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Abstract

In epidemiology, controlling infection is a crucial element. Since healthcare

associated infections (HAIs) are correlated with increasing costs and mortal-

ity rates, effective healthcare interventions are required. Several healthcare

interventions have been implemented in Scotland and subsequently Health

Protection Scotland (HPS) reported a reduction in HAIs [HPS (2015b, 2016a)].

The aim of this thesis is to use statistical methods and change points analysis to

detect the time when the rate of HAIs changed and determine which associated

interventions may have impacted such rates.

Change points are estimated from polynomial generalized linear models

(GLM) and confidence intervals are constructed using bootstrap and delta

methods and the two techniques are compared. Segmented regression is also

used to look for change points at times when specific interventions took place.

A generalization of segmented regression is known as joinpoint analysis which

looks for potential change points at each time point in the data, which allows

the change to have occurred at any point over time. The joinpoint model is

adjusted by adding a seasonal effect to account for additional variability in

the rates. Confidence intervals for joinpoints are constructed using bootstrap

and profile likelihood methods and the two approaches are compared. Change

points from the smoother trend of the generalized additive model (GAM) are

also estimated and bootstrapping is used to construct confidence intervals.
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All methods were found to have similar change points. Segmented regres-

sion detects the actual point when an intervention took place. Polynomial

GLM, spline GAM and joinpoint analysis models are useful when the impact

of an intervention occurs after a period of time. Simulation studies are used

to compare polynomial GLM, segmented regression and joinpoint analysis

models for detecting change points along with their confidence intervals.
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Chapter 1

Introduction to Healthcare

Associated Infections

Everything in the world tends to change over time (e.g. economic stability,

education strategies and epidemiology). It is of interest to know when changes

occur in order to identify interventions associated with these changes. The

development of medical interventions in epidemiology and public health is an

essential aspect worldwide.

1.1 Overview of the thesis

This thesis investigates statistical methods for the detection of changes in rates

of infection. This change may be associated with changes to practice. The main

methods used to detect these changes are polynomial generalized linear mod-

els (GLM), segmented regression analysis, joinpoint analysis and generalized

additive models (GAM). This research also explores methods of constructing

confidence intervals for the change points. All these methods are considered

within the scope of healthcare associated infections (HAIs). Simulation studies

are then carried out to investigate the best method of detecting change points
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and the best method to construct confidence intervals for these change points.

In Chapter 2, a literature review of statistical modelling and detecting change

points is presented. Statistical methods of modelling count data with polyno-

mial generalized linear regression models and generalized additive models are

reviewed. Also, detection of change points in several types of data is presen-

ted. Finally, a review on some selection methods of constructing confidence

intervals is discussed.

In Chapter 3, methods for modelling the rates of HAIs over time are imple-

mented to describe the change in trend. Statistical methods to model count data

using Poisson and quasi-Poisson polynomial models are presented. Addition-

ally, descriptive analysis of rates of methicillin-resistant staphylococcus aureus

(MRSA) bacteraemia, methicillin-sensitive staphylococcus aureus (MSSA) bac-

teraemia and clostridium difficile infection (CDI) in Scotland are described.

This is done on Scottish data and also by each of the 15 health boards in Scot-

land. Power of the models and sample size issues are investigated and funnel

plots are then used to compare health boards rates of HAIs. A brief summary

and discussion of findings conclude this chapter.

In Chapter 4, the best fitted polynomial generalized linear models (GLM)

from Chapter 3 are used to estimate the time when the rates of HAIs change

(turning points) and to determine which interventions had an impact on health-

care associated infection. Confidence intervals for estimated turning points are

constructed using bootstrapping. A simulation study is carried out to compare

bootstrap and delta methods for constructing confidence intervals for a single

turning point.

2
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In Chapter 5, a general approach which detects change points where rates

change significantly and determines which interventions are associated with

these changes is discussed. Segmented regression analysis is used to detect

change points where the rates of HAIs change significantly after a specific in-

tervention and then identify if some or none of these interventions have an

impact on these rates. Joinpoint analysis is a generalization of segmented re-

gression and it is used to estimate the existence of change points at unspecified

times and estimate their location. The joinpoint method tests all data points to

identify change points. The confidence intervals of joinpoints are constructed

using bootstrap and profile likelihood methods. A simulation study compares

these methods in order to find the best method of constructing confidence in-

terval for joinpoint.

Chapter 6 aims to investigate and discuss the change point methods which

were used in Chapters 4 and 5 through a simulation study. This identifies

and compares particular changes in trends to determine which methods detect

changes more easily and more accurately than others. Polynomial models in-

cluding quadratic and cubic models are used to estimate the change in trend.

Segmented regression identifies changes at particular times where the smallest

deviance occurs and joinpoint analysis estimates the number of changes and

their location from all possible times during the period of study. This simu-

lation is carried out with different sample sizes and different scenarios of the

original assumptions and values.

In Chapter 7, a new method is introduced to detect change points which

uses generalized additive models (GAM). GAM is considered as a more flex-

ible model than generalized linear models (GLM) and can fit a smoother trend

to the data. A spline function is used within GAM models and the best model

3
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is fitted. The method of estimating change points from the GAM model is

demonstrated and confidence intervals of estimated change points are con-

structed using bootstrapping. The method is then used to detect change points

for the HAI data.

Finally in Chapter 8, the conclusion and future work recommendations are

listed. Some of the future work recommendations suggest further developing

specific techniques using simulation studies and modifying the change point

methods to better suit HAI data.

In the rest of this chapter (Chapter 1), background and some previous studies

on HAIs including MRSA, MSSA and CDI are detailed. The data which were

provided by the Health Protection Scotland (HPS) [HPS (2013)] on staphylo-

coccus aureus bloodstream infections (SAB) including MRSA bacteraemia and

MSSA bacteraemia and clostridium difficile infection (CDI) will be analysed.

We will look at the trend of infections over time and detect time points when

the pattern of data changes to assess the effect of preventative health care in-

terventions.

In public health care and as a result of health care interventions, infections

could take place either outside or inside a hospital. If an infection occurs at

home or in health care centers and diagnosed by GP testing or diagnosed in

a hospital within 48 hours of admission and are relevant attributable to com-

munity exposure, they are termed as community-acquired infections. If the

infections developed during a hospital stay and diagnosed after 48 hours of

admission, they are known as hospital-acquired infections [Wertheim (2005)].

Also, the definitions can vary dependent on the organism. Therefore, the com-

munity and hospital acquired distinction is based on an organism dependent
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epidemiological definition based on previous healthcare exposures. Such terms

are collectively referred to as healthcare associated infections (HAIs).

Healthcare associated infections are a major cause of patient morbidity and

mortality. Staphylococcus aureus (SA) and clostridium difficile (C. diff) are

among the most common infection-causing bacteria. SA bloodstream infection

(SAB) is a type of HAIs [Tong et al. (2009)]. Bloodstream infection (bacteraemia)

is clinically defined as the isolation of bacteria from one or more peripheral

venous blood-culture samples collected from patients with associated relevant

symptoms and signs of systemic infection [Thwaites et al. (2011)]. About 13%

of all hospital-acquired bloodstream infections are caused by staphylococcus

aureus [Wertheim (2005)]. Clostridium difficile infection is also a type of HAIs

and causes serious bowel problems [NHS (2016a)].

This chapter covers four main topics:

1. The historical and biomedical background of healthcare associated infec-

tions (HAIs) including MRSA, MSSA bacteraemias (see Section 1.2.1) and

CDI (see Section 1.3.1).

2. An impact of risk factors on MRSA and MSSA bacteraemias (see Section

1.2.2) and CDI (see Section 1.3.2).

3. Some studies showing the impact of healthcare interventions on the rate

of HAIs (see Section 1.4).

4. A discussion of methods used for collecting data on MRSA and MSSA

bacteraemias and CDI and the interventions conducted in Scotland (see

Section 1.5). Such data will be used for analysis in this research.
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1.2 Introduction to staphylococcus aureus

bacteraemia

1.2.1 Historical background

Staphylococcus aureus (SA) was initially discovered by a Scottish surgeon (Al-

exander Ogston) in 1881 when he described the presence of grape-like clusters

of globular micro-organisms in pus from abscesses [Özgen (2008) and Ekkelen-

kamp (2011)]. SA is a gram positive bacterium of about one micrometer in dia-

meter [Plata et al. (2009)], which colonises the skin of about 30% of the healthy

human population without causing infection [Wertheim (2005)]. Colonization

with SA may occur any time after birth, and its carriage may be temporary

or permanent [CFSPH (2011)]. Majority of individuals carry SA in their nose

or on their skin without knowing that they are carrying it. They do not have

skin infections or any other signs or symptoms of illness. Although this col-

onisation is usually harmless, SA is an important cause of serious infections

[Wertheim (2005)]. These infections are commonly associated with health-

care interventions due to failures of implementing infection control methods

[ECDPC (2012)]. One of the reasons that SA is causing infections is that it

can survive for about one month on any type of surface [Wertheim (2005)].

Therefore, a simple wound infection can become contaminated by SA which

can enter the bloodstream where it is transported to internal organs, skin and

bone. This can cause severe infections with high mortality rates [Wertheim

(2005)].

SA has two types of strains. Some SA bacteria are more resistant to the

antibiotic methicillin which is the first member of this class of antibiotics

[NHS (2016a)]. These are called methicillin-resistant staphylococcus aureus

(MRSA) and often require different types of antibiotics to treat them. However,
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methicillin-sensitive staphylococcus aureus (MSSA) can effectively be treated

by antibiotics. Both MRSA and MSSA are endemic in many UK hospitals,

causing a range of infections [NHS (2016a)] such as various skin and soft tis-

sue infections (surgical wound infections), pneumonia, endocarditis, septic

arthritis, osteomyelitis, meningitis and bacteraemia (bloodstream infection or

blood poisoning which is commonly referred to as staphylococcus aureus bac-

teraemia (SAB)) [Wertheim (2005)].

MRSA is the most commonly identified antimicrobial-resistant pathogen in

hospitals in many countries in the world including Europe, the United States,

North Africa, South-East Asia and the Middle- and Far East [Thomas (2014)].

Health Protection Scotland reported that SAB is the serious type of infection

leads to increased morbidity and mortality which requires treatment by anti-

microbial therapy courses [HPS (2017)]. The first MRSA case was recognised

in October 1960, and the first MRSA isolate was detected a few months later in

February 1961 at a hospital in the United Kingdom. After a few years, MRSA

was found in other European countries as well as Japan and Australia [ISMR

(2006)]. Some MRSA strains, called epidemic strains, are more prevalent and

tend to spread within or between hospitals and countries [CFSPH (2011)].

Staphylococcus aureus is usually transmitted by direct contact, often via

hands, with colonized or infected people. It may also be spread by sharing

personal hygiene items that have been touched by people with staphylococcus

aureus like towels, soaps or clothes [NHS (2016a)].

The symptoms of an SA infection and the symptoms of an infection arising

from other staphylococcus are similar. For example, pimples, rashes and pus-

filled boils are indicative of SA skin infection which may be considered as a
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minor infection especially when the rashes, pimples or boils are warm, pain-

ful, red or swollen [NHS (2016a)]. However, the symptoms for very serious

infections can also occur which include severe skin infection, surgical wound

infections, bloodstream infections and pneumonia include high fever, swell-

ing, heat and pain around a wound, headache, fatigue and other symptoms

[CFSPH (2011)].

If an antibiotic is required for treatment, MSSA infection can be treated by a

penicillin-based antibiotic such as flucloxacillin. This antibiotic is prescribed for

patients who are not allergic to penicillin, otherwise alternative antibiotics may

be prescribed [NHS (2016a)]. However, the treatment of MRSA can be chal-

lenging because it can only be treated with antibiotics based on susceptibility

testing [CFSPH (2011)]. MRSA is resistant to a family of penicillin-related an-

tibiotics such as methicillin, oxacillin and flucloxacillin [NHS (2016a)]. MRSA

cannot be identified without specific lab tests and it is not always recognised

and treated correctly when antibiotic treatment is needed. SA infections are

diagnosed by culture and identification of the organism [CFSPH (2011)]. Some-

times doctors diagnose an MRSA infection as a common staph infection and

they prescribe antibiotics that do not kill MRSA. Such potential delay with

appropriate antibiotics to treat MRSA infections can effectively result in pro-

longed illness and rare life-threatening diseases in the blood, heart and bones

[CFSPH (2011)].

1.2.2 Impact of risk factors

In this section, some selected studies investigating risk factors of MRSA and

MSSA infections and especially of MRSA and MSSA bacteraemias are reviewed.
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Increasing SA infections causes mortality, morbidity and high expenditures.

MRSA bacteraemia is associated with significant increase in mortality rates

compared with MSSA bacteraemia (odds ratio = 1.93) [Cosgrove et al. (2003)].

Patients with MRSA infection in the USA during 2004-2006 had a higher mortal-

ity rate (23.6%) than patients with MSSA infection (11.5%) [Filice et al. (2010)].

In addition, patients with MRSA infection have more co-morbidities than pa-

tients affected with MSSA infection [Filice et al. (2010)]. In the UK, about

12,500 cases of SAB each year are reported, with associated mortality rates of

about 30% with 95% confidence interval (15% - 60%) compared with bacter-

aemia caused by other pathogens [Thwaites et al. (2011)]. In 2016 in Scotland,

1,599 incidences of SAB were reported by Health Protection Scotland where

5.5% were MRSA bacteraemia and 94.5% were MSSA bacteraemia and these

reported 1.9% increase in the overall incidence of SAB since 2012. In addi-

tion, between 2011 and 2015, Health Protection Scotland reported that 26.2%

of mortality per month are caused by MRSA bacteraemia and 19.2% by MSSA

bacteraemia [HPS (2017)].

MRSA infections are independently associated with increased costs and

therefore efficient infection prevention programs are needed to reduce the

incidence of these costly infections. Bacteraemia treatment is expensive and

difficult [Tong et al. (2009)]. For example, in New York state, bacteraemia

and pneumonia caused by SA is responsible for about 60% of the total direct

medical costs and 97% of the mortality compared to other types of infection

[Rubin et al. (1999)]. Furthermore, staphylococcus aureus bacteraemia (SAB) is

the second most common serious bacterial infection worldwide and is a major

cause of increased length of hospital stay, antibiotic use and associated costs

[Wertheim et al. (2004) and Wertheim (2005)]. In North Carolina, the mean

initial hospitalization cost was significantly greater for patients with complic-
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ated SAB versus uncomplicated SAB ($32,462 vs $17,011, p=0.002) [Engemann

et al. (2005)]. Between December 1993 and March 1995, hospital-acquired bac-

teraemia due to SA significantly extended the duration of hospitalization for

about four days for MSSA bacteraemia patients and 12 days for MRSA bac-

teraemia patients. Therefore, direct costs increased three fold due to MRSA

($27,083) compared with those due to MSSA ($9,661) [Abramson and Sexton

(1999)]. In the UK between April 1991 and December 1992, the hospital costs

was a total of £403,600 for patients with an MRSA infection [Cox et al. (1995)].

Recent studies in the UK illustrated the costs associated with MRSA screening

for all admissions and recommended to improve the policy of screening pa-

tients [Robotham et al. (2016)].

There are several risk factors associated with increasing SA infections where

these include age, some diseases, teaching hospital and unavailable treatment.

Elderly patients over 64 years are more likely to have MRSA infections in Scot-

tish hospitals [Van Velzen et al. (2011)]. Age is the most common consistent

predictor of mortality in patients with SAB [Van Hal et al. (2012)]. Recurrences

of SAB occurred in 9.4% following anti-staphylococcal therapy where elderly

patients with severe disease who have MRSA bacteraemia are more likely to

experience delay in appropriate antimicrobial therapy (DAAT). This is associ-

ated with increased in-hospital mortality [Marchaim et al. (2010)].

Several diseases are associated with contracting SA infections inside or out-

side hospitals. Healthcare associated MRSA strains are the main causes of

nosocomial infections associated with indwelling medical devices and surgical

sites [CFSPH (2011)]. From 1994 to 1998 in the United States, the incidence

of MRSA increased by 37% in patients hospitalized in the intensive care unit

[Cosgrove et al. (2003)]. From 1994 to 2000, patients with surgical site infec-
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tions (SSIs) in Durham in the USA infected with MRSA had a greater mortality

rate than patients infected with MSSA (odds ratio 3.4). Those infected with

MRSA also had a greater duration of hospitalization after infection (five ad-

ditional days) which increased the median hospital cost to about $52,791 for

patients with MSSA SSI, and $92,363 for patients with MRSA SSI [Engemann

et al. (2003)]. Human immunodeficiency virus (HIV) is also associated with a

high risk of acquiring an SA infection. Deep soft tissue infections have been

observed in HIV positive patients which is associated with increased rates of

SAB [Wertheim (2005)]. Patients with an orthopedic device infection (ODI) also

had a higher relapse of SA infection, compared to bacteremic patients without

ODI [Lalani et al. (2008)]. Hemodialysis dependent patients hospitalized with

MRSA bacteraemia have a higher mortality risk (odds ratio = 5.4 with 95% con-

fidence interval (1.5, 18.7)) at 12 weeks. Longer hospital stay leads to higher

inpatient costs which are about $21,518 for initial hospital stay and $25,518

after 12 weeks [Reed et al. (2005)]. There are several factors associated with an

increased risk of developing SAB, including colonization or previous MRSA

infection, skin ulcers at hospital admission, existent central venous catheters,

urinary catheter insertion, surgical site infection, injecting drug use, presence

of immunosuppressive conditions, use of corticosteroids as well as liver dis-

ease and lung disease [Naber (2009)]. Furthermore, it was reported that 33%

of patients in Scotland developed an MRSA infection after pancreatoduoden-

ectomy (PD) [Sanjay et al. (2010)]. Also, renal failure, and open wounds were

significantly associated with acquiring of MRSA in Scotland [Van Velzen et al.

(2011)].

Teaching hospitals are associated with increasing MRSA and MSSA infec-

tion. In a general teaching hospital in Brazil with a high prevalence of MRSA

strains, MRSA bacteraemia had a high mortality rate (39% within 14 days)
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[Conterno et al. (1998)]. In contrast, a tertiary-care teaching hospital in Boston

demonstrated no significant difference between the mortality in patients with

MRSA and MSSA bacteraemias (p=0.53) however, MRSA bacteraemia was

associated with significant increases in length of hospitalization and hospital

charges [Cosgrove et al. (2005)].

MRSA bacteraemia infections are widespread and difficult to treat. The

incidence of MRSA bacteraemia and associated complications have increased

in the United States and in some European countries because of the increased

resistance of SA strains to available antibiotics [Naber (2009)].

1.3 Introduction to clostridium difficile infections

(CDI)

1.3.1 Historical background

Clostridium difficile (C. diff) is a bacteria that infects the digestive system

of about 1/30 healthy people and can cause diarrhoea. C. diff bacteria live

in the digestive system without causing any problems in healthy individuals

because it is controlled by the presence of other bacteria. However, occasion-

ally treatment with antibiotics can affect these bacteria which subsequently

results in uncontrolled C. diff bacteria, resulting in infection [NHS (2016a)].

Clostridium difficile infection (CDI) can especially occur in patients recently

treated by broad-spectrum antibiotics or those using different antibiotics in the

same period of treatment [NHS (2016a)].

C. diff bacteria are passed out of a patient through diarrhoea and can be

transmitted to other individuals. C. diff bacteria can live outside the body (on
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different surfaces) for a long time and can infect other individuals if they enter

the body.

Symptoms of CDI sometimes occur during or after finishing the course of

antibiotics. These symptoms include bloody diarrhoea, stomachache, dehyd-

ration, headaches and fever. Serious complications can be developed such as

drowsiness and damage to the bowel [NHS (2016a)]. In serious cases of in-

fection, patients may need a surgery to remove a damaged part of the bowel

[NHS (2016a)].

1.3.2 Some previous studies on risk factors

Several risk factors are associated with contracting or a recurrence of CDI. Some

strains of clostridium difficile produce toxins (types of bacteria release poisons

-antigenic poison-) which cause an infection called toxin clostridium difficile

infection (TCDI). Also, non-toxigenic clostridium difficile (NTCD) strains are

found in hospitals and cause the infection NTCDI [Gerding et al. (2015)]. A

study between 2012 and 2014 in Australian hospitals showed a reduction in

the annual trend of toxigenic C. diff with associated significantly high rates in

the summer. Non-toxigenic C. diff was associated with some chronic diseases

such as kidney failure [Furuya-Kanamori et al. (2017)].

CDI is also more likely to occur in patients with cancer and kidney disease,

those who have weak immune systems or who have had surgery on their di-

gestive system in comparison to patients without these diseases [NHS (2016b)].

In patients with kidney disease there are significantly high risks of CDI [Phath-

aracharukul et al. (2015)]. In 2011 in the USA the incidence of CDI was higher in

females than males, and in patients over 65 years old. Mortality was estimated
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to be 9.6% per 100,000 patients [Lessa et al. (2015)]. A long hospitalization time

is also a risk factor of CDI and patients over 65 years old are more likely to be

infected with CDI compared to patients under 65 [NHS (2016b)].

Age is also associated with recurrence of CDI where elderly patients are more

likely to experience a recurrence of CDI after taking antibiotics to treat it. Oral

vancomycin (type of antibiotics) reduces the risk of recurrence of CDI in pa-

tients who are re-exposed to antibiotics [Carignan et al. (2016)]. Also, increased

antibiotic usage and specific foods and drinks is linked with the recurrence of

CDI [Carpenter et al. (2016) and Oman Evans II et al. (2016)]. Furthermore,

a recent study in Scotland demonstrated that long time of using antibiotics

is associated with CDI and high risk occurs after one month of antimicrobial

exposure [HPS (2017) and Kavanagh et al. (2017)].

These risk factors are associated with increased the mortality and cost. In

Czech Republic from January 2008 to December 2013, mortality by CDI was

observed in patients over 85 years old which was associated with the number

of antibiotics used (48%), presence of pressure ulcers (42%) and fever (37%)

[Bielakova et al. (2016)]. In Scotland between 2012- 2016, the incidence of CDI

in patients above 65 years have been decreased by 7.9% and HPS reported that

between 2011- 2015 there was a year on year reduction in mortality rate of CDI

by 3.5% [HPS (2017)]. Between 2005 and 2015, the total annual CDI cost in the

USA was $6.3 billion where the total annual hospitalization is estimated to be

2.4 million days [Zhang et al. (2016)].

1.4 Infection control

As part of quality of patient care and safety, infection prevention should be

considered a priority and integrated at all strategy levels within healthcare
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to avoid HAIs [Lindberg (2012)]. Medical staff’s knowledge about infection

control, patient behaviours and medical examinations and treatments should

be integrated to prevent and control HAIs.

Controlling infection within healthcare requires that staff have knowledge

about infection control measures. Hospital staff also need to improve their

knowledge regarding the best strategies to ensure effective infection control

practices [Solberg (2000)]. They should realize the importance of prevention

of infection and work together to limit the spread of infection by improving

patient safety in healthcare facilities. For instance, commitment to hand disin-

fection before and after contact with patients is an important action for ensuring

patient safety [Lindberg (2012)]. Hand washing is also important to prevent

HAIs transmission among patients and hospital staff [NHS (2016a)]. A study in

England and Wales suggests that the national Cleanyourhands campaign, in-

cluding a hand hygiene campaign can reduce healthcare associated infections

by controlling the spread of HAIs through the contamination of healthcare

staffs’ hands [Stone et al. (2012)]. This study showed that increasing usage of

alcohol hand rub and soap is associated with reduction in CDI rates and falling

of MRSA bacteraemia in the last year of the study. Detergent and hydrogen

peroxide decontamination are used to clean rooms occupied by patients with

MRSA infection following discharge. A study by Mitchell et al. (2014) in Aus-

tralia demonstrated a reduction in the incidence of MRSA bacteraemia when

using detergent (0.16/10,000 patient care days) and when using hydrogen per-

oxide decontamination (0.11/10,000 patient care days). It is worth mentioning

that the reduction associated with the detergent is not significantly different

from the reduction by hydrogen peroxide decontamination (p=0.58). How-

ever, hydrogen peroxide decontamination has a significant reduction for the

incidence of MRSA colonisation and infection (5.3/10,000 patient care days)
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compared to the reduction by detergent (9.0/10,000 patient care days) with

p<0.001.

To control and prevent HAIs by patients themselves, people should keep

their hands clean and dry and wounds and cuts should be cleaned and covered

where patients should use their own hygiene equipment such as towels, tooth-

brushes, etc. [NHS (2016a)]. Outpatients with MRSA skin wounds should

keep them covered with clean and dry dressings [CFSPH (2011)].

There is some evidence within European hospitals that MRSA bacteraemia

can be reduced with developed medical interventions and infection control

[Borg et al. (2014)]. Solberg (2000) suggested infection control strategies in-

cluding screening and isolation of newly admitted patients and implementa-

tion of an infection control program to prevent transmission of resistant strains

between patients and hospital personnel. Several studies by Lawes et al. (2012),

Currie et al. (2014) and Coia et al. (2014) recommend MRSA screening for Scot-

tish patients before hospital admission. The infection control practices in Scot-

land including universal admission screening and antibiotic stewardship were

associated with decreasing MRSA bacteraemia [Lawes et al. (2012)]. However,

most healthcare associated staphylococcus aureus infections are caused by the

patient’s own staphylococcus aureus cells, where patients carry the organism

in their noses. To prevent these infections, staphylococcus aureus is eradicated

from the nose by treatment with mupirocin nasal ointment [Wertheim (2005)].

Also, carriers of MRSA should be treated with intranasal antibiotics such as

mupirocin to eliminate carriage [Solberg (2000)]. A Scottish study found that

some changes should be implemented on infection control interventions to re-

duce and control MRSA infection in Scotland [Lawes et al. (2015)].
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Several infection control polices to reduce the clostridium difficile infection

are recommended by Vonberg et al. (2008) such as; early diagnosis of CDI,

staff education, hand hygiene, environmental cleaning and cleaning of medical

equipment and good antibiotic stewardship. Also, the usage of hydrogen

peroxide vapour to disinfect the patient’s room is associated with reduced

clostridium difficile infection [McCord et al. (2016)]. National infection control

procedures were adopted in Scotland over a period of time from 2004 to 2011

and are discussed in Section 1.5.3.

1.5 Data for analysis

Healthcare associated infections (HAIs) including data on MRSA, MSSA bac-

teraemias and CDI are described in this section. Health Protection Scotland

(HPS) provide the data on HAIs from 2003 for MRSA and other infections from

later years. Also, the data about the interventions is provided by HPS (2015b)

from 2004 to 2011.

1.5.1 MRSA and MSSA bacteraemias data

The occurrence of SA bacteraemia is monitored by the HPS SA bacteraemia

surveillance programme in Scotland as a notifiable diseases [HPS (2013)]. This

includes SA bacteraemia occurring in patients who are under the healthcare

system (in both acute and non-acute hospitals and in primary care settings)

and those who have acquired SA bacteraemia in the community, without any

healthcare contact. Many countries restrict surveillance of SA bacteraemia

to those caused only by MRSA. However, the surveillance programme in

National Health Service (NHS) Scotland and within individual NHS health

boards includes data on both MRSA and MSSA bacteraemias. The quarterly

SA bacteraemia data produced by HPS are based on tentative data for both bed
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occupancy and incident SA bacteraemia. These data are subject to revision as

finalised data become available [HPS (2012)].

Data was collected by HPS from January 2003 to June 2016 and includes 15

NHS boards, (see Table 1.1) [HPS (2016a)]. Data is collected regularly every

three months (i.e. quarterly (Qu)) and records the number of patients with

MRSA and MSSA bacteraemias and the number of acute occupied bed days

(AOBDs) in 15 health boards in Scotland. AOBDs are based on the daily counts

of occupied beds that are undertaken in every hospital at midnight. These

counts exclude day patients who, by definition, do not occupy a bed at mid-

night [HPS (2012)]. Each case is reported to an NHS health board according

to the location of the diagnostic laboratory where a patient was screened. In

addition, if a patient is diagnosed twice within 14 days with two positive tests,

duplicate cases have been removed [HPS (2015c)]. Rates of MRSA and MSSA

bacteraemias are presented per 100,000 AOBDs and this gives an indication of

the number of cases relative to the size of the population at risk. In 2009, NHS

in National Waiting Times Centre was joined to NHS Scotland so MRSA and

MSSA bacteraemias data were collected from April 2009. For example, Figure

1.1 explains the sort of MRSA and MSSA bacteraemias data which were used

in this research. It also clearly shows that the trend of infections has changed

over time where the trend of MRSA bacteraemia showed reduction over time

but MSSA bacteraemia showed a little increase from 2013 up to 2016.

Several factors associated with risk are recorded to adjust the rate of MRSA

and MSSA bacteraemias. Information Services Division (ISD) provides data

which specify the percentage of acute surgical procedure (ASP) in each indi-

vidual health board from April 2009 to December 2013 [ISD (2014)]. ASP is the

percentage of patients who had surgical operations in each health board. Fur-

18



Chapter 1 Introduction to Healthcare Associated Infections

0

10

20

30

40

50

60

70 Quarterly rates of SAB per 100,000 acute bed days

mrsa_rate mrsa_lower_CI mrsa_upper_CI mssa_rate mssa_lower_CI

mssa_upper_CI sab_rate sab_lower_CI sab_upper_CI

Figure 1.1: Overall quarterly SA, MRSA and MSSA bacteraemia incidence rates
for Scotland (per 100,000 AOBDs) from April 2005. This figure
has been taken from HPS quarterly report up to June 2016 and is
available on HPS (2016a).

thermore, a teaching hospital (TH) is used by medical schools where training

and clinical education are provided in teaching hospitals to medical students

and current health professionals. TH is considered as a risk factor due to

training staff increasing the risk of infection because they may be unaware of

infection control policies. The health boards which have teaching hospitals are

Great Glasgow and Clyde, Tayside, Grampian and Lothian.

1.5.2 CDI data

The mandatory surveillance programme of CDI in Scotland started in October

2006 and focused on the incidence of CDI in patients aged over 65 years. From

April 2009, patients aged 15-64 years were added to the mandatory surveillance

programme of CDI [HPS (2016a)]. As in SA bacteraemia (SAB) data, the CDI

data is collected every three months and records the number of patients with

CDI and the number of acute occupied bed days (AOBDs) in 15 health boards
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Table 1.1: Health boards in Scotland.
Health board Abbreviation
Ayrshire and Arran A.A
Borders BOR
Dumfries and Galloway DG
Fife Fife
Forth Valley FV
Grampian GR
Greater Glasgow and Clyde GGC
Highland HI
Lanarkshire LA
Lothian LO
National Waiting Times NWTC
Orkney ORK
Shetland SH
Tayside TAY
Western Isles WI

in Scotland, (see Figure 1.2). Figure 1.2 showed a slightly reduction in CDI and

the trend of CDI in patients aged over 65 years and CDI in patients aged 15-64

years are similar from July 2011 to June 2016. AOBDs are different for CDI in

patients over 65 than for CDI in patients aged 15-64 years and is recorded by

age groups. Rates of CDI are presented per 100,000 AOBDs. The percentage

of acute surgical procedure relating to CDI is not recorded for CDI data. The

classification of TH is the same as in the SAB data.
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Figure 1.2: Overall quarterly CDI incidence rates for Scotland in patients over
65 years and in patients aged 15-64 years (per 100,000 AOBDs) from
July 2011 to June 2016 and is available on HPS (2016a).
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1.5.3 Healthcare interventions

Some healthcare interventions took place in NHS Scotland from 2004 to 2011.

Table 1.2 explains the year, month and impacted infection (either staphylococ-

cus aureus bacteraemia (SAB) or clostridium difficile infection (CDI) or both) of

those interventions. The quarter in the Table 1.2 was coded starting from 2003

where Qu1, 2003 takes 1 and Qu1 means the months from January to March,

(see Table 3.1 in Chapter 3 for explaining what months are included in each

quarter).

Table 1.2: Healthcare interventions that took place in Scotland from 2004 to
2011 provided by HPS [HPS (2015b)] and ISD [ISD (2014)].

Month Quarter Intervention Targeted infection
May 2004 6 NHS Scotland Code of Practice SAB and CDI

on HAI management published.
February 2005 9 CNO letter on alcohol based SAB

hand rubs and infection control.
March 2005 9 CNO requested that all G Grade SAB and CDI

Sisters/ Charge Nurses (Senior
Charge Nurses) undertake the
Cleanliness Champions Course
commenced.

July 2005 11 New IC structure in Boards, SAB and CDI
including ICM funding.

August 2005 11 Antimicrobial Prescribing Policy SAB and CDI
and Practice in Scotland-
Recommendations for good
antimicrobial practice in acute
hospitals.

January 2006 13 Hand hygiene national campaign SAB and CDI
announced/launched.

February 2006 13 Standard Infection Control SAB and CDI
Precaution model policies
first launched.

April 2006 14 HEAT targets introduced- target SAB
of 30% reduction in SAB by 2010
asked of all boards.

April 2006 14 MRSA guidelines issued in SAB
Journal of Hospital Infection
(although not Scottish initiative,
widely recognised by infection
control world)- screening
practices changed.

Continued on next page
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Table 1.2 – Continued from previous page
Month Quarter Intervention Targeted infection
March 2007 17 Scottish Patient Safety SAB and CDI

Programme (SPSP) announced.
December 2007 20 First national hand hygiene SAB and CDI

compliance report issued.
January 2008 21 HPS care bundles related to SAB

interventions first launched
(SPSP).

March 2008 21 Launch of QIS standards (followed SAB and CDI
by visits to Boards related to
these- from 2008).

March 2008 21 HPS CDI bundle launched CDI
May 2008 22 Transmission Based Precaution SAB and CDI

model policies first launched.
July 2008 23 SAPG guidance control of 4Cs CDI

Antibiotic policy.
July 2008 23 Cleanliness champions uptake at SAB and CDI

2000 members of staff.
August 2008 23 Letter to CE in Scotland outlining SAB and CDI

roles and responsibilities for HAI
(performance management push).

August 2008 23 National action plane for CDI CDI
October 2008 24 Credit card flyer issued SAB and CDI

(ABHR message).
December 2008 24 National CDI guidance issued CDI
January 2009 25 Cabinet Secretary for Health SAB and CDI

announcement on zero tolerance to
non compliance with hand hygiene.

January 2009 25 HAIRT template introduce for SAB and CDI
hospital reporting at boards bi
monthly.

March 2009 25 Second Wave of NHS staff materials SAB and CDI
(with mandate from SGHD for
compulsory placement).

April 2009 26 Revised HEAT targets CDI
announced- CDI one introduced.

April 2009 26 Public health act (inclusive of SAB and CDI
reporting SAB and CDI)
implemented.

September 2009 27 First HEI inspection carried out. SAB and CDI
September 2009 27 Second Wave of NHS staff

materials reissued.
December 2009 28 HIIAT issued for managing SAB and CDI

outbreaks.
January 2010 29 SAB 90 day programme launched. SAB
March 2010 29 MRSA Screening changes in all SAB

Boards- targeted universal in
Continued on next page
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Table 1.2 – Continued from previous page
Month Quarter Intervention Targeted infection

specialties interim policy.
March 2011 33 MRSA screening changes SAB

to CRA.

SAB: Staphylococcus aureus bacteraemia, CDI: Clostridium difficile infection, NHS: National Health Service, HAI:

Healthcare associated infection, CNO: Chief nursing officer, IC: Infection control, ICM: Intensive care medicine,

HEAT: Health improvement, efficiency, access and treatment, MRSA: Methicillin-resistant staphylococcus aureus,

SPSP: Scottish patients safety program, HPS: Health Protection Scotland, QIS: Quality improvement Scotland, SAPG:

Scottish antimicrobial prescribing group, 4Cs Antibiotic: Broad-spectrum antibacterials including clindamycin, co-

amoxiclav, cephalosporins and fluoroquinolone, CE: Chief Executives, ABHR: Alcohol based hand rub, HAIRT:

Healthcare Associated Infection Reporting Template, SGHD: Scottish Government Health Directorate, HEI: Healthcare

environment inspectorate, HIIAT: Hospital infection incident assessment tools, CRA: Clinical risk assessment.

Table 1.2 presented the possible interventions which may impacted the rate

of HAIs. However, the intervention may takes time to impact the rate of in-

fection in Scotland overall or may do not impact the rate of infection at all.

High awareness from people are required to implement these interventions in

order to impact HAIs. It is required quick response to inform all health boards

about the intervention and people should have high adherence towards im-

plementing these intervention in a perfect manner. British medical association

suggested effective work planning management is required as well as training

for all temporary and permanent staff in health care systems [Raza (2011)]. Also,

world health organisation recommended some essential components of effect-

ive infection prevention and control (IPC) including programmes, guidelines,

education and training which identify evidence and evaluate healthcare inter-

ventions [Storr et al. (2017)]. Moreover, the real impact of some interventions

is not much clear because of some interventions took place in the same month

(e.g. interventions at April 2006) and some others took place in following

months (e.g. interventions at February 2005 and March 2005) therefore, it is

difficult to know which actual intervention had impacted the rate of infection.

24



Chapter 2

Modelling and Detecting Change

in Count Data

The main aim of this research is to explore the trend of healthcare associated

infections (HAI) over time and to describe the change in the rates with inter-

ventions taking place at various time points. The HAI reviewed in Chapter

1 is a count data collected regularly over time and the number of cases per

risk population is reported (see Figure 1.1). Thus, Poisson regression models

can be carried out for such data where the time is an explanatory variable that

can be linear or as multiple covariates. There were some interventions that

took place in Scotland during various periods of time thus, it is of interest to

know how these interventions affect the rate of HAIs. Therefore, this chapter

provides a review of the methods used in this research to investigate the change

in count data. Section 2.1 includes statistical methods of modelling count data

with generalized linear regression models and generalized additive models. In

Section 2.2, a review of change point problem is presented. In the last Section

2.3, methods of constructing confidence intervals are described.
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2.1 Modelling count data

2.1.1 Generalized linear regression models

The main use of statistical modelling in medical studies is to provide tools

for description and interpretation of explanatory variables which explain the

change in the response variable. It can also detect whether the relationship

between an explanatory variable and a response variable is significant. Re-

gression analyses are a common approach to illustrate the relationship among

variables. In epidemiology, the response is usually a discrete variable which

represents count data. Count data is modelled by generalized linear regression

models (GLM).

The GLM is a generalization of a linear regression model that is used when

the response variable follows an exponential family distribution. In GLM, the

linear model relates to the response variable through a link function with mean

µ where g(µ) =linear model. GLM can fit polynomial terms which are non-

linear transformations of the original predictor. This is obtained by increasing

the power of the original predictor, for example, quadratic regression has two

variables; x and x2. This leads to a nonlinear model (polynomial regression) in

the independent variable but linear in the parameters. The best order of poly-

nomial can be identified by residual plots or by using the criteria of choosing

the best fitted model such as Akaika information criterion (AIC) and the likeli-

hood ratio test. For example, a cubic polynomial regression model was fitted to

describe the trend of congenital malformations from 1999 to 2006 among two

groups of patients [Agay-Shay et al. (2012)].

The term count data refers to the number of cases occurring during a period

of time. Healthcare associated infection data considers the analysis of count
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data where the incidence of infection is observed. The most common analysis

for this type of data is Poisson regression models [Cameron and Trivedi (2013)].

A Poisson distribution is specified by one parameter which defines the mean

and the variance of the distribution where they are equal [Coxe et al. (2009)].

The Poisson regression is a type of generalized linear model where the Poisson

distribution is a member of the exponential family. The Poisson regression is

a linear regression in the natural logarithm of the predicted count. Maximum

likelihood estimates the parameters of Poisson regression and the deviance

measures the accuracy for the model. A chi-square statistic tests the signific-

ance of model fit [Coxe et al. (2009)]. To assess model adequacy, the deviance

residuals are plotted against the predicted outcome values [Pierce and Schafer

(1986)]. Another way to assess model adequacy is to compare the observed

values to predicted values of the outcome [Hilbe (2011)].

In real life applications, count data often exhibits over-dispersion which oc-

curs when the variability of the Poisson response is significantly larger than

the mean (expected value). This is due to the omission of some important

independent variables that should be in the model. Another reason is the

occurrence of autocorrelation between the response observations which are

assumed to be independent events [Coxe et al. (2009)]. To tackle this issue,

the Poisson regression model is modified and different regression models are

assumed to deal with over-dispersion in count data.

The first model accounts for over-dispersion is a quasi-Poisson regression

model. It includes an over-dispersion parameter which corrects the error dis-

tribution. The amount of dispersion in the model is determined by the Pear-

son chi-square goodness of fit test [McCullagh (1984)]. The deviance for the

quasi-Poisson model is equal to the deviance of the Poisson model divided by
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the over-dispersion parameter. A quasi likelihood estimator deals with over-

dispersion [Davison and Tsai (1992)]. This approach of regression modelling

is used to deal with over-dispersion in analysing our data of healthcare associ-

ated infections ( see Chapter 3).

Sometimes the over-dispersion occurs when there is additional heterogeneity

between observations. Poisson regression does not account for that. A negat-

ive binomial regression model is then used to account for over-dispersion in

the Poisson regression model [Gardner et al. (1995) and Land et al. (1996)]. The

negative binomial regression model assumes a variability among observations

that have the same predicted value. This variability leads to a large variance in

the overall response without affecting the mean. The variance of the negative

binomial model is given by µ + αµ2, where α is the over-dispersion parameter.

If α = 0 this gives the variance equal to the mean as in Poisson regression [Hilbe

(2011)].

To investigate the presence of over-dispersion, the difference in deviances of

Poisson regression model and over-dispersed models; quasi-Poisson regression

model and negative binomial regression model are compared using chi-square

test with one degree of freedom. If the test is significant, the over-dispersed

models fit better than the Poisson regression model [Scott Long (1997)]. How-

ever, over-dispersion models cannot be compared because the quasi-Poisson

model is not nested within the negative binomial model. Therefore, AIC and

Bayesian information criterion (BIC) can be used alternatively to select the best

fitted model [Coxe et al. (2009)].

Another common problem with count data models, including both Poisson

and negative binomial models, is that empirical data often show more zer-
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oes than would be expected under model assumptions and these are called

zero-inflated models. Zero-inflated Poisson overcomes the issue of when the

observed number of zero counts exceeds the predicted number of zero counts

which leads to variability [Lambert (1992) and Cheung (2002)]. If the variab-

ility still occurs after accounting for excess zeros, then zero-inflated negative

binomial is used to eliminate over-dispersion.

Hurdle models have similar ideas to deal with the high occurrence of zeros

in the observed data but have one important difference in how they interpret

and analyse zero counts. Zero-inflated models consider two sources of zero

observations; sampling zeros (not always zero) that are part of the Poisson or

negative binomial (sampling distribution) and structural zeros (always zero)

that only take zero counts. In contrast, the Hurdle model considers all zeros

to be structural zeros (i.e. they are not from sampling distribution) [Hu et al.

(2011)]. The Hurdle model was first introduced by Mullahy (1986). General-

ized Hurdle regression models have been studied by Gurmu (1998). In count

data with many structural zeroes, the Hurdle Poisson models fit the data while

in the case of over-dispersion the Hurdle negative binomial models are appro-

priate for large variability [Zuur et al. (2009)].

Another way to deal with count data is zero truncated models. These models

deal with only positive integer observations (the response cannot take value

of zero). If the observations are positive integer values and the mean of the

response variable is small, the GLM estimated parameters and standard errors

may be biased. This means that zero truncated Poisson and zero truncated

negative binomial (in case of over-dispersion) are used to solve this problem

[Zuur et al. (2009)].

29



Chapter 2 Modelling and Detecting Change in Count Data

Many studies used over-dispersion models to analyse different types of count

data. In an example, a likelihood method for analysing over-dispersion in cor-

related count data among cluster varying covariates was investigated [Solis-

Trapala and Farewell (2005)]. Saffaria et al. (2013) used over-dispersed regres-

sion models to analyse censored count data. In addition, Mian (2016) fitted a

zero-inflated regression model to analyse count data with some missing val-

ues. In contrast, some authors studied the case of under-dispersion where

when the variance was smaller than mean distribution, zero truncated regres-

sion model for count data with under-dispersion was used by Chou et al. (2015).

All regression models for count data can easily work with the rate of the

response variable accounted for the population as dominators. The logarithm

of the population can be included in the regression model as an offset variable.

The offset gives fitted values which are always positive and it also allows for

heterogeneity within the data [Zuur et al. (2009)].

Several studies compare regression models for count data. Differences

between Poisson, mixed Poisson regressions and negative binomial regres-

sion were compared [Lawless (1987), Hutchinson and Holtman (2005) and

Bugna (2015)]. Regression models accounting for over-dispersion have been

compared. Quasi-Poisson versus negative binomial regression models were

compared and for a given dataset, the quasi-Poisson regression model was

shown to be better [Seyoum and Zewotir (2016)]. Also, the Poisson, negative

binomial, zero-inflated Poisson and negative binomial, and Poisson and neg-

ative binomial hurdle models were compared by Hu et al. (2011). Zuur et al.

(2009) used cod parasite data to detect the best GLM model among Poisson,

quasi-Poisson, negative binomial, zero-inflated Poisson, zero-inflated negative

binomial, Poisson hurdle, and negative binomial hurdle models. The negative
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binomial GLM was better than Poisson GLM according to a hypothesis testing

approach. However, a frequency plot indicated zero-inflation model was pre-

ferred.

In conclusion, Poisson regression is generally used to model count data but if

over-dispersion is observed, the quasi-Poisson or negative binomial are used.

However, if a lot of zero counts are observed in the data, zero-inflated or

hurdle models are used. Finally, if the observed count are always positive (i.e.

observed counts >0), zero truncated models are used.

2.1.2 Modelling temporal data

A temporal data is the data which changes over time (i.e. dependent vari-

able is a function of time). The temporal data can be yearly, quarterly and

etc. Generalized linear regression models usually fit count data which change

over time (i.e. count data is a function of time). This function can be polyno-

mial regression which describe the change in the trend of data over time. The

most important variable in GLM to describe change over time is the seasonal

effect which should be built as a factor in the polynomial regression models.

A polynomial Poisson regression was fitted to the data of birth with epilepsy

and showed the effect of seasonality where the epileptic births increase in the

winter [Procopio and Marriott (1998)]. The study of analysing the number of

tourism arrival to Singapore from January 1989 to July 1990 used the backward

selection method to choose the best order of polynomial regression and con-

cluded that cubic polynomial multiply by seasonal indexes fit the data well

during the period of study [Chu (2004)].

Moreover, the count data can be correlated over time where this can be

modelled by time series analysis which deals with serial correlation to see how
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sequential observations in a time series affect each other. Time series regression

models explain the current data and identify the correlation structure which

improve forecasting for the future. They easily modelling the seasonal effect

[Box et al. (2015)]. For example, in epidemiology, if healthcare associated

infection is high in one data point (quarter), the next quarter may be associated

with this high rate because it is an infection which can be related to what happen

before. These observations tend to be connected to each other therefore there

could be correlation between quarterly data. However, the data were used in

this research was found not correlated therefore polynomial regression models

were used to describe the change in the rate of infection over time.

2.1.3 Generalized additive regression models

As means to get the best GLM model explaining the data, a high order of

polynomial is usually needed. However, it is better to not use greater than

three or four degrees of polynomial because more polynomial terms result

in less degrees of freedom which negatively affects the precision of the para-

meter estimates and reduces the power of analysis. Also, the polynomial curve

can over fit the model so large variance is observed [Winter and Wieling (2016)].

Rather than fitting a high order of polynomial over the full range of the

predictor variable, an alternative approach is to divide the overall range of the

predictor variable into k regions and fit polynomial regression splines to dif-

ferent regions of the predictor variable. These polynomials connect smoothly

through knot points. When the overall range of the predictor variable is di-

vided into enough segments and the cubic model is fitted in each region re-

quiring continuity at each knot point, the smooth and flexible curve will fit the

data well and this is called a cubic smoothing spline model. This nonlinear

method of fitting a smooth model to the response Y with a single predictor X is
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called additive models. The independent variable can be extended to multiple

predictors Xi, i = 1, 2, ...,m. The response Y can be count observations and

when the response Y is predicted by spline functions of multiple predictors

Xi, i = 1, 2, ...,m, this type of modelling is called generalized additive models

(GAM) [Hastie and Tibshirani (1990) and Wood (2006)].

To fit count data using GAM, a Poisson distribution is used. The assumption

of Poisson GAM is that the Poisson variable has the mean equal to the variance.

The predictors are the exploratory variables or functions of them. The relation

between the mean of the response and the predictors is a logarithm link which

indicates that the fitted values are always ≥ 0. In the case of over-dispersion,

quasi-Poisson or negative binomial are used. The likelihood ratio test is used

to compare the negative binomial GAM with its Poisson equivalent [Zuur et al.

(2009)].

There are two main algorithms used in GAM to fit a smooth curve to the

data. The first one uses a back fitting algorithm to estimate the smoothing

parameter where it depends on a local regression smoother (LOESS) or a local

polynomial regression [Hastie and Tibshirani (1990)]. The second algorithm

uses spline functions (basis functions) with predictor variables where it needs

more complicated mathematical methods but its more efficient and has more

features [Wood (2006)]. Splines are piecewise polynomials joined together to

make a smooth curve by applying continuity conditions between the pieces.

There are several types of spline functions which can be used with GAM.

Since the explanatory variable is divided into many subintervals (say k), the

polynomial function (with order r) is fitted in each interval. The intervals

are then connected by knot points to build a piecewise polynomial regression
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spline [Wood (2006)]. Specifically, when the polynomial has order r = 3, the

explanatory variable is divided into a certain number of intervals and a cubic

polynomial is fitted in each interval. The intervals are connected by knot points

and the first and second derivatives are required to have a smooth connection

at knot points. This basis function is called a cubic regression spline [Wood

(2006)]. In order to get a cubic smoothing spline, the interval of explanatory

variable is divided into a large number of segments and a cubic regression

model is fitted on each segment with a smooth connection at the knot points.

This is followed by minimising the penalized least squares functional in case

of linear regression or the penalized likelihood Poisson regression functional

to estimate the smoothing parameter to give a cubic smoothing spline [Wood

(2006)]. Cyclic cubic regression spline is used with time series data where

it meets the following: cubic spline function has the same value at the first

and last points of the interval, the first derivative of the cubic spline function

has the same value at the first and last points of the interval and the second

derivative of the cubic spline function has the same value at the first and last

points of the interval [Wood (2006)]. Another type of basis function is thin

plate splines. This deals with estimating smooth spline functions for multiple

explanatory variables and involves high order derivatives [Wood (2006)]. B-

splines, p-spline, natural splines, shrinkage smoother spline and many other

of regression splines are introduced in Wood (2006).

Comparisons between GLM and GAM is investigated by many authors.

Guisan et al. (2002) provided an overview of GLM and GAM models in eco-

logy. They discussed the pros and limitations of regression models and re-

viewed several statistical tools of model selection, diagnosis of collinearity and

evaluation of interactions between explanatory variables. Also, Liu (2008) il-

lustrated a back fitting algorithm to compare GAM and GLM where he used
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GAM to explore the relationship between the dependant binary variable and

independent variables. Winter and Wieling (2016) compared polynomial re-

gression and GAM when analysing nonlinear change over time where there is

correlation between nested models.

Generalized additive models are developed to cover various types of data

and include more than one predictor to analyse the data. Simpsona and An-

derson (2009) described serial correlation structures for time series data using

GAM models. Marra and Wood (2012) used a Bayesian approach to study

the properties of confidence intervals for the smooth functions of generalized

additive models. Moreover, Clements et al. (2005) used generalized addit-

ive models (GAM) to predict cancer rates where they fitted GAM with two

smoothing spline functions for age and time per year. However, Dukić et al.

(2012) modelled meningitis disease using Poisson GAM with a smooth spline

function of time and adjusted the model by adding different covariates related

with climate which were reported monthly. This concluded that the presence

of meningitis disease is associated with some of these covariates.

2.2 Change points analysis

Change points occur in many different areas where this is exemplified by

change of stock price in finance and economic studies, change in the quality of

the products in industry as well as climate change in environment and geolo-

gical research. In cancer research, a change in mortality and morbidity rate is

a crucial aspect to examine.

Change point detection problems are either off-line or on-line where the

off-line approach detects the change point after the data has been completely

gathered and no more data can be added to the analysis. Off-line change point
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detection is usually associated with two issues in statistical inference. The first

is the hypothesise tests to detect if there is any change in the observed data.

The second is to estimate the number of changes and their locations. On-line

change point detection is performed sequentially; while every new observa-

tion is added to the data, the change point detection method is implemented

to detect the location of possible change points in the previous data.

Statisticians implement many different change point detection methods to

estimate the number and location of significant change points. These ap-

proaches are chosen according to the type of data and the physical problem

being modelled. Parametric approach is used when the change in parameter

of distribution is being investigated while the non-parametric is used usually

with experimental data where no prior information about the distribution is

known. The assumptions of Bayesian approach is that a prior information

about the occurrence of change point is known. These approaches can be im-

plemented with different modelling such as change in temporal data with serial

correlation, change in survival date, change in regression trend and sequential

change point methods which are reviewed.

2.2.1 Classification of change points problem

The change points problem was first introduced by Page (1954) where the

change was detected in the mean of quality control data. The methods used to

detect change points differ depending on the type of data.

Parametric change point

Parametric change point analyses are traditional approaches assuming prior

knowledge of the distribution before and after the change point with fixed un-

known parameters. The likelihood function plays a major role in the detection
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of change points in different scenarios. Chen and Gupta (2001) give a survey

of detection change points in normal models using different methods such as,

likelihood ratio technique, Bayes method, cumulative sum (CUSUM) method,

Akaike information criterion (AIC), Schwarz information criterion (SIC) and

the wavelet conversion method.

The exponential family distributions are considered continuous distributions

which include Gaussian, Gamma, exponential and others. Siegmund (1988)

used a likelihood ratio test to construct confidence intervals for the change

point of independent variables from an exponential family. Loader (1992) used

likelihood ratio tests to detect change points in log linear models and derived

the power of the likelihood ratio test and the confidence intervals for the change

point. An optimum categorization method was used by O’Brien (2004) to de-

tect the number and location of change points. This divided the continuous

explanatory variable into different partitions in order to explain the response

variable from exponential family distributions. Habibi et al. (2005) introduced

test statistics for detecting change points when the parameter of exponential

family distributions (on one parameter) changes.

The change in parameters of discrete distributions (such as binomial and

Poisson) can be detected using similar methods. Freeman (2010) detected

a systematic change in parameter for a sequence of binomial variables. In

addition, Ghorbanzadeh et al. (2016) considered the change occurring in the

parameter of a Poisson distribution. Kihoro et al. (2017) investigated the power

of the likelihood ratio tests for a change point in a binomial distribution and

used neural network techniques to estimate its conditional means.
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Non-parametric change point

Non-parametric change point analyses consider no prior knowledge about the

distribution (i.e. no prior information about the data or the data after the

change). It is the most useful for many applications especially experimental

data. Pettitt (1979) tested for a change in a sequence of observations when

the initial distribution is unknown. Orváth and Kokoszka (2002) detected

change points in non-parametric regression models by testing the right and

left continuity of nonlinear function. Using binary data, a non-parametric

empirical likelihood ratio (ELR) test was developed by Zou et al. (2007) to

estimate change points. Matteson and James (2014) considered non-parametric

approaches to estimate the number of change points and their positions in

clustered multivariate data.

Bayesian change point

A Bayesian approach considers prior information about where the change

point occurs and integrates this prior knowledge into the model. Many au-

thors used Bayesian methods to analyse change points in different situations.

Lyazrhi (1997) introduced Bayesian criteria to estimate one change point. Diniz

et al. (2003) used Bayesian inference to fit segmented linear regression with non-

homogeneous error variance. Tiwari et al. (2005) developed Bayesian model se-

lection methods to estimate the number and location of change points from join-

point models. Ghosh et al. (2009a) developed parametric and semi-parametric

Bayesian joinpoint models using continuous time method by the Dirichlet

distribution. Martinez-Beneito et al. (2011) re-parameterized the Bayesian join-

point models to be more flexible to consider count data as Poisson variables.

Steward et al. (2016) fitted segmented regression using a Bayesian approach to

detect change points in Bernoulli data using logistic regression models.
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Time series change point

Time series change point deals with correlated data where parametric, non

parametric and Bayesian methods can be used to detect the change point.

Kligienė (1977) detected change points in parameters of an auto-regression

model. Zhang et al. (2002) used the multivariate delta method to estimate

confidence intervals around the relative effect of response variables estimated

from a segmented linear autoregressive error model and extended to gener-

alized linear models. Western and Kleykamp (2004) used a Bayasian method

to detect change points in time series. Verbesselt et al. (2010) studied breaks

for additive seasonal and trend (BFAST) to detect change points in time series

data. An abrupt change from time series using a non-parametric method based

on Haar Wavelet and Kolmogorov-Smirnov (HWKS) statistic was detected [Qi

et al. (2014)]. Interrupted time series method is dealing with correlated data to

detect the change points.

Survival analysis change point

Reliability analysis represents the issue of estimating the change point in a fail-

ure rate or hazard function. Many studies look at the change point in a hazard

function. The kernel method was used to analyse the change in hazard rates in

survival data [Müller and Wang (1990)]. Ghosh et al. (2009b) developed semi-

parametric Bayesian joinpoint models based on hazard function. A segmented

discrete time model was used to analyse time to event in fertility data [Muggeo

et al. (2009)].

Regression analysis change point

Linear regression models fit a linear trend to describe the relationship between

a dependent variable and one or more independent variables. The pattern

of data can change after some points which can be unknown. These change
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points divide the data into more than one segment where the models of these

segments are different. The first author to introduce the change point problem

in regression analysis was Quandt (1958) who used likelihood ratio tests to

estimate one change point. If the response variable follows a normal distribu-

tion, the change points will be detected from linear regression models. If the

response variable is one of the exponential family (such as Poisson, exponential

or Gamma distributions), the change point will be detected from generalized

linear models with link functions.

A single linear regression model has one known or unknown change point

with two segments. Many authors have studied the change point problem

associated with single linear regression models. Blischke (1961) used least

squares estimators to estimate joinpoint within two segments in linear regres-

sion models with assumption of continuous joinpoint. Some inferences about

single linear regression models were investigated [Hinkley (1969) and Hinkley

(1971)]. F-statistic was derived to estimate the change in the slope of a segmen-

ted linear regression model [Worsley (1983)]. The SIC was used with simple

linear regression models to estimate the change points [Chen (1998)].

Multiple linear regression models have two or more known or unknown

change points. Many studies addressed the multiple linear regression model

where Ferreira (1975) used a Bayesian approach to study the change in a regres-

sion model with a known number of regimes. Kim (1994) used the likelihood

ratio test for estimating change points in linear regression and studied the

asymptotic behavior of the likelihood ratio test. Segmented linear regression

models were examined to investigate the strategy shifts in data patterns and

if there is a linear relationship between input and output variables [Luwel

et al. (2001)]. Natarajan and Pednault (2002) introduced linear regression tree
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methods for continuous response variables of segmented linear regression and

described naive bayes tree for categorical response variables which were used

in data mining applications.

Several researchers addressed applications of generalized linear regression

models with a change point [Zhou et al. (2008), Huang and Lyu (2011) and

Huh (2012)]. Vexler and Gurevich (2009) examined likelihood ratio tests for

detecting a change in logistic regression parameters which splits the model into

two segments. Park et al. (2012) used Poisson change point regression models

to investigate the daily murder rates in Colombia. Further details on regression

analysis change points are presented in Section 2.2.2.

Sequential change point

This approach refers to on-line change point analyses which are implicated in

the field of quality control in industrial processes. The cumulative sum statistic

(CUSUM) was introduced by Page (1954) to identify a change in the mean of a

normal sequence with constant variance. However, Wu* and Tian (2005) used

CUSUM to identify changes in both mean and variance of normal sequences.

Many different methods; parametric or non-parametric are introduced to deal

with sequential change point analysis.

There is a huge amount of literature covering the change point problem, but

only a few relevant papers of segmented regression and joinpoint analysis will

be reviewed in detail.

2.2.2 Change point in regression models

Regression analysis is an important statistical method implemented in many

fields where simple linear regression models are more commonly used in sev-
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eral studies. However, using linear regression models when the data pattern

has changed after a specific time point makes the data fit poor. Switching linear

regression model into more than one linear regression (two segments or more)

introduces the statistical inference (hypothesis and estimation) of change point

analysis. This analysis gives better fitted regression models to the data after

the change points have been located in the regression models. The location

of the change is usually called a segmented point, joinpoint or change point.

The regression lines which are joined by change points are often referred to as

phases, segments, stages or regimes.

Change point regression analysis includes pre specified time of change points

and unknown change points. The known change points refer to segmented

linear regression analysis and the unknown change points indicate joinpoint

analysis.

Segmented linear regression analysis

Segmented linear regression is a statistical method for modeling changes which

is usually used when the change occurs at specific times (points) from when

the intervention took place in the independent variable. The good fitted seg-

mented linear regression model indicates the importance of the interventions

in changing the level, the slope or both where those describe the pattern of data.

Wagner et al. (2002) used segmented regression analysis to evaluate policy

interventions that improve the quality of medication use. Ansari et al. (2003)

concluded that segmented regression analysis is a practical and robust method

for measuring the impact of interventions to change. Zhang et al. (2009) cal-

culated confidence intervals of relative changes in the response variable of

segmented regression on time series data using delta and bootstrap methods
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where bootstrap is better as it does not require a large sample size.

Segmented linear regression analysis was applied in several applications

and gave good results. This analysis was used to investigate the association

between national infection control interventions and HAI rates. Stone et al.

(2012) showed that hand hygiene reduces HAIs in hospitals in England and

Wales. The use of hydrogen peroxide decontamination in hospitals in Australia

was shown to reduce the incidence of MRSA infections [Mitchell et al. (2014)].

The national and regional HAI campaigns which involves hand hygiene, day

to day cleaning and MRSA screening impacted MRSA bacteraemia rates within

acute hospitals in East Midlands in the UK [Newitt et al. (2015)]. Moreover,

Pinlac et al. (2016) used segmented regression analysis to compare the trend of

mortality caused by noncommunicable disease (NCD) in Philippine two years

before the year of intervention and two years after the year of intervention. Ad-

ditionally, segmented regression analysis was used to investigate the trend of

smoking amongst children (aged 13 and 15 years) before and after the introduc-

tion of Smoke-free legislation in the UK [Katikireddi et al. (2016)]. Carter et al.

(2016) used segmented regression analysis and suggested that the introduction

of the family medicine groups (FMG) produced reductions in the weekly rate

of avoidable visits to the emergency department (ED). The impact of the grad-

ing responsible hospitals for acute care (GRHAC) program on patients in an

emergency department with myocardial infarction in Taiwan was evaluated

by using a Poisson distribution on a segmented regression model with multi

explanatory variables and one change point over time [Tzeng et al. (2016)].

Segmented regression models with a negative binomial distribution was used

to investigate the impact of a healthcare provider educational intervention on

the frequency of clostridium difficile in children [Kociolek et al. (2017)].
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Joinpoint analysis

Segmented regression models with unknown change points occasionally ac-

count for one response variable and one independent variable (segmented

linear regression models) or multiple independent variables (segmented mul-

tiple regression models) which can be continues or discrete variables. The

unknown joinpoints are the values of independent variables where the slope

of the segmented regression model changes. Joinpoint analysis estimates the

number and location of change points through partitioning variables (inde-

pendent variable accounts for joinpoints) which describe the change in the

response variable.

Joinpoint analysis simply detects the number and location of joinpoints

which divides one exploratory variable in order to describe the response vari-

able. There are several research studies on joinpoint analysis in different applic-

ations. The issues associated with joinpoint analysis are detecting the existence

of joinpoints and counting their numbers as well as estimating the location of

the joinpoints. Kim and Siegmund (1989) used likelihood ratio tests to detect

one change point in segmented linear regression with change in the intercepts

only or in the intercepts and slopes assuming the response variable is normally

distributed. Then, Kim and Cai (1993) examined the power of the likelihood

ratio test for one change point in segmented linear regression. The properties

of likelihood ratio tests was discussed [Kim (1994)]. However, Jones and Dey

(1995) detected the number and locations of unknown joinpoints by using a

modified version of Akaike’s information criterion (AIC). Kim (1996) detec-

ted one joinpoint assuming auto-correlated observations using LRT to detect

change in the mean. Additionally, Chen (1998) detected the change point for

single and multiple linear regression models by minimizing the Schwarz in-

formation criterion (SIC) [Schwarz et al. (1978)]. A non-parametric method
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was used to detect the change point where Liu and Qian (2009) used an em-

pirical likelihood test to detect change points in segmented linear regression

models. If there is no change point assumed, the empirical likelihood test has

an asymptotically Gumbel extreme value distribution.

To estimate the location of joinpoints, different methods were reviewed.

Hudson (1966) assumed a technique to fit a segmented linear regression model

with one estimated joinpoint occurring anywhere within the range of data. The

final estimate of the location of joinpoint is obtained by looking for the min-

imum residual sum of squares. Bellman and Roth (1969) detected one joinpoint

in a segmented linear regression model using a dynamic programming method

introduced by Bellman and Dreyfus (1962). However, Lerman (1980) studied a

grid search method to fit a segmented linear regression model where the estim-

ated joinpoints occur at discrete time points, and studied statistical inference

using asymptotic normality of the least squares estimators on the independent

variable in segmented linear regression proved by Feder (1975). Furthermore,

Stasinopoulos and Rigby (1992) detected one change point in generalized linear

models using piecewise polynomial in one exploratory variable and allowing

for additional terms. They also fitted the piecewise polynomial (quadratic)

model and used Golden Section search to detect the change point with con-

sidering Poisson data of acquired immune deficiency syndrome (AIDS) cases

in the UK. One partitioning variable (year) is considered to detect one change

point in the trend of data and allow for seasonal effect as additional term. Jones

and Dey (1995) estimated the location of joinpoints by nonlinear optimization

using F-tests and minimizing the residual sum of squares. Julious (2001) used

non-parametric bootstrap methods to estimate the location of joinpoints.

Statistical methods of detecting and estimating joinpoints in one independ-
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ent variable were developed. Walkowiak and Kala (2000) used a grid search

method to determine change point of two segments of nonlinear regression

with smooth change. Kim et al. (2000) estimated the number of joinpoints

using permutation tests from segmented linear regression models with one ex-

ploratory variable and detected the location of the joinpoints using a grid search

method for continuous or discrete observations. Kim and colleagues applied

joinpoint regression analysis to describe the rate of cancer where they used a

grid search method to fit the segmented regression models at all possible dis-

crete points assuming constant variance and uncorrelated errors. Permutation

tests with the Bonferroni correction were used to adjust the overall significance

level of α to determine the number of significant joinpoints. They extended

the research to the situation of non-constant variance, Poisson variation and

autocorrelated errors. Kim et al. (2004) used a permutation procedure to com-

pare two segmented linear regression models with unknown joinpoints that

are either identical or parallel with different intercepts. They also compared

permutation tests with F-tests which detect the number of joinpoints. Fay et al.

(2007) developed the technique of saving the computation time of permutation

tests which they used to detect the number of joinpoints in their final joinpoint

model. This technique depends on when the beginning replications indicate

a large enough or small enough p-value, the truncated sequential probability

ratio test boundary was used to end the re-sampling. Yu et al. (2007) developed

the Hudson (1966) method which detects one joinpoint on the continuous scale

to detect more than one joinpoint and compared the efficiencies of this method

with a grid search method. They found Hudson’s method to be better than a

grid search method in detecting more than one joinpoint. Kim et al. (2008) used

small samples to compare grid search and Hudson methods of fitting segmen-

ted linear regression models and detecting the location of joinpoints. They also

investigated the behaviour and the robustness of asymptotic confidence inter-
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vals of the joinpoint regression parameters. Czajkowski et al. (2008) compared

backward and forward model selection to detect the location and number of

change points in logistic joinpoint regression where with a large sample size

they found that both methods are approximately similar but the forward pro-

cedure was computationally much more efficient. Kim et al. (2009) proved that

the number of joinpoints selected by the permutation test is consistent under

the assumption of large sample theory. The permutation procedure, Bayesian

information criterion (BIC) and the generalized cross validation (GCV) were

compared. Kim et al. (2014) clustered segmented linear regression models into

sub joinpoint models based on variables of clustering such as age. Different

methods were implemented to estimate the number of joinpoints and min-

imum difference worth detecting (MDWD) method for the number of clusters.

Kim and Kim (2016) studied the consistency of some information based on

selection criteria which was used to estimate the number of joinpoints in seg-

mented linear regression models.

A segmented multiple regression model is a generalization of a segmen-

ted linear regression model which has been studied in different applications

by many authors. This model includes one response variable which can be

continuous or discrete, more than one explanatory variable and one or two

partitioning variables with multiple change points. The explanatory and par-

titioning variables can be continuous or discrete. The change points are the

values of partitioning variables where the slope of the segmented regression

model changes. Liu et al. (1997) estimated the number of joinpoints using a

modified Schwarz information criterion (SIC) from segmented multiple regres-

sion models. They used a model which has only one partitioning continuous

variable with multiple joinpoints and independent variables which are not sub-

ject to change. Bai and Perron (1998) and Bai and Perron (2003) studied statist-
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ical inference on segmented multiple regression models with one partitioning

variable with multiple discrete changes and the model includes explanatory

variables which have not changed over time. Kim and Kim (2008) developed

Liu et al. (1997), Bai and Perron (1998) and Bai and Perron (2003) models and

studied the asymptotic properties of the estimated joinpoints from segmented

multiple regression (more than one explanatory variable) with more than one

partitioning variable (each of them has more than one continuous or discon-

tinuous joinpoint).

The aim of our developed method is detecting one or more change points in

one partitioning variable (year) using a segmented Poisson regression model

where the response variable (count/ rate) is adjusted by the categorical variable

(quarterly seasonal effect), (see Chapter 5). The method is then applied to

detect the interventions that had an impact on the rate of HAIs.

Joinpoint in applications

A joinpoint software program was used to describe and detect the change in

the trend of cancer mortality rates [NCISR (2017)]. This software has become

a standard program in epidemiological research. Many research applications

have been done in cancer research. Fernández et al. (2001) used joinpoint

Poisson regression analysis and found a decline in cancer mortality in Spain

between 1975 and 1998. Stracci et al. (2007) in Italy, Qiu et al. (2009) in Japan,

Won and Park (2010) in Korea, Ilic and Ilic (2016) in Serbia and Mohammadi

et al. (2016) in Iran described the change in cancer mortality trends using join-

point regression analysis.

Some most recent applications in different medical research are presented.

