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ABSTRACT 

In recent years, the wind energy industry has rapidly advanced and is now 

considered a mature technology. Nevertheless, some researchers and critics 

doubt its capacity to survive without governmental incentives and subsidies, 

particularly in the medium- and long-term period, given the increase in costs and 

operational losses. This thesis aims to explore the challenges of wind energy 

deployments, focusing on operational losses and costs trends that threaten 

projects viability. To achieve this goal, first an extended review on operational 

losses were performed, and an adaptation of the tool Overall Equipment 

Effectiveness (OEE) was proposed, considering the entire process and losses 

elements namely availability, performance, and quality. Then, three operational 

loss trends, increase in failure rate, ageing, and curtailment were identified. 

Finally, economic analyses, which incorporated traditional metrics such as 

Levelized Cost of Energy (LCoE) and Net Present Value (NPV), were conducted 

to establish the impact of cost and losses trends on project viability over their 

anticipated lifespan. The results suggest that the economic failure of wind 

systems is mainly due to the underestimation or neglection of part of these losses. 

Moreover, the newly proposed metric, adapted from OEE, is shown to be an 

effective tool for highlighting hidden losses and revealing the impact of certain 

decisions on the entire system. Several case studies and economic analyses 

were performed to demonstrate the advantages of the proposed framework, 

including a Multivariate Monte Carlo Simulation (MMCS), which provided a more 

comprehensive understanding of loss trends rates impact and the benefits of the 

implementation of solutions such as Condition Monitoring System (CMS) and 

overplanting to reduce operational losses. Overall, this study provided practical 

tools that can be easily adapted and tailored to different deployments. The 

findings have significant implications for researchers, investors, and industry 

professionals, helping them make better-informed decisions over wind energy 

projects. 

Keywords: Economic appraisal, Operational Losses, Overall Equipment 

Effectiveness, Availability, Performance, Quality, Ageing, Curtailment, Levelized 
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cost of energy, Net Present Value, Monte Carlo Simulation, Condition Monitoring 

System, Overplanting.  
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1 INTRODUCTION 

Wind energy has rapidly developed in recent years and has emerged as a leading 

renewable alternative to reduce dependence on fossil fuels. However, some 

authors have questioned the long-term viability of wind systems, particularly due 

to increasing operational losses. In response, this study focuses on developing a 

metric to effectively measure operational losses, identify loss trends over the 

lifespan of wind systems, and investigate critical factors that could impact their 

viability. This chapter provides an overview of the research, starting with the 

background of the problem (Section 1.1), followed by the aims and objectives of 

this work (Section 1.2), and its justification (Section 1.3). In Section 1.4, the thesis 

structure is outlined, and Section 1.5 highlights the papers produced and 

submitted during the PhD. 

1.1 Background 

With significant political and financial incentives in recent years, wind power has 

experienced a sustainable increase in its contribution to the national energy mix. 

In fact, it covered 15% of European electricity demand in 2019 [1], and there is a 

target to achieve approximately 30% by 2030 [2]. This growth is reflected in the 

cumulative wind energy capacity worldwide, surpassing 900GW (including both 

onshore and offshore projects) as shown in Figure 1-1, aligning with the trends 

observed in Europe. Although the annual growth rate has slightly declined in 

recent years, it is projected to exceed 15% in the next five years, from 2022 to 

2026 [3]. While these figures are highly positive, for wind energy to become more 

independent of incentives and attract greater investment, there are still 

challenges to overcome. These include reducing the cost of energy and 

enhancing performance to maximize profitability throughout the service life of 

wind projects. 
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Figure 1-1 Cumulative wind energy capacity in the world, adapted from [3]. 

A very common metric to calculate the cost of energy is through LCOE (Levelized 

Cost of Energy). LCOE should be thought as the ratio between the total 

production and total costs during its lifespan, considering financial costs, time 

value of the money, and some profits to investors. The total cost of 

implementation is known as Capital Expenditure (CAPEX), while during the 

operational lifetime, there are O&M and management costs, also known as 

Operational Expenditure (OPEX) [4]. At the same time, it is during this period that 

the benefits are achieved through the electricity produced and sold. Finally, after 

the nominal service life period and a potential service life extension, 

Decommissioning Expenditure (DECEX) will take place and relevant costs should 

be considered. Figure 1-2 summarizes all these costs and benefits. It is important 

to mention that some return might come from the disposal of materials and 

equipment after decommissioning, and, for that reason, the disposal is 

represented in blue and has a question mark. Studies show that recycling can 

cover up to 20% of offshore decommissioning costs [5]. 
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Figure 1-2 Costs of wind turbine lifespan – adapted from (Sathler 2013). 

Even though one might consider that reducing the CAPEX value might be an 

adequate approach to reduce the total life cycle cost of a wind power project, it 

can be a rather simplistic solution. As shown in the first scenario of Figure 1-3, a 

poor implementation choice can affect the whole operational performance, 

increasing the total cost. Thus, it is important to strike a balance between all costs 

during the project design phase, as prioritizing the reduction of implementation 

costs alone may negatively impact future operational costs and result in higher 

overall costs, as illustrated in the second scenario of Figure 1-3, where higher 

implementation costs result in lower overall costs. 

 

Figure 1-3 Comparison of two Life Cycle Cost scenarios – Adapted from [7]. 
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Towards reducing LCOE, there are mainly two approaches to be followed: 

increasing production or reducing the total costs. Traditionally, after installation, 

connection to the grid and commissioning, wind farm operators focus on 

maximize production and availability, while reducing its costs. However, in 

modern wind farms, operators consider more sophisticated KPIs, such as the 

maximization of profitability. This is because there comes a point where 

producing additional electricity may incur additional costs that outweigh the 

benefits. This situation is more prevalent when projects are not operating under 

fixed prices or when costs become elevated [8]. In such cases, operators may 

choose to curtail the energy production to avoid incurring excessive costs. This 

strategic decision can help optimize the overall profitability of the wind farm. 

Either way, the operational period plays a critical role in determining the success 

of the entire project and subsequently the potential of an extended service life 

can be anticipated or postponed. This decision is made based on the decrease 

of profitability, reliability and performance [9]. Some studies have found that the 

operational costs of wind turbines could jump from two to four times throughout 

their service life [10]–[15]. While others identified the impact of the degradation 

of the system with time, or ageing, which could reduce the relativity production 

capacity from 5 to 20% in 20 years [16]–[18]. Some countries have already 

registered yearly curtailment levels (which includes energy rejections and lack of 

demand) from 5 to 17% [19]–[21]. Therefore, investigate the impact of these 

losses along project`s lifespan and develop an efficient metric to measure real 

productivity of a wind farm can be crucial to reduce risks and support decisions 

and a continuous improvement culture. 

1.2 Aims and Objectives 

The first aim of this work is to investigate the operational losses in wind energy 

assets and gather them as a unique and solid metric. This metric is an adaptation 

of the well-known in manufacturing industry, OEE (Overall Equipment 

Effectiveness). Additionally, the second aim of this work, the impact of operational 

loss trends in wind energy viability through economic models will be investigated 

and performed. Thus, the specific objectives of the work are summarized below: 
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1. Review of operational losses throughout the entire process, including wind 

penetration into the grid, and classify them into groups following OEE 

concepts to help operators to identify specific areas for improvements. 

2. Apply OEE to wind energy following framework previously developed and 

perform quantitative analysis according to literature figures and real cases 

to evaluate wind energy effectiveness. 

3. Conduct data analysis to develop different models and procedures to 

monitor and estimate OEE. 

4. Investigate in literature how some operational losses increase along the 

lifespan of wind energy assets and evaluate its impacts on costs and 

viability. 

5. Perform stochastic analysis to check viability, costs, and risk of economic 

failure of wind energy assets along its lifespan in different scenarios, 

combining different losses trends and some proposed solutions to reduce 

operational losses identified in literature. 

1.3 Justification 

Operational losses can vary depending not only on project particularities, but also 

on how they are accounted. Wind energy assets are surrounded by uncertainties 

and affected by external factors, which contributes for the complexity of the 

activity of measuring and monitoring them. Therefore, a simple and reliable metric 

that accounts for all possible losses is important for both academia and industry 

to effectively compare and assess assets deployed in different settings, and to 

investigate proposed solutions thoroughly. This is particularly vital, as 

improvements in one specific area may negatively affect other parts of the 

system. Additionally, some studies have shown the increase of losses and the 

decrease of productivity of wind assets along its lifespan. Thus, identifying and 

monitoring these operational losses trends beforehand can be critical for a more 

accurate financial model and for reducing risks. 

1.4 Thesis Structure 

This thesis has been organized as follows: 



 

6 

Chapter 1 provides a comprehensive summary of the motivations, aims, 

justification, and presents the overall framework of the present work. 

Chapter 2 presents briefly OEE concepts and a critical literature review of main 

operational losses in wind energy assets. In this chapter, it was defined a 

classification criteria following the concepts of the tool. 

Chapter 3 estimates the average OEE of onshore and offshore deployments, 

considering some figures found on the literature. Additionally, a real case is 

presented to compare results. 

Chapter 4 investigates how to monitor and evaluate wind farms through traditional 

machine learning techniques and SCADA data analysis. 

Chapter 5 identify losses trends in the literature and two economic analyses are 

performed. First, considering average offshore costs to understand the impacts 

of each scenario. Second, a simulated case compares the adoption of different 

turbine classes. 

Chapter 6 introduce to some common solutions and briefly discuss its impacts on 

the costs. Additionally, a multivariate Monte Carlo is developed. 

Finally, Chapter 7 presents a discussion of the main findings of the thesis while 

the chapter 8 concludes the thesis, by summarizing each chapter, stating the 

limitations, and suggesting future work.  

Figure 1.4 gives an overview of the thesis structure and content. 
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Figure 1-4 Thesis Structure.
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1.5 Related Publications 

The following papers were developed along the PhD and was already published 

or under review at the moment this thesis was written. Parts of this work are 

extracts of them. 

K. P. B. Sathler, A. Kolios, S. Al-Sanad, and J. Parol, “Application of the Overall 

Equipment Effectiveness Concept in Wind Energy Assets,” 2020, doi: 

10.3850/978-981-14-8593-0. 

K. P. B. Sathler and A. Kolios, “The Use of Machine Learning and Performance 

Concept to Monitor and Predict Wind Power Output,” Int. Conf. Electr. Comput. 

Energy Technol. ICECET 2022, no. June, pp. 20–22, 2022, doi: 

10.1109/ICECET55527.2022.9873076. 

K. P. B. Sathler, K. Salonitis, and A. Kolios, “Overall Equipment Effectiveness as 

a Metric for Assessing Operational Losses in Wind Farms: A Critical Review of 

Literature,” Int. J. Sustain. Energy, 2023, doi: 10.1080/14786451.2023.2189490.  

K. P. B. Sathler, B. Yeter, and A. Kolios, “Impact of operational losses on the 

levelized costs of energy and in the economic viability of offshore wind power 

projects,” [Manuscript submitted for publication] 2023. 

K. P. B. Sathler, A. Kolios, and B. Yeter, “Effect of Energy Losses on Onshore 

Wind Turbines Techno-economic,” [Manuscript submitted for publication] 2023. 
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2 OEE & OPERATIONAL LOSSES IN WIND TURBINES1 

There are mainly three sources of loss that can be expected from a wind energy 

converter: Aerodynamics-related, electromechanical, and operational. Whilst the 

first two are related to manufacturing and design, which can be reasonably 

estimated, the same argument can hardly be made for the operational losses. 

Wind turbines are surrounded by uncertainties, including factors such as the wind 

features inputs, grid integration challenges, and degradation of the system, which 

makes operational losses assessment a hard task. Other industry has dealt with 

similar problems and developed different tools to help operators and managers 

to identify weak points and the main causes of losses. One of these tools is OEE, 

widely used in manufacturing systems to enhance equipment efficiency by 

reducing operational losses. Therefore, Section 2.1 will briefly present the metric. 

