D-PorCCA, a new tool to study
the acoustic life of harbour
porpoises

Melania Cosentino
Department of Electronic and Electrical Engineering

University of Strathclyde

A thesis submitted for the degree of

Doctor of Philosophy

2020



In dedication to my younger self



Acknowledgements

I would like to express my sincere gratitude to my supervisor James Windmill for
his support and encouragement to pursue a project I was happy with, and to extend
my gratitude to Joe Jackson.

I would also like to thank my colleagues in the Centre for Ultrasonic Engineering,
especially Francesco Guarato and Jose Guerreiro who were always patient and will-
ing to help.

This project would not have been possible without the financial support of the Engi-
neering and Physical Sciences Research Council and the European Research Council
under the European Union’s Seventh Framework Programme. I would like to thank
David Nairn and the Clyde Porpoise Project, Joanna Sarnocinska, G. Patterson, P.
Nichols, W. and M. Rudd, and the Namibian Dolphin Project for providing data
for this project.

I would also like to thank Dr. Jakob Tougaard (Aarhus University, Denmark) and
Dr. Mariano Coscarella (Centro Nacional Patagonico, Argentina) for their input,
support, and enthusiasm. And to Paula Ramirez for her invaluable help.

Last but not least, I would like to thank my family and friends for their love and sup-

port. Sonita, gracias por estar ahi. Por escucharme. Por apoyarme. Por todo.

11


https://www.clydeporpoise.org/
http://www.namibiandolphinproject.org/

Abstract

Despite decades of research, the social life of harbour porpoises in their natural
environment is almost entirely unknown, although recent data suggest they are very
social. Harbour porpoises produce only highly stereotyped clicks (narrow-band high-
frequency -NBHF-) that are ideal for monitoring purposes. These are emitted in click
trains: a series of clicks with regular or gradually changing inter-click intervals. The
patterns in repetition rates are indicative of the behaviour of the clicking porpoise,
which can be broadly divided into three main categories: orientation or travelling,
feeding, and socialising. This means passive acoustic monitoring (PAM) methods
can be used to study the behaviour of harbour porpoises. In this project, a series of
algorithms to study the behaviour of NBHF species from acoustic recordings were
developed and put together in a standalone application, D-PorCCA. The algorithms
were developed and tested using data from Scotland and Denmark collected using
static and mobile PAM devices. D-PorCCA and all algorithms were developed in
MATLAB. The application includes a user-friendly interface, a simple transient-
sound detector, a new porpoise click classifier (PorCC), and algorithms to identify
behaviours. Additionally, the acoustic behaviour of harbour porpoises was studied

while interacting with a solitary short-beaked common dolphin who inhabits the
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Firth of Clyde (Scotland). The performance the algorithms in D-PorCCA was tested
against manual labelling, varying from 69.2% to 98.5% of accuracy. These steps
are automated and provide researchers with pre-selected data and summary data
such as ’positive porpoise minute’ and day/night activities. D-PorCCA has many
functionalities and the user can easily inspect and verify the data. The main results
of this project are four. First, evidence was found of interspecies communication
between a solitary short-beaked common dolphin and harbour porpoises in the Firth
of Clyde (Scotland). Second, a series of patterns consistent with social calls reported
in the literature as well as new ones were found for the first time using PAM in
the wild. The most striking patterns were those known as ’phrases’, which are
a series of similar calls produced in a short period of time. Third, the feeding
and socialising patterns overlap, limiting our ability to distinguish between them.
Lastly, the algorithms can be used in other species that produce NBHF clicks. These
results suggest D-PorCCA can potentially be used for behavioural studies of wild
harbour porpoises as well as other NBHF species, and to fill knowledge gaps in our
understanding of the behaviour of these elusive species. Moreover, it has potential
for application in large monitoring project, such as the Static Acoustic Monitoring

of the Baltic Sea Harbour Porpoise, known as the SAMBAH Project.
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Chapter 1

Introduction

1.1 Graphical abstract
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Figure 1.1: Schematic of this project.
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1.2 Background

Harbour porpoises (Phocoena phocoena) are found in temperate and cold waters in
the Northern Hemisphere, in both coastal and off-shore areas [1]. Despite decades of
research in the wild and in captive settings, their social lives is still a mystery. They
are small and are usually seen in groups of two or three individuals or alone, rarely
gathered in large groups [2, 3]. This seemingly solitary life and the fact that they
spend 95% of their time underwater [4] limit our ability to study harbour porpoises

in the wild using typical visual methods.

Figure 1.2: Harbour porpoises (Phocoena phocoena) ((©Solvin Zankl)

Luckily for researchers, harbour porpoises are very vocal and produce basically
one type of sound: highly stereotyped narrow-band high-frequency (NBHF, sensu
[5])) clicks, which are ideal for monitoring purposes. These NBHF clicks have peak
and centroid frequency between 100 and 160 kHz, centred at 130 kHz, no spectral
energy below 100 kHz, and duration between 50 and 175us [6, 7]. These clicks
are emitted in ’click trains’, a series of clicks with regular inter-click interval or
that changes gradually [8]. The repetition rate is indicative of the behaviour of the

porpoise, which can be divided into three broad categories: orientation, foraging, and
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socialising. While the patterns for orientation (i.e., repetition rates below 100 clicks
per second) and foraging (i.e., low repetition at first, ending in a high-repetition
buzz) are known and understood [e.g., 9], the vocalisation patterns during social
interactions is almost entirely unknown.

A few studies conducted with animals in captivity and in the wild suggest harbour
porpoises have specific calls (i.e., click repetition rates patterns) for different social
situations. Authors described several calls, including distress calls, mating calls, and

contact call between a mother and her calf [10, 11, 12].

1.3 Motivation for this work

Recent data indicate that harbour porpoises are more social than visual surveys
would suggest, spending almost all of their time within hearing distance of other
porpoises [13]. Additionally, new technological advancements have made it possible
to collect large amounts of acoustic data in a non-invasive and cost-effective manner.
This opens the door for studies focused on the social lives of harbour porpoises, for
which new analytical tools are necessary.

Harbour porpoises belong to a group of species commonly known as 'NBHEF’ cetaceans
that includes at least 16 species of whales, dolphins, and porpoises that produce
NBHF clicks. These species have in common their seemingly lack of social lives.
Harbour porpoises are the best studied of these species and thus make an excel-
lent model to understanding these less known species. In addition, parties of the
"Agreement on the Conservation of Small Cetaceans of the Baltic, North East At-
lantic, Irish and North Seas’ (ASCOBANS), including the UK, and are obliged to

develop and adopt measures to protect harbour porpoises, as well as to acquire
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knowledge about their occurrence, abundance, and distribution. Moreover, the har-
bour porpoise is listed in the Annex II of the Habitats Directive (Council Directive
92/43/EC), which requires member states to set up Special Areas for Conservation
(SACs) for them [14].

Effective conservation measures for harbour porpoises, require reliable data on dis-
tribution and abundance to minimise or eliminate the overlap with anthropogenic
activities that threaten harbour porpoise survival. In other words, we need to know
where they are and how many there are. Furthermore, knowledge of how porpoises
use their environment is crucial to identifying key areas for them, such as breeding
areas, that require special protection.

There is a large amount of acoustic recordings of harbour porpoises being collected
throughout their distribution range that could be used to fill gaps in our under-
standing of their ecology and social behaviour in the wild. New analytical tools that
are able to detect and classify harbour porpoise clicks accurately, as well as finding
patterns in their repetition rate that can be used to identify underlying behaviours

are warranted.

1.4 Aims and objectives of research

The necessary tools to study harbour porpoise behaviour from acoustic recordings
must be able to automatically inspect hundreds of hours of recordings and provide
researchers access to pre-selected acoustic events for further analysis. Such tools
would highly reduce the time needed for data analysis and will allow to carry out
behaviour studies. For this reason, the overall aim of this project is to develop a

standalone application, D-PorCCA, with a user-friendly interface and the necessary
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functions and algorithms to study the behaviour of harbour porpoises in their nat-
ural environment from acoustic recordings.

To that end, the first objective was to develop a harbour porpoise click classifier
(PorCC) based on machine learning techniques (i.e., logistic regression). Identifying
patterns in repetition rates require detecting as many clicks as possible. Therefore,
the classifier works for clicks of both high and low quality (e.g., clicks produce when
the animal moves away from the recording device).

These clicks must be grouped and potential click trains produced by harbour por-
poises identified. Therefore, the second objective was to develop a series of algo-
rithms to identify these click trains, which are then cleaned from expected undesired
sources of noise.

Within this topic, the third objective was to develop a series of algorithms to classify
acoustic events into three main behavioural categories: 'Orientation’ or inspection
of the environment (or travelling), 'Foraging’ or feeding, and "Socialising’. Patterns
that do not fit within known types would be classified as "Unknown’.

Harbour porpoises interact with animals of the same species, but also with indi-
vidual of other species. The fourth objective, therefore, was to study the acoustic
behaviour of harbour porpoises during interactions with another species: a solitary
female short-beaked common dolphin (Delphinus delphins) who has inhabited the
Firth of Clyde (Scotland) since the early 2000s. Lastly, the fifth objective was to
test D-PorCCA in recordings from another NBHF species: the Heaviside’s dolphin

(Cephalorhynchus heavisidit) from Namibia.

Due to time constrains, it was not within the objectives of this project to use

D-PorCCA for behavioural studies, however, click train types and patterns found in
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the data are described in detail.

1.5 Contribution to knowledge

The major output of this project is a series of analytical tools that would allow for
behavioural studies of harbour porpoises in their natural environment for the first

time. In this context, the two most important contributions to knowledge are:

1.5.1 Harbour porpoise communication

Using the algorithms developed in this project a series of social calls were found in
data from Danish and Scottish waters. Some of these calls had been described in

the literature before, but others were not.

1.5.2 Interspecies communication

The interactions between a solitary short-beaked common dolphin (Delphinus del-
phis) and harbour porpoises in the Firth of Clyde was known by locals and the
scientific community. Acoustic data available during three interactions showed the
dolphin changes her sounds to produce signals similar to those of the porpoises.
Moreover, the sounds of both animals were produced in patterns that suggested

vocal communication, including turn taking behaviour.

1.6 Dissemination of results

A series of scientific publications were published as a result of this project. This in-

cludes 1 peer-reviewed publication with the results of the first objective (Cosentino
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et al., 2019 [15]) and four poster presentations at international conferences. Ad-
ditionally, two manuscripts are in preparation, onw with the results of the fourth

objective and another one with the results described in Chapter 6.

Conference presentations

Cosentino, M., Schwarzbach, P., Tougaard, J., Nairn, D., Guarato, F., Jackson,
J.C., Windmill, J. F. C. (2019). D-PorCCA, a new tool to study the behaviour
of harbour porpoises. Poster presentation. World Marine Mammal Conference.

Barcelona, Spain.

Cosentino, M., Guarato, F., Tougaard, J., Nairn, D., Jackson, J.C., Windmill, J.
F. C. (2019). PorCC: A new high-accuracy click classifier to study harbour
porpoises in the wild. Poster presentation. Danish Marine Mammal Symposium.

Odense, Denmark.

Schwarzbachl, P., Cosentino, M., Guarato, F., Nairn, D., Jackson, J.C., Dahne, M.,
Windmill, J. F. C. (2019). New detector / classifier to study harbour porpoise
behaviour in the wild. Workshop paper. Presented at the annual SAMBAH

meeting. Turku, Finland.

Cosentino, M., Nairn, D., Jackson, J., Windmill, J. (2018). I beg your pardon?
Vocal communication between a wild solitary short-beaked common dolphin and
a harbour porpoise. Poster presentation. European Cetacean Society annual

meeting. La Spezia, Italy.
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Peer-reviewed publications

Cosentino, M., Tougaard, J., Guarato, F., Nairn, D., Jackson, J.C., Windmill, J. F.
C. (2019). PorCC: A new high-accuracy click classifier to study harbour por-
poises in the wild. Journal of the American Society of Acoustics. See Appendix
A - Derived data supporting the findings of this study and the classification algo-
rithm are available at the Pure Data Repository of the University of Strathclyde

here.

1.6.1 In preparation

Cosentino, F., Nairn, D., Jackson, J.C., Windmill, J. F. C. (2019). I beg you
pardon? Vocal communication between a solitary common dolphin and harbour

porpoises.

Cosentino, F., Nairn, D., Jackson, J.C., Windmill, J. F. C. (2019). The social lives

of harbour porpoises.

Public outreach
2018

In early 2018, as a result of sharing highlights of this PhD project on Twitter, I was
invited to participate in a science radio show from Australia to talk about the PhD
as well as my previous experience as a marine biologist. The interview is now avail-
able at the RRR Australian Radio Station website and the Tuneln site (Einstein A
Go Go).

In the summer of 2018, the BBC The One Show crew came to Scotland to film

Kylie, a solitary dolphin in the Firth of Clyde who is occasionally seen with harbour
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porpoises, a topic of my project. The story was released in the One Show and the
University of Strathclyde drafted a Press release concurrently, which attracted at-
tention from all over the world. Kylie and preliminary results of this project made
the front page of the BBC news (What did the dolphin say to the porpoise? and were
featured in international popular sites such as "I fucking love science” (A Scottish
Dolphin Has Learned How To ”Speak” Porpoise) and ”Forbes” (A Lonely Dolphin

Has Learnt To Talk To Porpoises), as well as other sites in France and Germany.

2019

In 2019 I was featured in a documentary about the Hunterston building site, located
close to where Kylie is usually seen (The Hunterston Proposal). Additionally, in
April 2019 I was invited to participate in an event organised by the Royal Society
for the Protection of Birds (RPBS). Although I was not able to attend I recorded
the presentation, which was shown during the event at the University of Aberdeen

(Scotland).
2020

Lastly, I gave a 15 minute presentation in the Argyll Community Centre in Saltcoats
in January 2020 with some of the results of this thesis. The audience comprised

elderly from the local community.

1.7 Thesis outline

This dissertation is divided into 9 chapters.

Chapter 1 presents a general introduction to the topic of this project and describes


https://www.bbc.co.uk/news/science-environment-45348036
https://www.iflscience.com/plants-and-animals/a-scottish-dolphin-has-learned-to-speak-porpoise/
https://www.iflscience.com/plants-and-animals/a-scottish-dolphin-has-learned-to-speak-porpoise/
https://www.forbes.com/sites/michaelmarshalleurope/2018/08/31/a-lonely-dolphin-has-learnt-to-talk-to-porpoises/#20e702f15e4c
https://www.forbes.com/sites/michaelmarshalleurope/2018/08/31/a-lonely-dolphin-has-learnt-to-talk-to-porpoises/#20e702f15e4c
https://www.youtube.com/watch?v=_-ZFj-IL8XA
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the goal and main objectives, as well as the main results and outreach efforts.
Chapter 2 presents a review of the current state of knowledge of several aspects
of harbour porpoise ecology and natural behaviour, as well as the available tools
to study them in their natural environment. The chapter also discusses aspects of
animal communication within and between species, and the challenges of carrying
out research of acoustic behaviour of cetaceans.

The datasets used in this thesis are described in Chapter 3, as well as the method-
ologies used for data collection in both study areas, Scotland and Denmark.
Chapter 4 presents a detailed description of the methods used to develop a new
click classifier for harbour porpoises (PorCC). It also presents the results applied to
the Scottish database in comparison to the performance of an existing classifier.
Chapter 5 presents the results of using a series of algorithms developed to group and
classify click trains, clean them from undesired sources of noise, and extract existing
patterns to identify the underlying behaviour of the harbour porpoise. Examples
of each click train type and behaviour are presented, as well as general results such
as the total number of click train types and behaviours found in the data. The
algorithms are attached in Appendix C). The algorithms developed in the previous
chapters were used in harbour porpoise data from Scotland and Denmark and the
results are presented in Chapter 6. This chapter is focused on the behavioural
patterns. The results showed that each of the three categories defined here (i.e.,
orientation, foraging, and socialising) comprised more than one pattern. These are
described and discussed.

Chapter 7 presents a description of the long-term interactions between harbour
porpoises and a solitary short-beaked common dolphin who inhabits the Firth of

Clyde. This include a general discussion of the types of interactions observed over

10
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the years, as well as the results of the acoustic interactions.

Chapter 8 introduces D-PorCCA, a stand-alone application that incorporates the
algorithms I developed for this project, which allows researchers from anywhere in
the world to analyse the data that has already been collected to learn more about
their species, including all porpoise species and the additional seven species known
to produce NBHF clicks. At the end of Chapter 8, the results of using D-PorCCA
in acoustic recordings of Heaviside’s dolphins, another species known to produce
narrow-band high-frequency clicks, similar to those of the harbour porpoises.
Finally, Chapter 9 presents the general conclusions of this thesis and recommends

future work.

11



Chapter 2

Literature Review

2.1 Introduction

This Chapter presents a review of the current state of knowledge of several aspects
of harbour porpoise ecology and natural behaviour, as well as the available tools to

study them.

2.2 Background

Humans have been fascinated by cetaceans for thousands of years, evidenced by
the numerous paintings, sculptures, and myths that exist around them since pre-
historic times. Despite this fascination, there are still many aspects of their biology,
ecology, and natural behaviour that are poorly understood. Studying cetaceans at
sea is a difficult task, they spend most of their time underwater and so our ability to

see them depends on many factors, from weather conditions to observer experience

12
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[16, 17]. In fact, even in good visibility conditions animals can remain visually
undetected due to their behaviour. This is especially true for cryptic species, such

as the harbour porpoise (Phocoena phocoena).

Figure 2.1: Sizteenth Century interpretation of a 1st Century description by Pliny
the Elder of killer whales (orcha) attacking whales (balena) and their calves near
Cadiz (Spain). Illustration by Olaus Magnus in his ”Carta Marina” (1539).

Our knowledge of the lives of cetaceans in their natural environment has grown
exponentially over the past few decades thanks to technological advances. It is now
possible to collect large amounts of data in a cost-effective manner. At the same
time, this requires long periods and many resources dedicated to data analysis,
which often results in leaving data unanalysed. Therefore, tools that improve our
ability to analyse data with minimum manual work will open doors for studies that
were not possible before. When studying cetaceans, progress is inevitably linked to

technological advancement.
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2.2.1 Cetacean acoustics

Cetaceans evolved from land mammals that returned to the oceans, the hippopota-
mus being the closest relative alive today [18, 19, 20]. As they re-entered the water,
cetaceans evolved a wide range of adaptations for the transition to a fully aquatic
life. Their bodies became more hydrodynamic, losing the posterior limbs and evolv-
ing a smooth, hairless skin to reduce friction, and a thick blubber layer that allows
them to maintain the body temperature around 36C, just like land mammals do.
In addition, their nostrils displaced to an upwards position at the top of the head,
facilitating breathing during travel, specially at high speeds [21, 22, 23].

Cetaceans are divided into two groups: odontocetes or toothed whales, with 73
recognised species, and mysticetes or baleen whales, with 14 recognised species. As
a group, cetaceans produce a wide range of sounds, within and outside the human
hearing range, from very low frequencies (~10 Hz), such as ’songs’ produced by
baleen whales, to impulsive sounds with high frequency content (> 130 kHz) pro-
duced by toothed whales [6, 24, 25].

Odontocetes rely on sounds both via active production and passive hearing, to find
preys and avoid predators, as well as for orientation, and to keep contact with other
individuals and finding potential mates. The following are the three main types of
sounds Odontocetes produce [26, 27]:

1) narrow-band tonal whistles: whistles are tonal sounds of long duration, usually
few seconds long, with frequencies concentrated between 5 and 20 kHz [23]. Whis-
tles are used for individual identification and communication purposes [e.g., 28].