Liu et al. (2015) used joinpoint analysis to analyse primary care in China. Lee
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(2016) fitted joinpoint regression at unknown times to examine the relationship

between mortality and physical activity and sedentary behavior. Joinpoint

analysis was used to describe the change in diabetes mortality trends in Serbia

between 1991 and 2015 [Ilic and Ilic (2017)].

2.2.3 Detection of change point in polynomial regression

with GLM models

In a change points problem, statistical inference for estimating the change point

and other regression coefficients under the generalized linear model is of in-

terest. Zhou et al. (2008) applied a similar procedure to the extended model

with a linear quadratic model and adjusted the model with additional inde-

pendent variables.

In GLM when the parameter is always between 0 and 1, the corresponding

link function is the logit function, g(µ) = log(µ/(1−µ)) and the regression model

under this assumption is a logistic regression model. Several studies proposed

methods using logistic regression to detect change points. Pastor-Barriuso et al.

(2003) introduced a method of modifying a least square algorithm to estimate

change points in logistic regression where the distribution of the response vari-

able is binary. Also, Gurevich and Vexler (2005) used a generalized maximum

likelihood estimator to detect a change point in logistic regression. Zand et al.

(2013) developed likelihood ratio tests and clustering methods to estimate the

time of change in logistic regression. Fong et al. (2015) improved methods of

estimating the coefficients of a logistic regression model with the change point

variable. These methods were based on the maximum likelihood ratio test and

maximum weighted scores test investigating whether the covariate (change

point variable) appears in a main effect term and an interaction term.
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A Poisson regression model with link function g(µ) = log(µ) is also used to

estimate change points. Min and Park (2016) developed a Bayesian selection

method of covariates in the Poisson change point regression model with both

discrete and continuous variables.

Polynomial regression models have been used in the change point prob-

lem. MacNeill (1978) introduced tests based on raw regression residuals for

detecting change in polynomial regression at unknown points. Jandhyala and

Minogue (1993) derived a formula to test for multiple changes in the polyno-

mial regression model. The Schwarz information criterion (SIC) was used to

detect multiple change points in polynomial regression models [Tang and Fei

(2004)]. Dianat and Kasaei (2010) improved polynomial regression to detect

changes in sensing images. Our research uses polynomial model with Poisson

regression to detect change points in the rate of infections, (see Chapter 4).

2.2.4 Change point detection in spline regression models

Early detection of change points in spline regression was introduced by Dathe

and Müller (1980). Several authors used spline functions among GAM to detect

the change points in the trend of data. Jiang (2012) used a spline function

to detect degradation change points by estimating knot points. Curtis and

Simpson (2014) modelled time series data in ecology with GAM by considering

a cubic regression spline for the year and cyclic cubic regression spline for

seasonal effect then, they used the method of finite differences to estimate

period of change from the GAM model. Han et al. (2015) developed minimum

operator to summation operator in terms of a smoothing parameter of partial

spline model with change points to estimate change times which gives a smaller

mean square error (MSE) for estimated change points. Jahren et al. (2016) used

GAM with quasi-Poisson distribution to estimate the reduction in populations
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of capercaillie and black grouse in 16 countries through 80 years. They detected

the period of significant change in the trend of data by extracting first order

derivatives. This PhD research uses GAM models to detect change point in HAI

rates. It uses the idea of Curtis and Simpson (2014) for detecting change points

but the GAM model is fitted with one smoothing spline function using cubic

regression spline for the trend (time per year) and is adjusted with another

predictor (quarterly seasonal effect), (see Chapter 7).

2.3 Constructing confidence intervals

In this section, some general approaches of constructing confidence intervals

are reviewed. We then focus on methods of constructing confidence intervals

for change points.

2.3.1 General approaches to confidence interval

construction

A classical method of confidence interval construction is based on the asymp-

totic normality of the maximum likelihood estimate (MLE). For a small sample

size, the robust construction of confidence intervals is derived from the asymp-

totic chi-square distribution of the generalized likelihood ratio test. Since clas-

sical methods for constructing confidence intervals are based on an asymptotic

approximation which can be quite inaccurate in practice, alternative meth-

ods are needed. There are different approaches including bootstrap, profile

likelihood and delta methods.

Bootstrap confidence intervals

The bootstrap method was first introduced by Efron (1979) where a random

sample of size n is observed from unknown distribution. Several authors have
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developed bootstrap methods for constructing confidence intervals in para-

metric, semi-parametric and non-parametric forms. The bias corrected (BC)

bootstrap confidence intervals introduced by Efron (1981) and Efron (1982)

make some transformation on the parameter to be normally distributed with

constant standard error. Later, he developed the BC method to bias corrected

and accelerated (BCa) by considering a general assumption on the transform-

ation of the parameter which adjusts for bias and skewness in the bootstrap

distribution. This method provides reasonably narrow intervals [Efron (1987)].

Non-pivotal bootstrap methods are developed by reducing the error of the

bootstrap distribution function estimate [Hall (1992)]. Several different boot-

strap confidence interval methods are discussed by Efron and Tibshirani (1994)

where these include student’s t, the bootstrap-t, the percentile interval and

the approximate bootstrap confidence interval (ABC) methods (see Efron and

Tibshirani (1994) for more details). Bootstrap confidence interval methods are

compared with each other and with other methods of constructing confidence

intervals. DiCiccio and Efron (1996) described the theory of bootstrap confid-

ence interval methods; BCa, bootstrap-t, ABC and calibration and compared

them with likelihood based confidence intervals.

Regression analysis uses bootstrap confidence interval methods to construct

confidence limits for the regression parameters. The bootstrap confidence in-

terval was constructed using bias corrected and accelerated (BCa) for the slope

parameter in simple linear regression with non-normal error and the result is

compared with other confidence interval methods [Vos and Hudson (2003)].

The backwards selection method for a regression model was improved by

bootstrapping and applied non-parametric percentile bootstrap to construct

confidence intervals for each regression coefficient [Austin (2008)]. The boot-

strap percentile confidence intervals were used to construct confidence levels
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for the parameters of linear regression model with fuzzy response variable

where the bootstrap algorithm is assessed by simulated and real data [Ferraro

et al. (2013)].

Bootstrap confidence interval methods are modified to be used with GLM,

GAM and nonlinear regression models and different studies have been done

for these types of analysis [Wahrendorf et al. (1987), Härdle et al. (1995), Kim

et al. (1999), Huet et al. (1999), Claeskens and Van Keilegom (2003), Härdle

et al. (2004) and Karlsson (2009)].

Profile likelihood confidence intervals

Profile likelihood methods reduce the log likelihood function to a function of a

single parameter of interest by treating the others as inconvenience parameters

and maximising the log likelihood over them. The profile likelihood confid-

ence interval is derived from a chi-square with one degree of freedom [Venzon

and Moolgavkar (1988)].

Several studies compared profile likelihood confidence intervals with other

methods of confidence interval and used profile likelihood confidence intervals

with various types of data. Stryhn and Christensen (2003) explained that a pro-

file likelihood confidence interval is better than the Wald confidence interval

to construct confidence intervals from correlated data. Profile likelihood con-

fidence intervals were also used with nonlinear models [Royston et al. (2007)].

Fletcher (2008) used a simulation study that showed that the profile likelihood

confidence interval was the best of three methods to construct confidence in-

tervals for the mean of skewed data. In contrast, other methods can be better

than profile likelihood confidence intervals. Wu and Hsieh (2014) developed a

generalized pivotal quantities method to construct confidence intervals for the
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mean of delta log normal data and stated that it is the best method compared

with profile likelihood confidence intervals, bootstrap confidence intervals and

other methods.

The profile likelihood confidence interval is used with generalized linear

models; logistic and Poisson regressions [Pradhan and Banerjee (2008), Saha

et al. (2012), Heinze et al. (2013) and Pradhan et al. (2013)].

Delta method of constructing confidence intervals

The delta method is a general approach for computing confidence intervals

for functions of maximum likelihood estimates. It is used to estimate vari-

ance of nonlinear functions of random variables. The delta method is used

with GLM to construct confidence intervals for the parameters. Confidence

intervals for the ratio of proportions from logistic regression was construc-

ted using the delta method [Oliveira et al. (1997)]. Roser and Nakano (2002)

found that the delta method constructs confidence intervals for rare event data.

Other methods for constructing confidence intervals are better than the delta

method. The delta method 95% confidence interval and Fieller 95% confidence

interval [Fieller (1954)] are compared using time to event data [Rothmann and

Tsou (2003)]. Type I error probability was approximately achieved using the Fi-

eller approach [Read (2003) and Rothmann et al. (2003)]. Also, the delta method

is compared with other methods (maximum likelihood, endpoint transform-

ation for binary data and bootstrap methods) by using Stata program which

provides two functions; prvalue and prgen in SPost package to construct con-

fidence intervals for the predicted value in regression models [Xu and Long

(2005) and Xu et al. (2005)].
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2.3.2 Confidence intervals of change points

The change point problem in regression models analysis is of interest to analyse

different types of data. The simplest way to construct a confidence interval for

the change point when linear regression changes at an unknown point ( j) to

observe two fitted linear regressions Ŷi = ai + biXi, i = 1, 2 where Yi are nor-

mally and independently distributed is introduced by Kastenbaum (1959). The

abscissa of the point of intersection ( j) of two lines was estimated by ĵ = a2−a1
b1−b2

and had a t-student distribution with N + 4 degrees of freedom where N is

the number of total observations. The statistical method produced by Mood

et al. (1974) used the observed value of the parameter to construct confidence

intervals for the estimated change point. The confidence interval was construc-

ted by Piegorsch (1982) using the modified least square joinpoint estimator for

segmented linear regression. Piegorsch et al. (1982) developed the maximum

likelihood estimator (MLE) of the joinpoint and used the distribution of the

joinpoint estimator to construct its confidence interval. The joinpoint in linear

regression analysis was estimated by Kim et al. (2000) where they used Lerman

(1980) approach to construct confidence intervals for the joinpoint. The Lerman

(1980) approach of constructing confidence levels of joinpoints using the for-

mula S(X) ≤ Cα. S(X) is the function calculated from the adjusted residual sum

of squares and Cα depends on likelihood ratio statistic (LRT) which follows an

F distribution. This approach can be used with nonlinear segments.

The limited distribution of the estimate change point in a linear regression

model is obtained by Bai (1997) and then confidence intervals are constructed.

This result extended to multiple changes by Bai and Perron (1998) for the linear

regression model. Elliott and Müller (2007) discussed the Bai (1997) approach

where the asymptotic distribution was used to obtain the coverage rates of

confidence intervals for the change points. This is not accurate when the size
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of change is small and therefore confidence intervals for the change point in

linear time series regressions was constructed using a UT test statistic.

A profile likelihood based confidence interval is considered for constructing

a confidence interval for change points. A likelihood based method was in-

vestigated by Siegmund (1988) to construct a confidence interval for a change

in mean of the linear regression model with independent normal observations.

Generalization of this method has been done by Eo and Morley (2015) to a

multiple regression model with time series data. They introduced inverted

likelihood ratio (ILR) to calculate confidence intervals for the change points.

Bootstrapping is a common method to approximate the distribution of a

change point and can be used to construct confidence intervals. In the case

of independent and identically distributed errors bootstrap is used to gener-

ate random samples from adjusted error (ε̂ −mean(ε̂)) [Carpenter and Bithell

(2000)]. A studentized confidence interval for the change point in dependent

time series data was constructed by Hušková and Kirch (2010). They used a

circular overlapping block bootstrap method of Hušková and Kirch (2008) and

combined it with studentizing techniques to construct confidence intervals for

the change point estimator. Furthermore, Bühlmann et al. (1997) suggested

the sieve bootstrap to deal with serial correlation in the errors. This method

was used by Chang and Perron (2016) to construct a confidence interval for the

change point. In addition, Chang and Perron (2016) used the Wild bootstrap

method of Liu et al. (1988) to construct confidence intervals in the case of het-

erogeneity.

A multivariate delta method was introduced by Casella and Berger (2002)

and was used to estimate the variance of the relative effect estimate (the change
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in the level and slope after intervention) in order to construct a confidence

interval around relative effect estimate from a segmented linear model with

autoregressive error [Zhang et al. (2002)].

Comparing different methods to construct confidence intervals of change

points was investigated by Chang and Perron (2016) where they compared the

performance of Bai (1997), Elliott and Müller (2007) and Eo and Morley (2015)

and they found that Elliott and Müller (2007) method was the best.

2.4 Summary

This chapter reviewed the statistical methods of modelling count data and es-

timating change points and their confidence intervals. Generalized linear mod-

els (GLM) and generalized additive models (GAM) were explained to model

count/rate data. Several methods of change points detection were presented

and methods of estimating change points in regression models were discussed.

Finally, constructing confidence intervals of change points was explained. In

the next chapters we are going to use Poisson and quasi-Poisson regression

with the exploratory variable of time (year) and fixed effect of seasonality to

fit the best model to describe the change in the rate of HAIs (Chapter 3). Poly-

nomial regression will then be used to estimate the change points (Chapter 4).

Segmented and joinpoint regression are also used to detect the change points

where the interventions impact the rate of HAIs (Chapter 5). The GAM is also

modelled with fixed effect of seasonality to estimate the change points from a

spline function (Chapter 7). Confidence intervals are constructed for estimated

change points using bootstrapping and other methods.
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Modelling Changes in the Rate of

HAIs

Since Health Protection Scotland reported a general decrease in the rates over

time of healthcare associated infections (HAIs) [HPS (2014, 2015a)], more in-

vestigation to describe change in the trend of the rate is of interest. This chapter

implements methods for modelling the rates of HAIs over time and describes

the change in trend. Initially, statistical methods to model count data are re-

viewed and rates of MRSA and MSSA bacteraemias in Scotland are described.

Modelling rates of clostridium difficile infection (CDI) is also analysed where

these are carried out on the whole of Scotland and by each of the 15 NHS health

boards. Power and sample size analysis are investigated and funnel plots are

then used to compare health boards rates of HAIs. A brief summary and dis-

cussion are presented at the end of the chapter. The software R programming

language [R Core Team (2014)] was used for all analyses.

The aims of this chapter are:

(1) Develop a trend model to describe changes in the rates of HAIs in Scot-

land using polynomial Poisson regression and quasi-Poisson regression
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as appropriate for the data (Sections 3.2 and 3.3), and hence compare the

trends in the target organisms, i.e. MRSA and MSSA bacteraemias and

CDI.

(2) Consider the impact of small samples on the power of statistical models to

detect changes in the rates, (Section 3.4).

(3) Compare the 15 NHS health boards (HB) using funnel plots for adjusted

and unadjusted rates of HAIs to investigate differences in rates over HBs

associated with sampling variation, (Section 3.5).

3.1 Statistical methods of analysing count data

The main statistical methods are reviewed to describe and model count data.

First of all, Poisson regression is used for modeling count data by generalized

linear models (Section 3.1.1). The case of over-dispersion (i.e. when the mean

and variance of Poisson are different) is then considered (Section 3.1.2). Model

fit is then assessed for the Poisson regression model using residual deviance,

likelihood ratio tests, Akaika information criterion and F-tests. The Shapiro-

Wilk test and Durbin-Watson test are used for checking the residuals of the

model (Section 3.1.3). Model selection methods are then considered (Section

3.1.4). Finally, after fitting the best Poisson model to the rates, Byar’s method

is used to calculate their confidence interval (Section 3.1.5).

3.1.1 Poisson regression

In clinical trials and in epidemiological studies, there are situations where the

outcome variable is in the form of counts. The outcome variable could be a

count of rare events such as the number of cases of breast cancer occurring in

a population over a certain period of time or a number of deaths due to some
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disease, etc. The aim of regression analysis is to model the dependent variable

Y using explanatory variables Xk, k = 1, 2, ...,m.

Generalized linear models (GLMs) are widely used in data analysis. GLMs

provide a flexible framework to describe how a set of explanatory variables can

explain the variation in the dependent variable. The dependent variable can

be continuous or discrete (integer values), and the explanatory variables can be

either quantitative (covariates) or qualitative (factors). The model is assumed to

have linear effects on some transformation of the dependent variable, defined

by the link function, and the variable distribution can have various forms, such

as Gaussian, binomial or Poisson [Cameron and Trivedi (2013)].

Poisson regression is one GLM where the response variable is a count that

follows a Poisson distribution. The simplest distribution used for modeling

count data, when the events being counted are somewhat rare, is the Poisson

distribution. This distribution is completely characterized by one parameter

called λwhich is the mean number of events and only takes positive values. If

a discrete random variable Y has a Poisson distribution with parameter λ then

the probability mass function can be written as:

Pr(Y = y) =
e−λλy

y!
, y = 0, 1, 2, ...

The Poisson distribution has the property that its mean and variance are equal

and it can be shown that:

E(Y) = Var(Y) = λ

Therefore, when the mean is estimated, the variance can also be estimated. As

will be seen later, this can be quite limiting when data are over-dispersed, i.e.

the variance is greater than what would be expected from a simple Poisson
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distribution.

Poisson regression is a type of regression analysis used to predict counts of

rare events given a set of explanatory variables [Cameron and Trivedi (2013)].

The response variable in Poisson regression is assumed to be generated from

a Poisson distribution function. If the logarithm of the expected value of the

response variable can be modeled by a linear combination of unknown para-

meters then, Poisson regression models are a type of GLM with a logarithmic

link function [Dobson and Barnett (2011)]. Accordingly, assume a sample of

n independent observations y1, y2, ..., yn, where each yi, i = 1, ...,n is an ob-

servation from Poisson random variable Yi and Yi ∼ Poisson(λi), the Poisson

regression model for the count data is obtained as:

log(λi) = β0 +

m∑
k=1

βkXik, (3.1)

where Xi1,Xi2, ...,Xi j, ...,Xim are explanatory variables. In this model, increasing

Xi j, 1 ≤ j ≤ m by one unit is associated with an increase of the regression coef-

ficient β j in the log of the mean. This is often referred to as a Poisson log-linear

model. The linear part of the GLM can consist of continuous X or categorical

X or a mixture of both types of explanatory variables.

The Poisson distribution can be used for modeling rates (i.e. counts per

unit) if the units of collection are different. If the data being investigated have

different populations (or the data is collected over different amounts of time)

then it would be appropriate to model a rate. The Poisson regression model

for the rate is obtained as:

log(λi) = log(populationi) + β0 +

m∑
k=1

βkXik,
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where the log(populationi) is called the offset variable and has a known coeffi-

cient of one associated with it, which is needed to account for different popu-

lation sizes in each period of time. The log(populationi) is an adjustment term

and each individual response variable may have a different population value.

Maximum likelihood estimation is typically used to estimate the parameters

of a Poisson regression model. To illustrate that, let Y be a Poisson random

variable that depends on a predictor X then the likelihood function is:

L(λ; y) =

n∏
i=1

λyie−λ

yi!
,

where λ is given by Equation (3.1) and n is the number of observations. Taking

the logarithm of the likelihood function gives the log-likelihood function as:

l(λ; y) =

 n∑
i=1

yi log(λ)

 − nλ,

and the goal is to find the values of λ that maximize this function. Poisson

regression is available in R programming language [R Core Team (2014)] by

using the generalized linear model (glm(., family=poisson)) function.

3.1.2 Over-dispersion and quasi-Poisson regression

In generalized linear models, it is quite common for the variability of the

response to exceed what is expected by the model. One of the weaknesses of

Poisson regression is the assumption that the variance of a Poisson distribution

is equal to the mean. When the variance is greater than predicted it is called

over-dispersion. Over-dispersion exists if Var(Y) = φE(Y), φ > 1 and an

over-dispersion parameter φ can be estimated by comparing actual counts (yi)
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to predicted counts (ŷi) as:

φ =
1

n − p − 1

n∑
i=1

(yi − ŷi)2

ŷi
,

where n is a sample size and p is the number of predictors [Gardner et al. (1995)].

The problem of over-dispersion can be caused by characteristics of the data.

For example, some important predictor variables may be needed in the model.

One way to diagnose over-dispersion is to look at the deviance statistic (see

Section 3.1.3). If the residual deviance greatly exceeds the residual degrees

of freedom, then that is an indication of over-dispersion [Dean and Lawless

(1989)].

One way of dealing with over-dispersion is to use the mean regression func-

tion and the variance function from the Poisson GLM but let the dispersion

parameter φ to be estimated from the data. This strategy leads to the same

coefficient estimates as the standard Poisson model but standard errors are

too small as they assume a Poisson distribution is valid when it is not. This

means that inferences based on them are too precise as confidence intervals

are very narrow. Consequently, quasi-Poisson regression models can be used

for over-dispersed count data. As the variance of a quasi-Poisson model is a

linear function in the mean, large and small counts get weighted differently in

quasi-Poisson regression which can adjust the standard errors.

3.1.3 Goodness of fit

Several measures of goodness of fit for the Poisson regression model have been

proposed in the literature.
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Residual deviance

For GLMs, a statistic called the residual deviance (DV) is computed which

measures how close the predicted values from the fitted model match the ac-

tual values from the raw data. The maximum likelihood function is generally

used to estimate the parameters for GLMs. The likelihood function is simply

the probability density computed from the observed data values with the para-

meters replaced by their estimates. One of the fundamental goals of statistics

is to determine a simple model with as few parameters as possible. The sat-

urated model has as many parameters as observations and hence it provides

no simplification at all. However, we can compare any proposed model to the

saturated model to determine how well the proposed model fits the data [Gail

and Benichou (2000)]. The residual deviance is defined as:

dv = 2[log-likelihood(saturated model) − log-likelihood(proposed model)]

(3.2)

A common problem with Poisson regression is that the response is more

variable than expected by the model. Letting ŷi denote the predicted response

from the Poisson model, the measure of difference between observed (yi) and

fitted values is the deviance. In Poisson responses the residual deviance takes

the formula [Frome (1983)]:

dv = 2
∑

yi log
(

yi

ŷi

)
− (yi − ŷi).

If the model is a good fit to the data, then the deviance should be roughly

equal to the deviance degrees of freedom (n − p − 1) where, p is the number

of predictors and n is the sample size. Asymptotically, the deviance follows

a chi-square distribution on these degrees of freedom if the model is correctly

specified. In R, the glm function calls this the residual deviance. Thus, the

deviance can be used directly to test the goodness of fit of the model.
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Likelihood ratio test

The likelihood ratio test (LRT) is used to compare the fit of two models. One of

them is the null hypothesis (null model) which is a special case of the other (the

alternative hypothesis (alternative model)) [Hilbe (2014)]. The LRT depends

on the difference between the maximum likelihood estimates of the parameters

under the null hypothesis and the alternative hypothesis. Likelihood ratio tests

for Poisson regression models can easily be constructed in terms of residual

deviances. In general, the difference in residual deviances between two nested

models has approximately a chi-squared distribution with degrees of freedom

equal to the difference in the number of parameters between the null and

alternative models [Keeping (1962)]. Consider the full model:

log(λ) = β0 + β1x1 + β2x2 + ... + βqxq + βq+1xq+1 + ... + βpxp,

and the null hypothesis H0 : βq+1 = ... = βp = 0 is tested versus the alternative

hypothesis that at least one of these coefficients differs from zero. If H0 is

true, then the variables xq+1, ..., xp are redundant in the full model and can be

dropped. In order to test H0 in practice, the alternative model and the null

model are fitted and their respective deviances compared. The test statistic is

X2 = dvnull − dvalternative, which can be written as:

X2 = 2[log-likelihood(alternative model) − log-likelihood(null model)]. (3.3)

If H0 is true, then the test statistic X2 has an approximate chi-squared distri-

bution (provided the sample size is sufficiently large) with degrees of freedom

equal to the difference in the number of parameters between the alternative

and null models (p − q). If H0 is false, then the test statistic tends to be too

large to be considered as deriving from the chi-squared distribution on (p − q)

degrees of freedom and H0 is rejected. If we are testing at a level of significance
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α, then we reject H0 if X2 > χ2
α,p−q (χ2

α,p−q is a critical value of the chi-squared

distribution on (p− q) degrees of freedom). The test statistic given by Equation

(3.3) is based on the notion of a likelihood ratio test.

Akaika Information Criterion

The Akaike information criterion (AIC) is the most important criteria used to

measure the relative goodness of fit of a statistical model and is used as criteria

for variable selection. In the case of Poisson regression, the AIC is defined as

follows [Akaike (1973)]:

AIC = −2l(β̂; y) + 2k,

where k is the number of estimated parameters in the fitted model and l(β̂; y) is

the log-likelihood function of the parameters given by data, which is obtained

as:

l(β̂; y) =

n∑
i=1

(yixiβ̂ − e
∑

xiβ̂),

where n is the number of observations. Although the log-likelihood function

could be used to measure the goodness of fit, the AIC includes k to adjust the

number of independent variables. The best fitted model has the smallest value

of AIC.

F-test

F-test is a statistic that can be used to compare quasi-Poisson nested models and

looks at the reduction in error between two models. The F statistic is obtained

as:

F =
(SSE1 − SSE2)/(n2 − n1)

SSE2/(N − n2)
,

where SSE1 is the sum of squared errors of the model with fewer parameters

(model 1), SSE2 for the other model (model 2), n1 and n2 is the number of

parameters in model 1 and 2 respectively, and N is the sample size. If the
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F statistic is larger than the critical F value, with (n2 − n1,N − n2) degrees

of freedom, then the p-value will be smaller than the significance level (α)

and therefore the model with more parameters is better [Draper et al. (1966),

Breslow (1984) and Ludden et al. (1994) ].

Shapiro-Wilk test

The Shapiro-Wilk statistics is a test to check whether a sample came from a

normally distributed population. Assuming a random sample x1, x2, ..., xn, a

small value of W indicates the normality of the random sample. W is the

Shapiro-Wilk test obtained as:

W =
(
∑n

i=1 αix(i))2∑n
i=1(xi − x̄)2

,

where x(i) are the ordered sample values, x̄ is the sample mean and αi are

constants calculated from the means, variances and covariances of the order

statistics of a sample of size n from a normal distribution and is obtained as:

(α1, ..., αn) =
ETV−1

√

ETV−1V−1E
,

where E is a vector of expected values of the order statistics of random vari-

ables from standard normal distribution and V is the covariance matrix of these

order statistics [Shapiro and Wilk (1965)]. At a specific significance level, the

null hypothesis of the Shapiro-Wilk statistics is that the population is normally

distributed. The null hypothesis is rejected if the p-value is less than the signi-

ficance level.

Residuals (errors) from a Poisson regression model can be positive or negat-

ive. These residuals are expected to follow a normal distribution if the counts

are large. However, when the counts are small, the residuals are not likely
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to follow a normal distribution because they become much more discrete val-

ues. A normal quantile-quantile (Q-Q) plot is a graphical method for assessing

whether the residuals are approximately normally distributed [Thode (2002)].

If the points lie approximately around y = x line, the residuals are normally

distributed.

Durbin-Watson test

The Durbin-Watson (DW) test is a simple numerical method for checking serial

correlation. The test is used to detect the existence of autocorrelation in the pre-

diction errors from a regression analysis. The hypotheses usually considered

in the Durbin-Watson test are the null hypothesis that the residuals from stat-

istical regression analysis are uncorrelated (H0 : ρ = 0) against the alternative

that the residuals are autocorrelated (H1 : ρ > 0) [Durbin and Watson (1950)].

The DW statistic test is:

dw =

∑n
i=2(εi − εi−1)2∑n

i=1 ε
2
i

,

where εi = yi − ŷi and yi and ŷi are the observed and predicted values of

the response variable for individual i, respectively and n is the sample size.

The range of the Durbin-Watson statistic is always (0, 4). A value of dw = 2

means that there is no autocorrelation between the residuals. Values toward 4

indicate negative autocorrelation while values approaching 0 indicate positive

autocorrelation.

3.1.4 Model selection methods

A probability model is a useful concept to understand the data, but the best

fitting model is usually too complex to be described in every detail from the

information available. In order to decide, among all possible exploratory vari-

ables that have been included in a multiple regression model, which are im-

portant to describe the dependent variable and should be retained, and which
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one could be dropped, model selection methods are used. A full model and

all subset models (nested within the full model) are defined. Model selection

methods are techniques to determine which of these models should be retained.

Selection of variables depends on the likelihood ratio test (see Section 3.1.3) and

residual deviance (DV) (see Section 3.1.3) where the model with the smallest

residual deviance is chosen.

A common issue is that there can be a large set of explanatory variables and

the aim of statistical analysis is to choose the most effective predictors from the

set of explanatory variables. This should then produce a parsimonious model

with good predictive ability [Christensen (1996)]. There are three common

methods to select the variables from the set of exploratory variables.

1. Forward regression is a simple strategy which starts from the simplest

model and sequentially adds the most significant variables. The pro-

cedure of forward regression is to fit all simple regression models and

consider the predictor with the lowest p-value. Variables are added to

the regression equation one at a time. DV is computed then the predictor

variable with the second lowest p-value is added to the regression and DV

is recalculated. The process of adding more variables stops when all of

the available explanatory variables have been included or when it is not

possible to make a statistically significant improvement in DV using any

of the variables not yet included. Therefore, all of the independent vari-

ables selected for inclusion will have a statistically significant relationship

to the dependent variable [Halinski and Feldt (1970)].

2. Conversely, backward regression starts with all predictor variables in

the model and non-significant variables are removed from the model

one by one. The algorithm for this approach is to fit the full model

with all possible predictors and remove the variable with the highest
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non-significant p-value then, refit the model without this variable. The

procedure can be repeated until all variables remained in the model are

significant [Halinski and Feldt (1970)].

3. Another approach to select a model is stepwise regression. In stepwise

regression, the independent variables are entered according to their stat-

istical effect on describing differences in the dependent variable. Stepwise

regression is designed to find the most parsimonious and accurate model

which excludes variables that do not contribute to explaining variation in

the response variable [Christensen (1996)]. The basic idea of the proced-

ure combines both forward selection and backward deletion. It starts from

a given model which is often the null model and proceeds by either delet-

ing a variable already in the model or adding a variable from all possible

explanatory variables. The algorithm of stepwise regression is to start

like forward selection and add a new variable to the model which must

have p<0.05 then refit the model with this variable and those already in

the model and remove variables which have p>0.05 and keep variables

which have p<0.05. This is then continued until there is no justifiable

reason to enter or remove more variables from the model. Eventually, the

final model is the parsimonious model that explains the variation in the

dependent variable.

3.1.5 Byar’s method for confidence interval of the rate

Statistically, when the rate r is low and the denominator (population) at risk

n is large, the variability in the observed count O is described by the Poisson

distribution (see Section 3.1.1). A confidence interval for O and r is given by

using Byar’s method which gives very accurate approximations to the exact

Poisson probabilities, even for small counts [Breslow et al. (1987)]. The 95%
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confidence interval limits for the rate r, where z is the 100(1−α/2)% value from

the standard normal distribution, are given by [Eayres (2008)]:

rlower =
Olower

n
, where,Olower = O × (1 −

1
9O
−

z

3
√

O
)3, (3.4)

rupper =
Oupper

n
, where,Oupper = (O + 1) × (1 −

1
9(O + 1)

+
z

3
√

O + 1
)3. (3.5)

3.2 Modelling HAIs in Scotland

This section describes the change in the rates of healthcare associated infections

(HAIs) (MRSA, MSSA bacteraemias, CDI in patients aged over 65 years and

CDI in patients aged 15-64 years). Models for the rate of HAIs are fitted. The

data are available in Health Protection Scotland (HPS) for MRSA bacteraemia

from January 2003 to December 2013 and for MSSA bacteraemia from April

2005 to December 2013 [HPS (2013)]. Additionally, HPS started the mandatory

surveillance programme of clostridium difficile infection (CDI) in October 2006

and focused on the incidence of CDI in patients aged over 65 years in Scotland.

From April 2009, patients aged 15-64 years were added to the mandatory sur-

veillance programme of CDI [HPS (2015a)]. This type of data is considered as

a short period of time data (i.e. short time series).

For all HAIs data, two different datasets are analysed. First, the dataset

shows the total number of MRSA, MSSA bacteraemias, CDI in patients aged

over 65 years and CDI in patients aged 15-64 years and related AOBDs in Scot-

land overall which include time (t) (per year) and seasonal effect (Qu). This

dataset will be used in this section to describe the overall change in the rates of

HAIs in Scotland. The second dataset shows the number of MRSA and MSSA

bacteraemias, CDI in patients aged over 65 years and CDI in patients aged 15-
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64 years and related AOBDs in Scotland by health board which include time (t)

(per year), seasonal effect (Qu), health boards (HB), teaching hospital (TH) and

acute surgical procedure (ASP) variables (see Section 3.3). Notice that the last

two variables are only used in Section 3.5 for adjusting funnel plots because TH

describes the variable HB and it is a subset of HB. The ASP is provided from

Qu2, 2009 (i.e. April- June, 2009) for the data of MRSA and MSSA bacteraemias

however, ASP is not provided for CDI data. For simplicity, time and ASP were

recoded by centering time 0 at the beginning of the data and ASP in the middle

of the range of ASP values (i.e. t takes the values of 0, 0.25, 0.50, 0.75, 1, 1.25,

... and asp=ASP-25). See Table 3.1 for a description of the variables in HAIs data.

The general process to build polynomial regression model for HAIs using

the first dataset (Scotland over all data) was adopted. The glm function in R

was used to fit a Poisson regression and quasi-Poisson regression with a log-

link function and the log of AOBDs as the offset (the denominator of the rate)

which has the coefficient of 1. Model selection was done by stepwise selection

and the significance level was set at 5%. The model started with the linear

effect of time and seasonal effect (Qu) then the measurements of goodness of fit

were calculated. Then the quadratic effect of time was added to the model and

the LRT was calculated to compare the models. If the model with quadratic

effect of time is not significant different from the model with linear effect of

time, the quadratic term is omitted and then the model with linear effect of

time describes the trend of HAI data. Otherwise, adding the cubic term to the

quadratic model and then using LRT to compare quadratic and cubic models.

If the cubic model is significant different from the quadratic, adding the quartic

term to the cubic model and then comparing cubic and quartic models using

LRT. The maximum power for the temporal trend is considered as 4 because of

short period of time was analysed and more increase in the power of polynomial
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Table 3.1: Description of variables in HAIs data.
Variable Variable description baseline
no.MRSA Number of cases of MRSA

bacteraemia (numeric).
no.MSSA Number of cases of MSSA

bacteraemia (numeric).
no.CDI65 Number of cases of CDI in

patients over 65 years (numeric).
no.CDI64 Number of cases of CDI in

patients aged 15-64 years (numeric).
AOBDs Number of acute occupied bed days (numeric).
t Year, linear effect of time (numeric).
t2 Quadratic effect of time (numeric).
t3 Cubic effect of time (numeric).
t4 Quartic effect of time (numeric).
Qu Seasonal effect (categorical). Qu1

Qu1 is from January to March,
Qu2 is from April to June,
Qu3 is from July to September,
Qu4 is from October to December.

HB Health boards (categorical). GGC
See Table 1.1.

TH Teaching hospital (categorical). TH0
TH1 is health boards have teaching
hospital which are Greater Glasgow
and Clyde, Tayside, Grampian and Lothian.
TH0 is health boards do not have
teaching hospital which are
the rest of health boards in Table 1.1.

asp=ASP-25 ASP is percentage of
acute surgical procedure (numeric).
25 is approximately the average point.

will reduce the degree of freedom of the model fit. Moreover, the polynomial

model with power 5 was found not significant different from the quartic model.

The seasonal effect was kept in the model from the beginning even if it has not

significant impact because previous studies explained its impact on the rate of

HAIs.
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3.2.1 Modelling for MRSA bacteraemia

Since 2003, the general trend of MRSA bacteraemia rates in Scotland has dra-

matically decreased over time until December 2013 and there has been a sea-

sonal fluctuation as shown in Figure 3.1. However, the total number of MRSA

bacteraemia in Scotland during Qu4, 2013 increased by 79.7% compared with

the previous quarter (Qu3, 2013). There was also a 1.4% increase on the overall

MRSA bacteraemia rates in Qu4, 2013 from the corresponding quarter in the

previous year [HPS (2014)]. Therefore, this indicates that the rates of MRSA

bacteraemia differ annually as well as seasonally.
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Figure 3.1: General trend of MRSA bacteraemia rates per 100,000 acute occu-
pied bed days in Scotland from January 2003 to December 2013.

The procedure of modelling MRSA bacteraemia rates in Scotland is as fol-

lows. The observed rates in Figure 3.1 show that a quadratic model may fit

the data well. Using Poisson regression with the terms of t, t2 and seasonal

effect, goodness of fit shows that all coefficients in the quadratic model were

significant and there is no over-dispersion (p=0.067) however, the Shapiro-Wilk
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normality test shows that the residuals of the model are not normal (p< 0.001)

and Figure 3.2 shows there is a relation between residuals and predicted values.

The Akaike information criterion (AIC) is 393.85 and the residual deviance is

88.271 on 38 degrees of freedom. These measures indicate lack of fit of the

quadratic model.
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Figure 3.2: Residual plots of quadratic model of MRSA bacteraemia.

Adding a cubic term t3 into the quadratic model results in the goodness

of fit indicating no over-dispersion (p=0.063) but the residuals of the cubic

model (3.6) were still not normal (p< 0.001). Figure 3.3 shows that there is an

approximately random scatter plot of residuals against predicted values. The

AIC is 374.37 and the residual deviance is 66.79 on 37 degrees of freedom. A
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chi-square test indicated that the cubic model is significantly fitted better than

the quadratic model (p< 0.001).

log(no.MRSA) ∼ offset(log(AOBDs)) + t + t2 + t3 + Qu (3.6)
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Figure 3.3: Residual plots of cubic model (3.6) of MRSA bacteraemia.

Adding a quartic term t4 to the model (3.6) gives the AIC as 347.61 with

residual deviance of 38.033 on 36 degrees of freedom. Figure 3.4 shows that

the points in the plot of residuals against fitted values are randomly scattered

with no particular pattern and the residuals and the fitted values of model (3.7)

are uncorrelated. Also, the normal Q − Q indicates that the residuals follow a

normal distribution (Shapiro-Wilk normality test p=0.289). The chi-square test

shows that the quartic model is a significantly better fit than the cubic model
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(p<0.001). Over-dispersion was tested (p=0.807) and showed that the Poisson

distribution fits the model well. Therefore, of those fitted models, model (3.7)

is the best model to explain the change in rate of MRSA bacteraemia. Table 3.2

shows the parameter estimate and standard error of the coefficients of model

(3.7).

log(no.MRSA) ∼ offset(log(AOBDs)) + t + t2 + t3 + t4 + Qu (3.7)

3.5 4.0 4.5 5.0 5.5

−
2

−
1

0
1

2

Predicted values

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

Residuals vs Fitted

6
11

3

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Theoretical Quantiles

S
td

. d
ev

ia
nc

e 
re

si
d.

Normal Q−Q

6
11

3

3.5 4.0 4.5 5.0 5.5

0.
0

0.
5

1.
0

1.
5

Predicted values

S
td

. d
ev

ia
nc

e 
re

si
d.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Scale−Location
6

113

0.0 0.1 0.2 0.3 0.4 0.5

−
2

−
1

0
1

2

Leverage

S
td

. P
ea

rs
on

 r
es

id
.

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

Cook's distance
1

0.5

0.5

1

Residuals vs Leverage

44

6

3

Figure 3.4: Residual plots of quartic model (3.7) of MRSA bacteraemia.

Figure 3.5 shows the best fitted model of the rates of MRSA bacteraemia

with 95% confidence intervals computed using Byar’s method (see Section

3.1.5). The fitted line is decreasing over time from January 2003 to December
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Table 3.2: The coefficients of quartic model (3.7) of MRSA bacteraemia.
Coefficient Estimate Standard error z-value Pr(>|z|)
(Intercept) -8.6433 0.0468 -184.5711 0.0000*
t -0.0287 0.0643 -0.4459 0.6557
t2 0.0693 0.0269 2.5710 0.0101*
t3 -0.0192 0.0041 -4.6900 0.0000*
t4 0.0011 0.0002 5.4042 0.0000*
Qu2 -0.0634 0.0332 -1.9076 0.0564
Qu3 -0.1709 0.0347 -4.9206 0.0000*
Qu4 -0.0333 0.0337 -0.9863 0.3240

* : Significant coefficient at α = 0.05 .

2013 and the rate of MRSA bacteraemia in Qu3 (July - September) is reduced

over time and is significantly less than Qu1 (January - March).
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Figure 3.5: Fitted line of MRSA rate (red line) with 95% CIs (blue lines) in
Scotland from January 2003 to December 2013 using quartic model
(3.7).

Prediction and residual autocorrelation

The goodness of fit of a statistical model describes how well the model fits

the data. Measures of goodness of fit typically summarize the discrepancy

between observed rates and predicted rates under the model. Prediction and
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testing autocorrelation for residuals are two methods to detect the goodness of

fit of the model.

In order to decide which model is the best for future predictions, model (3.7)

was used to predict the rates of MRSA bacteraemia for five years after 2013,

assuming AOBDs stay the same as in 2013. To detect the behaviour of the trend

of the rates of MRSA bacteraemia before 2003, five previous years were added

to the new data and AOBDs were assumed the same as the first year (i.e. 2003).

Model (3.7) was then used to predict the rates of MRSA bacteraemia. Figure 3.6

shows that model (3.7) gave sudden and unexpected increasing rates of MRSA

bacteraemia in the future although, MRSA bacteraemia rates were decreasing

over the last ten years.
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Figure 3.6: Prediction in the future using quartic model (3.7).

Using a cubic model (3.6) gives predicted rates of MRSA bacteraemia as

shown in Figure 3.7. Consequently, the quartic model is the best model statist-

ically to describe the change in the rates of MRSA bacteraemia in Scotland in
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Figure 3.7: Prediction in the future using cubic model (3.6).

the period (2003- 2013) but is not good for future predictions. The cubic model

gives a good fitted line in the same period and is likely to be more realistic for

prediction in the future where the rates of MRSA bacteraemia will continue to

decrease if nothing happens in the next five years to increase the rates of MRSA

bacteraemia.

To illustrate this prediction, data from Qu1, 2003 to Qu4, 2013 was used to fit

cubic and quartic models and predict ten periods of time forward (Qu1, 2014

to Qu2, 2016) where observed values for those periods are known. Comparing

observed values with predicted values for those periods is shown in Table 3.3.

This shows that the cubic model gives a good prediction for the rate of MRSA

bacteraemia in all quarters. However, the quartic model overestimates the rate

of MRSA bacteraemia.

Autocorrelation often occurs with time series data and it is the correlation

between values of the data at different times. Another method to detect the
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Table 3.3: Observed and predicted rates of MRSA and MSSA in different quar-
ters from 2014 to 2016.

Quarter Obs Rate Pred Rate of MRSA Obs Rate Pred Rate
of MRSA Cubic Quartic of MSSA of MSSA (linear)

Jan-March 2014 2.456 2.426 3.808 26.019 26.054
April-June 2014 2.115 2.115 3.937 28.597 25.590
July-Sep 2014 2.441 1.772 4.018 29.850 27.949
Oct-Dec 2014 3.922 1.910 5.419 26.378 26.156
Jan-March 2015 2.504 1.877 6.834 27.016 25.615
April-June 2015 2.300 1.656 8.142 30.699 25.159
July-Sep 2015 2.525 1.407 9.692 29.084 27.478
Oct-Dec 2015 1.355 1.538 15.440 31.092 25.715
Jan-March 2016 2.259 1.535 23.290 30.309 25.183
April-June 2016 2.043 1.376 33.535 29.094 24.735

Obs: Observed, Pred: Predicted.

goodness of fit of the model is the Durbin-Watson (DW) test which was used

to test the autocorrelation of residuals at lag1 where if the residuals are not

correlated, the model fits the data well. Note that, autocorrelation at lag1

means the residual at point 1 (Qu1) is correlated with the residual at point 2

(Qu2) and Qu2 is correlated with Qu3 and so on (i.e. correlation between each

quarter). While, autocorrelation at lag4 means the residual at Qu1, 2003 is cor-

related with residual at Qu1, 2004 and so on (i.e. correlation between the same

quarters every year). By testing three different models (quadratic, cubic and

quartic), dw=1.0037 (p<0.001) was found for the quadratic model and therefore

the quadratic model does not fit the data well. There is autocorrelation at lag1

where the correlation coefficient is ρ = 0.3135 with 95% confidence interval (CI)

(0.0183, 0.5584) which was calculated using Fisher’s z-transformation [Fisher

(1925)] (see Fisher’s z-transformation code in Appendix A.1) as shown in Figure

3.8. On the other hand, cubic and quartic models show dw=1.5531 (p=0.156)

and dw=2.1077 (p=0.719), respectively. This indicates that the cubic and quartic

models had uncorrelated residuals, ρ = 0.1920 with 95% CI (-0.1112, 0.4625) for

the cubic model and ρ = −0.0842 with 95% CI (-0.3717, 0.2181) for the quartic

model, (see Figure 3.8).
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Figure 3.8: Autocorrelation functions of residuals in quadratic, cubic and
quartic models.

In conclusion, the cubic model is a good model for prediction since it gave

the best future predictions for MRSA bacteraemia and there was no autocor-

relation for residuals at lag1. In contrast, the quartic model is significantly

the best to describe and detect the change in the current data. In general, the

predictions are not likely to be robust description for the future trend because

if the model parameters are changed and the predicted values are increasing in

the future rather than decreasing, the cubic model would be not good for pre-
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diction. Therefore, the predictive ability of the models depends on the model

parameters and an inherent mathematical structure is applied.

3.2.2 Modelling for MSSA bacteraemia

Figure 3.9 shows the general trend of MSSA bacteraemia rate in Scotland from

April 2005 to December 2013. The total number of MSSA bacteraemia in

Scotland during Qu4, 2013 increased by 1.6% compared with the previous

quarter (Qu3, 2013) and overall MSSA bacteraemia rates for Scotland in Qu4,

2013 increased by 12.8% from the corresponding quarter in the previous year.

The rate in Qu1, 2006 is higher than rate in Qu2, 2006 while, the rate in Qu1,

2007 was less than the rate in Qu2, 2007. This indicates an unclear seasonal

pattern.
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Figure 3.9: General trend of MSSA bacteraemia rates per 100,000 acute occupied
bed days in Scotland from April 2005 to December 2013.

Using Poisson regression with a linear effect of time to model MSSA bacter-

aemia rate in Scotland observed over-dispersion (p=0.029). Adding the quad-

ratic term to the model did not eliminate the over-dispersion (p=0.027) and
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the quadratic term was not significant (p=0.259). The quadratic term was then

removed and the seasonal effect was added to the model where this showed

over-dispersion (p=0.033). Quasi-Poisson regression was used to fit the model

with linear effect of time and seasonality. The F-test showed that the model

with a seasonal effect was not significantly different from the model without

seasonal effect (p=0.147) under the quasi-Poisson assumption, (see Table 3.4

for the seasonal effect and linear term coefficients of the model (3.8)). How-

ever, seasonality can explain the change in the rates of MSSA bacteraemia in

individual health boards (see Section 3.3).

The best fitting model of MSSA bacteraemia is obtained in model (3.8) which

has residual deviance 89.69 on 30 degrees of freedom. Figure 3.10 shows the

normality of the residuals of model (3.8) where the Shapiro-Wilk normality

test gave p=0.362. Figure 3.11 shows that the fitted line and 95% confidence

interval of MSSA bacteraemia rates is slightly decreasing over time.

log(no.MSSA) ∼ offset(log(AOBDs)) + t + Qu (3.8)

Table 3.4: The coefficients of linear model (3.8) of MSSA bacteraemia.
Coefficient Estimate Standard error t-value Pr(>|t|)
(Intercept) -8.1037 0.0396 -204.7561 0.0000*
t -0.0170 0.0059 -2.8597 0.0076*
Qu2 -0.0140 0.0432 -0.3245 0.7478
Qu3 0.0786 0.0425 1.8488 0.0744
Qu4 0.0159 0.0431 0.3698 0.7142

* : Significant coefficient at α = 0.05 .

Prediction and residual autocorrelation

Model (3.8) was used to predict the future rates of MSSA bacteraemia where it

shows a decreasing trend in the future, (see Table 3.3). However, the observed

rates of MSSA increased after December 2013. This indicates that linear trend
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Figure 3.10: Residual plots of the linear model (3.8) of MSSA bacteraemia.

is not appropriate to predict rates in the future. In addition, observed and

predicted rates show a rise in the third quarter over the first quarter which

may indicate the effect of a seasonal pattern. As a result, the quadratic model

is better than the linear model to explain the rates of MSSA until Qu2, 2016.

There is no autocorrelation of residuals at lag1 where dw=1.5422 (p=0.166) and

the correlation coefficient is ρ = 0.2043 with 95% CI (-0.1382, 0.5033) .

3.2.3 Modelling CDI in patients over 65 years

Figure 3.12 shows the general trend (observed rates) of the rate of CDI in pa-

tients over 65 years in Scotland from October 2006 to September 2014 which

slowly increases up to 2008 and then dramatically falls. The total number of
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Figure 3.11: MSSA rates with 95% CIs in Scotland from April 2005 to December
2013 using model (3.8).

CDI in patients over 65 years in Scotland during Qu3, 2014 increased by 3.4%

compared with the previous quarter (Qu2, 2014). There was a 4.5% reduction

on the overall rate of CDI in patients over 65 years in Scotland in Qu3, 2014 in

comparison to the corresponding quarter in the previous year.

Quasi-Poisson regression was used to fit the model of rates of CDI in patients

over 65 years with a quartic effect of time since the over-dispersion test gave

p<0.001 when Poisson regression was used. Although the seasonal effect was

not significant (p=0.419), seasonality was a significant explanatory variable

in previous reported studies [Rodriguez-Palacios et al. (2009) and Reil et al.

(2012)]. The best model to describe the rate of CDI in patients over 65 years is

obtained as:

log(no.CDI65) ∼ offset(log(AOBDs)) + t + t2 + t3 + t4 + Qu (3.9)

Model (3.9) includes a quartic effect of time and seasonality (see Table 3.5)
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Figure 3.12: Observed and predicted rates of CDI in patients over 65 years with
95% CIs in Scotland from October 2006 to September 2014.

and has residual deviance of 194.82 on 24 degrees of freedom. Figure 3.12

shows that the fitted line of rates of CDI in patients over 65 years increased up

to 2008 then decreased dramatically up to 2011 then slightly decreased until

September 2014.

Table 3.5: The coefficients of model (3.9) of CDI in patients over 65 years.
Coefficient Estimate Standard error t-value Pr(>|t|)
(Intercept) -6.6958 0.0660 -101.4097 0.0000*
t 0.7946 0.1234 6.4370 0.0000*
t2 -0.5693 0.0732 -7.7777 0.0000*
t3 0.0997 0.0154 6.4580 0.0000*
t4 -0.0055 0.0010 -5.2030 0.0000*
Qu2 -0.0057 0.0500 -0.1144 0.9099
Qu3 -0.0133 0.0515 -0.2573 0.7992
Qu4 -0.0769 0.0502 -1.5315 0.1387

* : Significant coefficient at α = 0.05 .

In order to evaluate model (3.9) for prediction, the rates were observed until

Qu2, 2016. Table 3.6 shows a slight decrease in the observed rates of CDI in
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patients aged over 65 from Qu4, 2014 to Qu2, 2016 but a dramatic reduction

in the predicted rates during the same period. This indicates that model (3.9)

expected the rates to fall rapidly. Model (3.9) showed uncorrelated residuals

where ρ = 0.2227 with 95% CI (-0.1365, 0.5302) and dw=1.5271 (p=0.171). This

indicates that model (3.9) fit the data well.

3.2.4 Modelling CDI in patients aged 15-64 years

Figure 3.13 shows that the general trend of the rate of CDI in patients aged

15-64 years in Scotland from April 2009 to September 2014 is decreasing over

time. The total number of CDI in patients aged 15-64 years in Scotland during

Qu3, 2014 increased by 51% compared with the previous quarter (Qu2, 2014).

There was a 4.1% reduction on the overall rate of CDI in patients aged 15-64

years in Scotland in Qu3, 2014 from the corresponding quarter in the previous

year.

Table 3.6: Observed and predicted rates of CDI in different quarters from 2014
to 2016.

Quarter CDI in patients aged over 65 CDI in patients aged 15-64
Obs Pred Obs Pred

Oct-Dec 2014 34.7 29.9 37.1 28.6
Jan-March 2015 27.1 29.2 26.3 24.0
April-June 2015 31.5 25.2 33.6 23.0
July-Sep 2015 32.1 20.7 44.7 26.5
Oct-Dec 2015 33.9 15.2 48.4 18.5
Jan-March 2016 24.3 12.0 33.4 14.3
April-June 2016 24.2 8 34.4 12.5

Obs: Observed, Pred: Predicted.

Poisson regression was used to fit a model of the rates of CDI in patients

aged 15-64 years. The best model to describe the rate of CDI in patients aged

15-64 years is obtained as:

log(no.CDI64) ∼ offset(log(AOBDs)) + t + t2 + t3 + Qu (3.10)
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Figure 3.13: Observed and predicted rates of CDI in patients aged 15-64 years
with 95% CIs in Scotland from April 2009 to September 2014.

Model (3.10) includes a cubic effect of time and seasonality and has residual

deviance of 27.172 on 15 degrees of freedom and the AIC is 192.14. This model

is significantly better than the model without a seasonal effect (p<0.001) and

is significantly better than the model with quadratic effect of time (p<0.001).

Figure 3.13 shows that the fitted line of rates of CDI in patients aged 15-64

years is decreasing over time with a clear pattern of seasonality with infection

increasing in the summer, (see Table 3.7).

Table 3.7: The coefficients of CDI in patients aged 15-64 years model (3.10).
Coefficient Estimate Standard error z-value Pr(>|z|)
(Intercept) -7.2049 0.0619 -116.3860 0.0000*
t -0.7205 0.0879 -8.1971 0.0000*
t2 0.2094 0.0419 5.0037 0.0000*
t3 -0.0206 0.0054 -3.8006 0.0001*
Qu2 0.0544 0.0525 1.0362 0.3001
Qu3 0.3151 0.0498 6.3322 0.0000*
Qu4 0.0954 0.0534 1.7876 0.0738

* : Significant coefficient at α = 0.05 .
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Using model (3.10) to predict the rate of CDI in patients aged 15-64 years

in the future expected a reduction in the rate. However, the observed rates

from Qu4, 2014 to Qu2, 2016 increased, (see Table (3.6)). This indicates that

although model (3.10) describes the data well, it is not good for prediction.

Furthermore, model (3.10) fits the data with no evidence of serial correlation

where ρ = 0.1641 with 95% CI (-0.2765, 0.5478) and dw=1.6107 (p=0.349). This

indicates that model (3.10) is good to describe the rates in the period of study.

3.2.5 Modelling CDI from April 2009

In order to understand practically the reason on changing in the trend of CDI,

data from April 2009 was analysed and the pattern of the trend for CDI in

patients over 65 years and CDI in patients aged 15-64 years were compared.

Poisson regression was used to fit a model of the rate of CDI in patients over

65 years and the best model described the rate is obtained as:

log(no.CDI65) ∼ offset(log(AOBDs)) + t + t2 + t3 + Qu (3.11)

Models (3.10) and (3.11) have same degree of time trend; up to cubic effect of

time and seasonal effect is significant factor in both models. Figure 3.14 shows

that the trend of CDI in patients over 65 years and CDI in patients aged 15-64

years are similar.

The pattern of CDI overall was adjusted by the age factor (over 65 and below

65) and no significant different was found in the rate of CDI in to groups of

age. Also, the interaction between temporal trend and the age was found not

significant. Therefore, the trend of CDI in both groups of age has same pattern

and whatever intervention impacted the rate of CDI in patients over 65 years

is also affects the rate of CDI in patients aged 15-64 years. The differences
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Figure 3.14: [Observed (black circles) and predicted (red line) rates of CDI in
patients over 65 years (left figure) and CDI in patients aged 15-64
years (right figure) in Scotland from April 2009 to September 2014.

between models (3.9) and (3.10) are associated with different data points which

was used to analyse the rate of CDI.

3.3 Modelling HAIs by health boards

Since the high order polynomial models are not parameterised to detect a

change in the rate of HAIs in health boards, the polynomial model is adjusted

by a health board factor (HB) to examine potential differences between the HB.

Using the second dataset (health board data) and add HB factor to the best fitted

model from Section 3.2. Then the interaction between HB and linear effect of

time was added to the model and LRT was used to compare the models. If the

model with interaction is significant, the interaction between HB and quadratic

effect of time was added. The process of adding the interaction between HB

and higher effect of time (up to quartic) was adding until there is no significant

different from the previous model. Then the interaction between the HB and

Qu was added to the last accepted model and LRT was used to assess the

impact of this interaction.
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3.3.1 MRSA bacteraemia

The previous section concluded that the quartic model (3.7) is statistically

the best to describe the change in the trend of MRSA and it was used to fit

individual health board rates. Figure 3.15 shows that the predicted values

of Great Glasgow and Clyde (GGC) are close to the observed MRSA rates.

The line for GGC is fitted well because the number of MRSA cases are large

in that HB. However, the fitted lines in other health boards lie above most

of the observed MRSA rates such as in AA, BOR, DG, HI and GR which

indicates overprediction. In contrast, the fitted lines in Fife, FV, LO and TAY

are underprediction. Therefore, the model (3.7) is not a good fit to individual

health boards. The model (3.7) was developed by taking into account the health

board as a factor (see model (3.12)).

log(no.MRSA) ∼ offset(log(AOBD))+ t+ t2 + t3 + t4 +Qu+HB+ t×HB+Qu×HB

(3.12)

Fitting model (3.7) to the dataset with health boards showed over-dispersion

with Poisson regression (p<0.001) so, quasi-Poisson regression was used to

fit the model to the rates of MRSA. Adding health board (HB) as a factor in

the model (3.7) was significant. The F-test shows that the model with health

board (HB) is significantly different from the model without HB (p<0.001). An

interaction between HB and time was included. The interaction arises when

the effect of an explanatory variable depends on the particular level or value of

another explanatory variable. The interaction between time and health board

was added to the model and indicates that the rates are different in some health

boards over time (i.e. at a specific time point the rate is high in some health

boards but it is low in others). The model with the interaction compared to

the model without the interaction was significantly better (p<0.001). Adding

the interaction term (t2
× HB) did not make any difference from the previous
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Figure 3.15: Fitted lines vs observed rates for MRSA in each health board (Janu-
ary 2003- December 2013) using model (3.7).
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model (p=0.255). The interaction between (HB) and seasonal effect was in-

vestigated and the result showed that the rates of MRSA bacteraemia in some

health boards differ in different quarters (p=0.038). This is simply another way

of saying that the change in the rate over time is different at different health

boards yearly and seasonally. Thus, model (3.12) best describes the trend of

MRSA bacteraemia rate in different health boards in Scotland where the rate of

MRSA decreases significantly in Qu2 and Qu3, (see Table A.1).

Figure 3.16 illustrates model (3.12) which was fitted to individual health

boards. Predicted rates in GGC, GR, LO and TAY are close to the observed

MRSA rates. Model (3.12) predicts the rates of MRSA bacteraemia better than

model (3.7) in most individual health boards where the trends are decreasing

over time. Trends of MRSA bacteraemia rates in BOR and HI were increas-

ing slowly until about 2007- 2008 where they have decreased. In some health

boards such as A.A, BOR, Fife, FV, and HI, the observed rates have more vari-

ation around fitted lines . Also, NWTC, ORK, SH and WI have a lot of zero

rates which makes the model fit poorly using quasi-Poisson. Zero-inflated re-

gression is therefore better in this case to be investigated in future work.

Table A.1 explains that although the health boards A.A, BOR, FV, GR and

HI have decreasing trends over time, the interaction of health board with time

shows that they have significantly different trends from GGC (see Figure 3.16).

In addition, the interaction between health board and seasonal effect showed

that the seasonal effect impacts the change in some individual health boards,

especially in LO and TAY.

As a result, model (3.12) gave the best prediction of MRSA bacteraemia rates

in most health boards. Small health boards need simple models to describe the
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Figure 3.16: Fitted lines vs observed rates for MRSA in each health board (Janu-
ary 2003- December 2013) using model (3.12).
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changes in the rates. Power and sample size implications are investigated in

Section 3.4.

3.3.2 MSSA bacteraemia

As in MRSA analysis, the fitted model of MSSA (3.8) is not appropriate to fit

some individual health boards. Health board was added as a factor to further

develop the model. Quasi-Poisson regression was used to fit the model for

the rate of MSSA bacteraemia using the health board data from April 2005

to December 2013 since over-dispersion was found (p<0.001). Health board

(HB) was added to model (3.8) as a factor and the F-test shows that the model

with HB is significantly different from the model without HB (p<0.001). The

interaction between time and health board was significant when added to the

model (p<0.001). However, the interaction of health boards and seasonal effect

does not make a difference from the previous model (p=0.913). Model (3.13)

illustrates the rates of MSSA bacteraemia in different health boards in Scotland

over time.

log(no.MSSA) ∼ offset(log(AOBDs)) + t + Qu + HB + t ×HB (3.13)

Figure 3.17 shows fitted lines for the rates of MSSA bacteraemia against the

observed rates in individual health boards using model (3.13). In GGC, the

observed MSSA bacteraemia rates are close to the predicted rates and the trend

is decreasing over time. However, in all other health boards the observed rates

have more variation as seen in A.A, DG and LO. Some health boards are sig-

nificantly different from GGC where the trend increases over time such as the

rates in BOR, HI and WI. In addition, some other health boards have a stable

trend and are significantly different from GGC as witnessed in GR, LA and

TAY. The interaction between time and health board shows that Fife and FV

are significantly different from GGC over time. Table A.2 shows the overall
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impact of the seasonal effect where Qu3 is significantly different from Qu1 in

all health boards. However, there is no special effect of seasonality on some

health boards over others.

In conclusion, the health board factor showed the impact of the seasonal effect

on the trend in all health boards. It also showed the difference between health

boards where the rates in some health boards decreased or did not change over

time. This explains that the general trend from model (3.8) is linear where the

rates in some health boards decreased, increased or remained stable. It also

explains why the seasonal effect was kept in the model (3.8) although it was

not significant.
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Figure 3.17: Fitted lines vs observed rates for MSSA in each health board (April
2005- December 2013) using model (3.13).
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3.3.3 CDI in patients over 65 years

Model (3.9) is developed by adding health board to investigate the change in

the rate of CDI in patients over 65 years in individual health boards. Quasi-

Poisson regression is used due to over-dispersion (p<0.001). Model (3.14) is the

best fit to the data where it describes the change in the rate of CDI in patients

over 65 years in each health board. This model is significantly better than the

model with an interaction up to t3
×HB (p<0.001). The interaction (Qu×HB) did

not affect the rate of CDI in patients over 65 years (p=0.412) and the seasonal

effect did not impact the rate between individual health boards. The general

impact of seasonality shows that Qu4 is significantly different from Qu1, (see

Table A.3).

log(no.CDI65) ∼ offset(log(AOBDs)) + t + t2 + t3 + t4 + Qu

+ HB + t ×HB + t2
×HB + t3

×HB + t4
×HB.

(3.14)

Figure 3.18 shows that the quartic model (3.14) is not appropriate to fit

some health boards such as HI, NWTC, ORK, SH and WI. In contrast, some

other health boards are fitted well with the quartic model but their models are

significantly different from GGC quartic model. These health boards are A.A,

DG, GR and LO. FV and TAY have a similar quartic model to GGC, (see Table

A.3).
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Figure 3.18: Fitted lines vs observed rates for CDI in patients over 65 years in
each health board (October 2006- September 2014) using model
(3.14).
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3.3.4 CDI in patients aged 15-64 years

Although model (3.10) of CDI in patients aged 15-64 years was fitted using

Poisson regression, over-dispersion was observed (p<0.001) when adjusting

the model by health board and therefore quasi-Poisson regression was used.

Model (3.15) is the best fit to the health board data and this model is significantly

better than the model without the interaction between time and health board

(p<0.001). The general impact of seasonality shows that Qu3 is significantly

different from Qu1 where the infection is higher in summer than it is in winter,

(see Table A.4). In addition, variables t2
× HB and Qu × HB did not affect the

change in the rate of CDI in patients aged 15-64 years in individual health

boards.

log(no.CDI64) ∼ offset(log(AOBDs)) + t + t2 + t3 + Qu + HB + t ×HB (3.15)

Figure 3.19 illustrates that model (3.15) is not appropriate for some health

boards such as NWTC, ORK, SH and WI which have a lot of zero rates since

quasi-Poisson was used to fit the data. Figure 3.19 shows that some health

boards have a significantly different pattern to GGC where A.A, GR and TAY

decrease over time but FV has an increasing trend over time. It also shows

that LO has the same pattern to GGC but the data fit model (3.15) significantly

better than GGC. The health board DG has a significantly different model from

GGC. Other health boards have similar patterns to GGC such as Fife and HI,

(see Table A.4).

In conclusion, although the fitted model of CDI rates from Scotland overall

describes the data well, the pattern of CDI rates is different for individual

health boards. The trend in some individual health boards is different from the

general trend of Scotland, especially for small health boards.
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Figure 3.19: Fitted lines vs observed rates for CDI in patients aged 15-64 years
in each health board (April 2009- September 2014) using model
(3.15).
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3.4 Power and sample size analysis

Since the polynomial models for MRSA (3.7), CDI in patients over 65 years (3.9)

and CDI in patients aged 15-64 years (3.10) are often not suitable to fit data of

some individual health boards, power and sample size are investigated.

3.4.1 Power and sample size test

Power analysis is an important consideration in research. The size of a sample,

effect size, significance level and power are the components of statistical power

and sample size analysis where if three are known, the fourth can be determ-

ined. Sample size is the number of units taken from the population and is

the most important component affecting the statistical power. Effect size is a

quantitative value to measure the strength of an effect such as the coefficients

of regression models or the correlation between two variables. The significance

level (α) is the probability of rejecting the null hypothesis when it is true; α =

0.05 or 0.01 are commonly used. Given a true effect, the power (1 − β) is the

probability of detecting that effect and is the probability to reject null hypo-

thesis when it is false. Ideally power should be in the range of 80% - 95% [Park

(2008)].

Poisson ratio Test

Power analysis is used to compare two Poisson rates in order to detect the power

and sample size under a significance level of 5%. Consider two independent

Poisson rates obtained from different sample sizes, Xi ∼ Poisson(λi), λi =

tiγi where ti is a total number of population, γi is the rate and i = 1, 2. To

make inference on the ratio of two Poisson rates (R′ = γ1/γ2) suppose the null

hypothesis of the ratio is unity (i.e. H0 : γ1/γ2 = R = 1) and one side alternative

hypothesis is H1 : γ1/γ2 = R′ > R where R′ is a pre-specified positive number
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which is the ratio of two Poisson rates, [Ng and Tang (2005)]. Then the Wald

statistic is used to test the difference between two rates [Gu et al. (2008)].

PRT =
X1 − X2ρ√
X1 + X2ρ2

, ρ =
R
d
, d =

t2

t1
, (3.16)

where PRT is the Wald statistic to test two Poisson rates. If PRT ≥ z1−α, reject

null hypothesis and the approximate power can be obtained as [Gu et al. (2008)]:

Power = Φ


z1−α

√
(ρc + ρ2) ∗ t2 ∗ γ1 ∗ R′ − (ρc − ρ) ∗ t2 ∗ γ1 ∗ R′√

(ρc + ρ2) ∗ t2 ∗ γ1 ∗ R′

 , (3.17)

where Φ(.) is the cumulative standard normal distribution function, c = R
R′ and

z1−α is a critical value of the significance level.

To detect the effect size (R′), power, sample size and significance level (0.05)

are used. The approximate sample size (ss) can be obtained as [Gu et al. (2008)]:

ss =
((c/ρ) + c2)(z1−α + z1−β)2

(1 − c)2 , (3.18)

where z1−β is a critical value of significance power.

3.4.2 Power analysis

Published reports often have statements such as there has or has not been a sig-

nificant change in the HAI rates from one year to the next year [HPS (2008b)].

This research is going to consider the magnitudes of the effect sizes that can be

detected in Scotland and in a selection of typical health boards such as Glasgow,

Lothian, Grampian, Tayside and Fife. This covers a variety of population sizes.

104



Chapter 3 Modelling Changes in the Rate of HAIs

The difference between the rates of MRSA bacteraemia in two following years

2005 and 2006 and between the rates of MSSA in two following years 2006 and

2007 (these years are chosen to be in the beginning of period of study when

the rates were high) in Scotland and in some health boards such as Glasgow,

Lothian, Grampian, Tayside and Fife was tested. Statistical power and sample

size are then obtained. Applying Equation (3.16) to compare Poisson rates (in

2005 and 2006) in Scotland shows that the ratio between two Poisson rates

of MRSA bacteraemia is not significantly greater than one where the p-value

=0.264 and the ratio estimate is 1.03 (see the calculation in Appendix A.3.1).

Because there is not enough power to detect this difference, the sample size

and power statistic analysis have been investigated.

Statistical power of a test is the probability of detecting an effect that actually

exists. MRSA bacteraemia data in 2005 and 2006 was used to test the ratio and

detect the power. The approximate power of the ratio (effect size) is calculated

from Equation (3.17), (see the calculation in Appendix A.3.2).

Table 3.8 shows the power for Scotland and some health boards when the

ratio between two MRSA rates is R′ =
average rates in 2005
average rates in 2006 = 1.03. If sample size

(cases of MRSA bacteraemia) decreases, the power of the test will decrease and

the test will have insufficient power to detect the observed effect size (R′ = 1.03).

On the other hand, given the rate of MRSA bacteraemia in Scotland in 2005

with a significance level of 5%, the population number in 2006 and an increase

of the effect size (ratio change) by 25% (i.e. 1.25), the 99% power can detect

25% change in the rate of MRSA bacteraemia in Scotland. If the effect size in

Lothian is 25%, change in the rate of MRSA bacteraemia can be detected with

73% power. 99% power is achieved to detect a 50% change in the rate of MRSA

bacteraemia in Lothian, (see Figures 3.20).
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Table 3.8: Power calculation for MRSA rates in Scotland and some health
boards.

Health boards data R′ = 1.03 R′ = 1.25 R′ = 1.5 R′ = 2 R′ = 2.5
Scotland 0.1662 0.9999 1 1 1
Glasgow 0.1002 0.9354 0.9999 1 1
Lothian 0.0832 0.7329 0.9989 1 1
Grampian 0.0777 0.6182 0.9918 1 1
Tayside 0.0735 0.5172 0.9688 1 1
Fife 0.0673 0.3615 0.8499 0.9999 1

R′ = 1.03: Effect size, i.e. the ratio of the rate of MRSA in Scotland in 2005 and 2006 where γ2005 = 18.312 is the rate
of MRSA in Scotland in 2005 and γ2005 = γ2006R′. Also, R′ can be 1.25 (25%), 1.5 (50%), 2 (100%) and 2.5 (150%).
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Figure 3.20: Relationship between the effect size and the power using MRSA
data.

