug absorption, distribution and elimination. It is 

reflected most often by the serum concentration against time profile. 

Pharmacodynamics is the study of the relationship between drug concentration and 
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pharmacological or toxicological effects. For antimicrobial agents, this refers to the 

relationship between drug concentration and antimicrobial activity or toxicity (Figure 

1.1). Two fundamental pharmacodynamic parameters most commonly used to 

quantify antimicrobial activity are the minimum inhibitory concentration (MIC), 

which is defined as the lowest antimicrobial concentration that prevents visible 

growth of the organism, and the minimum bactericidal concentration (MBC), which 

is defined as the lowest antimicrobial concentration that kills 99.9% of the initially 

viable cells.  

 

Figure 1.1  Relationship between drug dose and response 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3    OPTIMISATION OF ANTIMICROBIAL THERAPY 

USING A PK-PD APPROACH 

Although both MIC and MBC are good parameters to predict antimicrobial efficacy, 

they have limitations when applied to a clinical setting because they do not describe 

antimicrobial activity as a function of time. The MBC does not provide information 

on the killing rate or whether this rate increases at higher concentrations. MIC and 
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MBC do not describe antimicrobial activity at concentrations below these values, 

which may have initial inhibitory or bactericidal activity that is not maintained 

throughout the typical incubation period of 18-24 hours. Additionally, the process to 

determine MIC and MBC by using fixed and constant concentrations ignores the fact 

that concentrations of antimicrobial agents in vivo fluctuate with time and 

antimicrobial effects may persist after drug exposure (post-antibiotic effect). A better 

approach to determine antimicrobial efficacy is by integrating PK and PD 

parameters. The concepts of PK-PD for antimicrobial therapy were first described in 

the 1940s and 1950s by Eagle and his colleagues (Eagle et al., 1950a; Eagle et al., 

1950b). Through experiments conducted on rodents, they found that antimicrobials 

can be categorised on the basis of their patterns of antimicrobial activity as either 

‘time-dependent’ or ‘concentration-dependent’ agents.  

 

Time-dependent drugs, such as β-lactams, demonstrate no additional killing activity 

when drug concentrations exceed the MIC. Increasing the dosage of these agents 

above the MIC of the organisms will therefore not enhance the killing rate.  For these 

types of antimicrobials, the frequency of administration and the dose are both 

important determinants of their antimicrobial activity. The PK-PD parameter that 

best correlates with the therapeutic efficacy is the duration of time in which drug 

concentration remains above the MIC (T>MIC) (Ambrose et al., 2007). Results from 

an animal model revealed that T>MIC of 40-50% of the dosing interval is required 

for amoxicillin and amoxicillin-clavulanate against Streptococcus pneumoniae 

(Andes & Craig, 1998; Woodnutt & Berry, 1999). A similar magnitude for T>MIC 

to achieve 85-100% bacteriologic efficacy has been reported in children with acute 

otitis media (MacGowan et al., 1996). For time-dependent drugs that also have a 

prolonged post-antibiotic effect (PAE), such as macrolides, clindamycin and 

glycopeptides, a key predictor of outcome is the ratio of the area under the 

concentration time-curve at 24 h to the MIC value (AUC24/MIC).  

 

The aminoglycosides and fluoroquinolones are drugs that exhibit concentration-

dependent killing and produce a prolonged PAE. That is, higher doses will result in 

better bacterial killing. The frequency of the dose is usually not a major factor in the 
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efficacy of these drugs. It has been proven that the maximum drug concentration 

(Cmax) to MIC ratio (Cmax/MIC) and AUC0-24/MIC ratio are parameters that correlate 

with the efficacy of these agents (Ambrose et al., 2007). Regarding the question of 

which parameter will have the highest correlation for predicting outcomes, Rodvold 

(2001) has suggested that if a Cmax/MIC of 10 or greater is achieved, then Cmax/MIC 

is the parameter most likely to be linked to a successful outcome. However, if 

Cmax/MIC is less than 10, then AUC0-24/MIC is more likely to correlate with a 

successful outcome. Indeed, it is difficult to justify which parameter is more 

important because of the correlation between parameters.  A fixed dosing interval of 

24 hours used in most studies, therefore an increase or decrease in dose will usually 

result in similar directional changes for Cmax and AUC0-24. Since the magnitude of 

the PK-PD parameters is a function of the physicochemical properties of the drugs 

and the biological properties of the target organisms, the optimal value varies 

between organisms. The magnitude of the PK-PD parameters that have been reported 

for fluoroquinolones are summarised in Table 1.1. In general, for Gram-negative 

organisms, a Cmax/MIC of >8 and AUC0-24/MIC of >125 is needed to obtain the 

highest rates of bacteriologic and clinical cures. For Gram-positive organisms, such 

as S. pneumoniae, a magnitude of 30 or greater has been suggested.  

 

Table 1.1   PK-PD data for fluoroquinolones 

 

Antimicrobial 

agents 
Organism 

PK-PD parameter 

and magnitude 
Source of data Reference 

Ciprofloxacin P. aeruginosa Cmax/MIC >8 in vitro model Dudley et al. (1991) 

Ciprofloxacin, 

ofloxacin 
P. aeruginosa AUC0-24/MIC>100 in vitro model Madaras-Kelly et al. (1996) 

Ciprofloxacin, 

levofloxacin 
S. pneumoniae AUC0-24/MIC 30-55 in vitro model Lacy et al. (1999) 

Ciprofloxacin, 

ofloxacin, 

trovafloxacin 

S. pneumoniae AUC0-24/MIC 44-49 in vitro model Lister and Sanders (1999a) 

Ciprofloxacin, 

levofloxacin 
S. pneumoniae AUC0-24/MIC 32-64 in vitro model Lister and Sanders (1999b) 

Lomefloxacin P. aeruginosa Cmax/MIC >10 neutropenic rat Drusano et al. (1993) 

Ciprofloxacin 82% Gram-negative AUC0-24/MIC>125 human Forrest et al. (1993) 
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1.4    CIPROFLOXACIN 

1.4.1   Structure  

Ciprofloxacin is a 1-cyclopropyl-6-fluoro-1,4-dihydro 4-oxo-7-(1-piperazinyl)-3-

quinoline carboxylic acid (Figure 1.2). The fluorine atom at position C-6 in 

combination with the piperazine moiety group at position C-7 increases antimicrobial 

activity compared to the older agents nalidixic acid, oxolinic acid and cinoxacin 

(Wolfson & Hooper, 1989; Domagala et al., 1986). The substitution of the piperazine 

group also enhances potency against Gram-negative bacteria, including many strains 

of P. aeruginosa (Stein, 1988). An N-1-cyclopropyl substituent has been shown to 

affect DNA gyrase activity and antimicrobial potency due to the steric effect 

mechanism (Chu et al., 1989).  

 

Figure 1.2  Chemical structure of ciprofloxacin 

 

 

 

 

1.4.2   Mechanism of action 

It is currently known that fluoroquinolone antibiotics interact with 2 enzyme targets, 

DNA gyrase and topoisomerase IV. Both of these enzymes are important for 

bacterial DNA replication (Drlica & Zhao, 1997). DNA gyrase is responsible for 

introducing negative supercoils into DNA, which is the initial step of DNA 

replication (Wang, 1996). Topoisomerase IV acts in the final step by allowing 

separation of daughter chromosomes into daughter cells (Adams et al., 1992). 

Fluoroquinolones inhibit these enzymes by stabilizing enzyme-DNA complex. 

Fluoroquinolone-gyrase-DNA complex formation rapidly inhibits DNA replication 
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and is consistent with DNA gyrase acting ahead of replication forks. However, 

inhibition of replication by fluoroquinolone-topoisomerase IV-DNA complexes 

occurs slowly, consistent with the enzyme being located behind the replication forks.  

 

The affinity to enzymes differs for Gram-negative and Gram-positive organisms. For 

Gram-negative bacteria it is the DNA gyrase, whereas it is topoisomerase IV for 

Gram-positive organisms. However, the new generation fluoroquinolones, i.e. 

clinafloxacin and moxifloxacin, have similar affinity for both targets for both types 

of organism (Takei et al., 2001). 

 

1.4.3   Mechanism of resistance 

The rate of fluoroquinolone resistance is rising and is related to the increasing use of 

these drugs both in the community and the hospital (Neuhauser et al., 2003; Polk et 

al., 2004). Acquisition of resistance has been most frequent with E. coli (Ko & 

Hsueh, 2009), K. pneumoniae (Fu et al., 2008), and P. aeruginosa (Polk et al., 2004). 

Three mechanisms have been discovered to date: alterations in DNA gyrase and 

topoisomerase IV (Friedman & Lu, 2001; Ruiz, 2003; Willmott & Maxwell, 1993; 

Yoshida et al., 1991), decreased drug accumulation due to impermeability of the 

membrane and/or overexpression of an efflux pump system (Ruiz, 2003; Jacoby, 

2005), and plasmid-mediated resistance (Martínez-Martínez et al., 1998; Tran et al., 

2005). The development of fluoroquinolone resistance is thought to be more 

common in Gram-negative bacteria, which have a more complex cell wall, than in 

Gram-positive bacteria and has been related to the intensity and duration of therapy 

(Tam et al., 2007). 

 

Cross-resistance among quinolones appears to be related to the enzyme target. For 

example, topoisomerase IV is the primary target for ciprofloxacin and levofloxacin, 

while DNA gyrase is the primary target for sparfloxacin, moxifloxacin and 

gatifloxacin. Therefore, ciprofloxacin resistance may have little effect on 

sparfloxacin and vice versa (Fukuda et al., 2001; Li et al., 2002). Cross-resistance to 

other antimicrobials is generally due to efflux mutations and plasmid-mediated 

resistance (Giraud et al., 2000).  



8 

 

1.4.4   Antimicrobial activity 

Ciprofloxacin has a wide spectrum of activity. It is highly active against aerobic 

Gram-negative bacilli, particularly Enterobacteriaceae, H. influenzae and Gram-

negative cocci, such as Neisseria spp. and M. catarrhalis (Rolston et al., 2003; 

Wolfson & Hooper, 1989). The guideline published by the Clinical and Laboratory 

Standards Institute (CLSI) indicates that ciprofloxacin remains the most potent 

fluoroquinolone against P. aeruginosa with the in vitro MIC breakpoints established 

as ≤1, 2 and ≥4 for susceptible, intermediate and resistant organisms, respectively 

(CLSI, 2012). The current recommendations of the European Committee on 

Antimicrobial Susceptibility Testing (EUCAST) are consistent with the CLSI values 

but a slightly lower MIC value of ≤0.5 has been suggested as the susceptible 

breakpoint (EUCAST, 2012). Ciprofloxacin has a limited activity against Gram-

positive organisms, such as S. aureus and S. pneumoniae, and many anaerobes 

(Balfour & Wiseman, 1999; Blondeau, 1999; Perry et al., 1999).  

 

The post-antibiotic effect (PAE) of ciprofloxacin is usually long (Gould et al., 1990), 

but there is a high variation among species (Drabu & Blakemore, 1991).  At four 

times the MIC, the PAE was 58 minutes for S. pneumoniae, 39-82 minutes for H. 

influenza, 45-76 minutes for M. catarrhalis, and 17-37 minutes for S. aureus (Dubois 

& St-Pierre, 2000). Fuursted (1987) reported a PAE of approximately 2.2 hours for 

P. aeruginosa, which was exposed to 5-10 times the MIC for 1-2 hours.  

 

1.4.5   Pharmacokinetics 

1.4.5.1  Adults 

1.4.5.1.1  Absorption 

Table 1.2 summarises PK data for oral ciprofloxacin collected from several studies. 

Ciprofloxacin is well absorbed after oral administration. The reported oral 

bioavailability is around 70% with the mean ranging from 56-84%. Davis et al. 

(1985) found a significant difference in the bioavailability between dosage forms of 

ciprofloxacin. The 250 mg tablet had a bioavailability of 59%, which was low 

compared to the 500 mg tablet and a solution formulation (75% and 79%, 

respectively). The time to reach peak concentration (Tmax) is approximately 1-2 
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hours, depending on the dose. Previous studies have demonstrated that Tmax appears 

to increase when increasing the oral dose (Hoffken et al., 1985; Tartaglione et al., 

1986). The authors suggest that it is probably due to a saturation process of drug 

absorption of ciprofloxacin and the variability in disintegration/dissolution rates 

between drug formulations. Bergan et al. (1987) and Höffler et al. (1984) have 

shown that ciprofloxacin has a linear relationship between oral dose and Cmax. In 

contrast, a nonlinear relationship was observed in some studies (Hoffken et al., 1985; 

Borner et al., 1986). A linear relationship between dose and concentration has been 

reported for intravenous administration of ciprofloxacin (Borner et al., 1986; 

Drusano et al., 1986b; Dudley et al., 1987) and it has been found that the 

concentrations following a single oral dose are similar to those at the steady state 

(Table 1.2).  

 

The presence of food has been shown to decrease Cmax and also delay Tmax 

(Neuvonen et al., 1991; Ledergerber et al., 1985). However, other investigators 

found no statistically significant changes on either parameter when ciprofloxacin was 

administered with food (Shah, 1999) or enteral feeding (Yuk et al., 1989). 

 

1.4.5.1.2  Distribution 

Ciprofloxacin is widely distributed throughout the body. The volume of distribution 

at a steady state (Vss) ranges from 1.74 to 5 L/kg (Table 1.2 and 1.3). Protein binding 

of ciprofloxacin is relatively low at approximately 30% (Dudley et al., 1987). The 

degree of binding does not appear to be significantly affected by pH or concentration 

(Vance-Bryan et al., 1990). Ciprofloxacin is concentrated in lung, kidney, intestine, 

hepatic tissue and bile. The concentrations in fat, skin, muscle, bone and 

cerebrospinal fluid (CSF) tend to be lower than those in serum but there are wide 

variations between individuals (Table 1.4). 

 

1.4.5.1.3  Elimination 

Ciprofloxacin is eliminated by metabolism, renal glomerular filtration, active tubular 

secretion and the transintestinal route. Approximately one-third of an administered 

ciprofloxacin dose is metabolised. There are four metabolites that have been 
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identified: desethyleneciprofloxacin (M1), sulfociprofloxacin (M2), oxociprofloxacin 

(M3) and formylciprofloxacin (M4) (Vance-Bryan et al., 1990). M3 is the major 

metabolite found in urine, accounting for about 6% of the oral and intravenous dose. 

M2 is a primarily a faecal metabolite with 5.9% of an oral dose and 1.3% of an 

intravenous dose recovered in the faeces. M1 and M4 can be detected in very small 

amounts. The total amount of metabolite of ciprofloxacin excreted in the urine 

increased from 30% after intravenous administration to 43% after oral administration 

(Hoffken et al., 1985). This suggests that ciprofloxacin has a first-pass effect; 

however, it is thought to be clinically unimportant (Vance-Bryan et al., 1990). 

 

Elimination of ciprofloxacin and its metabolites in the urine comprises 

approximately 60-70% of the dose, and the remainder is secreted directly through the 

intestinal mucosa (Rohwedder et al., 1990). Biliary excretion is relatively low (<1%) 

compared to other pathways but exceeds the concentrations in serum (Parry et al., 

1988). Renal clearance of ciprofloxacin accounts for approximately two-thirds of the 

total clearance (Davis et al., 1996). Studies in healthy subjects have shown that renal 

clearance of ciprofloxacin greatly exceeds creatinine clearance, indicating a 

significant contribution of tubular secretion (Wingender et al., 1984). Jaehde et al. 

(1995) have demonstrated that coadministration of ciprofloxacin with probenecid 

decreased total clearance and renal clearance by approximately 60%. Generally, the 

apparent total clearance and renal clearance of different dosing regimens are 

comparable and are similar following single or multiple doses (Table 1.2 and 1.3). 

However, some investigators reported a trend of decreasing renal clearance with  a 

large dose (Höffler et al., 1984).  

 

1.4.5.2  Children 

Due to ethical restrictions, only a few studies of ciprofloxacin pharmacokinetics in 

children have been published to date. Peltola and coworkers (1992) performed a 

study on 7 infants (aged 9-14 weeks) and 9 children (aged 1-5 years). All patients 

received a single dose of 15 mg/kg ciprofloxacin to treat Salmonella infections. The 

authors reported that the elimination of ciprofloxacin is faster in children than in 

infants (1.28 versus 2.73 hours), requiring an oral dose of 10-15 mg/kg three times 
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daily for this age group. In the study of Rubio (1997), 18 children with cystic fibrosis 

(aged 5-17 years) received intravenous ciprofloxacin 10 mg/kg every 8 hours 

followed by oral ciprofloxacin 10 mg/kg every 12 hours. Average elimination half-

life values were 2.6 and 3.4 hours after IV and oral administration, respectively, and 

no significant difference in elimination rate between age groups was observed. The 

authors suggested that oral dosing of 40 mg/kg/day or intravenous dosing of 30 

mg/kg/day is needed to maintain adequate therapeutic concentrations in children with 

cystic fibrosis.  

 

In 1998, Peltola et al. studied the disposition of ciprofloxacin in 16 children, ages 

0.3-7.1 years, with various types of infections, including urinary tract infections, 

chronic otitis media and endocarditis. The dose was 10 mg/kg given every 8 hours. 

The oral clearance was lower in children <6 years of age (16.4-17.3 mL/min/kg) than 

in those ≥6 years (24.4 mL/min/kg). The elimination half-life did not significantly 

differ between age groups, ranging from 4.2 hours in patients 1 year of age to 5.1 in 

children 2-5 years. The results of this study suggest that the oral suspension form of 

ciprofloxacin 10 mg/kg given orally three times daily would be the appropriate 

regimen for children. In another study, 20 children with severe sepsis were treated 

with intravenous ciprofloxacin 10 mg/kg every 12 hours for 7 days (Lipman et al., 

2002). The authors reported an elimination half-life of 3.3-4.2 hours in children aged 

3 months to 1 year and of 2.8-3.1 in older children (1-5 years). No evidence of drug 

accumulation was observed after 7 days of drug administration. The authors advised 

a dosing regimen of 10 mg/kg ciprofloxacin every 8 hours for some resistant ICU 

organisms. 

 

1.4.5.3  Renal failure 

In patients with renal impairment, neither absorption nor distribution of ciprofloxacin 

are significantly changed (Plaisance et al., 1990; Webb et al., 1986). Mild to 

moderate renal impairment does not significantly affect clearance (MacGowan et al., 

1994), but in patients with severe renal impairment, the AUC and elimination half-

life are double those of patients with normal renal function (Gasser et al., 1987; 

Boelaert et al., 1985). Therefore, a dose reduction to 50% or a doubling of the dosing 
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interval was recommended. In contrast, MacGowan et al. (1994) demonstrated that 

ciprofloxacin did not greatly accumulate when giving to patients with moderate or 

severe renal failure. The trough concentrations were 0.6 mg/L in moderate renal 

failure and 0.5 mg/L in severe renal failure compared with 0.3 mg/L in patients with 

normal renal function. On the basis of these findings and in order to avoid 

subtherapeutic levels of drug, they recommend that the dose should not be reduced in 

a patient with renal failure. 

 

1.4.5.4  Liver failure 

There is little information available on the effect of liver failure on the 

pharmacokinetics of ciprofloxacin. Following a single oral dose of 500 mg, slightly 

increased maximum concentration and AUC values have been observed only in 

patients with severe liver failure; in these patients, the elimination half-life was 

increased by approximately 35% compared to controls (Esposito et al., 1989). The 

pharmacokinetics of ciprofloxacin in patients with lesser degrees of liver failure did 

not significantly alter. Frost et al. (1989b) found no significant difference in 

pharmacokinetic parameters (Cmax, Tmax, AUC, elimination half-life and clearance) 

between cirrhotic patients and the control group. The formation of M1 and M2 

metabolites was unaffected, but the maximum concentration of M3 was reduced by 

approximately 50%. The investigators concluded that dose adjustment may not be 

required for patients with liver failure. 
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Table 1.2   Pharmacokinetics of ciprofloxacin in healthy subjects after oral administration 

 

No. of subjects 

(sex) 
Dose (mg) 

Cmax 

(mg/L) 
Tmax (h) 

AUC 

(mg·h/L) 
Vss/F (L/kg) V/F (L/kg) CLT/F (L/h) CLR/F (L/h) fu (%) F (%) Reference 

6(M) 500 2.30 1.25 9.90 - - 50.51 - 31 - Crump et al. (1983) 

12(M) 

12(M) 

12(M) 

12(M) 

12(M) 

12(M) 

12(M) 

12(M) 

12(M) 

250 

250 q 12 h x 7 doses 

250 q 12 h x 13 doses 

500 

500 q 12 h x 7 doses 

500 q 12 h x 13 doses 

750 

750 q 12 h x 7 doses 

750 q 12 h x 13 doses 

1.42 

1.37 

1.35 

2.60 

2.77 

2.89 

3.41 

4.21 

4.15 

1.11 

1.00 

1.06 

1.11 

1.11 

1.00 

1.56 

1.00 

1.39 

5.43 

5.61 

5.33 

10.60 

12.41 

13.94 

15.03 

17.76 

22.07 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

46.04 

44.56 

46.90 

47.17 

40.29 

49.90 

49.90 

42.29 

33.98 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

48 

- 

- 

41 

- 

- 

39 

- 

- 

- 

- 

- 

- 

- 

- 

- 

Gonzalez et al. (1984) 

7(M) 

8(M) 

8(F) 

8(M) 

7(F) 

8(M) 

8(F) 

7(M) 

100 

100 

250 

250 

500 

500 

1000 

1000 

0.48 

0.38 

1.18 

0.94 

1.96 

2.16 

3.76 

3.62 

0.93 

0.81 

1.19 

0.88 

1.14 

1.00 

1.13 

1.07 

1.49 

1.29 

4.20 

3.02 

7.08 

7.38 

14.68 

11.61 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

67.34 

77.58 

59.59 

82.78 

70.58 

67.72 

68.11 

86.12 

23.54 

23.24 

18.87 

24.41 

20.53 

19.73 

18.10 

18.51 

30 

23 

27 

24 

27 

27 

23 

19 

- 

- 

- 

- 

- 

- 

- 

- 

Höffler et al. (1984) 

12(M) 200 1.21 0.71 4.80 - 3.54 41.67 17.03 40 - Drusano et al. (1986a) 

6(M) 250 0.94 0.81 3.38 - - 73.98 22.86 27 56 Wingender et al. (1984) 
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Table 1.2   (continued) 

 

No. of subjects 

(sex) 
Dose (mg) 

Cmax 

(mg/L) 
Tmax (h) 

AUC 

(mg·h/L) 
Vss/F (L/kg) V/F (L/kg) CLT/F (L/h) CLR/F (L/h) fu (%) F (%) Reference 

18(M) 

18(M) 

18(M) 

500 (250 mg tab x 2) 

500 (500 mg tab x 1) 

500 (solution) 

2.83 

2.91 

3.23 

0.99 

1.25 

1.00 

10.00 

12.70 

13.50 

5.00 

3.99 

3.78 

- 

- 

- 

50.20 

42.00 

38.80 

22.20 

20.50 

22.30 

44 

49 

56 

59a 

75a 

79a 

Davis et al. (1985) 

 

 

6(M)/6(F) 

6(M)/6(F) 

6(M)/6(F) 

50 

100 

750 

0.28 

0.49 

2.65 

0.58 

0.83 

1.16 

1.00 

1.90 

12.20 

- 

- 

- 

3.04 

3.04 

3.53 

50.00 

52.63 

61.47 

- 

- 

- 

37 

35 

33 

77 

63 

- 

Hӧffken et al. (1985) 

6(M)/6(F) 

6(M)/6(F) 

500 

500 q 12 h x 10 doses 

2.80 

2.30 

1.50 

1.50 

9.60 

9.60 

2.74 

1.78 

- 

- 

52.09 

52.09 

- 

- 

28 

43 

- 

- 

Bergan et al. (1986) 

6(M)/6(F) 

6(M)/6(F) 

6(M)/6(F) 

6(M)/6(F) 

100 

250 

500 

1000 

0.73 

1.59 

2.77 

5.57 

1.00 

1.25 

1.54 

1.75 

2.10 

5.28 

9.61 

22.84 

- 

- 

- 

- 

- 

- 

- 

- 

47.62 

47.35 

52.03 

43.78 

- 

- 

- 

- 

15 

30 

28 

30 

84 

- 

- 

- 

Bergan et al. (1986) 

6(M)/6(F) 

5(M)/5(F) 

5(M)/5(F) 

5(M)/5(F) 

5(M)/5(F) 

100 

250b 

250c 

500 

750 

0.37 

1.04 

0.83 

1.51 

1.97 

1.17 

1.01 

1.34 

1.19 

1.26 

1.77 

4.23 

3.58 

6.78 

8.77 

- 

- 

- 

- 

- 

3.52 

3.52 

3.52 

4.65 

2.66 

56.50 

59.10 

69.83 

73.75 

85.52 

18.06 

20.40 

20.28 

18.54 

23.04 

29 

34 

28 

26 

27 

64.0 

- 

- 

52 

- 

Borner et al. (1986) 
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Table 1.2   (continued) 

 

No. of subjects 

(sex) 
Dose (mg) 

Cmax 

(mg/L) 
Tmax (h) 

AUC 

(mg·h/L) 
Vss/F (L/kg) V/F (L/kg) CLT/F (L/h) CLR/F (L/h) fu (%) F (%) Reference 

6(M)/6(F) 

6(M)/6(F) 

500 

500 q 8 h x 12 doses 

2.26 

3.51 

1.33 

1.04 

10.00 

13.93 

3.76 

3.71 

- 

- 

54.48 

41.46 

23.76 

21.48 

- 

- 

56 

56 

LeBel et al. (1986) 

8(M) 

11(M) 

11(M) 

11(M) 

250 

500 

750 

1000 

0.76 

1.60 

2.54 

3.38 

1.12 

1.46 

1.67 

1.80 

3.70 

7.60 

12.9 

16.6 

- 

- 

- 

- 

- 

- 

- 

- 

67.56 

65.76 

58.14 

60.24 

23.70 

28.62 

21.96 

18.96 

36 

44 

40 

29 

- 

- 

- 

- 

Tartaglione et al. (1986) 

10(M)/10(F) 

10(M)/10(F) 

500 

500 q 12 h x 15 doses 

1.80 

2.60 

1.32 

1.13 

8.65 

12.00 

- 

- 

- 

- 

57.80 

41.67 

- 

- 

- 

- 

- 

- 

Ullmann et al. (1986) 

8(M) 

8(M) 

200 

750 

1.18 

2.97 

0.69 

1.38 

4.18 

15.30 

- 

- 

3.87 

4.62 

39.10 

42.20 

- 

- 

- 

- 

69 

69 

Plaisance et al. (1987) 

24(M) 

24(M) 

750 

750 q 12 h x 7 doses 

3.01 

3.59 

1.33 

1.44 

23.8 

31.6 

- 

- 

- 

- 

70.50 

53.76 

24.84 

25.62 

- 

- 

79 

77 

Shah et al. (1994) 

14(M) 

10(F) 

750 

750 

3.14 

3.19 

1.5 

1.5 

13.42 

16.10 

- 

- 

- 

- 

54.27 

47.33 

- 

- 

- 

- 

- 

- 

Gallicano and Sahai (1996) 

a Calculated using a dose-corrected AUC from the study of Wise et al. (1984). 
b Drug was administered at fasting. 
c Drug was administered with food. 

Key: Cmax = maximum concentration, Tmax = time to reach maximum concentration, AUC = area under the drug concentration-time curve, Vss/F = oral volume of distribution at steady state, V/F = oral 

volume of distribution, CLT/F = oral total body drug clearance, CLR/F = oral renal clearance, fu = fraction unbound of drug in plasma, F = bioavailability, M = male, F = female.  
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Table 1.3   Pharmacokinetics of ciprofloxacin in healthy subjects after intravenous administration 

 

No. of 

subjects (sex) 
Dose (mg) 

Infusion 

time (min) 

Cmax 

(mg/L) 

AUC 

(mg·h/L) 
Vss (L/kg) V (L/kg) CLT (L/h) CLR (L/h) fu (%) Reference 

6(M) 100 5 - 2.41 1.98 - 43.29 19.89 46 Wingender et al. (1984) 

6(M) 100 - - 2.81 2.25 - 34.02 28.74 76 Wise et al. (1984) 

9(M) 

9(M) 

9(M) 

100 

150 

200 

30 

30 

30 

1.60a 

2.10a 

3.10a 

3.40 

5.14 

7.70 

1.95 

1.97 

1.97 

2.56 

2.45 

2.47 

30.12 

29.82 

26.88 

18.84 

18.78 

18.42 

- 

- 

- 

Gonzalez et al. (1985a) 

12(M) 

12(M) 

12(M) 

12(M) 

12(M) 

12(M) 

12(M) 

12(M) 

12(M) 

25 

25 q 12 h x 7 doses 

25 q 12 h x 13 doses 

50 

50 q 12 h x 7 doses 

50 q 12 h x 13 doses 

75 

75 q 12 h x 7 doses 

75 q 12 h x 13 doses 

10 

10 

10 

10 

10 

10 

10 

10 

10 

0.51 

0.47 

0.53 

1.04 

1.11 

1.09 

1.56 

1.50 

1.55 

0.70 

0.71 

0.71 

1.53 

1.64 

1.74 

2.42 

2.58 

2.53 

2.29 

2.19 

2.10 

1.75 

2.02 

1.77 

1.88 

1.90 

1.86 

- 

- 

- 

- 

- 

- 

- 

- 

- 

37.32 

36.60 

36.18 

32.88 

31.32 

29.10 

31.68 

30.12 

30.72 

21.60 

19.32 

20.28 

22.20 

22.92 

20.58 

25.80 

25.20 

23.52 

- 

- 

- 

- 

- 

- 

- 

- 

- 

Gonzalez et al. (1985b) 

6(M)/6(F) 

6(M)/6(F) 

50 

100 

15 

15 

1.23 

2.80 

1.20 

3.00 

- 

- 

2.66 

2.10 

41.22 

31.80 

25.50 

20.10 

62 

62 

Hoffken et al. (1985) 

6(M)/6(F) 

6(M)/6(F) 

5(M)/5(F) 

50 

100 

200 

15 

15 

20 

- 

- 

- 

1.23 

2.88 

5.31 

- 

- 

- 

3.10 

2.65 

2.80 

41.58 

36.00 

39.12 

23.76 

18.90 

21.42 

57 

53 

54 

Borner et al. (1986) 
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Table 1.3   (continued) 

 

No. of 

subjects (sex) 
Dose (mg) 

Infusion 

time (min) 

Cmax 

(mg/L) 

AUC 

(mg·h/L) 
Vss (L/kg) V (L/kg) CLT (L/h) CLR (L/h) fu (%) Reference 

6(M) 

6(M) 

6(M) 

100 

200 

200b 

30 

30 

- 

2.28 

3.80 

- 

3.94 

7.22 

5.84 

1.74 

1.90 

1.80 

- 

- 

- 

24.60 

25.20 

29.88 

15.12 

16.50 

17.82 

59 

60 

59 

Drusano et al. (1986b) 

12(M) 200 10 6.48 - - 2.44 28.50 16.90 60 Drusano et al. (1986a) 

9(M) 

9(M) 

9(M) 

100 

150 

200 

30 

30 

30 

1.4 

2.0 

3.2 

2.24 

3.36 

5.17 

2.17 

2.40 

2.00 

- 

- 

- 

46.94 

46.00 

39.85 

22.54 

21.52 

18.58 

48 

46 

46 

Dudley et al. (1987) 

a derived from graph. 
b 100 mg loading dose followed by 25 mg/h 4 h infusion.  

Key: Cmax = maximum concentration; AUC = area under the drug concentration-time curve; Vss/F = oral volume of distribution at steady state; V/F = oral volume of distribution; CLT/F = oral total body 

drug clearance; CLR/F = oral renal clearance; fu = fraction unbound of drug in plasma; M = male; F = female.  
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Table 1.4   Tissue penetration of ciprofloxacin after oral or intravenous administration 

 

Tissue/fluid No. of subjects (sex) Dose (mg) 
Sampling 

time (h) 

Mean concentration 
Mean tissue:serum 

ratio 
Reference 

Tissue (mg/L or mg/kg) Serum (mg/L) 

Bile 7(M)/5(F) 500 PO 1 

4 

8 

1.10 

5.40 

5.20 

0.69 

0.95 

0.83 

1.59 

5.68 

6.27 

Brogard et al. (1985) 

Hepatic tissue 1(M)/9(F) 750 PO 3 

7 

6.70 

6.00 

1.64 

3.00 

4.09 

2.00 

Dan et al. (1987) 

Kidney 20(M)/3(F) 

20(M)/3(F) 

100 IV 

100 IV 

1-2 

7-8 

4.66 

0.93 

0.46 

0.13 

10.13 

7.15 

Daschner et al. (1986) 

Bone (normal) 6(M)/1(F) 

6(M)/1(F) 

3(M)/1(F) 

500 PO 

750 PO 

1000 PO 

3 

3 

3 

0.40 

0.70 

1.60 

1.40 

2.60 

2.90 

0.29 

0.27 

0.55 

Fong et al. (1986) 

 

Bone (infected) 6(M) 

4(M) 

500 PO 

750 PO 

3 

3 

0.70 

1.40 

2.00 

2.90 

0.35 

0.48 

Fong et al. (1986) 

Bronchial tissue 12(M)/8(F) 200 IV 3-4 2.50 0.60 4.17 Dan et al. (1993) 

8(M)/4(F) 200 IV q 12 h x 6 days 2 21.63 1.39 16.90 Fabre et al. (1991) 

21(M)/8(F) 

5(M)/5(F) 

500 PO q 12 h x 8 doses 

200 IV 

4 

1 

4.40 

3.94 

3.01 

1.62 

1.46 

2.43 

Honeybourne et al. (1988) 
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Table 1.4   (continued) 

 

Tissue/fluid No. of subjects (sex) Dose (mg) 
Sampling 

time (h) 

Mean concentration 
Mean tissue:serum 

ratio 
Reference 

Tissue (mg/L or mg/kg) Serum (mg/L) 

Bronchial secretion 21 

21 

21 

500 PO 

500 PO 

500 PO 

2 

4 

6 

0.44 

0.27 

0.56 

2.27 

0.89 

0.59 

0.19 

0.30 

0.95 

Bergogne-Bérézin et al. (1986) 

Lung parenchyma 12(M)/8(F) 200 IV 3-4 4.70 0.60 7.83 Dan et al. (1993) 

Pleural tissue 12(M)/8(F) 200 IV 3-4 1.70 0.60 2.83 Dan et al. (1993) 

Intestinal tissue 8 750 PO x 2 doses  

then 400 IV x 2 doses 

2-3 13.09 3.40 4.3 Brismar et al. (1990) 

Fat 20(M)/3(F) 

20(M)/3(F) 

100 IV 

100 IV 

1-2 

7-8 

0.27 

0.04 

0.46 

0.13 

0.59 

0.31 

Daschner et al. (1986) 

3 

9 

3 

500 PO 

500 PO 

500 PO 

2.75-3.25 

5-5.8 

6.25-8 

0.90 

0.51 

0.41 

0.58 

0.52 

0.49 

1.56 

1.08 

0.94 

Aigner and Dalhoff (1986) 

18 200 IV 1 1.00 2.20 0.45 Silverman et al. (1986) 

15 500 PO 12 0.056 0.17 0.33 Dalhoff and Eickenberg (1985) 

Skin 20(M)/3(F) 

20(M)/3(F) 

100 IV 

100 IV 

1-2 

7-8 

0.23 

0.12 

0.46 

0.13 

0.50 

0.92 

Daschner et al. (1986) 

3 

9 

3 

500 PO 

500 PO 

500 PO 

2.75-3.25 

5-5.8 

6.25-8 

0.89 

0.98 

0.62 

0.58 

0.52 

0.49 

1.71 

2.25 

1.48 

Aigner and Dalhoff (1986) 
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Table 1.4   (continued) 

 

Tissue/fluid No. of subjects (sex) Dose (mg) 
Sampling 

time (h) 

Mean concentration 
Mean tissue:serum 

ratio 
Reference 

Tissue (mg/L or mg/kg) Serum (mg/L) 

Muscle 20(M)/3(F) 

20(M)/3(F) 

100 IV 

100 IV 

1-2 

7-8 

1.16 

0.21 

0.46 

0.13 

2.52 

1.62 

Daschner et al. (1986) 

6(M)/1(F) 

6(M)/1(F) 

3(M)/1(F) 

500 PO 

750 PO 

1000 PO 

3 

3 

3 

1.10 

1.30 

2.60 

1.40 

2.60 

2.90 

0.79 

0.81 

0.90 

Fong et al. (1986) 

15 500 PO 12 0.20 0.17 1.18 Dalhoff and Eickenberg (1985) 

3 

9 

3 

500 PO 

500 PO 

500 PO 

2.75-3.25 

5-5.8 

6.25-8 

1.23 

1.90 

1.74 

0.58 

0.52 

0.49 

2.46 

4.23 

3.46 

Aigner and Dalhoff (1986) 

18 200 IV 1 1.90 2.20 0.86 Silverman et al. (1986) 

CSF (non-inflamed) 16(M)/7(F) 200 IV q 12 h x 3 doses 1 

2 

4 

8 

0.15 

0.27 

0.27 

0.15 

1.30 

1.12 

0.84 

0.20 

0.14 

0.23 

0.31 

0.77 

Wolff et al. (1987) 

25 200 IV q 12 h x 2 doses 4 

5 

6 

0.08 

0.07 

0.11 

0.58 

0.43 

0.51 

0.15 

0.18 

0.24 

Gogos et al. (1991) 
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Table 1.4   (continued) 

 

Tissue/fluid No. of subjects (sex) Dose (mg) 
Sampling 

time (h) 

Mean concentration 
Mean tissue:serum 

ratio 
Reference 

Tissue (mg/L or mg/kg) Serum (mg/L) 

CSF (inflamed) 16(M)/7(F) 200 IV q 12 h x 3 doses 1 

2 

4 

8 

0.39 

0.56 

0.49 

0.35 

1.59 

1.44 

1.04 

0.24 

0.26 

0.37 

0.57 

1.59 

Wolff et al. (1987) 

9 200 IV q 12 h x 2 doses 3 

5 

0.10 

0.14 

0.33 

0.43 

0.34 

0.34 

Gogos et al. (1991) 

Key: M = male, F = female, PO = oral administration, IV = intravenous administration. 
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1.4.6   Clinical uses 

1.4.6.1  Adults 

In adults, ciprofloxacin is currently used to treat several types of infection. The 

approved indications are as follows (Andriole, 2005): 

 Complicated and uncomplicated urinary tract infections 

 Acute uncomplicated cystitis in females (oral use only) 

 Chronic bacterial prostatitis 

 Uncomplicated cervical and urethral gonorrhoea 

 Skin and soft-tissue infections 

 Bone and joint infections 

 Infectious diarrhoea (oral use only) 

 Typhoid fever (oral use only) 

 Complicated intra-abdominal infections in combination with metronidazole 

 Acute sinusitis 

 Lower respiratory tract infections 

 Nosocomial pneumonia (IV use only) 

 Empirical therapy for patients with febrile neutropenia in combination with 

piperacillin (IV use only) 

 Inhalational anthrax (after exposure) 

 

1.4.6.2  Children 

Fluoroquinolones, including ciprofloxacin, are not recommended for routine use in 

children age <18 years old because studies in juvenile animals have demonstrated the 

development of arthropathy with cartilage erosions in weight-bearing joints (Dagan, 

1995). However, based on the absence of arthropathy seen in humans in the past 

decades, ciprofloxacin has been considered for use in some paediatric populations, 

particularly in those with cystic fibrosis, immunocompromised patients and those 

with neutropenia arising from cancer chemotherapy (Gendrel & Moulin, 2001; 

Paganini et al., 2003; Aquino et al., 2000). It has also been suggested to use 

ciprofloxacin as a first-line therapy for Gram-negative neonatal meningitis, severe 

Salmonella and Shigella spp. infections, chronic otitis media and some cases of 

complicated acute otitis media that do not response to initial therapy (Edwards & 



23 

 

Freeman, 2006). To date, ciprofloxacin has only been approved for use in children 

with complicated urinary tract infections and pyelonephritis caused by P. aeruginosa 

or other multidrug-resistant, Gram-negative bacteria (Committee on Infectious 

Diseases, 2006). 

 

1.4.7   Toxicities 

Fluoroquinolones are generally well-tolerated. The most common adverse effects 

involve the gastrointestinal tract and central nervous system. Other adverse effects 

include rashes and other allergic reactions, tendonitis and tendon rupture, QT 

prolongation, hypoglycaemia and hyperglycaemia, and haematologic toxicity (Ball et 

al., 1999; Lipsky & Baker, 1999). The greatest concern regarding the use in children 

is arthrotoxicity, which is characterised by fluid-filled blisters, fissures and erosions 

within the joints (Dagan, 1995; Sendzik et al., 2009). Nevertheless, studies in 

humans have failed to show any significant arthrotoxicity. In 1991, Chyský et al. 

conducted a world-wide surveillance study in 634 children who received 

ciprofloxacin for treating cystic fibrosis. Mild arthralgias were observed in eight 

patients (1.3%) and resolved in all children after drug withdrawal. A follow-up of 

this study, including 1795 children who had received a total of 2030 treatment 

courses, has reported that mild and moderate arthralgia occurred in 1.5% of patients, 

mostly in patients with cystic fibrosis (Hampel et al., 1997). A 6-year retrospective 

study, including more than 6000 children, found that the incidence of joint and 

tendon toxicities in the fluoroquinolone-treated group was similar to the control 

group (0.82% vs. 0.78%) (Yee et al., 2002). Among the fluoroquinolones, 

ciprofloxacin has been considered as drug of choice since it has less arthrotoxicity 

compared to other agents (Gendrel & Moulin, 2001). 

 

1.4.8   Drug interactions 

Ciprofloxacin, as with other fluoroquinolones, can interact with many other drugs. 

When quinolones are administered concurrently with an aluminium- or magnesium-

containing antacid, oral bioavailability is markedly decreased (Wolfson & Hooper, 

1989). This is presumably due to the formation of cation–quinolone complexes, 

which are poorly absorbed (Radandt et al., 1992). Ferrous sulphate, supplements 
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containing multivalent ions (i.e. iron, zinc, and calcium) and the buffered formulation 

didanosine have also been reported to decrease quinolone bioavailability (Polk et al., 

1989; Knupp & Barbhaiya, 1997). Precipitates have been reported when the 

intravenous formulation of ciprofloxacin is infused through the same intravenous 

tube with aminophylline, amoxicillin (with and without clavulanate), or flucloxacillin 

(Janknegt, 1990). Evidence suggests that fluoroquinolones can decrease the clearance 

of theophylline and caffeine by inhibiting hepatic cytochrome P450 isozyme 1A2, 

the main route of metabolism for these drugs. Concurrent administration of 

ciprofloxacin significantly increases serum levels of theophylline and caffeine by 20-

90%; however, the effect on norfloxacin, ofloxacin, levofloxacin, moxifloxacin, and 

gemifloxacin is small (increase of only 2-11%) (Robson, 1992; Stahlmann & 

Schwabe, 1997). Ciprofloxacin has been reported to increase the concentration of the 

R-enantiomer of warfarin but has no effect on the more active S-enantiomer. In a 

study conducted by Israel et al. (1996), prothrombin time was found to increase 

slightly after 12 days of therapy, but no patient had bleeding. Other possible 

interactions include nonsteroidal anti-inflammatory drugs (NSIADs) fenbufen, 

probenecid and cyclosporine (Wolfson & Hooper, 1989). 

 

1.5    MALNUTRITION IN CHILDREN 

Malnutrition in children remains a major health problem worldwide. It is estimated 

that severe acute malnutrition affects approximately 13 million children and accounts 

for up to two million child deaths annually (Collins, 2007). Although malnutrition 

may not be the direct cause of death, it is an important contributing factor in up to 

50% of deaths in children (Madec et al., 2011). A recent study has demonstrated that 

malnutrition and its complications, such as dehydration, diarrhoea and infections, are 

the leading cause of death among children younger than five years of age (O’Reilly 

et al., 2012). It has been shown that the mortality rate among malnourished children 

is strongly related to anthropometric indices (Black et al., 2008). The risk of death is 

ten times higher in children with a weight-for-height Z-score (WHZ) of <-3 

compared to that for children with a WHZ ≥-1. The term ‘weight-for-height’ 

represents the median reference weight for any given height, and is used for 

assessment of well-being by comparing the weight of an observed child with that of 
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the median for his/her height. Weight-for-height is one of the three indices most 

commonly used in anthropometric assessment of this kind, the other two being 

weight-for-age and height-for-age.  

 

1.5.1   Definitions, aetiologies and manifestations  

The term ‘malnutrition’ is generally used to describe a deficiency in carbohydrate, 

protein and fat, as well as a deficiency in vitamins, minerals and trace elements. Each 

type of malnutrition may be classified as ‘acute’ or ‘chronic’, depending upon the 

duration of nutritional deprivation. Children with acute malnutrition appear wasted, 

whereas children with chronic malnutrition have stunted growth. The severity of 

malnutrition may range from mild to severe, with severe forms characterised as 

‘kwashiorkor’, ‘marasmus’ or ‘marasmus-kwashiorkor’.  

 

Marasmus is specified by the wasting of muscle mass, depletion of body fat stores 

and absence of oedema. It is caused by inadequate intake of all nutrients, especially 

dietary energy sources. Common clinical findings include diminished weight and 

height-for-age, weakness, dry skin and redundant skin folds caused by loss of 

subcutaneous fat. Results from simple blood tests often show remarkably decreased 

albumin and total circulating protein (Gollan, 1948). Children with marasmus are 

often anaemic due to iron and folic acid deficiencies (Khalil et al., 1969).  

 

Kwashiorkor is characterised by marked muscle atrophy with normal or increased 

body fat. The main cause is insufficient protein intake in the presence of adequate 

energy intake. Kwashiorkor is generally used to describe a malnourished child who 

has pitting oedema of the extremities. Other clinical findings include normal or 

nearly normal weight- and height-for-age, rounded prominence of the cheeks 

(‘moon-face’) and hepatomegaly from fatty liver infiltrations.  

 

Marasmus-kwashiorkor is an intermediate condition, that of being markedly 

underweight but still with oedema. This often occurs in a child who has inadequate 

dietary intake of all nutrients (marasmus) and is triggered by infections. Clinical 

signs of children with mixed marasmus-kwashiorkor include anorexia, dermatitis, 
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neurological abnormalities (e.g. depression) and hepatic steatosis (Jahoor et al., 

2008). The mechanisms underlying the transition from marasmus to the mixed 

marasmus-kwashiorkor remain unclear, but previous studies have suggested that this 

group of patients has slower rates of protein breakdown, a depressed response to 

infection and lower concentrations of antioxidants, including glutathione, compared 

to children with pure marasmus (Jahoor et al., 2008; Reid et al., 2000; Reid et al., 

2002; White et al., 2008). 

 

1.5.2   Classification 

There is controversy regarding the best and most useful method of nutritional 

assessment. Gomez and his colleagues (1956) were the first to divide deficits in 

weight-for-age into three categories of severity, based on the prognosis of 

malnourished children (Table 1.5). In 1970, the Wellcome Trust working party 

introduced another simple classification by taking clinical characteristics into 

consideration. With this method, malnourished children are classified according to 

two criteria: weight-for-age and the presence or absence of oedema, and thereby 

giving four categorises of malnutrition as shown in Table 1.6. The drawback of the 

Gomez and Wellcome classification systems is that they combine two different types 

of deficit: weight-for-height and height-for-age. Although the children may have the 

same weight-for-age, clearly one may be tall and thin and the other short and even 

fat. Thus Waterlow (1973) proposed to describe a child with a deficit in weight-for-

height as ‘wasted’ and a child with a deficit in height-for-age as ‘stunted’. This 

approach is based on the assumption that during periods of nutritional deprivation, 

weight deficits occur initially, and followed by height or length deficits. Waterlow’s 

classification can also be used to assess the degree of acute or chronic malnutrition 

(Table 1.5). 

 

In 1999, the World Health Organization (WHO) developed new criteria for the 

classification of moderate and severe malnutrition in children (Table 1.7). These are 

based on the degree of wasting, stunting and the presence of oedema. The 

measurements of weight and height (or length) are converted to Z-scores, using 

WHO child growth standards. Z-scores are the values that represent standard 
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deviations (SD) from the median weight and height values for age. In general, a child 

whose weight or height falls below 2 SD of the median value is considered to have 

significant growth abnormalities. 

 

Table 1.5   Gomez and Waterlow classifications of malnutrition 

 

Grade of 

malnutrition 

Gomez classification 

Weight-for-age (%) 

Waterlow classification 

Weight-for-height (%)
a 

Height-for-age (%)
b 

Normal 

Mild 

Moderate 

Severe 

>90 

75-90 

60-75 

<60 

>90 

80-90 

70-79 

<70 

>95 

90-95 

85-89 

<85 
a
 Decreased weight-for-height suggests acute malnutrition (wasting). 

b
 Decreased height-for-age suggests chronic malnutrition (stunting). 

 

Table 1.6   Wellcome Classification of severe malnutrition 

 

%Weight-for-age 
Oedema 

Present Absent 

80-60 

<60 

Kwashiorkor 

Marasmus-kwashiorkor 

Undernutrition 

Marasmus 

 

Table 1.7   WHO classification of malnutrition 

 

Severity Symmetrical oedema Weight-for-height Height-for-age 

Moderate 

malnutrition 
No -3 ≤ Z-score < -2 

(70-79%) 

-3 ≤ Z-score < -2 

(85-89%) 

Severe 

malnutrition 
Yes (oedematous 

malnutrition) 
Z-score <-3 (<70%) 

(severe wasting) 

Z-score <-3 (<85%) 

(severe stunting) 

 

In some clinical settings in which time and equipment are very limited, the mid 

upper-arm circumference (MUAC) is sometimes used for screening malnutrition. 

This measurement can be used to identify children for further evaluation since it is 

reasonably independent of age and gender between six months and five years of age. 
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Previously, children with global malnutrition and children with severe wasting were 

defined as MUAC <12.5 cm and <11 cm, respectively (Myatt et al., 2006). However, 

a recent study, comparing MUAC screening to the WHO Z-score criteria, has shown 

that using a MUAC cut-off value of <11.5 cm substantially improves the probability 

of diagnosing severe wasting, and reduces false-negative results (Fernández et al., 

2010). Some investigators suggest that MUAC-for-height and MUAC-for-age Z-

scores are better predictors for wasting than a single MUAC (Mei et al., 1997; de 

Onis et al., 1997).  

 

As described, the severity of malnutrition is defined by comparing weight and height 

measurements of children to those of a population reference standard. The most 

regularly updated population standards were developed by the Center for Disease 

Control (CDC) in 2000, and the WHO in 2006. It has been suggested that compared 

to WHO standards, the CDC references result in lower estimates of undernutrition, 

except during the first six months of life, and higher estimates of overweight and 

obesity (de Onis et al., 2007). Additionally, in most cases, the WHO references are 

more appropriate because they have been developed based on information obtained 

from an international multicentre study, using children with diverse ethnic 

backgrounds (WHO Multicentre Growth Reference Study Group, 2006). However, 

some studies indicate that WHO growth references will result in a higher measured 

prevalence of malnutrition when compared to the old US National Center for Health 

Statistic (NCHS) standards (Seal & Kerac, 2007; Prost et al., 2008). 

 

1.5.3   Bacteraemia in malnourished children 

Severely malnourished children are at high risk of infection because of diminished 

immune defences, and are typically exposed to infections through inadequate 

sanitation and food preservation. Results from multivariate analyses show that 

malnutrition is associated with increased rates of bacteraemia in infants and children 

(Were et al., 2011). Among the 12-17% prevalence of bacteraemia, Gram-negative 

organisms, including Salmonella spp. and E. coli, constitute 58-63% of invasive 

bacterial pathogens (Bachou et al., 2006; Were et al., 2011).  
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The WHO recommends that all children admitted to hospital with severe 

malnutrition should routinely receive broad-spectrum antibiotic treatment (WHO, 

1999). Choice of medication and dosing regimen depend on whether there is clinical 

evidence of complications (i.e. septic shock, hypoglycaemia, hypothermia, skin 

infections and lethargy) as follows: 

 If there are no signs of infections and no complications: cotrimoxazole (25 

mg of sulfamethoxazole + 5 mg of trimethoprim/kg) orally twice daily for 

five days. 

 If there are symptoms suggesting complications: ampicillin 50 mg/kg IM/IV 

every six hours for two days, followed by amoxicillin 15 mg/kg orally every 

eight hours for five days, and gentamicin 7.5 mg/kg once daily for seven 

days. 

 If the child fails to improve within 48 hours: add chloramphenicol 25 mg/kg 

IM/IV every eight hours for five days. 

 

The duration of treatment depends on the response and nutritional status of the child, 

but it should be continued for at least five days (WHO, 1999). Blood cultures should 

also be obtained, but because these children are severely ill, treatment should be 

initiated while awaiting results. 

 

1.6   FACTORS THAT AFFECT DRUG PHARMACOKINETICS  

1.6.1  Age – neonates and children 

1.6.1.1  Absorption 

The absorption of drugs is altered in neonates and infants. The gastric pH is neutral 

at birth and gradually declines to reach adult pH values at approximately two years 

of age. By the age of three years, the secretion of gastric acid per kilogram of body 

weight is similar to adults (Stewart & Hampton, 1987). As a result, the 

bioavailability of acid-labile drugs such as ampicillin, amoxicillin and erythromycin 

is greater in neonates and infants compared to adults. In contrast, such changes are 

unlikely to affect the absorption of non acid-labile drugs, for which absorption will 

continue efficiently in the small intestine (Strolin Benedetti & Baltes, 2003). Gastric 

emptying is slow in neonates and infants and reaches the adult rate by six months of 
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age (Yokoi, 2009). This may result in delayed absorption of drugs. The intestinal 

drug-metabolising enzymes and efflux transporters may affect the bioavailability of 

drugs; however, information on this is very limited. The results of one study showed 

that age has less influence on the activities of epoxide hydrolase and glutathione 

peroxidase, whereas the intestinal activity of CYP1A1 appears to increase with age 

(Ståhlberg et al., 1988). In contrast, Gibbs et al. (1999) conducted a biopsy of the 

distal duodenum and found that the glutathione-S-transferase activity decreases from 

infancy through early adolescence, as reflected by the reduced oral clearance of 

busulfan, which is a substrate for this enzyme.  

   

1.6.1.2  Distribution 

The distribution of drugs alters throughout life, as demonstrated by Sonnier and 

Cresteil (1998), who reported a decrease in the volume of distribution of 

sulfamethoxypyridazine between neonates and infants, and a further decrease from 

infants to children, followed by a relative stability from children to adults and then a 

tendency to increase from adults to the elderly. Such changes are mainly due to the 

alterations in protein binding at different ages, as well as to changes in extracellular 

fluid volume as a proportion of total body water.  