2) short-pulsed sounds: these are known as ’echolocation clicks’. Echolocation is

"the process in which an animal obtains an assessment of its environment by emit-

14
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ting sounds and listening to echoes as the sound waves reflect off different objects
in the environment’ [29].

3) burst-pulsed calls: these are clicks produced at high repetitions rates, where
the inter-click interval is too small to perceive them as separate clicks, and include
sounds like ’cries’ and ’barks’, which are thought to be used for communication
purposes[27, 30].

The term echolocation was coined in the 1950s by Griffin [31] to describe the ultra-
sonic impulsive sounds used by bats to forage and navigate their environment, and
was later adapted for cetaceans [for a detailed review on echolocation in bats and
dolphins see 32|. The temporal and spectral characteristics of echolocation clicks
vary between species [33, 34, 35] and likely reflects the ecological adaptation to the
habitat and local prey species [32]. Echolocation clicks can be divided into four
groups:

1) broadband, short-duration clicks, produced by most delphinids, such as the bot-
tlenose dolphin ( Tursiops truncatus) [36]

2) narrow-band, high-frequency (NBHF), long-duration clicks, produced by at least
16 species of whales, dolphins, and porpoises, including the harbour porpoise [6],
3) frequency-modulated up-sweep echolocation clicks produced by beaked whales,
such as True’s beaked whales (Mesoplodon mirus) [37], and

4) multipulsed, high powered low-frequency clicks produced by sperm whales (Phy-
seter macrocephalus) [38].

Examples of these clicks are shown in Figure 2.2.

15
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Figure 2.2: Echolocation signals of four odontocete species: (a) bottlenose dolphin
(Tursiops truncatus) - from Evans (1973) [39] (b) harbour porpoise(Phocoena pho-
coena) - from this study (c) True’s beaked whale (Mesoplodon mirus) - from DeAn-
gelis et al. (2018) [40] (d) sperm whale (Physeter macrocephalus) - from Mohl et al.
(2000) [38]

2.2.1.1 Narrow-band high-frequency - NBHF - clicks

There are at least 16 species from five different taxonomic groups, usually referred
to as narrow-band high-frequency (NBHF) species, who produce these clicks almost
exclusively (Figure 2.3). These species are all seven Phocoenids [6, 41, 42], all
four members of the genus Cephalorhynchus [e.g., 43], two species of the genus
Lagenorhynchus [44, 45, 46, 47], the pygmy (Kogia breviceps) [5] and dwarf sperm

whales (Kogia sima) [48], and the franciscana (Pontoporia blainvillei) [49].

The temporal and spectral characteristics of these NBHF clicks are remarkably

similar in all species where they have been described (Figure 2.4), even in species

16
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Figure 2.3: NBHF species. Known species that produce narrow-band high-frequency
(NBHF) clicks.

with a wider acoustic repertoire, such as the Heaviside’s and the Commerson’s dol-
phins [47, 50]. NBHF clicks have peak and centroid frequencies between 100 and 160
kHz, little or no spectral energy below 100 kHz, duration between 57 and 212us, and
-3 dB bandwidths between 8 and 20 kHz [5, 6, 7, 41, 42, 43, 47, 50, 51, 52]. These
NBHF clicks are emitted in trains in a narrow, forward-oriented beam [53, 54]. A
click train can be loosely defined as a ’series of clicks separated by gradually or cycli-
cally changing inter-click interval suggesting a unit during an echolocation event or

a communication signal’ [8].

The production of NBHF clicks evolved independently in these five groups [55],
and thus comprises species with different distribution, habitat preferences, and di-
ets. What all these species have in common, apart from the characteristics of their

clicks, is their small size (compared to other odontocetes species) and their social
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Figure 2.4: Waveforms of narrow-band high-frequency (NBHF') clicks of four species
(a) Heaviside’s dolphin (Cephalorhynchus heavisidii) - from Morisaka et al. 2011
[51]). (b) Burmeister’s porpoise (Phocoena spinipinnis) - from Reyes Reyes et al.
2018 [}2] (¢) Dwarf sperm whale (Kogia sima) - from Merkens et al. 2018 [}8] (d)
Pygmy sperm whale (Kogia breviceps) - from Madsen et al. 2005.

lives, more specifically, the seemingly lack of it. In this context, it would seem
that the characteristics of the NBHF clicks make them unsuitable for communica-
tion purposes, as these are stereotyped clicks, which individually likely carry little
information, and because high frequencies attenuate fast, limiting communication
to few hundred meters at most. However, a series of studies on harbour porpoises
and Hector’s (Cephalorhynchus hectori) and Heaviside’s dolphins have found pat-
terns in the repetition rates of NBHF clicks in relation to specific behaviours (e.g.,
aggression), suggesting this is how information is transmitted to conspecifics [e.g.,
9, 11, 12, 13, 43, 50]. A summary of the NBHF clicks characteristics of all species

where they have been described is shown in Table 2.2.
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Two main hypotheses have been proposed about the evolutionary advantages
of these clicks: reduced masking and acoustic crypsis [41, 50, 68]. Masking is the
summation of ambient noise with the emitted signals, which reduces the probability
of detection. In these species masking is reduced or avoided entirely because there
are few natural sounds in that frequency range [27]. Acoustic crypsis is achieved as
the effective hearing range of their main predator, the killer whale (Orcinus orca)
[69, 70, 71], is below 100 kHz [72]. The latter might be partly incorrect, how-
ever. Galatius et al. (2019) showed that only Lagenorhynchus and Cephalorhynchus
species evolved after the killer whales did, and therefore NBHF clicks in these species
could have evolved in response to killer whale predation. For the other groups,
NBHF could have evolved to avoid being heard by other predators that existed at
the time, especially the ’killer sperm whale’, an animal similar to modern sperm
whales [55, 73].

Due to their cryptic behaviour, little is known about these species, some of which
are rarely seen alive. An exception is the harbour porpoise, which has been studied
thoroughly both in captive settings and in the wild, and even for them there is still

many aspects of their natural behaviour that remain unknown.

2.3 The harbour porpoise

The harbour porpoise is one of the seven extant porpoise species and it is the most
abundant and best-known species of all. They are dark grey on the dorsal area and
lighter on the ventral side, and have a small, rounded head with no noticeable beak.
The dorsal fin is small and triangular, positioned in the middle part of the body

(Figure 2.5). Much is known about their life history, which was derived from data
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collected from stranded animals and individuals incidentally caught in fishing nets
[e.g., T4, 75]. Harbour porpoises are short-lived, compared to other Odontocetes,
reaching usually between 10 and 12 years of age, with only about 7.5% of the popu-
lation reach older ages, up to 20 years [74, 75]. The record is at 24 years for a male

found stranded in the North Sea [74].

Figure 2.5: Harbour porpoises off Cumbrae, in the inner Firth of Clyde (Scotland) in
the summer of 2018. They were part of a larger group of 20-25 individuals. Photo:
Melania Cosentino.

Harbour porpoises are found exclusively in the northern hemisphere, in both
sides of the Atlantic and Pacific Oceans, as well as in the Baltic and the Black
Seas [76]. They are rarely seen in the Mediterranean Sea, although recent sightings
suggest that a small population may be found off the coasts of Malaga, in southern
Spain [77, 78]. There are four recognised subspecies, two in the North Pacific (P. p.
vomerina and an unnamed one), one in the North Atlantic (P. p. phocoena), and
one in the Black Sea (P. p. relicta) [76]. The Baltic Sea population is a genetically
distinet population but does not qualify as a subspecies [70].

Although absolute abundance numbers throughout their entire distribution range
are unknown, some harbour porpoise populations have been assessed. In the North
Sea and adjacent waters abundance was estimated through large-scale surveys con-

ducted in 1995, 2005, and 2016 [1, 79, 80, 81]. The most recent survey puts this

22



CHAPTER 2: LITERATURE REVIEW

population in over 424,000 animals (CV = 0.17; 95% CI = 313,151 — 596,827) [81].
However, not all populations are so abundant. The Baltic Sea population is criti-
cally endangered, with fewer than 500 individuals remaining [82].

Because of their small size and cryptic behaviour, harbour porpoises are specially
difficult to observe at sea (Figure 2.6). They surface for a few seconds and spend
only about 5% of their time at the surface, depending on geographic location, sex
of the individual, time of day, and season [1]. They are shy and rarely approach
vessels, diving for about 4 min [83], and are seen travelling in groups of two or three
animals, or alone [17, 79]. Although they are occasionally seen in large groups, these
observations are rare [e.g., Nairn, unpublished data, 3], thus sightings are restricted
to short distances and good weather conditions. Therefore, using typical visual mon-
itoring methods, such as photo-identification and visual surveys from air, research
vessels, or whale-watching platforms, to study the behaviour of harbour porpoises
is limiting. In fact, few researchers have attempted to use photo-identification [e.g.,
84, 85], as the shape and colouration of their dorsal fin are similar between individ-
uals, and have low levels of scaring compared to other species. These scars are the
basis for individual identification in many species [e.g., 86]. Maybe porpoises do not
scar as easily as other species do or maybe they do not usually engage in playful or
aggressive behaviour that leave scars, which are common behaviours in other species
[87]. An additional reason for not so many scars in porpoises may be the very small

blunt teeth of this species.

Several environmental factors influence harbour porpoise distribution and habitat
use. The main are water depth (between 50 and 200 m) and slope [e.g., 79, 88, 89, 90],

which are in turn related to the distribution of their prey [91, 92]. Individual move-
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Figure 2.6: Harbour porpoise in the distance. Firth of Clyde, Scotland. Photo:
Melania Cosentino

ments vary greatly, however, as some porpoises travel dozens of km a day moving to
far locations, while others stay in the same area for weeks [88, 91]. When looking at
entire populations (e.g., the North Sea), variations in sighting rates have been ob-
served, within and between years [2, 17, 75, 79]. Evidence of coordinated migrations
has been found in historic catch data of harbour porpoises in the Baltic Sea [e.g., 93],
and more recently in studies using passive acoustic monitoring [82]. Similarly, mi-
gration patterns have been identified in the population off West Greenland. Several
individuals carrying satellite tags provided the first record of seasonal migration of
harbour porpoises to offshore, deep waters. Some individuals moved hundreds of km
to open waters, reaching deep areas in the middle of the North Atlantic Ocean, and
performing dives of up to 410 m before returning to West Greenland [94]. These
results were unexpected given what was known about porpoises. Another exam-
ple of the importance of technological advances in our understanding of cryptic

species.
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2.3.1 Acoustics

The first recordings of harbour porpoises were made in the early 1960s using tape
recorders. These recordings suggested harbour porpoises produce narrow band clicks
with peak frequencies centred at 2 kHz and were emitted at different repetition rates,
which seemed to be related to different behaviours, such as feeding and communi-
cation [10]. The high-frequency (HF) component described in subsubsection 2.2.1.1
were recorded and described a few years later [6]. A low-frequency (LF) component
has been reported in other NBHF species, such as the Heaviside’s dolphin [61] and
the Yangtze finless porpoise (Neophocoena phocoenoides asiaeorientalis) [60]. There
have been discussions within the scientific community about whether the LF com-
ponent is real or just an artefact of the recording device, and if it is real, whether

it has enough energy to be important for communication purposes [e.g., 7], as low

frequencies travel farther than high frequencies [95].

The discussion has settled now. The click production process delivers a click
with both components [11, 96], but the LF component is between 50 and 60 dB
weaker than the HF component [7] and thus unlikely to have any significant value
for communication. Interestingly, however, the LF component is stronger than the

HF one during the first 4 days after birth [96].
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Figure 2.7: A section of a click train from a 1 year-old male, showing the waveform
of the low frequency (LF') and high frequency (HF') components. The two components
were recorded with different hydrophones, on two separate tracks of the tape recorder.
The LF component track has been low-pass filtered at 20 kHz, and the HF' component
has been high-pass filtered at 10 kHz. From Amundin 1991, p67 [11]

2.3.1.1 Sound production

Unlike humans and other animals, toothed whales lack vocal cords in their larynx,
and their respiratory system (in principle) is not connected to their digestive system
(but see [97] and [98]), which means they have a different sound production mech-
anism. Toothed whales have one nasal opening located at the top of their heads,
known as the 'blowhole’. A few centimetres below the blowhole, there is a series of
structures, including two nasal passages each with a pair of "phonic lips’ in associ-
ation with fat bodies. Sound is produced by air passing through the phonic lips,

which are put in motion when the nasal passages are pressurised. The sound is then
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guided via the air sacs and the anterior side of the skull into the melon Figure 2.8.

Phonic lips

Figure 2.8: Transverse MRI scans of a young harbour porpoise. The caudal part of
the melon (yellow) abuts against layers of connective tissue, muscles, and tendons
(red) forming a dense theca, which, along with the skull and a collection of nasal
air sacs, reflect the vibrations that originate in the phonic lips (light brown) into the
melon. The melon is under control of highly developed facial musculature. Adapted
from Wisniewska et al. 2015 [99]

The melon is a fatty tissue that acts as a lens and an impedance matcher, which
creates a highly directional sound beam that is emitted into the water [L1, 100].
The width and height of the sound beam is different between species but, in the
case of click production, it is consistently narrow. In harbour porpoises, the -3dB
beamwidth in both the horizontal and vertical planes is approximately 16 degrees
[53]. The peak frequency is concentrated between 100 and 160 kHz (i.e., wavelength
approximately 1-1.5 cm), centred at 130 kHz [6]. Mean peak frequency values can

vary between populations [e.g., 41].
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Because Odontocetes have two pairs of phonic lips (except for the three sperm whale
species, which have one) it was proposed that sound is produced simultaneously by
both phonic lips. However, a series of experiments with suction cups hydrophones
and video cameras showed phonic lips and associated structures act independently
during sound production. Moreover, each pair seems to be specialised in produc-
ing one type of sound, either tonal or pulsed sounds, which means that dolphins
can whistle and click at the same time. Whistle production is associated with the
movement of the left nasal passage (although the right passage may be able to pro-
duce whistles as well) while click production is associated with movement of the right
nasal passage [52, 101, 102]. This sound production mechanism has been found in all
species studied so far. In harbour porpoises (and likely other non-whistling species),

clicks are produced exclusively by the right pair of phonic lips [52, 102].

2.3.2 Behaviour

Many aspects of the behaviour of harbour porpoises have been studied, although
not all of them are well understood. Hall (2011) presented an exhaustive review
of harbour porpoise behaviour on her PhD dissertation, which she divided into 12
categories, based on 9 categories proposed by Scott in his book Animal Behaviour
(1958, cited by [3]). These categories are:

1) ingestive: foraging and feeding [e.g., 9],

2) shelter-seeking: habitat selection, including side fidelity and migration [e.g.,
88, 94|,

3) sexual: mating behaviour and as a form of play (e.g., between males), and spatial

segregation of the sexes [e.g., 87, 103, 104],
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4) agonistic: conflict or aggressive behaviour [e.g., 11, 12],

5) epimeletic: caring for another individual that is injured or need helps in some
way,

6) et-epimeletic: the calling or signalling for care and attention [e.g., &],

7) allelomimetic: behaviour leading other individuals to copy one’s behaviour, such
as synchronised surfacing during feeding or resting [e.g., 3],

8) eliminative: excretion of waste,

9) investigative: examine their surroundings or specific objects in their environment
[e.g., 105],

10) avoidance: moving away from conspecifics, potential predators, or anthropogenic
disturbances (e.g., noise [106]),

11) social: engaging in social behaviour with conspecifics [e.g., 10, 11], and

12) rest and sleep [e.g., 107].

Social behaviour in Hall (2011) [3] refers specifically to socialising with individuals of
the same species, including gathering in large groups and showing playful behaviour,
such as surfing the waves. However, and although Hall mentions approaching ves-
sels and discusses the existence of hybrids between harbour and Dall’s porpoises, she
does not mention social interactions with other species, which could be considered
another type of behaviour (see subsection 2.3.5).

Our current understanding of harbour porpoise vocal behaviour suggests they have
specific vocalisation pattern for some of the behaviours mentioned above. Because
this project is focused on identifying behaviours based on patterns of click repeti-
tion rates, behaviours are re-organised into three broad categories: orientation or
travelling (i.e., 2 and 9), foraging or feeding (i.e., 1), and social behaviour or com-

munication (i.e., 3, 4, 6, and 11). The behaviours not included in these categories
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(i.e., 5, 7, 8, 10, and 12) either lack information about the corresponding acoustic

emissions or the evidence is too scarce to be included (e.g., sleep).

140 130

130 120

12

o

110
11

Amplitude
dB

10 100

=]

90

600
100

A

400 e

50

200

Clicks
per second

:IH‘A' . . -
Travelling ’ Foraging " Socialising

Figure 2.9: Behaviours. Examples of representative behaviours based on repeti-
tion rate patterns: orientation or travelling (left), foraging or feeding (middle), and
socialising or communication (Tight)

Technological advances had made it possible to study aspects of their lives that
take place underwater that would not be possible with observations alone, from
diving [94] and feeding abilities [108] to acoustic communication [13]. Although
nearly 200 harbour porpoises have been tagged over the years in different areas of
the North Atlantic [87], this represents a small number compared to population
sizes. Although tags are relatively inexpensive and less invasive than they used to
be, and can stay on the animals for long periods, it is not possible to tag every
porpoise. On the other hand, tag data has provided information that can be used
for behavioural studies using static acoustic monitoring (SAM) systems, which are

cost-effective and non-invasive methods.
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2.3.2.1 Orientation

Toothed whales use echolocation clicks to investigate or orient themselves in the
environment they move through, and harbour porpoises are not an exception. Har-
bour porpoises vocalise almost continuously [13, 109], with 90% of silent intervals
being no longer than 10 seconds [109], except during certain periods when they seem
to be sleeping [107]. When they are travelling or navigating, the rate of click pro-
duction is usually between 20 and 50 clicks per second, and not exceeding 100 clicks
per second. During orientation or travelling, the relationship between the inter-click
interval (ICI) is directly proportional to the distance to the target. In other words,
the interval between clicks is long enough to allow for the echo to return and be
processed before another click is produced, which is known as the two way travel
time (TWTT). When the animal approaches a target object (e.g., a rock), the ICI
decreases because the signal and its echo travel smaller distances, thus arriving faster
to the porpoise.

Verfuss et al. (2005) showed with a series of experiments with porpoises in captiv-
ity, that they use echolocation to orient themselves in their environment, even when
they had been there for several years. The study found that porpoises echolocated
continuously and that they used objects in their environment, which the authors
called "landmarks’, to find their way to the target location. This behaviour is evi-
dent when looking at the variations of the ICI as the animal approaches the target
(Figure 2.10). The ICI changed from ~60 ms to ~20 ms with decreasing distance.
The ICI is always higher than the TWTT, which includes a ’lag time’ necessary for
processing the incoming information [110]. The lag time estimated in these exper-

iments was between 26 and 36 ms when faced with difficult tasks and between 14
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and 19 ms for simple ones [105].
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Figure 2.10: Landmark. The median click interval (75% and 25% quartile) for
each 1-metre bin distance to reference for each task. The two-way-transit time line
of the click—echo pair is indicated (from Verfuss et al. (2005) [105]).

Although the lag time appears to be a constant value, as if the animals "lock’
their clicking rate to maintain this lag time, they have control over the repetition
rate and the intensity of the clicks, which they adjust depending on environmental
conditions(e.g., noisy background) [111].

