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Abstract

In this thesis we use a combination of analytical and numerical methods to anal-

yse two aspects of the steady flow of rivulets of fluid, namely the effects of

non-Newtonian rheology, and the transport of a passive solute in a rivulet of

Newtonian fluid.

In Chapters 2–4 we consider rivulet flow of non-Newtonian fluids. Firstly, we

obtain the solution for unidirectional gravity-driven flow of a uniform thin rivulet

of a power-law fluid down a planar substrate, and then we use this solution to

describe the flow of a rivulet with prescribed constant contact angle but slowly

varying semi-width down a slowly varying substrate, specifically the flow in the

azimuthal direction around the outside of a large horizontal circular cylinder.

Secondly, we use the solution for unidirectional flow to describe the flow of a

rivulet with prescribed constant semi-width but slowly varying contact angle

down a slowly varying substrate. Thirdly, we consider rivulet flow of generalised

Newtonian fluids down a vertical planar substrate. In particular, we obtain the

solutions for rivulet flow of a Carreau fluid and of an Ellis fluid, highlighting their

similarities and differences.

In Chapters 5 and 6 we investigate both the short-time advection and the

long-time Taylor–Aris dispersion of a passive solute in uniform non-thin and thin

rivulets, respectively, of a Newtonian fluid undergoing steady unidirectional flow

driven by gravity and/or a prescribed uniform surface shear stress on a vertical

planar substrate. In particular, we obtain an explicit expression for the effective
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diffusivity of the solute in a thin rivulet as a function of the surface shear stress,

the volume flux along the rivulet, and either the semi-width or the contact angle

of the rivulet.
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Chapter 1

Introduction

This thesis concerns two aspects of the steady flow of rivulets of fluid, namely

the effects of non-Newtonian rheology, and the transport of a passive solute in a

rivulet of Newtonian fluid.

1.1 Rivulet Flow

When a continuous fluid film flows over a substrate, it may break up into one

or more rivulets, as shown in Figure 1.1. A rivulet (sometimes also called a

trickle) can be defined as a narrow stream of fluid that shares a curved free

surface with the surrounding atmosphere, with contact angles at the three-phase

contact lines where the substrate, fluid and the surrounding atmosphere are all in

contact. A key feature of rivulet flow is that it is long and slender, with the flow

predominantly along the rivulet (i.e. in the direction of the longer length scale).

Rivulets can occur in small-scale flows as well as in large-scale flows.

The flow of rivulets of both Newtonian and non-Newtonian fluids is a funda-

mental fluid mechanics problem of enduring theoretical and experimental interest

both in its own right and as a prototype problem for a variety of more complex

flows. Here we give three specific reasons motivating the study of this problem.

Firstly, rivulets of non-Newtonian fluids occur in a wide range of devices in

1



Chapter 1 2

Figure 1.1: Image showing a gravity-driven film breaking into a series of rivulets down a
substrate inclined at angle π/4 to the horizontal, from an experiment by Hocking et al. [56].
Reprinted from Hocking et al. [56] with permission, copyright 1999, from American Institute
of Physics.

engineering processes and industrial technology, including condensers and heat

exchangers (see, for example, Vlasogiannis et al. [127]), as well as in the use of

catalysts in trickle-bed reactors (see, for example, Maiti et al. [75]) and in desali-

nation plants (see, for example, Semiat et al. [112]). Other important situations

in which rivulets often appear are any industrial processes in which painting or

coating is involved, such as in the manufacture of vehicles. In such situations it

is very important to prevent the formation of rivulets (which might be affected

by any non-uniformities in the temperature of the substrate or the thickness of

the coating) as they could seriously degrade the quality of the coating (see, for

example, Myers [90]). A more commonly encountered everyday occurrence of

rivulets includes the pouring of sauce over a dessert (as shown in Figure 1.2(a)).

Secondly, on large scales, rivulet flow can occur in geophysical contexts such

as the spreading flow of mud, the flow of lava from a volcanic eruption, and

the cascade of an avalanche of snow down a mountain. These types of flow

have motivated several authors to use theoretical and experimental approaches

to address various aspects of the problem of rivulet flow, such as Coussot [23] for

flows of mud, and Griffiths [52] for flows of lava (as shown in Figure 1.2(b)). An
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(a) (b)

Figure 1.2: (a) Image showing rivulets encountered when pouring sauce over a dessert. Pho-
tograph courtesy of fotor [45]. (b) Image showing a rivulet flow of lava [62].

(a) (b)

Figure 1.3: (a) Image showing rainwater on the window of a moving vehicle. Photograph by
Prof. S. K. Wilson. (b) Image showing ice accretion on an aircraft wing. Photograph courtesy
of Aviation Education Multimedia Library [72].

important factor in rivulet flow in these contexts is the temperature of the ice or

lava, because slight temperature differences lead to relatively large variations in

their rheological properties.

Thirdly, there are many situations in which rivulet flow occurs in the presence

of external forces, such as those due to an external airflow, for example, rivulets

of rainwater on the windows of a rapidly moving vehicle on a rainy day (as shown

in Figure 1.3(a)), and the rivulets of de-icing fluid that form on aircraft wings

during flight (as shown in Figure 1.3(b)) (see, for example, Myers and Charpin

[88], Myers et al. [89], Sullivan et al. [118], and Paterson et al. [99] and the

references therein). Another interesting phenomenon involving rivulets subject to

an external airflow is the Rain–Wind-Induced Vibrations (RWIVs) of the cables

of cable-stayed bridges, in which rivulets of rainwater that form on the cables

interact with the wind and play a crucial role on the occurrence of substantial

vibrations of the cables (see, for example, Robertson et al. [106]).
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However, despite the widespread occurrence of non-Newtonian rheology in

many of the practical occurrences of rivulet flow described above, there has been

surprisingly little theoretical work on rivulet flow of non-Newtonian fluids. The

work presented in Chapters 2–4 of the present thesis goes some way to rectifying

this shortfall.

In Chapters 2–4 of this thesis we shall be concerned with understanding rivulet

flows of non-Newtonian fluids, and so in Section 1.2 we present a general intro-

duction to Newtonian and non-Newtonian fluids, and we will then describe them

in more mathematical detail in Section 1.3. As we shall be concerned primarily

with thin rivulets, in Section 1.4 we give an overview of thin-film flows, and in

Sections 1.5–1.10 we describe various aspects of rivulet flow. Also, in Chapters

5 and 6 we will consider the transport of a passive solute in rivulet flows of a

Newtonian fluid, and so in Section 1.11 we give a brief overview of the concept

of dispersion of a solute in a flowing fluid.

1.2 Newtonian and Non-Newtonian fluids

We can classify any fluid as either Newtonian or non-Newtonian depending on

its behaviour when it flows. A Newtonian fluid is one for which the relationship

between the stress tensor and the rate-of-strain tensor is linear with the coefficient

of the proportionality in this relationship, namely the viscosity, being a constant.

The viscosity of a fluid can be thought of as a measure of the frictional resistance

to the flow of the fluid. A non-Newtonian fluid is one whose behaviour deviates

from that of a Newtonian fluid.

In order to help our understanding of the different types of non-Newtonian

fluids, we need to have an understanding of rheology. The term rheology, which

was coined by E. C. Bingham in 1929 (see, for example, Barnes et al. [13] and

Morrison [83]), is defined as the study of the deformation and flow of matter.
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There has been a considerable appreciation of the importance of the study of

rheology in many fields such as chemical engineering, in which an understanding of

how non-Newtonian fluids behave under stress is of considerable practical interest

(see, for example, Morrison [83], Tanner [120], and Tanner and Walters [121]).

Some common fluids that exhibit non-Newtonian rheology are pharmaceuti-

cal products (for example, creams and foams), polymer solutions, suspensions,

quicksand and foodstuffs such as ketchup, cornflour and dairy products (for ex-

ample, cream and yoghurt), whose physical properties change when a shear stress

is applied. For example, toothpaste becomes runnier and flows more easily when

it is squeezed from a toothpaste tube (i.e. its viscosity decreases with increasing

shear rate), but returns to an almost solid state when the shear stress is removed

(i.e. its viscosity increases). This most common non-Newtonian behaviour is

known as shear-thinning or pseudoplastic behaviour. Specifically, shear-thinning

materials exhibit a decrease in their viscosity under an increase in shear rate.

However, other fluids show the converse behaviour; for example, cornflour mixed

with water becomes “thicker” when subjected to a high shear (i.e. its viscosity

increases and it behaves like a solid), but it becomes “thinner” when subjected

to a low shear. Quicksand has similar properties to cornflour solutions, with the

consequence that the best way to escape from quicksand is to try move slowly

and thereby to reduce its viscosity. This converse behaviour occurs for shear-

thickening or dilatant fluids; such materials exhibit an increase in their viscosity

under an increase in shear rate.

Shear-thinning and shear-thickening behaviour are not the only non-Newtonian

effects. In particular, some non-Newtonian fluids exhibit surprising behaviour as-

sociated with viscoplasticity and/or viscoelasticity. Viscoplastic materials behave

essentially like a solid unless the shear stress exceeds a critical value, known as

the yield stress, above which they deform and begin to flow. Viscoelastic ma-

terials exhibit characteristics of both viscous and elastic behaviour. Examples
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(a) (b)

❍❍❨
The nozzle

Figure 1.4: Viscoelastic behaviour. (a) Rod-climbing exhibited by a solution of a polystyrene
polymer in polybutene oil generated by clockwise or anticlockwise rotation of the rod. (b) Die-
swell exhibited by a solution of 1% polyacylamide in a mixture of 50% glycerol and 50% water
when extruded through a nozzle. Photographs courtesy of Gareth McKinley’s Non-Newtonian
Fluid Dynamics Research Group at MIT [77].

of the surprising behaviour associated with the latter are rod climbing (the so-

called Weissenberg effect), in which a fluid climbs up a rod spun in a container

of the fluid, as shown in Figure 1.4(a)), and also die swell, in which a fluid flow-

ing through a capillary swells when it emerges into the atmosphere, as shown in

Figure 1.4(b) (see, for example, Boger and Walters [19] and Morrison [83]).

1.3 Mathematical Modelling in Rheology

In this section we give a brief overview of the mathematical modelling of non-

Newtonian fluids, and describe in detail the three main models used in this thesis.

The flow of an incompressible fluid of constant density ρ is described by

Cauchy’s balance of momentum (i.e. the equation of motion),

ρ
Du

Dt
= ρf +∇ · σ, (1.1)

and the mass-conservation equation (i.e. the continuity equation),

∇ · u = 0, (1.2)
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where f denotes any body force per unit mass acting on the fluid (e.g. gravity

or electromagnetic forces), σ is the symmetrical Cauchy stress tensor, D/Dt =

∂/∂t+u · ∇ is the material time derivative, u is the fluid velocity, ∇ is the usual

vector differential gradient operator, and t denotes time. Note that the Cauchy

equation (1.1) is valid for all fluids, including both Newtonian and non-Newtonian

fluids. We decompose σ as

σ = −pI+ σ
′, (1.3)

where p is the fluid pressure, I is the identity tensor, and σ
′ is the extra-stress

tensor, that is, the part of the stress other than the pressure. What distinguishes

different fluids in (1.1) is the way in which σ
′ is related to deformation, that is, to

kinematic variables; this is given by a relation known as the constitutive equation

of the fluid (see, for example, Barnes et al. [13]).

1.3.1 A Newtonian Fluid

The constitutive equation of a Newtonian fluid is given by

σ
′ = 2µe, (1.4)

where µ is the fluid viscosity, and e is the rate-of-strain tensor, given by

e =
1

2

(
∇u+ (∇u)T

)
. (1.5)

Substituting equations (1.3)–(1.5) into the equation of motion (1.1) yields the

familiar equation of motion for an incompressible Newtonian fluid, namely the

Navier–Stokes equation:

ρ
Du

Dt
= −∇p+ ρf + µ∇2u. (1.6)
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In order to determine solutions to the mass-conservation equation (1.2) and

Navier–Stokes equation (1.6), it is necessary to impose appropriate initial and

boundary conditions on the velocity and pressure.

At any boundary S between a fluid and a solid, the tangential component of

velocity is continuous and satisfies the no-slip condition

[u · t]21 = 0 on S, (1.7)

where t denotes a unit vector tangent to S, while the normal component of

velocity is also continuous and satisfies the no-penetration condition

[u · n]21 = 0 on S, (1.8)

where n denotes the unit vector normal to S, and [·]21 denotes the change in a

quantity across S. In particular, at any boundary S moving with velocity U the

no-slip condition (1.7) and the no-penetration condition (1.8) become

u · t−U · t = 0, (1.9)

u · n−U · n = 0, (1.10)

respectively. Together, equations (1.9) and (1.10) mean that the velocity of the

fluid is continuous everywhere and is equal to the velocity of the boundary, that

is,

u = U on S. (1.11)

Also, at any boundary S between two fluids the stress-balance equation

[σ · n]21 = γ(∇ · n)n−∇γ on S (1.12)

is satisfied, where γ is the coefficient of surface tension on S and ∇·n is the mean
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curvature of S. The surface tension arises from the imbalance of molecular forces

on the surface. In the special case of constant γ, the balances of the normal and

tangential stress are therefore given by

[n · σ · n]21 = γ∇ · n, (1.13)

[t · σ · n]21 = 0, (1.14)

respectively, on S. In addition, at any boundary S between two fluids, on the

assumption that the fluid particles on the boundary remain on the boundary, we

also have the kinematic condition, given by

DF

Dt
= 0 on S, (1.15)

where F (x, t) = 0 is the equation for the boundary. The volume flux of fluid

across any surface S is given by

Q =

∫∫

S

u · n dS, (1.16)

where n is again the unit vector normal to S.

To solve unsteady problems we must impose initial conditions for u and p of

the form

u(x, t = 0) = u0(x), p(x, t = 0) = p0(x), (1.17)

where t = 0 is the initial time and x denotes the position vector.

1.3.2 Generalised Newtonian Fluids

A generalised Newtonian fluid is one for which the equation of motion (1.1)

again holds, but for which the viscosity varies with either the shear rate q or the

shear stress τ , so that the relation between stress and shear rate is non-linear.
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Specifically, for such fluids the viscosity is prescribed either as a function µ = µ(q)

of the shear rate q given by

q =
(
2 tr

(
e2
) )1/2

, (1.18)

or as a function µ = µ(τ) of the measure of stress τ given by

τ =

(
1

2
tr
(
σ

′2
))1/2

. (1.19)

Use of (1.4)–(1.19) shows that µ, q and τ are related by

τ = µq. (1.20)

In practice, one or the other of the forms µ = µ(q) or µ = µ(τ) may be consid-

erably more convenient to use than the other (such as, for example, when one of

them is prescribed explicitly whereas the other is known only implicitly).

In this thesis we shall firstly focus on the simplest generalised Newtonian fluid

whose viscosity is usually expressed in the form µ = µ(q), namely a power-law

fluid (sometimes also called the Ostwald–de Waele fluid; see Barnes et al. [13]),

for which the viscosity is directly proportional to a power of the shear rate, so

that the constitutive equation takes the form

σ
′ = 2µ(q)e, µ(q) = µNq

N−1, (1.21)

where the power-law index N and the consistency parameter of the fluid µN

are constants. Note that the dimensions of µN depend on N . In this case, the

measure of the stress, τ , takes the form τ = µ(q)q = µNq
N . In practice, N is

usually found to lie between 0.1 and 1, although values outside this range do

occur, see Barnes et al. [13]. So, in order to investigate the full range of possible
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Table 1.1: Values of the physical parameters in the power-law model (1.21) for various well-
known materials for particular ranges of shear rates, where µN is the consistency parameter of
the fluid and N is the power-law index. Data taken from Barnes et al. [13].

Material µN [Pa sN]A N Shear rate range [s−1]

Ball-point pen ink 10 0.85 100–103

Fabric conditioner 10 0.6 100–102

Molten chocolate 50 0.5 10−1–102

Skin cream 250 0.1 100–102

behaviour in this thesis, we shall allow N to take any positive value.

Table 1.1 shows parameter values for some examples of shear-thinning fluids

modelled by the power-law model given by (1.21).

Because of its inherent simplicity, the power-law fluid has been used widely to

study the rheological behaviour of both shear-thinning fluids (µ decreases with

q) when 0 < N < 1 and shear-thickening fluids (µ increases with q) when N > 1

over a wide range of flow conditions. When N = 1 the special case of a Newtonian

fluid with constant viscosity is recovered.

Although the power-law fluid offers the simplest example of non-Newtonian

behaviour, it suffers from a major shortcoming, namely that it is valid over only

a limited range of shear rates; in particular, a power-law fluid predicts an un-

physically large viscosity at low shear rates for shear-thinning fluids and small

viscosity at low shear rates for shear-thickening fluids. For example, in steady

unidirectional pressure-driven flow in a channel, since the shear rate is zero on the

mid-line of the channel, the viscosity of a shear-thinning power-law fluid would

be infinite there (Myers [91]). Moreover, it is found experimentally that real

non-Newtonian fluids exhibit Newtonian behaviour with finite nonzero viscosi-

ties at both zero and infinite shear rates, but this behaviour is not captured by

the power-law model. Despite the shortcomings of the power-law model, it has

proved useful in many situations and is the most popular and widely used non-

Newtonian model. Its shortcoming can be rectified by using more complicated

models such as the Carreau fluid and the Ellis fluid, which we now describe.



Chapter 1 12

Table 1.2: Values of the physical parameters in the Carreau fluid (1.22) for various well-
known materials, where µ0 and µ∞ (≤ µ0) are the viscosities at zero and infinite shear rate,
respectively, λ is a (finite) relaxation time, and N (≤ 1) is a measure of the shear-thinning
behaviour. Data taken from Tanner [120].

Material µ0 [Pa s]A µ∞ [Pa s] λ [s] N

0.75% Separan-30 in a mixture
of 95% water and 5% glycerol 10.6 0.01 8.04 0.364
2% polyisobutylene
in Primol 355 923 0.15 191 0.358
7% Aluminum soap
in decalin and m-cresol 89.6 0.01 1.41 0.2
Phenoxy-A at 485 K 1.24× 104 0 7.44 0.728

Another example of a generalised Newtonian fluid whose viscosity is usually

expressed in the form µ = µ(q) is a Carreau fluid (see, for example, Tanner [120]

and Myers [91]), given by

µ = µ∞ +
µ0 − µ∞(

1 + λ2q2
)(1−N)/2

, (1.22)

where µ0 and µ∞ (≤ µ0) are the viscosities at zero and infinite shear rate, re-

spectively, λ is a (finite) relaxation time, and N (≤ 1) is a measure of the shear-

thinning behaviour (specifically, the smaller the value of N , the greater the rate

of shear thinning). A Newtonian fluid may be recovered from a Carreau fluid in

the limits λ → 0, λ → ∞, N → 1 and µ∞ → µ0. Table 1.2 shows parameter

values for some examples of shear-thinning fluids modelled by the Carreau model

given by (1.22).

An example of a generalised Newtonian fluid whose viscosity is usually ex-

pressed in the form µ = µ(τ) is an Ellis fluid (see, for example, Barnes, Hutton

and Walters [13]), sometimes known as the Meter model [80], given by

µ = µ∞ +
µ0 − µ∞

1 +

(
τ

τav

)α−1 , (1.23)
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Table 1.3: Values of the physical parameters in the Ellis fluid (1.23) for four aqueous solutions
of Natrosol 250, Type H (hydroxyethyl cellulose, high viscosity grade), where µ0 and µ∞ (≤ µ0)
are the viscosities at zero and infinite shear rate, respectively, τav is the (non-zero) value of the
stress τ when µ takes the average value µ = µav = (µ0 + µ∞)/2, and α (≥ 1) is a measure of
the shear-thinning behaviour. Data taken from Meter and Bird [80].

Concentration µ0 [Pa s]A µ∞ [Pa s] τav [dyn cm−2] α

0.3% 0.023 0.00122 78 2.02
0.5% 0.109 0.0015 76 2.19
0.7% 0.386 0.00185 106 2.54
1% 2.03 0.0025 173 3.1

where τav is the (non-zero) value of the stress τ when µ takes the average value

µ = µav = (µ0+µ∞)/2, and α (≥ 1) is a measure of the shear-thinning behaviour

(specifically, the larger the value of α, the greater the rate of shear thinning).

A Newtonian fluid may be recovered from an Ellis fluid in the limits τav → ∞,

µ∞ → µ0 and α → 1. A conventional Ellis fluid (see, for example, Myers [91]

and Kieweg [67]), which has zero viscosity in the limit of infinite stress τ → ∞,

corresponds to the special case µ∞ = 0. Table 1.3 shows parameter values for

some examples of shear-thinning fluids modelled by the Ellis model given by

(1.23).

1.3.3 Viscoplastic Fluids

An important class of non-Newtonian fluids are viscoplastic fluids, whose be-

haviour obeys the generalised Newtonian model with a yield stress. Many con-

stitutive equations have been used to model viscoplastic fluids (see, for example,

the early review article by Bird et al. [17]). Perhaps the simplest model of such a

fluid is a biviscosity fluid (see, for example, Lipscomb and Denn [73] and Gartling

and Phan-Thien [47]), given by

µ =





µ0 for q ≤ qc,

µ∞ + (µ0 − µ∞)
qc
q

for q > qc,

(1.24)
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or, equivalently,

µ =





µ0 for τ ≤ τc,

µ∞

1−
(
µ0 − µ∞

µ0

)
τc
τ

for τ > τc,
(1.25)

where qc and τc denote a critical shear rate and a yield stress, respectively, related

by τc = µ0qc. For a biviscosity fluid there will be a transition from a constant

viscosity to a non-constant viscosity across any surface within the fluid on which

q = qc or, equivalently, τ = τc. A Bingham fluid behaves like a perfectly rigid

solid plug when the stress is less than the yield stress but otherwise it behaves like

a viscous fluid; in particular, a Bingham fluid may be obtained from a biviscosity

fluid (1.24) in the distinguished limit µ0 → ∞ and qc → 0 with µ0qc held fixed.

Other popular models that have been used to describe the behaviour of a

viscoplastic fluid are the Herschel–Bulkley model and the Casson model (see, for

example, Barnes [12]), defined by

τ = τc + µ∞q
N for τ ≥ τc,

√
τ =

√
τc +

√
µ∞q for τ ≥ τc,

(1.26)

respectively, where τ = 0 for τ ≤ τc. Figure 1.5 shows a summary of the relation-

ships between the stress, τ , and the shear rate, q, for Newtonian and generalised

Newtonian fluids, including the Bingham and Herschel–Bulkley models.

1.4 Mathematical Modelling of Thin-Film Flows

In this section we give a brief overview of classical lubrication theory for a thin

layer of fluid between a substrate and an unknown free surface using the ap-

proach pioneered by Reynolds [105]. The same approach may also be applied

to many other situations, including journal bearings, pressure-driven flow in a
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Shear rate, q

Shear stress, τ

Yield stress, τc

Herschel–Bulkley
Bingham

Newtonian

Shear thinning

Shear thickening

Figure 1.5: Sketch of the relationship between the shear stress, τ , and shear rate, q, for
Newtonian and generalised Newtonian fluids, including the Bingham and Herschel–Bulkley
models. The constant slope of the Newtonian flow curve is its viscosity.

slowly varying channel and squeeze films (in which a thin-film of fluid is squeezed

between two prescribed boundaries moving toward each other). In most of this

thesis (specifically Chapters 2–4 and 6 but not Chapter 5) we will use this theory

to analyse the flow of uniform rivulets on an inclined substrate in cases when the

cross-sectional profile of the rivulet transverse to the direction of flow is thin.

In general, the governing equations (1.2) and (1.6) must be solved numeri-

cally; however, we can often apply some practically relevant approximations to

the equations and boundary conditions to permit the possibility of at least some

analytical progress; this is because in practice some physical effects can dominate

others, and it is a good approximation to retain only the dominant effects. For

example, the introduction of an appropriate small aspect ratio allows simplifi-

cation of the governing equations by neglecting terms that are small compared

to others, and often results in equations where analytical progress can be made.

In particular, if a film of fluid is sufficiently thin, the governing equations can

be greatly simplified via a thin-film or lubrication approximation based on the
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Figure 1.6: Sketch of unsteady two-dimensional gravity-driven flow of fluid draining down a
planar substrate inclined at an angle α to the horizontal.

smallness of the aspect ratio of the film, given by

δ =
H

L
≪ 1, (1.27)

where H = δL and L are typical lengthscales in the transverse and longitudinal

directions, respectively, in which the fluid predominantly flows in the longitudinal

direction.

We will present the idea of this approximation by considering a simple prob-

lem, namely, the unsteady two-dimensional gravity-driven flow of fluid on an

inclined planar substrate. Consider two-dimensional flow of a thin-film of Newto-

nian fluid with constant density ρ and viscosity µ down a planar substrate inclined

at an angle α (0 ≤ α ≤ π) to the horizontal, as shown in Figure 1.6. We choose

Cartesian coordinates Oxz with the x-axis and z-axis taken to be in the longitu-

dinal (i.e. along the substrate) and transverse (i.e. normal to the substrate) direc-

tions, respectively. The substrate is at z = 0, and we denote the free surface of the

fluid by z = h, where h = h(x, t) is the film thickness, and again t denotes time.

The velocity and pressure of the fluid are denoted by u = (u(x, z, t), 0, w(x, z, t))

and p = p(x, z, t), respectively. We non-dimensionalise and scale the system
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appropriately by writing

x = Lx∗, z = δLz∗, h = δLh∗, t =
L

U
t∗,

u = Uu∗, w = δUw∗, p = p0 + ρgδLp∗, Q = δULQ∗,

(1.28)

where p0 denotes the constant atmospheric pressure, and g denotes acceleration

due to gravity. With the star superscripts immediately dropped for clarity, equa-

tions (1.2) and (1.6) become

ux + wz = 0, (1.29)

δ2Re(ut + uux + wuz) = −δpx + sinα + δ2uxx + uzz, (1.30)

δ4Re(wt + uwx + wwz) = −pz − cosα + δ2(δ2wxx + wzz), (1.31)

where Re = ρUL/µ denotes the non-dimensional Reynolds number of the flow,

which is the ratio of inertial forces to viscous forces, and U = ρgδ2L2/µ is taken

to be the relevant velocity scale, which leads to Re = ρ2gδ2L3/µ2

We take the reduced Reynolds number, defined by Re∗ = δ2Re ≪ 1, to be

small; in particular, this condition may be satisfied even if the Reynolds number

itself is not small. Therefore, at leading order in the thin-film limit δ → 0, the

governing equations (1.29)–(1.31) reduce to

ux + wz = 0, (1.32)

sinα + uzz = 0, (1.33)

−pz − cosα = 0, (1.34)

respectively. Equations of this types are often called the lubrication equations.

Also, at leading order in δ the boundary conditions of no-slip (1.9) and no-
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penetration (1.10) on the substrate are given by

u = w = 0 on z = 0. (1.35)

At the free surface z = h the unit normal and relevant unit tangent vector are

given by

n =
(−δhx, 1)

(1 + δ2h2x)
1/2
, t =

(1, δhx)

(1 + δ2h2x)
1/2
, (1.36)

respectively, and so the normal stress component n · σ · n, the tangential stress

component t · σ · n, and the mean curvature ∇ · n are given by

n · σ · n =
1

1 + δ2h2x

(
− p

δ2
− ph2x − 2uzhx + 2wz + δ2

(
2uxh

2
x − 2wxhx

))
, (1.37)

t · σ · n =
1

1 + δ2h2x

(uz
δ

+ δ
(
wx − 2uxhx + 2wzhx − uzh

2
x

)
− δ3wxh

2
x

)
, (1.38)

∇ · n = − δhxx
(1 + δ2h2x)

3/2
. (1.39)

Therefore, at leading order in the limit δ → 0 the normal stress-balance and

tangential stress-balance equations (1.13) and (1.14) reduce to

p = −C−1
a hxx, (1.40)

uz = 0, (1.41)

respectively, at z = h, where

Ca =
ρgL2

δγ
(1.42)

is the appropriate capillary number, which is the ratio of viscous forces and

surface-tension forces, and which we have taken to be O(1). Note that the latter

choice is appropriate for this particular problem, but it may not be appropriate



Chapter 1 19

in other situations. Also, the kinematic condition (1.15) is given by

D(h− z)

Dt
= 0 on z = h(x, t), (1.43)

which yields

ht + uhx − w = 0, (1.44)

which may also be rewritten as

ht +Qx = 0, (1.45)

where Q = Q(x, t) (from (1.16)), defined by

Q =

∫ h

0

u dz, (1.46)

is the volume flux of fluid per unit width draining in the longitudinal direction.

In the case when the effects of surface tension are negligible (i.e. C−1
a → 0

or Ca → ∞) the solution to (1.32)–(1.34) for the pressure p and the velocity

u subject to the no-slip and no-penetration conditions (1.35) on z = 0 and the

balances of normal stress (1.40) and tangential stress (1.41) on z = h, is given by

p = cosα(h− z), u =
sinα

2
(2hz − z2), w = −sinα

2
hxz

2. (1.47)

Therefore the volume flux per unit width across a station x = constant, down

the substrate, is given by

Q =

∫ h

0

u dz =
sinα

3
h3, (1.48)

and so the kinematic condition (1.45) leads to the partial differential equation for
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the free surface profile h, namely

ht + sinαh2hx = 0. (1.49)

Hence, the net effect of the lubrication approximation is to replace the mass-

conservation equation (1.2) and Navier–Stokes equation (1.6) with a single partial

differential equation for h, namely (1.49), so that the solutions for the pressure p

and velocity u for the two-dimensional unsteady flow of a thin-film of a Newtonian

fluid given by (1.47) are known completely once (1.49) is solved.

Huppert [61] solved (1.49) by using the method of characteristics to obtain

the implicit solution

h = f
(
x− h2t sinα

)
, (1.50)

where f = f(x) is the initial free surface shape of the film at t = 0. As time pro-

gresses the flow of the bulk of the fluid approaches the unique similarity solution

h =
( x

t sinα

)1/2
, (1.51)

which is independent of the initial shape f = f(x). This similarity solution

predicts that the height of the free surface varies with x and t according to x1/2 and

t−1/2. Huppert [61] truncated this solution appropriately to find the expression

for the “nose” (i.e. the front) of the flow at time t, denoted by x = xN (t), namely

xN(t) =

(
9A2t sinα

4

)1/3

, (1.52)

where A is the initial volume (i.e. area) of the film per unit width in the y

direction, given by

A =

∫ xN

0

h(x, t) dx; (1.53)

the solution for h is then given by (1.51) for 0 ≤ x ≤ xN . The effects of surface
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tension, which are neglected in this analysis, become important near the nose of

the flow x = xN(t). The similarity solution (1.51)–(1.53) of Huppert [61] is in

excellent agreement with his own experimental measurements.

More generally, as a result of the simplicity of the equations arising in lu-

brication theory, which has been widely used to make analytical and numerical

progress in thin-film flow problems, there has been a vast amount of scientific

research using this approach, and there are several comprehensive review articles

covering various aspects of this theory (see, for example, Oron et al. [94], Colinet

et al. [22] and Craster and Matar [24]).

1.5 Flow of a Thin Rivulet Down a Planar Sub-

strate

In Chapters 2–4 we will consider steady gravity-driven flow of a rivulet of non-

Newtonian fluid, and in Chapters 5 and 6 we will consider steady flow of a rivulet

of a Newtonian fluid driven by gravity and/or a uniform surface shear stress on

the free surface of the rivulet. In this Section we introduce some key concepts and

ideas that will be used in all of these Chapters; in particular, in Subsections 1.7.1

and 1.7.2 we summarise the main results of Wilson and Duffy [131] and Duffy

and Moffatt [31], respectively, both of whom considered steady unidirectional

gravity-driven flow of a rivulet of a Newtonian fluid with constant contact angle

draining down a slowly varying substrate, in Subsection 1.7.3 we summarise the

main results of Paterson et al. [97] who considered a “converse” situation of flow

of a rivulet of a Newtonian fluid with constant semi-width but varying contact

angle draining down a slowly varying substrate, in Section 1.9 we summarise the

main results of Smith [114] and Duffy and Moffatt [32], both of whom considered

gravity-driven flow of a non-uniform rivulet on an inclined planar substrate, and

in Section 1.10 we review other relevant previous work on rivulet flow.
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Figure 1.7: Sketch of steady gravity-driven flow of a symmetric rivulet draining down a planar
substrate inclined at an angle α to the horizontal.

Consider steady gravity-driven draining of a symmetric rivulet of Newtonian

fluid with constant density ρ, viscosity µ and coefficient of surface tension γ,

and of constant volume flux Q down a planar substrate inclined at an angle α

(0 ≤ α ≤ π) to the horizontal, as shown in Figure 1.7.

The case 0 ≤ α < π/2 corresponds to flow down the upper side of the substrate

(a sessile rivulet), the case π/2 < α ≤ π corresponds to flow down the lower side

of the substrate (a pendent rivulet), and the case α = π/2 corresponds to flow

down a vertical substrate. We adopt the Cartesian coordinates Oxyz shown in

Figure 1.7, with the x-axis parallel to the substrate, the y-axis horizontal and

the z-axis normal to the substrate at z = 0. We denote the free surface profile

of the rivulet by z = h, where h = h(x, y) is the thickness of the rivulet, the

contact angle by β = β(x, y), the semi-width of the rivulet by a = a(x) (so

that h = 0 at the contact lines y = ±a) and the thickness of the rivulet at

y = 0 (not necessarily the maximum thickness) by hm = h(x, 0). The velocity
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u = (u(x, y, z), v(x, y, z), w(x, y, z)) and pressure p = p(x, y, z) are governed by

the mass-conservation and Navier–Stokes equations (1.2) and (1.6), respectively.

We consider flow of a thin rivulet (with, in particular, β ≪ 1) for which the

length scale in the z direction is much smaller than the length scale in the y direc-

tion, which, in turn, is much smaller than the length scale in the x direction, and

hence we re-scale and non-dimensionalise the variables appropriately by writing

x = Lx∗, y = ǫLy∗, z = ǫδLz∗, a = ǫLa∗, β = δβ∗,

h = ǫδLh∗, u =
ρgǫ2δ2L2

µ
u∗, v =

ρgǫ3δ2L2

µ
v∗, w =

ρgǫ3δ3L2

µ
w∗,

p = p0 + ρgǫδLp∗, Q =
ρgǫ4δ3L4

µ
Q∗,

(1.54)

where L is an appropriate longitudinal length scale, p0 denotes the constant atmo-

spheric pressure, g denotes acceleration due to gravity, ǫ (≪ 1) is the transverse

aspect ratio of the rivulet, and δ (≪ 1) is the longitudinal aspect ratio of the

rivulet. With the star superscripts omitted for clarity, the mass-conservation and

Navier–Stokes equations (1.2) and (1.6) become

ux + vy + wz = 0, (1.55)

Re∗(uux + vuy + wuz) = −ǫδpx + sinα + (ǫ2δ2uxx + δ2uyy + uzz), (1.56)

ǫRe∗(uvx + vvy + wvz) = −δpy + ǫ(ǫ2δ2vxx + δ2vyy + vzz), (1.57)

ǫδRe∗(uwx + vwy + wwz) = −pz + cosα + ǫδ(ǫ2δ2wxx + δ2wyy + wzz), (1.58)

where

Re∗ =
ρ2gǫ4δ4L3

µ2
(1.59)

is an appropriately defined reduced Reynolds number which differs from the re-

duced Reynolds number defined in Section 1.4 by the factor of ǫ4; this is because

in Section 1.4 the appropriate length scale in the transverse direction is δL but



Chapter 1 24

here it is ǫδL. Provided that Re∗ ≪ 1 is sufficiently small then at leading order

in ǫ equations (1.55)–(1.58) reduce to the lubrication equations

ux + vy + wz = 0, (1.60)

sinα + uzz = 0, (1.61)

−δpy + ǫvzz = 0, (1.62)

−pz − cosα = 0. (1.63)

These governing equations are to be integrated subject to the no-slip and no-

penetration conditions (from (1.9) and (1.10)) at the substrate z = 0:

u = v = w = 0, (1.64)

the usual normal and tangential stress balances (from (1.13) and (1.14)) at the

free surface z = h(y):

p = −C−1
a hyy, (1.65)

uz = vz = 0, (1.66)

and the condition of zero thickness at the contact-lines:

h = 0 and hy = ∓β at y = ±a, (1.67)

where

Ca =
ρgǫ2L2

γ
(1.68)

denotes the appropriate capillary number, which differs from the capillary number

given by (1.42) by the factor of ǫ2/δ; this is because in Section 1.4 the dominant

contribution of the surface-tension force is γhxx, whereas here it is γhyy. We define

the capillary length ℓ by ℓ = (γ/ρg)1/2, and then choose ǫ = ℓ/L, corresponding
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to taking Ca = 1 without loss of generality. The kinematic condition (1.15) at

the free surface z = h may be written in the form

ūx + v̄y = 0, (1.69)

where the local fluxes ū = ū(x, y) and v̄ = v̄(x, y) are given by

ū =

∫ h

0

u dz, v̄ =

∫ h

0

v dz. (1.70)

Integrating (1.62) subject to (1.65) at z = h gives the solution for the pressure

p, namely

p = cosα(h− z)− hyy, (1.71)

while integrating (1.60) and (1.61) twice subject to (1.64) at z = 0 and (1.66) at

z = h gives the solution for the velocity u, namely

u =
sinα

2
(2hz − z2),

ǫv = −δpy
2

(2hz − z2),

ǫδw = −ǫδ sinαhxz
2

2
+
δ2z2

2

(
pyyh+ pyhy −

z

3
pyy

)
.

(1.72)

Therefore from (1.70) the local fluxes ū and v̄ are given by

ū =
sinα

3
h3, ǫv̄ = −δpy

3
h3, (1.73)

and hence the volume flux of fluid along the rivulet, Q = Q(x), is given by

Q =

∫ a

−a

ū dy =
2 sinα

3

∫ a

0

h3 dy. (1.74)

In the present work we shall be concerned with situations in which Q takes a

prescribed constant value Q = Q̄. We will consider only a thin rivulet that varies
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much more slowly in the x-direction than in the y-direction; in particular, we will

take x-derivatives to be much smaller than y-derivatives, i.e. the case ǫ≪ δ ≪ 1.

Physically this corresponds to the rivulet being thin and slowly varying. Note

that both of the alternative cases ǫ = O(δ) ≪ 1 and δ ≪ ǫ≪ 1 are also possible;

however, the former case ǫ = O(δ) would require rather specific parameter values,

and in the latter case δ ≪ ǫ ≪ 1 the rivulet varies much more slowly in the y-

direction than in the x-direction; in particular, y-derivatives are much smaller

than x-derivatives. Physically this corresponds to the rivulet being very thin.

Neither of these two alternative case is considered here.

1.6 Unidirectional Flow of a Thin Uniform Rivulet

Down a Planar Substrate

The pioneering analysis of the steady unidirectional flow of a uniform rivulet (i.e.

a rivulet with constant width and cross-sectional profile) of a Newtonian fluid

down an inclined substrate was performed by Towell and Rothfeld [124]. In par-

ticular, they obtained the free surface profile of the rivulet and the numerical

solution for the velocity, and found that their solutions were in good agreement

with their own experimental results. Allen and Biggin [8] used the lubrication

approximation to obtain an expression for the velocity profile and found good

agreement between their first-order-accurate asymptotic solution and their nu-

merical solution. Bentwich et al. [16] extended the analysis employed by Allen

and Biggin [8] to develop numerical results for the flow on an inclined substrate

and a vertical substrate for a greater range of contact angles of the rivulet by pro-

ducing a four-term expansion for the velocity. Duffy and Moffatt [31] followed the

approach of Allen and Biggin [8] to obtain the leading order asymptotic solution

in the limit of a thin rivulet with constant non-zero contact angle and prescribed

volume flux on an inclined substrate and interpreted their results as describing
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the locally unidirectional flow of a slowly varying rivulet down a slowly varying

substrate, and, in particular, as describing the flow in the azimuthal direction

round a large horizontal cylinder. In this Section we will explain these concepts

in more detail.

A feature of rivulet flow down an inclined planar substrate is that when ǫ≪ δ,

so that ǫ/δ → 0 in the limit ǫ→ 0, the flow is unidirectional, as sketched in Figure

1.8; at leading order in ǫ and δ the velocity will be of the form u = u(y, z)i and

therefore the governing equations (1.61)–(1.63) become

sinα + uzz = 0, (1.75)

−py = 0, (1.76)

−pz − cosα = 0, (1.77)

together with the boundary conditions (1.64)–(1.67), namely

u = 0 on z = 0, (1.78)

p = −hyy and uz = 0 on z = h, (1.79)

and

h = 0 and hy = ∓β on y = ±a. (1.80)

In cases when β is prescribed, δ can be defined by δ = β, corresponding to

taking β∗ = 1 without loss of generality (this choice was made by Duffy and

Moffatt [31]). On the other hand, in cases when a is prescribed, δ can be defined

by δ = (µQ̄/ρgℓ4)1/3, corresponding to taking Q̄∗ = 1 without loss of generality

(this choice was made by Paterson et al. [97]). However, in this Section we leave δ

unspecified and retain both β and Q̄ in order to keep the subsequent presentation

as general as possible.

In the general case of non-zero contact angle β > 0 (i.e. the case when the
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Figure 1.8: Sketch of steady gravity-driven flow of a thin uniform rivulet draining down a
planar substrate inclined at an angle α to the horizontal.

fluid wets the substrate non-perfectly) Duffy and Moffatt [31] showed, by inte-

grating (1.75)–(1.77) subject to the boundary conditions (1.78) and (1.79), that

the solutions for the pressure p and velocity u, are given by

p = cosα(h− z)− hyy, u =
sinα

2
(2hz − z2). (1.81)

The local longitudinal flux ū = ū(y) is given by

ū =

∫ h

0

u dz =
sinα

3
h3, (1.82)

and hence the volume flux of fluid along the rivulet, Q, is given by

Q =

∫ a

−a

ū dy =
2 sinα

3

∫ a

0

h3 dy. (1.83)

Also the solution for p given by (1.81) with (1.76) leads to a third-order ordinary
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differential equation for the free surface profile, namely

(hyy − cosα h)y = 0, (1.84)

which when integrated subject to the contact-line conditions (1.80) yields the free

surface profile

h = β ×





coshma− coshmy

m sinhma
if 0 ≤ α <

π

2
,

a2 − y2

2a
if α =

π

2
,

cosmy − cosma

m sinma
if

π

2
< α ≤ π,

(1.85)

the maximum thickness of the rivulet hm

hm = β ×





1

m
tanh

ma

2
if 0 ≤ α <

π

2
,

a

2
if α =

π

2
,

1

m
tan

ma

2
if

π

2
< α ≤ π,

(1.86)

and the volume flux

Q =
β3 sinα

9m4
f (ma) , (1.87)

where the function f(ma) is defined by

f(ma) =





15ma coth3ma− 15 coth2ma− 9ma cothma+ 4 if 0 ≤ α <
π

2
,

12

35
(ma)4 if α =

π

2
,

−15ma cot3ma + 15 cot2ma− 9ma cotma+ 4 if
π

2
< α ≤ π,

(1.88)

where we have introduced the notation m =
√
| cosα|.