 

Several studies have reported that the unbound fraction is higher in paediatric 

populations than in adults (Pacifici et al., 1984; Pacifici et al., 1987; Rane et al., 

1971). In general, acidic drugs mainly bind to albumin, whereas basic drugs bind to 

globulins, α1-acid glycoprotein and lipoproteins. It was found that the concentrations 

of binding proteins are low at birth and then slowly increase to reach normal adult 

values at the first year of life (Strolin Benedetti & Baltes, 2003). Additionally, the 

binding capacity tends to be lower in neonates than in adults. In the neonatal period, 

an increase in endogenous substances, such as bilirubin, and free fatty acids capable 

of displacing a drug from albumin binding sites, may increase the free fraction of 

highly protein-bound drugs. Results from the study by Silverman et al. (1956) 

showed that the administration of the sulphonamide, sulfisoxazole can be a cause of 

kernicterus in neonates as a result of the displacement of bilirubin from albumin 

binding sites.  
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The total body water is high in very young infants (80-90% of the total body weight). 

The amount of total body water decreases to 75% for neonates and 50-60% for 

adults. In neonates, extracellular water accounts for about 40% of the total body 

weight and then reduces to reach only 20% in adulthood (Yokoi, 2009; Strolin 

Benedetti & Baltes, 2003). The volume of distribution of hydrophilic drugs is larger 

in neonates and infants than in adults. For example, the volume of distribution of 

gentamicin is 0.5-1.2 L/kg in neonates and infants but declines to approximately 0.2-

0.3 L/kg in adults (Strolin Benedetti & Baltes, 2003). The volume of distribution of 

lipophilic drugs, such as flunitrazepam, is smaller in neonates and infants than in 

adults (Pariente-Khayat et al., 1999). 

 

1.6.1.3  Metabolism 

The development of both phase I and phase II drug-metabolising enzymes is age-

dependent. The activity of phase I enzymes such as the cytochromes P450 (CYPs) 

changes markedly during development (Kearns et al., 2003). The total CYP contents 

in the liver are constant from the foetal period until the age of one year, remaining at 

25-50% of the adult level. CYP3A7, the enzyme that protect the foetus from 

detoxifying dehydroepiandrosterone sulphate, is predominantly expressed in foetal 

liver. The expression of this enzyme peaks shortly after birth and then reduces 

rapidly to undetectable levels in most adults. CYP2E1 and CYP2D6 enzymes 

become detectable within a few hours after birth, requiring a few years to reach adult 

level, whereas CYP3A and CYP2C subfamilies appear during the first week of life. 

CYP1A2 is hardly detectable in foetal liver and emerges one to three months after 

birth to reach the adult expression level within a few years (Strolin Benedetti & 

Baltes, 2003; Yokoi, 2009). The data for the ontogeny of phase II reactions are scant. 

Available data indicate that the activity of uridine diphosphate 

glucuronosyltransferase (UGT) is low in neonates and infants as compared to adults.  

 

Among the UGT isoforms, UGT1A1 and UGT2B7 develop quickly, whereas 

UGT1A6, UGT1A8 and UGT2B7 develop more slowly (Mirochnick et al., 1999). 

There are several studies indicating that the metabolism of drugs in the liver is an 

age-dependent increase in plasma clearance in children aged younger than ten years, 
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which may require a higher weight-based dose (de Wildt et al., 1999; Kraus et al., 

1993; Milavetz et al., 1986; Scott et al., 1999). The greater drug clearance in infants 

and children may be associated with a disproportionate increase in liver weight as a 

percentage of total body weight.  

 

1.6.1.4  Excretion 

The glomerular filtration rate (GFR) is approximately 2-4 mL/min/1.73 m
2
 in full-

term neonates, and as low as 0.6-0.8 mL/min/1.73 m
2
 in preterm neonates. The GFR 

increases rapidly during the first two weeks of life and then rise steadily to reach the 

adult level of 100-120 mL/min/1.73 m
2
 at 8-12 months of age (Kearns et al., 2003). 

Tubular secretion is immature in neonates (20-30% of adult level) and reaches adult 

capacity during the first year of life (Yokoi, 2009). There is limited data for the renal 

tubular reabsorption in paediatric populations, but it has been suggested the 

development of reabsorption is a gradual and continuous process from birth to 

adolescence, and the key stage of maturation may be at three years of age (Hua et al., 

1997).  

 

1.6.2   Malnutrition 

1.6.2.1  Absorption 

In malnourished patients, the absorption of drugs is affected by the changes in 

gastrointestinal structure and function. It has been found that in this patient 

population villi are flattened and broadened (Waterlow, 2006). Gut mucosa is 

completely flat in patients with kwashiorkor, while the structure of mucosa remains 

normal but is thinner in marasmus than in kwashiorkor. The production of gastric 

acid and digestive enzymes is reduced, and greater in kwashiorkor than in marasmus. 

Since there are several factors that promote bacterial overgrowth – including  

decreased gastric acidity, reduced gut motility, increased transit time due to diarrhoea 

and vomiting, and impaired absorption of sugars (which provide a good culture 

medium) – bacterial colonization of the upper intestine often occurs in malnourished 

patients (Waterlow, 2006).  
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Eriksson et al. (1983) investigated the pharmacokinetics of chloramphenicol in 

Ethiopian children with kwashiorkor and found that bioavailability was significantly 

decreased in kwashiorkor and marasmus-kwashiorkor. In the study by Walker et al. 

(1987), peak plasma concentrations of chloroquine and the mean area under the 

plasma concentration-time curve (AUC) were markedly decreased in kwashiorkor 

children as compared to healthy children. A number of studies, however, 

demonstrated that the AUC is similar or increased (Salako et al., 1989; Akinyinka et 

al., 2000; Samotra et al., 1985; Lares-Asseff et al., 1992). Oshikoya et al. (2010) 

suggest that this was probably due to the effects of prolonged elimination half-life or 

decreased clearance.  

 

A few studies have investigated the effect of malnutrition on the rate of absorption 

(ka). Some studies found that the ka was unaffected by malnutrition (Bolme et al., 

1995; Mehta et al., 1985); however, an increased ka (Lares-Asseff et al., 1992) or 

decreased ka (Bolme et al., 1995; Mehta et al., 1980) have also been reported.  

 

1.6.2.2  Distribution 

Hypoproteinaemia often occurs in malnourished patients. The degree of decrease in 

plasma binding proteins varies according to the type, duration and severity of 

disease. As a result of this decreased protein binding, the free fraction of drug may be 

elevated. Buchanan (1977) investigated the binding properties of 18 drugs in 

kwashiorkor patients and found an increase in the free drug in kwashiorkor serum as 

compared to normal serum in all drugs. However, a possible clinical significance was 

only reported for some drugs, viz. cloxacillin, flucloxacillin, streptomycin, 

sulphamethoxazole, thiopentone and digoxin. Oshikoya and colleagues (2010) 

performed a systemic review of pharmacokinetic studies in malnourished children 

and revealed that the volume of distribution of many drugs is not significantly 

changed (e.g. aspirin, penicillin); however, there are contrasting results for 

gentamicin, quinine, streptomycin and theophylline.  

 

The alteration in the total body water also affects the distribution of drugs. In 

malnourished patients, the total body water increases in proportion to the level of 
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malnutrition, and the greater part of the excess fluid is extracellular water. This is 

observed particularly in children with oedema. The distribution of lipophilic drugs to 

adipose tissue may be reduced in malnourished children who have markedly 

decreased adipose and lean body mass, such as in marasmus and mixed marasmus-

kwashiorkor.  

 

1.6.2.3  Metabolism 

The biotransformation of drugs is diminished in malnourished patients. Although the 

liver function tests are reported as normal, hepatomegaly due to fatty infiltration is 

observed in most cases, particularly in kwashiorkor (Doherty et al., 1992). The effect 

of malnutrition on the hepatic metabolising enzymes has not been investigated 

extensively in humans. One study conducted by Mehta et al. (1975) reported that the 

activity of the bilirubin-uridyldiphosphate (UDP) enzyme is markedly reduced in 

children with severe malnutrition. Akinyinka and colleagues (2000) evaluated the 

activity of CYP1A2 by measuring plasma paroxanthine, a metabolite of caffeine, and 

found that the activity of CYP1A2 as well as the hepatic clearance of caffeine 

decreased significantly in children with kwashiorkor. In an animal study, the total 

hepatic cytochrome P450 content was reduced by 55% during malnutrition. The 

levels of CYP1A2, CYP2C11 and CYP2E1 were found to be reduced by 60-90%, 

85% and 50-60%, respectively (Cho et al., 1999).  

 

1.6.2.4  Excretion 

The GFR and renal blood flow appear to be diminished in malnourished patients, 

particularly in the presence of dehydration (Alleyne, 1967; Klahr & Tripathy, 1966). 

The impact of malnutrition on the GFR is more pronounced with those drugs that are 

mainly excreted via the kidneys, such as penicillin and the aminoglycosides. Several 

studies have demonstrated that the renal clearance of drugs was significantly reduced 

in malnourished children as compared to healthy children. This includes the 

pharmacokinetic studies of amikacin (Hendricks et al., 1995), gentamicin (Bravo et 

al., 1982; Buchanan et al., 1979) and streptomycin (Bolme et al., 1988).   
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INTRODUCTION TO CHAPTER 

This chapter provides details of the pharmacokinetic models and statistical methods 

that are commonly used in subsequent chapters. The first section gives an 

introduction to these models. Section 2.2 provides information regarding population 

PK modelling, and primarily focuses on the use of the non-linear mixed effects 

model. The optimal design methods for population PK study are reviewed in Section 

2.3. Details of whole body physiologically based pharmacokinetic (WBPBPK) 

models are given in the last section. Details of other specific methods are provided 

within later chapters, as required. 

 

2.1    PHARMACOKINETIC MODELS 

The empirical approach, which maps the complex process of drug transport into one 

or more compartments, is the most common method for developing a PK model. The 

number of compartments and complexity of the model are dependent on the available 

concentration-time data. These compartments are imaginary units, representing a 

group of tissues with similar rates of drug distribution. The simplest model is a ‘one-

compartment model’, which assumes that the body is a single unit in which a drug is 

instantaneously and homogenously distributed, following administration. Drug 

concentrations decline over time, as a mono-exponential, or first-order, process. 

However, some drugs do not distribute instantaneously throughout the body, but they 

take some time to distribute into tissues. Concentration-time profiles show that 

concentrations decrease in a bi-exponential, rather than mono-exponential manner, 

and drop rapidly during the distribution phase. This is a result of both distribution of 

drug to tissues and the elimination process. After this phase, when pseudo-

equilibrium between blood and tissues is reached, concentrations decline more 

slowly because only the elimination process is affected. Therefore, more complicated 

models with multiple compartments may be required to describe such concentration 

profiles. In this thesis, one- and two-compartment models were used to describe the 

PK of ciprofloxacin.  

 

 



37 

 

In a one-compartment model, the entire body is considered as a ‘central’ 

compartment. When a drug is administered as an intravenous (IV) bolus, the entire 

dose immediately enters the systemic circulation, and is rapidly distributed to bodily 

tissues. However, if a drug is administered extravascularly, for example, via an oral, 

intramuscular or subcutaneous route, drug concentration is also affected by the rate 

of drug absorption. A one-compartment model is illustrated in Figure 2.1, where V is 

the apparent volume of distribution, and ka and k are used to describe the rate of 

absorption and elimination, respectively.  

 

If X is the amount of drug in the central compartment, the change in amount of drug 

in the body following an IV bolus dose can be described by the following differential 

equation: 

 

X
 = - k X

t

d

d
                                                (2.1) 

 

where t is time after injection. Solving the above equation using the Laplace 

transform method gives: 

 

- k t
t 0X  = X  e                                               (2.2) 

 

where X0 and Xt are the amount of drug at time 0 and at any time t, respectively.       

e represents the base of the natural logarithm. Concentrations at any time t can be 

calculated by dividing the amount of drug by V and therefore yields: 

 

- k t
t 0C  = C  e                                               (2.3) 

 

where C0 and Ct are the concentration of drug at time 0 and at any time t, 

respectively.  
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Following extravascular administration, the rate of drug disappearance from the site 

of absorption is described as follows: 

 

A
A

X
 = - ka X F

t

d

d
                                           (2.4) 

 

where XA is the amount of drug at the absorption site, which is assumed equal to the 

administration dose. F is the bioavailability. The rate of drug change in the central 

compartment is equal to the sum of the rate of drug in and the rate of drug out, as 

given by the following equation:   

 

A

X
 = ka F X   -  k X

t

d

d
                                         (2.5) 

 

Solving the above equation, and then dividing by V, respectively, gives: 

 

 -  - k t ka tA
t

ka F X
X  = (e  - e )

ka - k

  
                                 (2.6) 

 

 -  - k t ka tA
t

ka F X
C  = (e  - e )

V(ka - k)

  
                                 (2.7) 

 

Figure 2.1 illustrates concentration-time profiles for IV and oral doses, and shows a 

mono-exponential decline in drug concentration during the terminal phase of 

elimination. The absorption and elimination half-lives can be calculated by using the 

following equations: 

Absorption half-life = ln 2 / ka                                  (2.8) 

Elimination half-life = ln 2 / k                                   (2.9)  

 

 

 

 



39 

 

Figure 2.1  A one-compartment model with a corresponding concentration-

time profile  

 

 
 

Key: ka is the absorption rate constant, IV is the intravenous administration, XA is 

the amount of drug at the absorption site, V is the apparent volume of distribution 

and k is the elimination rate constant. 

 

When a drug is administered orally, absorption does not begin immediately, rather, it 

is some time before the drug appears in the systemic circulation This may be due to 

particular physiological factors, for example, gastric emptying and gut motility, or to 

delayed release of the drug. The time delay prior to the absorption process is known 

as ‘lag time’ (tlag). When the effect of lag time is considered, drug concentrations at 

any time t can be calculated with equation as follows:  

 

 - )  - lag lagk (t - t ka (t - t )A
t

ka F X
C  = (e  - e )

V(ka - k)

  
                         (2.10) 

 

In a two-compartment model, the body is considered as having a ‘central 

compartment’ (compartment 1) and a ‘peripheral compartment’ (compartment 2). 

The central compartment represents the blood and extracellular fluid, as well as the 

highly perfused organs and tissues through which a drug is distributed rapidly. The 

peripheral compartment represents those tissues through which a drug is distributed 

more slowly. Drug transfer between the two compartments is assumed to be first-

order, and drug elimination is assumed to primarily occur from the central 

compartment. A two-compartment model is illustrated in Figure 2.2, where V1 and 
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V2 are the volumes of compartment 1 and compartment 2, respectively, k12 is the 

first-order rate of transfer constant of drug from compartment 1 to compartment 2, 

and k21 describes the rate of transfer from compartment 2 to compartment 1. The 

transfer constants are called ‘micro-rate constants’. If X1 is the amount of drug in 

compartment 1 and X2 is the amount of drug in compartment 2, the rate of change of 

drug in these compartments can be described by the following equations: 

 

1
21 2 12 1 1

X
 = k X  - k X  - k X

t

d

d
                                  (2.11) 

 

2
12 1 21 2

X
 = k X  - k X

t

d

d
                                      (2.12) 

 

Solving the above equations, and then dividing by V1, respectively, gives: 

 

α β- t - t
t 1 2X  = X e  + X e 

                                      (2.13) 

 

α β- t - t
t 1 2C  = C e  + C e 

                                      (2.14) 

 

where Xt and Ct are the amount and concentration, respectively, of drug in the central 

compartment at time t,  is the slope of the distribution phase and  is the slope of 

the elimination phase. For a two-compartment model with first-order absorption, the 

changes in amount of drug in the compartment 1 and compartment 2 are described by 

equations 2.15 and 2.16, respectively. The concentrations of drug in plasma 

(compartment 1) can be calculated using equation 2.17 (Hacker et al., 2009). 

 

- ka t1
A 21 2 12 1

X
 = ka F X e   + k X  - k X  -  ke X

t

d

d

                        (2.15) 

 

2
12 1 21 2

X
 = k X  - k X

t

d

d
                                       (2.16) 

 

α β
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α β- t - t - ka t

t 1 2 1 2C  = C e  + C e - (C  + C )e  
                            (2.17) 

 

Figure 2.2 illustrates concentration-time profiles for IV and oral doses, and shows a 

bi-exponential decline of drug. The distribution and elimination half-lives can be 

calculated by using the following equations: 

Distribution half-life = ln 2 /                                 (2.18) 

Elimination half-life = ln 2 /                                  (2.19)  

 

Figure 2.2  A two-compartment model with a corresponding concentration-

time profile  

 

 
 

Key: XA is the amount of drug at the absorption site, X1 is the amount of drug in 

compartment 1, X2 is the amount of drug in compartment 2, V1 is the volume of 

compartment 1, V2 is the volume of compartment 2, k12 is the rate constant 

representing the movement of drug from compartment 1 to compartment 2. k21 is the 

rate constant representing the movement of drug from compartment 2 to 

compartment 1. 

 

It is sometimes more useful to parameterise the micro-rate constants in terms of 

clearance. In this thesis, the one-compartment model was parameterised to give 

clearance (CL) and V and the two-compartment model was parameterised to give 

CL, V1, V2 and Q (inter-compartment clearance). The equations used to relate the 

micro-rate constants to clearance are shown below. 

 

 

α

β
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A one-compartment model: 

CL = k V                                               (2.20) 

 

A two-compartment model: 

1CL = k V                                               (2.21) 

1 212 21Q = k V    or   Q = k V                                   (2.22) 

 

The CL value obtained with the above equations can be used to calculate the area 

under the concentration time curve (AUC). The AUC is the parameter reflecting the 

overall exposure of the patient to the drug. It depends on dose, bioavailability and 

CL. In this thesis, the AUC was the PK parameter used to determine the efficiency of 

the ciprofloxacin dose. The AUC can be calculated by the following equation: 

 

                                          (2.23) 

 

The unit for AUC is concentration time, for example,   

 

2.2    POPULATION PHARMACOKINETIC MODELLING 

Population PK is a data analysis approach aimed at determining typical PK 

parameters and their statistical distribution, as well as identifying potential sources of 

inter- and intra-individual variability. This information can be used to develop 

dosage regimens that will achieve target drug concentrations. The population PK 

approach can also identify clinical factors, such as body weight or renal function, 

which contribute to inter-patient variability in PK. In the simplest case, all data are 

pooled and analysed as if they come from the same individual. This method is called 

the ‘naïve pooled data’ (NPD) approach. The drawback of this method is that it is 

susceptible to bias, as it ignores individual variability and no information can be 

obtained with regard to PK relationships with patient characteristics. However, NPD 

can be used if a rich data set is available and the data design is similar across 

individuals. It may also help to obtain initial PK parameter estimates (Vinks, 2002). 

F Dose
AUC = 

CL



mg hr/L.
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In a second population approach, called the ‘standard two-stage’ method (STS), 

individual PK parameters are estimated in the first stage, while means and variability 

are determined in the second stage. The drawback of this method is that it can 

produce biased and imprecise parameter estimates. Use of the STS method is only 

recommended if a sufficiently large amount of data can be obtained from all subjects, 

and the data are balanced across individuals.  

 

In the 1970s, Sheiner et al. proposed the use of a non-linear mixed effects model to 

analyse PK data that have been collected from routine clinical practice or during 

phase III or phase IV trials. This type of data is very sparse, i.e. only one or two 

samples per patient can be obtained, and there may be an imbalance in the number of 

samples taken from each patient. Use of traditional methods may lead to biased 

parameter estimates if some of the information obtained is significantly far from a 

typical value, such as data from a patient who has unusual PK. Conversely, the non-

linear mixed effects model can handle sparse data because it analyses all data 

simultaneously, as each individual borrows information from the others. In this 

thesis, a population analysis was performed with a non-linear mixed effects model. 

The term ‘mixed effects’ is so-called because it includes two effect types; fixed and 

random. 

 

2.2.1   Fixed effects modelling 

Fixed effects are those factors that can be measured, including (i) independent 

variables, such as time and dose, and (ii) PK parameters, such as clearance and 

volume of distribution. These factors are entered in the structural part of the model, 

which includes the PK model and the regression model. The regression model is used 

to describe the effect of covariates on PK parameters. For example, equation 2.24 

shows a one- compartment model following an IV bolus injection  

 

CL

V
- tD

Cp = exp
V


                                          (2.24)  
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where  is the predicted plasma concentration at time, t, following a single IV 

dose, D. CL and V are the clearance and volume of distribution, respectively.  

 

2.2.2   Random effects modelling 

Random effects are the difference between the observed concentrations and the 

predicted concentrations that have been estimated from the structural model. Random 

effects are primarily divided into two types, according to the sources of variability. 

These are inter-individual variability and residual variability, which are typically 

estimated as a variance around the fixed effect parameters assuming a normal 

distribution. Random effects can be represented graphically, as shown in Figure 2.3A 

and 2.3B (adapted from Grasela & Sheiner, 1991).  

 

2.2.2.1  Inter-individual variability  

Inter-individual variability represents the difference between the parameter of an 

individual and the typical parameter of the population. If PK parameters are assumed 

to follow a log-normal distribution, inter-individual variability can be modelled by 

the following equation: 

 

                                   (2.25)  

 

where, CLi is the individual CL value, TVCL is the typical population value of CL 

and ηCLi is the inter-individual error. The ηCLi value is assumed to be normally 

distributed with a mean of zero, and an estimated variance of ω
2
, as illustrated in 

Figure 2.3A.  

 

Equation 2.25 can also be written as follows: 

 

                                     (2.26) 

 

 

 

Cp

i CLi
ln(CL ) = ln(TVCL) + η

i CLi
CL  = TVCL exp(η )
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2.2.2.2  Residual variability 

Although the PK parameters for an individual subject were already known, and were 

used to predict drug concentrations, these predicted drug concentrations (Cpred) may 

differ from the observed observations (Cobs). This discrepancy, called residual error 

(εij), represents model misspecification and experimental errors, as well as other, 

unknown, errors. Inter-occasional variability (IOV) with respect to the change of PK 

parameters (e.g. CL and V) over time, may also contribute to residual error (Karlsson 

& Sheiner, 1993). The εij value is assumed to be normally distributed with a mean of 

zero, and an estimated variance of σ
2
, as illustrated in Figure 2.3B. Three types of 

residual error models were used in this thesis: 

 

1) additive error model 

                                         (2.27) 

 

with this model, error on each concentration measurement is constant, independent of 

the concentration value. 

 

2) proportional error model 

                                      (2.28) 

 

with this model, error is proportional to the concentration. 

 

and 3) combined error model 

                           (2.29) 

 

The combined error model has both an additive and a proportional component. The 

additive component dominates at low concentrations, while the proportional 

component dominates at high concentrations.  

 

 

obs pred ij
C  = C  + ε

obs pred ij
C  = C  (1+ ε )

obs pred pred ij,prop ij,add
C  = C  + (C ε ) + ε
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Figure 2.3A  Log-linear parameter distribution, showing the relationship 

between TVCL, CL and η 

 

 

 

 

 

  

 

 

 

 

 

 

Key: TVCL is the typical value of clearance in the population, CLi is the estimated 

CL for an individual, ηCLi is the inter-individual error, which is assumed to be 

normally distributed with mean of zero and variance ω
2
. 

 

Figure 2.3B  Concentration-time profile showing the relationship between 

observed concentrations, predicted concentrations and residual error 

 

 

 

 

 

 

 

 

 

 

 

Key: Cpred is the predicted concentration, Cobs is the observed concentration, εij is the 

residual error which is assumed to be normally distributed with mean of zero and 

variance σ
2
. 

ln(TVCL) ln(CLi) 

ηCLi 

±ωCL 

0 

±σ 

Cpred 

Cobs 

εij 

0 
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2.2.3   Mathematical expression 

The general form of the non-linear mixed effects model, assuming time constant 

parameters and additive residual error, can be written as follows (Beal et al., 1989-

2006): 

 

                            (2.30) 

 

where yij is the jth observed concentration from the ith individual, f(…) is the 

structural model that relates the vector of the independent variables, Xij (e.g. time and 

dose) to the response given by the ith individuals vector of PK parameters, Pi. εij is 

the residual error.  

 

Each parameter Pi is distributed around the typical population value (θ), and is 

related to covariates as described in the following equation: 

 

                             (2.31) 

 

where g(…) is a function that describes the relationship between Pi and the vector of 

the covariates for the ith individual, Zi. The general expression of the non-linear 

mixed effects model is therefore: 

 

                                 (2.32) 

 

2.2.4   Covariate modelling 

When adequate structural and error models have been selected, covariates are usually 

added to the model in order to explain the variability between subjects. Covariates 

are defined as patient-specific characteristics that are expected to influence the 

pharmacokinetics or pharmacodynamics of a drug, for example, demographic data 

(e.g. age, weight and gender) and clinical factors (e.g. renal and liver functions). The 

relationship between covariates and parameters can be described by using the models 

as follows:  

2(P ,X ) ε         ε ~ N(0,σ )ij i ij ij ijy f 

2P (θ, ) η         η ~ N(0,ω )i i ij ijg z 

( (θ, ) η ,X ) εij i ij ij ijy f g z  
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2.2.4.1  Continuous covariates 

Continuous covariates, such as body weight, age and creatinine clearance, can be 

modelled with the simplest linear function as: 

 

                                          (2.33)  

 

where P is the parameter estimate and Cov is the covariate. θ1 is the typical value if 

the covariate is equal to zero. θ2 represents the change of parameter estimate per unit 

change of covariate. Equation 2.33 can be reparameterised to give θ more meaning 

as: 

 

1 2P = θ   [1 + θ ( median )]Cov Cov                              (2.34) 

 

with the above equation, θ1 is the parameter estimate when the covariate is equal to 

the median value and θ2 is the fractional change of parameter estimate per unit 

change of covariate from the median value.  

 

For non-linear relationships, covariates can be modelled by the following equations: 

 

                                     (2.35) 

 

2.2.4.2  Categorical covariates  

Categorical covariates can be categorised as binary (e.g. male/female, response/non-

response), ordered multiple (e.g. severity and stage of disease) and non-ordered 

multiple (e.g. genotype, race). In this thesis, a binary covariate was included in the 

model by coding the covariates as either ‘0’ or ‘1’; such as ‘0’ for males and ‘1’ for 

females. The models in equations 2.33 and 2.34 can also be applied to binary data. 

For multiple category covariates, each category was assigned to different indicator 

values e.g. ‘1’ for healthy children and ‘2’, ‘3’ and ‘4’ for mild, moderate and severe 

malnutrition, respectively. The model in equation 2.36 was used for non-ordered 

1 2P = θ  + θ Cov

2 θ

1P = θ
median 

Cov

Cov
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multiple covariates and the model in equation 2.37 was used for ordered multiple 

covariates. 

 

                                       (2.36) 

 

                             (2.37) 

 

2.2.5   NONMEM 

2.2.5.1  Program 

In this thesis, population PK analysis was performed using the non-linear mixed 

effects modelling program, NONMEM, Version VI (Beal et al., 1989-2006) with a 

G77 Fortran compiler, running on a computer with a Microsoft Windows XP 

operating system. NONMEM is a FORTRAN computer program, and was specially 

developed to fit non-linear regression models to population PK and 

pharmacodynamic data. Xpose Version 4.0 (Jonsson & Karlsson, 1999), which is 

implemented in the R software, Version 2.9.2, was used to process the NONMEM 

outputs.  

 

A collection of FORTRAN subroutines, including ADVAN, TRANS, PK and 

ERROR, have been written for use in NONMEM. The ADVAN subroutine is used to 

describe the structural model, for example, bolus input with mono-exponential 

decline, first-order input with bi-exponential decline, etc. In this thesis, ADVAN2 

was used for a one-compartment model. The parameter k was reparameterised to 

1

2

3

4

 θ    if  = 1

 θ    if  = 2
P = 

 θ    if  = 3

 θ    if  = 4

Cov

Cov

Cov

Cov











1

1 2
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1 2 3 4

 θ                           if  = 1

 θ θ                    if  = 2
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 θ θ θ             if  = 3

 θ θ θ θ      if  = 4

Cov

Cov

Cov
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give CL and V using the translator subroutine TRANS2. For a two-compartment 

model, ADVAN4 was used with basic parameters k, k12 and k21. This was 

reparameterised using TRANS4 to provide CL, Q, V1 and V2. A PK subroutine was 

used to estimate the values for the population and individual PK parameters, such as 

CL, V and ka, as well as to compute the inter-individual variability. An ERROR 

subroutine is used to describe the differences between observed and predicted 

dependent variables, for example, drug concentrations.  

 

2.2.5.2  Data file format 

In this thesis, a data file for NONMEM analysis was created with Microsoft Excel
®
 

2003 using a ‘comma separated values’ format. All data were arranged in columns, 

and the information necessary for inclusion in the data file was identification data 

number (ID), blood sampling time after the dose (TIME), administration dose (AMT) 

and dependent variable data, which are drug concentrations (DV). A missing 

dependent variable (MDV) column was required to specify whether the DV column 

contained values for observed data. An event identification data (EVID) column was 

used to identify the types of event described in each data record, for example, ‘0’ for 

an observation event, ‘1’ for a dose event, ‘2’ for other events, etc. The EVID 

column was used when using the transit compartment model to describe the 

absorption process of a drug. Additional columns for covariate data, such as weight, 

age and gender were subsequently included. An example of the NONMEM data file 

structure is shown in Figure 2.4  

 

2.2.5.3  Control file format 

The control file is an ASCII file that contains a series of statements, each of which 

begins with an ‘$’ symbol. The first line of the control file states the title of the 

problem being solved ($PROB), followed by the name of data column ($INPUT), 

which is the same as that specified in the data file. Some of these column names are 

reserved and recognised specifically by NONMEM, such as ID, TIME, AMT and 

DV, whereas others, such as the name of the covariate (e.g. weight, height, age etc.) 

can be user-defined. $DATA is used to indicate the name and location of the data 

file. The next part of the file defines the model that will be used to fit the data. Under 
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$SUBROUTINE, a subroutine that describes a PK model, for example, ADVAN2 

and TRANS2, is defined. The parameters to be estimated, THETA (θ) and ETA (η), 

are assigned in a $PK record. THETAs represent the typical population parameters 

(e.g. TVCL and TVV) and the relationships between these parameters and 

covariates. ETAs represent the inter-individual random effects. The scale parameter, 

S, is also included under the $PK record to convert the amount of drug in the 

compartment to measured drug concentration. The $ERROR record is used to 

describe the residual error model (the details of the different approaches used to 

model the residual error are given in Section 2.2.2.2). Initial estimates for structural 

parameters, the variance of inter-individual error and the variance of the residual 

error are specified in the $THETA, $OMEGA and $SIGMA records, respectively. 

These initial estimates can be fixed by adding the word ‘FIXED’ after the values, for 

example, ‘$OMEGA 0 FIXED’. If the covariance between ETAs is used in the 

model, the ‘BLOCK’ command is added to the $OMEGA record. The number 

specified in the BLOCK command refers to the number of ETAs in the block; for 

example, ‘BLOCK (3)’ means that there are three ETA variables and that the 

covariance between these variables will be estimated. An example of a block 

variance-covariance matrix coded in the control file is shown below: 

 

 ETA1 ETA2 ETA3 

ETA1    

ETA2    

ETA3    

     

where the diagonal values (11, 22  and 33) are the variances and the off-diagonal 

values (12, 13  and 23) are the covariances. An example of a control file is 

illustrated in Figure 2.5. 

 

The estimation process in NONMEM is controlled by the commands indicated in the 

$ESTIMATION record, such as ‘MAXEVAL’ (the maximum number of objective 

function evaluations allowed during the search), ‘METHOD’ (the estimation method 

11ω

12ω 22ω

13ω 23ω 33ω
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e.g. first-order or first-order conditional estimation method) and ‘SIG’ (minimum 

number of significant figures required for the accuracy). If a $COVARIANCE record 

is presented, NONMEM will generate the standard error, covariance matrix, 

correlation matrix and the inverse covariance matrix of parameters. A $TABLE 

record is used to request NONMEM to create a results table, for example, observed 

concentrations, individual-predicted concentrations, population-predicted 

concentrations and other requested data.  
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Figure 2.4  Excerpt from a NONMEM data file 

 

ID TIME AMT DV MDV AGE SEX WT HT SHOK EDEM NA CLCR 

1 0.00 50 0 1 18 0 5.02 66.8 0 0 132 21.24 

1 1.07 0 2.01 0 18 0 5.02 66.8 0 0 132 21.24 

1 2.93 0 2.62 0 18 0 5.02 66.8 0 0 132 21.24 

1 6.07 0 1.18 0 18 0 5.02 66.8 0 0 132 21.24 

1 9.90 0 0.46 0 18 0 5.02 66.8 0 0 132 21.24 

2 0.00 58 0 1 27 1 5.8 78.5 1 1 129 25.61 

2 3.00 0 1.69 0 27 1 5.8 78.5 1 1 129 25.61 

2 5.25 0 1.05 0 27 1 5.8 78.5 1 1 129 25.61 

2 9.08 0 0.62 0 27 1 5.8 78.5 1 1 129 25.61 

2 12.08 58 0 1 27 1 5.8 78.5 1 1 129 25.61 

2 0.08 0 0.4 0 27 1 5.8 78.5 1 1 129 25.61 

3 0.00 106 0 1 33 1 10.64 88.5 0 1 142 12.12 

3 2.00 0 1.77 0 33 1 10.64 88.5 0 1 142 12.12 

3 4.05 0 1.47 0 33 1 10.64 88.5 0 1 142 12.12 

3 8.05 0 0.73 0 33 1 10.64 88.5 0 1 142 12.12 

3 12.00 106 0 1 33 1 10.64 88.5 0 1 142 12.12 

3 12.25 0 0.69 0 33 1 10.64 88.5 0 1 142 12.12 

4 0.00 61 0 1 14 0 6.7 71 0 0 131 15.00 

4 3.02 0 1.82 0 14 0 6.7 71 0 0 131 15.00 

4 5.00 0 1.19 0 14 0 6.7 71 0 0 131 15.00 

4 9.00 0 0.58 0 14 0 6.7 71 0 0 131 15.00 

4 12.00 61 0 1 14 0 6.7 71 0 0 131 15.00 

4 0.17 0 0.32 0 14 0 6.7 71 0 0 131 15.00 

5 0.00 92 0 1 56 0 9.2 89 1 1 137 22.45 

5 2.25 0 1.16 0 56 0 9.2 89 1 1 137 22.45 

5 3.92 0 1.84 0 56 0 9.2 89 1 1 137 22.45 

5 8.00 0 1.16 0 56 0 9.2 89 1 1 137 22.45 

5 12.00 92 0 1 56 0 9.2 89 1 1 137 22.45 

5 11.88 0 0.19 0 56 0 9.2 89 1 1 137 22.45 

6 0.00 86 0 1 14 0 8.58 70 0 1 125 23.94 

6 1.00 0 0.69 0 14 0 8.58 70 0 1 125 23.94 

6 3.00 0 2.36 0 14 0 8.58 70 0 1 125 23.94 

6 6.00 0 0.89 0 14 0 8.58 70 0 1 125 23.94 

6 10.00 0 0.34 0 14 0 8.58 70 0 1 125 23.94 

 

Key: ID = patient identification number, TIME = time after drug administration, AMT = 

dose, DV = dependent variable (ciprofloxacin concentration), MDV = missing dependent 

variable, AGE = age, SEX = sex, WT = weight, HT = height, SHOK = shock, EDEM = 

oedema, NA = sodium concentration, CLCR = creatinine clearance.  
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Figure 2.5  Example of a control file 

 

$PROB CIPROFLOXACIN 

$INPUT ID TIME AMT DV MDV AGE SEX WT HT SHOK EDEM NA CLCR 

$DATA  DATA2.CSV  

$SUBROUTINE ADVAN2 TRANS2 

$PK   TVCL=THETA(1) 

            TVV=THETA(2) 

            TVKA=THETA(3) 

            CL=TVCL*EXP(ETA(1)) 

            V=TVV*EXP(ETA(2)) 

            KA=TVKA*EXP(ETA(3)) 

            ALAG1=THETA(4) 

            S2=V 

$ERROR     IPRED=F 

              W=SQRT(THETA(5)**2+THETA(6)**2*F**2) 

             IRES=DV-IPRED 

            IWRES=IRES/W 

Y=F+W*ERR(1) 

$THETA   (0,30) (0,120) (0,2.5) (0,0.5) 0.1 0.1  

$OMEGA   0.5 0.5 0.5 

$SIGMA  1 FIX 

$ESTIMATION MAX=1500 METHOD=1 INTERACTION SIG=3 PRINT=2  

$COVAR  

$TABLE ID TIME AMT DV MDV AGE SEX WT HT SHOK EDEM NA CLCR NOPRINT FILE=RUN1.TAB 
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2.2.5.4  Estimation methods 

In the NONMEM program, parameter estimation is based on maximising the 

likelihood of the data given in the model. An approximation is performed using the 

extended least squares objective function. If the random effects are assumed to 

follow a normal distribution, the objective function value (OFV) is equal to -2 times 

the logarithm of the likelihood (-2LL) of the data (Beal, 1984; Davidian & Giltinan, 

1995). The non-linearity of the model precludes the direct calculation of the OFV, 

with respect to random effects. Therefore, NONMEM addresses this problem by 

approximating the OFV by a linearisation of the non-linear model. 

 

Several linearisation methods are implemented in NONMEM. The first-order 

estimation (FO) method linearises the non-linear model around the median of the 

individual parameters (random effects set to zero) using a first-order Taylor-series 

expansion. This method gives only the population parameter estimates; it does not 

provide individual parameters. At the last iteration, the POSTHOC option uses an 

empirical Bayesian method to estimate η for each individual, by using the population 

parameters as initial estimates. The first-order conditional estimation (FOCE) 

method is similar to the FO through linearising the model around the current 

estimates of the fixed effects but it is conditional on the individual estimates of η, 

rather than being set to zero. This method estimates the individual value of η at every 

iteration by maximising the empirical Bayesian posterior density using the current 

estimates, so it is more time-consuming. FOCE is useful when the number of 

observations per individual increases and the model has greater non-linearity (Beal et 

al., 1989-2006). Interactions between η and ε can be accounted for by using the 

FOCE method with interaction (FOCE-I). When interaction is specified, ε is 

estimated with the conditional estimates of ηs. If the residual error model contains a 

proportional component, ε depends on the model prediction, which is in turn a 

function of the ηs. When the additive error model is used, the model prediction does 

not affect the parameter estimates.     

 

Several estimation methods, such as stochastic approximation expectation 

maximisation (SAEM), Monte Carlo importance sampling (IMP) and a full Bayesian 



56 

 

estimation, have become available in the new version of NONMEM. The results 

from a recent comparative study suggested that, although the computational time of 

the new methods was much faster, the estimation performance was similar to the 

traditional FOCE-I method, in terms of parameter estimates and standard errors  

(Gibiansky et al., 2012). Parameters estimated using the latter method are less biased 

and more consistent with the actual significance levels, compared to the FO method 

(Wählby et al., 2001). In addition, the FO method tends to have higher actual 

significance levels of covariates, which may lead to a covariate selection bias. 

 

2.2.5.5  Individual empirical Bayes estimates and shrinkage 

In NONMEM, the individual parameter estimates are generated as empirical Bayes 

estimates (EBEs). EBEs are highly dependent on the quality of the observed data. If 

the data are very sparse or lack information for individual parameters, EBEs may 

tend to shrink towards the population mean value. The phenomenon of reduction in 

the variability of an EBE is defined as ‘η-shrinkage’ (Savic & Karlsson, 2009). The 

consequence of η-shrinkage is that the shape of the true relationship between EBEs 

and their covariates may become distorted or appear as unimportant or falsely 

important. The sparseness of data may also lead to ε-shrinkage, which is the 

phenomenon where the individual weighted residual (IWRES) shrinks towards zero. 

The power of IPRED and IWRES to diagnose structural and residual error model 

misspecification may then decrease as a result.  

 

The degree of η- and ε-shrinkage can be calculated using the following equations: 

 

EBESD(η )
η-shrinkage = 1 - 

ω
                                   (2.38) 

 

                                 (2.39) 

 

where SD is standard deviation. 

 

 

ε-shrinkage = 1 - SD(IWRES)



57 

 

2.2.6   Model selection  

In this thesis, model selection was based on the objective function value (OFV) 

provided by NONMEM and by graphical assessment. Plausibility and the precision 

of parameter estimates were also taken into consideration.  

 

2.2.6.1  Objective function value 

NONMEM estimates the parameters by an iteration process. It predicts the 

concentration at all sampling times at each iteration, given the current PK parameter 

estimates, and then calculates the difference between predictions and observations by 

using the extended least squares OFV: 

 

                         (2.40) 

 

where yi is the observation in the ith subject, f(…) is a function representing the 

prediction of the observations yi given the model, σ
2
 is the variance of residual errors 

and  m is a number of subjects in the data set. The iteration process continues until 

the minimum value of the OFV is attained. The difference in the OFV (ΔOFV) 

between two nested models approximately follows a χ
2
-distribution, with degrees of 

freedom (df) corresponding to the difference in the number of parameters between 

the two models. The likelihood ratio test was used to compare nested models, where 

ΔOFV of 3.84 and 6.63 corresponded to a significance level of p<0.05 and 0.01 (df = 

1), respectively.  

 

2.2.6.2  Graphical assessment 

1) DV versus PRED and IPRED 

Plots of population-predicted concentrations (PRED) and individual-predicted 

concentrations (IPRED) versus observed concentrations (DV) are commonly used to 

assess the fit of the model. The data points should ideally be centred along the line of 

identity. The major drawback of these plots is that, in addition to model 

misspecification, a skewed distribution may be observed as a result of unexplained 

variability, adaptive designs (e.g. dose adjustments) and censoring (e.g. omission of 
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data below the limit of quantification) (Karlsson & Savic, 2007). The solution to this 

problem is to either use a greater number of assessment tools or to create mirror plots 

based on the simulations with the final model. If the pattern in the mirror plots for the 

observed data and the simulated data are similar, there is no evidence of model 

misspecification. For the plot of IPRED, a perfect fit may occur if ε-shrinkage is 

high. 

 

2) DV, PRED and IPRED versus time 

Data from individual subjects, including DV, PRED and IPRED, created in one plot 

are used to compare the concentration-time profile of measured concentrations with 

the population and individual predicted concentrations. These plots are also used to 

aid assessment of the fit of the model and to identify anomalous values.  

 

3) Residuals versus time 

Plots of residuals versus time or any independent variables can be used to detect 

model misspecification. Residuals based on population predictions (RES = DV – 

PRED) and individual predictions (IWRES = (DV – IPRED)/σ) have the same 

limitations as those discussed above; however, IWRES remains useful if ε-shrinkage 

is sufficiently low. Weighted residuals (WRES) are unaffected by the shortcomings 

shown with regard to RES and IWRES. However WRES are computed based on the 

FO method and therefore have a problem with crude first-order linearisations. In the 

present study, conditional weighted residuals (CWRES) were used. CWRES are the 

difference between the observations and the predictions weighted with the error 

magnitude (σ), based on the FOCE approximation. It has been demonstrated that 

CWRES is more accurate than other residual based diagnostics (Hooker et al., 2007). 

If the model is adequate, CWRES should be normally distributed, with a mean of 

zero when plotting against time.   

 

4) IWRES versus IPRED 

The IWRES plot is commonly used for assessment of the fit of the residual error 

model. The general interpretation is that, when the model fit is adequate, IWRES 

should show a lack of any trends when plotting against the predictions. 
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2.2.6.3  Identification of potential covariates 

Covariate model building can be a difficult and very time-consuming process, 

particularly if there are a large number of covariates in the data set. Indeed, testing of 

all existing covariates is unnecessary, as some potential covariates are often 

correlated, such as weight, age and height.  The most important and clinically 

relevant covariate should be decided on in such circumstances. In this thesis, 

covariate models were identified using a combination of the following techniques: 

 

1) Graphical inspection  

Potential covariates were identified from plots of individual estimates of the 

parameters versus the covariates. The shape of the relationship, for example, linear 

and log-linear, may be visible in the plots. The drawbacks of these graphs are that 

they tend to be biased towards the population values when sparse sampling is used, 

and the interpretation is somewhat subjective.  

 

2) Generalised additive modelling  

Generalised additive modelling (GAM) was also used to identify the important 

covariates. GAM describes the relationship between individual parameter estimates 

and the covariates, according to the equation below (Mandema et al., 1992): 

 

                                        (2.41) 

 

where Pi is the PK parameter estimate for the ith individual α is a constant value and 

fj(Xij) represents either a linear or a spline (non-linear) function of the jth covariate. 

 

The influence of covariates on the parameters was tested by a stepwise selection 

method as follows: a number of hierarchical models were built for each covariate and 

parameter. These included models with no covariates and models that included the 

covariates as a linear or spline relationship. The models were evaluated in 

hierarchical order, based on the Akaike information criterion (AIC).  The model 

which resulted in the largest decrease in AIC was retained. The models at the higher 

=1
i j ij

P  = α + (X )
n
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and lower levels were subsequently evaluated, and again the model that was 

optimum on the basis of the AIC value was retained. This process continued until the 

AIC reached a minimum value. The AIC value can be calculated as follows (Akaike, 

1978): 

 

                               (2.42) 

 

where Nobs is the number of observations, Npar is the number of parameters and 

WRSS is the weighted residual sum of squares. 

 

Several techniques for building covariate models have been developed to date, for 

example, stepwise covariate modelling (SCM) (Jonsson & Karlsson, 1998), Wald’s 

approximation method (WAM) (Kowalski & Hutmacher, 2001) and the least 

absolute shrinkage and selection operator (LASSO) (Ribbing et al., 2007). These 

techniques were not applied in the present study. 

 

2.2.6.4  Adding covariates to the model 

The candidate covariates identified from the graphical approach and GAM analysis 

were added to the basic model, one at a time. The most important covariate, as 

judged by the greatest reduction in the OFV, was retained in the model. Other 

covariates were then included individually, until no more covariates could reduce the 

OFV to a level of statistical significance (ΔOFV at least 3.84; p<0.05). Scatter plots 

of inter-individual variability (η) of parameter against the covariate were used to 

assess the effect of adding covariates. If a relationship between parameter and 

covariate was shown, the model with the incorporated covariate should lack trends, 

whereas the model without a covariate may have shown trends. In addition to the 

graphical inspection, a reduction in inter-individual variability was interpreted by 

calculating the percentage coefficient of variation (%CV). If inclusion of a covariate 

failed to decrease variability, as measured by %CV, it was removed from the model. 

The physiological plausibility was also considered.  

 

 

parobs
AIC = N Ln(WRSS) + 2N
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2.2.7   Simulation with NONMEM 

In this thesis, the NONMEM program was used to perform a Monte Carlo 

simulation. This approach generates simulated data points using a given model, 

accounting for inter-individual variability and residual variability. A data file was 

prepared as a normal data file for estimating parameters (Section 2.2.5.2), having 

patient identification number, dosage history and blood-sampling time schedule. A 

value in the DV column was set to zero. In the control file, population parameter 

estimates (θ), variances of inter-individual error (η) and variances of residual error 

(ε), obtained from the final population model, were entered into the $THETA, 

$OMEGA and $SIGMA records, respectively. In NONMEM, simulation can be 

performed by using the $SIMULATION record instead of $ESTIMATION. This 

record requires information regarding the number of simulations and a random 

number. Individual parameter estimates corresponding to the simulated data were 

computed by adding the command ‘ONLYSIMULATION’ in the $SIMULATION 

record. When using this option, the calculation of OFV and WRES is neglected and 

the predictions are calculated using θ and simulated η.  

 

2.2.8   Model evaluation 

There are two general approaches to model evaluation: ‘internal’ and ‘external’ 

evaluation. Internal evaluation involves the use of complex methods, such as data 

splitting and resampling techniques, whereas external evaluation requires a new data 

set (called a validation data set) to evaluate the model. There is no consensus as to 

which method should be used; evaluation methods should be selected on the basis of 

the objective of the analysis (FDA, 1999). It is possible that in many cases, a model 

is developed for predictive purposes, so its predictive performance should be 

assessed. The external evaluation method is considered a method of choice; however, 

for some populations, for example children and severely ill individuals, a validation 

data set may be difficult to obtain (Brendel et al., 2007). In addition, the main 

drawback of this approach is that an unbalanced study design (e.g. number of 

subjects) and differences in inclusion criteria (e.g. dosage regimen and sampling 

time) between two data sets may influence the evaluation. 
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In the present study, a validation data set was not available, the final models were 

therefore only evaluated using internal evaluation techniques. 

 

2.2.8.1  Bootstrapping 

Bootstrapping is a method used to generate a new data set by resampling with 

replacement from the original dataset (Efron, 1979; Efron & Tibshirani, 1993). The 

final population model was fitted to each new dataset, then the bias, standard errors 

and confidence intervals (CIs) of parameter estimates were calculated. If the final 

model is robust, the parameter estimates calculated from bootstrap datasets should be 

similar to those obtained from the original dataset, and they should lie within the 

95% CI.  

 

2.2.8.2  Visual predictive check 

Visual predictive check (VPC) is a simulation-based diagnostic, in which data 

simulated from the model were compared with the distribution of observed data, 

which is often grouped within a defined range of an independent variable. The 

median, 5
th

 and 95
th

 percentiles, with a 95% CI of each percentile derived from the 

simulations, were graphically compared to the corresponding percentiles of the 

observed data. If evidence of model misspecification is shown, discrepancies can be 

observed. In this thesis, a prediction-corrected VPC (pcVPC), which normalises both 

simulated and observed data to the typical population prediction (Bergstrand et al., 

2011), was used for model evaluation.  

 

2.2.8.3  Normalised prediction distribution error  

In 2006, Mentré and Escolano proposed a new model-evaluation method called 

prediction discrepancies (pd); pd is the percentile of each observed piece of data in 

the simulated predictive distribution for that observed data, under the null hypothesis 

(H0). The limitation of pd is that if the subjects have several measurements, pd may 

lead to an increased type I error, as they are correlated within individuals (Mentré & 

Escolano, 2006). In the case of repeated measurements, a de-correlated pd, so-called 

normalised prediction distribution error (npde), should be used. Monte Carlo 

simulations are performed for the npde to create a posterior predictive distribution. 
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The percentiles of the observed data in the predictive distribution are then computed, 

as in pd, but they are normalised with the mean and variance of the simulated data 

for each subject (Brendel et al., 2006; Brendel et al., 2010). The interpretation of 

npde is that if the model adequately describes the data, the npde should follow a 

normal distribution, with a mean of zero and a variance of one. This assumption can 

be tested statistically by using (i) a Wilcoxon signed rank test to assess whether the 

mean is significantly different from zero, (ii) a Fisher test for variance to examine 

whether the variance is significantly different from one and (iii) a Shapiro-Wilks test 

to test whether the distribution is significant different from a normal distribution 

(Brendel et al., 2010). The npde can also be interpreted graphically by plotting it 

against any independent variables. If the assumption above is true, no trend should be 

observed on these scatter plots.  

 

2.3    OPTIMAL DESIGN FOR POPULATION 

PHARMACOKINETIC STUDIES 

2.3.1   Concepts of the optimal design methods 

Optimal study design refers to the selection of design variables that are expected to 

contain the most information. The ultimate aim of optimal design for population PK 

studies is to maximise parameter estimate precision (obtain the lowest standard errors 

and coefficients of variation) while minimising the amount of information required. 

Optimal design has been studied since Smith (1918) proposed a criterion to obtain 

optimal designs for polynomial regression models. Now known as ‘G-optimality’ 

(following Kiefer & Wolfowitz 1959), this criterion minimises the maximum 

variance of parameters of interest over the design space. Wald (1943) introduced 

another optimality criterion putting the emphasis on the quality of the parameter 

estimates, termed ‘D-optimality’ by Kiefer and Wolfowitz (1959), a development 

subsequently extended by Box and Lucas (1959) to nonlinear regression models.  

 

In this paper, locally D-optimal designs for several chemical kinetic models, 

including first-order decay and two consecutive first-order reactions, are 

investigated. For nonlinear models, the specific term ‘locally D-optimal design’ is 

typically used, since the dependence of such designs will depend on the initial 
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parameter estimates, which are often obtained from previous studies or by expert 

guesses. Basing D-optimal design on initial parameter estimates has been justified on 

the basis that ‘in practical problems it will almost invariably be the case that some 

such information is available, and this will then provide the basis of a first design’ 

(Box & Lucus 1959: 79).  

 

D’Argenio (1981) was the first to apply the theory of optimal design to a PK study. 

This led to development of the ADAPT program (D’Argenio & Schumitzky, 1979; 

D’Argenio et al., 2009), which has been used in the optimal design of PK studies in 

the area of drug development. However, this approach only focused on the 

optimisation of sampling time schedules and for single subject PK studies.  

 

In 1997, Mentré et al. extended the work to population PK studies by proposing an 

approach to the optimal design of nonlinear regression models that also incorporated 

random effects. This approach involved first linearising the nonlinear model by using 

an FO approximation of the model about the mean, and then formulating the Fisher 

information matrix for linear models and normal distributions. Employing this 

approach, Mentré and colleagues were able to demonstrate the usefulness of optimal 

design in a toxicokinetic study of a new compound, using sparse sampling data (six 

samples taken from 24 rodents) fitted using a one-compartment open model with 

intravenous infusion input (Mentré et al., 1997). The results showed that the optimal 

(time schedule) design for two samples was 0.5 and 24 hours and for three samples  

0.5, 1 and 24 hours, thereby indicating that samples should be taken as early and as 

late as possible after administration. These results were consistent with an earlier 

simulation study conducted by Al-Banna et al. (1990), which had also found that 

samples should be taken at the minimum and maximum possible times for a two-

sample design.  For a three-sample design, a third sample taken anywhere between 

the extremes led to better estimates of the random effect parameters. 
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There are two general approaches to developing the optimal design for population 

PK studies: simulation-based and Fisher information matrix-based (Tod et al., 1998). 

The former involves the use of simulation techniques to generate concentration-time 

data, which are subsequently used to estimate population parameters that can be 

compared with the true values. With this approach, a number of designs are tested 

and the optimal design is selected based on the precision and bias of the parameter 

estimates. This approach is time-consuming and suffers also from the drawback that 

it is difficult to draw general conclusions for the optimal design. The second 

approach involves the use of statistical and mathematical methods to calculate the 

Fisher information matrix (FIM). The interesting aspect of this approach is that, from 

Cramér-Rao inequality, the inverse of the FIM is a lower bound of the covariance 

matrix of any unbiased estimator of the parameters. The concept of this FIM 

provides an opportunity to define optimality criteria in order to design optimal 

population experiments. The FIM-based approach also has an advantage over the 

simulation-based approach in that it is faster and enables the establishment of general 

conclusions about optimal designs. 

 

2.3.2   Fisher information matrix 

The FIM is a measure of the information contained in the data relative to a particular 

parameter. It can be calculated by differentiating the negative likelihood twice with 

respect to the model parameters, as shown in equation 2.43: 

 

                                  (2.43) 

 

where q are the design variables, represents all population parameters, E is the 

expectation of score function and L the maximum likelihood estimate.  
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Equation 2.43 can be expressed in matrix form as follows: 

 

                (2.44) 

 

where θ are the model parameters and n the number of parameters in the model. 