In section 2.2, the classification criteria and the literature review are presented, 

and the finds are discussed in Section 2.3.  

2.1 What is OEE? 

In the early 1970s, the Japan Union of Scientists and Engineers (JUSE) has 

developed a maintenance strategy called TPM (Total Productive Maintenance), 

where the goal was to achieve maximum performance in its production 

considering all phases related to the production. In order to check its efficiency, 

a metric called OEE (Overall Equipment Effectiveness) was introduced, where all 

possible causes of losses and the main six losses are identified and classified in 

three main elements, named availability (A), performance (B) and quality (C), as 

shown in Figure 2.1. 

 

 

1 This chapter is based on publication by Sathler, Salonitis and Kolios [288] 
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Figure 2-1 Six Main Losses. 

Any change in the process can affect one or more elements. For that reason, 

OEE became an important productivity tool, since it considers the overall result 

and efficiency, helping to identify where losses are more frequent, and hence 

targeting improvement interventions. The OEE index is obtained through the 

multiplication of the three elements, and it represents the overall performance of 

the equipment. This index is considered an important metric to help managers 

and operators to make decisions, increasing the productivity of the equipment or 

process. 

OEE = Availability (A) 𝑥 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝐵) 𝑥 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (𝐶) (2-1) 

2.1.1 Availability (A) 

Availability is calculated considering the planned operating time discounted by 

the period that the equipment is not available to operate, known as downtime 

[22]. There are two main types of losses in the availability category which can 

cause downtime, as shown in Figure 2.1. The first accounts for breakdowns, 

which is generally related with maintenance or failures and the time spent to fix 

the interruption cause. The second type accounts for adjustments and set-ups, 

where we refer to pauses in production which are not related with breakdowns. 

Relevant examples include planned maintenance interventions and adjustments 

of the equipment for new products. Even though some losses are expected, it is 

important to quantify them and understand their influence to key output indicators, 

in order to identify areas of improvements of the process. The basic formula to 

calculate operational availability is: 

Availability

Breakdowns

Adjustments and 
set-ups

Performance

Reduced Speed

Minor Stoppage

Quality

Defects

Rework
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A =  
𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 − 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒

𝑃𝑙𝑎𝑛𝑒𝑑 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒
 

(2-2) 

 

It should be noted that in practice different formulas are adopted for different 

types of availability, such as inherent, time-based, revenue-based etc, so it is 

important to ensure that the right metric is adopted.  

2.1.2 Performance (B) 

Losses related to performance can be the most challenging ones to identify since 

they are considered through instances where the equipment is performing 

outside the specification limits set. This type of losses can be related to reduced 

speed, meaning that for any reason a part of the equipment is running with lower 

performance, which can be caused by a damage, a not-well-lubricated bearing 

or lack of alignment, for instance. Another reason for performance losses is minor 

stoppages, where faults cannot be measured, but production performance is 

affected. An example is when in a cycle for any reason a motor is taking one 

second more to start due to a mechanical or electric fault, which is not easy to be 

recognized by operators. However, it can become a significant loss when 

accumulated throughout every operational cycle. A performance rate control can 

warn operators when something is wrong and needs to be investigated. 

Performance is calculated over planned operating time minus downtime, so the 

availability loss is not considered twice: 

𝐵 =  
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 𝑥 𝑃𝑎𝑟𝑡𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 − 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
 

(2-3) 

2.1.3 Quality (C) 

Finally, quality is related to the final product as a result of a process or operation 

of equipment. Any producing process should ensure that the final product meets 

the end users’ requirements or the client. The first type of losses in this factor 

accounts for defects, i.e., when the product is out of specification, and it should 

be discarded. The second element is rework, when minor defects are identified, 

and extra work is required in order to recover the product. According to the OEE 
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concept, this is also considered as a loss because the time and the resources 

spent to fix it could be used to produce a new product or they can reduce the 

operational life of the process. The formula to calculate quality only considers 

products that were produced on the period assessed: 

𝐶 =  
𝑈𝑛𝑖𝑡𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 − 𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑈𝑛𝑖𝑡𝑠

𝑈𝑛𝑖𝑡𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑
 

(2-4) 

While OEE is widely utilized in the manufacturing industry and incorporates major 

losses in an intuitive manner, it is important to acknowledge its drawbacks and 

limitations. Firstly, this metric lacks detailed insights into the causes of operational 

losses, requiring additional effort to accurately identify and correlate each 

measured loss with its root cause. Additionally, OEE does not encompass critical 

aspects such as costs and potential investments. Moreover, the tool can 

potentially lead to misguided actions if the operational team fails to measure the 

elements accurately or compares results across different deployments without 

considering project-specific factors. However, these limitations can be largely 

overcome through the implementation of automation or a systematic approach to 

calculate OEE, coupled with proper training of the operational team. It is also 

important to recognize that OEE functions as a complementary metric and should 

be used in conjunction with other performance metrics such as reliability, 

maintainability, Failure Tree Analysis, FMEA (Failure Mode and Effects Analysis). 

2.2 Operational Losses in Wind Turbines 

2.2.1 Classification Criteria 

As demonstrated in Section 2.1, the OEE focus is to identify, classify, and quantify 

operational losses. To adapt it to wind farms projects, some considerations need 

to be done. The flowchart shown in Figure 2.2 illustrates the assumptions 

considered in this work to classify the losses found in literature and what the 

authors believe would be a suitable approach to adapt the tool in wind energy 

assets. It is important to notice that the decision element in the flowchart started 

with the preposition “from” because each index is considered from the result of 
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the previous one, avoiding losses being accounted twice during the process 

analysis.  

 

Figure 2-2 Flow Chart Losses in Wind Power according OEE tool. 

Another important observation in the flowchart is related to the final result. 

Although the decision question was included in the flowchart, it is very unlikely 

that no losses is registered in an industry. This could be achieved in a short-term 

period, but considering long term periods, losses are expected and considered in 

all projects. For instance, an OEE of 85% is considered world class benchmark 

[23], representing that, even in reliable projects, there are losses. The following 
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subsections detail the losses and how the scientific community has been aiming 

to minimize them, especially in the operational perspective. Also, it is important 

to mention that OEE results cannot be fully compared between deployments. 

Even turbines from the same company may not have the same OEE, as the 

equipment productivity relies not only in operational system, but also on the 

management commitment, involvement of the O&M team, maintenance 

efficiency, wind farm location, deployment environment and other particularities 

that any project has. 

To identify the operational losses, before categorizing them, an extended 

literature review was performed. The focus was on papers published from 2010 

to nowadays that had key words or expressions such as “operational losses”, 

“quality losses”, “production losses”, and “performance losses”, together with 

“wind energy” or “wind power”, in their titles and/or abstract. Then, a carefully 

reading was performed to check if important information could be retrieved and if 

the paper was really related to wind power and operational losses. To a better 

illustration of the sort of solutions or discussion was provided in the studies, 

assessed, five categories was also defined. “Investigation” refers to papers that 

assess the operational losses and discusses it, through reviews, numerical 

models, trends, or data analysis. “Decision Support” refers to when a framework 

or a new methodology is created or adapted, which resolves in important 

information that could help operators to minimize losses. “Controllers” refers to 

the development of a controller to reduce losses, find optimal point, or change 

the premises and settings of traditional controllers. “Machine Learning” refers to 

papers which use any machine learning technique to perform predictions or find 

correlations among inputs and outputs. And, finally, “Others” refers to solutions 

that are not listed before, including technical changes or addition of components 

or gadgets in the system. 

2.2.2 Availability Losses 

The first aspect to be considered is the set time contemplated in the OEE 

calculations. In the wind energy industry, turbines are designed to operate all year 

long, so considering the entire calendar period as a set time base is realistic. The 
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first source of downtime mentioned in OEE is breakdowns. This item is related to 

any time that the turbine is not available to produce due to unexpected 

downtimes, such as failures and corrective maintenance. To address availability 

losses, increase turbine reliability, and extend their lifespan, important tools such 

as Reliability Centred Maintenance (RCM) [24] and Reliability, Availability, and 

Maintainability (RAM) can be utilized. Within the framework of RCM, tools like 

Fault Tree Analysis (FTA) [25] and Failure Mode Effect Analysis (FMEA) [9][26] 

[27], and specific studies on failure rates [28][29] and others reliability-based 

methods  [30] can assist operators in identifying critical failure pathways and 

evaluating potential impacts on system performance. These methods exemplify 

useful approaches for informing decision-making, optimizing maintenance 

strategies and increase general reliability of the turbine and its components. 

The second downtime factor mentioned in OEE refers to adjustment and set-ups. 

Differently from the traditional manufacture industry, wind turbines do not need to 

change worn out tools or adjust their process for new products. Therefore, the 

only “expected downtime” for wind turbines is preventive maintenance. Many 

papers that cover availability discuss both downtime cases, corrective and 

preventive maintenance, which makes hard to separate them efficiently. 

However, some paper focus on suggesting strategies to improve preventive 

maintenance schedule [31]–[33], including the use of machine learning to better 

predict wind conditions [34], which could be used to affect less the wind energy 

output [35]. It is worth noting that in some cases, this may result in increased 

costs due to vessel availability constraints, as many wind farms will likely operate 

within the same time frame. 

Offshore deployments have a particular approach. While onshore wind farms can 

achieve around 98% of availability [36], offshore wind farms present a lower 

pattern achieving around 92% [37][10]. Besides the distance to the shore and the 

need of vessels, also considering safety constraints, accessing the turbine is only 

possible in appropriate climate conditions. Therefore, the cost may be increased 

affected by this dependency, since some maintenance or changing of 

components needs to be done in advance, in the appropriated time, instead of 
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the best and more effective time, wasting some of the components remaining 

lifetime [38]. A logistic maintenance review for offshore operations is presented 

in [39] and maintenance cost reduction review for offshore farms in [40]. 

Table 2.1 presents the main causes of losses by availability in wind turbine. The 

second column gives some examples of the losses cause, and the third column 

includes studies in which losses were assessed or quantified, suggested 

solutions, or compared different approaches. The category of the papers, as 

mentioned in Section 2.2, is also pointed in Table 2-1. 

Table 2-1 Main Cause of Losses by Availability in Wind Power. 
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Breakdowns 

Failures 
 

Corrective 
Maintenance 
 

 

 
 

FMEA - [9], [26], [27], [41] X X  X  

Reliability and Failure Rate Analysis - 

[24], [28]–[30], [42], [43]  
X X    

Fault Tree Analysis on floating 

offshore turbine - [25] 
X     

Fault Predictions/Detection - [44]–

[51]  
 X  X  

Uncertainties in O&M models - [52], 

[53] 
X     

Human Impact on maintenance - [54] X     

Fatigue and Failures related to 

weather - [55]–[61] 
X X  X X 

Preventive 

Maintenance 

Preventive 
Maintenance 

 
Inspections 

Maintenance Cost Review for 

Offshore [40], [62] 
X     

Method for better maintenance 

scheduling - [31]–[33], [35], [39], 

[63]–[67] 

 X    

CBM - [27], [68] X X  X  

Reliability Monitoring - [34], [46], [47], 

[49], [69] 
 X  X  
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2.2.3 Performance Losses 

Differently from the traditional manufacturing industry, wind turbines have 

different performance rates to be assessed, since the production output depends 

directly on the wind features, especially wind speed and density. Therefore, 

before discussing about the losses, the standard rate needs to be commented. 

The most usual way to assess wind production is through the wind power curve, 

which defines the production according to the wind speed, normally tested in a 

lab and later confirmed in a Power Curve Test, according to IEC 61400-12 

standard and some local regulations [70]. Some researchers have proposed 

more accurate power curve considerations, including other factors such as wind 

direction [71]–[73], turbulence [74] or air density [75] and controllers [73]. 