The Poisson ratio test shows that the ratio between two Poisson MSSA rates is

significantly different from 1 (p=0.014) where the estimated ratio is 1.11. Table

3.9 shows that the power for Scotland is 93% when the ratio between two years

of MSSA rates is R′ =
average rates in 2007
average rates in 2006 = 1.11. If the sample size (cases of MSSA

bacteraemia) decreases, the power of the test will decrease under the same size

effect and the test will have insufficient power to detect the observed effect size

(R′ = 1.11) in Glasgow, Lothian, Grampian, Tayside and Fife. On the other

hand, if the effect size is increased by 25%, there will be 98% power to detect
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change in the rates of MSSA bacteraemia in Glasgow. When the effect size in

Scotland, Glasgow, Lothian, Grampian, Tayside and Fife is 50%, the change in

the rate of MSSA bacteraemia can be detected with 95% power or more, (see

Table 3.9). There is a positive relationship between effect size, the power and

sample size, (see Figures 3.21).

Table 3.9: Power calculation for MSSA rates in Scotland and some health
boards.

Health boards dataaaa R′ = 1.11 R′ = 1.25 R′ = 1.5
Scotland 0.9314 1 1
Glasgow 0.5218 0.9883 1
Lothian 0.3336 0.8756 0.9999
Grampian 0.2714 0.7713 0.9995
Tayside 0.2270 0.6629 0.9959
Fife 0.1707 0.4811 0.9530

R′ = 1.11: Effect size, i.e. the ratio of the rate of MSSA in Scotland in 2006 and 2007 where γ2006 = 27.8 is the rate of
MSSA in Scotland in 2006 and γ2007 = γ2006R′. Also, R′ can be 1.25 (25%) and 1.5 (50%).
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Figure 3.21: Relationship between the effect size and the power using MSSA
data.
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The Poisson ratio test shows that the ratio between two Poisson rates of CDI

in patients over 65 years is not significantly different from 1 (p=0.983), where

the estimate ratio is 1.003. The Poisson ratio test of two Poisson rates of CDI

in patients aged 15-64 years is significantly different from 1 (p<0.001) where

the estimate ratio is 1.081. Figures 3.22 and 3.23 and Tables 3.10 and 3.11 show

the power detected at different effect sizes for CDI data. CDI in patients over

65 years detects at least 89% power for just a 20% effect size in small health

boards. However, CDI in patients aged 15-64 years detects at least 70% power

for a large effect size of 50% in small health boards.

Table 3.10: Power calculation for CDI in patients over 65 years in Scotland and
some health boards.

Health boards dataaaa R′ = 1.003 R′ = 1.10 R′ = 1.20
Scotland 0.0703 0.9999 1
Glasgow 0.0600 0.9186 0.9999
Lothian 0.0572 0.7243 0.9982
Grampian 0.0558 0.5694 0.9808
Tayside 0.0554 0.5234 0.9665
Fife 0.0544 0.4087 0.8926

R′ = 1.003: Effect size, i.e. the ratio of the rate of CDI in patients over 65 years in Scotland in 2007 and 2008. Also, R′
can be 1.10 (10%) and 1.20 (20%).

Table 3.11: Power calculation for CDI in patients aged 15-64 years in Scotland
and some health boards.

Health boards dataaaa R′ = 1.081 R′ = 1.25 R′ = 1.5 R′ = 2
Scotland 0.4528 0.9993 1 1
Glasgow 0.2169 0.8648 0.9999 1
Lothian 0.1487 0.6088 0.9906 1
Grampian 0.1243 0.4684 0.9465 0.9999
Tayside 0.1103 0.3798 0.8728 0.9999
Fife 0.0943 0.2781 0.7124 0.9987

R′ = 1.081: Effect size, i.e. the ratio of the rate of CDI in patients aged 15-64 years in Scotland in 2010 and 2011. Also,
R′ can be 1.25(25%), 1.50(50%) and 2(100%).

In conclusion, whenever an effect size increases, the power of the test in-

creases for the same sample size. For a constant effect size, the power will
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Figure 3.22: Relationship between the effect size and the power using CDI over
65.
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Figure 3.23: Relationship between the effect size and the power using CDI un-
der 65.

increase if the sample size increases. Therefore, changes in MSSA from one

year to the next year are easier to be detected because MSSA is more common

and has greater number of events. Also, changes in CDI in patients over 65
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years needs only a 20% effect size in small health boards and 10% effect size in

large health boards to be detected at roughly 80% power. The next section will

identify the detectible effect sizes for 80%, 90% and 95% power.

3.4.3 Effect size detection

In order to find the detectible effect sizes needed to achieve 80%, 90% and 95%

power, Equation (3.18) was used with a significance level 5%. Given a sample

size (cases of infections), the effect sizes (R′) are detected for 80%, 90% and

95% power. For example, if the sample size is 500, Figure 3.24 shows that the

detectible effect size for 95% power is roughly 25% (R′ = 1.25). The detectible

effect size for 90% power is roughly 20% (R′ = 1.2). This number of cases can

be found in about two years of MRSA data in Scotland at the early years (when

the data monitoring started) and in about three years at the later years (up to

December 2013). However, 500 cases of MSSA in Scotland can be found in one

quarter (three months) at early time points and roughly in four months at the

later time points (up to December 2013).

The same number of cases (500) for CDI in patients over 65 years occurs

roughly in one month at early time points (from October 2006) and in five

months at later time points (up to September 2014). Similarly, 500 cases of CDI

in patients aged 15-64 years occurs in five months at early time points (from

April 2009) but roughly in one year at later time points (up to September 2014).

In conclusion, large sample sizes gives 80%- 95% power with small effect

size (ratio of two rates). In contrast, only large effect sizes can be detected with

80%- 95% power in small sample sizes. Therefore, in small sample sizes (small

health boards), the effect size cannot be detected between years and the more

complicated polynomial model cannot be fitted. Models fitted for Scotland
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Figure 3.24: Relationship between the effect size and the sample size under
80%, 90% and 95% power.

might be not suitable for some individual health boards. Strong evidence of a

change in trend can be found in Scotland but in some individual health boards

there is no evidence of decreasing trend due to small numbers of infection

cases.

3.5 Compare Scotland NHS health boards for HAI

rates

3.5.1 Funnel Plot

A funnel plot is a graphical aid designed to look at the expected natural vari-

ation and is used to detect points which are further away from the average

than expected. It is a type of scatter plot where the observed rates are plotted

against their population sizes where this is called an un-adjustment funnel plot.

The funnel plot has four components (see Figure 3.25); an indicator, a target,
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a precision and control limits. The indicator is the observed value plotted on

the Y-axis. The target is the overall expectation (mean) for the institutions

considered and it appears as a horizontal line. The precision is a parameter to

determine the accuracy of measuring the indicator where it can be the size of

the population and is plotted on the X-axis. The control limits are overlaid on

the scatter plot and represent the expected variation in the indicators (rates).

The formula for control limits depends on the distribution of data and the

funnel plots. In this research, Byar’s method was used (see Section 3.1.5) to

calculate control limits. Wide control limits relate to small precision and small

variability is expected in large populations [Spiegelhalter (2005) and Dover and

Schopflocher (2011)].

Unadjusted funnel plot

The observed rates are used to plot unadjusted funnel plot. This entails sorting

the data in ascending order according to the population size and the observed

rates of the institutions are then plotted against their population sizes. The

target is the mean of observed rates and the control limits are calculated using

Byar’s method with the observed rates (unadjusted) [Morton et al. (2011)].

Risk adjustment funnel plot

The observed rates can be adjusted by some risk covariates using a regression

model and this process is known as risk adjustment [Woodall (2006)]. Risk

adjusted funnel plots are used to improve the analysis by adjusting the rates

for known covariates which explain some of the variation among the data

points. Having the precision (the size of population in each institution) and the

indicator (observed rate in each institution) means that the risk adjusted rates

can be obtained where it is calculated as [Dover and Schopflocher (2011)]:
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Figure 3.25: Funnel plot of adjusted and unadjusted MRSA bacteraemia rates
in the period October-December 2013. The green arrows indicate
each funnel plot components.

Risk adjusted rate =
Observed value

Risk adjusted value
×Average of observed rates. (3.19)

After sorting the data in ascending order according to the population sizes

of health boards, the risk adjusted rate is plotted against institution. A smooth

funnel shape with control limits depending on the observed rates (unadjusted

rates) is plotted [Morton et al. (2011)].

3.5.2 Unadjusted funnel plot analysis

Funnel plot analysis was used to examine variations among the NHS boards in

Scotland for the MRSA and MSSA bacteraemia rates during October-December

2013 which was the last current period of when this analysis was carried out,

(see Appendix A.4.1). The funnel plot was also examined in all previous quar-

ters. Since different health boards have got slightly different characteristics (e.g.
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some of them are large and others are small), the aim of the funnel plot analysis

is to establish if there are any health boards requiring further investigation to

determine a cause of high rates. The rates of MRSA and MSSA bacteraemias for

each health board occurring outside the 95% control limits may be associated

with more variation than expected.

Figures 3.25 and 3.26 represent that the MRSA and MSSA bacteraemia rates

respectively for individual NHS boards in Scotland in Qu4, 2013, where they

are within or below the 95% control limits. The overall average of MRSA and

MSSA bacteraemia rates for Scotland’s NHS boards in the Qu4, 2013 is 4.2 and

29.2 per 100,000 acute occupied bed days, respectively. The rate of MRSA in

NHS Highland is below the control limit which indicates that NHS Highland

may provide an enhanced healthcare to control infection. Rates of MRSA in

NHS Shetland, Western Isles and National Waiting Times Centre are approx-

imately similar and the rates of MSSA in NHS Orkney and Western Isles are

approximately the same. Therefore, most of NHS boards in Scotland do not

have extremely high or low rates of MRSA and MSSA bacteraemias.

However, the funnel plot does not account for the risk factors or clinical

procedures in different NHS boards. The next section will take into account the

risk factors; surgical procedures and training courses for the trainer (teaching

hospital).

3.5.3 Risk adjusted funnel plot analysis

In this section, a risk adjusted funnel plot was used to improve the analysis by

adjusting the rates of MRSA and MSSA bacteraemias using surgical procedure

data from April 2009. Teaching hospital was identified to adjust the rates of

MRSA and MSSA bacteraemias and CDI in Great Glasgow and Clyde, Tayside,
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Figure 3.26: Funnel plot of adjusted and unadjusted MSSA bacteraemia rates
in the period October-December 2013.

Grampian and Lothian (see Table 3.1). MRSA and MSSA bacteraemias are

more common following a surgical procedure compared to only medical (non-

surgical) risk factors. The rate of surgery varies over the health boards and

this might explain some of the variation in the rates over the HBs. Information

Services Division (ISD) has data on the number of patients who had surgery

in NHS in Scotland [ISD (2014)]. The percentage of patients undergoing acute

surgical procedure (asp) (see Table 3.1) was used to adjust the rates of MRSA

and MSSA bacteraemias. The data from health boards for the Qu4, 2013 was

used to fit a model by adding asp as a risk factor. Since data on asp is not

provided for the National Waiting Times Centre (NWTC) health board, it is

excluded from the analysis. Model (no.MRSA ∼ offset(log(AOBDs)) + asp) was

fitted by using Poisson distribution to adjust the rate of MRSA bacteraemia

where the asp coefficient was not significant in this quarter with p=0.186, see

Figure 3.25.
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Similarly, model (no.MSSA ∼ offset(log(AOBDs)) + asp) was fitted using a

Poisson distribution to adjust the rate of MSSA bacteraemia in the same quarter

(Qu4, 2013) and the asp coefficient was also not significant in this quarter

(p=0.649) (see Figure 3.26). As a result, surgical procedure does not affect the

rates of MRSA and MSSA bacteraemias in the Qu4, 2013.

For more investigation about the impact of surgical procedure on the rate of

MRSA and MSSA bacteraemias, different periods of time (different quarters)

from April 2009 to December 2013 were considered to fit a model by adding

ASP as a risk factor. The risk adjusted rates are obtained from Equation (3.19)

where the risk adjusted value is the expected value from the model and the

average of observed rates is the rate of Scotland overall. Figures A.1, A.2, A.3,

A.4 and A.5 show the observed and adjusted rates of MRSA bacteraemia in

different quarters and p-values of asp in each quarter. Clearly, in most quarters,

the observed and adjusted rates of MRSA bacteraemia are approximately the

same. The asp coefficient was significant in some quarters (Qu2, 2009, Qu1,

2011, Qu2, 2011 and Qu1, 2012) and the rate of MRSA bacteraemia changed

significantly while in other quarters; the asp factor did not affect the rate of

MRSA bacteraemia. Therefore, even though the observed and adjusted rates

for MRSA are significantly different in some quarters, health boards are still

less than the upper control limit. Figures A.6, A.7, A.8, A.9 and A.10 show

that in all quarters, the observed and adjusted rates of MSSA bacteraemia are

approximately the same. As a result, there is a weak evidence that surgical pro-

cedure affects the rates of MSSA bacteraemia. However, there are some health

boards with rates above the 95% control limit in some quarters which may be

a result of other unknown factors. In conclusion, risk adjustment by surgical

procedure is not a very strongly associated factor to explain the rates and there

could be other factors affecting the rates of MRSA and MSSA bacteraemias in
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some health boards which contribute to explaining the variability. For the data

of CDI, surgical procedure information is not recorded.

Using teaching hospital to adjust the rates of MRSA and MSSA bacteraemias

does not affect the rates of MRSA and MSSA bacteraemias at any period of

time. Teaching hospital was also used as a variable to adjust the rate of CDI in

Qu3, 2014 and showed that this does not impact the rate.

3.6 Conclusion and discussion

Health Protection Scotland reported a general decrease in the rates over time

of MRSA, MSSA until December 2013 [HPS (2014)] and of CDI until September

2014 [HPS (2015a)]. Polynomial regression models are fitted to the data for

MRSA, MSSA and CDI and a significant pattern of change over time was ob-

served. A quartic regression model describes the change in the rates of MRSA

and CDI in patients over 65 years very well. A cubic regression model was

fitted to the data for CDI in patients aged 15-64 years. MSSA does not show

a significant change in pattern and there is only a general reduction during

the period of study. However, polynomial regression models may not satisfy

the prediction where the structure imposed cubic or quartic temporal trend is

driven by the observed data and may not hold in the future.

The seasonal effect explains some of the change in the trend of some HAI

rates. The models of MRSA and CDI in patients aged 15-64 year present strong

evidence of seasonal effect. In contrast, the models of MSSA and CDI in pa-

tients over 65 years do not illustrate evidence of a seasonal effect. The seasonal

effect is an important variable to explain the change in the rates of HAIs and

give the best description of the change in the trend [Reil et al. (2012) and

Rodriguez-Palacios et al. (2009)]. Additionally, the seasonal effect impacted
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the rate when the models were adjusted by health boards which indicates that

seasonality impacts individual health boards. Therefore, although seasonal

effect does not impact some infections, the final selected models include the

seasonal effect for all data because it describes the changes in the infection rates

in individual health boards.

Polynomial regression models give the best description of the change in the

trend of MRSA and CDI where all infections (apart from MSSA) have high

rates initially then decrease, level off and increase again. This implies the oc-

currence of turning points which identify where the trend changes. These may

then equate with interventions which were introduced to impact the rates of

infections in Scotland. It is therefore of interest to estimate when changes took

place and the identification of turning points and their confidence intervals

from polynomial regression models which is investigated in Chapter 4.

Dealing with individual health boards showed that large population size

health boards have similar trends to Scotland overall. It is difficult to observe

nonlinear effects in small population size health boards because polynomial

regression (nonlinear effects) will result in overprediction or underprediction

in such health boards. The Scotland model should be adjusted by health board

to better explain the trend of infections in each health board. The model ad-

justed by health board showed that each health board has a different shape of

trend, but roughly all health boards have a similar pattern of increasing then

decreasing rates of infection.

Differences between population sizes of health boards implies a power issue

as some health boards are very small. The power analysis detects the effect size

which is needed to fit polynomial models to Scotland overall data in order to
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detect change points. However, the power analysis indicated that small health

boards cannot detect small changes in rates (small effect size) with 80%-95%

power and therefore complicated polynomial models cannot be fitted.

Funnel plots show no major differences between health boards in their over-

all rates at each period separately, with and without adjustment by surgical

procedure or teaching hospitals. Funnel plots illustrate that although health

board is a significant factor to explain the rate in individual health boards, the

rates of infections stay within the control limits and all health boards indic-

ate similar rates of infections. During the period of study very few quarters

showed the impact of surgical procedure on the rate of infections. Therefore,

there is no strong evidence of differences among health boards in trends and

that implies that the changes occur at similar times (not identical but there are

few different times) in each health board.

As a result, the interventions which are associated with changes in the rates

are not restricted to some health boards as they are implemented in all health

boards. This indicates that national policies may be associated with the changes

and leads to investigating the change at the time when these interventions took

place. This is discussed in Chapter 5.

In conclusion, the main aim of this chapter was to describe the trend of in-

fections where two of three infections demonstrate non linear trends; MRSA

and CDI. These trends have change points and in the following chapters these

are going to be investigated. Chapter 4 involves methods identifying turning

points within polynomial GLM regression models. Chapter 5 analyses seg-

mented regression and joinpoint methods to detect change points.
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Chapter 4

Estimation of Turning Points and

Construction of their Confidence

Intervals

Finding the points in time when the trend of healthcare associated infections

(HAIs) changes is of a particular interest. The previous chapter (Chapter 3)

determined the best fitting models for HAIs. These models showed that the

rate of infection changes at particular time points and turning points were noted

in a number of occasions. In this chapter, we shall use these models to estimate

the time when the rates change (turning points) and their confidence intervals

and try to determine which interventions had an impact on HAIs. In Section

4.1, turning points from polynomial models are estimated and constructing

confidence intervals for estimated turning points is considered in Section 4.2

where bootstrap and delta methods are used. In Section 4.3, the methods

of estimating turning points and confidence intervals are applied to data of

HAIs. The associated interventions with these changes in trend are discussed

in Section 4.4. Section 4.5 includes two parts of simulation studies. The first

part includes a comparison between bootstrap and delta methods to construct
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confidence intervals for estimated turning points from a quadratic model. The

behaviour of those confidence intervals when the sample size changes is also

explored. The second part uses a cubic model to investigate the performance

of the bootstrap method to construct confidence intervals for two estimated

turning points.

4.1 Estimating turning points from polynomial

models

The turning points when the rate changes can be estimated by using polynomial

models which is fitted by generalized linear model (GLM), (see Chapter 3).

Considering the best fitted model is a cubic polynomial GLM model as:

log(rate) = f (t) + Qu + ε. (4.1)

Where f (t) is the cubic polynomial function which is used to estimate the

turning points; f (t) = at3 + bt2 + ct + d. Seasonal effect (Qu) is used to adjust the

polynomial GLM model and gives the best fit for the data and ε is the error of

the model. Then, we use f (t) to estimate the turning points as follow:

1. Find the first derivative of f (t) in time t where f ′(t) =
d f (t)

dt = 3at2 + 2bt + c.

2. Calculate roots of the f ′(t) (i.e. 3at2 + 2bt + c = 0) which gives two turning

points.

t1,2 =
−2b ±

√
(2b)2 − 4(3a)c
2(3a)

,

t1 and t2 have a nonlinear function in the parameters of f (t). They are the

values of estimated turning points of trend (when the trend changes from

a decrease to an increase or from an increase to a decrease). They may or
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may not occur within the range of the data because they are calculated

from predicted values.

3. Sort the roots into ascending order to get the estimated turning point in

temporal order (the first location of estimated turning point is t(1) then

the second one is t(2)).

4. Use the values of the estimated turning points (t1 and t2) to calculate the

value of f (t) at each estimated turning point then use the values of f (t) to

calculate the rates when the trend changes as: exp( f (t)) × 100, 000.

5. To find the inflection point, calculate the root of the second derivative of

f (t) as f ′′(t) = 6at + 2b = 0 and this implies one inflection point (in f p). To

calculate the rate on the inflection point use the expression exp( f (in f p))×

100, 000.

6. Use f ′′(t) in order to define whether the estimated turning point has max-

imum or minimum rate. If f ′′(t) < 0, the change occurs at the maximum

rate and the rate starts to decrease. If f ′′(t) > 0, the change occurs at the

minimum rate and the rate starts to increase.

4.2 Estimating confidence intervals for estimated

turning points

Since the turning points are estimated from the fitted model, confidence inter-

vals can give more information about where the change occurs and interven-

tions which impact the rates can be determined. Bootstrap and delta methods

are used to construct confidence intervals for the estimated turning points.

Since the quadratic model implies one turning point which is the ratio of two

random variables (two parameters from quadratic function), the delta method

is used which can find the mean and variance of the ratio and use them to
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calculate a confidence interval for the estimated turning point. However, for

more than two random variables, the delta method is mathematically difficult

(see Section 4.3.3) to calculate the variance of the estimated turning points and

therefore the bootstrap method is used. The other reason of using the boot-

strap method is because the exact distribution of the estimated turning point

is unknown since the turning point is a nonlinear function in the parameters

of the polynomial model.

4.2.1 Bootstrapping

A goal of statistical inference is to determine the value of a population para-

meter. In practice, if this is expensive or even impossible to measure directly

then sampling is used to estimate the population parameter. Bootstrapping

is an approach used in statistical inference to estimate population parameters

based on random sampling with replacement from the original data [Efron

(1979)]. Bootstrapping can be used to estimate standard errors, confidence

intervals for parameters, perform hypothesis tests and improve prediction

accuracy. It is often used as an alternative method to inference based on para-

metric approaches when those assumptions are dubious, or when parametric

inference is impossible or requires very complicated formulas for the calcula-

tion of standard errors.

There are three types of Bootstrap which are parametric, non-parametric and

semi-parametric. Parametric bootstrapping generates samples from known

distributions using the estimated parameters, while non-parametric bootstrap-

ping estimates unknown distributions from the empirical distribution ob-

tained from the observed data. Semi-parametric bootstrapping is based on

re-sampling the residuals of a regression model [Carpenter and Bithell (2000)].
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The basic idea of bootstrapping is to take the original observed data (size

n) from the population and re-sample the original data B times, treating each

of these as a new sample from the population. The required statistic is then

estimated from each sample. For example, assume the mean of body mass

index (BMI) of people worldwide is of interest. The approach would be to take

a sample of size n from the population and record the individual BMIs where

one estimate of the mean can be obtained in each single sample. In order to get

a robust result about the population mean BMI, an estimate of the variability

of the mean is required. The bootstrap sample of size n is taken from the

original data by sampling with replacement. Assuming n is sufficiently large,

the bootstrap sample has zero probability to be identical to the original sample.

This process is repeated a large number of times (B times) and the mean for

each of these bootstrap samples is computed (each of these is called a bootstrap

estimate). A histogram of bootstrap means provides an estimate of the shape

of the distribution of the mean [Davison (1997)].

The general bootstrap algorithm is as follows:

1. Get a sample of size n.

2. Re-sample with replacement size n from original sample.

3. Calculate parameter of interest and save it.

4. Repeat steps 2 and 3, B times to get bootstrap estimates.

5. Use the bootstrap values in step 4 for statistical inference such as estim-

ating confidence intervals for the mean.
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4.2.2 Delta method

The delta method is a technique used to calculate confidence intervals for

functions of maximum likelihood estimators where these functions have ap-

proximately normal distributions. Based on a truncated Taylor series, the delta

method deals with a complicated and nonlinear function of one or more ran-

dom variables to obtain the estimator of the variance of the nonlinear function.

Using a first order Taylor expansion around the mean value of the variables

and creating a linear approximation of that function, the variance of the simpler

linear function is then estimated [Abramowitz and Stegun (1964), Casella and

Berger (2002), Xu and Long (2005) and Hole (2007)].

If X and Y are random variables, E(X) = µX , 0, E(Y) = µY , 0 are their

means respectively. If a function of a ratio of two random variables is assumed

as g(X,Y) =
X
Y

, the approximation of the expected value E
(X

Y

)
and variance

Var
(X

Y

)
of the function g(X,Y) are given by [Casella and Berger (2002)]:

E
(X

Y

)
≈
µX

µY
, (4.2)

Var
(X

Y

)
≈

(
µX

µY

)2

×

(Var(X)
µX

)2

+

(
Var(Y)
µY

)2

− 2
Cov(X,Y)
µXµY

 . (4.3)

Since the estimated turning point (t̂ = −b
2a ) from a quadratic model is the ratio

of two parameters (a is a coefficient of quadratic term and b is a coefficient of

linear term) of the quadratic model, the approximate mean and variance of t̂

are calculated and therefore the confidence interval of the t̂ is constructed using

the delta method where it is obtained as:

E(t̂) ± z1−(α/2)

√
Var(t̂).
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4.3 Estimation of turning points and confidence

intervals for HAIs data

This section includes the estimating of turning points using HAIs data. Using

HAIs data up to September 2014, turning points for the best fitting models of

MRSA bacteraemia (quartic model) and CDI in patients over 65 years (quartic

model) were estimated, and confidence intervals for these turning points were

constructed using the bootstrap method. Since the MSSA bacteraemia model

has a linear trend (see Chapter 3), there are no turning points. The estimated

turning points for the cubic model of CDI in patients aged 15-64 years cannot

be found because solving its quadratic function gives two complex numbers.

In addition, in order to compare delta and bootstrap methods for constructing

a confidence interval of one turning point, a turning point from quadratic model

of MRSA bacteraemia and its confidence interval are estimated. A quadratic

model is used because the delta method deals easily with two random variables

while it is computationally complicated when dealing with more than two

random variables.

4.3.1 Estimated turning points in MRSA bacteraemia and

CDI models

MRSA bacteraemia quartic model

The best fitting model to describe MRSA bacteraemia rates was a quartic model

(3.7). Based on the method of estimating turning points (see Section 4.1), this

model includes the quartic polynomial function f (t) and is adjusted by seasonal

effect (Qu) where the first derivative of quartic function of time is the cubic

function. Solving the cubic function gives three estimated turning points. The
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maximum predicted rate was 19.61 per 100,000 AOBDs when the rate starts

to decrease at time point t̂ = 2005.65 (August 2005). The minimum predicted

rates were 17.13 per 100,000 AOBDs when the rates start to increase at time

point t̂ = 2002.63 (August 2002) and 2.83 per 100,000 AOBDs at time point

t̂ = 2013.80 (end of October 2013). The points of inflection (points of curve at

which a change in the sign of curvature occurs) are at 2004 (January 2004) when

the rate was 18.26 per 100,000 AOBDs and at 2010.75 (October 2010) when the

rate was 6.40 per 100,000 AOBDs, see Table 4.1 and Figure 4.1.

Figure 4.1 did not show the first estimated minimum turning point (at 2002.6)

as it occurs outside the range of data. Although a quartic model is the best fit to

the data there are only two turning points within the range of the data and the

confidence intervals will be constructed in the next section for these two points

only. Figure 4.1 shows that there are some fitted rates greater than the rate at

turning point 2005.65 (i.e. ŷ(t̂ + 1) > ŷ(t̂) or ŷ(t̂ − 1) > ŷ(t̂)). This is due to the

effect of seasonality (i.e. the fitted line adjusted by the quarterly effect) where

such rise in the rate is associated with the seasonal effect as t̂ is estimated from

the polynomial function f (t) only.

Table 4.1: Estimated turning points and their confidence intervals.
Infection Estimated turning points Bootstrap confidence interval
MRSA Min @ 2002.63 (August 2002) (April 2000- October 2003)
bacteraemia Max @ 2005.65 (August 2005) (April 2005- December 2005)
(Quartic model) Min @ 2013.80 (October 2013) (June 2013- April 2014)

inf1 @ 2004 (January 2004) (June 2002- September 2004)
inf2 @ 2010.75 (October 2010) (June 2010- December 2010)

CDI in Max @ 2007.64 (August 2007) (July 2007- September 2007)
patients Min @ 2012.53 (July 2012) (February 2012- January 2013)
over 65 years Max @ 2013.80 (October 2013) (December 2012- January 2015)
(Quartic model) inf1 @ 2009.44 (June 2009) (April 2009- August 2009)

inf2 @ 2013.20 (March 2013) (October 2012- January 2014)

Min: Minimum rate, Max: Maximum rate, inf: Inflection points.
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Figure 4.1: Estimated turning points and inflection points on MRSA fitted
quartic model (3.7) (vertical line) with 95% confidence intervals
(horizontal line). Black lines are estimated turning points when the
rate start to decrease, green lines are estimated turning points when
the rate start to increase and blue lines are inflection points. The
red line is the predicted rates and the black circles are the observed
rates.

CDI in patients over 65 years quartic model

The quartic model (3.9) of CDI in patients over 65 years has three estimated

turning points associated with a change in trend. There are two estimated turn-

ing points for CDI with maximum rates of 170.75 per 100,000 AOBDs at time

point t̂ = 2007.64 (i.e. the end of August 2007) and 36.81 per 100,000 AOBDs

at time point t̂ = 2013.80 (during October 2013). The minimum rate was 35.38

per 100,000 AOBDs at time t̂ = 2012.53 (July 2012). The inflection points are at

2009.44 (June 2009) when the rate was 88.81 per 100,000 AOBDs and at 2013.20

(March 2013) when the rate was 36.11 per 100,000 AOBDs, see Table 4.1 and

Figure 4.2.

Figure 4.2 shows that the local maximum rate at 2013.80 comes at a dip in the
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observed rates which is a local dip associated with Qu4 and the calculation of

the turning points is based upon the predicted trend adjusting for the quarterly

pattern. Similarly, for the minimum rate at 2012.53, there is a local rise in the

observed rates because it is associated with Qu3 while the calculation of the

turning points comes from the predicted trend adjusting for the seasonal effect.

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ●

● ●
● ●

●
●

●

●

●
●

●
●

2008 2010 2012 2014

40
60

80
10

0
12

0
14

0
16

0

Year

R
at

e 
of

 C
D

I i
n 

pa
tie

nt
s 

ov
er

 6
5 

ye
ar

s Max TP
Min TP
Inf

Figure 4.2: Estimated turning points and inflection points on CDI in patients
over 65 years fitted model (3.9) (vertical line) with 95% confidence
intervals (horizontal line). Black lines are estimated turning points
when the rate start to decrease, green lines are estimated turning
points when the rate start to increase and blue lines are inflection
points. The red line is the predicted rates and the black circles are
the observed rates.

4.3.2 Bootstrap confidence intervals

Since the appropriate probability model for the estimated turning points is

unknown, the bootstrap method was used to generate bootstrap samples of

estimated turning points by sampling directly from the data with replacement.

Semi-parametric bootstrap method deals with regression models when the
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residuals are re-sampled. The algorithm for constructing confidence intervals

by bootstrapping semi-parametric re-sampling is as follows:

1. Use the original data sample to find the best fitted model of the rate of

healthcare associated infections using glm.

2. Obtain the fitted values ŷi and Pearson residuals ε̂i =
yi−ŷi√

ŷi
.

3. Re-sample the residuals and save a new response variable y∗i by adding

re-sampled residuals to the fitted values as y∗i = ŷi + ε̂i ×
√

ŷi.

4. Round y∗i to be integer values.

5. Use the new responses (bootstrap data) to fit the best fitted model by

using glm function in R.

6. Use the coefficients from the bootstrap fitted model to calculate the es-

timated turning points of the bootstrap fitted model and save them, (see

Section 4.1).

7. Repeat steps 3 to 6, 500 times to obtain bootstrap estimates of turning

points.

8. Calculate 95% confidence intervals for the estimated turning point by us-

ing the bootstrap estimates of turning points conducted by the bootstrap

percentile method using (quantile) at 0.025 and 0.975 in R.

This method was applied to construct confidence intervals for estimated

turning points from the MRSA bacteraemia quartic model and CDI in patients

over 65 years quartic model.

MRSA bacteraemia quartic model

The estimated turning point in the quartic model (3.7) has 95% confidence in-

terval when the rate starts to decrease as (2005.36, 2005.97) (between April and
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December 2005) with 95% confidence interval for the estimated rates (18.73,

20.88) per 100,000 AOBDs. The related interventions with this reduction are

discussed in Section 4.4. The 95% confidence interval for the estimated turning

points when the rate starts to increase is (2013.42, 2014.35) (between June 2013

and April 2014) with 95% confidence interval for the estimated rates (2.46, 3.17)

per 100,000 AOBDs. The 95% confidence interval for the points of inflection

are (2002.43, 2004.73) (between June 2002 and September 2004) with 95% con-

fidence interval for the estimated rates (14.25, 19.32) per 100,000 AOBDs and

(2010.48, 2010.97) (between June and December 2010) with 95% confidence in-

terval for the estimated rates (5.86, 6.95) per 100,000 AOBDs. These are shown

in Table 4.1 and Figure 4.1. Figure 4.1 shows that the width of the confidence

intervals of the turning points are different due to the magnitude of change in

the trend of MRSA bacteraemia.

CDI in patients over 65 years quartic model

The 95% confidence intervals for estimated locations of two estimated turning

points where the rates of CDI in patients over 65 years start to decrease are

(2007.54, 2007.73) (i.e. during Qu3, 2007) with 95% confidence interval (159.70,

182.59) per 100,000 AOBDs for the rates and (2012.90, 2015.10) (i.e. between

of the end of 2012 and beginning of 2015) with 95% confidence interval (33.54,

42.85) per 100,000 AOBDs for the rates. The 95% confidence interval for the

minimum rate was (31.57, 38.77) per 100,000 AOBDs at time (2012.16, 2013.10)

(i.e between the beginning of 2012 and 2013). The 95% confidence intervals

for the points of inflection are (2009.31, 2009.62) (between April and August

2009) with 95% confidence interval for the estimated CDI rates (81.94, 94.90) per

100,000 AOBDs and (2012.76, 2014) (between October 2012 and January 2014)

with 95% confidence interval for the estimated rates (33.00, 40.17) per 100,000

AOBDs, see Table 4.1 and Figure 4.2. Figure 4.2 shows that the width of the
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confidence intervals of the turning points are different and two confidence

intervals are overlapping due to their relevant turning points occur close to

each other at the end of the dataset.

4.3.3 Delta method of confidence intervals

The delta method is another approach to construct confidence intervals for

the estimated turning points by finding means and variances of the estimated

turning points. The best model for MRSA bacteraemia is the quartic model

where the turning points are the roots of cubic polynomial function. The roots

of cubic equation at3 + bt2 + ct + d [Nickalls (1993), Cardano et al. (2007) and

Neumark (2014)] are given as:

t j =
−1
3a

(b + η j−1ω +
δ0

η j−1ω
), j = 1, 2, 3,

where,

ω =

3

√√
δ1 ±

√
δ2

1 − 4δ3
0

2
, ω , 0, η = −

1
2

+
1
2

√

3 i,

δ0 = b2 + 3ac, δ1 = 2b3
− 9abc + 27a2d.

The estimated turning points t j are nonlinear functions of the parameters of the

quartic model. Using the delta method for calculation of the means and vari-

ances of these complicated functions (including ratio, multiplication, square

root and cube root) is mathematically difficult since t j has four random vari-

ables. Therefore, to investigate the performance of delta method, the quadratic

model for MRSA bacteraemia is simply used.

Although the quartic model is the best fit to the data of MRSA bacteraemia,

the quadratic model is the simplest model with a one turning point and the

algebra of the delta method is relatively easy to calculate the mean and variance
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of the estimated turning point (t̂). t̂ is a ratio of two random variables a and b

(see the algorithm below) and this is the reason that the mean and variance of

a ratio are calculated using the delta method which was presented in Section

4.2.2. Following this, the delta and bootstrap methods can be easily compared.

The algorithm is as follows:

1. Fit quadratic model with seasonality to the data of MRSA bacteraemia.

log(no.MRSA) ∼ offset(log(AOBDs)) + bt + at2 + Qu

2. Save the coefficients of the quadratic and linear terms, where a is a coef-

ficient of quadratic term and b is a coefficient of linear term.

3. Find the first derivative of quadratic equation which is a linear equation.

4. Calculate the estimated turning point from the linear equation as t̂ = −b
2a .

5. Calculate the mean and variance of a and b and the covariance of a and b.

6. Use the delta method to calculate the expected value E(t̂) and variance

Var(t̂) by using Equations (4.2) and (4.3).

7. Calculate 95% confidence interval for the estimated turning point using

E(t̂) ± 1.96 ×
√

Var(t̂).

The estimated turning point for the quadratic model when the rates of MRSA

bacteraemia start to decrease was at time 2004.79 (end of October 2004) and

the 95% delta confidence interval is (2004.43, 2005.13) between the end of Qu2,

2004 and the beginning of 2005. The bootstrap method (1000 times) gave a 95%

confidence interval of (2004.15, 2005.25) based on a quadratic model which is
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a little bit wider than the 95% confidence interval where this was estimated

by the delta method. Comparing delta and bootstrap methods of constructing

confidence intervals is discussed in Section 4.5.

4.4 Associated interventions

The location of maximum estimated change points in the polynomial GLM

models gives an idea of when rates start to decrease and may help identify

clinical interventions which have impacted these rates. Some of the healthcare

interventions listed in Table 1.2 are associated with a reduction in infection

rates. Around the time of the drop (2005) in MRSA bacteraemia rates, the use

of alcohol hand gel was advised by the chief nursing officer (CNO) [Martin

(2015)]. In addition, a cleanliness course was given to all nurses regarding

the general environment of patients such as beds, pillow, towels and chairs

[RCN (2005)]. Intensive care medicine (ICM) funding in all boards in Scot-

land was also introduced as a new infection control initiative [ISD (2005)] and

improvement of antimicrobial prescribing policy and practice in Scotland was

recommended [SE (2005)].

The trend of CDI in patients over 65 years changed during 2007. In March

2007 the Scottish patient safety programme (SPSP) was introduced and aimed

to improve safety and reliability in all health care settings [SPSP (2007)].

In conclusion, Table 4.2 summarizes the interventions which may have im-

pacted the rates of HAIs in Scotland.
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Table 4.2: Summary of the interventions detected by polynomial GLM which
may impacted the rate of HAIs in Scotland.

Point of change (95% CI) Interventions MRSA CDI
2005.65 ≈ August 2005 CNO letter on alcohol based Yes
(April 2005- December 2005) hand rubs and infection control.

CNO requested that all G Grade Yes
Sisters/ Charge Nurses (Senior
Charge Nurses) undertake the
Cleanliness Champions Course
commenced.
New IC structure in Boards, Yes
including ICM funding.
Antimicrobial Prescribing Policy Yes
and Practice in Scotland-
Recommendations for good
antimicrobial practice in acute
hospitals.

2007.64 ≈ August 2007 Scottish Patient Safety Programme Yes
(July 2007- September 2007) (SPSP) announced.

CI: Confidence interval, MRSA: Methicillin-resistant staphylococcus aureus, CDI: Clostridium difficile infection,

CNO: Chief nursing officer, IC: Infection control, ICM: Intensive care medicine.

4.5 Simulation study

Since bootstrap and delta methods are two techniques used to construct con-

fidence intervals for estimated turning points from a quadratic model, the

comparison between them will be carried out (see Section 4.5.1). The per-

formance of the bootstrap method to construct confidence intervals for two

estimated turning points from a cubic model is also investigated, (see Section

4.5.2).

4.5.1 Comparing delta and bootstrap methods

A simulation study is carried out to investigate and compare the behavior and

performance of bootstrap and delta methods to construct confidence intervals

for the estimated turning point from the quadratic model (4.4) where the es-

timated turning point is a ratio of two parameters and the mean and variance
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are easy to calculate using the delta method.

log(λn) = β0 + β1(x − x0) + β2(x − x0)2, (4.4)

where x0 is the true value of the turning point and λn is the observed data.

The comparison of bootstrap and delta methods will involve the examination

of the mean width of confidence intervals (WD) estimated by both methods and

the percentage of confidence interval containing the true value of the turning

point (CI.TP%).

Four considerations were assumed when carrying out the simulation study:

1. Different sample sizes (i.e. numbers of time points: large 50, moderate 35

and small 20) to fit the quadratic model according to specific values β0, β1

and β2.

2. Since glm model with Poisson distribution is used, exp(β0) is the number

of cases per time period which could be rare (β0 = 1.5), small (β0 = 3) or

large (β0 = 5).

3. The true turning point x0 can occur in the beginning of the data, in the

middle or at the end. For example, when the sample size is 20, the true

turning point occurs at 5 (beginning), 10 (middle) or 15 (end).

4. Under different sample sizes, β1 = 0.001 but β2 often takes the value of

-0.003 while when the sample size or the location of true turning point

change, β2 changes with very small differences (<0.05) (i.e. β2s are similar

but not identical).

By using R programming language (see Appendix B.1), the algorithm for

simulation study is written as follows:
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1. Generate data according to Poisson distribution,

Yn ∼ Poisson(λn),

where Yn is a simulated count data, λn is the observed data of quadratic

model (4.4) and n is the sample size.

2. Use simulated data to fit glm quadratic model with Poisson distribution,

log(Yn) = β0 + β1x + β2x2 + ε. (4.5)

3. Calculate simulated turning point (t̂ =
−β1

2β2
) from new fitted model (4.5).

4. Use the delta method (see Section 4.3.3) to construct a confidence interval

for the simulated turning point (t̂) and save the results.

5. Use the bootstrap method (500 times) to construct a confidence interval

for the simulated turning point (t̂) (see Section 4.3.2) and save the results.

6. Repeat the simulation (from step 1 to 5), 500 times to have sets of confid-

ence intervals from both bootstrap and delta methods.

7. Use the mean width of the simulated confidence intervals (WD) and the

percentage of simulated confidence intervals including the true turning

point x0 (CI.TP%) to compare methods.

Results and conclusion

Tables 4.3, 4.4 and 4.5 summarise the results of the bootstrap and delta meth-

ods of constructing confidence intervals when the true turning point occurs

in the middle of the data, beginning and at the end, respectively. β1 = 0.001

in all sample sizes but β2 (the parameter of curvature) are different when the

sample size changes. When n = 50, β2 = −0.003, when n = 35, β2 = −0.0035
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and when n = 20, β2 = −0.008. The initial values of β1 and β2 were chosen to

make log(λn) in Equation (4.4) positive as much as possible. The mean width

of the confidence interval and the coverage of the true turning point are used

to compare bootstrap and delta methods.
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Figure 4.3: The simulated data (black circles) from the quadratic model (red line) when
one turning point (black line) occurs in (a) the middle, (b) the beginning
and (c) the end of data.

When the true turning point occurs in the middle of the data (i.e. at 25

when n = 50, at 18 when n = 35 and at 10 when n = 20) (see Figure 4.3(a)),

the mean width of confidence interval (WD) gets wider when β0 gets smaller

in both bootstrap and delta methods, (see Table 4.3). The mean width of the

confidence intervals by both methods are usually similar when β0 ≥ 3. In

addition, the delta and bootstrap confidence intervals are roughly symmetric
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around the true turning point. Based on 500 simulations and significance

level of 5%, the range (93%- 97%) is consistent with 95% coverage (i.e. (0.95 ±

z1−(α/2)
√

0.95 × 0.05/500) × 100 ≈ (93% − 97%), z1−(α/2) = 1.96). Therefore, the

confidence intervals constructed by the delta method often cover more true

turning points (CI.TP%) within 95% coverage than the confidence intervals

constructed by the bootstrap method. The bootstrap method covers at most

5% less than lower 95% coverage when β0 ≥ 3 because the mean width of

confidence interval is roughly small but when β0 ≤ 1.5, it covers 95% because

the mean width of confidence interval is large, (see Table 4.3). This low coverage

may occur because the method of calculating the bootstrap confidence interval

is percentiles. Different methods may give better coverage such as the bias

corrected method.

Table 4.3: Comparing the delta and bootstrap methods of constructing confid-
ence intervals for the estimated turning point from quadratic model
with change in the middle.

Delta method Bootstrap method
n (TTP) β0 E(TP) LCI UCI WD CI.TP% LCI UCI WD CI.TP%
50 (25) 5.0 25.1 24.7 25.7 1.0 92.5 24.7 25.6 0.9 89.5

3.0 26.4 23.9 26.5 2.6 93.5 23.9 26.5 2.6 90.5
1.5 24.4 22.4 28.2 5.8 95.0 22.3 28.2 5.9 93.5

35 (18) 5.0 17.6 17.6 18.7 1.1 92.5 17.6 18.7 1.1 87.5
3.0 15.9 16.6 19.8 3.2 96.0 16.7 19.8 3.1 92.0
1.5 19.3 13.9 22.6 8.7 96.0 10.8 26.2 15.4 94.5

20 (10) 5.0 10.1 9.5 10.5 1.0 95.2 9.6 10.5 0.9 88.0
3.0 9.1 8.6 11.6 3.0 96.5 8.2 11.7 3.5 90.5
1.5 9.5 -10.1 30.2 40.3 98.0 -1.0 20.7 21.7 95.0

n: The sample size, TTP: The true turning point, β0: The number of cases, E(TP): The mean of estimated turning
points from the simulations, LCI: The mean of lower confidence levels, UCI: The mean of upper confidence levels,
WD: The mean width of confidence intervals, CI.TP%: The percentage of confidence intervals that contains the true
turning point.

When the true turning point occurs at the beginning of the data (i.e. at 13

when n = 50, at 9 when n = 35 and at 5 when n = 20) (see Figure 4.3(b)) and

when β0 gets smaller, the mean width of the confidence intervals gets larger for

both methods. However, for n ≤ 35 and β0 ≤ 1.5, the mean width of confidence

intervals (WD) becomes greater than the range of data in both methods. The
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percentage of confidence intervals containing the true turning point (CI.TP%)

is within 95% coverage when β0 ≤ 3 using the bootstrap method while when

β0 ≥ 5, the CI.TP% is at most 5% less than lower limit. Similarly, CI.TP% in

delta method is sometimes within 95% coverage when β0 ≤ 3. However, when

β0 ≥ 5, the CI.TP% is at most 3% less than lower limit. The mean width of

confidence intervals in the bootstrap and the delta methods are approximately

the same except when β0 ≤ 1.5 or when the mean width of confidence intervals

is greater than the sample size, (see Table 4.4). The confidence intervals in

both methods are asymmetric and are roughly close to the upper limit of the

confidence interval.

Table 4.4: Comparing the delta and bootstrap methods of constructing con-
fidence intervals for the estimated turning point from the quadratic
model with change in the beginning.

Delta method Bootstrap method
n (TTP) β0 E(TP) LCI UCI WD CI.TP% LCI UCI WD CI.TP%
50 (13) 5.0 12.8 12.4 14.1 1.7 90.0 12.4 14.0 1.6 91.0

3.0 11.8 10.7 15.5 4.8 92.5 10.3 15.1 4.8 94.0
1.5 15.6 6.6 18.3 11.7 94.0 -0.5 17.5 18.0 94.0

35 (9) 5.0 9.0 7.9 10.2 2.3 92.5 7.9 10.1 2.2 89.0
3.0 9.9 5.5 12.4 6.9 94.5 3.9 11.4 7.5 93.5
1.5 7.2 -21.5 36.4 57.9 90.0 -36.2 43.4 79.6 93.0

20 (5) 5.0 4.7 4.0 6.5 2.5 90.5 3.9 6.2 2.3 87.0
3.0 4.3 -0.2 8.8 9.0 94.5 -8.7 12.2 20.9 94.5
1.5 3.6 -803.7 819.1 >1000 90.5 -34.0 39.8 73.8 94.5

See Table 4.3 for the definition of n, TTP, β0, E(TP), LCI, UCI, WD, CI.TP%.

When the true turning point occurs at the end of the data (i.e. at 38 when

n = 50, at 26 when the n = 35 and at 15 when n = 20) (see Figure 4.3(c)) and

when β0 gets smaller, the mean width of the confidence intervals gets wider

in both methods. However, when n ≤ 20 and β0 ≤ 1.5, the mean width of the

confidence intervals becomes greater than the range of data for both methods.

In addition, the mean width of the confidence intervals in the bootstrap and

the delta methods are usually the same except when β0 ≤ 1.5. The confidence

intervals constructed by the delta method have more true turning points within

140



Chapter 4 Estimation of Turning Points and Construction of their Confidence Intervals

95% coverage than the confidence intervals constructed using the bootstrap

method. However, when the mean width of the confidence intervals is greater

than the sample size in the delta method, the coverage is under 95%. The

bootstrap confidence interval usually covers 95% when β0 ≤ 3 but at almost

4% less than 95% coverage when β0 ≥ 5, (see Table 4.5). Also, the confidence

intervals in both methods are asymmetric and roughly close to the lower limit

of the confidence interval. As a result, when the true turning point occurs

roughly at the first quarter (1/4 i.e. at the beginning) or at the third quarter (3/4

i.e. at the end) of the data, the results are approximately similar.

Table 4.5: Comparing the delta and the bootstrap methods of constructing con-
fidence intervals for the estimated turning point from the quadratic
model with change in the end.

Delta method Bootstrap method
n (TTP) β0 E(TP) LCI UCI WD CI.TP% LCI UCI WD CI.TP%
50 (38) 5.0 38.7 37.3 39.1 1.8 94.0 37.4 39.1 1.7 91.5

3.0 39.6 35.9 40.8 4.9 96.0 36.3 41.3 5.0 93.4
1.5 35.4 32.6 45.4 12.8 96.0 32.4 54.3 21.9 95.5

35 (26) 5.0 25.7. 25.1 27.2 2.1 93.2 25.2 27.3 2.1 88.5
3.0 25.1 23.2 29.7 6.5 95.5 24.1 31.2 7.1 93.5
1.5 28.3 13.9 42.0 28.1 96.0 -4.3 66.7 71.0 95.6

20 (15) 5.0 16.1 14.2 16.5 2.3 95.0 14.4 16.6 2.2 89.0
3.0 14.6 12.2 19.1 6.9 96.0 10.7 24.6 13.9 92.5
1.5 13.8 -199.5 227.3 426.8 91.5 -13.5 47.1 60.6 96.6

See Table 4.3 for the definition of n, TTP, β0, E(TP), LCI, UCI, WD, CI.TP%.

In conclusion, the delta method establishes good results for confidence in-

tervals of estimated turning points in a quadratic model. The simulation study

showed that both methods give roughly similar coverage for true turning points

in quadratic models. Therefore, when dealing with polynomial models of an

order of more than two, the delta method is mathematically complicated when

there are two or more estimated turning points and as a result the bootstrap ap-

proximation is used in these cases. However, percentile bootstrap confidence

intervals cannot easily cover 95% of turning points when β0 ≥ 3 for a turning

point in the middle and when β0 ≥ 5 for turning points in the beginning or at
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the end. This means that different bootstrap confidence interval approaches

may give a better coverage.

4.5.2 Change in trend at two points

This section investigates the behaviour of bootstrap confidence intervals for

two estimated turning points from a cubic polynomial model obtained as:

log(λn) = β0 + β1x + β2x2 + β3x3, (4.6)

where β0 takes values of 5, 3 and 1.5, β1 = (t1 × t2)/10, 000, β2 = −0.5(t1 +

t2)/10, 000, (t1 and t2 are the exact turning points) and β3 = 0.000033. In this

case, the β1 and β2 are dependent on the sample sizes and location of true

turning points. Tables 4.6 and 4.7 summarise the results of estimating turning

points from Equation (4.6) and their confidence intervals when two specified

turning points occur roughly in the middle of the dataset and at the beginning

and the end of the dataset, respectively. The initial values of t1 and t2 were

chosen to be roughly in the middle of the dataset or roughly at the beginning

and at the end of the dataset, (see Appendix B.1 for the simulation algorithm

code).

When true turning points occur roughly in the middle of a dataset (i.e. at

t1 = 16 and t2 = 33 when n = 50, at 11 and 24 when n = 35 and at 7 and 13 when

n = 20) (see Figure 4.4(a)), the mean width of the confidence intervals of the

first (WD1) and second (WD2) true turning points increase when β0 decreases

under the same sample size. However, there are no large differences between

the mean widths of confidence intervals when n = 20. Here at all β0 the mean

widths of the confidence intervals are greater than the sample size because

the simulated data are very random and the turning point can be estimated to

occur anywhere on the fitted trend. The mean width of the confidence interval
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Figure 4.4: The simulated data (black circles) from the cubic model (red line) when
two turning points (black lines) occur in (a) the middle, (b) the beginning
and end of data.

becomes greater than the sample size when β0 ≤ 1.5 at n = 50 and when β0 ≤ 3

at n = 35 because the simulated data becomes more random when β0 decreases

which results in wide confidence intervals. The percentage of true turning

points within 95% confidence intervals (CI.TP%) increases when β0 decreases

at sample sizes 50 and 35 however, for n = 20 the bootstrap method is not

successful because the mean widths of confidence intervals are > 20. When the

mean width of the confidence interval is less than the sample size, the confid-

ence intervals are roughly symmetric around the true turning points when n ≥

50 and β0 ≥ 5. On the other hand, when β0 ≤ 3, the first true turning point is

closer to the upper confidence level than it is to the lower confidence level and

the second true turning point is closer to the lower confidence level than it is to

the upper confidence level. When the mean widths of confidence intervals are

less than the sample sizes, similar mean widths are observed for both turning

points. At n = 50, the first true turning point is within 95% coverage where

as the second true turning point is under the 95% coverage. At n = 35, the

first and second true turning points are within 95% coverage, (see Table 4.6).

This indicates that when the mean width of the confidence interval is small,

the method of bootstrap confidence intervals can easily cover one true turning
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point (the first one).

Table 4.6: The behaviour of confidence intervals of two estimated change points
when the changes occur in the middle of the dataset.

n(TTPs) β0 E(TP1) LCI1 UCI1 WD1 CI.TP1% E(TP2) LCI2 UCI2 WD2 CI.TP2%
50 5.0 15.8 14.4 17.4 3.0 93.8 33.7 32.0 35.0 3.0 81.5
(16, 33) 3.0 16.4 0.4 23.5 23.1 95.7 33.2 25.5 47.4 21.9 91.2

1.5 15.3 -34.0 26.3 60.3 98.0 38.7 23.5 81.4 57.9 95.5
35 5.0 10.4 -14.1 16.7 30.8 96.4 25.1 18.4 47.1 28.7 94.0
(11, 24) 3.0 10.7 -44.2 19.2 63.4 98.3 >35 16.2 78.6 62.4 98.1

1.5 10.9 -46.3 19.8 66.1 99.5 32.3 16.2 82.6 66.4 98.5
20 5.0 6.6 -30.2 11.6 41.8 96.9 >20 9.2 49.5 40.3 94.0
(7, 13) 3.0 6.5 -32.9 11.9 44.8 96.6 21.5 9.4 51.4 42.0 91.3

1.5 6.4 -29.5 15.5 45.0 96.1 19.8 9.6 52.6 43.0 92.0
TTPs: Two true turning points, See Table 4.3 for the definition of n, β0, E(TP), LCI, UCI, WD, CI.TP%.

When the true turning points occur roughly in the beginning and at the end

of the dataset (i.e. at 10 and 40 when n = 50, at 7 and 27 when n = 35 and

at 5 and 15 when n = 20) (see Figure 4.4(b)) and when β0 decreases, the mean

width of the confidence intervals (WD) increase for n = 50 and n = 35 but for

n = 20 no significant increase is observed. The mean width of the confidence

interval (WD) becomes greater than the sample size when β0 ≤ 1.5 for n = 50

and when β0 ≤ 3 for n = 35. The percentage of true turning points within

95% confidence intervals (CI.TP%) increases when β0 decreases for n = 50 and

n = 35 but for n = 20 the bootstrap method gives the mean widths of confidence

intervals as > 20. When the mean width of the confidence interval is less than

the sample size, the confidence intervals are asymmetric around true turning

points. The first true turning point is closer to the upper confidence level than

it is to the lower confidence level and the second true turning point is closer to

the lower confidence level than it is to the upper confidence level. When the

mean widths of confidence intervals are less than the sample size for n = 50,

the first true turning point is within 95% coverage and the second true turning

point is under the 95% coverage when the WD is small and is above the 95%

coverage when the WD is large. For n = 35, the first and second true turning
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points are within 95% coverage, (see Table 4.7).

Table 4.7: The behaviour of confidence intervals of two estimated change points
when the changes occur at the beginning and the end of the dataset.

n(TTPs) β0 E(TP1) LCI1 UCI1 WD1 CI.TP1% E(TP2) LCI2 UCI2 WD2 CI.TP2%
50 5.0 9.9 7.8 11.3 3.5 95.0 40.6 39.2 42.9 3.7 87.0
(10,40) 3.0 9.9 -14.0 17.7 31.7 96.3 42.4 30.9 71.1 40.2 97.4

1.5 12.0 -48.5 24.7 73.2 95.5 42.2 23.0 103.0 80.0 98.3
35 5.0 7.4 -14.5 13.9 28.4 96.1 27.9 21.8 45.9 24.1 96.9
(7, 27) 3.0 9.5 -42.5 19.4 61.9 96.2 32.6 16.1 78.2 62.1 97.1

1.5 10.2 -43.7 19.7 63.4 97.8 29.7 15.9 78.2 62.3 99.4
20 5.0 6.2 -25.4 11.2 36.6 97.3 >20 9.6 46.6 37.0 98.4
(5, 15) 3.0 6.5 -30.9 11.5 42.4 98.9 >20 9.6 51.8 42.2 98.9

1.5 6.4 -31.6 11.6 43.2 98.9 18.2 9.1 52.2 43.1 100.0
See Table 4.6 for the definition of n, TTPs, β0, E(TP), LCI, UCI, WD, CI.TP%.

In conclusion, constructing accurate confidence intervals for two turning

points from a cubic model using the bootstrap method (percentile confidence

interval) involves that the mean width of the confidence interval should be less

than the sample size and neither very narrow nor very wide which requires

35 ≤ n < 50 and β0 ≥ 5. However, when n ≥ 50, the confidence interval often

covers 95% of the first turning point only.

4.6 Conclusion and discussion

The main aim of this chapter is identifying changes in HAI rates and estimating

when these changes occur which are the estimated turning points from polyno-

mial GLMs. Confidence intervals for estimated turning points are constructed

using the bootstrap method. Both delta and bootstrap methods showed sim-

ilar finding when constructing confidence intervals for the turning point of a

quadratic GLM of MRSA bacteraemia. Simulation studies were carried out to

compare the delta and bootstrap methods on quadratic GLMs and showed that

although the delta method was slightly better, the bootstrap method also gave

reasonable results. The bootstrap method was used with a cubic GLM to con-
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struct confidence intervals for estimated turning points in order to investigate

the coverage and symmetrical properties of confidence intervals.

In polynomial GLMs of HAI rates, estimated turning points when the max-

imum estimated rates start to decrease are of interest to determine which in-

tervention had an impact on reducing the rates of HAIs. For the MRSA bacter-

aemia model, the estimated turning point when the rate starts to decrease at

time 2005.6 has a narrow confidence interval. Estimated turning points when

the maximum rate starts to decrease are almost in the middle of the confidence

interval (roughly symmetric confidence interval) because the model was fitted

well and the data which was modelled showed a gradual change before and

after estimated turning points (similar pattern before and after estimated turn-

ing points), (see Figure 4.1). This change is associated with some interventions

which took place in Scotland such as a cleanliness course, improvement of

antimicrobial prescribing policy and practice as well as other associated inter-

ventions (see Section 4.4).

Furthermore, in the quartic model of CDI in patients over 65 years, the first

estimated turning point has a roughly symmetric confidence interval and it is

very narrow because the trend changed steeply before and after the estimated

turning point. The last two estimated turning points have asymmetric confid-

ence intervals and were overlapping each other because the trend of the rates

of CDI in patients over 65 years changes smoothly (flatter) around those two

turning points. Also, there are not enough data points to estimate the turning

points very precisely because the two turning points occur close to each other

at the end of the dataset, (see Figure 4.2). The upper confidence level is wider

than the lower confidence level because less data point are observed after the

estimated turning point. The first change when the rate decreases is associated
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with improving safety and reliability in health care settings under the Scottish

patient safety programme (SPSP), (see Section 4.4).

The first simulation study used a quadratic GLM and compared the bootstrap

and the delta methods on constructing confidence intervals. The confidence

intervals for the estimated turning points of the quadratic GLM constructed

by bootstrap and delta methods are similar. The application of this result was

confirmed when the confidence interval was constructed for turning point of

MRSA bacteraemia quadratic GLM.

From the simulation, if one change occurs roughly in the middle of the data-

set, confidence intervals of estimated turning points constructed by the delta

and the bootstrap methods are relatively narrow. The trend changes with the

same pattern and there are roughly the same number of data points before

and after the estimated turning point. However, they become larger when β0

decreases. Confidence intervals are symmetric when β0 ≥ 5, otherwise they are

asymmetric because the simulated data are more random when β0 decreases.

On the other hand, if one turning point exists in the beginning or at the end

of the data and the number of data points are different before and after the

estimated turning point, confidence intervals of estimated turning points are

quite wide and become wider when β0 decreases. Also, confidence intervals

are asymmetric where the estimated turning points are often close to the up-

per confidence levels when true turning point occurs in the beginning of data

because there are more data points after the change has occurred. They are

usually close to the lower confidence levels when the true turning point occurs

at the end of data because more data points exist before the change occurred.

Therefore, both methods are good but the delta method gives enhanced 95%

coverage than the bootstrap method in all cases. However, both methods are
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not suitable to construct confidence intervals when n ≤ 20 and β0 ≤ 1.5.

Since the delta method becomes more complicated when applied to more

than two random variables, the bootstrap method is used to construct confid-

ence intervals for estimated turning points from cubic and quartic GLMs. The

performance of the bootstrap method with the cubic model was investigated

in the second simulation study. If two changes occur roughly in the middle of

the dataset or roughly at the beginning and the end, the confidence intervals

for estimated turning points often cover 95% for the first turning point only

when n = 50. These confidence intervals cover 95% for both turning points

when n = 35 and β0 ≥ 5. However, when β0 ≤ 3 the mean width of the confid-

ence interval becomes greater than the sample size and cannot give accurate

95% coverage because the mean width is in excess of the sample size. These

confidence intervals are also asymmetric where the first turning point is close

to the upper confidence level and the second turning point is close to the lower

confidence level except when n ≥ 50 and β0 ≥ 5, the confidence intervals of

two turning points occurring in the middle are almost symmetric. Different

number of data points before and after each turning point and the variability

in simulated data almost result wide confidence interval for each estimated

change point. Therefore, small sample sizes and rare numbers of cases will

affect the mean width of the confidence intervals which may become larger

than the range of the dataset.

Technical issues of the bootstraps and simulations

After the bootstrapping and simulation study have been carried out and the

results are interpreted, some technical issues were improved however, others

need to be developed in further research.
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In some simulated and bootstrapped samples, complex solutions of turning

points were returned when finding the roots of quadratic and cubic equations

(at most 5% of the time) where real parts from the complex numbers are the

same for two turning points. In such cases, these samples were discarded and

the results were calculated from the remaining samples.

Although the change occurring within the range of HAIs data is of interest,

the method of estimating turning points and confidence intervals calculates

all possible turning points at any time even outside the range of dataset. It is

easy to pick up and present the turning points of interest and interpret their

association with interventions. There is a technical issue when calculating con-

fidence intervals of estimated turning points using the bootstrap method. In

each loop, the procedure returns turning points where they are either inside or

outside the range of data then the mean and standard error of turning point

are calculated. This may estimate the mean and confidence levels to be outside

the range of data and can affect the width of the confidence interval. Therefore,

wide confidence intervals can be avoided in future research by discarding the

bootstrapped samples which return at least one turning point outside the range

of data.

In the simulation study when two turning points are assumed, the mean

width of confidence intervals are always greater when the sample size is small

at n = 20 compared to larger sample sizes and they are roughly similar whatever

β0 is. This happens because small sample sizes cannot fit the cubic model very

well, (see Chapter 3). With poorly fitting models there is not enough power

to estimate turning points from a quadratic polynomial function. This is one

reason the confidence interval cannot be constructed in small sample sizes us-

ing the bootstrap method.
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The percentile bootstrap confidence interval method was used to calculate

confidence intervals from bootstrap samples however, this approach may not

be accurate to construct such confidence intervals. This is because for one

turning point and a large sample size or large β0, the percentile bootstrap con-

fidence interval gives narrow confidence intervals and covers less than 95%.

However, with β0 ≤ 3 it often gives confidence intervals with 95% coverage of

the true turning point but the mean width is wider. For two turning points, the

percentile bootstrap confidence interval gives a very large mean width when

β0 ≤ 3. The percentile bootstrap confidence interval usually gives 95% cover-

age for the first true turning point when n ≥ 50 however, this is outwith 95%

coverage for the second true turning point. For small sample sizes the percent-

ile bootstrap confidence interval gives a mean width of greater than the sample

size and this is another reason why a bootstrap confidence interval cannot be

used with small sample sizes. The percentile bootstrap confidence interval

may not particularly give the accurate coverage. Using different methods of

bootstrap confidence intervals such as bias corrected, which takes into account

the constant bias, may improve the bootstrap confidence interval method to

provide 95% coverage in all different sample sizes.

In the simulation study the coefficients β1 and β2 of the quadratic and cubic

models are different for different sample sizes or the location of true turning

points. These coefficients were chosen to produce values of log(λn) to be posit-

ive as much as possible where a Poisson distribution can be used to fit a good

model. Sometimes the simulation gives several zeros in simulated data because

it is simulated randomly from a Poisson distribution. The zero-inflated distri-

bution is then better to fit to such data. Our approach set a Poisson distribution

to fit an appropriate model for each simulated set of data. Therefore, using the
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wrong distribution to fit data with lots of zeros results in poorly fitted models

and produces inaccurately estimated turning points. This often happen when

β0 ≤ 1.5 and the turning point occurs in the beginning or at the end of the

dataset. Choosing β1s and β2s to be slightly different (<0.05) in different sample

sizes may give uncomparable results between different sample sizes. Different

values of β2 produce different curvature for the trend of data in each sample

size. If the curvature is flat, the wide confidence interval of estimated turning

point is expected. If the curvature is spiky, the narrow confidence interval of

the estimated turning point is expected. The mean width of the confidence

interval is associated with the curvature as well as the sample size thus it is

unknown whether the sample size or curvature affects the confidence inter-

val results. The estimated confidence intervals in different sample sizes can

be compared when the coefficient of curvature is the same. To improve the

procedure and have more accurate results of constructing confidence intervals

using bootstrap and delta methods, identical values of β1s and identical values

of β2s in different sample sizes should be chosen. Moreover, various values of

β1s and β2s should be investigated.

Estimated turning points from fitted models of original data occur at min-

imum or maximum values but can be at different regions in the bootstrapped

data. Constructing confidence intervals for the estimated turning points from

HAIs data using the bootstrap method involves re-sampling the data, re-fitting

the model and re-calculating the turning points. These turning points occur

at minimum or maximum values but may or may not be in the same order of

the original data. For example, MRSA bacteraemia fitted model (3.7) estimates

three turning points where the first turning point with minimum rate occurs at

2002.63, the second turning point with maximum rate occurs at 2005.65 and the

third turning point with minimum rate occurs at 2013.8. When constructing
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confidence intervals for these turning points, the algorithm within the boot-

strap method did not take into account that the first turning point must be

a minimum value, the second turning point a maximum and the third turn-

ing point a minimum. This means that the first turning point may occur at a

minimum or a maximum value which can affect the results of the confidence

interval. This rarely happens in our results where MRSA bacteraemia showed

that confidence intervals of the second turning point of MRSA bacteraemia has

a narrow confidence interval which indicates that most of simulations get a

second turning point at a maximum rate so the first and third turning points

must be at minimum rates. This issue should be considered in a simulation

study when small β0 and sample size are assumed. In the simulation study

the wide confidence intervals are observed with small β0 (where the simulated

data are more random) because the bootstrap method did not assume the same

properties of the original turning points being at minimum or maximum values.

The HAIs data were fitted well so this issue was not common. In a simulation

study with small β0 and models not fitting well, this issue can make confidence

intervals inaccurate. Therefore, when the first original turning point occurs at

a maximum value and bootstrap gives a turning point at a minimum value,

this should be modified by rejecting samples when the wrong model is fitted.

If discarding of some samples took place then confidence intervals are likely to

be narrower because aberrant data gives a poorly fitted model. Our approach

is more conservative and a greater width of the confidence interval is expected.

Estimated change points from polynomial models is not the only way to

detect the change in the rate of HAIs. Other methods of detecting the change

points in HAIs data will be discussed in the next chapter.
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Change Points Analysis

Change points analysis uses several methods to fit count data and to identify

one or more statistically significant change points. It is possible to identify how

many change points should be estimated. Change points statistical inference

has two main issues where the first issue involves detecting the existence of

change and the second involves estimating the number of change points and

their locations [Chen and Gupta (2011)]. Estimated change points from poly-

nomial GLM regression was discussed in the previous chapter. These points

are located either at the time or slightly after the healthcare interventions took

place. A list of interventions which took place is given in Table 1.2 and the

times of these interventions are illustrated in Figure 5.1.

It is important to know which healthcare interventions impact healthcare as-

sociated infections (HAIs) and this can be established by fitting an appropriate

change point model. This chapter aims to present a general approach to de-

tect change points where infection rates change significantly and to determine

which interventions are associated with these changes.

Segmented regression designs are used to discover change points where the
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rates change significantly after specific interventions. The segmented regres-

sion in this research aims to find if all, some or none of these interventions have

an impact on the rate of HAIs and to determine which of these interventions

have had the most potential impact. Joinpoint analysis is used to estimate the

existence of change points at unspecified times and estimate their location. The

joinpoint method considers all data points and looks for change points whereas

segmented regression only looks for the potential change points at data points

that correspond to interventions.

This chapter explains segmented regression and joinpoint analyses where

in Section 5.1, segmented regression analysis is explained. The method of

segmented regression analysis is applied to HAI data in Section 5.1.3. Devel-

opment of joinpoint analysis is illustrated in Section 5.2 where Section 5.2.3

includes the applications of the joinpoint method to HAI data. Profile like-

lihood and bootstrap confidence intervals are compared using a simulation

study in Section 5.3. Finally, the discussion is presented in Section 5.4.

5.1 Segmented regression analysis

One of the methods of detecting change points is the segmented regression

analysis. This method is used to estimate the impact of an intervention on the

rates where they change significantly after a specific intervention [Wagner et al.