 

The covariance matrix ˆ( )Cov   in a future study can be calculated by inverting the 

FIM, shown as equation 2.45, thus:  

 

1 ˆFIM( , ) ( )q Cov                                         (2.45) 

 

2.3.3   Optimality criteria 

The requirements for extracting specific information from study designs are 

determined by optimality criteria. There are a vast number of optimality criteria, 

including A, C, D, E and G optimality.  The most commonly used of these, D-

optimality is used for the population PK study design in this thesis. D-optimality 

minimises the variability of parameter estimates by minimising the volume of the 

confidence ellipsoid region of the parameters, thereby maximising the determinant of 

the information matrix (or, minimising the determinant of the variance-covariance 

matrix).   

 

2.3.4   PopDes program 

There are currently several programs available for designing population PK studies. 

All programs use the same mathematical derivation of the FIM, but they vary in 
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terms of their specific features, for example in the algorithm implemented and the 

function used to calculate sampling windows (Mentré, 2007). In this thesis, both the 

evaluation and the optimisation of study design were performed with the PopDes 

program, Version 4.0 (Gueorguieva et al., 2007) and MATLAB Version 7.13 

(R2011b) (The MathWorks Inc., Natick, MA, 2011). PopDes is a program for 

optimal design of uniresponse and multiresponse, individual and population PK and 

PD experiments. This program has been developed using the FIM-based approach, 

assuming that a model has been selected at the design stage and the same model will 

be used to analyse upcoming data (Ogungbenro et al., 2011). PopDes uses D-

optimality to minimise the volume of FIM.  

 

2.3.4.1  Design options 

The PopDes program has two different functions: PopDes Windows and PopDes 

script. ‘PopDes Windows’ is the standard function with a Windows interface. Users 

need only choose different options from the interface for design evaluation and 

optimisation. Commonly used PK models can be selected from a list within the 

model library. ‘PopDes script’ is a script version of PopDes Windows written in 

MATLAB. The script version is useful for complex models and study designs. Both 

functions of the PopDes program were used in this study. Available design options in 

PopDes are summarised in Table 2.1. 

 

2.3.4.2  Optimisation algorithms 

Four algorithms are implemented in PopDes: Simplex, Hybrid, Exchange and First- 

order algorithm. The Simplex algorithm is very robust and remains the most 

commonly used for optimising nonlinear models; the main drawback of this 

algorithm is sensitivity to initial design points, which leads to difficulties in knowing 

whether it has reached a global minimum. The Hybrid algorithm is a combination of 

simulated annealing and Simplex algorithms; this algorithm has an advantage over 

other methods as it can escape local minima through selective uphill moves 

(Ogungbenro et al., 2011). Simulated annealing first screens the parameter space by 

moving with large step lengths without getting trapped in local minima, and then 

decreases the step length for the algorithm to focus only on the most promising area. 
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Table 2.1   Design options available in the PopDes program 

 

Design options Description 

Individual Study of a single subject 

Population Study of a group of subjects (population pharmacokinetics) 

Uniresponse Samples collected from only one response in the experiment 

e.g. drug concentration (PK response) 

Multiresponse Samples collected from more than one response in the 

experiment e.g. drug and metabolite concentrations or PK and 

PD responses 

Local Only point estimates of the parameters used during optimisation 

Bayesian
a Uncertainties of the parameters taken into account during 

optimisation 

Exact Only optimises sampling times  

Continuous Design variables to be optimised are both sampling times and 

design structure, which includes number of elementary 

designs
b
, number of subjects per elementary design and number 

of samples per elementary design 

List Optimal sampling times chosen only from list of admissible 

times 

Interval Optimal sampling times chosen anywhere between specified 

lower and upper boundaries (e.g. 0 to 12 hours after dose) 

a
 Available for use only with individual uniresponse study. 

b
 Groups of subjects with the same number of samples and sampling times. 

 

The modified Fedorov Exchange algorithm (the ‘Exchange algorithm’ hereafter) was 

adapted to optimise exact D-optimal designs with respect to the independent 

variables, i.e. sampling times (Ogungbenro et al., 2005). At each iteration, one of the 

sampling times is substituted from a list of admissible time points specified as a grid 

size (e.g. a grid size of 0.25 refers to 15 minutes); this generates a new vector of 

sampling time points that increase the determinant of the FIM and consequently 

determine the optimal design. During the optimisation, one of the design points is 

exchanged with another and the ratio of the determinant of the FIM (the new design 

compared to the previous design) then computed. The optimal design is selected if 
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the ratio falls below a tolerance level. Finally, the First-order algorithm has two 

functions: a forward and backward step. At each forward step, the sensitivity 

function (used to define the design points containing the most information) is 

maximised over the design space in order to obtain a new support point, which is the 

best among candidate support points. In the backward step, the worst support point is 

removed by minimising the sensitivity function over the design space (Ogungbenro 

et al., 2011). 

 

2.4    WHOLE BODY PHYSIOLOGICALLY BASED 

PHARMACOKINETIC MODELS 

In contrast to the conventional (e.g. one- or two-compartment) PK models, which are 

derived from experimental data, physiologically based pharmacokinetic (PBPK) 

models are based on the anatomical and physiological structure of the studied 

species. It was three quarters of a century ago that Teorell (1937) first described drug 

kinetics with mass balance equations using organ volume and organ blood flow. 

Since that time, PBPK models have become increasingly popular, mainly in the 

fields of environmental toxicology and risk assessment (Rowland et al., 2011; 

Thompson et al., 2008). The past decade, however, has seen an extension of PBPK 

modelling in the pharmaceutical area. This is due to the major advantage that PBPK 

models offer, with the rich information they include, including physiological 

parameters (e.g. organ volumes and organ blood flows) and drug specific parameters 

(e.g. lipophilicity) allowing them to describe and/or predict the pharmacokinetics of 

drugs, as well as investigate the influence of physiological change on drug kinetics.  

 

PBPK models can be divided into three types, according to their structures 

(Nestorov, 2003). The most common models are the whole body PBPK (WBPBPK) 

models, in which, as the name suggests, the entire body is used to create the model. 

The second type is partial PBPK models, which focus only on isolated body systems 

(e.g. the gastrointestinal tract). Lastly there are the liver or metabolism models, 

which describe the hepatic elimination of drugs using physiological and biochemical 

parameters (Houston & Carlile, 1997). In this thesis, only the first of these, 

WBPBPK models, are used.   
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2.4.1   Model development 

2.4.1.1  Model structure 

Physiological models separate the body into several compartments based on a 

realistic anatomical structure interconnected by the blood circulation system 

(Nestorov, 2007) (Figure 2.6). In the first step of model development, it is necessary 

to make a decision regarding the choice of organs and tissues to be included. 

Although there is no universal rule for this, the organs and tissues selected should be 

sufficient for a description of the PK and PD characteristics of the drug being 

investigated and relevant disease progression, as well as the various potential 

scenarios of drug usage and administration. Conversely, the complexity of the model 

should be limited, for practical reasons, such as to limit the quantity of data 

employed, complexity of mathematical description and computational time involved 

(Nestorov, 2003). Typically, WBPBPK models use two groups of organs/tissues, 

referred to as ‘core’ and ‘non-core’ tissues. Core tissues include blood (venous and 

arterial), sites of major drug elimination (liver, kidney and sometimes intestines and 

lungs), sites of drug administration (e.g. skin for subcutaneous administration), and 

potential sites of drug action and/or toxicities (e.g. tumour compartment), along with 

any other tissues that significantly affect the PK of a drug. The rest of the body is 

represented as non-core tissue, which is used to maintain the mass balance in the 

system. Non-core tissues may be further divided, into ‘rapidly equilibrating’ and 

‘slowly equilibrating’. Lumping should be performed only with kinetically similar 

tissues (Nestorov et al., 1998a). 
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Figure 2.6    General structure of a whole body physiologically based 

pharmacokinetics (WBPBPK) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key: IV = intravenous administration, PO = oral administration, CLR = renal clearance, CLH 

= hepatic clearance, Q = blood flow, LU = lungs, MU = muscle, AD = adipose tissue, SK = 

skin, BO = bone, BR= brain, HT = heart, KI = kidney, LI = liver, SPL = spleen, H=hepatic, 

GU = gut and CA= carcass. 

 

2.4.1.2  Tissue model structure 

The kinetics of a drug in each particular organ and tissue can be described by tissue 

models. The general information required for such tissue models include tissue 

volume, vascular perfusion, drug permeability, binding properties and the drug 

partition coefficient, and elimination processes. The simplest model is a single well-

stirred compartment (perfusion rate-limited) model, in which the drug is freely and 
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instantly distributed across the membranes without diffusion barriers. This type of 

model is often applied to small neutral compounds. If diffusion barriers, such as 

capillary membrane and cellular membrane, are presumed, more complex, 

permeability rate-limited tissue models (two or more compartments) should be used. 

Dispersion tissue models are required in cases where diffusion barriers cannot be 

identified but concentration gradients are known to exist  (Nestorov, 2007). More 

complex tissue models consisting up to six compartments, including red blood cells 

and vascular, intercellular and cellular spaces, as well as the bound and unbound 

drugs, have been proposed (Kawai et al., 1998; Tanaka et al., 1999). These models 

require a large amount of information, which is often difficult to collect.  

 

2.4.1.3  Model equations 

The amounts of a drug in different organs are calculated on the basis of the law of 

mass action, using the mass balance equations. Four different types of mathematical 

equations for the tissues within PBPK models have been used thus far: algebraic, 

nonlinear differential, partial differential and linear ordinary differential equations 

(Nestorov, 2003). Algebraic equations are used when the processes are assumed to 

equilibrate instantly, such as the PBPK models for inhalation studies; nonlinear 

differential equations are used to represent nonlinear processes, such as Michaelis-

Menten metabolism; partial equations are generally used with dispersion models; and 

linear ordinary differential equations (LODE) are the mathematical equations most 

commonly employed to describe the PK processes in WBPBPK models under the 

well-stirred hypothesis and assumption of linearity. LODE is used in this thesis. The 

change of drug concentrations in each organ is dependent on the variations in organ 

volume and organ blood flow, as well as drug elimination (equations 2.46-2.48).   

 

Equation for non-eliminating organs: 

 

outin

C
V  = Q (C  - C )

t
i

i i

d

d
                                    (2.46) 
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Equation 2.46 can also be reparameterised as follows: 

 

in

C C R
V  = Q (C  - )

t fu Kpu

i i
i i

i

d

d


 


                                 (2.47) 

 

 

Equation for eliminating organs: 

 

int,

in

C CLC C R
V  = Q (C  - ) - 

t fu Kpu Kpu

i ii i
i i

i i

d

d


 


                        (2.48) 

 

where 

Vi: volume of the organ i 

Qi: blood flow to organ i 

Ci: concentration of the drug in organ i 

Cin: concentration of drug entering the tissue 

Cout: concentration of drug leaving tissue 

R: blood-to-plasma ratio 

fu: fraction unbound in plasma 

CLint,i: intrinsic clearance of organ i 

Kpui: partition coefficient between unbound plasma and organ i 

 

2.4.1.4  Model parameters 

WBPBPK models have two types of parameters: physiological (organ volume and 

organ blood flow) and drug-specific (Nestorov, 2007). Collected from various 

sources, the physiological parameters are assumed to be independent of the study 

compound.  Although there is no official validated reference for these as yet, the 

most commonly used reference values for healthy populations are those compiled by 

the International Commission on Radiological Protection (ICRP) in 2003. However, 

if special populations, such as the obese, infants, elderly and pregnant, are studied, it 

is essential to take into account any physiological characteristics that may differ from 

normal. The pharmacological effects of the compound and influence of 

environmental factors on the physiological parameters should also be considered. 
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Results from sensitivity analyses have shown that cardiac output and blood flow are 

the most important parameters for the PBPK model (Nestorov, 1999). 

 

In WBPBPK models specifically, it is very important to have a physiological 

constraint; that is, all tissue blood flows should sum up to cardiac output and all 

tissue weights should sum up to body weight. The correlation between physiological 

parameters should also be included, in order to avoid the generation of 

physiologically unlikely individuals when doing simulations (e.g. very small heart 

with excessively high cardiac output). In many cases in which the physiological 

parameters are not available, allometric equations can be used. There are several 

excellent review articles of such equations, including Brown et al. (1997), Fiserova-

Bergerova (1995), Lindstedt and Schaeffer (2002) and Espié et al. (2009). 

 

Some drug-specific parameters are available in the literature but these generally still 

need to be estimated. The best way to obtain these parameters is by estimating from 

concentration-time data obtained from blood and various tissues (in vivo 

experiments). Some parameters, such as partition coefficients, can be predicted with 

in silico methods, using the physiochemical properties of drugs and tissue 

composition data of each organ (Poulin et al., 2001; Poulin & Theil, 2000; Poulin & 

Theil, 2002; Rodgers et al., 2005; Rodgers & Rowland, 2006). in vitro experiments 

are also a good source for this information, for example, those conducted by Ballard 

et al. (2000), Ito and Houston (2005), Johnson et al. (2006), Kato et al. (2003), and 

Shibata et al. (2002). 

 

2.4.2   Modelling methodology 

In general, WBPBPK models are used in two complementary modes: parameter 

estimation and simulation. For parameter estimation, the equations specified in the 

model are fitted numerically to the concentration-time data obtained from the 

experiment, minimising or maximising an objective function. Most frequently, least 

squares or maximum likelihood optimisation is used (Nestorov, 2003). There are two 

main approaches for parameter estimation in WBPBPK models: open loop and 

closed loop. Open loop estimations may result in bias but it has been suggested that 
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these can be used to generate initial parameter estimates for closed loop estimation 

(Nestorov, 2007). Otherwise, closed loop estimations tend to present numerical 

problems due to the large number of parameters fitted simultaneously to the observed 

data, although the results are less biased (Gueorguieva et al., 2004).    

 

The WBPBPK model equations need to be written with a particular computer 

software application. Many of these, such as acslX, MATLAB (which graphically 

interfaces with Simulink), STELLA, ModelMaker and MATHEMATICA, originally 

come from engineering and mathematics. While they have great flexibility, they also 

require advanced modelling and programming skills. Software has been developed 

for general PK modelling, like NONMEM, ADAPT 5 and SAAM II, which offers 

simplified equation coding but still requires advanced modelling knowledge. There 

are also tools designed specifically for PBPK modelling and simulation. These 

usually have a graphical user interface and built-in library for the PBPK model 

components, which allow the user to more easily create PBPK model structures. 

Some examples of this type of software are PK-Sim, Simcyp and Gastroplus. An 

additional, new software, BioDMET, has recently been developed for more complex 

models (Graf et al., 2012). In addition to drug circulation through organs and tissues 

at the macroscopic level, this also includes models for biological transport 

mechanisms and biotransformations within cells and organelles at the molecular 

scale. The interesting feature of BioDMET is that simulated concentration-time 

biomarker and imaging agent data can be inputted into an image simulator to 

generate the expected in vivo clinical images.   

 

2.4.3   Model applications 

Since WBPBPK models contain large amounts of information, their applications are 

traditionally for extrapolation proposes. Perhaps the most commonly used is 

interspecies extrapolation, because the WBPBPK model employs a structure 

common to all mammalian species (Nestorov, 2007). WBPBPK models can also be 

applied to predict drug exposure in organs that are inaccessible in practice, such as 

the brain (Xu et al., 2003) and some tumours (Liu et al., 2005). Other possible uses 

of WBPBPK models are inter-route (Chiu & White, 2006), inter-drug (Blakey et al., 
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1997; Nestorov et al., 1998b) and inter-dose extrapolation (Simmons et al., 2005). 

WBPBPK models have not only been applied to normal subjects, but also to special 

populations for which little or no relevant information is available, such as patients 

with altered physiology or in paediatrics.  

 

Edginton and Willmann (2008) developed WBPBPK models for patients with liver 

cirrhosis by incorporating physiological differences between healthy individuals and 

patients (e.g. change in hepatic blood flow, reduction in liver function, etc.). The 

modified models were used to generate concentration-time profiles for four drugs 

(alfentanil, lidocaine, theophylline and levetiracetam). Comparing the results with 

the literature data, these researchers found the model to give a reasonable fit, thereby 

indicating the ability of WBPBPK models to successfully account for altered 

physiology. WBPBPK models have also been developed to predict drug PK in 

children (Björkman, 2005; Edginton et al., 2006a; Kersting et al., 2012). In these 

studies, WBPKPB models were modified for age-related physiological changes such 

as body weight, organ weights and blood flows, as well as clearance and enzyme 

ontogeny. The results of these studies showed predicted concentrations to be 

consistent with the observed values. The effects of ageing, gender difference 

(Clewell et al., 2004; Yang et al., 2006), pregnancy (Gaohua et al., 2012) and 

therapeutic interventions (Lagneau et al., 2005) have also been investigated using 

physiological models. 
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CHAPTER 3 

 

POPULATION PHARMACOKINETIC 

ANALYSIS OF CIPROFLOXACIN IN 

MALNOURISHED CHILDREN 
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3.1    INTRODUCTION 

Malnourished children suffer from numerous associated complications, particularly 

invasive bacterial infections (Babirekere-Iriso et al., 2006; Maitland et al., 2006). 

Therefore, empirical treatment with effective antimicrobials should be given to all 

children admitted to the hospital with severe malnutrition. The World Health 

Organization (WHO) recommends treatment with parenteral ampicillin and 

gentamicin for children who have complications, such as dehydration and shock 

(WHO, 1999). However, despite adherence to these guidelines, the mortality rate has 

remained high.  

 

Ciprofloxacin, a fluoroquinolone antibiotic, has been considered as an alternative 

agent because it is effective against most Gram-negative organisms and has activity 

against some Gram-positive organisms. Additionally, ciprofloxacin has a high oral 

bioavailability. However, to date, there is limited information on pharmacokinetics 

(PK) of oral ciprofloxacin in paediatric patients and none in malnourished children. 

 

This aims of the work in this chapter were: 

(i) to estimate population pharmacokinetic parameters of ciprofloxacin 

following oral administration to paediatric patients with severe malnutrition.   

(ii) to identify the influence of clinical and demographic data on these 

parameters.     

 

3.2    METHODS 

3.2.1   Clinical setting   

The clinical study was conducted in the Kilifi District Hospital, Kenya by staff from 

the KEMRI-Wellcome Collaboration Programme, the KEMRI/Wellcome Trust 

Research Programme and School of Pharmacy, University of Nairobi. Ethical 

approval for the study was granted by KEMRI/National Ethical Review Committee.  
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Patients were eligible for inclusion in the study if they met all of the following 

criteria: 

 Age more than 6 months 

 Signed informed consent from parent or guardian 

 Severe malnutrition as defined by a weight-for-height Z score (WHZ) < -3 or 

bilateral oedema (kwashiorkor) or mid-upper arm circumference (MUAC) < 

11 cm. (if length > 65 cm) (Cogill, 2003; WHO, 1999) 

 Able to receive oral treatment 

 

Exclusion criteria were as follows: 

 Plasma creatinine concentration > 300 µmol/L and evidence of intrinsic renal 

disease (hypertension or hyperkalaemia) 

 Coexisting chronic bone or joint disease 

 Concurrent use of antacids, ketoconazole, theophylline or corticosteroids 

 Enrolment in another interventional study 

 

All patients received standard care according to the WHO guidelines for 

management of severe malnutrition (WHO, 1999) Severe dehydration, shock, 

hypothermia and hypoglycaemia were initially corrected; empirical antimicrobial 

therapy with parenteral ampicillin (50 mg/kg every 6 hours) and intramuscular 

gentamicin (7.5 mg/kg once daily) was given to all children for 7 days. All patients 

received multi-vitamin, multi-mineral supplement, antihelminths, haematinics and 

nutrition therapy with special milk-based formula (F-75 and F-100).  Malnutrition 

oral rehydration solution (RESOMAL) was given to children with significant 

diarrhoea (more than 3 watery stools/day). If children had clinically indicated of 

infection in cerebrospinal fluid, urine culture or chest X-ray, sampled were also 

obtained.  

 

3.2.2   Study protocol 

Patients were recruited during two study periods.  Children who were recruited 

during the first period received ciprofloxacin 2 hours before or after they had 

nutritional milks; those during the second period received ciprofloxacin during 
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nutritional feeding. All patients received an oral ciprofloxacin dose of 10 mg/kg body 

weight every 12 hours for 48 hours. Individual doses were calculated for each patient 

then prepared by the pharmacist by grinding ciprofloxacin tablets and suspending the 

appropriate dose in water.  The trial nurse was present and observed this procedure.   

 

The first period included 36 children. The sample size was based upon a previous 

population pharmacokinetic study of ciprofloxacin in patients with acute infection 

(Payen et al., 2003) and a previous population pharmacokinetic study from a similar 

patient population (Seaton et al., 2007). An equal number of patients was assigned 

into one of three categories: low risk; intermediate risk and high risk of mortality.  

These categories were defined according to the criteria described by Maitland et al. 

(2006). The high risk group included children with any one of the following: 

depressed conscious state, bradycardia (heart rate <80 beats per minute), 

hypoglycaemia (blood glucose < 3 mmol/L) or evidence of shock (capillary refill 

time ≥2 seconds or temperature gradient or weak pulse). Children were categorised 

to the intermediate risk category if they had deep acidotic breathing, signs of severe 

dehydration (>3 watery motions/24 hours) plus diarrhoea, lethargy, hyponatraemia 

(sodium <125 mmol/L) or hypokalaemia (potassium <2.5 mmol/L). Children without 

any of these features were classified as low risk. The second period included 16 

children who were not recruited according to mortality risk.  

   

Each child was randomised to one of following three blood sampling groups using a 

closed card system. A maximum of 4 blood samples was taken from each patient 

over a 24 hour period.  

 Group 1: Samples were obtained at 2, 4, 8, 24 hours (n = 17) 

 Group 2: Samples were obtained at 3, 5, 9, 12 hours (n = 18) 

 Group 3: Samples were obtained at 1, 3, 6, 10 hours (n = 17) 

 

In two of the groups, samples were only withdrawn after the first dose but a single 

trough sample was withdrawn after the second dose in patients who were assigned to 

group 1. Children in each of the mortality risk categories were allocated across the 

sampling schedules.  
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3.2.3   Drug analysis  

Ciprofloxacin plasma concentrations were measured by using high performance 

liquid chromatography (HPLC) with fluorescence detection (Muchohi et al., 2011). 

Briefly, 200 ng of internal standard solution (sarafloxacin) was added to 200 µL of 

plasma, mixed with 2mL acetonitrile then centrifuged at 4000 rpm for 10 minutes at 

4 
o
C. The upper organic layer was evaporated under nitrogen gas. The residue was 

reconstituted in 100 µL mobile phase (aqueous orthophosphoric acid (0.025 M)–

methanol–acetonitrile (75:13:12%; v/v/v) adjusted to pH 3.0 with triethylamine). 

Then, 50 µL was injected onto a Synergi
®

 Max-RP analytical column (150 mm x 4.6 

mm i.d., 4 µm particle size), maintained at 40
o
C. Calibration curves of ciprofloxacin 

were linear over the concentration range of 0.02–4 μg/ml. Intra- and inter-assay 

relative standard deviations were below 8.0%. The limits of detection and 

quantification were 10 ng/mL and 20 ng/mL, respectively.      

 

3.2.4   Data preparation 

A wide range of data were collected for each patient during the study and was 

collated into a Microsoft Excel
®
 spreadsheet. These included demographic data, drug 

dose, times of administration and blood sampling times. Vital signs, including 

respiratory rate, pulse rate, blood pressure and body temperature were recorded. 

Clinical laboratory tests, including full blood count, electrolytes, blood gases, plasma 

glucose, plasma creatinine, blood culture, HIV antibody test and blood film for 

malaria parasites, were collected. The nutritional status was evaluated by measuring 

mid-upper arm circumference (MUAC) and calculating Z-score for weight-for-height 

(WHZ). A Z-score describes the deviation of weight and height from the median 

well-nourished population for specific age and gender. Epi Info software Version 

3.5.1 was used to compute the Z-score using the CDC/WHO growth curve as a 

reference (Dibley et al., 1987). The presence of HIV infection, severe dehydration, 

shock and oedema was also recorded.  

 

To identify any anomalous values in the dataset that could represent data entry 

errors, each clinical factor was plotted against patient identification number. 

Ciprofloxacin concentration-time profiles were plotted to check for errors in 
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concentration. The following additional clinical factors were calculated from 

demographic and clinical information: creatinine clearance (CLcr); ideal body weight 

(IBW); body mass index (BMI); lean body weight (LBM) and body surface area 

(BSA). The equations used for these calculations were as follows:   

 

1) Creatinine clearance (CLcr) 

 

2 k × length (cm)
 CLcr (mL/min/1.73 m ) = 

Scr (mg/dL)
                         (3.1) 

 

where k is defined by age group: infants (1 to 52 weeks old) = 0.45 (Schwartz et al., 

1984); children (1 to 13 years old) = 0.55 (Schwartz et al., 1976); adolescent males 

(13 to 18 years old) = 0.7 (Schwartz & Gauthier, 1985); and adolescent females (13 

to 18 years old) = 0.55 (Schwartz et al., 1976). Scr = serum creatinine (mg/L). 

 

2) Ideal body weight (IBW) (Duggan et al., 2008) 

 

2height (cm)   1.65
IBW (kg) = 

1000


                                (3.2)  

 

3) Body mass index (BMI) (Green & Duffull, 2004) 

 

2

2

weight (kg)
BMI (kg/m ) = 

height  (m)
                                   (3.3) 

 

4) Lean body mass index (LBM) (Green & Duffull, 2004) 

 

2

weight (kg)
Male LBW = (1.1  weight (kg)) - 1.28

height (cm)

 
 
 
 

                 (3.4) 
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2

weight (kg)
Female LBW = (1.07  weight (kg)) - 1.48

height (cm)

 
 
 
 

               (3.5) 

 

5) Body surface area (BSA) (Mosteller, 1987) 

 

2 height (cm)  weight (kg)
BSA (m ) = 

3600


                          (3.6) 

 

3.2.5   Population model development 

3.2.5.1  Structural and statistical model development 

Population pharmacokinetic modelling was performed with NONMEM Version VI 

(Beal et al., 1989-2006), running under a Windows XP operating system with a G77 

Fortran compiler. NONMEM outputs were processed with Xpose Version 4.0 

(Jonsson & Karlsson, 1999) which is implemented in R software Version 2.9.2. All 

models were fitted using the first-order conditional estimation with interaction 

(FOCE-I) algorithm. Both one- and two-compartment elimination models were fitted 

to the concentration-time data. Absorption was described using first-order and zero-

order models with and without a lag time (ALAG).  The pharmacokinetic models, 

subroutines and pharmacokinetic parameters are shown in Table 3.1. 

 

In addition, absorption was modelled using a transit compartment model proposed by 

Savic et al. (2007). This model describes the absorption process as a multiple-step 

occurring as the drug travels through a series of hypothetical transit compartments 

(n) with a single transfer rate constant (ktr). Drug is transferred from the last transit 

compartment to the central compartment via an absorption compartment, from which 

drug is absorbed with the first-order rate constant (ka). The transit compartment 

model is shown schematically in Figure 3.1.  
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Table 3.1     Pharmacokinetic models, subroutines and pharmacokinetic 

parameters used to fit ciprofloxacin concentration-time data 

 

Pharmacokinetic models Subroutines Pharmacokinetic parameters 

One-compartment with 

zero-order absorption 

ADVAN1 and TRAN2 D1, CL/F, V/F 

One-compartment with 

first-order absorption 

ADVAN2 and TRAN2 KA, CL/F, V/F 

Two-compartment with 

zero-order  absorption 

ADVAN3 and TRAN4 D1, CL/F, Q/F, V1/F, V2/F 

 

Two-compartment with 

first-order absorption 

ADVAN4 and TRAN4 KA, CL/F,  Q/F, V2/F*, V3/F* 

 

Key: D1 = duration of input, CL/F = clearance/bioavailability, V/F = volume of distribution/ 

bioavailability, KA = absorption rate constant, V1/F  = volume of the central 

compartment/bioavailability, V2/F = volume of the peripheral compartment/bioavailability, 

Q/F = intercompartment clearance/bioavailability, V2/F* = volume of the central 

compartment/bioavailability and V3/F* = volume of the peripheral compartment/ 

bioavailability. 

 

Figure 3.1   Schematic view of drug flow via a number of transit compartments 

 

 

 

 

 

The rate of change of drug amount in the absorption compartment (dXa/dt) is derived 

by equation 3.7: 

 

tr 

tr-k tn
a tr

a

(k t) eX  
= Dose F k  - ka X

t !

d

d n


 

                            (3.7) 

 

where Dose is amount of drug administered, F is bioavailability, ktr is a transit rate 

constant from nth-1 compartment to the n compartment, t is time after dose, ka is the 

first-order absorption rate constant, n is the number of transit compartments and n! is 

Dose Xn X0 Xn-1 X1 
Central 

compartment 

Absorption 

compartment 

ka Ktr Ktr Ktr Ktr Ktr 
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the n factorial function which is computed by the approximation of Stirling as shown 

in equation 3.8: 

 

+0.5 -n! 2π enn n                                           (3.8) 

 

To prevent numerical difficulties when n is large, the transformation shown in 

equation 3.9 was used. 

 

-k ×ttr

0.5

(k  t)  e
  

2    e

tr
tr -

ln(Dose  F  k )
a

a

X
e  - ka X

t

n

n nnd

d

 

 


 
 

                           (3.9) 

 

The mean transit time (MTT) represents the average time spent by drug travelling 

from the first transit compartment to the absorption compartment. The relationship 

between MTT, n and ktr is shown in equation 3.10: 

 

tr

( +1)
k  = 

MTT

n
                                             (3.10) 

 

During the analysis, two parameters were estimated while the third parameter was 

derived by equation 3.10. In this study, n and MTT were estimated and were used to 

calculate ktr. An example of a data file and a control file is given in Figure 3.2 and 

3.3, respectively.  

 

The pharmacokinetic parameters were assumed to be log-normally distributed and 

between subject variability (BSV) was therefore modelled as follows:  

 

CL/F = TVCL x EXP 
η1

  

V/F = TVV x EXP
 η2

 

KA = TVKA x EXP
 η3

 

ALAG1 = θ 4 x EXP
 η4
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where i are the individual differences between CL/F and TVCL, which are assumed 

to be normally distributed with a mean of 0 and variance 
2
.  NONMEM estimates 


2
. Individual estimates of  are determined at each iteration if the FOCE algorithm 

is used, are available in the output table file and can be used to determine individual 

estimates of the parameters (i.e. CL/F, V/F, etc. for each subject). Initial analyses 

were conducted assuming no covariance between estimates of BSV but as the model 

was developed, covariances were evaluated using a block covariance matrix. 

 

Three models were applied to describe the residual error in concentration - additive, 

proportional and combination (additive plus proportional). These models were coded 

in control files as follows: 

1) Additive error model 

IPRED=F 

W=1 

Y=F+W*ERR(1) 

 

where IPRED and F are the individual predicted concentration, W is a scale factor, Y 

is the individual observed concentration and ERR is the within subject variability.   

 

2) Proportional error model 

IPRED=F 

W=THETA(5)*F 

Y=F+ERR(1)*W 

 

3) Combined error model 

IPRED=F 

W=SQRT(THETA(5)**2+THETA(6)**2*F**2) 

Y=F+W*ERR(1) 
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Figure 3.2    Excerpt from the data file of the transit compartment model 

 

ID TIME AMT LDV CMT MDV EVID TYPE WT 

1 0 . . 2 1 2 2 5.02 

1 0 50 . 1 1 1 1 5.02 

1 1.07 0 0.698135 2 0 0 1 5.02 

1 2.93 0 0.963174 2 0 0 1 5.02 

1 6.07 0 0.165514 2 0 0 1 5.02 

1 9.9 0 -0.77653 2 0 0 1 5.02 

2 0 . . 2 1 2 2 5.8 

2 0 58 . 1 1 1 1 5.8 

2 3 0 0.524729 2 0 0 1 5.8 

2 5.25 0 0.04879 2 0 0 1 5.8 

2 9.08 0 -0.47804 2 0 0 1 5.8 

2 12.08 . . 2 1 2 2 5.8 

2 12.08 58 . 1 1 1 1 5.8 

2 12.17 0 -0.91629 2 0 0 1 5.8 

3 0 . . 2 1 2 2 10.64 

3 0 106 . 1 1 1 1 10.64 

3 2 0 0.57098 2 0 0 1 10.64 

3 4.08 0 0.385262 2 0 0 1 10.64 

3 8.08 0 -0.31471 2 0 0 1 10.64 

3 12 . . 2 1 2 2 10.64 

3 12 106 . 1 1 1 1 10.64 

3 24.25 0 -0.37106 2 0 0 1 10.64 

4 0 . . 2 1 2 2 6.7 

4 0 61 . 1 1 1 1 6.7 

4 3.02 0 0.598837 2 0 0 1 6.7 

4 5 0 0.173953 2 0 0 1 6.7 

4 9 0 -0.54473 2 0 0 1 6.7 

4 12 . . 2 1 2 2 6.7 

4 12 61 . 1 1 1 1 6.7 

4 12.17 0 -1.13943 2 0 0 1 6.7 

 

Key: ID = patient identification number, AMT = dose (mg), LDV = log-transformed dependent 

variable (DV), CMT = compartment data item (1 = dosed compartment, 2 = observed compartment), 

MDV = missing DV (0 = DV is not missing, 1 = DV is missing), EVID = event identification (0 = 

observation event, 1 = dose event, 2 = other-type event), TYPE = type of data item (1 = real data, 2 = 

dummy data which is used as a place-holder between real data.  NONMEM will not use the data on 

these record) and WT = patient weight (kg). 
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Figure 3.3    Example of a control file for the transit compartment model 

 

$PROB CIPRO TRANSIT CPT MODEL 

$INPUT ID TIME AMT DV CMT MDV EVID TYPE WT  

$DATA DATA2_LN_RS.CSV IGNORE=# 

$SUBROUTINE ADVAN6 TOL=3 TRANS1 

$MODEL COMP=ABS ;ABSORPTION COMPARTMENT (DEFDOSE)  

                 COMP=CEN ;CENTRAL COMPARTMENT (DEFOBS) 

$PK 

IF(AMT.GT.0) PODO=AMT 

IF(AMT.GT.0) TDOS=TIME 

TVCL=THETA(1)*(WT/70)**0.75 

CL=TVCL*EXP(ETA(1)) 

TVV=THETA(2)*(WT/70)**1 

V=TVV*EXP(ETA(2)) 

K=CL/V 

S2=V 

; absorption model 

F1=0 

TVKA=THETA(3)         ; absorption rate constant 

KA=TVKA*EXP(ETA(3))   

TVMTT=THETA(4)      ; mean transit time to the absorption cpt 

MTT=TVMTT*EXP(ETA(4)) 

TVNN=THETA(5)       ; number of transit compartments 

NN=TVNN*EXP(ETA(5)) 

KTR=(NN+1)/MTT      ; transit rate constant 

NFAC=SQRT(2*3.1415)*NN**(NN+0.5)*(EXP(-NN))*(1+1/(12*NN)) 

; Stirling approximation to n! 

LNFAC =LOG(2.5066)+(NN+0.5)*LOG(NN)-NN 

; logarithm transformation of Stirling approximation 

 

$DES 

DEL=1/100000         ; avoid log(0) 

;IF(T.GE.TDOS)THEN 

;DADT(1)=PODO*KTR*(KTR*(T-TDOS))**NN*EXP(-KTR*(T-TDOS))/NFAC-KA*A(1) 

DADT(1)=EXP(LOG(PODO+DEL)+LOG(KTR)+NN*LOG(KTR*(T-TDOS)+DEL)-KTR*(T-

TDOS)-LNFAC)-KA*A(1) 

;ELSE 
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;DADT(1)=PODO*KTR*(KTR*T)**NN*(EXP(-KTR*T))/NFAC-KA*A(1) 

;ENDIF 

;DADT(1)=-KA*A(1) 

DADT(2)=KA*A(1)-K*A(2) 

 

$ERROR 

IPRD=A(2)/S2 +0.00001 

IF(IPRD.LE.0) IPRD=0.0001 

IPRED=LOG(IPRD)      

W=SQRT(THETA(6)**2+THETA(7)**2/IPRD**2) 

IRES=DV-IPRED 

IWRES=IRES/W 

Y=IPRED+W*EPS(1) 

 

$THETA  (0,35) (0,350) (0,3) (0,1) (0,5) (0,0.5) (0,0.1)  

$OMEGA 0.1 0.1 0.1 0.1 0.1  

$SIGMA 1 FIX 

 

$ESTIMATION MAX=9999 METHOD=1 INTERACTION SIG=3 PRINT=2 NOABORT 

$COVAR  

$TABLE ID TIME IPRD IPRED IWRES NOPRINT ONEHEADER FILE=SDTAB1 

$TABLE ID TVCL TVV TVKA TVMTT TVNN CL V KA MTT NN KTR ETA(1) ETA(2)  

ETA(3) ETA(4) ETA(5) NOPRINT ONEHEADER FILE=PATAB1 

$TABLE ID TIME TVCL TVV TVKA TVMTT TVNN CL V KA MTT NN KTR ETA(1) ETA(2) 

ETA(3) ETA(4) ETA(5) IPRD IPRED IRES IWRES WT NOPRINT ONEHEADER FILE=1.TAB  

$SCAT OMIT 
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The objective function value (OFV) was used to aid selection of the structural model 

that best described the data. The reduction in the OFV indicates the improvement in 

the structural model. In addition, goodness of fit plots were used to select the best 

structural model. The goodness of fit was graphically assessed by plotting (i) 

population predicted concentrations (PRED) and individual predicted concentrations 

(IPRED) against observed concentrations, (ii) observed concentrations, PRED and 

IPRED versus time (individual plots) and (iii) conditional weighted residuals 

(CWRES) (Hooker et al., 2007) against population predictions, time and time after 

dosing. 

 

The best residual error model was selected by plotting CWRES and IWRES versus 

predicted concentration. The distribution of CWRES was also observed.   

 

3.2.5.2  Covariate model development 

The base model was set up assuming an allometric relationship between the 

pharmacokinetic parameters and weight (Anderson & Holford, 2008; Holford, 1996; 

Peters, 1986). The typical estimates of CL/F (TVCL) and V/F (TVV) in the 

population were therefore modelled as: 

 

TVCL (L/h)  =  θ1 (L/h/70 kg) x (WT/70) 
0.75

 

TVV (L)    =  θ2 (L/70 kg) x (WT/70) 
1
 

 

where θ1 represents the standardised clearance estimate (L/h/70 kg) in an adult who 

weighs 70 kg and θ2 is the standardised estimate of V (L/70 kg) in an adult who 

weighs 70 kg.  For comparison within the patient population and for ease of dose 

evaluation, a simple linear model was also applied to the data, i.e. 

 

TVCL (L/h)  =  θ1 (L/h/kg) x WT (kg) 

TVV (L)    =  θ2 (L/kg) x WT (kg) 
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An allometric BSA approach was also investigated (Meibohm et al., 2005) and 

modelled as follows: 

 

TVCL (L/h)  = θ1 (L/h/1.73 m
2
) x (BSA/1.73) 

0.67 

TVV (L)      = θ2 (L/1.73 m
2
) x (BSA/1.73) 

1 

 

Due to the large number of covariates available in the dataset, an initial screen was 

conducted by using matrix plots to identify covariates that were highly correlated 

with each other.  Potentially useful covariates were then identified by plotting 

individual PK parameters against each covariate. Scatter plots with trend lines were 

produced for continuous variables and box plots for categorical variables. 

Generalised additive modelling (GAM), implemented in Xpose (Jonsson & Karlsson, 

1999), was also used to identify possible covariate relationships.  

 

Covariate models were then built by a forward stepwise procedure. Starting with the 

base model, each covariate was added individually to the model of CL/F or V/F.  

During this forward procedure, a reduction in the OFV of at least 3.84 (p<0.05, df=1) 

was considered to be statistically significant. The most significant covariate was 

included first and then other covariates were added to the model until there was no 

further reduction in OFV. In back elimination step, each covariate was removed from 

the full model unless OFV increased by more than 6.63 (p<0.01, df=1). In addition, 

the inclusion of each covariate in the model was judged according by goodness of fit 

plots, physiological plausibility, change in inter-subject variability and the precision 

of the parameter estimates.    

 

However, these graphical diagnostics are affected by the presence of shrinkage. The 

parameter correlations and parameter-covariate relationships are affected by η-

shrinkage. The power of IPRED and IWRES to diagnose structural and residual error 

model misspecification is reduced in the presence of ε-shrinkage. A level of 20-30% 

for both η- and ε-shrinkage is sufficiently high for misleading model interpretation 

(Savic & Karlsson, 2009; Karlsson & Savic, 2007). Perl-speaks-NONMEM (PsN) 
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Version 3.1.0 (Lindbom et al., 2005; Lindbom et al., 2004) was used to calculate the 

shrinkage. The following example is the command for shrinkage calculation: 

 

execute run1.mod –shrinkage 

 

The commands have the following meaning: 

execute     call NONMEM to run one or multiple model files   

run1.mod    name of model file 

-shrinkage   calculate the shrinkage for the model run 

 

3.3    RESULTS 

3.3.1   Patient data 

A total of 52 patients were recruited to the study of whom 36 received their first 

ciprofloxacin dose 2 hours before or after feeding and 16 patients received it during 

their feed.  Demographic and clinical characteristics of the patient group are 

summarised in Table 3.2. The numbers of male and female patients were similar at 

29 (56%) and 23 (44%). The median age of the patients was 23 months and most of 

the patients (41) were younger than 3 years of age; only 5 patients were more than 5 

years old. Positive correlations were observed between age, body weight, height and 

BSA, between WHZ and MUAC and between sodium concentration, potassium 

concentration, serum bicarbonate and base excess (Figure 3.4A, 3.4B and 3.4C). 

Eight (15%) children had HIV infection. Nearly half of the patients (25) had a 

MUAC below 11 cm, WHZ was less than -3 in 27 patients and bilateral oedema 

(kwashiorkor) was present in 24 patients (46%). These measurements indicated that 

the all patients had severe malnutrition.  
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Table 3.2     Demographic data and clinical characteristics of the patients who 

received oral ciprofloxacin 

 

Characteristics 
Reference 

Range 
Median Range n 

Age (months) 

Weight (kg) 

Height (cm) 

BSA (m
2
) 

WHZ 

MUAC (cm) 

White blood cell count (x10
6
/L)  

Haemoglobin (g/dL)  

Platelets (x10
6
/L)  

Sodium (mmol/L)  

Potassium (mmol/L)  

Glucose (mmol/L)  

Bicarbonate (mmol/L)  

Base excess (mEq/L) 

Serum creatinine (µmol/L)  

Creatinine clearance (mL/min/1.73m
2
) 

 

 

 

 

<-3 

<11 

6.0, 17.5 

9, 14 

150, 400 

138, 145 

3.5, 5 

2.8, 5 

22, 29 

-2, +2 

44, 88 

23 

6.9 

75.4 

0.39 

-3.26 

11 

13.3 

9.0 

309 

136 

3.1 

4.0 

15.4 

-8.0 

44 

86 

8, 102 

4.1, 14.5 

58.5, 114.4 

0.27, 0.62 

-5.69, 0.04 

7.7, 14.3 

5.5, 84.4 

2.1, 12.8 

16, 1369 

120, 160 

1.2, 5.1 

0.4, 11.4 

4.7, 26.0 

-26.9, 2.1 

27, 676 

5, 129 

52 

52 

50 

50 

50 

52 

51 

51 

51 

51 

51 

47 

44 

44 

47 

45 

Key: BSA = Body Surface Area, WHZ = weight-for-height Z-score, MUAC = mid-upper 

arm circumference. 
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Figure 3.4    Matrix plots and scatter plot to assess relationship between 

covariates  

 

A: Relationship between age, weight, height and BSA 
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B: Relationship between MUAC and WHZ 
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C: Relationship between sodium, potassium, bicarbonate and base excess 
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Sixteen patients were included in the high risk group, which included 6 of the 7 

patients with shock. Severe dehydration and diarrhoea was observed in 48% and 46% 

of patients, respectively.  All of the patients who were dehydrated also suffered from 

diarrhoea and/or vomiting. Ten patients had leukocytosis. The serum bicarbonate 

concentration was below the lower limit of the reference range in nearly all of the 

patients and base excess values indicated that 37 patients were acidotic.  Most of the 

creatinine concentration measurements were below or within the normal range but 3 

patients had values above the normal range and one patient was in renal failure with 

a serum creatinine concentration of 676 µmol/L.  

 

3.3.2   Ciprofloxacin data 

A total of 202 ciprofloxacin concentration measurements were available for analysis.  

Concentrations ranged from 0.1 to 4.52 mg/L with a median of 0.48 mg/L and the 

number of samples per patient ranged from 2 to 4 with a median of 4.  Figure 3.5 

shows a histogram of the times at which blood was sampled after dosing.  The most 

 

          Sodium (mmol/L) 

 

 

        Potassium (mmol/L) 

 

 

      Bicarbonate (mmol/L) 

Base excess 
(mEq/L) 
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common sampling times were 3 and 12 hours after the dose but samples were taken 

throughout the dosage interval.  Seventeen samples (8.4%) were taken 12 hours after 

the second dose (i.e. 24 hours after the start of therapy). Individual ciprofloxacin 

concentration-time profiles from each of the patients are illustrated in Figure 3.6. 

Peak concentrations occurred at the first sampling time in 36 patients and were 

observed at around 1 hour in 7 patients. Overall, the median peak concentration was 

1.27 mg/L and ranged from 0.68 to 4.52 mg/L. In most patients (69%) the peak was 

measured within 1-3 hours after drug administration and ranged from 0.58 to 3.16 

mg/L. However, the peak was observed later (3 to 5 hours post dose) in 8 patients 

and tended to be lower, ranging from 0.84 to 1.96 mg/L.  

 

Figure 3.5    Frequency distribution of the percentages of ciprofloxacin samples 

taken at different times after the dose 
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Figure 3.6    Concentration-time profiles of ciprofloxacin following oral 

administration to 52 malnourished children 

 

A: Concentration data plotted on a linear scale 

           

 

 

B: Concentration data plotted on a semi-log scale 
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3.3.3   Population model development 

3.3.3.1  Structural and statistical model development 

Although the two-compartment model achieved a slightly lower OFV compared to 

the one-compartment model (-240.451 versus -236.047), this difference was not 

statistically significant.  Furthermore, successful convergence could only be achieved 

with the one-compartment model. There was no indication of a bi-exponential 

decline in the concentration-time data, as illustrated in Figure 3.6B, and the plots of 

individual predicted concentrations against measured concentrations and the pattern 

of CWRES were similar for the two models (Figure 3.7). The one-compartment 

model was therefore used for model development. 

 

Figure 3.7    Conditional weighted residuals versus time after dose for one- and 

two-compartment models with combined error 

 

One-compartment model                          Two-compartment model 

 

 

 

The covariance steps did not converge successfully with zero-order absorption. The 

transit compartment model had lower OFV compared to the lag model (-145.754 

versus -157.427 for the model without allometric weight and -158.754 versus            

-163.735 for the model using allometric weight). Between subject variability of the 

parameters (ka, n and MTT) for transit compartment model were high and this 

absorption model slightly improved the fit in some individual plots compared to the 
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lag model. In addition, the estimation step aborted frequently due to numerical 

difficulties with the differential equations used in the model. Therefore, the lag 

model was selected to describe the absorption process. Examples of measured and 

individual predicted concentration-time profiles, estimated from the lag model and 

the transit compartment model, are illustrated in Figure 3.8. Table 3.3 compares the 

parameters estimated from these two models. The parameter estimates (CL/F, V/F 

and ka) obtained from a transit compartment model were similar to those obtained 

from a lag model. The estimated MTT and lag time were comparable (~40 min). 

BSV in MTT were 75.8% and 69.7% for the model without and with allometric WT, 

respectively. 

 

The additive error model had a higher OFV (-183.533) than both the proportional 

and combined error models (-231.465 and -236.047) and there was a clear trend in 

the absolute individual weighted residuals (│iWRES│) with an increase at 

concentrations less than 1 mg/L and a decrease at concentrations above 1 mg/L, as 

illustrated in Figure 3.9A.  The percentage of ε-shrinkage was high (89%). Plots of 

absolute individual weighted residuals versus individual predictions were similar for 

the proportional and combined error models (Figure 3.9B and 3.9C) and the 

measures of ε-shrinkage were 31% and 32%, respectively. The covariances in BSV 

were also similar between the two error models. However, since the combined error 

model achieved a lower OFV (difference 4.58), it was retained for further model 

development.   
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Figure 3.8    Measured and individual predicted concentration versus time plots 

comparing the lag model and the transit compartment model using a one-

compartment model with combined error  

 

Patient 8 

 
 

Patient 39 

 

 
 

Patient 41 

 

Key: filled circle is the measured concentration, opened square is the individual predicted 

concentration obtained from the a transit compartment model, opened circle is the individual 

predicted concentration obtained from a lag model.  
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Table 3.3     Parameters estimated from lag model and transit model comparing 

between model with and without allometric weight relationship 

 

Parameters 

 

Without allometric WT 
 

 

With allometric WT 
 

 

Lag model
a
 

 

 

Transit model
b
 

 

 

Lag model
a
 

 

 

Transit model
b
 

 

 

CL/F (L/h) 
 

6.49 
 

6.57 
 

35.7 
 

35.8 

V/F (L) 36.4 35.9 353 353 

ka (h
-1

) 4.11 5.27 3.64 3.02 

ALAG (h) 0.784 - 0.763 - 

MTT (h) - 0.675 - 0.537 

n - 1.99 - 2.35 

BSV in CL/F (%) 52.2 51.9 49.2 48.2 

BSV in V/F (%) 55.0 54.7 48.5 48.7 

BSV in ka (%) 117.0 96.7 111.8 83.5 

BSV in MTT (%) - 75.8 - 69.7 

Additive error (SD) 0.0258 0.0254 0.0255 0.0255 

Proportional (%CV) 19.2 16.9 19.2 18.1 

a 
number of parameters = 4 

b 
number of parameter = 5 

Key: WT = weight (kg), CL/F = clearance/bioavailability, V/F = volume of 

distribution/bioavailability, BSV = between subject variability, ka = absorption rate constant 

(h
-1

), ALAG = lag time (h), MTT = mean transit time (h), n = number of transit 

compartment. 

 

In summary, the model chosen for covariate model development was a one 

compartment with first-order absorption with a lag time. Weight was included using 

an allometric model with an exponent of 0.75 for CL/F and 1 for V/F. Measured 

compared to the predicted and individual predicted concentrations estimated using 

this base model are illustrated in Figure 3.10. Although the allometric model was 

used as the base model, a comparison was made with models that used linear weight 

and allometric BSA relationships.  The values of OFV were similar for all three 

approaches with the allometric weight model having an OFV that was slightly lower 

than observed with the linear model (1.33) and the BSA model (2.94).  
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Figure 3.9    The absolute values of individual weighted residuals versus 

individual predicted concentrations for one-compartment with additive, 

proportional and combined error models 

 

A: Additive error model                                  B: proportional error model  

    

 

B: combined error model 
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Figure 3.10  Population predicted and individual predicted concentrations 

versus observed concentrations obtained from a one-compartment model with 

combined error 

 

 

 

3.3.3.2  Covariate model development 

Examination of scatter plots of individual estimates of ciprofloxacin CL/F against 

clinical factors identified potential relationships with sodium concentration, 

potassium concentration and estimated creatinine clearance, as illustrated in Figure 

3.11.  Results for categorical data indicated that CL/F was higher in patients who 

were given ciprofloxacin with their feed. However, variability was high in both 

groups.  CL/F was lower in patients who had a high mortality risk, dehydration, 

shock or diarrhoea (Figure 3.12). A potential positive relationship was identified 

between V/F and serum sodium concentration and serum potassium concentration 

(Figure 3.13), and lower estimates of V were observed in patients who had shock 

(Figure 3.14). No relationships between absorption rate constant and any clinical 

covariate were identified from plots. Shrinkage for ηCL and ηV were 3% and 6%, 

respectively which indicated that these scatter plots have enough power to identify 

relationships between parameters and covariates.  
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Figure 3.11  Scatter plots showing potential relationships between individual 

estimates of clearance/bioavailability (CL/F) and continuous clinical and 

demographic data 

 

 

 
 

Key: Individual estimates are represented by the solid triangles and the red line represents a 

regression line. 
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Figure 3.12  Box plots showing potential relationships between individual 

estimates of clearance/bioavailability (CL/F) and categorical clinical and 

demographic data 
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Figure 3.13    Scatter plots illustrating potential relationships between 

individual estimates of volume of distribution/bioavailability (V/F) and serum 

sodium and potassium concentrations 

 

  

 

Key: Individual estimates are represented by the solid triangles; the red line 

represents a regression line.  

 

Figure 3.14    Box plot of individual estimates of volume of 

distribution/bioavailability (V/F) in patients with and without shock 
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The results of the GAM analysis for CL/F are summarised in the Akaike plot shown 

in Figure 3.15.  The best model, which had the lowest value for the Akaike 

Information Criterion, identified high risk, serum sodium, serum potassium and 

creatinine clearance as important factors. The GAM analysis of individual estimates 

of V/F is summarised in Figure 3.16.  Shock, weight and serum sodium were 

identified as potential covariates.  

 

Figure 3.15    Plot showing the Akaike values resulting from the GAM analysis 

of factors that might influence clearance/bioavailability (CL/F) 

 

 
 

Key:  NA = serum sodium, K = serum potassium, DEHY = dehydration, SHOK =shock, 

HIGH = high mortality risk, SCHW = creatinine clearance calculated by Schwartz equations, 

WT = weight, DIA = diarrhoea, FOOD = drug administered with feed. 
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FOOD + HIGH + NA. + K + SCHW

HIGH + NA. + K

HIGH + NA. + K + ns(SCHW, df  = 2)
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HIGH + ns(NA., df  = 2) + K + SCHW
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Figure 3.16   Plot showing the Akaike values resulting from the GAM analysis 

of factors that might influence volume of distribution/bioavailability 

 

 
 

Key:  NA = serum sodium; K = serum potassium; DEHY = dehydration; SHOK = shock; 

HIGH = high mortality risk; SCHW = creatinine clearance calculated by Schwartz equations; 

WT = weight; DIA = diarrhoea; FOOD = drug administered with feed. 

 

The population analysis that was conducted using NONMEM (Beal et al., 1989-

2006) examined the influence of the following individual covariates on CL/F: serum 
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sodium achieved the lowest value of the OFV (reduction of 6.24) followed by serum 

potassium (6.14) and high risk (6.05). The inclusion of both serum sodium and high 

risk in the model resulted in a further reduction in OFV of 8.22.  The lowest value of 

OFV was observed with the combination of serum sodium, high risk and 

dehydration. Adding a fourth covariate had no effect.  