Even though these approaches are good for a better production prediction, 

according to OEE, this can hide some opportunities for improvement. To illustrate 

this, one common problem related to wind direction is the wake effect. Although 

wake effect losses are expected, some researchers have proposed solutions to 

minimize them during the operational phase, such as intentional misalignment of 

yaw controller [76][77] or changing individual controllers to farm controller 

[78][79]. In other words, although some wind features cannot be controlled, 

considering it in the best performance rate can mislead the results and do not 

incentivize operators to find ways to minimize them in case of a high impact.  

Some additional observations regarding the standard rate, as discussed in 

section 2.1.2, merit further discussion. While there is no rigid rule, and operators 

can adapt these concepts to their specific needs, it is important for the standard 

rate to be as simple as possible to minimize human errors and misinterpretations. 

Unlike other performance metrics, OEE aims to closely align with the best 

possible performance. Therefore, instead of using manufacturing curves that 

typically consider average production within a given wind speed bin, the standard 

rate in OEE should consider the best achievable rate. The goal for operators then 

becomes minimizing the gap between the best performance and the actual 

production. As a general guideline, if the actual performance frequently exceeds 

100%, it suggests that the standard rate is underestimated. On the other hand, if 
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the actual performance is far from reaching the standard rate, or if it has never 

reached the standard rate even for a short period, it indicates that the standard 

rate is overestimated. 

With respect to performance losses, two main causes were pointed: reduced 

speed and minor stoppages. As mentioned in Section 2.1.2, performance index 

considers losses that cannot be measured as easily as availability, so comparing 

production output at the same conditions could be the best way to identify 

reduced speed and minor stoppages, including faults and failures in the system 

that does not send alerts to operators. Since wind turbines are complex 

equipment and exposed to hard and uncontrolled environments, the performance 

losses can be caused by several factors. Some of these are related to the 

equipment itself, while others are related to the environment. 

Even though climate features are not controlled by the operator, they need to be 

considered in order to better understand the performance behaviour. Some 

papers relate differences in performance due to seasonal conditions or periods 

of the day [80], humidity [81], turbulence [82], and other papers are looking for a 

way to minimize losses due to rain [83] and icing [84]–[86], even using machine 

learning [45]. For offshore wind farms some additional issues can be considered 

in this category, such as wave impact due misalignment of the turbine [56][57] 

and platform motion that can affect the performance of other controllers [87]–[91]. 

The ones related to the system can be influenced by the condition of other 

components. Usually, the increase of temperature, vibration, or abnormal effort 

can affect productivity. Thus, these can be considered examples of reduced 

speed caused by damaged bearing [92], lack of lubrication, wear outs in 

components or even ageing [16]. For instance, [58] indicates a performance 

decrease before failures. Another important loss that is usually neglected is the 

time spent to start the generation of energy. Every time the turbine is shut down, 

due to safety reasons, maintenance, or lack of wind, the equipment spends time 

to gain inertia, start rotation and generate electricity. Thus, a more efficient 

“starting up” time can directly affect the production rates throughout the year. In 

some situations, the time needed to achieve the operational rotation can be 
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affected by wind speed, as demonstrated in [93], which tested this in small scale 

wind turbines. However, some innovative solutions have been proposed to deal 

with this problem, such as engaging a motor to increase production range and 

reduce loss due to starting up [94]. 

Finally, another cause of losses that were not mentioned before are controllers’ 

systems (which includes sensors and actuators). They could be related to 

reduced speed or minor stoppages due to malfunctioning or faults. However, in 

this paper, controllers were considered separately because some researchers 

focused on improving production by changing controller`s models, settings and/or 

premises. Besides reducing wake effects, as mentioned in the second paragraph 

of this section, yaw systems can be used to increase production [95]–[99]. The 

same stands true for other controllers, such as pitch control [100][101], stall [102], 

and other PI controllers [103]. Artificial Neural Networks, Machine Learning and 

new algorithms to control or find optimum sensor placement are studied as well 

[76][104]–[106].  

To summarize, it is important to keep OEE calculation as simple as possible, so 

using maximum performance in a certain range of wind speed can be appropriate 

as a start. Obviously, this does not indicate to the operator the reason of the loss, 

but it shows that something is not functioning well and, depending on the level of 

the loss, the operator can decide if some action needs to be prioritized. Table 2-

2 gathers the main losses identified and papers related. Some of losses can be 

classified in different criteria, but the most important is to have a reliable and 

simple index that does not account the same loss twice. 
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Table 2-2 Main Cause of Losses by Performance in Wind Power (*Not fully 

responsibility of operators **Only offshore deployments) 
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v

e
s
ti

g
a

ti
o

n
 

D
e
c
is

io
n

 S
u

p
p

o
rt

 

C
o

n
tr

o
ll

e
rs

 

M
a

c
h

in
e
 L

e
a
rn

in
g

 

O
th

e
rs

 

Climate 

Conditions* 

Wind Features: 

Turbulence 

Direction 

Air Density 

 

Rain 

Humidity 

Season 

High 

Temperature 

 

Period of the day 

Waves** 

Power curve models (important to define 

Standard Rate) and Output Prediction - 

[71], [74], [75], [107]–[112] 

X X  X  

Investigation of the impact of climate and 

wind conditions: 
     

Turbulence - [82] X     

Air Density - [73]    X  

Rain - [83] X     

Humidity - [81] X     

Period of the day - [80] X     

Seasons - [113] X X    

Direction - [114]  X X  X  

Waves - [57], [88], [89] X     

Reduced 

Speed 

Ageing 

Blades 

Factures/Erosion 

Icing 

Dust 

Wake Effects 

Low Speed of 

components 

 

Start-up 

Losses due ageing - [16], [18], [115], 

[116] 
X     

Losses due fractures/erosion - [117], 

[118] 
X     

Icing losses detection and estimation - 

[45], [84]–[86], [119], [120] 
X  X X  

Investigation on wake effects - 

[79][121][122][114][123][124] 
X X    

Reduce wake effects - [76]–[78], [105], 

[106], [125]–[128] 
 X X   

Losses due impact of wave loads - [56], 

[87], [89] 
 X X  X 

Improving performance - [129]–[131] X  X   

Balance between load and output - [132]   X   

Reduce cut in and minimize losses - [94]         X 

Minor 

Stoppage 

Small Failures 

(don`t stop 

production) 

Defects 

Identifying malfunctioning - [92], [107], 

[129], [132], [133] 
X X  X  

Fault tolerant identification - [134]  X    
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Losses Example Related Papers In
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Controllers 

Misinterpretation 

of signals 

 

Faults 

Controller`s 

setting 

Yaw Controller - [95]–[99], [105] X  X X  

Stall Controller [102]   X   

Pitch Controller - [91], [100], [101], [104], 

[106] 
X  X   

PI Controller - [103]   X   

 

2.2.4 Quality Losses 

Quality assessment in wind energy production poses significant challenges due 

to the complexity of calculating and classifying all losses that occur after the 

electricity is produced by the generator. To address this challenge while ensuring 

simplicity and effectiveness, this study defines quality losses as any losses 

occurring between the generator and the grid. Unlike traditional manufacturing 

industry, where the outcome is a physical product that can be reworked, wind 

energy production cannot "fix" electricity once it is generated. It is important to 

note that some quality losses in wind energy systems are directly influenced by 

turbine operational conditions and operator decisions, highlighting a partial 

connection between quality and other elements. This will be presented and 

discussed along this section. 

As mentioned in Section 2.1.3, defects refer to when the outcome does not 

achieve the client’s requirements. In the wind industry, the client can be 

considered the grid, so quality in this study refers to grid requirements. Due to 

the intermittent and uncontrolled input, wind power suffers from several variance 

and fluctuations. Some of the problems related are flickers, harmonic variance, 

impedance, resonance, and frequency fluctuation. It is out of scope of this study 

to discuss each of these problems, but it is important to mention that they can 

vary according to each grid’s characteristics or country regulations. Further grid 
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problems related to quality, including local issues in different countries, are 

discussed in relevant literature[107][135]–[137].  

Some of the quality problems are related to efficiency of intermediate equipment 

or design solutions [138]–[141] Since some of the energy output can be partly 

controlled, some researchers are studying ways to minimize them, such as 

control frequency [142] or harmonics [101] through pitch angle, and flickers and 

voltage fluctuation through yaw and stall control [102].  

Another problem related to the grid which could affect the quality index is the grid 

availability. As mentioned before, the input in wind energy cannot be controlled, 

so if the grid cannot receive the electricity, the generation is disconnected, and 

this becomes an important loss. This can happen due to safety reasons, which 

include ramps, unstable electricity, grid faults or by lack of demand. Some 

operational measurements can reduce these losses as well. To minimize ramps, 

a paper suggests new controller approaches [143], while other works identify 

safety problems and relates them to other variables [144][145][100], which could 

be strategic for operators knowing when instability is more likely to occur. 

Curtailment issues have become a widely discussed topic [19][146], with some 

proposed solutions related to better production predictions [147][148], expand 

grid capacity [149] or strategically increase demand during high production [150]. 

Finally, the last problem related to quality element is due to transmission. This 

includes basically cabling and intermediary equipment. The transmission system 

is designed in the project phase and some technical losses are assumed, but it 

can be difficult to modify it after implementation. However, monitoring 

transmission losses can indicate when abnormal behaviour or wear outs occur in 

cables [151]–[153], or when intermediary equipment lose their effectiveness 

throughout the time. Also, the quality of the electricity produced can cause losses 

during transmission, as pointed in [154]. This information can guide some 

decisions made by operators, since the increase in the losses could justify some 

more extreme interventions. Table 2.3 outlines the main quality losses identified 

in wind turbine. 



 

23 

Table 2-3 Main Causes of Losses by Quality in Wind Power (*Not fully 

responsibility of operators). 

Losses Example Related Papers In
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Out of 

Requirements 

Frequency 

Voltage 

Harmonics 

Flickers 

Converters` 
fault 

Fluctuations in output - [141], [155]–[157] X     

Loses due frequency - [142], [158], [159]   X  X 

Flickers - [102], [155] X     

Losses in quality due to wave 

misalignments - [89], [90] 
X     

Harmonics - [101], [154] X  X   

Voltage fluctuation - [102], [138], [160], 

[161] 
X  X   

Losses due power flow controller and 

converter`s fault - [162]–[164] 
  X   

Grid 

Availability* 

Curtailment 

Inertia 

Security 

Grid Faults 

Ramps 

 

Estimation and investigation of curtailment 

in different countries - [19], [146], [149], 

[150]  

X    X 

Proposed method to reduce curtailment - 

[147], [148], [165]–[167] 
X  X  X 

Reducing/Monitoring ramps - [168], [169], 

[143] 
X     

Hybrid system to reduce curtailment and 

instability - [170]–[172] 
X     

Instability in grid, reduce inertia - [100], 

[113], [135]–[137], [144], [145], [173]–[177] 
X X X X  

Transmission 

Cabling 

Impedance 

Controllers 

Equipment 
Intermediaries 

Lifespan and efficiency of cables - 

[154][152][153][151] 
X X    

Reducing transmission losses - 

[178][139][179][180][181][182] 
 X X  X 

Losses in grid due wind penetration - 

[183][184][185] 
X X    

Impact of impedance and harmonic 

resonance - [140][144] 
X     

2.3 Discussion 

Quantifying losses has proven to be an efficient method to identify clear gaps and 

lead improvement priority decisions in equipment and systems. Even though wind 

power has many aspects that are not in control of operators, researchers present 
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interesting and promising approaches towards minimizing the losses and improve 

the production and performance during operational periods. This shows that wind 

power has still many opportunities for improvements.  

In order to ensure a simple and reliable adaptation and implementation of OEE 

in wind energy, certain assumptions were made. Firstly, unlike many 

manufacturing applications, wind power is characterized by uncontrolled inputs. 