(2002)]. Segmented regression analysis investigates the pattern of data before

and after the intervention took place to determine whether the pattern changed

significantly after the intervention. The idea of this analysis is to use several

linear models to fit the data in order to find one or more statistically significant

change points. Segmented regression is an approach where possible changes

in trend are fixed at specific time points when interventions took place which

means that a new trend (segment) will start from the same position of the end
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Figure 5.1: The time point of when interventions took place in Scotland. One
line (blue) indicates that only one intervention took place in a quarter
i but two lines (blue and red) indicate that multiple interventions
took place in a quarter i.

of the previous segment.

The Wagner et al. (2002) method is used to fit the segmented regression

model. By using the Poisson model with seasonality, the general segmented

regression model for the rates of HAIs is obtained as:

log(Cases(t)) ∼ offset(log(AOBDs(t))) + α0 + β0t + γQu(t)

+ α1Int(t, i) + β1t∗(i), t∗(i) = t − t(i),
(5.1)

where i indicates the quarter number when the intervention took place (see

Table 1.2), Cases(t) is the incidence of HAIs, AOBDs(t) is the population at risk

and t is the year. Int(t, i) is a dummy variable which indicates time i occurring

before the intervention at quarter i (Int(t, i) = 0, t ≤ i) or after the intervention

at quarter i (Int(i) = 1, t > i). t∗(i) is a continuous variable counting the time
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after the intervention at quarter i (coded 0 before the intervention at quarter

i and (t − t(i)) after the intervention at quarter i). The coefficient α0 estimates

the intercept (baseline level which is before the intervention at quarter i), the

coefficient α1 estimates the change in the level after the intervention at quarter

i and α0 + α1 estimates the level after intervention at quarter i. The coefficient

β0 estimates the change in the slope of the rate of HAIs before the intervention

at quarter i (baseline slope), the coefficient β1 estimates the change in the slope

and the estimate of the slope after the intervention at quarter i is β0 +β1. Finally,

the coefficient γ estimates the seasonal effect (Qu) and log(AOBDs) is an offset

variable (the denominator of the rate) which has a coefficient of 1.

By fitting model (5.1) using a Poisson distribution to the MRSA bacteraemia

data and choosing the intervention after two years of data (8 time points) which

is at Qu1, 2005 (i.e i = 9 as the time of change), the level after intervention at

i = 9 increased suddenly and the trend decreased (see Figure 5.2). This type

of effect (an instantaneous increase or decrease in rates) may not be reasonable

when considering interventions which potentially will modify the trend in

the rates over time. Moreover, the aim of interventions is to investigate the

reduction on the rate of MRSA bacteraemia, therefore a sudden rise of the rate

after intervention followed by a reduction at the same time is not logical. As a

result, the effect of change in the level (Int(t, i)) was omitted from model (5.1)

to avoid the jump of the trend at the same time. The model is refitted as:

log(Cases(t)) ∼ offset(log(AOBDs(t))) + α0 + β0t(i) + γQu(t) + β1t∗(i). (5.2)
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Figure 5.2: Segmented regression model (5.1) for the rate of MRSA bacteraemia
with change in the slope and level at Qu1, 2005.

5.1.1 Determining the number of data points (time points)

If an intervention takes place towards the beginning of the data series (see Table

1.2 and Figure 5.1), the slope before the occurrence of the intervention is based

upon few observations whereas the slope after the intervention has taken place

is based on many observations. If the intervention is in the middle of the data,

both slopes are based upon similar numbers of observations. To investigate

the impact of the number of observations on the detection of a change point,

three data sets are investigated.

To explain these three sets of data, MRSA data is used as an example and

the number of data points is chosen in each part according to an intervention

taking place roughly in the middle of all the datasets (i.e. at time point i = 21

(Qu1, 2008)).
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All data points before and after the intervention

The first approach is to use all data points before and after each intervention at

quarter i to fit the segmented regression model (5.2). The residual deviance is

used as a measure of goodness of fit where the best fitted model has the lowest

residual deviance. The residual deviance can be used to compare models

because the same number of data points are used for each intervention to fit

the model. However, fitting the linear trend cannot fit the data well over a

long period of time (see Figure 5.3) and therefore a shorter period of data is

investigated (see Section 5.4.1 for explanation). One or more interventions can

be detected using all datasets because the same data are used each time when

fitting a segmented regression model, therefore one or more interventions may

impact the rate.

Two years of data after the intervention

The second approach is to consider all data points before an intervention at

quarter i and eight points of data after each intervention at quarter i (i.e. the

data points after each intervention are always the same size (8 observations))

to fit model (5.2), (see Figure 5.3). The significance of using all data before the

intervention is to make sure that there is enough data before the intervention

to detect the change after the intervention. Eight points after the intervention

are used to investigate the impact of an intervention on the rates of two years.

Eight data points after intervention is also used to have sufficient data to detect

the change and two years seems reasonable enough to detect the change. For

example, when the intervention took place at time Qu1, 2008, the data from

Qu1, 2003 to Qu1, 2010 is used to fit the segmented regression model. Residual

deviance cannot be used to compare models as at each intervention at quarter i,

different data points are used. The deviance is calculated based on the saturated

model (a model with a parameter for every observation, see Equation 3.2) and
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Figure 5.3: Different types of number of data points in segmented regression.

when using all data points before and after the intervention (observations are

always the same in each model), the saturated model is always the same.

In each model with a different point of intervention, the proposed models

have the same number of parameters therefore deviances can be compared.

However, when using all data before the intervention and 8 points after the

intervention (observations are different in each model), the saturated model is

different in each model where the intervention took place and the proposed

models do not have the same number of parameters therefore, deviances are

not comparable. Here the percentage of deviance explained (PDE) is used to
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measure the goodness of fit.

Percentage of deviance explained (PDE)

Percentage of deviance explained is a measure of goodness of fit of a model

where this measure is analogous to R2 in linear regression where the largest

PDE indicates a good fit. The PDE is obtained as:

PDE =

(
1 −

(
Deviance of proposed model

Deviance of null model

))
× 100, (5.3)

where the null model includes the intercept only which is obtained as:

log(rate) = 1. (5.4)

Two years of data before and after intervention

The third approach uses four years of data (8 points of data before and 8 points

of data after each intervention at quarter i) to fit the segmented regression model

(5.2), (see Figure 5.3). The choice of two years of data before and two years after

each intervention is to provide enough residual degrees of freedom where each

model has a linear effect of time and a seasonal effect. For example, when the

intervention took place at time Qu1, 2008, the data from Qu1, 2006 to Qu1, 2010

is used to fit the segmented regression model. Having the same number of data

points avoids length data bias where the number of observations is equal before

and after each intervention. However, the residual deviance cannot be used to

compare models because at each intervention at quarter i different observations

are used. The saturated models are different and proposed models have the

same number of parameters but the model is fitted at different observations.

Again, the percentage of deviance explained (PDE) is used to measure the

goodness of fit.
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5.1.2 The algorithm of segmented regression analysis

To fit the segmented regression model to the data of HAIs using all data points,

residual deviances are used as a measure of goodness of fit. The best fitted

segmented model can have one or more change points, (see R code in Appendix

C.1). The algorithm is:

1. Fit segmented regression models (5.2) with one intervention at each time

when interventions have occurred and save the residual deviance of each

model.

2. Choose the model with the least residual deviance and save it as the

segmented regression model with one change point.

3. Fit segmented regression models with two interventions where the first

intervention is fixed as the change point obtained from the previous step

(2) and the second intervention is each intervention implemented after

the fixed change point.

4. Choose the model with the least residual deviance and save it as the

segmented regression model with two change points.

5. Use the likelihood ratio test (LRT) to test the differences between the

model with one change point and model with two change points. If

p<0.05 then the model with two change points is significantly better than

the model with one change point, otherwise, the model with one change

point is better.

6. Repeat the same process to fit segmented regression models with more

interventions until the segmented model with n interventions is not sig-

nificantly different from the model with n − 1 interventions. The model

with n−1 interventions is the best model to detect the change in the trend

of rate.
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However, to fit the segmented regression model to the data of HAIs using

all data points before the intervention and two years of data after intervention,

the best fitted segmented model can have only one change point which has the

largest percentage of deviance explained (PDE). The algorithm is:

1. Choose the subset of data according to when the intervention took place.

If intervention took place at quarter i, then the subset data is from the first

point of current data until the point i + 8.

2. Fit null model (5.4) based on the subset of data in step (1).

3. Fit segmented regression models (5.2) with one intervention at each time

when interventions took place within the subset of data and calculate the

PDE of each model as in Equation (5.3).

4. The model with the largest PDE is the best fitted segmented model.

The best fitted segmented model using two years of data before and after

an intervention has a similar algorithm to the segmented regression model

using all data points before the intervention and two years of data after an

intervention. However, in this case if the intervention took place at quarter i,

the subset of data is chosen within the interval [i − 8, i + 8].

5.1.3 Segmented regression model of HAIs

In addition to modelling the rates of healthcare associated infections and estim-

ating the change points from polynomial fitted models (see Chapter 4), change

point analysis using segmented regression is another way to detect changes in

the rates of HAIs. Given a series of interventions implemented from 2004 to

2011 (see Table 1.2), segmented regression models were fitted at each interven-

tion in order to test which intervention leads to a significant change in the rate

of healthcare associated infections.
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MRSA bacteraemia

In order to assess which intervention had an impact on the rate of MRSA

bacteraemia, three different approaches were considered to fit model (5.2). The

data was monitored quarterly as three month periods (i.e. four observed points

in one year) from January 2003 to September 2014.

1. Consider all data before and after each intervention at quarter i. The re-

sidual deviance can be used to compare models because exactly the same

number of data points were used for each intervention to fit the model.

Using Poisson distribution to fit model (5.2) with each intervention found

that the intervention at Qu2, 2006 gave the least residual deviance (83.60

on 41 degrees of freedom). However, given the time when the first in-

tervention took place (Qu2, 2006), the second intervention at Qu2, 2008

gave a model with two interventions and the residual deviance is 57.68

on 40 degrees of freedom. The model with two interventions is signific-

antly different from the model with one intervention (p<0.001). Also, the

model with three interventions at Qu2, 2006, Qu2, 2008 and Qu1, 2011

is significantly better than the model with two interventions (p<0.001).

The segmented model with three interventions is the best model (residual

deviance is 47.94 on 39 degrees of freedom) to fit the data and to describe

the change. (See Table 5.1 and Figure 5.4).

2. Consider all data points before an intervention at quarter i and two years

of data points (8 observations) after each intervention at quarter i. Using

a Poisson distribution, the fitted model (5.2) with intervention at Qu2,

2009 has the largest PDE=87.2%, (see Table 5.1). The change point then

occurs at Qu2, 2009 when the rate of MRSA bacteraemia changed.

3. Consider two years of data (8 observations) before and two years of data

after each intervention at quarter i. Percentage of deviance explained
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(PDE) is used to measure the goodness of fit and by using a Poisson

distribution, the fitted model (5.2) with intervention at Qu3, 2009 has the

largest PDE=98.2% with significant change in slope, (see Table 5.1). The

intervention at Qu3, 2009 was seen to have an impact on the rate of MRSA

bacteraemia.

Table 5.1: Change points results of segmented regression analysis.
Infection Segmented points Segmented point Segmented point

All data All B and 2 years A 2 years B and A
MRSA Qu2, 2006 Qu2, 2009 Qu3, 2009
bacteraemia Qu2, 2008

Qu1, 2011
DV:47.94, DF:39 PDE=87.2% PDE=98.2%

MSSA Qu2, 2006 Qu2, 2006 Qu2, 2009
bacteraemia DV:86.65, DF:32 PDE=48.1% PDE=63%
CDI in patients Qu4, 2007 Qu2, 2008 Qu4, 2009
over 65 years Qu4, 2009

DV:460.16, DF:25 PDE=97.5% PDE=98.9%
CDI in patients Qu4, 2009 Qu4, 2009 Qu4, 2009
aged 15-64 years DV:43.76, DF:16 PDE=86.3% PDE=86.3%

A: After, B: Before, Qu: Quarter, DV: Residual deviance, DF: Degrees of freedom, PDE: Percentage of deviance
explained.

MSSA bacteraemia

Fitting segmented regression models using all data of MSSA bacteraemia from

April 2005 to September 2014 before and after each intervention at quarter i

with quasi-Poisson distribution gave 86.6525 residual deviance on 32 degrees of

freedom at Qu2, 2006, (see Figure 5.5). However, the coefficient of slope after the

intervention is not significant (p=0.098) which indicates no evidence of change.

If is considered there is an intervention at Qu2, 2006, there is no evidence of

a second intervention (p>0.05). Poisson regression was used to fit all data

before an intervention at quarter i and 8 points of data after each intervention

and 48.1% percentage of deviance was explained at Qu2, 2006 with significant

change in slope after the intervention (p<0.05). However, the PDE=63% at
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Figure 5.4: Segmented regression model for the rate of MRSA bacteraemia with
three change points when using all data points.

Qu2, 2009 when two years of data before and after each intervention at quarter

i was assumed but the coefficient of slope after intervention at Qu2, 2009 is not

significant different from from the slope before the intervention, (see Table 5.1).

CDI in patients over 65 years

Fitting segmented models with quasi-Poisson regression using data from Octo-

ber 2006 to September 2014 identifies the change points. Using all data before

and after each intervention at quarter i gave two significant change points at

Qu4, 2007 and at Qu4, 2009 with residual deviance of 460.16 on 25 degrees

of freedom, (see Figure 5.6). However, using Poisson regression to fit all data

before an intervention at quarter i and 8 points of data after each intervention at

quarter i showed that Qu2, 2008 had the largest PDE=97.5%. Fitting segmented

models with one change point and two years of data before and two years after

each intervention at quarter i showed Qu4, 2009 had the largest PDE=98.9%,

(see Table 5.1).
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Figure 5.5: Segmented regression model for the rate of MSSA bacteraemia with
one change point when using all data points.
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Figure 5.6: Segmented regression model for the rate of CDI in patients over 65
years with two change points when using full dataset.
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CDI in patients aged 15-64 years

Fitting segmented models with Poisson distribution to the data of CDI in

patients aged 15-64 years gave the following results. Using all data from April

2009 to September 2014 before and after each intervention at quarter i gave

the model with Qu4, 2009 as the smallest residual deviance of 43.76 on 16

degrees of freedom was observed, (see Figure 5.7). Using all data before an

intervention at quarter i and 8 points of data after each intervention at quarter

i showed the same result when using two years of data before and after each

intervention at quarter i where Qu4, 2009 has the largest PDE=86.3% with

significant parameter of change after the intervention, (see Table 5.1).
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Figure 5.7: Segmented regression model for the rate of CDI in patients aged
15-64 years when using all data points.

In conclusion, segmented regression analysis describes and detects the change

in trend of HAI rates when the interventions took place. Using the full dataset

(all data points) to describe the trend shows that for long periods of time, more

than one intervention had an impact on the rate of HAIs (see Section 5.4.5 which

explains the detected change points in relation to the interventions). However,

167



Chapter 5 Change Points Analysis

choosing a subset of the data points (e.g. two years before and two years after

the intervention) that is related to the intervention detects one change point

because different subsets are used to detect different interventions. Small sub-

sets show good fitted models (linear trends) but give less accuracy to compare

models because different sets of data are used at each intervention.

If using all the data points detects more than one intervention, one of these

interventions is likely to equate or is similar to an intervention identified by

the segmented regression model from a subset of the data. For example, all

data before and two years after the intervention detects a point close (one year

after where this is a short time relative to the time that it may take for an

intervention to have an impact) to the second change point from the full data

for MRSA bacteraemia and detects the change point from the full dataset for

MSSA bacteraemia. Also, it detects a point that is close (two quarters after) to

the first change point from the full data for CDI in patients over 65 years and

detects the change point from the full data for CDI in patients aged 15-64 years.

Moreover, two years of data before and two years after the intervention detects

a point close (five quarters after) to the second change point from the full data

for MRSA bacteraemia. It also detects the second change point from the full

dataset for CDI in patients over 65 years. In conclusion, the time when specific

interventions took place may are not the time of change on the rate where the

significant change may occur after the intervention had taken place. The next

section is looking for the significant change at all possible data points and then

attribute any change to the intervention had taken place.

5.2 Joinpoint analysis

Joinpoint analysis is used to estimate change points when the rate changes at

unspecified times (i.e. at all possible points in the dataset). Using joinpoint
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statistical software [NCISR (2017)] shows the trend of data and fits the simplest

joinpoint model (includes year only) that the data allow. The minimum and

maximum number of joinpoints is given and the program starts with the min-

imum number of joinpoints and tests whether more joinpoints are statistically

significant and therefore can be added to the model (up to the maximum num-

ber). The permutation method (test of significance) is used to select the number

of joinpoints. A grid search method considers every possible change point and

searches for the minimum deviance. It has a discrete number of locations that

are tested to find the best fitting model and joinpoints occur exactly at one or

more times when the rates change [Kim et al. (2000)]. Using a similar idea to

Kim et al. (2000), the joinpoint model was modified to include the seasonality

as a factor and algorithm is rewritten in R programming language [R Core

Team (2014)].

5.2.1 Joinpoint analysis algorithm

The algorithm of the joinpoint analysis is as follows, (see R code in Appendix

C.2.1):

1. Set minimum (min) and maximum (max) number of joinpoints with as-

sumption of max-min ≥ 2.

2. Use Equation (5.2) with Poisson distribution to fit the null models with

the minimum number of joinpoints and alternative models with the max-

imum number of joinpoints to the data. Here i in Equation (5.2) indicates

the number of time points (i.e. all possible time points during period of

study except first and last points).

3. Find the best fitted model from null models and the best fitted model

from alternative models by using a grid search method considering one

point of data between every possible joinpoints.
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4. Permute the residuals from the chosen null model (100 times) and use

them to get permuted counts.

5. The permuted counts are calculated using Pearson residuals and are ob-

tained from:

Permuted counts = EN + Pearson residuals ×
√

EN, (5.5)

where EN is the expected values of the null model.

6. Use permuted counts to fit the alternative model and find the smallest

permuted deviances.

7. The permutation test is calculated to find the p-value for accepting or

rejecting the null model.

a) Find the change in deviance from the original data (X= deviance of

null model - deviance of alternative model).

b) Find the change in deviance from permuted data (Y= deviance of

null model - permuted deviances of alternative model).

c) Calculate the p-value of the permutation test as
∑

I(Y > X)/(length(Y)+

1) where I(Y > X) = 1; Y > X and 0; otherwise.

8. Use Bonferroni correction to adjust the significance level of 5% [Kim

et al. (2000)]. If p<0.05/(max-min), reject the null model and accept the

alternative model then do the same analysis using the same alternative

model and set the null model as (minimum number of joinpoints+1).

9. If p>0.05/(max-min), accept the null model and reject the alternative

model then do the same analysis using the same null model and set

the alternative model as (maximum number of joinpoints-1).
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10. Repeat the analysis until the difference between the null model and al-

ternative model becomes 1 (i.e. max-min=1).

11. The number of joinpoints and their location can then be estimated from

the last accepted model.

5.2.2 Constructing confidence intervals for joinpoints

After detecting joinpoints using the above technique with a grid search method

and permutation test, a confidence interval for the joinpoint is obtained. Two

different methods were used to construct confidence intervals for joinpoints

in count data; profile likelihood confidence intervals and bootstrap confidence

intervals.

5.2.2.1 Profile likelihood confidence interval for one joinpoint

The profile likelihood confidence interval is based on the asymptotic chi-square

distribution of the log-likelihood ratio test statistic. The 95% confidence inter-

val for the joinpoint can then be computed by adding χ2
(0.95,1) = 3.84 to the

minimum value of the residual deviance function which was calculated from

each joinpoint model (residual deviance for each joinpoint model), where the

deviance is defined in Equation (3.2) [Royston et al. (2007)]. R code was written

to plot and calculate the confidence interval for estimated joinpoint (see Ap-

pendix C.2.3). Residual deviances from joinpoint models were calculated and

the curve of the deviance function (Y axis is the residual deviances of joinpoint

models and X axis is the set of estimated joinpoints) is plotted. The curve is

roughly polynomial with a single smallest minimum where deviances start

to decrease and at the smallest deviance (estimated joinpoint has the smallest

residual deviance) start to increase again. A horizontal line hl is plotted based

on the minimum deviance plus 3.84 and two points of intersection between the

curve of deviance function and the horizontal line are identified. These two
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points are the lower and upper confidence limits of the estimated joinpoint (see

Figure 5.8). This method cannot be used for constructing confidence intervals

for more than one joinpoint. It is based on the value of deviance and the es-

timated joinpoint from the joinpoint model. If the model has two estimated

joinpoints associated with one value of deviance, the deviance function is then

related to two joinpoints and the curve of the deviance function cannot be

plotted.
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Figure 5.8: Profile likelihood confidence interval for the joinpoint. A black
curve is based on the residual deviance of each joinpoint model, the
blue line is a horizontal line and the confidence interval of estimated
joinpoint in red lines. The estimated joinpoint is 20 with 95%CI
(18.2389, 21.5311).

5.2.2.2 Bootstrap confidence interval for joinpoints

Since the best joinpoint model is fitted and defines the number and location

of joinpoints, the 95% confidence intervals for joinpoints can be constructed

by bootstrapping. The 95% confidence intervals for joinpoints were calculated

by using the algorithm of joinpoint within the bootstrap and then using the
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function quantile at 0.025 and 0.975 in R. The algorithm for constructing con-

fidence intervals by bootstrapping semi-parametric re-sampling is as follows

(see Appendix C.2.3):

1. Use the last accepted joinpoint model using glm as explained in Section

5.2.1. This model is called the original joinpoint model.

2. Obtain the fitted values ŷi (using function predict in R) and Pearson

residuals ε̂i =
yi−ŷi√

ŷi
(using function residuals in R).

3. For one bootstrap, re-sample the residuals and save a new response

variable y∗i by adding the re-sampled residuals to the fitted values as

y∗i = ŷi + ε̂i ×
√

ŷi.

4. Round y∗i to be integer values.

5. Use the new responses (bootstrap data) to fit the best fitted joinpoint

model with the same number of joinpoints as in the original model by

using glm function in R. This step is searching only for the location of

the joinpoints where the number of joinpoints is fixed as in the original

joinpoint model. For example, if the original model has two joinpoints,

then the algorithm searches for the best fitted model (smallest deviance)

with one joinpoint then given the first joinpoint, the algorithm searches

for the best fitted model with the second joinpoint.

6. Save the location of joinpoints from the best fitted model. These points

are called bootstrapped joinpoints.

7. Repeat steps 3 to 6, 1000 times to obtain bootstrapped joinpoints.

8. Calculate 95% confidence intervals for the original joinpoints by using

the bootstrapped joinpoints to find (quantile) at 0.025 and 0.975 in R.
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5.2.3 Joinpoint analysis of HAIs

Joinpoint regression analysis is used to estimate change points from full data-

sets. It is used to identify the best fitting model where a statistically significant

change in the trend of rates over time occurred. The analysis starts with the

minimum number of joinpoints (zero), and tests whether one or more join-

points are statistically significant and should be added to the model (up to

three joinpoints). Each joinpoint in the final model indicates a statistically

significant change in the trend. Adding seasonality to the previous model

of joinpoint [NCISR (2017)] may give different results on MRSA bacteraemia,

MSSA bacteraemia, CDI in patients over 65 years and CDI in patients aged

15-64 years.

MRSA bacteraemia

Using joinpoint software [NCISR (2017)] to analyse the rate of MRSA bacter-

aemia in Scotland from January 2003 to September 2014, the joinpoint model

will be linear trends on the log rate of MRSA bacteraemia. The minimum num-

ber of joinpoints was fixed at 0 and the maximum at 3. The maximum number

is chosen to be three where short period of data points does not expect more

than three and previous method (polynomial method) detected three turning

points only. Figure 5.9 shows the fitted joinpoint model which used a grid

search method with uncorrelated errors. There is one significant change point

at Qu1, 2007.

The joinpoint model was developed by adding the seasonality factor to the

previous model (model with year only). By applying the method in Section

5.2, one significant joinpoint at Qu2, 2007 (residual deviance is 64.352 on 41

degrees of freedom) was observed in the trend of MRSA bacteraemia, see Table
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5.2 and Figure 5.10.

A 95% profile likelihood confidence interval for MRSA bacteraemia joinpoint

is (16.21, 19.22)≈ (Qu4, 2006- Qu3, 2007) and 95% bootstrap confidence interval

is (17, 19) ≈ (Qu1, 2007- Qu3, 2007). These are approximately similar however

the bootstrap confidence interval is slightly narrower and needs much more

computation than the profile likelihood confidence interval.
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Figure 5.9: Joinpoint model for the rate of MRSA bacteraemia using joinpoint
software ([NCISR (2017)]). The best fitted line (red line) with join-
point at Qu1, 2007 (black line) and black squares are the observed
rate.
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Figure 5.10: Joinpoint model for the rate of MRSA bacteraemia using joinpoint
developed method. The best fitted line with seasonal effect (red
line) with joinpoint at Qu2, 2007 and 95% bootstrap confidence
interval (black lines) and black circles are the observed rate.

Table 5.2: Change points results of joinpoint analysis.
Infection JPs by JPs Confidence interval for joinpoint

NCISR Bootstrap Profile likelihood
MRSA Qu1, 2007 Qu2, 2007 (Qu1, 2007 - Qu3, 2007) (Qu4, 2006 - Qu3, 2007)
bacteraemia
CDI in Qu2, 2008 Qu2, 2008 (Qu1, 2008 - Qu3, 2008)
patients Qu1, 2011 Qu1, 2011 (Qu4, 2010 - Qu2, 2011)
over 65 years
CDI in patients Qu2, 2010 Qu3, 2010 (Qu2, 2010 - Qu1, 2011) (Qu2, 2010 - Qu4, 2010)
aged 15-64 years

JPs: Joinpoints, Qu: Quarter.

MSSA bacteraemia

For MSSA bacteraemia, using the joinpoint software model and the developed

joinpoint model with seasonality did not identify any joinpoints between April

2005 and September 2014. This result is equivalent to the fitted model (3.8)

where the log rate of MSSA bacteraemia has a linear trend.
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CDI in patients over 65 years

Applying joinpoint software and the developed joinpoint model with seasonal

effect to the data of CDI in patients over 65 year where the data ranged from

October 2006 to September 2014, two joinpoints were found. The first joinpoint

is at Qu2, 2008 and the second is at Qu1, 2011 with residual deviance 138.86 on

25 degrees of freedom, (see Figures 5.11 and 5.12). A 95% bootstrap confidence

intervals for the first joinpoint is (Qu1, 2008 - Qu3, 2008) and for the second

joinpoint is (Qu4, 2010 - Qu2, 2011), (see Table 5.2). The profile likelihood

confidence interval cannot be used here because two joinpoints are detected.
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Figure 5.11: Joinpoint model for the rate of CDI in patients over 65 year using
joinpoint software ([NCISR (2017)]. The best fitted line (red line)
with joinpoint at Qu2, 2008 and Qu1, 2011 (black lines) and black
squares are the observed rate.

CDI in patients aged 15-64 years

For data of CDI in patients aged 15-64 years from April 2009 to September 2014,

the joinpoint software [NCISR (2017)] found one joinpoint at Qu2, 2010, (see

Figure 5.13). Using the joinpoint model with seasonal effect gave one joinpoint
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Figure 5.12: Joinpoint model for the rate of CDI in patients over 65 year using
joinpoint developed method. The best fitted line with seasonal
effect (red line) with joinpoints at Qu2, 2008 and Qu1, 2011 and
95% bootstrap confidence interval (black lines) and black circles
are the observed rate.

at Qu3, 2010 with residual deviance 20.57 on 16 degrees of freedom, see Figure

5.14 and Table 5.2.

A 95% bootstrap confidence interval for the joinpoint is (Qu2, 2010- Qu1,

2011) and 95% profile likelihood confidence interval is (29.74, 32.30) ≈ (Qu2,

2010- Qu4, 2010). The profile likelihood confidence interval is slightly narrower

than the bootstrap confidence interval.

In conclusion, seasonality affects the location of joinpoints where the rates of

MRSA bacteraemia and CDI in patients aged 15-64 years changed significantly.

The developed joinpoint model shows the importance of seasonality on the

rate of infections. The detected joinpoints in relation to the interventions are

explained in Section 5.4.5.
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Figure 5.13: Joinpoint model for the rate of CDI in patients aged 15-64 years
using joinpoint software ([NCISR (2017)] ). The best fitted line (red
line) with joinpoint at Qu2, 2010 (black line) and black squares are
the observed rate.
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Figure 5.14: Joinpoint model for the rate of CDI in patients aged 15-64 years us-
ing joinpoint developed method. The best fitted line with seasonal
effect (red line) with joinpoint at Qu3, 2010 and 95% bootstrap
confidence interval (black lines) and black circles are the observed
rate.
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5.3 Comparing profile likelihood and bootstrap

methods for confidence intervals of one

joinpoint

Profile likelihood and bootstrap methods are used to construct confidence

intervals for change points from joinpoint models. In the results of HAIs,

although both methods showed similar results, one method gives wider con-

fidence interval than the other method with different infections. A simula-

tion study was carried out to determine which method is better to use (see

algorithm code in Appendix C.2.4). Based on 200 simulations and a signific-

ance level of 5%, the range (92%- 98%) is consistent with 95% coverage (i.e.

(0.95 ± z1−(α/2)
√

0.95 × 0.05/200) × 100 ≈ (92% − 98%), z1−(α/2) = 1.96).

Different sample sizes (50, 35 and 20) were assumed to simulate data accord-

ing to the initial model. The initial models are considered with one true turning

point (x0) where x0 can occur in the beginning, at the end or in the middle (see

Figure 5.15). The original models are as follows:

1. Quadratic polynomial model where the pattern of the data is curved with

one true turning point,

log(λn) = β0 + β1(x − x0) + β2(x − x0)2,

where λn is the observed data, β0 is the intercept which is assumed to be

5, β1 is the coefficient of the slope (linear term) and β2 is the coefficient of

quadratic term.

2. Segmented regression model,

log(λn) = β0 + β1(x − x0) + β2(x − x0)I(x),
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where β1 is the coefficient of the slope before the change, β2 is the coeffi-

cient of change in the slope and I(x) is an indicator function of x where,

I(x) =


1 x ≥ x0,

0 x < x0.

3. Combined model (quadratic and segmented with one turning point),

log(λn) = β0 + β1(x − x0) + β2(x − x0)2 + β3(x − x0)I(x),

where β1 is the coefficient of the slope (linear term) , β2 is the coefficient

of quadratic term and β3 is the coefficient of change in the slope.

Different values of βis are assumed. β0 = 5 is chosen in all cases of sample

size, original model and the location of x0. β1s are identical and β2s are identical

when original models are quadratic and combined in all cases of sample size

and location of x0 (i.e. β1 = 0.001 and β2 = −0.003). However, when original

model is segmented, β1 = 0.005 and β2 = −0.03. In a combined model, the coef-

ficient of slope after change (β3 = −0.01) is slightly different from the coefficient

of slope after change in segmented regression (β2 = −0.03).

The mean width of the confidence interval (WD) and the percentage of true

turning points within the confidence interval (CI.TP%) were used to determine

the best method of constructing confidence interval of one joinpoint. By using

R programming language, the algorithm for simulation study is as follows:

1. Generate data according to Poisson distribution,

Yn ∼ Poisson(λn),
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Figure 5.15: The locations of true turning point when the data is simulated
(black circles) from segmented original model (red line).

where Yn is a simulated count data, λn is the observed data of the original

model (quadratic, segmented or combined) and n is the sample size.

2. Use simulated data to estimate the best joinpoint model with one joinpoint

which has the smallest deviance (see Section 5.2.1).

3. Save the simulated value of joinpoint from the simulated joinpoint model

in step 2.

4. Use the profile likelihood method to construct a confidence interval for

the simulated value of joinpoint (see Section 5.2.2.1) from step 3 and save

the results.
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5. Use the bootstrap method (500 times) to construct a confidence interval

for the simulated value of joinpoint (see Section 5.2.2.2) from step 3 and

save the results.

6. Repeat the simulation (from step 1 to step 5) 200 times to have sets of

confidence intervals from both profile likelihood and bootstrap methods.

7. Use the mean width of the simulated confidence intervals (WD) and the

percentage of simulated confidence intervals including the true turning

point x0 to compare two methods.

Results of the simulation

Table 5.3 shows the results of profile likelihood and bootstrap confidence in-

tervals for the joinpoint modelling when the true turning point occurs in the

middle, beginning and at the end of the dataset. Not applicable (NA) is recor-

ded in Table 5.3 for the profile likelihood method in the case of a small sample

size (n < 35), (see Section 5.4.3 for explanation). The results of the profile

likelihood method are also not applicable in small number of cases (β0 < 5)

therefore, β0 is chosen to take the value of 5 only.

When the true turning point occurs in the middle, beginning or at the end

of data and if n ≥ 35 and the data is simulated from a quadratic or combined

models, the mean width (WD) of the bootstrap confidence interval is less (with

small differences) than the mean width of profile likelihood confidence inter-

val. When n ≤ 20, the profile likelihood method cannot construct a confidence

interval (see Section 5.4.3) so a comparison was not made between profile and

bootstrap methods for small sample sizes (n ≤ 20). However, if the data is

simulated from a segmented model, the mean width of the profile likelihood

confidence interval is less than the mean width of the bootstrap confidence

183



Chapter 5 Change Points Analysis

Table 5.3: Profile likelihood and bootstrap confidence intervals for estimated
change points from the joinpoint model.

Change in the middle Profile likelihood method Bootstrap method
O.M Sample size (TTP) WD CI.TP% WD CI.TP%

Quadratic 50 (25) 2.5 63 2.2 44
35 (18) 3.6 72 3.0 46
20 (10) NA NA 5.9 59

Segmented 50 (25) 6.8 93 7.8 90
35 (18) NA NA 11.6 94
20 (10) NA NA 13.2 93

Combined 50 (25) 2.3 70 2.0 33
35 (18) 3.2 80 2.7 44
20 (10) NA NA 5.3 63

Change in the beginning
Quadratic 50 (13) 3.0 0 2.4 0

35 (9) 3.6 0 3.4 0
20 (5) NA NA 6.7 31

Segmented 50 (13) 8.9 89 11.3 86
35 (9) NA NA 19.2 93
20 (5) NA NA 15.4 95

Combined 50 (13) 2.9 0 2.3 0
35 (9) 3.6 0 3.4 0
20 (5) NA NA 6.6 25

Change at the end
Quadratic 50 (38) 2.9 0 2.3 0

35 (26) 4.0 0 3.3 0
20 (15) NA NA 6.5 32

Segmented 50 (38) 8.4 90 10.1 92
35 (26) NA NA 15.8 93
20 (15) NA NA 14.7 92

Combined 50 (38) 2.9 0 2.2 0
35 (26) 3.6 0 3.3 0
20 (15) NA NA 6.1 34

O.M: Original model, TTP: True turning point, WD: Mean width of confidence interval, CI.TP%: Percentage of true
change points within the confidence interval, NA: Not applicable (no confidence interval is constructed by profile
likelihood method).
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interval when n ≥ 50. However when n ≤ 35, no confidence interval is con-

structed by the profile likelihood (see Section 5.4.3).

When the true turning point occurs in the middle and the original model is

segmented, the profile likelihood covers 95% (i.e. within interval (92%- 98%))

of true turning point when n ≥ 50 but the bootstrap covers 95% when n ≤ 35. In

contrast, when the original model is quadratic or combined, both methods are

under 95% coverage because joinpoint is estimated from a curvature pattern

and the width of confidence intervals are small. On the other hand, when the

true turning point occurs in the beginning or at the end and the original model

is segmented, the bootstrap covers 95% of true turning point when n ≤ 35.

However, when the original model is quadratic or combined, both methods

are under coverage and tend to be zero when n ≥ 35, (see Section 5.4.3). This

result occurs because the joinpoint is estimated from a curvature trend and the

mean of simulated joinpoints is in the middle so with small width of confidence

interval around the middle, the true turning point cannot be covered.

In conclusion, when n ≥ 50 and there is only one joinpoint in the middle of

data, profile likelihood is used to construct a confidence interval for the change

point from joinpoint model. Otherwise, the bootstrap method can be used. On

the other hand, when the true turning point occurs in the beginning or at the

end, neither methods are useful to construct confidence intervals for joinpoints

when the data is simulated from a curvature pattern. However, when the data

is simulated from a straight lines pattern, the bootstrap method can be used.

5.4 Discussion and conclusion

Change point analysis was used to detect significant interventions which im-

pact the rates of healthcare associated infections. Two main methods were used
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to investigate change points; segmented regression and joinpoint analysis.

5.4.1 Segmented regression discussion

Segmented regression was used on different sets of data to detect change points

since the period of time over which HAIs (MRSA bacteraemia, MSSA bacter-

aemia, CDI in patients over 65 years and CDI in patients aged 15-64 years) is

monitored by HPS is arbitrary (i.e. HAIs occurred before the year when the

data collection started). Segmented regression was used to identify the change

points at the time when interventions took place. Using the full dataset (all

data points) to fit segmented regression has some advantages. An advantage

is that the segmented model can be estimated more accurately because the full

dataset was collected over a long period of time which makes the variance of

the slope small so the best model has the least variance. Additionally, because

the same data was used each time when fitting different models, the model

with more than one intervention can be fitted and the likelihood ratio test can

be used to test the significance of nested models. The residual deviance was

also used to compare different models at different interventions. The limita-

tion of using all data points is that the segmented regression fits linear trends

before and after an intervention and the linear trend cannot appropriately de-

scribe the data well over a long period of time. If there are subsequent change

points after the first one, the pattern after the first change point will not be

accurately described by a linear model. There is also length of data bias where

the number of observations before and after the intervention at quarter i and

intervention at quarter j are different, therefore different information about the

data is provided before and after the intervention.

Having all data before the intervention and two years after the intervention

gives an indication about the strength (power) of the intervention which im-
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pacts the rates within two years only. Residual deviance cannot then be used

to compare fitted models because the data are different in each model and the

saturated model is different each time. Instead of residual deviance, percentage

of deviance explained (PDE) was used to measure the goodness of fit which

compares each model with its null model where the model with the largest

PDE is the best.

Specifying the number of data before and after each intervention as two years

of data (8 points) ensures that there is enough residual degrees of freedom

since each model has a linear effect of time and seasonal effect. This has some

advantages. Approximately equal variances of the slopes before and after the

intervention can be observed because there are the same number of data points

before and after the intervention. The smallest variance can estimate the best

fitted model. Since segmented regression is fitting linear trends before and

after an intervention, the model is more likely to be linear and symmetric over

this short period of time. The segmented model can be less accurate with less

power and precision because a short period of time was used and this may not

give a clear vision of the impact of the interventions. PDE was used to measure

the goodness of fit.

5.4.2 Joinpoint analysis discussion

Standard joinpoint software [NCISR (2017)] does not account for seasonality

where it uses Kim et al. (2000) methods to estimate joinpoints from the join-

point model and this does not account for other variability. The algorithm

was modified in our research to include seasonality and modifies grid search

method to consider one point of data between every possible joinpoints then

the algorithm is completely rewritten in R.
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By adding seasonality to CDI in patients over 65 years, joinpoint models do

not change the numbers and locations of joinpoints. The result of joinpoint

for CDI in patients over 65 years agrees with the result showing in Figure

3.12 where the fitted line of rates of CDI increased up to 2008 then decreased

dramatically up to 2011 and subsequently slightly decreased up to September

2014. Adding seasonality to MRSA bacteraemia and CDI in patients aged 15-64

years, the joinpoint models give the same numbers of joinpoints but in differ-

ent locations indicating that season affects the rates. These change points are

associated with some interventions which took place in Scotland (see Section

5.4.5).

Joinpoint analysis on MSSA bacteraemia showed zero change points as the

method can not detect any change in the data. Segmented regression showed

lack of fit so none of the interventions had a significant effect on the rates of

MSSA bacteraemia where the rates of MSSA bacteraemia remain high. These

results concur with the result of the polynomial regression fitted model of

MSSA (3.8), where the polynomial regression model was linear in the log rates,

(see Figure 3.11). Therefore, there is no intervention which has had significant

impact on MSSA bacteraemia rates in Scotland.

Confidence intervals of change points can be constructed using the limit-

ing distribution of change points with large sample size [Bai (1997)]. How-

ever, profile likelihood and bootstrap methods are non-parametric approaches

to construct confidence intervals for change points when the distribution of

change point is unknown. This research shows that confidence intervals for

one change point from the joinpoint model which was constructed by profile

likelihood and bootstrap are approximately similar. If the joinpoint model iden-

tified two or more change points, profile likelihood cannot be applied because
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it is based on the value of the deviance of the joinpoint model and the estim-

ated joinpoint from that model. If the model has two estimated joinpoints, one

value of deviance describes these points and the curve of the deviance function

cannot be plotted. Thus, profile likelihood method cannot construct confid-

ence intervals for more than one change point from the joinpoint model so the

bootstrap method was used. In contrast, Lerman (1980) approach to construct

confidence intervals for the change point from joinpoint model is similar to our

approach however he used a function depending on residual sum of squares

which constructs confidence intervals for more than one change point while

our method uses the residual deviance of the models.

5.4.3 Simulation study discussion

Comparing bootstrap and profile likelihood methods to construct confidence

intervals using a simulation study shows interesting results. When the sample

size is small (n ≤ 20 in simulated data from quadratic polynomial and com-

bined models and n ≤ 35 in simulated data from segmented model), the profile

likelihood method does not work. Also, when β0 < 5, the profile likelihood

methods does not work. The profile likelihood method cannot construct con-

fidence intervals for change points from joinpoint models (about 5% of number

of simulations) due to the following:

1. The variance of simulated data may increase so the residual deviance of

all joinpoint models becomes close to each other. The difference between

the minimum residual deviance and the maximum residual deviance

becomes less than 3.84. Therefore, there is no intersection between the

residual deviance function (curve) and the horizontal line at hl=the min-

imum residual deviance +3.84, (see Figures 5.16(a) and 5.16(b)). As a

result, a confidence interval cannot be constructed.
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2. The minimum residual deviance may occur at the first point in the resid-

ual deviance curve (i.e. first joinpoint model gives the smallest residual

deviance) where there are no points before that which can intersect with

the horizontal line (at hl= the minimum residual deviance +3.84) (see Fig-

ure 5.16(c)). Similarly, if the minimum residual deviance occurs at the last

point in the residual deviance curve (i.e. last joinpoint model gives the

smallest residual deviance). In this case, there are no points after that to

intersect with the horizontal line (see Figures 5.16(d)). As a result, lower

or upper confidence levels cannot be constructed.

3. When all residual deviances before the minimum residual deviance are

less than the horizontal line, there are no points to intersect with the ho-

rizontal line before the minimum residual deviance (see Figure 5.16(e)).

Also, if all residual deviances after the minimum residual deviance are

less than the horizontal line, there are no points to intersect with the

horizontal line after the minimum residual deviance (see Figure 5.16(f)).

Therefore, there is no lower or upper confidence level and the profile like-

lihood method cannot construct confidence intervals for change points

from the joinpoint model.

The above problems do not influence the bootstrapping as it has a different

algorithm from the profile likelihood method in the construction of a confid-

ence interval for the joinpoint (see Section 5.2.2). The profile likelihood method

depends on all joinpoints and the deviances while the bootstrap method de-

pends on the bootstrap samples from the best joinpoint model.

When the sample size n ≤ 35 and the data is simulated from the segmented

model, profile likelihood confidence intervals cannot be constructed. Simulat-

ing data from the segmented model and small sample sizes give large variation

among simulated data. Therefore, the residual deviance of joinpoint models
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(a) Difference between minimum
and maximum deviances is < 3.84.
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(b) Difference between minimum
and maximum deviances is < 3.84
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occurs at point 34
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(e) No lower CI because there is
no deviance > hl before joinpoint at
point 4
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(f) No upper CI because there is no
deviance > hl after joinpoint at point
31

Figure 5.16: Types of problems that occur with profile likelihood confidence
intervals which does not allow for the construction of confidence
interval (CI) for joinpoint. Note that these figures are plotted based
on the sample size of 35.
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will be close to each other. As a result of one or more of the three cases above

taking place; upper, lower or both confidence levels cannot be calculated. How-

ever, bootstrap confidence intervals can be used in this case and it will give

wide intervals which covers 95% of the true turning points when n ≤ 35. When

the variation of the simulated data is large, a weak joinpoint model is fitted.

Simulated change points from joinpoint models are variant so confidence in-

tervals of these change points from joinpoint models are wide.

When the data is simulated from a quadratic model or combined model and

the true turning point occurs in the middle, the percentage of true turning

points within the estimated confidence intervals increases because the mean

width increases as the sample size decreases. When the sample size decreases,

the variation among simulated data increases and change points from join-

point models will be located over a wide range. There is not 95% coverage

because the data is simulated from a quadratic or combined models (the data

are curved) but the straight lines model is fitted to the data (i.e. the wrong

model is being fitted to the data). Furthermore, when the true turning point

occurs in the beginning or at the end of the dataset, the percentage of true turn-

ing points within the estimated confidence intervals is 0. This is because the

mean of simulated change points from joinpoint models tends to be roughly

in the middle of the data and its confidence interval width is small. Also, the

joinpoint model is being fitted to the data which is simulated from a quadratic

or combined models.

Profile likelihood is a good method when the sample size n ≥ 50. When the

true turning point occurs in the middle and the data is simulated from a seg-

mented model, the mean width of profile likelihood confidence intervals is less

than the mean width of bootstrap confidence intervals. When the data is simu-

192



Chapter 5 Change Points Analysis

lated from quadratic or combined models, the mean width of profile likelihood

confidence intervals is about 0.3 larger than the mean width of bootstrap con-

fidence intervals (i.e. approximately similar). The percentage of actual turning

points within the confidence interval is larger in profile likelihood confidence

intervals than bootstrap confidence intervals but both are under 95% coverage.

As a result, the profile likelihood method is a good method to construct confid-

ence intervals for change points from joinpoint models when change occurs in

the middle of data and n ≥ 50. On the other hand, the bootstrap method can be

used to construct confidence intervals for change points from joinpoint models

for any sample size but needs much more computation than profile likelihood

confidence intervals.

In conclusion, when data is simulated from segmented regression, the profile

likelihood method does not construct confidence intervals when n ≤ 35 but

bootstrap constructs a confidence interval with 95% coverage of large width.

When the data is simulated from a quadratic or combined models, the coverage

is very low and tends to be zero when n ≥ 35 where the true turning point occurs

in the beginning or at the end of the data. These zero values are not too precise

because the joinpoint model is being fitted to the the data which is simulated

from quadratic or combined models. When the sample size is large (n ≥ 50)

and there is only one change point in the middle, profile likelihood is used to

construct confidence intervals for the change point. Otherwise, the bootstrap

method is not bad but better methods need to be derived.

5.4.4 Segmented regression vs joinpoint analysis

From the results of HAIs we can compare change points from joinpoint analysis

with change points from segmented regression models which are fitted using

full data points. As the segmented regression model detects the change points
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at the time when interventions took place, this may not be the real time of

change in the trend of rates of HAIs because the practical effect of intervention

takes time to impact the infection. However, joinpoint analysis detects change

points at any time during the period of study. The results on HAIs showed

that the change point detected from joinpoint comes after the change point

detected from segmented regression. For example, the change point from

the joinpoint model for MRSA bacteraemia comes after the first change point

from the segmented regression model and there are four quarters (four data

points) between them. Similarly, there are only two data points between the

first change point from the joinpoint model and the first change point from

the segmented regression model for CDI in patients over 65 years and five

data points between the second change points. There are three data points

between change points for CDI in patients aged 15-64 years. This indicates

that the intervention which is detected from the segmented regression model

may have impacted HAIs where this impact is considered as a real change

in the rates after a small period of time from that intervention. Therefore,

joinpoint analysis showed the time when the trend changed significantly and

segmented regression showed which intervention impacted the rate and helped

to reduce the rates after a short time (about one year). This interpretation seems

plausible because it is rare to have a reduction in the rate at the same time when

an intervention took place. Joinpoint analysis detects the time of a significant

change while segmented regression detects interventions which may impact

the rates.

5.4.5 The associated interventions

This research aims to detect the time at which interventions reduce the rate of

healthcare associated infections. Some interventions impact the rates of MRSA

and MSSA bacteraemias and CDI.
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MRSA and MSSA bacteraemias

Segmented regression analysis showed that the change in rate of MRSA and

MSSA bacteraemias occurred in 2006. Some interventions in 2006 may be

attributed to this change. The first intervention was to introduce a hand hygiene

policy which involved the following [RCN (2005)]:

1. Hands should be cleaned before and after contact with patients.

2. Use soap and water for dirty hands and dry hands thoroughly.

3. Use regular alcohol gel even when hands are clean.

The second intervention was standard infection control precautions initiated

and involved the following [RCN (2005)]:

1. Cover all cuts with clean waterproof dressing.

2. Wash hands at regular times throughout the day.

3. Dispose of any waste safely.

4. Do not transfer patients unnecessarily between wards.

5. Arrange time for patient appointments to avoid crowding.

6. Isolate patients who have infections.

The third intervention is that health improvement, efficiency, access and

treatment (HEAT) was introduced and it was expected that there would be 30%

reduction in staphylococcus aureus bacteraemia (SAB) by 2010 [HPS (2006)].

Some interventions that took place in the beginning of 2008 may have im-

pacted the rate of MRSA bacteraemia. The Scottish patient safety programme

[SPSP (2008)] was initiated in January 2008 and aims to develop the safety of
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health care in all Scottish hospitals through implementing some bundles re-

lated to interventions [Daniel et al. (2015)]. In addition, quality improvement

Scotland (QIS) was launched. QIS covers the issues relating to provision of

patient-focused care and treatment [HIS (2008)]. Also, in 2008, transmission

based precautions (TBPs) commenced and was required to be used by staff.

TBPs are control measures that should be implemented in addition to standard

infection control precautions for infected patients [HPS (2008a) and ICT (2015)].

Finally, in 2011, MRSA screening practices changed and screening should in-

clude all patients at admission, discharge and transfer [RCN (2005)]. The rate

of MRSA bacteraemia decreased when MRSA screening changed to clinical

risk assessment (CRA) in 2011.

Joinpoint analysis showed a change in the rate of MRSA bacteraemia that

happened in 2007 when the Scottish patient safety programme (SPSP) was

declared. SPSP improves healthcare safety and reliability in all health care

settings [SPSP (2007)].

CDI

Segmented regression analysis showed that the rate of CDI in patients over

65 years changed two times during the period of study. The first change

was in 2007 when the first hand hygiene report was published [SPSP (2007)].

The second change was in 2009 where several interventions took place. First

healthcare environment inspectorate (HEI) was carried out across Scottish NHS

hospitals and services [HIS (2009)]. Also, the hospital infection incident assess-

ment tool (HIIAT) began in 2009. It provides all information regarding hospital

infection [HPS (2009, 2016b)].

Joinpoint analysis showed that a change occurred in 2008 when quality im-
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provement Scotland (QIS) was launched [HIS (2008)]. Also, in March 2008,

Health Protection Scotland was authorized by the healthcare associated in-

fection Task Force to start developing CDI cross-transmission prevention and

control bundles. One of these bundles is the prudent prescribing of anti-

biotics [SGHAI (2008)]. In addition, transmission based precautions (TBPs)

commenced in 2008 [HPS (2008a) and ICT (2015)].

In conclusion, Table 5.4 summarizes the interventions which may have im-

pacted the rates of HAIs in Scotland.

Table 5.4: Summary of the interventions that have been detected by segmented
and joinpoint analysis which may have impacted the rate of HAIs in
Scotland.

Point of change Interventions MRSA CDI
Qu2, 2006 Hand hygiene national campaign Yes

announced/launched.
Standard Infection Control Yes
Precaution model policies
first launched.
HEAT targets introduced. Yes

Qu2, 2007 Scottish Patient Safety Programme Yes
(SPSP) announced.

Qu4, 2007 First national hand hygiene Yes
compliance report issued.

Qu2, 2008 HPS care bundles related to Yes
interventions first launched
(SPSP).
Launch of QIS standards. Yes Yes
HPS CDI bundle launched. Yes
Transmission Based Precaution Yes Yes
model policies first launched.

Qu4, 2009 First HEI inspection carried out. Yes
HIIAT issued for managing outbreaks. Yes

Qu1, 2011 MRSA screening changes Yes
to CRA.

MRSA: Methicillin-resistant staphylococcus aureus, CDI: Clostridium difficile infection, Qu: Quarter, HEAT: Health

improvement, efficiency, access and treatment, SPSP: Scottish patients safety program, HPS: Health Protection Scot-

land, QIS: Quality improvement Scotland, HEI: Healthcare environment inspectorate, HIIAT: Hospital infection

incident assessment tools, CRA: Clinical risk assessment.
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5.4.6 Conclusion

In conclusion, the change points issue is an important analysis to detect the

existence of change points and their locations. Segmented regression analysis

depends on specific (known) time points (exact time when the interventions

took place) and looks for the time when the pattern changes significantly after

them. Joinpoint analysis confirmed the importance of seasonality to describe

the rates. In addition, joinpoint analysis detects changes at unknown times and

looks for change over a period of time and gives the most significant change

points among all data. Joinpoint analysis is more accurate than segmented re-

gression analysis because the most significant change point occurs at any time

point even if there was no intervention at that time. This suggests that one

or more interventions which took place before the time of change may impact

the rates where usually the intervention will take time to impact the rate of

infections. The aim of this study was to detect the time and the associated

intervention that reduces the rate of healthcare associated infections. The re-

search recommends improving the implementation of healthcare interventions

such as hand hygiene, giving training courses for hospital staff to deal with

infection, screening MRSA in patients prior to hospital admission and applying

antibiotic policy to reduce and prevent the occurrence of infection in hospitals

and healthcare systems.
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Chapter 6

Comparing Change Points

Methods

In the last two chapters, different methods of detecting change points in the

trend of count data were discussed. This chapter investigates change points

methods through a simulation study by comparing and finding particular

changes in trends that some methods detect more easily and accurately than

others. Polynomial generalized linear models (GLM) including quadratic and

cubic models estimate the change in trend where the maximum rates start to

decrease and minimum rates start to increase (see Chapter 4). However, seg-

mented regression detects the change at particular times and joinpoint analysis

estimates the number of changes and their location at all possible data points

(see Chapter 5). Although all methods detect similar change points based on

different algorithms, the most precise detection method is of interest.

Simulation studies are carried out to compare change points methods. This

chapter is divided into three parts according to the number of change points;

0, 1 and 2. The aim of a simulation study when there is no change in trend

is to investigate whether polynomial or joinpoint methods detect changes in
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the trend. If a method detects a change point, this indicates that the method

may be too sensitive. The aim of a simulation study when there are one or

two changes in trend is to investigate whether the sample size, the location of

turning points, the frequency of the response (number of cases) and the pattern

of data affect the detection of change points using different methods. This leads

us to investigate whether there is any bias in the estimated change points and to

decide which method detects the smallest mean width of confidence intervals

around change point, covering 95% of the actual turning points.

Scope of this chapter is as follows: Section 6.1 illustrates the general tech-

nique to compare change point methods which includes the assumptions of the

original models and simulated data. It also includes the simulation procedure

to fit different models using the simulated data and the criteria of choosing the

best method. The algorithm for the simulation study is then described. Section

6.2 includes a simulation study based on linear models with no change points.

Section 6.3 explains the simulation study on models with one change point in

the slope. Section 6.4 includes the results of a simulation study based on two

change points. Finally, discussion and conclusion are presented in Section 6.5.

6.1 General algorithm to compare change point

methods

The simulation study includes four steps; (1) model assumptions (Section 6.1.1),

(2) data generation (Section 6.1.2), (3) simulation procedure (Section 6.1.3) and

(4) the decision (Section 6.1.4). The process and technical details of the simula-

tion study is described in Section 6.1.5.
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6.1.1 Model assumptions

Starting with specific values of change points based on the model, different

assumptions can be considered:

1. Different numbers of changes can occur (0, 1 or 2).

2. Change points can occur at different places (in the beginning, in the

middle or at the end) of the dataset.

3. The model coefficient β0 is the number of cases (the intercept of the linear

regression in the log of rate). This is assumed to be large where β0 = 5,

small where β0 = 3 or rare where β0 = 1.5. These values are chosen to

reflect the variety of the number of cases that are observed in HAIs data.

4. The trend of the initial (original) model could be a linear model, curved

(polynomial models), straight lines (segmented regression model) with

a change in the slope and a combination of polynomial and segmented

models. These patterns are chosen to reflect the sorts of changes that can

be seen in datasets and also reflect the impact of various interventions.

Different scenarios are considered for the original models with specific (true)

turning points where x0 and x1 are the true turning points, these models are as

follows:

1. Linear model,

log(λn) = β0 + β1x, (6.1)

where λn is the observed data and β1 is the coefficient of the slope and

can take various values as β1 =0, 0.001 and 0.008.

2. Quadratic model where the pattern of the data is curved with one true

turning point x0,

log(λn) = β0 + β1(x − x0) + β2(x − x0)2, (6.2)
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where β1 = 0.001 is the coefficient of the slope (linear term) and it is fixed in

all cases of different sample sizes, β0s and location of x0. β2 = −0.003 is the

coefficient of quadratic term and it changes with very small differences

(<0.05) (i.e. β2s are similar but not identical) when sample size, β0s or

location of x0 change.

3. Segmented regression model with one true turning point x0,

log(λn) = β0 + β1(x − x0) + β2(x − x0)I(x ≥ x0), (6.3)

where β1 = 0.005 is the coefficient of the slope before change and β2 =

−0.03 is the coefficient of change in the slope. However, β1 and β2 change

with very small differences (<0.05) (i.e. βis are similar but not identical,

i = 1, 2) when sample size, β0s or location of x0 change. I(x ≥ x0) is an

indicator function of x where,

I(x ≥ x0) =


1 x ≥ x0,

0 x < x0.

(6.4)

4. Combined model (quadratic and segmented with one true turning point

(x0)),

log(λn) = β0 + β1(x − x0) + β2(x − x0)2 + β3(x − x0)I(x ≥ x0), (6.5)

where β1 = 0.001 is the coefficient of the slope (linear term) and it is fixed in

all cases of different sample sizes, β0s and location of x0. β2 = −0.003 is the

coefficient of quadratic term and β3 = −0.05 is the coefficient of change in

the slope. However, β2 and β3 change with very small differences (<0.05)

(i.e. βis are similar but not identical, i = 2, 3) when sample size, β0s or

location of x0 change.
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5. Cubic model where the pattern of the data is curved with two true turning

points; x0 and x1,

log(λn) = β0 + β1x + β2x2 + β3x3, (6.6)

where β1 is the coefficient of linear term and β2 is the coefficient of quad-

ratic term and their values depend on the sample size and the location of

two true turning points, (see Section 4.5.2). β3 = 0.000033 is the coefficient

of the cubic term and it is fixed in all cases.

6. Segmented regression model (two true turning points in the slope; x0 and

x1),

log(λn) = β0 + β1x + β2(x − x0)I(x ≥ x0) + β3(x − x1)I(x ≥ x1), (6.7)

where β1 = 0.005 is the coefficient of the slope before the change and is

fixed in all cases. β2 = −0.005 is the coefficient of change in the slope after

the first true turning point (x0) but it changes with very small differences

(<0.05) (i.e. β2s are similar but not identical) when the location of x0 and

x1 change. β3 = 0.01 is the coefficient of the slope after the second true

turning point (x1) and is fixed in all cases. I(x ≥ xi), i = 0, 1 as defined

in Equation (6.4).

7. Combined model (cubic and segmented with two true turning points; x0

and x1),

log(λn) = β0+β1x+β2x2+β3x3+β4(x−x0)I(x ≥ x0)+β5(x−x1)I(x ≥ x1), (6.8)

where β1 is the coefficient of the linear term and β2 is the coefficient of

the quadratic term and their values depend on the sample size and the

location of x0 and x1. β3 = 0.000033 is the coefficient of the cubic term and
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it is fixed in all cases. β4 = −0.005 is the coefficient of change in the slope

after first true turning point (x0) but it changes with very small differences

(<0.05) (i.e. β4s are similar but not identical) when the location of x0 and x1

change. β5 = 0.01 is the coefficient of change in the slope after the second

true turning point (x1) and it is fixed in all cases. I(x ≥ xi), i = 0, 1 as

defined in Equation (6.4).

6.1.2 Data generation

The assumptions of the simulated data are:

1. Different sample sizes (number of data points); small (20), moderate (35)

or large (50). These values are chosen to reflect the variety of the number

of data points that are observed in HAIs data.

2. Data generated according to a Poisson distribution (since the data is

count/rate per unit)

6.1.3 Simulation procedure

Data from the original model (see Section 6.1.1) were used to generate data

according to Poisson distribution,

Yn ∼ Poisson(λn), (6.9)

where Yn is simulated Poisson random variables, λn is observed data from the

original model and n is the sample size. Simulated data Yn were then used to

fit different models (polynomial, segmented and joinpoint models) and change

points from these were calculated. Results are then compared.
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Procedure for one turning point

The following fitted models are compared in order to detect one change point

from the original model with one true turning point.

1. The quadratic GLM model,

log(Yn) = β0 + β1x + β2x2 + ε. (6.10)

Estimate the change point and find the standard error for the estimator,

find the confidence intervals for the estimated change point using boot-

strapping as in Chapter 4. Calculate the significance of β2 (the coefficient

of quadratic term which identifies the change point) and the residual

deviance of the model.

2. The cubic GLM model,

log(Yn) = β0 + β1x + β2x2 + β3x3 + ε. (6.11)

Doing the same procedure as in the quadratic model then, extract the

results. In this case, β3 is the coefficient of the cubic term which identifies

two change points.

3. The segmented GLM model with one change point (s0) is fitted to invest-

igate whether the true turning point can be detected.

log(Yn) = β0 + β1x + β2(s0)(x − s0)I(x ≥ s0) + ε, (6.12)

where s0 is the true turning point (x0) from the original model and I(x ≥ s0)

as defined in Equation (6.4). Also, s0 is chosen to be the true turning

point±3 (x0 ± 3) because the segmented model is fitted when the true
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turning point is misspecified. This explains how the segmented regres-

sion works when the true turning point is not specified properly. In such

cases, the residual deviances and the significance of the parameters of

changes in the slope β2(s0) evaluate the segmented regression model.

4. The joinpoint GLM model,

log(Yn) = β0 + β1x + β2( j0)(x − j0)I(x ≥ j0) + ε, (6.13)

where j0 is all possible data points except the first and the last points and

I(x ≥ j0) as defined in Equation (6.4). Find the change point which is

from the model with the smallest residual deviance, construct the confid-

ence intervals for the joinpoints using the bootstrap method and test the

significance of the coefficient of change β2( j0).

Moreover, in the case of no change occurring in the original model, all fitted

models above are compared except the segmented model because there is no

specific turning point.

Procedure for two turning points

In order to detect two true turning points, the following fitted models are

compared.

1. The quadratic GLM model (6.10).

2. The cubic GLM model (6.11).

3. The segmented GLM model with two change points; s0 and s1,

log(Yn) = β0 + β1x + β2(s0)(x − s0)I(x ≥ s0)

+ β2(s1)(x − s1)I(x ≥ s1) + ε,
(6.14)

where s0 and s1 are the true turning points (x0 and x1) from the original

model or true turning points±3 (x0 ± 3 and x1 ± 3) and I(x ≥ si) as defined
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in Equation (6.4). Calculate the residual deviances and the significance

of the parameters of change in the slope β2(si), where i = 0, 1.

4. The joinpoint GLM model,

log(Yn) = β0 + β1x + β2( j0)(x− j0)I(x ≥ j0) + β2( j1)(x− j1)I(x ≥ j1) + ε, (6.15)

where j0 is all possible data points except the first point and the last

two points and j1 is all possible data points after j0 except the last point.

I(x ≥ j0) as defined in Equation (6.4). Find the change points which are the

joinpoints from the model with the smallest residual deviance, construct

the confidence intervals for the joinpoints using the bootstrap method

and calculate the significance of the coefficients of change β2( ji), i = 0, 1.

6.1.4 The decision

To investigate and decide which method is the best to detect change points, the

following criteria will be examined:

1. Residual deviance of the fitted model. Calculate the residual deviance

for polynomial, segmented and joinpoint simulated models then, choose

the best model which has the smallest residual deviance.

2. The estimate of the change point and its standard error are applied in

polynomial and joinpoints models. The method giving the closest change

points to the true turning points is chosen as the best method.

3. Confidence intervals for change points. In polynomial and joinpoint

models, we are looking at whether confidence intervals cover 95% of the

true turning points. Based on 200 simulations with significance level of

5%, the range (92%- 98%) is consistent with 95% coverage (i.e. (0.95 ±

z1−(α/2)
√

0.95 × 0.05/200)×100 ≈ (92%−98%), z1−(α/2) = 1.96). The width

of the confidence intervals is also calculated.
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4. The significance of the parameter of change in the model. In the quad-

ratic model (6.10), β2 is the parameter to determine one change point.

In the cubic model (6.11), β3 is the parameter to identify two change

points. In the segmented models (6.12) and (6.14), β2(si) are the paramet-

ers of change in the slope. Finally, in the joinpoint models (6.13) and

(6.15), β2( ji) are the parameters of the change in the slope, i = 0, 1. 200

simulations justify the large difference in the percentage of significance

of the parameter of change between different sample sizes or different

β0s. A standard error (SD) of sample proportion (i.e. percentage (p̂)) is

calculated using normal approximation as SD =

√
p̂(1−p̂)

N where N is the

number of simulation. Thus, the standard error for the difference of two

independent proportions is given as SD(p̂1 − p̂2) =
√

SD2
1 + SD2

2. For ex-

ample, if p̂1 = 25%, p̂2 = 50%, the SD(p̂1 − p̂2) = 9.4% which indicates

the difference of less than 9.4% is not important so the difference of 25%

is significant.

5. The percentage of the coefficient of change parameter estimated in the

polynomial and joinpoint models that are not equal to zero.

6. The percentage of the estimated change points from the polynomial and

joinpoint models that occur within the range of dataset.

6.1.5 The algorithm of simulation study

1. Set up the sample size; n=50, 35 or 20.

2. Set up the number of cases where β0 = log( number of case ) = 5, 3 or 1.5.

3. Identify the number and location of change points then based on these,

identify the original model and its coefficients βi, i = 1, 2, 3, 4 and 5.
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4. Calculate log(λn) from the original models (Section 6.1.1) then calculate

λn.

5. Use Poisson distribution to generate the data Yn from the original model,

(see Equation (6.9)).

6. Use Yn to fit different models; quadratic, cubic, segmented and joinpoint.

7. Calculate change points and their confidence intervals (CI based on 500

bootstrap samples) from simulated model in step 6; use the method in

Chapter 4 for change points from polynomial models and the method in

Chapter 5 for change points from joinpoint models.

8. Save the results of the estimated change points, their confidence intervals

and all criteria in Section 6.1.4.

9. Do the simulation 200 times in each situation and save the results. The

outputs are the residual deviance of the estimated model, the significant

of the parameter of change within the estimated model, the percentage

of parameter of change values are equal to zero, the estimated change

points and the percentage of their confidence intervals containing the

true turning points. Finally the percentage of estimated change points

occurring within the range of dataset.

10. According to the results and criteria, the methods of detecting change

points are compared.

6.2 Models with no change points

These models show one segment without any change and the pattern of data

is linear. Three different original models are considered; first model with no

change points and the slope of the trend is zero (β1 = 0), (see the first row in
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Figure 6.1). The second model with the slope of the trend as β1 = 0.001, (see

the second row in Figure 6.1) and the final model with the slope of the trend as

β1 = 0.008, (see the third row in Figure 6.1). The simulation under each model

shows the results of different sample sizes (50, 35 and 20).
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Figure 6.1: Original model (red line) and simulated data (black circles) in dif-
ferent cases of β0 = log(cases) and β1. The slope β1 = 0 in the first
row, β1 = 0.001 in the second row and β1 = 0.008 in the third row.

This part of the simulation study is designed to investigate the proportions

of false positivity, (i.e. is there any method more likely to report a significant

change point when no change in slope exists?). Section 6.2.1 includes the

simulation results when the original model has no change point and no slope.

210



Chapter 6 Comparing Change Points Methods

Section 6.2.2 observes the results of no change point with increasing slope.

Summary and conclusion are discussed in Section 6.2.3.

6.2.1 Original model with no change and no slope

Setting β1 = 0 in model (6.1) shows that the trend of the model is linear as in

the first row in Figure 6.1. Table 6.1 shows the results of different sample sizes;

n =50, 35 and 20. The terms observed in the Table 6.1 are explained as:

1. β0 is the constant related to the number of cases where 1.5 is rare, 3 is

small and 5 is large.

2. β1 is the coefficient of the slope in linear models (6.1).

3. S.M is the type of change point fitted models to the simulated data (for

simplicity, simulated models) where Q.TP is a quadratic model, C.TP is

a cubic model (C.TP1 and C.TP2 are related to the first and the second

estimated change points from a cubic model) and JP is a joinpoint model.

4. DV is the mean of residual deviances of simulated models.

5. SG.CH% is the percentage of significant parameters of change over 200

simulations (i.e. number of times when the coefficient of change is signi-

ficant).

6. TP.ES is the mean of estimated change points from polynomial (quadratic

and cubic) and joinpoint models.

7. TP.SD is the mean of standard errors of estimated change points from

polynomial and joinpoint models.

8. CI.WD is a mean width of confidence intervals. This is calculated as

a mean of the difference between upper and lower levels from confid-
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ence intervals of estimated change points from polynomial and joinpoint

models.

9. NO.TP% is a percentage of times that the coefficients of change in the

polynomial and joinpoint models are zero (i.e. coefficient of change=0).

10. TP.IN% is a percentage of times where estimated change points are inside

the range of data for polynomial and joinpoint models.

6.2.2 Original model with no change and increasing slope

Setting β1 = 0.001 in model (6.1) shows a linear trend with slightly increasing

slope as shown in the second row in Figure 6.1. Also, putting β1 = 0.008 in

model (6.1) shows a linear trend with a large increase in the slope, (see the third

row in Figure 6.1). The results of both cases are obtained in Tables D.1 and D.2.

6.2.3 Summary and conclusion

Tables 6.1, D.1 and D.2 showed the results of the simulation when there is

no turning points and the slope β1 = 0, 0.001 and 0.008, respectively. The

polynomial and joinpoint models are fitted to the simulated data. However,

segmented regression models do not fit the simulated data because there is no

true turning point to specify the change.

The residual deviances (DV) for polynomial and joinpoint models are similar.