 

The influence of serum sodium, serum potassium, high risk and shock was tested on 

V/F.  A significant reduction in OFV was observed with the inclusion of serum 

sodium into the model. The full model therefore included the factors serum sodium, 

high risk and dehydration on CL/F and sodium on V/F.  Stepwise back elimination 

from this model was performed by removing each covariate individually.  When 

dehydration was removed from this model, the increase in OFV was only 5 therefore 

dehydration was excluded.  Removal of all other covariates led to an increase in OFV 

of more than 6.63.  The final model therefore included serum sodium and high risk 

on CL/F and serum sodium on V/F. This model reduced between subject variability 

on CL/F from 50% to 38% and on V/F from 49% to 43%.  Measured versus 

population and individual concentrations plots for this model are presented in Figure 

3.17 and the parameter estimates from the base and final models are presented in 

Table 3.5.  The final model can be summarised as follows: 

 

TVCL (L/h)  = 42.7(L/h/70 kg) x (WT/70)
0.75

 x (1+ 0.0368*(Na
+ 

-136))  

                         x (1- 0.283*(High)) 

TVV (L)    = 372 (L/70 kg) x (WT/70) x (1+ 0.0291*(Na
+
 -136)) 

TVKA     = 2.97 h
-1

 

ALAG     = 0.742 h 

 

If the patient has a high mortality risk, High = 1, otherwise High = 0.  This model 

indicates that the typical estimate of CL/F is 42.7 L/h/70 kg and is reduced by 28.3% 

by high risk and by 3.7% for every 1 mmol/L sodium concentration greater or less 

than 136 mmol/L.  The typical estimate of V/F is 372 L/70 kg (5.3 L/kg) and is 

changed by 2.9% for every change in 1 mmol/L sodium concentration from 136 

mmol/L. 
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Table 3.6 summarises the individual pharmacokinetic parameter estimates and the 

derived estimates of the maximum concentration (Cmax), time to Cmax (Tmax), 

elimination half-life and area under the concentration-time curve from 0 to 24 hours 

(AUC0-24).  Oral CL had a median of 0.98 L/h/kg in patients in the low and 

intermediate categories and 0.67 L/h/kg in high risk patients.  The median half-life 

was 3.78 hours (ranging from 2 to 9 hours). The median Tmax predicted from the 

model was significantly shorter than the observed Tmax (1.8 versus 3 hours). The 

median maximum concentration predicted from the model was 1.5 mg/L, which is 

similar to the observed value of 1.7 mg/L. Individual estimates of AUC0-24 ranged 

from 8 to 61 mg·h/L, indicating high variability. Median estimates of AUC0-24 were 

higher in patients in the high risk group compared to the patients in low and 

intermediate risk groups (29.7 mg·h/L versus 20.5 mg·h/L). 

 

Figure 3.17    Observed versus population (right) and individual (left) predicted 

concentrations based on the final population model 

 

 

 

Key: the thin line represents the line of identity and the thick line represents the 

linear regression line. 
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Table 3.4     Summary of models of clearance/bioavailability and volume of 

distribution/bioavailability tested using NONMEM  

 

Model No Model of CL/F OFV 
Model for 

comparison 
∆OFV 

BSV in CL 

(%) 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

 

Base model 

NA 

K 

HIGH 

SCHW 

SHOK 

FOOD 

DIA 

DEHY 

NA + K 

NA + HIGH 

NA + SHOK 

NA + FOOD 

NA + DIA 

NA + DEHY 

NA + HIGH + K 

NA + HIGH + SHOK 

NA + HIGH + FOOD 

NA + HIGH + DEHY 

NA + HIGH + DIA 

NA + HIGH + DEHY + K 

NA + HIGH + DEHY + SHOK 

NA + HIGH + DEHY + FOOD 

NA + HIGH + DEHY + DIA 

 

-287.711 

-293.953 

-293.851 

-293.76 

-289.609 

-292.415 

-292.201 

-293.182 

-292.923 

-296.484 

-302.169 

-297.012 

-295.601 

-300.359 

-299.806 

-306.386 

-305.156 

-304.759 

-307.215 

-306.5 

-308.252 

-307.902 

-307.533 

-307.461 

 

N/A 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

10 

10 

10 

10 

10 

18 

18 

18 

18 

 

- 

-6.242 

-6.14 

-6.049 

-1.898 

-4.704 

-4.49 

-5.471 

5.212 

-2.531 

-8.216 

-3.059 

-1.648 

-6.406 

-5.853 

-4.217 

-2.987 

-2.59 

-5.046 

-4.431 

-1.037 

-0.687 

-0.318 

-0.246 

 

50 

44 

45 

46 

48 

47 

47 

47 

47 

42 

40 

42 

44 

42 

42 

39 

40 

40 

39 

39 

39 

39 

39 

39 

Model No Model of V/F OFV  ∆OFV 
BSV in V 

(%) 

24 

25 

26 

27 

NA 

K 

HIGH 

SHOCK 

-314.739 

-307.429 

-307.969 

-306.352 

18 

18 

18 

18 

-7.524 

-0.214 

-0.754 

0.863 

43 

47 

47 

48 

Key:  NA = serum sodium; K = serum potassium; DEHY = dehydration; SHOK = shock; 

HIGH = high mortality risk; SCHW = creatinine clearance calculated by Schwartz equations; 

DIA = diarrhoea; FOOD = drug was administered with feed, CL/F = clearance/ 

bioavailability, V/F = volume of distribution/bioavailability. 
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Table 3.5     Population parameters estimates of ciprofloxacin following oral 

administration to malnourished children obtained using the base and final 

models 

 

Parameters 
 Base model Full model Final model 

 Estimate RSE (%) Estimate RSE (%) Estimate RSE (%) 

CL/F (L/h) 1 36.1 7.1 45.2 7.6 42.7 7.3 

V/F (L) 2 353 7.1 371 7.1 372 7.2 

ka (h
-1

) 3 4.04 24.5 3.05 42.3 2.97 44.4 

ALAG (h) 4 0.794 9.4 0.749 17.4 0.742 18.7 

        

NA (CL/F) 5   0.0357 12.7 0.0368 12.6 

HIGH (CL/F) 6   -0.239 33.1 -0.283 23.0 

DEHY (CL/F) 7   -0.149 57.7   

NA (V/F) 8   0.0286 18.0 0.0291 17.6 

        

BSV (CL/F)  49.8 17.7 37.0 19.8 38.1 20.3 

BSV (V/F)  48.6 20.0 43.1 23.8 43.0 24.4 

BSV (ka)  117.0 34.9 104.9 53.5 102 57.1 

        

Additive error (SD)  0.0284 35.0 0.0282  0.0273 51.6 

Proportional (%CV)  18.1 11.4 18.5  18.6 15.0 

Key:
 
BSV = between subject variability (%CV), CL/F = oral clearance, V/F = oral volume 

of distribution, ka = absorption rate constant (h
-1

), ALAG = absorption lag time (h), NA = 

serum sodium (mmol/L), HIGH = high mortality risk, DEHY = dehydration, RSE=relative 

standard error (%). 
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Table 3.6     Summary of individual ciprofloxacin pharmacokinetic parameter 

estimates obtained in 52 children with severe malnutrition 

 

Parameter estimates N Mean SD Median Minimum Maximum 

CL (L/h) 52 7.43 3.54 7.19 1.83 17.1 

CL (L/h/kg) 52 1.02 0.52 0.87 0.32 2.54 

CL (L/h/kg) Low/intermediate risk  36 1.14 0.53 0.98 0.46 2.54 

CL (L/h/kg) High risk 16 0.77 0.41 0.67 0.32 1.53 

V (L/kg) 52 5.47 2.69 4.49 2.14 14.2 

T1/2 (h) 52 3.97 1.38 3.78 2.01 9.04 

Observed Tmax (h) 52 2.77 1.08 3.00 1.00 5.17 

Model predicted Tmax (h)  52 1.91 0.58 1.79 1.09 3.85 

Observed Cmax (mg/L) 52 1.68 0.79 1.71 0.58 4.52 

Model predicted Cmax (mg/L) 52 1.51 0.60 1.50 0.61 3.56 

AUC0-24 (mg·h/L)  52 24.8 12.4 22.4 7.9 61.3 

AUC0-24 (mg·h/L) low/intermediate 

risk 

36 21.1 8.8 20. 5 7.9 43.4 

AUC0-24 (mg·h/L) high risk 16 32.9 15. 5 29.7 13.1 61.3 

Key: CL= oral clearance; V= oral volume of distribution; T1/2= elimination half-life; Tmax= 

time of the maximum concentration; AUC0-24= the steady state 24 hour area under the 

concentration-time curve. 
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3.4    DISCUSSION 

This work is the first population pharmacokinetic analysis of oral ciprofloxacin in 

paediatric patients with severe malnutrition. The study included 52 patients with an 

age range of 8 to 102 months. Body weight, sodium concentration and presence of 

high mortality risk were found to influence the pharmacokinetics of ciprofloxacin in 

this patient population. Since the oral suspension form of ciprofloxacin was not 

available in the research setting, the tablet was ground and individual doses were 

measured according to body weight and reconstituted with water. This preparation 

method was successfully used in a previous pharmacokinetic study in a paediatric 

population (Peltola et al., 1992). 

 

In the present study, all the children received oral ciprofloxacin 10 mg/kg every 12 

hours for 48 hours and a series of blood samples were collected at various times 

during the first 24 hours after the drug was administered. This dose produced a 

median observed Cmax of 1.7 mg/L (ranging from 0.6 to 4.5 mg/L) at a median of 3 

hours (ranging from 1 to 5.2 hours) after dosing. The Cmax values that were predicted 

from the final model were similar with a median of 1.5 mg/L but the estimated time 

to peak concentration was earlier, at a median of 1.8 hours after the dose. The final 

model predicted the peak concentration to occur earlier in 85% of patients. 

 

Prior to this study, there have been a few studies that examined the pharmacokinetics 

of ciprofloxacin in paediatric patients. Peltola et al. (1992) gave oral ciprofloxacin 15 

mg/kg to infants and children aged 5 weeks to 5 years and up to 11 blood samples 

were collected during the first 12 hours (7 of these were drawn within 3 hours after 

the dose). A median Cmax of 2.2 mg/L (range 0.5 to 5.3 mg/L) was observed at a 

median of 1 hour after the dose. The same authors also investigated the 

pharmacokinetics of an oral suspension formulation by giving ciprofloxacin 10 

mg/kg three times daily to children with ages ranging from 0.3 to 7.1 years (Peltola 

et al., 1998). Nine blood samples were collected during the first 24 hours. With this 

dosage regimen, mean Cmax values varying from 2 to 2.7 mg/L, which were reached 

within 1 hour after dosing, were reported. Rubio et al. (1997) reported that the Cmax 

was 3.7 mg/L at 2.5 hours after oral dosing of ciprofloxacin 20 mg/kg twice daily. 
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Another study, conducted by Schaefer et al. (1996), showed that the mean Cmax was 

around 8.4 mg/L after giving ciprofloxacin 15 mg/kg intravenously every 12 hours to 

paediatric patients with cystic fibrosis. However, a mean Cmax of 3.5 mg/L was 

reported with an oral dose of 15 mg/kg twice daily. The variability in Cmax and Tmax 

observed in the present study may have been due to the difference between patient 

populations. The patients included in this study had severe malnutrition, which can 

alter intestinal transit time. Malnutrition is also associated with villous atrophy in the 

jejunal mucosa and may impair drug absorption (Oshikoya & Senbanjo, 2009; 

Brewster, 2006). Additionally, the transit time through the bowel may change due to 

diarrhoea and vomiting. There are several pieces of evidence illustrating that the oral 

absorption of several drugs decreases significantly in children with malnutrition 

compared to normal healthy children (Bolme et al., 1995; Bravo et al., 1984; 

Eriksson et al., 1983; Mehta et al., 1980; Salako et al., 1989; Walker et al., 1987). 

Another explanation for this variability was the limited sampling strategy used in this 

study.  For ethical and practical reasons, a maximum of only four blood samples per 

patient were collected and each patient was assigned to one of three blood sampling 

schedules. Although these sampling times covered most of the dosage interval, only 

one sample was withdrawn from each patient during the first 3 hours. Most samples 

(35) were collected at least 2 hours after the dose and therefore the Cmax may have 

already been achieved. Previous studies have reported an observed Cmax of around   

1-2 hours. A delayed Tmax of 3 hours observed in this study may be a reflection of the 

available sampling times, because the majority of the patients (35) had samples taken 

at around 3 hours after the dose.  

 

A one-compartment model with first-order absorption with a lag adequately 

described the concentration-time data. Several previous studies have identified that a 

two-compartment model best describes the ciprofloxacin data, but the sparse 

sampling schedule used in this study limited the identification of a distribution phase. 

The population model indicated that oral ciprofloxacin was rapidly absorbed with an 

estimated half-life of 14 minutes after a lag of around 45 minutes. Previous 

population studies conducted in paediatric patients have reported slower rates of 

absorption with half-lives of 30-96 minutes after a lag time of 21-45 minutes (Payen 
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et al., 2003; Rajagopalan & Gastonguay, 2003; Schaefer et al., 1996). The between 

subject variability in absorption rates was around 50 to 55%.   

 

The initial population model for clearance assumed an allometric relationship 

between oral clearance, oral volume of distribution and body weight. Several studies 

have demonstrated that the use of allometric weight can improve the fit of the model, 

especially in paediatric populations (Anderson et al., 1997; Anderson & Holford, 

2009; Holford, 1996). In this study, the OFV after incorporating allometric weight, 

linear weight and allometric BSA were -252.364, -251.020 and -249.402, 

respectively. Although the findings suggested that an allometric weight has no 

additional benefit over other models, an allometric approach allows comparison of 

pharmacokinetic parameters (CL and V) in children with adult data and hence it was 

used in this study. 

 

Rajagopalan and Gastonguay (2003) conducted a pharmacokinetic study in paediatric 

patients aged 14 weeks to 17 years and found that a standardised clearance was 30.3 

L/h/70 kg. Correcting with their bioavailability of 61% gives an oral clearance of 

49.7 L/h/70 kg, which is similar to the value of 42.7 L/h/kg reported in this study. 

These values are consistent with adult values of around 40 – 70 L/h (Forrest et al., 

1988; Gasser et al., 1987; Plaisance et al., 1987). After correcting individual oral 

clearance estimates for weight, a median of 0.9 L/h/kg (range 0.3 – 2.5 L/h/kg) was 

obtained and is consistent with oral clearances of 0.2 – 1.5 L/h/kg observed 

previously (Lipman et al., 2002; Peltola et al., 1998; Rajagopalan & Gastonguay, 

2003).  

 

Renal clearance accounts for approximately two-thirds of total ciprofloxacin 

clearance (Drusano et al., 1986a; Drusano et al., 1986b; Forrest et al., 1988); 

therefore the pharmacokinetics of ciprofloxacin are altered in patients with renal 

impairment. However, during the covariate model building, the inclusion of 

creatinine clearance did not affect ciprofloxacin clearance. This was due to the pre-

specified criteria that excluded patients with severe renal impairment. In the present 

study, only one patient had a high creatinine concentration (676 μmol/L) and was 
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also categorised in the high risk group. This patient had the lowest estimates of oral 

clearance at 1.8 L/h (0.33 L/h/kg). Hence, the final model cannot be used to predict 

ciprofloxacin concentrations in patients with severe renal impairment. The results 

suggested that a dosage adjustment is not necessary in patients with mild to moderate 

renal impairment. The median elimination half-life observed in this study was 3.8 

hours (ranging from 2 to 9 hours), which is similar to those reported previously in 

adults with normal renal function and in paediatric patients (Forrest et al., 1988; 

Gasser et al., 1987; Plaisance et al., 1987). Dehydration, diarrhoea and shock also 

have an influence on oral clearance, but these factors have already been accounted 

for in ‘high risk’ patients. Of the 16 patients in the high risk group, 12 had 

dehydration (of whom 11 had diarrhoea) and 6 had shock. Therefore, adding these 

clinical factors to the model, after including high risk, provided a little additional 

benefit. Interestingly, serum sodium concentration was found to be an important 

clinical factor that influences oral clearance. Hyponatraemia is frequently observed 

in patients with severe malnutrition, due to impairment of Na/K pumps. This leads to 

increased extracellular fluid and consequently low sodium (Alleyne, 1967; Costa-

Silva et al., 2009; Klahr & Alleyne, 1973). There are currently no physiological 

explanations for the correlation between sodium concentration and the clearance. 

Additionally, despite sodium concentration decreasing OFV more than other 

covariates, it reduced subject variability in oral clearance by only 6% and in oral 

volume of distribution by 4%.  Therefore, sodium concentration may be a spurious 

finding.  

 

Several studies have reported that the oral bioavailability of ciprofloxacin decreases 

when given simultaneously with milk, yogurt or divalent cations such as iron or zinc 

supplements (Frost et al., 1989a; Kara et al., 1991; Neuvonen et al., 1991; Polk et 

al., 1989). The effect of food feeding is one of interest. Since most children are in a 

poorly resourced healthcare setting with a limited number of healthcare 

professionals, it is impractical and impossible to ensure that feeding times are 

synchronised around the times of drug administration. Subsequently, a significant 

proportion of children are likely to receive ciprofloxacin with food and the 

bioavailability may reduce. Although the initial analysis found that the oral clearance 
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increased when patients were given ciprofloxacin, the OFV dropped by only 4.5 

units, which indicated a weak effect. In the final model, no influence of food was 

identified. This may be due to the fact that 13 of the 16 patients (81%) who received 

ciprofloxacin with food were in the low or intermediate risk categories, and they had 

a high oral clearance (0.98 L/h) and low AUC estimates (20.5 mg·h/L) compared to 

the patients in the high risk group (0.67 L/h and 29.7 mg·h/L). The influence of high 

mortality risk may be a confounding factor masking the effect of food on oral 

clearance. In addition, if food was important, it may have enhanced the apparent 

influence of risk in the model.  

 

The standardised estimate of oral V in the present study was 372 L/70 kg, which was 

similar to that reported by Forrest et al. (1988) in adult patients with normal renal 

function (321 L/1.73 m
2
) but higher than that reported previously by Rajagopalan 

and Gastonguay (2003) (Vss was 240 L/kg after correction for bioavailability). 

Individual estimates of oral V ranged from 2 to 14 L/kg with a median of 4.5 L/kg, 

which was considerably higher than the values of around 1.5 – 3.8 L/kg reported 

previously (LeBel et al., 1986; Lipman et al., 2002; Payen et al., 2003; Schaefer et 

al., 1996). These results indicated that children with malnutrition have an increase in 

oral V, which is consistent with the observed oral V in gentamicin in malnourished 

children (Seaton et al., 2007). Septicaemia, oedema and electrolyte imbalance, which 

are common complications, may contribute. In a similar way to the case with oral 

clearance, sodium concentration was found to influence the oral V. Higher sodium 

concentration is associated with larger estimates of oral V.  
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CHAPTER 4 

 

VALIDATION OF THE POPULATION 

MODEL FOR CIPROFLOXACIN 
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4.1    INTRODUCTION 

Population pharmacokinetic (PK) and pharmacodynamic (PD) modelling is a useful 

tool for analysing the relationship between drug dose and its concentration, and 

between the drug concentration and its effects/toxicities. PK-PD modelling can also 

be used to identify variability among population subgroups, which may be utilised to 

support decisions in drug therapy and to select the optimal dosage regimens. The 

choice of the population model is dependent on the quality of data and modeller 

decisions taken during the model building process, which are often subjective e.g. 

graphical assessments. Therefore, the final population model should be tested for 

validity.  

 

There is currently no consensus as to which is the most appropriate approach to 

validate population models. Importantly, the need for model validation may vary 

depending on the objective of the analysis. If the final model is to be used for 

prediction, clinical trial simulation or incorporation into a drug label, the predictive 

performance of the model should be tested. However, if the model is developed to 

explain variability with no dosage adjustment recommendation, a simpler validation 

method for testing the stability can be used (Brendel et al., 2007). The current 

European Agency of Evaluation of Medicinal Products (EMEA) guideline on the 

reporting of results of population PK analyses recommends that model evaluation be 

performed to demonstrate that the final model is robust and functions as a 

sufficiently good description of the data to enable the objective(s) of the analysis to 

be met (EMEA, 2006). The guidance for industry on population PK published by the 

Food and Drugs Administration (FDA) also suggests the need for model evaluation 

during the drug development process (FDA, 1999).  

 

The predictive performance of a population model is generally assessed by 

comparing the measured concentrations in a validation dataset to those values 

predicted by the population model. Although external validation (using a new dataset 

from another study) is the most stringent method to validate the model (FDA, 1999; 

Sun et al., 1999), an internal validation is more practical and can be used to identify 

an invalid model. Among all of the internal validation techniques, data splitting is 
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one of the most often recommended (Ette, 1997). The drawback with this method, 

however, is that its predictive accuracy is a function of the sample size resulting from 

the data splitting, which means that it is not suitable for studies with a small sample 

size (e.g. paediatric studies). In order to maximise predictive accuracy while 

retaining a reliable estimate of the parameters in such a situation, the use of all data 

for model development and validation is recommended (Ette, 1997). 

 

Bootstrapping was used to validate the population model in the present study. This 

method has the advantage that it employs the entire available dataset during model 

building. It is also useful for testing model stability in terms of covariate selection 

and for model performance evaluation (Ette, 1997). A major drawback of this 

approach is the extensive computation time required to validate hundreds of datasets, 

especially when the original dataset is large and the model complex. However, this 

has become less problematic as improved computer systems and automated model 

building software have become available (Jonsson & Karlsson, 1998). It has been 

suggested that a minimum of 200 bootstrap replicates is adequate for this method 

(FDA, 1999). In addition to the bootstrapping, the final population model in this 

study was also validated with the visual predictive check (VPC) and normalised 

prediction distribution error (npde) as described in Chapter 2. 

 

Modelling generally should be performed with caution because the parameter 

estimates may depend on only one or two unusual individuals in the dataset. Case 

deletion diagnostics such as jackknife analysis can be used to identify influential 

individuals. The jackknife is a non-parametric method, which involves repeated 

population parameter estimates following consecutive deletion of data from 

individuals.  

 

The aim of the analysis in this chapter is to assess the performance of the final 

population model with respect to both stability and predictability, using internal 

validation techniques. 
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4.2    METHODS 

4.2.1   Bootstrap estimates 

A bootstrap was performed using Perl-speaks-NONMEM (PsN) Version 3.1.0 

(Lindbom et al., 2005; Lindbom et al., 2004). One thousand datasets were generated 

and used to calculate confidence intervals of parameter estimates. The following is 

an example of the bootstrap commands used in this study: 

 

bootstrap run1.mod –samples=1000 –seed=1234 –threads=8 –dir=bootstrap1 

 

The meaning of each command is shown below: 

bootstrap    Call the PsN to run bootstrap  

run1.mod    Name of model file 

-samples    Number of bootstrap datasets to generate 

-seed       A seed to generate a random number 

-threads     Number of parallel processes 

-dir        Name of directory in which the output will be stored 

 

4.2.2 Jackknife analysis  

The jackknife analysis was performed using the PsN Version 3.4.4. From the original 

dataset, 52 new datasets were created so that each excluded the data from one 

patient. Each dataset (so-called ‘jackknife sample’) was analysed with NONMEM 

using the final population model. The following is an example of the case deletion 

diagnostic command used in this study: 

 

cdd run1.mod -case_column=ID -dir=cdd_run1 

 

The following is the meaning of arguments: 

cdd      Call the PsN to run case deletion diagnostic 

run1.mod     Name of model file 

-case_column  Name of the column on which the case deletion is performed 

-dir         Name of directory in which the output will be stored 
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The jackknife standard error (se) for the population parameter was calculated using 

equations 4.1-4.3 (Bonate, 2011). 

 

i i
P  = θ - (  - 1)θn n                                           (4.1) 

 

where Pi are pseudovalues, θ the population parameter estimated from all subjects, θi 

the population parameter estimated from a jackknife sample, and n the total number 

of subjects in the dataset. With 

 

i1
P

P = 

n

i

n


                                              (4.2) 

 

where P is the average of the pseudovalues, and 

 

2

1

1
  (Pi - P)

( 1)

n

i

se
n n 



                                    (4.3) 

 

those individuals with a high impact on the population parameter estimates were 

identified by comparing population parameter estimates from the jackknife samples 

with the population values determined using the final model.  

 

4.2.3   Visual predictive check (VPC) 

A visual predictive check (VPC) was performed using the PsN Version 3.1.0. The 

example command used to run VPC is shown below: 

 

vpc run1.mod –lst=run1.lst –samples=1000 –seed=1234 –bin_by_count=1  

–no_of_bins=5 –idv=tad –predcorr –dir=run1_tad 

 

The command line parameters are listed below: 

vpc          Call the PsN to run VPC 

run1.mod      Name of model file 
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-lst          Name of result file 

-samples      Number of simulated datasets to generate 

-seed         A seed to generate random number 

-bin_by_count  Request data binning (0 = each bin has an equal width based on the 

independent variable, 1 = each bin has an equal counts of 

observations) 

-no_of_bins    Number of bins 

-idv          Name of the independent variable  

-predcorr      Perform prediction correction of dependent variable values 

-dir          Name of directory in which the output will be stored 

 

In this study, the –predcorr option was used for all analyses and time after dose 

(TAD) was set as an independent variable. Initial analysis was performed without 

binning the data. The data were subsequently binned both by width (each bin has 

similar width of independent variable) and by count (each bin has similar amount of 

data). Different numbers of bins, ranging from four to ten bins, were compared. 

Since the PsN program itself does not produce graphical outputs, VPC results were 

then processed with Xpose Version 4.0 (Jonsson & Karlsson, 1999), which is 

implemented in R software Version 2.9.2. Xpose reads two files, ‘vpctab’, which 

contains the original observed data and ‘vpc_results.csv’, which contains the VPC 

results. To create VPC plots, the Xpose library was loaded within R by typing the 

following script: 

 

library(xpose4) 

 

and then a basic VPC plot was created with the following script: 

 

xpose.VPC() 

 

There are several ways to construct more informative VPCs (by altering the 

appearance). The R script used in this study is shown below: 
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xpose.VPC(PI.real=T, PI.limits=c(0.1,0.9), PI.ci=“area”, PI.ci.up.arcol=“blue”, 

PI.ci.down.arcol=“blue”, PI.ci.med.arcol=“red”, PI.real.up.col=“red”, 

PI.real.down.col=“red”, PI.real.med.col=“red”, PI=NULL) 

 

The following is the meaning of arguments: 

PI.real  Plot the median/percentile of the real data in various bins (can be 

selected either ‘NULL’ or ‘TRUE’) 

PI.limits  A vector of two values that describe the limits of the prediction 

interval displayed (the limit values can be found in 

vpc_results.csv file).  

PI.ci  Plot the confidence interval for the percentiles of the simulated 

data for each bin. For each simulated dataset, percentiles for each 

bin are computed, then all percentiles from all of the simulated 

datasets were used to compute the CI of these percentiles (can be 

selected either ‘area’, ‘lines’ or ‘both’) 

PI.ci.up.arcol    The colour of the upper PI.ci 

PI.ci.down.arcol  The colour of the lower PI.ci 

PI.ci.med.arcol   The colour of the median PI.ci 

PI.real.up.col    The colour of the upper PI.real 

PI.real.down.col  The colour of the lower PI.real 

PI.real.med.col   The colour of the median PI.real 

PI  Whether prediction intervals should be added to the plot (can be 

selected either ‘area’, ‘lines’ or ‘both’. In this study, the ‘NULL’ 

option was used to plot confidence intervals for the percentiles 

instead of the prediction interval) 

 

4.2.4   Normalised prediction distribution error (npde) 

The add-on package npde Version 1.2 (Brendel et al., 2006; Comets et al., 2008) for 

the R software was used to compute npde. This package requires two files: the one 

containing the original dataset (named ‘observed data’) and the one containing the 

simulations (named ‘simulated data’). The following outlines the way these two files 

were prepared before running the npde package. 
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1) Observed data 

The final model was run again. The table file was generated as a tab format without a 

header. This file has to contain at least the following three columns:  

1) ID    Patient identification 

2) xobs Independent variable (time, and time after the dose was investigated in this 

study) 

3) yobs   Dependent variable (concentration) 

 

An additional column was added in the present study, that of missing dependent 

variable (MDV). This column indicates missing data (with ‘0’ representing missing 

data and ‘1’ observed data). During the computation of npde, the missing 

observations (MDV value of 0) were removed from the observed dataset reported in 

the graphical output. It should be noted that excluding the MDV column may lead to 

misleading results. Further columns are optional, depending on the final model 

developed. In the present study, body weight, sodium concentration, and high 

mortality risk were included in the final model and were therefore added to the 

dataset use for the simulations.  

 

2) Simulated data 

This file contains simulated datasets stacked one after the other. The simulated data 

file must contain at least three columns, in the following order: ID, xobs (TIME or 

TAD, depending on which independent variable is to be used for analysis), yobs 

(DV). In this study, one thousand simulated datasets without header were generated 

in tab format using NONMEM Version VI (Beal et al., 1989-2006). 

 

After preparing two input data files containing observed and simulated data, npde 

were computed by typing the following command on R command window. Initially, 

the npde library was loaded by: 

 

library(“npde”) 
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then the function autonpde() was called. The minimum input includes the name of 

the observed data file and the name of the simulated data file, but a number of 

options can be used as arguments. The following example is of the command used to 

run the npde package in this study: 

 

autonpde<-function(manobs=“CIPRO.TAB”, namsim=“CIPROSIM.TAB”, iid=1, 

ix=3, iy=4, imdv=5, namsav=“output.eps”, boolsave=T, type.graph=“jpeg”, 

output=T, verbose=T, calc.npde=T, cal.pd=T) 

 

The following is the meaning of arguments: 

manobs   Name of the observed data file 

namsim   Name of the simulated data file 

iid       Number of the column in which ID is located in the observed data file 

ix       Number of the column in which xobs is located in the observed data file 

iy       Number of the column in which yobs is located in the observed data file 

imdv     Number of the column in which MDV is located in the observed data file 

namsav   Name of the files in which results are saved 

boolsave  Whether graphs should be saved to a file 

type.graph Graph format (can be selected either ‘JPEG’, ‘PNG’, or ‘PDF’) 

output    Whether the function returns the results 

verbose Whether a message should be printed as the computation of npde begins 

in a new subject 

calc.npde  Whether npde should be computed  

calc.pd    Whether pd should be computed  

 

The advantages of the computation for npde are that a statistical test can be applied 

to test adequacy of the final model. Under the null hypothesis (H0) that the final 

model adequately describes the data, the npde should have a mean of zero and a 

variance of one. Three statistical tests implemented in npde package were used to test 

this assumption: Wilcoxon signed rank test, Fisher variance test, and Shapiro-Wilks 

test. These three tests were combined with a Bonferroni correction and were reported 

as a global test. If the final model describes the data adequately, these statistical tests 
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are expected to be non-significant. In addition, the central moments of the npde 

distribution (mean, variance, skewness and kurtosis) were examined. The expected 

values of these variables are 0, 1, 0 and 0, respectively.  

  

4.3    RESULTS 

4.3.1   Bootstrap estimates 

The results from the bootstrap are presented in Table 4.1. The median value of 

absorption rate constant (ka) estimated from the final model was 2.97 h
-1

, which was 

lower than the median estimate from the bootstrap (3.44 h
-1

). Furthermore, the 95% 

confidence interval was also wide, ranging from 1.32 to 8.86. This indicated poor 

precision. For the ALAG, the bootstrap estimate of 0.792 hours was almost identical 

to the value obtained from the final model (0.742) but a wide range of confidence 

interval was again observed (0.168-0.924). The 95% confidence interval for the 

additive error was also wide, ranging from 0.0041 to 0.0438, with a median value of 

0.0278 which was similar to the value estimated from the final model (0.0273). Apart 

from ka, ALAG and additive error, the other population parameter estimates obtained 

from the bootstrap were generally comparable with the estimates from the final 

model, and the 95% confidence intervals were narrow, indicating good precision of 

these parameters.  
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Table 4.1     Parameter estimates obtained from the bootstrap and the final 

model 

 

Parameters 
Population 

estimate 

Bootstrap 

estimate 
Bootstrap 95% CI 

CL/F (L/h/70 kg) 42.7 42.5 (37.0, 49.3) 

V/F (L/70 kg) 372 367 (316, 429) 

ka (h
-1

) 2.97 3.44 (1.32, 8.86) 

ALAG (h) 0.742 0.792 (0.168, 0.924) 

    

NA
+
 CL/F 0.0368 0.0361 (0.0217, 0.0446) 

HIGH CL -0.283 -0.285 (-0.412, -0.118) 

NA
+
 V/F 0.0291 0.0282 (0.0155, 0.0388) 

    

BSV CL/F 38.1 37.8 (28.7, 45.8) 

BSV V/F 43.0 42.9 (32.4, 51.8) 

BSV ka 102 110 (56, 159) 

Additive error (SD) 0.0273 0.0278 (0.0041, 0.0438) 

Proportional error (%CV) 18.6 17.8 (14.0, 22.6) 

Key: CL/F = oral clearance, V/F = oral volume of distribution, ka = absorption rate constant, 

ALAG = absorption lag time, BSV = between subject variability expressed as a percentage 

coefficient of variation (%CV), NA
+
 = sodium concentration, HIGH = high risk of mortality. 
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4.3.2   Jackknife analysis 

The jackknife standard errors were similar to those values estimated with NONMEM 

(Table 4.2). The mean population parameters for ka (θ3), ALAG (θ4) and inter-

individual variability of ka (η3) derived from the jackknife sample were higher than 

those estimated with NONMEM, while other mean population parameters were 

almost identical.  

 

The estimates of the population parameters from the jackknife samples are shown in 

Figure 4.1. There was little variability in population parameter estimates between 

jackknife samples for CL (θ1) and V (θ2) with most estimates being within 5% of the 

final population estimate. However, CL was 5.3% higher when Patient 38 was 

removed. Patient 18 had the greatest impact on the V estimate, which dropped 10.3% 

after this patient was removed from the dataset. For θ5 and θ7, most jackknife 

samples were within 5% of the final population estimates with only four or five 

jackknife samples varying more than that (by approximately 10%). Removal of any 

single individual had little effect on the θ6. The population estimates of ka and 

ALAG were found to be the most sensitive to removal of individuals with maximum 

variations of +76% and -43%, respectively. For inter-individual variability of CL (η1) 

and V (η2), only a few jackknife samples varied by more than 5% from the final 

estimates. It was found that the inter-individual variability of ka (η3) varied with a 

maximum variation of 226% when patient 15 was removed. The jackknife estimates 

of the additive error varied by more than 5% in 28 jackknife samples (more than 10% 

in 15 samples), and the proportional error varied by more than 5% in 12 jackknife 

samples. 
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Table 4.2     Population parameter estimates and standard error obtained from 

NONMEM and jackknife analysis 

 

Parameters 

Estimated from NONMEM Estimated from jackknife analysis 

Population 

estimate 
se Mean population 

estimate 
se 

θ1 42.7 3.23 42.7 3.16 

θ2 372 27.1 371 27.1 

θ3 2.97 1.29 3.39 1.50 

θ4 0.742 0.138 0.760 0.163 

θ5 0.0368 0.00467 0.0370 0.00471 

θ6 -0.283 0.066 -0.285 0.066 

θ7 0.0291 0.00512 0.0288 0.00524 

     

η1 0.145 0.0295 0.148 0.0300 

η2 0.185 0.0452 0.186 0.0468 

η3 1.05 0.595 1.21 0.717 

     

σ1 0.0273 0.0143 0.0266 0.0155 

σ2 0.186 0.028 0.186 0.032 

se = standard error 

 

TVCL (L/h) = θ1 x (WT/70)
0.75

 x (1+ θ5*(Na
+ 

-136)) x (1+ θ6 *(High)) 

TVV (L) = θ2 x (WT/70) x (1+ θ7*(Na
+
 -136)) 

TVKA (h
-1

) = θ3 

ALAG (h) = θ4 

CL = TVCL*EXP(η1) 

V = TVV*EXP(η2) 

KA = TVKA*EXP(η3) 

Cobs =IPRED+SQRT(σ1
2
+ σ2

2
*IPRED

2
) 
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Figure 4.1    Population parameter estimates from jackknife samples 

 

 

 

 

 

 

 

NB Jackknife sample 1 was the dataset excluding Patient 1, etc. 

The solid line represents the population estimate from final model. 

The dotted line represents ±5% from the final population estimate. 
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Figure 4.1    (continued) 

 

 

 

 

 

 

 

NB Jackknife sample 1 was the dataset excluding Patient 1, etc. 

The solid line represents the population estimate from final model. 

The dotted line represents ±5% from the final population estimate. 
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4.3.3   Visual predictive check (VPC) 

Figure 4.2A and 4.2B show the results of VPCs performed for the medians (solid red 

line), and 10% and 90% percentiles (dashed red lines) for the observed data; the 95% 

confidence intervals (based on 1000 simulations) for the median (red field), and 10% 

and 90% percentiles (blue field) were also constructed. Figure 4.2A shows the results 

after binning the data to have a similar number of dependent variables (drug 

concentrations) into 4 bins, and Figure 4.2B 5 bins. These plots indicate that the 

model predicts the data adequately. Binning the data to have similar widths of 

independent variable values also indicates that there is no model misspecification 

(Figure 4.3A and 4.3B).  

 

4.3.4   Normalised prediction distribution error (npde) 

Table 4.3 shows the statistical results of the npde. Using the different independent 

variables of time and time after dose gave the same result. The mean, variance and 

skewness were close to the expected values of 0, 1 and 0. However, a slightly 

positive kurtosis was observed (0.3294). The results from statistical tests suggest that 

the distribution of npde followed a normal distribution. The shape of the distribution 

of the npde is presented in Figure 4.4. There were no trends observed (H0 is true), 

meaning that the final model described the data adequately. 
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Figure 4.2    Graphical output from visual predictive check after binning the 

data by count 

 

A: 4 binning intervals                                B: 5 binning intervals 

 

 

Figure 4.3    Graphical output from Visual Predictive Check after binning the 

data by width 

 

A: 4 binning intervals                                B: 5 binning intervals 
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Table 4.3    Results for the distribution of npde and statistical tests used to 

evaluate the null hypothesis (H0) 

 

npde tests 
Independent variable 

Time Time after dose 

Distribution of npde 

     Mean 0.0474 0.0474 

     Variance 1.074 1.074 

     Skewness -0.07766 -0.07766 

     Kurtosis 0.3294 0.3294 

Statistical tests 

     Wilcoxon signed rank test   p = 0.403 p = 0.403 

     Fisher variance test        p = 0.447 p = 0.447 

     Shapiro-Wilks test  p = 0.359 p = 0.359 

     Global test p = 1 p = 1 
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Figure 4.4  Graphical output from npde analysis: Quantile-quantile plot of npde 

versus expected standard normal distribution (upper left); Histogram of npde 

with density of overlaid standard normal distribution (upper right); Scatter plot 

of npde versus independent variable X or time after dose (lower left); Scatter 

plot of npde versus predicted Y or concentration (lower right) 
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4.4    DISCUSSION 

The population PK model for oral ciprofloxacin developed in the previous chapter is 

aimed for use in determining the optimal dosage guideline for children with severe 

malnutrition. Therefore, the predictive performance of the final model needs to be 

validated. Since a new validation dataset was not available in the present study, 

internal validation techniques only were applied.  

 

Although data splitting is often recommended (Ette, 1997), the number of patients 

recruited in the present study was rather small (n = 52) to split the data into a 

learning and a validation dataset. Bootstrapping was used to test the performance of a 

population model for its predictive accuracy. The poor precision results observed for 

ka and ALAG, as judged by the wide confidence interval range, may have been due 

to the insufficient information with which to estimate these parameters. The wide 

confidence interval of the additive error model could have been the result of a poor 

fit of early time-points data to the absorption model. Likewise, the results from the 

jackknife analysis showed that estimations of ka and ALAG were highly influenced 

by certain individuals.  

 

In contrast, the estimations of CL and V were more precise and accurate, as indicated 

by narrow bootstrap confidence intervals. The results from the jackknife analysis 

also revealed that removal of individuals did not result in any major changes to these 

parameters. It was noticed that the population estimate for V decreased with a 

maximum of 10.5% when Patient 18 was removed. This patient was identified as 

having the largest individual parameter estimates, of 14.2 L/kg compared to the mean 

population value of 5.47 L/kg. Removal of this patient would probably have resulted 

in a significantly decreased population value.  

 

Standard errors calculated from the jackknife samples were comparable to those 

estimated with NONMEM. This is consistent with the previous study by Gibiansky 

et al. (2001), which demonstrated that standard error estimated by NONMEM was in 

most cases reliable and rarely improved by more computer intensive methods such as 

bootstrap, jackknife and likelihood profile techniques.  
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The graphical results from the VPC suggest that the model is relatively robust and 

able to reproduce the variability in the observed data. It should be noted that the 

interpretation of VPC is somewhat subjective, depending on the appearance of the 

plots. In this study, a number of plots were produced using different number of bins 

and variables for binning, and no evidence of model misspecification was observed 

in any plots. The robustness of the model was also confirmed statistically using an 

npde test.  

 

The various internal validation techniques used in this study found that the models 

for CL and V are robust and have favourable predictive performance, whereas the 

models for ka and ALAG are influenced by individuals. The efficacy of 

ciprofloxacin is the determined by the AUC, which can be calculated using the CL 

(Dose/CL), so a conclusion of the usefulness of the model with respect to its ability 

to predict CL is warranted. 
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CHAPTER 5 

 

DEVELOPMENT OF NEW DOSAGE 

REGIMENS OF ORAL 

CIPROFLOXACIN FOR 

MALNOURISHED CHILDREN 
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5.1    INTRODUCTION 

The aim of this chapter was to (i) develop new dosage regimens of oral ciprofloxacin 

for severely malnourished children by using the final population PK model derived 

in Chapter 3, (ii) determine PK-PD susceptibility breakpoints of ciprofloxacin, and 

(iii) compare the PK-PD breakpoints with the values reported by international 

organisations, including the Clinical and Laboratory Standards Institute (CLSI) and 

the European Committee on Antimicrobial Susceptibility Testing (EUCAST). 

 

5.2    METHODS 

5.2.1   Microbiological data 

Five pathogenic bacteria that commonly cause bacteraemia in malnourished children, 

including Gram-negative organisms i.e. Salmonella spp., P. aeruginosa, K. 

pneumoniae, E. coli, and Gram-positive organisms i.e. S. pneumoniae, were selected. 

The MIC distribution data of their clinical isolates were derived from the database of 

the EUCAST (2011). The CLSI and EUCAST susceptibility breakpoints for 

ciprofloxacin are consistent for all Gram-negative organisms investigated in this 

study (CLSI, 1 mg/L; EUCAST, 0.5 mg/L) (CLSI, 2012; EUCAST, 2011). The CLSI 

does not have a breakpoint for S. pneumoniae whereas the EUCAST reported a 

breakpoint value of 0.125 mg/L for this organism. 

 

5.2.2   Probability of target attainment 

The final parameters of the population PK model obtained in Chapter 3 were used to 

perform a 10,000 subject Monte Carlo Simulation using NONMEM Version VI 

(Beal et al., 1989-2006). The control file for simulation is presented in Figure 5.1. 

The clinical characteristics included in the model, i.e. body weight and sodium 

concentration, were sampled from a log-normal distributions with outer limits set to 

the values observed in the raw data (weight 4.1-14.5 kg; sodium concentration 120-

160 mmol/L). The incidence of high risk of mortality in the simulated dataset was set 

equal to 31%. Simulations were conducted for three dosage regimens: 20 mg/kg/day 

(current daily dosage regimen); 30 mg/kg/day; and 45 mg/kg/day. AUC0-24 estimates 
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were calculated for each simulated patient by using daily dose and oral clearance 

(AUC0-24 = Dose/CL/F). 

 

The probability of target attainment (PTA), which was defined as the probability that 

the pharmacodynamic target of the drug was achieved, was estimated at each MIC. 

In the present study, target AUC0-24/MIC ratios of ≥125 and ≥35 were used for 

Gram-negative (Forrest et al., 1993) and Gram-positive organisms (Lacy et al., 1999, 

Lister & Sanders, 1999), respectively. For each ciprofloxacin regimen, the highest 

MIC at which the PTA achieved ≥90% was defined as the PK-PD susceptibility 

breakpoint.  

 

5.2.3   Susceptibility interpretations 

Cumulative MIC distributions for five organisms were extracted from the EUCAST 

database. Consequently, PK-PD, CLSI, and EUCAST breakpoints were applied to 

these distributions in order to evaluate the impact of breakpoint discrepancies on the 

interpretation of global organism susceptibilities.    
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Figure 5.1  NONMEM control file for simulation of patient data  

 

$PROB SIMULATION  

$INPUT ID TIME DV MDV EVID AMT CMT TYPE WT NA HIGH 

$DATA  DATA.CSV IGNORE=# 

$SUBROUTINE ADVAN2 TRANS2 

 

$PK       

WT2=WT*EXP(ETA(4)) 

IF(WT2.LT.4.1)WT2=WT  

IF(WT2.GT.14.5)WT2=WT  

 

NA2=NA*EXP(ETA(5)) 

IF(NA2.LT.120)NA2=NA  

IF(NA2.GT.160)NA2=NA  

 

IF(ICALL.EQ.4) THEN 

RISK=0 

CALL RANDOM(2,R) 

HRSK=R 

IF(HRSK.LT.0.31) THEN 

RISK=1 

ENDIF 

ENDIF 

 

TVCL=THETA(1)*(WT2/70)**0.75*(1+THETA(7)*(NA2-136))*(1+THETA(8)*RISK) 

TVV=THETA(2)*(WT2/70)**1*(1+THETA(9)*(NA2-136)) 

TVKA=THETA(3) 

CL=TVCL*EXP(ETA(1)) 

V=TVV*EXP(ETA(2)) 

KA=TVKA*EXP(ETA(3)) 

ALAG1=THETA(4) 

S2=V 

 

$ERROR    

IPRED=F 

W=SQRT(THETA(5)**2+THETA(6)**2*F**2) 

IRES=DV-IPRED 

IWRES=IRES/W 

Y=F+W*ERR(1) 

$THETA (42.7) (372) (2.97) (0.742) (0.0273) (0.186) (0.0368) (-0.283) (0.0291) 

$OMEGA BLOCK(3) 

0.145 

0.105 0.185 

0.0643 0.193 1.05 

$OMEGA 0.0783 0.0024 

$SIGMA 1 FIX 

$SIMULATION (399069982) (1503701723 UNIFORM) ONLYSIM SUBPROBLEMS=10000 

$TABLE ID TVCL CL WT2 NA2 NOPRINT NOAPPEND NOHEADER FILE=SIM1.TAB 
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5.2.4   Cumulative fraction of response 

Since the MIC values may be located primarily at one end or the other of the range of 

MICs, the calculated PTA for each MIC requires to be integrated with the MIC 

distribution data for each organism in order to properly interpret the likelihood of 

response by dose. The cumulative fraction of response (CFR) was used to determine 

the expected overall response of each pathogen to ciprofloxacin with each of the 

three dosage regimens. This estimate takes into account the variability of the drug 

exposure in the population, as embodied in the Monte Carlo simulation. It also takes 

into consideration the variability in the MIC of the drug for clinically appropriate 

pathogens, as embodied in the measured distribution of MICs for the pathogens. For 

each MIC value, the fraction of simulated patients who met the pharmacodynamic 

target (AUC0-24/MIC ≥125 or ≥35) was multiplied by the fraction of the distribution 

of microorganisms for which the MIC was at that MIC value. The CFR was 

calculated as the sum of fraction products over all MICs (Drusano et al., 2001). 

Table 5.1 shows the method for calculating CFR by using the MIC distribution of E. 

coli and a dosage regimen of 20 mg/kg/day. 
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Table 5.1   Example of data used to calculate CFR 

 

MIC (mg/L) 
Number of 

isolates 

Percentage of 

distribution at the 

indicated MIC 

Fraction target attainment 

(AUC0-24/MIC≥125) at the 

MIC 

Percentage 

products 

0.002 14 0.078 1 0.078 

0.004 189 1.057 1 1.057 

0.008 4433 24.797 1 24.797 

0.016 7543 42.194 1 42.194 

0.032 1684 9.420 1 9.420 

0.064 693 3.876 0.991 3.842 

0.125 623 3.485 0.762 2.654 

0.25 624 3.491 0.239 0.835 

0.5 241 1.348 0.019 0.026 

1 121 0.677 0.0001 0.0000677 

2 63 0.352 0 0 

4 157 0.878 0 0 

8 292 1.633 0 0 

16 257 1.438 0 0 

32 584 3.267 0 0 

64 201 1.124 0 0 

128 89 0.498 0 0 

256 62 0.347 0 0 

512 7 0.039 0 0 

Sum 17877 100 - 85 

 

5.3    RESULTS 

5.3.1   Microbiological data 

The MIC distributions extracted from the EUCAST database are displayed in Figure 

5.2 as cumulative percentage plots and frequency distribution plots. The MICs at 

which 50% of isolates were inhibited were 0.032 mg/L for Salmonella spp. and       

K. pneumoniae; 0.25 mg/L for P. aeruginosa; 0.016 mg/L for E. coli; and 1 mg/L for 

S. pneumoniae. The MICs at which 90% of isolates were inhibited were 0.064 mg/L 

for Salmonella spp.; 2 mg/L for K. pneumoniae and S. pneumoniae; 8 mg/L for       

P. aeruginosa; and 1 mg/L for E. coli.  
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Figure 5.2  Cumulative percentage (left) and frequency distribution (right) of 

Salmonella spp., P. aeruginosa, K. pneumoniae, E. coli, and S. pneumoniae 

 

A: Salmonella spp. 

     

 

B: P. aeruginosa 

     

 

C: K. pneumoniae 
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Figure 5.2    (continued) 

 

D: E. coli 

     

 

F: S. pneumoniae 
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5.3.2   Probability of target attainment 

The percentage of simulated patients who achieved an AUC0-24/MIC ratio of ≥125 at 

each MIC value with three ciprofloxacin daily dosage regimens is illustrated in 

Figure 5.3A. With a dose of 20 mg/kg/day, only 76% of patients would be expected 

to achieve the therapeutic target if the MIC of the organism was 0.125 mg/L. 

However, with the higher doses of 30 and 45 mg/kg/day, the percentages increased to 

95% and 99%, respectively. Therefore, the PK-PD susceptibility breakpoints for 

Gram-negative organisms were <0.06 mg/L for the current dose of 20 mg/kg/day and 

<0.125 mg/L for doses of 30 and 45 mg/kg/day. If the MIC was >1 mg/L, it was 

found that the target AUC0-24/MIC ratio was attained in <5% of patients with all 

dosage regimens. For Gram-positive organisms, the PK-PD breakpoint was <0.25 

mg/L for 20 mg/kg/day and <0.5 mg/L for 30 and 45 mg/kg/day (Figure 5.3B). 

 

5.3.3   Susceptibility interpretations 

Table 5.2 depicts the species-specific cumulative frequency distributions for 

ciprofloxacin. For Salmonella spp. and E. coli, breakpoint discrepancies resulted in 

lowest differences (<10%) in the percentage susceptibility. S. pneumoniae and        

K. pneumoniae had modest differences of 17.3% and 21.1%, respectively. In 

contrast, larger discrepancies were observed for P. aeruginosa with a difference of 

68.1%. This indicates that the percentage of susceptible organisms varies greatly 

depending on which breakpoint is applied. 
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Figure 5.3  Percentage probability of achieving a target AUC0-24/MIC ratio 

≥125 (A) and ≥35 (B) with three daily doses of ciprofloxacin and a range of MIC 

values 

 

A: 

 

B: 

 

 

Key: Solid circles represent 20 mg/kg/day, open circles represent 30 mg/kg/day and 

solid triangles represent 45 mg/kg/day.
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Table 5.2     Cumulative frequency distribution for Salmonella spp., P. aeruginosa, K. pneumoniae, E. coli, and S. pneumoniae 

isolates extracted from the EUCAST database with corresponding percentage susceptibility using PK-PD (P1 and P2), CLSI (C) 

and EUCAST (E) breakpoints 

 

Organisms No of 

isolates 

Cumulative MIC (mg/L) distribution Divergence in 

%susceptibilitya 

0.002 0.004 0.008 0.016 0.03 0.06 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256 512 

Salmonella spp. 1733 0 0 4.3 49.6 89.6 92.7P1 96.7P2 99.0 99.8E 99.8C 99.9 99.9 99.9 100 100 100 100 100 100 7.1 

P. aeruginosa 27855 0 0 0.1 0.2 2.1 13.0 P1 46.4 P2 62.8 74.3E 81.1C 86.5 89.6 92.8 94.6 96.4 99.0 99.5 99.6 100 68.1 

K. pneumoniae 5898 0 0.1 4.3 19.1 51.7 67.7 P1 76.9 P2 82.2 86.4E 88.8C 90.5 91.9 93.1 94.1 96.6 98.6 99.2 99.7 100 21.1 

E. coli 17877 0.1 1.1 25.9 68.1 77.5 81.4 P1 84.9 P2 88.4 89.7E 90.4C 90.8 91.7 93.3 94.7 98.0 99.1 99.6 100 100 9 

S. pneumoniae 73840 0 0 0 0 0.1 0.1 0.3E 2.5 P1 17.6 P2 75.6 97.0 98.8 99.2 99.3 99.5 99.7 99.7 99.7 100 17.3 

a
 This column reflects the difference in percentage susceptibility among the three different breakpoints (PK-PD, CLSI and EUCAST). Large 

discrepancies indicate that percentage susceptible varies greatly depending upon which breakpoint is applied. 

Key: P1 = PK-PD breakpoints for the dose of 20 mg/kg/day, P2 = PK-PD breakpoints for the dose of 30 and 45 mg/kg/day. 
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5.3.4   Cumulative fraction of response 

Table 5.3 shows the CFR for each pathogen at the specific doses. It was found that 

more than 80% of patients would be expected to achieve the target AUC0-24/MIC 

ratio of 125 with all three daily dosage regimens for salmonella spp. and E. coli. The 

predicted response was 80% for K. pneumoniae with a dose of 30 mg/kg/day. With 

the current dosage regimen of 20 mg/kg/day, CFR values were only 43% and 23% 

for P. aeruginosa and S. pneumoniae, respectively. CFR values for these organisms 

remained below 70% even if the dose was increased to 45 mg/kg/day. 