As a result, climate features were considered an additional factor contributing to 

performance losses. In addition, controllers were assessed separately due to the 

number of factors that they can influence. Finally, about quality, all losses 

between generator and grid were included, from grid requirements to distribution. 

For that reason, the six main losses of an equipment can be extended to nine in 

wind energy assets, as shown in Figure 2-3. It is important to mention that some 

losses could be classified in different items, but, for efficiency of the tool, the main 

attention needed is to not consider the same loss twice, following a linear 

reasoning. 

 

Figure 2-3 Main Operational Losses in Wind Power 

While some papers focus on investigating and assessing the losses, some of 

them propose solutions focusing on minimizing or identifying failures and losses. 

Typical possible solutions discussed in the papers found by the review activity, 

could be summarized as follows: 

• Understanding lifespan, failure rates, and behaviour of the turbine and its 

components, 

Availability

Breakdown

Preventive 
Maintenance

Performance

Climate Conditions

Reduced Speed

Minor Stoppage

Controllers

Quality

Out of Requirements

Grid Availability

Transmission
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• Machine Learning to identify causalities, 

• Increasing performance and minimizing losses through controllers’ 

settings (considering the whole farm instead of individual turbines to 

reduce wake effects), 

• More accurate wind regime prediction, especially short-term, for decision 

making, including maintenance scheduling and avoidance of curtailment, 

• Controllers’ settings and the use of energy storage to minimize losses due 

to fluctuations that can also affect transmission system and grid 

availability. 

From the solutions proposed, most could be implemented during the operational 

phase, which indicates that regardless of the project design or if the wind farm 

has already started its operation, developers and operators could still improve 

their productivity. In addition, some other manufacturing tools could be used to 

reduce losses. As an example, according to [52], when a failure occurs in an 

offshore turbine, on average 22% of time is spent for the actual repair activity, 

while the rest is due to organization, waiting for suitable weather and spare parts 

management. The papers mentioned in the review investigated how to reduce 

logistic time and scheduling; however, they are not suggesting solutions to reduce 

the repair time itself. So, tools such as the Single-Minute Exchange to Die 

(SMED), in which changeover during maintenance could be reduced drastically, 

could also be very beneficial to wind power installations. To identify the need of 

further tools, OEE is pivotal to quantify and identify these gaps, according to a 

TPM strategy. 

As mentioned before, OEE can be used in many situations, such as for comparing 

before and after changings in the process [186], simulating which scenario has 

potential for achieving better results [187] or encouraging the continuous 

improvement culture [188]. The main advantages of using OEE are first, its 

simplicity and, secondly, the overall analysis, with all possible operational losses 

included in one single index. To exemplify this last advantage, back in Section 

3.2, one of the solutions found to reduce wake losses is through yaw control 

system. Nonetheless, some researchers used the same yaw system to increase 
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quality performance by reducing ramps. These are two different outcomes to be 

managed by the same actuator, where one can affect another. There is a study 

which suggests an optimum point on these two losses [77], however, it is not 

clear if these interventions can also affect availability. With that in mind, OEE 

seems to be a great solution to find overall improvements. 

Another important observation about the decision making through OEE is that it 

can, and should, be related to the financial perspective. Even though it is out of 

scope of this study, any improvement suggested should find a balance between 

increased production and extra costs, since the final objective is to reduce LCOE, 

keeping equipment reliability and power quality high. Some papers, indeed, have 

proposed new equipment, gadgets, or more intrusive solutions, however, most of 

those presented in this review focused on changing control principles or using 

algorithms such as machine learning to find a better performance scenario, which 

probably does not require significant investments. Due to computational 

developments, improved processors, and the large amount of reliable data, 

machine learning has brought numerous possibilities to improve wind sector. In 

relation to OEE categories, machine learning can enhance availability and 

consequently profitability by improving wind predictions. It aids performance 

optimization through more reliable monitoring and effectively detecting 

abnormalities. And finally, for quality, machine learning algorithms can analyse 

sensor parameters and find patterns to improve power quality. Moreover,  some 

studies present mixed algorithms, statistics and machine learning with OEE 

simulation [189]. 

To sum up, another three possible advantages of using OEE can be identified as 

follows. First, finding the actual OEE and tracking when the best rate was 

achieved can help operators and researchers to better understand the 

equipment. Second, the OEE tool considers that any equipment is unique, which 

means that the tool is conceptually tailored for each turbine particularities and 

wind farm location. Finally, some components reduce their performance before 

breakdown [58], so monitoring OEE has a potential preventive behaviour, by 
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detecting problems that could potentially affect performance, but do not trigger 

any fault signs, warning operators for upcoming failures. 

2.4 Chapter Summary 

In this chapter, the concept of OEE was briefly explained together with its basic 

equations. A literature review was performed to identify main losses in wind 

energy assets. Then, these losses were classified in three different elements: 

availability, performance, and quality, following OEE concepts. Differently from 

manufacturing, wind energy can have more causes of losses, therefore, an 

extension of main losses causes was proposed as showed in Figure 2-3, 

following the assumptions contained in the flowchart in Figure 2-2. In addition, 

some of benefits of using OEE was discussed in Section 2.3. 
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3 QUANTITATIVE ANALYSIS OF OEE IN WIND ENERGY 

Estimating the operational losses in wind energy assets can be a challenging 

task, due to the number of uncertainties and particularities that each project 

carries. The model and size of the turbine, generator type, external environment 

the turbine was installed, resources available for O&M, experience of the O&M 

team, type of contract and benefits, regulation of the country, and the capacity 

and resilience of grid are examples of aspects that can affect its overall 

productivity. In this chapter, each element of OEE will be discussed and some 

figures found in the literature will be presented. Later, in the section 3.4, the rates 

investigated in previous sections will be summarized. Section 3.5 will present a 

real case scenario and its OEE rate will be investigated. 

3.1 Availability Analysis 

Although availability losses in wind energy are widely discussed in both industry 

and academia, there is no consensus on how to account for or treat them. Various 

methods have been proposed in the literature to calculate this rate, with the 

production-based and time-based methods being the most common. Other 

methods that are not still widely disseminated, such as the monetary based 

method proposed by [190], will not be discussed here. Also, in accordance with 

the OEE concept, production-based is closely related to the performance 

element, which will be discussed in the section 3.2. Therefore, this work will focus 

on time-based method to estimate availability.   

As mentioned in the section 2.2.2, the basic formula to calculate availability index 

needs the planned time for operation and the downtime. This is similar to the 

time-based method, perhaps the most popular way to calculate availability in any 

industry. A version of this method is presented and suggested in the standard BS 

EN IEC 61400-26-1:2019 for wind deployments. The equation (3-1) illustrates this 

Availability Time Based (ATB), where the uptime means the equipment is 

available, or operating, and downtime, the equipment is unavailable. 

𝐴𝑇𝐵 = 1 −  
𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
 

(3-1) 
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Another alternative to calculate availability, also derived from time-based method 

and quite presented in the literature, is considering the popular maintenance 

metrics: MTTR (Mean Time to Repair), MTBF (Mean Time Between Failure), and 

MTTF (Mean Time to Failure). Figure 3-1 illustrates how these metrics can be 

connected to uptime and downtime concepts. This method is useful especially for 

the number of studies that investigates failure rates (which is the inverse of 

MTBF) and MTTR from main important components in wind turbine in different 

situations. The formula to calculate the availability considering maintenance 

metrics (AMM) is shown in Equation (3-2).  

𝐴𝑀𝑀 = 1 −
𝑀𝑇𝑇𝑅

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
 

(3-2) 

 

Figure 3-1 MTTR, MTBF, and MTTF 

The two versions of time-based method are simple to be used, however, they can 

mislead decisions due to different assumptions. First, considering Equation (3-1), 

the definition of downtime needs to be clarified. According to the same standard, 

downtime should include not only maintenance activities, but also forced outage 

or shutdowns due to external factors. This would include, to name a few, high 

wind stops, extreme low or high temperature, and grid stops [191]. However, 

some studies do not account them, one possible reason for this is that, as these 

problems are not always operators’ responsibility, including them would not 

measure the real efficiency of the O&M team. 
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Similar problem is found in the second version of the method. It is clear by the 

Equation (3-2) that only corrective maintenance is directly accounted. This could 

be justified by two reasons. First, since preventive maintenance can be planned, 

operators try to work in periods where is less likely to wind, so this would not 

affect productivity, although the costs can increase due to high demand of 

vessels. Second, an effective preventive maintenance and failures monitoring 

could increase MTTF and reduce MTTR, improving availability rate indirectly. 

Another problem is what is considered in the MTTR, while some authors consider 

all period where the equipment was not operating, including waiting for spare 

parts, logistic, weather condition and team availability, others consider only the 

repair activity itself. In their review, [192] found these incongruency in some data 

base, especially for offshore projects. This can affect viability analysis and losses 

estimation in wind energy projects. To exemplify this, the AMM was estimated to 

be around 97%, considering only the MTTR and failure rates provided [10]. 

However, the authors included 250 hours logistic time to certain activities and 

included an estimated calendar-based maintenance. This made the index 

plummet to about 92%, the value they used in their economic simulation. 

According to [52], 22.2% of the downtime for offshore is actually spent on repair 

activity itself, while for [192], the rates are 40% and 20% for onshore and offshore 

projects, respectively. Therefore, it is important to always consider the entire 

period the equipment is not available to work. 

As mentioned in the introduction of this chapter, the particularities of each project 

can directly affect the availability. To demonstrate this, Table 3-1 presents a 

summary of downtime distribution by component of onshore wind energy studies 

in three different countries, Turkey, Japan, and China. For the situation where 

more than six components were presented, only the first five were included and 

the rest was put together as “others”. The Japanese study shown considerable 

low availability when compared to the others. The authors have investigated and 

compared with several popular databases and found that although their failure 

rate was similar, their downtime was three times higher. This was due to the high 

dependency of the importation of spare parts and, in some cases, due to 
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Agricultural Land Act in Japan, which can delay activities by nearly one month, in 

case they need to use cranes. 

Table 3-1 Summary of downtime investigation for onshore projects. 

[193] - Turkey [194] - Japan [195] - China 

Categories Values Categories Values Categories Values 

Electric System 29% Electrical System 38% 690V Cable 29% 

Pitch System 20% Blade 25% Pitch System 15% 

Structure 15% Generator 18% Control System 14% 

Yaw System 12% Pitch System 4% Converter 8% 

Controllers 10% Gearbox 4% Generator 7% 

Others 14% Others 11% Others 27% 

Availability 96.8% Availability 87.4% Availability 98.8% 

 

The Turkey study has presented the results of the analysis of the first two 

operational years from a real onshore wind farm. Considering that the average of 

onshore projects is close to 98% [28], the availability of this project is a bit lower. 

This could be due to early life of the project. As shown in Figure 3.2, the failure 

rate behaviour along a lifetime of an equipment is similar to a bathtub shape, 

which is usually higher at the beginning of the operation, due to “infant mortality”. 

After this period, the equipment gets constant failure rate most of its life. 

Conversely, some studies have shown that wind turbine failure rate increases 

slightly during this period [196], but this will be discussed in chapter 5. Finally, 

due to wear out and age, the failure rate grows in an accelerate rate, indicating 

its end of life. Another important aspect to notice is that key components as 

generator and gearbox have not presented any failure or malfunctioning during 

this period. 
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Figure 3-2 Bathtub curve 

The main reason for downtime in the Chinese case, presented in Table 3-1, was 

“690V cable”, which is not a common situation for wind energy projects. 