In the special case of zero contact angle β = 0 (i.e. the case when the fluid

wets the substrate perfectly) Wilson and Duffy [131] showed that equations (1.83)
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Figure 1.9: Plots of (a) the semi-width a, and (b) the maximum thickness hmn as functions
of α/π given by (1.90), for n = 1, all when Q̄ = 1, for a rivulet of perfectly wetting fluid.

and (1.84) have no solutions for h corresponding to sessile rivulets or rivulets on

a vertical substrate (i.e. on the upper side of the substrate, 0 ≤ α ≤ π/2), but

for pendent rivulets (i.e. on the lower side of the substrate, π/2 < α ≤ π) they

have infinitely many solutions, namely

a =
nπ

m
, h =

hmn

2
(1− (−1)n cosmy), (1.89)

where hmn is the maximum thickness of the rivulet, given by

hmn = 2

(
3Q̄m

5nπ sinα

)1/3

, (1.90)

for n = 1, 2, 3, . . . , where we have again used the notation m =
√
| cosα|.

In particular, the solutions (1.89) and (1.90) show that the semi-width a varies

with α and does not depend on the prescribed flux Q̄, but that the thickness

of the rivulet varies with Q̄ according to h ∝ Q̄1/3. All of these solutions are

physically realisable in the sense that they satisfy h ≥ 0 for 0 ≤ y ≤ a, and the

higher-branch solutions (i.e. n = 2, 3, . . . ) are arrays of n identical contiguous

rivulets each of which is a suitably re-scaled copy of the lowest-branch solution

(i.e. n = 1).

Figures 1.9(a) and 1.9(b) show plots of the semi-width a and the maximum

thickness hmn as functions of the scaled inclination angle α/π for various values
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of n for Q̄ = 1, respectively.

1.7 Flow of a Thin Slowly Varying Rivulet Down

a Slowly Varying Substrate

The solution described in Section 1.6 for unidirectional flow of a thin uniform

rivulet down a planar substrate, as sketched in Figure 1.8, also provides the

leading-order solution for the locally unidirectional flow of a slowly varying rivulet

down a slowly varying substrate, for example, the flow in the azimuthal direction

from the top (α = 0) to the bottom (α = π) of a large horizontal cylinder of

a rivulet with prescribed contact contact angle β = β̄ (≥ 0) but slowly varying

semi-width a = a. Note that α is now the local slope of the substrate, and rather

than being constant it varies slowly in the downstream direction. Note also that

“slowly varying” in this situation means that both the azimuthal aspect ratio,

ǫ = ℓ/R ≪ β, and the reduced Reynolds number, Re∗ ≪ 1, are sufficiently small,

where R is the radius of the cylinder. In particular, both of these conditions are

satisfied if the cylinder is sufficiently large.

We will consider two types of rivulet flow, one in which the contact angle

has a prescribed value β = β̄ (but the semi-width a is unknown and is to be

determined as part of the solution), and one in which the semi-width has a pre-

scribed (nonzero) value a = ā (but the contact angle β is unknown and is to be

determined as part of the solution). Specifically, in Subsections 1.7.1 and 1.7.2

we describe a rivulet with prescribed constant contact angle β = β̄ = 0 and

β = β̄ > 0, respectively, but (unknown) slowly varying semi-width a = a(α). In

Subsection 1.7.3 we describe a rivulet with prescribed constant semi-width a = ā

but (unknown) slowly varying contact angle β = β(α).

The key results of Duffy and Moffatt [31], Wilson and Duffy [131] and Pa-

terson et al. [97] are relevant to the work in Chapters 2–4 on rivulet flow of
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Figure 1.10: Plot of the cross-sectional free surface profile z = h(y) given by (1.89) and (1.91)
at α = 11π/20, 12π/20, . . . , 19π/20 on the lower half of cylinder for n = 1, all when Q̄ = 1, for
a rivulet of perfectly wetting fluid.

non-Newtonian fluid.

1.7.1 A Rivulet of a Perfectly Wetting Fluid with Con-

stant Contact Angle (β̄ = 0)

Unlike in flow down an inclined substrate, in flow down a slowly varying substrate

only the case n = 1 in (1.89) and (1.90) is realisable, because it is impossible for

n ≥ 2 identical (but slowly varying) rivulets to be contiguous for all α.

Wilson and Duffy [131] used the solution (1.89) and (1.90) with n = 1 to

describe flow of a slowly varying rivulet with zero contact angle β = β̄ = 0 (i.e. a

perfectly wetting fluid), the solution for h, a and hm then varying slowly with α.

Applying the condition of prescribed volume flux, Q = Q̄, with Q given by

Q = (5π sinαh3m)/24m, yields an explicit solution for the maximum thickness

hm = hm1 given by

hm1 = 2

(
3Q̄m

5π sinα

)1/3

. (1.91)

Figure 1.10 shows a plot of the cross-sectional free surface profile h as a function

of y given by (1.89) and (1.91) at various values of α on the lower half of the

cylinder, for Q̄ = 1 and n = 1.
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Figure 1.11: Plots of (a) the semi-width a, (b) the maximum thickness hm as functions of α/π
for Q̄ = 0.01, 0.1, 1, 10, 100, the cross-sectional free surface profile z = h(y) at (c) α = π/20,
π/10, . . . , π/2 on the upper half of cylinder, and (d) α = π/2, 11π/20, . . . , 19π/20 on the lower
half of the cylinder when Q̄ = 1, for a rivulet of non-perfectly wetting fluid.

1.7.2 A Rivulet of Non-Perfectly Wetting Fluid with Con-

stant Contact Angle (β̄ > 0)

Duffy and Moffatt [31] used the solution (1.85)–(1.88) to describe flow of a slowly

varying rivulet with non-zero contact angle β = β̄ > 0 (i.e. non-perfectly wetting

fluid) down a slowly varying substrate. The solution (1.85) reveals that, unlike

in the case β̄ = 0 described above, solutions exist for both sessile and pendent

rivulets. However, applying the condition of prescribed volume flux, Q = Q̄ with

Q given by (1.87), yields a transcendental algebraic equation for the semi-width

a which can, in general, be solved only numerically or asymptotically.

Figures 1.11(a) and 1.11(b) show plots of the semi-width a and the maximum

thickness hm as functions of the scaled inclination angle α/π for various values of

Q̄, respectively. Figures 1.11(c) and 1.11(d) show plots of the cross-sectional free

surface profile h as a function of y at various values of α on the top half of the

cylinder and the bottom half of the cylinder, respectively, for Q̄ = 1, illustrating
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that near the top α = 0 of the cylinder the rivulet becomes wide with finite

thickness, while it becomes infinitely deep and of finite width near the bottom

α = π of the cylinder.

1.7.3 A Rivulet with Constant Semi-width a = ā > 0

Paterson et al. [97] used the solution (1.85)–(1.88) together with the correspond-

ing solution for a rivulet of a perfectly wetting fluid to describe flow of a slowly

varying rivulet with prescribed constant semi-width a = ā (≥ 0) (i.e. pinned

contact lines) but slowly varying contact angle down a slowly varying substrate.

In particular, setting Q = Q̄ and a = ā in (1.87) yields an explicit solution for β,

namely

β =

(
9Q̄m4

f(mā) sinα

)1/3

, (1.92)

and h is then given explicitly by (1.85). Note that β (and hence the rivulet) does

not have top-to-bottom symmetry. The global behaviour of the rivulet in this case

is qualitatively different from that of a rivulet with prescribed constant contact

angle described in Subsections 1.7.1 and 1.7.2. A rivulet can have constant semi-

width all the way around the cylinder only if the rivulet is sufficiently narrow

(specifically only if ā ≤ π), but for a wider rivulet (specifically for ā > π) there

is a critical value of α on the lower half of the cylinder, denoted by αdepin (π/2 <

αdepin < π) and given by solving mā = π to obtain

αdepin = cos−1

(
−π

2

ā2

)
for ā > π, (1.93)

at which the contact angle is equal to zero, β = 0, and beyond which there is no

physically realisable solution with constant width a = ā. Note that αdepin is a

monotonically decreasing function of ā satisfying αdepin = π+O((ā−π)1/2) → π−

as ā → π+ and αdepin = π/2 + O (ā−2) → π/2+ as ā → ∞. Paterson et al. [97]

assumed that the contact lines de-pin at α = αdepin and that thereafter the rivulet
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Figure 1.12: Plots of the cross-sectional free surface profile z = h(y) at (a) α = π/20, π/10,
. . . , π/2 on the upper half of cylinder, and (b) α = π/2, 11π/20, . . . , 19π/20 on the lower half
of the cylinder when Q̄ = 1, for a narrow rivulet of non-perfectly wetting fluid with prescribed
constant semi-width ā = 2 (< π)

drains from α = αdepin to the bottom of the cylinder with zero contact angle β = 0

and slowly varying semi-width a. This behaviour is a special case of the more

general scenario in which a rivulet with prescribed constant width de-pins and

possibly re-pins at a prescribed non-zero value of the contact angle.

1.7.3.1 A Narrow Rivulet with ā ≤ π

A narrow rivulet with ā ≤ π can flow all the way from the top to the bottom of

the cylinder. Figure 1.12 shows plots of h given by (1.85) for a narrow rivulet

with prescribed constant semi-width ā = 2 (< π) as a function of y at various

values of α on the top of the cylinder and the bottom of the cylinder, respectively.

1.7.3.2 A Wide Rivulet with ā > π

A wide rivulet with ā > π can flow all the way from the top to the bottom of

the cylinder only by flowing from α = αdepin (π/2 < αdepin < π), where αdepin is

given by (1.93), to the bottom of the cylinder with de-pinned contact lines and

zero contact angle according to the solution for a rivulet of a perfectly wetting

fluid given by (1.89) with n = 1. Figures 1.13 (a) and (b) show plots of the

contact angle β and the maximum thickness hm as functions of α/π for a range

of values of ā/π. Figures 1.13(c) and 1.13(d) show plots of h given by (1.89)
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Figure 1.13: Plots of (a) the contact angle β given by (1.92), (b) the maximum thickness hm

as functions of α/π for ā/π = 0.5, 0.75, 1, 1.25, 1.5, 2, 5, 10 when Q̄ = 1, the cross-sectional
free surface profile z = h(y) at (c) α = π/20, π/10, . . . , π/2 on the upper half of cylinder, and
(d) α = π/2, 11π/20, . . . , 19π/20 on the lower half of the cylinder for a wide rivulet ā = 5
whose contact lines de-pin at zero contact angle β = β̄ = 0. In part (c), the corresponding
solutions for a rivulet with zero contact angle β = 0 given by (1.89) with n = 1 and (1.91) are
also included. De-pinning occurs at α = αdepin for ā > π, and the points at which this happens
are denoted by dots.
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with n = 1 and (1.85) for a wide rivulet with prescribed constant semi-width

ā = 5 (> π) as a function of y at various stations around the cylinder, including

α = αdepin ≃ 1.9766, illustrating that the rivulet becomes thick with zero contact

angle and finite semi-width π near the bottom of the cylinder.

1.8 Unidirectional Flow of a Thin Rivulet of

Non-Perfectly Wetting Fluid on a Vertical

Substrate Subject to a Uniform Longitudi-

nal Surface Shear Stress

In this Section we summarise some of the key results of Wilson and Duffy [132]

who considered the flow of a thin rivulet of non-perfectly wetting fluid with

constant non-zero contact angle on a vertical substrate subject to a uniform

longitudinal surface shear stress τ , relevant to the work in Chapter 6 on advection

and Taylor–Aris dispersion of a passive solute in such a rivulet.

The flow is governed by (1.75)–(1.77) with α = π/2 and ǫ≪ δ, subject to the

no-slip condition at the substrate (1.78) and the normal stress balance (1.79)1.

We consider the situation when β > 0 is prescribed, and we set δ = β. We

nondimensionalise and scale τ with βρgℓ, so that the tangential stress balance is

now given by

uz = τ on z = h. (1.94)

Also the contact-line conditions are again given by (1.80) with β = 1. As in

Section 1.6, at leading order in ǫ and δ we obtain

p =
1

a
, u =

2hz − z2

2
+ τz, h = hm

(
1− y2

a2

)
, (1.95)
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Q =
32ah3m
105

+
8τah2m
15

, hm =
a

2
. (1.96)

Figure 1.14 shows a sketch of Q given in (1.95) as a function of a for various

values of τ . The flux Q (which may be positive or negative depending on the

relative strengths of the effects of gravity and shear-stress) is, for τ ≥ 0, a mono-

tonically increasing function of a, but for τ < 0, Q decreases to a minimum value

Q = Qmin at a = amin, where

Qmin = −3087τ 4

5120
< 0 and amin = −21τ

8
< 0, (1.97)

and then increases monotonically, taking the value Q = 0 at a = a0 = −7τ/2.

Wilson and Duffy [132] analysed and categorised all of the possible cross-sectional

flow patterns into five types which we denote as type I to type V. We denote

the minimum and maximum fluid velocities over the rivulet by umin and umax,

respectively, which satisfy umin ≤ 0 and umax ≥ 0. Wilson and Duffy [132] showed

that when τ ≥ 0 (i.e. when the prescribed shear stress acts in the same direction

as gravity) the velocity is downwards throughout the rivulet (i.e. u ≥ 0 ), and

the maximum velocity umax = a(a + 4τ)/8 occurs at the apex of the rivulet at

y = 0 and z = hm (type I), but when τ < 0 (i.e. when the prescribed shear stress

opposes gravity) the velocity is upwards near the edges of the rivulet (i.e. u < 0),

but it can be downwards elsewhere. In the latter case, when a ≤ −2τ the velocity

is upwards throughout the rivulet, and the minimum velocity umin = a(a+4τ)/8

occurs at the apex (type V), but when a > −2τ there is a region of downwards flow

in the centre of the rivulet, and the maximum velocity umax = (a+2τ)2/8 occurs

within the rivulet at y = 0, z = hm + τ and the minimum velocity umin = τ 2/2

occurs on the free surface at y = ±a(1+2τ/a)1/2, z = −τ (type II when a > −4τ ,

type IIIwhen a = −4τ , and type IV when −2τ < a < −4τ).

When Q̄ > 0 there is a single rivulet solution in which a is a monotonically

decreasing function of τ , but when Q̄ < 0 there are two rivulet solutions (in the
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Figure 1.14: Sketch of the flux Q as a function of the semi-width a in gravity- and shear-
stress-driven flow in a thin rivulet on a vertical substrate showing when the five different types
of flow pattern occur in each of the cases τ > 0, = 0, and < 0.

narrower one of which is a monotonically increasing function of τ satisfying 0 <

a < amin and in the wider one of which a is a monotonically decreasing function

of τ satisfying amin < a < a0) when τ < τmax, where τmax = −(−5120Q̄/3087)1/4,

one solution in which a = amin when τ = τmax, and no rivulet solution when

τmax < τ < 0.

1.9 Non-uniform Rivulet Flow Down an Inclined

Planar Substrate

Situations involving non-uniform rivulets have also been considered. In this Sec-

tion we summarise the main results of Smith [114] and Duffy and Moffatt [32],

both of whom considered gravity-driven flow of a non-uniform rivulet on an in-

clined planar substrate.

The steady gravity-driven flow of a slender non-uniform rivulet flowing ei-

ther from a point source or to a point sink of a prescribed flux, Q = Q̄, down

an inclined planar substrate was studied by Smith [114] and Duffy and Moffatt

[32] in the cases of weak and strong surface-tension effects, respectively. Smith

[114] neglected the surface-tension contribution in comparison with the lateral

spreading due to gravity (i.e. ρg cosα). Thus he had |ρgh cosα| ≫ |γhyy|, that
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is, ρgH| cosα| ≫ γH/(ǫL)2, leading to C−1
a ≪ | cosα| (i.e. the effect of surface

tension in this case weak). Therefore, at leading order the kinematic condition

(1.69) with (1.73) yields the governing partial differential equation for the free

surface profile h, namely

cosα
(
h3hy

)
y
− sinα

(
h3
)
x
= 0, (1.98)

which is to be integrated subject to Q = Q̄ and the contact-line conditions (1.79).

Hence Smith [114] obtained the similarity solution

h = hm

(
1− y2

a2

)
, a = (cx)3/7, (1.99)

where hm and the constant c are given by

hm =
3c tanα

14(cx)1/7
, c =

7 cotα

3

(
105Q̄

4 sinα

)1/3

. (1.100)

This (unique) similarity solution predicts that the rivulet has a transverse

profile (1.99) with a single global maximum h = hm at y = 0, and that its width

increases or decreases according to x3/7 and its height correspondingly decreases

or increases according to x−1/7. The solutions (1.99) may be interpreted for both

sessile rivulets and pendent rivulets; specifically, solutions for cosα > 0 (so that

c > 0 ) represent widening and shallowing sessile rivulets in x > 0 and solutions

for cosα < 0 (so that c < 0) represent narrowing and deepening pendent rivulets

in x < 0.

Duffy and Moffatt [32] used Smith’s [114] work to include the effect of sur-

face tension, in situations in which ρg cosα is much less than surface tension.

Hence, they had |ρgh cosα| ≪ |γhyy|, that is, ρgH| cosα| ≪ γH/(ǫL)2, leading

to C−1
a ≫ | cosα| (i.e. the effect of surface tension in this case is strong). There-

fore, at leading order the kinematic condition (1.69) with (1.73) yields the partial
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differential equation for the free surface profile h, namely

(h3hyyy)y + sinα(h3)x = 0, (1.101)

which is to be integrated subject to Q = Q̄ and the contact-line condition (1.79).

Duffy and Moffatt [32] obtained a one-parameter family of similarity solutions

parametrised by a constant parameter G0 ≥ 0 in which the free surface profile is

given by

h = hm

(
1− y2

a2

)(
G0 −

Sy2

24a2

)
, a = (cx)3/13, (1.102)

where hm and the constant c are given by

hm =
3c sinα

13(cx)1/13
, c =

13

3 sinα

(
3Q̄

I sinα

)1/3

, (1.103)

where S = sgn(c) and the function I = I(G0) is defined by

I =

∫ 1

−1

[
(1− η2)

(
G0 −

Sη2

24

)]3
dη =

32

35
G3

0 −
4S

315
G2

0 +
1

6930
G0 −

S

1297296
.

(1.104)

Physically realisable similarity solutions are obtained only for G0 ≥ 1/24 when

S = 1, in which case the rivulet has a transverse profile (1.102) with a single

global maximum h = hm at y = 0. In contrast, such solutions are obtained for

all values G0 ≥ 0 when S = −1, in which case the rivulet has a transverse profile

(1.102) with a single global maximum h = hm at y = 0 for G0 ≥ 1/24 but two

equal global maxima h/hm = (1+ 24G0)
2/96 at y/a = ±((1− 24G0)/2)

1/2 and a

local minimum h = hm at y = 0 for 0 ≤ G0 < 1/24.

Therefore, the similarity solutions (1.102) predict that the width of the rivulet

increases or decreases according to x3/13 and the height of the rivulet correspond-

ingly decreases or increases according to x−1/13. Solutions for S = 1 (so that

c > 0) represent widening and shallowing rivulets in x > 0, and solutions for

S = −1 (so that c < 0) represent narrowing and deepening rivulets in x < 0.
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1.10 Review of Previous Literature on Rivulet

Flow

In addition to the studies discussed in detail in Sections 1.5–1.9 there has been

considerable work on the flow of rivulets. In this Section we discuss other relevant

previous work on rivulet flow of Newtonian and non-Newtonian fluids, and, more

generally, thin-film flows of non-Newtonian fluids.

1.10.1 Gravity-Driven Rivulet Flow

At the beginning of Section 1.5 we discussed some of the early work on steady

unidirectional flow of a rivulet of a Newtonian fluid down an inclined substrate

by Towell and Rothfeld [124], Allen and Biggin [8], Bentwich et al. [16] and Duffy

and Moffatt [31].

The work by Duffy and Moffatt [31] has been extended by Wilson and Duffy

[129] to consider the rivulet draining down a locally non-planar substrate and a

slowly varying substrate for a variety of convex and concave transverse substrate

profiles. In particular, they found that a rivulet can run continuously from the

top to the bottom of a large horizontal cylinder only if the transverse profile of

the substrate is a sufficiently shallow trough; if the profile is a deeper trough

then a rivulet is not possible near the bottom of the cylinder while if the profile

is a ridge then a rivulet is not possible near the top of the cylinder. Eres et al.

[38] carried out numerical simulations of a thin film driven by gravity and/or

surface shear-stress that is perturbed at its leading edge such that rivulets form,

in the cases of a perfectly wetting and a non-perfectly wetting fluid. In the

former case and the case of small non-zero contact angles, the rivulets are wedge-

shaped, for larger contact angles the rivulets have constant width, and for contact

angles that are larger still the rivulets split into distinct droplets, as shown in

Figure 1.15. Holland et al. [57] considered a rivulet that is uniformly hotter or
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(a) (b)

Figure 1.15: Numerical simulations of (a) a gravity-driven thin film draining down a vertical
substrate that breaks into steadily translating pattern of wedge-shaped rivulets (on the left)
and continuously growing constant-width rivulets (on the right), and (b) a shear-stress-driven
thin film draining down a vertical substrate that breaks into distinct droplets, computed by
Eres et al. [38]. In part (a), the contact angle increases from left to right. In part (b), time
increases from left to right. Reprinted with permission from Eres et al. [38], copyright 2000,
American Institute of Physics.

uniformly colder than the surrounding atmosphere, and for which the surface

tension of the fluid varies linearly with temperature (i.e. thermocapillary force);

they found that the variation in surface tension drives a transverse flow that

leads to the fluid particles spiralling down the rivulet in helical vortices. Wilson

and Duffy [130] studied the effects of thermoviscosity on a rivulet draining down

a heated or cooled slowly varying substrate for three different viscosity models,

namely a linear, an exponential and an Eyring model, and found that when the

atmosphere is strongly cooled the rivulet becomes wide and deep, whereas when

the atmosphere is strongly heated it becomes narrow and shallow. Duffy and

Wilson [33] extended the work by Wilson and Duffy [130] to the case of a rivulet

of perfectly wetting fluid. Other studies of a rivulet of perfectly wetting fluid

include those by Kuibin [68] and by Alekseenko et al. [6], who considered the

draining of a pendent rivulet down the underside of an inclined cylinder. In

particular, Kuibin [68] obtained the leading-order asymptotic solution for a thin



Chapter 1 44

Figure 1.16: Numerical simulations of a gravity-driven thin film over a planar substrate that
breaks into rivulets, computed by Slade et al. [113] for various value of the surface-tension
gradient, namely zero on the left, −0.25 in the centre and 0.25 on the right. Reprinted with
permission from Slade et al. [113], copyright, 2013, Elsevier.

and narrow rivulet in the limit of small contact angle on the underside of an

inclined locally parabolic substrate. Schwartz [111] studied the fingering (i.e.

rivulets) phenomenon in gravitational flow within the lubrication approximation

and obtained time-dependent numerical solutions. Slade et al. [113] also captured

fingering at the contact line of a thin film on an inclined planar substrate driven

by gravity, as shown in Figure 1.16, and examined the effect of Marangoni stresses

and surface topography on the formation of the rivulets. Evans et al. [41] obtained

numerical solutions to the three-dimensional model for fluid flow on the outside of

a rotating horizontal cylinder (i.e. coating flow) derived by Evans et al. [40], which

included the effects of rotation, gravity, surface tension and axial variation, and

reproduced features observed in their own experiments, namely the rivulets and

rings of fluid as the speed of rotation increases. Leslie et al. [71] considered the

steady flow of a thin ring of fluid with constant non-zero contact angle draining

on the inside or outside of a rotating horizontal cylinder, and found that there is a

maximum mass of fluid that can be supported against gravity for a given rotation

speed or, equivalently, there is a minimum rotation speed required to support a

given mass of fluid. In particular, at the critical mass (or rotation speed) the free
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surface of the rivulet exhibits a corner on the lower half of the cylinder on the

side that is rising with the rotation.

Studies of the steady unidirectional flow of a uniform non-thin rivulet of New-

tonian fluid have been performed by Perazzo and Gratton [100], who derived the

exact solutions of the Navier–Stokes equation for a sessile rivulet draining down

an inclined planar substrate. In particular, Perazzo and Gratton [100] derived

the exact solution for the velocity within a semi-circular rivulet by solving the

appropriate Poisson equation in the domain defined by the cross-section of the

rivulet. Their work was extended by Tanasijczuk et al. [119] to consider both

sessile and pendent rivulets draining down an inclined planar substrate.

1.10.2 Experiments on Rivulets

Experimental work on the development of rivulets from a film of fluid has been

carried out by many authors. For example, Johnson et al. [63] conducted an

experiment that showed a film of fluid of constant volume flux breaking into a

series of rivulets at the leading edge, the exact shape of these rivulets being found

to depend on the inclination of the substrate to the horizontal. Zhang et al. [142]

observed three flow patterns, namely complete film flow, the formation of dry

patches, and the formation of rivulets, while studying fluid draining in a falling

film microreactor. Howell et al. [58] theoretically and experimentally considered

steady gravity-driven flow of a thin rivulet draining down a flexible beam, as

shown in Figure 1.17, and found that the weight of the fluid causes the deflection

of the beam to increase, which in turn, enhances the spreading of the rivulet.

1.10.3 Stability of Rivulet Flow

There is a considerable body of work, for example, by Schmuki and Laso [110],

Young and Davis [140], Nakagwa [92], Nakagwa and Scott [93], Benilov [15], Diez

et al. [29, 30], Wilson and Duffy [132], Wilson et al. [136], Herrada et al. [55],
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(a) (b)

Figure 1.17: Images of the flow of a thin rivulet draining down a flexible beam, obtained
by Howell et al. [58]. The deflection of the beam increases from the lowest value in (a) to
the largest value in (b). Reprinted with permission from Howell et al. [58], copyright 2016,
Cambridge University Press.

Mikielewicz and Moszynski [81], and El-Genk and Saber [37], using a variety of

methods to obtain considerable insight into the study of stability of rivulet flow.

In particular, there are a variety of situations in which continuous films are un-

stable and break up, and could split up into a series of rivulets. In particular,

there are several types of flow regime involving rivulets draining down an inclined

substrate. In their experiments, Schmuki and Laso [110] studied the effects of

the inclination angle of the substrate, the flow rate, surface tension, the substrate

material and the fluid viscosity on flow of fluid draining down an inclined sub-

strate. In particular, they observed five distinct flow regimes depending on the

flow rate: first, a regime of continuous film flow; second, a regime of droplet flow;

third, a regime of steady flow of a thin uniform rivulet; fourth, a regime of a

continuous flow of a steady meandering rivulet; and fifth, a regime of unsteady

flow of an oscillating rivulet, as shown in Figure 1.18. In particular, Schmuki
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Figure 1.18: Images of the five regimes of gravity-driven rivulet flow obtained by Schmuki and
Laso [110], namely (from left to right) droplet flow, a uniform rivulet, film flow, a meandering
rivulet and an oscillating rivulet. Reprinted from Schmuki and Laso [110] with permission from
Cambridge University Press.

and Laso [110] compared the energies of the different configurations and obtained

predictions as to when the transitions from a uniform rivulet to a meandering

rivulet and from a meandering rivulet to multiple rivulets occur. Young and

Davis [140] studied the stability of a rivulet draining down a vertical substrate in

three different cases, namely fixed contact lines, fixed contact angles and contact

angles that are smooth functions of the speed of the moving contact line. In their

experiments, restricted to a single type of fluid on a single substrate, Nakagawa

and Scott [93] and Nakagawa [92] investigated the gravity-driven flow of a rivulet,

and found four regimes of flow depending on the flow rate, namely droplet flow,

a stable meandering rivulet, an oscillating rivulet and also a braided rivulet, the

latter regime being associated with a periodic increase and decrease of the width

of the rivulet. In their experiments, Mertens et al. [79] observed a braided regime

of rivulet flow with a constant flow rate draining down an inclined substrate, and

suggested that braiding could be a result of the interaction between surface ten-

sion tending to decrease the width of the rivulet and inertia tending to increase

it. Birnir et al. [18] derived a model for a regime of meandering rivulet flow and

found that this meandering is triggered by a small disturbance in the flow rate.

Le Grand-Piteira et al. [50] found experimentally that the meandering regime of

rivulet flow is possible only if the flow rate is below a critical value and that this
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value increases with the fluid viscosity. Daerr et al. [25] subsequently suggested

that the most important factor in meandering behaviour is fluid inertia.

The break-up of a film on a substrate has been investigated by several authors.

Mikielewicz and Moszynski [81] analysed the critical condition for the break-up of

a film of uniform thickness draining under gravity down a vertical substrate into

a periodic array of identical rivulets. Specifically, by equating the energies of the

two states and minimising the energy of the rivulet state per unit width of the

film, they specified the critical thickness above which it is energetically favourable

for the film to remain as a film but below which it is energetically favourable for

it to break up into rivulets. El-Genk and Saber [37] used numerically calculated

solutions for the velocity of a rivulet to investigate the break-up of a film on a

vertical substrate by using a minimum total energy argument, and the validity

of their calculations was demonstrated by comparison with experimental results,

while Kabov [65] provided an overview of studies on the heat transfer to a thin

film falling down a heated substrate, and its breakup into rivulets.

Benilov [15] considered the stability of the gravity-driven flow of a thin sessile

or pendent rivulet with constant width on an inclined substrate, and found that

the former is always stable whereas the stability of the latter depends on the

width of the rivulet and the angle of the inclination of the substrate. Diez et

al. [29, 30] considered the stability of a “static rivulet” (i.e. a ridge of fluid) on

an inclined substrate, both on a macroscopic scale where gravitational effects are

dominant and on a microscopic scale where van der Waals forces are dominant,

and discussed the evolution of static rivulets of finite length. Myers et al. [89]

investigated the flow of a rivulet on an inclined substrate subject to gravity and a

uniform longitudinal surface shear stress, and solved the problem analytically and

numerically for a thin rivulet. In particular, they used an energy-minimisation

argument to calculate when it is energetically favourable for the rivulet to split

into two subrivulets, and hypothesised that a purely gravity-driven rivulet may
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split into two subrivulets whereas a purely shear-driven rivulet will never split.

Wilson and Duffy [133, 132] reconsidered the splitting of both a perfectly wetting

rivulet on an inclined substrate and a non-perfectly wetting rivulet on a vertical

substrate subject to a longitudinal shear stress. In particular, Wilson and Duffy

[132] showed that a purely shear-driven rivulet may split into two subrivulets (i.e.

that the conjecture of Myers et al. [89] is false), while Wilson et al. [136] showed

that in the purely gravity-driven case, there is a minimum thickness below which

it is energetically favourable for a film to break up into rivulets, and there is a

maximum thickness above which it is energetically favourable for a single rivulet

to break up.

1.10.4 Rivulets in the Presence of an External Airflow

Rivulets of fluid subject to significant surface-shear-stress forces are of impor-

tance in many industrial contexts such as distillation, coating processes and heat

exchangers. Accordingly, such flows have received considerable attention from

a variety of authors. Saber and El-Genk [108] studied the effect of an exter-

nal airflow on a film on an inclined or a vertical substrate subject to gravity

and a non-uniform shear stress on its free surface, and predicted the minimum

thickness of the film before break-up occurs. They found that if the shear stress

is directed down the substrate then increasing its strength decreases the mini-

mum thickness, whereas if the shear stress is directed up the substrate (while the

flow remains downwards everywhere) then increasing its strength increases the

minimum thickness. Mikielewicz and Moszynski [82] used a conformal mapping

technique to obtain the exact solution for the velocity of a rivulet when the flow is

driven purely by gravity and purely by a prescribed uniform longitudinal surface

shear stress on its free surface. Wilson et al. [134] obtained similarity solutions

for a rivulet of power-law fluid draining down an inclined substrate subject to a

uniform longitudinal shear stress on its free surface in the cases of both weak and
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strong surface tension. As summarised in Section 1.8, Wilson and Duffy [132]

found that there are five possible flow patterns that the rivulet may take; the

same five flow patterns were found to be the only possibilities by Sullivan et al.

[118] in the case of a pendent rivulet of perfectly wetting fluid on a slowly vary-

ing substrate subject to a uniform longitudinal shear stress. Sullivan et al. [117]

considered both a gravity-driven rivulet on a vertical substrate and a rivulet on a

horizontal substrate driven by a longitudinal shear stress, subject to a prescribed

uniform transverse shear stress, and discussed the cases when both contact lines

are pinned and when one or both contact lines de-pin. Paterson et al. [98] consid-

ered the possible scenario of pinning and subsequent de-pinning of a rivulet with

constant contact angle and the possible de-pinning and subsequent re-pinning of

a rivulet with constant width as they flow in the azimuthal direction from the

top to the bottom of a large horizontal cylinder subject to a uniform transverse

shear stress. In particular, they showed that in the presence of a surface shear

stress there exists an infinitely wide two-dimensional film of uniform thickness

that covers part of the upper half of the cylinder and breaks up to a single rivulet

with constant contact angle.

1.10.5 Waves on Rivulets

There has also been considerable work on waves on rivulets by many authors.

Young and Davis [140] found the appearance of kinematic-wave instabilities on a

wide rivulet draining unidirectionally down a vertical substrate. The wave motion

of rivulets was measured experimentally for the first time by Alekseenko et al.

[7] for fluid draining down the bottom part of an inclined cylinder; they found

that the natural wave (which appears because of a hydrodynamical instability of

rivulet flow) and an excited wave (which appears because of an external forcing)

have some similarities when their frequencies coincide. This study was extended

by Alekseenko et al. [5] for a range of the physical parameters, including various
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Figure 1.19: Numerical simulations of three-dimensional waves on the surface of the rivulet
draining down a vertical substrate, computed by Alekseenko et al. [3]. The forcing frequency
increases from lowest value in (a) to the largest value in (c). Reprinted from Alekseenko et al.

[3] with permission from Cambridge University Press.

physical properties of the fluids. In particular, they found that the amplitude of

the wave (which is defined by the difference between the maximum and minimum

values of the rivulet thickness) decreases with increase of the excitation frequency

for all the fluids. Alekseenko et al. [4] also studied the appearance of the three-

dimensional surface wave on a rivulet draining down a vertical substrate, and

showed that the structure of the wave depends strongly on the contact angle.

Alekseenko et al. [3] carried out numerical simulations of surface waves on a rivulet

draining down a vertical substrate, and obtained various characteristics of linear

and nonlinear excited waves on the rivulet as functions of the forcing frequency

for a variety of Reynolds numbers and contact angles, as shown in Figure 1.19.

Alekseenko et al. [3] compared their calculations with the experimental results of

Alekseenko et al. [4] for two different fluids, namely a 45% solution of ethanol in

water (WES) and a 25% water–glycerine solution (WGS), and showed that their

model predicts step-wise waves with low forcing frequencies on a rivulet of WGS

and waves with no capillary ripple in front of the main peak on a rivulet of WES,

both of which are consistent with the experimental results of Alekseenko et al.
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[4].

1.10.6 Studies of Rivulet Flow of Non-Newtonian Fluids

As already pointed out, despite the widespread occurrence of non-Newtonian

rheology in many of the practical occurrences of rivulet flow, there has been

surprisingly little theoretical work on rivulet flow of non-Newtonian fluids. Rare

exceptions include the work by Rosenblat [107] on rivulet flow of a viscoelastic

fluid. Specifically Rosenblat [107] extended the work of Towell and Rothfeld [124]

to investigate the flow of a uniform rivulet of a viscoelastic fluid draining down

an inclined substrate, and found that one effect of the elasticity is to drive a

transverse flow (absent in the Newtonian case) which causes the fluid particles

to spiral down the rivulet in two counter-rotating helical vortices. Balmforth et

al. [11] and Wilson et al. [135] investigated rivulet flow of a viscoplastic material.

In particular, Wilson et al. [135] studied the flow both of a thin slowly varying

rivulet of a biviscosity fluid and of a Bingham fluid down a cylindrical substrate,

and found that near the top of the cylinder the flow of a rivulet of Bingham fluid

comprises two regions with different viscosities; the flow consists of an infinitely

wide rigid and stationary plug, while elsewhere it consists of two “levées” at the

sides of the rivulet and a central region in which the flow near the free surface is

a pseudoplug whose velocity does not vary normally to the substrate, separated

from the fully plastic flow near the substrate by a pseudoyield surface which is

the surface that separates the yielded and unyielded regions. Wilson et al. [134]

considered steady flow of a non-uniform rivulet for a power-law fluid on an inclined

substrate driven by either gravity or a prescribed shear stress at the free surface

of the fluid for both weak and strong surface-tension effects. In general, they

found that the solutions for a shear-stress-driven rivulet are qualitatively similar

to those for a gravity-driven rivulet. In particular, for purely gravity-driven flow,

they recovered the solutions of Wilson and Burgess [128], whereas for purely
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shear-stress-driven flow, they found that the rivulet widens according to x1/3 and

thins according to x1/6, where x is the longitudinal coordinate. Yatim et al.

[138, 139] used a variety of analytical and numerical methods to derive unsteady

similarity solutions for gravity-driven flow of a thin rivulet of a Newtonian and a

power-law fluid down an inclined substrate. In particular, the solutions of Yatim

et al. [138] correspond to a rivulet with a fixed nose with either a single-humped

or double-humped cross-sectional profile that widens (for a pendent rivulet) or

thins (for a sessile rivulet) with distance along the rivulet, while the solutions of

Yatim et al. [139] predict that at any time the rivulet widens or narrows according

to |x|(2N+1)/2(N+1) and thickens or thins according to |x|N/(N+1) as it flows down

the substrate, where N is the power-law index. Yatim et al. [137] showed that a

rivulet of a shear-thinning fluid subject to a weak shear stress is wider and thicker

than a corresponding rivulet of a Newtonian fluid; whereas such a rivulet subject

to a strong shear stress is narrower and thinner than a corresponding rivulet of

a Newtonian fluid.

1.10.7 Thin-Film Flows of Non-Newtonian Fluids

While there has been very little work on rivulet flow of non-Newtonian fluids,

there has been intensive work on other closely related free surface flows of non-

Newtonian fluids. Matsuhisa and Bird [76] provided analytical and numerical

solutions for isothermal and non-isothermal flow of an Ellis fluid. Myers [91]

provided comparisons between predictions of the thin-film flow of three gener-

alised Newtonian fluids, namely power-law, Carreau and Ellis fluids down an

inclined substrate and in a channel, and showed that the velocities of the Ellis

and Newtonian fluids are relatively similar whereas the power-law fluid indicates

significant flattening in the central region where it approaches plug flow. The

two-dimensional flow of a thin film of a power-law fluid on an inclined substrate,

subject to a uniform longitudinal surface shear stress, was studied by Pascal and
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D’Alessio [96]. They examined analytically and numerically the linear and non-

linear stability of the film and found that an upward shear stress has a stabilising

effect. Jossic et al. [64] gave comparisons between the behaviour of shear-thinning

and Newtonian models of tear films in the eye and man-made substitutes, dur-

ing blinking. Hu and Kieweg [59] incorporated the effects of surface tension

for gravity-driven flow of power-law shear-thinning fluids on an incline in order

to simulate a capillary ridge and the fingering instability in a two-dimensional

model. They indicated that optimizing the shear-thinning index can prevent the

occurrence of fingering instabilities. Hu and Kieweg [60] extended the above

work to study the three-dimensional flow of power-law fluids based on their lin-

ear stability analysis and numerical simulations to show, in particular, how the

effects of shear-thinning would influence the finger growth. They showed that the

wavelengths for Newtonian and shear-thinning fluids are exactly the same on a

vertical substrate whereas for a less-inclined substrate the wavelengths for Newto-

nian fluids are shorter than those for shear-thinning fluids. Kheyfets and Kieweg

[67] developed a three-dimensional model for gravity-driven flow of an Ellis fluid

to study the spreading speed of polymeric solutions and to validate the numerical

methods with experiments; however, they did not incorporate surface-tension ef-

fects and therefore could not simulate fingering instabilities. Sayag and Worster

[109] reported experimental studies to validate theoretical predictions concerning

axisymmetric gravity currents of a power-law fluid. In particular, they analysed

constant-volume and constant-flux release of axisymmetric spreading of an aque-

ous suspension of Xanthan gum of 1% concentration by weight. Pritchard et al.

[102] studied the flow of a shallow layer of a generalised Newtonian fluid on an

inclined substrate; in particular, they presented the kinematic-wave solution for

a Carreau fluid and showed that the effect of shear thinning on these solutions is

to increase the wave speed.

Rimming flow of non-Newtonian fluids has been investigated by, amongst
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others, Fomin et al. [43], who studied the flow of a power-law fluid and obtained

analytical solutions in the particular case when the power-law index is equal to

1/2, and Fomin et al. [44], who studied the flow of a thin polymeric film on the

inner wall of a uniformly rotating horizontal cylinder.

1.11 Dispersion of a Solute in a Flowing Fluid

In Chapters 5 and 6 of this thesis we consider advection and Taylor–Aris disper-

sion of a passive solute in steady unidirectional flow of uniform non-thin and thin

rivulets, respectively, of a Newtonian fluid down a vertical planar substrate when

the flow is driven by gravity and/or a uniform shear stress on its free surface.

Accordingly, this section gives a brief overview of the concept of dispersion of a

solute in a flowing fluid.

The study of solute dispersion in a flowing fluid has long been an active area of

research, partly because it is a fascinating topic scientifically, and partly because

of its wide range of applications in the fields of, for example, chemical engineer-

ing, ecological dynamics, petroleum production, and physiological fluid dynamics.

Examples of dispersion include the spread of pollutants in the environment (see,

for example, [126]), chromatographic separation in chemical engineering (see, for

example, [54]), and the transport of dissolved drugs in the blood (see, for example,

[125]).

If a solute is injected into a flowing fluid then it disperses (that is, it is advected

by the flow and diffuses), and its concentration c(x, y, z, t) satisfies the advection–

diffusion equation

∂c

∂t
+ u · ∇c = D∇2c, (1.105)

where D is the molecular diffusivity, t denotes time, u is the fluid velocity, and

∇2 denotes the three-dimensional Laplacian operator.

The dispersion of a solute in a steadily flowing fluid after a sufficiently long



Chapter 1 56

time is due to a remarkable phenomenon called Taylor–Aris dispersion (or often

simply just Taylor dispersion), named after Taylor [122, 123] and Aris [9]. In par-

ticular, Taylor [122, 123] performed the pioneering theoretical and experimental

analysis of dispersion (first observed experimentally by Griffiths [51]) of a slug of

solute injected into a fluid solvent undergoing steady unidirectional flow along a

straight pipe of circular cross-section. The explanation of this phenomenon was

a remarkable achievement, but perhaps not even Taylor could have anticipated

that his work would have such widespread application in so many different areas.