This information can be used to estimate the active space of the animal, that is,
the distance up to which porpoises can make up their environment. Although the
actual distance will depend on the source level of the signals and the background
noise level, we can make a rough estimate using this equation:

Distance = ((TWTT/2) + lag time) * speed of sound in water

So, for example, with an ICI of 40 ms, and assuming a lag time of 20 ms, porpoise
are ’seeing’ up to a distance of ~45 m [109]. This is valid during orientation and
exploration of the environment, but it cannot be applied to all cases, as porpoises are
able to produce well over 1000 clicks per second (i.e., ICI below 1 ms) [10, 11, 12, 13].

It is not yet understood how porpoises process information when clicking at high
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repetition rates.

2.3.2.2 Foraging

Data from stomach contents of stranded and bycaught animals suggest that harbour
porpoises feed mainly on small demersal and pelagic fish, especially sand eel and
cod, and whiting and herring, respectively. However, they can feed on many other
fish, crustaceans, and cephalopods species. In addition, the importance of each prey
type varies depending on season, area, and other factors [104, 112, 113]. Our under-
standing of what feeding looks like acoustically comes from experiments in captivity
and data from wild animals carrying acoustic and behavioural tags. These data
suggests porpoises use echolocation clicks to find and capture their prey in what can
be thought of as a foraging event.

A successful foraging event can be separated into three phases: search, approach,
and feeding buzz. These stages are common to all echolocating mammals, includ-
ing toothed whales and bats [32]. During the search phase, the porpoise produces
fewer than 100 clicks per second (i.e., ICI > 10 ms) in search of a potential prey.
When the prey is located, the porpoise approaches it and the ICI becomes smaller
and smaller, as the echo reaches the porpoise faster and faster. The final stage, the
feeding buzz, is a period of high repetition rates (i.e., the ICI can be <2 ms) [e.g.,
9, 83, 109]. During these buzzes, the amplitude of the clicks decreases, becoming 6

to 10 dB less intense than typical echolocation clicks [9].
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2.3.2.3 Social behaviour and communication

The social lives of harbour porpoises in their natural environment is a mystery.
When using visual methods, harbour porpoises are usually observed travelling alone
or in small groups of two or three individuals [1, 17, 79, 114]. Large congregations do
occur and have been reported in the literature [e.g., 3, 87] and in social media, but
remain rare. This seemingly solitary life might be just the result of how a cetacean
‘eroup’ is understood and defined during surveys. Most studies do not provide a
definition of what a group is [e.g., 115], and when they do, a group is usually defined
as a sample of individuals that interact or showed coordinated behaviour or both
[e.g., 47]. Interaction refers to interactions seen by the observer, which hinders our
understanding of social behaviour in cryptic species. Harbour porpoises spend 95%
of their time underwater and although their phonations can travel a few hundred
meters, animals can be interacting acoustically at large distances that the observer
would not perceive. This is recognised by researchers, but it is rarely mentioned.
Given group size numbers reported in most studies, ’group’ is usually defined as it
is understood for other species [e.g., 76, 79, 81, 115]. There are exceptions, however
[85, 116].

In fact, data from wild animals carrying acoustic tags have shown that harbour
porpoises are more social than visual surveys tell us, spending much of their time
at hearing distance of conspecifics [e.g., 13]. The longest period recorded without
sounds from other porpoises was ~3 hours. Furthermore, the results were consistent
with previous studies, showing that harbour porpoises produce two main types of
click trains that are qualitatively different: foraging buzzes and social or commu-

nication calls. The distribution of the ICI of calls is bimodal, with peaks at ~125

34



CHAPTER 2: LITERATURE REVIEW

and ~1000 clicks per second, with little overlap with feeding buzzes, which have the
peak around 400 clicks per second [13]. The key difference between feeding buzzes
and social calls, as a general rule, is that feeding buzzes show a gradual increase of
repetition rates, while calls lack a preceding period of low repetition rates [13] [but
see 12].

The use of the term ’communication’ calls may prove problematic because, even
though the field of animal communication has been active for many decades, there
is not yet a definition of communication everyone agrees with. It is often defined as
the process of conveying information from senders to receivers by means of signals,
where signals are behaviours or structures that senders evolved in order to con-
vey information [117]. This way of thinking about communication is not restricted
to acoustic signals. Most animals, as well as plants, and cells, communicate using
chemical, visual, and tactile signals, as well as acoustic ones [118, 119, 120, 121, 122].
For some authors, however, not all acoustic signals constitute a form of communi-
cation. For example, Au and Hastings (2009), in their book Principles of Marine
Bioacoustics when talking about sounds produced by toothed whales, state that
"Social sounds are those that are used by odontocetes in a social context and could
be, but not necessarily, used for communications’ [123]. Given virtually nothing
is known about the social lives of harbour porpoises in their natural environment,
‘communication’ calls here refer to burst pulses, which lack a preceding period at
low clicking rates. Whether these calls carry information or if they are used for
communication, is difficult to assert given the few existing studies on this topic
8, 10, 11, 12, 13].

Because the low-frequency (LF) component is produced at the same time as the

high-frequency (HF') component, it is possible to use observations of early studies
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based on the LF component to learn about harbour porpoises calls. Busnel and
Dziedzic (1966) and Amundin (1991) described a series of calls that seemed to occur
in specific contexts, including courtship, dominance, and distress. The repetition
rates of these calls were different: while 'courtship’ calls were long (~1 s) and had
high repetition rates (>500 clicks per second), 'dominance’ calls looked like two or
three consecutive short calls at an interval of 200 ms, with variable repetition rates of
up to 1000 clicks per second [10]. "Distress calls’ were described in different studies,
but the characteristics of the calls differed. Busnel and Dziedzic (1966) described
these as calls with repetition rates between 130 and 250 clicks per second and dura-
tion between 0.4 and 1.55 s [10], while Amundin (1991) described them based on the
HF component as calls with repetition rates between 100 and 500 clicks per second,
but with repetition rates between 300 and 400 clicks per second based on the LF
component [11].

Other calls include "push threat call’ (400-900 clicks per second), ’signals of pain’
(500-800 clicks per second), "contact call’ between mother and calf (increasing from
10 to over 600 clicks per second - Figure 2.11), and ’aggression’ (200-1000 clicks
per second) [9, 10, 11, 12]. Additionally, Amundin found what he called 'phrases’,
comprising two or more (in general similar) calls repeated in a short period of time.
He also found what he believed to be information that could be used for individual
recognition, specifically variations in repetition rates at the end of the communica-

tion calls [11].

Clausen et al. (2010) found the duration of the click trains also varied markedly

depending on the behaviour, for example contact calls are less than 1 s long, while
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Figure 2.11: Contact call. Click repetition rate pattern for contact calls produced
during mother-calf interactions (extracted from Clausen et al. (2010) [12]).

grooming can last up to 16 s. Moreover, the duration of the click itself varied slightly
between behaviours [12].

Communication calls have been studied in wild porpoises for the first time in 2018,
in a study based on six porpoises carrying acoustic tags [13]. Calls from studies us-
ing static acoustic monitoring devices, however, are rare. One example is Koschinski
et al (2008). The authors witnessed a calf that was entangled in a gillnet in Clay-
oquot Sound (Canada) and were able to record it during this period. They found
that 92% of the echolocation events had ICIs below 10 ms, suggesting these were
communication calls. The patterns resembled those of ’distress calls’ described by
Amundin (1991), although the repetition rates were different [8, 11]. The authors
also found calls with repetition rates at ~160 clicks per second, which falls within
the bimodal distribution found by Sorensen et al. [8, 13].

At the time of writing, no study using static or towed continuous recorder have

reported communication calls in wild harbour porpoises.
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2.3.3 Calves

Harbour porpoises are small, reaching a maximum of about 2 m in length and 72
kg in weight, and although there are variations between populations, females are
larger and heavier than males. Sexual maturity is reached at about 5 years of age,
depending on sex, and varies between populations. Pregnancy rates are high, with
60-75% of mature females being pregnant at any given time of the year. Females
become pregnant every year or every second year and gestation lasts between 10
and 11 months. Newborns are less than 80 cm long and 7 kg at birth. In the
North Sea and adjacent areas, birth occurs between May and August, and weaning
between February and May, when the porpoises are between 8 and 11 months old

63, 74, 75, 124, 125].

2 -

Figure 2.12: Harbour porpoise calf (and mother) - born in August 2007 in Fjord and
Belt facilities in Kerterminde (Denmark).

Little is known about the ontogeny of harbour porpoise clicks. The only study
focused specifically on the vocal behaviour of harbour porpoise calves was carried out
with data from three individuals born in the Fjord and Belt facilities in Kerteminde
(Denmark) [96]. The calves were born on August 2007, July 2013, and July 2014

respectively, but only the first one survived long enough (i.e., 9 months) to study
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how the temporal and spectral characteristics of the clicks changed over time [96].
Delgado found that calves can vocalise just seconds after being born, as the first
clicks reliably coming from the calf were recorded 40 seconds after birth. For the first
3 or 4 days these clicks had a high (HF) and a low frequency (LF) component, with
the latter being stronger. The HF component is similar to the clicks of adult harbour
porpoises, with a peak between 100 and 150 kHz, while the LF component has its
main peak centred at 2 kHz [96]. For the first 9 months, the clicks (Figure 2.15)
have higher peak frequencies than those of adults, decreasing from nearly 150 kHz
to 130 kHz over this period, having as well higher bandwidths [96].

The higher peak frequencies in young individuals was also reported by Goodson et
al. [126], who described the spectral and temporal characteristics of two captive
porpoises in Harderwijk Aquarium (The Netherlands), one of which was 8 months
old at the time and the other 20 months old. The authors found that the younger
individual had a higher -3dB bandwidth and peak frequency values (14 kHz and
148 kHz, respectively) than the older one (12.5 kHz and 144 kHz, respectively)
[126]. Similarly, Clausen et al. reported centroid frequencies at 136 kHz and -3dB

bandwidth at 16 kHz for a calf of age between 3 to 9 months [12].

Both the LF and HF components are part of the same click production process
being produced simultaneously [11, 60, 96]. How the LF component is produced and
whether it has a function during this crucial period (e.g., for the calf to keep con-
tact with the mother) is still unknown, but it seems to be present in other neonatal
porpoise species as well, such as the Yangtze finless porpoises (Neophocaena pho-
caenoides asiaeorientalis) [60].

Because the LF component is long in duration, it cannot be detected by existing
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Figure 2.13: Click train produced by a harbour porpoise calf - from Delgado 2016
[96]

impulsive sounds detectors. Additionally, some researchers filter the data collected
with broadband hydrophones before digitalisation, leaving out sounds with frequen-
cies lower than 2 kHz. Moreover, much of the background noise is in low frequencies,
thus a classifier for calves focused on the LF component would be ineffective. So far,
no classifier exist to find calves based on acoustic information. Such classifier, would
be crucial for conservation purposes as it would allow for identification of nursing

areas that need protection.

2.3.4 Conservation status

The harbour porpoise, as a species, is listed as Least Concern by the International
Union for Conservation of Nature (IUCN) [1], however, the European population
is listed as ’Vulnerable’ and the Baltic Sea population is ’Critically Endangered’,
with fewer than 500 individuals remaining [82]. In European waters, concerns for
its conservation status due to, especially, lethal incidental catches in fishing nets, led

to the Agreement on the Conservation of Small Cetaceans of the Baltic and North
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Seas (ASCOBANS). The agreement was signed in 1992 and the area was extended
in 2008. ASCOBANS parties are obliged to develop and adopt measures to protect
harbour porpoises, as well as to acquire knowledge about their occurrence, abun-
dance, and distribution. The harbour porpoise is also listed in the Annex II of the
Habitats Directive (Council Directive 92/43/EC) [14], which requires member states
to set up Special Areas for Conservation (SACs) for them.

The survival of harbour porpoises is threatened by human activities, especially fish-
ing and underwater noise. Thousands of harbour porpoises get accidentally caught
in fishing nets and die every year in the North Sea and adjacent waters, especially
in gillnets [e.g., 127, 128, 129]. Additionally, noise-producing activities, such as
Navy operations, pile driving in windfarm constructions, and seismic surveys, can
indirectly lead to death, for example by distracting the animals who swim towards
fishing nets, but also by forcing them away from productive areas, resulting in star-
vation [106, 130, 131].

The designation of SACs requires identifying habitats that porpoises use for impor-
tant life functions such as breeding (i.e., identifying areas with mother-calf pairs)
to minimise overlap with human activities. Given it is not possible to equip every
animal with a tag, we can take advantage of recent technological developments and
develop tools to use passive acoustic monitoring systems to fill gaps in our under-

standing of harbour porpoise behaviour and communication in the wild.

2.3.5 Interspecific interactions

Non-predatory interspecies interactions between cetaceans have been widely docu-

mented, of both aggressive and non-aggressive nature. Non-aggressive interactions
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usually consist of temporary feeding aggregations of two or more toothed (Odonto-
cetes) or baleen whales (Mysticetes) species [132, 133, 134, 135], occasionally includ-
ing other marine mammals and sea birds [136]. Social heterospecific interactions are
infrequent compared to other non-predatory interactions, although they have been
observed between groups of different species [137, 138, 139], between a group of one
species and an individual of another species [140], and between two individuals of
different species [141, 142]. These interactions are also usually temporary and in-
volve either toothed or baleen whales or both [141, 142, 143].

Differences in body size do not seem to present a constraint for these interactions:
in 2004 and again in 2006, a humpback whale (Megaptera novaeangliae) was seen
what seemed like playing with a bottlenose dolphin off the coasts of Hawaii [141].
In both cases the dolphin was ’lifted” by the whale on top of its mouth and the
interaction lasted just a few minutes. Interestingly, the observations were made two
years apart (to the day) off different islands and neither the whale nor the dolphin
were the same individual [141].

Interactions between a group of one species and an individual of another species are
also usually temporary and have been reported for odontocetes as well as mysticetes.
Species that in some areas are prey-predator or engage in interactions of aggressive
nature can occasionally engage in social interactions [69, 143]. One of these unusual
observations was made by myself in 2008, when a group of killer whales was seen
socialising with a striped dolphin (Stenella coeruleoalba) in the Strait of Gibraltar,
Spain.

The only known case of an individual of one species interacting having with a group
of another species for a long period is Billie. She is an adult female bottlenose dol-

phin who lives in the Algeciras Bay, in the Strait of Gibraltar, with short-beaked
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common dolphins (Delphinus delphis) [144]. Despite bottlenose dolphins being resi-
dent in the area [145], she seems to spend of all her time with the common dolphins
and was also seen caring for common dolphin calves and new-borns, which is a rarely
observed type of interspecific interaction. Billie is thought to have recently give birth
to a hybrid calf, although no genetic analysis have been done for confirmation yet

[144].

2.3.5.1 Predatory interactions

The main natural predator of harbour porpoises is the killer whale [69, 70, 71], a
cosmopolitan species and the most widely distributed marine mammal [146]. Al-
though their distributions overlap, not all killer whale populations feed on marine
mammals. In the North Pacific as well as in the North Atlantic, only one of the
three populations feed on marine mammals [e.g., 147, 148, 149]. Further, killer
whales predating on harbour porpoises in the North Sea and adjacent waters are
scarce [79, 81, 150, 151].

More recently, a new predator has been identified in the North Sea: the grey seal
(Halichoerus grypus). Grey seals feeding on harbour porpoises have been reported
for many European countries, including Belgium, France, the Netherlands, and the
UK. These observations include reports of scavenging as well as active predation
[152, 153, 154, 155]. Despite grey seals being present in West Scotland and Danish
waters [156], no predation events have been reported in these areas so far. The
impact of grey seals attacks on the population of harbour porpoises in the North

Sea and surrounding areas is unknown.
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2.3.5.2 Aggressive interactions

For reasons that are not well understood, harbour porpoises are killed by bottlenose
dolphins in some areas around the UK [143] and in Californian waters [157]. In the
UK, deaths due to bottlenose dolphin attacks are recorded along the entire Scottish
coast and constitute the most common cause of death for the species, representing

58]. The impact on the population is unknown.

about a quarter of all cases [I
Lethal interactions with other species have also been recorded. Baird et al. (1998)
described an event that took place in the west coast of Canada, off British Columbia
in 1994. A pair of Pacific white-sided dolphins (Lagenorhynchus obliquedens) were
seen interacting with a neonate harbour porpoise for several hours. Although the
dolphins were not visibly aggressive, they harassed the porpoise, which eventually
died [159].

Another example of a harbour porpoise calf who died as a result of interacting with
dolphins in Canadian waters is described in Larrat et al. (2012) [160]. In this case
there were no observations of the event, as the report is based on rake marks found
on the body of a young calf (< 1 year old) found stranded off Quebec. The large
number of markings on its body and their characteristics indicated the calf was a

victim of aggressive behaviour from Atlantic white-side dolphins (Lagenorhynchus

acutus) [160].

2.3.5.3 Affiliative interactions

Although rare, non-aggressive interactions between harbour porpoises and individ-
uals or groups of other species have been reported throughout their distribution

range. Recently, a juvenile harbour porpoise was seen travelling with a group of
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bottlenose dolphins in the Marmara Sea, spending much of its time in the echelon
position [140]. This interaction is surprising as in other areas, as mentioned above,
bottlenose dolphins are responsible for dozen of harbour porpoise deaths every year
[143].

On the west coasts of the United States and Canada, harbour porpoises are sym-
patric with Dall’s porpoises ( Phocoenoides dalli), although there seems to be a tem-
poral separation in their distribution. They have never been seen in mixed groups
[3, 161], and yet hybrids of these two species have been confirmed in the area, which
seem to occur at relatively high levels [162]. Willis et al. (2004) reported 20 cases of
hybrid individuals within Dall’s porpoise groups, of which nine were confirmed via
genetic analyses. In all cases where tests were carried out (n = 5), the mother was
a Dall’s porpoise and the father a harbour porpoise, which explains why hybrids
are observed in Dall’s but not in harbour porpoise groups [162]. Unfortunately, no
stranding of hybrids have been detected so far, which would provide opportunities
to learn more about these individuals [3].

The only known case of ’ongoing’ interspecific interaction between an individual
of another species and a harbour porpoise is Kylie, a solitary female short-beaked
common dolphin (Delphinus delphis) who lives in the Firth of Clyde [142]. Kylie
inhabits the Firth of Clyde since at least the early 2000s and because she moves
between different areas, she has received several names over the years, including
Kylie, Donna, and Colin. Her sex was unknown until 2019, when was confirmed via
underwater images taken by a local diver. She has lived a solitary life since she was
first seen in the area, although she is known to be occasionally accompanied by a
harbour porpoise [142]. Ryan et al. (2017) reported two observations of Kylie and

a harbour porpoise, made in two different areas of the Firth of Clyde, four years
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apart. The authors were lucky enough to have access to underwater photographs of
the porpoise, which showed that it was the same individual in both cases [142].

Opportunistic observations by many locals suggest Kylie spends time with a har-
bour porpoise regularly (Nairn, Unpublished data). To date, her vocal behaviour
has not been studied, neither when she is alone nor when she is with a harbour
porpoise. The interactions between Kylie and harbour porpoises provide a unique

opportunity to study inter-specific vocal communication in wild cetaceans.