 

Table 5.3   Cumulative fraction of predicted response to achieve the target 

AUC0-24/MIC ratio for three dosage regimens of ciprofloxacin against 

Salmonella spp., P. aeruginosa, K. pneumoniae, E. coli, and S. pneumoniae 

 

Organisms 
Target AUC0-24 

/MIC ratio 

Cumulative Fraction of Predicted Response (%) 

20 mg/kg/day 30 mg/kg/day 45 mg/kg/day 

Salmonella spp. 125 96 98 99 

P. aeruginosa 125 43 55 64 

K. pneumoniae 125 76 80 83 

E. coli 125 85 87 88 

S. pneumoniae 35 23 44 67 

 

5.4    DISCUSSION 

In this chapter, the final population PK model was used to perform a simulation to 

estimate the PTA for different doses of ciprofloxacin. The results suggest that a dose 

of at least 30 mg/kg/day would be required to achieve an AUC0-24/MIC ratio of 125 

in >90% of patients if the MIC was 0.125 mg/L and that an MIC of <0.6 mg/L was 

necessary to achieve target AUC0-24/MIC ratio with the current dose of 20 

mg/kg/day. The current dose should be effective for Gram-positive organisms with 

an MIC <0.25 mg/L but higher doses would be required to achieve an AUC0-24/MIC 

ratio of at least 35 in >90% of patients if the MIC was 0.5 mg/L. Using 

internationally derived distributions of the MICs of a range of organisms, including 
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the most common isolates in children with severe malnutrition complicated by 

invasive bacterial disease, a dose of 20 mg/kg/day was sufficient for most isolates of 

Salmonella spp. and E. coli but 30 mg/kg/day would be necessary to treat                

K. pneumoniae infections.  

 

The results of this study were similar to previous reports that an oral daily dose of 

ciprofloxacin of 30 mg/kg/day would be more appropriate for children (Lipman et 

al., 2002; Peltola et al., 1998; Peltola et al., 1992; Schaefer et al., 1995). Similar 

problems of underdosing have also been identified in adults. Standard intravenous 

doses of 400 mg twice daily yielded inadequate AUC0-24/MIC and Cmax/MIC ratios in 

critically ill patients unless the MIC was less than 0.25 mg/L (van Zanten et al., 

2008). Montgomery et al. (2001) demonstrated that for an MIC of 0.5 mg/L, 400 mg 

12 hourly would achieve an AUC0-24/MIC >125 in only15% of adults with cystic 

fibrosis and that an increase to 600 mg 8 hourly would be required to achieve >90% 

success.   

 

If the dose of ciprofloxacin used in the present study was increased to 15 mg/kg three 

times daily and assuming no change in bioavailability, the probability of achieving 

an AUC0-24/MIC ratio above 125 would increase to 83% for an MIC of 0.25 mg/L 

and 32% for an MIC of 0.5 mg/L.  However, 37% of patients would then reach daily 

AUCs above 60 mg·h/L.  These values are higher than the mean daily AUCs reported 

following the administration of intravenous high dose ciprofloxacin (400 mg 8 

hourly) to critically ill adults (Lipman et al., 1998) and it is possible that such high 

exposure would increase the risk of toxicity. Recently, Khachman et al. (2011) 

investigated the PK of ciprofloxacin in intensive care unit patients and reported 

similar results.  They found that the standard intravenous dose of 400 mg two or 

three times daily should achieve the target AUC0-24/MIC ratio for the Gram-negative 

organisms K. pneumoniae, P. mirabilis, E. cloacae and E. coli, but not for                

P. aeruginosa. 
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DeRyke et al. (2007) also evaluated susceptibility breakpoints for Gram-negative 

organisms. Similar to the present study, they conducted PK-PD simulations to 

develop susceptibility breakpoints and then compared the percentage of susceptible 

organisms achieved using PK-PD and CLSI values. They found that PK-PD and 

CLSI breakpoints resulted in similar susceptibilities for some organisms, such as 

Enterobacteriaceae, but not P. aeruginosa and Acinetobacter baumannii.  In the 

present study, it was found that the PK-PD breakpoints were generally lower than the 

CLSI and the EUCAST breakpoints. This was probably due to differences in the 

methods, the PK model and the PK parameters used for determining the 

susceptibility breakpoint. It should be noted that when PK-PD simulations are used 

to establish antimicrobial breakpoints, the following assumptions are made. Firstly, 

the therapeutic targets, such as AUC0-24/MIC and Cmax/MIC ratios, were derived 

from prior studies which have identified correlations between these parameters and 

clinical outcomes. In addition, these relationships have typically been obtained from 

immunocompromised murine models, although some have been validated in clinical 

populations (Ambrose et al., 2001). Secondly, breakpoints determined by using PK-

PD simulation are dependent on PK models and PK parameters. Generally, the PK 

information is obtained from healthy adult data instead of patients with specific 

disease states. Since the elimination of antimicrobials in patient populations may be 

reduced, the use of healthy adult data may predict lower drug exposures, yielding 

lower PK-PD breakpoints. The results from the present study suggested that the 

discrepancies of susceptibility breakpoints between reference sources may have a 

significant impact on some organisms, i.e. P. aeruginosa, K. pneumoniae, and          

S. pneumoniae, but not on others, such as Salmonella spp. and E. coli.  Frei et al. 

(2008) reported a slightly lower percentage susceptible to ciprofloxacin for 

Enterobacteriaceae (10%) and P. aeruginosa (24%). This could due to the fact that 

the PK model and PK parameters utilised in this study were derived from different 

populations. Moreover, they used a different database for extracting the MIC 

distributions.  

 

In conclusion, oral treatment with a dose of 10 mg/kg twice daily should be effective 

against Salmonella spp. and E. coli but a higher dose of 10 mg/kg three times a day 
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would be recommended for K. pneumoniae.  Oral ciprofloxacin is likely to be 

inadequate for treating P. aeruginosa and S. pneumoniae. In cases where these 

organisms are suspected, other effective antimicrobial agents should be considered. 

Discrepancies in susceptibility breakpoints exist between reference sources and 

wider differences occur for some organisms.       
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CHAPTER 6 

 

OPTIMAL DESIGN OF POPULATION 

PHARMACOKINETIC STUDIES 
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6.1    INTRODUCTION 

In the study of pharmacokinetics (PK), the population approach allows the use of 

sparsely sampled data from individual patients to estimate typical PK parameters 

(e.g. clearance and volume of distribution), inter-individual variability and residual 

variability. However, the design of population PK studies is not straightforward, and 

raises several questions that must be addressed before a study is conducted, including 

the following:  

 How many subjects should be recruited? 

 How many elementary designs or subgroups are required? 

 How many subjects should be assigned to each elementary design? 

 How many samples should be taken from each subject? 

 What are the sampling times? 

   

In order to identify the optimal design for such PK studies, prior information must be 

made available and then specified and implemented in the optimal design program. 

The required information is: a structural PK model (e.g. a one-compartment model 

with first-order absorption); typical PK parameter estimates (e.g. clearance, volume 

of distribution, absorption rate constant); and estimates of inter-individual variability 

and residual variability. In addition, information on the dosage regimen is used to 

characterise the drug concentration-time profile and must therefore be provided as an 

input variable.  

 

Problems arise when previous studies and models used are very complex, such as 

models that contain covariate relationships. One important aim of population PK 

studies is to identify the influence of clinical factors on the PK parameters.  

Therefore, the majority of studies include at least one covariate (e.g. weight) in the 

population model under investigation. However, currently there are no optimal 

design programs that contain a standard function to account for covariates. This is 

due to the difficulty that program developers face in envisaging the kind of covariate 

model that researchers might incorporate into their population models. Furthermore, 

it is also impossible to account for all types of models. Therefore, individual 

adjustments to the optimal design model script for each population model are 
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required. Although a user-friendly features, such as a graphical user interface, is 

available in all optimal design programs, many investigators examining optimal 

design have modified or created their own script in order to implement models of 

greater complexity, as shown in the studies conducted by Green and Duffull (2003), 

Waterhouse et al. (2005), Roos et al. (2008), Ogungbenro et al. (2009), Hennig et al. 

(2012), and Sherwin et al. (2011). However, this is not a feasible option for 

researchers who do not have the relevant programming skills. 

 

Furthermore, the drug PK are known to vary between patient populations; therefore, 

it is difficult to know whether the optimal study designs obtained from one 

population are appropriate to use in other populations. Prior information used to 

design a new population PK study should be considered when using optimal design 

techniques. It should be noted that the influence that discrepancies in prior 

information exert on the optimal design results has not been investigated to date. 

 

The aims of the work in this chapter were: 

(i) to develop optimal study designs and sampling windows for future PK 

studies of oral ciprofloxacin in malnourished children. 

(ii) to compare different techniques for implementing study design and models. 

(iii) to investigate the influence of a variety of prior information on the optimal 

study design. 

 

6.2    METHODS  

6.2.1   Programs for optimal design of population PK studies 

Several programs are currently available for designing population PK studies. All of 

these use the same mathematical derivation of the Fisher information matrix (FIM), 

but vary in terms of their specific features; for example, they differ in the algorithm 

implemented and the function used to calculate sampling windows (Mentré et al., 

2007). In this thesis, both the evaluation and the optimisation of study design were 

performed with the PopDes program, Version 4.0 (Gueorguieva et al., 2007) and 

MATLAB Version 7.13 (R2011b) (The MathWorks Inc., Natick, MA, 2011).  
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6.2.2   Overview of the basic features of PopDes  

6.2.2.1  PopDes Windows 

The PopDes Windows interface is initiated by opening MATLAB, changing to the 

PopDes program directory and typing ‘PopDes’ at the command line prompt. This 

opens the selection window shown in Figure 6.1. Several design options are available 

in this program (the details are given in Chapter 2). When the required design option 

has been selected, an input file called ‘required_param.dat’ is created by pressing 

‘Select’.  This file contains a list of required input variables, such as dose, number of 

subjects, number of samples, etc. that are relevant to the selected design option. The 

‘Model’ section of the interface provides two options: ‘Model Library’, which 

contains a range of PK models and ‘External File’, which allows a model to be 

created by the user. Two options are available for computing the FIM in the PopDes 

program: Block FIM, which computes the FIM as a block diagonal matrix; and Full 

FIM, which computes the full matrix. In the present study, the Full FIM option was 

selected for both design evaluation and optimisation. The ‘Task’ option was set at 

‘evaluation’, when evaluating the original or pre-specified designs and ‘optimisation’ 

when developing optimal study designs. Four algorithms are available: Simplex; 

Hybrid; Exchange; and First-order.  

 

6.2.2.2  PopDes script 

PopDes scripts were written in MATLAB language and saved as MATLAB files. In 

order to evaluate and optimise the design with PopDes script, two PopDes files: 

‘ext_model.m’ and ‘PopDes.m’ were developed. The first of these contained the PK 

model with lag time and covariate models, which were written in analytical form. 

The second file was used to specify design options and input variables.  
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Figure 6.1    Windows interface of the PopDes program 

 

 

 

6.2.3   Original study design and results 

The population PK study of oral ciprofloxacin in severely malnourished children was 

described in Chapter 3.  In summary, a total of 52 malnourished children were 

administered 10 mg/kg oral ciprofloxacin every 12 hours. The population design was 

composed of three elementary designs, which had similar numbers of subjects. The 

number of sampling times was constrained at a maximum of four samples per 

individual. The allocations of sampling times and the number of subjects in each 

subgroup were as follows: 

 Group A (n = 17): 2, 4, 8 and 24 hours after the first dose (a 24-hour sample 

was taken 12 hours after the second dose) 

 Group B (n = 18): 3, 5, 9, and 12 hours after the dose 

 Group C (n = 17): 1, 3, 6 and 10 hours after the dose 
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A total of 202 concentration measurements were fitted using non-linear mixed effects 

modelling. A one-compartment model with first-order absorption with a lag time 

adequately described the concentration data. The final model parameters were as 

follows: 

 

TVCL (L/h)  = 42.7 (L/h/70 kg) x (WT/70)
0.75

 x (1+ 0.0368*(Na
+ 

-136))  

x (1 - 0.283*(HIGH)) 

TVV (L)    = 372 (L/70 kg) x (WT/70) x (1+ 0.0291*(Na
+
 -136)) 

TVKA      = 2.97 h
-1

 

ALAG      = 0.75 hours 

 

where TVCL is typical value of clearance (L/h), TVV is the typical value of volume 

of distribution (L), TVKA is typical value of absorption rate constant (h
-1

), ALAG is 

an absorption lag time (hours), WT is weight (kg), Na
+
 is sodium concentration 

(mmol/L) and HIGH is high risk of mortality (if the patient had a high risk of 

mortality, HIGH=1 otherwise HIGH=0). The inter-individual random effects were 

assumed to be exponential for all PK parameters and a full variance-covariance 

matrix of random effects was estimated. A combined proportional and additive error 

was used for the residual model. 

 

This original design and the final model were relatively complex and their direct 

implementation in the program was not possible without prior modifications. The 

major problems are listed below: 

 Ciprofloxacin was administered as a weight-based dose. 

 The study design combined patients who received a single dose (n = 35) and 

patients who received multiple doses (n = 17). 

 Weight, sodium concentration and high risk of mortality were included in the 

final model as covariates.  

 The structural model included an absorption lag time of 0.75 hours.  
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6.2.4   Design options and variables   

Several design options are available for selection in the PopDes program. In the 

present study, the population uniresponse and local design options were used to both 

evaluate and optimise study design via the employment of both functions of PopDes 

(Windows and script). However, when optimising designs, both exact and continuous 

design options were investigated, as were both time list and time interval options. 

The details of these variables are given below. 

 

6.2.4.1  The exact design 

This option allows the group structure to be constrained. In this study, the maximum 

number of subjects that it was possible to include in the future study was assumed to 

be equal to the original study at 52, and different numbers of subgroups, ranging 

from one to three, were investigated. The same proportion was assumed for three 

elementary designs (17, 18 and 17), but different proportions including 0.5/0.5 (26 

patients in each group), 0.65/0.35 (34 and 18 patients), 0.75/0.25 (39 and 13 patients) 

and 0.8/0.2 (42 and 10 patients) were compared when the number of elementary 

designs was fixed at two. The number of blood samples that were permitted to be 

taken from each patient was constrained to be three, four or five. These constraints 

provided a total of 18 possible design structures.  

 

If the time interval was used, each design was optimised using the Simplex algorithm 

(SM), the Hybrid algorithm (HB) and the Exchange algorithm (EX). A grid size of 

0.25 was used when optimising with the EX. The admissible sampling times were 

limited to between 0 to 12 hours after the first dose. However, if the designs were 

optimised with the time list option, two types of time lists, ‘rich’ and ‘sparse’, were 

applied. The rich list consisted of 46 possible sampling times from 0.75 hours until 

12 hours after the dose. It was permitted for samples to be taken every 15 minutes 

during this period. The gap of 0.75 hours refers to the absorption lag time during 

which a drug concentration should not be measured. The possible sampling times in 

the sparse list were constrained to every 15 minutes during the first 3 hours and then 

hourly until 12 hours after the dose. To avoid the absorption lag, the first sampling 

time was again fixed to 0.75 hours after the dose. The 19 possible sampling times 
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included in the sparse list were 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 4, 5, 6, 7, 

8, 9, 10, 11 and 12 hours. The two types of time list were used to identify the 

importance of sampling times during drug elimination. For the exact design 

optimisation, the time list option can only be used with the EX. 

 

If the SM or the HB was used, the optimisation was repeated five or six times to 

ensure that the global minimal had been achieved. This was conducted by 

substituting the initial sampling times with the obtained optimal sampling times.  

 

6.2.4.2  The continuous design 

For this option, the group structures, i.e. the number of elementary designs, number 

of samples per elementary design, and number of subjects allocated to each 

elementary design, were determined in addition to the sampling times. Other 

variables, including total number of subjects in the study and the number of samples 

to be taken from each of them, were constrained in a similar manner as described for 

the exact design option. Only the First-order algorithm (FO) and the time list option 

can be used for the continuous design. When using the FO, it was again necessary to 

repeat the optimisation five or six times to ensure that the global minimal had been 

achieved. This was done by substituting the initial sampling times with the obtained 

optimal sampling times. Both types of time lists were tested with the continuous 

design.  

 

6.2.5    Evaluation of the original study design  

6.2.5.1  Evaluation of the original design using PopDes Windows  

The use of PopDes Windows to evaluate the original design was limited by the 

complexities of its structure and the final model. As a result, the following 

assumptions were made when using PopDes Windows: 

 All patients were given the same dose of ciprofloxacin. The median dose of 

68.5 mg was used as the input variable. 

 Median estimates of the typical values of clearance (TVCL) and volume of 

distribution (TVV) were used, as shown in Table 6.1, and these median 

values had already accounted for the variability of covariates in the model. 
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The typical value of absorption rate constant (TVKA) was used as an input 

variable without modification because there was no covariate in the model. 

 The samples taken at 12 hours after the second dose provided the same 

information as those taken at 12 hours after the first dose, thereby simplifying 

the design. Therefore, the 24 hour sampling time from the 17 patients in 

Group A was converted to 12 hours, and all patients in the study were 

administered ciprofloxacin as a single dose.  

 There was no lag time but the optimal sampling times were delayed by the 

lag time. 

 

Population uniresponse and local design options were chosen when evaluating the 

study design. A one-compartment model with first-order absorption was selected 

from the model library. The input file created for specifying design variables 

contained several lines of variables, as shown in Figure 6.2.  

 

Table 6.1     Population parameter values used with PopDes Windows to 

evaluate and optimise study designs  

 

Parameters Fixed effects (β) Inter-subject variability (ω
2
) 

CL
a
 (L/h) 

V
b
 (L) 

ka (h
-1

) 

COV(CL,V) 

COV(CL,ka) 

COV(V,ka) 

Lag time
c
 (h) 

Additive
d
 (SD)/SD

2 

Proportional
d
 (CV)/CV

2 

6.82
 

37.2 

2.97 

- 

- 

- 

0.75 

0.0273/0.0007 

0.186/0.035 

0.145 

0.185 

1.05 

0.105 

0.0694 

0.193 

- 

- 

- 

a
 Median estimate of the typical value of clearance (TVCL). 

b
 Median estimate of the typical value of volume of distribution (TVV). 

c
 The lag time of 0.742 h obtained in previous chapter may not be applicable in practice. 

Thus, the lag time used in this study was rounded to be 0.75 h (45 min). 
d
 In PopDes, the variance (SD

2
) and the square of the coefficient of variation (CV

2
) were 

used for the additive part and the proportional part, respectively.  
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Figure 6.2    Parameter estimates and design variables specified in the 

required_param.dat file 

 

DOSE FOR EACH ELEMENTARY DESIGN                 

68.5    

DOSE INTERVAL FOR EACH ELEMENTARY DESIGN              

12     

INITIAL FIXED EFFECT PARAMETER VALUES               

2.97 6.8 37.2    

VALUE OF THE FIXED EFFECT PARAMETERS CAN BE FIXED, INDICATE POSITION 

(ENTER 0 FOR NONE)                            

0     

OMEGA MATRIX ELEMENTS: DIAGONAL ELEMENTS ONLY OR FULL MATRIX (ROW-by-

ROW)  

1.05 0.0694 0.193 0.0694 0.145 0.105 0.193 0.105 0.185   

FIXING VALUES OF THE OMEGA MATRIX (DIAGONAL OR FULL) INDICATE: 1=NOT 

FIXED 0=FIXED (ROW-by-ROW)                      

1 1 1 1 1 1 1 1 1     

INDEPENDENT RANDOM EFFECTS MODELS: ENTER 1=EXPONENTIAL, 0=ADDITIVE 

1    

RESIDUAL ERRORS - PROPORTIONAL (CV^2) AND ADDITIVE (VARIANCE)    

0.035 0.0007    

NUMBER OF ELEMENTARY DESIGNS (GROUPS) IN THE DESIGN          

3    

NUMBER OF SUBJECTS IN EACH ELEMENTARY DESIGN             

17 18 17    

NUMBER OF DESIGN POINTS IN EACH ELEMENTARY DESIGN           

4 4 4    

INITIAL DESIGN POINTS FOR EACH ELEMENTARY DESIGN 

1.25 3.25 7.25 11.25 2.25 4.25 8.25 11.25 0.25 2.25 5.25 9.25 

LOWER BOUNDS OF TIME POINTS                   

0    

UPPER BOUNDS OF TIME POINTS                   

12    

 

 

 



165 

 

The descriptions of each input variables are as follows: 

 

1) DOSE FOR EACH ELEMENTARY DESIGN 

In the present study, ciprofloxacin was orally administered to subjects as an 

individual dose, which was calculated based on the actual body weight of the patient. 

It was assumed that all the patients received the same dose by using the median value 

of 68.5 mg.  

 

2) DOSE INTERVAL FOR EACH ELEMENTARY DESIGN 

PopDes ignores dose interval for a single-dose study. However, the variables in the 

input file cannot be left empty, so this variable was fixed to the last sampling time at 

12 hours. 

 

3) INITIAL FIXED EFFECT PARAMETER VALUES 

This was used to specify the estimates for the fixed-effect parameters. For a one-

compartment model with first-order absorption, three parameters, including 

absorption rate constant (ka), clearance (CL) and volume of distribution (V), were 

listed, in that order, to ensure consistency with the order of parameters specified in 

the model that had been selected from the model library. 

 

4) VALUE OF THE FIXED EFFECT PARAMETERS CAN BE FIXED, 

INDICATE POSITION (ENTER 0 FOR NONE) 

The precision of any parameters can be computed by their inclusion in the FIM. The 

fixed-effect parameters (ka, CL and V) were the parameters of interest, and ‘0’ was 

entered for this variable. This indicated that these parameters were not fixed. 

 

5) OMEGA MATRIX ELEMENTS: DIAGONAL ELEMENTS ONLY OR FULL 

MATRIX (ROW-by-ROW) 

Since there was a correlation between the inter-individual variabilities of the 

parameters in this study, the full omega matrix was used. Each element of this matrix 

was listed row-by-row, beginning with ka, CL and V, respectively. The length of this 

variable was nine, which was equal to the square of the number of parameters. 
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6) FIXING VALUES OF THE OMEGA MATRIX (DIAGONAL OR FULL) 

INDICATE: 1=NOT FIXED 0=FIXED (ROW-by-ROW) 

The number ‘1’ was specified for this variable, indicating that each element of the 

omega matrix was not fixed. The length of this variable was nine, which was equal to 

the number of elements of the omega matrix defined for variable 5. 

 

7) INDEPENDENT RANDOM EFFECTS MODELS: ENTER 1=EXPONENTIAL, 

0=ADDITIVE 

For this variable, ‘1’ was entered. This indicated that the inter-individual variability 

in ka, CL and V was described by the exponential error model. 

 

8) RESIDUAL ERRORS - PROPORTIONAL (CV^2) AND ADDITIVE 

(VARIANCE) 

This variable was used for specifying the parameters for residual errors. In this study, 

the residual error was best described by the combined proportional and additive error 

model. The square of the coefficient of variation (CV
2
) of 0.035 and the variance 

(SD
2
) of 0.0007 were specified for proportional and additive elements, respectively. 

 

9) NUMBER OF ELEMENTARY DESIGNS (GROUPS) IN THE DESIGN 

This variable was used to specify number of subgroups, and ‘3’ was entered. This 

indicated that the original design consisted of three subgroups of subjects.  

 

10) NUMBER OF SUBJECTS IN EACH ELEMENTARY DESIGN 

This variable was used to specify the number of subjects included in each subgroup. 

There were 17, 18 and 17 individuals in each subgroup, respectively, therefore the 

order was specified as ‘17 18 17’. 

 

11) NUMBER OF DESIGN POINTS IN EACH ELEMENTARY DESIGN 

The number of design points refers to the number of blood samples taken from each 

subject. In the study, four samples were collected from each individual in the three 

subgroups, so this variable was specified as ‘4 4 4’. 
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12) INITIAL DESIGN POINTS FOR EACH ELEMENTARY DESIGN 

This variable was used for specifying the sampling times to be evaluated. The four 

sampling times used in the original study were entered in the order of each of the 

three subgroups. Since the PK model available in PopDes Windows gave no lag time 

option, and it was necessary to add an absorption lag of 0.75 hours to the sampling 

times after evaluation, the sampling times used in the original study were modified 

by subtracting 0.75 from each time point prior to specification in the input file. For 

example, the actual sampling times that had been used for the patients in group A 

were 2, 4, 8 and 12 hours after the dose, respectively. To account for the effect of the 

lag time, these actual sampling times were corrected to 1.25, 3.25, 7.25 and 11.25 

hours when the original study design was evaluated. 

 

13) LOWER BOUNDS OF TIME POINTS and UPPER BOUNDS OF TIME 

POINTS 

The PopDes program ignores these two variables when evaluating study design. 

However, they cannot be left empty, so the lower bound and the upper bound were 

set as being equal to 0 and 12, respectively. 

 

When the PK parameters and group structure of the original design had been 

specified in the input file (required_param.dat), this file was saved in the PopDes 

directory and then uploaded to the program by using the ‘Parameters’ option of the 

interface. The original design was evaluated by selecting evaluation mode under the 

‘task’ option of the interface and then pressing ‘CALCULATE & SAVE’. 

 

6.2.5.2   Evaluation of the original design using PopDes script 

The flexibility offered by the PopDes script allowed for the inclusion of additional 

factors from the original study design and population model in the evaluation. Two 

files had to be modified when using the PopDes script: ‘ext_model’ and ‘PopDes.m’. 

In the first file, used to specify the PK model, a one-compartment model with first-

order absorption with a lag was written, and the script for the multiple-dose model 

was added in order to investigate the importance of the sample taken after the second 

dose in Group A. In addition, the script was modified to account for each individual 
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dose administered to subjects by incorporating the body weight of each patient in the 

dosing regimen. The covariates that influenced the PK parameters, including body 

weight, sodium concentration and high risk of mortality, were also included in the 

model. The second file contained several variable lines that were similar to the input 

file (required_param.dat) of PopDes Windows. The PK parameters and design 

structures of the original design were entered in this file, as previously described for 

PopDes Windows. However, since the lag model had already been included when 

using the script option, the original sampling times were used immediately with no 

subtraction of the 0.75 hour lag time. 

 

The expressions for the population FIM written in the PopDes.m file were also 

modified to account for the covariates in the model. Examples of modified scripts for 

ext_model.m and PopDes.m files are provided in Appendix I. 

 

In the present study, two approaches were applied for evaluation of the original 

design with PopDes script. In the first of these, the FIM for each subject was initially 

computed, after which the population FIM was calculated from the individual FIM. 

The covariates and sampling times for each subject were listed in a separate text file 

and were added to the program during design evaluation. In the second approach, the 

population FIM was approximated by a Monte Carlo integration of the latter over the 

covariates. A Latin hypercube sampling technique was applied to efficiently sample 

from the covariate distribution.  

 

6.2.6   Optimisation of the study design  

6.2.6.1  Optimisation of the study design using PopDes Windows 

In a similar manner to design evaluation, when PopDes Windows was used for 

optimisation, the input file (required_param.dat), which contained several input 

variable lines, was created and the PK parameter estimates and design variables were 

then specified. Drug dose and dosing interval, as well as PK parameter estimates, 

were entered as was described for design evaluation. However, when optimising 

designs with the exact design option, the sampling times specified in this file were 

used as initial values for the optimisation. These values may be changed after 
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optimisation, while the group structures of the design were constrained as described 

in Section 6.2.4. However, for the continuous design, both the sampling times and 

the group structures that were specified in the input file were used as initial values 

and may be changed after optimisation. The input file for continuous design 

optimisation contained some additional variable lines that were completed as 

follows: 

 

1) WEIGHT/PROPORTIONS OF SUBJECTS FOR THE INITIAL DESIGN (FOR 

EACH ELEMENTARY DESIGN) 

This variable was used to specify initial values of the proportion of study subjects in 

each of the elementary designs. It was entered as ‘0.5 0.5’, which indicated that the 

initial predictions for group structures were two elementary designs with the same 

number of subjects being allocated to each group.  

 

2) TOTAL NUMBER OF SUBJECTS IN THE STUDY IF KNOWN (IF 

UNKNOWN ENTER 1) 

For this variable, ‘52’ was entered. This indicated that the total number of subjects it 

was permitted to recruit for future study was constrained at 52.   

 

3) MINIMUM NUMBER OF TIME POINTS ALLOWS IN EACH ELEMENTARY 

DESIGN and MAXIMUM NUMBER OF TIME POINTS ALLOWS IN EACH 

ELEMENTARY DESIGN  

These two variables were used to specify the minimum and maximum number of 

sampling times for each elementary design. In this study, three, four or five sampling 

times were examined.  

 

6.2.6.2  Optimisation of the study design using PopDes script 

The optimisation methods were similar to those described for PopDes Windows. The 

exception was that all design variables had to be entered in the PopDes.m file, which 

was modified to account for the covariates in the model, instead of using the 

required_param.dat file. The ext_model.m file, which implemented the PK models, 

was also needed to perform the optimisation.   
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6.2.7   The influence of uncertainty in the prior information  

The optimal designs are dependent on the prior model and parameters. To explore 

the influence that uncertainty in prior information exerted on the optimal design 

results, optimal designs for administering ciprofloxacin to children with severe 

malnutrition were also determined by using population models and PK parameters 

obtained from two other studies. Since these studies had covariates in the model, 

PopDes script was used. Table 6.2 summarises the final model and population 

parameter estimates for Study 1 and Study 2, which were implemented in the 

program.  

 

6.2.7.1  Study 1: Rajagopalan and Gastonguay (2003) 

In a study by Rajagopalan and Gastonguay (2003), oral and/or intravenous 

ciprofloxacin was administered to 150 individuals aged between 0.27 and 16.9 years 

(median 2.5 years). Their weight range was 4.2 to 63.2 kg, with a median value of 

13.15 kg, and 28 patients had cystic fibrosis. A two-compartment model with first-

order absorption and absorption lag adequately described the concentration-time 

profiles.  PK parameters were influenced by age, weight and the presence of cystic 

fibrosis, and the exponential error model was used to describe inter-individual 

variability of the parameters. A preliminary analysis found that the inclusion of a full 

omega matrix led to numerical difficulty during the optimisation. Therefore, to avoid 

this problem, only the diagonal elements were included in the FIM. The residual 

error was described by a combination of proportional and additive error models. The 

standard error for the additive model was small (0.0131) and imprecise (77.5%), so it 

was fixed during the optimisation.  

 

6.2.7.2  Study 2: Schaefer et al. (1996) 

Schaefer et al. (1996) conducted a study in 10 paediatric patients with cystic fibrosis 

aged 6 to 16 years (mean 10.1 years) and with a weight range of between 14.9 and 42 

kg (mean 27.5 kg). Each patient received ciprofloxacin 10 mg/kg by infusion over 30 

minutes, followed by oral ciprofloxacin at a dose of 15 mg/kg. The structural model 

was a two-compartment model with first-order absorption. Body weight was 

incorporated in the clearance (CL), central volume of distribution (V1) and peripheral 
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volume of distribution (V2) models. The mean renal clearance was 11.4 L/h.  Inter-

individual variability terms were added to the CL, V1 and V2 models using the 

exponential model. Residual variability was adequately described by the proportional 

error model.  

 

6.2.8   Investigation of additional sampling times after the second 

dose 

The upper boundary of sampling times was initially limited to 12 hours after the first 

dose. The need for sampling times after the second dose was investigated by 

extending the sampling region to 12 hours after the second dose (or 24 hours after the 

first dose). This was only performed by using optimal designs derived from the 

PopDes script. 

 

6.2.9   Calculation of sampling windows for optimal designs 

There are two options to choose from for computing sampling windows: equal 

lengths and different lengths. The equal lengths option computes the same duration 

of sampling window for all sampling time points, while the different lengths option 

calculates an individual sampling window for each sampling time. The sampling 

windows can be computed by using either PopDes Windows or PopDes script. The 

optimisation of sampling windows is time-consuming, so in this study it was 

performed only for the optimal designs derived from PopDes script. The different 

lengths option was used with a minimum efficiency of 80%. The distribution of 

samples within sampling windows was assumed to be uniform.  
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Table 6.2   Final model and population parameters from previous studies of 

ciprofloxacin and used for optimising a study design for malnourished children 

 

Parameters Study 1 Study 2 

TVCL (L/h) 30.3(L/h/70 kg) x (WT/70)
0.75

 

x (1+ 0.045 x (AGE
 
-2.5)) 

8.8 + (0.396 x WT) 

TVV1 (L) 56.7 (L/70 kg) x (WT/70) 0.698 x WT 

TVV2 (L) 89.8 (L/70 kg) x (WT/70) 1.3 x WT 

TVQ (L/h) 37.5(L/h/70 kg) x (WT/70)
0.75

 21.0 

TVKA (h
-1

) 1.27 x (1+ 0.045 x CF) 0.644 

ALAG (h) 0.353 - 

F1 0.611 0.618 

CLR (L/h) - 11.4 

ω
2

CL 0.0901 0.006 

ω
 2

V1 0.120 0.051 

ω
 2

V2 0.0963 0.022 

ω
 2

Q 0.165 - 

ω
 2

ka 0.248 - 

ω
 2

F 0.0509 - 

Proportional error 

(%CV) 
40 31.9 

Additive error (SD) 0.04 - 

TVCL is typical value of clearance (L/h), TVV1 is the typical value of central volume of 

distribution (L), TVV2 is the typical value of peripheral volume of distribution (L), TVQ is the 

typical value of inter-compartment clearance (L/h), TVKA is typical value of absorption rate 

constant (h
-1

), ALAG is a lag time (h), F is oral bioavailability fraction, WT is weight (kg), 

AGE is age (years) and CF is cystic fibrosis (if the patient has cystic fibrosis, CF=1 otherwise 

CF=0), ω
2
 is inter-individual variability, %CV is the percentage coefficient of variation and SD 

is the standard deviation. 
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6.2.10  Optimisation of the total number of subjects 

The optimal designs obtained after optimisation were subsequently used to 

investigate the optimal number of subjects. This number does not affect the optimal 

sampling times, but it can influence the precision of the parameter estimates. A 

variety of numbers of subjects between five and 100 were tested. A similar 

proportion of subjects was assumed from studies that involved two and three 

subgroups. Coefficients of variation (CV) of ka, CL and V were set to have cut-off 

points of 10 and 20%. The minimal number of subjects to provide an estimated CV 

of under 10% for ka, CL and V was considered to be optimum in the present study. 

 

6.2.11  Interpretation of the design results 

After performing design evaluation or optimisation, PopDes reports the results as the 

standard errors and coefficients of variation, as well as the determinant of the FIM. 

The determinant is a measure of the volume of a matrix and was used to evaluate the 

amount of information given by the design.  When comparing designs, the highest 

value of the determinant was considered to be the optimum. In this study, the 

determinant was also converted to the criterion, which is the determinant raised to 

the power of one over the number of parameters to be estimated in the model. This 

value was used to compare any designs with different numbers of parameters in the 

model. However, the determinant and the criterion values cannot themselves be 

interpreted individually. It is more meaningful to compare these values between two 

study designs and interpret them as the design efficiency. The efficiency of any 

design was defined as the ratio of any two criteria (e.g. criteria of the optimal design 

compared to the original design) and was expressed as a percentage.  

 

In this study, the determinant and the criterion were used to identify a rough estimate 

of the potential optimal design; however, the primary criterion for selecting the 

optimal design was the coefficients of variation of the parameters. 
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6.3    RESULTS AND DISCUSSION 

6.3.1   Evaluation of the original design 

6.3.1.1  Evaluation of the original design using PopDes Windows  

The original design was composed of three subgroups containing similar numbers of 

subjects. Four blood samples were collected from each patient at various times from 

1 to 12 hours after the dose. In order to evaluate the original design with PopDes 

Windows, several assumptions were applied to the design and parameters. The 

concentration-time profile generated using the median dose, median typical 

parameter estimates and a one-compartment model with first-order absorption 

without a lag is illustrated in Figure 6.3A. The sampling times, which are marked on 

the profile, were obtained after subtracting the 0.75 hour absorption lag. The profile 

clearly showed that the majority of samples (191 of 208; 92%) were collected during 

the elimination phase. Only 17 samples, taken from the subjects in Group C, were 

collected during the absorption phase. The estimated coefficient of variation (CV) for 

ka was 19.7%, which was considerably lower than the value reported by NONMEM 

(44.4%). For the additive error, the CV was 274.6%, compared to the 103.3% 

obtained by NONMEM. With the exception of these two parameters, the CVs of the 

remaining parameters, which were derived from PopDes Windows, were comparable 

with those estimated by NONMEM (Table 6.3).  

 

6.3.1.2  Evaluation of the original design using PopDes script 

When evaluating the original design with PopDes script, no assumptions were used. 

The PK models were modified to include covariates and a lag time, as well as to 

account for the sampling time after the second dose. The concentration-time profile 

generated by using these models is shown in Figure 6.3B. It was observed that the 

shape of the concentration-time profile and the position of sampling times on the 

profile were similar to those obtained with PopDes Windows, i.e. the majority of 

samples were collected during the elimination phase, and the first samples taken at 1 

hour were available from 17 patients in Group C.  

 

The CVs for additive error were 206.9% and 158.7% when evaluating the original 

design by using the individual value of covariates and the distribution of covariates, 
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respectively. With the exception of the additive error, the determinant, criterion and 

CVs of the parameters obtained from the two methods used to account for covariates 

in the model were similar, and they were also consistent with the results estimated 

using NONMEM (Table 6.3).  

 

The CVs of ka were close to the value estimated by NONMEM when a lag time was 

considered, which was probably because there was a correlation between the two 

parameters (ka and lag time). A variation in CV of the additive error may be 

explained by the small value of the additive error (CV = 0.0007), which may have 

led to an inaccurate estimation of the CV. Further investigation found that when the 

additive error was fixed at 0, the values of each criterion did not considerably 

change.     

 

Figure 6.3    The concentration-time profile of oral ciprofloxacin generated 

using the PK models and parameters specified in PopDes Windows (A) and 

PopDes script (B) 

Key: A, B and C characters marked on the profile refer to the sampling times for 

Groups A, B and C, respectively. 

 

A:   The profile generated using a one-compartment model with first-order 

absorption, without a lag and median typical parameters. 
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B:   The profile generated using a one-compartment model with first-order 

absorption and a lag (the solid line is the profile for patients who had a high 

mortality risk. The dotted line is the profile for patients who had a low or 

intermediate mortality risk. Median weights and concentrations were used). 

 

 

 

Table 6.3   Determinant, criterion and percentage coefficient of variation of 

parameters computed by PopDes Windows and PopDes script and the results 

estimated by NONMEM 

 

Methods Determinant Criterion 

%CV 

ka CL V Lag ω
2

ka ω
2
CL ω

2
V Prop Add 

Original study 

(estimated by 

NONMEM) 

- - 44.4 7.3 7.2 18.7 57.1 20.3 24.4 30.0 103.3 

PopDes Windows 4.6e+25 215 19.7 5.5 6.4 - 39.5 24.0 26.3 27.9 274.6 

PopDes script using 

individual covariates 

9.9e+35 251 36.9 6.5 6.1 16.1 40.0 24.0 26.2 25.0 206.9 

PopDes script using 

the distribution of 

covariates 

1.5e+36 258 37.7 6.3 7.1 16.3 40.0 24.1 26.3 24.6 158.7 

Prop: proportional error, Add: additive error 
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6.3.2   Optimisation of the study design  

6.3.2.1  Optimisation of the study design using PopDes Windows 

1) The exact design  

Table 6.4 shows the determinant and criterion values derived from the optimisation 

with time interval option. It was found that the determinant and criterion values 

computed by the EX were comparable to those calculated by the HB. A major 

difference was observed with design four, in which the criterion was 266 when 

optimising with the EX, compared to 188 when optimising with the HB. The results 

estimated using the EX and the HB were generally higher than those obtained by the 

SM. This can be explained by the fact that estimation of the SM is very sensitive to 

the initial design values; the SM moves only from the initial point to the next local 

maximum or minimum and then stops, so it may be unable to reach the global 

maximum or minimum.   

 

The five-sample design had higher determinant and criterion values compared to the 

four- and three-sample designs. This was observed for all group structures tested. 

This can be explained as the determinant and criterion being the values that 

represented the amount of information contained in each design, and to the fact that 

the amount of information is normally related to the number of samples that it is 

permissible to take from each subject. Therefore, five sample designs can provide 

more information than four- and three-sample designs. 

 

The number of elementary designs, or subgroups, was related to the number of 

samples. For three- and four-sample designs, the results were comparable when using 

either two or three subgroups. However, it was revealed that each criterion of the 

five-sample design was very similar to the others when using either one, two or three 

subgroups. For example, when optimising five-sample design with the HB, the 

criterion was 581, 580 and 571 for one, two (26/26) and three elementary designs, 

respectively, and when optimising a five-sample design with the EX, the criterion 

was 546, 546 and 549 for one, two (26/26) and three elementary designs, 

respectively. This suggested that more complex design structures had only slight 

advantages when a greater number of samples were permitted. 
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The different proportions of subjects were examined when optimising two 

elementary designs. The results suggested that this design variable had minor effects 

and the number of subjects in each subgroup could vary. For example, the criterion 

obtained with three samples optimising with the EX were 266, 291, 298 and 298 for 

the different numbers of proportions of subjects of 26/26, 34/18, 39/13 and 42/10, 

respectively.  

 

The results using the time list option are shown in Table 6.5. When comparing the 

rich and sparse time lists, it was found that the determinant and criterion values were 

almost identical; for example, the criterion was 545 for the rich list and 547 for the 

sparse list when the design was constrained to three subgroups with five samples 

taken from each subject. This indicated that the optimal sampling times lay primarily 

in the drug absorption phase, and frequent sampling points are required during this 

period. The importance of group structure was similar to what was found with the 

time interval option, i.e. five samples gave more information than four and three 

samples, meaning that a complex design structure may not be required if up to five 

samples can be obtained from each patient.   

 

2) The continuous design 

The continuous design option was used to determine both optimal sampling times 

and optimal design structures, i.e. number of samples, number of elementary designs 

and number of subjects in each elementary design. In this study, numbers of samples 

were fixed at three, four and five samples per subject, while other design structures 

were optimised. Table 6.6 shows the optimal designs determined from the continuous 

design option in PopDes Windows. The results obtained by using different types of 

time list were very similar. The group structure for three samples that were optimised 

with the rich time list was three elementary designs with 3, 14 and 35 subjects 

allocated, respectively, while 3, 15 and 34 subjects were allocated, respectively, 

when optimising with the sparse time list. Two elementary designs with a large 

number of subjects in one group were suggested for four- and five-sample designs 

(Table 6.6). It was found that the optimal sampling times for the small group were 

intense in the absorption phase (between 0 and 3 hours after the dose). 
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6.3.2.2  Optimisation of the study design using PopDes script 

1) The exact design 

When the designs were optimised using the time interval option, the determinant and 

criterion values computed with different optimisers were comparable across almost 

all designs (Table 6.4). Discrepancies were generally observed between the SM and 

two remaining algorithms; for example, the criterion values were 842 and 501 for 

design five and 826 and 496 for design eight when optimising with the HB and the 

SM, respectively. The results of the time list option were in accordance with those 

found when optimising with PopDes Windows, that is, the criterion values derived 

from the different types of time lists were almost identical (Table 6.5). This 

confirmed that the optimal sampling times lay primarily during the drug absorption 

phase. 

 

The optimal group structures were consistent with the results obtained from the time 

interval or time list options. It was shown that two subgroups were required for three 

and four samples, while a single subgroup was sufficient for five samples. 

 

2) The continuous design 

The results obtained from the continuous design are shown in Table 6.6. It was found 

that two subgroups, with a similar number of subjects allocated to each, were needed 

for a three-sample design. For four samples, two subgroups were suggested, 

consisting of 46 to 48 subjects in one group and four to six subjects in the other. The 

design structures could be simplified by using only one group if it was possible to 

collect up to five samples from each patient.   
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Table 6.4     Determinant and criterion of optimal designs obtained from the 

exact design and time interval option 

 

Design 
No. of 

groups 

No. of 

subjects 

No. of 

samples 
Algorithm 

PopDes windows PopDes script 

Determinant Criterion Determinant Criterion 

1 1 52 3 EX 

HB 

SM 

1.9e-05 

6.6e-05 

4.6e-07 

0 

0 

0 

8.3e+36 

2.1e+35 

1.8e+35 

289 

227 

224 

2 1 52 4 EX 

HB 

SM 

9.8e+26 

1.3e+28 

1.8e+27 

284 

361 

301 

3.7e+42 

3.5e+42 

3.7e+42 

689 

686 

668 

3 1 52 5 EX 

HB 

SM 

1.3e+30 

2.6e+30 

1.8e+29 

546 

581 

456 

3.2e+44 

1.0e+45 

3.8e+44 

927 

1000 

938 

4 2 26/26 3 EX 

HB 

SM 

4.7e+26 

1.1e+25 

1.0e+25 

266 

188 

188 

1.1e+40 

1.8e+40 

8.8e+39 

466 

483 

460 

5 2 26/26 4 EX 

HB 

SM 

1.7e+29 

3.1e+29 

6.6e+26 

454 

480 

274 

1.7e+43 

7.6e+43 

3.2e+40 

762 

842 

501 

6 2 26/26 5 EX 

HB 

SM 

1.3e+30 

2.5e+30 

6.3e+28 

546 

580 

415 

3.2e+44 

6.5e+44 

3.2e+44 

927 

972 

926 

7 2 34/18 3 EX 

HB 

SM 

1.3e+27 

4.5e+26 

4.8e+24 

291 

265 

175 

7.8e+39 

6.2e+39 

5.6e+38 

457 

449 

383 

8 2 34/18 4 EX 

HB 

SM 

1.2e+29 

2.0e+29 

5.7e+26 

439 

462 

270 

1.4e+43 

5.7e+43 

2.7e+40 

751 

826 

496 

9 2 34/18 5 EX 

HB 

SM 

1.4e+30 

2.7e+30 

1.2e+30 

548 

584 

544 

2.7e+44 

1.1e+45 

3.8e+44 

916 

1007 

938 

10 2 39/13 3 EX 

HB 

SM 

1.7e+27 

2.2e+27 

1.9e+24 

298 

307 

161 

8.4e+39 

1.1e+41 

2.3e+38 

459 

544 

361 

11 2 39/13 4 EX 

HB 

SM 

7.8e+28 

3.5e+29 

1.9e+26 

423 

485 

245 

1.2e+43 

4.7e+43 

8.8e+41 

744 

815 

626 

12 2 39/13 5 EX 

HB 

SM 

1.4e+30 

2.8e+30 

1.7e+29 

549 

586 

454 

2.8e+44 

1.2e+45 

1.4e+44 

918 

1013 

879 

13 2 42/10 3 EX 

HB 

SM 

1.6e+27 

2.1e+27 

2.1e+26 

298 

305 

248 

9.7e+39 

5.9e+40 

8.1e+37 

463 

522 

337 
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Table 6.4     (continued) 

 

Design 
No. of 

groups 

No. of 

subjects 

No. of 

samples 
Algorithm 

PopDes windows PopDes script 

Determinant Criterion Determinant Criterion 

14 2 42/10 4 EX 

HB 

SM 

5.6e+28 

3.1e+29 

2.0e+26 

411 

480 

246 

1.4e+43 

5.3e+43 

1.2e+42 

752 

822 

638 

15 2 42/10 5 EX 

HB 

SM 

1.4e+30 

1.9e+30 

1.1e+30 

549 

566 

537 

3.8e+44 

1.2e+45 

2.6e+44 

938 

1010 

914 

16 3 17/18/17 3 EX 

HB 

SM 

1.5e+27 

3.4e+27 

4.4e+22 

296 

318 

114 

2.9e+40 

1.1e+41 

2.9e+40 

498 

545 

498 

17 3 17/18/17 4 EX 

HB 

SM 

1.9e+29 

3.7e+29 

4.3e+23 

459 

487 

141 

1.3e+43 

5.6e+43 

9.6e+41 

750 

825 

629 

18 3 17/18/17 5 EX 

HB 

SM 

1.4e+30 

2.1e+30 

2.8e+27 

549 

571 

312 

2.7e+44 

1.3e+45 

9.4e+43 

916 

1016 

854 

EX: Exchange algorithm 

HB: Hybrid algorithm 

SM: Simplex algorithm 
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Table 6.5   Determinant and criterion of optimal designs obtained from the 

exact design with time list option using the Exchange algorithm 

 

Design 
No. of 

groups 

No. of 

subjects 

No. of 

samples 

Time list 

options 

PopDes windows PopDes script 

Determinant Criterion Determinant Criterion 

1 1 52 3 Rich 

Sparse 

8.7e-06 

4.4e-06 

0 

0 

8.3e+36 

6.7e+36 

289 

285 

2 1 52 4 Rich 

Sparse 

4.1e+26 

9.6e+26 

263 

284 

3.7e+42 

4.6e+42 

689 

699 

3 1 52 5 Rich 

Sparse 

1.0e+30 

1.2e+30 

535 

544 

3.2e+44 

3.7e+44 

927 

936 

4 2 26/26 3 Rich 

Sparse 

2.1e+26 

4.6e+26 

247 

265 

8.7e+39 

1.3e+40 

460 

471 

5 2 26/26 4 Rich 

Sparse 

1.5e+29 

1.6e+29 

449 

453 

1.4e+43 

2.2e+43 

753 

770 

6 2 26/26 5 Rich 

Sparse 

1.1e+30 

1.2e+30 

540 

544 

2.7e+44 

3.7e+44 

916 

936 

7 2 34/18 3 Rich 

Sparse 

1.3e+27 

1.2e+27 

291 

290 

8.1e+39 

1.1e+40 

458 

467 

8 2 34/18 4 Rich 

Sparse 

1.1e+29 

1.1e+29 

435 

438 

1.4e+43 

1.9e+43 

753 

768 

9 2 34/18 5 Rich 

Sparse 

1.3e+30 

1.3e+30 

545 

547 

2.8e+44 

3.7e+44 

918 

936 

10 2 39/13 3 Rich 

Sparse 

1.7e+27 

1.7e+27 

298 

298 

1.1e+40 

9.9e+39 

468 

464 

11 2 39/13 4 Rich 

Sparse 

7.4e+28 

7.6e+28 

421 

422 

1.4e+43 

1.6e+43 

752 

759 

12 2 39/13 5 Rich 

Sparse 

1.3e+30 

1.3e+30 

547 

548 

2.8e+44 

3.7e+44 

918 

936 

13 2 42/10 3 Rich 

Sparse 

1.6e+27 

1.6e+27 

298 

298 

9.4e+39 

7.0e+39 

462 

453 

14 2 42/10 4 Rich 

Sparse 

5.6e+28 

5.5e+28 

411 

410 

1.4e+43 

1.1e+43 

752 

742 

15 2 42/10 5 Rich 

Sparse 

1.3e+30 

1.3e+30 

547 

548 

4.3e+44 

3.2e+44 

945 

926 

16 3 17/18/17 3 Rich 

Sparse 

1.5e+27 

1.5e+27 

296 

295 

4.1e+40 

4.1e+40 

510 

510 

17 3 17/18/17 4 Rich 

Sparse 

1.8e+29 

1.9e+29 

456 

458 

1.6e+43 

1.9e+43 

759 

767 

18 3 17/18/17 5 Rich 

Sparse 

1.3e+30 

1.3e+30 

545 

547 

2.8e+44 

2.7e+44 

918 

917 
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Table 6.6   Optimal designs obtained from the continuous design with time list 

option using the First-order algorithm 

 

Design 
No. of 

samples 

Time list 

option 

Optimal 

No. of 

groups 

Optimal 

No. of 

subjects 

Determinant Criterion 

PopDes windows 

1 3 
Rich 

Sparse 

3 

3 

3/14/35 

3/15/34 

1.4e+27 

1.4e+27 

293 

294 

2 4 
Rich 

Sparse 

2 

2 

6/46 

7/45 

3.6e+28 

4.0e+28 

395 

398 

3 5 
Rich 

Sparse 

2 

2 

5/47 

4/48 

3.5e+29 

2.6e+29 

485 

472 

PopDes script 

4 3 
Rich 

Sparse 

2 

2 

20/32 

25/27 

4.3e+39 

4.0e+39 

439 

436 

5 4 
Rich 

Sparse 

2 

2 

6/46 

4/48 

3.6e+42 

4.5e+42 

687 

698 

6 5 
Rich 

Sparse 

1 

1 

52 

52 

4.0e+44 

3.7e+44 

941 

936 

 

6.3.3   Selection of the candidate designs 

In this study, several design options and design variables were examined using 

different design options and constrained variables. In the majority of cases, the 

optimal sampling times obtained by using different algorithms were very close; 

however, the designs optimised using the EX were selected as the candidate designs 

because they can be determined using a grid size to give sampling times, which is 

more practical than other algorithms. For example, when using the EX, the optimal 

sampling times for one group with four samples were 0.75, 1.25, 3 and 12 hours, 

while the results were 0.751, 1.233, 2.948 and 11.789 hours when using the SM. 

Furthermore, the computation time of the EX was faster. Since the use of different 

proportions of subjects in each elementary design was not of importance, an equal 

number (26 in each group) was used for two elementary designs. A total of nine 

candidate designs were obtained from each optimisation method, PopDes Windows 

and PopDes script according to these restrictions, as presented in Table 6.7. The 

optimal design for three-, four- and five-sample designs was selected from a list of 
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candidates, and the primary selection criterion used was the coefficient of variation 

(CV) of the parameters.  

 

6.3.3.1  Optimal designs obtained from the PopDes Windows 

The CVs for inter-individual and residual variability could not be estimated for a 

study with one elementary design and three samples. When the maximum number of 

samples was fixed at three per subject, the results were similar with either two or 

three subgroups. Therefore, two elementary designs were selected as being optimum 

for a three-sample design. Disregarding the additive error, the CVs of the parameters 

were comparable when using one, two and three elementary designs with four 

samples. The CV of additive error when one subgroup of subjects was used was very 

high (477.7%), compared to 27.7% and 33.3%, respectively, when two and three 

subgroups were used. Two subgroups were selected as the optimal design structure in 

this case. It was observed that the CVs of all parameters were very similar when 

using one, two and three subgroups with five samples, so the simplest design 

structure with one group of subjects was chosen as the optimal design.  

 

6.3.3.2  Optimal designs obtained from the PopDes script 

Many parameters had a high CV when one elementary design was used with a fixed 

number of three samples per subject. The CVs for ω
2
ka, ω

2
V, proportional error part 

and additive error part were 122.2%, 139.2%, 187.8% and 86.2%, respectively 

(Table 6.7). The results were almost the same when using two and three elementary 

designs. However, the proportional error was estimated more precisely with three 

subgroups (44.1%) compared to two subgroups (92.7%). Therefore, the optimal 

number of groups for a three-sample design was three. When the number of samples 

was increased to four, it was observed that the CVs of the parameters were almost 

the same for one, two and three subgroups, with the exception of the proportional 

error. The proportional errors were 62.2%, 29.7% and 22.3% for one, two and three 

subgroups of subjects, respectively. As a result, the optimal design was two 

subgroups, with four samples being taken from each subject. This was consistent 

with the results of PopDes Windows, in that the study design was simplified by using 
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only one group of subjects if it was not possible to collect five samples from each of 

them, so it was therefore chosen as the optimal design in this case.  