In his experiment Griffiths [51] used a drop of fluorescent solution as a marker

in a stream of water flowing through a pipe to measure the viscosity of water. In

particular, he observed that the marker spread out symmetrically from a point

which moved with the mean speed of the flow in the pipe. Later, Taylor [122]

performed his own experiments, in which he used potassium permanganate as the

solute and water as the solvent. Taylor [122] explained Griffiths’s [51] observation

by means of a series of intuitive arguments. In particular, Taylor [122, 123]

showed analytically using these arguments that any initially finite distribution

of the solute will, as a consequence of the combined effect of advection by the

flow and radial diffusion, eventually become uniform over the cross-section of

the pipe and take up a symmetric Gaussian profile axially; this Gaussian profile

moves with the mean speed of the flow ū, and spreads axially over a distance of

O((Defft)
1/2) with an effective diffusivity, Deff , which is larger than the molecular

diffusivity D, and which is defined by

Deff = D

(
1 +

Pe2

48

)
, (1.106)

where a is the radius of the pipe and Pe = ūa/D is the appropriate Péclet number,

which is defined to be the ratio of advective effects on the concentration of solute

to diffusive effects. In particular, Taylor [122] showed that the mean concentration
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x = 0 x = 0 x = ūt

Slug of solute Axial diffusion Radial diffusion

Gaussian profile

Figure 1.20: Sketch of the Taylor–Aris dispersion problem, representing the dispersion of a
slug of solute injected into steady unidirectional flow along a straight pipe of circular cross-
section, showing the slug of the solute injected at the initial time t = 0, the axial diffusion, and
the radial diffusion. The sketch also shows a section of the pipe at a much later time when
the slug has moved downstream with the mean velocity of the flow ū and spread symmetrically
over a distance O((Deff t)

1/2) forming a Gaussian profile.

satisfies a simple advection–diffusion equation with effective diffusivity Deff given

by (1.106).

1.11.1 Physical Mechanism of Taylor–Aris Dispersion in

a Pipe

As discussed by Probstein [103] and Leal [69], the physical mechanism of Taylor–

Aris dispersion for flow in a pipe may be explained as follows. If an asymmetric

slug of solute is injected into the pipe, then at small times a radial inhomogeneity

is established, in which the slug is distorted into a parabolic profile due to the

parabolic velocity profile of the flow, as illustrated in Figure 1.20. Thus advection

of the solute by the flow enlarges the axial extent over which the solute is present

and contributes to enhancing the axial dispersion, so that a radial concentration

gradient is established. As a consequence, at longer time, radial diffusion plays

a role on the dispersion mechanism: the radial diffusion acting at the rear of the

slug causes the particles from the lower-velocity wall region to move to the higher-

velocity central region, thereby causing the rear of the slug to speed up, while

doing the opposite to the front of the slug. Thus the net effect of radial diffusion is
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to compress the mixing zone between the slug of solute and the solvent (whereas

the net effect of axial diffusion is to elongate it). Thus the radial diffusion inhibits

the axial dispersion. As time progresses, as a result of the combined effect of

axial advection and radial diffusion, the initially asymmetric slug is symmetrically

distributed axially, and has a Gaussian profile.

1.11.2 Transport of a Passive Solute in a Pipe

Consider the evolution of an axisymmetric concentration of solute, c, as a function

of the axial distance x, radial distance r and time t in a steady unidirectional

Poiseuille flow in a pipe of circular cross-section with axial velocity of the form

u = 2ū (1− r2/a2)k, for which the advection–diffusion equation (1.105) becomes

∂c

∂t
+ 2ū

(
1− r2

a2

)
∂c

∂x
= D

(
∂2c

∂r2
+

1

r

∂c

∂r
+
∂2c

∂x2

)
. (1.107)

If we assume that the distribution of the solute at the middle of the pipe is smooth

and symmetric, and that there is no flux of the solute through the walls of the

pipe, then the appropriate boundary conditions are

∂c

∂r
= 0 on r = 0, a. (1.108)

In addition, we assume that the slug of solute is injected at some initial time t = 0

with a prescribed initial distribution c(x, r, 0) = c0(x, r), occupying a (possibly

infinite) portion x1 ≤ x ≤ x2 of the pipe, with x1 and x2 prescribed. The mean

concentration over the cross-section of the pipe, c̄ = c̄(x, t), is simply defined by

c̄ =
1

A

∫ 2π

0

∫ a

0

c r dr dθ, (1.109)

where A = πa2 denotes the cross-sectional area of the pipe.
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1.11.3 Advection of a Passive Solute in a Pipe

In his famous paper, Taylor [122] explained the physical idea of his dispersion

argument by first describing the transport of the solute by advection alone. At

sufficiently small times after the slug of solute is injected, specifically for t≪ a2/D

(so that the radial diffusion time a2/D is short compared with the advection

time L/ū, where L is an appropriate longitudinal lengthscale), as we discussed

in Subsection 1.11.1, axial advection is dominant over radial diffusion, and as a

consequence the effects of radial diffusion may be ignored. Thus, in this case the

governing equation (1.107) for c reduces simply to the advection equation

∂c

∂t
+ 2ū

(
1− r2

a2

)
∂c

∂x
= 0, (1.110)

which has general solution

c(x, r, t) = c0

(
x− 2ū

(
1− r2

a2

)
t, r

)
, (1.111)

reflecting the fact that the position of the particle of solute that is at x = x0 at

t = 0 is at x = x0 + 2ū (1− r2/a2) t at time t, where c0(x, r) = c(x, r, 0). It is

appropriate to non-dimensionalise and scale x and t with L and L/ū, respectively.

Taylor [122] considered first a simple situation in which the solute initially takes

the form of a semi-infinite slug of uniform concentration c0 in x ≤ 0 with c = 0 in

x > 0 at t = 0, where c0 is a constant. He found that the solution for the mean

concentration c̄ is piecewise linear in x down the pipe, specifically

c̄

c0
=





1 if x < 0,

1− x

umaxt
if 0 ≤ x ≤ umaxt,

0 if x > umaxt,

(1.112)
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where umax = 2ū is the maximum velocity of the fluid. He then considered the

situation in which the solute takes the form of a finite slug of uniform concentra-

tion c0 in 0 ≤ x ≤ ∆ with c = 0 in x < 0 and x > ∆ at t = 0, where both c0 and

the length of the slug ∆ (> 0) are constants. He found that c̄ is again piecewise

linear in x down the pipe; specifically in this case the solution for c̄ at time t is

given by

c̄

c0
=





0 if x < 0,

x

umaxt
if 0 < x ≤ umaxt,

1 if umaxt < x ≤ ∆,

umaxt− x+∆

umaxt
if ∆ < x ≤ ∆+ umaxt,

0 if x > ∆+ umaxt,

(1.113)

for t ≤ ∆/umax and by

c̄

c0
=





0 if x < 0,

x

umaxt
if 0 < x ≤ ∆,

∆

umaxt
if ∆ < x ≤ umaxt,

umaxt− x+∆

umaxt
if umaxt < x ≤ ∆+ umaxt,

0 if x > ∆+ umaxt,

(1.114)

for t > ∆/umax, where again umax = 2ū.

1.11.4 Taylor–Aris Dispersion of a Passive Solute in a

Pipe

Taylor [122] went on to consider the change in the concentration of the solute

at sufficiently long times after the slug of solute is injected, specifically for t ≫



Chapter 1 61

a2/D, for which times the radial concentration gradients are large enough that

the effect of diffusion in the radial direction is not negligible. In this case the

concentration c satisfies the full advection–diffusion equation (1.107). Taylor

[122] again considered the situation in which the solute initially takes the form

of a finite slug of non-uniform concentration c(x, r, 0) in 0 ≤ x ≤ ∆, where

∆ is again constant, with c = 0 in x < 0 and x > ∆. He showed that the

mean concentration c̄(x, t) defined by (1.109) is governed by a simple advection–

diffusion equation given by

∂c̄

∂t
+ ū

∂c̄

∂x
= Deff

∂2c̄

∂x2
, (1.115)

where the effective diffusivity Deff is given by (1.106). We do not attempt to

reproduce his intuitive arguments here, because in Chapter 5 we will present an

alternative derivation via the method of multiple scales. Taylor [122, 123] showed

that the conditions under which this analysis is valid (and which are satisfied in

his experiment) are

4L

a
≫ Pe ≫

√
48 ≃ 6.9282. (1.116)

The relevant solution of (1.115) at large times is the evolving Gaussian profile

given by

c̄(x, t) =
c̄0∆√
4πDefft

exp

(
−(x− ūt)2

4Defft

)
, (1.117)

where c̄0 = M/(πa2∆) and M is the initial mass of solute. Figure 1.21 shows

results from Taylor’s experiments giving the distribution of the mean concentra-

tion c̄/c̄0 as a function of x at three different times, and illustrating that Taylor’s

theoretical result given by (1.117) is in very good agreement with his experimen-

tal results. Taylor [122] fitted his data at measured positions at the three times

1740 s, 2160 s and 2490 s, respectively, to the Gaussian-function solution given by

(1.117), and using this procedure determined Deff and hence D, which he found

ranged from 0.5× 10−5 to 1.5× 10−5 cm2 s−1.
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x(cm)

c̄/c̄0

Figure 1.21: Image showing the mean concentration distribution c̄/c̄0 centred at three posi-
tions along the pipe at three different times, measured by Taylor [122]. The solid curves I, II and
III are the Gaussian-function solutions given by (1.117) at three times 1740 s, 2160 s and 2490 s,
respectively. The dashed line is the distribution that would be due to pure advection, for com-
parison with curve III, and the dots indicate the experimental results. Reprinted from Taylor
[122], Copyright, 1953, with permission from Proc. Roy. Soc. London A.

1.11.5 Derivations of Taylor Dispersion

Since the pioneering work of Taylor [122] (which had over 4900 citations on Google

Scholar on 8th June 2017) a variety of derivations of Taylor’s intuitive result have

been presented by many different authors using a variety of analytical methods,

such as the method of moments (Aris [9]) and the method of multiple scales

(Pagitsas et al. [95], Fowler [46]), as well as methods based on the Centre-Manifold

Theorem (Mercer and Roberts [78]), Liapunov–Schmidt reduction (Ratnakar and

Balakotaiah [104]), and Fourier series (Lungu and Moffatt [74]). Aris [9] used the

so-called method of moments in which he calculated the three total moments of

the concentration c(x, r, t) and the mean concentration c̄(x, t) in the forms

Mn(t) =
2

a2

∫ ∞

−∞

∫ a

0

xnc(x, r, t)r dr dx (1.118)

and

Mn(t) =

∫ ∞

−∞
xnc̄(x, t) dx, (1.119)

respectively, for n = 0, 1, 2, from which he derived the effective diffusivity, Deff ,

given by (1.106), without any restriction on the value of Pe, and he presented a
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more detailed treatment of unidirectional flow in a pipe of arbitrary cross-section

and flow profile. Gill and Sankarasubramanian [48] used a generalised dispersion

model for steady flow in a pipe to derive an advection–diffusion equation with a

time-dependent effective diffusivity. They showed that for t < 1/2 their effective

diffusivity decreases with decrease of the radius of the non-uniform initial slug

of solute, and for t ≥ 1/2 it is in agreement with Taylor–Aris dispersion for all

values of the radius. Pagitsas et al. [95] showed, using the method of multiple

scales, that the limiting value of Deff in a rectangular channel in the limit of

small aspect ratio is about eight times larger than Deff in the corresponding

two-dimensional case. In particular, they emphasized that for sufficiently short

times this result is obtained by ignoring the side walls of the channel whereas

for sufficiently long times the solute is affected by the perturbing presence of the

side walls, so that Deff increases. Using Aris’s method Fan and Hwang [42] and

Prenosil and Jarvis [101] considered Taylor–Aris dispersion of a solute in a non-

Newtonian power-law fluid flowing through a circular pipe, and draining down an

inclined substrate, respectively, and provided an expression for Deff for the fluid

in terms of the power-law index N . Zhang and Frigaard [143] used the method of

multiple scales, as developed by Pagitsas et al. [95], to examine the displacement

between two generalised Newtonian miscible fluids in channels and to derive an

asymptotic approximation for the leading order concentration. They emphasized

that increasing either the yield stress or the shear-thinning behaviour leads to the

decrease of Deff . Chatwin [20] developed an asymptotic series solution of (1.105)

in powers of t−1/2. In particular, he obtained the first three terms of this series,

which provide an adequate approximation to c̄ for Dt/a2 ≥ 0.2, and explained

the weak effect of the initial mean concentration on the approach of the series to

the Gaussian profile. Mercer and Roberts [78] described Taylor–Aris dispersion

of a contaminant for flows in slowly varying channels of various cross-sections,

for which they showed the convergence of their asymptotic approximation of
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solutions of (1.105). In particular, they derived a higher-order approximation

of (1.105), as used by Gill and Sankarasubramanian [48], to show the effect of

variable diffusivity D in the velocity of the mean concentration and the dispersion

of the contaminant, the latter of which is reduced if D decreases. A systematic

method based on the Liapunov–Schmidt technique of bifurcation theory to obtain

reduced-order models with modified inlet and initial conditions directly from the

governing equation for the cross-sectionally mean concentration was developed

by Ratnakar and Balakotaiah [104]. Recently, Adrover and Cerbelli [1] carried

out numerical simulations of the dispersion of solutes in finite-length microtubes

for a variety of Péclet numbers. A more complete history of different methods of

analysing dispersion can be found in the article by Young and Jones [141].

The analysis of Taylor–Aris dispersion of a solute may also apply to the trans-

port of heat, possibly with different boundary conditions. For example, Lungu

and Moffatt [74] considered the effect of wall conductance on heat dispersion in

Poiseuille flow through a circular pipe and a two-dimensional channel, and used

Fourier transformations to obtain a series solution. They showed that for large

times the effective diffusivity, Deff , is a decreasing function of the wall conduc-

tance.

The effect of the geometry of the channel on the dispersion of a solute has

been investigated by a considerable number of studies. Chatwin and Sullivan [21],

Pagitsas et al. [95], Dutta [35], Dutta et al. [36], Guell et al. [53], and Ajdari et al.

[2] studied the effect of width-to-depth aspect ratio on the effective diffusivity in

pressure-driven flow in a channel of arbitrary cross-section. In particular, using

the thin-film approximation, Guell et al. [53] and Ajdari et al. [2] showed that

the effective diffusivity is governed by the width of the cross-section instead of, as

might have been expected, by the much smaller depth of the channel, and they

provided formulae for dispersion in channels of triangular, parabolic and elliptical

cross-sectional profiles.
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1.11.6 Transport in Rivulet Flows in Microfluidic Devices

One of the most important issues in microfluidic devices is the optimisation of

transport (i.e. the mixing and dispersion) of a solute at small Reynolds numbers

and small aspect ratios (see, for example, the reviews by Stone et al. [116] and

Darhuber and Troian [28], and Lee et al. [70]). Rivulet flows can arise in such

devices. Herrada et al. [55] proposed a technique for producing micro-bubbles

with a controlled size from the breakup of a rivulet of gas in a microfluidic chan-

nel. Darhuber and Troian [28] explained how a rivulet on a microstripe may split

into droplets due to thermocapillary forces. Kabov et al. [66] investigated experi-

mentally the heat transfer to a rivulet flowing in minichannels and microchannels

driven by gravity and a co-current gas flow; they found that in the former the

rivulet widens with an increase in the effective gravity whereas in the latter grav-

ity does not effect the shape of the rivulet. Darhuber et al. [27] and Darhuber et

al. [26] investigated advective and diffusive mixing in narrow rivulets on chem-

ically micropatterned surfaces. In particular, the latter identified micromixing

analogous to Taylor–Aris dispersion for appropriate parameter ranges, in which

an increase in D leads to an increase in the mixing time, and hence to a decrease

in the mixing efficiency. However, with the notable exception of the work of

Darhuber et al. [26], there has been surprisingly little theoretical work on trans-

port of solutes in microfluidic flows with free surfaces and, in particular, on the

study of the dispersion of a passive solute in a rivulet flow.

1.12 Outline of Thesis

In this thesis we analyse two aspects of the steady flow of rivulets of fluid, namely

the effects of non-Newtonian rheology and the advection and dispersion of a

passive solute in a rivulet of Newtonian fluid.

In Chapter 2 we use lubrication theory to obtain the solution for unidirec-
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tional gravity-driven flow of a uniform thin rivulet of a power-law fluid down a

planar substrate, and then we use this solution to describe the flow of a rivulet

with prescribed constant contact angle but slowly varying semi-width down a

slowly varying substrate, specifically flow in the azimuthal direction around the

outside of a large horizontal circular cylinder. It is shown how the solution de-

pends strongly on the value of the power-law index of the fluid. Another notable

qualitative departure from Newtonian behaviour is that, whereas the mass of a

rivulet of a Newtonian or a shear-thinning fluid is theoretically infinite, the mass

of a rivulet of a shear-thickening fluid is finite.

In Chapter 3 we use the solution for unidirectional flow that was obtained in

Chapter 2 to describe the flow of a rivulet with prescribed constant width but

slowly varying contact angle down a slowly varying substrate. In particular, we

describe how the shape of the rivulet of prescribed semi-width and the velocity

within it depend on the power-law index N , and it is shown that whereas neither

the shape of the rivulet nor the velocity within it vary monotonically with N , its

mass always decreases monotonically with N .

In Chapter 4 we consider rivulet flow of generalised Newtonian fluids down a

vertical planar substrate. In particular, we obtain the solutions for rivulet flow of

a Carreau fluid and of an Ellis fluid, highlighting their similarities and differences.

The behaviour of rivulets of nearly Newtonian fluids, rivulets with small or large

prescribed flux, and rivulets of strongly shear-thinning Carreau and Ellis fluids

is described.

In Chapters 5 and 6 we investigate both the short-time advection and the

long-time Taylor–Aris dispersion of a passive solute in uniform non-thin and thin

rivulets, respectively, of a Newtonian fluid undergoing steady unidirectional flow

driven by gravity and/or a prescribed uniform surface shear stress on a vertical

planar substrate. An explicit expression for the effective diffusivity of the solute

in a thin rivulet as a function of the surface shear stress, the volume flux along the
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rivulet, and either the semi-width or the contact angle of the rivulet is obtained.

Finally, in Chapter 7 we summarise the results and main findings of the thesis,

and suggest some directions for possible future work.

1.13 Presentations and Publications

Aspects of the work described in Chapters 2 and 3 have been presented at the 4th

joint British Mathematical Colloquium (BMC) and British Applied Mathematics

Colloquium (BAMC) held in Cambridge from 30th March to 2nd April 2015,

at the Rheologists in Scotland Meeting II held in Glasgow in the University of

Strathclyde on 26th May 2015, at the 28th Scottish Fluid Mechanics Meeting held

in Glasgow on 28th May 2015, and at the 11th European Coating Symposium

held in Eindhoven, The Netherlands from 9th to 11th September 2015. Aspects

of the work described in Chapter 4 have been presented at the British Society of

Rheology Winter Meeting 2015: Microrheology and Microfluidics held in Glasgow

in the University of Glasgow from 14th to 15th December 2015, and at the SIAM

UKIE Annual Meeting held in Glasgow in the University of Strathclyde on 12th

January 2017. Aspects of the work described in Chapter 6 have been presented at

the British Applied Mathematics Colloquium held in Guilford in the University

of Surrey from 10th to 12th April 2017, at the 30th Scottish Fluid Mechanics

Meeting held in Glasgow in the University of Strathclyde on 19th May 2017, and

at Flow17 held in Paris, France from 3rd to 5th July 2017.

Furthermore, aspects of the work in Chapters 2–4 have been presented by my

primary supervisor Prof. Stephen K. Wilson at Viscoplastic Fluids: From Theory

to Application held in Banff in Canada from 25th to 30th October 2015, and at

the British Society of Rheology Midwinter Meeting 2016 held in Reading in the

University of Reading from 12th to 14th December 2016. Aspects of the work in

Chapter 6 has been recently presented by Prof. Stephen K. Wilson at UK Fluids
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Conference held in Leeds in the University of Leeds from 7th to 9th September

2017.

A full account of the work in Chapter 2 has been published in Physics of

Fluids (Al Mukahal et al. [84]), a full account of the work in Chapter 3 has been

published in the Journal of Non-Newtonian Fluid Mechanics (Al Mukahal et al.

[87]), and a full account of the work in Chapter 6 has been recently accepted for

publication in Proceedings of the Royal Society A (Al Mukahal et al. [86]). A

full account of the work contained in Chapter 4 (Al Mukahal et al. [85]) has been

submitted for publication.



Chapter 2

A Rivulet of a Power-Law Fluid

with Constant Contact Angle

Draining Down a Slowly Varying

Substrate

The work in this Chapter generalises that of Duffy and Moffatt [31] for the case of

Newtonian fluid, as described in Sections 1.6 and 1.7, to a corresponding analysis

for a power-law fluid.

There has been relatively little theoretical work on rivulet flow of non-Newtonian

fluids; this Chapter begins to rectify this by analysing the locally unidirectional

steady gravity-driven flow of a thin rivulet of a power-law fluid with prescribed

volume flux down a locally planar substrate. First we obtain the solution for

unidirectional flow of a uniform rivulet down a planar substrate, and then we

use it to obtain the solution for a slowly varying rivulet with prescribed constant

(nonzero) contact angle draining down a slowly varying substrate, specifically

flow in the azimuthal direction around the outside of a large horizontal circular

cylinder.

69
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2.1 Rivulet Flow Down a Planar Substrate

2.1.1 Problem Formulation

In this Chapter we shall be concerned with flow of an incompressible power-law

fluid with velocity u and pressure p for which, as described previously in Subsec-

tion 1.3.2, the extra stress σ′ is related to the rate of strain e =
(
∇u+ (∇u)T

)
/2

by σ
′ = 2µ(q)e, where µ(q) = µNq

N−1 is the shear-rate-dependent viscosity,

q =
(
2 tr(e2)

)1/2
is the shear rate, and the power-law index N and the consis-

tency parameter µN are constants. The fluid is shear thinning when 0 < N < 1

and shear thickening when N > 1; the special case N = 1 corresponds to a New-

tonian fluid with constant viscosity µ1. The measure of the stress, τ , defined by

τ =
(
tr
(
σ

′2) /2
)1/2

, takes the form τ = µ(q)q = µNq
N . The velocity u and the

pressure p satisfy the mass-conservation and momentum-balance equations for

such a fluid, which take the forms

∇ · u = 0, ρ
Du

Dt
= −∇p + ρg + µN∇ ·

(
qN−1

(
∇u+ (∇u)T

))
, (2.1)

where ρ, g and t denote the fluid density, acceleration due to gravity, and time,

respectively.

Consider unidirectional steady gravity-driven flow of a thin uniform rivulet of

a power-law fluid with prescribed volume flux down a planar substrate inclined

at an angle α to the horizontal, as shown in Figure 2.1. The case 0 ≤ α < π/2

corresponds to flow down the upper side of the substrate (a sessile rivulet), and

the case π/2 < α ≤ π corresponds to flow down the lower side of the substrate

(a pendent rivulet); the special case α = π/2 corresponds to flow down a vertical

substrate, and will be considered in detail in Subsection 2.1.3. With reference to

the Cartesian coordinates Oxyz shown in Figure 2.1, the substrate is at z = 0;

the cross-sectional free surface profile of the rivulet is denoted by z = h(y) and
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Free surface
z = h(y)

Substrate
z = 0

x

y

z

O

g

β

β
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α

Figure 2.1: Sketch of the unidirectional steady gravity-driven flow of a thin uniform rivulet
of a power-law fluid of prescribed volume flux down a planar substrate inclined at an angle α
to the horizontal.

the semi-width of the rivulet by a, the fluid occupying −a ≤ y ≤ a. We consider

the situation in which the contact angle of the fluid, β (> 0), has a prescribed

(nonzero) value, but the semi-width a is unknown and is to be determined as part

of the solution. Not only is this flow of interest in its own right, but also it forms

the basis for studying the flow of a slowly varying rivulet with constant contact

angle down a slowly varying substrate described in Section 2.2.

With a velocity of the form u = u(y, z)i, the shear rate is q =
(
u2y + u2z

)1/2
,

but since the rivulet is thin we have q = |uz| to the usual accuracy of thin-film

theory; moreover, since uz ≥ 0 for the type of flow under consideration, we have

q = uz. Therefore (2.1) reduces to

0 = −px + ρg sinα + µN(u
N
z )z, 0 = −py, 0 = −pz − ρg cosα, (2.2)

to be integrated subject to the boundary conditions of no slip on the substrate
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z = 0, and balances of normal and tangential stress on the free surface:

u = 0 on z = 0, uz = 0 and p = pa − γh′′ on z = h, (2.3)

where pa denotes atmospheric pressure, γ denotes the coefficient of surface tension

of the fluid, and a prime denotes differentiation with respect to y. In addition, h

satisfies the contact-line conditions

h = 0 and h′ = ∓β at y = ±a. (2.4)

The volume flux of fluid along the rivulet, Q, is given by

Q =

∫ a

−a

∫ h

0

u dz dy, (2.5)

which will be taken to have a prescribed value Q = Q̄.

We non-dimensionalise and scale the variables appropriately by writing

y = ℓy∗, a = ℓa∗, z = βℓz∗, h = βℓh∗, u = Uu∗,

p = pa + ρgβℓp∗, Q = βℓ2UQ∗, q =
U

βℓ
q∗, µ = µ̄µ∗, τ = ρgβℓτ ∗,

(2.6)

where ℓ = (γ/ρg)1/2 is the capillary length, U = (ρgβN+1ℓN+1/µN)
1/N is an

appropriate velocity scale, and µ̄ = µN(U/βℓ)
N−1 is an appropriate viscosity

scale. Note that the scales U and µ̄ depend on µN and N , and that the scaled

contact angle is β∗ ≡ 1 and the scaled viscosity is µ∗ = q∗N−1. From now on we

use non-dimensional quantities (omitting the stars, for clarity).
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2.1.2 Solution

From (2.2)3 and (2.3) the solution for p is

p = cosα(h− z)− h′′, (2.7)

and then (2.2)2 gives

(h′′ − cosα h)′ = 0, (2.8)

representing a transverse balance between gravity and surface-tension effects.

Since (2.8) does not depend on viscous effects, the general form of solution for h

will be independent ofN ; in particular, it will be the same as that for a Newtonian

fluid (and indeed for any generalised Newtonian fluid).

The solution of (2.4) and (2.8) for h is

h =





coshma− coshmy

m sinhma
if 0 ≤ α <

π

2
,

a2 − y2

2a
if α =

π

2
,

cosmy − cosma

m sinma
if

π

2
< α ≤ π,

(2.9)

where we have introduced the notation m =
√
| cosα|. We note that the rivulet

is symmetric about its centreline y = 0, and so its maximum thickness hm = h(0)

occurs at y = 0, and is given by

hm =





1

m
tanh

ma

2
if 0 ≤ α <

π

2
,

a

2
if α =

π

2
,

1

m
tan

ma

2
if

π

2
< α ≤ π.

(2.10)

It may be shown that, whereas for 0 < α ≤ π/2 the solution (2.9) is valid for

any ma ≥ 0, for π/2 < α ≤ π it is physically realisable (specifically, h ≥ 0 for

−a ≤ y ≤ a) only if ma < π. As yet the semi-width a in (2.9) is unknown.
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From (2.2)1 and (2.3) the solution for u is

u =
N

N + 1
(sinα)

1
N

(
h

N+1
N − (h− z)

N+1
N

)
, (2.11)

representing a longitudinal balance between gravitational and viscous effects. The

maximum velocity umax, given by

umax =
N

N + 1

(
sinαhN+1

m

) 1
N , (2.12)

occurs at the apex of the rivulet, i.e. at y = 0, z = hm. The shear rate q, viscosity

µ = qN−1, and shear stress τ = µq = qN vary across the rivulet, and are given by

q = [sinα (h− z)]
1
N , µ = [sinα (h− z)]

N−1
N , τ = sinα (h− z). (2.13)

In particular, in the shear-thickening case (N > 1) the viscosity µ decreases

monotonically from its value (sinαh)(N−1)/N at the substrate z = 0 to zero at

the free surface z = h, whereas in the shear-thinning case (N < 1) it increases

monotonically from (sinαh)(N−1)/N at z = 0 and becomes infinite at z = h.

Despite the shortcomings associated with the power-law model (namely, a zero

or infinite viscosity at the free surface), the other features of the flow are well

behaved; in particular, the velocity u, shear rate q, and shear stress τ are finite

everywhere (the latter being linear in z, as required by the balance of momentum

in the x direction).

From (2.5) and (2.11) the flux of fluid along the rivulet, Q, is

Q =
N

2N + 1
(sinα)

1
N

∫ a

−a

h
2N+1

N dy. (2.14)

Performing the quadrature here, with h given by (2.9), we find that Q is given
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by

Q =
1

9

(
sinα

m3N+1

) 1
N

fN (ma) , (2.15)

where the function fN(ma) is defined by

fN(ma) = λN×





2F1

(
1

2
,
3N + 1

N
;
7N + 2

2N
; tanh2 ma

2

)
tanh

3N+1
N

ma

2
if 0 ≤ α <

π

2
,

(ma
2

) 3N+1
N

if α =
π

2
,

2F1

(
1

2
,
3N + 1

N
;
7N + 2

2N
;− tan2 ma

2

)
tan

3N+1
N

ma

2
if

π

2
< α ≤ π,

(2.16)

in which 2F1 denotes the hypergeometric function, and where we have introduced

λN defined by

λN =

18
√
π Γ

(
2N + 1

N

)

Γ

(
7N + 2

2N

) = 36B

(
3

2
,
2N + 1

N

)
, (2.17)

where Γ and B denote Gamma and Beta functions, respectively. To complete

the solution we must solve (2.15) with Q = Q̄ to obtain the semi-width a; this

depends on the form of fN(ma) in (2.16), and therefore also on the form of λN

in (2.17).

Figure 2.2 shows a plot of λN as a function of N , illustrating that λN increases

monotonically with N , satisfying

λN = 18
√
πN3/2 +O(N5/2) → 0+ as N → 0+, (2.18)

λN =
48

5
− 16

25
(31− 15 log 4)N−1 +O(N−2) → 48

5

−
as N → ∞, (2.19)

and taking the value 192/35 ≃ 5.48571 at N = 1.

Figure 2.3 shows plots of fN (ma) as a function of ma in the cases (a) 0 ≤ α <

π/2 and (b) α = π/2, and as a function of ma/π (0 ≤ ma/π ≤ 1) in the case (c)



Chapter 2 76

5 10 15 20

2

4

6

8

10

λN

N

✲48/5

(1, 192/35)

Figure 2.2: Plot of λN defined in (2.17) as a function of N , together with its asymptotic value
48/5 in the limit N → ∞. The dot denotes the Newtonian value 192/35 at N = 1.

π/2 < α ≤ π, for a range of values of N . Figure 2.3 illustrates that in all cases

fN(ma) increases monotonically with ma, and, in particular,

fN (ma) ∼ λN

(ma
2

) 3N+1
N

= O
(
(ma)

3N+1
N

)
→ 0+ (2.20)

in the limit ma→ 0+,

fN(ma) ∼
18N

2N + 1
ma = O(ma) → ∞ (2.21)

in the limit ma → ∞ for 0 ≤ α < π/2, fN (ma) = λN (ma/2)(3N+1)/N =

O
(
ma(3N+1)/N

)
→ ∞ in the limit ma→ ∞ for α = π/2, and

fN(ma) ∼ 9

(
2

κN (π −ma)

) 2N+1
N

= O
(
(π −ma)−

2N+1
N

)
→ ∞ (2.22)

in the limit ma→ π− for π/2 < α ≤ π, where we have introduced κN defined by

κN =



(2N + 1)Γ

(
3N + 1

N

)

2
√
πN Γ

(
5N + 2

2N

)




N

2N+1

=

[
2N

2N + 1
B

(
1

2
,
5N + 2

2N

)]− N

2N+1

.

(2.23)
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Figure 2.3: Plots of fN (ma) defined in (2.16) as a function of ma in the cases (a) 0 ≤ α < π/2
and (b) α = π/2, and as a function of ma/π (0 ≤ ma/π ≤ 1) in the case (c) π/2 < α ≤ π, for
N = 1/20, 1/10, 1/2, 1, 2 and 10. The dotted lines show the leading-order asymptotic solution

in the limit N → 0+, f̂N , defined in (2.24) and plotted for N = 1/20 and N = 1/10, and the
dashed lines show the leading-order asymptotic solution in the limit N → ∞, f∞, defined in
(2.26). The vertical long-dashed line in (c) marks the maximum value of ma = π beyond which
there are no physically realisable solutions for h.
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We conclude that (2.15) has a solution a for any prescribed N , α and Q̄, and

that this solution is unique. [In fact, the function fN(ma) given in (2.16)3 for

π/2 < α ≤ π has infinitely many branches in ma ≥ 0; however, since only the

branch in 0 ≤ ma ≤ π leads to physically realisable solutions for h, we shall

ignore the branches beyond ma = π.] The transcendental nature of (2.15) means

that, in general, it must be solved numerically for a.

Figure 2.3 also shows that when 0 ≤ α < π/2, fN(ma) is an increasing

function of N for all ma, but when π/2 ≤ α ≤ π it is an increasing function of N

for sufficiently small values of ma but a decreasing function of N for sufficiently

large values of ma; therefore the curves for different values of N in Figures 2.3(b)

and (c) (but not those in Figure 2.3(a)) cross each other.

For future reference, we note that in the limit N → 0+ we have fN(ma) ∼

f̂N(ma), where we have defined

f̂N(ma) = 18
√
πN

3
2 ×





sinh
ma

2
tanh

2N+1
N

ma

2
if 0 ≤ α <

π

2
,

(ma
2

) 3N+1
N

if α =
π

2
,

sin
ma

2
tan

2N+1
N

ma

2
if

π

2
< α ≤ π.

(2.24)

For 0 ≤ α ≤ π/2 the function f̂N (ma) satisfies f̂N(ma) → 0+ as N → 0+, whereas

for π/2 < α ≤ π it satisfies f̂N (ma) → 0+ as N → 0+ when 0 ≤ ma ≤ π/2,

but f̂N (ma) → ∞ as N → 0+ when π/2 < ma ≤ π. Furthermore, in the limit

N → ∞ we have fN(ma) → f∞(ma) and, from (2.15),

Q→ f∞ (ma)

9m3
, (2.25)
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where we have defined

f∞(ma) =





9

2

(
3ma coth2ma− 3 cothma−ma

)
if 0 ≤ α <

π

2
,

6(ma)3

5
if α =

π

2
,

9

2

(
3ma cot2ma− 3 cotma+ma

)
if

π

2
< α ≤ π.

(2.26)

The functions f̂N and f∞ given by (2.24) and (2.26) are included in Figure 2.3 as

dotted and dashed curves, respectively.

In summary, the solutions for the pressure p and velocity u in the steady

unidirectional flow of a thin uniform rivulet are given by (2.7) and (2.11), respec-

tively, in which the free surface profile h is given by (2.9), with the semi-width a

to be determined from the flux condition (2.15) with Q = Q̄ when N , α and Q̄

are prescribed. In the special case of a Newtonian fluid (N = 1) equations (2.11)–

(2.17) reduce to the solution given by Duffy and Moffatt [31] (albeit presented

somewhat differently).

2.1.3 The Special Case of Rivulet Flow Down a Vertical

Substrate

The special case of rivulet flow down a vertical substrate (that is, the special

case α = π/2) is of particular interest and hence merits further discussion here.

In that case the cross-sectional free surface profile of the rivulet has the simple

parabolic form given in (2.9), and equations (2.15) and (2.16) may be solved to

give simple explicit solutions for a and hence hm, namely

a = 2

(
9Q̄

λN

) N

3N+1

, hm =

(
9Q̄

λN

) N

3N+1

. (2.27)

Figure 2.4 shows a plot of a given by (2.27) as a function of N for various values

of Q̄, and Figure 2.5 shows a plot of a as a function of Q̄ for various values of N .
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Figure 2.4: Plot of the semi-width a given by (2.27) as a function of N in the special case of
a vertical substrate (α = π/2), for Q̄ = 1/100, 1/10, 1/2, 1, 2, 5, 10 and 20. The dashed lines
show the asymptotic solution given by (2.29) in the limit N → ∞.
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Figure 2.5: Plot of the semi-width a given by (2.27) as a function of Q̄ in the special case
of a vertical substrate (α = π/2), for N = 1/100, 1/10, 1 and 10. The dotted line shows the
asymptotic solution a → 2 in the limit N → 0+, and the dashed line shows the asymptotic
solution given by (2.29) in the limit N → ∞.

As Figures 2.4 and 2.5 show, for all values of Q̄, a is given by (2.27) and satisfies

a ∼ 2

(
Q̄

2
√
πN3/2

) N

3N+1

∼ 2 +N log
Q̄2

4πN3
→ 2+ as N → 0+, (2.28)

and

a→ 15Q̄

2

1/3

as N → ∞, (2.29)

and takes the value a = (105Q̄/4)1/4 when N = 1.

As Figure 2.4 illustrates, if Q̄ is sufficiently small then a first increases with

N to a local maximum and thereafter decreases monotonically. The value of N
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at which this maximum occurs increases with Q̄, and becomes infinite when Q̄

takes a critical value Q̄m. To determine Q̄m we therefore let N → ∞ in the

equation da/dN = 0, where a and λN are given in (2.27) and (2.17), respectively;

this leads to Q̄m = 16exp(ψ(7/2) + γ − 1)/15 ≃ 8.21248, in which ψ(7/2) =

Γ′(7/2)/Γ(7/2) ≃ 1.10316 denotes the Digamma function and γ ≃ 0.57722 de-

notes Euler’s constant. If Q̄ is sufficiently large, specifically if Q̄ ≥ Q̄m, then a

has no maximum as a function of N , and so simply increases monotonically with

N . As Figure 2.4 also shows, whatever the value of Q̄ there is only a restricted

range of possible values of a, and also that if Q̄ < Q̄m then it is possible for two

rivulets of fluids with different values of N , with the same value of Q̄, to have the

same value of a. On the other hand, as Figure 2.5 shows, for a given value of N ,

a increases monotonically with Q̄; in particular, it is immediately apparent from

(2.27) that a→ 0+ as Q̄→ 0+ and a→ ∞ as Q̄→ ∞.

Figure 2.6 shows plots of the velocity profiles u(y, z) given by (2.11) at different

positions y across the rivulet, for (a) a strongly shear-thinning fluid with N =

1/10 and (b) a strongly shear-thickening fluid with N = 10, with Q̄ = 1 in each

case; from (2.27) the corresponding semi-widths and maximum thicknesses are

a ≃ 2.42264 and hm ≃ 1.21132, and a ≃ 2.00127 and hm ≃ 1.00064, respectively.

Figure 2.7 shows contour plots of the velocity corresponding to the cases shown

in Figure 2.6; the contour interval is the same in the two parts of the Figure.

For small N (typified by N = 1/10) two features of the flow are apparent.

The first feature, evident in Figure 2.7(a), is the formation of two regions with

h < 1, adjacent to the contact lines, in which q is small and so µ is large, leading

to a large viscous resistance, and hence almost stationary fluid. Thus the rivulet

“self-channels” its flow down a narrow central channel of semi-width

(
2N log

Q̄2

4πN3

)1/2

(≪ 1) (2.30)
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Figure 2.6: Plots of the velocity profiles u(y, z) given by (2.11) at positions y = 0, a/8, a/4,
. . . , 7a/8 across the rivulet in the special case of a vertical substrate (α = π/2), for (a) N = 1/10
and (b) N = 10, with Q̄ = 1 in each case, for which (a) a ≃ 2.42264 and hm ≃ 1.21132, and (b)
a ≃ 2.00127 and hm ≃ 1.00064.

between two “levées” of slowly moving fluid that form at its sides. In deriving

(2.30) we have made use of the results (2.28)2 as N → 0 and the fact that

y = (a2 − 2a)1/2 when h = 1. These levées are reminiscent of the levées of

unyielded (and hence stationary) fluid adjacent to the contact lines of rivulets of

viscoplastic fluid as reported by Wilson et al. [135] and discussed in Subsection

1.10.6. The second feature is that in the central channel, away from the substrate

z = 0, the shear rate q is small, and hence the viscosity µ is large; therefore, as

is evident in Figure 2.6(a), the velocity profiles have a “plug-like” form at each y

position, with most of the fluid moving with a velocity that is independent of z

but not of y. Specifically, in the limit N → 0, equations (2.11), (2.27)1 and (2.9)2
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Figure 2.7: Contour plots of the velocity u(y, z) given by (2.11) in the special case of a vertical
substrate (α = π/2), for the same values of N and Q̄ as in Figure 2.6, namely (a) N = 1/10 and
(b) N = 10, with Q̄ = 1 in each case. The contour interval is 0.1 in both parts of the Figure.

with (2.18) and (2.28)3 lead to

u ∼ Nh
N+1
N ∼ Q̄

2
√
πN

(
1− y2

4

)N+1
N

as N → 0+, (2.31)

except in a narrow boundary layer near the substrate (where u = 0) in which the

shear rate is large. As Figure 2.7(a) illustrates, in this case there are relatively

large velocity gradients in the y direction in the middle of the rivulet (where the

velocity is not small) as well as large velocity gradients in the z direction near

the substrate.

For large N (typified by N = 10) the shear rate q is uniform away from the

free surface z = h and the viscosity µ decreases linearly with z, and so, as is

evident in Figure 2.6(b), the velocity profile is linear in z. Specifically, in the
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Figure 2.8: Plot of the maximum velocity umax given by (2.33) as a function of N in the
special case of a vertical substrate (α = π/2), for Q̄ = 1/100, 1/10, 1, 2, 5, 10 and 20. The
dashed lines show the asymptotic solution umax = (15Q̄/16)1/3 in the limit N → ∞.

limit N → ∞, equations (2.11), (2.13) and (2.27)1 with (2.19) and (2.29) lead to

q ∼ 1, µ ∼ h− z, u ∼ z as N → ∞, (2.32)

except in a narrow boundary layer near the free surface (where uz = 0) in which

the gradient of shear is large. As Figure 2.7(b) illustrates, in this case the velocity

gradients are almost entirely in the z direction over most of the rivulet.

Figure 2.8 shows a plot of the maximum velocity umax, namely

umax =
N

N + 1




Q̄

4B

(
3

2
,
2N + 1

N

)




N+1
3N+1

, (2.33)

as a function of N for different values of Q̄ (and hence different values of a and

hm), showing that umax decreases from ∞ (specifically, umax ∼ Q̄(2
√
πN)−1 → ∞

as N → 0+) to a minimum value, and then increases to (15Q̄/16)1/3 as N → ∞,

taking the value umax = (105Q̄)1/2/16 when N = 1.
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2.2 Rivulet Flow Down a Slowly Varying Sub-

strate

2.2.1 Flow Around a Large Horizontal Cylinder

Although the solution obtained in Subsection 2.1.2 is for strictly unidirectional

flow of a uniform rivulet of fluid of prescribed contact angle down a planar sub-

strate, it also provides the leading order solution for locally unidirectional flow

down a substrate whose inclination angle α, rather than being constant, varies

slowly in the downstream direction; the cross-sectional free surface profile of the

rivulet (and in particular, the semi-width a and maximum height hm) then varies

slowly with position down the substrate. An example is provided by rivulet flow

in the azimuthal direction around the outside of a large horizontal circular cylin-

der, the inclination angle α then varying slowly around the cylinder; in that case

the flow corresponds to a prescribed flux of fluid being supplied at the top of the

cylinder (where α = 0), running around the cylinder under gravity, and falling off

at the bottom (where α = π). Figure 2.9 shows a sketch of such a situation; it is

rivulet flow of this type that we describe in the remainder of the present Chapter

(although other interpretations, such as, for example, flow down a slowly un-

dulating substrate, are also possible). Specifically, we consider cases where the

azimuthal aspect ratio ǫ = ℓ/R and the appropriately defined reduced Reynolds

number Re∗ = β4ργℓ2/µ̄2R, where R is the radius of the cylinder, satisfy ǫ ≪ β

and Re∗ ≪ 1, the latter implying that inertial effects are negligible. In particular,

both of these conditions are satisfied if R is sufficiently large.