The percentage of significant parameters of change (SG.CH%) in polynomial

models is often 5% of the time. However, the SG.CH% in joinpoint models

are about 25% which is larger than polynomial models. SG.CH% in joinpoint

models often decreases when β0 decreases but this difference is not usually

important as it is less than 10% and according to 200 simulations this is not

considered an important difference. The results of SG.CH% of polynomial
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Table 6.1: Simulation study on linear model with no slope (β1 = 0).
Number of data points n = 50

β0 dataa S.M dataaa DV SG.CH% TP.ES TP.SD CI.WD NO.TP% TP.IN%
5 Q.TP 46.1 4.5 31.1 535.1 169.0 2.0 83.0

C.TP1 45.0 4.5 8.0 158.0 122.5 16.5 85.0
C.TP2 >50 278.5 132.9 86.5
JP 44.1 27.5 26.4 17.8 46.3 0.0 100.0

3 Q.TP 47.0 9.5 10.7 >1000 167.4 0.5 85.0
C.TP1 46.0 5.0 8.1 119.9 110.5 4.0 84.5
C.TP2 40.3 125.9 113.9 89.5
JP 44.9 24.0 24.7 18.3 46.2 0.0 100.0

1.5 Q.TP 50.7 3.0 <1 500.0 166.5 0.5 84.5
C.TP1 49.7 5.0 6.1 >1000 105.2 4.0 90.5
C.TP2 40.1 283.6 114.8 89.5
JP 48.2 23.5 25.6 19.2 44.9 0.0 100.0

Number of data points n = 35
β0 S.M DV SG.CH% TP.ES TP.SD CI.WD NO.TP% TP.IN%
5 Q.TP 31.5 7.5 22.2 586.4 109.5 0.0 84.0

C.TP1 30.4 4.0 7.5 133.6 82.0 2.0 87.0
C.TP2 34.6 125.1 75.1 91.0
JP 29.4 25.5 16.8 12.5 30.9 0.0 100.0

3 Q.TP 32.8 6.5 15.9 316.5 113.6 0.0 86.0
C.TP1 31.7 7.5 9.5 92.9 81.4 0.0 89.5
C.TP2 31.3 478.7 74.1 94.5
JP 30.8 23.5 18.6 12.5 31.2 0.0 100.0

1.5 Q.TP 33.9 6.5 20.7 316.9 121.3 0.0 81.5
C.TP1 32.9 6.5 3.6 203.6 97.3 0.5 84.5
C.TP2 28.3 663.1 84.4 95.0
JP 31.9 19.5 17.8 12.1 31.1 0.0 100.0

Number of data points n = 20
β0 S.M DV SG.CH% TP.ES TP.SD CI.WD NO.TP% TP.IN%
5 Q.TP 17.1 6.5 9.7 486.9 64.5 0.0 86.0

C.TP1 15.9 7.5 <1 50.4 41.7 0.0 81.0
C.TP2 >20 88.6 39.1 98.0
JP 15.3 27.0 10.0 6.4 16.1 0.0 100.0

3 Q.TP 17.1 3.5 8.7 161.2 66.8 0.0 83.0
C.TP1 16.0 5.0 <1 46.9 43.5 0.0 86.5
C.TP2 >20 43.6 48.5 98.0
JP 15.4 22.5 10.1 6.4 16.2 0.0 100.0

1.5 Q.TP 17.5 6.5 10.6 319.0 63.8 0.0 80.5
C.TP1 16.6 3.0 5.2 41.7 43.7 0.0 89.0
C.TP2 15.3 39.7 45.7 100.0
JP 15.9 17.5 10.6 6.3 16.1 0.0 100.0

β1: The coefficient of the slope in linear model, β0: The log of number of cases, S.M: The simulated model, Q.TP:
Quadratic model from simulated data, C.TP: Cubic model from simulated data, JP: Joinpoint model from simulated
data, DV: The mean residual deviance of simulated model, SG.CH%: The percentage of significant parameters of
change, TP.ES: The mean of estimated change points from the simulations, TP.SD: The mean of standard errors of
estimated change points, CI.WD: The mean width of confidence intervals, NO.TP%: The percentage of times that the
coefficients of change is zero, TP.IN%: The percentage of times where estimated change points are inside the range of
data.

models are reasonable because there are no change points. However, SG.CH%

of the joinpoint model shows that generally 25% of the time the change coeffi-
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cient is significant but this is a poor conclusion since there is no change point

yet the joinpoint model detects them roughly 25% of the time.

The estimated change points (TP.ES) from joinpoint models are roughly sim-

ilar and approximately in the middle of the dataset. There should not be

estimated change points because the original model is linear but the joinpoint

model finds change points and picks the values randomly and therefore their

average occurs roughly in the middle of the dataset. However, TP.ES of polyno-

mial models can occur anywhere, even outwith the range of data. The standard

errors of the estimated change points (TP.SD) from polynomial models are very

large. However, TP.SD from joinpoint models are large and approximately the

same whenever β0 changes. This is about 1/3 of the sample size (about 18 when

sample size is 50, 12 when sample size is 35 and 6 when sample size is 20). The

mean width of the confidence intervals of estimated change points (CI.WD)

from joinpoint models are large but less than the range of data however, the

CI.WD from polynomial models are very wide and greater than the sample size

so any detected change points are very imprecise. The CI.WD from joinpoint

models are approximately similar whenever β0 changes. This explains the cen-

tering of the mean of estimated change point and indicates that the joinpoint

method is useless in detecting the change point accurately. The percentage of

estimated change points within the range of data(TP.IN%) from the polynomial

models decreases when β0 increases and it is about 80%. However, estimated

change points from joinpoint models occurs 100% within the range of data

because it is estimated to be one of the data points.

In conclusion, the simulation studies are carried out for both a constant and

an increasing slope where the same results were obtained for both. In the

polynomial method, the value of TP.ES is not precise because roughly 5% of
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the polynomial models have significant coefficients of change points (i.e. about

0.05×200 = 10 simulations) and the rest of values of TP.ES are estimated on non-

significant coefficient of change points (i.e. approximately 190 change points).

Therefore, in polynomial models, the values of TP.ES, TP.SD and CI.WD are

not precise and therefore the polynomial method is in fact a good method since

it did not detect change points when there were no change points in the data.

However, the SG.CH% of joinpoint model is roughly 25% which indicates false

positives. This shows that the estimated change point occurs roughly in the

middle of the data but the mean width of confidence interval of the estimated

change point is large. Therefore, this indicates that the joinpoint method is

poor for the detection of change points.

6.3 Models with one change point

A simulation study was carried out with one true turning point to investigate

change point methods, (see the algorithm in Appendix D.1). We considered

three different sample sizes; 50, 35 and 20 and set up three different original

models; the quadratic model (6.2), segmented model with one true turning

point (6.3) and the combination between them (model (6.5)) with the true

turning point in the middle, in the beginning or at the end. The simulated

models based on the original model was explained in Section 6.1.3. Section

6.3.1 contains the results when one true turning point occurs in the middle of

data. Section 6.3.2 includes the results when one true turning point is present

in the beginning or at the end of data. The conclusion is in Section 6.3.3.

6.3.1 Change occurring in the middle of the dataset

We assume the true turning point occurs in the middle of the dataset for three

different sample sizes; 50, 35 and 20 and three different numbers of cases where
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β0 = 5, 3 and 1.5. In each case, the simulation study produces results using

different methods; polynomial models, segmented regression and joinpoint

analysis to detect a change point when the data is simulated from quadratic,

segmented and combined models (see Figure 6.2).
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Figure 6.2: Original model (red line) and simulated data (black circles) from
quadratic, segmented and combined models with one true turning
point in the middle (black vertical line). Plots in the first row asso-
ciated with β0 = 5, the second row with β0 = 3 and the third row
with β0 = 1.5.

Consider the number of data points as 50, and the true turning point occurs at

point 25. Table 6.2 shows the results of simulation studies for different original
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models and β0s. The terms observed in the Table 6.2 are as follows:

1. O.M is the original model where the data comes from.

2. S.M is the type of change point fitted models (simulated models) where

SR is a segmented regression model with specific change at true turning

point and SR±3 are segmented regression models with specific points

of change at true turning point±3. The other simulated models were

explained in Section 6.2.

3. CI.TP% is a percentage of confidence intervals around estimated change

points containing the true turning point. It is calculated for polynomial

and joinpoint models.

Table 6.2: Number of data points=50 and the true turning point in the middle
at 25.

β0 = 5
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 47.8 100.0 25.1 0.2 91.0 0.8 0.0 100.0
ratic C.TP1 46.8 6.0 <1 >1000 83.0 >1000 12.0 58.0

C.TP2 >50 >1000 33.0 >1000 42.0
SR 121.1 100.0
SR-3 132.7 100.0
SR+3 134.4 100.0
JP 120.4 100.0 25.4 1.2 78.0 2.1 0.0 100.0

Segm- Q.TP 49.7 100.0 13.0 4.7 0.0 11.4 0.0 100.0
ented C.TP1 48.7 3.0 <1 510.4 0.0 520.3 16.0 63.0
with C.TP2 >50 >1000 93.0 548.0 4.0
one SR 46.5 100.0
change SR-3 46.5 100.0
point SR+3 46.9 100.0

JP 46.3 100.0 25.3 3.4 96.0 13.9 0.0 100.0
Comb- Q.TP 55.9 100.0 21.9 0.2 0.0 0.8 0.0 100.0
ined C.TP1 54.3 14.0 <1 >1000 0.0 >1000 12.0 27.0

C.TP2 >50 >1000 85.0 >1000 73.0
SR 99.3 100.0
SR-3 107.3 100.0
SR+3 143.8 100.0
JP 97.5 100.0 24.5 0.7 91.0 2.0 0.0 100.0

β0 = 3
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP-Q 48.6 100.0 25.2 0.6 90.0 2.3 0.0 100.0
ratic C.TP1 47.6 7.0 <1 >1000 68.0 961.8 2.5 51.0

C.TP2 >50 >1000 39.0 959.1 49.0
Continued on next page
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Table 6.2 – Continued from previous page
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%

SR 58.6 100.0
SR-3 60.2 100.0
SR+3 60.3 100.0
JP 56.3 100.0 25.5 3.6 61.0 5.2 0.0 100.0

Segm- Q.TP 48.1 79.5 16.7 176.9 31.5 56.1 0.0 98.0
ented C.TP1 47.0 5.0 <1 438.5 5.0 244.6 4.5 73.0
with C.TP2 >50 >1000 94.0 277.8 58.0
one SR 46.1 83.5
change SR-3 46.2 79.5
point SR+3 46.2 72.0

JP 45.8 96.0 25.8 8.1 95.5 32.9 0.0 100.0
Comb- Q.TP 51.8 100.0 21.8 0.5 0.0 2.1 0.0 100.0
ined C.TP1 50.7 6.5 <1 >1000 0.0 >1000 2.5 41.0

C.TP2 >50 841.8 95.0 >1000 59.0
SR 57.5 100.0
SR-3 58.7 100.0
SR+3 63.4 100.0
JP 56.3 100.0 24.5 2.1 78.5 4.1 0.0 100.0

β0 = 1.5
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 52.6 100.0 25.2 1.2 91.0 4.6 0.0 100.0
ratic C.TP1 51.5 5.5 <1 701.6 70.0 510.3 1.5 52.0

C.TP2 >50 434.4 53.0 545.6 51.0
SR 54.7 100.0
SR-3 55.0 100.0
SR+3 55.1 100.0
JP 52.6 99.5 25.6 5.4 73.5 10.7 0.0 100.0

Segm- Q.TP1 51.0 37.5 20.1 >1000 80.5 152.6 0.0 87.0
ented C.TP1 50.1 2.5 <1 749.7 29.0 180.7 1.5 81.0
with C.TP2 >50 262.5 94.0 179.1 69.0
one SR 49.9 40.0
change SR-3 49.9 37.5
point SR+3 50.0 29.5

JP 48.8 60.0 26.3 15.4 92.5 40.7 0.0 100.0
Comb- Q.TP2 50.2 100.0 21.8 1.2 17.5 4.6 0.0 100.0
ined C.TP1 49.0 6.0 <1 >1000 0.0 608.3 2.5 43.0

C.TP2 >50 810.1 97.0 583.8 60.0
SR 50.7 100.0
SR-3 51.1 100.0
SR+3 52.0 100.0
JP 49.4 98.5 24.4 4.7 75.0 9.8 0.0 100.0

O.M: Original model, SR: Segmented regression model from simulated data, CI.TP%: The percentage of confidence

intervals that contains the true turning point. See Table 6.1 for the definition of β0, S.M, Q.TP, C.TP, JP, DV, SG.CH%,

TP.ES, TP.SD, CI.WD, NO.TP%, TP.IN%.

Tables D.3 and D.4 show the results of simulation studies when sample sizes

are 35 and 20, respectively.

218



Chapter 6 Comparing Change Points Methods

Summary

Tables 6.2, D.3 and D.4 show the results of the simulation studies carried out

to compare change point methods and explain the best method to detect the

change in trend of count data. This simulation is based on the assumption of

where the data came from; data has a quadratic pattern or segmented pattern

with one true turning point which occurs in the middle of the data. Also,

the combination between quadratic and segmented models with the same true

turning point was considered.

The residual deviance (DV) and the percentage of significance of change point

parameter (SG.CH%) are important measurements to detect the best method

of detecting the change point. When the data has a quadratic or combined

(combination model of quadratic and segmented regression) pattern with the

true turning point in the middle, the DV of polynomial models (quadratic and

cubic) are less than DV of joinpoint and segmented models when the sample

size is large (n ≥ 35) and β0 ≥ 5. However, when the sample size decreases

(n ≤ 20) or β0 ≤ 3, the DV of all models is similar. On the other hand, when

the data has segmented regression pattern with the true turning point in the

middle, the DV of joinpoint, segmented regression and polynomial models are

similar.

The SG.CH% in cubic models are about 5% because the data are simulated

from models which assume that one change point has occurred. When the

original models are quadratic or combined models, often 100% of SG.CH%

have been detected for quadratic, segmented regression and joinpoint models

when n ≥ 50 and when n ≤ 35 and β0 ≥ 3 which indicates that the change

point is always found. However, whenever the sample size and β0 decrease,

the SG.CH% in quadratic and joinpoint models decrease. SG.CH% in the join-
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point model becomes greater than the SG.CH% in the quadratic model when

n ≤ 20 and β0 ≤ 1.5. On the other hand, when the original model is a segmen-

ted regression model, usually 100% of the SG.CH% is detected for all models

when n ≥ 35 and β0 ≥ 5. The 100% SG.CH% indicates that a change point

is found in each simulation however, it may be biased (i.e. it may not be in

the right place). For example, when n = 50, β0 ≥ 5 and the true turning point

occurs at 25, the quadratic model fitted to data which is simulated from the

segmented regression showed 100% SG.CH% for the coefficient of change but

the average of estimated change points (TP.ES) occurs at the wrong place; at

13 (i.e. not close to the middle at 25). However, the SG.CH% in quadratic,

segmented regression and joinpoint models decreases when the sample size

and β0 decrease. In general, the SG.CH% in joinpoint models are greater than

the SG.CH% in quadratic models and a large difference occurs when n ≤ 35 and

β0 ≤ 3 because joinpoint model fits well to the data from straight lines (segmen-

ted regression pattern). In addition, SG.CH% in the joinpoint model is greater

than that in segmented regression models indicating that the joinpoint detects

change points better than segmented regression but it has a wide confidence

interval. In all original models, NO.TP% measures the number of times when

the coefficient of the change point in different models is exactly equal to zero

which explains how many times the change points cannot be estimated. This

very rarely occurs where quadratic and joinpoint models report 0% of NO.TP%

and the cubic models report that at most 15% of the models are fitted with the

coefficient of change being exactly equal to zero.

The main important results are associated with the estimated change point.

The estimated change points (TP.ES) from the cubic model is usually located

outside the range of data therefore they have very wide confidence intervals.

When the original model is quadratic and the sample size is 50, the quadratic
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and joinpoint methods roughly locate estimated change points (TP.ES) at the

position of the true turning point with small standard error (TP.SD). How-

ever, TP.SD increases as β0 decreases. The mean width of confidence interval

(CI.WD) of estimated change points from the quadratic method is less than the

mean width of the confidence interval of the estimated change points from the

joinpoint method. On the other hand, when the original models are segmented

or combined, the joinpoint method locates TP.ES close to the true turning point

with small TP.SD but wide CI.WD. However, TP.SD increases as β0 decreases.

In contrast, the quadratic method did not locate TP.ES at the true turning point

position (at the middle) and CI.WD of estimated change point increases as β0

decreases. CI.TP% measures the 95% coverage of true turning points where

the 95% coverage with 200 simulations is equivalent to (92%- 98%). When the

original model is quadratic, the joinpoint method did not cover 95% of true

turning points however the quadratic method often covers 95% of the true

turning points when n ≤ 35 and β0 ≤ 5 with large mean width of confidence

interval. When the original model is combined, all methods; polynomial and

joinpoint report CI.TP% under 95% coverage. However, when the original

model is segmented regression, the joinpoint method usually covers 95% of the

true turning points but with wide confidence intervals. CI.TP% for estimated

change points from polynomial methods are under 95% coverage. TP.IN%

measures the number of times that estimated turning points occur within the

range of data. TP.IN% from the joinpoint method is always within the range

of data because the joinpoint method estimates the change point to be only

within the range of the data. However, the TP.IN% from the quadratic method

occurs almost 100% within the range of data except when the original model is

segmented and n ≤ 35 and β0 ≤ 3. The TP.IN% from the cubic method is often

less than 50% because the cubic model fits the data that assumes one change

point. A similar pattern of results is obtained when n = 35 and 20.
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6.3.2 Change occurring in the beginning or at the end of

dataset

We assume that the true turning point occurs in the beginning or at the end

of data and three numbers of data points; 50, 35 and 20 with three different

values of β0; 5, 3 and 1.5. Figures 6.3 and D.1 explain the different scenarios and

Tables 6.3, D.5, D.6, D.7, D.8 and D.9 show the results of simulation studies at

different sample sizes; 50, 35 and 20 and different locations of the true turning

point; in the beginning or at the end of data.

Table 6.3: Number of data points=50 and the true turning point in the beginning
at 13.

β0 = 5
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 46.7 100.0 13.2 0.4 85.0 1.4 0.0 100.0
ratic C.TP1 45.7 6.0 <1 >1000 90.0 >1000 11.0 39.0

C.TP2 >50 >1000 56.0 >1000 61.0
SR 161.5 100.0
SR-3 235.2 100.0
SR+3 118.4 100.0
JP 96.0 100.0 21.1 1.4 0.0 2.3 0.0 100.0

Segm- Q.TP 51.6 94.0 <1 354.5 6.0 161.2 0.0 13.0
ented C.TP1 47.1 46.0 5.1 51.8 11.0 67.3 4.0 91.0
with C.TP2 >50 190.2 35.0 148.1 17.0
one SR 46.8 89.0
change SR-3 47.0 64.0
point SR+3 47.0 96.0

JP 46.0 98.0 14.5 7.9 92.0 21.4 0.0 100.0
Comb- Q.TP 49.9 100.0 10.9 0.4 0.0 1.6 0.0 100.0
ined C.TP1 46.3 7.0 <1 >1000 0.0 803.2 2.0 97.0

C.TP2 >50 >1000 48.0 >1000 3.0
SR 110.6 100.0
SR-3 161.7 100.0
SR+3 92.3 100.0
JP 90.4 100.0 17.5 1.2 0.0 2.1 0.0 100.0

β0 = 3
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 47.7 100.0 13.2 1.5 91.0 5.8 0.0 100.0
ratic C.TP1 46.5 7.0 <1 778.0 96.0 705.4 5.0 50.0

C.TP2 >50 815.7 71.0 843.3 53.0
SR 58.0 100.0
SR-3 64.2 92.5
SR+3 54.0 100.0
JP 49.0 100.0 22.8 4.8 10.5 8.3 0.0 100.0

Segm- Q.TP 49.5 43.0 <1 >1000 93.5 419.4 0.0 46.5
ented C.TP1 47.4 21.5 5.9 213.1 89.0 133.2 1.5 89.0

Continued on next page
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Table 6.3 – Continued from previous page
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
with C.TP2 >50 346.2 70.0 193.1 49.0
one SR 47.3 39.0
change SR-3 47.3 20.0
point SR+3 47.4 50.5

JP 46.3 71.0 17.5 13.2 96.0 39.6 0.0 100.0
Comb- Q.TP 47.4 100.0 11.6 1.1 71.5 4.4 0.0 100.0
ined C.TP1 46.3 6.5 <1 >1000 44.0 685.9 3.0 65.0

C.TP2 >50 922.6 89.0 769.8 36.0
SR 57.4 100.0
SR-3 65.4 99.5
SR+3 53.7 100.0
JP 50.9 100.0 19.2 3.5 20.5 5.8 0.0 100.0

β0 = 1.5
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 49.2 99.0 12.7 99.8 90.5 21.2 0.0 98.5
ratic C.TP1 48.3 3.5 <1 >1000 99.0 432.1 3.5 61.0

C.TP2 >50 754.4 79.0 427.8 54.0
SR 51.7 72.5
SR-3 53.6 37.0
SR+3 50.5 92.5
JP 47.7 95.5 22.6 7.9 53.5 19.7 0.0 100.0

Segm- Q.TP 53.6 20.0 18.5 >1000 99.5 432.0 0.0 48.5
ented C.TP1 52.3 9.0 <1 119.5 100.0 116.6 2.5 86.0
with C.TP2 47.5 258.0 65.0 168.5 66.0
one SR 52.2 18.0
change SR-3 52.3 8.0
point SR+3 52.1 22.5

JP 51.1 35.0 21.8 16.4 94.5 43.4 0.0 100.0
Comb- Q.TP 46.4 99.5 12.1 9.2 92.0 11.8 0.0 99.0
ined C.TP1 45.2 5.5 <1 444.7 89.0 360.9 0.0 69.0

C.TP2 >50 > 1000 80.0 362.9 47.0
SR 48.7 88.0
SR-3 50.5 57.0
SR+3 47.6 98.5
JP 45.0 93.0 20.6 7.5 59.5 15.9 0.0 100.0

See Table 6.2 for the definition of O.M, SR and CI.TP%. See Table 6.1 for the definition of β0, β1, S.M, Q.TP, C.TP,JP,

DV, SG.CH%, TP.ES, TP.SD, CI.WD, NO.TP%, TP.IN%.

Summary

When data is simulated from a quadratic or combined model (combination

model of quadratic and segmented regression) with true turning point near

the beginning, the residual deviance (DV) of polynomial models is less than

the DV of segmented regression and joinpoint models when the sample size is

large (n ≥ 35) and β0 ≥ 5. However, when the sample size decreases (n ≤ 20)

and when n ≤ 50 and β0 ≤ 3, the DV of all models are approximately similar.
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Figure 6.3: Original model (red line) and simulated data (black circles) from
quadratic, segmented and combined models with one true turning
point in the beginning (black vertical line). Plots in the first row
associated with β0 = 5, the second row with β0 = 3 and the third
row with β0 = 1.5.

In contrast, when the original model is a segmented regression, the DV of all

models has a similar pattern to the result of when true turning point occurs in

the middle of the data.

When the original models are quadratic or combined, the result of SG.CH%

in the cubic model is often the same when the true turning point occurs in

the middle of the data. When the sample size is large (n = 50), roughly all
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models have 100% of SG.CH% but the SG.CH% of the segmented regression

model decreases as β0 decreases. When n ≤ 35 and β0 ≤ 1.5, the SG.CH% for

all models decreases. On the other hand, when the data is simulated from

segmented regression, the SG.CH% in the cubic model is less than 50% and

decreases to 7% as the sample size and β0 decrease. The SG.CH% in all other

models is greater than 80% when n = 50 and β0 ≥ 5 otherwise, they are often

less than 50%. In general, SG.CH% from the joinpoint model is greater than

SG.CH% from the quadratic model particularly when β0 decreases but a wide

confidence interval is estimated from the joinpoint method. Similar results of

NO.TP% when the true turning point occurs in the middle is reported in the

case of the true turning point occurring at the beginning of the data.

The TP.ES from the cubic model has a similar result when the true turning

point occurs in the middle. It is located far from the true turning point with

a very large standard error and mean width of confidence interval. When the

original model is quadratic, the quadratic method often locates the TP.ES very

close to the true turning point and the standard error and the mean width of

the confidence interval increases as β0 decreases. However, the TP.ES from the

joinpoint method tends to be in the middle of the data and as a result it is not

located at the true turning point where it has a wide confidence interval as

β0 decreases. The TP.SD from the quadratic and joinpoint models increase as

the sample size and β0 decrease. Moreover, the location of the change point

from the simulated model SR+3 (i.e. the simulated segmented regression with

change point occurring at true turning point+3) is roughly better than the loc-

ation of estimated change point from the joinpoint method. When the original

model is segmented, the TP.ES from the quadratic method did not locate the

true turning point and TP.ES occurs mostly outside the range of data. The TP.ES

from the joinpoint method also did not locate the true turning point and TP.ES
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tends to be in the middle of the data as β0 and the sample size decrease. The

TP.SD from the quadratic model is very large and the TP.SD from the joinpoint

model increases when β0 decreases. When the original model is combined,

the TP.ES from the joinpoint and quadratic methods often did not locate the

true turning point. However, for a small sample size (n ≤ 20) the TP.ES from

the quadratic method often locates the true turning point but has a very wide

confidence interval. The TP.SD is the same when simulated from a quadratic

model.

The CI.TP% has no clear pattern and the percentage coverage of the true

turning point is often outwith the range (92%- 98%). This may be because of

sampling error or because the confidence interval was calculated through an

inaccurate method (percentile bootstrap method). The only exception is when

the original model is quadratic. Here the CI.TP% of the estimated change

point from the quadratic method is within 95% coverage when n ≤ 35 and

β0 ≤ 3. A wide confidence interval is observed in quadratic and joinpoint

methods and the CI.WD increases as the sample size and β0 decrease. Also,

when the original model is combined, the quadratic method often covers 95%

of the true turning points when β0 ≤ 1.5 with a very wide confidence inter-

val. The percentage of estimated change point occurring within the range of

data (TP.IN%) has a similar result as when the true turning point is present in

the middle of the data. However, when the original model is segmented re-

gression, the quadratic method reports that less than 50% of estimated change

points are in the range of data. A similar pattern is obtained when n =35 and 20.

When the true turning point occurs near the end of the data, the same

conclusion to the result of the true turning point being near to the beginning is

obtained. The only difference when the true turning point is at the end is when
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the original model is segmented regression, the quadratic method reports that

more than 85% of the estimated change points are in the range of data (TP.IN%).

A similar pattern of results is obtained when sample sizes are 35 and 20.

6.3.3 Conclusion

When one change point occurs in the middle of the data and describes the

slope of trend, all methods; quadratic polynomial, segmented regression and

joinpoint analysis often detect change point when the pattern of the data seems

quadratic polynomial. However, when n ≥ 50 and β0 ≥ 5, the quadratic poly-

nomial method is better to detect change points. When n ≤ 20 and β0 ≤ 1.5,

nothing can detect the change in the middle. In contrast, when the pattern

of the data seems as straight lines or mixed between the polynomial and seg-

mented, segmented and joinpoint methods are better to detect change points

roughly in the middle when n ≥ 35 and β0 ≥ 3. Otherwise, no method detects

change in the middle.

On the other hand, when one change point occurs in the beginning or at the

end of the data and the original model is quadratic, the quadratic polynomial

method can detect change points when n ≥ 20 and β0 ≥ 3. Otherwise, different

methods need to be investigated to detect change points.

6.4 Models with two change points

As in the one change point simulation study, three different sample sizes; 50, 35

and 20 and three numbers of cases, where β0 = 5, 3 and 1.5, are considered. Three

different original models; the cubic model, segmented model with two true

turning points in the slope and the combination between them with two true

turning points occurring roughly in the middle of the dataset, (see Section 6.4.1)
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or one in the beginning and one at the end, (see Section 6.4.2) are investigated.

The conclusion is in Section 6.4.3. See the algorithm in Appendix D.2.

6.4.1 Two change points occurring approximately in the

middle of data

This section includes the results of simulation studies when the true turning

points occur roughly in the middle of the dataset. When the number of data

points is 50, the true turning points are assumed to be at 16 and 33, (see Figure

6.4). When the sample sizes are n = 35 and 20, the true turning points occur at

(11 and 24) and (7 and 13), respectively.

Tables 6.4, D.10 and D.11 show the results of simulation studies when n =

50, 35 and 20, respectively. The terms in these tables are explained as follow:

1. S.M is the type of change point fitted models (simulated models) where

Q.TP and C.TP are explained in Section 6.2. SR is a segmented regression

model (SR1 and SR2 are related to the first and the second true turning

points) and SR ± 3 are segmented regression models (SR1 ± 3 and SR2

± 3 are related to the first and the second true turning points ± 3). JP

is a joinpoint model (JP1 and JP2 are related to the first and the second

estimated change points from joinpoint model).

2. LCL and UCL are the lower and upper limits, respectively of the confid-

ence interval of the estimated change point.

3. CI% is the percentage of confidence intervals of the estimated change

points containing the true turning point, (CI1% and CI2% are related to

the first and the second estimated change points, respectively).
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Figure 6.4: Original model (red line) and simulated data (black circles) from cu-
bic, segmented and combined models with two true turning points
in the middle (black vertical lines). Plots in the first row associated
with β0 = 5, the second row with β0 = 3 and the third row with
β0 = 1.5.
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Table 6.4: Number of data points=50 and the true turning points at 16 and 33.
Original model is cubic model

β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
5 Q.TP 108.4 58.0 <1 >1000 -181.3 195.2 376.5 99.5 73.5 0.0 60.5

C.TP1 46.3 100.0 15.8 0.8 14.3 17.5 3.2 93.5 0.0 100.0
C.TP2 33.5 0.8 31.6 34.8 3.2 87.0 100.0
SR1 52.4 100.0
SR2 100.0
SR1 -3 55.1 99.0
SR2 -3 100.0
SR1 +3 52.4 0.0
SR2 +3 100.0
JP1 45.0 100.0 11.7 3.7 7.6 18.7 11.1 62.0 0.0 100.0
JP2 100.0 38.8 3.2 34.8 41.7 6.9 33.5 0.0 100.0

3 Q.TP 56.6 13.5 35.9 785.0 -133.7 172.4 306.1 98.5 87.5 0.5 62.5
C.TP1 46.9 84.0 15.8 35.2 3.5 23.1 19.6 93.5 0.0 100.0
C.TP2 33.2 19.6 25.4 43.2 17.8 92.5 100.0
SR1 45.8 42.5
SR2 68.0
SR1 -3 46.4 38.0
SR2 -3 58.5
SR1 +3 45.7 0.0
SR2 +3 61.0
JP1 42.6 88.0 19.0 12.5 4.3 38.1 33.8 96.5 0.0 100.0
JP2 95.5 37.0 8.9 18.7 46.7 28.0 92.5 0.0 100.0

1.5 Q.TP 50.7 4.0 11.3 603.1 -81.6 130.7 212.2 97.5 96.5 0.0 78.0
C.TP1 47.6 35.0 15.9 237 -43.1 26.7 69.8 98.5 0.5 98.0
C.TP2 42.0 346.0 22.9 89.6 66.7 92.5 95.5
SR1 45.8 13.0
SR2 16.5
SR1 -3 45.9 14.5
SR2 -3 16.0
SR1 +3 46.0 0.0
SR2 +3 17.0
JP1 42.8 72.5 21.6 15.0 3.0 41.4 38.4 96.5 0.0 100.0
JP2 75.5 30.9 14.8 9.8 47.7 38.0 96.0 0.0 100.0

Original model is segmented regression model

β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
5 Q.TP 50.5 13.5 17.3 776.1 -118.1 163.8 281.9 99.0 88.0 0.5 68.5

C.TP1 46.7 43.5 16.0 137.0 -25.5 25.9 51.4 94.5 2.0 100.0
C.TP2 46.0 94.7 20.9 72.9 52.0 97.0 97.5
SR1 43.8 25.5
SR2 45.5
SR1 -3 44.2 14.5
SR2 -3 46.0
SR1 +3 44.0 0.0
SR2 +3 26.5
JP1 41.6 80.0 22.6 12.2 3.5 40.5 37.1 98.5 0.0 100.0
JP2 84.5 31.2 11.2 12.6 47.1 34.5 97.5 0.0 100.0

3 Q.TP 48.7 4.0 >50 >1000 -65.0 114.0 179.0 98.0 95.0 1.5 84.5
C.TP1 47.2 11.0 15.0 429.0 -62.9 28.3 91.2 99.0 3.5 98.0
C.TP2 >50 285.8 21.7 119.8 98.1 97.0 88.5

Continued on next page
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Table 6.4 – Continued from previous page
β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%

SR1 44.9 10.0
SR2 10.5
SR1 -3 45.1 7.5
SR2 -3 10.5
SR1 +3 45.0 0.0
SR2 +3 8.5
JP1 42.2 69.0 20.7 14.9 2.9 43.4 40.5 97.5 0.0 100.0
JP2 75.0 28.0 15.1 8.2 48.2 40.0 96.5 0.0 100.0

1.5 Q.TP 48.8 6.0 15.2 856.6 -63.3 111.0 174.3 97.0 98.5 0.0 84.0
C.TP1 49.0 9.0 15.7 617 -65.6 28.0 93.6 99.0 0.5 98.0
C.TP2 41.1 231.0 22.7 122.0 99.3 95.5 87.0
SR1 45.8 3.0
SR2 8.5
SR1 -3 45.7 3.0
SR2 -3 5.5
SR1 +3 45.8 0.0
SR2 +3 9.0
JP1 42.9 57.5 22.5 15.0 2.7 43.6 40.9 98.0 0.0 100.0
JP2 57.5 28.1 15.4 7.7 48.6 40.9 98.5 0.0 100.0

Original model is combined model

β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
5 Q.TP 139.1 68.0 18.4 342.4 -37.8 74.3 112.1 99.5 78.0 0.5 96.0

C.TP1 47.1 100.0 13.9 0.6 12.7 15.0 2.2 55.5 0.0 100.0
C.TP2 35.3 0.5 34.4 36.2 1.9 27.5 100.0
SR1 50.7 100.0
SR2 100.0
SR1 -3 54.3 100.0
SR2 -3 100.0
SR1 +3 52.3 0.0
SR2 +3 100.0
JP1 44.7 100.0 12.6 2.6 9.6 16.5 7.0 61.5 0.0 100.0
JP2 100.0 37.6 2.4 34.6 40.1 5.5 32.0 0.0 100.0

3 Q.TP 58.7 18.0 23.8 623.5 -49.6 97.5 147.1 92.5 91.5 0.5 86.5
C.TP1 46.5 92.5 13.5 18.2 4.2 18.0 13.7 75.5 0.0 100.0
C.TP2 35.2 57.8 30.6 41.2 10.6 66.0 100.0
SR1 45.0 65.0
SR2 82.5
SR1 -3 45.4 52.0
SR2 -3 82.5
SR1 +3 45.5 0.0
SR2 +3 72.5
JP1 42.3 95.0 16.4 10.7 5.3 34.4 29.0 92.0 0.0 100.0
JP2 98.0 35.2 8.1 20.2 45.1 24.9 91.5 0.0 100.0

1.5 Q.TP 50.9 7.5 22.3 376.7 -53.4 104.9 158.3 96.0 94.0 0.0 82.0
C.TP1 47.2 38.5 14.0 140.7 -30.4 24.1 54.5 95.0 0.5 100.0
C.TP2 38.8 178.8 24.7 77.8 53.1 88.0 95.0
SR1 45.1 19.0
SR2 28.5
SR1 -3 45.1 11.0
SR2 -3 28.0
SR1 +3 45.4 0.0
SR2 +3 28.5

Continued on next page
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Table 6.4 – Continued from previous page
β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%

JP1 42.7 70.5 20.6 13.8 3.0 40.5 37.5 98.0 0.0 100.0
JP2 77.5 30.4 13.1 10.3 47.8 37.5 98.5 0.0 100.0

β0: The log of number of cases, S.M: Simulated model, Q.TP: Quadratic simulated model, C.TP: Cubic simulated

model, SR: Segmented simulated model, JP: Joinpoint simulated model, DV: The mean deviance of simulated models,

SG%: The percentage of significant parameters of change, ETP: The mean of estimated change point, SD: The mean

of standard error of estimated change point, LCL: The mean of lower confidence level of estimated change point,

UCL: The mean of upper confidence level of estimated change point, WD: The mean width of confidence interval

of estimated change point, CI1%: The percentage of confidence intervals which contains the first true turning point,

CI2%: The percentage of confidence intervals which contains the second true turning point, NO%: The percentage of

times that the coefficients of change is zero, IN%: The percentage of times where estimated change points are inside

the range of data.

Summary

When the simulation is carried out 200 times with two true turning points in

the middle of data, the residual deviance (DV) is calculated for each simulated

model. When the original model is cubic or combined (combination model of

cubic and segmented regression), the DV of the quadratic model is the largest

because the quadratic model fit to the data is simulated from a cubic equation.

When the sample size or β0 decreases, the difference of DV between quadratic

and other models decreases as the simulated data are more random and do not

have a cubic pattern. However, the DV of the cubic, segmented regression and

joinpoint models are similar. Similar results are obtained when n = 35 and 20.

On the other hand, when the original model is segmented regression, the DV

of all models are similar. Similar results are obtained when n = 35 and 20.

SG% measures the significance of the parameter of change in the simulated

model. When the original model is cubic or combined, the percentage of sig-

nificant parameters of change (SG%) in the quadratic model is less than 70%

when n = 50 and decreases as β0 decreases. Moreover, the SG% in the quad-

ratic model is less than 20% when n = 35 and 20. However, the cubic model

has 100% significant parameters of change when n = 50 and β0 ≥ 5 but SG%
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decreases as β0 decreases. The joinpoint model has roughly 100% significant

parameters of change when n = 50 and β0 ≥ 3 but becomes less than 80% when

β0 ≤ 1.5. Therefore, the SG% in cubic and joinpoint are similar when n = 50

and β0 ≥ 5 otherwise, the SG% in the joinpoint model is larger. Moreover,

the segmented regression model has 100% significant parameters of change

when n = 50 and β0 ≥ 5 but decreases as β0 decreases. Therefore, the SG%

in segmented regression and joinpoint are similar when n = 50 and β0 ≥ 5

otherwise, the SG% in joinpoint model is larger. The SG% in the cubic, join-

point and segmented regression models decreases as n decreases. On the other

hand, when the original model is segmented, the SG% in the quadratic model

is often less than 10%. The SG% in the joinpoint model is the largest com-

pared with cubic and segmented regression. The parameter of change is equal

to zero (NO%) in 1% of time from all simulated models in different sample sizes.

Estimated change point (ETP) from different methods were used to asses the

best method of detecting change points. The ETP from the quadratic method

did not locate any of the true turning points and has a very large standard

error (SD). When the original model is a cubic model, the ETPs from the cubic

method often located both true turning points when n = 50 and β0 ≥ 3 with SD

increasing as β0 decreases. When n = 35, ETPs roughly located true turning

points when β0 ≥ 5 with a large SD. But when β0 < 5, the first ETP located

the first true turning point only with a large SD. However, when n = 20, only

the first true turning point is located with a large SD. Therefore, the first true

turning point is always located but the second true turning point is located

only when n and β0 are large. This is because small n and β0 produce random

variation within simulated data. The ETPs from the joinpoint method roughly

located true turning points when n = 20 otherwise, ETPs did not locate true

turning points. On the other hand, when the original model is a segmented
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regression, the first ETP from the cubic method usually located the first true

turning point but with a large SD. Similar results are obtained when n = 35

and 20. However, the ETPs from the joinpoint method roughly located the

true turning points when n = 20 with SD is approximately 25% of the number

of data points otherwise, the ETPs did not occur anywhere close to the true

turning points. In contrast, when the original model is combined, the first ETP

from the cubic method often located the first true turning point when n ≤ 35

with a large SD. The second ETP from the joinpoint method roughly located

the second true turning point when only n = 20 with a large SD.

The confidence interval of the estimated change point is of interest because

it explains the range of estimated change points (WD) and the coverage of the

true turning point (CI%). The mean width of the confidence interval (WD) for

the estimated change point from the quadratic method is very large in all cases.

When the original model is cubic or combined, the WD in the cubic model is

about 2 to 3 points wide when n = 50 and β0 ≥ 5. The lower confidence level

(LCL) and upper confidence level (UCL) are roughly symmetric around the

true turning points. However, the WD increases as β0 decreases and exceeds n

when β0 ≤ 1.5 where confidence intervals are asymmetric. When n = 35, the

confidence interval in the cubic model is wide and increases as β0 decreases

but when n = 20 the WD is greater than n and the confidence intervals are

asymmetric around the true turning points. The WD in the joinpoint model

is greater than the WD in the cubic model when n = 50 and β0 ≥ 3 and it

increases as β0 decreases but does not exceed n because LCL and UCL have to

be within the range of data. However, when n ≤ 35, the WD in joinpoint is less

than the WD in cubic. The confidence intervals are asymmetric in all cases.

Moreover, when the data is simulated from a cubic model, the confidence in-

terval of the first estimated change point from the cubic method covers 95% of
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the first true turning points when n = 50 and β0 ≥ 3. But when n = 35 and

β0 ≥ 5, the confidence intervals of both estimated change points covers 95% of

both true turning points. Otherwise, the CI% is out of the 95% coverage or the

WD is very large and exceeds n. The CI% from the joinpoint model is often

under 95% when WD is less than n
2 but when WD is greater than n

2 , the CI%

is roughly within 95% coverage. In contrast, when the data is simulated from

the combined model, the CI% from the cubic model is under 95% when WD

is less than n. If WD is greater than n, the CI% is either within or out of the

95% coverage. However, the CI% from the joinpoint model is under the 95%

coverage when WD is less than n
2 but if WD is greater than n

2 , the CI% is either

within or out of 95%. Similar results are obtained when n = 35 and 20. On the

other hand, when the original model is segmented, the WD of the estimated

change points in the joinpoint model are very large and exceeds n in the cubic

model. Therefore, the coverage of true turning points (CI%) is mostly above

95% coverage but some confidence intervals cover 95% of true turning points

with very large width. Also, the confidence intervals are asymmetric. Similar

results are obtained when n = 35 and 20.

The estimated change points from the joinpoint method always occur within

the range of data (IN% = 100%). However, the estimated change points from

the quadratic method occur about 60%- 85% within the range of data. When the

data are simulated from cubic or combined models, the first estimated change

point from cubic method is often 100% within the range of data but the second

estimated change point is roughly 100% within the range of data when n = 50

and when n = 35 and β0 ≥ 5. Otherwise, IN% decreases up to 85% as n and

β0 decrease. However, when the original model is segmented regression, the

IN% decreases as n and β0 decrease.
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6.4.2 Two change points occurring close to the beginning

and end of data

We assume that the true turning points occur close to the beginning and the

end of the dataset. When n = 50, the true turning points are assumed to be at

10 and 40, (see Figure 6.5). When n = 35 and 20, the true turning points occur

at (7 and 27) and (5 and 15), respectively.
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Figure 6.5: Original model (red line) and simulated data (black circles) from cu-
bic, segmented and combined models with two true turning points
in the beginning and end (black vertical lines). Plots in the first row
associated with β0 = 5, the second row with β0 = 3 and the third
row with β0 = 1.5.
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Tables 6.5, D.12 and D.13 show the results of simulation studies when n =

50, 35 and 20, respectively.

Table 6.5: Number of data points=50 and the true turning points at 10 and 40.
Original model is cubic model

β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
5 Q.TP 89.2 4.0 <1 >1000 -810.0 817.7 >1000 99.5 98.5 0.5 0.0

C.TP1 46.2 100.0 9.8 0.9 7.6 11.2 3.6 90.0 0.0 100.0
C.TP2 40.5 1.0 39.1 42.8 3.7 84.0 100.0
SR1 45.5 97.0
SR2 94.5
SR1 -3 47.8 66.0
SR2 -3 99.5
SR1 +3 48.0 0.0
SR2 +3 67.0
JP1 43.6 100.0 12.3 4.1 8.4 18.8 10.4 76.5 0.0 100.0
JP2 100.0 38.5 4.4 31.1 42.8 11.6 79.0 0.0 100.0

3 Q.TP 53.1 4.0 40.8 >1000 -331.7 364.2 695.9 98.5 96.0 0.0 22.0
C.TP1 46.9 65.0 9.6 325.0 -13.0 17.0 30.0 98.5 0.0 98.5
C.TP2 41.8 600.0 31.0 66.9 35.9 97.0 95.5
SR1 44.8 31.0
SR2 20.5
SR1 -3 45.1 19.0
SR2 -3 34.5
SR1 +3 45.4 0.0
SR2 +3 14.5
JP1 42.3 86.5 18.2 12.8 3.5 37.3 33.8 96.0 0.0 100.0
JP2 86.0 32.0 12.8 11.7 47.3 35.5 95.5 0.0 100.0

1.5 Q.TP 50.9 5.5 12.2 >1000 -143.3 179.1 322.4 97.5 93.0 0.0 59.5
C.TP1 48.5 18.0 12.6 412.0 -52.4 25.0 77.4 98.0 1.5 96.0
C.TP2 46.6 209.0 22.0 106.8 84.8 97.0 87.0
SR1 46.8 8.5
SR2 11.5
SR1 -3 46.9 7.0
SR2 -3 12.0
SR1 +3 46.6 0.0
SR2 +3 8.0
JP1 43.8 65.5 21.7 14.5 3.0 42.6 39.7 96.0 0.0 100.0
JP2 66.0 30.1 14.4 7.9 48.5 40.6 97.0 0.0 100.0

Original model is segmented regression model

β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
5 Q.TP 49.8 18.5 >50 >1000 -107.9 141.4 249.3 95.0 80.5 1.0 72.5

C.TP1 46.8 27.0 16.4 144.0 -46.0 27.9 73.9 84.5 5.0 99.0
C.TP2 34.6 144.0 18.5 99.4 80.9 78.0 93.0
SR1 44.7 6.5
SR2 27.0
SR1 -3 44.3 8.5
SR2 -3 37.5
SR1 +3 44.8 0.0
SR2 +3 9.0

Continued on next page
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Table 6.5 – Continued from previous page
β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%

JP1 41.8 79.0 24.7 15.0 3.2 43.0 39.8 96.5 0.0 100.0
JP2 81.0 33.2 12.6 12.1 48.0 35.9 96.5 0.0 100.0

3 Q.TP 47.8 5.0 26.1 >1000 -63.2 116.3 179.5 93.0 94.5 0.0 75.5
C.TP1 46.6 8.0 15.9 531.0 -76.3 28.4 104.7 96.5 4.0 97.0
C.TP2 >50 203.9 21.2 125.2 104.0 96.5 87.0
SR1 44.5 4.0
SR2 5.0
SR1 -3 44.5 2.5
SR2 -3 11.5
SR1 +3 44.8 0.0
SR2 +3 4.5
JP1 41.7 70.0 24.0 15.4 2.8 43.7 40.9 98.0 0.0 100.0
JP2 71.0 30.4 14.7 8.0 48.5 40.5 99.0 0.0 100.0

1.5 Q.TP 48.8 6.5 28.8 791.3 -59.5 112.1 171.5 91.5 93.5 0.0 84.0
C.TP1 47.7 6.5 14.5 744.0 -66.8 28.4 95.2 95.5 0.5 98.5
C.TP2 44.0 304.0 22.6 117.1 94.5 99.0 88.0
SR1 45.9 5.0
SR2 6.0
SR1 -3 45.9 3.5
SR2 -3 7.0
SR1 +3 45.6 0.0
SR2 +3 5.5
JP1 42.9 55.5 22.6 15.2 2.7 43.9 41.1 97.0 0.0 100.0
JP2 54.5 28.0 15.6 7.6 48.7 41.1 99.0 0.0 100.0

Original model is combined model

β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
5 Q.TP 100.8 5.0 >50 >1000 -954.3 1001.2 >1000 99.0 99.0 1.0 0.0

C.TP1 45.8 100.0 9.1 0.8 7.2 10.4 3.3 81.5 0.0 100.0
C.TP2 40.8 0.8 39.5 42.7 3.3 86.0 100.0
SR1 45.2 98.5
SR2 99.0
SR1 -3 48.0 82.5
SR2 -3 100.0
SR1 +3 47.9 0.5
SR2 +3 82.0
JP1 43.5 100.0 11.4 2.8 8.1 16.6 8.5 83.0 0.0 100.0
JP2 100.0 39.5 3.0 34.1 43.1 9.0 86.0 0.0 100.0

3 Q.TP 55.5 4.5 <1 >1000 -430.0 461.2 891.2 98.5 98.0 0.5 9.0
C.TP1 46.8 86.0 9.1 49.8 -4.4 14.4 18.8 97.0 0.0 99.0
C.TP2 41.2 109.5 35.4 56.0 20.6 95.0 98.5
SR1 44.8 38.5
SR2 33.5
SR1 -3 45.4 17.5
SR2 -3 51.0
SR1 +3 45.2 0.0
SR2 +3 19.0
JP1 42.6 92.0 17.1 10.7 4.5 36.4 31.9 92.0 0.0 100.0
JP2 93.0 33.3 11.0 15.1 46.7 31.7 92.5 0.0 100.0

1.5 Q.TP 51.4 6.5 >50 775.2 -181.5 234.4 415.9 97.0 94.5 0.5 45.5
C.TP1 48.7 24.5 10.9 143.0 -47.6 25.4 73.0 99.0 0.5 99.0
C.TP2 45.1 460.0 22.9 101.4 78.5 99.5 91.0
SR1 47.0 10.0

Continued on next page

238



Chapter 6 Comparing Change Points Methods

Table 6.5 – Continued from previous page
β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%

SR2 10.5
SR1 -3 47.2 7.0
SR2 -3 13.0
SR1 +3 46.4 0.0
SR2 +3 6.5
JP1 44.0 66.0 21.2 14.5 2.8 41.4 38.6 96.5 0.0 100.0
JP2 65.5 29.7 14.2 9.0 48.4 39.4 97.5 0.0 100.0

See Table 6.4 for the definition of β0, S.M, Q.TP, C.TP, SR, JP, DV, SG%, ETP, SD, LCL, UCL, WD, CI1%, CI2%, NO%,

IN%.

Summary

The residual deviance (DV) of the simulated models has a similar pattern as

when two true turning points are in the middle of the dataset. The significance

of the parameter of change (SG%) in the quadratic model is about 5% when

the original models are cubic or combined (combination model of cubic and

segmented regression) at n = 50. However, it is about 20% when the data are

simulated from segmented regression and the SG% decreases as β0 decreases.

Similar results are obtained when n = 35 and 20. When the original models

are cubic or combined, the SG% of the parameter of change in the cubic model

has the same pattern when the true turning points occur in the middle of the

dataset. Also, the SG% decreases as n decreases and becomes about 5% when

n = 20. However, the SG% in the joinpoint model is 100% when n = 50 and

β0 ≥ 5 and the SG% decreases as n and β0 decrease. Therefore, the SG% in the

cubic and joinpoint models are similar when n = 50 and β0 ≥ 5 otherwise, the

SG% in the joinpoint model is larger and the difference increases as n decreases.

In contrast, the results of the SG% in segmented regression has a similar pat-

tern when the true turning points occur in the middle. On the other hand,

when the original model is segmented regression and n = 50, the SG% of the

parameter of change in segmented regression is often very small (about 5%)

but the SG% of the parameter of change in the cubic model is often less than

30% and in the joinpoint model is roughly less than 80% where SG% decreases
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as β0 decreases. The parameter of change of equal to zero (NO%) is rare where

in the cubic simulated model when the original data is a segmented data this

usually happens 5% of time but about 0% in other original models. Similar

results are obtained when n = 35 and 20.

The estimated change point (ETP) from the quadratic model has a similar

pattern when the true turning points occur in the middle. When the original

model is a cubic model and n = 50 and β0 ≥ 3, the ETPs from the cubic method

often located both true turning points with a standard error (SD) that increases

as β0 decreases. When n = 35 and β0 ≥ 5, ETPs often located true turning

points with a large SD. However, when n = 20 and β0 ≥ 5, only the first true

turning point is roughly located with a very large SD. Therefore, the first true

turning point is always located but the second true turning point is located

only when n and β0 are large. However, the ETPs from the joinpoint method

did not locate true turning points. In contrast, when the original model is

combined, the ETPs from the cubic method has similar results when the data

are estimated from a cubic model. In addition, when n = 50 and β0 ≤ 1.5, only

the first true turning point is roughly located with a large SD. The ETPs from

the joinpoint method roughly located both true turning points with small SD

only when n = 50 and β0 ≥ 5. On the other hand, when the data are simulated

from segmented regression, none of the methods locate true turning points.

The mean width of confidence interval (WD) for the estimated change point

from the quadratic method has similar results when true turning points occur

in the middle. When the original models are cubic or combined, the pattern of

results of WD in the cubic model is the same as when the true turning points

occur in the middle of the dataset except that the width here is about 3 points

and the confidence interval is asymmetric. The WD in the joinpoint model also
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has a similar pattern of results when the turning points occur in the middle

and the WD increases more than n
2 as β0 decreases. The percentage of coverage

of true turning points (CI%) in the cubic and joinpoint methods is under 95%

when the WD is small at n = 50 and β0 ≥ 5. However, when the WD is large, the

CI% covers 95% of true turning points when n = 50 and β0 = 3. Otherwise, the

CI% has no clear pattern because the WD is very large and exceeds n. Similar

confidence interval findings are obtained when the true turning points occur in

the middle of the dataset for data simulated from segmented regression models.

The estimated change points from the joinpoint method always occur within

the range of data (IN%=100%). The estimated change points occurring within

the range of data with two turning points for polynomial methods has similar

results to IN% when the true turning points occur in the middle of the dataset

(see Table 6.4). Exceptionally, when the data are simulated from a cubic or

combined model and n = 50 and β0 ≥ 5 , none of the estimated change points

from the quadratic method occur within the range of data and when β0 < 5,

the IN% is about 10%- 45%.

6.4.3 Conclusion

Two change points can be detected roughly in the middle of the data by the cubic

polynomial method when the pattern of the data seems cubic and n ≥ 50 and

β0 ≥ 3. However, two change points can be detected roughly in the beginning

and at the end of the data by cubic polynomial and joinpoint methods when the

pattern of the data seems mixed between straight lines and cubic models and

n ≥ 50 and β0 ≥ 5. However, cubic polynomial can detect two change points

when n ≥ 50 and β0 ≥ 5 where the data is simulated from cubic pattern. If any

of the above situations do not meet, different methods need to be investigated

to detect the change points.

241



Chapter 6 Comparing Change Points Methods

6.5 Discussion and conclusion

In this chapter we have performed simulation studies to compare change point

methods and we investigated the best method to detect the change in the trend

of count data. Three different patterns of data are assumed; data with no

change in trend, data with one change in trend and data with two changes in

trend. We identified initial (original) models; polynomial GLM models (linear,

quadratic and cubic), segmented models (with one and two changes) and the

combinations between polynomial and segmented models. These models are

identified according to the method of estimating change points. The polyno-

mial method was discussed in Chapter 4 when change points are estimated

from quadratic and cubic models. Chapter 5 explained how to detect change

points by segmented regression and joinpoint analysis methods. Since the

polynomial models show the quadratic and cubic models as the best to detect

change points and segmented models show the joinpoint method as an effective

method to detect change points, the combination (polynomial and segmented)

model is considered. Also, a linear model is considered as the original model

when there is no change in the trend of data. Since the change can occur at any

time, the beginning, middle and end of the time period are chosen to locate

true turning points. As this research deals with count data which can be rare,

different numbers of cases are assumed; β0= 5, 3 and 1.5. The limitation in these

simulation studies is that the coefficients in original models βis, i = 1, 2, 3, 4, 5

are similar but not identical when β0 and n change so the comparison between

methods is good but not very precise.

The criteria used for comparing different methods are identified. The re-

sidual deviance (DV) of the simulated models is used to detect the best fitted

model. The percentage of significant parameters of change (SG.CH%) over

200 simulations is calculated in the simulated models to assess the significance
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of the change. The location of the estimated change points (TP.ES) detects

how close the TP.ES is to the true turning points. The mean width of the es-

timated confidence intervals of estimated change points (CI.WD) is found to

determine the width of the confidence interval of the estimated change points.

The percentage of true turning points within the estimated confidence inter-

val (CI.TP%) was used to determine 95% coverage of the true turning point.

The use of percentile bootstrap confidence interval led to low coverage of true

turning points. The CI.WD and CI.TP% can be improved by using different

methods of bootstrap confidence interval such as a bias corrected method or

bias corrected and accelerated method. Moreover, choosing βis, i = 1, 2, 3, 4, 5

to be slightly different (<0.05) in different sample sizes or different locations of

the true turning points may affect the CI.WD and CI.TP%. Thus, using identical

values of βis here to produce accurate confidence intervals is recommended (see

Section 4.6). Finally the percentage of estimated change points in the range of

the dataset (TP.IN%) was computed.

The simulation started off with setting up the initial values to simulate data

based on a Poisson distribution. The simulated data was used to fit different

models (quadratic, cubic, segmented -at true turning points and at true turning

points ±3- and joinpoint models) then, change points were estimated. The

simulated models and estimated change points were compared using the cri-

teria explained above to investigate the best method of detecting change points.

Using the methods; polynomial and joinpoint to detect a change where there

is actually no change helps explain false positives. The polynomial method

detected change points in a linear trend (i.e. with no change points) in ap-

proximately 5% of simulations which indicates that the polynomial method is

a good method in order to detect the change points. In contrast, the joinpoint
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method detected a change point in a linear model in approximately 25% of

simulations where the estimated change points from the joinpoint models al-

ways occur at the middle with a large standard error and large mean width

of confidence interval. This indicates the weakness in the detection of change

points. In conclusion, the polynomial methods are good techniques to detect

no change when the pattern of data is linear but joinpoint method is not effect-

ive. Moreover, a linear pattern may occur with data that has change in the level

and therefore in such event different methods should be investigated to detect

the change. Taylor (2000) used cumulative sum (CUSUM) with bootstrapping

to detect the sudden change in the trend of data over time.

Detecting one change point has different results based on the initial model

and the location of change point. Generally, when the true turning point occurs

in the middle and the original model is quadratic, all methods; quadratic poly-

nomial and joinpoint analysis are able to detect change points in the middle.

However, when n ≥ 50 and β0 ≥ 5, the DV of the quadratic model is much

smaller than the DV of other models so in such case the quadratic polynomial

method is better to detect change points in the middle. However, when n ≤ 20

and β0 ≤ 1.5, all methods do not detect change points and therefore differ-

ent methods are required. In contrast, when the original model is segmented

regression, the segmented and joinpoint methods are better to detect change

points in the middle. These methods are usually better to detect the change

point when the original model is combined and n ≥ 35 and β0 ≥ 3. On the

other hand, the quadratic polynomial method is better to detect change points

when they occur in the beginning or at the end of the data when n ≥ 20 and

β0 ≥ 3 and the original model is quadratic. Otherwise, better methods need to

be derived, (see Figure 6.6).
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Figure 6.6: The best change point method. The abbreviations mean; M: the true
turning point occurs in the middle of dataset, Y: Yes, N: No, b: β0

and ss: sample size.

According to different original models, the simulation study gives different

conclusions to the best method of detecting two change points. In general,

when two true turning points occur roughly in the middle of the data, the cu-

bic polynomial method detects two change points when n ≥ 50 and β0 ≥ 3 and

the data is simulated from the cubic model. Otherwise, no method can detect

two change points in the middle. On the other hand, when two true turning

points occur roughly in the beginning and at the end of the data and n ≥ 50

and β0 ≥ 5, the cubic polynomial method detects two change points when the

original model is cubic model. However, the cubic polynomial and joinpoint
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methods detect two change points when the original model is mixed (combin-

ation between cubic and segmented) and n ≥ 50 and β0 ≥ 5. Otherwise, other

methods are required, (see Figure 6.6).

In conclusion, the polynomial regression method depending on one curve

over time and the joinpoint method depending on piecewise linear trends over

time are useful for detecting change points roughly in large datasets. In the next

chapter, we will develop a method for detecting change points of count data

using piecewise polynomial. This method uses the generalized additive model

(GAM) to fit count data using a smooth spline function of the time variable.
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Spline and Generalized Additive

Model Analysis

Detecting change points is an important issue in epidemiological studies.

Chapters 4 and 5 described methods based on polynomial generalized linear

models (GLM) and straight lines models, respectively to detect change points.

The nature of HAIs data involves the rate of infection increasing/decreasing

steeply and dropping off slowly. A quadratic model cannot fit such data as

the feature of a quadratic equation where the rate has an identical pattern

before and after the change point but with the structure reversed (increases

and decreases), as in a mirror. Cubic and quartic models (polynomial GLMs)

can fit the rate of infection well but they may have problems with prediction.

They may also estimate the change points outside the range of data. The join-

point method is based upon straight lines which may not be appropriate to fit

curvature pattern.

In this chapter, a new approach is considered to detect the change points.

Generalized additive models (GAM) are more flexible than polynomial GLM

and can model a smoother trend to the data. This chapter consists of Section 7.1
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which introduces spline and GAM models, Section 7.2 involving the method

of estimating change points and their confidence intervals from GAM models,

Section 7.3 which presents the results of the HAIs data and Section 7.4 which

includes the discussion and conclusion.

7.1 Spline function and generalized additive

model analysis

7.1.1 Introduction

A spline is a function s(x) where mathematically it is piecewise polynomial over

an interval (a, b) with continuous derivatives for all points of (a, b). For some

given positive integer r and a sequence of knot points; (i.e. points at which

the parts of spline function join) t1, t2, ..., tk, where a < t1 < t2 < ... < tk < b,

s(x) is required that on each subinterval (t j, t j+1), the s(x) is a polynomial of

order r. Also, on the interval (a, b), s(x) is continuous and has r − 1 continuous

derivatives [Wold (1974) and Bowman and Azzalini (1997)]. When the pos-

itive integer r is chosen to be 3, the curve of spline fonction is called a cubic

spline and is constructed from parts of a cubic polynomial which is joined

together by the knot points. Each part of the cubic polynomial function has dif-

ferent coefficients while at the knot points, the value and first two derivatives

of the function are similar in two adjoining parts [Hastie and Tibshirani (1987)].

In statistics, splines are used for data smoothing. The simple (univariate)

smooth function is presented in a model with one predictor;

yi = s(xi) + εi, i = 1, 2, ...,n, (7.1)
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where yi is a response variable, xi is an explanatory variable, n is the number

of observations and s(xi) is given by:

s(x) =

k−1∑
i=1

βibi(x), (7.2)

which is a smooth function based on some polynomial basis functions bi(x)

with unknown parameters βi, k is the number of knot points (i.e. k − 1 is the

number of polynomial basis functions bi(x)) and εi are the errors which have an

independent and identical distribution with N(0, σ2) random variables [Wood

(2006)]. When the basis functions are cubic splines, the regression function (7.1)

is estimated by minimizing the penalized least squares function [Wood (2006)]

D =
1
n

n∑
i=1

(yi − s(xi))2 + λ

∫ b

a
[s′′(x)]2dx. (7.3)

The first term in expression (7.3) is the residual sum of squares (RSS) which

depends on the data, and the second term is called a roughness penalty which

depends on a smoothing parameter λ and the cubic smoothing spline s(x). λ

gives a smooth fitted curve but if λ = 0, minimising D will be associated with

the data only (i.e. RSS) which is not estimating the regression spline function

(7.1). If λ→∞, the second derivative is restricted to be zero because very large

smoothing is equivalent to fitting a straight line to the data (i.e. s(x) is a linear

function thus s′′(x) = 0).

7.1.2 Cubic spline in Poisson regression

Spline regression can be fitted in R programming language using the package

mgcv [Wood and Wood (2017)] and smooth curves can be estimated. This

approach extends generalized linear regression models (glm) to generalized

additive models (gam). The gam function in R operates in a similar manner

to the linear regression models (lm) and glm functions [Bowman and Azzalini
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(1997)].

In generalized additive models, the predictor variables include some smooth

functions (e.g. s(t) is cubic spline function) that estimate the response variable

y which can follow an exponential family distribution [Wood (2006)]. In the

case of count data, a Poisson distribution is used to fit a spline model within

the gam function in R and the response variable is on a log scale. The model

of rate (count per unit) is obtained as:

log(no.Cases) ∼ offset(log(Population)) + β0 + s(t, bs = ”cr”, k), (7.4)

where no.Cases is the number of incidences (the response variable), Popula-

tion is the total number of population at risk and t is the exploratory variable.

s(t, bs = ”cr”, k) is a predictor variable in the form of a spline function and

defined in Equation (7.2) where bs = ”cr” indicates the penalized smoothing

basis function for cubic regression spline and k is the number of knot points

used to represent the smooth term (see Equation (7.2)). The coefficient β0 es-

timates the intercept and log(Population) is an offset variable (the denominator

of the rate) which has a coefficient of 1.

The criteria of goodness of fit for the GAM model (7.4) depends on the

smoothing parameter (λ) which minimizes the penalized likelihood Poisson

regression function,

DPoisson =
−1
n

n∑
i=1

(yis(ti) − es(ti)) +
λ
2

∫ b

a
[s′′(t)]2dt, (7.5)

where s(t) ∈ [a, b], a, b > 0 [Gu (2013)]. Two methods are reviewed in order to

estimate smoothing parameters. When the scale parameter (residual variance

σ2) is known, minimizing the un-biased risk estimator (UBRE) (see Equation

(7.6)) gives good estimates of smoothing parameters leading to a good fitting
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model, [Wood and Wood (2017)].

UBRE =
DV
n

+
2σ2ed f
n − σ2 , (7.6)

However, if the scale parameter is unknown, minimizing the generalized cross

validation (GCV), (see Equation (7.7)) results in a good model, [Craven and

Wahba (1978)].

GCV =
n ×DV

(n − ed f )2 . (7.7)

Where DV is the residual deviance of the model, n is the number of obser-

vations, σ2 is the scale parameter and ed f is the effective degrees of freedom

of the model. The effective degrees of freedom measures the flexibility of the

fitted GAM model and it is calculated as the trace of the hat matrix of the GAM

model (i.e. tr(H)). This is an adjusted method to define the number of degrees

of freedom when the number of free parameters is undefined (i.e. depends on

smoothing parameters of spline functions) [Wood (2006)].

The residual deviance and percentage of deviance explained (PDE) of the

GAM model are also used to detect the best fitted model. PDE is calculated

from residual deviances of the GAM and null models (log(rate) = 1) and is

obtained as:

PDE =
(
1 −

( DV
NDV

))
× 100, (7.8)

where NDV is the deviance of the null model.
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7.2 Estimating change points and their

confidence intervals from spline models

In order to investigate change points, a spline model was considered with

seasonal effect of time to estimate change points and their confidence intervals.

Using R (see the algorithm in Appendix E.1) to fit a gam model by using Poisson

or quasi-Poisson distributions for count data as follows:

log(no.Cases) ∼ offset(log(Population)) + β0 + s(t, bs = ”cr”, k) + γQu(t), (7.9)

where t is a year, Qu is a seasonal effect (considered as a main factor affecting

the rates) and the coefficient γ estimates the seasonal effect.

Change points can be estimated using the GAM model (7.9) which involves

obtaining predictions of the smooth term (spline function s(t)) then, calculating

the first and the second derivatives of s(t). The first derivative is obtained by

s′(ti) = s(ti) − s(ti−1), i = 2, ...,n, where n is the number of observations. The

second derivative is obtained by s′′(t j) = s′(t j)− s′(t j−1), j = 3, ...,n. The location

of change points identifies when the sign of the first derivative changes while

the sign of the second derivative determines whether the change points are

maximum or minimum values. Therefore, change points can be detected from

the first derivative of the spline function s(t) and the magnitude of the second

derivative controls how much the gradient changes.

To construct confidence intervals for change points, bootstrapping is used.

The following algorithm shows how confidence intervals for change points of

the GAM model are constructed, (see Appendix E.1).
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1. Calculate the Pearson residuals of the original GAM model (7.9) then,

re-sample them.

2. Calculate a new responses (y∗i ) (simulated data) which are obtained as

y∗i = ŷi + ε̂i×
√

ŷi where ŷi are the predictions of the response variable and

ε̂i are the re-sampled residuals.

3. Fit the GAM model with same number of knot points (k) as in the original

model to the simulated data of the new response; y∗i .

4. Calculate all possible change points for the bootstrapped spline model by

the first and second derivatives as explained above.

5. Find the location (time) of all possible bootstrapped change points.

6. Calculate the number of all possible bootstrapped change points.

7. Save the values of the bootstrapped spline function which occur at the

time of all possible bootstrapped change points.

8. Choose the values of the bootstrapped spline function (s(t)) based on the

actual change points. In the case of one actual change point, the minimum

or maximum value of bootstrapped s(t) is chosen. In the case of two actual

change points, the minimum and maximum values of the bootstrapped

s(t) are chosen.

9. Find the locations of the chosen values from the previous step of boot-

strapped s(t) which are the subset of the set including all possible boot-

strapped change points. These locations represent the time of the boot-

strapped change points.

10. Calculate and save the time of the year of the bootstrapped change points.

11. Repeat steps 1 to 10, B times (say B=10,000).
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12. Calculate the 95% percentile bootstrap confidence intervals for each change

point using (quantile) at 0.025 and 0.975 in R.

There is a problem when fitting GAM within bootstrap. When carrying out

the procedure, the fitted GAM model sometimes returns a large number of

change points with the simulated data. This can occur because the curvature

is quite smooth but the variability around the curve is high. This produces

over-fitting of data with a large number of changes that do not have a strong

evidence of change. In contrast, the fitted GAM model sometimes returns a

number of change points less than the number of actual change points from

the original GAM model. This happens because the bootstrapped sample

(simulated data) has less variability and a fitted GAM model with a very

smooth curve does not show any change. Therefore, a pragmatic solution was

adopted to discard samples producing change points fewer than the actual

number of change points or more than 10% of the actual number of data points

used in the analysis. This solution was derived by trial and error method.

7.3 Results on HAIs

Fitting GAM models and the method of estimating change points and their

confidence intervals was applied to data on HAIs (MRSA bacteraemia, MSSA

bacteraemia and CDI) until March 2016. According to the GAM model includ-

ing a cubic spline as a function of time, the interventions which impact the

rates of infection were detected.

7.3.1 MRSA bacteraemia

In order to fit the best model which detects the most important interventions

impacting the rates of MRSA bacteraemia, the following strategy is conducted.