Nonetheless, this exemplifies how unusual problems could affect availability. The 

authors estimated that 87% of cable downtime was caused by third part, 

especially theft attempts of the neutral conductors. Another important aspect is 

that the study analysed only 6 months data, this could be one of the reasons why 

this loss got very evident and why the availability was near to 99%. Also, no 

preventive maintenance was recorded in the period. However, for availability 

estimation is important to always consider reasons the equipment was forced to 

shut down. 

Although it has been shown that availability rates can vary significantly depending 

on the method selected, how the losses are accounted, particularities of each the 

project, resources accessibility and expertise of the team, large databases 

indicate similar availability rate. Obviously, for onshore and offshore projects, 

these figures are different. It is important to keep in mind that what is called 

offshore projects, includes fixed based and floating structures. While the first is 

closer to the shore, which reduces its weather dependency and consequently its 

costs and losses, the latter is farther from the coast and dependent on weather 

condition, which increases costs and losses. This been said, according to [191], 

considering the age the average losses vary from 1 to 6%, and the average 
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availability is 97%. [197] investigated several databases and the average found 

was 96%, however, recent deployments in Germany are performing on average 

above 98.5%. Conversely, offshore deployments are considerably lower. [198] 

and [199] considered 90% availability rate, while [37], [10], and [200], a fair 

estimation would be 91.2%, 92.2% and 94.5%, respectively. A study developed 

by [201] demonstrated solutions to improve offshore availability, achieving 96% 

in their model. However, [202] shown that, considering the entire life and the size 

of the farm, offshore availability can be as low as 82.5%. 

3.2 Performance Analysis 

In the context of OEE, the performance of an equipment should be the real 

performance over its theoretical or maximum one, as demonstrated in the 

equation 2.3. This can be compared to the production-based availability index, 

suggested by the standard BS EN IEC 61400-26-1:2019, where the rate would 

be the actual production, frequently called as net production, divided by the 

potential production, known as gross production. Nonetheless, gross and net 

production can vary depending on the reference, what makes the values fluctuate 

considerably. A mix of the several rates will be discussed in this section, however, 

since one of the goals of OEE is measure production stability, alternative methods 

will be discussed in the section 4.2 and 4.3. 

The climate condition, first main cause of performance losses discussed in the 

section 2.2.2, can be controversial. While some researchers do not consider them 

by not being fully responsibility of operators, others consider as a way to compare 

performance and indicate opportunities to improve performance. The author of 

this work believes that the latter would be the best. To exemplify this, by 

comparing the performance of a real farm, [133] discovered a reduction in 

performance when ambient temperature was above 35 degrees, as the 

equipment reduces performance for system protection. Rather than accepting 

this issue, they conducted an investigation into how to improve nacelle conditions, 

leading to the changing on the specification of some filters that allowed for an 

increase in temperature protection settings. As a result, yearly production 

improved by 1.2%. 
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Considering all aspects that affects performance is important not only to increase 

the production, but also to identify them. Icing, blades erosion, dust, and insects' 

contamination can decrease lifetime of components, due to imbalanced 

operation, and reduce power output [191]. [133] found a reduction in production 

of up to 1.45% in the wind farm assessed due to excess of dust in the nacelles 

and soiling in the turbine blades. [203] found a reduction in the maximum lift 

coefficient up to 35% due to insect contamination. [85] proposed a method to 

reduce losses from icing accretion through changes in the TSR (Tip Speed Ratio) 

and achieved 7 to 23% reduction. Other climate conditions can also impact 

aerodynamic performance, leading to operational losses. For example, according 

to [83], rain can reduce performance by up to 5% in certain conditions. In more 

severe scenarios, depending on the rain and wind speed, this impact can 

increase to as much as 25%. 

Wake effects, which is the turbulence or downwind speed reduction caused by 

operation of nearby turbines, is another controversial example of losses not 

directly related to operators. While some authors do not account these losses to 

performance, others measured and found interesting solutions to improve overall 

productivity. By considering the entire farm, instead of individual turbines, [76] 

developed a model causing intentional yaw misalignment to increase production 

by 2.73%. [121] presents a quantitative review on wake effects problems and 

available solutions in literature, where some studies achieved an improvement 

above 20% in losses reduction due to wake effects. 

Besides the climate conditions, performance can be affected by other factors, as 

shown in the table 2.2. Some of these losses can be unseen by operators if the 

performance is not followed closely. Although previous paragraph has mentioned 

a technique considering yaw misalignment to improve production, [204] states 

that a misplaced vane by 5 millimetres, could cause 5% annual energy loss and 

misalignments can cause up to 2% losses. [105] shown that an optimization of 

yaw increased 7% of productivity. [76] points that production losses due yaw can 

be underestimated, because they are optimized using static wake models and in 
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real life due to rapid fluctuations yaw correct position cannot be effectively 

tracked. 

[130] investigated production losses in a real wind farm and found that 6% of 

losses was related to turbine errors, which include alerts or faults in the system. 

[94] included a motor in the system to reduce cut in speed (speed where turbines 

start producing energy), increasing total productivity by prolonging the working 

period and energy produced in early speed ranges. [205] uses fuzzy regulators 

to reduce torque fluctuations and increase productivity closely to 1.7%. 

Considering floating offshore wind turbines, [89] investigated several scenarios, 

and found extra losses close to 7% in power generation, due to wind-wave 

misalignment. 

To define the performance efficiency, many aspects need to be accounted. As 

mentioned earlier, these losses can be accounted for in different ways, making 

comparison difficult. While some treats gross production as the maximum 

theoretical provided by the wind, others include several losses reducing the gap 

between gross production and net production. Nevertheless, as demonstrated in 

this section, there are several operational solutions capable to improve wind farm 

productivity. Thus, not considering this can hide possibilities for improvement in 

the performance. For this quantitative performance analysis, studies that account 

both assumptions will be considered, and the difference and possibilities of 

improvement will be presented as the range of uncertainty. 

To [37], 90% efficiency would include all losses by wake effects, transmissions, 

and other performance losses. To [199], the losses only due to performance 

would be 11.8%. [206] estimates the net and gross production from offshore 

projects and found that performance fluctuates from 95% to 98%. However, they 

also calculate scenarios including 10% uncertainty, which drop this rate 

significantly. [207] consider 3% performance loss for onshore projects. For [208], 

the average loss of offshore projects is 16.5% (from which half is due to 

performance losses) and 15% to onshore. 
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3.3 Quality Analysis 

Different from manufacturing industry, energy is not a tangible integer product, 

what makes quality estimation a difficult task. When compared to other means to 

produce energy, renewables, which includes wind energy, has some 

particularities. First, wind energy is considered a non-dispatchable source, which 

means that operators cannot fully control the output to match electricity demands 

[209]. Another problem is related to the high and unpredictable fluctuations of its 

production, due to weather dependency. Since the grid operator tries to find 

balance between production and demand, unexpected energy fluctuations could 

cause undesirable disturbances in the grid. And finally, wind energy provides 

electricity through inverters, which do not offer inertia to the grid, and therefore, 

do not allow a time lag for grid adjustments. 

It is important to understand that energy relies on the balance between production 

and grid demand. In order to keep the grid stable and reliable for consumers, 

there are some requirements that need to be followed. Otherwise, the energy 

produced can be rejected or, in some cases, the producer can be penalized 

financially by causing disturbances in the grid. For that reason, grid operators 

usually limit the power penetration from wind energy from 20 to 35% [210]–[212]. 

There are some situations where higher penetration levels were reported, 

especially in short-term, but to this be more reliable and frequent, changes in the 

operating practices is necessary, including demand response or storage systems 

[19]. Power Quality is the common term used to check the stability of the 

electricity in the grid. Wind turbine can usually exhibit the following power quality 

problems [213][214]: 

• Steady-stage voltage level fluctuations 

• Voltage variations and flickers 

• Transients 

• Harmonics 

• Power frequency variation 

• Grid protections 
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It is out of scope of this work to describe all items cited before. Nonetheless, to 

simplify, each grid network has its tolerance level to allow wind energy 

penetration. Some grid network requirements in Europe can be seen in [215]. It 

is important to mention that before the construction of a wind farm, the project 

designer needs to consider the capacity and how weak or strong is the grid. 

According to [155], although 10% fluctuation in wind energy voltage is considered 

a usual limit, 0.3% variation can bring nuisance in weak grids. Also, the study 

developed by [213] calculates some of operational losses in a wind park located 

in the southern of Crete Island. They estimated a loss due to grid rejection equals 

to 4.6%. However, by simulating the same network and doubling the total wind 

parks, the rejection would be 27%. 

Besides the problem of particularities in each project, to find a reliable quality 

losses index has other adversities. As mentioned before, power quality is related 

to the balance of production and demand in the grid. Therefore, most of studies 

that try to identify losses, compares power quality in the grid before and after wind 

energy penetration. [157] has developed a power quality index and simulated 

power grid and wind penetration in different situations, while [216] and [217] used 

ETAP (a digital twin software able to simulates a grid and its disturbance) to 

assess the impact of different wind turbines generators.  

Another challenge in dealing with these losses is how they are treated. For quality 

losses in wind energy, the available energy can be either rejected or curtailed. 

Curtailment occurs when operators are forced to disconnect turbines or reduce 

production due to either lack of demand or grid availability. Many studies in the 

literature use the term 'curtailment' for both cases, but there are exceptions, as 

demonstrated in [21]. According to this report, out of the total 12.1% losses 

registered in 2020, 51.2% were due to curtailment, while the rest were due to 

wind energy rejection caused by issues such as poor quality or grid safety. 

According to [20], China achieved an average of 13% curtailment during the 

period from 2010 to 2017, where its peak was in 2016, achieving 17%. In 2020, 

Ireland had 11.4% of its energy from wind deployments curtailed, while North 

Ireland, had 14.8% [21]. Other countries faced better this problem, in 2018, 
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Germany, UK, and Italy got around 4% curtailment, while in Spain, this value was 

close to 1% [218]. It is important to note that comparing the curtailment 

percentage across countries may be unfair, as they depend on the level of 

renewable energy integration in the system and how aggressive were the 

investments in renewable energy. 

Transmission is another common reason for losses in energy industry. These 

losses are estimated in the designing phase, where a percentage of losses from 

cables, which usually represents the bigger part of losses [219], and intermediary 

equipment, are already included in the project. The voltage level of the network, 

type of conductors, or current transformation, and distance need to be considered 

as well. [151] and [153] are examples of studies that investigate the best layout 

considering the minimization of losses and costs in offshore projects. According 

to [213] transportation losses varies between 3 to 5%, however, when connection 

network is greater than 100km, this could be higher. 

Nonetheless, considering the operational period, which is the focus of this work, 

these losses can be higher than expected. According to [154], deviations in power 

factor, voltage, and harmonic distortions could not only reduce the operational life 

of cable and intermediaries' equipment, but also lead to additional losses. In their 

study they simulated several scenarios considering different levels of 

disturbances, and in the worst-case scenarios, the losses tripled, when compared 

to base scenarios. [180] investigated the efficiency of transmission cables from 

far offshore wind farm, and showed 9% losses reduction, only by adjusting 

voltage levels. 

In addition to the expected losses from transmission, power quality issues can 

also increase transmission losses. This is mainly due to impedance in the line, 

which is directly affected by harmonic levels [140]. Furthermore, high capacitive 

impedance can lead to a high quantity of reactive power and cable losses, 

according to [220]. The difficulty in correlating losses with their causes arises 

because power quality can be affected by external aspects, such as turbulence 

[221], or abnormalities in the turbine, as shown in [222], where power quality was 

compared with CMS (Condition Monitoring System) signals. 
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3.4 OEE Analysis 

In this section, the average OEE expected for onshore and offshore deployments, 

according to the losses and values discussed in the previously sections, will be 

summarized and presented. Obviously, these values work as reference, since the 

real OEE will depend on the particularities of each project. Some extreme 

scenarios as the Japanese availability of 87% or the 17% curtailment loss in 

China will be treated as outliers, therefore, they will not be included. 