Figure 2.10 shows plots of (a) a and (b) hm as functions of α/π for various

values of N ; thus Figure 2.10(a) shows half of the “footprint” of the rivulet on

the cylinder, and Figure 2.10(b) shows the profile of the centreline of the rivulet

when the cylinder is viewed “end on” (both of them being “unwrapped” from the

cylinder for the purposes of the Figure).
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Figure 2.9: Sketch of a slowly varying rivulet of prescribed flux Q̄ with constant contact angle
and slowly varying semi-width that runs from the top (α = 0) to the bottom (α = π) of a large
horizontal circular cylinder.
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Figure 2.10: Plots of (a) the semi-width a and (b) the maximum thickness hm as functions
of α/π in the cases N = 1/100, 1/10, 1/2, 1, 2 and 10, for Q̄ = 1. The dashed curves show the
leading order asymptotic outer solutions in the limit N → ∞, and the dots denote the values
a ≃ 2.40515 and hm ≃ 0.83444 at α = 0 and a ≃ 1.66639 and hm ≃ 1.10047 at α = π on these
asymptotic solutions.



Chapter 2 88

Near the top of the cylinder, where the azimuthal component of gravity (pro-

portional to sinα) driving the azimuthal flow is small but the normal component

(proportional to cosα) tending to flatten the rivulet is significant, in order to

achieve the prescribed flux Q̄ the rivulet becomes wide and of finite thickness

unity according to

a ∼ (2N + 1)Q̄

2Nα
1
N

→ ∞, hm ∼ 1 +
α2

4
→ 1+ (2.34)

as α → 0+. In deriving (2.34)1 we have made use of the appropriate limit of

(2.15) with Q = Q̄, and equation (2.20) together with sinα ∼ α in the limit

α → 0. In deriving (2.34)2 we have made use of the equation (2.10)1 together

with m→ 1 in the limit α→ 0.

Near the bottom of the cylinder, where the azimuthal component of gravity

is again small and the normal component, now tending to thicken the rivulet, is

again significant, the rivulet becomes thick and of finite width π according to

a ∼ π − 2

κN

(
π − α

Q̄N

) 1
2N+1

→ π−, hm ∼ κN

(
Q̄N

π − α

) 1
2N+1

→ ∞ (2.35)

as α → π−; therefore the thin-film approximation will break down sufficiently near

to α = π. In deriving (2.35)1 we have made use of the appropriate limit of (2.15)

with Q = Q̄, and equation (2.22) together with cosα→ −1 and sinα ∼ π−α in

the limit α → π−. In deriving (2.35)2 we have made use of the equation (2.10)3

in the limit α→ π−.

At the middle of the cylinder (α = π/2), where the azimuthal component

of gravity is significant but the normal component is zero, the rivulet has finite

width and thickness given by (2.27).

As Figure 2.10(a) shows, the rivulet narrows to a minimum width and then

widens again as it flows around the cylinder. Its minimum width occurs on the

lower half of the cylinder (π/2 < α < π), at a position determined mathematically
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by (2.15) and

2 csc2 α = N
f ′
N(ma)ma

fN(ma)
− 3N + 1, (2.36)

the latter obtained by differentiation of (2.15) with respect to α, with Q = Q̄; it

may be shown from (2.15) and (2.36) that a has a (unique) stationary point for

all values of N and Q̄.

On the other hand, as Figure 2.10(b) shows, the nature of the stationary

points of hm, determined mathematically by (2.15) and

2 csc2 α = N
f ′
N(ma) sinhma

fN(ma)
− 3N + 1, (2.37)

the latter obtained by differentiation of (2.10) and (2.15) with respect to α, de-

pends on the value of Q̄. Specifically, it may be shown from (2.15) and (2.37)

that there exists a critical (N -dependent) flux Q̄ = Q̄c(N) such that if Q̄ < Q̄c

then hm has two stationary points, and increases from hm = 1 at α = 0 to a

maximum in 0 < α < π/2, decreases to a minimum also in 0 < α < π/2, and

then increases monotonically to infinity as α → π−, whereas if Q̄ ≥ Q̄c then hm

has no stationary points, and increases monotonically from hm = 1 at α = 0 to

∞ as α → π−. Figure 2.11 shows a plot of Q̄c as a function of N , showing that

Q̄c decreases from ∞ as N → 0+ to a minimum value Q̄c = Q̄c,min ≃ 0.75782

at N = Nmin ≃ 0.67107, and then increases to ∞ as N → ∞, taking the value

Q̄c ≃ 0.81741 when N = 1. Note also from Figure 2.11 that if Q̄ ≤ Q̄c,min then

hm has two stationary points for any N , whereas if Q̄ > Q̄c,min then hm has two

stationary points only if N is either sufficiently small or sufficiently large.

As Figure 2.10 also shows, a and hm vary non-monotonically with N , in the

sense that at any fixed value of α, both a and hm increase with N up to a

maximum, and then decrease monotonically.

Figure 2.10 also includes (as dashed curves) the leading order asymptotic

outer solutions (away from α = 0 and α = π) for a and hm in the limit N → ∞,
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Figure 2.11: Plot of the critical flux Q̄c as a function of N . The dots denote the minimum
value Q̄c = Q̄c,min ≃ 0.75782 at N = Nmin ≃ 0.67107 and the Newtonian value Q̄c ≃ 0.81741
at N = 1.

obtained by solving (2.25) with Q = Q̄ for a and then using (2.10) for hm. In

particular, Figure 2.10 shows that these outer solutions take finite values at the

top and bottom of the cylinder, namely a ≃ 2.40515 and hm ≃ 0.83444 at α = 0,

and a ≃ 1.66639 and hm ≃ 1.10047 at α = π, obtained by solving Q̄ = f∞(a)/9.

When N is large but finite there is a thin boundary layer near α = 0 in which

the solution for a grows without bound and the solution for hm adjusts to the

value hm = 1 given by (2.34) at α = 0, and a thin boundary layer near α = π in

which the solution for hm grows without bound and the solution for a adjusts to

the value a = π given by (2.35) at α = π.

In the limit N → 0+ the positions of the minimum of a and of the maximum

and minimum of hm approach α = π/2, while in the limit N → ∞ the position

of the minimum of a approaches α = π and the positions of the maximum and

minimum of hm approach α = 0.

2.2.2 Free Surface Profiles h

Figure 2.12 shows plots of the cross-sectional free surface profile h as a function of

y at the stations α = π/20, π/10, . . . , 19π/20 around the cylinder, for N = 1/2

and Q̄ = 1, and Figure 2.13 shows corresponding plots for N = 2. As already

described, the profiles are wide and of finite thickness near the top of the cylinder,
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Figure 2.12: Plot of the cross-sectional free surface profile h given by (2.9) as a function of y
at the stations (a) α = π/20, π/10, . . . , π/2 on the upper half of cylinder, and (b) π/2, 11π/20,
. . . , 19π/20 on the lower half of cylinder, for N = 1/2 and Q̄ = 1. Note the different scales
used on the axes in the two parts of the Figure.

but are thick and of finite width near the bottom of the cylinder. The non-

monotonic variation of a with α is evident in part (b) of both Figures. Figure

2.12 shows a case for which Q̄ = 1 > Q̄c(1/2) ≃ 0.78818, and so hm increases

monotonically with α in this case, whereas Figure 2.13 shows a case for which

Q̄ = 1 < Q̄c(2) ≃ 1.36980, and so hm varies non-monotonically with α, having a

local maximum and a local minimum (both of which are barely discernible in the

Figure) on the upper half of the cylinder in this case.

Figure 2.14 shows contour plots of the free surface h in the (y, α/π) plane, for

several values of N , for Q̄ = 1. The non-monotonic variation of a with α, evident

in all of the cases shown in Figure 2.14, is qualitatively the same for all values of

Q̄. On the other hand, the form of the variation of h with α depends on Q̄. In

particular, since at each station α, h has a maximum hm at y = 0, if Q̄ < Q̄c then
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Figure 2.13: As in Figure 2.12, except for N = 2.

the maximum of hm (regarded as a function of α) that occurs corresponds to a

local maximum of h (regarded as a function of α and y), whereas the minimum

of hm corresponds to a saddle point of h; if Q̄ ≥ Q̄c then hm has no stationary

points and so h has no stationary points. Figures 2.14(a) and (c) are for cases with

Q̄ = 1 < Q̄c(1/5) ≃ 1.91857 and Q̄ = 1 < Q̄c(2) ≃ 1.36980, respectively, so that

hm has a local maximum and minimum, and therefore h has a local maximum

and a saddle point, at (y, α/π, hm) ≃ (0, 0.30000, 1.24313) and (y, α/π, hm) ≃

(0, 0.44011, 1.22739) in (a), and at (y, α/π, hm) ≃ (0, 0.00582, 1.00005) (very close

to the top of the cylinder) and (y, α/π, hm) ≃ (0, 0.15436, 0.97288) in (c), all of

which are marked with dots; the contour that passes through the saddle point of h

is also included in each case. Part (d) shows an enlargement of (c) (with additional

contours, shown dashed and dotted) near the top of the cylinder, illustrating more

clearly the occurrence of a local maximum in h there. Figure 2.14(b) is for a case
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Figure 2.14: Contour plots of the free surface profile h in the (y, α/π) plane in the cases (a)
N = 1/5, (b) N = 1, and (c) N = 2, for Q̄ = 1. In each case the contours are drawn at
intervals of 1/16, up to a maximum h = 8. The local maximum and the saddle point of h,
at (y, α/π, hm) ≃ (0, 0.30000, 1.24313) and (y, α/π, hm) ≃ (0, 0.44011, 1.22739) in (a), and at
(y, α/π, hm) ≃ (0, 0.00582, 1.00005) and (y, α/π, hm) ≃ (0, 0.15436, 0.97288) in (c), are marked
with dots, and the contour that passes through the saddle point is also included. Part (d)
shows an enlargement of (c) near the top of the cylinder, with additional contours h = 1.00002
and h = 1.00004 (shown dashed) and h = 0.9995 (shown dotted). In (b), h has no stationary
points; an additional contour h = 1.01 is included (shown dashed).
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with Q̄ = 1 > Q̄c(1) ≃ 0.81741, and so h has no stationary points; an additional

contour h = 1.01 is included (shown dashed) to illustrate the general form of the

contours near the top of the cylinder. In all cases, since hm → ∞ in the limit

α → π−, there should, in principle, be infinitely many contours near the bottom

of the cylinder, but only contours up to h = 8 are plotted. Note also that near

the top of the cylinder in Figure 2.14(a) the rivulet is wide and the free surface

profile is relatively flat (that is, h varies only slowly with α/π and with y away

from the contact lines, as in Figure 2.12(a)), explaining why there are so few

contours there.

Velocity profiles and contours of the velocity in cross-sections of the rivulet

at different α, as well as the maximum velocity umax, are qualitatively similar to

those in the case α = π/2 shown in Figures 2.6–2.8, and so, for brevity, are not

reproduced here.

2.2.3 The Limits of Small and Large Flux Q̄

In the limit of small flux, Q̄ → 0+, equations (2.15) with Q = Q̄, (2.16), (2.10)2

and (2.20), show that the rivulet becomes narrow and shallow according to

a ∼ 2hm ∼ 2

(
9NQ̄N

λNN sinα

) 1
3N+1

= O
(
Q̄

N

3N+1

)
→ 0+; (2.38)

also the position of the minimum of a approaches α = π/2+, and the positions of

the maximum and minimum of hm approach α = 0 and α = π/2−, respectively.

In the limit of large flux, Q̄ → ∞, equations (2.15) with Q = Q̄, (2.16),

(2.10)1, and (2.21), show that the rivulet becomes infinitely wide on the upper

half of the cylinder and infinitely thick on the lower half of the cylinder according

to

a ∼ (2N + 1)Q̄

2N

(
m2N+1

sinα

) 1
N

= O
(
Q̄
)
→ ∞, hm → 1

m
= O(1) (2.39)
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Figure 2.15: Plot of the mass of the rivulet, M , given by (2.42) as a function of N , in the
cases Q̄ = 1/2, 1 and 2. The horizontal dashed lines show the constant asymptotic values in
the limit N → ∞. The vertical dashed line shows the value N = 1, at and below which the
mass is infinite.

for 0 < α < π/2,

a = 2hm = 2

(
9Q̄

λN

) N

3N+1

= O
(
Q̄

N

3N+1

)
→ ∞ (2.40)

at α = π/2, and equations (2.15) with Q = Q̄, (2.16), (2.10)3, and (2.22), together

with hm satisfies hm = tan(ma/2)/m ≃ 2/π − a, lead to

a→ π

m
= O(1), hm ∼ κN

(
mNQ̄N

sinα

) 1
2N+1

= O
(
Q̄

N

2N+1

)
→ ∞ (2.41)

for π/2 < α < π; also the position of the minimum of a approaches α = π−.

2.2.4 The Mass of the Rivulet, M

The mass of the rivulet, denoted by M and non-dimensionalised with ρβℓ2R, is

given by

M =

∫ π

0

∫ a

−a

h dy dα =

∫ π

2

0

2(ma cothma− 1)

m2
dα +

∫ π

π

2

2(1−ma cotma)

m2
dα.

(2.42)
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Both of the integrands in (2.42) are finite at α = π/2. The second integrand is

singular like O((π−α)−1/(2N+1)) as α→ π− (i.e. near the bottom of the cylinder)

and hence is integrable there; however, the first integrand is singular like O(α−1/N)

as α → 0+ (i.e. near the top of the cylinder) and so this integral is divergent if

N ≤ 1 but is convergent if N > 1, showing that the mass is theoretically infinite

in the Newtonian case N = 1 and in the shear-thinning case N < 1, but that it

is finite in the shear-thickening case N > 1. In other words, the finite mass in

the case N > 1 is due to the slower divergence of the width of the rivulet at the

top of the cylinder than in the case N ≤ 1. Figure 2.15 shows a plot of M as

a function of N for various values of Q̄, confirming this behaviour and showing

that M decreases monotonically from ∞ to a (nonzero) Q̄-dependent constant

asymptotic value (determined by (2.15), (2.26) and (2.42)) in the limit N → ∞.

2.3 Conclusions

In order to begin to rectify the lack of understanding of non-Newtonian rivulet

flow, we considered locally unidirectional steady gravity-driven flow of a thin

rivulet of a power-law fluid with prescribed volume flux Q̄ down a locally planar

substrate. In Section 2.1.2 we obtained the solution for unidirectional flow of a

uniform rivulet down a planar substrate, and then in Section 2.2 we used it to

obtain the solution for a slowly varying rivulet with prescribed constant (nonzero)

contact angle β down a slowly varying substrate, specifically flow in the azimuthal

direction around the outside of a large horizontal circular cylinder.

As in the special case of a Newtonian fluid, the rivulet is always wide and

of finite thickness near the top of the cylinder, but is thick and of finite width

near the bottom of the cylinder. In addition, the minimum width of the rivulet

always occurs on the lower half of the cylinder, whereas the maximum thickness

hm either increases monotonically with the angle α measured around the cylinder
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(if Q̄ ≥ Q̄c), or it has a maximum and then a minimum on the upper half of the

cylinder (if Q̄ < Q̄c).

The solution was shown to depend strongly on the value of the power-law

index of the fluid. For example, as Figures 2.6(a) and 2.7(a) illustrate, a rivulet of

strongly shear-thinning fluid self-channels its flow down a narrow central channel

between two levées of slowly moving fluid that form at its sides, and in the central

channel there is a plug-like flow at each y position except in a boundary layer

near the substrate. On the other hand, as Figures 2.6(b) and 2.7(b) illustrate,

in a rivulet of a strongly shear-thickening fluid the velocity profile is linear in

z except in a boundary layer near the free surface. Another notable qualitative

departure from Newtonian behaviour is that, as Figures 2.15 shows, whereas the

mass of a rivulet of a Newtonian or a shear-thinning fluid is theoretically infinite,

the mass of a rivulet of a shear-thickening fluid is finite.

In the present work we have compared rivulets with the same or different

values of the dimensionless prescribed flux Q̄. Since the scaling of the volume

flux in (2.6) involves N , a prescribed value of Q̄ would, in general, correspond to

different values of the dimensional prescribed flux for different fluids (that is, for

different values of N). However, solutions for rivulets of different power-law fluids

with the same prescribed value of the dimensional flux may readily be obtained

from the present solution once the values of the parameters ρ, µN , γ and β for

the different fluids are specified.

As well as being of interest in their own right, the present results provide

a benchmark for the study of rivulet flow of more realistic (and hence more

mathematically complicated) non-Newtonian fluids.



Chapter 3

Pinning and Depinning of a

Rivulet of a Power-Law Fluid

Draining Down a Slowly Varying

Substrate

In this Chapter we use the solution for unidirectional flow of a thin uniform rivulet

of a power-law fluid obtained in Subsection 2.1.2 to describe the flow of a rivulet

with prescribed constant semi-width (i.e. with pinned contact lines) but slowly

varying contact angle down a slowly varying substrate, specifically the flow in

the azimuthal direction around the outside of a large horizontal circular cylinder.

Pinned contact lines are likely to occur when the substrate is relatively rough,

and rivulets with constant width may result from the manner in which the fluid

is initially deposited onto the substrate (e.g. rapid pouring onto the substrate)

and/or the texture of the substrate (e.g. a smooth stripe on a rough substrate).

The work in this Chapter generalises that of Paterson et al. [97] for the case

of Newtonian fluid, as described in Sections 1.6 and 1.7.3, to a corresponding

analysis for a power-law fluid. In particular, the corresponding solution for a

98
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rivulet of a perfectly wetting fluid, which can never have constant prescribed

semi-width, is obtained, and we show that the global behaviour of a rivulet of

non-perfectly wetting fluid with prescribed semi-width but slowly varying contact

angle is qualitatively very different from that described in Chapter 2.

3.1 Rivulet Flow Down a Planar Substrate

As in Section 2.1, we start by considering briefly unidirectional steady gravity-

driven flow of a thin uniform rivulet of a power-law fluid with prescribed volume

flux down a planar substrate inclined at an angle α (0 ≤ α ≤ π) to the horizontal.

The free surface of the rivulet is denoted by z = h, the semi-width of the rivulet

by a, and the contact angle by β (≥ 0). We adopt the the same setup as in Section

2.1 (see Figure 2.1), but now we non-dimensionalise and scale the variables by

writing

y = ℓy∗, a = ℓa∗, z = ǫℓz∗, h = ǫℓh∗, β = ǫβ∗,

u = Uu∗, p = pa + ρgǫℓp∗, q =
U

ǫℓ
q∗, µ = µ̄µ∗, Q = ǫℓ2UQ∗,

(3.1)

where ℓ = (γ/ρg)1/2 is the capillary length, in which γ is the coefficient of surface

tension of the fluid, ǫ (≪ 1) is the transverse aspect ratio, U = (ρgǫN+1ℓN+1/µN)
1/N

is the appropriate velocity scale, pa is the atmospheric pressure, µ̄ = µN(U/ǫℓ)
N−1 =

(µN(ρgǫℓ)
N−1)1/N is the appropriate viscosity scale, and Q is the volume flux of

fluid along the rivulet. In general, there is some freedom in the definition of

ǫ. In this Chapter it is most convenient to define ǫ in terms of the prescribed

value of the flux, Q = Q̄, according to ǫ = (µNQ̄
N/ρgℓ3N+1)1/(2N+1), in which

case U = (ρgQ̄N+1/µNℓ
N+1)1/(2N+1), corresponding to taking Q̄∗ = 1 without loss

of generality. In particular, equation (3.1) then shows that the thickness of the

rivulet varies with the volume flux according to simply h ∝ Q̄N/(2N+1). Note that

a different choice of ǫ, namely ǫ = β, in which case U = (ρgβN+1ℓN+1/µN)
1/N ,
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corresponding to taking β∗ = 1 without loss of generality, was taken in Chapter

2. From now on we use non-dimensional quantities (with the stars omitted, for

clarity).

It may be shown straightforwardly that, at leading order in ǫ, the velocity is

again due to a longitudinal balance of gravity and viscous effects and is of the

form u = u(y, z)i given by (2.11), the pressure p = p(y, z) is given by (2.7), and

the cross-sectional free surface profile h = h(y) is given by (2.9), where we have

defined m =
√

| cosα| and a prime denotes differentiation with respect to y. The

volume flux of fluid along the rivulet is given by (2.14).

3.2 Rivulet Flow Down a Slowly Varying Sub-

strate

As discussed in Chapter 2, equations (2.11)–(2.14), describing the unidirectional

flow of a uniform rivulet down a planar substrate, also provide the leading order

description of the locally unidirectional flow of a slowly varying rivulet down a

slowly varying substrate. It is rivulets of this type that we consider in this Chapter

(although other interpretations are, of course, also possible). Specifically, we

again consider the situation in which both the azimuthal aspect ratio, ℓ/R ≪ ǫ,

and the appropriately defined reduced Reynolds number, ργǫ4ℓ2/µ̄2R ≪ 1, are

sufficiently small, where R is the radius of the cylinder. Again, both of these

conditions are satisfied if the cylinder is sufficiently large.

Figure 3.1 shows a sketch of such a situation, namely a narrow slowly varying

rivulet with prescribed flux Q = Q̄ (= 1) with prescribed constant semi-width

a = ā (< π) and slowly varying contact angle β (> 0) (i.e. pinned contact lines

all the way around the cylinder) draining from the top (α = 0) to the bottom

(α = π); it is rivulet flow of this general type that we describe in this Chapter.

Figure 3.1, showing a rivulet of fixed width but varying contact angle, may be
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Figure 3.1: Sketch of a narrow slowly varying rivulet with prescribed flux Q = Q̄ (= 1) with
prescribed constant semi-width a = ā (< π) and slowly varying contact angle β (> 0) draining
from the top (α = 0) to the bottom (α = π) of a large horizontal cylinder.
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Figure 3.2: As in Figure 3.1, except for a wide rivulet with prescribed constant semi-width
a = ā (> π) and slowly varying contact angle β in 0 ≤ α ≤ αdepin, but with zero contact angle
β = 0 and slowly varying semi-width a = π/m (π ≤ a ≤ ā) in αdepin ≤ α ≤ π.
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contrasted with Figure 2.9, showing a rivulet of fixed contact angle but varying

width.

As discussed in Subsection1.7.3, Paterson et al. [97] showed that a rivulet of

Newtonian fluid can have constant width all the way around the cylinder only if

the rivulet is sufficiently narrow (specifically only if ā ≤ π), and that for a wider

rivulet (specifically for ā > π) there is a critical value of α on the lower half of

the cylinder, denoted by αdepin (π/2 < αdepin < π) and given by

αdepin = cos−1

(
−π

2

ā2

)
for ā > π, (3.2)

at which the contact angle is equal to zero, β = 0, and beyond which there is

no physically realisable solution with constant width a = ā. For their problem,

Paterson et al. [97] assumed that the contact lines de-pin at α = αdepin and

that thereafter the rivulet drains from α = αdepin to the bottom of the cylinder

with zero contact angle β = 0 and slowly varying semi-width a. [Of course, this

behaviour is a special case of the more general scenario in which a rivulet with

prescribed constant width de-pins and possibly re-pins at a prescribed non-zero

value of the contact angle. This situation was also analysed by Paterson et al. [97]

for a Newtonian fluid, but for brevity is not pursued here.] Since (3.2) does not

depend on viscous effects, it also holds for the present case of a power-law fluid

(and indeed, for any generalised Newtonian fluid), and hence the same de-pinning

of a wide rivulet occurs in the present problem. Figure 3.2 shows a sketch of such

a situation, namely a wide rivulet with prescribed constant semi-width a = ā

(> π) and slowly varying contact angle β in 0 ≤ α ≤ αdepin (i.e. pinned contact

lines on the upper part of the cylinder), but with zero contact angle β = 0 and

slowly varying semi-width a = π/m (π ≤ a ≤ ā) in αdepin ≤ α ≤ π (i.e. de-pinned

contact lines on the lower part of the cylinder). Thus in Section 3.3 we obtain

the solution for the special case of a rivulet of a perfectly wetting power-law fluid
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(i.e. a rivulet with zero contact angle, β = 0), and then in Section 3.4 we use

this solution, together with the solution previously obtained in Chapter 2 for the

general case of a rivulet of a non-perfectly wetting power-law fluid, to provide the

complete description of the rivulets sketched in Figures 3.1 and 3.2.

3.3 A Rivulet of a Perfectly Wetting Fluid (β =

0)

In the special case of a perfectly wetting fluid (β = 0) equations (2.8) and (2.4)

have no solution for h on the upper half of the cylinder (i.e. for 0 ≤ α ≤ π/2),

but on the lower half (i.e. for π/2 < α ≤ π) they have the simple solution

a =
π

m
, h =

hm
2

(1 + cosmy) , (3.3)

where hm denotes the (as yet unknown) maximum thickness of the rivulet, which

occurs at y = 0. In particular, the solution (3.3) shows that the semi-width

a varies with α (i.e. that a slowly varying rivulet of a perfectly wetting fluid

can never have constant semi-width). The maximum velocity, denoted by umax,

occurs at y = 0 and z = hm and is again given by (2.12).

To complete the solution we must determine hm appearing in (3.3). Perform-

ing the quadrature in (2.14) with h given by (3.3) we find that the flux Q is given

by

Q =

2
√
πN Γ

(
5N + 2

2N

)

(2N + 1)Γ

(
3N + 1

N

) (sinα)
1
N

m
h

2N+1
N

m =
2N

2N + 1
B

(
1

2
,
5N + 2

2N

)
(sinα)

1
N

m
h

2N+1
N

m ,

(3.4)

where Γ and B again denote Gamma and Beta functions, respectively. Prescribing
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(0.24090, 1.27197)
(

1, (24/5π)1/3 ≃ 1.15176
)

✲(8/3π)1/2

≃ 0.92132

Figure 3.3: Plot of κN given by (3.6) as a function of N , together with its asymptotic value
(8/3π)1/2 ≃ 0.92132 in the limit N → ∞.

the value of the flux to be Q = Q̄ = 1 yields

hm = κN

(
mN

sinα

) 1
2N+1

, (3.5)

where we have introduced κN defined by

κN =



(2N + 1)Γ

(
3N + 1

N

)

2
√
πN Γ

(
5N + 2

2N

)




N

2N+1

=

[
2N

2N + 1
B

(
1

2
,
5N + 2

2N

)]− N

2N+1

. (3.6)

Equations (3.3) and (3.5) show that, although both a and the form of the cross-

sectional free surface profile of the rivulet are independent of N , its size (and,

in particular, its maximum thickness hm) depends on N via the flux. Figure 3.3

shows a plot of κN given by (3.6) as a function of N , and illustrates that κN

satisfies

κN = 1− 1

2
log
(
4πN3

)
N +O(N logN)2 → 1+ (3.7)

as N → 0+, increases to a maximum 1.27197 at N ≃ 0.24090, takes the value
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Figure 3.4: Plots of the maximum thickness hm of a rivulet of a perfectly wetting fluid
given by (3.5) as a function of α/π for N = 1/100, 1/30, 1/10, 1/2, 1, 2 and 10, together
with the asymptotic solutions hm ∼ 1/ sinα in the limit N → 0+ (dashed curve), and hm ∼
(8/3π)1/2(− cosα)1/4 in the limit N → ∞ (dotted curve).

(24/5π)1/3 ≃ 1.15176 atN = 1, and thereafter decreases monotonically, satisfying

κN =

(
8

3π

)1/2 [
1 +

3 ln 6π − 4

12N
+O

(
1

N2

)]
→
(

8

3π

)1/2+

≃ 0.92132+ (3.8)

as N → ∞. In particular, when N = 1 equation (3.5) reduces to the solution in

the special case of a Newtonian fluid given by Wilson and Duffy [131], namely

hm = (24m/(5π sinα))1/3.

Figure 3.4 shows plots of hm given by (3.5) as a function of α/π for a range of

values of N , illustrating that in all cases hm increases monotonically with α, and

that the rivulet becomes wide and shallow at the middle of the cylinder according

to

hm ∼ κN

(
α− π

2

) N

2(2N+1) → 0+, a ∼ π
(
α− π

2

)− 1
2 → ∞ (3.9)

in the limit α → π/2+, and that it becomes thick and of finite width near the
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Figure 3.5: Plots of the cross-sectional free surface profile h of a rivulet of a perfectly wetting
fluid given by (3.3) as a function of y at α = 11π/20, 12π/20, . . . , 19π/20 for (a) N = 1/2 and
(b) N = 2.

bottom of the cylinder according to

hm ∼ κN (π − α)−
1

2N+1 → ∞, a = π+
π

4
(α− π)2+O (α− π)4 → π+ (3.10)

in the limit α→ π−. Furthermore, hm ∼ 1/ sinα in the limit of a strongly shear-

thinning fluid, N → 0+, and hm ∼ (8/3π)1/2(− cosα)1/4 in the limit of a strongly

shear-thickening fluid, N → ∞; these asymptotic solutions are also included in

Figure 3.4. Figure 3.4 also shows that the variation of hm is not monotonic in

N , in the sense that at any fixed value of α, hm increases with N to a maximum

value, and thereafter decreases monotonically with N .

Figure 3.5 shows plots of h given by (3.3) as a function of y at various stations

around the cylinder for N = 1/2 and N = 2, and Figure 3.6 shows contour plots

of h in the (y, α/π) plane for the same values of N . In particular, Figures 3.5

and 3.6 illustrate that the forms of the rivulets for different values of N are

qualitatively similar. Figure 3.6 also shows that there are solutions for h only on

the lower half of the cylinder, which is different from Figure 2.14 which shows

that those solutions for h are valid from the top to the bottom of the cylinder.

Figure 3.7 shows contour plots of the velocity u given by (2.11) when α = 3π/4

for N = 1/10 and N = 10, and shows that in the limits N → 0 and N → ∞ the

velocity has the same qualitative behaviour as that described in Chapter 2 for
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Figure 3.6: Contour plots of the free surface h of a rivulet of a perfectly wetting fluid given by
(3.3) in the (y, α/π) plane for (a) N = 1/2 and (b) N = 2. The contours are drawn at intervals
of 1/4 up to a maximum value of h = 10 in both cases.
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Figure 3.7: Contour plots of the velocity u of a rivulet of a perfectly wetting fluid given
by (2.11) when α = 3π/4 (in which case a = π/m ≃ 3.73600) for (a) N = 1/10 (for which
hm ≃ 1.61671) and (b) N = 10 (for which hm ≃ 0.89530). The contour interval is 0.1 in both
parts of the Figure.
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Figure 3.8: Plot of the maximum velocity umax of a rivulet of a perfectly wetting fluid given
by (3.13) as a function of α/π for N = 1/30, 1/10, 1/2, 1, 2, 10, 30 and 100, together with the
asymptotic solutions umax ∼ m sinα/(2

√
πN) in the limit N → 0, drawn for the case N = 1/30

(dashed curve), and umax = (8m/3π)1/2 in the limit N → ∞ (dotted curve).

a rivulet of a non-perfectly wetting fluid. In particular, Figure 3.7(a) illustrates

that in the limit N → 0 equations (2.11), (3.3), (3.5) and (3.6), with κN
(N+1)/N ∼

1/2
√
πN , lead to

u ∼ Nh(h sinα)
1
N ∼ m sinα

2
√
πN

(
1 + cosmy

2

) 1+N

N

(3.11)

except in a narrow boundary layer near the substrate, and hence that the flow

“self-channels” down a narrow central channel defined by h > 1/ sinα with semi-

width

1

m

(
2N log

m2 sin4 α

4πN3

) 1
2

(≪ 1) (3.12)

between two “levées” of slowly moving fluid. In deriving (3.12) we have made use

of the results hm sinα ∼ 1+N log(m sin2 α/2
√
πN3/2) and (hm/2)(1+cosmy) →

1/ sinα in the limit N → 0, so that 1+cosmy in (3.11) satisfies 1+cosmy ∼ 2−

2N log(m sin2 α/2
√
πN3/2), together with cosmy ∼ 1−m2y2/2. In the particular

case shown in Figure 3.7(a) the channel is defined by h >
√
2 ≃ 1.41421 and has

semi-width 0.86475. On the other hand, Figure 3.7(b) illustrates that in the

limit N → ∞ there is a simple linear velocity profile u ∼ z except in a narrow
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)

Figure 3.9: Plot of the mass of a rivulet of a perfectly wetting fluid, M , given by (3.15) as a
function of N , together with its asymptotic value (2π/3)1/2B(1/2, 3/8) ≃ 5.58013 in the limit
N → ∞.

boundary layer near the free surface. Figure 3.8 shows a plot of umax, namely

umax =
N

N + 1
(sinα)

1
2N+1κ

N+1
N

N m
N+1
2N+1 , (3.13)

as a function of α/π for a range of values of N , showing that umax varies non-

monotonically with both α and N . In particular, for any fixed value of N , umax

increases from zero at α = π/2 to a maximum value, and then decreases back to

zero at α = π, while at any fixed value of α, umax decreases from ∞ (specifically,

umax ∼ m sinα/(2
√
πN) → ∞ as N → 0+) to a minimum value, and then in-

creases to (8m/3π)1/2 as N → ∞, taking the value umax = 2(9m2 sinα/(25π2))1/3

when N = 1; these asymptotic solutions (the former drawn for the caseN = 1/30)

are also included in Figure 3.8.
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3.3.1 The Mass of the Rivulet, M

The mass of the rivulet, denoted by M and non-dimensionalised by ρǫℓ2R, where

R is the radius of the cylinder, is given by

M =

∫ π

π/2

∫ a

−a

h dy dα =

∫ π

π/2

πhm
m

dα = πκN

∫ π

π/2

(
(− cosα)

N+1
2 sinα

)− 1
2N+1

dα,

(3.14)

leading to

M =
π

2
κN B

(
N

2N + 1
,

3N + 1

4(2N + 1)

)
. (3.15)

Figure 3.9 shows a plot of M as a function of N , illustrating that M decreases

monotonically with N , satisfying M ∼ π/(2N) → ∞ in the limit N → 0+,

M = (3π2/5)1/3 B(1/3, 1/3) ≃ 9.58854 when N = 1 (in agreement with equations

(9) and (10) of Paterson et al. [97]), andM → (2π/3)1/2 B(1/2, 3/8)+ ≃ 5.58013+

in the limit N → ∞.

3.4 A Rivulet of a Non-perfectly Wetting Fluid

(β > 0)

In the general case of a non-perfectly wetting fluid (β > 0) the solution of (2.8)

and (2.4) for h

h = β ×





coshma− coshmy

m sinhma
if 0 ≤ α <

π

2
,

a2 − y2

2a
if α =

π

2
,

cosmy − cosma

m sinma
if

π

2
< α ≤ π,

(3.16)

which differs from (2.9) only by the factor β. The maximum thickness of the

rivulet, hm, is obtained by setting y = 0 in (3.16) which is given by (1.86). As

in the special case of a perfectly wetting fluid described in Section 3.3, although
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the form of the cross-sectional free surface profile of the rivulet is independent of

N , its size (and, in particular, its contact angle β) depends on N via the flux,

which, paralleling (2.14) in Chapter 2, is given by

Q =
1

9

(
sinαβ2N+1

m3N+1

) 1
N

fN (ma) , (3.17)

where fN(ma) is given by (2.16) in which 2F1 denotes the hypergeometric func-

tion, and where λN is given by (2.17).

Unlike in Chapter 2 where we prescribed the values of Q and β to obtain an

implicit equation for the semi-width a, in this Chapter we prescribe the values of

Q and a to determine the contact angle β. Specifically, setting Q = Q̄ = 1 and

a = ā in (3.17) yields an explicit expression for β, namely

β =

(
9Nm3N+1

fN(mā)N sinα

) 1
2N+1

, (3.18)

and h is then given explicitly by (3.16). We note that β (and hence the rivulet)

does not have top-to-bottom symmetry. Note that (3.18) recovers (1.92) in the

case N = 1.

In the limit N → 0+ we have

β ∼





m

sinα
coth

mā

2
if 0 ≤ α <

π

2
,

2

ā
if α =

π

2
,

m

sinα
cot

mā

2
if

π

2
< α ≤ π,

(3.19)

and hm is then given by hm ∼ 1/ sinα. On the other hand, in the limit N → ∞

we have fN(ma) → f∞(ma), where the function f∞(ma) is given by (2.26) and

hence (3.18) gives

β ∼ 3

(
m3

f∞(mā)

) 1
2

, (3.20)
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and hm is then given by (1.86).

As we have already described, the behaviour is qualitatively different for a

narrow rivulet with ā ≤ π and for a wide rivulet with ā > π; we shall therefore

describe the behaviour of the rivulet in each of these two cases separately in the

next two Subsections.

3.4.1 A Narrow Rivulet with ā ≤ π

As we have already described in Section 3.2, a narrow rivulet with prescribed

constant semi-width ā ≤ π, as sketched in Figure 3.1, can flow all the way from

the top to the bottom of the cylinder.

Figure 3.10 shows plots of β and hm for a narrow rivulet with prescribed

constant semi-width ā = 2 (< π) as functions of α/π for a range of values of N .

Figure 3.11 shows plots of h given by (3.16) for a narrow rivulet with prescribed

constant semi-width ā = 2 (< π) as a function of y at various stations around

the cylinder for N = 1/2. Figures 3.10 and 3.11 illustrate that the rivulet is thick

at the top and bottom of the cylinder, with both β and hm becoming infinite

according to

β ∼
(

9

fN (ā)

) N

2N+1

α− 1
2N+1 → ∞,

hm ∼
(

9

fN (ā)

) N

2N+1

α− 1
2N+1 tanh

ā

2
→ ∞

(3.21)

in the limit α→ 0+, and

β ∼
(

9

fN(ā)

) N

2N+1

(π − α)−
1

2N+1 → ∞,

hm ∼
(

9

fN (ā)

) N

2N+1

(π − α)−
1

2N+1 tan
ā

2
→ ∞

(3.22)

in the limit α → π−, except in the marginal case ā = π, in which β = 0 at α = π

and the rivulet becomes thick with zero contact angle and finite semi-width π
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Figure 3.10: Plots of (a) the contact angle β given by (3.18) and (b) the maximum thickness
hm given by setting y = 0 in (3.16) of a narrow rivulet of a non-perfectly wetting fluid with
prescribed constant semi-width ā = 2 (< π) as functions of α/π for N = 1/20, 1/10, 1/2, 1,
2 and 10, together with the asymptotic solutions (3.19) in the limit N → 0+ (dashed curves),
and (3.20) in the limit N → ∞ (dotted curves).
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Figure 3.11: Plots of the cross-sectional free surface profile h given by (3.16) for a narrow
rivulet of a non-perfectly wetting fluid with prescribed constant semi-width ā = 2 (< π) as
a function of y for N = 1/2, at (a) α = π/20, π/10, 3π/20, . . . , π/2 on the top half of the
cylinder, and (b) π/2, 11π/20, . . . , 19π/20 on the bottom half of the cylinder.

near the bottom of the cylinder according to

β ∼ πκN
8

(π − α)
4N+1
2N+1 → 0+, hm ∼ κN(π − α)−

1
2N+1 → ∞ (3.23)

in the limit α → π−. In deriving (3.21) and (3.22) we have made use of the

appropriate limits of (3.18), (1.86) and (2.22) together with sinα ∼ α and m→ 1

in the limit α → 0, and sinα ∼ π − α in the limit α → π−, respectively. In

deriving (3.23) we have made use of the appropriate limits of (3.18), (3.5) and

(2.16) together with cosα → −1, sinα ∼ π − α, m ∼ 1 − (π − α)2/2 and

fN(mā) ∼ fN (πā) → ∞ in the limit α→ π−.

Both β and hm are finite in the middle of the cylinder, satisfying

β → 2

(
18N

λNN ā
3N+1

) 1
2N+1

= O(1), hm →
(

18

λN ā

) N

2N+1

= O(1) (3.24)

in the limit α→ π/2.

Stationary points of β are determined mathematically by (3.17) and

2 csc2 α = N
f ′
N(ma)ma

fN (ma)
− 3N + 1 (3.25)

(obtained by differentiation of (3.17) with respect to α) from which it may be
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shown that β has a unique minimum value, occurring on the lower half of the

cylinder (i.e. for π/2 < α < π). On the other hand, stationary points of hm are

determined mathematically by (3.17) and

2 csc2 α = N
f ′
N(ma)ma

fN(ma)
− (2N + 1)

2ma

sinh 2ma
+ 2−N (3.26)

(obtained by differentiation of (3.16) with y = 0) from which it may be shown

that hm also has a unique minimum value, but occurring on the upper half of the

cylinder (i.e. for 0 < α < π/2). Furthermore, Figure 3.10 also shows that, like

the variation of hm for a rivulet of a perfectly wetting fluid shown in Figure 3.4,

the variation of β and hm is not monotonic in N at any fixed value of α.

In the limit of a very narrow rivulet, ā → 0+, the rivulet becomes thick

according to

β ∼ 2

(
18N

λNN ā
3N+1 sinα

) 1
2N+1

→ ∞, hm ∼
(

18N

λNN ā
N sinα

) 1
2N+1

→ ∞. (3.27)

3.4.2 A Wide Rivulet with ā > π

As we have already described in Section 3.2, a wide rivulet with prescribed

constant semi-width ā > π, as sketched in Figure 3.2, can flow all the way

from the top to the bottom of the cylinder only by flowing from α = αdepin

(π/2 < αdepin < π), where αdepin is given by (3.2), to the bottom of the cylinder

with de-pinned contact lines and zero contact angle according to the solution for

a rivulet of a perfectly wetting fluid described in Section 3.3.

Specifically, at α = αdepin the rivulet has zero contact angle β = 0, semi-width

a = ā, and maximum thickness hm = hmdepin, where

hmdepin = κN

(
(− cosαdepin)

N

2

sinαdepin

) 1
2N+1

= κN

(
πN ā2−N

√
ā4 − π4

) 1
2N+1

, (3.28)
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while for αdepin ≤ α ≤ π it has β = 0, monotonically decreasing slowly varying

semi-width a = π/m (π ≤ a ≤ ā), and monotonically increasing maximum

thickness hm (≥ hmdepin) given by (3.5).

In the limit α → α−
depin we have a ≡ ā, and find that β → 0+ according to

β =

(
πN(ā4 − π4)N

ā3N−1

) 1
2N+1 κN

4
(αdepin − α) +O(αdepin − α)2 (3.29)

and hm → h−mdepin according to

hm = hmdepin +
(Nā4 + (2−N)π4)hmdepin

2π2
√
ā4 − π4

(α− αdepin) +O(αdepin − α)2, (3.30)

whereas in the limit α → α+
depin we have β ≡ 0, and find that a → ā− according

to

a = ā− ā
√
ā4 − π4

2π2
(α− αdepin) +O(αdepin − α)2 (3.31)

and hm → h+mdepin according to (3.30). In particular, the solutions in α < αdepin

and α > αdepin join continuously (but not smoothly) at α = αdepin.

Figure 3.12 shows plots of a, β and hm for a wide rivulet with prescribed

constant semi-width ā = 5 (> π) in 0 < α ≤ αdepin ≃ 0.62918π and slowly

varying semi-width a = π/m in αdepin/π ≤ α/π ≤ 1 as functions of α/π for a

range of values of N . Note that since a takes the constant value ā for all α when

ā ≤ π and for α ≤ αdepin when ā > π, and is given by a = π/m for α ≥ αdepin

when ā > π, the plot of a in Figure 3.12(a) is identical to the corresponding plot

for Newtonian fluid given by Figure 6(b) of Paterson et al. [97], but is included

here for completeness.