As MRSA bacteraemia is a count data, use a Poisson distribution to fit model
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(7.9). The no.Cases is the number of MRSA bacteraemia, Population is the

AOBDs which stands for acute occupied bed days in Scottish hospitals, Qu(t)

is the seasonal effect and s(t) is the cubic spline function of the time. Fit

model (7.9) starting with k = 10 for a spline function as a default number in

R programming language. The deviance (DV) of the model is 57.8056, the

percentage of deviance explained (PDE) of the model is 98.2% and the un-

biased risk estimator (UBRE) is 0.4583. This model detects one change point

during the period of study. In order to get the best model, reduce the number

of k for the spline function which gives the following:

1. The GAM model with k = 9 gives DV =57.4593, PDE=98.2%, UBRE=0.4530

and detects one change point.

2. The GAM model with k = 8 gives DV=58.5215, PDE=98.2%, UBRE=0.4607

and detects one change point.

3. The GAM model with k = 7 gives DV=57.4258, PDE=98.2%, UBRE=0.4371

and detects one change point.

4. The GAM model with k = 6 gives DV=60.9340, PDE=98.1%, UBRE=0.4689

and detects one change point.

Therefore, the best fitted GAM model to detect one change point is model (7.9)

with k = 7 for the spline function. This fitted model gives effective degrees of

freedom of 5.369 for the spline function (i.e. effective degrees of freedom of the

model minus the number of other parameters in the model) and R-sq adjusted

is 0.981. The method of detecting change points is used and the location of the

change point is estimated at 2005.5 when the maximum rate is predicted. The

95% percentile bootstrap confidence interval for the estimated change point is

(2005.25, 2006.25) based on 9,985 iterations out of 10,000 samples, (see Figure

7.1 and Table 7.1). Figure 7.1 shows the predicted line of MRSA bacteraemia on
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the spline scale and the estimated change point with 95% confidence interval.

It is plotted on the spline scale not on the fitted values because the fitted values

have got a seasonal effect on them where the GAM model was adjusted by

seasonality which makes the interpretation of the plot more difficult.
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Figure 7.1: Left figure shows GAM model for MRSA bacteraemia (black curve)
and estimated change point (red solid line) with 95% confidence
interval (red dashed lines). Right figure shows raw data for MRSA
bacteraemia.

Table 7.1: Estimated change points from GAM and their confidence intervals.
Infection ETP Bootstrap confidence interval PDE
MRSA bacteraemia Qu3, 2005 (Qu2, 2005 - Qu2, 2006) 98.2%
MSSA bacteraemia Qu2, 2012 (Qu3, 2010 - Qu1, 2014) 33.4%
CDI in patients over 65 years Qu4, 2007 (Qu3, 2007 - Qu1, 2008) 98.4%
CDI in patients aged 15-64 years Qu2, 2014 (Qu1, 2013 - Qu4, 2014) 93.1%

ETP: Estimated change points, PDE: Percentage of deviance explained, Qu: Quarter.

In Chapter 4 the method of estimating change points for the rate of MRSA

bacteraemia used data up to September 2014. The polynomial GLM model

detected three change points while the GAM model detected only one change

point in the data up to March 2016. This is partly because the polynomial

model may detect changes outside the range of data but GAM does not. Also,

GAM fits a smooth curve and as a result it is difficult to detect small changes

in the gradient.
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7.3.2 MSSA bacteraemia

A similar approach was done with MSSA using a Poisson distribution in

model (7.9) with MSSA data and k = 10 for spline function. This model gives

DV=78.9034, PDE=45%, UBRE=1.3206 and detects three change points (2006.5,

2008, 2012.25). There are six points of data only between the first and the second

change points. Reducing the value of k to 9 gives DV=78.7725, PDE=45.1% and

UBRE=1.3049. This model also, gives three change points (2006.75, 2008, 2012)

and five points of data between the first and the second change points. If k = 8,

DV=85.8009, PDE decreases to 40.2%, the UBRE increases to 1.3888 and this

model gives three change points which is not better than the model with k = 9.

The occurrence of two change points close to each other (with less than eight

data points between them) is not useful which affects the interpretation of

change points and cannot illustrate whether the interventions had an impact

on the rate of infections, (see Section 7.4). This was addressed by reducing the

value of k to have at least eight data points between two change points. Choos-

ing k = 5 gives DV=95.5099, PDE is 33.4% and UBRE=1.5071. This model de-

tects one change point. However, this model shows over-dispersion (p<0.001)

so a quasi-Poisson distribution should be used. The model with quasi-Poisson

and five knot points shows DV=98.9909, PDE=31.0%, GCV=3.0828 and one

change point. In order to find the best model under a quasi-Poisson distribu-

tion, the number of k is increased and the results are recorded.

1. Fitting GAM model with k = 6 gives smaller GCV (3.0693), smaller DV

(97.3657), larger PDE (32.1%) and detects one change point.

2. Fitting GAM model with k = 7 gives GCV=3.0613, DV=96.2481, PDE=32.9%

and detects one change point.
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3. Fitting GAM model with k = 8 decreases GCV to 3.0596, DV to 95.7597,

increases PDE to 33.2% and detects one change point.

4. Fitting GAM model with k = 9 gives GCV=3.0595, DV=95.5458, PDE=33.4%

and detects one change point.

5. Fitting GAM model with k = 10 increases GCV to 3.0633, DV to 96.1233,

reduces PDE to 33.0% and detects one change point.

Therefore, the GAM model with a quasi-Poisson distribution and k = 9 for

the spline function is the best model in detecting one change point. It gives

effective degrees of freedom of 2.931 for the spline function and R-sq adjusted

is 0.338. The method of estimating change points locates the change point at

2012.25 with minimum rate. The 95% percentile bootstrap confidence interval

of the estimated change point is (2010.50, 2014) based on 8,403 simulations out

of 10,000 samples, as shown in Figure 7.2 and Table 7.1.

In Chapter 4, data up to September 2014 was used and there was no evidence

of a change point when polynomial GLM was fitted to MSSA rates. Figure 3.9

showed the general trend of MSSA up to September 2014 which was almost a

straight line, thus it is only with extra data the change point can be detected.
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Figure 7.2: Left figure shows GAM model for MSSA bacteraemia (black curve)
and estimated change point (red solid line) with 95% confidence
interval (red dashed lines). Right figure shows raw data for MSSA
bacteraemia.

7.3.3 CDI in patients over 65 years

The same procedure was adopted to fit a GAM model for CDI in patients over

65 years. Using the Poisson distribution and a spline function with k = 7

showed over-dispersion (p<0.001). A quasi-Poisson distribution is better to fit

the data and the spline function has effective degrees of freedom of 5.394, the

model deviance is 182.2533, percentage of deviance explained is 98.4%, R-sq

adjusted is 0.979 and generalized cross validation (GCV) is 8.4633. The location

of the change point is at 2007.75 when a maximum rate is predicted with 95%

percentile bootstrap confidence interval (2007.50, 2008) based on 10,000 out of

10,000 samples as shown in Figure 7.3 and Table 7.1.

In Chapter 4, the data of CDI in patients over 65 years up to September

2014 was used and the polynomial GLM detected three change points. GAM

detected only one change on the data up to March 2016 because GAM fits a

smooth curve which does not easily detect small changes.
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Figure 7.3: Left figure shows GAM model for CDI in patients over 65 years
(black curve) and estimated change point (red solid line) with 95%
confidence interval (red dashed lines). Right figure shows raw data
for CDI in patients over 65 years.

7.3.4 CDI in patients aged 15-64 years

Fitting a GAM model to CDI in patients aged 15-64 years with a Poisson distri-

bution and spline function with k = 10 identified three change points. However,

the first and second change points have poor locations (i.e. there are only two

time points between the first and the second change points). Re-fitting the

GAM model with a spline function with k = 7 gave 5.226 effective degrees of

freedom, the model deviance was 29.4231, percentage of deviance explained

was 93.1%, UBRE was 0.7098 and R-sq adjusted was 0.93. The change point is

located at 2014.25 with a minimum rate and 95% percentile bootstrap confid-

ence interval (2013, 2014.75) based on 9,679 iterations out of 10,000 samples,

see Figure 7.4 and Table 7.1.

GAM detected one change point in the data of CDI in patients aged 15-64

years up to March 2016 whereas in Chapter 4 the polynomial GLM did not

detect changes in the data up to September 2014 due to complex numbers.
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Figure 7.4: Left figure shows GAM model for CDI in patients aged 15-64 years
(black curve) and estimated change point (red solid line) with 95%
confidence interval (red dashed lines). Right figure shows raw data
for CDI in patients aged 15-64 years.

In conclusion, using GAM models with spline functions give smooth fitted

curves that detect one change point. This change point gives an indication of

the time when the intervention had an impact on the rate of infections.

7.4 Discussion and conclusion

Estimating change points from regression models is an important approach

in identifying healthcare interventions which impact the rate of HAIs. Spline

regression models can be used to describe the change in the trend of HAIs.

These detect the change at the time when the data was monitored (quarterly

time during the period of study). This gives the most significant change points

through the smooth spline function.

The methods of modelling GAM and obtaining the first derivatives from

smoothing functions within GAM to detect the change are used by few authors.

The GAM model with two spline functions; a cubic regression spline for the year

and cyclic cubic regression spline for seasonal effect was fitted by Curtis and

261



Chapter 7 Spline and Generalized Additive Model Analysis

Simpson (2014). However, our approach assumes one cubic regression spline

for the year and the response variable (count observations) is adjusted by the

categorical variable; seasonal effect with four factors. The finite differences

method was used by Curtis and Simpson (2014) to obtain the first derivatives

of the cubic regression spline for the year. This method detected the period of

significant change in the trend over time. In contrast, our approach applied the

method to detect significant change points where the trend changed. Following

this, the second derivatives are calculated to determine whether the trend

changes to decrease or to increase.

7.4.1 GAM and polynomial GLM regression

The GAM model is more flexible than the polynomial GLM regression, espe-

cially when constructing confidence intervals for change points. In polynomial

GLM regression, when the change is detected from a quadratic model, there is

one change point. When using bootstrapping to construct a 95% confidence in-

terval for that change point, one estimated change point is detected each time

and the confidence interval is then calculated from these estimated points.

However, in a GAM model when the model detects one change point, boot-

strapping cannot easily control the number of estimated change points each

time. If this happens (i.e. fixing the number of bootstrapped change points

each time to be same as the number of actual change points), many bootstrap

samples may be discarded. In bootstrapping, k is fixed as in the original GAM

model and the location of knot points are similar in all bootstrap models be-

cause cubic regression spline (bs = ”cr”) places knot points by quantile. The

quality of a fitted GAM model is then only based on the bootstrap samples. The

bootstrap sample produces change points either less, equal or more than the

number of actual change points which indicates that changes in the gradient

occur as a result of random variation. Less change points occur because the
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bootstrap sample has much less variation and therefore the fitted GAM model

with a very smooth curve does not change in gradient. In such cases, the

bootstrap samples were discarded. The same number of change points occur

because the bootstrap sample has less variation and the GAM model is fitted

well. More change points occur because the curvature is quite smooth with

large variability around it. Change points may occur more than 10% of the

actual number of data points because high smoothness of the curvature with

large variation results in over-fitting of data with a large number of changes

which may not have strong evidence of change (i.e. small gradient). In such

cases, the bootstrap samples were discarded. The algorithm of calculating con-

fidence intervals for the actual change points from the original GAM model

picks each time the closet estimated change point to the actual change point

and then calculates the confidence interval from estimated change points using

the percentile bootstrap method.

With polynomial GLM, at times the change points are estimated outside the

range of data. The advantage of the GAM approach is that all change points

would be within the range of data because the GAM method does not estimate

any change outside the data. This method only looks at the first and second de-

rivatives within the range of data. The GAM model also estimates the change

points within the range of data which can then be matched with one or more

interventions during the period of study. Moreover, in both polynomial GLM

and GAM methods, when the estimated change points occur at the beginning

or at the end of the dataset and the fitted line is smoother around the estimated

change point, the confidence interval of estimated change point is asymmetric.

In polynomial GLM when estimated change points occur in the beginning, they

are close to the upper level and this is the opposite if they occur at the end,

they are close to the lower level. In GAM, if the estimated change point occurs
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in the beginning, it is close to the lower level and if it occurs at the end, it is

close to the upper level. Such difference between the two methods is due to

GAM estimating the change point and its confidence interval to occur within

the range of data so when the estimated change point occurs in the beginning

there are few data points before it and more data points after it. The estimated

change point and its confidence interval from the polynomial GLM can occur

at any time, even outside the range of data.

The number of estimated change points from GAM models is different from

polynomial GLM models of HAIs data and this is due to various reasons.

Different datasets were used to fit the models. GAM models fit data up to

March 2016 but polynomial GLM models only fit data up to September 2014

due to data availability at the time of analysis. Also, GAM models fit quite

smooth curves to data which detects less change points whilst polynomial GLM

estimates change points based upon the order of the polynomial function. In

addition, polynomial GLM detects change points either inside or outside the

range of data but GAM estimates the change points only within the range of

data. Finally, the polynomial GLM may not detect any change points if there

is no real solution to the polynomial equation (i.e. complex roots).

7.4.2 Challenges of GAM models

Using GAM spline models to estimate the number of change points and their

locations has some difficulties and challenges. In MSSA and CDI in patients

aged 15-64 years, the fitted models with k = 10 detected more than one change

point during the period of study. The challenge with this type of detection is

that some of the estimated change points occur close to each other (less than

eight data points between them) which affects the interpretation of change

points and cannot illustrate whether the interventions had an impact on the
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rate of infections. Also, confidence intervals for change points close to each

other overlap indicating that there should be only one change point during

this period of time, especially with a smooth trend. We then searched for the

model with change points that are not close to each other with at least eight

data points (two years of data) between them. The second derivative controls

how quickly the gradient changes. When the second derivatives are large, the

gradient had a large change but when the second derivatives are small, small

changes in gradient occur which indicates that there may be no change points.

The small k is related to a large gradient. Therefore, reducing the value of k

decreases the oscillations in the trend and reduces the number of change points.

The change point with the smallest GCV in MSSA occurs when k = 9, and the

smallest UBRE in CDI in patients aged 15-64 years occurs when k = 7. In other

infections; MRSA and CDI in patients over 65 years we found one change point

when the number of k = 10 but the smallest UBRE and GCV were observed

when k = 7 which indicates a better fit of the models.

The other challenge is associated with constructing bootstrap confidence

intervals using a fixed number of iterations. When the bootstrap GAM model

gives too many or too few bootstrapped change points, the bootstrap samples

are discarded. The large number of bootstrapped change points more than

10% of the number of data points is unexpected and lots of change points

will occur with less than eight data points between them. The number of

bootstrapped change points less than the number of actual change points from

the original model should not be allowed because the bootstrapping aims

to simulate change points for each actual change point. Each actual change

point should have a unique sample of bootstrapped change points. Thus, one

bootstrapped change point cannot be repeated in samples of two actual change

points. Also, if the bootstrap model does not find a change point when there is

265



Chapter 7 Spline and Generalized Additive Model Analysis

one actual change point, this bootstrap sample is discarded.

7.4.3 Confidence intervals for estimated change points from

GAM models

Confidence intervals for estimated change points from spline models depend

on the pattern and goodness of fit of the smooth spline fitted line. The confid-

ence intervals of estimated change points from spline models become narrower

when the model is fitted well (i.e. percentage of deviance explained ≥ 95%).

This is the case for MRSA bacteraemia and CDI in patients over 65 years, (see

Table 7.1 and Figures 7.1 and 7.3). However, if the percentage of deviance ex-

plained is less than 95% then, the confidence interval of the estimated change

point is wide. This is the case for MSSA bacteraemia and CDI in patients aged

15-64 years, (see Table 7.1 and Figures 7.2 and 7.4). The best fitted model for

MSSA bacteraemia and CDI in patients aged 15-64 years detected three change

points as explained in the results (see Section 7.3). In order to estimate fewer

change points, different models were fitted which had less percentage of devi-

ance explained. This can lead to wide confidence intervals for the estimated

change point.

Confidence intervals of estimated change points from the spline model are

almost symmetric if the trend of the model changes with large curvature (i.e.

large gradient) before and after the estimated change points, such as the con-

fidence intervals of estimated change points from MSSA bacteraemia and CDI

in patients over 65 years. On the other hand, the confidence interval is asym-

metric in MRSA bacteraemia and CDI in patients aged 15-64 years due to a

smooth change (flatter) of trend before and after the estimated change points.

The estimated change point and its confidence interval occur within the range

of the data. The estimated change point from MRSA bacteraemia is closer to
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the lower level than to the upper because the estimated change point occurs in

the beginning of the data. Similarly, the estimated change point from CDI in

patients aged 15-64 years is closer to the upper level than to the lower because

the estimated change point occurs at the end of the data.

7.4.4 Effective healthcare interventions

The location of maximum estimated change points in the spline models gives

an idea of when the rates start to decrease and may help identify clinical

interventions associated with this. Some of the healthcare interventions listed

in Table 1.2 are associated with a reduction in infection rates. Spline models

can also estimate minimum change points within the range of data which

may indicate healthcare interventions having no impact or may indicate an

outbreak of the infection. The estimated change points from spline regression

models around 2012- 2013 for MSSA bacteraemia and around 2014- 2015 for

CDI in patient aged 15-64 years may indicate the start of an upward trend. In

conclusion, Table 7.2 summarizes the interventions which may have impacted

the rates of HAIs in Scotland.

Table 7.2: Summary of the interventions that have been detected by spline GAM
models which may have impacted the rate of HAIs in Scotland.

Point of change Time of intervention Intervention MRSA CDI
Qu3, 2005 February 2005 CNO letter on alcohol based Yes

hand rubs and infection control.
March 2005 CNO requested that all G Grade Yes

Sisters/ Charge Nurses (Senior
Charge Nurses) undertake the
Cleanliness Champions Course
commenced.

July 2005 New IC structure in Boards, Yes
including ICM funding.

August 2005 Antimicrobial Prescribing Policy Yes
and Practice in Scotland-
Recommendations for good
antimicrobial practice in acute
hospitals.

Continued on next page

267



Chapter 7 Spline and Generalized Additive Model Analysis

Table 7.2 – Continued from previous page
Point of change Time of intervention Intervention MRSA CDI
Qu4, 2007 March 2007 Scottish Patient Safety Programme Yes

(SPSP) announced.
December 2007 First national hand hygiene Yes

compliance report issued.

MRSA: Methicillin-resistant staphylococcus aureus, CDI: Clostridium difficile infection, Qu: Quarter, CNO: Chief

nursing officer, IC: Infection control, ICM: Intensive care medicine.

In conclusion, the change points problem is an important analysis to detect

the presence of changes in infection rates. Spline regression models detect

changes at any time within the range of data where they are powerful in the

detection of change, especially when the model is a good fit. The idea in

this research is to detect the time at which an intervention had taken place to

reduce the rate of healthcare associated infections. The research recommends

healthcare interventions such as giving training courses for hospital staff to deal

with infection, applying antibiotic policy to reduce and prevent the infection

in hospitals and healthcare systems and improved hand hygiene.
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Conclusions and Further Work

Healthcare associated infections (HAIs) are a major factor of patient morbidity

and mortality, especially methicillin-resistant staphylococcus aureus (MRSA)

bacteraemia, methicillin-sensitive staphylococcus aureus (MSSA) bacteraemia

and clostridium difficile infection (CDI). The infections can be transmitted

either outside or inside hospital settings, causing serious diseases. The National

Health Services (NHS) and Health Protection Scotland (HPS) established, de-

veloped and improved healthcare interventions to control infection as means

to avoid HAIs. Some of these interventions took place in Scotland between

2004-2011 (see Table 1.2) to tackle the rates of HAIs and the infection rates have

subsequently decreased [HPS (2015b)].

It is of interest to identify time points when changes occur in order to identify

interventions associated with these changes. Usually change point detection

analysis has two aspects in statistical inference. The first is the hypothesis test

to detect if there is any change in the observed data. The second is to estimate

the number of changes and their locations. Statisticians implement many dif-

ferent change point detection methods to estimate the number and location of

significant change points.
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This thesis aimed to discuss and develop some statistical methods to detect

change points which reflect impacted interventions on HAIs and to observe

the impact of seasonal effect on these changes. The first approach was poly-

nomial generalized linear models (GLM) which is a new method for this data.

Segmented regression and joinpoint analysis were then applied and these use

linear trends. The joinpoint analysis was developed by considering a seasonal

effect in the model. The third method was a generalized additive model (GAM)

which was used to estimate change points where a spline function of time was

fitted by GAM and adjusted with a seasonal effect. All these methods are

considered within the scope of HAIs. This research also considered methods

of constructing confidence intervals for the change points. Finally, simulation

studies were established to investigate the best method of detecting change

points and the best method of constructing confidence intervals for the change

points.

A background on HAIs including MRSA, MSSA and CDI and some related

risk factors were introduced in Chapter 1. A literature review of modelling

and change point detection methods was presented in Chapter 2. Modelling

the rate of HAIs was investigated in Chapter 3. The strength of this research

was presented in the rest of the PhD thesis where change point methods were

investigated, developed and applied to HAIs. These methods were addressed

to detect the change points in count data and they have a flexibility to investig-

ate the impact of more than one covariates. Joinpoint software was developed

using R programming language and polynomial and joinpoint methods were

combined to develop spline GAM to detect change points. In addition, the

change point methods were compared by simulation algorithm in order to

investigate the best way of detection change points. A brief summary and
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conclusion from these methods will be discussed and some future research

suggested in the following sections.

8.1 Modelling rare events of count data

In this research, our methodology was built on the Poisson distribution and

quasi-Poisson distribution in the case of over-dispersion. These fit count data

of rare events accurately. However, if the data had a lot of zeros (like in small

health boards in our data), the Poisson and quasi-Poisson are not appropriate

because of sample bias. The use of a zero-inflated Poisson distribution and

zero-inflated negative binomial distribution to model this type of data is re-

commended.

Modelling the data describes the change over Scotland and also in individual

health boards. The data for Scotland (large number of cases of infection) can

be fitted by polynomial GLM and the inclusion of a seasonal effect describes

the change in the trend well. However, this polynomial Poisson model is not

appropriate to investigate the change in small datasets (e.g. when there is

a small number of cases in some health boards) because there is not enough

power to fit a complicated model to small data.

Adding health board as a factor to the polynomial GLM model allows us

to describe the change in each health board however the change in Scotland

overall cannot be described. The model with the health board factor explains

that most health boards have similar patterns but some of small health boards

have a different pattern because the Poisson distribution was used with data

containing lots of zeros.
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Change in the trend of the rate of HAIs is discussed in literature by many

authors worldwide. Most of studies agreed with our conclusion of general

change (reduction in HAI rates) and seasonal change. Daneman et al. (2012)

reported a reduction in CDI in Canada between 2002- 2010. They used Poisson

regression and account for correlation using autoregressive models. Modelling

time trend was adjusted with other factors such as age and hospital type. In

addition, Worth et al. (2016) evaluated the trend for CDI incidence in Australia

between 2010- 2014 using Poisson regression which demonstrated general re-

duction started after the peak in fifth quarter. There was evidence of seasonal

trend with higher rates in summer and lower rates in winter which agreed with

our analysis. Moreover, a significant reduction in MRSA rate was observed in

2012 (40%) compared to 2010 (53%) [Perovic et al. (2015)]. They attributed this

decline to the implementation of the infection control. Kinoshita et al. (2017)

studied the change in trend of MRSA in seven European countries between

1999- 2015. They reported that countries with more interventions (policies)

to control MRSA (the UK, France, Belgium, Germany, and the Netherlands)

had a greater reduction in MRSA rates than those with fewer interventions

(Spain and Italy). The reduction in MRSA rates after implementation of man-

datory surveillance was observed in the UK, France, Belgium and Germany.

The change in trends may be due to budgets are different in each country to

implement control infection policies.

In contrast, some few studies reported an increasing trend of HAIs. Moxnes

et al. (2015) estimated and predicted the trend of MRSA in Norway between

1997- 2010. They used Poisson and gamma Poisson distributions to model the

trend of MRSA. They found that the incidence of MRSA was increasing and

will continue to increase until 2017. They attributed this increasing to rise of

importing from abroad due to population mobility which was investigated and
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discussed in the recent study by Di Ruscio et al. (2017).

Funnel plots were used to investigate if any health board is significantly

different from Scotland overall in terms of infection rates. This method in-

vestigates whether the risk factors (surgical procedure and teaching hospital)

affect the rates of infection and show high rates for Scotland overall. It would

be of interest to use the intervention information in funnel plots to see if rates

of HAIs differ. This suggestion investigates whether funnel plots would be

useful to compare rates after a specific intervention to identify the impact of

the intervention on individual health boards.

8.2 Change points of polynomial GLM and GAM

The polynomial generalized linear model (GLM) estimates the number and

location of change points based on the order of a polynomial function and the

coefficients of polynomial terms. HPS (2016a) reported general reduction of

HAI rates but it is not clear when the change took place. However, fitting poly-

nomial regression as in Chapter 3 and using the change point detection method

as explained in Chapter 4 gave an illustration when the change took place and

reflect on the associated interventions. We concluded that if the model fits the

data well, with small deviance, this gives a good estimate of the change points.

If the model is a poor fit, the estimated change points are inaccurate. Parts of

these works has been drafted for journal publication in the Journal of Hospital

Infection and is titled as "The Impact of NHS Infection Control Interventions

on Rates of Healthcare Associated Infections".

A spline function within a generalized additive model (GAM) can be used

to estimate the change point. This approach fits a smoother model to the data.

If a change point is detected, it is likely to be a significant change since it was
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estimated from a smoother trend. Curtis and Simpson (2014) used the finite

differences method to detect the period of change when the trend of spline

function is significantly increased or decreased. However, our method used

spline function and finite differences method and focused on detecting change

point when significant change in the trend took place (i.e. when the trend

change from increase to decrease or vice versa) and then reflected the associ-

ated intervention with these changes. In addition, we constructed confidence

interval for the change points using bootstrapping. Parts of this work has been

drafted for journal publication in Communications in Statistics journal and is

titled as "Estimation of Change Points from Regression models of Count Data".

A spline GAM model is more flexible than a polynomial GLM model. A

bootstrap method was used in both models to construct 95% confidence in-

tervals for estimated change points. If the original data gives one estimated

change point, a polynomial GLM model was fitted to each bootstrap sample

to give one change point. In a GAM model, each bootstrap sample was fit-

ted to give the best model which may estimate one or more change points.

The algorithm then chooses the closest point to the actual change point (from

the original data). Bootstrap confidence intervals of estimated change points

from the polynomial GLM model are usually narrower than those of estimated

change points from the GAM model because GAM gives a flatter (smoother)

trend than polynomial GLM. Also, the bootstrap confidence interval in the

polynomial GLM model discards the bootstrap samples which gives complex

numbers as a result of change points.

Polynomial GLMs can estimate change points outside the range of data

which are uninterpretable in relation to interventions, especially if the change

was estimated before any intervention took place. In contrast, GAM models
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estimate the change points within the range of data so this is easier to attribute

to one or more interventions. However, estimated change points from a spline

GAM model is approximately similar to one of the estimated change points

from polynomial GLM. This estimated change point is similar and in the same

position (minimum or maximum) in both methods. This similarity illustrates

the strength of both methods to detect change points since polynomial GLM

models and spline GAM models fit a curvature trend to the data. Table 8.1

shows the results of change points from different HAIs up to June 2016. For

example, an estimated change point from the polynomial GLM when the rate

of MRSA bacteraemia decreased at 2005.31 and an estimated change point from

GAM at 2005.50, also when the rate decreased.

The number of estimated change points of HAI data from polynomial and

GAM models are different. The spline GAM model detects one change point

exactly on one of the data points. However, the estimated change points from

the polynomial GLM can be at any time during the period of study. Polynomial

GLM estimates change points based on the order of polynomial function but a

GAM model fits a smooth curve to the data which detects the most important

change point (with large gradient). In addition, polynomial GLM may detect

change points outside or very close to sides (i.e. at the very beginning or at the

very end) of the data which estimates more change points. GAM estimates the

change points only within the range of data. Finally, complex numbers may

occur when solving polynomial equation so polynomial GLM cannot detect

any change points.

In polynomial GLM models, the confidence interval of the estimated change

point can be constructed easily using the delta method which calculates the

expected value and variance for the ratio of two random variables based on a
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Table 8.1: Change points using different methods for HAIs data up to June 2016.
Infection Change point

Polynomial GLM GAM Segmented Joinpoint analysis
with 95% BCI with 95% BCI regression with 95% BCI

Min@ 1998.12 Max@ 2005.50 2006.25 2007.50
(1975.07, 2002.47) (2005.25, 2006.25) (2007.25, 2007.75)

MRSA Max@ 2005.31 2008.50 2012
bacteraemia (2004.99, 2005.61) (2010.25, 2013.25)

Min@ 2015.05 2011
(2014.60, 2015.89)

MSSA Min@ 2011.7 Min@ 2012.25 2011 -
bacteraemia (2010.67, 2014.56) (2010.50, 2014)

Max@ 2007.62 Max@ 2007.75 2007.75 2008.25
(2007.50, 2007.72) (2007.50, 2008) (2008, 2008.50)

CDI in patients Min@ 2012.75 2011
over 65 years (2012.47, 2013.14) (2010.50, 2011.50)

Max@ 2014.60
(2014.28, 2014.92)
Min@ 2013.03 Min@ 2013.75 2009.75 2010.75

CDI in patients (2012.42, 2013.69) (2013, 2014.75) (2010.50, 2011.25)
aged 15-64 years Max@ 2016.48

(2014.75, 2028.77)
BCI: Bootstrap confidence interval, Min: Minimum rate, Max: Maximum rate.

Taylor expansion. This approach is difficult to apply for more than one change

point because the change points formulas are complicated nonlinear functions

with more than two variables. Therefore, a bootstrap method is used to con-

struct confidence intervals for more than one change point. Some bootstrap

samples return complex numbers and in such cases these samples are dis-

carded. Limitations relating to the bootstrap method require further research.

Some bootstrap samples return one or more change points outside the range

of data which can affect the calculation of the mean and standard error and

give wide confidence intervals. Bootstrap samples which return at least one

change point outside the range of data should be discarded. Also, the change

points estimated in each bootstrap sample may not have the same position

as the estimated change points from the original data where they may occur

at minimum or maximum values. Future research may improve this issue to

ensure the position of the bootstrap change point is in the same position as the
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estimated change point from the original data.

In spline GAM models, the bootstrap confidence interval is based on the

estimated change points from the bootstrap samples. When the original data

has one change point, the bootstrap sample may estimate no change point or

large number of change points. The large number of change points is defined

to be greater than 10% of the number of data points (e.g. when sample size is

50, the large number of change points is greater than 5). In such cases, these

samples are discarded. However, when the bootstrap sample estimates the

number of change points to be between one and 10% of the number of data

points, the closest change point to the actual change point with same position

(minimum or maximum) was selected. This algorithm gives a more accurate

confidence interval, especially with a smoother trend since all change points

close to the actual change point are considered.

8.3 Segmented linear regression and joinpoint

analysis

Chapter 5 introduced segmented linear regression and the method to detect

change points. This technique fits a linear trend before and after an interven-

tion took place. This detects the most significant intervention if the period of

implementation is short which allows us to investigate if the intervention had

an impact on the rate of infection before any other interventions took place. For

a long time of implementation, segmented polynomial regression may be better

to describe the data before and after the intervention. It is of interest to develop

segmented linear to segmented polynomial regression to study the curvature

fits before and after the specific intervention. This approach would be useful

when there is only one intervention investigated. If there is one particular in-
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tervention and polynomial segmented regression fits the data well, polynomial

segmented regression gives an indication of whether there are previous or later

turning points. If there are previous turning points, other interventions may

have impacted the rates. If there are later turning points, there is an indication

that a particular intervention had an impact later in time (i.e. not at the same

time when a particular intervention took place).

If there are many different interventions during a period of time, our method

of segmented linear regression detects change points at the time i where there

could be more than one intervention before time i. Thus, the change in the rate

may occur due to these interventions working together impacting the infection

rate. Therefore, the intervention at time i may or may not have impacted the

rate.

Joinpoint analysis was developed to improve segmented linear regression

analysis. The joinpoint method looks for the change point at each data point

and can detect the change point either at the time of intervention or after the

intervention took place. Joinpoint software ([NCISR (2017)]) considers model

with one independent variable and detects the number and location of change

points on that variable. However, we developed the joinpoint model to be

able to add more covariates to the model and then detects the change points

in the main independent variable. This development allows to understand

the impact of the covariates on the trend and then may affect the detection of

joinpoints. This work has been drafted for publication in Communications in

Statistics journal and is titled as "Change Points Analysis for the Trend of Count

Data". It would be of interest to use Hudson’s method [Hudson (1966)] with

our modified joinpoint model to detect change points not only at each point of

data but also between them.
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Joinpoint analysis allows the interpretation of the change in the rate. If

the change is detected after the intervention took place, it suggests that this

intervention had an impact on the rate and the effect occurs at a later point.

However, if the change is detected after several interventions took place, it

is difficult to identify which intervention had a major impact on the rate. In

conclusion, the nature of the data and interventions explain that the change

point should occur after the time of the intervention. This can be clearly shown

in Table 8.1 where the first detected change point in MRSA bacteraemia using

joinpoint analysis occurred at 2007.50 and after 5 quarters from the detected

change point by using segmented regression where the intervention took place

at 2006.25. Similarly, the second detected change point in MRSA bacteraemia

using joinpoint analysis was shown at 2012, after one year from the detected

change point using segmented regression. Similar results are concluded from

the CDI data. Therefore, joinpoint analysis is better than segmented linear re-

gression for such type of data where some interventions may take time to have

an impact because the intervention takes time to spread over all Scotland and

also intervention requires behavioural change from the medical professionals

which may take a while to become ingrained.

On the other hand, if the nature of the intervention allows the change to

occur exactly when the intervention took place, segmented regression is better.

For example, if a sudden and great earthquake (8 Richter or more) occurred

in a city, this may increase mortality at this time point. We can say that this

intervention (a sudden event) directly caused high mortality. In analysing

such cases, the segmented regression is better than joinpoint analysis. This in-

stant impact of an intervention happens rarely in medical studies because most

medical studies aim to control disease and reduce the rate over a period of time.
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Moreover, the impact of the interventions takes time to spread across all

health boards in Scotland and therefore it is not a straightforward problem to

detect when there is an impact on the rate of infection. A lot of interventions

took place, some of them give evidence of impacting the rates of HAIs and

others do not. Change points may occur after two or more interventions and

if one intervention took place and had an effect over one year, for example,

and then an other intervention happened, it is difficult to determine exactly

which intervention had an impact on the rate of infection. Therefore, effective

interventions are quite difficult to identify in this research because of the nature

of the type of interventions implemented.

Constructing confidence intervals for joinpoints using the profile likelihood

method is a good approach for one joinpoint where the models are associated

with residual deviance. Lerman (1980) approach to construct confidence inter-

vals for the change point from joinpoint model is similar to our approach when

profile likelihood confidence interval was used. However, he used a function

depending on residual sum of squares which constructs confidence intervals

for more than one change point while our method uses the residual deviance

of the models. In contrast, when there is more than one joinpoint, profile like-

lihood method is not able to find confidence intervals for joinpoints thus we

have developed bootstrap methods to construct confidence intervals for one

or more joinpoints. This approach gives similar result to profile likelihood

method but it requires a lot of computation.
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8.4 Limitations and further work on simulation

In this thesis, several simulation studies have been conducted to compare dif-

ferent methods which were used in this research.

In Chapter 4, a simulation was carried out to compare bootstrap and delta

methods to construct confidence intervals for one change point where the

change point is estimated from a polynomial GLM model. Both methods are

not recommended for use with small sample sizes (n ≤ 20). Some technical

issues were associated with failure of using the bootstrap method especially

with small sample sizes. In order to find two change points, the cubic model

is fitted but for small sample sizes (n ≤ 20) the more complicated polynomial

GLM model does not fit well and change points are not accurately estimated.

The recommendation here is to use the bootstrap method with a sample size

greater than 20. Our approach uses percentile bootstrap confidence intervals

which were inaccurate to estimate confidence intervals and cover 95% of the

true turning points. A bootstrap bias corrected (BC) or bias corrected and ac-

celerated (BCa) methods may improve this coverage. Sample size may also

affect the simulated data and produce samples with very few cases and lots of

zeros. Our approach always uses a Poisson distribution to fit a model to the

data and because the Poisson distribution is not an appropriate distribution to

fit to data with lots of zeros, poorly fitting models are observed. Change points

and related confidence intervals from these models are therefore not accurate.

Zero-inflated distributions should be used in the case of many zeros observed

in simulated data.

In Chapter 5, a simulation study compared bootstrap and profile likelihood

methods of constructing confidence intervals for one joinpoint. Profile like-

lihood confidence interval is a good method when the sample size is ≥ 50
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otherwise, the bootstrap method is better. If the data are simulated originally

from a quadratic model, the bootstrap method is good but not the best. It is

of interest to investigate other approaches here. The profile likelihood con-

fidence interval method cannot be used with more than one joinpoint so the

bootstrap method was used. However, bootstrap confidence intervals need to

be improved to cover 95% of actual estimated joinpoints and a way to do this

is to use different methods of bootstrap confidence intervals such as BC or BCa

confidence intervals.

In Chapter 6, polynomial GLM, segmented and joinpoint approaches to

detect change points were compared in simulation studies. There are three

main results from this simulation study. Firstly, if the trend of data seems to

be linear, polynomial methods usually report no change points, however, the

joinpoint approach may sometimes detect changes even in the absence of a

change where this illustrate inaccuracy of joinpoint method. Secondly, if the

trend of data seems to change at one point in the middle with quadratic pattern,

quadratic polynomial and joinpoint analysis are able to detect change points

in the middle. However, when the sample size is large, quadratic is better but

when the sample size is small, different methods should be investigated. In

contrast, when the trend of data before and after a change seems linear, the seg-

mented and joinpoint methods are better to detect change points in the middle

when n ≥ 35 and β0 ≥ 3. On the other hand, when the change point occurs in

the beginning or at the end of the data and n ≥ 20 and β0 ≥ 3, the quadratic

polynomial method is better to detect change points when the pattern of the

data is curved. Otherwise, better methods need to be investigated. Finally,

when two true turning points occur roughly in the middle of the data with

curved pattern, the cubic polynomial method detects two change points when

n ≥ 50 and β0 ≥ 3. On the other hand, when two true turning points occur
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roughly in the beginning and at the end of the data and n ≥ 50 and β0 ≥ 5,

the cubic polynomial method detects two change points in a curved pattern

of data. However, the cubic polynomial and joinpoint methods detect two

change points when the original model is a combination between cubic and

segmented. Otherwise, other methods are required.

There are many possible assumptions in which the results in this simulation

could be improved in future work. One of these recommendations is to assume

serial correlation on the data. It may also be worth considering occurrence of

outliers in the data (i.e. 10% or less of data are outliers) to investigate the impact

of extreme values on the results of the simulation. It would also be of interest to

compare spline GAM methods of estimating change points with other methods

through a simulation study. This includes also the simulation studies to es-

timate change points from GAM and construct bootstrap confidence intervals.

Choosing βis to be different in different sample sizes gives different curvature

for the trend of data in each sample size. Here the results of confidence inter-

vals between different sample sizes are not accurately comparable. To improve

the procedure and have more accurate results for constructing confidence inter-

vals using the bootstrap method, identical values of βis in different sample sizes

should be chosen. Furthermore, various values of βis should be investigated.

8.5 Conclusion

In conclusion, the contributions to knowledge of this research are to improve

and develop statistical models which detect changes in trend of count data. Ad-

apting joinpoint software to include categorical explanatory variables that may

influence rates. Also, detecting change point from spline regression on GAM

using finite differences method. In addition, constructing confidence intervals

for change points using bootstrapping and coding algorithms of simulation
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study to compare change point methods. Finally, applying these methods to

detect change points in HAI data which gives some recommendations of some

impacted interventions which need to be improved to control infection to re-

duce the coast and mortality. Spline GAM method is suggested to practitioners

who try to define the point of change on their systems especially those who

are dealing with count data. For example, people who work in medical and

epidemiological studies (e.g. policy makers and NHS infection control people)

and people who want to estimate the impact of interventions or process con-

trol on manufactory process to make their systems more professional or to

have costless products. The spline GAM method combined polynomial and

joinpoint methods which detects the most important change that have large

gradient.

In HPS data (HAIs and interventions), the impact of the interventions takes

time to spread across all health boards in Scotland and therefore it is not

a straightforward problem to detect when there is an impact on the rate of

infection. A lot of interventions took place, some of them give evidence of

impacting the rates of HAIs and others do not. Change points may occur

after two or more interventions and if one intervention took place and had an

effect over one year, for example, and then another intervention happened, it

is difficult to determine exactly which intervention had an impact on the rate

of infection. Therefore, effective interventions are quite difficult to identify in

this research because of the nature of the type of interventions implemented.
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Appendix A

Modelling Count Data - Chapter 3

A.1 R code for modelling rate

# To read xlsx files
library(XLConnect)

# Need for dispersiontest
library(AER)

library(lmtest)

d1 <- readWorksheetFromFile("joinpointDATA -uptoSep2014.xlsx",
sheet=1, header=T)

d1$t <- d1$time -2003
d1$t2 <- d1$t^2
d1$t3 <- d1$t^3
d1$t4 <- d1$t^4
d1$t5 <- d1$t^5
# To make factors
d1$Qu <- factor(d1$Qu)
d1$HB <- factor(d1$HB)

d1m1 <- glm(no.MRSA1 ~ offset(log(aobd))+t+t2+t3+t4+Qu ,
family=poisson,data=d1)
summary(d1m1)
dispersiontest(d1m1)

d1m2 <- glm(no.MRSA1 ~ offset(log(aobd))+t+t2+t3+Qu ,
family=poisson,data=d1)

lrtest(d1m1,d1m2)

### Check autocorrelation of the residuals of fitted model
# Construct Pearson residuals from the model
z.res <- residuals(d1m1, type="pearson")
z.res <- z.res-mean(z.res)
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plot(density(z.res)) # density function of residuals

# Test autocorrelation for residual
dw<- dwtest(z.res ~ 1, alt="two.sided")

# Autocorrelation function
ac <- acf(z.res, type = "correlation")$acf
print(acf(z.res,plot=F,lag.max=2),digits=4)
ro.ac <- ac[2] # autocorrelation value at lag1

# Fisher’s z-transformation of (ro.ac)
x<- (1+ro.ac)/(1-ro.ac)
z.ro<- 0.5 * log(x, base = exp(1))
length(d1$no.MRSA1)
seg.z<- 1/sqrt(length(d1$no.MRSA1) - 3) #standard error
lcl.z<- z.ro-1.96*seg.z
ucl.z<- z.ro+1.96*seg.z

# Confidence interval of (ro.ac)
lcl.ro<- ((exp(2*lcl.z))-1)/((exp(2*lcl.z))+1)
ucl.ro<- ((exp(2*ucl.z))-1)/((exp(2*ucl.z))+1)

#########################

# To get the predicted values
d1.p.MRSA1 <- predict(d1m1,type="response" ,
interval = "confidence" ,level = 0.95, se=T)
d1.p.MRSA1.rate <- d1.p.MRSA1$fit/d1$aobd*100000

# 95% CI for predicted rates using Byar’s method
lp.MRSA1 <- d1.p.MRSA1$fit * (1-(1/(9*d1.p.MRSA1$fit))-
(1.96/(3*sqrt(d1.p.MRSA1$fit))))^3
lrp.MRSA1 <- lp.MRSA1/d1$aobd*100000 # lower CI
up.MRSA1 <- (1+d1.p.MRSA1$fit) * (1-(1/(9*(1+d1.p.MRSA1$fit)))+
(1.96/(3*sqrt(1+d1.p.MRSA1$fit))))^3
urp.MRSA1 <- up.MRSA1/d1$aobd*100000 # upper CI

A.2 Modelling HAIs by health boards

# Fitting model with health boards.
m1<- glm(no.MRSA1 ~ offset(log(aobd))+t+t2+t3+t4+Qu +
HB +t*HB + Qu*HB , family=quasipoisson ,data=d1)
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A.2.1 The coefficients of MRSA bacteraemia model with

HBs effect

Table A.1: The coefficients of MRSA bacteraemia model with HBs effect.
Coefficient Estimate Standard error t-value Pr(>|t|)
(Intercept) -8.4660 0.0699 -121.0403 0.0000*
t -0.0464 0.0734 -0.6327 0.5272
t2 0.0682 0.0306 2.2283 0.0263*
t3 -0.0191 0.0046 -4.1067 0.0000*
t4 0.0011 0.0002 4.7327 0.0000*
Qu2 -0.1439 0.0678 -2.1233 0.0342*
Qu3 -0.2382 0.0706 -3.3746 0.0008*
Qu4 -0.0282 0.0670 -0.4208 0.6741
HB11LO 0.1046 0.0917 1.1410 0.2543
HB12NWTC 3.5576 4.3258 0.8224 0.4112
HB13ORK -18.2676 1158.8934 -0.0158 0.9874
HB14SH -0.5906 0.7574 -0.7798 0.4358
HB15TAY -0.0565 0.1190 -0.4749 0.6350
HB16WI -1.1783 0.5929 -1.9873 0.0474*
HB1LA -0.0453 0.1155 -0.3927 0.6947
HB2A.A -0.7334 0.1626 -4.5099 0.0000*
HB3BOR -0.9131 0.2634 -3.4658 0.0006*
HB4DG -0.0931 0.2191 -0.4249 0.6711
HB5Fife -0.1480 0.1496 -0.9893 0.3229
HB6FV -0.4449 0.1702 -2.6149 0.0092*
HB7GR -0.6777 0.1310 -5.1746 0.0000*
HB9HI -1.0260 0.1969 -5.2098 0.0000*
t:HB11LO 0.0047 0.0154 0.3016 0.7630
t:HB12NWTC -0.5704 0.5512 -1.0347 0.3012
t:HB13ORK 0.3175 0.1744 1.8208 0.0692
t:HB14SH 0.1506 0.1240 1.2148 0.2249
t:HB15TAY -0.0069 0.0197 -0.3530 0.7242
t:HB16WI 0.0882 0.1000 0.8823 0.3780
t:HB1LA 0.0235 0.0201 1.1655 0.2443
t:HB2A.A 0.0637 0.0264 2.4071 0.0164*
t:HB3BOR 0.1947 0.0411 4.7372 0.0000*
t:HB4DG 0.0019 0.0391 0.0483 0.9615
t:HB5Fife 0.0312 0.0239 1.3032 0.1931
t:HB6FV 0.0862 0.0258 3.3476 0.0009*
t:HB7GR 0.0617 0.0216 2.8490 0.0045*
t:HB9HI 0.0941 0.0321 2.9339 0.0035*
Qu2:HB11LO 0.1829 0.1082 1.6905 0.0915
Qu3:HB11LO 0.2288 0.1115 2.0515 0.0407*
Qu4:HB11LO 0.0515 0.1090 0.4729 0.6365

Continued on next page
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Table A.1 – Continued from previous page
Coefficient Estimate Standard error t-value Pr(>|t|)
Qu2:HB12NWTC 0.0513 1.4492 0.0354 0.9718
Qu3:HB12NWTC -15.4523 1357.0891 -0.0114 0.9909
Qu4:HB12NWTC 0.4112 1.3953 0.2947 0.7684
Qu2:HB13ORK 0.1650 1640.8310 0.0001 0.9999
Qu3:HB13ORK 15.0964 1158.8936 0.0130 0.9896
Qu4:HB13ORK 16.2395 1158.8932 0.0140 0.9888
Qu2:HB14SH -0.3405 0.8318 -0.4093 0.6825
Qu3:HB14SH -1.2965 1.2455 -1.0409 0.2984
Qu4:HB14SH -1.5362 1.2472 -1.2317 0.2186
Qu2:HB15TAY 0.4293 0.1369 3.1371 0.0018*
Qu3:HB15TAY 0.4132 0.1423 2.9031 0.0038*
Qu4:HB15TAY 0.1111 0.1439 0.7721 0.4404
Qu2:HB16WI -0.9228 0.9288 -0.9935 0.3209
Qu3:HB16WI 0.1780 0.6915 0.2574 0.7970
Qu4:HB16WI 0.1093 0.6600 0.1656 0.8685
Qu2:HB1LA -0.1699 0.1412 -1.2029 0.2295
Qu3:HB1LA -0.1590 0.1466 -1.0845 0.2786
Qu4:HB1LA -0.2164 0.1401 -1.5443 0.1231
Qu2:HB2A.A 0.2435 0.1818 1.3392 0.1810
Qu3:HB2A.A -0.2748 0.2139 -1.2845 0.1995
Qu4:HB2A.A -0.0835 0.1916 -0.4360 0.6630
Qu2:HB3BOR -0.4560 0.3074 -1.4834 0.1385
Qu3:HB3BOR -0.4924 0.3286 -1.4983 0.1346
Qu4:HB3BOR -0.2336 0.2812 -0.8305 0.4066
Qu2:HB4DG -0.1409 0.2622 -0.5373 0.5912
Qu3:HB4DG -0.4070 0.2955 -1.3771 0.1690
Qu4:HB4DG -0.3669 0.2747 -1.3358 0.1822
Qu2:HB5Fife 0.2987 0.1706 1.7512 0.0805
Qu3:HB5Fife 0.1480 0.1831 0.8082 0.4193
Qu4:HB5Fife 0.1888 0.1725 1.0949 0.2740
Qu2:HB6FV 0.0768 0.2012 0.3816 0.7029
Qu3:HB6FV 0.3505 0.1957 1.7913 0.0738
Qu4:HB6FV 0.2062 0.1921 1.0733 0.2836
Qu2:HB7GR 0.0176 0.1541 0.1143 0.9090
Qu3:HB7GR -0.0051 0.1606 -0.0319 0.9746
Qu4:HB7GR -0.0527 0.1540 -0.3422 0.7323
Qu2:HB9HI -0.1186 0.2330 -0.5088 0.6111
Qu3:HB9HI -0.0204 0.2354 -0.0868 0.9308
Qu4:HB9HI -0.1839 0.2333 -0.7884 0.4308

* : Significant coefficient at α = 0.05.
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A.2.2 The coefficients of linear model with HBs effect of

MSSA bacteraemia

Table A.2: The coefficients of MSSA bacteraemia model with HBs effect.
Coefficient Estimate Standard error t-value Pr(>|t|)
(Intercept) -7.9789 0.0392 -203.7174 0.0000*
t -0.0414 0.0074 -5.5931 0.0000*
Qu2 -0.0154 0.0293 -0.5250 0.5999
Qu3 0.0773 0.0288 2.6814 0.0076*
Qu4 0.0157 0.0292 0.5367 0.5917
HB11LO -0.0444 0.0590 -0.7522 0.4523
HB12NWTC 2.0463 0.6924 2.9552 0.0033*
HB13ORK -0.8452 0.4832 -1.7493 0.0809
HB14SH 0.0059 0.4033 0.0145 0.9884
HB15TAY -0.1883 0.0763 -2.4687 0.0139*
HB16WI -2.2810 0.5661 -4.0291 0.0001*
HB1LA -0.1782 0.0734 -2.4271 0.0156*
HB2A.A -0.0781 0.0808 -0.9656 0.3348
HB3BOR -0.9036 0.1739 -5.1951 0.0000*
HB4DG 0.0555 0.1229 0.4515 0.6518
HB5Fife 0.0678 0.0843 0.8042 0.4217
HB6FV -0.0713 0.0987 -0.7219 0.4707
HB7GR -0.2632 0.0705 -3.7342 0.0002*
HB9HI -0.6979 0.1095 -6.3741 0.0000*
t:HB11LO 0.0177 0.0124 1.4202 0.1562
t:HB12NWTC -0.3625 0.1218 -2.9761 0.0031*
t:HB13ORK 0.0259 0.1021 0.2532 0.8002
t:HB14SH -0.0442 0.0871 -0.5078 0.6118
t:HB15TAY 0.0463 0.0157 2.9487 0.0033*
t:HB16WI 0.2376 0.1000 2.3766 0.0179*
t:HB1LA 0.0303 0.0153 1.9867 0.0475*
t:HB2A.A 0.0114 0.0172 0.6625 0.5080
t:HB3BOR 0.1444 0.0340 4.2521 0.0000*
t:HB4DG -0.0233 0.0265 -0.8780 0.3804
t:HB5Fife 0.0517 0.0171 3.0240 0.0026*
t:HB6FV 0.0399 0.0201 1.9813 0.0481*
t:HB7GR 0.0404 0.0147 2.7461 0.0063*
t:HB9HI 0.0658 0.0224 2.9320 0.0035*

* : Significant coefficient at α = 0.05.

327



A.2.3 The coefficients of CDI in patients over 65 years

model with HBs effect

Table A.3: The coefficients of CDI in patients over 65 years model with HBs
effect.

Coefficient Estimate Standard error t-value Pr(>|t|)
(Intercept) -6.7518 0.0699 -96.6054 0.0000*
t 0.8038 0.1445 5.5627 0.0000*
t2 -0.6716 0.0875 -7.6754 0.0000*
t3 0.1307 0.0186 7.0097 0.0000*
t4 -0.0078 0.0013 -6.1428 0.0000*
Qu2 -0.0053 0.0291 -0.1811 0.8564
Qu3 -0.0122 0.0301 -0.4055 0.6853
Qu4 -0.0786 0.0293 -2.6836 0.0076*
HB11LO 0.3046 0.1066 2.8579 0.0045*
HB12NWTC 3.6747 15.9515 0.2304 0.8179
HB13ORK -1.2555 0.9657 -1.3001 0.1943
HB14SH -0.4402 0.7183 -0.6129 0.5403
HB15TAY 0.1611 0.1326 1.2145 0.2253
HB16WI 0.1020 0.4692 0.2173 0.8281
HB1LA 0.2669 0.1193 2.2370 0.0258*
HB2A.A 0.3095 0.1325 2.3365 0.0200*
HB3BOR -1.3524 0.3751 -3.6056 0.0004*
HB4DG 0.1709 0.2148 0.7956 0.4267
HB5Fife -0.2211 0.1710 -1.2930 0.1968
HB6FV -0.0939 0.1765 -0.5318 0.5952
HB7GR -0.3504 0.1414 -2.4786 0.0136*
HB9HI 0.1292 0.1810 0.7135 0.4759
t:HB11LO -0.5127 0.2232 -2.2972 0.0221*
t:HB12NWTC -3.4911 17.6536 -0.1978 0.8433
t:HB13ORK 1.3351 1.6395 0.8143 0.4159
t:HB14SH 0.4060 1.9316 0.2102 0.8336
t:HB15TAY -0.0422 0.2766 -0.1527 0.8787
t:HB16WI -1.9513 1.0981 -1.7769 0.0764
t:HB1LA 0.2535 0.2538 0.9989 0.3185
t:HB2A.A -0.3980 0.2703 -1.4722 0.1418
t:HB3BOR 1.4851 0.6829 2.1748 0.0302*
t:HB4DG -0.8115 0.4344 -1.8682 0.0625
t:HB5Fife 0.7209 0.3544 2.0340 0.0426*
t:HB6FV 0.6743 0.3731 1.8074 0.0715
t:HB7GR 0.6261 0.2793 2.2418 0.0255*
t:HB9HI -0.7091 0.3879 -1.8281 0.0683
t2:HB11LO 0.3511 0.1331 2.6382 0.0087*
t2:HB12NWTC 0.9171 6.7938 0.1350 0.8927

Continued on next page
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Table A.3 – Continued from previous page
Coefficient Estimate Standard error t-value Pr(>|t|)
t2:HB13ORK -0.2513 0.8766 -0.2867 0.7745
t2:HB14SH -1.2558 1.3628 -0.9215 0.3573
t2:HB15TAY 0.0666 0.1658 0.4017 0.6881
t2:HB16WI 0.9452 0.6342 1.4904 0.1369
t2:HB1LA -0.1881 0.1542 -1.2196 0.2233
t2:HB2A.A 0.4670 0.1597 2.9241 0.0037*
t2:HB3BOR -0.6419 0.3800 -1.6893 0.0920
t2:HB4DG 0.7815 0.2571 3.0398 0.0025*
t2:HB5Fife -0.4106 0.2143 -1.9166 0.0560
t2:HB6FV -0.2307 0.2326 -0.9917 0.3219
t2:HB7GR 0.0564 0.1656 0.3405 0.7337
t2:HB9HI 0.4513 0.2334 1.9335 0.0539
t3:HB11LO -0.0733 0.0280 -2.6153 0.0093*
t3:HB12NWTC -0.0982 1.0837 -0.0906 0.9278
t3:HB13ORK 0.0100 0.1760 0.0567 0.9548
t3:HB14SH 0.3443 0.2979 1.1558 0.2485
t3:HB15TAY -0.0142 0.0352 -0.4025 0.6875
t3:HB16WI -0.1504 0.1281 -1.1746 0.2409
t3:HB1LA 0.0441 0.0330 1.3377 0.1818
t3:HB2A.A -0.1114 0.0337 -3.3049 0.0010*
t3:HB3BOR 0.1191 0.0776 1.5346 0.1257
t3:HB4DG -0.1837 0.0545 -3.3727 0.0008*
t3:HB5Fife 0.0740 0.0456 1.6223 0.1055
t3:HB6FV 0.0039 0.0512 0.0770 0.9386
t3:HB7GR -0.0695 0.0353 -1.9680 0.0498*
t3:HB9HI -0.0965 0.0493 -1.9577 0.0510*
t4:HB11LO 0.0048 0.0019 2.5334 0.0117*
t4:HB12NWTC 0.0030 0.0610 0.0494 0.9606
t4:HB13ORK 0.0004 0.0117 0.0372 0.9703
t4:HB14SH -0.0244 0.0199 -1.2226 0.2222
t4:HB15TAY 0.0008 0.0024 0.3338 0.7387
t4:HB16WI 0.0081 0.0083 0.9777 0.3288
t4:HB1LA -0.0032 0.0023 -1.4130 0.1584
t4:HB2A.A 0.0075 0.0023 3.2733 0.0012*
t4:HB3BOR -0.0077 0.0052 -1.4820 0.1391
t4:HB4DG 0.0125 0.0037 3.3768 0.0008*
t4:HB5Fife -0.0042 0.0031 -1.3523 0.1770
t4:HB6FV 0.0019 0.0036 0.5226 0.6016
t4:HB7GR 0.0069 0.0024 2.8689 0.0043*
t4:HB9HI 0.0065 0.0033 1.9649 0.0501*

* : Significant coefficient at α = 0.05.
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A.2.4 The coefficients of CDI in patients aged 15-64 years

model with HBs effect

Table A.4: The coefficients of CDI in patients aged 15-64 years model with HBs
effect.

Coefficient Estimate Standard error t-value Pr(>|t|)
(Intercept) -7.6324 0.0885 -86.2632 0.0000*
t -0.6527 0.0974 -6.7033 0.0000*
t2 0.2024 0.0451 4.4848 0.0000*
t3 -0.0203 0.0058 -3.4846 0.0006*
Qu2 0.0524 0.0566 0.9270 0.3547
Qu3 0.3146 0.0536 5.8666 0.0000*
Qu4 0.0953 0.0575 1.6570 0.0986
HB11LO 0.7359 0.0905 8.1315 0.0000*
HB12NWTC -1.3805 0.6742 -2.0475 0.0415*
HB13ORK 1.2201 0.4793 2.5457 0.0114*
HB14SH -5.0953 4.0014 -1.2734 0.2039
HB15TAY 0.6638 0.1171 5.6702 0.0000*
HB16WI 0.7721 0.3435 2.2478 0.0253*
HB1LA 0.0227 0.1302 0.1745 0.8616
HB2A.A 1.0890 0.1111 9.8021 0.0000*
HB3BOR 0.3107 0.2493 1.2464 0.2136
HB4DG 0.9322 0.1682 5.5413 0.0000*
HB5Fife 0.0625 0.1779 0.3510 0.7258
HB6FV -1.2275 0.3182 -3.8581 0.0001*
HB7GR 0.8203 0.1049 7.8165 0.0000*
HB9HI 0.2499 0.1627 1.5365 0.1255
t:HB11LO -0.0172 0.0325 -0.5304 0.5963
t:HB12NWTC -0.1120 0.2542 -0.4407 0.6598
t:HB13ORK 0.0617 0.1652 0.3734 0.7091
t:HB14SH 1.1111 0.8733 1.2724 0.2042
t:HB15TAY -0.0821 0.0436 -1.8829 0.0607*
t:HB16WI 0.1589 0.1135 1.3999 0.1626
t:HB1LA 0.0611 0.0450 1.3582 0.1754
t:HB2A.A -0.1772 0.0439 -4.0323 0.0001*
t:HB3BOR 0.0686 0.0887 0.7735 0.4398
t:HB4DG 0.0043 0.0597 0.0723 0.9424
t:HB5Fife -0.0379 0.0660 -0.5739 0.5665
t:HB6FV 0.1964 0.0968 2.0291 0.0433*
t:HB7GR -0.2297 0.0437 -5.2601 0.0000*
t:HB9HI 0.0412 0.0549 0.7504 0.4536

* : Significant coefficient at α = 0.05.
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A.3 R code for power and sample size analysis

A.3.1 Poisson ration test calculation

#Poisson test for MRSA in Scotland
x1 <- 985 # observed count in Scotland in 2005
x2 <- 965 # observed count in Scotland in 2006
t1 <- 5377870 # population in Scotland in 2005
t2 <- 5421267 # population in Scotland in 2006
d <- t2/t1
R <- 1
roo <- R/d
PRTtest <- (x1-x2*roo)/sqrt(x1+x2*(roo)^2)

# If PRTtest >= 1.65 (z_alpha),
# there is significant difference between two rates
pv <- 1-pnorm(PRTtest) # p-value

# Ratio of two rates in two years (2005, 2006) in Scotland
Rdash <- 18.3/17.8

A.3.2 Statistical power calculation

#To calculate the power in Scotland and different boards
#using different effect sizes (Rdash)
R<-1
gama2005<- 0.00018312 # gama1
gama2006<- 0.000177758 # gama2
Rdash <- 18.3/17.8 # in case of MRSA (real effect size)
#Rdash<- seq(1,2.5,0.01) # sequence of Rdashs

c<- R/Rdash
z1_alpha<- 1.645

# Scotland
t2005<-5377870 # Population in Scotland in 2005 (t1)
t2006<- 5421267 # Population in Scotland in 2006 (t2)
d<-t2006/t2005
roo<- R/d
fi<- (z1_alpha*sqrt(((roo/c)+roo^2)*t2006*gama2005*Rdash)
-(((roo/c)-roo)*t2006*gama2005*Rdash))/
(sqrt(((roo/c)+roo^2)*t2006*gama2005*Rdash))
y1<-pnorm(fi, mean = 0, sd = 1, lower.tail = F, log.p = FALSE)

# Glasgow
t2005<-1560477
t2006<- 1588897
d<-t2006/t2005
roo<- R/d
fi<- (z1_alpha*sqrt(((roo/c)+roo^2)*t2006*gama2005*Rdash)
-(((roo/c)-roo)*t2006*gama2005*Rdash))/
(sqrt(((roo/c)+roo^2)*t2006*gama2005*Rdash))
y2<- pnorm(fi, mean = 0, sd = 1, lower.tail = F, log.p = FALSE)
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# Lothian
t2005<-805606
t2006<- 810988
d<-t2006/t2005
roo<- R/d
fi<- (z1_alpha*sqrt(((roo/c)+roo^2)*t2006*gama2005*Rdash)
-(((roo/c)-roo)*t2006*gama2005*Rdash))/
(sqrt(((roo/c)+roo^2)*t2006*gama2005*Rdash))
y3<- pnorm(fi, mean = 0, sd = 1, lower.tail = F, log.p = FALSE)

#Grampian
t2005<-592996
t2006<- 598488
d<-t2006/t2005
roo<- R/d
fi<- (z1_alpha*sqrt(((roo/c)+roo^2)*t2006*gama2005*Rdash)
-(((roo/c)-roo)*t2006*gama2005*Rdash))/
(sqrt(((roo/c)+roo^2)*t2006*gama2005*Rdash))
y4<- pnorm(fi, mean = 0, sd = 1, lower.tail = F, log.p = FALSE)

#Tayside
t2005<-447053
t2006<- 449644
d<-t2006/t2005
roo<- R/d
fi<- (z1_alpha*sqrt(((roo/c)+roo^2)*t2006*gama2005*Rdash)
-(((roo/c)-roo)*t2006*gama2005*Rdash))/
(sqrt(((roo/c)+roo^2)*t2006*gama2005*Rdash))
y5<- pnorm(fi, mean = 0, sd = 1, lower.tail = F, log.p = FALSE)

#Fife
t2005<-260199
t2006<- 264053
d<-t2006/t2005
roo<- R/d
fi<- (z1_alpha*sqrt(((roo/c)+roo^2)*t2006*gama2005*Rdash)
-(((roo/c)-roo)*t2006*gama2005*Rdash))/
(sqrt(((roo/c)+roo^2)*t2006*gama2005*Rdash))
y6<- pnorm(fi, mean = 0, sd = 1, lower.tail =F, log.p = FALSE)

x11()
plot(Rdash,y1, type="l", xlab="Effect size" , ylab="Power", col="red",
lty=1, lwd=2)

lines (Rdash,y2,col="blue" , lty=2, lwd=2)
lines (Rdash,y3, col="black", lty=3, lwd=2)
lines (Rdash,y4, col="purple" , lty=1, lwd=2)
lines (Rdash,y5,col="cyan4", lty=2, lwd=2)
lines (Rdash,y6, col="deeppink4" , lty=3, lwd=2)

legend(2,0.9,legend = c("Scotland","Glasgow", "Lothian", "Grampian",
"Tayside", "Fife"),
col=c("red","blue","black","purple", "cyan4", "deeppink4"),
lwd=2, lty=c(1,2,3,1,2,3))

#3# The detectable effect size with 80%, 90% and 95% power
R<-1
Rdash<- seq(1,3,0.1)
c<- R/Rdash
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t2005<-5377870 # Population in Scotland in 2005
t2006<- 5421267 # Population in Scotland in 2006
d<-t2006/t2005
roo<- R/d

lamda1.80<- ((c/roo)+c^2)*(qnorm(0.95)+qnorm(0.80))^2/(1-c)^2
lamda1.90<- ((c/roo)+c^2)*(qnorm(0.95)+qnorm(0.90))^2/(1-c)^2
lamda1.95<- ((c/roo)+c^2)*(qnorm(0.95)+qnorm(0.95))^2/(1-c)^2

plot(Rdash,lamda1.80, type="l", xlab="Effect size" ,
ylab="Number of cases", lwd=2 )
lines (Rdash,lamda1.90,col="blue", lty=2, lwd=2 )
lines (Rdash,lamda1.95, col="red", lty=3, lwd=2 )

legend(2.4,1200,legend = c("80% power","90% power", "95% power"),
col=c("black","blue","red"),
lwd=2, lty=c(1,2,3))
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A.4 Risk and risk adjusted funnel plots

A.4.1 R code for funnel plot

library(XLConnect)

# To read data from individual health boards
di <- readWorksheetFromFile("NHSNEWn1.xlsx",
sheet=i, header=T) # , i= 2,3,4,...,16

# aobds in individual health boards in Qu4, 2013.
aobds <- c(d2[44,]$aobd,d3[44,]$aobd,d4[44,]$aobd,d5[44,]$aobd,
d6[44,]$aobd,d7[44,]$aobd,d8[44,]$aobd,d9[44,]$aobd,d10[44,]$aobd,
d11[44,]$aobd,d12[19,]$aobd,d13[44,]$aobd,d14[44,]$aobd,
d15[44,]$aobd,d16[44,]$aobd)

N.MRSAs <- c(d2[44,]$no.MRSA2,d3[44,]$no.MRSA3,d4[44,]$no.MRSA4,
d5[44,]$no.MRSA5,d6[44,]$no.MRSA6,d7[44,]$no.MRSA7,d8[44,]$no.MRSA8,
d9[44,]$no.MRSA9,d10[44,]$no.MRSA10,d11[44,]$no.MRSA11,
d12[19,]$no.MRSA12,d13[44,]$no.MRSA13,d14[44,]$no.MRSA14,
d15[44,]$no.MRSA15,d16[44,]$no.MRSA16)

R.MRSAs <- c(d2[44,]$r.MRSA2,d3[44,]$r.MRSA3,d4[44,]$r.MRSA4,
d5[44,]$r.MRSA5,d6[44,]$r.MRSA6,d7[44,]$r.MRSA7,d8[44,]$r.MRSA8,
d9[44,]$r.MRSA9,d10[44,]$r.MRSA10,d11[44,]$r.MRSA11,
d12[19,]$r.MRSA12,d13[44,]$r.MRSA13,d14[44,]$r.MRSA14,
d15[44,]$r.MRSA15,d16[44,]$r.MRSA16)

ASP <- c(d2[44,]$ASP,d3[44,]$ASP,d4[44,]$ASP,d5[44,]$ASP,
d6[44,]$ASP,d7[44,]$ASP,d8[44,]$ASP,d9[44,]$ASP,d10[44,]$ASP,
d11[44,]$ASP,NA,d13[44,]$ASP,d14[44,]$ASP,
d15[44,]$ASP,d16[44,]$ASP)

TH <- c(0,0,0,0,0,1,1,0,0,1,0,0,0,1,0)

HB <- c("AA", "BOR", "DG", "Fife", "FV", "GR", "GGC", "HI",
"LA", "LO", "NWTC", "ORK", "SH", "TAY", "WI")

data <- cbind(aobds,N.MRSAs,R.MRSAs,ASP,TH)
d <- data.frame(data)
row.names(d) <- HB

d$TH <- factor(d$TH)
d$asp <- d$ASP-25

# To give subset date according to ASP
dsub <- subset(d, ! is.na(ASP))

# To sort data=d according to aobds
dsubb <- dsub[with(dsub, order(aobds)), ]

## Data including NWTC HB
www <- d[with(d, order(aobds)), ]

## To build 95% control limit using Byar’s method
ob <- www$aobds*d1[44,]$r.MRSA1/100000
ol <- ob * (1-(1/(9*ob))-(1.96/(3*sqrt(ob))))^3
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rl <- ol/www$aobds
ou <-(1+ob) * (1-(1/(9*(1+ob)))+(1.96/(3*sqrt(1+ob))))^3
ru <- ou/www$aobds

plot(www$aobds/100000,www$R.MRSAs , xlim=c(0,4.2),ylim=c(0,30),
col = "blue",pch = 12,
xlab="Acute occupied bed days (100,000)" ,ylab="Observed Rates of MRSA")
text(www$aobds/100000,www$R.MRSAs, row.names(www),
cex=0.6, pos=4, col = "blue")