2.3.5.4 Short-beaked common dolphins

Short-beaked common dolphins are found in temperate and warm waters around
the globe, except the Indian Ocean. Around the UK, common dolphins are mostly
found off Wales in the Celtic Sea and off the Northwest coast of Scotland [79, 80, 81],
rarely close to shore, but are also known to visit the Moray Firth [163] in the east
and the Minch in Northwest Scotland where they are seen in coastal waters [164].
This area is over 400 km away from where Kylie now spends most of her days, and
where common dolphins are rarely seen (Nairn, unpublished data). Common dol-
phins live and travel in large groups that regularly exceed 50 individuals and can
reach thousands of animals [165].

Common dolphins produce a wide range of sounds, within and outside the human
hearing range, that they use for foraging, orientation, and communication purposes.
Communication calls include whistles, buzzes, barks, yelps, squeals, and burst pulsed
calls. Studies on common dolphin sounds have been mainly focused on whistles and
how these vary depending on behavioural context and time of day, as well as geo-
graphic location [165, 166].

So far, there are no studies focused specifically on common dolphin clicks. Gurevich
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(1969) (cited in Evans 1973 [39, 167]) reported that common dolphin clicks have
energy between 100 and 150 kHz but, unfortunately, the study was in Russian and
details, such as peak frequency values, were not reported by Evans (1973) [39, 167].
Fish and Turl (1976) then reported that Evans said (in a personal communication)
that the source level ’and most of the other data for Delphinus and Globicephala
reported in Evans (1973) could have been an editorial error [168]. Although it is
not clear which of the numbers they refer to, other non-NBHF delphinids species
are known to produce short-duration clicks with energy in these frequencies. Unlike
NBHF clicks, short-duration clicks are broadband and thus cover a wide range of
frequencies, sometimes extending over 100 kHz [123]. With increased source levels
and as the recording devices gets closer to the centre of the echolocation beam, the
centroid frequency of these clicks increase [e.g., 102, 169].

Since then, several studies have directly or indirectly investigated the temporal and
spectral characteristics of common dolphin echolocation clicks. In these cases, the
authors either used the studies discussed above as references or used methods in-
adequate for detecting high-frequency (> 100 kHz) sounds, recording at sampling
frequencies between 80 kHz and 200kHz, rendering a maximum detectable frequency
of 40 kHz and 100 kHz, respectively [168, 170, 171]. Because of the reported high
levels of energy in frequencies below 100 kHz, these clicks are fundamentally dif-
ferent from NBHF clicks. Further, common dolphin clicks have been described as
oligocyclic (i.e., waveform with few peaks) and of short duration, not exceeding
o0us.

The fact that information about the energy content is inconsistent between studies
likely reflects the species ability to change the spectral characteristics of the clicks.

Roch et al. showed that long-beaked common dolphin (Delphinus capensis) can
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produce clicks with a wide range of peak frequency, from about 20 kHz to 65 kHz
[172], as shown in Figure 2.14. Tt is expected that short-beaked common dolphins
have similar abilities, especially as new data suggests short-beaked and long-beaked

common dolphins may be the same species [20].
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Figure 2.14: Long-beaked common dolphin. Concatenated spectrogram of long-
beaked common dolphins (Delphinus capensis) clicks. Clicks were sorted by peak
frequency which are highlighted by black points - Extracted from Roch et al. (2011)
[172]

The characteristics of Kylie’s clicks are not known or whether the sounds she
produces differ to those of conspecifics who live in groups. There are a few records
of toothed whales leading a solitary (temporarily or permanently), most of which
are bottlenose dolphins [173, 174]. Kylie is one of the seven cases of solitary common
dolphins ever reported worldwide [173, 175]. In most cases it is unknown why or

how these highly social animals become solitary [173, 176, 177, 178].

48



CHAPTER 2: LITERATURE REVIEW

2.3.6 Vocal learning and interspecies communication

The ability to learn new behaviours as a result of interacting with other individu-
als is known as social learning, whether it occurs by interacting with individuals of
the same or other species [179]. When it comes to vocal behaviour, learning can
be divided between contextual and production learning. Contextual learning oc-
curs when the use (or understanding) of a signal is associated with a novel context,
and production learning when an individual modifies the acoustic characteristics of
an existing signal producing a signal that was not previously part of its repertoire
[180, 181].

Janik and Slater argue that these vocal modifications refer specifically to the fre-
quencies of the signal and result from exposure to acoustic inputs, either artificial
sounds or by interacting with individuals of the same or other species [181]. Thus,
cases in which animals change the amplitude or duration of the signal in response
to high levels of background noise (i.e., the Lombard effect) would not constitute
production learning.

In captive settings it is possible to design experiments to test the animal’s ability
for vocal learning, as Richards et al. [182] put it: 'To establish a capability for
vocal mimicry [...] the following two conditions are necessary and sufficient: (a)
The vocalization produced by the animal in response to a presented "model” sound
must resemble that model, and (b) the model must not resemble sounds present in
the established baseline pretraining repertoire of the animal’. In that study, bot-
tlenose dolphins were successfully trained to imitate artificial sounds and to use
these sounds to label objects, such as 'person’ and ’'pipe’ [182]. Killer whales have

also been trained to imitate different sounds, including human speech in the form of
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simple words such as ’hello’ and "bye bye’ [183]. Even more impressive results were
recently seen in grey seals (Halichoerus grypus). A group of researchers were able
to teach wild seals kept temporarily in captive setting to produce a wide range of
sounds and imitate melodies of songs they could have never heard in the wild [184].
The ability to imitate human speech has been observed as well in marine mammals
who did not receive any training. A trainer at the Vancouver Aquarium in Canada
heard someone telling him to get out of the pool. To his surprise, it was a beluga
(Delphinapterus leucas) in the pool who utter the words [185]. One of the most well-
known cases is Hoover, a harbour seal (Phoca vitulina) who spontaneously started
to produce sounds that resembled human speech, with a Boston accent [186].
Inter-specific interactions sometimes lead to changes in the acoustic behaviour of
the animals involved. A study conducted with captive animals found that killer
whales who spent time with bottlenose dolphins, had learned to produce sounds
that were similar to bottlenose dolphins’ sounds, in what is, presumably, an at-
tempt to communicate with them [187]. Similarly, a beluga who spent time with
bottlenose dolphins were recorded producing whistles similar to those of bottlenose
dolphins sounds within months of being introduced in the same environment. More-
over, the beluga favoured those sounds over the ones she used before the interactions
occurred [188].

Production learning as a result of interspecies interactions in the wild, however, have
rarely been observed [189]. One of the few reported cases is a solitary killer whale
who was recorded producing sounds similar to the 'barks’ of California sea lions
(Zalophus californianus) [190]. Tyack (2008) argues that the definition by Janik
and Slater [180, 181] is limiting our understanding of vocal learning to cases where

we can perform experiments in captive settings, which does not necessarily reflect
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what happens in their natural environment. Tyack argues that vocal convergence
is a form of production learning, in which the animals match the sounds of con-
specifics or individuals of another species [191]. However, developing new tools are
necessary to study vocal learning (both contextual and production learning) and

communication in wild cetaceans.

2.4 Available tools

Using non-invasive techniques to study the acoustic behaviour of harbour porpoises
in their natural environment requires a series of tools, some of which already ex-
ist. These include an acoustic recorder that can stay underwater for long periods
with minimum or no supervision, a detector of impulsive sounds (i.e. potential har-
bour porpoise clicks), a click classifier, and a series of algorithms to group acoustic
events and extracts patterns to identify behaviours. The existing tools are described

below.

2.4.1 Passive Acoustic Monitoring - PAM - devices

Visual surveys are the default method to study cetaceans. These range from land
and boat-based surveys focused on individual animals using photo-identification
[85, 192], to large-scale boat-based and aerial surveys carried out in pre-determined
transects to estimate density and abundance [81, 89]. The use of acoustic devices,
generally known as passive acoustic monitoring (PAM) systems, to study cetaceans
began in the 1960s [193] and became widely used from the 1990s onwards, when
many research groups started developing their own devices [see 194]. PAM systems

have several advantages over visual surveys as they can be used during bad weather
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conditions (e.g., high waves, fog) as well as at night, and data collection can be done
with no supervision, which means their performance is not affected by the experience
or levels of alertness of the observer. Moreover, because cetaceans spend up to 95%
of their lives underwater, animals sometimes are only detected acoustically or are
detected acoustically before they are detected visually [e.g., 195].

There are now numerous PAM systems to choose from, and the choice depends on the
research objectives, location, activity, and species to be monitored, as well as budget
and time constrains. Acoustic recording devices can be mounted on vessel hulls
[196], towed behind vessels [195, 197, 198, 199, 200], or moored to the seabed, which
are also known as static acoustic monitoring (SAM) devices [201, 201, 202, 203].
Other systems include drifting buoys [204, 205] and small acoustic tags that can
be attached to animals [e.g., 206]. Furthermore, depending of the objective of the
study, one can use a single hydrophone [207, 208] or an array, which in turn can be as
simple as two hydrophones, or very complex with several hydrophones (or devices)
arranged in a strategic configuration. For example, Thomson et al. [209] used
an array of static devices (i.e., C-PODs, Chelonia Ltd., UK) in the Moray Firth,
Scotland, to investigate whether harbour porpoises changed their distribution as a
result of seismic surveys in the area and Malinka et al. [204] studied the movement of
harbour porpoises in tidal areas using PLA-Buoy (Porpoise Localising Array Buoy),
a self-contained buoy-based system with a vertical hydrophone array comprising
eight hydrophones [204]. The duration of the monitoring period also depends on
the type of PAM used, ranging from a few hours (e.g., towed systems [210]) to a
couple of days or weeks (e.g., D-tags [206]), to up to several weeks or months (e.g.,
C-PODs [211)).

Existing SAM devices that can be used specifically to study harbour porpoises can
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be divided into two main types: devices that only log data about acoustic events
and those that record continuously. The most used data logger is the C-POD and
its predecessor the T-POD (Chelonia Ltd., Cornwall, UK). "T” stands for timing and
'C” for cetacean. These are self-contained devices that can be deployed on the seabed
for long periods without supervision. Additionally, they include a built-in classifier
(i.e., KERNO) for clicks and to separate click trains produced by harbour porpoises
and other NBHF species, from those produced by dolphins, and those of non-animal
origin (e.g., sonar) [211]. This separation is based on a series of parameters estimated
for each impulsive sound detected, including estimates of peak-to-peak amplitude
and peak frequency, as well as inter-click intervals. Both C-PODs and T-PODs
have been successfully used to monitor many NBHF species including the vaquita,
the harbour and Burmeister’s porpoises, and the Heaviside’s and Hector’s dolphins
[56, 106, 212, 213, 214], as well as other odontocetes such as the bottlenose dolphin

[e.g., 201].

Figure  2.15: CPOD  (top) and  DeepC-POD  (bottom) -  from
https://www.chelonia.co.uk
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The PODs are used for a wide variety of studies, including seasonal and geograph-
ical changes in distribution [215] and response to anthropogenic noise [106, 203, 216],
as well as porpoise acoustic behaviour, including diurnal variations in echolocation
rates and click train patterns [202]. The embedded algorithms highly reduce the
time needed for data analysis and provide researchers with pre-selected data. On
the other hand, because the signals are not recorded and the algorithms are not
publicly available, verification of the acoustic events is limited and subjective. Fur-
thermore, although the false alarm levels seem to be rather small [e.g., 82], the level
of missed clicks is not well understood [217], especially in the context of high back-
ground noise levels [218].

Despite this, they showed potential for studying communication in harbour por-
poises. Koschinski et al. (2008) used T-PODs to record and describe vocalisation
patterns consistent with social calls of a harbour porpoise calf entangled in a fish-
ing net off the coasts of Canada. It is worth noting, however, that the calls were
searched for as the authors knew where to look in advance [8]. A new POD is being
developed, the F-POD, which would potentially be able to detect social calls [219].
A new alternative to the PODs is the SoundTrap (Ocean Instruments, New Zealand).
SoundTraps are self-contained acoustic devices and, unlike PODs, can record con-
tinuously, which means that not only verification is possible but also they can be
used to study how noise types and levels affect the behaviour of harbour porpoises.
Moreover, recordings made with SoundTraps could be used to study harbour por-
poise social behaviour and communication. However, recording continuously at high
sampling rates (> 300 kHz) required to record harbour porpoise clicks, generates
enormous amount of data. Researchers are then faced with two challenges: limita-

tions of storage capacity and available time necessary to analyse the data. Because
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SoundTraps include a click (i.e., impulsive sound) detector that saves them in small
clips, these can be classified directly and the potential harbour porpoise clicks ex-
tracted for further analysis. To that end, an automated classification system that
can accurately and reliably identify harbour porpoise clicks is required (especially
for studies without concurrent visual information) as well as algorithms to group

clicks, extract patterns, and identify behaviours.

2.4.2 Detectors and classifiers

In principle, the terms ’detector’ and ’classifier’ can be used interchangeably. In sig-
nal detection theory, the output of a detector is a yes/no answer as to whether the
input is a known signal. In this sense, a detector is a classifier ([see 220]). However,
when studying phonations of cetaceans, specifically echolocation clicks produced by
toothed whales, using these terms interchangeable can be problematic. In much of
the literature, the term ’click detector’ is used to mean ’click classifier’, when in prac-
tice, the detection and classification processes are consecutive steps that complement
each other. What is usually referred to as ’click detectors’ are energy detectors that
detect transient sounds (i.e., ’clicks’) in the .wav files. These are sounds of short
duration with abrupt onset and rapid decay and represent potential echolocation
clicks, as the great majority are of non-animal origin and only a small proportion
are produced by cetaceans.

One example is the PAMGuard’s Click Detector Module. PAMGuard is a modular,
open source software aiming to detect and classify marine mammal sounds. It was
released in 2006 [221] and it is today one of the most used software for real time

monitoring and off-line data analysis. PAMGuard has been shown to be crucial
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for real-time monitoring of harbour porpoises around underwater noise-producing
activities, such as seismic surveys [e.g., 222], as well as for others studies such as
fine-scale distribution [90], and monitoring around risk areas for them [204, 223].
This click detector detects impulsive sounds with a signal-to-noise ratio (SNR) over
a given threshold (e.g., 6 dB) and extracts them as individual audio clips of very
short duration, which includes the signal and a number of samples (e.g., 40 samples)
before and after the signal. These clips are then classified as porpoise/no porpoise.
The standard settings of the classifier in PAMGuard include a pre-filter (4th order
digital Butterworth ITR 10 kHz high-pass filter) and a trigger filter (4th order digital
Chebyshev IIR 100-150 kHz band-pass filter, pass band ripple). Clicks are classi-
fied as produced by porpoises by comparing the test band (110-150 kHz) to control
bands (40-90 kHz and 160-190 kHz), with a 6 dB threshold (’general configuration
file — porpoise click detection’; available at www.pamguard.com). As an open source
software, PAMGuard is regularly improved, and although the user can manage the
settings, there is no available information about the performance of the classifier.
The precision (i.e., percentage of individual clicks correctly classified as porpoise
clicks) reported for an earlier version of this classifier was between 37% and 74%,
depending on the settings and background noise, while the proportion of missed
clicks was not reported [224]. The user can manually verify the potential porpoise
clicks identified by the classifier, and then group them into echolocation events in
order to be extracted for further analysis ([92, 116].

In simple terms, a classification system (i.e., a discriminant function in statistics)
assigns a given signal X to one of k pre-defined classes or categories according to a
series of parameters or functions, where X is a multivariate random variable. For

example, the multivariate random variable X (i.e., person’s appearance) comprises
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a series of variables such as x; = height, 2o = weight, and x3 = hair colour. When
we talk about harbour porpoise clicks, these variables would be those that can be
used for classification purposes, such as peak frequency and duration. It is clear,
therefore, that the classification process takes place after the 'detection’. It is cru-
cial to make the distinction between the detection and classification steps, as each
is associated to performance errors which must be corrected for/taken into account
using different approaches. Moreover, the settings of the detector impact the perfor-
mance of the classifier, for example, if the detector uses a high SNR threshold, some
clicks would not be detected and thus not classified, regardless of how accurate the
classification system is.

Classifying cetacean signals have been a research topic of interest for some decades,
as many sounds seem to be species specific. At first, detection and classification
was restricted to certain species and conditions due to the limitations of the tech-
nology available at the time. One of the first systems was developed to study sperm
whales, which produce loud, regular, broadband clicks that they emit approximately
every second as they dive [38, 225]. The authors were not able to use any temporal
information of the signal (e.g., waveform) for classification purposes, but the rate
at which sperm whales click is highly regular and this, together with the direction
where the signal was coming from (i.e., bearing), allowed them to separate sperm
whale clicks from those signals that were likely noise [225]. This simple detector/-
classifier was improved since then and it is still used to study sperm whales [226].
As technology improves, both in terms of PAM devices and computational ca-
pabilities, automatic classifiers for cetacean sounds are regularly developed |e.g.,

170, 172, 221, 224, 227]. Classification methods for toothed whales sounds have

been developed for several species, for echolocation clicks as well as whistles and
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other tonal sounds. For example, Real-time Odontocete Call Classification Algo-
rithm (ROCCA) is a MATLAB-based tool that extracts, measures, and classifies
whistles. These are described using ten variables, including start and end frequen-
cies, maximum and minimum frequencies, and duration. Subsequently, a multi-
variate discriminant function analysis (DFA) is used to classify whistles to known
groups based on orthogonal linear functions derived from the ten selected variables,
and regression tree analysis (CART) to create decision trees that separates data into
groups through a series of binary splits [228]. ROCCA can achieve high correct clas-
sification rates (i.e., precision) for individual clicks for several toothed whale species,
with variations between species, ranging from 14.7% to 63.8%, with an overall cor-
rect classification of 33.5% [228].

Similarly, Oswald et al. (2003) [229] used DFA to classify whistles within and be-
tween nine different odontocete species. The authors used the spectrograms of the
whistles and measured 12 variables that were then incorporated into the model.
The classifier achieved between 29.9% to 91.2% accuracy within species, however,
the performance between species was lower, between 6.7% and 66% [229]. And
Romeu et al. (2017) [230] used DFA to classify whistles within the same species
(i.e., bottlenose dolphins - Tursiops truncatus) in different behavioural contexts.
Dolphins from this population are known to forage cooperatively with fishermen
in Laguna, in southern Brazil [231]. The authors used seven variables in this case
and used DFA to successfully distinguish between whistles the dolphins produced
when engaged in cooperative foraging with fishermen and those produced in other
scenarios [230, 231].

Kyhn et al. 2013 [41] studied the spectral characteristics of harbour and the Dall’s

porpoises, which are sympatric NBHF species off west Canada, and harbour por-
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poises in Danish waters. The authors found enough differences in the spectral char-
acteristics of their signals to distinguish between sympatric species (off the west
coast of Canada) and animals of the same species but from different geographic
areas (Canada and Denmark). To that end, they used a canonical discriminant
analysis, using centroid frequency, root-mean-square bandwidth, and duration as
explanatory variables [41].

Classification rates are generally higher than what is expected by chance, although
there is high variability, which can be explained at least in part by the existing
variability in whistles and clicks characteristics even within species, depending on
geographic and behavioural contexts. The perfect classifier can hardly exist, how-
ever, as not only the temporal and spectral characteristics of the signal might be
affected depending on the direction where the signals impinges on the hydrophone
[232], but also the performance of the classifier also depends on how the data was

collected and extracted.