Figure 3.13 shows plots of h given by (3.3) and (3.16) for a wide rivulet with

prescribed constant semi-width ā = 5 (> π) as a function of y at various stations

around the cylinder, including α = αdepin ≃ 0.62918π, for N = 1/2. Figures 3.12

and 3.13 illustrate that the rivulet is again thick at the top of the cylinder with
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Figure 3.12: Plots of (a) a, (b) β and (c) hm for a wide rivulet of a non-perfectly wetting fluid
with prescribed constant semi-width ā = 5 (> π) in 0 ≤ α/π < αdepin/π ≃ 0.62918 and slowly
varying semi-width a = π/m in αdepin/π ≤ α/π ≤ 1 as functions of α/π for N = 1/20, 1/10,
1/2, 1, 2 and 10, together with the asymptotic solutions (3.19) in the limit N → 0+ (dashed
curves), and (3.20) in the limit N → ∞ (dotted curves).
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Figure 3.13: Plots of the cross-sectional free surface profile h given by (3.3) and (3.16) for a
wide rivulet of a non-perfectly wetting fluid with prescribed constant semi-width ā = 5 (> π)
as a function of y for N = 1/2 at (a) α = π/20, π/10, 3π/20, . . . , π/2, and (b) π/2, 11π/20,
. . . , 19π/20 and α = αdepin ≃ 0.62918π.

both β and hm becoming infinite according to (3.21) in the limit α → 0+, and

they are again finite in the middle of the cylinder, satisfying (3.24) in the limit

α→ π/2. However, in this case the rivulet becomes thick with zero contact angle

and finite semi-width π near the bottom of the cylinder according to (3.10) in

the limit α → π−. Furthermore, Figure 3.12 also shows that, like in the case

of a narrow rivulet described in Section 3.4.1, the variation of β and hm is not

monotonic in N at any fixed value of α.

In the limit of a very wide rivulet, ā → ∞ (in which αdepin → π/2+), the

rivulet becomes flat according to

β ∼
((

2N + 1

2Nā

)N
1

sinα

) 1
2N+1

m→ 0+, hm ∼
((

2N + 1

2Nā

)N
1

sinα

) 1
2N+1

→ 0+

(3.32)

on the upper half of the cylinder and is given by (3.3) on the lower half of the

cylinder.

3.4.3 Contour Plots of the Free Surface

Figure 3.14 shows contour plots of h given by (3.3) and (3.16) in the (y, α/π)

plane for rivulets with prescribed semi-widths ā = 2 and ā = 5 when N = 2. In

particular, in the latter case the contact lines de-pin at α/π = αdepin/π ≃ 0.62918.
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Figure 3.14: Contour plots of the free surface h given by (3.3) and (3.16) in the (y, α/π) plane
for rivulets of a non-perfectly wetting fluid with prescribed semi-widths (a) ā = 2 and (b) ā = 5
when N = 2. In each case the contours are drawn at intervals of 1/8 up to a maximum h = 5/2,
together with the contours (a) h ≃ 1.09701 and (b) h ≃ 0.71836 that pass through the saddle
points of h, marked with dots. In (b) the contact lines de-pin at α/π = αdepin/π ≃ 0.62918.
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Figure 3.15: Plot of the mass of a rivulet of a non-perfectly wetting fluid, M , given by (3.33)
as a function of ā for N = 1/10, 1/2, 1, 2 and 10.

3.4.4 The Mass of the Rivulet, M

Whatever the value of ā, the mass of the rivulet is given by

M =

∫ π

0

∫ a

−a

h dy dα =

∫ π/2

0

2β(ma cothma− 1)

m2
dα+

∫ π

π/2

2β(1−ma cotma)

m2
dα.

(3.33)

Both integrands in (3.33) are finite at α = π/2. When ā > π the second

integral is evaluated most easily by splitting it into two integrals, one from α =

π/2 to α = αdepin, and one from α = αdepin to α = π, with the solution for a

perfectly wetting fluid (i.e. with β = 0) used in the latter. Figure 3.15 shows a

plot of M given by (3.33) as a function of ā for several values of N , showing that

M increases monotonically with ā. In particular, in the limit of a narrow rivulet,

ā→ 0+, M → 0+ according to

M ∼
(
25N+2āN+1

3λNN

) 1
2N+1

CN → 0+. (3.34)

In deriving (3.34) we have made use of equation (3.21)1 together withmā cothmā−

1 ∼ (mā)2/3 and 1−mā cotmā ∼ (mā)2/3 in limit ā→ 0+. On the other hand,
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Figure 3.16: Plot of CN given by (3.36) as a function of N , together with its asymptotic value
π in the limit N → ∞.

in the limit of a wide rivulet, ā→ ∞, M → ∞ according to

M ∼
(
(2N + 1)N āN+1

2NNN

) 1
2N+1

CN → ∞, (3.35)

where the constant CN in both (3.34) and (3.35) is defined by

CN =

∫ π

0

dα

(sinα)
1

2N+1

=

√
π Γ

(
N

2N + 1

)

Γ

(
4N + 1

2(2N + 1)

) = B

(
1

2
,

N

2N + 1

)
. (3.36)

In deriving (3.35) we have made use of equations (3.32) and (3.3); also the second

integral in (3.33) is evaluated with the solution for a perfectly wetting fluid, since

αdepin → π/2 in the limit ā→ ∞.

Figure 3.16 shows a plot of CN given by (3.36) as a function of N , illustrating

that CN decreases monotonically with N , satisfying CN ∼ 1/N → ∞ as N → 0,

CN =
√
π Γ(1

3
)/Γ(5

6
) ≃ 4.20655 when N = 1 (in agreement with equation (10) of

Paterson et al. [97]), and CN → π+ as N → ∞.

Figure 3.17 shows a plot of M given by (3.33) as a function of N for sev-

eral values of ā, showing that M decreases monotonically with N from ∞ to a
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Figure 3.17: Plot of the mass of a rivulet of a non-perfectly wetting fluid, M , given by (3.33)
as a function of N for ā = 1/2, 1, 2, 5 and 10. The horizontal dashed lines denote the constant
asymptotic values in the limit N → ∞.

(nonzero) ā-dependent constant asymptotic value in the limit N → ∞.

3.5 Conclusions

We described the flow of a slowly varying rivulet of a power-law fluid with pre-

scribed constant semi-width (i.e. with pinned contact lines) but slowly varying

contact angle down a slowly varying substrate, specifically the flow in the az-

imuthal direction around the outside of a large horizontal circular cylinder.

We obtained the solution for a perfectly wetting fluid (which can never have

pinned contact lines), and showed that, despite having the same local behaviour,

the global behaviour of a rivulet of non-perfectly wetting fluid is qualitatively

very different from that described in Chapter 2. Specifically, we described how

(as sketched in Figure 3.1) the contact lines of a sufficiently narrow rivulet with

ā ≤ π can remain pinned as it drains all the way from the top to the bottom

of the cylinder, but how (as sketched in Figure 3.2) the contact lines of a wider

rivulet with ā > π de-pin at α = αdepin on the lower half of the cylinder, and how

thereafter it drains to the bottom of the cylinder with zero contact angle β = 0

and slowly varying semi-width a = π/m.
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How the shape of the rivulet and the velocity within it depend on the power-

law index N was described in detail. In particular, we showed that whereas

neither h nor u vary monotonically with N at any fixed value of α, its mass is

always monotonically increasing in ā but monotonically decreasing in N .

Despite the limitations of the power-law model, the present results again pro-

vide a rare analytical benchmark for the study of rivulet flow of non-Newtonian

fluids.



Chapter 4

Rivulet Flow of Generalised

Newtonian Fluids

As we discussed in Chapter 1, there is very little work on rivulet flow of fluids with

other than the theoretically convenient but highly idealised power-law rheology.

Accordingly in this Chapter we consider steady gravity-driven flow of a thin

uniform rivulet with more realistic non-Newtonian rheology, namely a generalised

Newtonian fluid down a vertical planar substrate. In particular, we obtain general

results for any generalised Newtonian fluid before giving a detailed account of the

behaviour of two popular and widely-used generalised Newtonian fluids, namely

a Carreau fluid and an Ellis fluid.

4.1 A generalised Newtonian fluid

In this Chapter we shall be concerned with flow of an incompressible generalised

Newtonian fluid with velocity u and pressure p for which the extra stress σ
′ is

related to the rate of strain e = 1
2

(
∇u+ (∇u)T

)
by σ

′ = 2µe, where µ is the

viscosity function of the specific fluid under consideration.

We shall be concerned primarily with the most commonly occuring kind of

generalised Newtonian behaviour, namely shear-thinning fluids (for which µ is a

124
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decreasing function of q), although many of the results obtained are also valid for

shear-thickening fluids (for which µ is an increasing function of q).

As described previously in Subsection 1.3.2, an example of a generalised New-

tonian fluid is a Carreau fluid, given by

µ = µ∞ +
µ0 − µ∞(

1 + λ2q2
)(1−N)/2

, (4.1)

where q =
(
2 tr(e2)

)1/2
is the shear rate, µ0 and µ∞ (≤ µ0) are the viscosities at

zero and infinite shear rate, respectively, λ is a (finite) relaxation time, N (≤ 1)

is a measure of the shear-thinning behaviour (specifically, the smaller the value

of N , the greater the rate of shear thinning). Another example of a generalised

Newtonian fluid is an Ellis fluid, given by

µ = µ∞ +
µ0 − µ∞

1 +

(
τ

τav

)α−1 , (4.2)

where the measure of the stress, τ , is defined by τ =
(
tr
(
σ

′2) /2
)1/2

, µ0 and µ∞

(≤ µ0) are the viscosities at zero and infinite stress, respectively, τ = µq, τav is

the (non-zero) value of the stress τ when µ takes the average value µ = µav =

(µ0+µ∞)/2, and α (≥ 1) is a measure of the shear-thinning behaviour (specifically,

the larger the value of α, the greater the rate of shear thinning). Note that unlike,

in the previous Chapters 2 and 3, in this Chapter α is a measure of the shear-

thinning behaviour and is not the local slope of the substrate. A conventional

Ellis fluid (see, for example, Myers [91]), which has zero viscosity in the limit of

infinite stress τ → ∞, corresponds to the special case µ∞ = 0.

For the Carreau and Ellis fluids, the stated restrictions on the parameters

appearing in the viscosities mean that µ and τ are, respectively, non-increasing

and non-decreasing functions of q (that is, dµ/dq ≤ 0 and dτ/dq ≥ 0).

Note that each of the limits λ → 0, N → 1 and µ∞ → µ0 for a Carreau
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fluid (4.1) and τav → ∞ and µ∞ → µ0 for an Ellis fluid (4.2) corresponds to

a Newtonian fluid with constant viscosity µ = µ0, and that both of the limits

λ→ ∞ for a Carreau fluid (4.1) and τav → 0 for an Ellis fluid (4.2) correspond to

a Newtonian fluid with constant viscosity µ = µ∞. Furthermore, the limit α→ 1

for an Ellis fluid (4.2) corresponds to a Newtonian fluid with constant viscosity

µ = µav.

The velocity u and the pressure p satisfy the mass-conservation and momentum-

balance equations for such a fluid, which take the forms

∇ · u = 0 ρ
Du

Dt
= −∇p+ ρg +∇ · σ′, (4.3)

where ρ, g and t denote the fluid density, acceleration due to gravity, and time,

4.2 Rivulet Flow Down a Vertical Substrate

4.2.1 General Formulation

We consider unidirectional steady gravity-driven flow of a thin uniform rivulet of

a generalised Newtonian fluid with semi-width a, contact angle β, and volume

flux Q down a vertical planar substrate, as shown in Figure 4.1. We adopt the

Cartesian coordinates Oxyz, with the z axis normal to the substrate z = 0 and

the y axis horizontal; the velocity is of the form u = u(y, z)i and we denote the

free surface profile of the rivulet by z = h(y). We non-dimensionalise and scale

the variables according to

x = Lx∗, y = Ly∗, a = La∗, z = ǫLz∗, h = ǫLh∗, β = ǫβ∗, u = Uu∗,

p = pa +
ǫγ

L
p∗, Q = ǫL2UQ∗, µ = µ0µ

∗, µ∞ = µ0µ
∗
∞, q =

U

ǫL
q∗, τ =

µ0U

ǫL
τ ∗,

(4.4)
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Figure 4.1: Unidirectional steady gravity-driven flow of a thin uniform rivulet of a generalised
Newtonian fluid with semi-width a, contact angle β, and volume flux Q down a vertical planar
substrate.

where L is an appropriate transverse length scale, pa denotes the constant atmo-

spheric pressure, ǫ (≪ 1) is the aspect ratio of the rivulet, γ is the constant coeffi-

cient of surface tension of the fluid, and U = ǫ2ρgL2/µ0 is an appropriate velocity

scale. There are several equally sensible definitions of L and ǫ, including L = a

and ǫ = β (corresponding to taking a∗ = 1 and β∗ = 1), L = (µ0Q/ρgβ
3)1/4 and

ǫ = β (corresponding to taking Q∗ = 1 and β∗ = 1), L = a and ǫ = (µ0Q/ρga
4)1/3

(corresponding to taking a∗ = 1 and Q∗ = 1), and L = ℓ and ǫ = β, where

ℓ = (γ/ρg)1/2 denotes the capillary length. However, in what follows we leave

L and ǫ unspecified in order to keep the subsequent presentation as general as

possible. Hereafter all quantities are non-dimensional unless stated otherwise; for

clarity we drop the stars superscripts on non-dimensional variables.

As the velocity is of the form u = u(y, z)i we have q = uz at leading order in

the thin-film limit ǫ → 0 (with uz ≥ 0 for the type of flow under consideration).
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Therefore (4.3) gives

0 = − 1

B
px + 1 + (µuz)z, 0 = −py, 0 = −pz, (4.5)

where B = ρgL2/γǫ is an appropriate Bond number. Equation (4.5) is to be

integrated subject to the boundary conditions of no slip on the substrate z = 0,

and balances of normal and tangential stress on the free surface:

u = 0 on z = 0, uz = 0 and p = −hyy on z = h, (4.6)

with h again subject to the contact-line conditions

h = 0 and hy = ∓β at y = ±a. (4.7)

The solution for p is p = −hyy with h satisfying hyyy = 0, leading to

h = hm

(
1− y2

a2

)
, hm =

βa

2
, p =

β

a
, (4.8)

where hm = h(0) denotes the maximum thickness of the rivulet; equation (4.8)

shows that, as expected, the free surface of the rivulet has constant curvature,

and p is a constant.

From (4.5) and (4.6) the shear stress τ (= µuz) and the shear rate q (= uz)

are given by

τ = µq = h− z, (4.9)

representing a balance between gravity and viscous effects. In principle, the

algebraic equation (4.9) may be solved for q in terms of h − z, which may then

be integrated with respect to z subject to (4.6) to give u as a function of y and
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z. The volume flux of fluid down the rivulet Q is then again given by

Q = 2

∫ a

0

ū dy, (4.10)

where the depth-integrated velocity ū is given by

ū =

∫ h

0

u dz. (4.11)

In general, there is freedom to prescribe two of the quantities a, β and Q, with

the third determined by the algebraic equation (4.10), and with hm related to a

and β by (4.8).

In the case of a Newtonian fluid with constant viscosity µ ≡ 1 the solutions

for τ , q, u and Q are simply

τ = q = h− z, u =
h2 − (h− z)2

2
, Q =

4β3a4

105
. (4.12)

Thus if the values of the contact angle β = β̄ and flux Q = Q̄ are prescribed then

the semi-width a and maximum thickness hm are given by a = (105Q̄/4β̄3)1/4

and hm = (105β̄Q̄/64)1/4, whereas if the values of the semi-width a = ā and flux

Q = Q̄ are prescribed then the contact angle β and maximum thickness hm are

given by β = (105Q̄/4ā4)1/3 and hm = (105Q̄/32ā)1/3; in both cases the solution

with h and p given by (4.8) and u given by (4.12) is then completely determined.

In Section 4.2.2 we obtain the parametric solution u of (4.9) subject to (4.6)

for any generalised Newtonian fluid with viscosity function of the form µ = µ(q)

(including, in particular, for a Carreau fluid), and in Section 4.2.3 we obtain the

explicit solution for any generalised Newtonian fluid with viscosity function of

the form µ = µ(τ) (including, in particular, for an Ellis fluid).



Chapter 4 130

4.2.2 Viscosity Function of the Form µ = µ(q)

If the viscosity function is of the form µ = µ(q) then, rather than solving (4.9)

and integrating uz = q to obtain u as a function of y and z, we can make more

progress analytically by eliminating z in favour of q via (4.9), so that dz =

− (d(µ(q)q)/dq) dq, to obtain u in terms of q :

u =

∫ qs

q

q̃
d
[
µ(q̃)q̃

]

dq̃
dq̃, (4.13)

where qs = qs(y) = q|z=0 is the shear rate at the substrate z = 0, to be determined

from

τs = µ(qs)qs = h, (4.14)

in which τs = τs(y) = τ |z=0 is the stress at the substrate z = 0. With an inte-

gration by parts, equation (4.13) may be written in the slightly more convenient

form

u = µ(qs)q
2
s − µ(q)q2 −

∫ qs

q

µ(q̃)q̃ dq̃. (4.15)

Thus (4.9) and (4.15) provide a parametric solution for u as a function of y and

z, with the parameter q satisfying 0 ≤ q ≤ qs. Although (4.15) involves only

quadrature, the qs that appears must be obtained as a solution of (4.14) for each

value of y.

The depth-integrated velocity ū given by (4.11) may be written

ū =

∫ h

0

u dz =
[
(z − h)u

]h
0
−
∫ h

0

(z − h)uz dz =

∫ h

0

(h− z)q dz, (4.16)

which with z again eliminated via (4.9) leads to

ū =

∫ qs

0

µ(q)q2
d
[
µ(q)q

]

dq
dq. (4.17)
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Therefore from (4.10)

Q = 2

∫ a

0

∫ qs

0

µ(q)q2
d
[
µ(q)q

]

dq
dq dy, (4.18)

and reversing the order of integration we obtain

Q = 2a

∫ qm

0

(
1− µ(q)q

µ(qm)qm

)1/2

µ(q)q2
d
[
µ(q)q

]

dq
dq, (4.19)

where qm = qs(0) is the maximum shear rate in the rivulet, occurring at y = 0,

z = 0 and satisfying

τm = µ(qm)qm = hm, (4.20)

in which τm = τs(0) is the maximum stress in the rivulet, occurring at y = 0,

z = 0.

In summary, when µ = µ(q) is prescribed, h and p are given by (4.8) and u is

given parametrically (with parameter q) by (4.9) and (4.15), with hm, a, β and

Q related by (4.19). If hm is known then the constant qm is obtained from (4.20),

and then the integral in (4.19) reduces to quadrature; otherwise hm and qm are

obtained simultaneously from (4.19) and (4.20).

For a Carreau fluid (4.1), with λ scaled by µ0/ǫLρg, equations (4.9) and (4.15)

give u parametrically as

h− z =

(
µ∞ +

1− µ∞(
1 + λ2q2

)(1−N)/2

)
q,

u =
µ∞

2

(
q2s − q2

)
+

1− µ∞

(1 +N)λ2

[
1−Nλ2q2

(1 + λ2q2)(1−N)/2
− 1−Nλ2q2s

(1 + λ2q2s )
(1−N)/2

]
.





(4.21)

However, the integral for Q given in (4.19) cannot, in general, be evaluated in

closed form, and so Q must, in general, be evaluated numerically.
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Figure 4.2: Plot of the coefficient C0 defined in (4.27) as a function of α (≥ 1). The
dashed curve shows the leading-order asymptotic behaviour in the limit α → ∞, namely
C0 ∼ √

π/α3/2 → 0+.

4.2.3 Viscosity Function of the Form µ = µ(τ)

If the viscosity function is of the form µ = µ(τ) then the solution analogous to

(4.15) and (4.19) takes the explicit form

u =

∫ h

h−z

τ

µ(τ)
dτ, Q = 2a

∫ hm

0

(
1− τ

hm

)1/2
τ 2

µ(τ)
dτ, (4.22)

with h and hm satisfying (4.8). Again if hm is known then the integral for Q

reduces to quadrature, but otherwise hm is obtained from the flux relation in

(4.22).

For an Ellis fluid (4.2), with τav scaled by µ0U/ǫL, in the general case α 6= 1

and µ∞ 6= 0 equation (4.22) gives

u =
h2 − (h− z)2

2µ∞
− 1− µ∞

2µ∞
[φ(h)− φ(h− z)] , (4.23)

where the function φ = φ(τ) is defined by

φ(τ) = τ 2 2F1

(
1,

2

α− 1
;
α + 1

α− 1
;−µ∞

(
τ

τav

)α−1
)
, (4.24)

in which 2F1 denotes a hypergeometric function. However, as for a Carreau fluid,

the integral for Q given in (4.22) cannot, in general, be evaluated in closed form,
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and so Q must, in general, be evaluated numerically. In the special case α = 1,

corresponding to a Newtonian fluid with viscosity µ = µav, we obtain

u =
h2 − (h− z)2

2µav

, Q =
4β3a4

105µav

. (4.25)

In the special case µ∞ = 0, corresponding to a conventional Ellis fluid, we obtain

u =
h2 − (h− z)2

2
+
hα+1 − (h− z)α+1

(α + 1)τα−1
av

, Q = β3a4

[
4

105
+
C0

8

(
hm
τav

)α−1
]
,

(4.26)

where we have defined the coefficient C0 by

C0 =

√
π Γ(α + 2)

Γ(α + 7
2
)

=
B(α + 3, 1

2
)

α + 2
, (4.27)

in which Γ and B denote the usual Gamma and Beta functions. Figure 4.2 shows

a plot of C0 as a function of α (≥ 1). In particular, Figure 4.2 shows that C0

takes the value C0 = 32/105 when α = 1, decreases monotonically with α, and

satisfies C0 ∼
√
π/α3/2 → 0+ in the limit α→ ∞.

4.3 Comparison of Carreau and Ellis Fluids

Figures 4.3 and 4.4 show plots of the viscosity µ as a function of the shear rate

q for a Carreau fluid given by (4.1) for different values of λ, N and µ∞, and for

an Ellis fluid given by (4.2) for different values of τav, α and µ∞, respectively,

illustrating that in all cases µ decreases from µ = 1 at q = 0 and satisfies µ→ µ+
∞

in the limit q → ∞. Moreover, for any given value of q the viscosity µ of a Carreau

fluid decreases with λ but increases with N and µ∞, whereas the viscosity µ of an

Ellis fluid increases with τav and µ∞ but increases with α when q < qav = τav/µav,

takes the value µav for all α when q = qav, and decreases with α when q > qav.

(In Figures 4.3 and 4.4, and in subsequent figures, an arrow across a family of
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Figure 4.3: Plots of the viscosity µ as a function of the shear rate q for a Carreau fluid given
by (4.1) when (a) µ∞ = 1/10 and N = 1/10 for λ = 0, 1/5, . . . , 4/5, 1, 2, . . . , 5, 10 and 20, (b)
µ∞ = 1/10 and λ = 1 for N = 0, 1/10, . . . , 1, and (c) N = 1/10 and λ = 1 for µ∞ = 0, 1/10,
. . . , 1. In part (a) the dashed line shows the asymptotic value in the limit λ → ∞, namely
µ = µ∞ = 1/10.
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Figure 4.4: Plots of the viscosity µ as a function of the shear rate q for an Ellis fluid given by
(4.2) when (a) µ∞ = 1/10 and α = 3 for τav = 1/10, 1/5, . . . , 9/10, 1, 2, . . . , 10, 15, 20, . . . ,
50, (b) µ∞ = 1/10 and τav = 1 for α = 1, 2, . . . , 10, and (c) α = 3 and τav = 1 for µ∞ = 0,
1/10, . . . , 1. In part (a) the dotted and dashed lines show the asymptotic values in the limits
τav → 0 and τav → ∞, namely µ = µ∞ = 1/10 and µ = 1, respectively.
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curves denotes the direction of increasing values of the relevant parameter.) As

Figure 4.3 also shows, for a Carreau fluid the viscosity gradient dµ/dq at q = 0 is

always zero, whereas, as Figure 4.4 also shows (although it is a little difficult to

discern), for an Ellis fluid it is infinite when α < 2, takes the value −(1−µ∞)/τav

when α = 2, and is zero when α > 2.

In Section 4.3.1 we use the exact solution given by (4.19) and (4.21) to describe

rivulet flow of a Carreau fluid, and in Section 4.3.2 we use the exact solution

given by (4.22) and (4.23) to describe rivulet flow of an Ellis fluid, highlighting

the similarities and differences between the behaviour of these two fluids. In

particular, we will find that the behaviour of a rivulet of a Carreau fluid and

of a rivulet of an Ellis fluid depends on the parameters µ∞, λ and N and on

the parameters µ∞ and τav, respectively, in a relatively simple way, reflecting the

simple dependence of the viscosities of these fluids on these parameters. However,

we will also find that the non-monotonic variation of the viscosity of an Ellis fluid

with α leads to a more complicated dependence of the behaviour of the rivulet

on α.

4.3.1 A Carreau Fluid

Figure 4.5 shows plots of centreline velocity profiles u(0, z) for a Carreau fluid

given by (4.21) for different values of λ, N and µ∞ with prescribed values of a

and β and hence different values of Q, illustrating that u(0, z) increases with λ

but decreases with N and µ∞; this is simply because larger (smaller) values of λ

(N and µ∞) correspond to increased shear thinning, and so to a reduced viscosity

and hence to a larger velocity. As discussed in Section 4.1, the cases λ = 0, N = 1

and µ∞ = 1 and the leading-order behaviour in the limit λ→ ∞, all of which are

included in Figure 4.5, correspond to Newtonian fluids with µ = 1 and µ = µ∞,

respectively; in the former cases the solutions for u and Q are given by (4.12),
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Figure 4.5: Plots of centreline velocity profiles u(0, z) for a Carreau fluid given by (4.21) with
a = 1 and β = 2 when (a) µ∞ = 1/10 and N = 1/10 for λ = 0, 1, . . . , 5, 10, 20, . . . , 100, (b)
µ∞ = 1/10 and λ = 1 for N = 0, 1/10, . . . , 1, and (c) N = 1/10 and λ = 1 for µ∞ = 0, 1/10,
. . . , 1. In part (a) the dashed curve shows the leading-order asymptotic solution in the limit
λ → ∞ given by (4.28).
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Figure 4.6: Plots of the semi-width a as a function of the flux Q for a Carreau fluid evaluated
numerically from (4.19) with β = 1 when (a) µ∞ = 1/10 and N = 1/2 for λ = 0, 1, . . . , 5, 10,
20, . . . , 100, (b) µ∞ = 1/10 and λ = 1 for N = 0, 1/4, . . . , 1, and (c) N = 1/2 and λ = 1 for
µ∞ = 0, 1/4, . . . , 1. In part (a) the dashed curve shows the leading-order asymptotic solution
in the limit λ → ∞ given by (4.28).

and in the latter limit they are given by

u =
h2 − (h− z)2

2µ∞
, Q =

4β3a4

105µ∞
. (4.28)

Figure 4.6 shows plots of the semi-width a as a function of the flux Q evaluated

numerically from (4.19) for different values of λ, N and µ∞, illustrating that a

always increases with Q. Moreover, for any prescribed flux Q = Q̄, a decreases

(increases) with λ (N and µ∞), because an increase (decrease) of λ (N or µ∞)

leads to increased shear thinning, and so a prescribed flux can be achieved with

a smaller rivulet. Plots of the contact angle β as a function of the flux Q for

different values of λ, N and µ∞ with a prescribed value of a are qualitatively

similar to the plots of a as a function of Q with a prescribed value of β shown in

Figure 4.6, and so are omitted for brevity.
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Figure 4.7: Plots of the flux Q as a function of N for a Carreau fluid evaluated numerically
from (4.19) with a = 1 and β = 1 when (a) µ∞ = 1/10 for λ = 0, 1, . . . , 5, 10, 20, . . . , 100, 200,
. . ., 1000, and (b) λ = 2 for µ∞ = 0, 1/4, . . . , 1. In part (a) the dashed line shows the asymptotic
value in the limit λ → ∞ given by (4.28), namely Q = 4β3a4/105µ∞ = 8/21 ≃ 0.3810.
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Figure 4.8: Plots of the flux Q as a function of λ for a Carreau fluid evaluated numerically
from (4.19) with a = 1 and β = 1 when (a) µ∞ = 1/10 for N = 0, 1/4, . . . , 1 and (b) N = 1/2
for µ∞ = 0, 1/4, . . . , 1. The dashed lines show the asymptotic values in the limit λ → ∞ given
by (4.28).
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Figure 4.9: Plots of the flux Q as a function of µ∞ for a Carreau fluid evaluated numerically
from (4.19) with a = 1 and β = 1 when (a) λ = 2 for N = 0, 1/4, . . . , 1, and (b) N = 1/2
for λ = 0, 1, . . . , 5, 10, 20, . . . , 100. In part (b) the dashed curve shows the leading-order
asymptotic solution in the limit λ → ∞ given by (4.28).
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Figure 4.10: Plots of centreline velocity profiles u(0, z) for an Ellis fluid given by (4.23) and
(4.25) with a = 1 and β = 2 when (a) µ∞ = 1/10 and α = 2 for τav = 1, 2, . . . , 5, 10, 15, 20,
(b) α = 2 and τav = 1 for µ∞ = 0, 1/10, . . . , 1, (c) µ∞ = 1/10 and τav = 1 α = 1, 2, 3, 4, 5,
10, 20, . . . , 50, and (d) µ∞ = 1/10 and τav = 1/2 for α = 1, 2, . . . , 10. In parts (a) and (c) the
dashed curves show the leading-order asymptotic solution in the limits τav → ∞ and α → ∞,
respectively, given by (4.12).

Figures 4.7, 4.8 and 4.9 show plots of Q as a function of N evaluated numer-

ically from (4.19) for different values of λ and µ∞, a function of λ for different

values of N and µ∞, and a function of µ∞ for different values of N and λ, respec-

tively. In particular, Figures 4.7–4.9 illustrate that Q increases (decreases) with

λ (N and µ∞), that Q takes the value for a Newtonian fluid with µ = 1, namely

Q = 4β3a4/105 = 4/105 ≃ 0.0381, when N = 1, µ∞ = 1 or λ = 0, that Q ap-

proaches the value for a Newtonian fluid with µ = µ∞, namely Q = 4β3a4/105µ∞,

in the limit λ→ ∞, and that Q takes finite values when N = 0 or µ∞ = 0.
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4.3.2 An Ellis Fluid

Figure 4.10 shows plots of centreline velocity profiles u(0, z) for an Ellis fluid given

by (4.23) and (4.25) for different values of τav, µ∞ and α with prescribed values

of a and β and hence different values of Q, illustrating that u(0, z) decreases with

τav and µ∞, but may either increase or decrease with α. Analogously to a Carreau

fluid, the decrease of u(0, z) with τav and µ∞ arises simply because larger values

of τav and µ∞ correspond to decreased shear thinning, and so to an increased

viscosity and hence to a smaller velocity. The non-monotonic dependence of

u(0, z) on α arises because of the non-monotonic variation of µ with α, shown

in Figure 4.4: if q is small over a sufficiently large part of the rivulet then the

increase of µ with α leads to a decrease in velocity, as in Figure 4.10(c), whereas

if q is large over a sufficiently large part of the rivulet then the decrease of µ with

α can lead to an increase in velocity, as in Figure 4.10(d). As discussed in Section

4.1, the case µ∞ = 1 and the leading-order behaviour in the limit τav → ∞ and

the case α = 1, all of which are included in Figure 4.10, correspond to Newtonian

fluids with µ = 1 and µ = µav, respectively, for which the solutions for u and Q

are given by (4.12) and (4.25), respectively.

Figure 4.11 shows plots of the semi-width a as a function of the flux Q for

different values of τav, µ∞ and α, illustrating that a always increases with Q.

Moreover, for any prescribed flux Q = Q̄, a increases with τav and µ∞, whereas

a increases with α for small Q but decreases with α for large Q; the explanation

for the latter behaviour is the same as that for the non-monotonicity of u(0, z)

with α, discussed above. Analogously to a Carreau fluid, plots of the contact

angle β as a function of the flux Q for an Ellis fluid for different values of τav,

µ∞ and α with a prescribed value of a are qualitatively similar to the plots of a

as a function of Q with a prescribed value of β shown in Figure 4.11, and so are

again omitted for brevity.

Figure 4.12 shows plots of Q as a function of α for different values of τav and
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Figure 4.11: Plots of the semi-width a as a function of the flux Q for an Ellis fluid evaluated
numerically from (4.22) with β = 1 when (a) µ∞ = 1/10 and α = 2 for τav = 1/5, 2/5, 3/5, 4/5,
1, 2, 3, 4, 5, 10, 15, 20, (b) α = 2 and τav = 1 for µ∞ = 0, 1/4, . . . , 1, and (c) µ∞ = 1/10 and
τav = 1 for α = 1, 2, . . . , 5. In part (a) the dotted and dashed curves show the leading-order
asymptotic solutions in the limits τav → 0 and τav → ∞ given by (4.28) and (4.12), respectively.

µ∞. In particular, Figure 4.12(a) shows that Q increases from the value for a

Newtonian fluid with µ = µav, namely Q = 4β3a4/105µav = 16/231 ≃ 0.0693,

at α = 1 and tends to the value for a Newtonian fluid with µ = µ∞, namely

Q = 4β3a4/105µ∞ = 8/21 ≃ 0.3810, in the limit α → ∞ when τav < τm = 1/2,

but decreases and tends to the value for a Newtonian fluid with µ = 1, namely

Q = 4β3a4/105 = 4/105 ≃ 0.0381, in the limit α → ∞ when τav > τm = 1/2.

Figure 4.12(b) shows that Q decreases from Q = 4β3a4/105µav at α = 1 and that

Q → 4β3a4/105+ = 4/105+ in the limit α → ∞ when τav > τm = 1/2, whereas

Figure 4.12(c) shows that Q increases from Q = 4β3a4/105µav at α = 1 and that

Q→ 4β3a4/105µ−
∞ in the limit α → ∞ when τav < τm = 1/2.

The behaviour of an Ellis fluid in the limit α→ ∞ is evidently more compli-

cated than in other cases and will be discussed in detail in Section 4.6.
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Figure 4.12: Plots of the flux Q as a function of α (≥ 1) for an Ellis fluid evaluated numerically
from (4.22) with a = 1 and β = 1 when (a) µ∞ = 1/10 for τav = 1/20, 1/10, . . . , 1/4, 1 and 5,
(b) τav = 1 > τm = 1/2 for µ∞ = 0, 1/4, . . . , 1, and (c) τav = 1/10 < τm = 1/2 for µ∞ = 0,
1/4, . . . , 1. In parts (a) and (c) the dashed lines show the asymptotic values in the limit α → ∞
given by (4.12) and (4.28), respectively.

Figure 4.13 shows plots of Q as a function of τav for different values of α and

µ∞. In particular, Figure 4.13 shows that (except in the special case α = 1)

Q decreases from Q = 4β3a4/105µ∞ at τav = 0, and that Q → 4β3a4/105+ =

4/105+ in the limit τav → ∞.

Figure 4.14 shows plots of Q as a function of µ∞ for different values of α

and τav. In particular, Figure 4.14 shows that Q decreases from the finite value

for a conventional Ellis fluid given by (4.26) at µ∞ = 0 and takes the value

Q = 4β3a4/105 = 4/105 at µ∞ = 1.

4.4 Nearly Newtonian Fluids

In this Section we describe the behaviour of rivulets of nearly Newtonian fluids.
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Figure 4.13: Plots of the flux Q as a function of τav for an Ellis fluid evaluated numerically
from (4.22) with a = 1 and β = 1 when (a) µ∞ = 1/10 for α = 1, . . . , 5 and (b) α = 2
for µ∞ = 0, 1/4, . . . , 1. In part (a) the dashed line shows the asymptotic value in the limit
τav → ∞ given by (4.12), namely Q → 4β3a4/105 = 4/105.

4.4.1 General Results

The viscosity of a nearly Newtonian fluid differs only slightly from a constant

Newtonian value, and so for a fluid that is nearly Newtonian with viscosity µ = 1

we may write it as

µ = 1 + µ1δ +O(δ2) (4.29)

for some µ1 = µ1(q) or µ1 = µ1(τ), where δ ≪ 1 is a measure of the small

departure from the Newtonian value. In general, this means that the solution

for rivulet flow of a nearly Newtonian fluid will differ from that for a Newtonian

fluid by an O(δ) amount, and therefore we expand a as

a = a0 + a1δ +O(δ2), (4.30)

with corresponding expansions for β, h, u, q, τ and Q, where the leading-order

terms (that is, those with suffix 0) correspond to the Newtonian solution (4.12).

Thus (4.8) gives

h0 = hm0

(
1− y2

a20

)
, hm0 =

β0a0
2

, h1 =
β0a1 (a

2
0 + y2) + β1a0 (a

2
0 − y2)

2a20
,

(4.31)
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Figure 4.14: Plots of the flux Q as a function of µ∞ for an Ellis fluid evaluated numerically
from (4.22) with a = 1 and β = 1 when (a) τav = 1 > τm = 1/2 for α = 1, . . . , 5, (b)
τav = 1/10 < τm = 1/2 for α = 1, . . . , 5, and (c) α = 2 for τav = 1/20, 1/10, . . . , 1/4, 1/2, 1
and 5. In part (c) the dotted and dashed curves show the leading-order asymptotic solutions
in the limits τav → 0 and τav → ∞ given by (4.28) and (4.12), respectively.

either (4.15) or (4.22) gives

u0 =
h20 − (h0 − z)2

2
, u1 = h1z −

∫ h0

h0−z

ξµ1(ξ) dξ, (4.32)

and either (4.19) or (4.22) gives

Q0 =
4β3

0a
4
0

105
, Q1 =

4β2
0a

3
0

105
(4β0a1 + 3β1a0)− 2a0J1, (4.33)

where we have defined J1 by

J1 =

∫ hm0

0

(
1− ξ

hm0

)1/2

ξ2µ1(ξ) dξ, (4.34)

with the dummy variable ξ in the integrals in (4.32) and (4.34) corresponding to

q in (4.15) and (4.19) and to τ in (4.22). If the contact angle β = β̄ and flux
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Q = Q̄ are prescribed then β0 = β̄, Q0 = Q̄, β1 = 0 and Q1 = 0, and consequently

a0 =

(
105Q̄

4β̄3

)1/4

, a1 =
J1
4

(
105

β̄3Q̄

)1/2

,

h1 = hm1

(
1 +

y2

a20

)
, hm1 =

J1
8

(
105

β̄Q̄

)1/2

,

(4.35)

whereas if the semi-width a = ā and flux Q = Q̄ are prescribed then a0 = ā,

Q0 = Q̄, a1 = 0 and Q1 = 0, and consequently

β0 =

(
105Q̄

4ā4

)1/3

, β1 = J1

(
70

9āQ̄2

)1/3

,

h1 = hm1

(
1− y2

ā2

)
, hm1 = J1

(
35ā2

36Q̄2

)1/3

.

(4.36)

Since, for a shear-thinning fluid, µ1 < 0 and hence J1 < 0, equations (4.35) and

(4.36) show that the effect of weakly non-Newtonian behaviour is always to make

the rivulet smaller; in (4.35) it becomes narrower (a1 < 0), whereas in (4.36) its

contact angle is reduced (β1 < 0), and in both it becomes thinner (hm1 < 0). In

each case the decrease occurs because the small amount of shear thinning leads

to a slight decrease in the viscosity, which means that the velocity is increased

slightly and so the prescribed flux Q = Q̄ can be achieved with a slightly smaller

rivulet.

We now illustrate the above general results with two examples, specifically a

Carreau fluid with a small relaxation time λ and an Ellis fluid with a large stress

τav; corresponding results for other limits in which a Carreau fluid and an Ellis

fluid are nearly Newtonian with viscosity µ = 1, µ = µ∞ or µ = µav (as described

in Section 4.1) may be obtained in a similar way, but are omitted for brevity.

4.4.2 A Carreau Fluid with a Small Relaxation Time λ

As an example of the general results described in Section 4.4.1 we consider a nearly

Newtonian Carreau fluid with a small relaxation time λ. Setting δ = λ2 ≪ 1 in



Chapter 4 147

(4.1) we obtain

µ1 = −kq2, where k =
1

2
(1−N)(1 − µ∞) > 0. (4.37)

Then from (4.32) we have

u1 = h1z +
k

4

[
h40 − (h0 − z)4

]
(4.38)

and from (4.34) we have

J1 = − 8k

3465
β5
0a

5
0, (4.39)

and so (4.33) gives

Q1 =
4β2

0a
3
0

3465

[
33(4β0a1 + 3β1a0) + 4kβ3

0a
3
0

]
. (4.40)

If, for example, β0 = β̄, Q0 = Q̄, β1 = 0 and Q1 = 0 then

a1 = − k

22

((
35Q̄

)3

12β̄

)1/4

< 0, h1 = hm1

(
1 +

y2

a20

)
,

hm1 = − k

66

(
105β̄Q̄

4

)3/4

< 0,

(4.41)

whereas if a0 = ā, Q0 = Q̄, a1 = 0 and Q1 = 0 then

β1 = −35kQ̄

33ā2
< 0, h1 = hm1

(
1− y2

ā2

)
, hm1 = −35kQ̄

66ā
< 0. (4.42)

In particular, equations (4.41) and (4.42) confirm that in this case the effect of

weakly non-Newtonian behaviour is always to make the rivulet smaller, with a and

hm decreasing by amounts proportional to (Q̄3/β̄)1/4 and (β̄Q̄)3/4, respectively,

in (4.41), and with β and hm decreasing by amounts proportional to Q̄/ā2 and

Q̄/ā, respectively, in (4.42).
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4.4.3 An Ellis Fluid with a Large Stress τav

As another example of the general results described in Section 4.4.1 we consider

a nearly Newtonian Ellis fluid with a large stress τav. Setting δ = τ 1−α
av ≪ 1 in

(4.2) we obtain

µ1 = −(1 − µ∞)τα−1. (4.43)

Then from (4.32) we have

u1 = h1z +
1− µ∞

α + 1

[
hα+1
0 − (h0 − z)α+1

]
, (4.44)

and from (4.34) we have

J1 = −Ch
α+2
m0

2
, (4.45)

where the coefficient C is defined by

C =

√
π(1− µ∞)Γ(α+ 2)

Γ
(
α+ 7

2

) =
(1− µ∞)B(α + 3, 1

2
)

α + 2
; (4.46)

therefore (4.33) gives

Q1 = a0h
2
m0

[
16

105
(4β0a1 + 3β1a0) + Chαm0

]
. (4.47)

If, for example, β0 = β̄, Q0 = Q̄, β1 = 0 and Q1 = 0 then

a1 = −105C

64β̄

(
105β̄Q̄

64

)α/4

< 0, h1 = hm1

(
1 +

y2

a20

)
,

hm1 = −105C

128

(
105β̄Q̄

64

)α/4

< 0,

(4.48)
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whereas if a0 = ā, Q0 = Q̄, a1 = 0 and Q1 = 0 then

β1 = −35C

16ā

(
105Q̄

32ā

)α/3

< 0, h1 = hm1

(
1− y2

ā2

)
,

hm1 = −35C

32

(
105Q̄

32ā

)α/3

< 0.