 

6.3.3.3  Comparison of the optimal designs obtained from PopDes Windows and 

PopDes script 

Table 6.7 shows all candidate designs derived from PopDes Windows and PopDes 

script. The optimal designs for three, four and five samples optimising with PopDes 

Windows were the design numbers four, five and three, respectively, while the 

design numbers seven, five and three were selected on the basis of the results 

obtained from PopDes script. Both optimisation methods suggested identical optimal 

designs for four and five samples.  

 

For four samples, design number five, in which a similar number of subjects was 

allocated to each subgroup, was chosen. The optimal sampling times obtained from 

PopDes Windows and PopDes script were identical, as it was suggested that the 

optimal sampling times for the first subgroup were 0.75, 1.00, 2.75 and 12.00 hours 

and for the second subgroup were 1.00, 1.50, 3.25 and 12.00 hours (Table 6.8).  

 

The results indicated that design number three, in which there was only one subgroup 

of subjects, was optimum for five samples. The CVs estimated by PopDes Windows 

and PopDes script were very similar with both designs, for example, the CVs of ka 

for design number three (five-sample design) were 6.5% and 6.8% when optimising 

with PopDes Windows and PopDes script, respectively. The optimal sampling times 

obtained from both methods were identical at 0.75, 1.00, 1.50, 3.25 and 12.00 hours 

after the dose (Table 6.8). 

 

A discrepancy in the results was observed with regard to three samples. The CVs of 

design number seven, which was selected by PopDes script, were similar to those 

estimated by PopDes Windows. However, the discrepancies were observed in design 

number four, which had been selected as the optimal design using PopDes Windows. 

When optimising this design with PopDes script, the CVs for ω2
ka, proportional error, 

and additive error were 51.2%, 92.7% and 46.2%, respectively, which were higher 
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than those values estimated by PopDes Windows (35.9%, 39.5% and 27.7%, 

respectively). A higher degree of variation suggested by PopDes script was probably 

the result of the inclusion of a lag time in the model. The optimal sampling times of 

designs four and seven are presented in Table 6.8.  



187 

 

Table 6.7    Coefficient of variation of the parameters of interest obtained from the exact design and time interval option using the 

Exchange algorithm 

 

Design 
No. of 

groups 

No. of 

subjects 

No. of 

samples 

%CV (PopDes script/PopDes windows) 

ka CL V Lag
a 

ω
2

ka ω
2
CL ω

2
V Proportional Additive 

1 1 52 3 86.5/23.2 9.7/7.0 23.6/13.7 0.7 122.2/na 37.2/na 139.2/na 187.8/na 86.2/na 

2 1 52 4 11.8/9.4 7.4/5.4 6.2/6.2 0.1 29.7/27.0 25.0/23.8 28.3/27.5 62.2/36.3 44.2/477.7 

3 1 52 5 6.5/6.8 7.4/5.4 5.8/5.9 0.1 25.2/25.5 24.5/24.3 25.7/25.8 22.3/22.5 25.8/19.6 

4 2 26/26 3 18.0/18.1 8.0/6.5 8.8/6.6 0.1 51.2/35.9 28.6/31.0 38.9/28.2 92.7/39.5 46.2/27.7 

5 2 26/26 4 8.5/8.6 7.4/5.5 6.0/6.1 0.1 25.6/25.8 24.8/24.5 26.7/26.9 29.7/30.1 36.6/27.7 

6 2 26/26 5 6.5/6.8 7.4/5.4 5.8/5.9 0.1 25.2/25.5 24.5/24.3 25.7/25.8 22.3/22.5 25.8/19.6 

7 3 17/18/17 3 17.4/15.6 7.5/6.2 7.7/6.6 0.2 37.3/32.3 26.8/28.9 31.8/30.1 44.1/36.2 49.1/34.3 

8 3 17/18/17 4 6.4/7.8 7.2/5.5 5.8/6.0 0.1 25.2/25.7 24.5/24.4 25.6/26.5 22.3/26.8 25.8/33.3 

9 3 17/18/17 5 6.4/6.4 7.2/5.4 5.8/5.8 0.1 25.2/25.4 24.5/24.2 25.6/25.5 22.3/20.2 25.8/23.9 

a
 Estimated by PopDes script. 

CV = Coefficient of variation expressed as a percentage 

na: not available 

 

 

 

 



188 

 

Table 6.8     Optimal designs for oral ciprofloxacin in paediatric patients obtained from the different prior information and 

extending the upper sampling limit to 24 hours 

 

Design 
No. of 

groups 

No. of 

subjects 
Sampling times  Determinant Criterion Efficiencya  

CV (%) 

ka CL V Lag ω2
ka ω2

CL ω2
V Prop Add 

3 samples 

PopDes script 3 17 

18 

17 

0.75     1.00     12.00 

1.00     2.25     12.00 

2.00     3.25     12.00 

2.9e+40 498 198b 17.4 7.5 7.7 0.2 37.3 26.8 31.8 44.1 49.1 

PopDes windows 2 26 

26 

0.75     1.75     1.75      

1.00     3.25     12.00      

1.00     1.75     12.00 

1.5e+27 296 137 15.6 6.2 6.6 - 32.3 28.9 30.1 36.2 34.3 

Rajagopalan and 

Gastonguay 

3 17 

18 

17 

0.50     1.25     12.00 

0.50     3.25     12.00 

0.50     1.00     12.00 

3.5e+20 74 15 c 30.4 8.1 39.3 7.3 86.8 49.6 216.0 27.3 - 

Schaefer et al. 3 17 

18 

17 

0.25     12.00   12.00 

0.25     0.25     12.00 

0.25     1.00     12.00 

1.4e+19 541 109 c 16.6 15.5 22.5 - - 94.9 77.5 17.7 - 

Extend sampling 

time to 24 hour 

3 17 

18 

17 

0.75     1.00     24.00 

1.00     2.25     24.00 

2.00     3.50     24.00 

5.2e+40 518 104 c 17.4 7.7 7.3 0.2 37.2 27.1 31.6 44.9 49.4 

4 samples 

PopDes script 2 26 

26 

0.75     1.00     2.75     12.00 

1.00     1.50     3.25     12.00 

1.7e+43 762 304 b 8.5 7.4 6.0 0.1 25.6 24.8 26.7 29.7 36.6 

PopDes windows 2 26 

26 

0.75     1.00     2.75     12.00 

1.00     1.50     3.25     12.00 

1.7e+29 454 211 8.6 5.5 6.1 0.1 25.8 24.5 26.9 30.1 27.7 

Rajagopalan and 

Gastonguay 

2 26 

26 

0.50     1.00     3.50     12.00 

0.50     1.00     3.50     12.00 

1.0e+22 100 13 c 22.2 7.5 29.0 5.5 73.1 44.7 189.3 21.2 - 
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Table 6.8   (Continued) 

 

Design 
No. of 

groups 

No. of 

subjects 
Sampling times  Determinant Criterion Efficiencya  

CV (%) 

ka CL V Lag ω2
ka ω2

CL ω2
V Prop Add 

Schaefer et al. 2 26 

26 

0.25     0.25     7.75     12.00 

0.25     1.25     12.00   12.00 

1.1e+20 734 96 c 15.3 13.6 19.9 - - 74.3 64.5 14.3 - 

Extend sampling 

time to 24 hour 

2 26 

26 

0.75     1.00     2.75     24.00 

1.00     1.50     3.50     24.00 

2.6e+43 785 103 c 8.4 6.0 7.0 0.1 25.5 24.7 26.5 29.8 36.6 

5 samples 

PopDes script 1 52 0.75     1.00     1.50     3.25     12.00 3.2e+44 927 369 b 6.5 7.4 5.8 0.1 25.2 24.5 25.7 22.3 25.8 

PopDes windows 1 52 0.75     1.00     1.50     3.25     12.00 1.3e+30 546 253 6.8 5.4 5.9 0.1 25.5 24.3 25.8 22.5 19.6 

Rajagopalan and 

Gastonguay 

1 52 0.50     1.00     3.50     12.00   12.00 7.9e+22 121 13 c 20.5 6.7 25.7 5.2 69.1 38.5 177.9 18.2 - 

Schaefer et al. 1 52 0.25     1.25     1.25     12.00   12.00 5.6e+20 920 99 c 12.8 12.9 16.8 - - 68.7 52.5 12.2 - 

Extend sampling 

time to 24 hour 

1 52 0.75     1.00     1.50     3.50     24.00 6.9e+44 975 105 c 6.3 5.8 7.0 0.1 25.1 24.3 25.5 22.3 25.9 

a
 relative comparison of criterion of any designs to criterion of original design and expressed as a percentage.  

b
 compared to the original design evaluated by incorporating the individual covariate. 

c
 compared to the results of optimal design estimated by PopDes script. 

CV: coefficient of variation expressed as a percentage 

Prop: proportional error 

Add: additive error
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6.3.4    The influence of uncertainty in the prior information 

Table 6.8 shows the optimal designs for three, four and five samples, derived by 

using prior information obtained from different patient populations. When using PK 

models and parameters from Study 1 (Rajagopalan & Gastonguay, 2003), the optimal 

sampling times were 0.5 hours and 12 hours for the first and the last samples, and it 

was suggested that the other samples be taken between 1 and 3.5 hours after the dose. 

These results were similar to those found by Al-Banna et al. (1990), who 

demonstrated that the optimum sampling time points of a two-sample design are as 

early and as late as possible, and the addition of the third sample anywhere between 

those two points can improve the estimation of the population parameters. It was 

observed that the first sampling time at 0.5 hours was slightly earlier than the first 

optimal sampling time obtained by using the information from the study of a 

malnourished population. This was because Study 1 reported a lag time of 0.353 

hours (21 minutes); therefore the earliest possible time that the first sample can be 

taken is 0.5 hours when optimising with the EX with a fixed grid size of 0.25.  

 

The CVs of the parameters estimated using the information from Study 1 were 

generally higher than those estimated using the information obtained from the study 

of malnourished patients. For example, the CVs of V were 39.3%, 29.0% and 25.7% 

for three-, four- and five-sample designs, respectively, when using the information 

from Study 1, compared to the values of 7.7%, 6.0% and 5.8%, respectively, when 

using the information obtained from malnourished patients. A high variation was 

obtained when using the information from Study 1, which was probably because this 

study included a wide range of paediatric populations, i.e. children aged from 0.27 to 

16.9 years (median 2.5 years) and weighing from 4.2 to 63.2 kg (median 13.5 kg). If 

the population model accounted for these covariates, the PK parameter estimates 

resulted in a high variation.  

 

The designs optimised with the information from Study 2 (Schaefer et al., 1996) had 

first and last sampling times at 0.25 hours and 12 hours. The remainder of the 

sampling points were at 1, 1.25 and 7.5 hours (Table 6.8). Although the criterion and 

design efficiencies were higher than those obtained by using the information from 
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malnourished patients; the CVs of the parameters were generally higher. The 

precisions of inter-individual variability in CL and V were particularly high; over 

50%, even with the five-sample study. This was probably due to the final population 

models reported in Study 2 being developed from a small number of individuals (10 

children) and the parameter estimates being imprecise, i.e. the inter-individual 

variabilities for CL and V were 7.8% and 22.6%, with standard errors reported as 

70.7% and 57.8%, respectively. 

 

6.3.5   Investigation of additional sampling times after the second 

dose 

The designs obtained previously were optimised by fixing the upper limit of the 

sampling region to 12 hours after the first dose. The importance of sampling times 

after the second dose was investigated by extending the upper limit to 24 hours or 12 

hours after the second dose. The results are given in Table 6.8. It was found that most 

sampling time points remained the same; only the final sampling time at 12 hours 

was changed to 24 hours. Nevertheless, the determinants, criterion values and design 

efficiencies, as well as the CVs of the parameters, were almost identical to the results 

estimated by fixing the last sampling point to 12 hours. 

 

6.3.6   Sampling windows 

The sampling windows of each optimal sampling time are presented in Table 6.9. 

The results showed that the lengths of sampling windows for the fixed sampling 

times of 0.75 and 1 hour were very short (0.04 and 0.1 hours, respectively), while 

they were more flexible for other sampling points. For the sampling times of 1.5 to 

3.25 hours, the sampling windows were for 15 minutes around the fixed sampling 

times. The sampling windows for the last samples at 12 hours were 1 hour. The 

efficiencies of the sampling window designs were 82%, 81% and 82% for three-, 

four- and five-sample study designs, respectively.  

 

It was observed that the efficiencies of the sampling window designs were sensitive 

to their length, especially with regard to the first sampling window. This was due to 
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the steepness of the profile during the absorption phase of ciprofloxacin. Sampling 

windows of 0.04 hours or 2.4 minutes and  0.1 hours or 6 minutes around the fixed 

sampling times during drug absorption may not be practical. In a further 

investigation, the length of the sampling windows was gradually extended, while the 

decrease of design efficiency was simultaneously monitored. It was found that when 

the sampling windows were extended from 2.4 minutes to 5 minutes and from 6 

minutes to 10 minutes, the efficiencies of the designs decreased slightly to 

approximately 70%. 

 

6.3.7   Optimisation of the total number of subjects 

Figure 6.4 presents the plots of percentage coefficient of variation (CV) against the 

total number of study subjects. The final criterion to select the optimal sample size 

was based on the 10% precision limit on ka, CL and V. On the basis of this criterion, 

a sample size of 25 (one group) was chosen for a five-sample design (Figure 6.4A). 

If four samples per subject were permitted, a sample size of 20 was selected for each 

subgroup (a total of 40 individuals) (Figure 6.4B). For three groups in which three 

samples had been taken from each subject, the CV of ka remained above the 

precision limit, even if the sample size was increased to 100. To determine the 

optimal number of individuals in this design, the higher precision limit of 20% was 

used for ka. It was found that a total of 40 subjects, divided into three subgroups (e.g. 

13, 14 and 13 subjects in each subgroup), would be appropriate (Figure 6.4C). If the 

CL and V were the parameters of interest, the results suggested a total of 25, 30 and 

35 subjects for the five-, four- and three-sample designs, respectively. 
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Table 6.9    Sampling times and sampling windows for three different optimal 

designs based on the number of samples per subject 

 

Properties 3 samples 4 samples 5 samples 

Group number 1 2 3 1 2 1 

Optimal 

sampling times 

(h) 

0.75 

1.00 

12.00 

1.00 

2.25 

12.00 

2.00 

3.25 

12.00 

0.75 

1.00 

2.75 

12.00 

1.00 

1.50 

3.25 

12.00 

0.75 

1.00 

1.50 

3.25 

12.00 

Determinant 

Criterion 

2.9e+40 

498 

1.7e+43 

762 

3.2e+44 

927 

Sampling 

windows (h) 

 

 

 

0.75-0.79 

0.90-1.10 

11.00-12.00 

0.90-1.10 

2.00-2.50 

11.00-12.00 

1.50-2.50 

3.00-3.50 

11.00-12.00 

0.75-0.79 

0.90-1.10 

2.50-3.00 

11.00-12.00 

0.90-1.10 

1.25-1.75 

3.00-3.50 

11.00-12.00 

0.75-0.79 

0.90-1.10 

1.25-1.75 

3.00-3.50 

11.00-12.00 

Determinant 

Criterion 

3.8e+39 

408 

2.0e+42 

616 

3.9e+43 

758 

Efficiency (%) 82 81 82 

 

Figure 6.4    Plots of percentage coefficient of variation versus total number of 

study subjects, using the optimal designs obtained from different numbers of 

samples (filled circles = ka, open circles = CL and filled solid triangles = V) 

 

A: One-subject subgroup (five samples) 
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B: Two-subject subgroups (four samples) 

 

 

C: Three-subject subgroups (three samples) 

 

 

6.4    CONCLUSIONS 

In the present study, a number of design options and design variables were used with 

different optimisers. The results suggested that the total number of subjects and the 

optimal number of elementary designs is related to the number of samples. In 

addition, the number of subjects in each elementary design could be varied, but was 

related to the allocation of sampling times.  
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In future population PK studies of oral ciprofloxacin, the original study which is a 

four-sample design containing a total of 52 subjects assigned into three groups of 

subjects (n = 17, 18 and 17) can be simplified by using two groups with a minimum 

of 20 subjects in each group. The number of samples used in the original study may 

reduce to three samples per subject while remaining the design efficiency However, 

if up to five samples are allowed to be taken from each patient at the appropriate 

sampling times, it would be expected that one group with a minimum of 25 subjects 

would give precise parameter estimates. In addition, it was revealed that the samples 

taken after the first dose contains sufficient information and the sampling time after 

the second dose may not be needed in the future studies.  

 

It is of note that although the optimal design methods are useful in providing 

guidance around the optimal sampling times and sampling windows, as well as the 

optimal group structure, the results of the optimal design methods were greatly 

influenced by the information gained previously. Therefore, drug concentration-

profile knowledge should be considered when designing population PK studies.  
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CHAPTER 7  

 

DEVELOPMENT OF WHOLE BODY 

PHYSIOLOGICALLY BASED 

PHARMACOKINETIC MODELS OF 

CIPROFLOXACIN 
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7      INTRODUCTION TO CHAPTER 

Physiologically based pharmacokinetic (PBPK) models have been more widely used 

in pharmaceutical research during the past decade, as shown by a large increase in 

the number of related publications (Rowland et al., 2011). PBPK models are 

composed of several compartments, each of which reflects the actual organs and 

tissues in the body. Unlike conventional models, a PBPK model mathematically 

describes and/or predicts drug absorption, distribution and elimination processes by 

using the relevant physiological, physicochemical and biochemical parameters. Two 

types of input data are required for a PBPK model; physiological (or species-

specific) data and drug-specific data. The former refers to tissue volumes and tissue 

blood flows, which are derived from the species of interest, while the latter includes 

the tissue-to-plasma partition coefficient (Kp), clearance (CL), free fraction unbound 

(fu) and blood:plasma ratio (R).  

 

A whole body PBPK (WBPBPK) model is developed by the incorporation of 

information from different sources, e.g. in vitro and in vivo experiments, so that it 

more easily allows altered physiological conditions to be considered. The WBPBPK 

model is an ideal technique for the prediction of pharmacokinetics in special 

populations; for example, WBPBPK simulations have been successfully performed 

for a paediatric population (Björkman, 2005; Edginton et al., 2006a), individuals 

with liver cirrhosis (Edginton & Willmann, 2008) and people undergoing 

orthopaedic surgery who have sustained substantial blood loss and blood dilution 

(Björkman et al., 2001).  

 

This chapter is divided into four sections. Section 7A describes the general methods 

used for developing the WBPBPK models. The aims of Section 7B were to (i) 

develop a WBPBPK model of ciprofloxacin for healthy adults, and (ii) to investigate 

the impact of different methods for predicting Kp. In Section 7C, a WBPBPK model 

for healthy children in different age groups was created. In the final section, the 

parameters for healthy children were then scaled to malnourished children, in order 

to predict the PK of ciprofloxacin in this specific population. 
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7A    GENERAL METHODS 

 

7A.1   Model development 

7A.1.1  Structural model 

In the present study, a WBPBPK model for ciprofloxacin, composed of 11 tissue 

compartments and two blood compartments (venous and arterial), was developed, as 

illustrated in Figure 7.1. For the oral model, ciprofloxacin was administered to gut 

lumen and was then absorbed into gut tissue. For the intravenous (IV) model (both 

IV bolus and IV infusion), ciprofloxacin was administered directly to the venous 

compartment. Blood flow to the liver was the sum of the flows from the hepatic 

artery, gut and spleen. The lung compartment was used to close the circulation loop, 

and received blood at a flow rate equal to that of the cardiac output.  

 

Ciprofloxacin is rapidly absorbed and distributed in the body (Drusano et al., 1986a), 

so it was assumed that this compound faces minimal hindrance in its systemic 

transport. Therefore, all tissues were considered to represent perfusion-rate limited, 

well-stirred compartments. Approximately two-thirds of an administered dose of 

ciprofloxacin is renally eliminated (Davis et al., 1996). It has been found that the 

renal clearance of ciprofloxacin greatly exceeds creatinine clearance, indicating that, 

in addition to glomerular filtration, tubular secretion makes a significant contribution 

(Drusano et al., 1987; Wingender et al., 1984). The metabolites of ciprofloxacin have 

been detected in both urine and faeces, indicating that there is also hepatic clearance 

(Hoffken et al., 1985; Rohwedder et al., 1990). Moreover, as a small amount of 

unchanged drug (7.3%) can be detected in faeces after ciprofloxacin was infused 

intravenously (Rohwedder et al., 1990), transintestinal elimination is considered to 

be an additional elimination route for ciprofloxacin. A ‘rest of the body’ 

compartment was also included in the model in order to compensate for the mass of 

drug that is unaccounted for in the closed loop system and for model 

misspecification.  
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Figure 7.1    A WBPBPK model for ciprofloxacin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key: IV = intravenous administration, PO = oral administration, ka = absorption rate 

constant and CL=clearance.  

 

7A.1.2  Statistical models 

A normal distribution was assumed for bioavailability (F) and fu, while other drug-

specific parameters, including Kp, CL and absorption rate constant (ka), were 

assumed to be log-normally distributed. R was fixed in this study. Physiological 

variability was incorporated in the model via the use of the multivariate Dirichlet 

distribution (Gisbert et al., 2002; Peters, 2012). This type of distribution allows the 

physiological parameters to be constrained as follows: 
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(i)  Inter-relationships between physiological parameters are considered 

(ii)  Organ volumes are represented as proportions of body weight 

(iii) Organ blood flows are represented as proportions of the cardiac output 

(iv)  Parameters are sampled with upper and lower limits 

 

The mean value for each organ volume, as well as the variance and covariance, was 

calculated by using the Dirichlet distribution formula (equations 7.1-7.3), as 

suggested by Krewski et al. (1995). 

 

D

E[ ]( ( ) )
E [ ]

j j j j

j

Bw b a
V

  


                                
(7.1) 

 

     (7.2) 

 

                          (7.3) 

                             
 

 

where: 

ED[Vj]: Dirichlet mean value for the volume of the organ j 

E[Bw]: mean value of the body weight 

ηi,ηj: mean value for the volume of the organs i and j 

Ω: sum of all the organ volumes 

bi, bj: upper bound value for the volume of the organs i and j expressed as a fraction 

of Ω. The upper bound value was calculated by assuming equality to η+2SD, where 

η is mean of the organ volume and SD is standard deviation, respectively. 
 

ai, aj: lower bound value for the volume of the organs i and j expressed as a fraction 

of Ω. The lower bound value was calculated by assuming equality to η-2SD.
 

VarD(Vj): Dirichlet variance for the volume of the organ j 

Var[Bw]: variance of the body weight 

CovD(Vi,Vj): Dirichlet covariance between the volume of the organs i and j 
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The mean values of the organ volumes calculated using equation 7.1 were different 

from the mean physiological values obtained from the literature, so the variance and 

covariance calculated with equations 7.2 and 7.3 were adjusted as follows: 

 

                                  (7.4) 

 

                    (7.5) 

 

where 

Var[Vi]: variance of the volume of the organ i 

Var[Vj]: variance of the volume of the organ j 

EL[Vj]: mean value for the volume of the organ j obtained from the literature 

Cov(Vi,Vj): covariance between the volumes of the organs i and j 

 

The variance-covariance matrix calculated with equations 7.4 and 7.5 was 

subsequently used to sample from a multivariate normal distribution, which can give 

similar results to those sampled directly from a Dirichlet multivariate distribution.  

 

In this study, the mean values for tissue volumes and blood flows were obtained from 

the literature. The volume of the rest of the body compartment was calculated as 

being the difference between the total body weight and the sum of the volumes of the 

remaining 13 organs. The blood flow of the rest of the body compartment was 

calculated as being the difference between the cardiac output and the sum of blood 

flows to the remaining eight organs. The organ volumes sampled from a Dirichlet 

distribution were used to calculate organ blood flows by using the following equation 

(Farrar et al., 1989): 
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where 

Qi: blood flow to the organ i 

VD,i: volume of the organ i sampled from a Dirichlet distribution 

QP,i: preferred proportion of organ blood flow to the cardiac output of the organ i 

CO: cardiac output 

ηi: mean volume of the organ volume i 

 

7A.2   Mechanistic model for Kp prediction 

7A.2.1  Poulin model 

Poulin and colleagues have developed mechanistic-based equations to predict Kp 

values, using tissue composition data, physicochemical properties and plasma protein 

binding of the compound (Poulin et al., 2001; Poulin & Theil, 2000; Poulin & Theil, 

2002). These equations are based on the assumption that the drug is distributed 

homogeneously in each tissue (and plasma), primarily by passive diffusion. The drug 

then divides between lipids and water, and also reversibly binds to common proteins 

present in plasma and tissue interstitial space. In 2004, Berezhkovskiy corrected 

some of the errors related to protein binding in these equations, and this yielded 

equations 7.7 and 7.8, as follows:  

 

Kp values for lean tissues: 

 

                  (7.7) 

 

Kp values for adipose tissues: 

 

                  (7.8) 
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where 

PO:W: n-octanol:buffer partition coefficient (PC) of the non-ionised form at pH 7.4 

DVO:W: olive oil:buffer PC of both non-ionised and ionised forms at pH 7.4  

V: fraction of volume for neutral lipids (nl), phospholipids (ph) and water (wt) 

fup: fraction unbound in plasma  

fut: fraction unbound in tissue 

 

PO:W and DVO:W were used as input information of drug lipophilicity for lean tissues 

and adipose tissues, respectively. In this thesis, PO:W was taken from the literature 

and was used to calculate DVO:W as follows. The ionised form is generally only 

soluble in the buffer phase, but the non-ionised species is soluble in both the aqueous 

and the lipophilic phases. PO:W that accounted only for the non-ionised form was 

changed to KOV:W, which is the olive oil:buffer PC of the non-ionised form, by using 

linear regression, as shown in equation 7.9 (Leo et al., 1971). 

 

                               (7.9) 

 

The KOV:W was then used to estimate DVO:W using classical Henderson-Hasselbalch 

equations, assuming that DVO:W and KOV:W differ by a factor corresponding to the 

ionised form in the aqueous phase. Since ciprofloxacin is an amphoteric compound, 

the following equation was used: 

 

          (7.10) 

 

where pKa1 < pKa2 

fut can be calculated by using fup and r, where r is the average value of the tissue 

interstitial fluid:plasma ratio of albumin and lipoproteins (r = 0.5 for lean tissue and  

r = 0.15 for adipose tissue) (Poulin et al., 2011). 

 

                                     (7.11) 

OV:W O:WLogK =1.115 LogP  - 1.34
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In the present study, PO:W, fup, pKa1 and pKa2 values obtained from the literature 

were used to calculate Kp values using the specific tissue composition data of each 

organ, as presented in Table 7.1. 

 

7A.2.2  Rodgers model 

The Poulin model was further expanded by Rodgers and colleagues by the 

incorporation of electrostatic interactions between compound and tissue acidic 

phospholipids, where the affinity of this interaction can be estimated using blood cell 

binding data (Rodgers et al., 2005; Rodgers & Rowland, 2006). Using these 

equations, it has been found that Kp values are more accurately predicted when 89% 

of the predicted Kp values lie within a factor of three, compared to experimental 

values (Rodgers & Rowland, 2006). The unbound tissue:plasma partition coefficient 

(Kpu) can be calculated by the following equations: 

 

Kpu values for lean tissues: 

 

     (7.12) 

 

Kpu values for adipose tissues: 

 

     (7.13) 

 

where fIW and fEW represent the volume fraction of intracellular water and 

extracellular water, respectively. CAP is the concentration of acidic phospholipids. 

This input information is shown in Table 7.1. KaAP is the affinity constant for the 

acidic phospholipids, which can be obtained by the equation derived from red blood 

cell partitioning data (equation 7.14). The estimated KaAP value can be negative if 

the affinity is very low. In these circumstances, KaAP was set to zero. 
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BC IW O:W O:W ph

AP

AP

nl
[Kpu -(1+Z f )-(P V )+(0.3P +0.7)V ] 1 + Y

Ka =
1 + Y C Z

 



         (7.14) 

 

where KpuBC is the red blood cell:plasma water concentration ratio, which can be 

determined in vitro from R, fup and haematocrit (Hct) (equation 7.15) (Rowland & 

Tozer, 1995). X, Y and Z are parameters used to consider drug ionisation in 

intracellular tissue water, plasma and red blood cells, and can be calculated by 

equations 7.16-7.18 (Rodger & Rowland, 2007), respectively. 

 

BC

p

[R - (1 - Hct)]
Kpu  = 

fu Hct
                                     (7.15) 

 

                              (7.16) 

 

                                (7.17) 

 

                               (7.18) 

 

where the pHp, which is the pH of plasma, is equal to 7.4, pHIW, which is the pH of 

intracellular tissue water, is equal to 7, and pHBC ,which is the pH of red blood cells, 

is equal to 7.22. 

 

 

 

 

 

 

 

 

 

BASE IW IW ACID  pKa - pH pH - pKa
X = 10 +10

BASE P P ACID  pKa - pH pH - pKa
Y = 10 +10

BASE BC BC ACID  pKa - pH pH - pKa
Z = 10 +10
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Table 7.1     Input parameters used for prediction of Kp values by Poulin model 

and Rodgers model 

 

Tissues Tissue composition data for humans (fraction of tissue wet weight) Tissue 

volume 

(L/kg) Water Neutral 

phospholipids 

Neutral 

lipids 

Extracellular 

water 

Intracellular 

water 

Acid 

phospholipids 

Plasma 0.95 0.0032 0.0021 - - - 0.0450 

Adipose 0.15 0.79 0.002 0.135 0.017 0.40 0.1490 

Bone 0.45 0.074 0.0011 0.10 0.346 0.67 0.0976 

Brain 0.78 0.051 0.0565 0.162 0.62 0.40 0.0213 

Gut 0.76 0.0487 0.0163 0.282 0.475 2.41 0.0264 

Heart 0.78 0.0115 0.0166 0.32 0.456 2.25 0.0044 

Kidney 0.76 0.0207 0.0162 0.273 0.483 5.03 0.0044 

Liver 0.73 0.0348 0.0252 0.161 0.573 4.56 0.0360 

Lungs 0.78 0.003 0.009 0.336 0.446 3.91 0.0131 

Muscle 0.71 0.022 0.0072 0.079 0.63 1.53 0.4841 

Skin 0.67 0.0284 0.0111 0.382 0.291 1.32 0.0804 

Spleen 0.79 0.0201 0.0198 0.207 0.579 3.18 0.0029 

Blood cells 0.63 0.0012 0.0033 - 0.603 0.50 0.0347 

Data were obtained from Poulin and Theil (2009) and Rodgers et al. (2005). 

 

7A.2.3  Empirical method 

The empirical method was proposed by Jansson and colleagues (2008). This method 

was developed on the basis of the previous finding that a correlation between Kpmuscle 

and Kp values of other tissues exists. Therefore, if the Kp of muscle is known, it can 

be used as a predictor for other tissues (Björkman, 2002; Poulin & Theil, 2000). The 

correlation between Kpmuscle and other tissues can be described by log-transformation 

of linear regression, as follows: 

 

               (7.19) 

 

tissue, muscle tissue, tissue,drug×

tissue

a logKp +b ×logX +intercept
Kp 10

i i i
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where atissue is a slope factor for tissue i and btissue is a slope factor for the drug-

specific lipophilicity parameter, LogXdrug.  

 

The volume of distribution at steady-state (Vss) can be calculated using the plasma 

volume and the sum of apparent volumes of each tissue, as shown in the following 

equation: 

 

                              (7.20) 

 

where Vplasma is plasma volume and Vtissue,i is the apparent volume of tissue i. 

 

By insertion of equations 7.19 and 7.20, the Vss can be explained by: 

 

  (7.21) 

 

Kpmuscle was calculated by inserting the slope factors, intercepts and a lipophilicity 

descriptor, as shown in Table 7.2, together with the specific values for tissue 

volumes, into equation 7.21. The value of Kpmuscle was then iteratively changed by 

using the ‘Solver’ function, which was implemented in Microsoft Excel
®
, until the 

calculated Vss was in accordance with the experimental data.  The Kp of other tissues 

was consequently estimated by inserting the iteratively obtained Kpmuscle value into 

equation 7.19.  Data to determine the correlation of Kp between muscle and spleen 

were limited, so the Kp value for spleen was assumed to be identical to that of 

muscle. 
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Table 7.2     Slope factors, intercepts and lipophilicity descriptors for zwitterion 

compounds 

 

Tissues atissue,i btissue,i Intercept Xdrug 

Adipose 0.897 0.265 0.084 KOV:W 

Bone 0.817 0 -0.042 - 

Brain 0.620 0.255 -0.442 PO:W
a 

Gut 0.520 0 0.206 - 

Heart 0.845 0.033 0.140 PO:W
a
 

Kidney 0.337 -0.070 0.524 PO:W
a
 

Liver 0.484 0.074 0.382 PO:W
a
 

Lungs 0.790 0 0.166 - 

Skin 0.663 0 0.165 - 

 
a
 adjusted for ionisation at physiological pH 7.4 using the Henderson-Hasselbalch  equations 

for zwitterion compounds (equation 7.10). 

 

7A.3   WBPBPK modelling 

In this study, all WBPBPK models were developed using the MATLAB program 

Version 7.11 (MathWorks, Natick, MA, USA) on a personal computer with a 

Microsoft Windows 7 operating system and an Intel Core i7 processor. The model 

was composed of the arterial and venous blood, lungs, brain, bone, skin, adipose, 

kidneys, liver, muscle, heart, gut, spleen and rest of the body compartments (as 

presented in Figure 7.1). This model was used to generate a concentration-time 

profile for a population of 1000 virtual subjects that had an equal proportion of males 

(n = 500) and females (n = 500).  

 

7A.4   Model assessment 

The predictive performance of the model was assessed by comparing the simulated 

concentration-time data with corresponding measured concentrations obtained from 

the literature. Studies were selected if the measured concentration data were 

presented numerically or as graphs. If the data were provided as a graph, they were 

extracted by using the GetData Graph Digitizer program, Version 2.24. 
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Accuracy and precision were calculated using the methods described by Sheiner and 

Beal (1981). Prediction error (pei), which is the difference between the prediction 

and observation (Cpred – Cobs), was used to calculate the mean squared prediction 

error (mse) and the root mean squared prediction error (rmse) as follows: 

 

                               (7.22) 

 

The smaller the mse and rmse, the greater the precision of the prediction. Bias is a 

measure of the amount by which the predictions are systemically too high or too low. 

The mean prediction error (me) that was used to describe the bias of the prediction 

was calculated as follows: 

 

                                           (7.23) 

 

The standard error of the mse and me were calculated by the following equation: 

 

                               (7.24) 

 

where for mse, Xi and are the individual squared pei values and the mean of 

squared pei values (mse), respectively. For me, Xi and are pei values and the mean 

of pei values (me), respectively. Confidence intervals (95% CI) were also calculated 

for mse and me, using the following formula: 

 

                                  (7.25) 

 

where t0.975(N-1) is the 97.5
th

 percentile of the t-distribution with N-1 degrees of 

freedom.  
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7B    WBPBPK MODEL FOR HEALTHY ADULTS 

 

7B.1   METHODS 

7B.1.1  Input parameters 

7B.1.1.1  Physiological parameters 

The physiological parameters used for adults in this study are given in Table 7.3. The 

reference values of a total body weight of 73 kg for males and 60 kg for females 

were taken from the International Committee on Radiological Protection (ICRP, 

2003). The body weight was sampled from a log-normal distribution, assuming that 

the coefficient of variation (CV) was 20% (14.6 kg for males and 12 kg for females). 

Body weight was subsequently used to estimate the cardiac output by using the 

following formula (Fiserova-Bergerova, 1995):  

 

                  (7.26) 

 

Mean values for organ weights and organ blood flows were also taken from the ICRP 

(2003). WBPBPK model compartments are defined by their volume, rather than their 

mass, so the density of each organ was used to convert weight to volume. The 

densities of the majority of organs were obtained from the ICRP (2003), with the few 

exceptions being the arterial, venous, liver and rest of the body compartments, for 

which there were no available data in the literature. The densities of these organs 

were therefore assumed to be equal to 1. Bone density varies depending on the type 

of bone tissue, i.e. cortical or trabecular. In the present study, the cortical bone 

density of 2 g/cm
3
 was chosen because it accounts for 80% of total bone mass 

(Brown et al., 1997; ICRP, 2003). Several different organs located in the 

gastrointestinal tract (stomach, small intestine and large intestine) were included in a 

gut compartment. It has been reported that such organs have very similar densities, 

ranging from 1.041-1.052 g/cm
3
; therefore, the value of 1.042 g/cm

3
, which 

represents the density of both small intestine and large intestine, was used. The 

density of total body weight was also assumed equal to 1 g/cm
3
. All organ volumes 

were assumed to have a CV of 20%. 

 

0.81Cardiac output (L/h) = 11.22 [body weight (kg)]
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Table 7.3     Physiological parameters for healthy adults 

 

Organs Density 

(g/cm
3
) 

Weight (kg) 

(M/F) 

Volume (L) 

(M/F) 

Blood flow (L/h) 

(M/F) 

Adipose  0.916 14.5/19 15.83/20.74 19.50/30.09 

Bone 2 5.5/4 2.75/2 19.50/17.70 

Brain 1.04 1.45/1.3 1.39/1.25 46.80/42.48 

Gut 1.042 1.24/1.15 1.19/1.10 62.40/63.72 

Heart 1.03 0.33/0.25 0.32/0.24 15.60/17.70 

Kidney 1.05 0.31/0.275 0.30/0.26 74.10/60.18 

Liver 1 1.8/1.4 1.8/1.4 25.35/23.01 

Muscle 1.041 29/17.5 27.86/16.81 66.30/42.48 

Skin 1.1 3.3/2.3 3.0/2.09 19.50/17.70 

Spleen 1.06 0.15/0.13 0.14/0.12 11.70/10.62 

Lungs 1.05 0.5/0.42 0.48/0.40 Predicted
a 

Arterial 1 1.8/1.8 1.8/1.8 Predicted
a
 

Venous 1 3.6/3.6 3.6/3.6 Predicted
a
 

Rest of the 

body 

1 9.52/6.88 12.54/8.18 Calculated
b 

Total 1 73/60 73/60 Predicted
a
 

a
 predicted from the sampled total body weight using equation 7.26. 

b
 calculated as the difference between predicted cardiac output and the sum of organ blood 

flows. 

M = male, F = female. 

 

7B.1.1.2  Drug-specific parameters 

Ciprofloxacin is an amphoteric compound with pKa1 of 6.09 and pKa2 of 8.74 (Ross 

et al., 1992). For LogPO:W, the experimental value of 0.28 was used, as reported in 

the studies of Takács-Novák et al. (1992) and Singh (2005). The values of 0.70 (SD 

= 0.07) and 1 were used for fup and R, respectively (Chen et al., 2008; Poulin & 

Theil, 2002; Uchimura et al., 2010). In the initial step of model development, 

different methods for Kp prediction were compared; however, the empirical method 

was further used for predicting Kp values in subsequent models. All Kp values were 

assumed to have a CV of 10% 
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A renal clearance (CLR) of 0.27 L/h/kg (SD = 0.0549) and non-renal clearance 

(CLNR) of 0.2417 L/h/kg (SD = 0.09) were selected (Borner et al., 1986). The CLR 

was assumed to account for both the glomerular filtration and tubular secretion 

processes of CLR. The relative contributions that the clearance of each elimination 

pathway  made to the total CLNR were obtained from a study by Rohwedder et al. 

(1990), which suggested that hepatic metabolism and transintestinal secretion 

account for 63% and 37% of total CLNR, respectively. Unbound intrinsic hepatic 

clearance (CLuint,H) can also be determined by using hepatic drug clearance (CLH), 

hepatic blood flow (QH,B), fu and R as shown in the following equation: 

 

                                 (7.27) 

 

For the oral model, drug absorption was predicted using the first-order absorption 

model and a lag time; the model requires the estimates of ka and lag time. A value of 

2.03 h
-1

 with an SD of 1.07 h
-1

, which was obtained from the literature, was used for 

ka (Borner et al., 1986). The lag time was fixed at 0.35 hours (Ullmann et al., 1986). 

A value of 0.837, taken from the study by Bergan et al. (1986) was used for F, with 

the variability assumed equal to 10%.  

 

7B.1.2  Simulation and comparison with experimental data 

7B.1.2.1  Comparison of different methods for Kp prediction 

The impact that the different methods for Kp prediction, including the Poulin model, 

the Rodgers model and the empirical method, had on the Kp values, as well as on the 

concentration-time profiles, were investigated using an IV bolus model. When using 

the empirical method, the impact of the discrepancy in Vss values on the predictions 

was also tested. This was performed by using a variety of Vss values reported in the 

literature, including a minimum value of 1.74 L/kg, a maximum value of 2.40 L/kg 

and a median value of 2 L/kg (as shown in Table 1.3 of Chapter 1).  

 

 

 

H,B H

H

H,B H

int,

Q CL
CLu  = 

fu (Q  - CL /R)
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7B.1.2.2  IV bolus model 

Concentration-time data were generated for a dose of 100 mg by IV bolus injection.  

The predicted concentrations in the venous compartment and the lung compartment 

were compared with the experimental data obtained from the studies conducted by 

Wise et al. (1984) and Schlenkhoff et al. (1986), respectively. 

 

7B.1.2.3  IV infusion model 

This model was used to simulate concentration-time profiles for three dosing 

regimens, including a 100 mg 30-minute infusion, a 200 mg 10-minute infusion and 

a 200 mg 30-minute infusion. There were no available data regarding the tissue 

concentrations in the literature, so the model was evaluated by only comparing the 

predicted concentrations in the venous compartment with the values given in the 

literature. The experimental data for this model were obtained from the studies of 

Gonzalez et al. (1985a), Drusano et al. (1986a), and Drusano et al. (1986b). 

 

7B.1.2.4  Oral model 

Several dosing regimens, including 100 mg, 250 mg, 500 mg, 750 mg and 1000 mg, 

were tested for this model. The predicted concentrations in the venous compartment 

were compared with the experimental data obtained from the studies of Crump et al. 

(1983), Gonzalez et al. (1984) and Bergan et al. (1986), and the predicted 

concentrations in adipose, muscle and skin were validated with the data provided in a 

study conducted by Aigner and Dalhoff (1986). 

 

7B.2   Results 

7B.2.1  Comparison of different methods for Kp prediction 

The Kp values predicted using the different methods are presented in Table 7.4. The 

Kp values obtained by using Poulin model were considerably lower than those 

obtained using other methods. The Vss estimated from the Kp values of the Poulin 

model was 0.57 L/kg, which was significantly lower than the values given in the 

literature (1.74-2.40 L/kg). The Kp values obtained from the Rodgers model and the 

empirical method were comparable with regard to the majority of organs; however, 

significant discrepancies were observed with the brain and liver. The Kpbrain 
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predicted from the Rodgers model was 1.27, compared to the values of between 

0.18-0.26 that were obtained from the empirical method. The Kpliver predicted from 

the Rodgers model was 6.52, which was higher than the values estimated using the 

empirical method (2.79-3.70). The Vss calculated from the results of the Rodgers 

model was 2.78 L/kg, which was in accordance with the value in the literature. As 

expected, when using the empirical method, the Kp value of each organ was 

dependent on the Vss value given in the literature, which had been defined initially. 

The use of a higher Vss resulted in higher Kp estimates. 

 

The concentration-time profiles that were generated from different sets of predicted 

Kp values are illustrated in Figure 7.2. The profiles produced by using the Kp values 

of the Poulin model were significantly different from the profiles obtained with the 

other methods used. With the exception of the brain and liver, the predicted 

concentrations obtained from the Kp values of the Rodgers model and the empirical 

method were very similar. For the brain, the predicted concentrations derived from 

the Rodgers model were higher than those derived from the empirical method. A 

similar trend was also observed for the liver compartment. In addition, it was found 

that the predictions regarding the venous compartment and the lung compartment 

fitted very well with the observed data. 

 

7B.2.2  IV bolus model 

Figure 7.3 shows the predicted concentration-time profiles in the venous and lung 

compartments after a 100 mg IV bolus administration of ciprofloxacin to a healthy 

adult. The venous compartment predictions fit perfectly to the observed data; almost 

all observed data were within the 95% prediction interval. The small values of rmse 

(0.200; 95% CI 0.055, 0.277) and me (-0.037; 95% CI -0.333, 0.260) indicated that 

the model is precise and unbiased. Variability of the observed data in the lung 

compartment was higher than in the venous compartment; however, the model was 

reasonably precise (rmse 0.506; 95% CI 0.462, 0.547) although there was a small 

bias resulting in under prediction (me -0.386; 95% CI -0.426, -0.345). 
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Table 7.4     Kp values predicted from Poulin model, Rodgers model and the 

empirical method 

 

Organs 
Poulin 

model 

Rodgers 

model 

Empirical method 

Vss= 1.74 L/kg 

(M/F) 

Vss= 2.0 L/kg 

(M/F) 

Vss= 2.4 L/kg 

(M/F) 

Adipose  0.12 0.64 0.35/0.43 0.40/0.49 0.48/0.59 

Bone 0.50 1.29 1.33/1.79 1.65/2.17 2.13/2.75 

Brain 0.82 1.27 0.18/0.21 0.20/0.23 0.22/0.26 

Gut 0.76 3.77 2.93/3.28 3.18/3.56 3.53/3.96 

Heart 0.72 3.57 3.05/3.66 3.48/4.19 4.13/4.99 

Kidney 0.72 7.10 7.27/7.83 7.66/8.26 8.21/8.85 

Liver 0.72 6.52 2.79/3.11 3.01/3.35 3.32/3.70 

Muscle 0.67 3.79 3.17/3.94 3.71/4.62 4.54/5.68 

Skin 0.65 2.26 3.14/3.63 3.48/4.03 3.99/4.62 

Spleen 0.75 4.80 3.17/3.94 3.71/4.62 4.54/5.68 

Lungs 0.71 5.68 3.65/4.33 4.13/4.91 4.84/5.78 

Vss = volume of distribution at steady-state, M = male, F = female. 
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Figure 7.2    Concentration-time profiles generated using different sets of Kp 

values predicted by the Poulin model, the Rodgers model and the empirical 

method 
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Figure 7.2    (continued)  

 

         

     

     

 

Key: pink line = the Poulin model, black line = the Rodgers model, green line = the 

empirical method (Vss= 1.24 L/kg), blue line = the empirical method (Vss= 2 Lkg) and red 

line = the empirical method (Vss= 2.4 L/kg). 
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Figure 7.3   Concentration-time profiles of ciprofloxacin in plasma and tissue 

predicted using the IV bolus model. 

 

     

 

Key: the blue symbols are the observed data (venous = Wise et al., 1984; lungs = 

Schlenkhoff et al., 1986), the red solid line is the mean prediction and the red dashed lines 

are the 2.5
th
 (lower) and 97.5

th
 (upper) percentiles of prediction. 

 

7B.2.3  IV infusion model 

Figure 7.4 shows the predicted concentration-time profiles when ciprofloxacin was 

administered by IV infusion. It was found that the predictions and the observed 

outcomes were very well matched, although the models were tested with different 

doses (100 mg and 200 mg) and different infusion times (10 minutes and 30 

minutes). With a 100 mg 30-minute infusion dosing regimen, rmse and me were 

0.040 (95% CI 0.020, 0.053) and  -0.003 (95% CI -0.029, 0.022), and 0.114 (95% CI 

0.055, 0.152) and -0.023 (95% CI -0.125, 0.079), when compared with the 

experimental data obtained from the studies of Gonzalez et al. (1985a) and Drusano 

et al. (1986b), respectively. The results obtained using a 200 mg 30- minute infusion 

dosing regimen were also precise and unbiased, with a rmse value of 0.141 (95% CI 

0.057, 0.192) and a me value of -0.075 (95% CI -0.197, 0.046). When the model was 

tested using a 200 mg dose with a shorter infusion time (10 minutes), the mean 

predicted concentrations were slightly overestimated; however, all observed data 

remained within the prediction interval. The rmse and me were 0.200 (95% CI 0.088, 

0.269) and -0.043 (95% CI -0.269, 0.183), respectively. 
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Figure 7.4    Concentration-time profiles of ciprofloxacin in plasma, predicted 

using an IV infusion model 

 

     
 

 

 

Key: The symbols are the observed data obtained from the literature (blue = Gonzalez et al., 

1985a; green = Drusano et al., 1986b; black = Drusano et al., 1986a), the red solid line is the 

mean prediction and the red dashed lines are the 2.5
th
 (lower) and 97.5

th
 (upper) percentiles 

of prediction. 

 

7B.2.4  Oral model 

Figure 7.5 shows the concentration-time profiles across a wide range of doses 

generated with an oral model. The concentrations predicted from the model were a 

reasonable fit with the real-life data obtained from the literature, although there was 

evidence of model misspecification during the drug absorption phase. With a dose of 

100 mg, the peak concentration predicted from the model was slightly lower than the 

observed data, and the predicted peak concentrations were reached more rapidly than 

in the observed data when a dose of over 500 mg was applied in the model. The rmse 

results also indicated that the higher-dose models were more imprecise (rmse 0.245-

0.701 for a dose ≥500 mg) than the smaller-dose models (rmse 0.055-0.154 for a 

dose of 100-250 mg; Table 7.5). 
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Figure 7.5   Concentration-time profiles of ciprofloxacin in plasma predicted 

using the oral model 

 

     

     

 
 

Key: The symbols are observed data obtained from the literature (blue = Bergan et al., 1986;  

green = Gonzalez et al., 1984; pink = Crump et al., 1983), the red solid line is the mean 

prediction and red dashed lines are the 2.5
th
 (lower) and 97.5

th
 (upper) percentiles of 

prediction. 
 

Figure 7.6 shows the concentration-time profiles in skin, muscle and adipose tissue 

after oral administration of ciprofloxacin 500 mg. It was found that the predicted 

concentrations were generally consistent with the experimental data; with a few data 

points being lower or higher than the prediction interval. The rmse and me of 

predicted plasma concentrations obtained from the oral model are summarised in 

Table 7.5. 
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Figure 7.6    Predicted concentration-time profiles of ciprofloxacin in skin, 

muscle and adipose predicted using the oral model 

 

     

 

Key: The blue symbols are the observed data (Aigner & Dalhoff, 1986), the red solid line is 

the mean prediction and the red dashed lines are the 2.5
th
 (lower) and 97.5

th
 (upper) 

percentiles of prediction. 

 

Table 7.5   The rmse and me of predicted plasma concentrations from different 

doses, obtained from the oral model 

 

Doses rmse (95% CI)
a 

me (95% CI)
a 

Sources of experimental data 

100 0.055 (0.041, 0.095) -0.019 (-0.076, 0.037) Bergan et al. (1986) 

250 0.100 (0.078, 0.118) 0.013 (-0.089, 0.115) Bergan et al. (1986) 

250 0.154 (0.110, 0.190) -0.069 (-0.176, 0.039) Gonzalez et al. (1984) 

500 0.327 (0.313, 0.341) 0.001 (-0.293, 0.295) Bergan et al. (1986) 

500 0.245 (0.018, 0.103) -0.110 (-0.279, 0.059) Gonzalez et al. (1984) 

500 0.345 (0.134, 0.439) -0.294 (-0.434, -0.155) Crump et al. (1983) 

750 0.344 (0.279, 0.397) 0.050 (-0.212, 0.312) Gonzalez et al. (1984) 

1000 0.701 (0.381, 0.915) -0.211 (-0.812, 0.390) Bergan et al. (1986) 

a
 Data points during the lag time were excluded from the calculation. 
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7B.3   Discussion 

The aim of this section was to develop a WBPBPK of ciprofloxacin for healthy 

adults and also to investigate the usefulness of different methods for Kp prediction 

with regard to predicted Kp values and concentration-time profiles. The three most 

commonly used Kp prediction methods were compared; the Poulin model, the 

Rodgers model and the empirical method. The Poulin model and the Rodgers model 

predict the Kp values based on tissue composition data, physicochemical properties 

and protein binding data, while the empirical method predicts the Kp by using the 

value of Vss given in the literature, the correlation between the Kp of muscle and the 

Kp of other tissues and drug lipophilicity data.  

 

The results of the comparison suggested that the Kp values for ciprofloxacin 

obtained from the Poulin model were lower than the values obtained using the other 

two methods, and it was observed that Vss was under-predicted when calculated 

using the Kp values of the Poulin model. These findings were in accordance with the 

results reported by the investigators who originally developed this method of 

prediction (Poulin & Theil, 2002). They found that the Vss predicted using this model 

was 0.47 L/kg, which is considerably lower than the experimental value of 

approximately 1.7-2.4 L/kg, and argued that this was probably the result of different 

degrees of drug accumulation in the intestinal lumen, as well as error in Vss 

determination, due to species variation. However, the results of the present study 

revealed that the Vss value predicted by the Rodgers model was comparable to the 

experimental values. This may be because the Poulin model was developed only for 

structurally unrelated acidic, basic and neutral compounds, and therefore may not be 

applicable for use with ciprofloxacin, which is an amphoteric compound. In contrast, 

the Rodgers model is developed by incorporating the electrostatic interactions, so it 

offers greater predictability when used with moderate-to-strong basic compounds; 

those with at least one pKa value ≥7 (Rodgers et al., 2005; Rodgers & Rowland, 

2006). 

 

The Kp values predicted by the Rodgers model and the empirical method were 

comparable, with the exception of those obtained for the brain and liver. The Kpbrain 
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obtained from the Rodgers model was 1.27, compared to approximately 0.20 from 

the empirical method. Wolff et al. (1987) administered 200 mg IV ciprofloxacin 

every 12 hours to patients with bacterial meningitis and then measured drug 

concentrations in plasma and cerebrospinal fluid (CSF) at 1, 2, 4 and 8 hours after 

the third infusion. They found that the mean drug concentrations in inflamed CSF: 

and non-inflamed CSF:serum ratio were 0.26-1.59 and 0.14-0.77, respectively. In 

another study, the CSF penetration of ciprofloxacin was assessed in individuals with 

and without inflamed meningitis (Gogos et al., 1991). It was found that the mean 

drug concentration in CSF:serum was 0.34 for inflamed CSF and 0.43-0.58 for non-

inflamed CSF. The results from both studies have demonstrated that ciprofloxacin 

concentrations are likely to be lower in CSF than in plasma, therefore the Kpbrain 

predicted by the empirical method may be more accurate in this instance. Dan and 

colleagues (1987) measured ciprofloxacin concentrations in serum and hepatic tissue 

after administration of a single oral 750 mg dose prior to cholecystectomy. They 

found that the mean hepatic tissue:serum ratio was approximately 2 – 4, which was 

consistent with the result of the empirical method (2.79 - 3.70). However, the 

tissue:serum ratio reported in this study may be different to the Kpliver; since the Kp 

value should be determined by using steady-state concentrations. In this context, it is 

difficult to draw a conclusion as to whether the Rodgers model or the empirical 

method is more accurate when used with amphoteric compounds, because the tissue 

concentration data were not sufficient nor accurate enough to validate the Kp values 

of those models.   