# To plot line observes overall rate of MRSA
abline(h = d1[44,]$r.MRSA1, col = "red")

# To plot lower and upper limits of funnel plot
lines(www$aobds/100000, rl*100000)
lines(www$aobds/100000, ru*100000)

# To show components of funnel plot
arrows(4, 9.5, x1 = 4, y1 = 4.1, length = 0.15, angle = 30, col=3, lwd=2)
text(4, 10.5, "Target", cex = 1)

arrows(0.3, 28, x1 = -0.16, y1 = 28, length = 0.15, angle = 30, col=3, lwd=2)
text(0.6, 28, "Indicator", cex = 1)

arrows(3.5, 1, x1 = 3.5, y1 = -1.2, length = 0.15, angle = 30, col=3, lwd=2)
text(3.9, 0.5, "Precision", cex = 1)

arrows(2.5, 9.5, x1 = 2.5, y1 = 7.8, length = 0.15, angle = 30, col=3, lwd=2)
arrows(2.8, 9.5, x1 = 2.8, y1 = 2, length = 0.15, angle = 30, col=3, lwd=2)
text(2.6, 10.5, "Control limits", cex = 1)

## Use dsubb data to plot observed rates and
#use ds data to plot predict and observed rates

mod1 <- glm(N.MRSAs ~ offset (log(aobds))+asp,family=poisson,data=dsub)

expe <- predict(mod1, type="response" ,interval = "confidence",
level = 0.95, se=T)
R.adj <- dsub$N.MRSAs/expe$fit*d1[44,]$r.MRSA1
x <- cbind(dsub,R.adj)
xx <- data.frame(x)

# To sort data=d according to aobds.
ds <- xx[with(xx, order(aobds)), ]

# To plot predicted rates in the funnel plot
points(ds$aobds/100000,ds$R.adj, col = ’red’, pch = 16)
text(ds$aobds/100000,ds$R.adj, row.names(ds), cex=0.6, pos=4, col="red")

# To add legend to the plot
legend(2,30,legend = c("Observed rate","Adjusted rate", "(P=0.186)"),
col = c("blue", "red",NA),pch =c(12,16,NA))
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A.4.2 Funnel plots of MRSA bacteraemia for different

quarters

The following Figures show funnel plots of unadjusted MRSA bacteraemia

rates and adjusted MRSA bacteraemia rates by acute surgical procedure (ASP)

in different quarters from Qu2, 2009 to Qu4, 2013.
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Figure A.1: Funnel plots of adjusted and unadjusted MRSA bacteraemia rates
in 2009.
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Figure A.2: Funnel plots of adjusted and unadjusted MRSA bacteraemia rates
in 2010.
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Figure A.3: Funnel plots of adjusted and unadjusted MRSA bacteraemia rates
in 2011.
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Figure A.4: Funnel plots of adjusted and unadjusted MRSA bacteraemia rates
in 2012.
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Figure A.5: Funnel plots of adjusted and unadjusted MRSA bacteraemia rates
in 2013.
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A.4.3 Funnel plots of MSSA bacteraemia for different

quarters

The following Figures show funnel plots of unadjusted MSSA bacteraemia

rates and adjusted MSSA bacteraemia rates by acute surgical procedure (ASP)

in different quarters from Qu2, 2009 to Qu4, 2013.
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Figure A.6: Funnel plots of adjusted and unadjusted MSSA bacteraemia rates
in 2009.
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Figure A.7: Funnel plots of adjusted and unadjusted MSSA bacteraemia rates
in 2010.
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Figure A.8: Funnel plots of adjusted and unadjusted MSSA bacteraemia rates
in 2011.
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Figure A.9: Funnel plots of adjusted and unadjusted MSSA bacteraemia rates
in 2012.
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Figure A.10: Funnel plots of adjusted and unadjusted MSSA bacteraemia rates
in 2013.
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Appendix B

Polynomial GLM Regression -

Chapter 4

B.1 R code for simulation study of comparing

delta and bootstrap methods

See Section 4.5 for the algorithm and results.
library(lmtest) # to calculate Likelihood ratio test
library(boot) # for bootstrapping
library(xtable) # to print R code to latex file
library(XLConnect) # to read .xlsx files

segm <- readWorksheetFromFile("joinpointDATA -uptoSep2014.xlsx",
sheet=5, header=T) # data includes 50 data points
attach(segm)
x <- segm$x

b0 <- 5 # Can be 1.5 ,3 or 5
b1 <- 0.001
b2 <- -0.003
x0 <- 25 # Can be 25, 13 or 38 as true turning point

# Quadratic model is a started model with true turning point.
xq <- b0+ b1*(x-x0) + b2*((x-x0)^2)
xqr<- exp(xq)
xd <- rpois(length(xq),xqr)
plot(x,log(xd), xlab="Time", ylab="Rate" )
lines(x,xq)
abline(v=x0)

# To do 500 simulation for the final result of CI
n.sim <- 500
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resultCI <- matrix(NA, nrow=n.sim, ncol=6)
resultCId <- matrix(NA, nrow=n.sim, ncol=10)

# Bootstrap function
bs <- function(data, indices) {
data$new.n <- round(data$fit + data$resid[indices]*sqrt(data$fit),0)
data$new.n[data$new.n<0] <- 0
rz <- glm(new.n ~ x + x2, data=data,family=poisson)
z.a<- rz$coefficients["x2"]
z.b<- rz$coefficients["x"]
z.c <- rz$coefficients["(Intercept)"]
A<- 2*z.a
B<- z.b
C<- z.c
xx <- polyroot(z=c(B,A))
rex <-Re(xx) # to construct a real part of xx
tp1 <- rex[1]
return(cbind(tp1))
}

for(i in 1:n.sim) {

# Simulate data according to quadratic model
new.y <- rpois(length(xqr),xqr)
d <- data.frame(cbind(new.y,segm))
d$x2 <- d$x^2

# Fit quadratic model to simulated data
z <- glm(new.y ~ x + x2, data=d,family=poisson)

# Calculate the root of quadratic equation
rexd <- Re(polyroot(z=c(z$coef[2],2*z$coef[3])))
z.res <- residuals(z,type="pearson")
z.predict <- predict(z,type="response")# predicted counts

# Calculate CI using delta method
s.m <- summary(z)
v.b1 <- (s.m$coefficients[ 2, 2])^2
v.b2 <- (s.m$coefficients[ 3, 2])^2
m.b1 <- s.m$coefficients[ 2, 1]
m.b2 <- s.m$coefficients[ 3, 1]
cov.b1.b2 <- s.m$cov.scaled [3,2]
E.b1.b2 <- m.b1/ m.b2
V.b1.b2 <- ((m.b1/ m.b2)^2)*((v.b1/ (m.b1)^2)
+(v.b2/(m.b2)^2)-2*(cov.b1.b2)/(m.b1* m.b2))
EX <- - 0.5 * E.b1.b2
VAR <- 0.25 * V.b1.b2
sq <- sqrt(VAR)
LL <- EX - 1.96 * sq
UL <- EX + 1.96 * sq
CId <- c(rexd, E.b1.b2, EX, VAR, LL, UL, UL-LL ,z$coef)
resultCId[i,] <- CId

## For bootstrapping process
new.d1 <- cbind(d, resid = z.res, fit = z.predict)
data <- new.d1
results <- boot(data=data, statistic=bs,R=500)
LB <- quantile(results$t[,1],0.025)
UB <- quantile(results$t[,1],0.975)
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CI <- c(rexd,LB, UB, z$coef)
resultCI[i,] <- CI
gc()
}

ttp <- x0
# To save the main results in vector
Res.sim<- matrix(NA, nrow=1, ncol=10)
Res.sim[1,1] <- b0
Res.sim[1,2] <- mean(rexd)

# Results from delta method
Res.sim[1,3] <- mean(resultCId[,5]) # mean lower CI
Res.sim[1,4] <- mean(resultCId[,6]) # mean upper CI
Res.sim[1,5] <- mean(resultCId[,7]) # mean width CI
# Percentage of cover true turning point
Res.sim[1,6] <- sum(resultCId[,5] <= ttp & resultCId[,6] >= ttp)/n.sim*100

# Results from bootstrap method
Res.sim[1,7] <- mean(resultCI[,2]) # mean lower CI
Res.sim[1,8] <- mean(resultCI[,3]) # mean upper CI
Res.sim[1,9] <- mean(resultCI[,3]- resultCI[,2]) # mean width CI
# Percentage of cover true turning point
Res.sim[1,10] <- sum(resultCI[,2] <= ttp & resultCI[,3] >= ttp )/n.sim*100

Res.sim

B.2 R code for simulation study of investigating

confidence intervals of two change points

# True turning points
t1 <- 16
t2 <- 33

para <- function(t1,t2){
bb1=t1*t2;
bb2=-0.5*(t1+t2);
bb3=1/3;
values=c(bb1,bb2,bb3);
return(values);
}
m <- para(t1,t2)
m1<- m/10000
m2<- round(m1,6)
b0<- 5
b1<- m2[1]
b2<- m2[2]
b3<- m2[3]
ttp1<- t1
ttp2<- t2
xq <- b0+ b1*x + b2*x^2 + b3*x^3

# Bootstrap function
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bs3 <- function(data, indices) {
data$new.n <- round(data$fit + data$resid[indices]*sqrt(data$fit),0)
data$new.n[data$new.n<0] <- 0

rz3 <- glm(new.n ~ x+x2+x3 ,family=poisson,data=data)
z.a<- rz3$coefficients["x3"]
z.b<- rz3$coefficients["x2"]
z.c<- rz3$coefficients["x"]
z.d <- rz3$coefficients["(Intercept)"]
A<- 3*z.a
B<- 2*z.b
C<- z.c
xx<- polyroot(z=c(C,B,A))
srex3b<-Re(xx)
rex3b<- sort(srex3b)
tp13<- rex3b[1] # t when the first change appear
tp23<- rex3b[2] # t when the second change appear
return(cbind(tp13,tp23))
}

n.sim <- 500 # no. of simulation

# Output from one simulation with all data
out1 <- matrix(NA, nrow=n.sim, ncol=15)
d <- data.frame(cbind(segm))
d$x2 <- d$x^2
d$x3 <- d$x^3
lenxqr <- length(xqr)

for(i in 1:n.sim) {
# Simulate data according to original model
d$y <- rpois(lenxqr,xqr)

# Cubic model
z3 <- glm(y~ x + x2 +x3 ,data=d,family=poisson)
zz3<- summary(z3)
pvalue3<- zz3$coefficients["x3",c("Pr(>|z|)")]
esb3 <- zz3$coefficients["x3",c("Estimate")]
ABS3<- abs(esb3)
z.a<- z3$coefficients["x3"]
z.b<- z3$coefficients["x2"]
z.c<- z3$coefficients["x"]
z.d <- z3$coefficients["(Intercept)"]
A<- 3*z.a
B<- 2*z.b
C<- z.c
xx<- polyroot(z=c(C,B,A))
srex3 <- Re(xx) # turning points of cubic model
rex3 <- sort(srex3) # sort tps from the smallest

# To get CI for tps by bootstrapping from cubic model
z.res <- residuals(z3,type="pearson")
z.predict <- predict(z3,type="response")# these are predicted counts
data <- cbind(d, resid = z.res, fit = z.predict)
results3 <- boot(data=data, statistic=bs3,R=500)

# To remove tp1=tp2 (indicating complex numbers) from bootstrap samples
kk <- subset (results3$t, results3$t[,1]!=results3$t[,2])

349



CI13 <- quantile(kk[,1],c(0.025, 0.975))
WCI13 <- CI13[2]- CI13[1]
CI23 <- quantile(kk[,2],c(0.025, 0.975))
WCI23 <- CI23[2]- CI23[1]

out3<- c(rex3[1],sd(kk[,1]), CI13[1],CI13[2],WCI13,
rex3[2],sd(kk[,2]),CI23[1],CI23[2],WCI23,
Im(xx),z3$deviance,pvalue3,ABS3)

result <- c(out3)
out1[i,] <- result
gc()
}

nrow(out1)

# To remove all t1=t2 from simulation samples
OUT1 <- subset(out1, out1[,1]!=out1[,6])
nrow(OUT1)

tp1 <- mean(OUT1[,1])
ltp1 <- mean(OUT1[,3])
utp1 <- mean(OUT1[,4])
wdtp1 <- mean(OUT1[,5])
ci1 <- sum(ttp1 >= OUT1[,3]& ttp1 <= OUT1[,4])/ nrow(OUT1)*100

tp2 <- mean(OUT1[,6])
ltp2 <- mean(OUT1[,8])
utp2 <- mean(OUT1[,9])
wdtp2 <- mean(OUT1[,10])
ci2 <- sum(ttp2 >= OUT1[,8]& ttp2 <= OUT1[,9])/ nrow(OUT1)*100
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Appendix C

Segmented and Joinpoint

Regression - Chapter 5

C.1 R code for segmented regression analysis

Data of MRSA bacteraemia up to September 2014 is used to explain the seg-

mented regression analysis algorithm. See Section 5.1.2.

library(XLConnect)

int<-readWorksheetFromFile("Interventions.xlsx",
sheet=7, header=T)

int$t <- int$time -2003
int$Qu <- factor(int$Qu)

### Segmented regression using all data before and after

# Segmented regression for all point with one change point
z.int <- names(int)[7:19]
z.int.s <- names(int)[20:32]

if (exists("z.out")) rm(z.out)
for (z.index in 1:length(z.int.s)) {
z.i <- z.int.s[z.index]
z.ii <- z.int[z.index]
z.row <- as.numeric(gsub("Int","",z.ii))
z.abline <- int[z.row,"time"]

# Fit segmented at each specific time when interventions took place
z <- glm(no.MRSA1 ~ offset (log(aobd)) + t + Qu + get(z.i),
data=int,family=poisson)
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z1 <- summary(z)
z.time <- z1$coefficients["t",c("Estimate","Std. Error","Pr(>|z|)")]
z.change <- z1$coefficients["get(z.i)",c("Estimate","Std. Error","Pr(>|z|)")]
z.res <- matrix(c(z.time,z.change,z$deviance,z$df.residual),nrow=1)

dimnames(z.res) <- list(z.ii,c("Slope","Slope.SE","Slope.P",
"Change.Slope","Change.Slope.SE","Change.Slope.P","Deviance","DF"))

if (exists("z.out")) z.out <- rbind(z.out,z.res) else z.out <- z.res
}
z.out

# Segmented regression for all point with two change points
if (exists("z.out")) rm(z.out)

for (z.index in 5:length(z.int.s)) {
# "5" is the location after the first change point detected

z.i <- z.int.s[z.index]
z.ii <- z.int[z.index]
z.row <- as.numeric(gsub("Int","",z.ii))
z.abline <- int[z.row,"time"]
z <- glm(no.MRSA1 ~ offset (log(aobd)) + t+ Qu + Time.PI14 + get(z.i)
,data=int,family=poisson)

z1 <- summary(z)
z.time <- z1$coefficients["t",c("Estimate","Std. Error","Pr(>|z|)")]
z.time14 <- z1$coefficients["Time.PI14",c("Estimate","Std. Error","Pr(>|z|)")]
z.change <- z1$coefficients["get(z.i)",c("Estimate","Std. Error","Pr(>|z|)")]
z.res <- matrix(c(z.time,z.time14,z.change,z$deviance,z$df.residual),nrow=1)

dimnames(z.res) <- list(z.ii,c("Slope","Slope.SE","Slope.P", "Slope14",
"Slope14.SE","Slope14.P","Change.Slope","Change.Slope.SE",
"Change.Slope.P","Deviance","DF"))

if (exists("z.out")) z.out <- rbind(z.out,z.res) else z.out <- z.res
}
z.out

# Given two change points, test for the third one as previous step.
# Then test if the models are different
z2 <- glm(no.MRSA1 ~ offset (log(aobd)) + t + Qu +
Time.PI14+ Time.PI22 + Time.PI33
,data=int,family=poisson)
summary(z2)

z1 <- glm(no.MRSA1 ~ offset (log(aobd)) + t + Qu +
Time.PI14 + Time.PI22
,data=int,family=poisson)

anova(z1,z2, test="Chisq")

### Segmented regression with all data before and two years after
if (exists("z.out")) rm(z.out)

for (z.index in 1:length(z.int.s)) {
z.i <- z.int.s[z.index]
z.ii <- z.int[z.index]
z.row <- as.numeric(gsub("Int","",z.ii))
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z.abline <- int[z.row,"time"]

# To choose dataset all before and two years after
z.df<- subset(int,time <= z.abline +2 )

z.null<- glm(no.MRSA1 ~ offset (log(aobd)) , # fit null model
data=z.df,family=poisson)
z <- glm(no.MRSA1 ~ offset (log(aobd)) + t+ Qu + get(z.i),
data=z.df,family=poisson)
z1 <- summary(z)
z.time <- z1$coefficients["t",c("Estimate","Std. Error","Pr(>|z|)")]
z.change <- z1$coefficients["get(z.i)",c("Estimate","Std. Error","Pr(>|z|)")]

# Percentage of deviance explained
PDE <- (1- (z$deviance/z.null$deviance))*100
PDEs<- (z$deviance/z.null$deviance)*100

z.res <- matrix(c(z.time,z.change,z$deviance, z.null$deviance , PDE,PDEs,
z$df.residual, z.null$df.residual),nrow=1)
dimnames(z.res) <- list(z.ii,c("Slope","Slope.SE","Slope.P",
"Change.Slope","Change.Slope.SE","Change.Slope.P","Deviance","NullDev",
"PDE","PDEs","DF","NullDF"))

if (exists("z.out")) z.out <- rbind(z.out,z.res) else z.out <- z.res
}
z.out

### Segmented regression of two years of data before and after
if (exists("z.out")) rm(z.out)

for (z.index in 1:length(z.int.s)) {
z.i <- z.int.s[z.index]
z.ii <- z.int[z.index]
z.row <- as.numeric(gsub("Int","",z.ii))
z.abline <- int[z.row,"time"]

# To choose dataset two years before and after
z.df<- subset(int,time <= z.abline +2 & time > z.abline -2)

z.null<- glm(no.MRSA1 ~ offset(log(aobd)) ,
data=z.df,family=poisson)
z <- glm(no.MRSA1 ~ offset (log(aobd)) + t+ Qu + get(z.i),
data=z.df,family=poisson)
z1 <- summary(z)
z.time <- z1$coefficients["t",c("Estimate","Std. Error","Pr(>|z|)")]
z.change <- z1$coefficients["get(z.i)",c("Estimate","Std. Error","Pr(>|z|)")]
PDE<- (1- (z$deviance/z.null$deviance))*100
PDEs<- (z$deviance/z.null$deviance)*100

z.res <- matrix(c(z.time,z.change,z$deviance, z.null$deviance , PDE,PDEs,
z$df.residual, z.null$df.residual),nrow=1)
dimnames(z.res) <- list(z.ii,c("Slope","Slope.SE","Slope.P",
"Change.Slope","Change.Slope.SE","Change.Slope.P","Deviance","NullDev",
"PDE","PDEs","DF","NullDF"))

if (exists("z.out")) z.out <- rbind(z.out,z.res) else z.out <- z.res
}
z.out
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C.2 R codes for joinpoint analysis

C.2.1 R code for joinpoint detection

Data of MRSA bacteraemia up to June 2016 is used to explain the algorithm of

detection two joinpoints. See Section 5.2.1.

library(XLConnect)

JDATA<-readWorksheetFromFile("JoinpointDATA -uptoJune2016.xlsx",
sheet=1, header=T)
JDATA$t <- JDATA$time -2003
JDATA$Qu <- factor(JDATA$Qu)
z.int.s <- names(JDATA)[8:59]

########## 1- Fit H0 (null model with 2 jps) ##########
h0 <- 2

if (exists("z.out")) rm(z.out)

#one jp
for (z.index in 1:(length(z.int.s)-1)) {
z.i <- z.int.s[z.index]
z.row <- as.numeric(gsub("Time.PI","",z.i))
z.abline <- JDATA[z.row,"time"]
z <- glm(no.MRSA1 ~ offset (log(aobd)) + t+Qu + get(z.i) ,

data=JDATA,family=poisson)
z.dev <- z$deviance
z.df <- z$df.residual

#two jps
for (z.index2 in (z.index+1): length(z.int.s)) {
z.j <- z.int.s[z.index2]
z.row2 <- as.numeric(gsub("Time.PI","",z.j))
z <- glm(no.MRSA1 ~ offset (log(aobd)) + t +Qu + get(z.i) + get(z.j),

data=JDATA,family=poisson)

z.res <- matrix(c(z.row ,z.row2,z.dev,z.df,z$deviance,z$df.residual),nrow=1)
dimnames(z.res) <- list(z.i ,c("jp1","jp2","Dev.1","DF.1","Deviance","DF"))
if (exists("z.out")) z.out <- rbind(z.out,z.res) else z.out <- z.res
}
}

MinDev <- min(z.out[,"Deviance"])
z.out[z.out[,"Deviance"] <= MinDev ,]
MinDev.1 <- min(z.out[,"Dev.1"])
z.out[z.out[,"Dev.1"] <= MinDev.1,]

z.h0 <- glm(no.MRSA1 ~ offset (log(aobd)) + t +Qu + Time.PI19 + Time.PI37,
data=JDATA,family=poisson)
z.h0.pearson.resid <- residuals(z.h0,type="pearson")
z.h0.mean <- predict(z.h0,type="response")

########## 2- Fit H1 (model with 3 jps to the original data) ##########
h1 <- 3
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if (exists("z.out")) rm(z.out)

#one jp
for (z.index in 1:(length(z.int.s)-2)) {
z.i <- z.int.s[z.index]
z.row <- as.numeric(gsub("Time.PI","",z.i))
z.abline <- JDATA[z.row,"time"]
z <- glm(no.MRSA1 ~ offset (log(aobd)) + t + Qu + get(z.i) ,

data=JDATA,family=poisson)
z.dev <- z$deviance
z.df <- z$df.residual

#two jps
for (z.index2 in (z.index+1): (length(z.int.s)-1)) {
z.j <- z.int.s[z.index2]
z.row2 <- as.numeric(gsub("Time.PI","",z.j))
z <- glm(no.MRSA1 ~ offset (log(aobd)) + t + Qu + get(z.i) + get(z.j),

data=JDATA,family=poisson)
z.dev2 <- z$deviance
z.df2 <- z$df.residual

#three jps
for (z.index3 in (z.index2+1): length(z.int.s)) {
z.k <- z.int.s[z.index3]
z.row3 <- as.numeric(gsub("Time.PI","",z.k))
z <- glm(no.MRSA1 ~ offset (log(aobd)) + t+Qu + get(z.i) + get(z.j) + get(z.k),

data=JDATA,family=poisson)

z.res <- matrix(c(z.row ,z.row2, z.row3
,z.dev,z.df,z.dev2,z.df2,z$deviance,z$df.residual),nrow=1)
dimnames(z.res) <- list(z.i ,c("jp1","jp2","jp3","Dev.1","DF.1",
"Dev.2","DF.2","Deviance","DF"))
if (exists("z.out")) z.out <- rbind(z.out,z.res) else z.out <- z.res
}
}
}

MinDev <- min(z.out[,"Deviance"])
Three.CP.Dev <- z.out[z.out[,"Deviance"] <= MinDev ,]
MinDev.2 <- min(z.out[,"Dev.2"])
z.out[z.out[,"Dev.2"] <= MinDev.2,]
MinDev.1 <- min(z.out[,"Dev.1"])
z.out[z.out[,"Dev.1"] <= MinDev.1,]

########## 3- Fit H1 model with 3 jps to,#
#permuted sampled data from H0 ##########

if (exists("z.sim.res")) rm(z.sim.res)
for (i.sim in 1:100) { # 100 is number of permutation
if (exists("z.out")) rm(z.out)
z.h0.perm.resid <- sample(z.h0.pearson.resid,length(z.h0.pearson.resid))
z.new.resp <- round(z.h0.mean + z.h0.perm.resid * sqrt(z.h0.mean),0)

#one jp
for (z.index in 1:(length(z.int.s)-2)) {
z.i <- z.int.s[z.index]
z.row <- as.numeric(gsub("Time.PI","",z.i))
z.abline <- JDATA[z.row,"time"]
z <- glm(z.new.resp ~ offset (log(aobd)) + t + Qu + get(z.i) ,
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data=JDATA,family=poisson)
z.dev <- z$deviance
z.df <- z$df.residual

#two jps
for (z.index2 in (z.index+1): (length(z.int.s)-1)) {
z.j <- z.int.s[z.index2]
z.row2 <- as.numeric(gsub("Time.PI","",z.j))
z <- glm(z.new.resp ~ offset (log(aobd)) + t + Qu + get(z.i) + get(z.j),

data=JDATA,family=poisson)
z.dev2 <- z$deviance
z.df2 <- z$df.residual

#three jps
for (z.index3 in (z.index2+1): length(z.int.s)) {
z.k <- z.int.s[z.index3]
z.row3 <- as.numeric(gsub("Time.PI","",z.k))
z <- glm(z.new.resp ~ offset (log(aobd)) + t+ Qu +

get(z.i) + get(z.j) + get(z.k),
data=JDATA,family=poisson)

z.res <- matrix(c(z.row ,z.row2, z.row3
,z.dev,z.df,z.dev2,z.df2,z$deviance,z$df.residual),nrow=1)
dimnames(z.res) <- list(z.i ,c("jp1","jp2","jp3","Dev.1","DF.1",
"Dev.2","DF.2","Deviance","DF"))
if (exists("z.out")) z.out <- rbind(z.out,z.res) else z.out <- z.res
}

MinDev <- min(z.out[,"Deviance"])
z.out[z.out[,"Deviance"] <= MinDev ,]
}
MinDev.2 <- min(z.out[,"Dev.2"])
z.out[z.out[,"Dev.2"] <= MinDev.2,]
}
MinDev.1 <- min(z.out[,"Dev.1"])
z.out[z.out[,"Dev.1"] <= MinDev.1,]

if (exists("z.sim.res"))
z.sim.res <- rbind(z.sim.res,z.out[z.out[,"Deviance"] <= MinDev ,])
else z.sim.res <- z.out[z.out[,"Deviance"] <= MinDev ,]
}

########## 4- permutation test to choose no. of jps ##########
# Calculate change in deviance with data
z.cd.data <- z.h0$deviance - Three.CP.Dev["Deviance"]

# Calculate change in deviances with permuted residuals data
z.cd.prd <- z.h0$deviance - z.sim.res[,"Deviance"]

# P-value of the test
z.permutation.p.value <- sum(z.cd.prd > z.cd.data )/(length(z.cd.prd)+1)

# P-value after using Bonferroni correction for the overall
#significance level of 0.05
if z.permutation.p.value < 0.05/(h1-h0) print(z.permutation.p.value)
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C.2.2 R code for confidence intervals of two joinpoints

Data of MRSA bacteraemia up to June 2016 is used to explain the bootstrap

confidence intervals of two joinpoints. See Section 5.2.2.2 for the bootstrap

confidence interval algorithm.

########## Construct CI for two jps ##########
########## Bootstrap method ##########

z.h0 <- glm(no.MRSA1 ~ offset (log(aobd)) + t +Qu + Time.PI19 + Time.PI37,
data=JDATA,family=poisson)
z.h0.pearson.resid <- residuals(z.h0,type="pearson")
z.h0.mean <- predict(z.h0,type="response")

n.boots <- 1000
if (exists("z.sim.res")) rm(z.sim.res)
for (i.sim in 1: n.boots) {
if (exists("z.out")) rm(z.out)
z.h0.perm.resid <- sample(z.h0.pearson.resid,length(z.h0.pearson.resid))
z.new.resp <- round(z.h0.mean + z.h0.perm.resid * sqrt(z.h0.mean),0)

#one jp
for (z.index in 1:(length(z.int.s)-1)) {
z.i <- z.int.s[z.index]
z.row <- as.numeric(gsub("Time.PI","",z.i))
z.abline <- JDATA[z.row,"time"]
z <- glm(z.new.resp ~ offset (log(aobd)) + t + Qu + get(z.i) ,

data=JDATA,family=poisson)
z.dev <- z$deviance
z.df <- z$df.residual

#two jps
for (z.index2 in (z.index+1): length(z.int.s) ) {
z.j <- z.int.s[z.index2]
z.row2 <- as.numeric(gsub("Time.PI","",z.j))
z <- glm(z.new.resp ~ offset (log(aobd)) + t + Qu + get(z.i) + get(z.j),

data=JDATA,family=poisson)
z.dev2 <- z$deviance
z.df2 <- z$df.residual

z.res <- matrix(c(z.row ,z.row2,z.dev,z.df,z.dev2,z.df2),nrow=1)
dimnames(z.res) <- list(z.i ,c("jp1","jp2","Dev.1","DF.1",
"Dev.2","DF.2"))

if (exists("z.out")) z.out <- rbind(z.out,z.res) else z.out <- z.res
}

MinDev.2 <- min(z.out[,"Dev.2"])
z.out[z.out[,"Dev.2"] <= MinDev.2,]
}

MinDev.1 <- min(z.out[,"Dev.1"])
z.out[z.out[,"Dev.1"] <= MinDev.1,]

if (exists("z.sim.res"))
z.sim.res <- rbind(z.sim.res,z.out[z.out[,"Dev.2"] <= MinDev.2,])
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else z.sim.res <- z.out[z.out[,"Dev.2"] <= MinDev.2,]
}

quantile(z.sim.res[,1],c(0.025, 0.975))
quantile(z.sim.res[,2],c(0.025, 0.975))

C.2.3 R code for confidence interval of one joinpoint using

bootstrap and profile likelihood methods

Data of MRSA bacteraemia up to September 2014 is used to explain the boot-

strap and profile likelihood methods of constructing confidence interval of one

joinpoint. See Section 5.2.2 for the bootstrap and profile likelihood confidence

intervals algorithms.

########## Construct CI for one jp ##########
########## 1- Bootstrap method ##########
if (exists("z.out")) rm(z.out)
for (z.index in 1:length(z.int.s)) {
z.i <- z.int.s[z.index]
z.row <- as.numeric(gsub("Time.PI","",z.i))
z <- glm(no.MRSA1 ~ offset (log(aobd)) + t+Qu + get(z.i) ,
data=JDATA,family=poisson)

z.dev1.h0 <- z$deviance
z.df1.h0 <- z$df.residual
z1 <- summary(z)
z.res <- matrix(c(z.row ,z.dev1.h0,z.df1.h0),nrow=1)
dimnames(z.res) <- list(z.i ,c("jp1","Dev.1.h0","DF.1.h0"))
if (exists("z.out")) z.out <- rbind(z.out,z.res) else z.out <- z.res
}
z.out

MinDev.1.h0 <- min(z.out[,"Dev.1.h0"])
z.out[z.out[,"Dev.1.h0"] <= MinDev.1.h0,]

z.h0 <- glm(no.MRSA1 ~ offset (log(aobd)) + t+Qu + Time.PI18 ,
data=JDATA,family=poisson)
z.res <- residuals(z.h0,type="pearson")
z.predict <- predict(z.h0,type="response")
new.d1 <- cbind(JDATA, resid = z.res, fit = z.predict)
data <- new.d1

bs <- function(data, indices) {
data$new.n.mrsa <- round(data$fit + data$resid[indices]*sqrt(data$fit),0)
data$new.n.mrsa[data$new.n.mrsa<0] <- 0
z.int.s <- names(JDATA)[8:52]
if (exists("z1.out")) rm(z1.out)
for (z.index in 1:length(z.int.s)) {
z.i <- z.int.s[z.index]
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z.row <- as.numeric(gsub("Time.PI","",z.i))
z.abline <- JDATA[z.row,"time"]
rz1 <- glm(new.n.mrsa ~ offset (log(aobd)) + t + Qu + get(z.i),

data=data,family=poisson)
z1r <- summary(rz1)
z.time <- z1r$coefficients["t",c( "Estimate","Std. Error","Pr(>|z|)")]
z.change <- z1r$coefficients["get(z.i)",c("Estimate","Std. Error","Pr(>|z|)")]
z.res <- matrix(c(z.row,z.time,z.change,rz1$deviance,rz1$df.residual),nrow=1)
dimnames(z.res) <- list(z.i,c("jp","Slope","Slope.SE","Slope.P",
"Change.Slope","Change.Slope.SE","Change.Slope.P","Deviance","DF"))

#z1.out has all the results for each possible joinpoint
if (exists("z1.out")) z1.out <- rbind(z1.out,z.res) else z1.out <- z.res
}

a <- z1.out[,8] #deviancs

#jb has 2 outputs: 1- min dev, 2- row corresponding to the min dev (jp)
jb <- c(min(a),which(a==min(a)))
jb[2] <- (as.numeric(gsub("Time.PI","",z.int.s[jb[2]])))

return(cbind(jb[1],jb[2]))
}

results <- boot(data=data, statistic=bs ,R=1000)
lcljp <- quantile(results$t[,2],c(0.025))
ucljp <- quantile(results$t[,2],c(0.975))
wdcljp <- ucljp - lcljp

########################################################################
########## 2- profile likelihood method ##########

library(sp) # Provides basic spatial classes/methods, SpatialLines
library(rgeos) # Includes intersection function

z.h0 <- glm(no.MRSA1 ~ offset (log(aobd)) + t+Qu + Time.PI18 ,
data=JDATA,family=poisson)
z.h0.pearson.resid <- residuals(z.h0,type="pearson")
z.h0.mean <- predict(z.h0,type="response")

a1 <- z.out[,2] #deviancs
b1 <- rep(MinDev.1.h0 + qchisq(0.95,1),45) # horizontal line
SL1 <- SpatialLines(list(Lines(Line(cbind(seq_along(a1),a1)), "A")))
SL2 <- SpatialLines(list(Lines(Line(cbind(seq_along(b1),b1)), "B")))

# Find intersections
coords <- coordinates(gIntersection(SL1, SL2))

jopt <- z.out[,1] # joinpoints
plot(jopt , a1 , type="l")
abline(h= MinDev.1.h0 + qchisq(0.95,1), col="red")
abline(v= coords[1]+1, col="red")
abline(v= coords[2]+1, col="red")
lcl <- coords[1]+1
ucl <- coords[2]+1
wdcl <- ucl-lcl
points(coords+1, col="red", pch=16)
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C.2.4 R code for simulation study of comparing profile

likelihood and bootstrap methods of confidence

interval for one joinpoint

See Section 5.3 for the algorithm and results.

library(XLConnect)
library(boot)
library(sp) # Provides basic spatial classes/methods, SpatialLines
library(rgeos) # Includes intersection function

segm<-readWorksheetFromFile("joinpointDATA -uptoSep2014.xlsx",
sheet=5 , header=T)
x <- segm$x

dsize <- 50
b0 <- 5
b1 <- 0.001 # for quadratic and combined
#b1 <- 0.005 # for segmented
b2 <- -0.003 # for quadratic and combined
#b2 <- -0.03 # for segmented
b3 <- -0.01
x0 <- 25 # true turning point, it can be 25, 13, 38

# Started models with true turning point.
xq <- b0+ b1*(x-x0)+ b2*((x-x0)^2) # quadratic
#OR
xq <- b0+ b1*(x-x0)+b2*((x-x0)^2)+b3*(ifelse(x<=x0,0,x-x0)) # combined
xq <- b0+ b1*(x-x0)+ b2*(ifelse(x<=x0,0,x-x0)) # segmented

ttp <- x0
xqr <- exp(xq)
xd <- rpois(length(xq),xqr)
plot(x,log(xd), xlab="Time", ylab="Rate" , lwd=2)
lines(x,xq, lwd=2 , col=2)
abline(v=ttp, lwd=2 )

bs <- function(data, indices) {
data$new.n <- round(data$fit + data$resid[indices]*sqrt(data$fit),0)
data$new.n[data$new.n<0] <- 0
z.int.s <- names(segm)[3:dsize]

if (exists("z1.out")) rm(z1.out)
for (z.index in 1:length(z.int.s)) {
z.i <- z.int.s[z.index]
z.row <- as.numeric(gsub("ts","",z.i))
z.abline <- segm[z.row,"x"]
rz1 <- glm(new.n ~ x + get(z.i),
data=data , family=poisson)
z1r <- summary(rz1)
z.time <- z1r$coefficients["x",c("Estimate","Std. Error","Pr(>|z|)")]

z.change <- z1r$coefficients["get(z.i)",c("Estimate","Std. Error","Pr(>|z|)")]
z.res <- matrix(c(z.row,z.time,z.change,rz1$deviance,rz1$df.residual),nrow=1)
dimnames(z.res) <- list(z.i,c("jp","Slope","Slope.SE","Slope.P",
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"Change.Slope","Change.Slope.SE","Change.Slope.P","Deviance","DF"))

if (exists("z1.out")) z1.out <- rbind(z1.out,z.res) else z1.out <- z.res
}
z1.out # has all the results for each possible join point

# Deviances
aa <- z1.out[,8]

#jb 2 entries 1- minimum deviance,
#2- row corresponding to the minimum deviance
jb <- c(min(aa),which(aa==min(aa)))

#jb[2] is the jp time
jb[2] <- (as.numeric(gsub("ts","",z.int.s[jb[2]])))

# To return the turning point
return(cbind(jb[1],jb[2]))

}

n.sim <- 200 # number of simulations

# output from one simulation with all data
out1 <- matrix(NA, nrow=n.sim, ncol=8)

for(i in 1:n.sim) {
y <- rpois(length(xqr),xqr)
d <- data.frame(cbind(segm,y))
z.int.s <- names(segm)[3:dsize]
if (exists("z.out")) rm(z.out)

for (z.index in 1:length(z.int.s)) {
z.i <- z.int.s[z.index]
z.row <- as.numeric(gsub("ts","",z.i))
z.abline <- segm[z.row,"x"]
z <- glm(y ~ x + get(z.i), data=d, family=poisson)
z1 <- summary(z)
z.time <- z1$coefficients["x",c("Estimate","Std. Error","Pr(>|z|)")]
z.change <- z1$coefficients["get(z.i)",c("Estimate","Std. Error","Pr(>|z|)")]

z.res <- matrix(c(z.row,z.time,z.change,z$deviance,z$df.residual),nrow=1)
dimnames(z.res) <- list(z.i,c("jp","Slope","Slope.SE","Slope.P",
"Change.Slope","Change.Slope.SE","Change.Slope.P","Deviance","DF"))

if (exists("z.out")) z.out <- rbind(z.out,z.res) else z.out <- z.res
}

z.out

a <- z.out[,8] # deviances
j <- c(min(a),which(a==min(a)))
j[2] <- (as.numeric(gsub("ts","",z.int.s[j[2]])))

z1 <- glm( y ~ x + get(as.character(paste("ts",j[2],sep=""))),
data=d, family=poisson)

#### CI for jp using profile likelihood method ###
# To set horizontal line corresponding to minimum deviance.
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b <- rep(min(z.out[,8]) + qchisq(0.95,1),dsize )

# To get deviances curve
SL1 <- SpatialLines(list(Lines(Line(cbind(seq_along(a),a)), "A")))

# To get line corresponding to minimum deviance.
SL2 <- SpatialLines(list(Lines(Line(cbind(seq_along(b),b)), "B")))

# Find intersections between the curve SL1 and the line SL2
coords <- coordinates(gIntersection(SL1, SL2))
ddf <- coords[,1, drop=FALSE] # all intersection points
x1 <- ddf[ddf < j[2]-1] # all intersection points < joinpoint
x2 <- max(x1)
x3 <- ddf[ddf > j[2]-1] # all intersection points > joinpoint
x4 <- min(x3)
lcljp <- x2+1
ucljp <- x4+1
wdcljp <- ucljp-lcljp

#### CI for jp using bootstrap method ###
z.res <- residuals(z1,type="pearson")
z.predict <- predict(z1,type="response")
new.d1 <- cbind(d, resid = z.res, fit = z.predict)
data <- new.d1

results <- boot(data=data, statistic=bs,R=500)

CIjpb <- quantile(results$t[,2],c(0.025, 0.975))
wdcljpb <- CIjpb[2] - CIjpb[1]

result <- c(j, lcljp , ucljp , wdcljp ,CIjpb[1], CIjpb[2] , wdcljpb)

out1[i,] <- result
gc()
}

dimnames(out1)[[2]]<- c("DV","JP","Lp","Up","WDp","Lb","Ub", "WDb")

WD.pr<- mean(out1[,5])
CI.TP.pr <- sum(x0 > out1[,3] & x0 < out1[,4] )/n.sim*100
WD.bt<- mean(out1[,8])
CI.TP.bt <- sum(x0 > out1[,6] & x0 < out1[,7] )/n.sim*100
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Appendix D

Simulation Study - Chapter 6

D.1 R code for simulation study of comparing

change points methods in case of one

change point

See Section 6.3 for the results.

library(XLConnect)
library(boot)
library(xtable) # to print R code to latex file

segm <- readWorksheetFromFile("joinpointDATA -uptoSep2014.xlsx",
sheet=5, header=T)
x <- segm$x

# Set up true turning point
x0 <- 25

# Set up the coefficient of the original model
b0 <- 5 # is the no. of cases, can be 5, 3, 1.5
b1 <- 0.001 # for quadratic and combined
#b1 <- 0.005 # for segmented

b2 <- -0.003 # for quadratic and combined
#b2 <- -0.03 # for segmented

b3 <- -0.05 # for combined

# Set up the original model (e.g. combined)
xq <- b0+ b1*(x-x0) + b2*((x-x0)^2) + b3*(ifelse(x<=x0,0,x-x0))
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# OR original models can be
xq <- b0+ b1*(x-x0) + b2*((x-x0)^2) # quadratic
xq <- b0+ b1*(x-x0) + b2*(ifelse(x<=x0,0,x-x0)) # segmented

xqr<- exp(xq)
xd <- rpois(length(xq),xqr)
plot(x,log(xd), xlab="Time", ylab="Rate" , lwd=2)
lines(x,xq, lwd=2 , col=2)
abline(v=x0, lwd=2 )

#########################################################
# Code to do 200 simulation for the final result of CI
#out1 - output from one simulation with all data
#out2 - results from each quadratic model
#out3 - results from each cubic model
#outs - results from segmented models.
#z.out - results for each joinpoint
#jpres - results from all joinpoints
########################################################

n.sim <- 200
# output from one simulation with all data
out1 <- matrix(NA, nrow=n.sim, ncol=37)
d <- data.frame(cbind(segm))
d$x2 <- d$x^2
d$x3 <- d$x^3
lenxqr <- length(xqr)

########## Bootstrap function to
#construct CI for quadratic model##########
bs2 <- function(data, indices) {
data$new.n <- round(data$fit +
data$resid[indices]*sqrt(data$fit),0)
data$new.n[data$new.n<0] <- 0
rz2 <- glm(new.n ~ x+x2 ,

family=poisson,data=data)

z.a<- rz2$coefficients["x2"]
z.b<- rz2$coefficients["x"]
z.c<- rz2$coefficients["(Intercept)"]
A<- 2*z.a
B<- z.b

# Calculate the root of quadratic equation
xx<- polyroot(z=c(B,A))
rex2b <-Re(xx)
tp1 <- rex2b[1]
return(cbind(tp1))

}

########## Bootstrap function to
#construct CI for cubic model##########
bs3 <- function(data, indices) {
data$new.n <- round(data$fit +

data$resid[indices]*sqrt(data$fit),0)
data$new.n[data$new.n<0] <- 0
rz3 <- glm(new.n ~ x+x2+x3 ,family=poisson,data=data)

z.a<- rz3$coefficients["x3"]
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z.b<- rz3$coefficients["x2"]
z.c<- rz3$coefficients["x"]
z.d <- rz3$coefficients["(Intercept)"]
A<- 3*z.a
B<- 2*z.b
C<- z.c

xx<- polyroot(z=c(C,B,A))
srex3b<-Re(xx)
rex3b<- sort(srex3b)
tp13<- rex3b[1]
tp23<- rex3b[2]

return(cbind(tp13,tp23))
}

########## Bootstrap function to
#construct CI for joinpoint model##########
bsjp <- function(data, indices) {
data$new <- round(data$fit +

data$resid[indices]*sqrt(data$fit),0)
data$new[data$new<0] <- 0

z.int.s <- names(segm)[3:lenxqr]
if (exists("z1.out")) rm(z1.out)
for (z.index in 1: (length(z.int.s))) {
z.i <- z.int.s[z.index]
z.row <- as.numeric(gsub("ts","",z.i))
z.abline <- segm[z.row,"x"]

# Fit joinpoint model at all possible jps
rz1 <- glm(new ~ x + get(z.i)

,data=data , family=poisson)
z.dev <- rz1$deviance
z.df <- rz1$df.residual

z1r <- summary(rz1)
z.time <- z1r$coefficients["x",c("Estimate","Std. Error","Pr(>|z|)")]
z.change <- z1r$coefficients["get(z.i)",c("Estimate","Std. Error","Pr(>|z|)")]

z.res <- matrix(c(z.row,z.time,z.change,rz1$deviance,rz1$df.residual),nrow=1)
dimnames(z.res) <- list(z.i,c("jp","Slope","Slope.SE","Slope.P",
"Change.Slope","Change.Slope.SE","Change.Slope.P","Deviance","DF"))

if (exists("z1.out")) z1.out <- rbind(z1.out,z.res) else z1.out <- z.res
}

MinDev <- min(z1.out[,"Deviance"])
one <- z1.out[z1.out[,"Deviance"] <= MinDev ,]

one[1] # jp
one[8] # deviance

return(cbind(one[1],one[8]))
}

########## Simulation loop ##########

for(i in 1:n.sim) {
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# Simulate data according to original model
d$y <- rpois(lenxqr,xqr)

# Quadratic model #
z2 <- glm(y ~ x + x2 ,data=d, family=poisson)
xx <- polyroot(z=c(z2$coef[2],2*z2$coef[3]))
rex2 <- Re(xx)

zz2<- summary(z2)
pvalue2 <- zz2$coefficients["x2",c( "Pr(>|z|)")] # p-value of coef. x2
esb2 <- zz2$coefficients["x2",c( "Estimate")] # estimation of x2
ABS2<- abs(esb2) # absolute value

z.res <- residuals(z2,type="pearson")
z.predict <- predict(z2,type="response")
data <- cbind(d, resid = z.res, fit = z.predict)
results <- boot(data=data, statistic=bs2, R=500)

CI2 <- quantile(results$t[,1],c(0.025,0.975))
WCI2 <- CI2[2] - CI2[1]

# out2 - Output from quadratic model for one simulation
out2 <- c(rex2, sd(results$t),CI2[1],CI2[2],

WCI2, Im(xx),z2$deviance, pvalue2, ABS2)

########################################################################
# Cubic model #
z3 <- glm(y~ x + x2 +x3 ,data=d,family=poisson)
zz3<- summary(z3)
pvalue3<- zz3$coefficients["x3",c("Pr(>|z|)")]
esb3 <- zz3$coefficients["x3",c("Estimate")]
ABS3<- abs(esb3)

z.a<- z3$coefficients["x3"]
z.b<- z3$coefficients["x2"]
z.c<- z3$coefficients["x"]
z.d <- z3$coefficients["(Intercept)"]
A<- 3*z.a
B<- 2*z.b
C<- z.c

xx<- polyroot(z=c(C,B,A))
srex3 <- Re(xx)
rex3 <- sort(srex3)

z.res <- residuals(z3,type="pearson")
z.predict <- predict(z3,type="response")
data <- cbind(d, resid = z.res, fit = z.predict)

sresults3 <- boot(data=data, statistic=bs3, R=500)

# to remove tp1=tp2
results3 <- subset (sresults3$t, sresults3$t[,1]!=sresults3$t[,2])

CI13 <- quantile(results3$t[,1],c(0.025, 0.975))
WCI13 <- CI13[2]- CI13[1]
CI23 <- quantile(results3$t[,2],c(0.025, 0.975))
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WCI23 <- CI23[2]- CI23[1]

out3<- c(rex3[1],sd(results3$t[,1]), CI13[1],CI13[2],
WCI13,rex3[2],sd(results3$t[,2]),CI23[1],CI23[2],WCI23,
Im(xx),z3$deviance,pvalue3,ABS3)

########################################################################
#Segmented models

# Fit SR at true turning points
zs1 <- glm(y ~ x + (ifelse(x<=x0,0,x-x0)),data=d, family=poisson)
zzs1<- summary(zs1)

pvalues1s<- zzs1$coefficients[3,4]

zs2 <- glm(y ~ x + (ifelse(x<=x0-3,0,x-x0+3)),data=d, family=poisson)
zzs2<- summary(zs2)
pvalues2s<- zzs2$coefficients[3,4]

zs3 <- glm(y ~ x + (ifelse(x<=x0+3,0,x-x0-3)),data=d, family=poisson)
zzs3<- summary(zs3)
pvalues3s<- zzs3$coefficients[3,4]

outs <- c(zs1$deviance, pvalues1s ,
zs2$deviance, pvalues2s ,
zs3$deviance , pvalues3s)

########################################################################
# Joinpoint model #
z.int.s <- names(segm)[3:lenxqr]
if (exists("z.out")) rm(z.out)
for (z.index in 1:(length(z.int.s))) {
z.i <- z.int.s[z.index]
z.row <- as.numeric(gsub("ts","",z.i))
z.abline <- segm[z.row,"x"]
z <- glm(y ~ x + get(z.i) ,data=d, family=poisson)
z.dev <- z$deviance
z.df <- z$df.residual

z.res <- matrix(c(z.row ,z.dev,z.df),nrow=1)
dimnames(z.res) <- list(z.i ,c("jp1","Deviance","DF"))

if (exists("z.out")) z.out <- rbind(z.out,z.res) else z.out <- z.res
}

MinDev <- min(z.out[,"Deviance"])
one.CP.Dev <- z.out[z.out[,"Deviance"] <= MinDev ,]

jp.dv <- one.CP.Dev[2] # deviance
jp1 <- one.CP.Dev[1] # jp

# Fit model with estimated jps
z12 <- glm( y ~ x + get(z.int.s[one.CP.Dev[1]-1]),
data=d, family=poisson)
jpz1 <- summary(z12)
pvalujp1 <- jpz1$coefficients[3,4]
es.jp1 <- jpz1$coefficients[3,1]
ABS2z1 <- abs(es.jp1)
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z.res <- residuals(z12,type="pearson")
z.predict <- predict(z12,type="response")
data <- cbind(d, resid = z.res, fit = z.predict)

results1 <- boot(data=data, statistic=bsjp, R=500)

cljp1 <- quantile(results1$t[,1],c(0.025, 0.975))
wdcljp1 <- cljp1[2]- cljp1[1]

jpres <- c(jp.dv, jp1, cljp1[1] ,cljp1[2], wdcljp1, pvalujp1, ABS2z1)

########################################################################
result <- c(out2, out3, outs, jpres)
out1[i,] <- result
gc()

}

dimnames(out1)[[2]]<-c("Q.TP","Q.SD","Q.LCL","Q.UCL",
"Q.WDCL","Q.IM","Q.DV","Q.PV","Q.ES.b2",
"C.TP1","C.SD1","C.LCL1","C.UCL1","C.WDCL1",
"C.TP2","C.SD2","C.LCL2","C.UCL2","C.WDCL2",
"C.IM1","C.IM2","C.DV","C.PV", "C.ES.b3",
"zs1$deviance", "pvalues1s",
"zs2$deviance", "pvalues2s",
"zs3$deviance" , "pvalues3s",
"JP.DV","JP1","Lcljp1","Ucljp1","WDjp1",
"pvalujp1", "ABS2z1")

# To remove all t1=t2 in cubic models from simulation samples
OUT1 <- subset(out1, out1[,10]!=out1[,15])
nrow(OUT1)

out1 <- OUT1

# deviances of models
dev2 <- mean(out1[,7])
dev3 <- mean(out1[,22])
devs <- mean(out1[,25])
devs_3 <- mean(out1[,27])
devs3 <- mean(out1[,29])
devj <- mean(out1[,31])

# to save the main results in vector
Res.1.sim <- matrix(NA, nrow=7, ncol=8)
dimnames(Res.1.sim)[[2]]<- c("DV","SG.CH","TP.ES","TP.SD",
"CI.TP", "CI.WD", "NO.TP", "TP.IN")
dimnames(Res.1.sim)[[1]]<- c("Q.TP","C.TP1","C.TP2","SR","SR-3",
"SR+3", "JP")

# first col. includes the deviance (DV)
Res.1.sim[1,1]<- dev2
Res.1.sim[2,1]<- dev3
Res.1.sim[4,1]<- devs
Res.1.sim[5,1]<- devs_3
Res.1.sim[6,1]<- devs3
Res.1.sim[7,1]<- devj

# second col. includes the (SG.CH%) of the change
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Res.1.sim[1,2]<- sum(out1[,8] <= 0.05)/nrow(OUT1)*100
Res.1.sim[2,2]<- sum(out1[,23] <= 0.05)/nrow(OUT1)*100
Res.1.sim[4,2]<- sum(out1[,26] <= 0.05)/nrow(OUT1)*100 #slpoe
Res.1.sim[5,2]<- sum(out1[,28] <= 0.05)/nrow(OUT1)*100
Res.1.sim[6,2]<- sum(out1[,30] <= 0.05)/nrow(OUT1)*100
Res.1.sim[7,2]<- sum(out1[,36] <= 0.05)/nrow(OUT1)*100 #jp.p-value

# 3rd col. includes the mean of (TP.ES)
Res.1.sim[1,3]<- mean(out1[,1])
Res.1.sim[2,3]<- mean(out1[,10])
Res.1.sim[3,3]<- mean(out1[,15])
Res.1.sim[7,3]<- mean(out1[,32])

# 4th col. includes (TP.SD) of estimated change point
Res.1.sim[1,4]<- mean(out1[,2])
Res.1.sim[2,4]<- mean(out1[,11])
Res.1.sim[3,4]<- mean(out1[,16])
Res.1.sim[7,4]<- sd(out1[,32])

# 5th col. includes no. of CI has x0 (CI.TP1%)
Res.1.sim[1,5]<- sum(x0 >= out1[,3]& x0 <= out1[,4])/ nrow(OUT1)*100
Res.1.sim[2,5]<- sum(x0 >= out1[,12]& x0 <= out1[,13])/ nrow(OUT1)*100
Res.1.sim[3,5]<- sum(x0 >= out1[,17]& x0 <= out1[,18])/ nrow(OUT1)*100
Res.1.sim[7,5]<- sum(x0 >= out1[,33]& x0 <= out1[,34])/ nrow(OUT1)*100

# 6th col. - CI.WD- mean width of CI
Res.1.sim[1,6]<- mean (out1[,5])
Res.1.sim[2,6]<- mean (out1[,14])
Res.1.sim[3,6]<- mean (out1[,19])
Res.1.sim[10,6]<- mean (out1[,35])

# 7th col. - no. of times that the coefficient of change =0 (NO.TP%)
Res.1.sim[1,7]<- sum(out1[,9]<= 10^-6)/ nrow(OUT1)*100
Res.1.sim[2,7]<- sum(out1[,24]<= 10^-6)/ nrow(OUT1)*100
Res.1.sim[7,7]<- sum(out1[,37]<= 10^-6)/ nrow(OUT1)*100

# 8th col. - no. of times tp inside the range of data (TP.IN%)
Res.1.sim[1,8]<- sum(out1[,1] <= lenxqr & out1[,1] >= 1)/ nrow(OUT1)*100
Res.1.sim[2,8]<- sum(out1[,10] <= lenxqr & out1[,10] >= 1)/ nrow(OUT1)*100
Res.1.sim[3,8]<- sum(out1[,15] <= lenxqr & out1[,15] >= 1)/ nrow(OUT1)*100
Res.1.sim[7,8]<- sum(out1[,32] <= lenxqr & out1[,32] >= 1)/ nrow(OUT1)*100

Res.1.sim

QS.50.1.5 <- data.frame (cbind(Res.1.sim))
QS.50.3 <- data.frame (cbind(Res.1.sim))
QS.50.5 <- data.frame (cbind(Res.1.sim))

T.QS.50 <- rbind(QS.50.5, QS.50.3, QS.50.1.5)

# To save table into excel file
write.table(T.QS.50 , "T.QS.50.25.csv",

sep=",", row.names=FALSE)

# To convert result of table from R to latex file
xtable(T.QS.50,
caption="Combined model, Data points=50, Change at 25",
label="QS.50.25", digits=1)
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D.2 R code for simulation study of comparing

change points methods in case of two change

points

See Section 6.4 for the results.

library(XLConnect)
library(boot)
library(xtable)

segm <- readWorksheetFromFile("joinpointDATA -uptoSep2014.xlsx",
sheet=5, header=T)
x <- segm$x

ttp1 <- 16
ttp2 <- 33
para <- function(ttp1,ttp2){
bb1=ttp1*ttp2;
bb2=-0.5*(ttp1+ttp2);
bb3=1/3;
values=c(bb1,bb2,bb3);
return(values);
}
m <- para(ttp1,ttp2)
m1<- m/10000
m2<- round(m1,6)
b0 <- 5 # can be 1.5 ,3 , 5
b1<- m2[1]
b2<- m2[2]
b3<- m2[3]
b4 <- -0.005
b5<- 0.01

# Set the original model (e.g. combined)
xq <- b0+ b1*x + b2*x^2 + b3*x^3 +

b4*(ifelse(x<=ttp1,0,x-ttp1)) +
b5*(ifelse(x<=ttp2,0,x-ttp2))

xqr<- exp(xq)
xd <- rpois(length(xq),xqr)
plot(x,log(xd), xlab="Time", ylab="Rate" , lwd=2)
abline(v=ttp1, lwd=2)
abline(v=ttp2, lwd=2)

########################################################################
n.sim <- 200
out1 <- matrix(NA, nrow=n.sim, ncol=46)
d <- data.frame(cbind(segm))
d$x2 <- d$x^2
d$x3 <- d$x^3
lenxqr <- length(xqr)

########## Bootstrap function to
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#construct CI for quadratic model##########
bs2 # as in code of one change point

########## Bootstrap function to
#construct CI for cubic model##########
bs3 # as in code of one change point

########## Bootstrap function to
#construct CI for two joinpoints ##########
bsjp <- function(data, indices) {
data$new <- round(data$fit +

data$resid[indices]*sqrt(data$fit),0)
data$new[data$new<0] <- 0

z.int.s <- names(segm)[3:lenxqr]
if (exists("z1.out")) rm(z1.out)

# for first jp
for (z.index in 1: (length(z.int.s)-1)) {
z.i <- z.int.s[z.index]
z.row <- as.numeric(gsub("ts","",z.i))
z.abline <- segm[z.row,"x"]
rz1 <- glm(new ~ x + get(z.i)

,data=data , family=poisson)
z.dev <- rz1$deviance
z.df <- rz1$df.residual

# for second jp
for (z.index2 in (z.index+1): length(z.int.s)) {
z.j <- z.int.s[z.index2]
z.row2 <- as.numeric(gsub("ts","",z.j))
rz2 <- glm(new ~ x + get(z.i) + get(z.j),

data=data , family=poisson)
z.dev2 <- rz2$deviance
z.df2 <- rz2$df.residual
z2r <- summary(rz2)
z.time <- z2r$coefficients["x",c( "Estimate",

"Std. Error","Pr(>|z|)")]
z.change1 <- z2r$coefficients["get(z.i)",c("Estimate",

"Std. Error","Pr(>|z|)")]
z.change2 <- z2r$coefficients["get(z.j)",c("Estimate",

"Std. Error","Pr(>|z|)")]
z.res <- matrix(c(z.row ,z.row2, z.time, z.change1, z.change2
,z.dev,z.df,z.dev2,z.df2),nrow=1)
dimnames(z.res) <- list(z.i ,c("jp1","jp2", "Slope",

"Slope.SE","Slope.P","Change.Slope",
"Change.Slope.SE","Change.Slope.P",
"Change2.Slope","Change2.Slope.SE",
"Change2.Slope.P","Dev.1","DF.1",
"Deviance","DF"))

if (exists("z1.out")) z1.out <- rbind(z1.out,z.res) else z1.out <- z.res
}
}

MinDev <- min(z1.out[,"Deviance"])
two <- z1.out[z1.out[,"Deviance"] <= MinDev ,]

two[1] # jp1
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two[2] # jp2
two[14] # deviance

return(cbind(two[1],two[2],two[14]))
}

########## Simulation loop ##########
for(i in 1:n.sim) {
d$y <- rpois(lenxqr,xqr)

#Quadratic model#
out2<- # as in code of one change point

########################################################################
#Cubic model#
out3<- # as in code of one change point

########################################################################
#Segmented models#

zs1 <- glm(y ~ x + ts16 + ts33 ,data=d, family=poisson)
zzs1<- summary(zs1)
pvalues1s1<- zzs1$coefficients[3,4]
pvalues1s2<- zzs1$coefficients[4,4]

zs2 <- glm(y ~ x + ts13 + ts30 ,data=d, family=poisson)
zzs2<- summary(zs2)
pvalues2s1<- zzs2$coefficients[3,4]
pvalues2s2<- zzs2$coefficients[4,4]

zs3 <- glm(y ~ x + ts19 + ts36 ,data=d, family=poisson)
zzs3<- summary(zs3)
pvalues3s1<- zzs3$coefficients[3,4]
pvalues3s2<- zzs3$coefficients[4,4]

outs<- c(zs1$deviance, pvalues1s1 , pvalues1s2 ,
zs2$deviance, pvalues2s1 , pvalues2s2 ,
zs3$deviance , pvalues3s1 , pvalues3s2)

########################################################################
#Joinpoint model#
z.int.s <- names(segm)[3:lenxqr]
if (exists("z.out")) rm(z.out)

for (z.index in 1:(length(z.int.s)-1)) {
z.i <- z.int.s[z.index]
z.row <- as.numeric(gsub("ts","",z.i))
z.abline <- segm[z.row,"x"]
z <- glm(y ~ x + get(z.i) ,data=d, family=poisson)
z.dev <- z$deviance
z.df <- z$df.residual

for (z.index2 in (z.index+1): length(z.int.s)) {
z.j <- z.int.s[z.index2]
z.row2 <- as.numeric(gsub("ts","",z.j))
z.2 <- glm(y ~ x + get(z.i) + get(z.j), data=d, family=poisson)
z.dev2 <- z.2$deviance
z.df2 <- z.2$df.residual
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z.res <- matrix(c(z.row ,z.row2,z.dev,z.df,z.dev2,z.df2),nrow=1)

dimnames(z.res) <- list(z.i ,c("jp1","jp2","Dev.1",
"DF.1","Deviance","DF"))

if (exists("z.out")) z.out <- rbind(z.out,z.res) else z.out <- z.res
}
}

MinDev <- min(z.out[,"Deviance"])
Two.CP.Dev <- z.out[z.out[,"Deviance"] <= MinDev ,]

jp.dv <- Two.CP.Dev[5] # deviance
jp1 <- Two.CP.Dev[1] # first jp
jp2 <- Two.CP.Dev[2] # second jp

# Fit model with estimated jps
z12 <- glm( y ~ x + get(z.int.s[Two.CP.Dev[1]-1]) +

get(z.int.s[Two.CP.Dev[2]-1])
,data=d, family=poisson)

zz1<- summary(z12)
pvalue2z1 <- zz1$coefficients[3,4]
pvalue2z2 <- zz1$coefficients[4,4]
esb2z1 <- zz1$coefficients[3,1]
ABS2z1 <- abs(esb2z1)
esb2z2 <- zz1$coefficients[4,1]
ABS2z2 <- abs(esb2z2)

z.res <- residuals(z12,type="pearson")
z.predict <- predict(z12,type="response")
data <- cbind(d, resid = z.res, fit = z.predict)

results1 <- boot(data=data, statistic=bsjp, R=500)

cljp1 <- quantile(results1$t[,1],c(0.025, 0.975))
wdcljp1 <- cljp1[2]- cljp1[1]
cljp2 <- quantile(results1$t[,2],c(0.025, 0.975))
wdcljp2 <- cljp2[2]- cljp2[1]

jpres <- c(jp.dv, jp1, cljp1[1] ,cljp1[2], wdcljp1, pvalue2z1 , ABS2z1,
jp2 , cljp2[1] , cljp2[2], wdcljp2 , pvalue2z2 , ABS2z2 )

########################################################################
result <- c(out2, out3, outs, jpres )
out1[i,] <- result
gc()
}

dimnames(out1)[[2]]<-c("Q.TP","Q.SD","Q.LCL","Q.UCL",
"Q.WDCL","Q.IM","Q.DV","Q.PV","Q.ES.b2",
"C.TP1","C.SD1","C.LCL1","C.UCL1","C.WDCL1",
"C.TP2","C.SD2","C.LCL2","C.UCL2","C.WDCL2",
"C.IM1","C.IM2","C.DV","C.PV", "C.ES.b3",
"zs1.deviance", "pvalues1s1","pvalues1s2",
"zs2_3deviance", "pvalues2s1", "pvalues2s2",
"zs3+3deviance" , "pvalues3s1", "pvalues3s2",
"JP.DV","JP1","Lcljp1","Ucljp1","WDjp1",
"pvalujp1", "ABS2z1","JP2","Lcljp2","Ucljp2",
"WDjp2", "pvalujp2", "ABS2z2")
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# To remove all t1=t2 from cubic results in simulation study
OUT1 <- subset(out1, out1[,10]!=out1[,15])
nrow(OUT1)
out1 < OUT1

# deviances of models
dev2 <- mean(out1[,7])
dev3 <- mean(out1[,22])
devs <- mean(out1[,25])
devs_3 <- mean(out1[,28])
devs3 <- mean(out1[,31])
devj <- mean(out1[,34])

Res.1.sim <- matrix(NA, nrow=11, ncol=11)

dimnames(Res.1.sim)[[2]]<- c("DV","SG.CH","TP.ES","TP.SD","LCL","UCL",
"CI.WD","CI.TP1", "CI.TP2", "NO.TP", "TP.IN")

dimnames(Res.1.sim)[[1]]<- c("Q.TP","C.TP1","C.TP2",
"SR1","SR2","SR1 -3","SR2 -3",
"SR1 +3","SR2 +3", "JP1", "JP2")

# first col. includes the deviance (DV)
Res.1.sim[1,1]<- dev2
Res.1.sim[2,1]<- dev3
Res.1.sim[4,1]<- devs
Res.1.sim[6,1]<- devs_3
Res.1.sim[8,1]<- devs3
Res.1.sim[10,1]<- devj

# second col. includes the (SG.CH%) of the change
Res.1.sim[1,2]<- sum(out1[,8] <= 0.05)/nrow(OUT1)*100
Res.1.sim[2,2]<- sum(out1[,23] <= 0.05)/nrow(OUT1)*100
Res.1.sim[4,2]<- sum(out1[,26] <= 0.05)/nrow(OUT1)*100 #slope
Res.1.sim[5,2]<- sum(out1[,27] <= 0.05)/nrow(OUT1)*100 #slope
Res.1.sim[6,2]<- sum(out1[,29] <= 0.05)/nrow(OUT1)*100
Res.1.sim[7,2]<- sum(out1[,30] <= 0.05)/nrow(OUT1)*100 #slope
Res.1.sim[8,2]<- sum(out1[32] <= 0.05)/nrow(OUT1)*100 #slope
Res.1.sim[9,2]<- sum(out1[,33] <= 0.05)/nrow(OUT1)*100
Res.1.sim[10,2]<- sum(out1[,39] <= 0.05)/nrow(OUT1)*100 #slope
Res.1.sim[11,2]<- sum(out1[,45] <= 0.05)/nrow(OUT1)*100 #slope

# 3rd col. includes the mean of (TP.ES)
Res.1.sim[1,3]<- mean(out1[,1])
Res.1.sim[2,3]<- mean(out1[,10])
Res.1.sim[3,3]<- mean(out1[,15])
Res.1.sim[10,3]<- mean(out1[,35])
Res.1.sim[11,3]<- mean(out1[,41])

# 4th col. includes (TP.SD) of estimated change point
Res.1.sim[1,4]<- mean(out1[,2])
Res.1.sim[2,4]<- mean(out1[,11])
Res.1.sim[3,4]<- mean(out1[,16])
Res.1.sim[10,4]<- sd(out1[,35])
Res.1.sim[11,4]<- sd(out1[,41])

# 5th col. - the mean of lower CL
Res.1.sim[1,5] <- mean(out1[,3])
Res.1.sim[2,5] <- mean(out1[,12])
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Res.1.sim[3,5] <- mean(out1[,17])
Res.1.sim[10,5] <- mean(out1[,36])
Res.1.sim[11,5] <- mean(out1[,42])

# 6th col. - the mean of upper CL
Res.1.sim[1,6] <- mean(out1[,4])
Res.1.sim[2,6] <- mean(out1[,13])
Res.1.sim[3,6] <- mean(out1[,18])
Res.1.sim[10,6] <- mean(out1[,37])
Res.1.sim[11,6] <- mean(out1[,43])

# 7th col. - CI.WD- mean width of CI
Res.1.sim[1,7]<- mean (out1[,5])
Res.1.sim[2,7]<- mean (out1[,14])
Res.1.sim[3,7]<- mean (out1[,19])
Res.1.sim[10,7]<- mean (out1[,38])
Res.1.sim[11,7]<- mean (out1[,44])

# 8th col. includes no. of CI has ttp1 (CI.TP1%)
Res.1.sim[1,8]<- sum(ttp1 >= out1[,3]& ttp1 <= out1[,4])/ nrow(OUT1)*100
Res.1.sim[2,8]<- sum(ttp1 >= out1[,12]& ttp1 <= out1[,13])/ nrow(OUT1)*100
Res.1.sim[10,8]<- sum(ttp1 >= out1[,36]& ttp1 <= out1[,37])/ nrow(OUT1)*100
Res.1.sim[11,8]<- sum(ttp1 >= out1[,42]& ttp1 <= out1[,43])/ nrow(OUT1)*100

# 9th col. includes no. of CI has ttp2 (CI.TP2%)
Res.1.sim[1,9]<- sum(ttp2 >= out1[,3]& ttp2 <= out1[,4])/ nrow(OUT1)*100
Res.1.sim[3,9]<- sum(ttp2 >= out1[,17]& ttp2 <= out1[,18])/ nrow(OUT1)*100
Res.1.sim[10,9]<- sum(ttp2 >= out1[,36]& ttp2 <= out1[,37])/ nrow(OUT1)*100
Res.1.sim[11,9]<- sum(ttp2 >= out1[,42]& ttp2 <= out1[,43])/ nrow(OUT1)*100

# 10th col. - no. of times that the coef of change =0 (NO.TP%)
Res.1.sim[1,10]<- sum(out1[,9]<= 10^-6)/ nrow(OUT1)*100
Res.1.sim[2,10]<- sum(out1[,24]<= 10^-6)/ nrow(OUT1)*100
Res.1.sim[10,10]<- sum(out1[,40]<= 10^-6)/ nrow(OUT1)*100
Res.1.sim[11,10]<- sum(out1[,46]<= 10^-6)/ nrow(OUT1)*100

# 11th co. - no. of times tp inside the range of data (TP.IN%)
Res.1.sim[1,11]<- sum(out1[,1] <= lenxqr & out1[,1] >= 1)/ nrow(OUT1)*100
Res.1.sim[2,11]<- sum(out1[,10] <= lenxqr & out1[,10] >= 1)/ nrow(OUT1)*100
Res.1.sim[3,11]<- sum(out1[,15] <= lenxqr & out1[,15] >= 1)/ nrow(OUT1)*100
Res.1.sim[10,11]<- sum(out1[,35] <= lenxqr & out1[,35] >= 1)/ nrow(OUT1)*100
Res.1.sim[11,11]<- sum(out1[,41] <= lenxqr & out1[,41] >= 1)/ nrow(OUT1)*100

Res.1.sim

CS2.50.1.5 <- data.frame (cbind(Res.1.sim))
CS2.50.3 <- data.frame (cbind(Res.1.sim))
CS2.50.5 <- data.frame (cbind(Res.1.sim))
T.CS2.50 <- rbind(CS2.50.5, CS2.50.3, CS2.50.1.5)

# To save results in Excel.csv file
write.table(T.CS2.50 , "T.CS2.50.16-33.csv",

sep=",", row.names=FALSE)

# To convert R code to latex
xtable(T.CS2.50,
caption="Combined model, Data points=50, Change in 16 and 33",
label="CS2.50.16-33", digits=1)
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D.3 Simulation study with no change points

D.3.1 Original model with no change and the slope β1 = 0.001

Table D.1: Simulation study on linear model with slope β1 = 0.001.
Number of data points n = 50

β0 data S.M data DV SG.CH% TP.ES TP.SD CI.WD NO.TP% TP.IN%
5 Q.TP 47.1 3.5 9.2 468.0 228.0 1.5 73.0

C.TP1 46.0 7.0 <1 154.4 112.7 14.5 90.5
C.TP2 >50 336.5 109.1 82.5
JP 44.7 25.5 25.7 18.9 46.0 0.0 100.0

3 Q.TP 47.0 2.5 36.8 947.2 182.7 0.5 83.5
C.TP1 45.8 8.5 7.5 151.2 104.5 4.0 87.5
C.TP2 >50 185.1 134.0 81.0
JP 44.7 26.0 26.7 18.7 45.7 0.0 100.0

1.5 Q.TP 49.8 4.5 21.7 902.7 157.3 0.0 85.0
C.TP1 48.9 2.5 8.8 402.1 103.1 0.5 89.5
C.TP2 >50 112.6 126.0 88.5
JP 47.5 23.0 26.0 18.2 45.5 0.0 100.0

Number of data points n = 35
β0 S.M DV SG.CH% TP.ES TP.SD CI.WD NO.TP% TP.IN%
5 Q.TP 31.7 6.0 24.2 375.3 120.5 0.5 77.5

C.TP1 30.6 3.5 4.2 93.4 78.2 6.0 83.5
C.TP2 32.2 545.3 76.7 96.0
JP 29.8 24.5 17.5 12.0 31.1 0.0 100.0

3 Q.TP 31.4 3.5 20.7 684.3 110.3 0.0 84.0
C.TP1 30.5 4.0 <1 57.3 79.5 3.0 85.5
C.TP2 30.1 339.4 74.1 93.0
JP 29.5 22.5 18.6 12.1 31.3 0.0 100.0

1.5 Q.TP 34.2 6.0 18.9 651.6 107.9 0.0 84.0
C.TP1 33.2 6.0 6.6 649.1 80.7 0.0 85.5
C.TP2 >35 51.7 73.0 94.5
JP 31.9 24.0 18.9 12.6 30.3 0.0 100.0

Number of data points n = 20
β0 S.M DV SG.CH% TP.ES TP.SD CI.WD NO.TP% TP.IN%
5 Q.TP 17.0 2.5 14.8 204.8 69.0 0.0 86.0

C.TP1 16.1 5.0 2.4 40.3 45.7 0.0 86.5
C.TP2 18.0 34.9 45.8 98.0
JP 15.4 21.5 10.9 6.5 16.5 0.0 100.0

3 Q.TP 17.7 4.5 19.8 >1000 70.2 0.0 76.5
C.TP1 16.6 6.0 <1 53.5 43.4 0.0 82.0
C.TP2 17.3 77.5 49.8 97.5
JP 16.0 19.0 11.0 6.7 16.5 0.0 100.0

1.5 Q.TP 18.1 3.0 5.6 241.9 74.4 0.0 76.5
C.TP1 17.0 6.0 4.1 36.5 44.5 0.0 90.0
C.TP2 16.7 72.3 46.8 99.0
JP 16.3 22.0 11.1 6.5 16.4 0.0 100.0

See Table 6.1 for the definition of β1, β0, S.M, Q.TP, C.TP, JP, DV, SG.CH%, TP.ES, CI.WD, NO.TP%, TP.IN%.