(4.49)

In particular, equations (4.48) and (4.49) confirm again that the effect of weakly

non-Newtonian behaviour is always to make the rivulet smaller, with a and hm

now decreasing by amounts proportional to (β̄Q̄)α/4/β̄ and (β̄Q̄)α/4, respectively,

in (4.48), and with β and hm decreasing by amounts proportional to (Q̄/ā)α/3

and ā(Q̄/ā)α/3, respectively, in (4.49).

4.5 Rivulets with Small or Large Prescribed Flux

In this Section we describe the behaviour of rivulets with small or large prescribed

flux Q = Q̄. For brevity, details are given only for the case of a viscosity function

of the form µ = µ(τ), but the final results are also valid for the case of a viscosity

function of the form µ = µ(q).

It is convenient first to note that the substitution τ = hmt (0 ≤ t ≤ 1) together

with (4.8)2 allows the flux Q in (4.22) to be expressed (without approximation)

in the equivalent forms

Q = 2ah3mI =
4h4m
β
I =

β3a4

4
I, (4.50)

where we have defined the integral I by

I =

∫ 1

0

(1− t)1/2t2

µ(hmt)
dt. (4.51)

Since µ satisfies 0 ≤ µ∞ < µ(hmt) ≤ 1, it is clear that I is finite and nonzero.

In the limit of small prescribed flux, Q̄ → 0, the rivulet thins (hm → 0), and
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µ(hmt) → 1 throughout the rivulet, leading to I → 16/105. Thus if β = β̄ is

prescribed then hm ∼ (105β̄Q̄/64)1/4 → 0 and a ∼ (105Q̄/4β̄3)1/4 → 0, whereas

if a = ā is prescribed then hm ∼ (105Q̄/32ā)1/3 → 0 and β ∼ (105Q̄/4ā4)1/3 → 0.

In both cases the stress τ and shear rate q (both of which are zero on the free

surface) are small everywhere, and the fluid behaves like a Newtonian fluid with

µ = 1.

In the limit of large prescribed flux, Q̄ → ∞, the rivulet thickens (hm →

∞), and µ(hmt) → µ∞ except in a thin boundary layer near the free surface

at which τ = 0; the dominant contribution to I given by (4.51) is from outside

the boundary layer, leading to I → 16/(105µ∞) in the limit hm → ∞ (provided

that µ∞ 6= 0). Thus if β = β̄ is prescribed then hm ∼ (105µ∞β̄Q̄/64)
1/4 → ∞

and a ∼ (105µ∞Q̄/4β̄
3)1/4 → ∞, whereas if a = ā is prescribed then hm ∼

(105µ∞Q̄/32ā)
1/3 → ∞ and β ∼ (105µ∞Q̄/4ā

4)1/3 → ∞. In both cases the

stress τ and shear rate q are large everywhere except in the boundary layer, and

the fluid behaves like a Newtonian fluid with µ = µ∞.

In the case of a viscosity function of the form µ = µ(q), the relation τ = µq

implies that τ ∼ q in the limit q → 0, and that τ ∼ µ∞q in the limit q → ∞, and

so the above results concerning hm, a and β again hold in the limits Q̄ → 0 and

Q̄→ ∞, respectively.

The results obtained thus far are for the general case µ∞ 6= 0. In the special

case µ∞ = 0 the behaviour of a rivulet when Q̄ is small is as described above, but

the behaviour when Q̄ is large will depend on the asymptotic behaviour of µ for

large q or τ , and so it is impossible to give useful general results. For example, for

a rivulet of a conventional Ellis fluid (4.2) in the limit Q̄ → ∞, equation (4.26)

gives

a ∼
[

8Q̄

C0β̄3

(
2τav
β̄

)α−1
]1/(α+3)

→ ∞, hm =
β̄a

2
→ ∞, u ∼ hα+1 − (h− z)α+1

(α + 1)τα−1
av

(4.52)



Chapter 4 151

if β = β̄ is prescribed, and

β ∼
[

8Q̄

C0ā4

(
2τav
ā

)α−1
]1/(α+2)

→ ∞, hm =
βā

2
→ ∞, u ∼ hα+1 − (h− z)α+1

(α + 1)τα−1
av

(4.53)

if a = ā is prescribed. In both (4.52) and (4.53) the large flux is achieved by a

combination of the rivulet becoming thick (hm → ∞) and the velocity becoming

large (u→ ∞ except in a thin boundary layer near the substrate).

4.6 Strongly Shear-thinning Fluids

In this Section we describe strongly shear-thinning Carreau and Ellis fluids, and,

in particular, the behaviour of rivulets of such fluids.

A Carreau fluid given by (4.1) is strongly shear thinning in the limits λ→ ∞

and N → −∞; at leading order in both limits it behaves like a Newtonian fluid

with µ = µ∞ except where q is small. Thus a rivulet of such a fluid behaves

like a rivulet of a Newtonian fluid with µ = µ∞ except in a thin boundary layer

near the free surface, and so at leading order the solutions for u and Q are given

simply by (4.28).

An Ellis fluid given by (4.2) is strongly shear thinning in the limits τav → 0

and α → ∞; at leading order in the former limit the behaviour is the same as

for a Carreau fluid described above, but, as mentioned earlier, the behaviour in

the latter limit is more complicated and is described in Sections 4.6.1 and 4.6.2

below.
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4.6.1 A Strongly Shear-thinning Ellis Fluid

At leading order in the strongly shear-thinning limit α → ∞ the viscosity of an

Ellis fluid (4.2) with µ∞ 6= 0 takes the form

µ ∼





1 if τ < τav,

µav if τ = τav,

µ∞ if τ > τav,

(4.54)

or, in terms of q,

µ ∼





1 if q < τav,

τav
q

if τav ≤ q ≤ τav
µ∞

,

µ∞ if q >
τav
µ∞

(4.55)

(which, in particular, satisfies µ = µav when q = qav = τav/µav). Thus for τ < τav

the fluid behaves like a Newtonian fluid with µ = 1, but, unlike a biviscosity fluid

(1.25), for τ > τav it behaves like a Newtonian fluid with µ = µ∞, there being a

transition from one viscosity to the other across any surface on which τ = τav.

Note that µ is discontinuous at τ = τav in the limit α→ ∞ when it is regarded

as a function of τ , given by (4.54), but is continuous when it is regarded as a

function of q, given by (4.55), the change in µ from µ = 1 to µ = µ∞ in the latter

case occurring over the O(1) change τav(1− µ∞)/µ∞ in q.

Figure 4.15 shows plots of the viscosity of an Ellis fluid (4.2) as a function of τ

and as a function of q for several large values of α, together with the leading-order

asymptotic expressions (4.54) and (4.55), shown with dashed curves.

If the shear rate q and hence the stress τ are sufficiently small everywhere,

specifically if τ ≤ τav, which requires that τav ≥ τm (= hm), then the fluid behaves

like a Newtonian fluid with µ = 1, and the solutions for u and Q are given simply

by (4.12).
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(a) 1 2
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τ

(τav, µav) = (1, 5/8)

α = 10α = 30

(b) 4 8
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α = 10α = 30

Figure 4.15: Plots of the viscosity of an Ellis fluid given by (4.2) with τav = 1 and µ∞ = 1/4:
(a) as a function of τ and (b) as a function of q, for α = 10, 20 and 30. In parts (a) and (b)
the dashed curves show the leading-order asymptotic expressions in the limit α → ∞ given by
(4.54) and (4.55), respectively.

On the other hand, if q and hence τ become larger, specifically if τ exceeds

τav somewhere, which requires that τav < τm (= hm), then, as the sketch of the

cross-section of a rivulet shown in Figure 4.16 illustrates, the rivulet comprises

two regions, one (shown shaded) adjacent to the free surface with viscosity µ = 1,

and the other (shown unshaded) away from the free surface with viscosity µ = µ∞.

These two regions are separated from each other by the surface on which τ = τav,

that is, the surface z = H(y), where

H = h− τav = hm

(
1− y2

a2

)
− τav. (4.56)

This surface intersects the substrate z = 0 at y = ±b, where b, given by

b = a

(
1− τav

hm

)1/2

, (4.57)

denotes the semi-width of the region with viscosity µ = µ∞; the maximum thick-

ness of this region is denoted by Hm = H(0) = hm − τav. As Figure 4.16 also

shows, the region with viscosity µ = 1 comprises three subregions, two of them
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O

y

z

−a a−b b

z = H(y)

Free surface
z = h(y)

µ = 1µ = 1

µ = 1

µ = µ∞

Figure 4.16: Sketch of a cross-section of a rivulet of a strongly shear-thinning Ellis fluid in
the limit α → ∞ when τav < τm. The shading denotes the region with viscosity µ = 1, and
no shading denotes the region with viscosity µ = µ∞; these regions are separated from each
other by the surface z = H(y) = h(y) − τav, shown with a dashed line. Within the shaded
region, the darker shading denotes the two subregions in which the fluid moves with a relatively
small velocity, and the lighter shading denotes the subregion in which the fluid moves with a
relatively large velocity.

(shown with darker shading) at the sides of the rivulet, in b < |y| < a, in which

the fluid moves with a relatively small velocity u given by (4.12), and a third

one (shown with lighter shading) in the middle of the rivulet, in H < z < h for

|y| < b, in which the fluid moves with a relatively large velocity, namely

u ∼ τ 2av − (h− z)2

2
+
h2 − τ 2av
2µ∞

, (4.58)

because it is lubricated by the fluid with µ = µ∞ in 0 < z < H for |y| < b and

moving with the velocity given in (4.28). Note that u is continuous across the

surface z = H , whereas q = uz changes discontinuously across it because of the

discontinuous change in viscosity there. The leading-order flux Q in this case is

given by

Q ∼ 4β3a4

105
+

2 (1− µ∞) (2β2a2 + 6βaτav + 15τ 2av)βb
3

105µ∞a
, (4.59)

and we note that a, β, hm, b and Q, as well as the velocity u, are O(1) in the limit

α → ∞. The structure of the flow in this case is somewhat similar to that of

rivulet flow of a biviscosity fluid, as described by Wilson et al. [135] and discussed

in Subsection 1.10.6.

Figure 4.17 shows contour plots of the velocity u for two values of τav with
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Figure 4.17: Contour plots of the velocity u for an Ellis fluid with µ∞ = 1/3, β = 1 and
Q = 1: (a) the exact solution (4.23) for α = 50 and τav = 7/10 (< τm ≃ 0.9717), for which
a ≃ 1.9433, (b) the leading-order asymptotic solution in the limit α → ∞ given by (4.12), (4.28)
and (4.58) for τav = 7/10 (< τm ≃ 0.9657), for which a ≃ 1.9313, b ≃ 1.0130 and Hm ≃ 0.2657,
(c) the exact solution (4.23) for α = 5 and τav = 2 (> τm ≃ 1.1263), for which a ≃ 2.2525,
and (d) the leading-order asymptotic solution in the limit α → ∞ given by (4.12) for τav = 2
(> τm ≃ 1.1318), for which a ≃ 2.2635. In part (b) the surfaces z = H and y = ±b are shown
with dashed lines. In all parts the contours are drawn at intervals of 1/10.

(a) 0.5 1 1.5

0.6

1.2

u

z

µ∞ = 1/10

µ∞ = 1

(b) 0.5 1 1.5

0.6

1.2

u

z

µ∞ = 1/10

µ∞ = 1

Hm

Figure 4.18: Plots of centreline velocity profiles u(0, z) for an Ellis fluid with β = 1, Q = 1
and τav = 7/10 (< τm), for µ∞ = 1/10, 1/5, . . . , 1: (a) the exact solution (4.23) for α = 50,
and (b) the leading-order asymptotic solution in the limit α → ∞ given by (4.28) and (4.58).
In part (b) the maximum thickness of the region with viscosity µ = µ∞, namely z = Hm, is
shown with a dashed curve.
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µ∞ = 1/3, β = 1 and Q = 1. Figure 4.17(a) shows the exact solution (4.23) for

α = 50 and τav = 7/10 (< τm ≃ 0.9717), with a obtained from (4.22), and Figure

4.17(b) shows the leading-order asymptotic solution given by (4.12), (4.28) and

(4.58) for τav = 7/10 (< τm ≃ 0.9657), with a obtained from (4.59). Figure 4.17(b)

also includes the surfaces z = H and y = ±b separating the subregions sketched

in Figure 4.16, shown with dashed lines. The contours in Figure 4.17(a) are

smooth, whereas those in Figure 4.17(b), although continuous, have the expected

discontinuities in slope across z = H . Figure 4.17(c) shows the exact solution

(4.23) for α = 5 and τav = 2 (> τm ≃ 1.1263), with a obtained from (4.22), and

Figure 4.17(d) shows the leading-order asymptotic solution given by (4.12) for

τav = 2 (> τm ≃ 1.1318), demonstrating the good agreement between them for a

relatively modest value of α.

Figure 4.18 shows plots of centreline velocity profiles u(0, z) for several values

of µ∞ with β = 1, Q = 1 and τav = 7/10 (< τm). Figure 4.18(a) shows the exact

solution (4.23) for α = 50, and Figure 4.18(b) shows the leading-order asymptotic

solution given by (4.28) and (4.58). In particular, Figure 4.18(b) illustrates the

discontinuity in q = uz across z = Hm in the leading-order asymptotic solution.

4.6.2 A Strongly Shear-thinning Conventional Ellis Fluid

The behaviour in the special case of a conventional Ellis fluid is also of interest,

and while some features of the behaviour are similar to those in the case of an

Ellis fluid described in Section 4.6.1, there are also some significant differences.

At leading order in the strongly shear-thinning limit α → ∞ the viscosity of
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Figure 4.19: Plots of the viscosity of a conventional Ellis fluid given by (4.2) with τav = 1 and
µ∞ = 0: (a) as a function of τ and (b) as a function of q, for α = 10, 20 and 30. In parts (a)
and (b) the dashed curves show the leading-order asymptotic expressions in the limit α → ∞
given by (4.60) with α = 30 and (4.61), respectively.

a conventional Ellis fluid with µ∞ = 0 takes the form

µ ∼





1 if τ < τav,

1

2
if τ = τav,

(τav
τ

)α−1

→ 0 if τ > τav,

(4.60)

or, in terms of q,

µ ∼





1 if q < τav,

τav
q

if q ≥ τav

(4.61)

(which, in particular, satisfies µ = µav = 1/2 when q = qav = τav/µav = 2τav).

Thus for τ < τav the fluid behaves like a Newtonian fluid with µ = 1, whereas,

unlike for an Ellis fluid, for τ > τav it behaves like a power-law fluid with non-

constant viscosity τavq
−1 with consistency parameter τav and power-law index

zero, there again being a transition from one viscosity to the other across any

surface on which τ = τav. Note that (4.60), but not (4.61), depends on α.

Figure 4.19 shows plots of the viscosity of a conventional Ellis fluid (4.2) as a
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function of τ and as a function of q for several large values of α, together with

the leading-order asymptotic expressions (4.60) with α = 30 and (4.61), shown

with dashed curves.

If τav ≥ τm (= hm) then the fluid behaves like a Newtonian fluid with µ = 1,

and the solutions for u and Q are again given simply by (4.12).

On the other hand, if τav < τm (= hm) then the rivulet comprises two regions

with different viscosities, somewhat similar to those sketched in Figure 4.16 (with

the label µ = µ∞ replaced with µ = (τav/τ)
α−1), but with the major difference

that, as we shall show below, in the present case the semi-width of the region

with viscosity µ = (τav/τ)
α−1 is asymptotically small, i.e. b≪ 1. Thus almost all

of the rivulet has viscosity µ = 1, and the region with viscosity µ = (τav/τ)
α−1 is

thin and narrow. These two regions are again separated from each other by the

surface z = H(y) given by (6.7). Over most of the rivulet the velocity u is given

by (4.12), but in the narrow central region |y| < b it is given to O(1) by

u ∼ hα+1 − (h− z)α+1

ατα−1
av

+
h2 − (h− z)2

2
. (4.62)

Note that (4.62) is uniformly valid across the entire central region, i.e. in both

0 < z < H and H < z < h. The leading-order flux Q in this case is therefore

given by

Q ∼ β3a4

[
4

105
+

√
π

8α3/2

(
hm
τav

)α−1
]
, (4.63)

from which it may be shown that

hm ∼ τav

[
1 +

log(kα3/2)

α

]
→ τ+av, Hm ∼ τav

log(kα3/2)

α
→ 0+,

b ∼ a

(
log(kα3/2)

α

)1/2

→ 0+,

(4.64)
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where the coefficient k (> 0) is found from (4.63) to be given by

k =
105Q̄− 32τ 3avā

105
√
πτ 3avā

or k =
105β̄Q̄− 64τ 4av

210
√
πτ 4av

(4.65)

when a = ā or β = β̄, respectively, is prescribed. In deriving (4.64) we have made

use of the result
(
1+log(kα3/2)/α

)α−1 ∼ kα3/2 in the limit α→ ∞, so that hm in

(4.64) satisfies (hm/τav)
α−1 ∼ kα3/2. The velocity (4.62) has a “plug-like” profile

with magnitude u ∼ kτ 2avα
1/2 = O(α1/2) → ∞ except in a thin boundary layer of

thickness O(α−1) near the substrate. Note that the leading-order flux Q given in

(4.63) has two O(1) contributions, one from the O(1) velocity (4.12) over most

of the rivulet, and one from the large O(α1/2) ≫ 1 velocity (4.62) in the narrow

central region |y| < b of semi-width O((logα/α)1/2) ≪ 1. The structure of the

flow in this case is somewhat similar to that of rivulet flow of a power-law fluid

in the strongly shear-thinning limit, as described in Chapters 2 and 3.

Figure 4.20 shows contour plots of the velocity u for two pairs of values of α

and τav with β = 1 and Q = 1. Figure 4.20(a) shows the exact solution (4.26) for

α = 20 and τav = 7/10 (< τm ≃ 0.8488), and Figure 4.20(b) shows the asymptotic

solution given by (4.12), (4.62) and (4.63) for α = 20 and τav = 7/10 (< τm ≃

0.8574). Figure 4.20(b) also includes the surfaces z = H and y = ±b separating

the subregions described above, shown with dashed lines. Figure 4.20(c) shows

the exact solution (4.26) for α = 5 and τav = 2 (> τm ≃ 1.1235), and Figure

4.20(d) shows the leading-order asymptotic solution given by (4.12) for τav = 2

(> τm ≃ 1.1318), again demonstrating the good agreement between them for a

relatively modest value of α.

Figure 4.21 shows plots of scaled centreline velocity profiles u(0, z)/α1/2 for

several values of α with β = 1, Q = 1 and τav = 1/10 (< τm), together with the

leading-order asymptotic solution in the limit α → ∞, namely u(0, z)/α1/2 →

kτ 2−av ≃ 28.2078−, shown with a dashed line. In particular, Figure 4.21 illustrates
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Figure 4.20: Contour plots of the velocity u for a conventional Ellis fluid with µ∞ = 0, β = 1
and Q = 1: (a) the exact solution (4.26) for α = 20 and τav = 7/10 (< τm ≃ 0.8488), for
which a ≃ 1.6977, (b) the asymptotic solution in the limit α → ∞ given by (4.12), (4.62) and
(4.63) for α = 20 and τav = 7/10 (< τm ≃ 0.8574), for which a ≃ 1.7148 and b ≃ 0.8131,
(c) the exact solution (4.26) for α = 5 and τav = 2 (> τm ≃ 1.1235), for which a ≃ 2.2470,
and (d) the leading-order asymptotic solution in the limit α → ∞ given by (4.12) for τav = 2
(> τm ≃ 1.1318), for which a ≃ 2.2635. In part (b) the surfaces z = H and y = ±b are shown
with dashed lines. In all parts the contours are drawn at intervals of 1/10.
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Figure 4.21: Plots of scaled centreline velocity profiles u(0, z)/α1/2 for a conventional Ellis
fluid with µ∞ = 0 when β = 1, Q = 1 and τav = 1/10 (< τm) for α = 20, 40, . . . , 200,
400, 600, . . . , 2000. The dashed line shows the asymptotic value in the limit α → ∞, namely
u(0, z)/α1/2 → kτ2−av ≃ 28.2078−.

the thin boundary layer near the substrate, the plug-like velocity profile outside

the boundary layer, and the convergence of the scaled profiles in the limit α→ ∞.

4.7 Conclusions

We considered steady gravity-driven flow of a thin uniform rivulet of a generalised

Newtonian fluid down a vertical planar substrate. In Section 4.2.1 we obtained

the parametric solution for the velocity u and volume flux Q given by (4.15) and

(4.19) for any generalised Newtonian fluid whose viscosity is of the form µ = µ(q)

(including, in particular, the solution for a Carreau fluid), and the explicit solution

given by (4.22) for any generalised Newtonian fluid whose viscosity is of the form

µ = µ(τ) (including, in particular, the solutions for an Ellis fluid). In Section 4.3

we used these solutions to describe rivulet flow of a Carreau fluid and of an Ellis

fluid, highlighting the similarities and differences between the behaviour of these

two fluids. In addition, we described the behaviour of rivulets of nearly Newtonian

fluids (Section 4.4), rivulets with small or large prescribed flux (Section 4.5), and

rivulets of strongly shear-thinning Carreau and Ellis fluids (Section 4.6).

In addition to a number of general results for rivulet flow of any generalised

Newtonian fluid, the main conclusion of this chapter is that any increase of shear
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thinning leads to an increase in Q if the semi-width a and the contact angle β

are prescribed, or to a decrease in a or β if Q is prescribed. It was found that the

behaviour of a rivulet of a Carreau fluid and of a rivulet of an Ellis fluid depends

on the parameters µ∞, λ and N and on the parameters µ∞ and τav, respectively,

in a relatively simple way, reflecting the simple dependence of the viscosities of

these fluids on these parameters shown in Figures 4.3 and 4.4(a,b). However, the

non-monotonic variation of the viscosity of an Ellis fluid with α shown in Figure

4.4(c) leads to a more complicated dependence of the behaviour of the rivulet on

α. In particular, if q is sufficiently small (large) then µ increases (decreases) with

α, causing a decrease (an increase) in the velocity of the rivulet. Furthermore, a

rivulet of a strongly shear-thinning Ellis fluid for which τav < τm comprises two

regions with different viscosities, as sketched in Figure 4.16, leading to the rather

complicated velocity profiles illustrated in Figures 4.17 and 4.18 for an Ellis fluid

and Figures 4.20 and 4.21 for a conventional Ellis fluid. In particular, in the

latter case the velocity has a plug-like profile with large magnitude O(α1/2) ≫ 1

in a narrow central region of the rivulet of semi-width O((logα/α)1/2) ≪ 1.
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Advection and Taylor–Aris

Dispersion in a Semi-circular

Rivulet

In this Chapter we consider advection and Taylor–Aris dispersion of a passive

solute in steady unidirectional flow of a uniform non-thin rivulet of Newtonian

fluid down a vertical planar substrate when the flow is driven by gravity and/or

a uniform shear stress on its free surface. We consider only the case in which

the contact angle of the rivulet has the prescribed value π/2; we refer to such

a rivulet simply as a “semi-circular rivulet”. In Section 5.1 we derive the exact

solution for the velocity within a semi-circular rivulet by solving either the appro-

priate Poisson equation or, when gravity is neglected, Laplace’s equation in the

domain defined by the cross-section of the rivulet, via the method of separation

of variables, as used by Perazzo and Gratton [100] for gravity-driven flow. In

Sections 5.3 and 5.4 we consider the processes of (short-time) advection and of

(long-time) Taylor–Aris dispersion, respectively, of a passive solute injected into

the rivulet.

163
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5.1 Exact Solutions for Flow in a Semi-circular

Rivulet

5.1.1 Purely Gravity-driven Case

Consider steady unidirectional gravity-driven flow of a uniform non-thin rivulet

of incompressible Newtonian fluid down a planar substrate inclined at an angle α

(0 ≤ α ≤ π) to the horizontal. We adopt Cartesian coordinates Oxyz, with the x

axis down the line of greatest slope, the y axis horizontal and the z axis normal

to the substrate z = 0. The fluid velocity is of the form u = u(y, z)i, with u and

the fluid pressure p satisfying the governing Navier–Stokes equation

µ∇2u = px − ρg sinα, py = 0, pz = −ρg cosα, (5.1)

to be solved subject to the no-slip condition on the substrate and the stress-

balance condition at the free surface:

u = 0 on z = 0,

µn · ∇u = 0 and p = pa −
γh′′

(1 + h′2)3/2
on z = h,

(5.2)

where µ and ρ are the constant viscosity and the density of the fluid, respectively,

g is the gravitational acceleration, z = h(y) denotes the cross-sectional free surface

profile of the rivulet, which has mean curvature h′′(1+ h′2)−3/2 and outward unit

normal n = (0,−h′, 1)/(1 + h′2)1/2, γ is the coefficient of surface tension of the

fluid, pa is atmospheric pressure, a prime denotes differentiation with respect to

argument, and ∇2 denotes the two-dimensional Laplacian operator given by

∇2 =
∂2

∂y2
+

∂2

∂z2
. (5.3)
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We assume that the rivulet is symmetric about its centreline y = 0, and that its

maximum thickness hm = h(0) occurs at y = 0, and we denote its semi-width by

a. The contact lines are at y = ±a, at which h satisfies the conditions

h = 0 and h′ = ∓ tan β at y = ±a, (5.4)

where β (> 0) denotes the contact angle. The volume flux of fluid along the

rivulet, Q, the cross-sectional area of the rivulet, A, and the mean velocity over

the cross-section of the rivulet, ū, are given by

Q =

∫ a

−a

∫ h

0

u dz dy, A =

∫ +a

−a

h dy, ū =
Q

A
, (5.5)

respectively.

Integrating (5.1)3 subject to (5.2)3 gives

p = ρg cosα (h− z)− γh′′

(1 + h′2)3/2
, (5.6)

from which, with equation (5.1)2, we obtain a third order differential equation

for the free surface, namely

(
ρg cosαh− γh′′

(1 + h′2)3/2

)′

= 0, (5.7)

representing a transverse balance between gravity and surface-tension effects.

We scale and non-dimensionalise the variables appropriately by writing

y = ℓy∗, z = ℓz∗, h = ℓh∗, a = ℓa∗, u = Uu∗,

p = pa + ρgℓp∗, ū = Uū∗, Q = Uℓ2Q∗, A = ℓ2A∗,

(5.8)

where ℓ = (γ/ρg)1/2 is the capillary length, and U = ρgℓ2/µ is an appropriate

velocity scale for gravity-driven flow. From now on we use non-dimensional quan-
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tities (omitting the star superscripts, for clarity); the governing Navier–Stokes

equation and the boundary conditions for u, (5.1) and (5.2), become

∇2u = − sinα, u = 0 on z = 0,
∂u

∂z
− h′

∂u

∂y
= 0 on z = h. (5.9)

In addition, the non-dimensional form of equation (5.7) is

(
cosαh− h′′

(1 + h′2)3/2

)′

= 0, (5.10)

and the boundary conditions (5.4) for h still hold; also the volume flux Q, the

cross-sectional area A, and mean velocity ū are still given by (5.5). The problem

(5.9) for u, with h determined (in terms of elliptic integrals) by (5.10) subject to

(5.4), cannot, in general, be solved in closed form, and so u must, in general, be

evaluated numerically.

In the case of flow down a vertical substrate (α = π/2), surface tension alone

determines the cross-sectional shape of the rivulet in (5.10), and the free surface

of the rivulet therefore has constant curvature (that is, it is part of a circle),

and p is constant. Although with this simplification it may be possible to solve

(5.9) analytically for u (using, for example, bipolar coordinates) for any value of

the contact angle β, for simplicity we shall restrict our attention entirely to a

situation where a relatively simple closed-form solution can be obtained, namely

the case when the contact angle β takes the value β = π/2. In this case equation

(5.10) may be integrated subject to (5.4) to yield the semi-circular cross-sectional

free surface profile of the rivulet:

h =
√
a2 − y2. (5.11)

For convenience, hereafter we refer to this rivulet simply as a “semi-circular
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rivulet”. In this case the problem (5.9) reduces to

∇2u = −1, u = 0 on z = 0,
∂u

∂z
− h′

∂u

∂y
= 0 on z = h. (5.12)

The Poisson equation for u in (5.12) may be reduced to Laplace’s equation by

means of the algebraic substitution

u = v − z2

2
, (5.13)

leading to the problem

∇2v = 0, v = 0 on z = 0,
∂v

∂z
− h′

∂v

∂y
= h on z = h. (5.14)

In order to solve the problem (5.14) we use cylindrical polar coordinates (r, θ, x)

with y = r cos θ and z = r sin θ. The boundary conditions in (5.14) then become

v = 0 on θ = 0, π for 0 ≤ r ≤ a, (5.15)

∂v

∂r
= a sin2 θ on r = a for 0 ≤ θ ≤ π. (5.16)

The problem (5.14) is solved using separation of variables in the semi-circular

domain Ω given by 0 ≤ r ≤ a and 0 ≤ θ ≤ π. Setting v = R(r)Θ(θ) leads to

Θ
′′

+ λ2Θ = 0, r2R
′′

+ rR
′ − λ2R = 0, (5.17)

where λ is a separation constant. Subject to (5.15) and regularity at the origin

r = 0, (5.17) leads to the Fourier series solution

v =

∞∑

m=1

Am

(r
a

)m
sinmθ, (5.18)

where the coefficients of the Fourier series, Am, are determined by the boundary
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condition (5.16):

Am =





0 if m is even,

− 8

πm2(m2 − 4)
if m is odd.

(5.19)

Therefore, the solution for v is given by

v = −8

π

∞∑

n=0

r2n+1 sin(2n+ 1)θ

(2n+ 1)2 [(2n+ 1)2 − 4] a2n+1
. (5.20)

From the solution (5.20) and the relation (5.13), the solution for u is given by

u = −8

π

∞∑

n=0

r2n+1 sin(2n+ 1)θ

(2n+ 1)2 [(2n + 1)2 − 4] a2n+1
− z2

2
, (5.21)

which, in order to more readily evaluate this solution numerically, we may alter-

natively express it in terms of the Lerch transcendent, Φ, via the relation

Φ

(
r2e2iθ

a2
, 2,

1

2

)
=

∞∑

n=0

r2ne2niθ

a2n(1
2
+ n)2

, (5.22)

(see, for example, Gradshteyn and Ryzhik [49]), to give

u =
a2

2π
Im

{
re iθ

a
− a

re iθ
−
(
r2e2iθ

a2
− a2

r2e2iθ

)
tanh−1

(
re iθ

a

)

+
re iθ

a
Φ

(
r2e2iθ

a2
, 2,

1

2

)}
− z2

2
.

(5.23)

The maximum velocity, umax, occurs at r = a and θ = π/2, and is given by

umax =
(2 + 4G− π)a2

2π
≃ 0.401432a2, (5.24)
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where G is Catalan’s constant, defined by

G =
∞∑

n=0

(−1)n

(2n+ 1)2
≃ 0.915966, (5.25)

(see, for example, Gradshteyn and Ryzhik [49]). From (5.5) the flux of fluid along

the rivulet, Q, may be written

Q =

∫ π

0

∫ a

0

ru dr dθ =
(6− π2 + 7ζ(3))a4

4π
≃ 0.361663a4, (5.26)

where ζ denotes the Riemann Zeta function, defined by

ζ(s) =
1

Γ(s)

∫ ∞

0

ts−1

1− e−t
dt, (5.27)

where Γ denotes the Gamma function (see, for example, Gradshteyn and Ryzhik

[49]). Also from (5.5) the cross-sectional area of the rivulet, A, and the mean

velocity over the cross-section of the rivulet, ū, are given by

A =
πa2

2
, ū =

2

πa2

∫ π

0

∫ a

0

ru dr dθ =
2Q

πa2
≃ 0.230242a2, (5.28)

respectively. The present solution for the velocity (5.21) was first obtained by

Perazzo and Gratton [100]. Note that, however, Perazzo and Gratton [100] did

not provide our expression (5.23).

Our aim now is to validate the accuracy and the reliability of the numerical

procedure that we will use for deriving the effective diffusivity Deff for Taylor–

Aris dispersion in Section 5.4. In order to do this we compare the exact solution

and the numerical solution for ū over the semi-circular domain Ω. Thus, we

solved the problem for the velocity u in (5.12) numerically with the mathemat-

ical software package MATHEMATICA, using a finite element method over Ω,

implemented via NDSolve. The domain was discretised using triangular mesh
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Mesh size ū Global Error
0.2 0.2302408196 1.13018494 × 10−6

0.02 0.2302426978 7.480166668 × 10−7

0.002 0.2302419725 2.277267364 × 10−8

0.0005 0.2302419514 1.659569799 × 10−9

0.00025 0.2302419503 5.903413176 × 10−10

0.0001 0.2302419499 1.152373632 × 10−10

0.00001 0.2302419498 1.857082063 × 10−11

Table 5.1: Numerical values of the mean velocity ū and the global error (defined as the modulus
of the difference between the exact and the numerical solutions for ū) in gravity-driven flow of
a semi-circular rivulet draining down a vertical substrate (α = π/2) in the case a = 1 for a
range of mesh sizes.
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Figure 5.1: Contour plots of the velocity u of gravity-driven flow of a semi-circular rivulet
draining down a vertical substrate in the case a = 1: (a) the exact solution given by (5.23), and
(b) the numerical solution of (5.12). In both parts the contours are drawn at intervals of 1/40.

elements and then this mesh was refined appropriately to increase the accuracy

and the precision of the solution. Computations with a finer mesh involved more

computational time, and therefore the number of mesh elements was selected ap-

propriately in order to achieve a balance between the accuracy of the solution and

the computational effort required; therefore we took the mesh size to be 0.0005.

Table 5.1 shows numerical values of the mean velocity ū for range of values of

the mesh size, confirming that as the mesh size decreases the global error (defined

as the modulus of the difference between the exact and the numerical solutions

for ū) also decreases.

Figure 5.1 shows contour plots of the velocity u in the case a = 1; the contour

interval is the same in both parts of the figure. Figure 5.1(a) shows the exact

solution given by (5.23), and Figure 5.1(b) shows the numerical solution of (5.12),

which is in excellent agreement with the exact solution. Figure 5.1 illustrates

that, as expected, there are larger velocity gradients in the z direction near the
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substrate, and the contours of u meet the free surface perpendicularly.

5.1.2 Purely Shear-stress-driven Case

The analysis in Subsection 5.1.1 concerns gravity-driven flow of a semi-circular

rivulet draining down a vertical planar substrate, but a similar analysis can be

performed for another, closely related, problem, namely, flow of a rivulet of fluid

on a vertical planar substrate driven by a uniform longitudinal surface shear stress

τ , hereafter referred to simply as a shear-stress-driven rivulet.

We consider the case in which the contribution to the velocity due to gravity

is negligible in comparison with that due to the surface shear stress, τ , so that the

terms px, ρg sinα and ρg cosα in (5.1) may be neglected. Then the fluid velocity

is again of the form u = u(y, z)i, with u and the fluid pressure p satisfying the

governing Navier–Stokes equation

∇2u = 0, py = 0, pz = 0, (5.29)

to be solved subject to the boundary conditions

u = 0 on z = 0,

µn · ∇u = τ and p = pa −
γh′′

(1 + h′2)3/2
on z = h,

(5.30)

where ∇2 again denotes the two-dimensional Laplacian operator given by (5.3).

Also h again satisfies the conditions (5.4). The volume flux of fluid along the

rivulet, Q, the cross-sectional area of the rivulet, A, and the mean velocity over

a cross-section, ū, are again given by (5.5). In this case we scale and nondimen-

sionalise the variables appropriately according to (5.8), but now with U = τℓ/µ

as an appropriate velocity scale for shear-stress-driven flow, where ℓ is again the

capillary length. For clarity we immediately drop the star superscripts on non-

dimensional variables, and so the governing Navier–Stokes equation and boundary
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conditions for u, (5.29) and (5.30), become

∇2u = 0, u = 0 on z = 0,
∂u

∂z
− h′

∂u

∂y
= 1 on z = h, (5.31)

which, as in the case of the gravity-driven problem discussed in Subsection 5.1.1,

cannot, in general, be solved in closed form, and so u must, in general, be evalu-

ated numerically.

Again in this case surface tension alone determines the cross-sectional shape

of the rivulet. As in Subsection 5.1.1, we shall consider only the particular case

in which the contact angle β has the prescribed value β = π/2, and so the cross-

sectional free surface profile of the rivulet is again semi-circular, and h is again

given by (5.11).

In order to solve the problem (5.31) we again use cylindrical polar coordinates

(r, θ, x) with y = r cos θ and z = r sin θ. The boundary conditions in (5.31) then

become

u = 0 on θ = 0, π for 0 ≤ r ≤ a, (5.32)

∂u

∂r
= 1 on r = a for 0 ≤ θ ≤ π. (5.33)

The problem (5.31) is again solved using separation of variables in the semi-

circular domain Ω given by 0 ≤ r ≤ a and 0 ≤ θ ≤ π; setting u = R(r)Θ(θ) again

leads to (5.17), which, subject to (5.32) and regularity at the origin r = 0, leads

to the Fourier series solution

u =

∞∑

m=1

Am

(r
a

)m
sinmθ, (5.34)

where the coefficients of the Fourier series, Am, are determined by the boundary
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condition (5.33):

Am =





0 if m is even,

4

πm2
if m is odd.

(5.35)

Therefore, the solution for u is given by

u =
4

π

∞∑

n=0

r2n+1 sin(2n+ 1)θ

(2n+ 1)2a2n+1
, (5.36)

which, may alternatively be expressed in terms of the Lerch transcendent via the

relation (5.22) to give

u =
a

π
Im

{
re iθ

a
Φ

(
r2e2iθ

a2
, 2,

1

2

)}
. (5.37)

Note that the velocity given by (5.34) and (5.37) is always in the direction

of the applied shear stress. The maximum velocity, umax, occurs at r = a and

θ = π/2, and is given by

umax =
4aG

π
≃ 1.166244a, (5.38)

where G ≃ 0.915966 is Catalan’s constant, given by (5.25). From (5.5) the flux

of fluid along the rivulet, Q, may be written

Q =

∫ π

0

∫ a

0

ru dr dθ =
(4− π2 + 14ζ(3))a3

4π
≃ 0.872105a3, (5.39)

where ζ denotes the Riemann Zeta function, given by (5.27). Also from (5.5) the

mean velocity over the cross-section of the rivulet, ū, is given by

ū =
2Q

πa2
≃ 0.555199a. (5.40)

Figure 5.2 shows contour plots of the velocity u in the case a = 1; the contour
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Figure 5.2: Contour plots of the velocity u of shear-stress-driven flow of a semi-circular rivulet
draining down a vertical substrate in the case a = 1: (a) the exact solution given by (5.37), and
(b) the numerical solution of (5.31). In both parts the contours are drawn at intervals of 1/10.

interval is the same in both parts of the figure. Figure 5.2(a) shows the exact

solution given by (5.37), and Figure 5.2(b) shows the numerical solution of (5.31),

which is again in excellent agreement with the exact solution.

5.1.3 Gravity- and Shear-stress-driven Case

In this Subsection we analyse the problem of a flow of a uniform rivulet down a

vertical substrate, the flow being driven by both gravity and a uniform longitu-

dinal shear stress τ . The fluid velocity is again of the form u = u(y, z)i, with u

and the fluid pressure p again satisfying the equations (5.1) with α = π/2, which

are to be solved subject to the boundary conditions (5.30). Again h satisfies the

conditions (5.4). The flux of fluid along the rivulet, Q, the cross-sectional area

of the rivulet, A, and the mean velocity over the cross-section, ū, are again given

by (5.5). We scale and nondimensionalise the variables according to

y = ℓy∗, z = ℓz∗, h = ℓh∗, a = ℓa∗, u = Uu∗,

p = pa + ρgℓp∗, ū = Uū∗, τ = ρgℓτ ∗, Q = Uℓ2Q∗, A = ℓ2A∗,

(5.41)

where ℓ is again the capillary length, and U = ρgℓ2/µ is again an appropriate

velocity scale associated with gravity-driven flow.

From now on we use non-dimensional quantities (omitting the star super-

scripts, for clarity); the governing Navier–Stokes equation and boundary condi-
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tions for u, (5.1) and (5.2), become

∇2u = −1, u = 0 on z = 0,
∂u

∂z
− h′

∂u

∂y
= τ on z = h(y), (5.42)

and again we consider only the case of the prescribed contact angle β = π/2.

As in both Subsections 5.1.1 and 5.1.2, the cross-sectional shape of the rivulet

is again semi-circular, and h is again given by (5.11). Since the problem (5.42) is

linear we can solve it by simply superposing the solutions for the velocity u for

the cases of purely gravity-driven and purely shear-stress-driven flow of a semi-

circular rivulet obtained previously. Therefore from (5.23) and (5.37) we have

the solution

u =
a2

2π
Im

{
re iθ

a
− a

re iθ
−
(
r2e2iθ

a2
− a2

r2e2iθ

)
tanh−1

(
re iθ

a

)

+

(
1 +

2τ

a

)
re iθ

a
Φ

(
r2e2iθ

a2
, 2,

1

2

)}
− z2

2
.

(5.43)

From (5.26) and (5.39) the volume flux of fluid along the rivulet, Q, is given by

Q =
a3

4π

[
a
(
6− π2 + 7ζ(3)

)
+
(
4− π2 + 14ζ(3)

)
τ
]
. (5.44)

Inspection of (5.44) reveals that for τ ≥ 0 the flux Q is a monotonically increasing

function of a, but that for τ < 0 it initially decreases to a minimum value Q =

Qmin at a = amin, where

Qmin = −27
(
4− π2 + 14ζ(3)

)4
τ 4

1024π
(
6− π2 + 7ζ(3)

)3 ≃ −1.28969τ 4 < 0

amin = −3
(
4− π2 + 14ζ(3)

)
τ

4
(
6− π2 + 7ζ(3)

) ≃ −1.80853τ < 0,

(5.45)
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then increases monotonically, taking the value Q = 0 at a = a0, where

a0 = −(4− π2 + 14ζ(3)) τ

6− π2 + 7ζ(3)
≃ −2.41137τ. (5.46)

Note also that Q = 0 and hence ū = 0 when τ takes the critical value

τc = −(6− π2 + 7ζ(3))a

4− π2 + 14ζ(3)
≃ −0.414702a. (5.47)

Figure 5.3 shows a plot of the flux Q as a function of a given by (5.44) for various

values of τ , illustrating thatQ increases monotonically with a when τ = 1 and τ =

0, but that when τ = −1 it decreases to a minimum value Q = Qmin ≃ −1.28969

at a = amin ≃ 1.80853, taking the value Q = 0 at a = a0 ≃ 2.41137, and then

increases to ∞. Figure 5.3 is qualitatively the same as Figure 2 of Wilson and

Duffy [132] (see Figure 1.14), who studied the corresponding problem for the case

of a thin rivulet on a vertical substrate; the main results of Wilson and Duffy

[132] were summarised in Section 1.8. Wilson and Duffy [132] also categorised

and analysed all of the five possible flow patterns that can occur in the case of a

thin rivulet. In order to perform a similar analysis for the present problem and,

in particular, to determine whether there are also only five flow patterns in this

case we would need to calculate where u = 0. This cannot be done analytically;

however, numerical calculations of the velocity u given by (5.43) suggest that this

is indeed the case.