Figure 3.3 shows the expected rates of OEE and each element, considering the 

most frequent value as the average and the range is a summary of what was 

discussed in previous sections. For availability, 98% is a reasonable value for 

most onshore deployments, however, in some scenarios this can reduce to 95%. 

Although in the literature authors includes different loss in their assumptions, 93% 

for performance seems a fair rate. The range was defined by more optimistic 

values, which generally ignores the wake effects, and the improvements 

estimated in alternatives proposals to increase productivity. Quality is the most 

difficult to find reliable information, however, 95% seems a reasonable rate, 

considering wind energy rejection, and further electrical and transmission losses. 

The limits were defined by removing part of wind rejection for the best scenario, 

while the worst included 3% curtailment. Therefore, the average OEE for onshore 

is around 87%, which is higher than average world benchmark, 85%, discussed 

in section 2.2.1. 
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Figure 3-3 Analysis of OEE for onshore and its elements according to literature. 

As expected, OEE for offshore is lower than from onshore. As shown in Figure 

3.4, the average availability for offshore is 92%. As demonstrated before, some 

studies proposed ways to improve it to 96%. Although some studies show rates 

below 90%, they are not very frequent in the literature especially for new 

deployments, so 89% was set as the likely worst scenario. About the 

performance, it is expected that the losses level is higher, due to the harsher 

environment. As demonstrated by [29], the wet and more corrosive environment 

contributes to higher failure and misinterpretation of sensors, and the wind-wave 

misalignments can reduce the performance [89]. All this will have impact not only 

on performance, but also in the quality. The higher level of instability, vibration, 

and loads can affect Power Quality, as discussed in section 3.3. Another possible 

reason for higher losses level in quality is the longer transmission lines, so in 

total, the lower level considered was 88%. 
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Figure 3-4 Analysis of OEE for offshore and its elements according to literature. 

3.5 Case Study 

In this section, the OEE of a real onshore farm will be assessed. For 

confidentiality agreement, the identification and technical details cannot be 

disclosed. The farm has 17 wind turbines and two different datasets already 

filtered from one entire year were provided, that were already pre-processed and 

ready to be used. First, a weekly summary of gross production, net production, 

and average wind speed in each wind turbine is presented. The second 

spreadsheet is the list of faults and downtimes, which contains date and time the 

failure occurred, the category, description, if causes downtime in the turbine or if 

it was only an alert, and finally what sort of intervention was needed. Table 3.2 

summarizes the content of both datasets provided. 
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Table 3-2 Summary of Dataset 

Dataset Spreadsheet 1 Spreadsheet 2 

Type Average per Week Per Fault or Event 

Content • Week Number 

• Turbine 

• Average Wind Speed 

• Gross Production 

• Net Production 

 

• Date & Time 

• Wind Turbine 

• Event Category (Ambient, Grid, Turbine, or User) 

• Log Number & Fault Description 

• Type of Intervention (Follow, Error, In Service) 

• Sum of Alert Time 

• Sum of Downtime 
 

To assess the availability the “sum of downtime” was used, considering the ATB 

(Equation 3.1). For this analysis, the “Grid Events” was considered as quality 

losses, since it is not clear what really happens when the production in 

generations stops due to grid. In the case of the turbine is only disconnected from 

the grid and keeps running, consuming its components operational life, this 

cannot be considered as availability loss. Therefore, Figure 3.5 presents the total 

downtime (close to 2120 hours) in the first year considering typing of intervention. 

To make easier to understand, all operation that was not due to failure was called 

as scheduled Service. The Ambient category includes high wind speed, safety 

stop activated without failures related and untwist of cables. Figure 3.6 presents 

only the downtime caused by failures breakdown. The second chart presents the 

number of alerts activated that did not interrupt the production, which was around 

5500 hours. Although, this would not affect the availability itself, it is important to 

follow them, since this could explain some losses performances.  
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Figure 3-5 Downtime Breakdown. 

  

Figure 3-6 Fault Alerts and Failures Downtime Breakdown 

Since the production data provided was collected on a weekly basis, there is a 

risk of bias in the estimation of the system's performance. As mentioned earlier, 

an accurate performance calculation should consider the maximum production 

achieved under identical conditions. However, the provided dataset lacks certain 

elements necessary for a more reliable analysis. Nevertheless, this method was 

still employed to maintain consistency throughout the analysis. A more 

comprehensive discussion on performance calculation methods and their 

limitations will be presented in Chapter 4. 

In Figure 3-7, the manufacturer power curve is presented, along with real data 

and maximum performance. The performance index was calculated by 
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comparing the real production to the maximum production, while accounting for 

availability on a weekly basis to correct for any discrepancies. Additionally, the 

difference between gross production and net production, as provided in 

spreadsheet 1, was taken into account during the calculations. An outlier that 

could potentially impact the analysis was identified and subsequently removed. It 

is important to emphasize that the weekly data provided is far from ideal and may 

significantly affect the analysis and the shape of the maximum curve. 

Nonetheless, this example can serve as a valuable reference for future studies.  

 

Figure 3-7 Production Real Data - Outlier highlighted. 

As explained before, since it is more likely that the turbine keeps running during 

grid events, this was considered as quality losses. The first chart in Figure 3-8 

illustrates the total downtime caused by grid events and its breakdown by reason. 

The second chart shows the fault list, which summed five times more hours than 

the downtime itself. It was not provided any information about wind energy 

rejection or curtailments, so further analysis was ignored. Moreover, the project 

estimates 2.5% transmission loss, and this was included considering the energy 

after all losses calculated.  
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Figure 3-8 Grid Losses Downtime Breakdown and Fault List. 

Figure 3-9 shows the OEE results for this case scenario, which were in line with 

the values discussed and presented in the section 3.4. The availability rate 

reached a high level of 98.6%, indicating that the equipment was operating 

effectively and with minimal downtime. The performance rate, subject to some 

limitations in calculation, scored 94.6%, still above the literature average of 93% 

(Figure 3-3). Finally, Quality was slightly above the literature upper limit of 97%, 

but only included grid faults and transmission. Further losses such as curtailment 

or wind rejection could bring the value to the estimated range for onshore 

projects. The final OEE measurement for the assessed year was 90.7%, 

indicating high productivity and efficiency. 

 

Figure 3-9 OEE Analysis of Wind Farm Case Study. 
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3.6 Chapter Summary 

In this chapter, a quantitative analysis of wind energy of each element of OEE 

was discussed. The usual formulas and losses rates were presented. This activity 

showed how hard estimate and monitor losses can be. Different projects and 

studies calculate their rates considering different equations and assumptions. 

Nonetheless, an attempt of putting all figures together was presented in section 

3.4. Figure 3-3 presented the range of each element and the total OEE expected 

for onshore deployments, while Figure 3-4 for offshore. Section 3.5 presented a 

OEE analysis of a real farm in its early age. The result was coherent with what 

was found in the literature, despite of the lack of detail in part of the data provided. 
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4 MONITORING and EVALUATING WIND FARMS 

It is important to monitor and evaluate wind farms effectiveness as frequent as 

possible. This could help to identify abnormalities and also to understand better 

the equipment. As mentioned before, the estimation of losses can vary between 

different projects, and this is not different for monitoring. One of the main 

objectives of OEE is to measure the stability of the system. So basically, best 

performance in same operational condition should be used for this activity and 

this is what will be proposed in this chapter. In section 4.1, a simple performance 

index will be defined, and traditional machine learning algorithms are applied to 

predict and monitor performance and power output through MET MAST DATA. 

In section 4.2, a data analysis considering the SCADA DATA provided and its 

OEE analysis will be performed. For this, some assumptions to calculate OEE 

elements had to be done, including a proposed method to estimate wind rejection 

by the grid. Finally, section 4.3 will present alternatives ways to monitor the 

performance. 

4.1 Predict and Monitoring Performance through Machine 

Learning2 

The most common way to monitor and predict wind power output is through the 

power curve, which in most cases is provided by the manufacturer. As defined by 

BS IEC 61400-12-1-2017, the power curve is based on the average power 

produced in a predetermined wind speed bin [109]. Although very useful, these 

curves do not usually consider the external features and some of the possible 

operational losses. Therefore, during the design phase a rate is considered in 

order to calculate the net production. According to Ioannou et al. [37] 90% is a 

reasonable estimation to be used in the design phase. However, in the 

operational phase, this approximation does not help operators to understand and 

identify what is causing the operational losses and fluctuations in production. 

 

2 This section is based on publication by Sathler and Kolios [112]. 
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Wind energy output is mainly calculated through the amount of Kinect energy flux 

from the wind taken by the rotor, considering the density of the air, wind speed, 

rotor area and the power coefficient. The power coefficient is what determines 

how much energy can actually be captured from the wind and it is related to some 

wind features and rotor features, which include the tip speed ratio and blade pitch 

angle [223]. According to Betz’s law, the theoretical maximum possible 

performance is equal to 16/27, i.e., 59.3% of the kinetic energy in wind. 

External factors such as climate, wind conditions and topography can clearly 

affect the outcome and could be the reason for high fluctuation. Recent studies 

have been trying to create alternative curves to increase accuracy in prediction 

and comprehension of production. In the literature there are studies creating 

curves adding more inputs, such as air density [75], humidity [81], wind direction 

[71], turbulence [74], and periods of the day [80]. Also, machine learning has been 

largely used to predict wind power output, as shown in [224], [73], [158], [225] 

and also to create a model of day-ahead prediction [35], very important for market 

biding. Even though these models are very useful and beneficial for operators, 

the great number of curves can make decision making more complex, thus, they 

do not seem to offer a totally tailored approach. 

A solution given by Sathler et al. [110] is the creation of a new way to monitor 

performance and track fluctuations, where the variance of production is 

calculated by dividing each value by the maximum registered on the related bin. 

As a result, the index itself has proved to have similar efficiency in predicting 

production and, when used together with wind speed, the results were higher 

than 96% when considering the entire farm. The results also showed that some 

periods with similar wind can have drastically different production when relying 

on the index created. Even though these are promising results, the study does 

not bring solutions for calculating performance in an effective way.  

As mentioned before some of possible reasons for fluctuation in production are 

due to external factors. To monitor the external factors, farms have a separate 

tower with sensors to measure wind and climate features. Therefore, the goal of 

this study is to check if the information provided by this tower, also known as 
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Meteorological Mast Data (Met Mast Data), can be used to predict the 

performance index of the turbines and check if they provide a reliable power 

output prediction to assist operators in monitoring their turbines. To execute all 

the steps outlined in the algorithm, including pre-processing, method selection, 

hyperparameter optimization, and final model creation, Python 3.8 was utilized 

along with the open-sources libraries: NumPy, pandas, and scikit-learn. Figure 4-

1 summarizes the process proposed in this work and the following sections will 

explain each step of the pipeline in details. 

 

Figure 4-1 Flowchart of the model proposed. 
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4.1.1 Methods 

Machine learning has become very popular in recent years; this is due mainly to 

the advances in technology, especially those related to storage systems and 

faster processing of data. There are many types of algorithms and methods inside 

machine learning, which can help to find patterns in their outcomes, connecting 

inputs to outputs to make predictions with lower errors. In this study, regression-

supervised models will be used. They are classified as supervised because the 

algorithm is trained based on historical data previously available, and as 

regression since production and performance are considered quantitative 

continuous values. 

It is considered a good practice to start with simpler methods before testing more 

sophisticated ones to avoid waste of computational resources. According to 

[226], decision trees, support vector machines and naive bayes are the traditional 

methods for supervised learning. Therefore, to design both models proposed, 

production output and performance prediction, four traditional methods were 

chosen: Linear Regression (LNR), Decision Tree Regression (DTR), Support 

Vector Regression (SVR) and Random Forest Regression (RFR). Table 4-1 gives 

a short explanation on each method with references for further interest.  