376



D.3.2 Original model with no change and the slope β1 = 0.008

Table D.2: Simulation study on linear model with slope β1 = 0.008.
Number of data point n = 50

β0 data S.M data DV SG.CH% TP.ES TP.SD CI.WD NO.TP% TP.IN%
5 Q.TP 46.0 4.0 >50 >1000 >1000 0.5 0.0

C.TP1 44.9 5.5 3.7 134.1 139.4 17.5 53.0
C.TP2 47.1 147.5 149.5 52.0
JP 43.8 20.5 24.9 18.8 45.5 0.0 100.0

3 Q.TP 48.3 5.5 >50 >1000 596.6 0.5 31.5
C.TP1 47.2 5.5 <1 127.7 163.0 4.5 73.0
C.TP2 >50 100.8 119.5 74.5
JP 46.0 23.5 25.5 18.2 45.7 0.0 100.0

1.5 Q.TP 50.0 6.0 >50 770.2 284.6 0.5 65.0
C.TP1 48.8 5.5 11.3 283.6 151.4 2.5 87.0
C.TP2 39.9 133.1 135.6 83.0
JP 47.4 25.5 28.9 18.2 45.4 0.0 100.0

Number of data point n = 35
β0 S.M DV SG.CH% TP.ES TP.SD CI.WD NO.TP% TP.IN%
5 Q.TP 32.5 6.0 >35 >1000 638.7 1.0 11.5

C.TP1 31.5 6.0 <1 227.1 87.0 6.0 77.5
C.TP2 28.9 137.1 94.7 93.5
JP 30.6 28.0 18.3 12.2 31.4 0.0 100.0

3 Q.TP 32.9 4.0 28.2 >1000 239.1 0.0 57.5
C.TP1 31.7 7.0 8.9 72.1 78.8 1.5 84.0
C.TP2 30.3 86.7 84.2 91.0
JP 30.9 28.0 17.8 11.9 31.1 0.0 100.0

1.5 Q.TP 32.8 3.0 37.4 564.9 145.1 0.0 77.5
C.TP1 31.8 3.5 <1 178.5 76.4 2.0 88.5
C.TP2 >35 185.7 78.1 94.5
JP 30.9 19.5 19.3 12.2 31.1 0.0 100.0

Number of data point n = 20
β0 S.M DV SG.CH% TP.ES TP.SD CI.WD NO.TP% TP.IN%
5 Q.TP 17.3 6.5 <1 514.8 158.5 0.5 49.5

C.TP1 16.4 3.0 2.9 194.1 53.8 1.5 82.0
C.TP2 14.4 197.0 50.8 99.0
JP 15.7 18.5 10.7 6.4 16.4 0.0 100.0

3 Q.TP 17.2 7.5 <1 214.6 77.7 0.0 72.5
C.TP1 16.1 6.0 5.4 >1000 48.8 0.0 90.0
C.TP2 >20 88.2 49.7 96.5
JP 15.4 17.0 10.6 6.5 16.0 0.0 100.0

1.5 Q.TP 17.8 6.0 15.2 342.0 71.7 0.0 77.5
C.TP1 16.7 5.5 3.1 66.9 45.8 0.5 87.5
C.TP2 >20 57.9 44.6 97.5
JP 16.0 16.5 10.3 6.6 16.0 0.0 100.0

See Table 6.1 for the definition of β1, β0, S.M, Q.TP, C.TP, JP, DV, SG.CH%, TP.ES, CI.WD, NO.TP%, TP.IN%.
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D.4 Simulation study with one change point

D.4.1 Change occurs in the middle of dataset

Number of data points=35 and change in middle at 18

Table D.3: Number of data points=35 and the true turning point in the middle
at 18.

β0 = 5
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 32.7 100.0 18.2 0.3 86.0 1.1 0.0 100.0
ratic C.TP1 31.7 4.0 <1 >1000 70.0 964.9 4.0 55.0

C.TP2 >35 >1000 39.0 >1000 45.0
SR 48.3 100.0
SR-3 52.8 100.0
SR+3 55.2 100.0
JP 46.8 100.0 18.0 1.7 74.0 3.0 0.0 100.0

Segm- Q.TP 34.0 100.0 13.9 10.4 1.0 5.0 0.0 100.0
ented C.TP1 32.9 8.0 <1 574.9 0.0 406.2 6.0 57.0
with C.TP2 >35 864.3 98.0 412.0 64.0
one SR 31.1 100.0
change SR-3 31.5 100.0
point SR+3 32.6 100.0

JP 30.8 100.0 17.4 3.0 96.0 9.4 0.0 100.0
Comb- Q.TP 36.5 100.0 15.3 0.3 0.0 1.0 0.0 100.0
ined C.TP1 35.5 5.0 <1 >1000 0.0 >1000 3.0 43.0

C.TP2 >35 >1000 95.0 >1000 57.0
SR 46.2 100.0
SR-3 53.1 100.0
SR+3 69.0 100.0
JP 45.1 100.0 17.6 0.9 87.0 2.0 0.0 100.0

β0 = 3
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 32.0 100.0 18.3 0.8 92.5 3.1 0.0 100.0
ratic C.TP1 31.0 7.5 <1 298.8 65.0 331.2 0.5 53.0

C.TP2 >35 729.3 53.0 362.0 66.0
SR 33.9 100.0
SR-3 34.5 100.0
SR+3 34.7 100.0
JP 32.1 100.0 18.1 4.4 67.5 8.2 0.0 100.0

Segm- Q.TP 33.2 66.0 14.0 209.0 46.5 62.2 0.0 89.5
ented C.TP1 32.2 4.0 <1 466.6 9.0 185.7 1.5 71.0
with C.TP2 >35 188.8 94.0 182.9 83.0
one SR 31.7 69.5
change SR-3 31.9 64.0
point SR+3 31.9 49.0

JP 31.1 85.5 17.8 7.5 96.5 24.5 0.0 100.0
Comb- Q.TP 34.3 100.0 15.7 2.5 38.5 8.7 0.0 97.0
ined C.TP1 32.5 13.0 <1 832.7 0.0 498.0 1.0 50.0

C.TP2 >35 638.3 98.0 513.1 54.0
SR 35.0 98.0

Continued on next page
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Table D.3 – Continued from previous page
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%

SR-3 38.9 66.5
SR+3 34.4 100.0
JP 32.9 100.0 17.4 3.9 62.0 8.1 0.0 100.0

β0 = 1.5
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 34.9 87.5 19.7 20.9 96.0 14.0 0.0 99.5
ratic C.TP1 33.9 5.0 <1 176.9 64.0 204.4 0.5 61.0

C.TP2 >35 458.2 52.0 222.1 82.0
SR 34.7 86.5
SR-3 34.8 78.0
SR+3 35.3 74.5
JP 32.9 89.5 17.6 7.7 85.5 18.8 0.0 100.0

Segm- Q.TP 35.1 23.0 16.9 310.7 91.0 98.6 0.0 87.0
ented C.TP1 34.0 4.0 3.8 326.0 46.0 112.8 1.0 83.0
with C.TP2 >35 110.9 86.0 124.3 86.0
one SR 33.9 25.5
change SR-3 34.0 20.5
point SR+3 34.0 18.5

JP 33.0 33.0 19.2 10.3 96.5 29.4 0.0 100.0
Comb- Q.TP 36.0 96.5 15.1 10.4 45.0 9.6 0.0 100.0
ined C.TP1 35.1 3.5 <1 292.1 7.0 243.8 0.0 55.0

C.TP2 >35 216.9 91.0 196.5 82.0
SR 35.2 96.5
SR-3 35.4 90.5
SR+3 36.1 84.0
JP 34.1 96.0 17.5 5.3 91.5 17.0 0.0 100.0

See Table 6.2 for the definition of O.M, SR, CI.TP%. See Table 6.1 for the definition of β1, β0, S.M, Q.TP, C.TP, JP, DV,

SG.CH%, TP.ES, TP.SD, CI.WD, NO.TP%, TP.IN%.

Number of data points=20 and change in middle at 10

Table D.4: Number of data points=20 and the true turning point in the middle
at 10.

β0 = 5
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 17.3 100.0 10.1 0.4 93.0 1.6 0.0 100.0
ratic C.TP1 16.3 4.0 <1 269.7 64.0 314.9 1.5 50.0

C.TP2 >20 401.1 48.0 235.4 77.0
SR 18.7 100.0
SR-3 21.5 99.5
SR+3 21.5 99.0
JP 17.5 100.0 10.5 2.2 78.0 4.2 0.0 100.0

Segm- Q.TP 17.1 75.0 4.0 37.5 52.0 26.5 0.0 96.5
ented C.TP1 15.9 6.5 <1 181.0 13.0 106.6 0.0 79.0
with C.TP2 >20 280.4 97.0 139.5 85.0
one SR 15.7 76.0
change SR-3 16.1 44.5
point SR+3 16.4 40.0

Continued on next page
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Table D.4 – Continued from previous page
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%

JP 15.0 84.5 10.6 3.0 93.0 11.7 0.0 100.0
Comb- Q.TP 18.1 100.0 8.1 0.4 0.0 1.5 0.0 100.0
ined C.TP1 17.1 4.0 <1 563.2 0.0 367.6 0.5 48.0

C.TP2 >20 >1000 96.0 665.1 3.0
SR 17.7 100.0
SR-3 22.8 100.0
SR+3 26.3 100.0
JP 17.2 100.0 10.1 1.2 86.5 2.8 0.0 100

β0 = 3
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 17.1 98.0 10.0 2.1 93.5 3.5 0.0 100.0
ratic C.TP1 16.2 3.5 <1 219.1 58.0 167.3 0.5 53.0

C.TP2 >20 298.7 50.0 138.5 89.0
SR 17.6 98.0
SR-3 18.5 84.0
SR+3 18.4 85.0
JP 16.0 99.5 10.5 3.3 77.0 7.4 0.0 100.0

Segm- Q.TP 17.4 34.0 4.5 234.8 81.0 73.0 0.0 81.5
ented C.TP1 16.4 6.0 <1 106.0 34.0 72.6 0.0 77.0
with C.TP2 >20 106.7 87.0 78.9 90.0
one SR 16.4 35.0
change SR-3 16.6 20.5
point SR+3 16.5 18.0

JP 15.5 55.5 10.3 5.4 93.5 14.5 0.0 100.0
Comb- Q.TP 17.8 89.0 7.9 18.3 40.0 10.5 0.0 99.5
ined C.TP1 16.7 6.0 <1 133.3 4.0 122.0 0.5 63.05

C.TP2 >20 139.7 88.0 119.3 88.0
SR 17.2 90.0
SR-3 17.9 70.0
SR+3 18.2 50.5
JP 15.9 94.5 10.1 3.6 86.0 9.5 0.0 100.0

β0 = 1.5
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 18.2 54.0 10.1 28.0 92.0 18.5 0.0 99.5
ratic C.TP1 17.3 3.0 <1 113.7 67.0 76.7 0.0 73.0

C.TP2 >20 234.0 49.0 104.4 95.0
SR 17.5 54.0
SR-3 17.6 33.0
SR+3 18.1 25.5
JP 16.2 64.5 10.7 4.9 89.5 19.0 0.0 100.0

Segm- Q.TP 18.2 13.0 7.1 298.9 90.0 62.0 0.0 82.0
ented C.TP1 17.1 7.0 2.9 63.4 60.0 57.0 0.0 88.0
with C.TP2 >20 146.6 75.0 54.3 95.0
one SR 17.0 12.0
change SR-3 17.2 10.0
point SR+3 17.2 7.5

JP 16.3 25.5 10.8 5.7 97.0 15.6 0.0 100.0
Comb- Q.TP 18.3 33.0 8.0 231.4 91.0 44.5 0.0 88.5
ined C.TP1 17.1 5.0 <1 100.6 35.0 75.5 0.0 79.0

C.TP2 17.9 63.1 90.0 69.8 96.0
SR 17.3 30.5
SR-3 17.5 15.5
SR+3 17.7 17.0

Continued on next page
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Table D.4 – Continued from previous page
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%

JP 16.3 41.5 10.3 5.5 89.5 14.0 0.0 100.0

See Table 6.2 for the definition of O.M, SR, CI.TP%. See Table 6.1 for the definition of β1, β0, S.M, Q.TP, C.TP, JP, DV,

SG.CH%, TP.ES, TP.SD, CI.WD, NO.TP%, TP.IN%.

D.4.2 Change occurs in the beginning of dataset

Number of data points=35 and change in beginning at 9

Table D.5: Number of data points=35 and the true turning point in the begin-
ning at 9.

β0 = 5
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 32.6 100.0 9.1 0.6 90.0 2.3 0.0 100.0
ratic C.TP1 31.4 4.0 <1 >1000 84.0 960.3 2.0 46.0

C.TP2 >35 >1000 81.0 >1000 54.0
SR 73.5 100.0
SR-3 106.2 100.0
SR+3 54.1 100.0
JP 44.0 100.0 16.8 2.0 1.0 3.6 0.0 100.0

Segm- Q.TP 33.2 46.0 <1 >1000 94.0 355.4 1.0 45.0
ented C.TP1 30.8 21.0 4.9 260.1 91.0 77.9 0.0 87.0
with C.TP2 >35 596.5 59.0 124.3 79.0
one SR 30.6 45.0
change SR-3 30.9 17.0
point SR+3 31.0 54.0

JP 30.1 83.0 11.8 8.2 98.0 25.6 0.0 100.0
Comb- Q.TP 33.7 100.0 7.5 0.6 28.0 2.5 0.0 100.0
ined C.TP1 31.8 18.0 <1 >1000 13.0 808.6 0.0 81.0

C.TP2 >35 >1000 77.0 852.3 19.0
SR 63.9 100.0
SR-3 93.9 100.0
SR+3 50.4 100.0
JP 46.6 100.0 14.9 1.9 0.0 3.3 0.0 100.0

β0 = 3
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 32.1 100.0 8.7 3.5 93.5 8.2 0.0 99.5
ratic C.TP1 31.1 5.0 <1 570.1 98.0 392.7 1.0 59.0

C.TP2 >35 506.0 86.0 410.8 60.0
SR 37.3 86.0
SR-3 41.0 36.5
SR+3 34.6 99.0
JP 31.6 100.0 17.0 5.1 33.5 10.3 0.0 100.0

Segm- Q.TP 34.4 26.0 19.2 >1000 100.0 406.6 0.0 47.0
ented C.TP1 32.8 12.5 <1 63.2 97.0 84.7 0.5 86.0
with C.TP2 33.8 80.6 69.0 108.5 91.0
one SR 32.5 23.0
change SR-3 32.8 9.5

Continued on next page
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Table D.5 – Continued from previous page
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
point SR+3 32.9 27.0

JP 31.8 58.5 14.9 10.7 96.5 28.7 0.0 100.0
Comb- Q.TP 32.6 100.0 7.4 2.2 81.5 7.8 0.0 99.5
ined C.TP1 31.5 4.0 <1 582.3 84.0 367.9 1.0 70.0

C.TP2 >35 >1000 88.0 497.9 49.0
SR 35.8 97.5
SR-3 40.0 51.0
SR+3 34.0 100.0
JP 31.9 100.0 14.9 4.2 40.0 9.2 0.0 100.0

β0 = 1.5
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 34.5 70.5 8.1 252.7 96.5 69.1 0.0 93.0
ratic C.TP1 33.5 5.0 <1 222.3 100.0 168.1 1.0 64.0

C.TP2 >35 262.0 66.0 230.3 80.0
SR 35.0 32.0
SR-3 35.9 10.5
SR+3 34.2 55.0
JP 32.3 75.5 17.4 8.4 76.5 22.5 0.0 100.0

Segm- Q.TP 36.7 8.5 <1 691.8 99.0 219.5 0.5 54.0
ented C.TP1 35.3 11.0 3.8 60.0 99.0 91.6 0.5 90.0
with C.TP2 >35 90.4 41.0 90.0 93.0
one SR 35.4 12.0
change SR-3 35.3 8.0
point SR+3 35.5 11.0

JP 34.2 26.0 18.0 12.5 95.5 29.9 0.0 100.0
Comb- Q.TP 34.8 73.5 5.9 307.9 96.5 83.6 0.0 88.0
ined C.TP1 33.7 5.0 <1 341.8 99.0 175.2 1.0 78.0

C.TP2 >35 192.7 78.0 200.1 79.0
SR 34.9 32.0
SR-3 35.9 11.5
SR+3 34.6 58.5
JP 32.6 78.5 16.8 8.6 73.0 21.8 0.0 100.0

See Table 6.2 for the definition of O.M, SR, CI.TP%. See Table 6.1 for the definition of β1, β0, S.M, Q.TP, C.TP, JP, DV,

SG.CH%, TP.ES, TP.SD, CI.WD, NO.TP%, TP.IN%.
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Number of data points=20 and change in beginning at 5

Table D.6: Number of data points=20 and the true turning point in the begin-
ning at 5.

β0 = 5
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 17.0 100.0 4.9 1.0 89.5 3.9 0.0 100.0
ratic C.TP1 16.0 7.0 <1 514.7 99.0 233.3 0.0 56.0

C.TP2 >20 333.1 80.0 220.5 80.0
SR 23.6 91.0
SR-3 37.7 8.0
SR+3 18.9 100.0
JP 16.6 100.0 9.9 2.2 16.0 4.4 0.0 100.0

Segm- Q.TP 17.5 6.5 2.5 711.2 99.5 193.9 0.0 43.5
ented C.TP1 16.3 9.5 3.2 52.9 98.0 54.1 0.5 85.0
with C.TP2 >20 88.1 48.0 64.6 93.0
one SR 16.1 11.0
change SR-3 16.3 6.0
point SR+3 16.2 10.0

JP 15.5 35.0 8.6 6.1 97.5 16.1 0.0 100.0
Comb- Q.TP 18.9 100.0 4.3 1.4 30.0 5.1 0.0 82.0
ined C.TP1 16.4 23.0 <1 188.0 14.0 164.5 0.0 85.0

C.TP2 >20 164.5 70.0 214.8 73.0
SR 20.4 100.0
SR-3 35.5 18.5
SR+3 19.9 100.0
JP 17.9 100.0 8.5 1.9 44.0 3.7 0.0 100.0

β0 = 3
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 17.9 93.5 4.5 25.3 93.0 13.9 0.0 96.0
ratic C.TP1 16.8 8.0 <1 204.9 100.0 180.7 0.0 60.0

C.TP2 >20 172.5 75.0 186.6 85.5
SR 19.2 43.0
SR-3 23.7 4.5
SR+3 17.5 89.5
JP 16.1 98.0 9.7 3.5 53.5 8.7 0.0 100.0

Segm- Q.TP 17.0 9.5 <1 576.2 96.5 128.9 0.0 60.0
ented C.TP1 15.9 9.0 <1 83.2 99.0 43.8 0.0 85.0
with C.TP2 16.1 59.9 26.0 54.0 97.0
one SR 16.1 8.5
change SR-3 16.0 4.0
point SR+3 16.2 10.0

JP 15.5 25.0 10.1 6.3 96.5 15.9 0.0 100.0
Comb- Q.TP 18.8 68.5 5.8 191.0 90.5 73.9 0.0 68.5
ined C.TP1 17.3 12.0 <1 197.9 94.0 85.5 0.0 76.0

C.TP2 >20 106.8 87.0 126.2 81.0
SR 18.0 43.5
SR-3 20.0 5.5
SR+3 18.2 67.0
JP 16.5 83.5 8.7 4.9 77.5 11.8 0.0 100.0

β0 = 1.5
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 19.2 37.0 5.3 191.5 94.0 72.0 0.0 80.5

Continued on next page
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Table D.6 – Continued from previous page
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
ratic C.TP1 18.1 6.5 2.1 92.6 98.0 61.2 0.0 83.5

C.TP2 >20 48.5 52.0 68.9 95.0
SR 18.7 16.0
SR-3 19.4 2.0
SR+3 18.4 38.0
JP 17.0 44.5 10.0 5.4 87.0 13.4 0.0 100.0

Segm- Q.TP 17.7 4.5 14.2 433.7 93.0 81.1 0.0 76.0
ented C.TP1 16.7 6.5 1.3 364.7 98.5 48.5 0.0 80.0
with C.TP2 >20 >1000 10.0 60.1 93.5
one SR 16.6 4.0
change SR-3 16.7 0.5
point SR+3 16.7 7.5

JP 16.0 15.0 10.3 6.5 97.5 16.3 0.0 100.0
Comb- Q.TP 19.4 20.5 8.4 467.0 97.0 117.9 0.0 62.0
ined C.TP1 18.4 5.5 1.1 69.5 99.0 53.9 0.0 83.0

C.TP2 >20 368.8 54.0 65.5 93.5
SR 18.2 14.0
SR-3 18.8 0.5
SR+3 18.6 19.5
JP 17.3 30.5 10.1 9.0 89.0 22.0 0.0 100.0

See Table 6.2 for the definition of O.M, SR, CI.TP%. See Table 6.1 for the definition of β1, β0, S.M, Q.TP, C.TP, JP, DV,

SG.CH%, TP.ES, TP.SD, CI.WD, NO.TP%, TP.IN%.
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D.4.3 Change occurs at the end of dataset
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Figure D.1: Original model (red line) and simulated data (black circles) from
quadratic, segmented and combined models with one true turning
point in the end (black vertical line). Plots in the first row associated
with β0 = 5, the second row with β0 = 3 and the third row with
β0 = 1.5.
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Number of data points=50 and change in end at 38

Table D.7: Number of data points=50 and the true turning point in the end at
38.

β0 = 5
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 47.0 100.0 38.2 0.4 90.0 1.5 0.0 100.0
ratic C.TP1 46.0 3.0 <1 >1000 89.0 >1000 9.0 55.0

C.TP2 >50 >1000 69.0 >1000 45.0
SR 178.6 100.0
SR-3 128.3 100.0
SR+3 258.0 100.0
JP 92.6 100.0 29.9 1.4 0.0 2.3 0.0 100.0

Segm- Q.TP 50.7 90.5 20.0 154.0 8.0 28.2 0.0 100.0
ented C.TP1 45.9 50.0 <1 106.6 4.0 127.2 4.5 70.0
with C.TP2 48.9 184.2 52.0 90.3 97.0
one SR 45.3 79.0
change SR-3 45.3 96.0
point SR+3 46.1 37.0

JP 45.0 98.0 36.5 5.5 95.0 23.0 0.0 100.0
Comb- Q.TP 55.4 100.0 35.8 0.3 0.0 1.2 0.0 100.0
ined C.TP1 49.5 11.5 <1 >1000 0.0 >1000 1.0 20.0

C.TP2 >50 >1000 76.0 >1000 80.0
SR 177.4 100.0
SR-3 131.3 100.0
SR+3 278.1 100.0
JP 112.8 100.0 32.0 1.4 0.0 2.1 0.0 100.0

β0 = 3
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 48.4 100.0 38.5 1.6 94.0 6.2 0.0 100.0
ratic C.TP1 47.4 5.5 <1 911.2 86.0 785.4 3.5 49.5

C.TP2 >50 >1000 90.0 773.0 54.5
SR 60.0 99.5
SR-3 55.5 100.0
SR+3 66.6 81.0
JP 49.8 100.0 28.8 4.4 12.5 8.6 0.0 100.0

Segm- Q.TP 51.0 35.5 28.3 488.8 79.5 98.4 0.0 95.5
ented C.TP1 49.0 14.5 <1 212.8 7.0 146.0 3.5 74.5
with C.TP2 45.2 167.1 90.5 99.1 94.0
one SR 48.9 26.0
change SR-3 48.9 48.0
point SR+3 49.1 14.0

JP 48.2 72.5 34.7 11.6 99.0 41.6 0.0 100.0
Comb- Q.TP 48.2 100.0 36.8 0.9 74.0 3.6 0.0 100.0
ined C.TP1 47.0 7.0 3.6 91.1 8.0 114.7 1.5 83.0

C.TP2 41.3 266.9 100.0 124.1 89.0
SR 64.6 100.0
SR-3 58.5 100.0
SR+3 76.9 99.0
JP 53.5 100.0 31.0 3.8 13.5 5.5 0.0 100.0

β0 = 1.5
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 48.3 98.0 38.6 42.7 96.0 24.8 0.0 98.0

Continued on next page
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Table D.7 – Continued from previous page
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
ratic C.TP1 47.3 3.0 <1 459.3 81.5 804.8 1.0 87.5

C.TP2 >50 278.1 99.5 382.7 61.5
SR 51.4 59.0
SR-3 50.0 87.5
SR+3 54.1 34.5
JP 46.7 95.0 28.0 8.3 53.5 19.0 0.0 100.0

Segm- Q.TP 52.4 14.5 26.3 811.2 86.0 130.8 0.0 88.0
ented C.TP1 50.9 10.5 <1 151.3 3.0 139.5 1.0 75.5
with C.TP2 >50 304.5 96.5 117.7 87.5
one SR 50.8 12.0
change SR-3 50.8 17.5
point SR+3 51.1 7.0

JP 49.6 40.5 27.7 17.2 96.5 43.2 0.0 100.0
Comb- Q.TP 47.2 100.0 37.6 6.7 91.0 11.0 0.0 100.0
ined C.TP1 46.3 3.0 <1 >1000 66.0 487.3 0.5 46.5

C.TP2 >50 914.4 94.5 425.2 63.0
SR 50.7 82.5
SR-3 49.3 95.5
SR+3 53.0 48.0
JP 46.5 96.0 29.5 6.8 47.5 16.4 0.0 100.0

See Table 6.2 for the definition of O.M, SR, CI.TP%. See Table 6.1 for the definition of β1, β0, S.M, Q.TP, C.TP, JP, DV,

SG.CH%, TP.ES, TP.SD, CI.WD, NO.TP%, TP.IN%.

Number of data points=35 and change in end at 26

Table D.8: Number of data points=35 and the true turning point in the end at
26.

β0 = 5
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 32.5 100.0 26.2 0.5 91.0 2.1 0.0 100.0
ratic C.TP1 31.5 3.5 <1 >1000 89.5 >1000 3.0 54.0

C.TP2 >35 >1000 72.0 >1000 46.0
SR 74.5 100.0
SR-3 54.7 100.0
SR+3 110.1 99.5
JP 44.5 100.0 19.6 2.0 2.0 3.4 0.0 100.0

Segm- Q.TP 33.2 60.5 20.7 99.0 66.0 41.7 0.0 99.5
ented C.TP1 31.0 19.5 <1 170.6 3.5 115.3 2.0 78.5
with C.TP2 >35 94.2 89.5 102.6 91.5
one SR 30.5 43.0
change SR-3 30.6 68.0
point SR+3 31.2 9.0

JP 30.1 82.5 24.3 7.1 97.0 24.4 0.0 100.0
Comb- Q.TP 32.6 100.0 24.8 0.4 2.0 1.6 0.0 100.0
ined C.TP1 30.7 14.0 <1 >1000 6.5 843.9 2.5 18.0

C.TP2 >35 >1000 88.5 877.7 82.0
SR 74.6 100.0
SR-3 54.2 100.0
SR+3 118.1 99.5

Continued on next page
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Table D.8 – Continued from previous page
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%

JP 47.8 100.0 20.8 1.7 2.0 2.8 0.0 100.0
β0 = 3

O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 33.7 100.0 26.3 8.0 95.0 6.8 0.0 100.0
ratic C.TP1 32.5 7.0 <1 363.4 97.5 334.1 0.5 51.0

C.TP2 >35 337.5 97.0 334.1 78.5
SR 38.9 81.5
SR-3 36.2 99.5
SR+3 44.1 35.5
JP 32.7 99.5 18.8 4.4 32.5 9.5 0.0 100.0

Segm- Q.TP 33.2 35.5 19.2 118.7 71.0 55.4 0.0 95.5
ented C.TP1 31.2 19.0 3.1 123.0 2.5 93.1 2.0 77.0
with C.TP2 >35 248.9 96.0 98.3 92.0
one SR 31.3 23.5
change SR-3 31.6 37.5
point SR+3 31.7 8.0

JP 30.5 57.5 22.3 9.2 95.5 27.5 0.0 100.0
Comb- Q.TP 32.8 100.0 24.7 1.4 75.5 4.8 0.0 100.0
ined C.TP1 31.6 7.0 <1 373.6 43.5 348.4 3.5 40.0

C.TP2 >35 849.6 95.5 401.9 72.0
SR 37.8 95.5
SR-3 35.3 99.5
SR+3 43.9 44.5
JP 32.5 100.0 20.4 4.4 39.5 7.8 0.0 100.0

β0 = 1.5
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 35.0 71.0 29.6 955.2 96.0 69.7 0.0 91.5
ratic C.TP1 33.9 5.5 <1 124.3 75.5 154.1 0.5 69.0

C.TP2 >35 458.0 96.0 157.2 91.5
SR 35.4 32.5
SR-3 34.7 58.5
SR+3 36.4 11.5
JP 32.9 80.5 18.9 8.2 78.0 22.2 0.0 100.0

Segm- Q.TP 34.7 10.0 23.7 898.9 91.5 96.4 0.0 87.0
ented C.TP1 33.5 8.0 5.1 90.9 2.0 85.0 0.0 81.5
with C.TP2 >35 87.7 98.0 82.1 92.5
one SR 33.5 10.0
change SR-3 33.5 12.5
point SR+3 33.4 8.0

JP 32.2 30.0 19.4 11.7 96.5 30.0 0.0 100.0
Comb- Q.TP 34.7 81.5 26.7 96.6 93.5 52.8 0.0 94.0
ined C.TP1 33.8 4.0 <1 554.2 63.5 199.1 0.5 54.0

C.TP2 34.1 145.4 97.0 184.4 88.0
SR 35.2 35.0
SR-3 34.8 63.5
SR+3 36.4 12.0
JP 33.0 78.0 19.0 7.5 81.0 22.3 0.0 100.0

See Table 6.2 for the definition of O.M, SR, CI.TP%. See Table 6.1 for the definition of β1, β0, S.M, Q.TP, C.TP, JP, DV,

SG.CH%, TP.ES, TP.SD, CI.WD, NO.TP%, TP.IN%.
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Number of data points=20 and change in end at 15

Table D.9: Number of data points=20 and the true turning point in the end at
15.

β0 = 5
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 16.5 100.0 15.2 0.8 92.0 3.2 0.0 100.0
ratic C.TP1 15.4 6.5 <1 585.8 80.0 230.7 0.0 55.5

C.TP2 >20 355.3 89.0 237.7 78.5
SR 24.7 91.5
SR-3 18.8 100.0
SR+3 38.6 10.5
JP 16.7 100.0 10.9 2.3 27.0 4.2 0.0 100.0

Segm- Q.TP 16.7 13.5 >20 297.8 87.5 54.3 0.5 88.0
ented C.TP1 15.4 8.5 <1 70.7 10.0 52.1 1.0 79.5
with C.TP2 15.6 36.9 97.5 49.2 100.0
one SR 15.5 12.5
change SR-3 15.4 17.0
point SR+3 15.9 3.5

JP 14.8 40.0 11.2 6.0 95.5 15.5 0.0 100.0
Comb- Q.TP 19.0 100.0 12.8 0.4 3.5 1.6 0.0 100.0
ined C.TP1 16.3 28.0 <1 275.7 0.0 186.3 0.0 9.0

C.TP2 >20 239.0 61.5 152.4 94.5
SR 22.8 100.0
SR-3 20.5 100.0
SR+3 49.1 15.0
JP 19.2 100.0 12.9 1.6 49.0 3.1 0.0 100.0

β0 = 3
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 16.4 96.0 15.6 62.0 96.0 11.4 0.0 97.5
ratic C.TP1 15.5 3.0 <1 210.5 65.0 177.1 0.0 48.5

C.TP2 >20 171.5 95.0 122.8 95.5
SR 18.3 43.5
SR-3 16.3 92.5
SR+3 23.5 5.5
JP 15.1 99.0 10.9 3.3 58.0 7.9 0.0 100.0

Segm- Q.TP 17.2 7.0 7.9 >1000 93.5 53.4 0.0 87.5
ented C.TP1 16.2 5.5 <1 122.5 5.5 53.4 0.0 78.5
with C.TP2 15.1 68.3 95.0 50.1 99.5
one SR 15.9 5.5
change SR-3 16.1 7.5
point SR+3 16.2 5.5

JP 15.4 32.0 11.3 6.2 96.0 16.0 0.0 100.0
Comb- Q.TP 18.4 83.0 13.2 46.2 69.5 15.6 0.0 99.5
ined C.TP1 17.0 10.0 <1 235.3 21.0 138.9 0.0 47.0

C.TP2 >20 181.1 96.0 116.6 92.0
SR 18.2 40.0
SR-3 17.7 79.5
SR+3 21.8 4.5
JP 16.2 92.5 11.4 4.2 81.0 10.3 0.0 100.0

β0 = 1.5
O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
Quad- Q.TP 17.9 44.0 14.2 273.4 96.5 56.0 0.0 86.5
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O.M S.M DV SG.CH% TP.ES TP.SD CI.TP% CI.WD NO.TP% TP.IN%
ratic C.TP1 17.1 3.5 2.1 271.2 52.0 77.1 0.0 74.0

C.TP2 >20 107.2 98.5 86.9 96.5
SR 17.7 15.0
SR-3 17.3 37.5
SR+3 19.0 0.0
JP 16.1 47.5 10.6 5.1 83.0 13.4 0.0 100.0

Segm- Q.TP 18.4 3.5 17.1 213.7 94.5 60.8 0.0 86.5
ented C.TP1 17.4 5.0 4.7 58.9 6.0 49.3 0.0 93.0
with C.TP2 >20 64.7 98.0 48.9 97.0
one SR 17.4 3.5
change SR-3 17.3 2.5
point SR+3 17.3 1.0

JP 16.6 21.5 10.7 6.4 98.0 16.5 0.0 100.0
Comb- Q.TP 18.1 25.5 15.6 186.2 84.5 48.1 0.0 86.5
ined C.TP1 17.1 4.5 <1 191.3 17.5 71.0 0.0 64.5

C.TP2 >20 >1000 95.0 61.1 98.5
SR 17.4 10.0
SR-3 17.4 22.0
SR+3 18.1 1.0
JP 16.2 38.0 11.8 5.6 88.5 14.5 0.0 100.0

See Table 6.2 for the definition of O.M, SR, CI.TP%. See Table 6.1 for the definition of β1, β0, S.M, Q.TP, C.TP, JP, DV,

SG.CH%, TP.ES, TP.SD, CI.WD, NO.TP%, TP.IN%.

D.5 Simulation study with two change points

D.5.1 Two change points occur about in the middle of data

Number of data points=35 and change at 11 and 24

Table D.10: Number of data points=35 and the true turning points at 11 and 24.
Original model is cubic model

β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
5 Q.TP 35.9 8.5 14.7 508.5 -53.1 86.2 139.3 99.0 94.0 0.0 79.5

C.TP1 31.0 58.0 11.4 111.1 -9.2 17.1 26.3 94.5 0.5 100.0
C.TP2 24.9 49.3 18.4 45.6 27.2 94.0 97.5
SR1 29.4 28.0
SR2 35.5
SR1 -3 29.7 18.5
SR2 -3 32.0
SR1 +3 29.6 0.0
SR2 +3 22.5
JP1 26.9 79.0 12.8 8.3 2.9 26.6 23.7 96.5 0.0 100.0
JP2 83.5 22.3 8.5 10.2 32.9 22.7 94.0 0.0 100.0
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β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
3 Q.TP 32.1 6.5 >35 >1000 -41.9 75.7 117.6 96.5 95.5 0.5 84.5

C.TP1 30.5 13.0 11.6 359.9 -44.9 19.5 64.4 99.5 1.5 98.5
C.TP2 >35 >1000 16.4 83.7 67.3 96.0 86.0
SR1 28.6 6.5
SR2 7.0
SR1 -3 28.7 6.0
SR2 -3 6.5
SR1 +3 28.9 0.5
SR2 +3 5.0
JP1 26.5 60.5 14.1 10.2 2.3 29.3 27.0 97.5 0.0 100.0
JP2 63.5 19.8 10.3 6.2 33.6 27.4 98.0 0.0 100.0

1.5 Q.TP 33.3 5.0 20.9 428.4 -37.6 77.1 114.6 96.0 95.0 0.0 82.5
C.TP1 32.0 5.5 11.4 166.6 -53.4 19.9 73.3 98.0 0.5 98.0
C.TP2 >35 239.0 15.5 87.8 72.3 100.0 86.0
SR1 30.3 8.0
SR2 6.0
SR1 -3 30.2 5.5
SR2 -3 6.0
SR1 +3 30.1 0.0
SR2 +3 6.5
JP1 27.6 55.0 15.5 10.3 2.4 29.1 26.7 97.0 0.0 100.0
JP2 54.0 20.7 10.6 6.6 33.6 27.0 98.0 0.0 100.0

Original model is segmented regression model

β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
5 Q.TP 33.2 8.0 2.4 291.9 -47.1 81.1 128.2 96.0 92.5 2.5 79.0

C.TP1 31.2 14.0 11.0 221 -36.6 19.3 55.9 97.5 0.5 99.0
C.TP2 28.8 295.7 15.4 74.7 59.3 98.0 93.0
SR1 28.8 11.5
SR2 17.0
SR1 -3 29.0 9.0
SR2 -3 20.0
SR1 +3 29.0 0.0
SR2 +3 7.5
JP1 26.4 76.0 15.4 9.9 2.9 28.2 25.3 96.5 0.0 100.0
JP2 75.5 20.9 9.6 7.7 33.2 25.5 97.0 0.0 100.0

3 Q.TP 33.0 8.5 14.4 272.5 -37.8 73.5 111.3 95.0 91.0 0.0 88.5
C.TP1 31.7 7.0 11.0 >1000 -51.2 20.3 71.5 99.0 0.0 99.0
C.TP2 29.0 200.0 15.7 87.2 71.5 98.0 89.0
SR1 29.4 8.0
SR2 9.5
SR1 -3 29.9 5.0
SR2 -3 12.0
SR1 +3 29.5 0.0
SR2 +3 10.5
JP1 27.3 60.0 18.0 10.0 2.5 29.6 27.1 99.0 0.0 100.0
JP2 61.5 23.0 9.8 7.3 33.5 26.2 97.5 0.0 100.0

1.5 Q.TP 33.4 6.5 <1 >1000 -44.4 78.1 122.4 94.5 96.5 0.5 81.5
C.TP1 32.3 5.0 11.0 420.0 -52.4 20.2 72.6 99.5 0.0 96.5
C.TP2 29.6 >1000 15.7 89.2 73.5 97.0 84.0
SR1 30.3 6.0
SR2 6.5
SR1 -3 30.5 4.0
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β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%

SR2 -3 5.0
SR1 +3 30.2 0.0
SR2 +3 8.0
JP1 27.8 55.0 14.7 10.6 2.5 29.6 27.1 97.5 0.0 100.0
JP2 53.0 20.1 11.1 6.5 33.7 27.1 96.5 0.0 100.0

Original model is combined model

β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
5 Q.TP 41.5 18.0 18.8 >1000 -28.8 64.1 92.9 94.0 89.0 0.0 87.0

C.TP1 30.3 85.5 8.9 86.0 -1.2 12.3 13.5 67.0 0.0 100.0
C.TP2 24.8 17.4 21.2 30.2 9.0 89.5 99.5
SR1 29.7 52.0
SR2 75.5
SR1 -3 30.6 38.5
SR2 -3 74.5
SR1 +3 30.5 0.0
SR2 +3 46.0
JP1 27.7 87.5 13.5 8.4 4.0 24.9 20.9 96.5 0.0 100.0
JP2 91.5 24.7 5.8 14.6 31.7 17.1 94.5 0.0 100.0

3 Q.TP 33.5 6.5 16.0 302.8 -39.0 75.1 114.1 96.0 95.0 0.0 80.5
C.TP1 31.4 21.0 10.4 157.7 -31.0 17.6 48.6 93.5 0.5 99.0
C.TP2 >35 127.8 18.0 66.1 48.1 94.5 90.5
SR1 29.2 12.0
SR2 15.5
SR1 -3 29.4 8.5
SR2 -3 16.0
SR1 +3 29.7 0.0
SR2 +3 7.5
JP1 27.0 62.5 14.4 9.7 2.6 28.8 26.3 99.5 0.0 100.0
JP2 67.0 20.9 9.6 7.6 33.4 25.8 97.5 0.0 100.0

1.5 Q.TP 32.9 4.0 4.4 383.9 -46.2 80.2 126.4 95.5 96.0 0.0 80.0
C.TP1 32.9 13.5 10.9 >1000 -45.9 19.4 65.3 98.5 0.5 99.5
C.TP2 >35 152.6 16.5 80.3 63.8 96.5 87.5
SR1 29.6 6.0
SR2 7.5
SR1 -3 29.6 4.0
SR2 -3 4.0
SR1 +3 29.8 0.5
SR2 +3 8.0
JP1 27.2 56.0 16.4 10.1 2.5 29.3 26.8 97.5 0.0 100.0
JP2 57.0 21.2 9.9 6.9 33.5 26.6 98.0 0.0 100.0

See Table 6.4 for the definition of β0, S.M, Q.TP, C.TP, SR, JP, DV, SG%, ETP, SD, LCL, UCL, WD, CI1%, CI2%, NO%,

IN%.
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Number of data points=20 and changes at 7 and 13

Table D.11: Number of data points=20 and the true turning points at 7 and 13.
Original model is cubic model

β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
5 Q.TP 17.4 6.0 <1 >1000 -22.3 43.6 65.9 95.5 97.5 1.0 84.5

C.TP1 16.5 6.5 6.4 154.0 -24.7 11.4 36.1 95.5 0.5 96.5
C.TP2 >20 270.0 9.3 45.6 36.3 94.0 87.5
SR1 14.4 5.5
SR2 5.0
SR1 -3 14.4 4.5
SR2 -3 5.0
SR1 +3 14.4 0.5
SR2 +3 4.0
JP1 12.7 49.5 8.7 5.1 2.2 15.6 13.3 96.0 0.0 100.0
JP2 53.0 12.0 5.2 5.4 18.5 13.1 95.0 0.0 100.0

3 Q.TP 17.1 3.5 >20 180.3 -22.4 45.0 67.4 93.0 95.0 0.0 81.0
C.TP1 15.9 4.5 6.3 173.5 -28.1 11.5 39.6 99.0 0.0 96.0
C.TP2 17.7 104.5 9.4 48.5 39.1 95.5 85.5
SR1 14.1 8.5
SR2 5.0
SR1 -3 13.9 3.5
SR2 -3 5.0
SR1 +3 14.1 0.5
SR2 +3 6.0
JP1 12.0 48.5 9.2 5.5 2.3 15.3 13.1 97.0 0.0 100.0
JP2 51.0 12.7 5.4 5.7 18.6 12.9 94.0 0.0 100.0

1.5 Q.TP 17.9 5.0 9.7 178.2 -22.0 42.4 64.4 94.5 96.5 0.0 83.5
C.TP1 16.9 8.0 6.4 70.9 -24.2 11.2 35.4 97.5 0.0 96.0
C.TP2 >20 87.9 10.0 47.5 37.5 90.5 85.0
SR1 14.8 2.5
SR2 4.5
SR1 -3 14.9 5.5
SR2 -3 5.0
SR1 +3 14.9 0.0
SR2 +3 4.5
JP1 13.3 39.5 9.0 4.8 2.2 15.8 13.5 96.5 0.0 100.0
JP2 41.0 12.4 4.9 5.2 18.8 13.6 97.0 0.0 100.0

Original model is segmented regression model

β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
5 Q.TP 17.3 6.0 9.4 998.9 -25.5 48.9 74.5 96.0 95.5 0.0 79.5

C.TP1 16.2 6.5 6.6 120.7 -25.7 11.5 37.2 99.5 0.5 99.0
C.TP2 19.9 97.4 9.3 50.3 41.0 92.0 82.5
SR1 14.0 5.0
SR2 7.5
SR1 -3 14.0 7.5
SR2 -3 9.5
SR1 +3 14.3 0.0
SR2 +3 3.5
JP1 12.4 49.0 8.5 5.2 2.4 15.3 13.0 95.5 0.0 100.0
JP2 49.5 11.9 5.2 5.5 18.6 13.0 94.0 0.0 100.0
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β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
3 Q.TP 17.7 2.0 9.6 418.4 -20.8 42.4 63.2 95.0 98.5 0.0 86.0

C.TP1 16.8 6.0 6.6 125.5 -28.1 11.6 39.7 98.5 0.0 96.0
C.TP2 17.9 134.7 9.5 49.4 39.9 97.0 85.5
SR1 14.8 5.0
SR2 5.5
SR1 -3 14.7 5.5
SR2 -3 3.5
SR1 +3 14.6 0.0
SR2 +3 6.0
JP1 12.9 50.5 9.1 5.1 2.3 15.4 13.2 96.5 0.0 100.0
JP2 52.0 11.9 5.4 5.2 18.6 13.3 96.5 0.0 100.0

1.5 Q.TP 18.3 3.0 7.5 137.9 -21.1 42.7 63.8 95.5 98.5 0.0 82.5
C.TP1 17.3 8.5 6.7 >1000 -26.0 11.6 37.6 96.5 0.0 97.0
C.TP2 17.7 119.0 9.6 48.5 38.9 90.5 86.5
SR1 15.1 6.5
SR2 6.0
SR1 -3 15.1 6.0
SR2 -3 5.0
SR1 +3 15.2 0.0
SR2 +3 5.0
JP1 13.2 45.0 8.8 5.1 2.4 15.3 12.9 95.0 0.0 100.0
JP2 44.0 11.8 5.1 5.5 18.5 12.9 93.5 0.0 100.0

Original model is combined model

β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
5 Q.TP 16.8 6.5 13.9 321.1 -20.1 40.7 60.8 94.5 93.0 0.0 85.5

C.TP1 15.7 13.0 6.1 147.0 -29.0 10.9 39.9 91.0 0.0 96.5
C.TP2 17.0 799.0 9.6 46.7 37.1 92.0 84.0
SR1 13.7 2.5
SR2 10.0
SR1 -3 13.6 4.0
SR2 -3 7.5
SR1 +3 13.6 0.5
SR2 +3 7.5
JP1 12.1 48.5 9.5 5.0 2.4 15.6 13.2 96.0 0.0 100.0
JP2 52.0 12.7 4.8 6.0 18.7 12.7 95.5 0.0 100.0

3 Q.TP 18.0 8.5 10.5 369.4 -22.2 44.0 66.2 95.0 96.0 0.0 79.5
C.TP1 16.8 9.0 6.9 108.0 -26.2 11.7 37.9 99.0 0.0 95.0
C.TP2 19.2 85.7 9.2 47.6 38.4 96.0 84.5
SR1 14.8 5.0
SR2 10.5
SR1 -3 14.9 5.0
SR2 -3 4.0
SR1 +3 14.9 0.0
SR2 +3 6.5
JP1 12.8 54.5 9.1 5.5 2.3 15.1 12.8 95.0 0.0 100.0
JP2 55.0 12.2 5.4 5.5 18.6 13.1 95.5 0.0 100.0

1.5 Q.TP 17.4 5.5 19.2 386.4 -21.5 43.1 64.6 97.5 95.5 0.0 82.0
C.TP1 16.5 5.5 6.5 202.0 -28.7 11.5 40.2 98.0 0.0 97.0
C.TP2 >20 271.5 9.4 48.7 39.3 96.0 86.0
SR1 14.5 5.0
SR2 4.0
SR1 -3 14.3 4.0
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β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%

SR2 -3 6.5
SR1 +3 14.6 0.0
SR2 +3 3.5
JP1 12.9 38.0 8.4 5.4 2.2 15.8 13.6 96.5 0.0 100.0
JP2 39.0 12.1 5.3 5.1 18.8 13.7 96.0 0.0 100.0

See Table 6.4 for the definition of β0, S.M, Q.TP, C.TP, SR, JP, DV, SG%, ETP, SD, LCL, UCL, WD, CI1%, CI2%, NO%,

IN%.

D.5.2 Two change points occur close to the beginning and

end of data

Number of data points=35 and change at 7 and 27

Table D.12: Number of data points=35 and the true turning points at 7 and 27.
Original model is cubic model

β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
5 Q.TP 35.4 7.5 >35 >1000 -120.0 164.9 284.9 92.0 98.0 1.5 50.5

C.TP1 30.9 56.5 7.0 48.8 -15.4 14.6 30.0 96.0 1.0 99.0
C.TP2 28.6 143.0 21.4 46.0 24.6 98.0 97.0
SR1 29.0 18.0
SR2 25.0
SR1 -3 29.5 9.0
SR2 -3 34.5
SR1 +3 29.2 0.0
SR2 +3 13.5
JP1 26.8 77.5 14.4 9.0 3.0 27.1 24.1 95.5 0.0 100.0
JP2 77.0 22.7 8.4 9.6 32.9 23.3 95.5 0.0 100.0

3 Q.TP 32.5 4.0 12.2 497.8 -56.0 96.8 152.8 95.0 96.0 0.5 75.5
C.TP1 31.0 9.5 9.4 127.0 -49.1 19.2 68.3 96.0 1.0 98.0
C.TP2 34.0 191.0 15.9 83.8 67.9 99.5 82.5
SR1 29.0 5.5
SR2 8.0
SR1 -3 29.4 4.5
SR2 -3 10.5
SR1 +3 29.1 0.0
SR2 +3 5.5
JP1 26.9 63.0 15.4 10.2 2.5 29.3 26.9 97.5 0.0 100.0
JP2 61.5 21.0 10.3 6.9 33.6 26.7 97.5 0.0 100.0

1.5 Q.TP 33.9 4.0 13.4 >1000 -43.3 78.8 122.2 95.5 95.5 0.0 83.0
C.TP1 32.9 6.5 10.6 181.7 -54.3 19.8 74.1 96.5 2.0 97.0
C.TP2 >35 265.7 15.5 89.5 74.0 96.5 82.5
SR1 31.0 3.5
SR2 5.5
SR1 -3 31.2 2.0
SR2 -3 5.0
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β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%

SR1 +3 30.5 0.0
SR2 +3 5.5
JP1 28.2 55.0 16.1 10.6 2.4 29.7 27.3 98.0 0.0 100.0
JP2 58.5 19.6 10.6 6.8 33.5 26.7 97.5 0.0 100.0

Original model is segmented regression model

β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
5 Q.TP 32.0 15.5 16.3 483.8 -57.6 87.0 144.6 90.0 81.5 0.5 74.5

C.TP1 30.4 16.0 11.0 370.2 -48.5 19.3 67.8 96.5 3.0 98.5
C.TP2 >35 157.1 13.6 78.2 64.6 92.0 86.0
SR1 28.6 5.0
SR2 14.5
SR1 -3 28.9 2.0
SR2 -3 20.0
SR1 +3 28.5 0.0
SR2 +3 7.5
JP1 26.1 61.5 16.8 10.2 2.6 29.2 26.5 97.5 0.0 100.0
JP2 63.0 21.9 9.4 8.1 33.5 25.4 97.0 0.0 100.0

3 Q.TP 32.5 5.0 8.7 664.6 -43.6 76.4 120.0 94.0 95.0 1.0 83.5
C.TP1 31.4 6.5 11.1 165.0 -54.7 20.2 74.9 96.5 2.5 97.0
C.TP2 >35 198.7 15.4 91.5 76.1 98.5 82.5
SR1 29.4 6.0
SR2 5.0
SR1 -3 29.2 8.5
SR2 -3 6.5
SR1 +3 29.5 0.0
SR2 +3 5.0
JP1 26.7 61.5 14.6 10.6 2.5 29.1 26.6 97.0 0.0 100.0
JP2 61.0 19.5 10.6 6.5 33.3 26.8 97.0 0.0 100.0

1.5 Q.TP 33.3 6.0 16.6 439.3 -43.1 80.2 123.3 90.5 94.0 0.0 81.5
C.TP1 32.3 6.0 11.1 170.0 -49.2 20.0 69.2 96.0 0.5 98.5
C.TP2 >35 272.8 16.3 85.7 69.4 99.5 86.0
SR1 30.4 3.0
SR2 5.0
SR1 -3 30.3 1.5
SR2 -3 7.5
SR1 +3 30.4 0.0
SR2 +3 3.0
JP1 27.8 54.5 15.2 10.8 2.5 29.8 27.3 97.0 0.0 100.0
JP2 52.5 20.1 11.1 6.5 33.6 27.1 97.0 0.0 100.0

Original model is combined model

β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
5 Q.TP 39.2 17.0 27.3 >1000 -193.7 242.1 435.8 85.0 99.0 1.0 36.5

C.TP1 31.5 81.0 5.9 37.3 -8.4 10.6 19.0 93.5 0.0 98.5
C.TP2 27.9 12.6 24.8 35.9 11.1 87.0 99.0
SR1 29.6 22.5
SR2 55.0
SR1 -3 29.9 8.0
SR2 -3 70.5
SR1 +3 30.0 0.5
SR2 +3 19.5
JP1 27.2 83.0 14.0 9.3 3.8 26.1 22.4 88.5 0.0 100.0

Continued on next page

396



Table D.12 – Continued from previous page
β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%

JP2 91.5 24.6 7.0 13.8 32.2 18.4 93.5 0.0 100.0
3 Q.TP 32.4 7.0 <1 >1000 -73.8 116.6 190.4 91.5 96.0 0.0 67.5

C.TP1 30.5 16.0 9.6 195.6 -43.2 19.8 63.0 96.0 2.0 95.5
C.TP2 >35 320.7 16.4 75.9 59.5 96.5 90.0
SR1 28.4 11.0
SR2 13.5
SR1 -3 28.2 7.5
SR2 -3 18.5
SR1 +3 28.8 0.5
SR2 +3 3.5
JP1 26.0 67.0 15.7 10.6 2.6 29.0 26.4 96.5 0.0 100.0
JP2 62.5 22.4 10.1 7.8 33.4 25.6 98.5 0.0 100.0

1.5 Q.TP 33.5 5.0 24.5 >1000 -51.2 85.1 136.3 95.0 94.0 0.0 75.5
C.TP1 32.3 7.5 10.0 112.3 -48.4 19.8 68.2 98.0 0.5 98.5
C.TP2 30.0 297.6 15.6 83.6 68.0 100.0 88.0
SR1 30.0 3.0
SR2 6.5
SR1 -3 30.5 2.0
SR2 -3 5.5
SR1 +3 30.0 0.0
SR2 +3 5.5
JP1 27.8 51.5 16.4 10.2 2.4 29.5 27.1 98.5 0.0 100.0
JP2 51.5 21.8 9.7 7.1 33.6 26.5 96.0 0.0 100.0

See Table 6.4 for the definition of β0, S.M, Q.TP, C.TP, SR, JP, DV, SG%, ETP, SD, LCL, UCL, WD, CI1%, CI2%, NO%,

IN%.

Number of data points=20 and change at 5 and 15

Table D.13: Number of data points=20 and the true turning points at 5 and 15.
Original model is cubic model

β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
5 Q.TP 16.7 4.5 7.6 >1000 -24.4 44.0 68.4 94.5 94.5 0.0 83.5

C.TP1 15.7 4.5 6.0 >1000 -27.4 11.4 38.8 99.0 0.5 97.0
C.TP2 >20 146.9 9.4 47.8 38.4 100.0 86.5
SR1 13.5 7.5
SR2 6.0
SR1 -3 13.4 5.0
SR2 -3 3.5
SR1 +3 13.7 0.0
SR2 +3 4.5
JP1 11.8 44.5 8.7 5.2 2.4 15.1 12.8 92.5 0.0 100.0
JP2 49.5 12.2 5.4 5.7 18.4 12.7 93.5 0.0 100.0

3 Q.TP 17.0 4.0 5.9 283.5 -22.6 43.8 66.4 93.0 94.0 0.0 83.0
C.TP1 16.1 5.5 6.0 100.5 -31.6 11.5 43.1 97.5 0.5 96.0
C.TP2 >20 165.3 9.1 49.3 40.2 98.5 86.5
SR1 14.1 1.5
SR2 4.0
SR1 -3 14.2 5.0

Continued on next page
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Table D.13 – Continued from previous page
β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%

SR2 -3 4.0
SR1 +3 13.7 0.0
SR2 +3 7.0
JP1 12.3 43.5 8.6 5.1 2.3 15.8 13.5 97.5 0.0 100.0
JP2 48.5 12.0 5.4 5.5 18.7 13.2 96.0 0.0 100.0

1.5 Q.TP 18.0 5.0 >20 142.8 -22.5 43.3 65.8 91.5 95.0 0.0 85.5
C.TP1 17.1 5.5 6.4 61.4 -24.8 11.4 36.2 97.0 0.0 96.5
C.TP2 19.5 190.6 9.4 47.0 37.6 99.0 89.0
SR1 15.2 3.5
SR2 3.5
SR1 -3 15.0 1.0
SR2 -3 3.0
SR1 +3 14.8 0.0
SR2 +3 2.5
JP1 13.4 40.0 9.4 5.1 2.2 15.8 13.6 97.5 0.0 100.0
JP2 38.0 12.8 4.9 5.1 18.8 13.7 98.0 0.0 100.0

Original model is segmented regression model

β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
5 Q.TP 17.7 7.0 13.3 574.0 -24.8 44.9 69.7 91.0 89.5 0.0 78.5

C.TP1 16.4 7.0 6.9 144.0 -27.0 11.6 38.6 99.0 1.0 96.5
C.TP2 >20 79.0 9.0 48.6 39.6 99.0 85.5
SR1 14.2 8.0
SR2 8.0
SR1 -3 14.3 4.0
SR2 -3 8.5
SR1 +3 14.6 0.0
SR2 +3 4.5
JP1 12.7 54.5 8.9 5.1 2.4 15.4 13.0 96.5 0.0 100.0
JP2 53.5 12.2 5.2 5.7 18.7 12.9 95.5 0.0 100.0

3 Q.TP 17.5 5.5 8.8 330.0 -22.9 43.9 66.8 95.5 93.0 0.0 81.5
C.TP1 16.5 5.5 6.2 467.0 -28.6 11.5 40.1 97.5 0.0 96.0
C.TP2 >20 135.8 9.3 47.8 38.5 99.0 85.5
SR1 14.3 5.5
SR2 5.5
SR1 -3 14.6 3.0
SR2 -3 6.0
SR1 +3 14.6 0.0
SR2 +3 1.5
JP1 12.6 54.0 9.6 5.6 2.4 15.4 13.0 94.5 0.0 100.0
JP2 51.0 12.7 5.2 5.5 18.6 13.1 95.5 0.0 100.0

1.5 Q.TP 18.3 3.0 8.7 185.9 -20.9 42.7 63.5 91.5 96.5 0.0 83.0
C.TP1 17.3 5.5 6.4 140.9 -27.2 11.3 38.5 97.0 0.0 96.5
C.TP2 18.2 95.1 9.5 49.3 39.8 99.0 82.0
SR1 15.2 4.0
SR2 4.0
SR1 -3 14.8 2.5
SR2 -3 4.5
SR1 +3 15.3 0.0
SR2 +3 0.0
JP1 13.2 46.0 8.8 5.1 2.4 15.3 12.9 93.0 0.0 100.0
JP2 44.5 11.9 5.1 5.6 18.5 12.9 94.5 0.0 100.0

Original model is combined model
Continued on next page
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β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%

β0 S.M DV SG% ETP SD LCL UCL WD CI1% CI2% NO% IN%
5 Q.TP 17.7 5.0 <1 566.4 -45.8 68.2 114.0 89.5 99.0 0.0 63.5

C.TP1 16.1 8.0 5.7 281.0 -26.6 11.4 38.0 99.0 0.5 94.5
C.TP2 >20 432.6 9.2 47.1 37.9 95.5 85.0
SR1 14.2 7.0
SR2 8.5
SR1 -3 14.2 5.5
SR2 -3 9.5
SR1 +3 14.0 0.0
SR2 +3 3.5
JP1 12.3 54.5 8.5 5.0 2.3 15.0 12.7 98.0 0.0 100.0
JP2 56.0 11.7 5.0 6.0 18.5 12.5 97.0 0.0 100.0

3 Q.TP 17.1 5.5 12.4 311.2 -30.6 50.7 81.3 95.0 94.0 0.0 76.5
C.TP1 15.9 5.5 6.5 123.5 -29.8 11.7 41.5 99.0 0.5 95.0
C.TP2 >20 78.7 8.9 52.1 43.2 99.0 82.0
SR1 14.2 7.0
SR2 7.0
SR1 -3 13.7 9.0
SR2 -3 5.5
SR1 +3 14.2 0.0
SR2 +3 5.0
JP1 12.1 49.5 8.4 5.1 2.5 15.2 12.7 93.0 0.0 100.0
JP2 50.0 11.6 5.4 5.8 18.6 12.8 93.5 0.0 100.0

1.5 Q.TP 17.6 5.5 4.4 506.8 -23.4 43.5 66.9 94.5 94.0 0.0 84.0
C.TP1 16.6 5.5 5.9 130.8 -31.8 11.2 43.0 99.0 0.0 95.0
C.TP2 19.1 87.3 9.1 51.7 42.6 98.0 80.0
SR1 14.5 4.5
SR2 3.0
SR1 -3 14.5 1.0
SR2 -3 6.5
SR1 +3 14.6 0.0
SR2 +3 0.5
JP1 13.0 39.5 8.4 5.3 2.2 15.7 13.5 98.5 0.0 100.0
JP2 38.0 11.9 5.3 5.0 18.8 13.8 98.0 0.0 100.0

See Table 6.4 for the definition of β0, S.M, Q.TP, C.TP, SR, JP, DV, SG%, ETP, SD, LCL, UCL, WD, CI1%, CI2%, NO%,

IN%.
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Appendix E

Spline GAM Regression - Chapter

7

E.1 R code for estimating change points from

GAM model and their confidence intervals

See Section 7.2 for the algorithm.

library(XLConnect)
library(mgcv) # To fit a generalized additive model (GAM) to data
library(boot)

d1 <- readWorksheetFromFile("JoinpointDATA -uptoMarch2016.xlsx",
sheet=1, header=T)
d1$Qu <- factor(d1$Qu)

#To fit gam model for MRSA
z1 <- gam(no.MRSA1 ~ offset(log(aobd))+ s(time, bs="cr", k=7)+Qu ,
family=poisson, data=d1)
summary(z1)

########## Estimate change points ##########
# Predicted values from spline function
z.pred <- predict(z1, type="terms", terms="s(time)")

dy <- diff(z.pred) # first derivative
d2y <- diff(diff(z.pred)) # second derivative

l.tp <- which(diff(sign(dy))!=0) # locations of first derivative
Time.tp <- (l.tp/4) + 2003 # time associated with first derivative
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# To give a set includes all maximum points
otp <- which(sign(d2y) == -1)
if(l.tp[1] %in% otp) 1 else NA
if(l.tp[2] %in% otp) 1 else NA
if(l.tp[3] %in% otp) 1 else NA

########## Construct confidence intervals ##########
z.res <- residuals(z1,type="pearson")
z.predict <- predict(z1,type="response")# predicted counts
data <- cbind(d1, resid = z.res, fit = z.predict)
ch <- round(length(no.MRSA1)*10/100,0) # length of 10% of data
ltp <- length(Time.tp) # length of number of change points

n.boots <- 10000
out1 <- matrix(NA, nrow=n.sim, ncol=8)

for(i in 1:n.boots) {
data$n.res <- sample (z.res, rep=T)
data$new.n <- round(data$fit + data$n.res*sqrt(data$fit),0)

rz2 <- gam(new.n ~ offset(log(aobd))+ s(time, bs="cr", k=7)+ Qu ,
family=poisson , data=data)
zb.pred <- predict(rz2, type="terms", terms="s(time)")
dyb <- diff(zb.pred)
d2yb <- diff(diff(zb.pred))

# Location when first derivative change sign,
#(location of all possible change points)

l.tpb <- which(diff(sign(dyb))!=0)
le <- length(l.tpb)
if(le < ltp) next
if (le > ch) next

# The values of s(time) ((zb.pred)) at change points.
st.pred <- zb.pred[l.tpb+1]

# The maximum value from s(time) at change points
max1 <- which.max(st.pred)

# Give the location of the maximum from the set of all possible change points
fmax <- l.tpb[max1]

# Calculate the time of the largest value
t.max <- ((fmax )/4) + 2003
Time.tpb <- (l.tpb/4) + 2003

otpb <- which(sign(d2yb) == -1)

mx1 <- if(l.tpb[1] %in% otpb) Time.tpb[1] else NA
mx2 <- if(l.tpb[2] %in% otpb) Time.tpb[2] else NA
mx3 <- if(l.tpb[3] %in% otpb) Time.tpb[3] else NA
mx4 <- if(l.tpb[4] %in% otpb) Time.tpb[4] else NA
mx5 <- if(l.tpb[5] %in% otpb) Time.tpb[5] else NA
mx6 <- if(l.tpb[6] %in% otpb) Time.tpb[6] else NA

result <- c(le, t.max, mx1, mx2, mx3, mx4, mx5, mx6 )
out1[i,] <- result
gc()
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}

dimnames(out1)[[2]]<- c("no.TP", "max","mx1","mx2",
"mx3","mx4","mx5","mx6")

out11 <- data.frame(out1)

# To remove samples have NA,
#(i.e. length of le> ch or length of le< ltp)
OUT1.1 <- subset(out11, no.TP!="NA")
nrow(OUT1.1)

# Quantile bootstrap CI
CIL <- quantile(OUT1.1$max,c(0.025,0.975))

########## Plot fitted model,
# estimated change points and CIs ##########
plot(d1$time, z.pred, col="black", type="l",
xlab="time", ylab="s(time)", lwd=2)
abline(v=Time.tp, col=2, lty=1, lwd=2)
abline(v=CIL[1], col=2, lty=2, lwd=2)
abline(v=CIL[2], col=2, lty=2, lwd=2)
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