2.4.3 Pattern identification algorithms

Unlike other sounds produced by cetaceans and other animals, harbour porpoise
echolocation clicks are of very short duration (< 100 us) and it is thus possible
to treat each click as a discrete point in time, much as footsteps. When we hear
footsteps we have information about the inter-steps intervals and the amplitude (i.e.,
loudness) of the sound. If the separation between steps is regular, then we assume
these belong to just one person, but if the inter-step intervals are irregular, then
it is likely that there are more than one person. Similarly, it is possible to use the

relative amplitude of the steps to distinguish between the person closest to us, and
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whether they are approaching or moving away.

With this in mind, a simple method has been developed to separate overlapping
click trains, in this case of bottlenose dolphin clicks [233]. Lepper et al. (2005) first
estimated the mean and standard deviation of the distribution of the logarithm of
the ICI and amplitude difference between consecutive clicks of their dataset. Then
used the standard deviation values as a threshold to decide whether a click belonged

to the same click train (i.e., animal - Figure 2.16).
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Figure 2.16: Querlapping click trains. Figure extracted from Lepper et al. (2005)
[253] showing two overlapping click trains produced by bottlenose dolphins (Tursiops
truncatus) and the result of their algorithm (red line)

Another similarly simple algorithm was developed by Starkhammar et al. (2011)
[234], which uses the level of similarity between the power spectrum of consecutive
clicks. Unlike the previous work, this algorithm begins at a random place of overlap-
ping click trains and estimates the correlation of the power spectrum of consecutive
clicks in an iterative process. Clicks with a correlation of 0.95 or more are assumed
to belong to the same click train [234].

Both manuscripts reported success in the separation of overlapping click trains, al-
though no specific numbers are provided, these algorithms have shown potential for

other species [233, 234]. Both methods were developed using data collected by one
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hydrophone. Amplitude and inter-click intervals are always available to researchers,
whether they are using data loggers or continuous recorders, and in the latter case
also the power spectrum can be produced. Both methods can in principle, with
minor modifications, work if the click trains are incomplete and if other impulsive
sounds and multipath have not yet been removed, which is the case for most record-

ings made in the wild.

2.4.4 Challenges

There are many sources of noise in the ocean, some of which have energy within the
frequency range of the porpoise clicks, therefore using acoustic events or click trains
is more reliable than using individual porpoise clicks [219]. This is crucial as even
though impulsive noise may be classified as a NBHF click, most noise sources are
not patterned as NBHF click trains are. Additionally, background noise levels can
degrade the porpoise click if the animal are at a limit of detectable distance from

the recorder. The most important challenges are discussed below.

2.4.4.1 Directionality

Echolocation clicks are highly directional and as the main axis of the head of the
porpoise moves away from the recording system, the signal is filtered and distorted.
Although this is especially true for broadband echolocation clicks produced by del-
phinids, it does affect NBHF clicks [53, 235].

2.4.4.2 Masking

Certain noise types in the background can mask clicks with low signal-to-noise ratio,

which can be missed by either the detector or the classifier. This is important be-
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cause understanding the underlying behaviour of click train patterns, require access
to most, if not all, clicks, which can have low amplitudes at the end (e.g., feeding

buzzes).

2.4.4.3 WUTS

WUTS refers to 'weak unknown train sources’, and as the name indicates, the sources
of these trains are unknown. Although they have been found only using T-PODs and
C-PODs, WUTS have been reported in many places, including Australia mangroves,
Gulf of Maine, Gulf of Alaska, Gulf of California, and the Baltic Sea. They have
not been reported in studies using continuous recordings and everything we know
about them comes from PODs [219]. These WUTS seem to have complex patterns
of repetition rates, that can range from about 7,000 clicks per second to 100 clicks
per second, although never below 40. The key feature is the variation in the peak
frequency, which seems to be more random than expected in a NBHF click train.
Because the POD does not record the sounds, it is not clear how the energy is

concentrated, although they seem to have a minimum bandwidth [219].

2.4.4.4 Sonar

In many areas, fishermen use sonar to find fish. The frequencies are usually set at
50 kHz, 100 kHz, and /or 150 kHz. The last two can be a real problem for click train
classification as the energy is within the porpoise range and because the inter-pulse
intervals of sonars are highly regular. On the other hand, the regularity is relatively
easy to identify and the frequency changes are small compared to variations in click

trains.
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2.4.4.5 Multipath

Multipath is the propagation phenomenon that results in the same signal to reach
the hydrophone from different paths. In the case of harbour porpoise clicks, this can
occur when the porpoise is facing the water surface (or the seabed) and the click
reaches the hydrophone from the direct path as well as after being reflected in the
water surface (or the seabed). Depending on the situation, this phenomenon can
impact the performance of the classifier (e.g., the multipath signal retains the same
spectral characteristics), or the ability to group clicks belonging to the same echolo-
cation event (e.g., the multipath signal retains the amplitude levels or arrives at

intervals that could overlap with the signal arriving through the direct path).
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Chapter 3

Data description

This Chapter describes the study areas and how the acoustic data were collected
and extracted. In Section 'Study areas and data Collection’, both study areas in
Scotland and Denmark are described as well as how the data were collected in
each. In Section 'Data Extraction’, the method used to extract the samples used
to developed the algorithms throughout this project is explained. Lastly, in Section
"Derived Data’ a description of the main variables used and how they were estimated
is presented.

One additional dataset was used in this project. See Chapter 8 - D-PorCCA - from

acoustics to behaviour for more information.
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3.1 Study areas and data collection

3.1.1 Scotland

The Firth of Clyde (55.5254 N, 4.9333 W) in the West coast of Scotland is a large
inlet with high freshwater input, characterized by deep channels and unique sediment
types (Figure 3.1). It is an area with high biological diversity, and where at least 15

species of whales, dolphins, and porpoises have been observed in the area.

-4°51.6"

Figure 3.1: Study area - Scotland. Firth of Clyde.

Harbour porpoises are the most abundant and most widely distributed small
cetacean species in the UK [2, 79, 80, 89, 230], and is a resident species in the Firth
of Clyde [90], which is one of the areas with higher density of harbour porpoises in

Europe, with a density of about 1 animal per square km [80, 81, 237]. The only
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abundance estimate for the Firth of Clyde was made over a decade ago from sightings
made from July to September 2004, and resulted in 1,645 individuals (CV = 0.351)
with a density of 0.823 animal per square km [237]. However, these numbers are
likely an underestimation, as Brown (2018) found hot spots where porpoise density

is up to 4 animals per square km [90].

3.1.1.1 Data Collection

The acoustic data from the Firth of Clyde used in this project were collected by
the CIC Clyde Porpoise during systematic and opportunistic surveys. These were
carried out under sail or engine from the ’Saorsa’, a 40-foot sailing vessel. In the
Firth of Clyde, data were collected in 25 days throughout all seasons, between 2016
(n = 20) and 2017 (n = 5), totalling over 210 hours of recordings. Additionally,
data off the north-east coasts of Northern Ireland were collected on the 19th of
September 2019 (16 hours). Systematic acoustic surveys were carried out in pre-
determined transect lines aiming to provide equal coverage probability to the entire
study area, which were designed using the software Distance 7. These transect
lines were surveyed at a speed between 5 and 7 knots. Data collection was carried
out in different weather and background noise conditions (e.g., vessel traffic, sonar
activity), during both day and night times. If the sea state reached > 5 in the
Beaufort scale (Table 3.1), the survey was terminated. No concurrent visual efforts

were made.

Data were collected using a towed hydrophone array connected to a computer
running the software PAMGuard [221]. Different versions of PAMGuard were used,

starting with version 1.15.10. The hydrophone array included four omnidirectional
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Table 3.1: The Beaufort scale (0-6 only), developed by Sir Francis Beaufort in 1805.

WIND WIND DESCRIPTION
FORCE | SPEED (kn)
0 1 Calm, sea like a mirror.
1 1-3 Light air, ripples only.
2 4-6 Light breeze, small wavelets (0.2 m).
Crests have a glassy appearance.
3 7-10 Gentle breeze, large wavelets (0.6 m).
Crests begin to break.
4 11-16 Moderate breeze, small waves (1 m),
some white horses.
5 17-21 Fresh breeze, moderate waves (1.8 m),
many white horses.
6 22-27 Strong breeze, large waves (3 m),
probably some spray.

hydrophones, comprising one low frequency hydrophone, one mid-frequency hy-
drophone, and two broadband hydrophones (Figure 3.2). These were two Magrec
HPO3 hydrophone units, each comprising a spherical ceramic and a HP02 preamp,
with a preamp high-pass filter set at 2 kHz. The hydrophones had a sensitivity
of -201 dB re 1V/uPa at 150 kHz, and a flat response between 2 kHz and 150
kHz. The array was connected to a computer and towed behind the vessel using a
Kevlar-strengthened 100 m long cable. The Magrec HP03 hydrophone units were
25 cm apart, enough to obtain direction of arrival of impulsive sounds [238]. Only
recordings made with the broadband hydrophones were used in this project.

Recordings were digitised through a St Andrews Instrumentation Ltd. data acqui-
sition card with 16-bit ADC resolution, at a sampling frequency of 500 kHz. Due to
the large amounts of data collected at such high sampling frequencies using 4 chan-
nels, recordings were saved in 9-min long audio files (size of 2 GB) in .wav format.

Additionally, the computer was connected to a GPS, and latitude and longitude
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were recorded every second.

Figure 3.2: Hydrophone array. Schematic of the hydrophone array system used to
collect acoustic data in Scotland.

3.1.2 Denmark

The Great Belt (55.3615 N, 10.9655 E) is the only deep water entrance to the Proper
Baltic Sea and thus a high-traffic area, containing the shipping lane known as " Route
T”, with around 27,000 vessels passing by annually. The Little Belt (55.5295 N,
9.7535 E) is heavily trafficked, with maximum depth of 80 m. The seabed in the
area is composed of mud and sand with no kelp. Both areas are known to have high

harbour porpoise density in spring and summer months [239].
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Figure 3.3: Study area - Denmark. Left: Denmark. Right: Little Belt (LB)
and Great Belt (GB). Image (© 2015 Google and GeoBasis-DE/BKG (Data: SI0,
NOAA, U.S. Navy, NGA, GEBCO,).

3.1.2.1 Data collection

Data were collected in Danish waters in 2015 using SoundTrap ST300 (Ocean In-
struments, New Zealand), in two different locations (Figure 3.3). The data were
obtained from a total of 7 deployments, 5 in the Great Belt area, in August, Septem-
ber, and November, and 2 in the Little Belt area in August. The deployments in
the Great Belt were 1 km from the lane ”Route T”. SoundTraps are self-contained
and recordings are made in .wav format, at a sampling rate of 576 kHz. The devices
were set up in a structure with an anchor (i.e., a cement block), an acoustic release
unit (Sonardyne, UK) to recover the devices, and a submerged buoy to counteract
the negative buoyancy of the SoundTrap [? |.

According to SoundTrap User Guide, ”in contrast to traditional hydrophone sys-
tems, with SoundTraps there is no need to be concerned with sensitivity in voltage
terms. Because SoundTraps integrate the recorder and hydrophone in a single pack-
age, there is a fixed relationship between sound pressure and the resultant wav file
data, thereby simplifying calibration and eliminating the need for voltage calcula-

tions”. However, in order to estimate amplitude values in PAMGuard, it is necessary
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to provide these values. In this project the following were used: sensitivity of -182
1V/uPa, and peak to peak voltage range of 2.0 V as recommended by Ocean In-

struments. For more details on how the data were collected see [217].

3.2 Data Extraction

For the completion of this project, two types of data were used: audio files (.wav
files) which were recorded through PAMGuard, and small audio clips containing
individual transient sounds, generated and saved by PAMGuard’s 'Click Detector
Plug-In’ (see below). These are sounds of short duration with abrupt onset and
rapid decay and represented potential harbour porpoise echolocation clicks (n =
37,760,282). The .wav files were inspected using different versions of Audacity,
looking at both the amplitude variations in the time domain (i.e., waveform) and
the spectrogram using the default settings (i.e., Hanning window, FFT: 512).

PAMGuard is a modular, open-source software developed to detect and classify
marine mammal sounds [221]. The Click Detector Plug-In detects transient sounds
above a given signal-to-noise ratio threshold, selected by the user (default = 6 dB).
The detected sound is then saved as an individual audio clip, which also includes a
very short recording period before and after the impulsive sound detected (default
= 40 samples before and after the signal). By default, all impulsive sounds detected
in a given hour of recording are individually saved in one .pgdf file. PGDF stands

for PAMGuard Data File [240].

Individual audio clips from Scotland and Denmark were extracted using a MAT-
LAB algorithm developed by J. Macaulay (available here) and adapted for this

project. For each audio clip a series of parameters are provided such as date and

70


https://conservationcoding.com/2017/09/10/the-new-pamguard-matlab-library/

CHAPTER 3: DATA DESCRIPTION

;;;;;

< Srow: [JEhoes [ZlUndassfeddids [ Porpose |AWD | [JEventdids nly

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

xxxxxxxxxxxx

Ampltuce (Linear)

L. \N‘V‘ }\l ‘W o ]

o 160 0 100 e 20 0 2
5:21:35.135 bos [ reqwenykie Sanal Trioger Level @)

Figure 3.4: Top: harbour porpoise clicks (in red) over a period of 20 s as seen in
PAMGUARD’s 'Click classifier’ display (v = time, y = bearing). Bottom: temporal
and spectral characteristics of a selected click (grey circle). Left: waveform in both
channels. Centre: frequency domain (FFT - 256 samples). Right: Wigner plot.

time and, when there are more than one hydrophone, time of arrival difference (i.e.,
delay) with respect to the reference hydrophone, and direction of arrival, estimated
using trigonometric methods based on said delay [224].

The audio clips extracted from Scottish and Danish data were used to test the differ-
ent algorithms developed in this project. The entire Scottish and Irish dataset com-

prises over 3 million clips and the entire Danish dataset over 34 million clips.

3.3 Derived Data

A series of parameters were used throughout the project in audio clips extracted

as mentioned in the previous Section. The following paragraphs describe these
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parameters and how they were estimated where applicable.

e ID - A unique identification number was assigned to each click in chronological

order per day.

e Date and time - For clips extracted using PAMGuard, the programme pro-
vides date and time in numerical format, which was used like that or converted
into text format (e.g., 25 Jul 2017 15:28:34). In case of clips created from .wav
files using a click detector developed for this project, date and time was ob-
tained from the .wav file metadata and estimated for each clip using sampling

frequency and number of samples.

e Start sample - Sample number where the click begins per day (in PAM-
Guard) or within the .wav file for the detector developed in this project. The

sample number is used to estimate the inter-click interval.

e Duration (us) - The duration of the signal was estimated as the 80% energy of
the clip that contains the signal [238]. The samples PAMGuard saves contain
the signal and samples before and after, which may sometimes include an echo.
Moreover, the echo might arrive at the same time as the signal and thus the
energy in the sample would be greater than that of the signal itself, therefore
using 80% instead of 95 or 97% provided a more accurate approximation of

the duration of the click of interest for modelling and comparison purposes.
e Amplitude (dB re 1 pPa) - Peak amplitude of the signal.

e Peak frequency (PF, kHz) - Frequency with the highest amplitude in the

frequency domain (FFT = 256 points) [238].

e Centroid frequency (CF, kHz) - The point dividing the spectrum in halves
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of equal energy, derived by the squared pressure over a 256-point (128 pus)

window, symmetrical around the peak of the signal envelope [241].

e -3dB Bandwidth (BW_s,5, kHz) - The -3 dB bandwidth is defined as the
bandwidth around the peak frequency that contains half of the signal power
[238].

e RMS Bandwidth (BWgys, kHz) - The root mean square bandwidth is
defined as the spectral standard deviation around the centroid frequency on a

linear scale. (Algorithm courtesy of J. Tougaard) [238].

e Ambiguous bearing (degrees) - Direction to the sound source estimated
using time of arrival differences (i.e., delays). This information is available
in the output of PAMGuard’s Click Detector [224]. It is ambiguous because
there is no information on where in the water column the source is situated,

nor which side of the hydrophone array the signal is coming from.

e Cross Correlation (XC) - Maximum cross-correlation (also known as 'matched
filtering’) coefficient between the clip and a typical harbour porpoise click. The
click used as a 'template’ is a click extracted from the snip samples, selected
based on the waveform characteristics and peak-to-peak amplitude (~162dB
re: 1pPa) [235, 238]. Additionally, the waveform was consistent in both hy-
drophones and the time of arrival difference between them was 0 (i.e., the

orientation of the animal was likely towards the array).

e Qrus - Relative width of the signal, and is estimated as the ratio between

centroid frequency and BWgrps [33]

e Inter-click interval (ICI, ms) - Time difference between the click and the
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previous one. The inter-click interval for the first click in a click train (click

ID = 1) is 0.

e Clicks per second (CPS) - The number of clicks per seconds is estimated

as 1000 divided the inter-click interval.

These variables and parameters are regularly used in studies on harbour porpoise
acoustics characteristics and behaviour, and they are used throughout the thesis for
different purposes. In Chapter 4, Qgrug, duration, XC, CF, ratio, and BW_3,4p are
used to develop a harbour porpoise click classifier for high and low-quality harbour
porpoise clicks. In Chapter 5, the repetition rate (i.e., clicks per second) and CF are
used to identify click train types, subsequently the repetition rate and the amplitude
are used to clean click trains from unwanted sources of sound, and lastly repetition
rate is used to identify behaviours. Finally, these are used in different ways in D-
PorCCA, the standalone application developed in this project, described in detail in
Chapter 8. These parameters and variables are used for visualisation purposes as

well as to generate summary data the user can download for further analysis.
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PorCC: the harbour porpoise click

classifier

4.1 Introduction

The available acoustic continuous recordings made using passive acoustic monitoring
(PAM) systems could be used to fill gaps in our understanding of harbour porpoise
behaviour and communication in the wild. To that end, however, a classification
system that can accurately and reliably identify as many harbour porpoise clicks as
possible within an echolocation event is required. A classification system, in simple
terms, assigns a given signal x to one of k£ pre-defined classes according to a series of
parameters or functions. For continuous recordings, one of the most used harbour
porpoise detector/classifier systems is PAMGuard’s Click Detector and Classifier
Module, which is used for real-time as well as offline detections and classifications

[92, 116, 242]. PAMGuard is a modular, open-source software designed and devel-
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oped specifically to detect and classify marine mammal sounds [221]. The standard
settings of the porpoise classifier includes a pre-filter (4th order digital Butterworth
ITR 10 kHz high-pass filter) and a trigger filter (4th order digital Chebyshev IIR 100-
150 kHz band-pass filter, pass-band ripple). Clicks are classified by comparing the
test band (110-150 kHz) to control bands (40-90 kHz and 160-190 kHz), with a 6 dB
threshold (‘general configuration file — porpoise click detection’, available at PAM-
Guard’s website.) As an open source software, PAMGuard is regularly improved,
and although the user can manage many of the settings of the detector/classifier,
there is no available information about its performance. The precision (i.e., percent-
age of individual clicks correctly classified as porpoise clicks) reported for an earlier
version of this classifier was between 37% and 74%, depending on the settings and
background noise, although the proportion of missed clicks was not reported [224].
The performance of the current version remains unquantified (at the time of writ-
ing). The user can verify the classifications through the Click Detector Display
(Figure 3.4) after the identified clicks have been highlighted and extract clicks for
further analysis by either selecting everything or by selecting individual echoloca-
tion events [92, 116]. Alternatively, some researchers use custom-built classifiers, of
which neither the algorithm, nor the performance are publicly available. As acoustic
recordings continue to accumulate, assessing the performance of available classifiers
for comparison purposes and automating these processes becomes essential.