Table 4-1 Description of Machine Learning Methos Selected. 

Model Description Reference 

Linear 

Regression 

(LNR) 

Linear Prediction method. Look for best fit with lower 

errors, considering straight linear equation. 
 

Decision Tree 

Regression 

(DTR) 

It is a nonlinear supervised prediction method, which 

creates conditional statements. 
[227] 

Support Vector 

Regression 

(SVR) 

Based on Support Vector Machines, it uses, 

hyperparameters with a tolerance to minimize errors. 
[228] 

Random 

Forest 

Regression 

(RFR) 

Construction of multiple decision trees. A probabilistic 

analysis is made among those decision tree to select the 

best prediction. 

[229] 

The goal behind of the selection of these methods is to keep the models as simple 

as possible, avoiding the need of high computational resources, as mentioned 
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before. However, each of them has its own set of pros and cons. LNR is a simple 

and interpretable method that provides insight into the relationships between 

variables, but it may struggle to capture complex nonlinear patterns. DTR, on the 

other hand, is capable of modelling intricate relationships and handling both 

numerical and categorical features, yet it can easily overfit the data and lacks 

interpretability for larger trees. SVR excels at handling high-dimensional data and 

can effectively handle outliers, but it can be very challenging and time consuming 

with regards to finding the right hyperparameter combination. Finally, RFR 

combines multiple decision trees to mitigate overfitting, provides feature 

importance rankings, and handles a wide range of data types, but it may be more 

challenging to interpret compared to individual decision trees.  

The selection of a specific technique depends on the specific problem at hand, 

the available data, and the desired balance between interpretability and 

predictive performance. Although other traditional methods as Gaussian Process 

has proved to be a good alternative for wind energy assets [230], due to the 

amount of data and inputs used here this method was discarded. Gaussian 

Process involves inverting matrix which makes it computationally expensive as 

the dataset grows larger. Also, as demonstrated in the section 4.1.2.2, the 

methods selected provided accurate predictions, which makes the use of more 

advanced methods unnecessary for the aim of this activity. 

A normal problem in machine learning is the selection of the data, which can 

affect results positively or negatively. So, to avoid any misleading in the 

conclusions or any bias due to data selection, k-fold Cross Validation (CV) will be 

used. In this method, the data are split into “k” equal parts, where each of these 

parts is used as a test set, while the rest of data is used as a training set, so the 

model runs k-times. This process provides “k” different outcomes, so further 

statistical analysis will lead to evaluating each regression model, and the one that 

fits best for the purpose of this study will be selected. 

Finally, to assess the accuracy of the method proposed, four different metrics 

were selected. These metrics were not only the most popular ones for evaluating 

regression accuracy but also offer unique perspectives when used together. First, 
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the coefficient of determination, also known as R-squared (R2). It measures the 

extent to which the dependent variable explains the independent variable. R2 is 

calculated by considering the squared sums of the differences between predicted 

and observed values and the total sum of squares, as shown in formula 4-1. The 

results vary from 0 to 1, where 1 means perfect correlation, in other words, the 

dependent variables explain 100% of the variance in the independent variable. 

Conversely, a result equal to zero means there is no correlation. 

𝑅2 = 1 −  
𝑆𝑆𝑅

𝑆𝑆𝑇
 

(4-1) 

where SSR is the sum of squared residuals and SST total sum of squares.  

The other metrics are Mean Absolute Error (MAE), Mean Percentage Absolute 

Error (MAPE), and Root Mean Squared Error (RMSE). As suggested by its name, 

MAE calculates the average absolute difference between predictions and actual 

values (formula 4-2). It is less sensitive to outliers compared to other metrics. 

Similarly, MAPE (formula 4-3) considers absolute values, but also divides the 

error by the actual value, providing a ratio that reflects its accuracy. On the other 

hand, RMSE (formula 4-4) penalizes poor predictions by squaring the errors, 

offering valuable insights into the accuracy of the model. In equations 4-2 to 4-4, 

yi is the tested value and ŷ is the predicted one. 

𝑀𝐴𝐸 =
1

𝑛
 ∑ 1 −  

𝑆𝑆𝑅

𝑆𝑆𝑇

𝑛

𝑖=1

 
(4-2) 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |
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𝑛

𝑖=1

 
(4-3) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 −  ŷ𝑖)2

𝑛

𝑖=1

 

(4-4) 
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4.1.2 Data Analysis 

To test the model proposed, SCADA (Supervisory Control and Data Acquisition) 

data from five onshore wind turbines of 2MW and Met Mast Data from the farm 

tower were used. For confidentiality reasons the location of the farm and model 

of turbines cannot be disclosed. It was provided information from 172 days with 

10 minutes range, totalling 24,768 records per turbine. From the SCADA data 

was retrieved production and wind speed. The Met Mast Data, on the other hand, 

includes wind speed measured at five different heights, direction of the wind at 

four different points, humidity and temperature, both from two distinct points, and 

finally ambient pressure.  

4.1.2.1 Pre-processing 

From these data some abnormalities, such as negative outputs, incomplete data, 

and periods where wind speed was out of the production range were removed. 

Even though the cut-in speed of this turbine is 3.5 m/s, recordings below 5 m/s 

were not considered, because of the high fluctuations caused by the starting-up 

of the turbine. Production below 100kW was eliminated as well for the same 

reason. Hence, these values are more likely to be an error and could mislead the 

model. The goal of this work is to create a model to predict production and 

performance. Therefore, outliers can minimize the accuracy of the model. 

Considering that, an interval of confidence of 99% was calculated and the values 

out of this range were considered to be outliers. 

As mentioned in the introduction, the performance index was calculated by the 

division of each validated data to the maximum production recorded in the same 

bin. The wind speed range of 0.5 m/s was selected for this study, following the 

recommendation from BS IEC 61400-12-1-2017. From now on, all the processes 

will be presented only considering the first wind turbine generator (WTG01) in 

order not to be repetitive. But the process explained here is the same applied to 

all turbines and in the same farm. As a result, from the original 24,768 recordings 

provided, 15,141 were used to assess the methodology proposed after pre-

processing in WTG01.  
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Figure 4-2 illustrates the pre-processing evolution in three different stages. The 

first graph represents the total amount of data provided; it can be seen that the 

production fluctuates significantly during the period assessed. In the second 

graph, the first criteria for data reduction, wind speed below 5 m/s and production 

below 100kW, was undertaken and the interval of confidence of 99% was 

calculated. In this graph it is clear how outliers, especially those above the upper 

limit, can affect results. Since the performance is a rate between each value and 

its maximum, the outliers would affect all values in that bin, creating distortions in 

the model. It is important to note that this outlier was occasional, since there are 

no other points around it in the range, which justifies its removal. Finally, the last 

graph includes a colour map with the performance index calculated. The black 

line is the power curve provided by the manufacturer. 

 

Figure 4-2 Pre-processing steps in WTG01: a) Complete Data; b) Initial excluding 

and Interval of Confidence; c) Data Pre-processed + Performance. 

4.1.2.2 Model Selection 

In the model selection activity, basic procedures and parameters were used. 

Nonetheless, a deep investigation of parameters was developed to run the 

methodology proposed and it is presented in the subsection 4.1.2.3. Hence, in 

few words, to find the best LNR model, Ordinary Least Square method was used. 



 

56 

To train the RFR, one hundred trees was used, and the kernel selected to the 

SVR was the “Radial Basis Function”. In all methods square error was used as a 

metric to the loss function and the input features were scaled through 

Standardization. 

To avoid bias, a cross-validation was conducted to select the optimal regression 

method. In this analysis, k = 10 was considered, and the metric used was R2. 

This study is divided into two different models: one to calculate the power output 

considering wind speed and performance (MODEL 1), and the other to predict 

the performance of production using Met Mast Data (MODEL 2). To provide a 

visual comparison of the results, a box plot from each method will be presented, 

illustrating the interquartile range, whiskers denoting the minimum and maximum 

values (excluding outliers), and individual data points. Additionally, a separate 

box within the graphs displays the mean value and standard deviation for each 

method, providing a summary of their performance. This concise representation 

facilitates a swift evaluation of prediction accuracy and variability across the 

different machine learning methods. Before defining the models, a similar 

procedure was done considering only wind speed to assess the advantages of 

including performance as an input, as illustrated in Figure 4-3. 

 

Figure 4-3 Box Plot of CV of Power Output Prediction with only Wind Speed 

Figure 4-4 presents the results of the models to calculate production considering 

wind speed and performance. Even though considering only wind speed has 

some good values (Figure 4-3), the addition of performance significantly 
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improved the accuracy in all methods. The high result is not a surprise since the 

performance index identifies the fluctuation of production in a certain bin, in other 

words, where exactly the production output will be. Although the visible curvature, 

LNR, obtained a high result, around 0.94, which illustrates and reaffirms the 

importance of the performance index as an input. DTR and RFR, which are 

nonlinear regression conditional models, achieved an exceptional correlation, 

with RFR demonstrating a slightly higher result (0.99988) compared to DTR 

(0.99980). This marginal difference suggests that the two models performed 

similarly, indicating a strong and nearly indistinguishable correlation. 

 

Figure 4-4 Box Plot of CV of Power Output Prediction with Performance and Wind 

Speed (MODEL 1) 

The biggest challenge of the model proposed is the prediction of the performance 

index. Figure 4-5 shows the results of MODEL 2, where the performance was 

predicted using Met Mast Data as input. In this scenario SVR and RFR had the 

best results, achieving an average R2 of 0.866 and 0.892 respectively. 

Considering the best outcome, RFR, the result is very consistent since the 

standard deviation was lower, around 0.0049, which means that around 89% of 

wind turbine performance can be explained by the Met Mast Data or external 

interferences. 
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Figure 4-5 Box Plot of CV Performance Prediction through Met Mast Data 

Prediction Model. (MODEL 2) 

4.1.2.3 Power Output Model 

Based on the model selection analysis, RFR demonstrated superior performance 

compared to other methods in both proposed models, leading to its selection for 

predicting the performance index (MODEL 2) and calculating the power output 

(MODEL 1). RFR, with its versatile architecture and numerous parameter options, 

offers extensive possibilities for optimization. In this study, six widely adopted 

parameters used in optimizations were investigated. 'Bootstrap' enhances model 

robustness, while 'max depth', 'max features per leaf', and 'min samples per leaf' 

control tree complexity to prevent overfitting. 'Min samples split' captures 

meaningful patterns by determining the minimum number of samples required to 

split a node. The 'number of estimators' impacts overall performance and stability 

by determining the ensemble's tree count. These parameters are the most 

common and have the potential to enhance the accuracy and effectiveness of the 

wind energy prediction model. Further details on the parameters can be found in 

[231].  

To tune the best set of parameters, two routines were created. Firstly, a range of 

commonly used parameter values was explored through random selection. Then, 

based on the best results obtained, a more focused range was retested, 

considering all possibilities. Each iteration used a fivefold cross-validation 
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approach. Table 4-2 shows the parameters and criteria assessed at each stage, 

along with the selected parameters. Figure 4-6 shows the box plot of MODEL 2 

after the parameters redefinition, resulting in 0.65% improvement in average R2. 

As MODEL 1 achieved R2 equals to 0.999, no further analysis was conducted on 

its basic structure. 

Table 4-2 RFR Optimization parameters – WTG01 

 Random Single Selected 

Bootstrap [‘True’, ‘False’] [‘False’] [‘False’] 

Max. Depth None & linspace (20,110,4) [‘None’, 20, 80] [‘None’] 

Max. Feature per Leaf [1, 2, 5, 10, 14] [1, 2, 5] [1] 

Min. Samples per Leaf [1, 2, 4] [1, 2] [1] 

Min. Samples Split [2, 4, 10] [2, 10] [2] 

Number of Estimators linspace(10, 1010, 11) [110, 210, 410] [210] 

Total Possible Combinations 4950 108 - 

Total Tested 1000 108 - 

 

 

Figure 4-6 Boxplot of MODEL 2 after RFR tuning. 