Figure 5.4 shows examples of contour plots of the velocity u given by (5.43),

showing the five different types of cross-sectional flow pattern, in the cases (a)

τ = −1/5, (b) τ = −32/100, (c) τ ≃ −0.344209, (d) τ = −2/5, and (e) τ = −2/3.

In Figure 5.4 regions of downwards flow (i.e. regions with u > 0) are shaded, and

regions of upwards flow (i.e. regions with u < 0) are unshaded. Figure 5.4 is

qualitatively the same as Figure 1 of Wilson and Duffy [132].

As Figure 5.4 illustrates, when τ ≥ 0 (i.e. the prescribed shear stress acts in
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1 2 3

−2

−1

1

2

a

Q
τ = 1 τ = 0 τ = −1

❍❍❨ (Qmin, amin) ≃ (−1.28969, 1.80853)

��✠

(2.41137, 0)

Figure 5.3: Plot of the flux Q given by (5.44) as a function of a in gravity- and shear-
stress-driven flow in a semi-circular rivulet on a vertical substrate in the cases τ = −1, 0, and
1. The dots indicate, for the case τ = −1, the minimum value Q = Qmin ≃ −1.28969 at
a = amin ≃ 1.80853 and the value Q = 0 at a = a0 ≃ 2.41137.

cooperation with the effect of gravity), the velocity is downwards throughout the

rivulet (i.e. u ≥ 0), but in contrast, when τ < 0 (i.e. the prescribed shear stress

acts in opposition to the effect of gravity) the velocity is upwards near the edge

of the rivulet, but it can be downwards elsewhere.

5.2 Dispersion of a Passive Solute in a Semi-

circular Rivulet

As discussed in Section 1.11, in general, when a passive solute is injected into a

unidirectional flow such as the rivulet flow described in Section 5.1 it disperses

because of a combination of advection and diffusion effects, and so the evolution

of its concentration c = c(x, y, z, t) is governed by the (dimensional) advection–

diffusion equation

ct + ucx = D(cxx +∇2c), (5.48)

where t denotes time, D is the diffusion coefficient of the solute, and ∇2 again

denotes the two-dimensional Laplacian operator given by (5.3), to be solved sub-

ject to the no-flux conditions on the boundary of the fluid (comprising both the
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Figure 5.4: Contour plots of the velocity u given by (5.43) in gravity- and shear-stress driven
flow in a semi-circular rivulet on a vertical substrate in the case a = 1: (a) τ = −1/5, (b)
τ = −32/100, (c) τ ≃ −0.344209, (d) τ = −2/5, and (e) τ = −2/3. In each part regions of
downwards flow (i.e. u > 0) are shaded in grey while regions of upwards flow (i.e. u < 0) are
unshaded. The contours are drawn at intervals of 1/100 in each part of the figure.
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substrate and the free surface of the rivulet),

n · ∇c = 0 on z = 0 and z = h, (5.49)

where n denotes the unit outward normal to the boundary of the fluid. In ad-

dition, we shall assume that the solute is injected at some initial instant t = 0

with a prescribed initial concentration c(x, y, z, 0) that is localised over a possibly

infinite portion x1 ≤ x ≤ x2 of the rivulet, with x1 and x2 prescribed.

A key quantity of interest is the mean concentration over the cross-section,

which we denote by c̄ = c̄(x, t), and which is defined by

c̄ =
1

A

∫ a

−a

∫ h

0

c dz dy. (5.50)

In addition, we denote the mean of the initial concentration of c over the rivulet

by the constant C0, defined by

C0 =
1

A(x2 − x1)

∫ x2

x1

∫ a

−a

∫ h

0

c(x, y, z, 0) dz dy dx, (5.51)

in which the integral is interpreted as an appropriate limit if x2 − x1 is infinite.

5.3 Advection of a Passive Solute in a Semi-

circular Rivulet

In this Section we consider the short-time advection of a slug of a passive solute

injected into steady unidirectional flow of a semi-circular rivulet of Newtonian

fluid on a vertical planar substrate when the flow is driven either purely by gravity

or purely by a uniform surface shear stress on its free surface. For simplicity we

will not consider the case when gravity and surface shear stress act simultaneously.

At sufficiently small times after the solute is injected, specifically for t≪ ℓ2/D,
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the process of advection will dominate over that of diffusion, and so the effects of

diffusion may be ignored. In that case the governing equation (5.48) for c reduces

simply to the advection equation

ct + ucx = 0, (5.52)

which has general solution

c(x, y, z, t) = c
(
x− u(y, z)t, y, z, 0

)
. (5.53)

The solution (5.53) simply reflects the fact that the particle of solute that is at

x = x0 at t = 0 is at

x = x0 + u(y, z)ti (5.54)

at time t.

Note that the behaviour of u described in both Subsections 5.1.1 and 5.1.2

means that all of the solute is advected downwards.

5.3.1 An Initially Semi-infinite Slug of Solute in Purely

Gravity-driven Flow

We first consider an initially semi-infinite slug of solute of uniform concentration

c = c0 in x ≤ 0, with c = 0 in x > 0 at time t = 0, where c0 is a constant.

We scale and nondimensionalise the variables as in (5.8), together with

x = ℓx∗, t =
ℓ

U
t∗, c = C0c

∗, c̄ = C0c̄
∗, (5.55)

and for clarity we again drop the stars superscripts on non-dimensional variables.
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Thus, with C0 = c0, c satisfies the initial condition

c =





1 if x ≤ 0,

0 if x > 0,

(5.56)

at time t = 0, and the solution for c at time t is given by

c =





1 if x ≤ ut,

0 if x > ut,

(5.57)

the slug having a front at x = ut which is planar at time t = 0 but is curved for

t > 0. Because of the no-slip condition at the substrate, the base of the front at

x = 0, z = 0 remains stationary for all t. From the definition (5.50), the value of

c̄ at any station x and any time t is the fraction of the cross-sectional area of the

rivulet for which u(y, z) ≥ x/t, which is of the self-similar form

c̄ =





1 if x ≤ 0,

f(ξ) if 0 ≤ x ≤ umaxt,

0 if x > umaxt,

(5.58)

where ξ = x/umaxt, in which umax is the maximum velocity of the fluid given

by (5.24), and the function f(ξ) is to be obtained from (5.50). In this case, the

condition u ≥ x/t for any value of x satisfying 0 ≤ x ≤ umaxt is equivalent to the

condition H ≤ z ≤ h, where z = H (0 ≤ H ≤ h) is the curve on which u = x/t.

We note that the curve z = H is one of the velocity contours, namely the one

on which u = x/t; the curve z = H is the location of the front of the slug at the

position x at time t. If we denote the positions where the curve z = H intersects
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the free surface z = h by y = ±b, then the function f(ξ) in (5.58) is given by

f =

∫ b

−b

∫ h

H

dz dy =

∫ b

−b

(h−H) dy, (5.59)

which satisfies 0 ≤ f(x/umaxt) ≤ 1, with f(0) = 1 and f(umaxt) = 0. Note

that this result may not be true in situations with both downwards and upwards

flow, since in such cases the curve defined by u = x/t may be multiple-valued

and/or may comprise disjoint segments. However, if the flow is either entirely

downwards or entirely upwards, then the curve z = H is single-valued; we obtain

the function f(ξ) in these cases. In order to do this we first determined H and

b by solving the equation u = x/t numerically for z, for given values of x, y

and t, with u and umax given by (5.23) and (5.24), respectively; this provides

z = H as a set of points, from which an interpolated function for H , comprising

cubic polynomial curves between successive data points, was obtained. Then we

performed a numerical integration to determine the area between the free surface

z = h(y) and the interpolated function for z = H .

Figure 5.5 shows contour plots of the velocity u of gravity-driven flow of a semi-

circular rivulet on a vertical substrate given by (5.23) in the case a = 1. Figure

5.5(a) shows a comparison between the calculated points for H and the exact

velocity contours, and Figure 5.5(b) shows a comparison between the interpolated

function for H and the exact velocity contours. These figures illustrate that our

numerical evaluations of H , and hence b, are accurate.

Figure 5.6 shows the solution (5.58) for the mean concentration c̄ in gravity-

driven flow of a semi-circular rivulet on a vertical substrate plotted as a function

of x at times umaxt = 1/4, 1/2, . . . and 2 with a = 1, for an initially semi-infinite

slug of uniform concentration, illustrating the advection of the solute by the flow,

and including the initial condition for c̄ at t = 0 as a dashed line. Note that

because of the self-similar form of (5.58), plots of c̄ at any other times t > 0 will
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Figure 5.5: Contour plots of the velocity u in gravity-driven flow of a semi-circular rivulet on
a vertical substrate given by (5.23) in the case a = 1: (a) comparison between the calculated
points for H and the exact velocity contours, and (b) comparison between the interpolated
function for H and the exact velocity contours.
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Figure 5.6: Plot of the mean concentration c̄ due to advection in gravity-driven flow of a
semi-circular rivulet on a vertical substrate, in the case when the solute initially takes the form
of a semi-infinite slug of uniform concentration c = 1 in x ≤ 0, with c = 0 in x > 0, given by
(5.58), as a function of x satisfying 0 ≤ x ≤ umaxt at times t given by umaxt = 0, 1/4, 1/2, . . .
and 2, with a = 1. The initial condition for c̄ is shown as a dashed line.

be the same as the one for umaxt = 1 in Figure 5.6 except that in each case the

x coordinate is either stretched or shrunk by the amount umaxt. Figure 5.6 also

shows that the function f(ξ) decreases monotonically from the value 1 at x = 0

to the value 0 at x = umaxt. Note that the solute is always advected downwards,

and therefore c = 1 and c̄ = 1 for x ≤ 0 for all values of t, which, in particular,

explains why all the curves in Figure 5.6 pass through x = 0 and c̄ = 1.
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5.3.2 An Initially Finite Slug of Solute in Purely Gravity-

driven Flow

We now consider an initially finite-width slug of solute of uniform concentration

c = c0 in 0 ≤ x ≤ ∆ with c = 0 in x < 0 and x > ∆ at t = 0, where both c0 and

the length of the slug ∆ (> 0) are constants.

Thus, with C0 = c0 again, c satisfies the initial condition

c =





0 if x ≤ 0,

1 if 0 < x ≤ ∆,

0 if x > ∆,

(5.60)

at time t = 0, and so the solution for c at time t is given by

c =





0 if x ≤ ut,

1 if 0 < x ≤ ut+∆,

0 if x > ∆+ ut.

(5.61)

In this case the slug of solute has a front at x = ut + ∆ and a back at x = ut.

From the definition (5.50) the value of c̄ at any station x and any time t is again

the fraction of the cross-sectional area of the rivulet for which u(y, z) ≥ x/t. The

solution for c̄ at time t ≥ 0 is of the (non-self-similar) form

c̄ =





0 if x ≤ 0,

1− f

(
x

umaxt

)
if 0 < x ≤ umaxt,

1 if umaxt < x ≤ 1,

f

(
x−∆

umaxt

)
if ∆ < x ≤ ∆+ umaxt,

0 if x > ∆+ umaxt,

(5.62)



Chapter 5 185

when 0 ≤ t ≤ ∆/umax (that is, until the solute particle initially at the apex of

the rivulet at x = 0 reaches x = ∆), and is of the form

c̄ =





0 if x ≤ 0,

1− f

(
x

umaxt

)
if 0 < x ≤ ∆,

f

(
x−∆

umaxt

)
− f

(
x

umaxt

)
if ∆ < x ≤ umaxt,

f

(
x−∆

umaxt

)
if umaxt < x ≤ ∆+ umaxt,

0 if x > ∆+ umaxt,

(5.63)

when t > ∆/umax, where umax is given by (5.24). In both cases the function

f appearing in the solutions (5.62) and (5.63), is the same as that appearing

previously in (5.58), and hence the previously calculated approximation to f

may be used here.

Up to the instant t = ∆/umax, c̄ increases monotonically with x up to its

maximum value 1, which is its value on a decreasing interval lying within the

interval 0 ≤ x ≤ ∆, and decreases monotonically with x in x > ∆. At t = ∆/umax

the interval has shrunk to the point x = umax∆, and thereafter c̄ < 1 for all x.

Figure 5.7 shows the solution (5.62) and (5.63) for the mean concentration

c̄ in gravity-driven flow of a semi-circular rivulet on a vertical substrate plotted

as a function of x/∆ at times umaxt/∆ = 1/4, 1/2, . . . and 3, with a = 1, for

an initially finite slug of uniform concentration, illustrating the advection of the

solute by the flow, and including the initial condition for c̄ at t = 0 as a dashed

line. Figure 5.7 also shows for x/∆ ≥ 1 the locus of the corner in c̄ as a dotted

curve; the same curve also gives the envelope of the solution curves c̄.



Chapter 5 186

1 2 3 4

0.5

1

x/∆

c̄

umaxt/∆ = 3

t = 0
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Figure 5.7: Plot of the mean concentration c̄ due to advection in gravity-driven flow of a
semi-circular rivulet on a vertical substrate, in the case when the solute initially takes the form
of a finite slug of uniform concentration c = 1 in 0 ≤ x ≤ ∆, with c = 0 in x < 0 and x > ∆,
given by (5.62) and (5.63), as a function of x/∆ at times t given by umaxt/∆ = 1/4, 1/2, . . .
and 3, with a = 1. The initial condition for c̄ is shown as a dashed line. For x/∆ ≥ 1 the locus
of the corner in c̄ and the envelope of the solution curves c̄ are shown as a dotted curve.

5.3.3 An Initially Semi-infinite Slug of Solute in Purely

Shear-stress-driven Flow

We now consider an initially semi-infinite slug of solute of uniform concentration

c0, with its front located at x = 0 at time t = 0, for which the concentration takes

the form c = c0 in x ≤ 0 and c = 0 in x > 0 at time t = 0. The mean concentration

over the cross-section, c̄, is again defined by (5.50). In this case we scale and non-

dimensionalise the variables appropriately according to (5.8) together with (5.55)

but now with U = τℓ/µ; we again drop the stars superscripts on non-dimensional

variables, for clarity. With C0 = c0, the solution for c̄ at time t ≥ 0 is again given

by (5.58), with umax again given by (5.38).

As in Subsection 5.3.1, the curve z = H was again evaluated numerically

as a set of points by solving the equation u = x/t numerically for z, for given

x, y and t, with u and umax given by (5.37) and (5.38), respectively. The area

between z = h and the interpolated function for H was calculated (by numerical

integration) in order to determine the function f in (5.59).

Figure 5.8 shows contour plots of the velocity u of shear-stress-driven flow of

a semi-circular rivulet on a vertical substrate given by (5.37) with a = 1. Figure

5.8(a) shows a comparison between the calculated points for H and the exact
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Figure 5.8: Contour plots of the velocity u of shear-stress-driven flow of a semi-circular rivulet
on a vertical substrate given by (5.37) in the case a = 1: (a) comparison between the calculated
points for H and the exact velocity contours, and (b) comparison between the interpolated
function for H and the exact velocity contours.
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Figure 5.9: Plot of the mean concentration c̄ due to advection in shear-stress-driven flow of a
semi-circular rivulet on a vertical substrate, in the case when the solute initially takes the form
of a semi-infinite slug of uniform concentration c = 1 in x ≤ 0, with c = 0 in x > 0, given by
(5.58), as a function of x satisfying 0 ≤ x ≤ umaxt at times t given by umaxt = 0, 1/4, 1/2, . . .
and 2, with a = 1. The initial condition for c̄ is shown as dashed line.

velocity contours, and Figure 5.8(b) shows a comparison between the interpolated

function for H and the exact velocity contours. These figures illustrate that our

numerical evaluations of H , and hence b, are again accurate.

Figure 5.9 shows the solution (5.58) for the mean concentration c̄ in shear-

stress-driven flow of a semi-circular rivulet on a vertical substrate plotted as a

function of x at times umaxt = 1/4, 1/2, . . . and 2 with a = 1, for an initially

semi-infinite slug of uniform concentration, illustrating the advection of the solute

by the flow, and including the initial condition for c̄ at t = 0 as a dashed line.

Figure 5.9 also shows that the function f(ξ) decreases monotonically from the
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Figure 5.10: Plot of the mean concentration c̄ due to advection in shear-stress-driven flow of
a semi-circular rivulet on a vertical substrate, in the case when the solute initially takes the
form of a finite slug of uniform concentration c = 1 in 0 ≤ x ≤ ∆, with c = 0 in x < 0 and
x > ∆, given by (5.62) and (5.63), as a function of x/∆ at times t given by umaxt/∆ = 1/4,
1/2, . . . and 3, with a = 1. The initial condition of c̄ is shown as a dashed line. For x/∆ ≥ 1
the locus of the corner in c̄ is shown as a dotted curve, and the envelope of the solution curves
c̄ is shown as a dashed curve.

value 1 at x = 0 to the value 0 at x = umaxt.

5.3.4 An Initially Finite Slug of Solute in Purely Shear-

stress-driven Flow

In this case the solution for c̄ at time t ≥ 0 is again given by (5.62) and (5.63),

in which the function f was previously determined numerically, with umax again

given by (5.38). Figure 5.10 shows the solution (5.62) and (5.63) for the mean

concentration c̄ in shear-stress-driven flow of a semi-circular rivulet on a vertical

substrate plotted as a function of x/∆ at times umaxt/∆ = 1/4, 1/2, . . . and 3,

with a = 1, for an initially finite slug of uniform concentration, illustrating the

advection of the solute by the flow, and including the initial condition of c̄ at t = 0

as a dashed line. Figure 5.10 also shows for x/∆ ≥ 1 the locus of the corners in

c̄ as a dotted curve and the envelope of the solution curves c̄ as a dashed curve.
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5.4 Taylor–Aris Dispersion of a Passive Solute

in a Semi-circular Rivulet

In this Section we consider the long-time Taylor–Aris dispersion of a slug of a

passive solute injected into steady unidirectional flow of a semi-circular rivulet of

Newtonian fluid on a vertical planar substrate. We consider the problem when

gravity and a uniform surface shear stress τ on the free surface of the rivulet act

simultaneously.

At sufficiently large times after the solute is injected, specifically for t≫ ℓ2/D,

the effects of diffusion of the solute cannot be ignored. In this case the governing

equation and the boundary conditions for the concentration of the solute, c,

are (5.48) and (5.49), respectively. In this section we will derive the effective

diffusivity Deff for the present rivulet flow analogous to that for flow in a pipe or

channel, as introduced in Section 1.11.

Consider Taylor–Aris dispersion of a solute in a semi-circular rivulet with the

cross-section D bounded by the closed curve ∂D (comprising both z = 0 and

z = h). Note that in this Chapter D = Ω, in which Ω is again the semi-circular

domain of such a rivulet given by 0 ≤ r ≤ a and 0 ≤ θ ≤ π.

We consider a situation in which the solute initially takes the form of a fi-

nite slug of non-uniform concentration c(x, y, z, 0) in 0 ≤ x ≤ ∆, where ∆ is a

constant, with c = 0 in x < 0 and x > ∆. The mean concentration over the

cross-section, c̄, is again defined by (5.50). In addition, we now denote the mean

of the initial concentration of c by the constant C0, defined by

C0 =
1

A∆

∫ ∆

0

∫ a

−a

∫ h

0

c(x, y, z, 0) dz dy dx, (5.64)

where A = πa2/2 again denotes the cross-sectional area of the rivulet. We scale
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and nondimensionalise variables according to (5.41), together with

x = Lx∗, t =
L

U
t∗, c = C0c

∗, Deff = DD∗
eff , (5.65)

where L is a downstream lengthscale over which there is an appreciable change in

the concentration. For clarity we immediately drop the star superscripts on non-

dimensional variables, and so the governing equation and boundary conditions

for c, (5.48) and (5.49), become

δPe

(
∂c

∂t
+ u(y, z)

∂c

∂x

)
= δ2

∂2c

∂x2
+∇2c, (5.66)

n · ∇c = 0 on z = 0 and z = h, (5.67)

where δ = ℓ/L is a longitudinal aspect ratio of the solute, and

Pe =
Uℓ

D
(5.68)

is the appropriate Péclet number, which is a ratio of advective effects and diffusive

effects. We assume that the lengthscale over which Taylor–Aris dispersion of the

solute takes place is such that δ ≪ 1, and we seek the leading order behaviour of

Deff in the limit δ → 0 with Pe = O(1).

For convenience, we rewrite the problem (5.66) and (5.67) in terms of a frame

of reference moving with the mean velocity of the flow, ū, and so we introduce a

coordinate ξ and time T defined by ξ = x− ūt and T = t, so that

(x, t) → (ξ, T ),
∂

∂x
→ ∂

∂ξ
and

∂

∂t
→ ∂

∂T
− ∂

∂ξ
. (5.69)
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Then the problem (5.66) and (5.67) becomes

δPe

(
∂c

∂T
+ ũ

∂c

∂ξ

)
= δ2

∂2c

∂ξ2
+∇2c, (5.70)

n · ∇c = 0 on z = 0 and z = h, (5.71)

where we denote the deviation of u from the mean velocity by ũ = u− u, so that

ũ has zero mean, i.e. ∫ a

−a

∫ h

0

ũ dz dy = 0. (5.72)

We use the method of multiple scales (see, for example, Bender and Orszag [14]),

with times Tn (n = 0, 1, 2, . . . ) defined by Tn = δnT , so that

∂

∂T
=

∂

∂T0
+ δ

∂

∂T1
+ δ2

∂

∂T2
+ . . . , (5.73)

and hence (5.70) gives

δPe

(
∂c

∂T0
+ δ

∂c

∂T1
+ δ2

∂c

∂T2
+ · · ·+ ũ

∂c

∂ξ

)
= δ2

∂2c

∂ξ2
+∇2c. (5.74)

We expand c as an asymptotic series in powers of δ:

c = c0 + δc1 + δ2c2 + . . . , (5.75)

where cn = cn(ξ, y, z, T0, T1, . . . ), and substitute (5.75) into (5.74) to obtain equa-

tions for the leading-order, the first-order and the second-order terms of c, namely

∇2c0 = 0, (5.76)

Pe

(
∂c0
∂T0

+ ũ
∂c0
∂ξ

)
= ∇2c1, (5.77)

Pe

(
∂c1
∂T0

+
∂c0
∂T1

+ ũ
∂c1
∂ξ

)
=
∂2c0
∂ξ2

+∇2c2, (5.78)
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subject to the corresponding boundary conditions obtained from (5.71), namely

n · ∇cn = 0 on z = 0 and z = h, n = 0, 1, 2, . . . . (5.79)

Integration of (5.76) over D yields

0 =

∫∫

D
c0∇2c0 dS

=

∫∫

D

(
∇ · (c0∇c0)− (∇c0 · ∇c0)

)
dS (by the product rule)

=
1

A

∮

∂D
c0∇c0 · n ds−

∫∫

D

∣∣∇c0
∣∣2 dS (by Green’s theorem)

= −
∫∫

D

∣∣∇c0
∣∣2 dS, (by (5.79) with n = 0) (5.80)

where s denotes arc length along ∂D. Hence we have |∇c0|2 = 0, so that ∂c0/∂y =

∂c0/∂z = 0, and hence c0 is independent of y and z.

Integration of (5.77) over D and use of (5.72) gives

∫∫

D
∇2c1 dS = APe

∂c0
∂T0

. (5.81)

Using Green’s theorem and then (5.79) with n = 1 we have

∫∫

D
∇2c1 dS =

∮

∂D
∇c1 · n ds = 0, (5.82)

so that (5.81) shows that ∂c0/∂T0 = 0, and hence that c0 is independent of T0.

Hence, we deduce that c0 depends only on ξ, T1, T2, . . . , and, from (5.77), that

c1 therefore satisfies

∇2c1 = Pe ũ
∂c0
∂ξ

. (5.83)

We define C1 = C1(ξ, y, z, T0, T1, . . . ) by the substitution

c1 = Pe
∂c0
∂ξ

C1; (5.84)
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then C1 satisfies the Neumann problem

∇2C1 = ũ in D, n · ∇C1 = 0 on ∂D. (5.85)

The function C1 is determined only up to an additive function of ξ, T0, T1, . . . ,

that is, if C1 = φ1(y, z) is one solution of (5.85) then so is C1 = φ1(y, z) +

ψ1(ξ, T0, T1, . . . ), with ψ1 an arbitrary function. In fact, the final expression for

the effective diffusivity will be shown to be independent of the choice of ψ1, but

for definiteness and convenience we choose ψ1 to be

ψ1 = − 1

A

∫∫

D

φ1(y, z) dA, (5.86)

which is a constant, independent of ξ, y, z, T0 and T1; then C1 depends on y and

z only, and ∫∫

D
C1 dS = 0, (5.87)

with which (5.85) determines C1 uniquely.

Integration of (5.78) over D gives

Pe

[∫∫

D

∂c1
∂T0

dS + A
∂c0
∂T1

+

∫∫

D
ũ
∂c1
∂ξ

dS

]
= A

∂2c0
∂ξ2

+

∫∫

D
∇2c2 dS, (5.88)

which with (5.84) and Green’s theorem may be written in the form

Pe

[
Pe

∂c0
∂ξ

∂

∂T0

∫∫

D
C1 dS + A

∂c0
∂T1

+ Pe
∂

∂ξ

(
∂c0
∂ξ

∫∫

D
ũ C1 dS

)]

= A
∂2c0
∂ξ2

+

∮

∂D
∇c2 · n ds.

(5.89)

Use of (5.79) and (5.87) then yields

Pe A
∂c0
∂T1

+ Pe2
∂2c0
∂ξ2

∫∫

D
ũ C1 dS = A

∂2c0
∂ξ2

, (5.90)
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leading to the main result, namely the governing equation for the leading-order

concentration c0 in the moving frame of reference:

∂c0
∂T1

=
Deff

Pe

∂2c0
∂ξ2

, Deff = 1 + κPe2, κ = − 1

A

∫∫

D
ũ C1 dS, (5.91)

where C1 is the solution of (5.85) and (5.87).

Moreover,

∫∫

D
ũ C1 dS =

∫∫

D
C1∇2C1 dS (by (5.85))

=

∫∫

D

(
∇ · (C1∇C1)− (∇C1 · ∇C1)

)
dS (by the product rule)

=

∮

∂D
C1∇C1 · n ds−

∫∫

D

∣∣∇C1

∣∣2 dS (by Green’s theorem)

= −
∫∫

D

∣∣∇C1

∣∣2 dS, (by (5.85)) (5.92)

so that Deff in (5.91) may be written in the alternative form

Deff = 1 + κPe2, κ =
1

A

∫∫

D
|∇C1|2 dS, (5.93)

which, in particular, shows that Deff > 1.

The corresponding equation for c0 relative to a fixed frame of reference may

be written in terms of the original variables as

∂c0
∂t

+ u
∂c0
∂x

= Deff
∂2c0
∂x2

, Deff = D
(
1 + κPe2

)
, κ = − 1

A

∫∫

D

ũ

U
C1 dS,

(5.94)

showing that at leading order in δ the solute moves with the velocity u and

diffuses with the effective diffusivity Deff , and C1 is again the solution of (5.85)

and (5.87), namely (again in dimensional terms)

ℓ2∇2C1 =
ũ

U
in D, n · ∇C1 = 0 on ∂D,

∫∫

D
C1 dS = 0. (5.95)
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We note that at leading order in δ, c̄ = c0, and so equation (5.94)1 may alterna-

tively be expressed in the form

∂c̄

∂t
+ u

∂c̄

∂x
= Deff

∂2c̄

∂x2
. (5.96)

As discussed in Section 1.11, for Taylor–Aris dispersion of a passive solute

in, for example, steady unidirectional flow in a channel of arbitrary cross-section

D driven by a prescribed pressure gradient G = −dp/dx, equation (5.66) leads

to (5.96) at leading order in δ, in which the effective diffusivity Deff takes the

(dimensional) form

Deff = D
(
1 + κconPe

2
con

)
, κcon =

1

A

∫∫

D

ũ

ū
C1 con dS, (5.97)

where Pe con denotes the “conventional” Péclet number often used in studies of

Taylor–Aris dispersion and defined in terms of u by

Pecon =
uL
D
, (5.98)

where L denotes a typical diameter of D, and C1 con is the solution of the Neumann

problem

L2∇2C1 con =
ũ

ū
in D, n · ∇C1 con = 0 on ∂D,

∫∫

D
C1 con dS = 0,

(5.99)

in which ∂D is the closed curve bounding D. We may, of course, choose to regard

the quantities κ, Pe and C1 as being related to the corresponding conventional

quantities κcon, Pe con and C1 con by

κcon =

(
Uℓ

uL

)2

κ, Pe con =
uL
Uℓ

Pe , C1 con = −Uℓ
2

uL2
C1 (5.100)

(so that, in particular, κconPe
2
con = κ Pe2). However, when values of Deff in dif-
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Figure 5.11: Plot of κ as a function of τ for gravity- and shear-stress-driven flow in a semi-
circular rivulet on a vertical substrate, in the case a = 1. The insert shows an enlargement for
small values of κ, also showing that κ is always positive.

ferent rivulet flows with different values of τ are to be compared, the conventional

formulation (5.97)–(5.99) is inconvenient, since both Pecon and κcon depend on

the value of τ (through their dependence on u), whereas in the present formula-

tion (5.94)–(5.95) Pe is independent of τ , and so the dependence of Deff given

by (5.91) on τ is isolated in just one parameter, namely κ. In addition, in the

special case in which τ takes the critical value τc given by (5.47) for which u = 0,

not only is the problem (5.99) for C1 con singular, but also Pecon is zero and κcon

is infinite (with κconPe
2
con finite), which means that it is necessary to define Deff

via an appropriate limiting process; the present formulation avoids this. Further-

more, if τ < τc then u < 0 and so, slightly confusingly, Pecon is negative; again

the present formulation, in which Pe is always positive, avoids this complication.

We now use the result (5.94)–(5.95) to analyse Taylor–Aris dispersion in a

semi-circular rivulet. We solve the problem for C1 in (5.85) numerically with u

in (5.43), again using a finite element method over the semi-circular domain Ω.

Once the solution for C1 is obtained, κ is computed via numerical integration of

C1ũ. Figure 5.11 shows a plot of κ as a function of τ in the case a = 1; note

that the value of Q varies along this curve. The insert in Figure 5.11 shows an

enlargement for small values of τ , illustrating that κ is always positive.
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Mesh size κcon using the exact solutions for ū and u
0.3 0.0223940769
0.03 0.0224077627
0.003 0.0224137318
0.0003 0.0224138089
0.00025 0.0224138096
0.0002 0.0224138096
0.00015 0.0224138099
0.0001 0.0224138099
0.00005 0.0224138098
0.00001 0.0224138098

Table 5.2: Numerical values of κcon in purely gravity-driven flow of a semi-circular rivulet on a
vertical substrate using the exact solutions for ū and u given by (5.28) and (5.23), respectively,
with a = 1 for a range of mesh sizes.

5.4.1 Purely Gravity-driven Flow

For purely gravity-driven flow, in which case τ = 0, Table 5.2 shows κcon cal-

culated from (5.100) with ū given by (5.28) in the case a = 1 using the exact

solution for u given by (5.23) for a range of values of mesh size, illustrating that

κcon is indeed converging to a value κcon = κGD, where

κGD ≃ 0.0224138, (5.101)

or equivalently

κGD ≃ 0.4553362ū2. (5.102)

5.4.2 Purely Shear-stress-driven Flow

For purely shear-stress-driven flow, we obtain the value of κcon again calculated

from (5.100) with ū given by (5.40) in the case a = 1 using the exact solution for

u given by (5.37), namely κcon = κSD, where

κSD ≃ 0.0274506, (5.103)
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Figure 5.12: Plot of κcon as a function of τ for gravity- and shear-stress-driven flow in a
semi-circular rivulet on a vertical substrate, in the case a = 1. The vertical dashed line is
the value τc ≃ −0.414702 at which κcon becomes infinite. The dot indicates the case κcon =
κGD ≃ 0.0224138 when τ = 0. The horizontal dotted line is the asymptotic value κcon = κSD ≃
0.0274506 in the limit τ → ±∞.

or equivalently

κSD ≃ 0.0890542ū2. (5.104)

5.4.3 Gravity- and Shear-stress-driven Flow

Figure 5.12 shows a plot of κcon as a function of τ in the case a = 1; note again

that the value of Q varies along this curve. As Figure 5.12 shows, κcon is infinite

when ū = 0 (that is, when τc ≃ −0.414702), that κcon = κGD when τ = 0, and

that κcon approaches the value κcon = κSD in the limit τ → ±∞. Clearly an

artificial singularity occurs in the conventional formulation (5.97)–(5.99) when

ū = 0, as shown in Figure 5.12, whereas the present formulation (5.94)–(5.95) is

well behaved, as shown in Figure 5.11.
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5.5 Conclusions

In this Chapter we considered dispersion of a passive solute in steady unidirec-

tional flow of a uniform non-thin rivulet of Newtonian fluid on a vertical planar

substrate when the flow is driven by gravity and/or a uniform shear stress on

its free surface. We considered only the case in which the contact angle of the

rivulet has the prescribed value π/2, the cross-section of the rivulet then being

semi-circular.

In Section 5.1 we obtained the exact solution for the velocity within a semi-

circular rivulet by solving either the appropriate Poisson equation or, when grav-

ity is neglected, Laplace’s equation in the domain defined by the cross-section of

the rivulet.

In Section 5.3 we considered the short-time advection of a slug of a passive

solute injected at time t = 0 into the semi-circular rivulet on a vertical planar

substrate when the flow is driven either purely by gravity or purely by a uniform

surface shear stress τ at its free surface. In particular, we presented the general

form of the mean concentration c̄ at small times, and we used this result to

describe the advection of both an initially semi-infinite slug and an initially finite

slug of solute. We used the fact that c̄ at any station x and any time t is the

fraction of the cross-sectional area of the rivulet for which u(y, z) ≥ x/t to find

the form of c̄.

In Section 5.4 we described the long-time Taylor–Aris dispersion of an initially

finite slug of solute. In particular, we used the method of multiple scales to

show that well-known results concerning Taylor–Aris dispersion of a solute of

non-uniform concentration at large times in flow in a channel of arbitrary cross-

section essentially hold for Taylor–Aris dispersion in a semi-circular rivulet flow.

We avoided an artificial singularity that occurs in the conventional formulation

(5.97)–(5.99) when ū = 0, as shown in Figure 5.12, by using the formulation

(5.94)–(5.95). In particular, we obtained the form of the effective diffusivity Deff ,
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given by (5.94), for Taylor–Aris dispersion in a semi-circular rivulet.



Chapter 6

Advection and Taylor–Aris

Dispersion in a Thin Rivulet

In this Chapter we consider advection and Taylor–Aris dispersion of a passive

solute in steady unidirectional flow of a uniform thin rivulet of Newtonian fluid

on a vertical planar substrate when the flow is driven by gravity and/or a uniform

shear stress on its free surface. The problems for Chapters 5 and 6 are the

same, but because the rivulet is now thin it is possible to make more progress

analytically. Aspects of this flow problem were summarised in Section 1.8, but

for convenience in Section 6.1 we revisit the main results of Wilson and Duffy

[132] who considered steady flow of a thin uniform rivulet of non-perfectly wetting

fluid on a vertical substrate subject to a uniform shear stress τ . In Sections 6.2

and 6.3 we consider the processes of (short-time) advection and of (long-time)

Taylor–Aris dispersion, respectively, of a passive solute injected into the rivulet.

201
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Figure 6.1: Sketch of the unidirectional steady flow of a thin uniform rivulet of a Newtonian
fluid with semi-width a, contact angle β, and volume flux Q on a vertical planar substrate
subject to a uniform shear stress τ on its free surface.

6.1 Summary of the Solution for the Flow of the

Rivulet

Consider steady unidirectional flow of a thin uniform rivulet of a Newtonian fluid

with constant viscosity µ, density ρ and coefficient of surface tension γ down a

vertical substrate, the flow being driven by both gravity and a uniform longitu-

dinal shear stress τ on its free surface. We refer the description to a Cartesian

coordinates Oxyz with, Ox down the line of greatest slope, Oy horizontal, Oz

normal to the substrate at z = 0, and the origin on the substrate at the center

of the rivulet, as shown in Figure 6.1. The free surface of the rivulet is again

denoted by z = h(y), the maximum thickness of the rivulet at its middle by

hm = h(0), the semi-width of the rivulet by a, the contact angle by β (> 0), the

cross-sectional area of the rivulet by A, the volume flux of fluid along the rivulet

by Q, and the mean velocity over the cross-section by ū.

In dimensional variables the velocity u = u(y, z)i and the pressure p = p(y, z)
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satisfy the familiar Navier–Stokes equation and mass-conservation equations sub-

ject to the normal stress balance p = −h′′ (the dash means differentiation with

respect to y), the tangential stress balance uz = τ and the kinematic condition at

the free surface z = h(y), the no-slip condition u = 0 at z = 0, and the condition

at the contact lines (i.e. h′(±a) = ∓β). We scale and nondimensionalise y and a

with ℓ, z, h and hm with ǫℓ, β with ǫ, A with ǫℓ2, u and ū with U = ǫ2ρgℓ2/µ,

Q with ǫUℓ2, p with pa + ǫρgℓ, τ with ǫρgℓ, where g is the gravitational accelera-

tion, ℓ = (γ/ρg)1/2 is the capillary length, and ǫ (≪ 1) is the aspect ratio of the

cross-section of the rivulet. At leading order in the limit of small aspect ratio

ǫ → 0 (i.e. for a thin rivulet) the governing equations are readily solved to yield

the solutions for u and p, namely

u =
2hz − z2

2
+ τz, p =

β

a
, (6.1)

and the free surface h is simply the parabolic profile

h = hm

(
1− y2

a2

)
, where hm =

βa

2
. (6.2)

The flux of fluid down the rivulet, Q, the cross-sectional area of the rivulet, A,

and the mean velocity over cross-section, u, are given by

Q =
32ah3m
105

+
8τah2m
15

, A =
4ahm
3

, u =
8h2m
35

+
2τhm
5

. (6.3)

In general, for a given value of τ there is freedom to prescribe any two of the three

quantities a = ā, β = β̄ and Q = Q̄, with the third determined by the algebraic

equation (6.3)1, and with hm related to a and β by (6.2).

We denote the minimum and maximum fluid velocities over the rivulet by

umin and umax, respectively, which satisfy umin ≤ 0 and umax ≥ 0. In the case of

purely gravity-driven flow the solution for the velocity u is simply given by (6.1)
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with τ = 0, and hence

umin = 0, umax =
h2m
2
, (6.4)

occurring at the substrate z = 0 and the apex y = 0, z = hm of the rivulet,

respectively. In the case of purely shear-stress-driven flow, we may obtain the

solution for the velocity u by taking the limit |τ | → ∞ in (6.1) with u rescaled

as u = τ û to yield û = z; then the rescaled flux Q̂ = Q/τ satisfies Q̂ = 8ah2m/15,

and the rescaled minimum and maximum velocities are ûmin = umin/τ = 0 and

ûmax = umax/τ = hm.

For future reference note that the flux Q (and hence the mean velocity ū) are

positive for τ > τc, zero for τ = τc and negative for τ < τc, where the critical

value τ = τc (< 0) corresponding to no net flow is given by

τc = −4hm
7
. (6.5)

In the case when τ ≥ 0 the velocity is downwards throughout the rivulet (i.e.

u ≥ 0 ), and the maximum velocity umax = aβ(aβ + 4τ)/8 occurs at the apex of

the rivulet at y = 0 and z = hm (type I), but when τ < 0 the velocity is upwards

near the edges of the rivulet (i.e. u < 0), but it can be downwards elsewhere. In

the latter case, when aβ ≤ −2τ the velocity is upwards throughout the rivulet,

and the minimum velocity umin = aβ(aβ + 4τ)/8 occurs at the apex (type V),

but when −aβ/2 < τ < 0 there is a region of downwards flow in the centre of the

rivulet, and the maximum velocity umax = (aβ+2τ)2/8 occurs within the rivulet

at y = 0, z = (aβ + 2τ)/2 and the minimum velocity umin = τ 2/2 occurs on the

free surface at y = ±(a(aβ + 2τ)/β)1/2, z = −τ and τc = −2aβ/7.

As in Chapter 5, we again denote the mean concentration over the cross-

section of the rivulet by c̄ = c̄(x, t), which is again given by (5.50).
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6.2 Advection of a Passive Solute in a Thin Rivulet

In this Section we consider a slug of a passive solute injected at time t = 0

into a thin rivulet of Newtonian fluid undergoing steady unidirectional flow on a

vertical planar substrate, in the case when gravity and the surface shear stress

act simultaneously. As in Section 5.3, at sufficiently small times after the solute

is injected (specifically for t≪ ℓ2/D), the process of advection will dominate over

that of diffusion, and so the effect of diffusion may be ignored. In that case the

governing equation (5.48) for c again reduces simply to the advection equation

(5.52) which has general solution given by (5.53).

Note that the behaviour of u described in Section 6.1 means that when τ ≥ 0

all of the solute is advected downwards, whereas when τ < 0 some or all of it is

advected upwards.

We scale and nondimensionalise the variables as described in Section 6.1 to-

gether with (5.55), where C0 again denotes the mean initial concentration given

in (5.51); for clarity we again drop the stars superscripts on non-dimensional

variables.

6.2.1 An Initially Semi-infinite Slug of Solute

We consider an initially semi-infinite slug of solute of uniform concentration c = c0

in x ≤ 0 with c = 0 in x > 0 at time t = 0, where c0 is a constant. In this case

C0 = c0 in x ≤ 0, and the solution for c at time t is given by (5.57). As in

Section 5.3, using the definition (5.50), the value of c̄ at any station x and time t

is the fraction of the cross-sectional area for which u(y, z) ≥ x/t, which is of the

self-similar form

c̄ =





1 if x < umint,

f(ξ) if umint ≤ x ≤ umaxt,

0 if x > umaxt,

(6.6)
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where ξ = x/umt, in which we have defined um by um = umax − umin (> 0), and

the function f , which is determined by (5.50), satisfies 0 ≤ f(x/umt) ≤ 1, with

f(umin/um) = 1 and f(umax/um) = 0.

Figure 6.2 shows plots of the front of the solute for advection in a rivulet in

the case of an initially semi-infinite slug of uniform initial concentration at times

t > 0. Figure 6.2(a) is for purely gravity-driven flow, and Figure 6.2(b) is for

purely shear-stress-driven flow, both of which illustrate that the solute is always

advected downwards. In both parts regions of uniform concentration are shaded

in brown.

Figure 6.3 shows plots of the mean concentration c̄ as a function of x for an

initially semi-infinite slug of uniform concentration, given by (6.6) for advection in

gravity- and shear-stress-driven flow in the rivulet for various values of τ at time

t = 1 when a = 1 and β = 1, illustrating the advection of the solute by the flow for

both positive and negative values of τ . In particular, when τ ≤ −βa/2 = −1/2

all the solute is advected upwards everywhere, and therefore c = 0 and c̄ = 0 for

x ≥ 0 for all t, which explains why the curves for such cases in Figure 6.3 all

pass through x = 0 and c̄ = 0. On the other hand, when τ ≥ 0 all the solute

is advected downwards everywhere, and therefore c = 1 and c̄ = 1 for x ≤ 0 for

all t, which explains why the curves for such cases in Figure 6.3 all pass through

x = 0 and c̄ = 1. Note that because of the self-similar form of (6.6), plots of c̄

at any other time t > 0 will be the same as those in Figure 6.3 except that in

each case the x coordinate must be either stretched or shrunken by the amount

umt. Figure 6.3 also includes a curve for the critical value τ = τc = −2/7 (shown

dotted) for which the net advection is zero.