Recently, different modelling and machines learning methods have been developed
and applied to classify cetacean sounds [e.g., 170, 172, 221, 224, 227]. One of such
methods is the discriminant function analysis (DFA), which can predict a categorical
response variable from a group of 4 or more numeric explanatory variables. Mul-

tivariate DFA has been used to classify cetacean sounds, both for odontocetes and

76


www.pamguard.com
www.pamguard.com

CHAPTER 4: PORCC: THE HARBOUR PORPOISE CLICK
CLASSIFIER

mystecetes species, with varied results [e.g., 228]. If the response variable is binary
(e.g., yes/no), there is an approach that makes fewer assumptions than DFA and
it is more appropriate. This method is the generalised linear model (GLM), more
specifically, the logistic regression model. GLMs are parametric because a prob-
ability distribution (binomial, in this case) is specified for the response variable.
The logistic regression model can be used to estimate the probability that a given
signal is a known signal, based on a series of predictor variables. For example, the
multivariate random variable X (i.e., harbour porpoise click) comprises a series of
variables such as z; = peak frequency, x9 = duration, and x3 = -3dB bandwidth.

The model to be fitted is

gx) =00+ b1 * a1+ P2 *ro+ Py * s .

Where §; are the coefficients to be estimated; x; are the values of the explanatory
variables; g(x) is the logarithm base 10 (log) of the odds ratio of y; = 1 vs y; = 0
(i.e., the log of the odds of a signal being a porpoise relative to not being one); and
Bo is the intercept or constant (i.e. the log of the odds of a signal being a porpoise
relative to not being one when all explanatory variables are zero). Thus logistic
regression models divide the data in two, on one side what we are looking for and
on the other, everything else. Machine learning methods are based on consecutive
logistic regression models.

Thus, logistic regression models make an excellent candidate to identify harbour

porpoise clicks, which are highly stereotyped sounds [6, 7, 11].
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4.2 Methods

4.2.1 Data collection and extraction

The data used for this Chapter were collected in the Firth of Clyde (55.5254 N,
4.9333 W), Scotland, by the Porpoise Clyde CIC. Surveys were conducted in 25 days
throughout all seasons, between 2016 (n = 20) and 2017 (n = 5), totalling over 210
hours of recordings. No concurrent visual efforts were made. Surveys were carried
out under sail or engine from the "Saorsa’, a 40-foot sailing vessel. See Chapter 3 -

Data description for a detailed description of data collection and extraction.

4.2.2 Data exploration

To develop the classifier, a total of six potential explanatory variables were chosen,
four of which are regularly used to describe harbour porpoise clicks. These are du-
ration, centroid frequency (CF, kHz), -3dB bandwidth (BW_34p, kHz), and Qgass-
Additionally, the ratio between the peak and centroid frequencies (Ratio) and the
peak value of a cross correlation (XC) performed against a typical harbour porpoise
click were used. This typical click was extracted from the original dataset, and was
selected based on the characteristics of the waveform, the power spectrum, and the
spectrogram, as well as the peak-to-peak amplitude (162dB re: 1uPa). Additionally,
the waveform was consistent and overlapping in both hydrophones, as the time of
arrival difference between them was 0, therefore the orientation of the animal was
perpendicular to the array (See Chapter 3 - Data description for more details on the
estimation of these variables).

Before developing the logistic regression models, the following assumptions were

78



CHAPTER 4: PORCC: THE HARBOUR PORPOISE CLICK
CLASSIFIER

tested when required:

-Linear relationship: The logistic regression model does not require a linear rela-
tionship between the response and explanatory variables.

-Normality: The error terms (residuals) do not need to be normally distributed.
-Homoscedasticity: the variance of the explanatory variables are not required to be
similar for the logistic regression model.

-Independent observations: the observations should not come from repeated mea-
surements or matched data. To address this requirement, clicks were selected using
a random number generator.

-Multicollinearity: Multicollinearity is when the explanatory variables are correlated
with each other. The logistic regression model requires there to be little or no mul-
ticollinearity. Multicollinearity was tested using the Pearson y? coefficient. None of
the variable pairs had a correlation coefficient higher than £ 0.36, except for Qras
and XC that had a correlation of 0.49 Figure 4.1. "Multicollinearity was also tested
using the generalised variance inflection factor (GVIF) and all pairs of variables had
a GVIF value below 2, indicated they were not correlated.

-Linearity: The logistic regression assumes linearity of explanatory variables and
log odds. Although this analysis does not require the response and explanatory
variables to be related linearly, it does require that the explanatory variables are
linearly related to the log odds.

-Sample size: This model requires a large sample size (n), which can be estimated as
n = 100 + x * i, where x is 50 for logistic regression models, and i is the number of
explanatory variables [243]. Thus, having a maximum of six explanatory variables,
n must be at least 400. A total of 5,000 samples were used per model, 500 signals

of interest against 4,500 unwanted signals.

79



JUD191YJ200 UOYD]2LL0D X S UOSIDIJ
Y} SJUSILAIL SLIQUINU Y], “§9]QDLIDA Y] Jo Yovd [0 SUDADOISIY Y] SUIDIUOD DUOHDIP Y[ 4dL1§SD]D Y01)0 as10d.40d
AN0QUDY YY) 40f S]PPOWL U0LSSALbAL D195160) Y] UL PIST §3)qDIIDA L0101PLd [0 §70)d 4D firapaUL 02N T 2INTIg

suLp oX oney (gpe-) Mg 40 uoneing

CHAPTER 4: PORCC: THE HARBOUR PORPOISE CLICK

CLASSIFIER

0

e

zro

8€°0-

Loo-

80°0-

Lo

v0°0-

€€°0-

Loo-

000k

0002

40 (gpe-) Mg oney oX SwIo

uoneing

30



CHAPTER 4: PORCC: THE HARBOUR PORPOISE CLICK
CLASSIFIER

4.2.3 Training data

Three categories of signals were defined for the development of the harbour porpoise
click classifier (PorCC - for Porpoise Click Classifier): high quality porpoise clicks
(HQ), low-quality porpoise clicks (LQ), and high-frequency noise (N), as shown in
Figure 4.2. HQ are polycyclic signals with peak frequency between 100 and 160
kHz, no spectral energy below 100 kHz, and duration around 100 us (Figure 4.2a),
matching the description of on-axis harbour porpoise clicks [6, 7, 235]. LQ are
signals slightly different to HQ (Figure 4.2b), for example presenting notches in the
power spectrum, or no clear beginning or end of the signal when looking at the
waveform. The need for this distinction is clear when investigating click trains, as
these almost always contain a series of consecutive clicks with consistent the inter-
click interval and amplitude variations, indicating that these are indeed clicks within
the click train, but that are not of enough quality. Thus, LQ clicks comprise both
off-axis and low amplitude clicks. In the decision-making path, clips with peak and
centroid frequencies outside the range of interest (100-160 kHz) are discarded before
the classification process takes place. Noise clips (N) are, therefore, signals with
peak and centroid frequencies between 100 and 160 kHz but that do not share other
characteristics with harbour porpoise clicks (e.g., oligocyclic, do have energy below

100 kHz) (Figure 4.2c).

Over 2,500,000 impulsive sounds were detected and saved as small audio clips by
PAMGuard’s Click Detector Module from the entire survey period ( > 210 hours
of recordings). The training data selected to develop the classifier consisted of a
subsample of 125,416 (5% of the data) clips selected using a random number gen-

erator to ensure independence of the samples. Of these, 10,000 clips were further
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Figure 4.2: Categories. Ezamples of the categories defined to develop the harbour
porpoise click classifier (PorCC). A) High-quality harbour porpoise click (HQ). B)
low-quality harbour porpoise click (LQ). C) high-frequency noise (N).

selected to develop a simple logistic regression model, which was used to aid in find-
ing appropriate signals to develop the final logistic regression models for PorCC.
This pre-step was necessary as it was not realistic to individually check all of the
125,416 clips to find samples that were representative of each of the defined cate-
gories. One volunteer (P. Martinez) and MC labelled these 10,000 clips individually,
based on the characteristics described above (Figure 4.2). Because the samples were
not consecutive, and because opening large (~2 GB) audio files in search of a spe-
cific click in a spectrogram is a time-consuming task, the spectrogram of the original
recordings were not used in this step. This could have led to mistakes when labelling

clicks, however, it is expected that such mistakes were not significant for the overall
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training method, especially for the HQ category, as there are no other animal or hu-
man activity carried out in the area capable of producing sounds similar to porpoise
clicks.

The logistic regression model estimates coefficients for each explanatory variable in
the model and the error term, from which a probability of a given signal belong-
ing to a specific category can be derived, in this case the probability that a given
clip is a harbour porpoise (HQ or LQ) click. Thus, each of the 125,416 audio clips
was assigned a probability of being a harbour porpoise click using the coefficients
of the pre-classifier model. The probabilities ranged from 0 to 1. Those with high
probability (= 0.9) were considered potential HQ, those with a probability between
0.5 and 0.9 were considered potential LQ, and those with a probability < 0.5 were
considered potential N clips.

For the final step, a total of 5,500 signals were randomly selected using a random
number generator. From these, 500 samples were selected from the potential HQ
samples, 500 from the potential L(Q samples, and 4,500 from the potential N samples.
Before using these clips for training of the logistic regression models, all samples (n
= 5,500) were verified individually to ensure each selected clip was a good represen-
tative of its respective category, removing unrepresentative clips and replacing them
with clips randomly selected, again, from the original subsample for that particular

category.

4.2.4 Logistic regression - PorCC Classification algorithm

All models and the final algorithm of the harbour porpoise click classifier (PorCC)
were written in MATLAB 2017a (The Math Works TM, Inc., Natick, MA, USA).
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The response variable for "Model HQ’ is binomial, with the possible outcomes being
HQ and N, and it was built using 500 HQ and 4,500 N clips. The response variable
for 'Model LQ’ is also binomial with the possible outcomes being LQ and N, and
it was built using 500 and 4,500 clips of each, respectively. The same N clips were
used for both models to ensure that the training of the models was consistent. For
each logistic regression model, a series of 63 reduced models were tested, which were
built using all possible combinations of explanatory variables, without repetitions
(i.e., starting from all 6 variables combined, reducing until using just one variable
at a time - see Appendix B). The best 'Model HQ’ and "Model LQ’ were identified
as the one with the lowest Akaike Information Criteria (AIC) value [244].

Although PorCC runs on clips previously saved by PAMGuard’s Click Detector in
.pgdf binary files, the coefficients and the decision making pathway can be applied to
audio clips generated by any impulsive sound detector. The algorithms to extract
the data from .pgdf using MATLAB, available online, were modified to function
within PorCC. If the recordings were made using two or more hydrophones, the
classification process takes place only in the sounds recorded by the first hydrophone
on which they impinged, as these are expected to be of higher quality (i.e., closer
to the sound source). The decision-making pathway for each clip within PorCC is

show in Figure 4.3.

The PorCC algorithm is included in D-PorCCA (see Chapter 8) where the user

can choose threshold values for high- and low-quality clicks.
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Figure 4.3: Decision-making pathway. Flowchart illustrating the decision-making
pathway of PorCC, the harbour porpoise click classifier. CF = centroid frequency.
PF = peak frequency. Th = threshold. Prob = Probability.

4.2.5 Testing data

To test the performance of PorCC against signals manually labelled, two datasets
were created. The first dataset contained all clips (n = 265,918) extracted from
5% of the .pgdf files, which were selected using a random number generator. The
second dataset contained all clips (n = 284,231) generated from all the recordings
made on the 28th of August 2017, corresponding to 8 .pgdf files (i.e., each .pgdf
file stored all impulsive sounds detected in one hour of recording). Clips with peak
and centroid frequencies between 100 kHz and 160 kHz and Qgas = 4 represented
potential harbour porpoise clicks. These clips (n = 70,689) were extracted and
manually labelled according to the three categories previously defined (Figure 4.2),

based on the characteristics of the waveform, power spectrum, and spectrogram.
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The overlap between the training (n = 5,500) and the testing (n = 70,689) datasets
was of 442 clips only. The probability-threshold values used in PorCC were 0.9999
for HQ and 0.55 for LQ (Figure 4.3).

Confusion matrices and receiver operational characteristics (ROC) curves were used
to assess the performance of PorCC against manual labelling. One harbour porpoise
researcher labelled 500 clips of all three categories defined before and the level of
agreement was 95%, therefore it was decided that using manual labelling as the
reference was appropriate. Confusion matrices show how clips labelled manually are
classified by PorCC. From the matrix it is possible to calculate hit rates, as well as
the rate of misclassification (i.e., false alarm and missed clicks) and precision levels.
The hit rate in the strict criterion is the proportion of HQ (or LQ) clips classified as
HQ (or LQ). The relaxed criterion is the proportion of HQ and LQ clips classified as
either HQ or LQ. Three analyses were performed: one with only HQ clips, one with
only LQ clips, and one with both HQ and LQ clips, all against the N clips. The
false-alarm rate is the number of N clips classified as HQ (strict criterion), or HQ or
LQ (relaxed criterion) divided by the total number of N clips. The missed-clicks rate
is defined as 1 minus the hit rate. The precision is defined as the number of clips
correctly classified divided by the total number of clips classified into that category.
In total, this results in six different points of operation, from which the ROC plot

is generated.

4.2.6 PorCC vs PAMGuard

A subset of the testing dataset for PorCC was also used to assess the performance

of the porpoise click classifier built-in in PAMGuard and compared it to that of
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PorCC. This dataset subset contained all clips from the 28th of August 2017 (n =
284,231) of which 30,897 clips had already been manually labelled. PAMGuard’s
classifier highlights potential harbour porpoise clicks as well as potential echoes (i.e.,
multipath) that the user can verify and group into ’acoustic events’ to later extract
them for further analysis. For the purpose of this study, all highlighted clicks (in-
cluding echoes) for the entire day were selected without verification, assigned to a
unique acoustic event, and exported to an SQL database. Potential echoes were
included because it was previously noted by Cosentino that PAMGuard’s classifier
sometimes misidentifies real harbour porpoise clicks as echoes (and vice versa) as
well as for comparison purposes, as PorCC also identifies potential echoes (LQ).
PAMGuard creates a table within the SQLite database, where information for each
of the extracted potential harbour porpoise clicks is provided, including date, time,
and an identification number within the .pgdf file where the waveform is saved.
Using a custom-built script, and using the identification number, potential harbour
porpoise clicks were extracted and saved in a MATLAB structure array for further
analysis. Subsequently, clips that were highlighted by PAMGuard’s classifier but
were discarded by PorCC (i.e., clips with peak and centroid frequencies outside the
range of interest) were manually labelled.

Confusion matrices and receiver operational characteristics (ROC) curves were used
to assess the performance of PAMGuard’s classifier and to compare it against the
performance of PorCC. False alarm, hit rates, and precision levels were also esti-

mated, as well as the detectability index (d’) [220, 245].
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4.3 Results and Discussion

This section presents the result of this Chapter and discusses the relevance in con-

text.

4.3.1 Logistic regression models

According to AIC values, the best 'Model HQ’ was that with only Qryrs and dura-
tion as explanatory variables. This was expected, as the histogram and distribution
of each of the explanatory variables has shown that these were the only variables
where there was little overlap for the three categories (see the upper left and bottom

right panels in Figure 4.4).
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Figure 4.4: Histogram and distribution of the variables used to develop PorCC. Black
line: high quality clicks (HQ). Black dashed line: low quality clicks (LQ). Gray line:
noise clips (N). The variables in the lower panel do not have a unit. Y axis truncated
for the cross-correlation coefficient and duration

The best 'Model LQ’ included all six explanatory variables: (Qgrarg, Duration,

Ratio, XC, CF, and BW_345. This was also expected and for similar reasons, as
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there was significant overlap for all variables in LQ and N categories (Figure 4.4).

The best five models are show in Table 4.1. The table with all the results is in
Appendix B. It is worth noting that in both cases, when looking at models with
only one explanatory variable, the model with the cross-correlation coefficient (XC)
as the only explanatory variable appears in the second position after Qrprs. There
is enough variation in the temporal and spectral characteristics of porpoise clicks,
which are not blueprints of each other, and so a cross-correlation would not perform
well. The cross-correlation coefficient value, in fact, ranged from 0.0038 to 4.5655,
and thus using a simple threshold for a XC coefficient in a decision-making process
would inevitably include HQ as well as LQ and N samples, thus rendering a low
performance. In this case the samples were not scaled before the cross correlation
was performed, which may also have affected the performance. The training and
testing data were both obtained from wild individuals that were engaged in natural
behaviour, and it included off and on-axis clicks and thus there is more variability
than could be expected if the classifier had been developed using clicks recorded

from captive individuals in controlled environments.
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Table 4.1: Logistic regression models. Series of logistic regression models for
"Model HQ’ and "Model LQ’. Only the best five models are shown here. See text for
description of the variables used. The outcomes of the response variable for "Model
HQ)’ are high-quality harbour porpoise clicks or high frequency noise, and for "Model
LQ’ are low-quality harbour porpoise click or high-frequency noise. AIC' = Akaike’s
Information Criterion.

ID Explanatory variables A AIC
Model HQ

1 Qryvs + Duration -

2 Qrms + Duration + Ratio 1.64

3 Qrms + Duration + BW_34p 1.67

4 Qrrvs + Duration + CF 1.78

5 Qrums + Duration + XC 1.96
Model LQ

1 Qgrms + Duration + Ratio + XC + CF + BW_34p -

2 Qrus + Duration + Ratio + XC + BW_34p 1.19

3 Qrms + Duration + Ratio + CF + BW_34p 19.19

4 Qryvs + Duration + XC + CF 4+ BW_34p 20.07

5 Qruvs + Duration 4+ Ratio + BW_34p 20.87

4.3.2 PorCC performance

The perfect classifier cannot exist, as detection always will be limited by noise, either
external from the environment, or internal. For electronic systems this internal noise
is in amplifiers and hydrophones, and for biological systems, this noise will be in the
form of spontaneous activity in the neurons. In real-world applications, noise also
comes in the form of substantial variation in the temporal and spectral character-
istics of acoustic signals. These are affected by many factors, including background
noise and the direction from where the signals impinge on the hydrophone, as well
as by how the data were collected (e.g., hydrophone own noise, frequency charac-
teristics of the hydrophones) [20].

PorCC classification process, including estimating all necessary parameters, takes
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approximately 1 ms per clip. Harbour porpoises produce between fewer than 10 and
a few hundred clicks per second depending on their behaviour [12, 13, 107], PorCC
shows, therefore, potential for real time application. The performance values for
PorCC are shown in Table 4.2. As precision increases hit rate decreases, that is,
fewer clicks of the total available to the classifier are going to be identified, demon-
strating the well-known trade-off between errors: false alarms vs. misses in signal

detection and Type I vs. Type II errors in conventional statistics.