 

In this study, ciprofloxacin concentrations obtained from the literature, with regard to 

lungs, skin, muscle and adipose tissue, were also used to validate the models. The 

results showed that the model reasonably predicted concentration-time data in those 

tissues; however, some data points lay outside the prediction interval. This was 

probably due to these experimental data being very sparse and to high inter-

individual variation, as each data point was individually obtained from different 

subjects. In addition, it is noteworthy that the experimental data of tissue 

concentrations may vary depending on certain factors, e.g. techniques used to 

measure drug concentration and the site of measurement. A single intravenous dose 
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of 200 mg demonstrated that the mean (SD) ciprofloxacin concentrations were 1.8 

(0.9) mg/kg in bronchial mucosa, 3.4 (2.5) mg/kg in lung parenchyma and 1.7 (1.7) 

mg/kg in plural tissue (Dan et al., 1993). Concentrations in bronchial secretion were 

approximately 0.5-0.8 mg/L after oral administration of 500 mg ciprofloxacin 

(Bergogne-Bérézin et al., 1986).  

 

The results obtained from the oral model showed that the time to peak concentration 

is slightly shorter when using doses over 500 mg. This is probably due to a fixed ka 

value of 2.03 h
-1

, as well as a fixed lag time of 0.35 hours, which were applied for all 

dose regimens used in the present study. Bergan et al. (1986) investigated the PK of 

ciprofloxacin when increasing oral doses and found that, as the doses increased, there 

was an apparent drop from a mean ka of 3.6 h
-1

 after 100 mg to a mean ka of 2.4 h
-1

 

after 1000 mg. There was also a small parallel increase in the apparent time lag from 

0.34 hours after the lowest dose to 0.53 hours after the highest dose. The findings of 

Plaisance et al. (1987) were similar, reporting a decrease in mean ka from 8.58 h
-1

 

after a 200 mg dose to a mean ka of 1.48 h
-1

 after a 750 mg dose.  Lag time also 

increased from 0.22 hours after a 200 mg dose to 0.30 hours after a 750 mg dose. In 

addition, the discrepancies between the predictions and the observed data that arose 

in the absorption phase may be due to the use of a relatively simple absorption model 

(a first-order absorption model with a lag time), meaning that this model delivers 

inadequate predictions for processes as complex as drug absorption. To date, several 

advanced absorption models, including the compartmental absorption and transit 

(CAT) model (Yu & Amidon, 1999) and the advanced dissolution, absorption and 

metabolism (ADAM) model (Jamei et al., 2009), have been developed and it has 

been demonstrated that these models have improved predictability for oral drug 

absorption. However, their primary drawback is that they require a large amount of 

input information, which is often difficult to obtain from the literature. In the present 

study, the simple first-order absorption model with a lag time was selected because 

the aim was to develop a WBPBPK model for severely malnourished children and 

the use of advanced models is limited by the scarcity of available information for this 

patient population.  
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In summary, a WBPBPK model for ciprofloxacin was successfully developed for 

healthy adults, as described in this section. In the next section, the oral model will be 

scaled to children, in order to predict the influence of age on the PK of ciprofloxacin. 

 

7C    WBPBPK MODEL FOR HEALTHY CHILDREN 

 

7C.1   METHODS 

7C.1.1  Input parameters 

7C.1.1.1  Physiological parameters 

A WBPBPK model was created to encompass children aged 0.5, 1, 2, 5 and 10 years. 

Total body weight and height measurements for those aged 1, 5 and 10 years were 

obtained from the ICRP (2003), while body weight and height measurements for the 

remaining children were obtained from results compiled by the National Health and 

Nutrition Examination Surveys (NHANES) (2008). All organ weights for children 

aged 1, 5 and 10 years were obtained from the ICRP report. In order to predict organ 

weights for the remaining children, i.e., those aged 0.5 and 2 years, the following 

methods were applied: 

1) Brain, heart, kidney, liver and spleen 

Brain, heart, kidney, liver and spleen weights were predicted using a polynomial 

equation (Young et al., 2009), as follows: 

 

0 1 2 2 3 3 4 4 5 5Y = X  + (X WT) + (X WT ) + (X WT ) + (X WT ) + (X WT )        (7.28) 

 

where Y is organ weight expressed as a fraction of total body weight, WT is body 

weight (g) and X
0
, X

1
, X

2
,X

3
, X

4 
and X

5
 are the constant coefficients for each organ, 

as shown in Table 7.6. 

 

2) Gut 

Gut weight was calculated as the sum of the weights of the intestinal tract (small and 

large intestines) and stomach, without their contents. In order to predict the weight of 

these organs, the following equations derived from Haddad et al. (2001) were used: 
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0 1 2 2 3 3 4 4 5 5Y = X  + (X ) + (X ) + (X ) + (X ) + (X )a a a a a                 (7.29) 

 

where Y is organ weight (g), a is age (year). The coefficients for intestinal tract and 

stomach are given in Table 7.6.  

 

3) Adipose tissue 

Adipose tissue weights with regard to children aged 0.5 and 2 years were estimated 

from measurements of body composition, i.e., as total weight of body fat divided by 

percentage fat in adipose tissue (ICRP, 2003). The data for weight of body fat were 

obtained from Fomon et al. (1982), and the percentages of fat in adipose tissue for 

children aged 0.5 and 2 years were estimated with linear interpolations between 

neonate and 1 year, and 1 and 5 years, respectively.  

 

Table 7.6     Coefficients for predicting organ weights 

 

Organs X
0
 X

1
 X

2
 X

3
 X

4
 X

5
 

Male 

Brain 1.41E-01 -5.54E-06 9.30E-11 -6.83E-16 1.80E-21 0 

Heart 6.32E-03 -1.67E-08 0 0 0 0 

Kidney 7.26E-03 -6.69E-08 3.33E-13 0 0 0 

Liver 4.25E-02 -1.01E-06 1.99E-11 -1.66E-16 4.83E-22 0 

Spleen 3.12E-03 -5.57E-09 0 0 0 0 

Intestinal tract 51.125 107.09 -22.382 1.925 -4.7817E-2 0 

Female 

Brain 1.12E-01 -3.33E-01 4.30E-11 -2.45E-16 5.03E-22 0 

Heart 5.40E-03 -1.07E-01 0 0 0 0 

Kidney 7.56E-03 -5.58E-01 1.54E-13 0 0 0 

Liver 3.34E-02 -1.89E-01 5.34E-13 0 0 0 

Spleen 2.96E-03 -7.72E-01 0 0 0 0 

Intestinal tract 49.229 110.61 -23.478 2.0352 -0.0513 0 

Male and female 

Stomach 7.54 17.888 -4.0437 0.5823 -0.0356 0.0008 

Data were obtained from Young et al. (2009), and Haddad et al. (2001). 
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4) Bone 

Bone weight was calculated from bone mineral weights obtained in measurements of 

chemical body composition, as described in the ICRP (2003). Bone mineral weights 

for children ages 0.5 and 2 years were derived from Butte et al. (2000), assuming the 

same ratio of bone-to-mineral weight as found in a 1-year-old. 

 

5) Skin 

Skin weight was estimated as BSA multiplied by epidermal plus dermal skin mass 

thickness (mg·cm
-2

) (ICRP, 2003). According to the ICRP, which indicated that skin 

thickness remains constant between the ages of 0 and 10 years, the values of skin 

thickness (5 mg·cm
-2

 for epidermal and 68 mg·cm
-2

 for dermal) that were used to 

calculate the skin weights of children aged 1, 5 and 10 years were identical to those 

that were used in the calculations of the skin weights of children aged 0.5 and 2 

years. BSA was calculated using the formula developed by Mosteller (1987). 

 

6) Muscle and lungs 

Muscle and lung weights for children aged 0.5 and 2 years were calculated by linear 

interpolations between neonate and 1 year, and 1 and 5 years, respectively. 

 

In the present study, venous and arterial blood compartment weights for children of 

all ages were scaled from adult data using equation 7.30, assuming that these organ 

weights are proportional to the BSA: 

 

child
,child ,adult

adult

BSA
WT = ×WT

BSAi i

 
 
 
 

                               (7.30) 

 

where WTi,child and WTi,adult are organ weight i (venous and arterial) of children and 

adult, respectively.  

 

The weight of each organ was converted to volume by using the same organ density 

as found in adults (shown in Table 7.3). In this study, total body weight and all organ 
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volumes were assumed to have a variability of 20%. Cardiac output for each age 

group was estimated using an equation derived by Young et al. (2009), as follows: 

 

2 3 60
Cardiac output (L/h) = - exp(  + WT + WT  + WT )

1000
f a b c d

 
   

  
    (7.31) 

 

where WT is body weight (kg), f = 9119, a = 9.164, b = -2.91E-0.2, c = 3.91E-04, 

and d = -1.91E-06.  

 

Blood flow to adipose tissue, bone, heart and skin was calculated from adult data, 

assuming that the flow rate per organ weight (L/h/kg) in children is similar to that 

observed in adults. Data for blood flow to the brain were obtained from Chiron et al. 

(1992), who reported mean cerebral blood flows (CBF) of 55, 60, 65, and 62 

mL/min/100 g of brain tissue for children aged 0.5, 1, 2 and 10 years, respectively. 

For 5-year-old children, CBF was estimated by using equation 7.32 (Wintermark et 

al., 2004): 

 

2(-0.140 AGE )CBF (mL/min/100 g tissue) = (-26.6+(90.2 AGE)) exp               

2(-0.213 (AGE-13.97) )                                                +(138.4-(10.3 AGE)) exp +47    (7.32)  

 

On the basis of the findings of Hayton (2000), blood flow to the kidney can be 

calculated as a function of age and weight, using the maturation-growth model as 

follows: 

 

0.916 0.916-0.178 -0.178RBF (mL/min) = 10.2(WT) e +19.8(WT) (1 - e )a a 
        (7.33) 

 

where RBF is renal blood flow, WT is body weight (kg), and a is age (month).  

 

Total hepatic blood flow (QH) in children was assumed to be proportional to BSA, 

which was estimated as follows (Björkman, 2005): 
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H H

child
,child ,adult

adult

BSA
Q = ×Q

BSA

 
 
 
 

                                 (7.34) 

 

Blood flow to the liver and prehepatic organs was calculated in relation to total liver 

blood flow, retaining the adult proportions between hepatic arterial flow and the 

respective blood flows through the gut and spleen. The muscle blood flow rates for 

children, which were required for the present study, were calculated from the average 

blood flow rate to lower limbs; 3.2 mL/min/100 g tissue (Price et al., 2003). This 

value was multiplied by the muscle weight of the children in each age group. 

 

7C.1.1.2   Drug-specific parameters 

1) Fraction unbound (fu) 

The change in binding protein concentrations as a function of age was calculated on 

the basis of the equation proposed by McNamara and Alcorn (2002): 

 

child
adult child

adult adult

1
fu  = 

(1 - fu ) [P]
1 + 

[P] fu





                               (7.35) 

 

where [P] is albumin concentration. The data for albumin concentration in children 

and adults were taken from Knapp and Routh (1949), and Josephson and 

Gyllensward (1957), respectively. 

 

2) Blood-to-plasma ratio (R) 

Since R is a function of fu, haematocrit (Hct) and the affinity of blood cells (KpuBC), 

the drug- and age-related changes in R were determined by modification equation 

7.15, yielding equation 7.36. This equation assumed that KpuBC in children is similar 

to that in adults: 

 

adult adult child child
child child

adult adult

(R + Hct -1)(fu Hct )
R  = +1 - Hct

fu Hct




              (7.36) 
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where R and fu for adults were those values used in Section 7B (1 for R and 0.70 for 

fu). The fu values of children for each age group were estimated using equation 7.35, 

as previously described. The Hct data in adults (42.3%) was taken from Rosenson et 

al. (1996) and the Hct values for children were those cited in Wintrobe’s Clinical 

Hematology textbook (Greer et al., 2009). 

 

3) Tissue:plasma partition coefficient (Kp) 

The Kp values for children were predicted with the empirical method, using specific 

plasma volume and organ volume values for children in different age groups. The 

plasma volume data were derived from Russell (1949). Experimental data for the Vss 

of ciprofloxacin in healthy children were not available in the literature, therefore, in 

the present study, Vss  was calculated as being the sum of the volume of the central 

compartment (V1) and the volume of the peripheral compartment (V2). A V1 of 56.7 

L/70 kg and a V2 of 89.8 L/70 kg were taken from the population PK study 

conducted by Rajagopalan and Gastonguay (2003) and then corrected for the body 

weight, yielding a Vss value of 2.09 L/kg to be used for children of all age groups. 

 

4) Clearance 

The adult clearance (CL) values were scaled to children using the method suggested 

by Edginton et al. (2006b). This method requires prior information as follows: 

 Adult CL value 

 Elimination pathways and the relative contribution of each pathway to total 

CL 

 Plasma fraction unbound (fup) in adults 

 Physiological information regarding  age-dependent changes in body weight, 

liver weight, hepatic blood flow, and gut weight 

 

Adult CL information was in the form of values obtained from Borner et al. (1986), 

in which CLR and CLNR were reported as being 18.9 L/h and 16.92 L/h, respectively. 

The CLR of ciprofloxacin has two processes: (i) the CL due to glomerular filtration 

(CLGFR), and (ii) the CL due to tubular secretion (CLTS). It has been found that 

CLGFR accounts for 36% (6.8 L/h) of CLR, while the remainder is the result of CLTS 
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(64%; 12.1 L/h) (Jaehde et al., 1995). The CLNR of ciprofloxacin was composed of 

hepatic CL (CLH) and gut CL (CLGUT), which have been reported to account for 63% 

and 37% of CLNR, respectively (Rohwedder et al., 1990).  

 

Renal CL 

In order to estimate renal CL (CLR) for children, the GFR (GFRchild) and tubular 

secretion (TSchild) values were initially predicted by using the equations proposed by 

Hayton (2000) as follows: 

 

 

0.662 0.662-0.0822 -0.0822
child

GFR  (mL/min) = 2.6(WT) e +8.14(WT) (1 - e )a a 
     (7.37) 

 

1.04 1.04-0.185 -0.185
child

TS  (mg/min) = 1.08(WT) e +1.83(WT) (1 - e )a a 
        (7.38) 

 

where WT is body weight (kg), and a is age (month).  

 

Using the GFR and TS rate obtained from the above equations with the information 

of fu in adults (fuadult) and children (fuchild), and the values of CLGFR and CLTS of 

adults, the ciprofloxacin CLs in children, due to GFR (CLGFR,child) and tubular 

secretion (CLTS,child), can be calculated by using equations 7.39 and 7.40, 

respectively: 

 

child child
GFR,child GFR,adult

adult adult

GFR fu
CL  = × ×CL

GFR fu
                       (7.39) 

 

child child
TS,child TS,adult

adult adult

TS fu
CL  = × ×CL

TS fu
                           (7.40) 

 

where GFRadult is the GFR in adults (125 mL/min), and TSadult is the tubular secretion 

rate in adults, which is estimated on the  basis of para-aminohippuric acid CL (80 

mg/min). The reference values were taken from a study by DeWoskin and Thompson 
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(2008). The total CLR in children was then calculated as the sum of CLGFR,child and 

CLTS,child. 

 

Hepatic CL 

To estimate hepatic CL (CLH) for children, the CLH of adults was initially converted 

to CLuint,H, using equation 7.27. The CLuint,H value was then divided by the liver 

weight of adults, which yields the CLuint,H, to give a unit of mL/min/kg of liver 

tissue. The scaling step was then performed by multiplying the CLuint,H of adults by 

age scaling factors, which are an age-dependent, enzyme-specific percentages of 

adult activity (% of adult activity). The scaling factors of CYP1A2, the primary 

metabolizing enzyme of ciprofloxacin, for each age group were obtained from 

Björkman (2005),  who used the demethylation reaction of imipramine as a probe of 

CYP1A2 activity. These data were fitted with a bi-exponential growth function to 

estimate age scaling factors, as follows: 0.5 years, 51%; 1 year, 63%; 2 years, 81%; 

and 5 years, 107%. It was assumed that the activity of CYP1A2 is the same in 10-

year-old children as it is in adults. 

 

The CLuint,H value for children (in a unit of mL/min/kg liver tissue) was 

consequently multiplied by the liver weight of children and then converted back to 

CLH by using the following equation (Yang et al., 2007): 

 

H,B H

H

H,B H

int,

int,

Q fu CLu
CL  = 

Q +fu CLu /R

 


                                  (7.41) 

 

Gut CL 

No data were available for age-dependent changes in the transintestinal elimination 

process. Therefore, in the present study, gut CL (CLGUT) was scaled to children using 

the three-quarter power allometric size model, scaled by weight of gut (WTGUT) as 

follows: 

GUT

GUT GUT

GUT

0.75

,child
,child ,adult

,adult

WT
CL  = CL

WT

 
 
 
 
 

                          (7.42) 



233 

 

5) F, ka, and lag time 

In the present study, F was set equal to 0.837 (CV = 10%). The data for ka and lag 

time of ciprofloxacin in children were the values that were reported by Rajagopalan 

and Gastonguay (2003) (ka = 1.27 h
-1

 and lag time = 0.35 hours), and were applied to 

children of all ages. 

 

7C.1.2  Simulation and comparison with experimental data 

A total of 1000 concentration-time profiles for an oral dose of 10 mg/kg were 

generated for the children of each age group, and the predictions were then compared 

with the experimental data. Due to the lack of information on the disposition of 

ciprofloxacin in healthy children, the data used for comparison in the present study 

were generated by using a PK model and PK parameters from studies by 

Rajagopalan and Gastonguay (2003) and Peltola et al. (1998). Both of these studies 

were conducted in children with minor infections, e.g., urinary tract infections and 

otitis media, and it was therefore assumed that the PK of ciprofloxacin is not 

significantly altered in this patient population.  

 

1) Rajagopalan and Gastonguay (2003) 

The final population models obtained from this study were used to generate 

concentration-time data for all age groups of children, as shown: 

 

0.75CL (L/h) = 30.3 (WT/70) (1+0.045(AGE-2.5))   

1.0
1V  (L) = 56.7 (WT/70)  

1.0
2V  (L) = 89.8 (WT/70)  

0.75Q (L/h) = 37.5 (WT/70)  

-1ka (h ) = 1.27 (1 - (0.611 CF))   

lag time = 0.35 hours  

 

where WT is the body weight of the children in each age group, AGE is the age of 

the children (year), and CF is cystic fibrosis, which was set to zero in this study. 
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2) Peltola (1998) 

In this study, the following PK parameters were determined using the non-

compartmental method: Cmax, Tmax, T1/2 and CL/F (Table 7.7). Elimination rate 

constant (k) was calculated from T1/2 (k = ln2/T1/2). The ka for each age group can be 

estimated using estimations of k and Tmax by equation 7.43, using the ‘Solver’ 

function in Microsoft Excel
®

. The estimated ka and k were used, together with the 

reported Tmax and Cmax values, to estimate V/F by equation 7.44, using the ‘Solver’ 

function in Microsoft Excel
®
: 

 

max

ln(ka) - ln(ke)
T  = 

ka - ke
                                      (7.43) 

 

max maxT T-ke -ka
max

Dose ka
C  = (e  - e )

V/F(ka-ke)

 
                          (7.44) 

 

The parameters obtained from these studies were used to generate concentration-time 

data for healthy children using the MATLAB program, Version 7.11 (MathWorks, 

Natick, MA, USA). These are referred to as ‘observed data’ hereafter in this section. 

 

Table 7.7     PK parameters used for generating experimental data 

 

PK parameters 
Age groups 

6 months 1 year 2 years 5 years 10 years 

Cmax (SD) (mg/L) 1.99 (1.30) 2.43 (1.07) 2.67 (1.12) 2.08 (1.53) 

Tmax (range) (h) 2 (1-4) 1 (1-2) 1 (1-2) 1 (1-2) 

T1/2 (SD) (h) 4.7 (1.10) 4.2 (1.11) 5.1 (1.12) 4.9 (1.07) 

CL/F (SD)
a
 (L/h/kg) 0.98 (0.20) 1.10 (0.22) 1.04 (0.21 1.46 (0.29) 

V/F (SD)
a
 (L/kg) 3.74 (0.75) 3.49 (0.70) 3.27 (0.65) 3.29 (0.83) 

ka (SD)
a
 (h

-1
) 1.19 (0.24) 3.10 (0.62) 3.34 (0.67) 3.29 (0.66) 

a
 assumed equal to 20%. 
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7C.2   RESULTS 

Organ volume, total body weight, and height, as well as BSA, are presented in Table 

7.8. The ‘rest of the body’ compartment ranged from 4 to 20% (6-20% in males and 

4-16% in females). Table 7.9 shows the estimated blood flow parameters and cardiac 

output for the children of each age group. The predicted Kp values, albumin, Hct, fu, 

and R, as well as the CL values for each of the elimination pathways, are provided in 

Table 7.10. The Kp values tended to decrease with age, with the exception being 

children aged 1 and 2 years, for whom the Kp values estimated for 2-year-old 

children were minimally higher than those estimated for children aged 1 year. It was 

also observed that the Kp values were similar between males and females. The CL 

per body weight values were generally comparable between age groups, and were 

very similar between males and females. The fu and R values were identical for 

males and females, and there was little variation in these values across age groups (fu 

0.72-0.74; R 1.011-1.022). 

 

Figure 7.7A illustrates the concentration-time data that were generated for children 

of each age group with the PK model and PK parameters from Rajagopalan and 

Gastonguay (2003). It was observed that the profiles of each group were similar, with 

Cmax of around 3.1 to 3.5 mg/L being reached approximately 1 hour after drug 

administration. The trough concentrations at 12 hours were also similar between age 

groups (~0.2-0.25 mg/L). Figure 7.7B illustrates the concentration-time data 

generated from the results of Peltola et al. (1998). Discrepancies between profiles are 

clearly shown.  Children aged 2 and 5 years had the highest Cmax,  approximately 3 

mg/L, compared to the children of the remaining age groups (~2.8 mg/L for the 

group aged 1 year, ~2.3 mg/L for the groups aged 6 months and aged 10 years). The 

results show that Cmax was achieved at approximately 2 hours for children aged 6 

months, while it was attained at around 1 hour for the children in the remaining age 

groups. The trough concentrations were minimally different between age groups, 

being 0.2 mg/L for children aged 6 months, 0.06 mg/L for  those aged 10 years, and 

approximately 0.12 mg/L for those aged 1, 2, and 5 years. 
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Plasma concentration curves of ciprofloxacin predicted from the WBPBPK model 

are shown in Figure 7.8, which demonstrates a good fit between the model-predicted 

concentrations and the observed data. When the predictions were compared with the 

observed data of Peltola et al. (1998), significant discrepancies were observed with 

regard to the 6 month age group and the group of those aged 10 years. For the 6 

month age group, the peak concentration predicted from the model was considerably 

higher than the observed data. The model-predicted concentrations for the 10-year-

old children tended to be higher compared to the observed data, especially at the 

terminal phase of drug elimination, in which the observed data were lower than the 

prediction interval. 
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Table 7.8     Organ volumes, body weight, height and BSA in the different age 

groups used in a WBPBPK model of healthy children 

 

Organs 6 months 

(M/F) 

1 year 

(M/F) 

2 years 

(M/F) 

5 years 

(M/F) 

10 years 

(M/F) 

Adipose  3.08/2.89 3.93/3.93 3.93/3.90 5.46/5.46 8.19/8.19 

Bone 0.20/0.19 0.30/0.30 0.43/0.41 0.63/0.63 1.15/1.15 

Brain 0.81/0.68 0.91/0.91 1.08/0.96 1.26/1.13 1.35/1.17 

Gut 0.11/0.11 0.16/0.16 0.21/0.21 0.39/0.39 0.66/0.66 

Heart 0.05/0.04 0.05/0.05 0.08/0.07 0.08/0.08 0.15/0.15 

Kidney 0.05/0.05 0.07/0.07 0.09/0.09 0.10/0.10 0.17/0.17 

Liver 0.30/0.26 0.33/0.33 0.45/0.41 0.57/0.57 0.83/0.83 

Muscle 1.30/1.30 1.83/1.83 2.72/2.72 5.38/5.38 10.57/10.57 

Skin 0.27/0.26 0.32/0.32 0.40/0.38 0.52/0.52 0.74/0.74 

Spleen 0.02/0.02 0.03/0.03 0.04/0.04 0.05/0.05 0.08/0.08 

Lungs 0.10/0.10 0.15/0.15 0.17/0.17 0.24/0.24 0.40/0.40 

Arterial 0.38/0.42 0.45/0.52 0.57/0.63 0.74/0.85 1.06/1.21 

Venous 0.76/0.85 0.91/1.04 1.14/1.26 1.48/1.69 2.12/2.43 

Rest of the 

body 

0.97/0.92 0.57/0.37 2.8/2.15 2.11/1.91 4.54/4.25 

Total body 

weight (kg) 

8.40/8.10 10/10 14.10/13.40 19/19 32/32 

Height (cm) 88/89 94/96 80/84 89/90 86/87 

BSA (m
2
) 0.40/0.39 0.48/0.48 0.60/0.58 0.78/0.78 1.12/1.12 

M=male, F=female 
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Table 7.9     Organ blood flows (L/h) and cardiac output (L/h) used in a 

WBPBPK model of healthy children of different age groups 

 

Organs 6 months  

(M/F) 

1 year  

(M/F) 

2 years  

(M/F) 

5 years  

(M/F) 

10 years  

(M/F) 

Adipose  3.79/4.19 4.84/5.70 4.84/5.65 6.72/7.92 10.09/11.88 

Bone 1.42/1.68 2.09/2.61 3.01/3.63 4.47/5.58 8.15/10.18 

Brain 27.89/23.45 34.20/34.20 43.73/38.95 47.02/42.35 52.08/45.38 

Gut 13.20/14.99 15.76/18.43 19.70/22.24 25.62/29.94 36.78/42.99 

Heart 2.45/3.04 2.36/3.54 4.06/4.98 4.02/6.02 7.47/11.19 

Kidney 6.79/6.57 8.97/8.97 12.92/12.33 17.09/17.09 27.55/27.55 

Liver 5.36/5.41 6.40/6.65 8.00/8.03 10.41/10.81 14.94/15.52 

Muscle 2.59/2.59 3.65/3.65 5.43/5.43 10.75/10.75 21.12/21.12 

Skin 1.73/2.19 2.07/2.70 2.59/3.26 3.36/4.38 4.83/6.29 

Spleen 2.47/2.50 2.96/3.07 3.69/3.71 4.80/4.99 6.90/7.17 

CO (lungs, 

arterial and 

venous)
a 

86.50/83.31 102.72/102.72 138.57/132.98 172.58/172.58 230.68/230.68 

Rest of the 

body 

18.80/16.69 19.41/13.20 30.58/24.76 38.32/32.75 40.77/31.41 

a
 blood flows to lungs, arterial and venous compartments were equal to cardiac output (CO).  

M=male, F=female 
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Table 7.10  Tissue:plasma partition coefficient (Kp), albumin, haematocrit, fu, 

R, and clearance used in a WBPBPK model of healthy children of different age 

groups 

 

Organs 6 months 

(M/F) 

1 year 

(M/F) 

2 years 

(M/F) 

5 years 

(M/F) 

10 years 

(M/F) 

Kp      

Adipose  0.71/0.71 0.63/0.63 0.65/0.62 0.51/0.51 0.47/0.47 

Bone 4.43/4.40 3.97/3.97 4.07/3.93 3.25/3.25 3.01/3.01 

Brain 0.29/0.29 0.27/0.27 0.27/0.27 0.23/0.23 0.22/0.22 

Gut 4.41/4.39 4.11/4.11 4.17/4.08 3.62/3.62 3.45/3.45 

Heart 5.93/5.88 5.29/5.29 5.42/5.23 4.29/4.29 3.97/3.97 

Kidney 9.48/9.45 9.06/9.06 9.15/9.02 8.34/8.34 8.08/8.08 

Liver 4.09/4.07 3.83/3.83 3.89/3.81 3.40/3.40 3.25/3.25 

Muscle 6.97/6.90 6.09/6.09 6.27/6.01 4.76/4.76 4.34/4.34 

Skin 5.30/5.26 4.84/4.84 4.94/4.80 4.11/4.11 3.87/3.87 

Spleen 6.97/6.90 6.09/6.09 6.27/6.01 4.76/4.76 4.34/4.34 

Lungs 6.79/6.74 6.11/6.11 6.25/6.05 5.03/5.03 4.67/4.67 

Albumin
1
 (g/dL) 3.92 4.37 4.37 4.23 4.23 

Haematocrit
1
 (%) 35 36 36 37 40 

fu
a 

0.74 0.72 0.72 0.73 0.73 

R
a 

1.022 1.011 1.011 1.015 1.016 

CLR
b
 (L/h) 3.38/3.27 4.51/4.51 6.76/6.46 9.24/9.24 14.92/14.92 

CLGFR (L/h) 1.10/1.08 1.55/1.55 2.36/2.28 3.18/3.18 4.50/4.50 

CLTS 2.28/2.19 2.96/2.96 4.40/4.18 6.06/6.06 10.42/10.42 

CLNR
c
 (L/h) 2.31/2.57 3.02/3.56 4.32/4.90 6.71/7.80 9.59/11.14 

CLH (L/h) 1.27/1.46 1.64/2.10 2.60/3.07 4.03/4.96 5.59/6.91 

CLGUT (L/h) 1.05/1.11 1.38/1.46 1.72/1.83 2.69/2.84 4.00/4.23 
a
 the results were similar between males and females. 

b
 calculated as the sum of CLGFR and CLTS. 

c
 calculated as the sum of CLH and CLGUT. 

M=male, F=female 
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Figure 7.7    Mean simulated concentration-time data in the different age groups 

used for comparison with the predictions from a WBPBPK model 

 

A: Study of Rajagopalan and Gastonguay (2003) 

 
 

B: Study of Peltola et al. (1998) 
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Figure 7.8    Plasma concentration-time profiles of oral ciprofloxacin in the 

different age groups predicted using a WBPBPK model of healthy children 

    

     

     

 

 

Key: The symbols are the observed data obtained from the simulation using a PK model and 

PK parameters from the literature (blue = Rajagopalan & Gastonguay, 2003; green = Peltola 

et al., 1998), the red solid line is the mean prediction and the red dashed lines are the 2.5
th
 

(lower) and 97.5
th
 (upper) percentiles of prediction. 
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7C.3   Discussion 

A WBPBPK model was created for the prediction of drug disposition in children 

whose ages ranged from 6 months to 10 years. The comprehensive tables of organ 

volume and organ blood flow required the compilation of data of varying quality 

from a variety of sources. Physiological data for children aged 1, 5, and 10 years 

were available in the ICRP report; however, for the remaining children, several 

techniques were used to estimate these data. It was found that the ‘rest of the body 

compartment’ constituted between 4 and 20% of total body weight, with the 

minimum value of 4% being observed in a group of 1-year-old females. This was 

because the model did not account for some organs, such as gonads, thyroid, and 

adrenals. These results were consistent with those obtained by Björkman (2005), who 

reported a carcass compartment of 8 to 16% of total body weight. Edginton et al. 

(2006a) found that the sum of the weights of all organs included in the model 

amounted to 91 to 93% of the total body weight. This was probably because the 

model they developed included a greater number of organs, i.e., it included the 

pancreas and gonads.  

 

The sum of the regional blood flows accounted for approximately 80 to 87% of the 

cardiac output, which may be due to the model’s lack of inclusion of some organs . 

In the present study, CO was predicted from the equation of Young et al. (2009), 

using body weight as a predictor. The results obtained with this equation 

corresponded fairly well to those values reported by Björkman (2005), and Sholler et 

al. (1987). In addition, it was suggested that CO is closely related to metabolic rate, 

and it is also reasonable to assume that resting CO relates allometrically to body 

weight (Björkman, 2005). If this is so, and the allometric exponent is close to that of 

BSA, then cardiac index (CI), i.e., the CO normalized to BSA (CI = CO/BSA), 

should be fairly constant over age. The CIs reported in this study are in agreement 

with this assumption, being approximately 205 to 230 L/h/m
2
 for ages ranging 

between 6 months and 10 years. 

 

There was a small discrepancy in Kp values between age groups. When using the 

empirical method, Kp values are predicted by using Vss, as well as organ volumes. 



243 

 

Vss was fixed at 2.09 L/kg for children of all ages in the present study, so the 

minimal difference in Kp values between age groups was therefore considered to be 

the result of a difference in organ volumes.  

 

The CL of ciprofloxacin for children was scaled from adult data in the present study. 

The CLT of children was approximately 6 L/h for 0.5 years; 8 L/h for 1 year; 11 L/h 

for 2 years; 16-17 L/h for 5 years; and 25-26 L/h for 10 years. These results were 

consistent with the findings of Payen et al. (2003), who reported mean CLs of 2.93 

L/h (range 0.29-8.79 L/h) and 17.7 L/h (range 0.58-37.4) for children aged 0.5-1 

year, and 2-11 years, respectively. Peltola et al. (1998) also reported CLs (when 

corrected for an F of 0.837) of 6.3 L/h for children aged <1 year; 10.1 L/h for those 

aged 1 year; 13.8 L/h for children aged 2-5 years; and 27.5 L/h for those aged ≥ 6 

years, which were comparable to those found in the present study. 

 

The primary limitation for the development of a model of healthy children was the 

lack of existing experimental data for use in validating the model. The solution 

applied in the present study was to use PK models, and their corresponding 

parameters, from previous PK studies conducted in children with mild infections to 

generate the observed data. It was found that the concentration-time profiles 

generated from two studies were very different. When using the data of Rajagopalan 

and Gastonguay (2003), the profiles for each group of children were similar. This 

could be because these profiles were generated using the same population PK model, 

and therefore the PK parameters for each age group were identical (F, ka, lag time) 

or somewhat similar (CL, V1, and V2). For example, the typical values of CL, V1, 

and V2 for children aged 6 months were respectively 5.5 L/h, 6.8 L, and 10.8 L, 

compared to the values of 6.5 L/h, 8.1 L, and 12.8 L, respectively, estimated for 1-

year-old children. In the Peltola et al. (1998) study, CL/F and T1/2 values were given. 

These parameters were used in combination with the observed Cmax and Tmax to 

estimate other parameters, i.e., ka and V/F. It was found that CL/F and T1/2 were 

determined more precisely compared to Cmax and Tmax values. This was due to the 

Cmax and Tmax results being highly dependent on the sampling schedule that was 

implemented in the study. In this same study, ciprofloxacin was administered three 
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times daily and the samples were collected at 0, 0.5, 1, 2, 4, 6, 8, 12, and 24 hours 

after dosing. Therefore, the Cmax and Tmax results were constrained to being one of 

these sampling time points. A Tmax of 1 hour was reported for all age groups, apart 

from for the children aged 6 months, corresponding to ka values of approximately 

3.3-3.5 h
-1

, while a Tmax of 2 hours observed for 6-month-old children gave a lower 

ka estimate (1.19 h
-1

). V/F values estimated from Peltola et al. (1998) were 

approximately 3.3-3.7 L/kg, which were higher than those results obtained by 

Rajagopalan and Gastonguay (2003) (~2 L/kg). This could explain why the predicted 

Cmax of Peltola et al. (1998) was generally lower than that of Rajagopalan and 

Gastonguay (2003). In this circumstance, it can be judged that the observed data 

generated from the latter study may be of greater accuracy and of superior use for 

comparative proposes. The results of the present study showed a good fit between the 

predicted concentrations and the observed data generated by Rajagopalan and 

Gastonguay (2003), and, with the exception of the children aged 6 months and those 

aged 10 years, they were also a reasonable fit to the observed data of Peltola et al. 

(1998). This indicated that the model possessed reliable predictability. 

 

In summary, a WBPBPK model of healthy children was successfully developed, as 

described. The following section will describe how this model was scaled to 

malnourished children for the prediction of drug disposition in this patient 

population.   

 

7D    WBPBPK MODEL FOR MALNOURISHED CHILDREN 

 

7D.1   Methods 

7D.1.1  Input parameters 

7D.1.1.1  Physiological parameters 

In contrast with healthy adults and children, the body weight of malnourished 

children is more difficult to generate. This is because there is not a fixed mean value, 

rather, the value varies depending on the severity of the disease. In children, 

malnutrition severity is commonly represented as a Z-score, which is defined as the 

SD from the median weight, as compared to a reference population with the same 
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height or age. Therefore, body weights for malnourished children should be sampled 

together with their reference values, i.e., other anthropometric data (height or age). In 

addition, a child’s body weight should be constrained in the defined range of Z-score 

values.  

 

In the present study, anthropometric data, including body weight and height of 

children of differing ages and gender, as well as different Z-score values (-4 to 4) 

were taken from the WHO Global Database on Child Growth and Malnutrition 

(2012). These data were used to create the following equations with a forward 

stepwise linear regression, using the SigmaPlot program, Version 12.0. 

 

Children aged <2 years:  

 

BW = -8.555 + (0.243 HT) + (0.883 SD) - (0.104 SEX)                  (7.45) 

 

Children aged 2-5 years: 

 

BW = exp(0.773 + (0.0197 HT) + (0.0880 SD) - (0.0123 SEX))             (7.46) 

 

Children aged >5 years: 

 

BW = exp(2.335 + (0.00969 AGE) + (0.153 SD) - (0.00102 SEX))          (7.47) 

 

where BW is body weight (kg), HT is height (cm), SD is Z-score value, SEX is 

gender (0 = male, 1 = female), and AGE is the age of the child (month). HT was 

assumed to correspond to a log-normal distribution, with the mean values of each age 

group as presented in Table 7.8, and a CV of 10%. SD and SEX were sampled from 

a uniform distribution. In order to predict body weight for severely malnourished 

children, SD values were constrained between -3 and -4. The body weight for healthy 

children was obtained by fixing SD equal to zero. Since height was not given for 

children aged > 5 years in this database, the equation for predicting body weight in 

this age group was developed by using age as a reference (equation 7.47). In the 
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present study, this equation was applied only to 10-year-old children, therefore AGE 

was fixed at 120 months. The body weights of healthy and malnourished children of 

each age group, as estimated with the above equations, were used to calculate the 

BW fraction (fBW) as follows: 

 

M

H

BW
BW = 

BW
f                                            (7.48) 

 

where BWM and BMH are the body weight of malnourished children and healthy 

children, respectively. The fBW estimated for each child was subsequently used to 

calculate the organ weight fraction (fOW) with the equations given in Table 7.11. 

These equations were developed by using data from humans and represent the 

correlation between the change of body weight and the change of organ weight in 

malnourished children. After the fOW of each organ was obtained, the weight of 

each organ of malnourished children was estimated by using equation 7.49: 

 

M, H,OW  = OW × OWi if                                       (7.49) 

 

where OWM,i and OWH,i are weight of organ i for malnourished children and healthy 

children, respectively. OWH,i were those values sampled from a multivariate 

Dirichlet distribution using the parameters of healthy children as described in Section 

7C. 

 

There was no information with regard to the gut, venous, and arterial blood 

compartment, so the changes of weight for these organs were assumed to decrease in 

proportion to body weight. With regard to the brain, the evidence suggests that, in 

children with malnutrition, a weight decrease occurs more slowly compared to a 

decrease in body weight (Waterlow, 2006); when body weight had decreased to 50% 

of its normal value, brain weight had decreased by only 10%. On the basis of this 

evidence, brain weight was fixed as decreasing by 10% for all age groups in the 

present study, independent of the severity of malnutrition. 
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Table 7.11    Equations for predicting fOW of each organ 

 

Organs Equations n
 

r
2 

Adipose  fOW=(1.9*fBW)-0.9 2 1 

Bone fOW=(0.2*fBW)+0.8 2 1 

Heart fOW=(0.5384*fBW)+0.3824 5 0.4665 

Kidney fOW=(0.5368*fBW)+0.4092 3 0.4356 

Liver fOW=(0.7436*fBW)+0.2254 8 0.4974 

Muscle fOW=(1.3571*fBW)-0.3401 3 0.9804 

Skin fOW=(1.5945*fBW)-0.5945 2 1 

Spleen fOW=(0.8942*fBW)+0.0269 4 0.7757 

Lungs fOW=(0.7027*fBW)+0.2836 3 0.9574 

n = number of experimental data used to generate the equations 

fOW = organ weight fraction 

fBW = body weight fraction 

Data were compiled from Waterlow, 2006; Bosy-Westphal et al., 2004; Garrow et al., 1965; 

and Metcoff, 1967. 

 

According to the results of Öcal et al. (2001), which indicated that the CI between 

healthy and malnourished individuals is similar, the CO for malnourished children 

can be estimated by using the CO of healthy children, which is obtained from 

equation 7.31 and BSA, as follows: 

 

H M
M

H

CO BSA
CO  = 

BSA


                                      (7.50) 

 

where subscripts M and H refer to malnourished and healthy children, respectively. 

Organ blood flows were calculated from data obtained from healthy children by 

assuming that the flow rate per organ weight (L/h/kg tissue) was similar between 

healthy and malnourished children (equation 7.51): 
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H, M

M,

H

,

,

BF ×OW
BF =

OW

i i
i

i

                                       (7.51) 

 

where BFM,i and BFN,i are blood flow to organ i in malnourished and healthy 

children, respectively. 

 

7D.1.1.2   Drug-specific parameters 

The fu values for malnourished children (fuM) were calculated by modification of the 

equation of McNamara and Alcorn (2002) (equation 7.35), which yields the 

following: 

 

M
H M

H H

1
fu  = 

(1 - fu ) [P]
1 + 

[P] fu





                                    (7.52) 

 

where [P]M, which is albumin concentration in malnourished children, was derived 

by a  20.8% decrease from a normal ([P]H) value (Gollan, 1948). 

 

On the basis of the assumption that KpuBC does not change in malnourished children, 

as compared to healthy children, R can be obtained by scaling from the latter, using 

the following equation: 

 

H H M M
M M

H H

(R + Hct -1)(fu Hct )
R  = +1 - Hct

fu Hct




                        (7.53) 

 

where HctM, which is the Hct level in malnourished children, was derived by a 

17.2% decrease from a normal (HctH) value (Gollan, 1948). 

 

It has been found that the GFR decreases by 15-70% in malnourished individuals 

(Arroyave et al., 1961; Alleyne, 1967; Gordillo et al., 1957; Klahr & Alleyne, 1973; 

Klahr & Tripathy, 1966), and a mean value of 47% was used in the present study. 

Furthermore, a 19% decrease in tubular secretion has been reported (Pullman et al., 
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1954). The GFR and tubular secretion rate of healthy children, adjusted by these 

decreasing values, were used to calculate CLGFR and CLTS for malnourished children 

as follows: 

 

M M
GFR,M GFR,H

H H

GFR fu
CL  = × ×CL

GFR fu
                               (7.54) 

 

M M
TS,M TS,H

H H

TS fu
CL  = × ×CL

TS fu
                                  (7.55) 

 

where GFRH and TSH are those values estimated from equations 7.37 and 7.38, 

respectively. The intrinsic hepatic activity of the CYP1A2 metabolizing enzyme was 

also scaled by a 75% decrease from a normal value (Cho et al., 1999). No 

information with respect to the effect of malnutrition on gut CL was available; 

therefore, this was scaled from adult data using the three-quarter allometric liver 

model as follows: 

 

GUT M

GUT M GUT

GUT

0.75

,child,
,child, ,adult

,adult

WT
CL  = CL

WT

 
 
 
 
 

                       (7.56) 

 

The Kp values for children of each age group were calculated using the empirical 

method. There was a lack of information for the Vss of ciprofloxacin in malnourished 

children, so the median value of the empirical Bayes estimates of 4.49 L/kg, obtained 

from the previous population analysis, was used. F was sampled from a normal 

distribution with a mean value of 0.837 and CV of 10%. The value for ka was 

assumed to be equal to healthy children at 1.27 h
-1 

(SD = 0.381). The lag time was 

fixed to the result of the population analysis at 0.742 hours. 

 

7D.1.2  Simulation and comparison with experimental data 

The simulations were performed for a dosing regimen of 10 mg/kg. A total of 1000 

virtual-children, consisting of an equal number of males and females, was generated 
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for each age group. The MATLAB codes used for the simulation are given in 

Appendix II (using the parameters for children aged 2 years). The mean 

concentration was calculated and presented in conjunction with the 95% prediction 

interval. The concentration-time data predicted from the model were compared with 

the experimental data, which were obtained from 52 malnourished children aged 

between 8 and 102 months (29 males; 23 females). The ages of the children used to 

generate the experimental data were therefore very wide ranging, so in order to make 

a comparison with the simulated data, the children were divided into five groups, 

according to their age, as follows: 

 Children aged <10 months (n = 2) were assigned to the 6 month group 

 Children aged 10-18 months (n = 18) were assigned to the 1 year group 

 Children aged 19-42 months (n = 22) were assigned to the 2 year group 

 Children aged  43-90 months (n = 8) were assigned to the 5 year group 

 Children aged >90 months (n = 2) were assigned to the 10 year group 

 

7D.2   Results 

The predicted Kp values for the different age groups of malnourished children are 

shown in Table 7.12. It was generally observed that these values decreased with age, 

and were almost identical between males and females. Albumin concentration and 

Hct level, as well as fu and R, were minimally different between age groups, but 

were similar between males and females (Table 7.12). All CL values also increased 

with age. The Kp values predicted for malnourished children were approximately 

double those of the values estimated for healthy children.  However, fu and R, which 

were adjusted on the basis of the alterations of albumin concentration and Hct, were 

only slightly different. For example, fu and R for healthy children aged 6 months 

were 0.74 and 1.022, respectively, and were 0.785 and 1.035 in malnourished 

children.  

 

The model-predicted plasma concentration-time profiles are illustrated in Figure 7.9. 

It was found that the predicted concentrations were in agreement with the observed 

data, with only a few data points lying outside the prediction interval. In the 10 year 

group, the model predictions tended to be lower than the observed data. Figure 7.10 
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shows the concentration-time profiles of ciprofloxacin in the different organs of 

children. The results showed that the profiles of drug for each age group were very 

similar. The predicted concentrations for 6-month-old children were the highest, 

although only slightly higher than for the other age groups, followed by the predicted 

concentrations for 1- and 2-year-old children, respectively. For the majority of 

organs, the concentration-time profiles of children aged 5 and 10 years were 

comparable and were generally lower than those profiles obtained for younger 

children.  

 

The mean concentration-time profiles obtained from the model for malnourished 

children were compared with the results gleaned from the model of healthy children 

(Figure 7.11). The profiles for 2-year-old children alone have been presented in this 

section; the results for the remaining age groups are given in Appendix III. For the 

majority of organs, drug concentrations in malnourished children were higher than in 

healthy children, and it was found that the distribution of ciprofloxacin into 

organ/tissue was rapid. In healthy children, the Cmax of most organs was reached at 

approximately 1 hour after dosing, but was slightly delayed in malnourished children 

(1-2 hours). Drug distribution into adipose tissue, bone, muscle, and skin was slower, 

compared to distribution into other organs. Tmax for adipose tissue, bone, and skin 

was around 2 and 3 hours in healthy and malnourished children, respectively. A 

longer Tmax was observed for muscle, being approximately 3.5 hours for healthy 

children and around 5 hours for malnourished children. In addition, the elimination 

of drug from these organs was considerably slower, especially in muscle. 
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Table 7.12    Tissue:plasma partition coefficient (Kp), albumin, haematocrit, fu, 

R, and clearance used in a WBPBPK model for malnourished children of 

different age groups 

 

Organs 6 months 

(M/F) 

1 year 

(M/F) 

2 years 

(M/F) 

5 years 

(M/F) 

10 years 

(M/F) 

Kp      

Adipose  1.87/1.91 1.56/1.57 1.56/1.50 1.19/1.20 1.17/1.17 

Bone 10.71/10.91 9.07/9.13 9.09/8.77 7.07/7.11 6.96/6.96 

Brain 0.57/0.58 0.50/0.51 0.50/0.49 0.42/0.42 0.41/0.41 

Gut 7.73/7.82 6.95/6.98 6.96/6.81 5.94/5.96 5.88/5.88 

Heart 14.75/15.04 12.43/12.51 12.45/12.00 9.61/9.66 9.45/9.45 

Kidney 13.64/13.74 12.74/12.77 12.75/12.56 11.49/11.52 11.42/11.42 

Liver 6.89/6.97 6.25/6.27 6.26/6.13 5.39/5.41 5.34/5.34 

Muscle 20.50/20.97 16.73/16.86 16.77/16.05 12.34/12.42 12.10/12.10 

Skin 10.83/11.00 9.47/9.52 9.48/9.21 7.74/7.77 7.64/7.64 

Spleen 20.50/20.97 16.73/16.86 16.77/16.05 12.34/12.42 12.10/12.10 

Lungs 15.93/16.22 13.57/13.65 13.59/13.13 10.67/10.72 10.51/10.51 

Albumin
1
 (g/dL)

 
3.10 3.46 3.46 3.35 3.35 

Haematocrit
1
 (%) 29 30 30 31 33 

fu
a 

0.785 0.767 0.767 0.772 0.772 

R
a 

1.035 1.028 1.028 1.032 1.034 

CLR
b
 (L/h) 2.53/2.44 3.36/3.36 5.03/4.79 6.88/6.88 11.27/11.27 

CLGFR (L/h) 0.61/0.59 0.86/0.86 1.30/1.26 1.75/1.75 2.48/2.48 

CLTS (L/h) 1.92/1.85 2.50/2.50 3.72/3.53 5.12/5.12 8.79/8.79 

CLNR
c
 (L/h) 1.00/1.02 1.43/1.55 1.97/2.15 3.22/3.56 4.12/4.56 

CLH (L/h) 0.28/0.32 0.39/0.53 0.67/0.84 1.13/1.48 1.37/1.82 

CLGUT (L/h) 0.73/0.70 1.03/1.02 1.30/1.31 2.09/2.08 2.74/2.74 
a
 the results were similar between male and female. 

b
 calculated as the sum of CLGFR and CLTS. 

c
 calculated as the sum of CLH and CLGUT. 

M=male, F=female 
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Figure 7.9    Plasma concentration-time profiles of oral ciprofloxacin predicted 

using a WBPBPK model for malnourished children of different age groups 

 

     

     

 

 

Key: the blue symbols are the observed data, the red solid line is the mean prediction and the 

red dashed lines are the 2.5
th
 (lower) and 97.5

th
 (upper) percentiles of prediction. 
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Figure 7.10   Concentration-time profiles of oral ciprofloxacin in different 

organs of children according to the different age groups 

 

     

     

     

     

Key: red line = 6 months, blue line = 1 year, green line = 2 years, black line = 5 years, and 

pink line = 10 years. 
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Figure 7.10    (continued)  
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Figure 7.11    Comparison of concentration-time profiles in different organs 

obtained from a WBPBPK model of healthy children and malnourished 

children aged 2 years 

 

     

     

     

     

Key: solid line = healthy children, dashed line = malnourished children. 
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Figure 7.11   (continued)  
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7D.3   DISCUSSION 

A WBPBPK model was developed for malnourished children aged 6 months to 10 

years.  Existing data for this patient population are scant in the available literature, so 

the majority of parameters were obtained by scaling from the values reported for 

healthy children. The Kp values predicted from the empirical method decreased with 

age. In the present study, a target Vss was fixed at 4.49 L/kg for all age groups, 

therefore the discrepancies in Kp values between age groups may be the result of 

larger organ volumes being used to estimate Kp in older children. The CLT values for 

malnourished children ranged from a minimum of 3.4 L/h in 6-month-old children to 

a maximum of 15.8 L/h in 10-year-old children. These results were consistent with 

the values obtained from a previous population PK analysis, which reported a median 

individual empirical Bayes estimate of 7.19 L/h with a range of 1.83-17.1 L/h. 

 

The results of the present study demonstrated that the model-predicted 

concentrations were consistent with the observed data, with approximately 95% 

being in the prediction interval; however, it was found that some data points lay 

outside this interval. It was noticed that there was particularly high variation in the 

observed data with regard to malnourished children. This could be explained by the 

fact that malnutrition is not a single disease, but involves a wide range of 

pathophysiological changes, e.g., in the gastrointestinal tract, in renal function, and in 

body water. The observed data used in this study were collected from children with 

varying degrees of malnutrition, i.e., some children had the presence of oedema 

(kwashiorkor or marasmus-kwashiorkor), while others had only markedly decreased 

weight, without the evidence of oedema (pure marasmus). In the present study, the 

model was primarily developed for those children with oedema and was therefore 

considered to be applicable for predicting drug disposition in those with kwashiorkor 

or marasmus-kwashiorkor. In addition, the body weight of malnourished children 

aged <10 years was predicted using height as a reference; therefore, the model could 

only account for children with a weight-for-height deficit (wasting). It may be 

impossible to develop a physiological model that accounts for all possible types of 

malnutrition because of the difficulty of implementing a model of such complexity, 

as well as the need for a large number of data.  
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In the present study, the models were developed for fixed age groups of children, i.e., 

6 months, 1, 2, 5, and 10 years, but the observed data for validating the model 

covered a wide range of ages; from 8-102 months. Therefore, it was requisite that the 

observed data be grouped into one of five fixed groups of age for comparative 

purposes. The data points that were outside the prediction interval likely reflect some 

children whose physiology differed significantly from the children at these fixed 

ages. 

 

The results showed that the distribution of ciprofloxacin into the majority of 

organs/tissues was slower in malnourished children than in healthy children. This 

may be as a result of the delayed lag time that was implemented in the absorption 

model, as well as a decrease in blood flow rate to these organs. It was found that the 

tissue concentrations were generally higher in malnourished children, compared to 

healthy children, which was likely due to decreased total drug CL. A decrease in 

protein binding concentration may have also contributed to the higher drug 

concentration found in the majority of organs. It was observed that the distribution of 

drug to adipose tissue, bone, muscle, and skin was much slower compared to 

distribution to other organs. This reflected the fact that these organs are represented 

as the slowly equilibrating tissue with large time constants of the perfusion rate-

limited compartments (Nestorov et al., 1998a). 

 

Since the model of malnourished children requires a variety of information that is 

scarce in the literature, some obstacles were encountered during the model 

development process. Firstly, as the Vss of ciprofloxacin in malnourished children 

was not available, the Kp values were predicted from a median value of V derived 

from a previous population analysis. This value is estimated from concentration-time 

data after one or two doses, therefore it may be different from the Vss. However, as 

was demonstrated using a healthy adult model, slight discrepancies in the target Vss 

had no significant effect on the Kp predictions or the model-predicted concentration-

time profiles. The Poulin method and the Rodgers method were not used for 

predicting Kp values in the present study since they require intensive information 

regarding the tissue composition of each organ in malnourished individuals. Such 
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information is scarce in the literature and it may be inappropriate to make an 

assumption that the tissue composition data relating to malnourished children are 

similar to those relating to healthy children. Secondly, several parameters, such as 

binding protein and CL, were scaled from data from healthy children using fixed 

scaling factors. Indeed, the alteration of these parameters could vary, depending on 

many factors, e.g., type of malnutrition and severity of disease, as well as 

unexplained variables. However, for reasons of simplicity, fixed scaling factors were 

used to estimate PBPK parameters in this study, and the variability was then 

incorporated in each parameter. It could be assumed that the latter accounted for both 

the variability of the parameters themselves and the variability of the scaling factors. 