Figure 6.4 shows plots of the front of the solute for advection in gravity- and

shear-stress-driven flow in the rivulet in the case of an initially semi-infinite slug

of uniform initial concentration at times t > 0, and illustrates the advection of

the solute by the flow for various values of τ . Recall that in Section 6.1 we
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Figure 6.2: Plots of the front of the solute due to advection in a thin rivulet on a vertical sub-
strate at time t > 0, in the case of an initially semi-infinite slug of uniform initial concentration
in the cases (a) purely gravity-driven flow with a = 1 and β = 1, and (b) purely shear-stress-
driven flow with a = 1, β = 1 and τ = 1/5. In both parts regions of uniform concentration are
shaded in brown.
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Figure 6.3: Plot of the mean concentration c̄ due to advection in gravity- and shear-stress-
driven flow of a thin rivulet on a vertical substrate, in the case when the solute initially takes
the form of a semi-infinite slug of uniform concentration c = 1 in x ≤ 0 with c = 0 in x > 0,
given by (6.6), as a function of x satisfying umint ≤ x ≤ umaxt, for τ = −3, −17/6, . . . , 2,
and τc = −2/7 (shown dotted) at time t = 1, with a = 1 and β = 1 in each case. The initial
condition for c̄ is shown as a dashed line.
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Figure 6.4: Plots of the front of the solute due to advection in gravity- and shear-stress-driven
flow in a thin rivulet on a vertical substrate at time t > 0, in the case of an initially semi-infinite
slug of uniform initial concentration for the five different types of cross-sectional flow pattern
with β = 1, namely (a) type I with a = 1 and τ = 1/10, (b) type II with a = 1 and τ = −1/5,
(c) type III with a = 1 and τ = −1/4, (d) type IV with a ≃ 8.7103 and τ = −5/2, and (e) type
V with a ≃ 1.5383 and τ = −4/5. In all parts regions of uniform concentration are shaded in
brown.
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described the five flow patterns that may occur in the rivulet. In particular, for a

type I flow pattern the solute is always advected downwards, as shown in Figure

6.4(a), for type II–IV flow patterns some of the solute is advected upwards, as

shown in Figure 6.4(b)–(d), and for a type V flow pattern the solute is always

advected upwards, as shown in Figure 6.4(e). In Figure 6.4 regions of uniform

concentration are again shaded in brown.

In general, a complete list of the forms that the function f in (6.6) takes

for different values of τ could be constructed, but it would be unwieldy, partly

because when τ < 0 several different forms of the velocity contour u = x/t must

be considered, each of which leads to a different form for f , and partly because

it seems that, in general, the integral in (5.50) is not available in closed form.

However, we can obtain explicit expressions for f in the special cases τ ≥ 0 and

of purely shear-stress-driven flow, as described in the next two Subsections 6.2.2

and 6.2.3.

6.2.2 Flow Driven by a Positive Shear Stress τ ≥ 0

For positive values of τ we have umin = 0 and um = umax = (h2m/2) + τhm, and

the condition u ≥ x/t for any value of x satisfying 0 ≤ x ≤ umaxt is equivalent

to the condition H ≤ z ≤ h, where z = H (0 ≤ H ≤ h) is the curve on which

u = x/t, so that from (6.1)

H = h+ τ −
[
(h+ τ)2 − 2x

t

]1/2
. (6.7)

The curve (6.7) intersects the free surface z = h at y = ±b, where

b = a

[
1 +

τ

hm
−
(
τ 2

h2m
+

2x

h2mt

)1/2
]1/2

, (6.8)
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and the function f in (6.6) is given by (5.59), which leads to

f =

[
1 +

τ

hm
+

(
2x

h2mt

)1/2
]1/2 [(

1 +
τ

hm

)
E(φ|m)−

(
2x

h2mt

)1/2

F (φ|m)

]

− τ

hm

[
1 +

τ

hm
−
(
τ 2

h2m
+

2x

h2mt

)1/2
]1/2

,

(6.9)

where F (φ|m) and E(φ|m) denote incomplete elliptic integrals of the first and

second kinds, respectively, with

φ = sin−1







1 +
τ

hm
−
(
τ 2

h2m
+

2x

h2mt

)1/2

1 +
τ

hm
−
(

2x

h2mt

)1/2




1/2


, m =

1 +
τ

hm
−
(

2x

h2mt

)1/2

1 +
τ

hm
+

(
2x

h2mt

)1/2
,

(6.10)

where, F (φ|m) and E(φ|m) are defined by

F (φ|m) =

∫ sinφ

0

dx√
(1− x2)(1−m2x2)

, E(φ|m) =

∫ sinφ

0

√
1−m2x2√
1− x2

dx,

(6.11)

(see, for example, Gradshteyn and Ryzhik [49]). From (6.9) we have

∂f

∂x
= − 3F (φ|m)

2h2mt

[
1 +

τ

hm
+

(
2x

h2mt

)1/2
]1/2 , (6.12)

showing that ∂f/∂x < 0 for 0 ≤ x ≤ umaxt, that is, f decreases monotonically

with x.

In particular, in the case of purely gravity-driven flow (so that τ = 0) we have
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φ = π/2 and equations (6.9) and (6.10) reduce to

f =

[
1 +

(
2x

h2mt

)1/2
]1/2 [

E(m)−
(

2x

h2mt

)1/2

K(m)

]
, m =

1−
(

2x

h2mt

)1/2

1 +

(
2x

h2mt

)1/2
,

(6.13)

where K(m) = F (π/2|m) and E(m) = E(π/2|m) denote complete elliptic in-

tegrals of the first and second kinds, respectively. In Figure 6.3 the curves for

τ ≥ 1/6 and the curve for τ = 0 correspond to (6.9) and (6.13), respectively.

6.2.3 Purely Shear-stress-driven Flow

For purely shear-stress-driven flow, we have u = τz, umin = 0 and umax = τhm,

and an analogous analysis to that described in Subsection 6.2.2 reveals that the

corresponding forms for H and b are given by

H =
x

τt
and b = a

(
1− x

τhmt

)1/2

. (6.14)

Then from (5.50) the function f in (6.6) is given explicitly by

f =

(
1− x

τhmt

)3/2

(6.15)

for 0 ≤ x ≤ τhmt. From (6.15) we have

∂f

∂x
= − 3

2τhmt

(
1− x

τhmt

)1/2

, (6.16)

showing again that ∂f/∂x < 0 for 0 ≤ x ≤ umaxt, that is, f again decreases

monotonically with x.

Figure 6.5 shows plots of two examples of the mean concentration c̄ in the

rivulet as a function of x for an initially semi-infinite slug of uniform concentra-

tion, given by (6.6) when a = 1 and hm = 1 at several times t in the cases (a)
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Figure 6.5: Plots of the mean concentration c̄ due to advection in a rivulet on a vertical
substrate, in the case when the solute initially takes the form a semi-infinite slug of uniform
concentration, given by (6.6), as a function of x satisfying 0 ≤ x ≤ umaxt at times umaxt = 1/4,
1/2, . . . , and 2, in the cases (a) purely gravity-driven flow, given by (6.13) for which umax =
35/16 and (b) purely shear-stress-driven flow, given by (6.15) for which umax = 5/2, with a = 1
and hm = 1 in both cases. In both parts the initial condition for c̄ is shown as a dashed line.

purely gravity-driven flow, given by (6.13) for which umin = 0 and umax = 35/16

and (b) purely shear-stress-driven flow, given by (6.15) for which umin = 0 and

umax = 5/2. Figure 6.5 also shows that the function f(ξ) decreases monotoni-

cally from the value 1 at x = 0 to the value 0 at x = umaxt. Note that because

of the self-similar form of (6.6), plots of c̄ at any other time t > 0 would again

be the same as the one for umaxt = 1 in Figure 6.5 except that in each case the x

coordinate must be either stretched or shrunk by the amount umaxt.
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6.2.4 An Initially Finite Slug of Solute

Now we consider when the solute initially takes the form of a finite slug of uniform

concentration c0 in 0 ≤ x ≤ ∆ with c = 0 in x < 0 and x > ∆, where both c0

and the length of the slug ∆ (> 0) are constants. In this case C0 = c0 again, the

solution for c at time t is given by (5.61), and the solution for c̄ at time t is given

by

c̄ =





0 if x ≤ umint,

1− f

(
x

umt

)
if umint < x ≤ umaxt,

1 if umaxt < x ≤ ∆+ umint,

f

(
x−∆

umt

)
if ∆ + umint < x ≤ ∆+ umaxt,

0 if x > ∆+ umaxt

(6.17)

when t ≤ ∆/um (that is, up to the instant when the point of the rear of the slug

at which the velocity is a maximum and the point of the front of the slug at which

the velocity is a minimum first reach the same x value), and by

c̄ =





0 if x ≤ umint,

1− f

(
x

umt

)
if umint < x ≤ ∆+ umint,

f

(
x−∆

umt

)
− f

(
x

umt

)
if ∆ + umint < x ≤ umaxt,

f

(
x−∆

umt

)
if umaxt < x ≤ ∆+ umaxt,

0 if x > ∆+ umaxt

(6.18)

when t > ∆/um. In both cases the function f in (6.17) and (6.18) is the same as

in (6.6).

Up to the instant t = ∆/um, c̄ increases monotonically with x up to its

maximum value 1 on a decreasing interval that lies within 0 ≤ x ≤ ∆, and



Chapter 6 214

decreases monotonically with x to the right of this interval. At t = ∆/um the

interval has shrunk to a point at x = (umax/um)∆, and thereafter c̄ satisfies

c̄ < 1 everywhere, and can develop additional non-monotonic dependence on x

beyond what it inherits in an obvious way from the initial distribution of c. In

addition, c̄ at x = 0 takes the constant value 1 − f(0) for t ≤ −∆/umin, but (if

umin 6= 0) decreases thereafter, whereas c̄ at x = ∆ takes the constant value f(0)

for t ≤ ∆/umax, but (if umax 6= 0) decreases thereafter.

Figure 6.6 shows three examples of the solution (6.17) and (6.18) for the mean

concentration c̄ in gravity- and shear-stress- driven flow of the rivulet plotted as

a function of x/∆ at times umt/∆ = 1/4, 1/2, . . . , 5, with a = 1 and β = 1,

for an initially finite slug of uniform concentration, illustrating the advection of

the solute by the flow, in the cases (a) τ = −2/3 (for which umin = −5/24 and

umax = 0), (b) τ = −1/3 (for which umin = −1/18 and umax = 1/72), and (c)

τ = −1/6 (for which umin = −1/72 and umax = 1/18) and including the initial

condition for c̄ at t = 0 as a dashed line in each case. In cases (b) and (c) we

have −1/2 = −βa/2 < τ < 0, and so there is both upward and downward flow,

with consequent upward and downward advection of solute by the flow, whereas

in case (a) we have τ < −βa/2 = −1/2 and so the advection of the solute is

upward everywhere. In Figure 6.6(c), non-monotonic dependence of c̄ on x of the

kind mentioned earlier is evident in x > ∆ when t > ∆/umax. Figure 6.6(c) also

shows, for x/∆ ≥ 1, the envelope of the solution curves c̄ as a dotted curve.

Figure 6.7 shows two examples of the mean concentration c̄ plotted as a func-

tion of x/∆ given by (6.17) and (6.18) due to advection in the case of an initially

finite slug of uniform concentration at several times t when a = 1 and hm = 1.

Figure 6.7(a) is for purely gravity-driven flow, given by (6.13) (for which umin = 0

and umax = 35/16), at times t given by umaxt/∆ = 4/35, 6/35, . . . , 34/35, and

Figure 6.7(b) is for purely shear-stress-driven flow, given by (6.15), at times t

given by umaxt/∆ = 1/10, 1/5, . . . , 3/2 (for which umin = 0 and umax = 5/2).
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Figure 6.6: Plots of the mean concentration c̄ due to advection in gravity- and shear-stress-
driven flow of a thin rivulet on a vertical substrate in the case when the solute initially takes
the form of a finite slug of uniform concentration c = 1 in 0 ≤ x ≤ ∆ with c = 0 in x < 0 and
x > ∆, given by (6.17) and (6.18), as a function of x/∆ at times t given by umt/∆ = 0, 1/4,
1/2, . . . , 5, for (a) τ = −2/3, (b) τ = −1/3, and (c) τ = −1/6 with a = 1 and β = 1 in each
case (so that um = 5/24, 5/72, and 5/72, respectively). In each part the initial condition for c̄
is shown as a dashed line, and in part (c) the envelope of the solution curves c̄ in x/∆ ≥ 1 is
shown as a dotted curve.
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Figure 6.7: Plots of the mean concentration c̄ due to advection in a thin rivulet on a vertical
substrate in the case when the solute initially takes the form of a finite slug of uniform concen-
tration c = 1 in 0 ≤ x ≤ ∆ with c = 0 in x < 0 and x > ∆, as a function of x/∆ in (a) purely
gravity-driven flow, given by (6.13), at times umaxt/∆ = 4/35, 6/35, . . . , 34/35, and (b) purely
shear-stress-driven flow, given by (6.15), at times umaxt/∆ = 1/10, 1/5, . . . , 3/2, with a = 1
and hm = 1 in both cases (so that umax = 35/16 and umax = 5/2, respectively). For x/∆ ≥ 1
in part (a) the locus of the corner in c̄ is shown as a dotted curve, and in part (b) the locus of
the corners in c̄ is shown as a dashed curve and the envelope of the solution curves c̄ is shown
as a dotted curve. In both parts the initial condition for c̄ is shown as a dashed line.

In both cases there is downward flow everywhere, with consequent downward

advection of the solute as sketched in Figure 6.2. Figure 6.7(a) also shows, for

x/∆ ≥ 1, the locus of the corner in the solution for c̄ as a dotted curve; in this

case the same curve also gives the envelope of the solution curves c̄. Figure 6.7(b)

also shows that, for x/∆ ≥ 1, the locus of the corner in the solution for c̄ as a

dashed curve and the envelope of the solution curves c̄ as a dotted curve.
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6.3 Taylor–Aris Dispersion of a Passive Solute

in a Thin Rivulet

In this Section we consider the long-time Taylor–Aris dispersion of a passive solute

injected into steady unidirectional flow of a thin rivulet of fluid on a vertical planar

substrate.

As in Section 5.4 of Chapter 5, at sufficiently large times (specifically for

t≫ ℓ2/D), the effect of diffusion of the solute cannot be ignored. In this case the

governing equation and the boundary conditions for the concentration of solute,

c, are again given by (5.48) and (5.49), respectively. In this Section, we will derive

the effective diffusivity Deff , for the present flow of a thin rivulet.

In Section 5.4 we used the method of multiple scales to show that the known

results concerning Taylor–Aris dispersion of a passive solute at large times in

flow in a channel of arbitrary cross-section essentially hold true for Taylor–Aris

dispersion in rivulet flow. In Section 6.4 we use the results (5.94) and (5.95) to

analyse Taylor–Aris dispersion in a thin rivulet; this analysis is somewhat similar

to the corresponding discussion of Guell et al. [53] for pressure-driven flow in a

thin channel, as discussed in Section 1.11.

6.4 Taylor–Aris Dispersion in a Thin Rivulet on

a Vertical Substrate

In this Section we use the results (5.94) and (5.95) to obtain the effective diffu-

sivity, Deff , for Taylor–Aris dispersion in a thin rivulet on a vertical substrate.

With the scalings (5.65) the problem (5.95) becomes

C1yy +
1

ǫ2
C1zz = ǫ2(u− u), C1z = 0 on z = 0, C1z = ǫ2C1yh

′ on z = h,

(6.19)
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and we seek a solution of C1 in the form

C1 = ǫ2
(
C10 + ǫ2C12 + ǫ4C14 + . . .

)
. (6.20)

Then at leading order in ǫ2

C10zz = 0, C10z = 0 on z = 0, C10z = 0 on z = h, (6.21)

so that C10 = C10(y). At first order in ǫ
2

C ′′
10 + C12zz = u− u, C12z = 0 on z = 0, C12z = C ′

10h
′ on z = h.

(6.22)

Since the contact angle is nonzero, consistency of the boundary conditions in

(6.22) at y = ±a requires that

C ′
10 = 0 at y = ±a. (6.23)

From (6.22) we have

C12 = − z
4

24
+

(h + τ)z3

6
− (u+ C ′′

10)
z2

2
+B (6.24)

for some arbitrary function B = B(y), which with (6.22)3 gives

−h
3

6
+

(h + τ)h2

2
− (u+ C ′′

10)h = C ′
10h

′, (6.25)

that is,

(hC ′
10)

′ = R, (6.26)

where for convenience we have written

R = R(y) =
h2(2h+ 3τ)

6
− uh. (6.27)
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Integrating equation (6.26) once yields

C ′
10 =

1

h

∫ y

−a

R(ỹ) dỹ, (6.28)

and hence C10 is given by

C10 =

∫ y

−a

1

h(ŷ)

∫ ŷ

−a

R(ỹ) dỹ dŷ, (6.29)

which is determined only up to an irrelevant additive constant.

The leading order term in the limit ǫ → 0 of the problem (5.95) gives the

main result for dispersion in a thin rivulet, namely that the effective diffusivity

Deff is given by

Deff = 1 + κ0Pe
2, (6.30)

where Pe is given by (5.68), and the dispersion coefficient κ0 is given by

κ0 =
1

A

∫ a

−a

hC ′ 2
10 dy =

1

A

∫ a

−a

1

h

(∫ y

−a

R(ỹ) dỹ

)2

dy, (6.31)

in which the cross-sectional profile of the rivulet h is given by (6.2). Evaluating

equation (6.29) yields an explicit solution for C10, namely

C10 =
hm(a

2 − y2)2 [20hmy
2 − 7a2(8hm + 9τ)]

2520a4
, (6.32)

and evaluating equation (6.31) leads to an explicit expression for κ0, namely

κ0 =
β2a4 (13388β2a2 + 57876βaτ + 63063τ 2)

331080750
. (6.33)

If the values of the contact angle β = β̄ and the semi-width a = ā are prescribed

(in which case h is determined explicitly) then clearly κ0 in (6.33) is simply

quadratic in τ ; however, if Q = Q̄ is one of the prescribed quantities, along with
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either a or β (in which case h depends on τ via the flux relation (6.3)1), then the

dependence of κ0 on τ is rather more complicated. Thus, the interpretation of κ0

as τ varies depends on which two of the parameters Q, a and β are prescribed,

as described in the following Subsections.

6.4.1 Purely Gravity-driven Flow

For purely gravity-driven flow (so that τ = 0) equation (6.33) leads to κ0 = κGD,

where

κGD =
6694β4a6

165540375
≃ 4.0437× 10−5β4a6, (6.34)

which may be written in the equivalent form

κGD =
3347a2u2

270270
≃ 0.0124a2u2, (6.35)

where u = 2β2a2/35. The result (6.35) can be recognised as being identical to

the result for dispersion in pressure-driven flow in a thin channel of parabolic

cross-section (see, for example, Ajdari et al [2], whose corresponding result for

κ0 has an extra factor of 1/4 arising from their definition of the Péclet number,

namely Pecon = 2au/D, and whose equation (7) contains a minor typographical

error, namely a missing opening square bracket before the second integral sign;

however, after these differences are accounted for, our result (6.35) is in exact

agreement with their result for Deff and κ0, namely their equations (9) and (7),

respectively). In this case Q = 4β3a4/105, and so equation (6.34), which provides

the most useful form of κ0 if β and a are prescribed, may alternatively be written

in the equivalent forms

κGD =
3347

60060

(
Q̄3

105β̄

)1/2

≃ 0.0054

(
Q̄3

β̄

)1/2

, (6.36)

κGD =
3347

30030

(
Q̄2ā

210

)2/3

≃ 0.0032(Q̄2ā)2/3, (6.37)
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which are most useful if either β and Q are prescribed or a and Q are prescribed,

respectively.

6.4.2 Purely Shear-stress-driven Flow

We may obtain from (6.33) the form of κ0, with κ0 rescaled as κ0 = τ 2κSD,

corresponding to dispersion in purely shear-stress-driven flow in the limits τ →

±∞, namely

κSD =
β2a4

5250
≃ 0.0002a2β2a4, (6.38)

or equivalently,

κSD =
a2u2SD
210

≃ 0.0048a2u2, (6.39)

in which uSD = u/τ = βa/5. In this case Q̂ = Q/τ = 2τβ2a3/15, and so equation

(6.38), which provides the most useful form of κ0 if β and a are prescribed, may

alternatively be written in the equivalent forms

κ̂SD =
1

140

(√
3Q̄2

5
√
2β̄

)2/3

≃ 0.0028

(
Q̄2

β̄

)2/3

, (6.40)

̂̂κSD =
Q̄ā

700
≃ 0.0014Q̄ā, (6.41)

in which κ0 has been rescaled as κ0 = τ 2/3κ̂SD and κ0 = τ̂̂κSD, respectively, and

which are most useful if either β and Q are prescribed or a and Q are prescribed,

respectively.

6.4.3 A Rivulet with Prescribed β = β̄ and a = ā

When β = β̄ and a = ā are prescribed then κ0 in (6.33) is simply quadratic in τ .

Figure 6.8 shows a plot of κ0 given by (6.33) as a function of τ for different values

of ā, with β̄ = 1 in each case; note that whereas β̄ and ā are constants on each

curve, the value of Q varies along the curves. The insert in Figure 6.8 shows an
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Figure 6.8: Plot of κ0 given by (6.33) as a function of τ for gravity- and shear-stress-driven
flow in a thin rivulet on a vertical substrate, for a range of values of the prescribed semi-width
ā, namely ā = 1, 2, 3, 4 and 5, with β̄ = 1 in each case. The inset shows an enlargement for
small values of κ0, also showing that κ0 is always positive.

enlargement of κ0 for small values of τ , and illustrates that κ0 is always positive.

The minimum value of κ0 on a given curve is κ0 = κ0min at τ = τmin, where

κ0min =
8β̄4ā4

24279255
≃ 3.2950× 10−7β̄4ā4, (6.42)

τmin = −106β̄ā

231
≃ −0.4589β̄ā, (6.43)

corresponding to the value

Q = −16β̄3ā4

693
≃ −0.0231β̄3ā4, (6.44)

for given values of β̄ and ā; values of κ0 below κ0min are not achievable for any

value of τ . Note also that for κ0 > κ0min there are always two different values

of τ , and hence two rivulets with different fluxes Q (but with the same values of

β̄ and ā), with the same value of κ0; for example, when ā = 2 and β̄ = 1, the

value κ0 = 0.01 is attained with τ ≃ −2.7273 (for which Q ≃ −2.2996) and with

τ ≃ 0.8918 (for which Q ≃ 1.5607).
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6.4.4 A Rivulet with Prescribed β = β̄ and Q = Q̄

When β = β̄ and Q = Q̄ are prescribed then κ0 is given parametrically as a

function of τ (with parameter a) by (6.33), (6.2) and (6.3), specifically τ and κ0

are given explicitly by

τ =
15Q̄

8ah2m
− 4hm

7
, κ0 =

8a6β̄4

1324323
+

3Q̄2

280a2β̄2
+

4a2β̄Q̄

8085
. (6.45)

In particular, κ0 has branches satisfying

κ0 =
1

140

(
3Q̄4τ 2

50β̄2

)1/3

+
31

2695

(
Q̄5

60β̄τ 2

)1/3

+O

(
1

τ

)
→ ∞ (6.46)

in the limits τ → ±∞ (corresponding to a → 0+), and a branch in τ < 0

satisfying

κ0 =
343τ 6

30888β̄2
+

38Q̄τ 2

2145β̄
+O(τ) → ∞ (6.47)

in the limit τ → −∞ (corresponding to a → +∞). In the special case Q = 0

(which, for a nontrivial flow, is possible only if τ < 0, and there is a single solution

for the rivulet) we have hm = −7τ/4, and κ0 is given by the leading order term

in (6.47), that is,

κ0 =
343τ 6

30888β̄2
≃ 0.0111

(
τ 3

β̄

)2

for τ < 0. (6.48)

Figure 6.9 shows a plot of κ0 given by (6.45) as a function of τ for different values

of Q̄ with β̄ = 1 in each case, including the leading order asymptotic results

(6.46) and (6.47). Note that whereas β̄ and Q̄ are constants on each curve, the

value of a varies along the curves.

When Q̄ > 0 there is a unique value of κ0 for all values of τ , but when

Q̄ satisfies Qmin = −3087τ 4/5120β̄ < Q̄ < 0 there are two values of κ0 for

all values of τ < 0. The latter non-uniqueness arises because, as described in
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Figure 6.9: Plot of κ0 given by (6.45) as a function of τ for gravity- and shear-stress-driven
flow in a thin rivulet on a vertical substrate, for a range of values of the prescribed flux Q̄,
namely Q̄ = −3, −2, −1, . . . , 3, with β̄ = 1 in each case. The dashed and dotted curves show
the leading order asymptotic results (6.46) and (6.47), respectively.

Section 1.8, and as shown in Figure 1.14, when τ < 0 there are two possible

values of a (and hence two possible rivulets, a narrower one and a wider one)

that correspond to the same value of Q; these two rivulets are associated with

the smaller and larger values of κ0, respectively. Also there is no rivulet solution

when Q satisfies Q̄ < Qmin = −3087τ 4/5120β̄, or equivalently, when τ > τmax

where τmax = −(−5120β̄Q̄/3087)1/4 for Q < 0; this is consistent with the fact the

curves for Q < 0 in Figure 6.9 lie entirely in τ ≤ τmax.

As Figure 6.9 shows, when Q 6= 0 then κ0 again has a minimum value; an

analogous analysis to that described in the previous Subsection 6.4.3 reveals that

the minimum value κ0 = κ0min occurs at τ = τmin, where

κ0min =
1

1155

(
2(11518 + 217

√
2821σ)Q̄3

1365β̄

)1/2

≃ 0.0050

(
Q̄3

β̄

)1/2

or 0.0001

(
−Q̄

3

β̄

)1/2

,

(6.49)
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and

τmin = σ

(
2(32874353

√
2821σ − 1662451778)β̄Q̄

3471933465

)1/4

≃ 0.4685(β̄Q̄)1/4 or −1.1837(−β̄Q̄)1/4,

(6.50)

corresponding to

a =

(
21(

√
2821σ − 26)Q̄

40β̄3

)1/4

≃ 1.9424

(
Q̄

β̄3

)1/4

or 2.5386

(
− Q̄

β̄3

)1/4

,

(6.51)

where we have introduced the notation σ = sgn(Q) = ±1, and the decimal

approximations are valid for Q̄ > 0 and Q̄ < 0, respectively. For given values of

β̄ and Q̄, values of κ0 satisfying κ0 < κ0min are not achievable for any value of τ .

In addition, except when Q̄ = 0, each value of κ0 > κ0min is achieved with two

different values of τ , and hence in this case two different rivulets will lead to the

same value of κ0.

6.4.5 A Rivulet with Prescribed a = ā and Q = Q̄

When a = ā and Q = Q̄ are prescribed then κ0 as a function of τ is again

given parametrically by (6.45), but is now parameterised by β (rather than by a).

Qualitatively the behaviour in this case is similar to that in the case of prescribed

β and Q described in Subsection 6.4.4. In particular, κ0 has branches satisfying

κ0 =
Q̄āτ

700
+

73

5390

(
Q̄3ā

30τ

)1/2

+O

(
1

τ

)
→ ∞ (6.52)

in the limits τ → ±∞ (corresponding to β → 0+), and a branch in τ < 0

satisfying

κ0 =
7ā2τ 4

7722
− 178Q̄āτ

45045
+O(1) → ∞ (6.53)
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in the limit τ → −∞ (corresponding to β → +∞). In the special case Q = 0

then κ0 is simply given by

κ0 =
7ā2τ 4

7722
≃ 0.0009(āτ 2)2 for τ < 0. (6.54)

Figure 6.10 shows a plot of κ0 given by (6.33), (6.2) and (6.3) as a function of

τ for different values of Q̄ with ā = 1 in each case, including the leading order

asymptotic results (6.52) and (6.53). Note that whereas ā and Q̄ are constants

on each curve, the value of β varies along the curves.

Like in the case of prescribed β and Q discussed in Subsection 6.4.4, when

Q̄ > 0 there is a unique value of κ0 for all values of τ , but when Q̄ satisfies

Qmin = 98āτ 3/405 < Q̄ < 0 there are two values of κ0 for all values of τ < 0,

associated with two rivulets that have the same values of ā and Q̄ but different

values of β. Also, the curves for Q < 0 in Figure 6.10 lie entirely in τ ≤ τmax,

where now τmax = (405Q̄/98ā)1/3.

As Figure 6.10 shows, when Q 6= 0 then κ0 again has a minimum value

κ0 = κ0min, occurring at τ = τmin, where

κ0min =
3

770

(
(3279 + 82

√
1599σ)Q̄4ā2

142 × 65

)1/3

≃ 0.0031(Q̄2ā)2/3 or 0.00005(Q̄2ā)2/3,

(6.55)

and

τmin =

(
(4872223− 121471

√
1599σ)Q̄

772 × 390ā

)1/3

≃ 0.1861

(
Q̄

ā

)1/3

or 1.6144

(
Q̄

ā

)1/3

,

(6.56)
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Figure 6.10: Plot of κ0 given by (6.45) as a function of τ for for gravity- and shear-stress-
driven flow in a thin rivulet on a vertical substrate, for a range of values of the prescribed flux
Q̄, namely Q̄ = −3, −2, −1, . . . , 3, with ā = 1 in each case. The dashed and dotted curves
show the leading order asymptotic results (6.52) and (6.53), respectively.

corresponding to

β =

(
63(

√
1599σ − 13)Q̄

80ā4

)1/3

≃ 2.7700

(
Q̄

ā4

)1/3

or −3.4685

(
Q̄

ā4

)1/3

,

(6.57)

and, once again, for given values of ā and Q̄, values of κ0 satisfying κ0 < κ0min

are not achievable for any value of τ . In addition, except when Q̄ = 0, each value

of κ0 > κ0min is achieved with two different values of τ , and hence in this case

two different rivulets will lead to the same value of κ0.

6.5 Conclusions

In this Chapter we considered dispersion of a passive solute in steady unidi-

rectional flow of a uniform thin rivulet of Newtonian fluid on a vertical planar
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substrate when the flow is driven by both gravity and a uniform shear stress on

its free surface.

In Section 6.2 we considered the short-time advection of a slug of a passive

solute injected at time t = 0 into the rivulet on a vertical planar substrate; in

particular, we presented the general form of the mean concentration c̄ given by

(5.50) at small times, and we used this result to describe advection of both an

initially semi-infinite slug and an initially finite slug of solute. It was found that,

in general it is difficult to obtain the function f in (6.6) in closed form; however,

we derived it in the special cases τ ≥ 0 and of purely shear-stress-driven flow, as

described in Subsections 6.2.2 and 6.2.3.

In Section 6.3 we described the long-time Taylor–Aris dispersion of an initially

finite slug of solute, and in Section 6.4 we used the results (5.94) and (5.95) to

obtain our main result, namely the general expression for the effective diffusivity,

Deff , in a thin rivulet, given by equations (6.30) and (6.33). As discussed in

Chapter 5, care was taken to formulate the problem in such a way as to avoid

the complication that arises when ū ≤ 0 (i.e. when Q ≤ 0) when using the

conventional formulation of the problem given by (5.97)–(5.99). In addition,

we discussed in detail the different interpretations of (6.33) depending on which

two of the three parameters β, a and Q are prescribed. In all three situations

considered, we found that, except in the special case of no net flow, Q = 0, the

coefficient κ0 always has a strictly positive global minimum as a function of τ (i.e.

that Deff is always strictly greater than D) and that any value of κ0 above its

minimum value can be achieved with two different values of τ (i.e. two different

rivulets will lead to the same value of κ0).
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Conclusions and Future Work

7.1 Conclusions

This thesis considered two different aspects of rivulet flow, namely non-Newtonian

rheology and transport of a passive solute.

In Chapter 2 we obtained the solution for the steady gravity-driven unidirec-

tional flow of a thin parallel-sided rivulet of a power-law fluid with prescribed

volume flux Q down a planar substrate, and then showed how this solution can

be used to describe the locally unidirectional steady gravity-driven flow of a thin

rivulet with prescribed constant (nonzero) contact angle β but slowly varying

semi-width a down a slowly varying substrate, such as the flow in the azimuthal

direction around the outside of a large horizontal circular cylinder. In Chap-

ter 3 we considered the converse situation of a rivulet of a power-law fluid with

prescribed constant semi-width a (i.e. pinned contact lines) but slowly varying

contact angle β.

In Chapter 2 we demonstrated how the features of the solution are strongly

influenced by the shear-dependence of the viscosity. For example, rivulet flow

of a strongly shear-thinning fluid self-channels down a narrow central channel

between two levées of slowly moving fluid that form at the sides of the rivulet,

229
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and in the central channel there is a plug-like flow except in a boundary layer

near the substrate, as shown in Figures 2.6(a) and 5.1(a). On the other hand,

in rivulet flow of a strongly shear-thickening fluid, the velocity profile is linear

except in a boundary layer near the free surface, as shown in Figures 2.6(b) and

5.1(b).

Like the analysis of the corresponding situation for a Newtonian fluid studied

by Paterson et al. [97], in Chapter 3 we found that the global behaviour of a rivulet

with prescribed semi-width is qualitatively very different from that of a rivulet

with prescribed contact angle described in Chapter 2. Specifically, we found that

a rivulet with pinned contact lines can flow all the way from the top to the bottom

of the cylinder only when it is sufficiently narrow; however, when it is sufficiently

wide, the contact angle reaches its minimum physically realisable value of zero

at some location on the lower half of the cylinder. We then discussed a possible

scenario in which the contact lines de-pin at this location, and the rivulet flows

to the bottom of the cylinder with zero contact angle and slowly varying semi-

width. How the shape of the rivulet and the velocity within it depend on the

power-law index N was described in detail. In particular, we showed that whereas

neither the free surface of the rivulet h nor the velocity u vary monotonically with

N at any fixed value of the angle of inclination of the substrate α, its mass is

always monotonically increasing as a function of prescribed constant ā but is

monotonically decreasing in N .

Results obtained in Chapters 2 and 3 concerning rivulet flow of a power-law

fluid provide a rare analytical description for the study of rivulet flow of non-

Newtonian fluids, and are a useful benchmark for the studies of rivulet flow of

more realistic non-Newtonian fluids. In Chapter 4 we focused on non-Newtonian

effects in unidirectional rivulet flow of more realistic generalised Newtonian fluids,

such as a Carreau fluid and an Ellis fluid. Specifically, we considered gravity-

driven flow of a thin uniform rivulet of a generalised Newtonian fluid down a
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vertical planar substrate. We derived the parametric solution for the velocity

and for the volume flux for any generalised Newtonian fluid whose viscosity is

specified as a function of the shear rate (including, in particular, the solution for a

Carreau fluid), and the explicit solution for any generalised Newtonian fluid whose

viscosity is specified as a function of the shear stress (including, in particular, the

solution for an Ellis fluid). These solutions were then used to describe rivulet

flow of a Carreau fluid and of an Ellis fluid, and to highlight the similarities

and differences between the behaviour of these two fluids. We found that the

behaviour of a rivulet of a Carreau fluid and of a rivulet of an Ellis fluid depends

on the parameters µ∞, λ and N and on the parameters µ∞ and τav, respectively,

in a relatively simple way, reflecting the simple dependence of the viscosities of

these fluids on these parameters, as shown in Figures 4.3 and 4.4(a,b). We found

that any increase of shear thinning leads to an increase in the volume flux of

the rivulet if the semi-width a and the contact angle β are prescribed, or to a

decrease in a or β if the flux Q is prescribed. The behaviour of rivulets of nearly

Newtonian fluids was also investigated. In particular, we showed that the effect

of weakly non-Newtonian shear-thinning behaviour is always to make the rivulet

of prescribed flux smaller. The non-monotonic variation of the viscosity of an

Ellis fluid with α leads to a more complicated dependence of the behaviour of

the rivulet on this parameter than on the other parameters in the Careau and

Ellis models. In particular, a rivulet of a strongly shear-thinning Ellis fluid can

comprise two regions with different viscosities, with the velocity having a plug-

like profile with large magnitude in a narrow central region of the rivulet. The

structure of the flow in this case is somewhat similar to that of rivulet flow of a

power-law fluid in the strongly shear-thinning limit, as described in Chapters 2

and 3.

In Chapters 5 and 6 we considered advection and Taylor–Aris dispersion of a

passive solute in uniform non-thin and thin rivulets, respectively, of Newtonian
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fluid undergoing steady unidirectional flow driven by gravity and/or a prescribed

uniform shear stress τ on their free surfaces on a vertical planar substrate. The

problems considered in Chapters 5 and 6 are the same, but because in Chapter 6

the rivulet was taken to be thin it was possible to make more progress analytically.

In Chapter 5, we considered only the case in which the contact angle of the

rivulet has the prescribed value π/2; in this case it was possible to obtain a

closed-form solution for the velocity, the cross-sectional free surface profile of the

rivulet then being semi-circular. We presented the general form of the mean

concentration c̄ at small times t ≪ ℓ2/D during which the effect of advection

dominates over that of diffusion, and we used this result to describe advection of

both an initially semi-infinite slug and an initially finite slug of solute. We used

the fact that c̄ at any station x and any time t is the fraction of the cross-sectional

area of the rivulet for which u(y, z) ≥ x/t to find the form of c̄. In addition, we

showed by using the method of multiple scales that well-known results concerning

Taylor–Aris dispersion of a solute at large times t≫ ℓ2/D in flow in a channel of

arbitrary cross-section essentially hold for Taylor–Aris dispersion in flow in a semi-

circular rivulet. In particular, we obtained the general expression for the effective

diffusivity Deff , given by (5.94), for Taylor–Aris dispersion in a semi-circular

rivulet. Care had to be taken when considering the conventional formulation

(5.97)–(5.99) in which velocities are scaled with ū, in order to avoid an artificial

singularity when ū = 0, as shown in Figure 5.12.

In Chapter 6 we presented the general form of c̄ at small times in a thin rivulet,

and we used this result to describe advection of both an initially semi-infinite slug

and an initially finite slug of solute. We presented examples showing both upward

and downward advection, and highlighting the fact that c̄ may eventually exhibit

additional non-monotonic variation in x beyond what it inherits in an obvious

way from the initial distribution of c, as shown in Figure 6.6(c). We found that,

in general, it is difficult to obtain the function f in (6.6) in closed form; however,
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we derived it in the special cases in which τ ≥ 0 everywhere and of purely shear-

stress-driven flow. In addition, by using the results (5.94) and (5.95) we obtained

the explicit form of the effective diffusivity, Deff , for Taylor–Aris dispersion in a

thin rivulet. Specifically, by using the results (5.94) and (5.95) we obtained the

explicit expression form for Deff given by (6.33) for Taylor–Aris dispersion in the

special case of a thin rivulet on a vertical substrate, and discussed in detail its

different interpretations depending on which two of the three parameters β, a and

Q are prescribed. In all of the three situations considered we found that, except

in the special case of no net flow, Q = 0, the coefficient κ0 always has a strictly

positive global minimum as a function of τ (i.e. that Deff is always strictly greater

than D) and that any value of κ0 above its minimum value can be achieved with

two different values of τ (i.e. two different rivulets will lead to the same value of

κ0).

7.2 Future Work

There are many directions in which the work presented in this thesis could be

extended.

In Chapter 3 we considered gravity-driven rivulets of power-law fluid with

pinned contact lines (i.e. prescribed semi-width) but variable contact angle on a

large stationary horizontal cylinder. This could be extended to discuss the general

scenario in which the contact lines de-pin and possibly re-pin at a prescribed

nonzero value of the contact angle, and the rivulet flows to the bottom of the

cylinder with nonzero contact angle and slowly varying semi-width. This situation

was analysed by Paterson et al. [97] for a Newtonian fluid, but the corresponding

analysis for a power-law fluid has yet to be done.

In Chapter 4 we considered rivulet flow of more realistic generalised Newtonian

fluids, such as a Carreau fluid and an Ellis fluid, down a vertical planar substrate.
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It would be of considerable interest to examine the combined effects of gravity

and surface shear stress on such a flow. It should also be possible to generalise

the solution obtained in Chapter 4 to the case of steady rivulet flow of a Carreau

fluid and an Ellis fluid on a large stationary horizontal cylinder, such as that

considered in Chapters 2 and 3.

Chapters 5 and 6 considered transport of a passive solute in rivulet flow.

Future work could focus on the effect of a non-passive solute on the flow. Chemical

reactions of the solute with the solvent can affect the effective diffusivity Deff ;

Balakotaiah and Chang [10] investigated this using the centre-manifold theorem.

Another extension could be to consider rivulets of fluids with suspended particles

that could affect the viscosity, diffusivity and/or density of the fluid, so that µ, D

and/or ρ depend on the particle concentration c, as investigated by, for example,

Esṕın and Kumar [39]. Smith [115] showed the buoyancy of a contaminant in

flow in a slowly varying channels could lead to a considerable reduction in the

dispersion.

The inclusion of thermal effects on rivulet flow would also be of interest.

In this case the temperature, T = T (x, y, z, t), satisfies an advection–diffusion

equation with an appropriate thermal diffusivity DT , and in the simplest case

the boundary conditions will consist of a fixed temperature at the substrate and

Newton’s law of cooling at the free surface of the rivulet, namely

−kth∇T · n = αth(T − T∞), (7.1)

where kth is the thermal conductivity of the fluid, αth is the coefficient of heat

transfer at the free surface (which is a measure of the ratio of the heat flux to the

temperature difference across the free surface), and T∞ is the temperature of the

surrounding atmosphere. (The condition (7.1) is applicable to cases where the

heat transfer at the free surface is dominated by convective heat transfer, as is
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commonly the case at a liquid-gas boundary.) For example, the problem of axial

dispersion of heat from an initially hot “slug” of fluid in the rivulet (analogous

to the initial slug of solute considered in Chapters 5 and 6) could be considered,

and, in particular, the dependence of Deff on αth investigated; a problem of this

type was considered by Lungu and Moffatt [74] for the case of Poiseuille flow in

a circular pipe.

Another interesting extensions to all of the work in this thesis would be to

include inertial terms in the analysis; this may be important for some applications,

but also would allow unsteady flows to be considered, which would be necessary

to address the question of the stability of steady flows, and also to validate the

analysis against experimental investigations.

Fan and Hwang [42], and Prenosil and Jarvis [101], Zhang and Frigaard [143],

and Dutta et al. [34] considered the effects of non-Newtonian rheology on Taylor–

Aris dispersion in flow in a pipe, in a channel and down an inclined substrate,

respectively; another natural extension would be to consider the effect of a non-

Newtonian rheology on Taylor–Aris dispersion in rivulet flow. This would bring

together the two main themes of this thesis, namely non-Newtonian effects in

rivulets and dispersion in rivulets.

We believe that the results described in the present thesis provide a useful

contribution to the comparatively small body of work on rivulet flow of Newtonian

and non-Newtonian fluids; nonetheless the previously mentioned open challenges

and possible extensions show that much research still remains to be done.
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