PorCC

97%

© HQ-clicks d'=4.1
° LQ-clicks d'=2.5
e Allclicksd' =3.3

90%

50% | -

Hit rate
\

10% - -7

' o HQ-clicks r
0.1, ° LQ-clicks |4 3%
e All clicks

. . . - - 0 L L 1 1 1
0 01 02 03 04 05 06 07 08 09 1 1% 001%  003% 01% 03% 1%

False alarm rate False alarm rate

Figure 4.5: Receiver operating characteristics (ROC) curves. Dots represent false
alarm rates and hit rates associated with detection of HQ-clicks (solid black line),
LQ-clicks (black dashed line) and both types combined (grey line), all against a back-
ground of N-clicks. Curves are best fitting ROC-curves, generated under the as-
sumption of Gaussian underlying distributions with equal variance. Figures show
performance by PorCC under two different criteria: strict (only clicks classified by
PorCC as HQ) and relaxed (all clicks classified as either LQ) or HQ). Figures to
the left and right contain same data, but right figures are plotted on double probit
(probability) azes

PorCC is not exempt of errors, and attempts to increase the hit rate would lead
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to an increase in the false alarm rate (Figure 4.5), as seen in the change in perfor-
mance going from a strict (using only HQ clicks) to a relaxed criterion (using both
HQ and LQ). In other words, the smaller the probability threshold for the classifier,
the larger the number of clicks that would be identified and greater the error too.
However, the ultimate goal in acoustic event detection and classification is not to
avoid errors, but to manage them. Thus, PorCC provides the user with a general
assessment of its performance through the ROC curves, as these show the changes in
hit rate with false alarm variations [220], which results from using different threshold
values to classify harbour porpoise clicks.

Users can, a priori, manage the level of error according to the project needs using
the ROC curves as reference to understand the expected level of error. Furthermore,
because PorCC distinguishes between high and low-quality clicks, depending on the
objectives of the study, users can focus on either or both HQ and LQ clicks as well
as decide when LQ clicks should be ignored (e.g., single LQ clicks) or taken into
account (e.g., studies of click train patterns - see Chapter 8).

It is expected that when using mobile and static recorders, many clicks within a
click train would be off-axis and therefore any study aiming to understand the rep-
etition pattern of harbour porpoise clicks in the context of their behaviour must
include both HQ and LQ clicks. Available data suggest in fact that the variation
pattern of inter-click intervals within a click train is indicative of specific behaviours
[8, 11, 12, 13, 246]. The relatively-well understood pattern is that of foraging. The
porpoise first investigates the surroundings emitting between 10 to 50 clicks per sec-
ond. The interval between consecutive clicks is related to the distance to the target,
thus the closer the porpoise gets to the prey, so the repetition rate increases, as the

echoes also return faster too. It is usually agreed that when the ICI reaches less
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than 10 ms (i.e., over 100 clicks per second), the porpoise is in the final stages close
enough to the prey to make a catch, known as a feeding buzz.

The PorCC classification algorithm can be used with the output of any transient-
sound detector for continuous recordings and, given the low misidentification levels,
it is suitable for behavioural studies of wild harbour porpoises and other species
that produce similar sounds, as the variations in inter-click intervals can only be
detected if the majority of clicks within a click train are identified. Moreover, these
studies can be carried out in data that has already been collected using either towed
hydrophone arrays or static devices, such as SoundTraps (Ocean Instruments, New
Zealand). The PorCC algorithm, including the functions to estimate the different
variables and the resulting coefficients, are part of D-PorCCA, an application de-
veloped specifically to study harbour porpoises in the wild. Additionally, they are
publicly available at the Pure Data Repository of Strathclyde University ( here)
and can be coded in other programming languages, such as Python. It could also

be incorporated into PAMGuard.

4.3.3 PorCC vs PAMGUARD

A total of 30,897 clips from the 28th of August met the criteria for potential harbour
porpoise clicks, that is, having peak and centroid frequency between 100 and 160
kHz and Qgprs higher than 4. The results of the comparison of the performance
of PorCC (using Thl > 0.9999 and Th2 > 0.55) and PAMGuad’s classifier for HQ
are shown in Table 4.2. Based on the detectability indexes, PorCC outperforms

PAMGuard’s classifier in all cases, but especially for HQ clicks (Figure 4.5).
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The overall precision for HQ for PorCC was 69.2% while it was 30.8% for PAM-
Guard’s classifier, assuming that PAMGuard’s classifier correctly classified HQ and
LQ as such in 100% of the cases, as once clicks are extracted from PAMGuard, there
is no information of whether a clip was originally classified as a harbour porpoise
click or an echo, which can be considered as equivalent to the HQ and LQ categories

(Figure 4.6).
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Figure 4.6: Receiver operating characteristics (ROC) curves. Dots represent false
alarm rates and hit rates associated with detection of HQ-clicks (solid black line),
LQ-clicks (black dashed line) and both types combined (grey line), all against a back-
ground of N-clicks. Curves are best fitting ROC-curves, generated under the assump-
tion of Gaussian underlying distributions with equal variance. Figures to the left and
right contain same data, but right figures are plotted on double probit (probability)
azres

Although the data used to generate the ROC curves fall in the lower part of
the curve (Figure 4.5 and Figure 4.6) and thus may be misleading, the false alarm
rate, defined as N clips classified as HQ clicks, for PAMGuard’s classifier was was

between 19.08 (n = 477) and 83.1 (n = 2,078) times higher than PorCC’s, when
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using the same dataset (Table 4.2). Moreover, PorCC algorithm correctly classified
65.9% of HQ clicks (n = 1,209), while PAMGuard’s did so in 30.7% of HQ clicks
(Table 4.2).

4.4 Applications

The PorCC algorithm is one of the algorithms within the application D-PorCCA,
developed during this project (see Chapter 8 D-PorCCA - from acoustics to be-
haviour). Within D-PorCCA, once all HQ and LQ are classified and information
about them stored, clicks are grouped into click trains. A click train is defined as a
series of clicks (default = a minimum of 16 clicks and a maximum of 1,500 clicks)
separated by less than a given time period (default = 1 s). See Chapter 5 Patterns
of click trains and Chapter 6 Acoustic behaviour for a description of how click trains
are analysed.

Although PorCC was trained and tested in data collected using a towed hydrophone
array, given the nature of the harbour porpoise signals, it was expected that PorCC
could be used to classify acoustic data collected using other devices, in this case
SoundTrap (Ocean Instruments, New Zealand). SoundTraps are self-contained
recorders with one hydrophone that can be deployed for long periods of time moored
to the seabed or deployed temporarily, for example hanging over the side of a still
vessel or the shore. Additionally, it was expected that PorCC would perform equally
well for clicks produced by porpoises from a different population, in this case Den-
mark. Lastly, given narrow-band high-frequency (NBHF) clicks produced by har-
bour porpoises are similar to NBHF clicks produced by other species, such as Heav-

iside’s dolphins ( Cephalorhynchus heavisidii), it was expected that PorCC could be

96



CHAPTER 4: PORCC: THE HARBOUR PORPOISE CLICK
CLASSIFIER

used for these species too. A series of tests were performed to investigate these
hypotheses and the results are shown in Chapter 5 - Patterns of click trains, in
Chapter 6 - Acoustic behaviour, and Chapter 8 - D-PorCCA - from acoustics to

behaviour.

4.5 Summary

PorCC is an acoustic classifier developed using machine learning techniques that
has been shown to be highly accurate in identifying NBHF clicks produced by har-
bour porpoises, with improved performance over the currently available classifier in
PAMGuard. The algorithm is fast and thus shows potential for real time applica-
tions. Moreover, PorCC can be applied to data collected using both mobile and
static PAM systems and in recording from different harbour porpoise populations.
Furthermore, it can be used to study other species that produce NBHF clicks in-
cluding other porpoise and dolphin species.

The inclusion of high and low quality clicks in the classification process means that
most, if not all, clicks within a click train would be identified. The result of this study
suggest that PorCC is an ideal tool for behavioural studies based on vocalisation

patterns for harbour porpoises and other NBHF species.

97



Chapter 5

Patterns of click trains

5.1 Introduction

Acoustic data from animals in captive settings as well as in their natural environ-
ment have shown harbour porpoises emit clicks almost continuously and that these
clicks are not produced randomly. Click production is patterned differently depend-
ing on the behaviour of the porpoise [e.g. 10, 11, 12]. Because clicks are very short
in duration (~ 100 us), they can be treated as discrete points in time, from where
patterns of repetition rates can be identified. Data from acoustic tags are especially
good for this purpose, as tags usually also collect data on animal movement as well
as other environmental parameters such as water depths [13, 108].

Finding these patterns in data collected using passive acoustic monitoring, however,
is not straightforward. First and foremost, click trains are not always complete be-
cause clicks are emitted in a narrow beam and porpoises are not always oriented

towards the recorder. This is problematic because identifying patterns require access
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to most if not all clicks within a click train. A strict classifier that only identifies on-
axis clicks would have high levels of false negatives, while a classifier with relaxed
criteria will have high levels of false positives. The PorCC algorithm developed
in this thesis (Chapter 4 - PorCC: the harbour porpoise click classifier [15]) in-
cludes two classifiers, a strict one for high-quality clicks (HQ), anda relaxed one for
low-quality clicks (LQ). This means that click trains may include other sources of
sounds, such as high-frequency noise or multipath signals, incorrectly classified as
LQ. Therefore, to identify underlying patterns it is necessary to first remove unde-
sired sounds.

A simple method developed to separate overlapping click trains of bottlenose dol-
phin (Tursiops truncatus) provides a good approach to this problem [233]. Lepper
et al. (2005) used information about inter-click interval (ICI) and amplitude varia-
tions within click trains to group clicks from the same click train (i.e., animal). The
algorithm begins at the first click and identifies the following ones based on pre-
defined threshold of inter-click interval and amplitude variations. These thresholds
are defined as the standard deviation of the distribution of the logarithm of the ICI
and amplitude differences of consecutive clicks [233]. Therefore, in this case it is as-
sumed that the thresholds are fixed. Additionally, for these thresholds to work, the
detector /classifier system used must have identified all clicks in the click train, and it
also should be cleaned of noise incorrectly classified as echolocation clicks. Following
the same logic, we can assume that there is a click train of interest and we can use
the same approach to separate it from noise misclassified as clicks, using adaptable
thresholds instead of pre-defined ones, as harbour porpoises can begin clicking with

ICIs of over 50 ms and end at ICIs below 1 ms [e.g., 8, 9, 10, 11, 12, 13, 108].

This Chapter presents a series of consecutive algorithms based on the ideas devel-
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oped by Lepper et al. (2005) adapted to remove unwanted sound sources within

click trains, exposing underlying patterns, and identifying behaviours.

5.2 Material and Methods

Two datasets were used to develop and test the algorithms in this Chapter. One
dataset was constructed with acoustic data collected in two locations in Danish
waters, between the Baltic Sea and the Kattegat Strait, and the other with acoustic

data collected in the Firth of Clyde, Scotland, and off Northern Ireland.

5.2.1 Data collection and extraction

The acoustic data consisted of individual impulsive sounds (i.e., potential harbour
porpoise clicks) extracted from the .pgdf files generated by the Click Detector Mod-
ule in PAMGuard, and classified using the Porpoise Click Classifier PorCC (Chapter
4 - PorCC: the harbour porpoise click classifier) with the default values. The de-
fault threshold value for high-quality (HQ) harbour porpoise clicks was 0.9999 and
0.55 for low-quality (LQ) ones. Data from Denmark were collected between August
and November of 2015 using SoundTraps (Ocean Instruments, New Zealand), and
the data from the Firth of Clyde and off Ireland were collected between 2016 and
2019 using a towed hydrophone array. The recordings (i.e., .wav files) were used for
verification purposes when available (i.e., data from Scotland).

In this Chapter, the parameters used were peak-to-peak amplitude (dB re: 1uPa)
and inter-click interval (ICI) in ms. See Chapter 3 - Data description for a detailed
description of how the data were collected and extracted, and parameters estimated.

Clicks were grouped in series of clicks separated from each other by no more than 1
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second. This rendered a total of 139,338 potential click trains (n = 2,249,017 clicks).
Only click trains with at least 16 clicks were selected for further work (n = 21,185).
The algorithms in this Chapter were written in different versions of MATLAB
(Mathworks, MA), from 2016b onwards. Three algorithms were developed for this
Chapter, each with a different objective, which are meant to be used sequentially.
The first aims to determine whether the clicks grouped in an acoustic event corre-
spond to a click train produced by a harbour porpoise (or another NBHF species).
The second aims to separate click trains from undesired sources of sounds. And the

third aims to identify general behaviours from the click train pattern.

5.2.2 Click train type

In this first step, the aim is to identify click trains that were produced by har-
bour porpoises, both of high and low-quality, labelled narrow-band high-frequency
(NBHF) and low-quality (LQ) NBHF, respectively. 'NBHEF’ click trains are those
where patterns can be clearly recognised visually and thus have highly likely been
produced by harbour porpoises or other NBHF species. In '"LQ-NBHF’ click trains
patterns sometimes can be seen but they are not always clear due to high levels
of high-frequency background noise or multipath signals. Two more types of click
trains were defined: ’Sonar’ and 'Non-NBHF’, the latter having no recognisable
pattern for the human observer (Figure 5.1). Henceforth, this algorithm would be

referred to as "Type algorithm’.

The classification of click train types is based mainly on the percentage of varia-
tion in the repetition rate (i.e., number of clicks per second - CPS) between consec-

utive clicks, specifically the median of the variation. This metric was selected as it
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Figure 5.1: Click train types. Example of each click train type. NBHF = narrow-
band high-frequency. L) = low quality. The y axis is truncated. Red = high-quality
clicks. Blue = low-quality clicks.

was expected to predict best whether there is an underlying pattern. The threshold
values were chosen based on data exploration. The algorithm includes several steps
and iterations, which also uses information about the length of the click train and
how many high-quality (HQ) clicks it has. A schematic of the decision tree is shown
in (Figure 5.2).

In environments with high levels of high-frequency background noise silent pe-
riods longer than 1 second are rare, and thus a ’click train” would be thousands of
clicks long. To avoid this problem, a maximum length of 1,500 clicks was set, in
which case the train is divided into smaller click trains with a maximum of 1,500
clicks, and a series of steps are followed to classify them into either of the four cat-
egories described above. Click trains that are classified as LQ-NBHF are run again
through the "Type algorithm’. The reason for this step, is that the original click
train could have been in fact more than one click train (e.g., it was hidden behind

noise) and thus the metrics used to classify click train into types may have changed.
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Click train |
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Figure 5.2: Click train types. Decision tree of the algorithm to identify different
click train types. n = length of the click train. CPS = clicks per second. CF =
centroid frequency. * A click train was labelled as ’Sonar’ when the mean peak
frequency exceeded 140 kHz, the median CPS was between 7 and 8.7, and the mean
percentage of change of CF was below 0.5

The 24th of November 2015 was selected for testing purposes as it contained the
highest number of click trains (n = 5,140). Click trains were manually labelled first
and subsequently using the algorithm developed in this Section. The results were

used to assess the performance of the algorithm against manual labelling.

5.2.3 Extracting patterns

The algorithm to identify patterns (henceforth 'Pattern algorithm’) consists of two
steps described below:

5.2.3.1 Deleting unwanted sources of sounds

Click trains have different characteristics. Some have high signal-to-noise ratio and

few outliers, while others are a mix of HQ and LQ porpoise clicks, and others have
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high levels of background noise. This means that different approaches are needed to
maximise performance. The values used in this section are: clicks per second (CPS),
obtained by dividing 1000 by the ICI (in ms); the maximum difference (i.e., jump)
in CPS, when sorted in ascending order. It indicates whether there are outliers (e.g.,
multipath); median percentage of change of CPS; and mean percentage of change
of centroid frequency.

At the end of this step there will be a new click train or the click train will go through
an additional series of step (next section). The full algorithm is in Appendix C and

includes comments in blue.

5.2.3.2 Identifying stable areas and extracting patterns

The second step is to identify areas with low variation in CPS, by estimating the
moving average of CPS (n = 5 consecutive clicks). Positions where the variation
is under 5% are used as starting points. From these starting points, the algorithm
moves backwards and forwards in an iterative process in search of clicks that are
consistent in both CPS and amplitude variations. The reference and threshold
values are updated in each iteration, as these depend on the click selected in the
last iteration.

The full algorithm is in Appendix C and includes comments in blue.

5.2.4 Identifying behaviours

Three main behaviours were defined for the purpose of this study: ’Orientation’,
"Foraging’, and ’Socialising’. Patterns that did not fit in either of these categories
were labelled "Unknown’. Henceforth, this algorithm would be referred to as 'Be-

haviour algorithm’.

104



CHAPTER 5: PATTERNS OF CLICK TRAINS

5.2.4.1 Orientation

Orientation is characterised by having a relatively regular inter-click interval greater
than 10 ms. In other words, the porpoise produces under 100 clicks per second,
typically between 20 and 60 (Figure 5.3), while it inspects the environment it moves

through [e.g., 109, 208].

Frequency (kHz)

0,6 ‘ 0.8
Time (s)

Figure 5.3: Orientation. Spectrogram (Hann window, FFT size = 512) of a typical
click train produced by a harbour porpoise while orienting itself or inspecting its
environment. Upper panel: amplitude variation in arbitrary units.

Click trains are labelled as 'Orientation’, if at least 90% of all clicks have repeti-

tion rates below 100 CPS.

5.2.4.2 Foraging

Foraging or feeding events are characterised by a change in clicking rate that follows
a specific pattern: a search phase where the porpoise produces fewer than 100 clicks
per second, indicating that the animal is not focused on an specific object yet, an
approach phase that occurs when a prey is found during which the CPS increases
rapidly, and a final stage of high-production rate that can reach up to 640 clicks per

second [e.g. 9]). The final stage is known as a feeding buzz [123].
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Figure 5.4: Foraging. Spectrogram (Hann window, FFT size = 512) of a click train
produced by a harbour porpoise during a foraging/feeding event. The final phase is
known as a feeding buzz, reaching in this case up to 200 clicks per second. Upper
panel: amplitude variation in arbitrary units.

The algorithm labels a click train as ’Foraging’ when it finds an increase in
consecutive clicks from below 100 to over 100 CPS. In other words, the algorithm

finds the first click with a repetition rate of over 100 CPS, and estimates the mean

CPS for the previous and following 5 clicks.

5.2.4.3 Socialising

Communication or social calls are patterned in many ways, which are different from
feeding buzzes and click trains used for orientation purposes. However, there might
be overlap between them, for example, the contact call described in Clausen et
al. (2010) [12] is similar to the foraging event described in Deruiter et al. (2009)
[9]. Social calls lack the low-repetition period that characterise feeding buzzes. An

example of a spectrogram of social call is shown in Figure 5.5

The patterns of communication or social calls include V-shaped (Figure 7.15),
decreasing CPS, and short and long calls with stable CPS values throughout (see

Chapter 6 - Acoustic behaviour). The algorithm labels a click train as ’Socialising’
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Figure 5.5: Burst pulse. Spectrogram (Hann window, FFT size = 1,024) of a
social call produced by a harbour porpoise. The repetition rate ranges between 550
and 650 clicks per second. Upper panel: amplitude variation in arbitrary units.

when all clicks have CPS over 100, or when CPS decreases regularly from over 100.
It is expected that this algorithm is not able to identify all communication calls,
as knowledge of the different patterns is lacking and there is overlap with foraging
buzzes. Additionally, the arbitrary selection of 1 second as a separation time between
click trains also means some click trains identified might include more than one

echolocation event, hindering the performance of the algorithm.

5.2.4.4 Unknown

Click trains that did not have a pattern found by the previous algorithms are labelled

as 'Unknown’ (Figure 5.6).
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Figure 5.6: Unknown. Example of a click train produced by harbour porpoises where
the underlying behaviour is not clear. Red = high-quality clicks. Blue = low-quality
clicks.

5.3 Results and discussion

A total of 20,516 click trains were found on the 24th of November 2015 (n = 390,528
clicks), of which 5,140 had at least 16 clicks. Of these 1,048 were NBHF, 1,607 were
LQ-NBHF, and 3,025 were Non-NBHF. No 'Sonar’ click trains were found. The
algorithm correctly labelled 93.8% of click trains (n = 4,819). The algorithm was

used to label all click trains in both datasets.