Finally, the organ weights of malnourished children were predicted by using 

equations that correlated the change of organ weight with the change of body weight. 

It was found that a linear model best described this correlation, since these equations 

were developed from only a small number of data, i.e., between two and eight data 

points per organ. When using these equations, it is important to note that they cannot 

be applied to those individuals who have significantly decreased body weight beyond 

the data points with which these equations were developed. This is due to there being 

no information to warrant the assumption that correlation of these equations remains 

linear for these individuals. In the present study, these equations were limited to use 

for predicting organ weights of those malnourished children with a maximum weight 

loss of -4 SD.  

 

In summary, the WBPBPK model was developed for malnourished children of 

differing ages. A reference source of model parameters was compiled as far as 

possible. Prediction of the disposition of ciprofloxacin in malnourished children 

generally tallied with observed data. Since there are obvious practical and ethical 

difficulties in conducting PK studies in paediatric patients, this model may become a 

useful tool for prediction of drug disposition in this patient population. The 

application of this model to other drugs and data is required to demonstrate its 

strengths and weaknesses. 
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CHAPTER 8 

 

GENERAL CONCLUSIONS AND 

FUTURE WORK 
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8.1    GENERAL CONCLUSIONS 

The ultimate aim of this thesis was to develop pharmacokinetic models of oral 

ciprofloxacin for describing and predicting drug disposition in malnourished 

children. The analysis of a dataset obtained from 52 such children identified that the 

PK of oral ciprofloxacin is influenced by body weight, serum sodium concentration 

and the high risk of mortality in this patient population. The physiological 

explanation for why sodium influenced estimations of CL/F and V/F remains 

unclear, but since the inclusion of this factor reduced inter-individual variability in 

CL/F by only 6% and in V/F by 4%, indicating a weak overall effect, it may be an 

incidental finding. No further clinical factors were identified as having any clinically 

relevant influence. Due to inadequate drug absorption information, ka was poorly 

estimated with high variability. However, oral ciprofloxacin absorption was 

unaffected by the simultaneous administration of nutritional feeds. A current dosage 

of 10 mg/kg twice daily would be a suitable treatment regimen for patients having 

septicaemia with E. coli and Salmonella spp., but a higher dose of 10 mg/kg three 

times daily should be used for K. pneumoniae. Oral ciprofloxacin is unlikely to be an 

effective treatment for P. aeruginosa. Irrespective of the bacterial pathogen, patients 

with severe illness, and at high risk of mortality, should initially receive intravenous 

antibiotics.   

 

In this thesis, the optimal design method was used to design future population PK 

studies of oral ciprofloxacin. Indeed, it may not have been possible, and may be 

unreasonable, to conduct a further study of the same drug in the same patient 

population. However, in addition to the development of new study designs, this 

analysis was also intended to demonstrate the advantages of the optimal design 

methods and to highlight the importance of sampling times, as well as design 

structures, when population PK studies are designed.  

 

Since studies of PK in children present obvious practical and ethical difficulties, 

particularly in those with severe malnutrition, a WBPBPK model was created for a 

different population, including healthy adults, healthy children and malnourished 

children, with an age range from 6 months to 10 years. Although there were some 
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difficulties in the development of the model, due to its complexity and the lack of 

information available for the changes of both physiological and drug-specific 

parameters, the predictions derived from the model generally tallied with the 

experimental data. 

 

8.2    FUTURE WORK 

In this thesis, concentration-time data were analysed by using the parametric FOCE-I 

method, implemented in the NONMEM program. When using the parametric 

method, the distribution of individual parameter estimates is assumed to be normally 

distributed around the typical values. In contrast, with non-parametric methods, such 

as the Non-parametric Adaptive Grid (NPAG) or non-parametric FO and FOCE, 

which are available in NONMEM, there is no requirement for any assumptions 

regarding the shape of distribution of model parameter estimates. With this method, a 

non-parametric population model consisting of discrete support points for each 

estimate, and the associated probability of that estimate, will be created. In future 

studies, it might be interesting to compare the results obtained from using a 

parametric method to those estimated by using a non-parametric method. 

 

In the present study, it was demonstrated that the absorption process of oral 

ciprofloxacin was not well characterised, due to a lack of available information. If 

drug absorption is of interest, the optimal study designs for oral ciprofloxacin 

proposed in this thesis may be useful for guiding optimal sampling times, and 

sampling windows, as well as design structures in future studies. Nevertheless, in 

practice, conducting a population PK study is time-consuming task, and a study in 

special populations, such as severely malnourished children, may be difficult to carry 

out, due to ethical restrictions. In this circumstance, a WBPBPK model, such as the 

one developed in this thesis might be a powerful tool for predicting the PK of drugs 

in this patient population. However, the validity of this model was tested by using 

ciprofloxacin concentration-time data only. Application of this model to other drugs 

and data is now required in order to substantiate the predictive performance of the 

model. 
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Appendix I: Modified scripts of PopDes program used to account for 

the covariates in the model  

 

Code 1: PopDes.m file 

 

%% Covariates (No covariate Cov=[]) 

nsim_cov=25; 

 

%% (1) WT 

WTlb=4.1; 

WTub=14.5; 

xx = lhsdesign(nsim_cov,1); 

WT = WTlb + (WTub-WTlb)*xx; 

 

%% (2) Na conc 

Naconclb=120; 

Naconcub=160; 

Naconc = Naconclb + (Naconcub-Naconclb)*xx; 

 

%% (3) Mort 

Mort_prob=0.31; 

% Mort = binornd(1,Mort_prob,[nsim_cov,1]); 

 

for ij=1:nsim_cov 

    if xx(ij) > Mort_prob 

        Mort(ij)=0; 

    else 

        Mort(ij)=1; 

    end 

end 

Mort=Mort';    

 

Cov=[WT Naconc Mort]; 
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Code 2: ext_model.m file 

 

%% Covariates 

WT=Cov(1); 

Naconc=Cov(2); 

Mort=Cov(3); 

 

%% Parameters and other variables 

Dose=D(idose)*WT; 

di=Di(idose); 

     

ka=THETA(1)*exp(ETA(1)); 

cl=(THETA(2)*((WT/70)^0.75)*(1+THETA(5)*(Naconc-136))*(1+THETA(6)*Mort)) 

*exp(ETA(2)); 

v=(THETA(3)*(WT/70)^1*(1+THETA(7)*(Naconc-136)))*exp(ETA(3)); 

lag=THETA(4); 

 

for i=1:length(TT) 

    nd=0; 

    ff=0; 

    hh=0; 

    while TT(i) > hh 

        nd=nd+1;        % calculate number of doses 

        ta=TT(i)-hh; 

         

        if ta <= lag 

            f1=0; 

        else 

            f1=(Dose*ka/(v*ka-cl))*(exp(-cl*(ta-lag)/v)-exp(-ka*(ta-lag))); 

        end 

        ff=ff+f1; 

        hh=hh+di; 

    end 

    f(i)=ff; 

end 

f; 
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Appendix II: MATLAB codes used for simulating concentration-

time profile in malnourished children aged 2 years 

 

Code 1: BWdis.m file 

 

%% Lognormal distribution 
% m=0.39; %mean of lognormal distribution 
% sd=0.3*m; %sd of lognormal distribution 
% v=sd^2; 
% mu = log((m^2)/sqrt(v+m^2)); %parameter MU 
% sigma = sqrt(log(v/(m^2)+1)); %parameter SIGMA 
% x = lognrnd(mu,sigma,1000,1); 

  
% x=normrnd(m,sd,1000,1); 
% Trunctated normal distribution 
m=1000; 
mu=0.39; 
sigma=0.3*mu; 
x=normrnd(mu,sigma,1000,1); 
xTrunc=1; 
x=x(x<xTrunc); 
xTrunc2=0; 
x(x<xTrunc2)=[]; 
start=[mean(x),std(x)]; 
pdf_truncnorm=@(x,mu,sigma)normpdf(x,mu,sigma)./(normcdf(xTrunc,mu,sigma)-

normcdf(xTrunc2,mu,sigma)); 
[paramEsts,paramCIs]=mle(x,'pdf',pdf_truncnorm,'start',start,'lower',[-Inf 

0]) 

  
% X=normrnd(m,sd,1000,1); 
% figure; 
histfit(x); 
skewness(x) 
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Code 2: ciprofloxacin.m file 

 

function Ciprofloxacin 

tic 

n_param=75;  

p=[];  

Concsim=[]; 

K1=[]; 

K2=[]; 

K3=[]; 

K4=[]; 

K5=[]; 

K6=[]; 

K7=[]; 

K8=[]; 

K9=[]; 

K10=[]; 

K11=[]; 

K12=[]; 

K13=[]; 

K14=[]; 

Vad=[]; 

Qad=[]; 

t=[]; 

  

%% Mean and variance for organ volumes 

%venous,lungs,arterial,liver,gut,spleen,kidney,muscle,adipose,skin,heart,bra

in,bone 

% Male volume (%CV=20) 

mean=[1.1367,0.1739,0.5684,0.4479,0.2128,0.0405,0.0857,2.7185,3.9328,0.3981,

0.0833,1.0783,0.4250]; 

var=[0.06482210855165020000 0.00691576314156197000  0.02183040583176030000  

0.01736016061873680000  0.00842625636949377000  0.00163474593911444000  

0.00344305396558435000  0.09950450568867420000  0.14615383303435500000  

0.01549549834571710000  0.00334708016009699000  0.04029516064647930000  

0.01650334565577190000 

0.00691576314156197000  0.00127329316228680000  0.00360044865421591000  

0.00287029960763607000  0.00140026864600248000  0.00027272775026738700  

0.00057381026104437300  0.01585584498033730000  0.02297266732385080000  

0.00256468578218948000  0.00055784648880660000  0.00658143079776849000  

0.00272994731080860000 

0.02183040583176030000  0.00360044865421591000  0.01488028156557260000  

0.00900778189354282000  0.00438468729764304000  0.00085253869750137700  

0.00179453192016534000  0.05057906439056490000  0.07373274625723280000  

0.00804499100235702000  0.00174456466313488000  0.02076549862923640000  

0.00856551516285766000 

0.01736016061873680000  0.00287029960763607000  0.00900778189354282000  

0.00901999729722708000  0.00349510764087085000  0.00067991658673648500  

0.00143098177640442000  0.04009844229236320000  0.05834995953098610000  

0.00640946470085042000  0.00139114723267087000  0.01651554786839280000  

0.00682366748822325000 

0.00842625636949377000  0.00140026864600248000  0.00438468729764304000  

0.00349510764087085000  0.00192572867536575000  0.00033196122563560100  

0.00069846824351309100  0.01934006892304910000  0.02803880308378860000  

0.00312282022273679000  0.00067903471931267700  0.00801852007472496000  

0.00332413138082000000 

0.00163474593911444000  0.00027272775026738700  0.00085253869750137800  

0.00067991658673648500  0.00033196122563560100  0.00006635491736618740  

0.00013609440136494800  0.00373359137047424000  0.00539708163143716000  

0.00060762346792476200  0.00013230931872545000  0.00155597700167120000  

0.00064671911111676200 

0.00344305396558435000  0.00057381026104437300  0.00179453192016534000  

0.00143098177640442000  0.00069846824351309100  0.00013609440136494800  

0.00030170940422235700  0.00787400123561411000  0.01139117937871500000  
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0.00127875789483783000  0.00027834363495694200  0.00327696478211766000  

0.00136107744585221000 

0.09950450568867420000  0.01585584498033730000  0.05057906439056490000  

0.04009844229236320000  0.01934006892304910000  0.00373359137047424000  

0.00787400123561411000  0.40747060769887200000  0.35825856699650400000  

0.03574486938940950000  0.00765397946823464000  0.09447654582777650000  

0.03809662215821860000 

0.14615383303435500000  0.02297266732385080000  0.07373274625723280000  

0.05834995953098610000  0.02803880308378860000  0.00539708163143716000  

0.01139117937871500000  0.35825856699650400000  0.85530358803867600000  

0.05197526126485050000  0.01107241760267900000  0.13866943083773700000  

0.05541767327626000000 

0.01549549834571710000  0.00256468578218948000  0.00804499100235702000  

0.00640946470085042000  0.00312282022273679000  0.00060762346792476200  

0.00127875789483783000  0.03574486938940950000  0.05197526126485050000  

0.00705122636364249000  0.00124316458707233000  0.01474244780668910000  

0.00609530918525041000 

0.00334708016009699000  0.00055784648880660000  0.00174456466313488000  

0.00139114723267087000  0.00067903471931267700  0.00013230931872545000  

0.00027834363495694200  0.00765397946823464000  0.01107241760267900000  

0.00124316458707233000  0.00028475645011762900  0.00318563035549680000  

0.00132319067415169000 

0.04029516064647930000  0.00658143079776849000  0.02076549862923640000  

0.01651554786839280000  0.00801852007472496000  0.00155597700167120000  

0.00327696478211766000  0.09447654582777650000  0.13866943083773700000  

0.01474244780668910000  0.00318563035549680000  0.05791900971445060000  

0.01570083022293460000 

0.01650334565577190000  0.00272994731080860000  0.00856551516285766000  

0.00682366748822325000  0.00332413138082000000  0.00064671911111676200  

0.00136107744585221000  0.03809662215821860000  0.05541767327626000000  

0.00609530918525041000  0.00132319067415169000  0.01570083022293460000  

0.00808159856684080000]; 

  

%venous,lungs,arterial,liver,gut,spleen,kidney,muscle,adipose,skin,heart,bra

in,bone 

% Female volume (%CV=20) 

%mean=[1.2566,0.1739,0.6283,0.4149,0.2143,0.0361,0.0873,2.7185,3.8960,0.3845

,0.0683,0.9602,0.41]; 

% var=[0.08038938901604700000   0.00759095522862768000  

0.02640274572051140000  0.01770680919443530000  0.00931485324691632000  

0.00160244853734888000  0.00384926883804179000  0.10974031018693600000  

0.15985769157917300000  0.01645222651384770000  0.00301935310752433000  

0.03964352112669060000  0.01750469849806400000 

% 0.00759095522862768000    0.00127385092388430000  0.00395604690703452000  

0.00266619028647924000  0.00140944292694663000  0.00024357686804193200  

0.00058432073081726000  0.01584293599811250000  0.02273817850731220000  

0.00247907369563551000  0.00045856474072980100  0.00589763160885668000  

0.00263606404919702000 

% 0.02640274572051140000    0.00395604690703452000  0.01840762344676150000  

0.00919809999065677000  0.00485175214972316000  0.00083675203587889500  

0.00200850103497890000  0.05571720988840550000  0.08051904493509900000  

0.00854977647423445000  0.00157588822773501000  0.02045785025594820000  

0.00909369021038843000 

% 0.01770680919443530000    0.00266619028647924000  0.00919809999065677000  

0.00769192920778014000  0.00326917229833340000  0.00056434207461217800  

0.00135425037492179000  0.03717997396867630000  0.05356399296479490000  

0.00575602511127264000  0.00106266446337429000  0.01373670371293080000  

0.00612144425955982000 

% 0.00931485324691632000    0.00140944292694663000  0.00485175214972316000  

0.00326917229833340000  0.00195543204223839000  0.00029854536365395100  

0.00071622557028541800  0.01946121654524540000  0.02794958879573950000  

0.00303964493165852000  0.00056206977845188800  0.00723514219104478000  

0.00323221688690430000 

% 0.00160244853734888000    0.00024357686804193100  0.00083675203587889500  

0.00056434207461217800  0.00029854536365395100  0.00005282256341388520  
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0.00012382806428363600  0.00333217221545134000  0.00477135622605706000  

0.00052479169660924400  0.00009718508771753840  0.00124609390723684000  

0.00055797492754462000 

% 0.00384926883804179000    0.00058432073081726000  0.00200850103497890000  

0.00135425037492179000  0.00071622557028541800  0.00012382806428363600  

0.00031343793343460700  0.00801535877256463000  0.01148727491441380000  

0.00125929105421068000  0.00023310438566684100  0.00299226378295091000  

0.00133896253005925000 

% 0.10974031018693600000    0.01584293599811250000  0.05571720988840550000  

0.03717997396867630000  0.01946121654524540000  0.00333217221545134000  

0.00801535877256463000  0.40805662480673100000  0.35462125242030000000  

0.03452016538793590000  0.00628400931753088000  0.08426152611597320000  

0.03675123007988330000 

% 0.15985769157917300000    0.02273817850731220000  0.08051904493509900000  

0.05356399296479480000  0.02794958879573950000  0.00477135622605706000  

0.01148727491441380000  0.35462125242030000000  0.84054270527912000000  

0.04970924648061240000  0.00900307653224238000  0.12230684534218500000  

0.05294240721881030000 

% 0.01645222651384770000    0.00247907369563551000  0.00854977647423445000  

0.00575602511127264000  0.00303964493165852000  0.00052479169660924400  

0.00125929105421068000  0.03452016538793590000  0.04970924648061240000  

0.00656275310918714000  0.00098816558642132100  0.01276571267536310000  

0.00569084314124382000 

% 0.00301935310752433000    0.00045856474072980100  0.00157588822773501000  

0.00106266446337429000  0.00056206977845188800  0.00009718508771753840  

0.00023310438566684100  0.00628400931753088000  0.00900307653224239000  

0.00098816558642132100  0.00019089535150449000  0.00234741062736786000  

0.00105067076647467000 

% 0.03964352112669060000    0.00589763160885668000  0.02045785025594820000  

0.01373670371293080000  0.00723514219104478000  0.00124609390723684000  

0.00299226378295091000  0.08426152611597320000  0.12230684534218500000  

0.01276571267536310000  0.00234741062736786000  0.04529972797860520000  

0.01358030195540450000 

% 0.01750469849806400000    0.00263606404919702000  0.00909369021038843000  

0.00612144425955982000  0.00323221688690430000  0.00055797492754462000  

0.00133896253005925000  0.03675123007988320000  0.05294240721881030000  

0.00569084314124382000  0.00105067076647467000  0.01358030195540450000  

0.00750323361743787000]; 

  

%% ---------- START ---------- %% 

n=14; 

% VENOUS 

model1.param(1).name = 'Venous volume [L]'; 

model1.param(1).type = 4; 

model1.param(1).value = 0; 

model1.param(2).name = 'Venous flow [L/h]'; 

model1.param(2).type = 5; 

model1.param(2).value = 0; 

model1.param(3).name = 'Venous Kp'; 

model1.param(3).type = 3; 

model1.param(3).value = [1 0.1]; 

model1.param(4).name = 'Venous Clearance'; 

model1.param(4).type = 0; 

model1.param(4).value = 0; 

model1.param(5).name = 'Venous Initial Condition'; 

model1.param(5).type = 0; 

model1.param(5).value = 0; 

% LUNGS 

model1.param(6).name = 'Lung volume [L]'; 

model1.param(6).type = 4; 

model1.param(6).value = 0; 

model1.param(7).name = 'Lung flow [L/h]'; 

model1.param(7).type = 5; 

model1.param(7).value = 0; 

model1.param(8).name = 'Lung Kp'; 
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model1.param(8).type = 3; 

model1.param(8).value = [13.59 1.359];     %male 

% model1.param(8).value = [13.13 1.313];   %female 

model1.param(9).name = 'Lung Clearance'; 

model1.param(9).type = 0; 

model1.param(9).value = 0; 

model1.param(10).name = 'Lung Initial Condition'; 

model1.param(10).type = 0; 

model1.param(10).value = 0; 

% ARTERIAL 

model1.param(11).name = 'Arterial volume [L]'; 

model1.param(11).type = 4; 

model1.param(11).value = 0; 

model1.param(12).name = 'Arterial flow [L/h]'; 

model1.param(12).type = 5; 

model1.param(12).value = 0; 

model1.param(13).name = 'Arterial Kp'; 

model1.param(13).type = 3; 

model1.param(13).value = [1 0.1]; 

model1.param(14).name = 'Arterial Clearance'; 

model1.param(14).type = 0; 

model1.param(14).value = 0; 

model1.param(15).name = 'Arterial Initial Condition'; 

model1.param(15).type = 0; 

model1.param(15).value = 0; 

% LIVER 

model1.param(16).name = 'Liver volume [L]'; 

model1.param(16).type = 4; 

model1.param(16).value = 0; 

model1.param(17).name = 'Liver flow [L/h]'; 

model1.param(17).type = 5; 

model1.param(17).value = 0; 

model1.param(18).name = 'Liver Kp'; 

model1.param(18).type = 3; 

model1.param(18).value = [6.26 0.626];    %male 

% model1.param(18).value = [6.13 0.613];  %female 

model1.param(19).name = 'Liver Clearance'; 

model1.param(19).type = 2; 

model1.param(19).value = [0.064 0.0192];   %Male   

% model1.param(19).value = [0.084 0.0252]; %Female   

model1.param(20).name = 'Liver Initial Condition'; 

model1.param(20).type = 0; 

model1.param(20).value = 0; 

% GUT 

model1.param(21).name = 'Gut volume [L]'; 

model1.param(21).type = 4; 

model1.param(21).value = 0; 

model1.param(22).name = 'Gut flow [L/h]'; 

model1.param(22).type = 5; 

model1.param(22).value = 0; 

model1.param(23).name = 'Gut Kp'; 

model1.param(23).type = 3; 

model1.param(23).value = [6.96 0.696];   %male 

% model1.param(23).value = [6.13 0.613]; %female 

model1.param(24).name = 'Gut Clearance'; 

model1.param(24).type = 2; 

model1.param(24).value = [0.134 0.0402];   %Male 

% model1.param(24).value = [0.141 0.0423]; %Female 

model1.param(25).name = 'Gut Initial Condition'; 

model1.param(25).type = 0; 

model1.param(25).value = 0; 

% SPLEEN 

model1.param(26).name = 'Spleen volume [L]'; 

model1.param(26).type = 4; 

model1.param(26).value = 0; 
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model1.param(27).name = 'Spleen flow [L/h]'; 

model1.param(27).type = 5; 

model1.param(27).value = 0; 

model1.param(28).name = 'Spleen Kp'; 

model1.param(28).type = 3; 

model1.param(28).value = [16.77 1.677];     %male 

% model1.param(28).value = [16.05 0.1605];  %female 

model1.param(29).name = 'Spleen Clearance'; 

model1.param(29).type = 0; 

model1.param(29).value = 0; 

model1.param(30).name = 'Spleen Initial Condition'; 

model1.param(30).type = 0; 

model1.param(30).value = 0; 

% KIDNEY 

model1.param(31).name = 'Kidney volume [L]'; 

model1.param(31).type = 4; 

model1.param(31).value = 0; 

model1.param(32).name = 'Kidney flow [L/h]'; 

model1.param(32).type = 5; 

model1.param(32).value = 0; 

model1.param(33).name = 'Kidney Kp'; 

model1.param(33).type = 3; 

model1.param(33).value = [12.75 1.275];   %male 

% model1.param(33).value = [12.56 1.256]; %female 

model1.param(34).name = 'Kidney Clearance'; 

model1.param(34).type = 2; 

model1.param(34).value = [0.517 0.1551];   %Male   

% model1.param(34).value = [0.515 0.1545]; %Female   

model1.param(35).name = 'Kidney Initial Condition'; 

model1.param(35).type = 0; 

model1.param(35).value = 0; 

% MUSCLE 

model1.param(36).name = 'Muscle volume [L]'; 

model1.param(36).type = 4; 

model1.param(36).value = 0; 

model1.param(37).name = 'Muscle flow [L/h]'; 

model1.param(37).type = 5; 

model1.param(37).value = 0; 

model1.param(38).name = 'Muscle Kp'; 

model1.param(38).type = 3; 

model1.param(38).value = [16.77 1.677];    %male 

% model1.param(38).value = [16.05 1.605];  %female 

model1.param(39).name = 'Muscle Clearance'; 

model1.param(39).type = 0; 

model1.param(39).value = 0; 

model1.param(40).name = 'Muscle Initial Condition'; 

model1.param(40).type = 0; 

model1.param(40).value = 0; 

% ADIPOSE 

model1.param(41).name = 'Adipose volume [L]'; 

model1.param(41).type = 4; 

model1.param(41).value = 0; 

model1.param(42).name = 'Adipose flow [L/h]'; 

model1.param(42).type = 5; 

model1.param(42).value = 0; 

model1.param(43).name = 'Adipose Kp'; 

model1.param(43).type = 3; 

model1.param(43).value = [1.56 0.156];   %male  

% model1.param(43).value = [1.50 0.150]; %female 

model1.param(44).name = 'Adipose Clearance'; 

model1.param(44).type = 0; 

model1.param(44).value = 0; 

model1.param(45).name = 'Adipose Initial Condition'; 

model1.param(45).type = 0; 

model1.param(45).value = 0; 
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% SKIN 

model1.param(46).name = 'Skin volume [L]'; 

model1.param(46).type = 4; 

model1.param(46).value = 0; 

model1.param(47).name = 'Skin flow [L/h]'; 

model1.param(47).type = 5; 

model1.param(47).value = 0; 

model1.param(48).name = 'Skin Kp'; 

model1.param(48).type = 3; 

model1.param(48).value = [9.48 0.948];   %male 

% model1.param(48).value = [9.21 0.921]; %female 

model1.param(49).name = 'Skin Clearance'; 

model1.param(49).type = 0; 

model1.param(49).value = 0; 

model1.param(50).name = 'Skin Initial Condition'; 

model1.param(50).type = 0; 

model1.param(50).value = 0; 

% HEART 

model1.param(51).name = 'Heart volume [L]'; 

model1.param(51).type = 4; 

model1.param(51).value = 0; 

model1.param(52).name = 'Heart flow [L/h]'; 

model1.param(52).type = 5; 

model1.param(52).value = 0; 

model1.param(53).name = 'Heart Kp'; 

model1.param(53).type = 3; 

model1.param(53).value = [12.45 1.245];    %male 

% model1.param(53).value = [12.00 1.2];    %female 

model1.param(54).name = 'Heart Clearance'; 

model1.param(54).type = 0; 

model1.param(54).value = 0; 

model1.param(55).name = 'Heart Initial Condition'; 

model1.param(55).type = 0; 

model1.param(55).value = 0; 

% BRAIN 

model1.param(56).name = 'Brain volume [L]'; 

model1.param(56).type = 4; 

model1.param(56).value =0; 

model1.param(57).name = 'Brain flow [L/h]'; 

model1.param(57).type = 5; 

model1.param(57).value = 0; 

model1.param(58).name = 'Brain Kp'; 

model1.param(58).type = 3; 

model1.param(58).value = [0.50 0.05];    %male 

% model1.param(58).value = [0.49 0.049]; %female 

model1.param(59).name = 'Brain Clearance'; 

model1.param(59).type = 0; 

model1.param(59).value = 0; 

model1.param(60).name = 'Brain Initial Condition'; 

model1.param(60).type = 0; 

model1.param(60).value = 0; 

% BONE 

model1.param(61).name = 'Bone volume [L]'; 

model1.param(61).type = 4; 

model1.param(61).value = 0; 

model1.param(62).name = 'Bone flow [L/h]'; 

model1.param(62).type = 5; 

model1.param(62).value = 0; 

model1.param(63).name = 'Bone Kp'; 

model1.param(63).type = 3; 

model1.param(63).value = [9.09 0.909];     %male 

% model1.param(63).value = [8.77 0.877];   %female 

model1.param(64).name = 'Bone Clearance'; 

model1.param(64).type = 0; 

model1.param(64).value = 0; 
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model1.param(65).name = 'Bone Initial Condition'; 

model1.param(65).type = 0; 

model1.param(65).value = 0; 

% REST COMPARTMENT 

model1.param(66).name = 'Rest volume [L]'; 

model1.param(66).type = 4; 

model1.param(66).value = 0; 

model1.param(67).name = 'Rest flow [L/h]'; 

model1.param(67).type = 5; 

model1.param(67).value = 0; 

model1.param(68).name = 'Rest Kp'; 

model1.param(68).type = 3; 

model1.param(68).value = [1 0.1]; 

model1.param(69).name = 'Rest Clearance'; 

model1.param(69).type = 0; 

model1.param(69).value = 0; 

model1.param(70).name = 'Rest Initial Condition'; 

model1.param(70).type = 0; 

model1.param(70).value = 0; 

% FRACTION UNBOUND 

model1.param(71).name = 'Fraction unbound in blood'; 

model1.param(71).type = 1; 

model1.param(71).value = [0.767 0.0767];  %Male and female 

  

%% PARAMETER FOR ORAL MODEL %% 

% ABSORPTION RATE CONSTANT 

model1.param(72).name = 'Absorption rate (KA)'; 

model1.param(72).type = 6; 

model1.param(72).value =[1.27 0.381];   

% BIOAVAILABILITY 

model1.param(73).name = 'Bioavailability (FA)'; 

model1.param(73).type = 1; 

model1.param(73).value =[0.837 0.0837];   

% LAG TIME 

model1.param(74).name = 'Absorption lag (h)'; 

model1.param(74).type = 0;  

model1.param(74).value =0.742;              

% BLOOD-TO-PLASMA RATIO 

model1.param(75).name = 'Blood-to-Plasma ratio'; 

model1.param(75).type = 0;  

model1.param(75).value =1.028;              

  

%% ---------- START ---------- %% 

%% ---------- MONTE CARLO SIMULATION START ----------%% 

S_smp_BWm=[]; 

S_smp_Vve=[]; 

S_smp_Vlu=[]; 

S_smp_Vart=[]; 

S_smp_Vli=[]; 

S_smp_Vgut=[]; 

S_smp_Vspl=[]; 

S_smp_Vki=[]; 

S_smp_Vmu=[]; 

S_smp_Vad=[]; 

S_smp_Vsk=[]; 

S_smp_Vht=[]; 

S_smp_Vbr=[]; 

S_smp_Vbo=[]; 

S_smp_Vre=[]; 

S_smp_COm=[]; 

S_smp_Qli=[]; 

S_smp_Qgut=[]; 

S_smp_Qspl=[]; 

S_smp_Qki=[]; 

S_smp_Qmu=[]; 



313 

 
S_smp_Qad=[]; 

S_smp_Qsk=[]; 

S_smp_Qht=[]; 

S_smp_Qbr=[]; 

S_smp_Qbo=[]; 

S_smp_Qre=[]; 

  

for i=1:500 

i 

p=[]; 

[ff,bb,smp_BWn,smp_BWm,smp_COn,smp_COm] = samCO(mean,var) 

 %ff=organ volume for malnutrition 

 %bb=organ blood flow for malnutrition 

fre=smp_BWm-sum(ff) 

ffre=smp_COm-sum(bb) 

S_smp_Vve=[S_smp_Vve; ff(1)] 

S_smp_Vlu=[S_smp_Vlu; ff(2)] 

S_smp_Vart=[S_smp_Vart; ff(3)] 

S_smp_Vli=[S_smp_Vli; ff(4)] 

S_smp_Vgut=[S_smp_Vgut; ff(5)] 

S_smp_Vspl=[S_smp_Vspl; ff(6)] 

S_smp_Vki=[S_smp_Vki; ff(7)] 

S_smp_Vmu=[S_smp_Vmu; ff(8)] 

S_smp_Vad=[S_smp_Vad; ff(9)] 

S_smp_Vsk=[S_smp_Vsk; ff(10)] 

S_smp_Vht=[S_smp_Vht; ff(11)] 

S_smp_Vbr=[S_smp_Vbr; ff(12)] 

S_smp_Vbo=[S_smp_Vbo; ff(13)] 

S_smp_BWm=[S_smp_BWm; smp_BWm] 

S_smp_Qli=[S_smp_Qli; bb(1)] 

S_smp_Qgut=[S_smp_Qgut; bb(2)] 

S_smp_Qspl=[S_smp_Qspl; bb(3)] 

S_smp_Qki=[S_smp_Qki; bb(4)] 

S_smp_Qmu=[S_smp_Qmu; bb(5)] 

S_smp_Qad=[S_smp_Qad; bb(6)] 

S_smp_Qsk=[S_smp_Qsk; bb(7)] 

S_smp_Qht=[S_smp_Qht; bb(8)] 

S_smp_Qbr=[S_smp_Qbr; bb(9)] 

S_smp_Qbo=[S_smp_Qbo; bb(10)] 

S_smp_COm=[S_smp_COm; smp_COm] 

  

for j=1:75 

if model1.param(j).type==4 

if j==1 %venous volume 

smp=ff(1); 

elseif j==6 %lung volume 

smp=ff(2); 

elseif j==11 %arterial volume 

smp=ff(3); 

elseif j==16 %liver volume 

smp=ff(4); 

elseif j==21 %gut volume 

smp=ff(5); 

elseif j==26 %spleen volume 

smp=ff(6); 

elseif j==31 %kidney volume 

smp=ff(7); 

elseif j==36 %muscle volume 

smp=ff(8); 

elseif j==41 %adipose volume 

smp=ff(9); 

elseif j==46 %skin volume 

smp=ff(10); 

elseif j==51 %heart volume 

smp=ff(11); 
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elseif j==56 %brain volume 

smp=ff(12); 

elseif j==61 %bone volume 

smp=ff(13); 

elseif j==66 %rest compartment 

smp=fre; 

end 

  

elseif model1.param(j).type==5; 

    if j==2 %venous flow 

        smp=smp_COm; 

    elseif j==7 %lung flow 

        smp=smp_COm; 

    elseif j==12 %arterial flow 

        smp=smp_COm; 

    elseif j==17 %liver flow 

        smp=bb(1); 

    elseif j==22 %gut flow 

        smp=bb(2); 

    elseif j==27 %spleen flow 

        smp=bb(3); 

    elseif j==32 %kidney flow 

        smp=bb(4); 

    elseif j==37 %muscle flow 

        smp=bb(5); 

    elseif j==42 %adipose flow 

        smp=bb(6); 

    elseif j==47 %skin flow 

        smp=bb(7); 

    elseif j==52 %heart flow 

        smp=bb(8); 

    elseif j==57 %brain flow 

        smp=bb(9); 

    elseif j==62 %bone flow 

        smp=bb(10); 

    elseif j==67 %rest flow 

        smp=ffre; 

    end 

  

% TYPE=0 IS FIXED VALUES 

elseif model1.param(j).type==0; 

    smp=model1.param(j).value; 

% TYPE=1 IS NORMAL DISTRIBUTION FOR fu and F 

elseif model1.param(j).type==1 

    while model1.param(j).value(1)>0  

        m=model1.param(j).value(1); 

        v=model1.param(j).value(2); 

        smpx= normrnd(m,v); 

        if (any (smpx<=0)) 

            smpx= normrnd(m,v); 

        elseif (any (smpx>1)) 

            smpx= normrnd(m,v); 

        else 

            smp=smpx; 

            break 

        end 

    end 

% TYPE=2 IS LOGNORMAL DISTRIBUTION FOR CLEARANCE 

elseif model1.param(j).type==2 

    m=model1.param(j).value(1); 

    sd=model1.param(j).value(2); 

    v=sd^2; 

    mu = log((m^2)/sqrt(v+m^2)); 

    sigma = sqrt(log(v/(m^2)+1)); 

    smpCL = lognrnd(mu,sigma); 
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    smpCLwt=(smpCL*smp_BWm)/1.028; %CLb=CLp/R 

    smp=smpCLwt; 

% TYPE=3 IS LOGNORMAL DISTRIBUTION FOR Kp 

elseif model1.param(j).type==3 

    m=model1.param(j).value(1); 

    sd=model1.param(j).value(2); 

    v=sd^2; 

    mu = log((m^2)/sqrt(v+m^2)); 

    sigma = sqrt(log(v/(m^2)+1)); 

    smpKp = lognrnd(mu,sigma); 

    smp=smpKp; 

% TYPE=6 IS LOGNORMAL DISTRIBUTION FOR KA 

elseif model1.param(j).type==6 

    m=model1.param(j).value(1); 

    sd=model1.param(j).value(2); 

    v=sd^2; 

    mu = log((m^2)/sqrt(v+m^2)); 

    sigma = sqrt(log(v/(m^2)+1)); 

    smpKA = lognrnd(mu,sigma); 

    smp=smpKA; 

end 

  

dose=10*smp_BWm; 

p=[p;smp]; 

end  

p; 

  

%%-----ODE start----- 

t=[0 0.25 0.5 0.75 0.8 0.9 1 1.25 1.5 1.75 2 3 4 5 6 7 8 9 10 11 12];  

% t=[0 0.5 1 1.5 2 3 4 6 8 12];  

% t=[0:0.1:12]; 

[z, A, b]=matrix(p,n,dose); 

[t,y]=ode23s('PKmodel',t,z); 

Conc=y'; %transpose matrix 

kk=size(Conc); %return array dimension - kk= 1 14 

m=kk(1,2); %m=14 

%zint=y(:,m); 

Concsim=[Concsim; Conc]; 

end 

Concsim; 

n_comp=14; 

ss=size(Concsim); 

ss1=ss(1,1); 

M=Concsim; 

  

for j=1:n_comp 

    for i=j:n_comp:ss1 

        if j==1 

            sim.comp1=M(i,:); 

            K1=[K1;sim.comp1]; 

        elseif j==2 

            sim.comp2=M(i,:); 

            K2=[K2;sim.comp2]; 

        elseif j==3 

            sim.comp3=M(i,:); 

            K3=[K3;sim.comp3]; 

        elseif j==4 

            sim.comp4=M(i,:); 

            K4=[K4;sim.comp4]; 

        elseif j==5 

            sim.comp5=M(i,:); 

            K5=[K5;sim.comp5]; 

        elseif j==6 

            sim.comp6=M(i,:); 

            K6=[K6;sim.comp6]; 
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        elseif j==7 

            sim.comp7=M(i,:); 

            K7=[K7;sim.comp7]; 

        elseif j==8 

            sim.comp8=M(i,:); 

            K8=[K8;sim.comp8]; 

        elseif j==9 

            sim.comp9=M(i,:); 

            K9=[K9;sim.comp9]; 

        elseif j==10 

            sim.comp10=M(i,:); 

            K10=[K10;sim.comp10]; 

        elseif j==11 

            sim.comp11=M(i,:); 

            K11=[K11;sim.comp11]; 

        elseif j==12 

            sim.comp12=M(i,:); 

            K12=[K12;sim.comp12]; 

        elseif j==13 

            sim.comp13=M(i,:); 

            K13=[K13;sim.comp13]; 

        elseif j==14 

            sim.comp14=M(i,:); 

            K14=[K14;sim.comp14]; 

        end 

    end 

end 

K11=K1'; 

Volume=[S_smp_BWm S_smp_Vve S_smp_Vlu S_smp_Vart S_smp_Vli S_smp_Vgut 

S_smp_Vspl S_smp_Vki S_smp_Vmu S_smp_Vad S_smp_Vsk S_smp_Vht S_smp_Vbr 

S_smp_Vbo]; 

Bloodflow=[S_smp_COm S_smp_Qli S_smp_Qgut S_smp_Qspl S_smp_Qki S_smp_Qmu 

S_smp_Qad S_smp_Qsk S_smp_Qht S_smp_Qbr S_smp_Qbo]; 

  

save DV_venous.dat K1 /ASCII 

save DV_venous2.dat K11 /ASCII 

save DV_lungs.dat K2 /ASCII 

save DV_arterial.dat K3 /ASCII 

save DV_liver.dat K4 /ASCII 

save DV_gut.dat K5 /ASCII 

save DV_spleen.dat K6 /ASCII 

save DV_kidney.dat K7 /ASCII 

save DV_muscle.dat K8 /ASCII 

save DV_adipose.dat K9 /ASCII 

save DV_skin.dat K10 /ASCII 

save DV_heart.dat K11 /ASCII 

save DV_brain.dat K12 /ASCII 

save DV_bone.dat K13 /ASCII 

save DV_rest.dat K14 /ASCII 

save Volume.dat Volume /ASCII 

save Bloodflow.dat Bloodflow /ASCII 

save WT.dat S_smp_BWm /ASCII 

save CO.dat S_smp_COm /ASCII 

toc 
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Code 3: samBW.m file 

 

function [ff,hh,smp_HT,smp_SDn,smp_SDm,smp_BWn,smp_BWm,fBW] =samBW(mean,var) 
ff=[]; %organ volume (malnutrition) 
hh=[]; %organ volume (healthy) 
sum_alln=[]; 
sum_allm=[]; 
smp_HT=[]; 
smp_SDn=[]; 
smp_SDm=[]; 
smp_BWn=[]; 
smp_BWm=[]; 
fBW=[]; 

  
%%HEIGHT 
%Male  
m=91.9; 
sd=0.1*m; 
%Female 
% m=90.2; 
% sd=0.1*m; 
v=sd^2; 
mu = log((m^2)/sqrt(v+m^2));  
sigma = sqrt(log(v/(m^2)+1));  
xx = lognrnd(mu,sigma); 
smp_HT=xx; 
%%SEVERITY (SD) 
lb=-4; 
ub=-3; 
x = lhsdesign(1,1); 
smp_SDn = 0; 
smp_SDm = lb + (ub-lb)*x; 
%%GENDER (0=male, 1=female) 
SEX=0; 
%%CALCULATE BW 
smp_BWn = exp(0.773+(0.0197*smp_HT)+(0.0880*smp_SDn)-(0.0123*SEX));  
smp_BWm = exp(0.773+(0.0197*smp_HT)+(0.0880*smp_SDm)-(0.0123*SEX));  
fBW=smp_BWm/smp_BWn; 
while (mean>0) 
    h=mvnrnd(mean,var,1); 
    f(1)=h(1)*fBW; 
    f(2)=h(2)*(0.7027*fBW + 0.2836); 
    f(3)=h(3)*fBW; 
    f(4)=h(4)*(0.7436*fBW + 0.2254); 
    f(5)=h(5)*fBW; 
    f(6)=h(6)*(0.8942*fBW + 0.0269); 
    f(7)=h(7)*(0.5368*fBW + 0.4092); 
    f(8)=h(8)*(1.3571*fBW - 0.3401); 
    f(9)=h(9)*(1.9*fBW - 0.9); 
    f(10)=h(10)*(1.5945*fBW - 0.5945); 
    f(11)=h(11)*(0.5384*fBW + 0.3824); 
    f(12)=h(12)*0.9; 
    f(13)=h(13)*(0.2*fBW + 0.8); 
    sum_alln=sum(h); 
    sum_allm=sum(f); 
    if (any (h<=0)) 
        h = mvnrnd(mean,var,1); 
        f(1)=h(1)*fBW; 
        f(2)=h(2)*(0.7027*fBW + 0.2836); 
        f(3)=h(3)*fBW; 
        f(4)=h(4)*(0.7436*fBW + 0.2254); 
        f(5)=h(5)*fBW; 
        f(6)=h(6)*(0.8942*fBW + 0.0269); 
        f(7)=h(7)*(0.5368*fBW + 0.4092); 
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        f(8)=h(8)*(1.3571*fBW - 0.3401); 
        f(9)=h(9)*(1.9*fBW - 0.9); 
        f(10)=h(10)*(1.5945*fBW - 0.5945); 
        f(11)=h(11)*(0.5384*fBW + 0.3824); 
        f(12)=h(12)*0.9; 
        f(13)=h(13)*(0.2*fBW + 0.8); 
    elseif sum_alln>=smp_BWn 
        h = mvnrnd(mean,var,1); 
        f(1)=h(1)*fBW; 
        f(2)=h(2)*(0.7027*fBW + 0.2836); 
        f(3)=h(3)*fBW; 
        f(4)=h(4)*(0.7436*fBW + 0.2254); 
        f(5)=h(5)*fBW; 
        f(6)=h(6)*(0.8942*fBW + 0.0269); 
        f(7)=h(7)*(0.5368*fBW + 0.4092); 
        f(8)=h(8)*(1.3571*fBW - 0.3401); 
        f(9)=h(9)*(1.9*fBW - 0.9); 
        f(10)=h(10)*(1.5945*fBW - 0.5945); 
        f(11)=h(11)*(0.5384*fBW + 0.3824); 
        f(12)=h(12)*0.9; 
        f(13)=h(13)*(0.2*fBW + 0.8); 
    elseif sum_allm>=smp_BWm 
        h = mvnrnd(mean,var,1); 
        f(1)=h(1)*fBW; 
        f(2)=h(2)*(0.7027*fBW + 0.2836); 
        f(3)=h(3)*fBW; 
        f(4)=h(4)*(0.7436*fBW + 0.2254); 
        f(5)=h(5)*fBW; 
        f(6)=h(6)*(0.8942*fBW + 0.0269); 
        f(7)=h(7)*(0.5368*fBW + 0.4092); 
        f(8)=h(8)*(1.3571*fBW - 0.3401); 
        f(9)=h(9)*(1.9*fBW - 0.9); 
        f(10)=h(10)*(1.5945*fBW - 0.5945); 
        f(11)=h(11)*(0.5384*fBW + 0.3824); 
        f(12)=h(12)*0.9; 
        f(13)=h(13)*(0.2*fBW + 0.8); 
    else 
        ff=f; %organ volume (malnutrition) 
        hh=h; %organ volume (healthy) 
        break 
    end 
end 
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Code 4: samCO.m file 

 

function [ff,bb,smp_BWn,smp_BWm,smp_COn,smp_COm] = samCO(mean,var) 
smp_COn=[]; 
smp_COm=[]; 
sum_all=[]; 
bb=[]; %organ blood flow (malnutrition) 
while (mean>0) 
 [ff,hh,smp_HT,smp_SDn,smp_SDm,smp_BWn,smp_BWm,fBW] =samBW(mean,var) 
 %ff=organ volume for malnutrition 
 %hh=organ volume for healthy 
    a=9.164; 
    b=-0.0291; 
    c=0.000391; 
    d=-0.00000191; 
    CO=9119-exp(a+(b*smp_BWn)+(c*(smp_BWn^2))+(d*(smp_BWn^3)));  
    smp_COn=(CO/1000)*60; %L/h 
    BSAn=sqrt((smp_BWn*smp_HT)/3600); %BSA for healthy children 
    CI=smp_COn/BSAn; %CI of healthy and malnourished children is similar 
    BSAm=sqrt((smp_BWm*smp_HT)/3600); %BSA for malnourished children 
    smp_COm=CI*BSAm; %L/h 
%% Male organ volume %% 
    aa(1)=((hh(4)*0.05777*smp_COn)/0.4479)*(ff(4)/hh(4));     %liver 
    aa(2)=((hh(5)*0.14219*smp_COn)/0.2128)*(ff(5)/hh(5));     %gut  
    aa(3)=((hh(6)*0.02666*smp_COn)/0.0405)*(ff(6)/hh(6));     %spleen 
    aa(4)=((hh(7)*0.09324*smp_COn)/0.0857)*(ff(7)/hh(7));     %kidney 
    aa(5)=((hh(8)*0.03921*smp_COn)/2.7185)*(ff(8)/hh(8));     %muscle 
    aa(6)=((hh(9)*0.03496*smp_COn)/3.9328)*(ff(9)/hh(9));     %adipose 
    aa(7)=((hh(10)*0.01868*smp_COn)/0.3981)*(ff(10)/hh(10));  %skin 
    aa(8)=((hh(11)*0.02927*smp_COn)/0.0833)*(ff(11)/hh(11));  %heart 
    aa(9)=((hh(12)*0.31561*smp_COn)/1.0783)*(ff(12)/hh(12));  %brain 
    aa(10)=((hh(13)*0.02175*smp_COn)/0.4250)*(ff(13)/hh(13)); %bone 

     
%% Female %% 
%     aa(1)=((hh(4)*0.06040*smp_COn)/0.4149)*(ff(4)/hh(4));      %liver 
%     aa(2)=((hh(5)*0.16726*smp_COn)/0.2143)*(ff(5)/hh(5));      %gut  
%     aa(3)=((hh(6)*0.02788*smp_COn)/0.0361)*(ff(6)/hh(6));      %spleen 
%     aa(4)=((hh(7)*0.09274*smp_COn)/0.0873)*(ff(7)/hh(7));      %kidney 
%     aa(5)=((hh(8)*0.04086*smp_COn)/2.7185)*(ff(8)/hh(8));      %muscle 
%     aa(6)=((hh(9)*0.04250*smp_COn)/3.8960)*(ff(9)/hh(9));      %adipose 
%     aa(7)=((hh(10)*0.02448*smp_COn)/0.3845)*(ff(10)/hh(10));   %skin 
%     aa(8)=((hh(11)*0.03748*smp_COn)/0.0683)*(ff(11)/hh(11));   %heart 
%     aa(9)=((hh(12)*0.29287*smp_COn)/0.9602)*(ff(12)/hh(12));   %brain 
%     aa(10)=((hh(13)*0.02729*smp_COn)/0.4100)*(ff(13)/hh(13));  %bone 
    smp_COm; 
    sum_all=sum(aa); 
    if (any (aa<=0)) 
    elseif sum_all>=smp_COm 
        ko=1 
    else 
        bb=aa; %ff are organ blood flow 
        break 
    end 
end 
sum(bb); 
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Code 5: matrix.m file 

 

function [z, A, b]=matrix(p,n,dose) 
global A 
global z 
global b 
global c 
global d 
global e 
A=zeros(14,14); %matrix for PBPK equations 
z=zeros(14,1);  %initial condition (inside) 
b=zeros(14,1);  
c=zeros(1,1); %matrix for KA 
d=zeros(1,1); 
e=zeros(1,1); %matrix for Tlag 
%% -----PBPK MODEL START------ 
Vven = p(1) ; Qven = p(2) ; Kpven = p(3); CLven = p(4); Cven0 = p(5); 
Vlu = p(6) ; Qlu = p(7) ; Kplu = p(8); CLlu = p(9); Clu0 = p(10); 
Vart = p(11); Qart = p(12); Kpart = p(13); CLart = p(14); Cart0 = p(15); 
Vli = p(16); Qli = p(17); Kpli = p(18); CLli = p(19); Cli0 = p(20); 
Vgut = p(21); Qgut = p(22); Kpgut = p(23); CLgut = p(24); Cgut0 = p(25); 
Vspl = p(26); Qspl = p(27); Kpspl = p(28); CLspl = p(29); Cspl0 = p(30); 
Vki = p(31); Qki = p(32); Kpki = p(33); CLki = p(34); Cki0 = p(35); 
Vmu = p(36); Qmu = p(37); Kpmu = p(38); CLmu = p(39); Cmu0 = p(40); 
Vad = p(41); Qad = p(42); Kpad = p(43); CLad = p(44); Cad0 = p(45); 
Vsk = p(46); Qsk = p(47); Kpsk = p(48); CLsk = p(49); Csk0 = p(50); 
Vht = p(51); Qht = p(52); Kpht = p(53); CLht = p(54); Cht0 = p(55); 
Vbr = p(56); Qbr = p(57); Kpbr = p(58); CLbr = p(59); Cbr0 = p(60); 
Vbo = p(61); Qbo = p(62); Kpbo = p(63); CLbo = p(64); Cbo0 = p(65); 
Vre = p(66); Qre = p(67); Kpre = p(68); CLre = p(69); Cre0 = p(70); 
fu=p(71); KA=p(72); F=p(73); TLag=p(74); R=p(75); 
Qtot=Qlu; 
Qhe = Qli + Qgut + Qspl; 
%Hepatic clearance 
fup=fu*R; 
if (Qhe>CLli) 
    CLint=(Qhe*CLli)/(fup*(Qhe-(CLli/R))); 
else 
    CLint=Qhe; 
end 
CLH=CLint*fu; %corrected to obtain Kpu 
CLR=CLki/R; 
CLT=CLgut/R; 
A(1,1) = -Qtot/Vven; 
A(2,1) = Qtot/Vlu; 
A(4,1) = Qli/Vli; 
A(5,1) = Qgut/Vgut; 
A(6,1) = Qspl/Vspl; 
A(7,1) = Qki/Vki; 
A(8,1) = Qmu/Vmu; 
A(9,1) = Qad/Vad; 
A(10,1)= Qsk/Vsk; 
A(11,1)= Qht/Vht; 
A(12,1)= Qbr/Vbr; 
A(13,1)= Qbo/Vbo; 
A(14,1)= Qre/Vre; 
A(1,4) = Qhe/(Vven*(Kpli/R));  
A(1,7) = Qki/(Vven*(Kpki/R)); 
A(1,8) = Qmu/(Vven*(Kpmu/R)); 
A(1,9) = Qad/(Vven*(Kpad/R)); 
A(1,10)= Qsk/(Vven*(Kpsk/R)); 
A(1,11)= Qht/(Vven*(Kpht/R)); 
A(1,12)= Qbr/(Vven*(Kpbr/R)); 
A(1,13)= Qbo/(Vven*(Kpbo/R)); 
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A(1,14)= Qre/(Vven*(Kpre/R)); 
A(3,2) = Qtot/(Vart*(Kplu/R));   
A(4,5) = Qgut /(Vli*(Kpgut/R));  
A(4,6) = Qspl/(Vli*(Kpspl/R));   
A(2,2) = -(Qtot)/(Vlu*(Kplu/R)); 
A(3,3) = -Qtot / Vart; 
A(4,4) = -(Qhe+CLH)/(Vli*(Kpli/R)); 
A(5,5) = -(Qgut+CLT)/(Vgut*(Kpgut/R)); 
A(6,6) = -(Qspl)/(Vspl*(Kpspl/R)); 
A(7,7) = -(Qki+CLR)/(Vki*(Kpki/R)); 
A(8,8) = -(Qmu)/(Vmu*(Kpmu/R)); 
A(9,9) = -(Qad)/(Vad*(Kpad/R)); 
A(10,10) = -(Qsk)/(Vsk*(Kpsk/R)); 
A(11,11) = -(Qht)/(Vht*(Kpht/R)); 
A(12,12) = -(Qbr)/(Vbr*(Kpbr/R)); 
A(13,13) = -(Qbo)/(Vbo*(Kpbo/R)); 
A(14,14) = -(Qre)/(Vre*(Kpre/R)); 
%% ---------- PBPK END ----------%% 
c=KA; 
d=(F*dose)/Vgut; 
e=TLag; 
end 

 

Code 6: PKmodel.m file 

 

function [dydt] = PKmodel(t,y) 
global A; 
global b; 
global c; 
global d; 
global e; 
f=zeros(14,1); 
f(5)=(c*d)*exp(-c*(t-e)); 
if t<=e 
    [dydt]=A*y+0.00000001; 
else 
    [dydt]=A*y+f; 
end 
end 
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Appendix III: Comparison of concentration-time profiles in 

different organs obtained from a WBPBPK model of healthy 

children and malnourished children 

 

A: children aged 6 months (1/2) 

 

     

     

      

 

Key: solid line = healthy children, dashed line = malnourished children. 
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A: children aged 6 months (2/2) 
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B: children aged 1 year (1/2) 

 

     

     

     

     

 

Key: solid line = healthy children, dashed line = malnourished children. 
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B: children aged 1 year (2/2) 
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C: children aged 5 years (1/2) 

 

     

    

            

     

 

Key: solid line = healthy children, dashed line = malnourished children. 
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C: children aged 5 years (2/2) 
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D: children aged 10 years (1/2) 

 

    

    

    

    

 

Key: solid line = healthy children, dashed line = malnourished children. 
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D: children aged 10 years (2/2) 

 

     

     

     

 