5.3.1 Click train type

A total of 139,338 click trains (n = 2,249,017 clicks) were found in both datasets,
of which 2,436 were NBHF (see Table 5.2 - NBHF click trains include 8 click trains
classified as "Sonar’. Recordings of sonar were only found in Scottish data (Fig-
ure 5.7). It is likely, however, that sonar in Danish waters have different acoustic

characteristics (e.g., peak frequency) or repetition rates and therefore the algorithms
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would need to be area specific.

Frequency (kHz)
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Figure 5.7: Sonar. Example of a spectrogram (Hann window, FFT size = 102/)
of a sonar in Scottish waters, recorded on the 13th of October 2016. Upper panel:
amplitude variation in arbitrary units.

The chosen minimum separation time (i.e., 1 second) between consecutive echolo-
cation events, as well as the minimum and maximum click train lengths are arbitrary

and thus results should not be interpreted as having biological importance.

Additionally, this means that the number of click trains found here is likely an
underestimation. Moreover, an extra 118,153 potential click trains with fewer than
16 clicks were found (Table 5.2). The decision to not consider click trains with
under 16 clicks may also impact the ability to identify behaviours (e.g., resting or

sleeping), which needs to be taken into account in future work.
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Table 5.1: Click trains (CT) per day in data collected in Danish waters using static

devices.
Denmark
Date CT Clicks NBHF LQNBHF NonNBHF n < 16
12 Aug 2015 7,694 92,763 222 442 530 6,500
13 Aug 2015 6,994 132,046 113 125 1,778 4,978
24 Aug 2015 6,406 306,929 171 1,520 236 4,479
25 Aug 2015 4,152 579,197 186 1,577 156 2,233
27 Aug 2015 11,484 259,598 291 1,917 670 8,606
26 Sep 2015 12,779 146,856 44 835 1,563 10,337
27 Sep 2015 572 5,695 1 11 84 476
08 Nov 2015 5,772 17,298 27 30 90 5,625
09 Nov 2015 15,528 62,472 56 54 523 14,895
10 Nov 2015 14,053 50,860 195 45 226 13,589
11 Nov 2015 4,951 13,488 48 9 32 4,862
24 Nov 2015 20,516 390,528 1,048 1,607 3,025 15,376
25 Nov 2015 5,183 95,999 150 312 954 3,767
Total 116,684 2,153,729 2,552 7,942 9,867 95,723
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Table 5.2: Click trains (CT) per day in data collected in Scottish waters using towed
devices. *NBHF include 8 ’Sonar’

Scotland
Date CT  Clicks NBHF LQNBHF NonNBHF n < 16
28 Aug 2016 167 926 6 2 3 156
29 Aug 2016 389 945 4 1 2 382
30 Aug 2016 800 1,637 3 0 1 796
31 Aug 2016 101 145 0 0 0 101
18 Sep 2016 1,072 4,172 36 4 4 1,028
19 Sep 2016 435 2,019 18%* 0 4 413
20 Sep 2016 1,153 4,364 25% 5 1 1,122
01 Oct 2016 455 1,825 15* 3 1 436
02 Oct 2016 944 2,016 8 0 1 935
04 Oct 2016 1,657 7,423 47 6 11 1,593
05 Oct 2016 1,679 4,349 21 3 5 1,650
06 Oct 2016 1,553 3,649 16 0 5 1,532
12 Oct 2016 1,433 3,151 10 1 2 1,420
13 Oct 2016 1,607 4,371 25 0 5 1,577
23 Oct 2016 1,023 5,504 33 5 11 974
24 Oct 2016 879 3,567 19 3 7 850
02 Nov 2016 719 3,227 34 1 6 678
03 Nov 2016 1,622 4,708 24 4 11 1,583
07 Nov 2016 726 3,875 22 11 8 685
04 Sep 2017 447 2,228 16 0 2 429
29 Oct 2017 293 1,342 8 2 2 281
01 Nov 2017 596 1,503 4 1 3 588
19 Aug 2019 3,541 15,797 68 36 84 3,353
Total 23,291 82,793 462 88 179 22,562
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5.3.2 Patterns

Only click trains previously identified as NBHF were used in this section (n = 3,010),
of which 2,548 were from Denmark and 462 from Scotland. A large number of clicks

were removed from click trains exposing the existing patterns (Figure 5.8).
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Figure 5.8: Patterns. Original and cleaned versions of a NBHF click train, recorded
in Danish waters on the 27th of August 2015. Red = high-quality clicks. Blue =
low-quality clicks.

After this step, the number of clicks trains with at least 16 clicks was reduced to
2,656, of which 2,240 were from Denmark and 416 from Scotland. The algorithm
failed in some cases, removing clicks that were part of the click train and keeping
clicks that were supposed to be removed. The performance of the algorithm was
tested by applying the 'Behaviour algorithm’ (from next section), before and after

the "Pattern algorithm’. The results are presented in the next section.

5.3.3 Behaviour

A total of 2,656 click trains were used in this Section, of which 416 were from

Scotland and 2,240 from Denmark. These had at least 16 clicks after applying the
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"Pattern algorithm’. The three main behavioural states defined above were identified

in the data when manually and automatically labelled (Figure 5.9).

500
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100

0 | 1 ‘
Foraging Orientation Socialising Unknown

T

Figure 5.9: Behaviours. Number of click trains of each behaviour found in this
study. See text for a description of each. Note: the Orientation bar is truncated.

The algorithm correctly labelled 66.3% (n = 1,759) and 92.3% (n = 2,452) of

click trains before and after the "Pattern algorithm’ was applied, respectively.

Table 5.3: Confusion matrix of classification of behaviours in data collected in Dan-
ish and Scottish waters using static and towed devices, respectively.

Behaviour | Orientation Foraging Socialising Unknown Total
Orientation 2,113 3 0 2 2,118
Foraging 0 66 6 7 79
Socialising 1 71 199 13 284
Unknown 3 66 32 74 175

This means that applying the algorithm to extract patterns improved the ability

to classify behaviours by 39.6%.

5.3.3.1 Orientation

A total of 2,118 click trains were labelled as ’Orientation’, with repetition rates
below 100 clicks per second throughout the click train. This represents 79.7% of all
click trains. These had a mean length of 41.5 (SD = +42.8) clicks, ranging from 16

to 637. The algorithm correctly classified 99.9% of click trains (n = 2,113)
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Figure 5.10: Orientation. Typical click train produced by a harbour porpoise while
mouving through its environment. Red = high-quality clicks. Blue = low-quality clicks

Within these click trains, two patterns were found: landmarks and potentially
resting behaviour. Landmarks are characterised by increasing repetition rates from
20 to 60 CPS, which indicates that the porpoise is using fixed objects in the en-
vironment to orient themselves [105]. Porpoise acoustic behaviour during rest or
sleeping is not well understood, but evidence suggest they remain silent or click at

low repetition rates [107]. See Chapter 6 - Acoustic behaviour.

5.3.3.2 Foraging

A total of 79 (3%) click trains were clear 'Foraging’ events, showing a gradual
increase of repetition rates, reaching up to ~600 CPS. These values are consistent
with what has been found in porpoises in captivity and in the wild, using both static
recorders as well as acoustic tags [e.g., 8, 9, 13]. Foraging events had a mean of 137.7
clicks (SD = 4149.6), ranging from 18 to 970. The algorithm correctly classified
83.5% (n = 66) of click trains.
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Figure 5.11: Feeding. FExample of a click train produced by a harbour porpoise
during a foraging/feeding event. Red = high-quality clicks. Blue = low-quality clicks

An example of a typical foraging event is shown in Figure 5.11. Note that the
amplitude of individual clicks decreases as the repetition rate increases. Although
in some cases this may indicate that the animal is moving away from the acoustic

recorder, it is consistent with what have been observed in tag data [e.g., 108].

5.3.3.3 Socialising

A total of 284 click trains (10.7%) contained patterns that were consistent with
communication calls. Different patters were found, some of which have been de-
scribed in the literature before and some that have not. Social calls are described in
detail in Chapter 6 - Acoustic behaviour. Some of these click trains may represent
the end of foraging events, which were not detected in their entirety, either because
the animal was vocalising in a direction away from the hydrophone or because the
classifier did not identify the other clicks. This would explain why there are no
preceding periods with high inter-click intervals, however, for many of these, there

is a clear leap from low repetition rates to high, without the intermediate values as
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seen in Figure 5.11.
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Figure 5.12: Socialising. Example of a social call produced by a click train produced
by a harbour porpoise. Red = high-quality clicks. Blue = low-quality clicks

Additionally, regular clicks are usually of higher amplitude and so if the final buzz
is detected, it is expected that the previous clicks would be detected too, especially
due to the short duration of these click trains. In the literature, a threshold of 10
ms is used to classify a given click train as a foraging event [e.g. 9, 247, 248]. These
results suggest that using this threshold in all cases might over estimate foraging
events, as most of the social calls found here and in other studies have repetition
rates over 100 CPS [10, 11, 13].

The overall performance of the algorithm was 70.1% (n = 199). The algorithm per-
formed poorly distinguishing between foraging and social calls with 25% (n = 71)
of social calls classified as 'Foraging’ and 4.6% (n = 13) as 'Unknown’. Similarly,
7.6% of 'Foraging’ were classified as ’Socialising’ and 8.9% (n = 7) as 'Unknown’.
This result was expected due to the overlap in repetition rates between these be-

haviours.

116



CHAPTER 5: PATTERNS OF CLICK TRAINS

5.3.3.4 Unknown

Click trains that did not fit in any of the patterns were labelled as 'Unknown’, which
comprised 6.6% (n = 175) of all click trains. Some of these may represent partial
click trains, due to the porpoise moving away from the recorder or due to mistakes
made by the 'Pattern algorithm’. In other cases, the click train may be complete
but the pattern has not been reported before in the literature (see Chapter 6 -

Acoustic behaviour).
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Clicks per second Amplitude dB
T

Time (s)

Figure 5.13: Unknown. Ezxample of a click train produced by harbour porpoises
where the underlying behaviour is not clear. Red = high-quality clicks. Blue =
low-quality clicks.

Moreover, some patterns may be the result of an unsuccessful foraging event.
The pattern in Figure 5.13, for example, could be formed by a porpoise who missed
its prey in the first attempt and continued to chase it in the water column using

echolocation.
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5.4 Limitations

The algorithms developed and tested in this Chapter showed high levels of accuracy.
However, because the values chosen here for minimum separation time and maximum
length were arbitrary, it means that some click trains would be missed. For example,
the "Type algorithm’ assumes that when a click train is longer than 1,500 clicks, this
is due to high background noise levels and thus LQ clicks are discarded. This decision

could result in removing NBHF click trains (Figure 5.14).
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Figure 5.14: Limitations. Ezxample of a long ’click train’ (n = 6,341) before the
"Pattern algorithm’ is applied. Red = high-quality clicks. Blue = low-quality clicks.

This outcome is a direct consequence of the decision-making pathway of the algo-
rithms and means it can be improved. It also means that for monitoring purposes,
click trains can be lost and potentially the absence of porpoises is a false negative.
To explore this matter, 'positive porpoise minutes’ (PPM) were estimated before

and after the 'Pattern algorithm’ was applied in all days in the Danish data, which

was collected with static recording devices (Figure 5.15 and Figure 5.16).
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Figure 5.15: Positive porpoise minutes.
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was applied.
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The results show that the time periods with PPM remain similar before and after

the "Pattern algorithm’ was applied and that it although removes ~12.1% of click

trains (n = 308), representing ~9.9% of PPM, the overall pattern does not change

(Figure 5.15 and Figure 5.16).
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Figure 5.16: Positive porpoise minutes. Values obtained after the ’Pattern
algorithm’ was applied.

5.5 Summary

In order to use passive acoustic monitoring devices (e.g., SoundTraps - Ocean In-
struments, New Zealand) to study the behaviour of harbour porpoises in the wild, a
series of analytical tools are necessary. Several algorithms were developed and tested
in this Chapter, which are meant to use sequentially, to identify click trains pro-
duced by harbour porpoises, extract patterns, and identify underlying behaviours.
The performance ranged from 69.2% to 92.7% accuracy.

The method developed here to extract underlying patterns (i.e., the 'Pattern al-
gorithm’) was based on a algorithm developed by Lepper et al. (2005) who used
pre-defined thresholds of inter-click interval and amplitude variations to separate
overlapping click trains [233]. The method was not directly applicable for har-
bour porpoises and instead an adaptable threshold was implemented. Although the

"Pattern algorithm’ did not provide fully cleaned click trains, it improved the per-
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formance of the 'Behaviour algorithm’ by 39.6%.

The 'Behaviour algorithm’ performed relatively well, and several patterns were found
both in click trains classified as ’Orientation’ as well as in "Socialising’. These were
consistent with social calls, found here for the first time in data collected using static
acoustic devices that record continuously.

The number of clicks per click trains was varied, but because harbour porpoises click
almost continuously, the length likely provides little information about their natural
behaviour. Moreover, length depends on how a click train is defined, as well as the
spatial orientation of the animal, which may move its head away from the recording
device or be too far to be detected.

The results from this Chapter show these algorithms can potentially be used for
monitoring programmes, such as the Static Acoustic Monitoring of the Baltic Sea

Harbour Porpoise, known as the SAMBAH Project.
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Chapter 6

Acoustic behaviour

6.1 Introduction

Even though large groups of a few dozens to hundreds of harbour porpoises have
been observed, porpoises are usually seen alone or in groups of two or three individ-
uals [e.g., Nairn, unpublished data and 2, 3, 17, 79, 114]. Our understanding of their
social behaviour and communication is limited to visual observations in captivity
and data obtained from wild animals carrying acoustic tags [9, 10, 11, 12, 13]. The
few existing descriptive studies were conducted in captive settings due to the unique
opportunities it provides for behavioural observations [9, 10, 11, 12].

These studies showed harbour porpoises emit clicks at different repetition rates, and
that at least some of the patterns in repetition rates can be linked to specific be-
haviours. However, the name and characteristics of the calls is not always consistent
between studies. For example, 'distress calls’ were reported in several studies, but

the characteristics of the calls differed between them. Busnel and Dziedzic (1966)
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described these as calls with repetition rates of between 130 and 250 clicks per second
(CPS) and duration between 0.4 and 1.55 s [10], while Amundin (1991) described
distress calls based on the HF component as calls with repetition rates of between
100 and 500 CPS, but with repetition rates between 300 and 400 CPS based on the
LF component only [11]. Other social calls include ’contact call’” between mother
and calf, ’aggression’, ’courtship’, and ’"dominance’ calls.

Social calls have rarely been reported in the wild. Koschinski et al (2008) found a
series of calls emitted by a calf that was accidentally caught in a fishing net in Cana-
dian waters, which were recorded with a T-POD. In this case, the authors knew in
advance where to look for those calls [8]. The only study to date which specifically
looked at repetition rates of wild harbour porpoises clicks is Sorensen et al. (2018).
A total of six porpoises, accidentally caught in pound nets in Danish waters, were
mounted with acoustic and behavioural tags and released into the wild [13]. This
study confirmed what other studies found: harbour porpoises emit calls which are
qualitatively different from feeding buzzes. The distribution of repetition rates of
social calls found by Sorensen et al. was bimodal with peak around 125 CPS and
1,200 CPS [13].

Sorensen et al. (2018) also provided unique insights into the social lives of harbour
porpoises. The authors found they spend much of their time (between 9.9% and
58.8% of all one-minute intervals) at hearing distance from other porpoises, as the
longer period without calls from other porpoises was 180 minutes. The production
rate of social calls for all individuals was between 0.2 and 1 call per minute [13],
remarkable evidence that porpoises are social animals.

The aim of this Chapter is to describe vocalisation patterns found in data from wild

harbour porpoises collected using passive acoustic monitoring systems. The data
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used in this Chapter were the click trains identified as 'Orientation’ (n = 2,118)
and ’Socialising’ (n = 284”) from Chapter 5 - Patterns of click trains. High-quality
and low-quality harbour porpoise clicks are shown in red and blue, respectively,

throughout this Chapter.

6.2 Orientation

Click trains labelled 'Orientation’ are characterised by having repetition rates be-
low 100 CPS. These indicate porpoises are inspecting the environment they move
through. Within these click trains, additional patterns were identified, which are

described below.

6.2.1 Landmarks

In a series of experiments conducted in captivity, Verfuss et al. (2005) found that
harbour porpoises use objects in their environment to orient themselves, even dur-
ing day time and despite having been in the enclosure for several years. During
these experiments, porpoises produce click trains with repetition rate that increased
from ~20 to ~60 CPS, at which point it dropped. The authors called this pattern

‘landmarks’ [105].

This pattern was found in 0.9% of click trains (n = 103) labelled as ’Orientation’.
In most cases the repetition rate increased from ~20 to ~60 CPS, although in some

cases it reached 100 CPS before it dropped.
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Figure 6.1: Landmark. Erxample of a ‘landmark’ recorded in Danish waters using
a static passive acoustic device.

6.2.2 Sleeping or resting?

Little is known about the sleeping habits of harbour porpoises in their natural en-
vironment. Wright et al. (2017) analysed acoustic and behavioural data from six
tagged porpoises in Danish waters and found what seems like sleeping behaviour.
These periods were characterised by shallow, parabolic-shaped dives of short dura-
tion (under 1 min). Further, 43% of parabolic dives were silent (i.e., fewer than 10
clicks per dive) and during these dives porpoises were less likely to roll than during
other dive types. Additionally, when clicking, they produced a maximum of ~ 23
CPS [107].

At least 16 click trains (0.07%) classified as 'Orientation’ had very low clicking
rates (~5 CPS), which could indicate resting or sleeping periods (Figure 6.2). It
is possible that the low clicking rate observed in some of the data is the result

of erroneous click classification by the PorCC algorithm or removal of clicks by
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Figure 6.2: Sleep?. Click train produced by a harbour porpoise potentially repre-
senting resting or sleeping behaviour.

any of the algorithms used in this study. Low repetition rates can also be sonar
misidentified as NBHF click trains (see Figure 5.7). However, at least in cases when
verification was possible, these were real harbour porpoise clicks and the only ones

detected in the recordings (Figure 6.2).

6.2.3 Other

Unlike the two patterns described above, some patterns with repetition rates below

100 CPS were not described before in the literature. Two examples are shown in
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Figure 6.3 and Figure 6.4
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Figure 6.3: Unknown. Click train produced by a harbour porpoise.
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Figure 6.4: V-shaped?. Click train produced by a harbour porpoise.

It is difficult to hypothesise what these patterns may represent. The pattern
in Figure 6.3, for example, may be simple inspection of objects at sea, something
floating the animal echolocates to. The pattern in Figure 6.4, on the other hand, is

similar to a series of calls detected both in Scottish and Danish waters (see subsec-

tion 6.3.1).
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6.3 Social calls

This Section presents a description of the types of potential social calls found in this
study. Some of these were similar to calls described in the literature, both from the
repetition rate of the low and the high-frequency components of the porpoise clicks

[10, 11, 12].

6.3.1 V-shaped

V-shaped calls are, as the name indicates, calls that look like a V. They begin
at about 300 CPS, go down to fewer than 150 CPS and back to 300. These call
types were detected in Scottish and Danish waters. In Scotland, it was detected
during an interaction with a solitary short-beaked comm<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>