Finally, from the total data provided, 30% was set aside to validate the model, 

while 70% was used to train the models. To increase reliability on the models 

proposed, increment results and reduce the risk of bias, the selection of the 

validation group was random, and the procedure were run five times. It is 

important to mention that the validation data were separated before the 

performance calculation. The goal behind this strategy is to emulate a real 
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scenario, where the performance index is calculated only with provided data and 

the performance index predicted is unknown. It is important to mention that to 

calculate the complete farm, the whole process was redone adding a new input 

variable to identify each one of the five turbines. In other words, “All Farm” 

scenario is not the average analysis of the five turbines individually, but it is a 

new simulation. 

4.1.3 Results and Discussion 

The proposed approach proved to be efficient to predict the wind power output. 

Table 4-3 presents the results from the five iterations considering turbine WTG01, 

where the predictions achieved an average of 0.24% error when compared to the 

real production. Regarding the metrics, the results were also very consistent, 

independently of the iterations. The R2 was close to 100% and the average RMSE 

was around 77.9kW; since this is a 2MW turbine, this error is acceptable 

considering the benefit the model can bring. Gross production, i.e., the one 

considering the manufacturer power curve, was presented as a reference as well 

as the net production, considering 90.0% performance. 

Table 4-3 Results from WTG1 with 15,141 data points (RP = Real Production, MP = 

Model Prediction, GP = Gross Production, NP = Net Production). 

 

It is important to note that the net production has achieved a good result as well; 

however. this value is more appropriate for the design phase. By using a fixed 

rate, this value does not help the operators to understand the production 

behaviour, during the operational phase. As mentioned before, there are many 
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factors that affect the turbine performance, many of which are related directly to 

the external factors and climate features. Therefore, the use of Met Mast Data to 

monitor performance and estimate production can be considered reliable. Some 

of the known operational losses are due to turbulence, air density, or wake 

effects, for example, and they can be linked to the differences in wind speed in 

different points, temperature, and wind direction, respectively, and all this 

information is provided by the Met Mast Data. 

Another advantage of the model is that it gives extra information to operators 

about possible losses in the equipment’s efficiency. Components of the turbine 

tend to reduce its performance before breakdowns [58], but considering the high 

fluctuation in production, it is hard to identify if and when this possible loss is due 

to wind features or an equipment issue. Monitoring the expected performance 

through Met Mast Data could work as a reference to operators to check if the 

fluctuation is normal, considering the environment characteristics, or if this could 

be a mechanical or electrical problem. 

While the model seems very useful to monitor production and performance in real 

time, future predictions were not evaluated until here. Knowing that it is very 

unlikely to have accurate forecasts within a 10-minute range, as calculated so far, 

an additional simulation of performance prediction considering daily average 

results was done and the results are shown in Figure 4-7. From the 172 days of 

data provided, the month of January, i.e., 31 days, was separated out as a test 

set, and the other 141 days as training. In this simulation the R2 of the 

performance prediction was 0.89 and RMSE was 0.04, which means the model 

can provide a good accuracy even considering larger ranges. This can be useful, 

especially in order to plan maintenance in advance, since in some periods the 

total production can be lower, even though the wind speed is the same.  
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Figure 4-7 Performance Prediction X Real Performance – WTG01 – January 

Although it is possible to find in the literature similar results in terms of accuracy, 

the model presented in this study has the advantage of use less computational 

resources when compared to more advanced techniques, such Artificial Neural 

Network or Gaussian Process as mentioned before. For real-time monitoring this 

can become an important advantage. Also, since the model here proposed uses 

data from diverse sources, this can avoid redundancies and provides a new 

independent input to operators. Nonetheless, it is expected an improvement in 

the performance prediction with more data, a deeper analysis and elimination of 

abnormalities (fault alarm data were not provided by the operators in this study), 

and a feature analysis and reduction. 

Table 4-4 presents the average results achieved in each turbine and when the 

entire farm is assessed together. Considering all simulations, the average error 

between the real production and from the model was 0.16%. The MAPE and the 

RMSE was respectively, 5.68% and 72.83kW. The entire farm obtained a slight 

better result, with an average RMSE of 64kW, which could be due to the amount 

of data or by the identification of the turbine as input. It is expected that the 

difference in individual performance can be better tracked when they are 

assessed together, especially considering the wake effect loss.  
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Table 4-4 Average Results from Simulations 

 

To sum up, the use of Met Mast Data to predict performance can be very 

beneficial: First because they contain most of the external information that directly 

affects wind power production, so it could reduce the use of several curves, which 

assess these inputs individually, to only one model. Second, for the authors, the 

turbine behaviour is unique, which means that although known, the influence of 

each factor on production losses can vary from farm to farm due to the 

topography, wind conditions and climate. So, the use of the Met Mast Data related 

to real performance provides an increasingly tailored model. In addition, a daily 

average model was created and proved to be as effective as using a 10-minute 

range, which means the model can be used for short- or medium-term 

predictions, depending on the accuracy of climate and wind feature forecasts or 

a historical database. To end up, the model proposed proved to be very effective 

in helping operators with decision making as a tool to monitor performance and 

predict production in real time or for future predictions. 

4.2 OEE Analysis through SCADA3 

Different from previous section, where MET MAST data was used to monitor the 

performance, in this section this element will be assessed considering only 

SCADA data. The goal behind this is activity is not to predict performance, but 

measure in a reliable and coherent way the real performance and productivity of 

the wind farm. Additionally, each of the OEE element will be discussed and 

measured. Due to limitation of the dataset, some assumptions needed to be 

considered. To not be repetitive, only the first wind turbine will be demonstrated 

 

3 This section contains extracts from the publication by Sathler et al [110]. 
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in following subsections, however, in the subsection 4.2.5, a summary 

considering the entire farm will be presented. 

4.2.1 Availability 

The data provided did not show when abnormalities and failures occur, neither if 

the turbine was shut down by the operator or in test/maintenance mode. Although 

this affects availability analysis, all missing data will be considered as downtime 

as well as when the wind speed was higher than 5m/s and the production was 

below 50kW. These abnormalities can be seen in Figure 4-1a. To calculate 

availability, the time-based method (ATB) was selected, according to the equation 

3-1. 

4.2.2 Performance 

The power output from wind turbine is directly related to the wind features as 

discussed before. The equation to calculate the power output is: 

𝑃𝑜𝑤𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 =  
1

2
 𝜌𝐴𝐶𝑝(𝜆, 𝛽)𝑉3 

(4-5) 

where, 

ρ is the air density [kg/m3]. 

A is the rotor area [m2]. 

Cp is a performance constant, and it is related to the tip speed ratio (λ) and 

pitch angle (β). 

V is the wind speed [m/s] 

As shown in Equation 4-5, the power output is directly related to the air density. 

Three weather features can influence the air density, the local pressure, humidity, 

and temperature. These values are connected to each other, what makes the 

estimation of production through a simple power curve less effective. To correct 

this, a normalization of the measured values is recommended in the standard BS 

EN IEC 61400-12-1:2022. In this method, air density normalization is applied to 

the SCADA data provided before the calculation of performance. This method is 
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briefly described below. First, the relative air density is calculated, through the 

Equation 4-6: 

𝜌10𝑚𝑖𝑛 =
1

𝑇10𝑚𝑖𝑛
 (

𝐵10𝑚𝑖𝑛

𝑅0
−  𝜙𝑃𝑤  (

1

𝑅0
− 

1

𝑅𝑤
)) 

(4-6) 

where, 

ρ10min   is the derived 10 min averaged air density. 

T10min   is the measured absolute air temperature average over 10 min [K]; 

B10min   is the air pressure corrected to hub height [Pa]; 

R0   is the gas constant of dry air, 287.05 [J/kgK]; 

Φ    is the relative humidity [%] 

Rw   is the gas constant of water vapour, 461.5 [J/kgK]; 

Pw   is the vapour pressure equal to 2.05x10-5 exp(0.0631846 T10min) [Pa]. 

Then, the wind speed measured is normalized according to the Equation 4-6: 

𝑉𝑛 = 𝑉10𝑚𝑖𝑛(
𝜌10𝑚𝑖𝑛

𝜌0
)

1
3 

(4-7) 

where,  

Vn is the normalized wind; 

V10min is the averaged wind speed measured; 

ρ0 is the reference air density, here was assumed 1.225kg/m2. 

Additionally, the Vn is corrected with nacelle position: 

𝑉𝑚 = 𝑉𝑛cos (𝜑) (4-8) 

where φ is the misalignment angle between the nacelle and the average wind 

speed and Vm is the equivalent wind speed. 

To calculate the performance analysis, the maximum production in each wind 

speed bin (0.5m/s) was identified and a rate of real value over maximum was 

considered its actual performance. However, in this activity, two extra 

components were added to straight the gap and makes the maximum 

performance assessment more realist. Besides the wind speed bin, the wind 
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direction (WD30) and the wind turbulence intensity (TI) was considered. The first 

was grouped as 30º bin, while the later was calculated following Equation 4-8, 

according to BS IEC 61400-1:2019: 

𝑇𝐼 =  
𝜎10𝑚𝑖𝑛

𝑉10𝑚𝑖𝑛
 

(4-9) 

Where σ10min is the standard deviation and V10min is the mean wind speed 

calculated within 10 minutes. Some tests were performed before the classes was 

defined, following the impact in results and similar amount of sample to avoid bias 

in the analysis. Therefore, the three classes considered was: 

• Class 1 - TI < 5% 

• Class 2 - 5% ≤ TI ≤ 10% 

• Class 3 - TI > 10% 

4.2.3 Quality Estimation 

As discussed in subsection 2.2.4, there are various causes of quality losses in 

wind energy deployments, ranging from the power quality of generated energy to 

transmission loss levels. Unlike in the manufacturing industry, which produces 

tangible goods, energy involves some subjectivity, making loss estimations a 

more challenging task. Unfortunately, to this analysis only SCADA data was 

provided, which limits the scope. However, some of quality losses can be 

calculated by considering the difference in the production output. 

One of the main problems of wind energy is its high level of fluctuation. As wind 

energy is weather dependent, operators have limited control over its output. Grid 

operators must maintain a stable frequency by balancing active power in the 

system, and extreme energy variations can pose a problem. This effect, also 

known as ramp rate, is widely discussed, and some countries have included 

requirements in their national grid codes to better address this issue [232]. High 

increases (ramp-up) and high decreases (ramp-down) are both problematic, but 

while in the first, operators can minimize the fluctuation by reducing power output 

through the pitch angles, the same cannot be said for ramp-down. Either way, in 

both cases, wind farms can suffer financial losses due to curtailment or rejection 
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of energy production or penalties, depending on the contract. Therefore, to 

estimate some possible quality losses, a ramp rate analysis will be conducted.  

There are different ways to define the ramp rates, which could be by variation, 

duration, and/or change rate [168]. A rate considering the difference of power 

output in a defined period of time is the most common. Some grid codes define 

the acceptable rate of variance, usually 5, 7.5, or 10% [233], which allows an 

estimation of energy curtailed. Here, the grid limits were not provided, but to 

simulate some of these losses the ramp rate will be calculated considering the 10 

minutes data available, and a deduction from the energy produced will be 

accounted as wind energy rejection. The following equation and rules summarize 

how the energy loss (EL) was calculated in the present simulation; the rated 

power considered was 5%: 

 {
𝑖𝑓 |𝑃𝑡 − 𝑃𝑡+10| ≤ 0.05 𝑥 𝑅𝑃    ⟶   𝑃𝑡+10

𝑖𝑓 |𝑃𝑡 − 𝑃𝑡+10| > 0.05 𝑥 𝑅𝑃 ⟶ 𝐸𝐿 =  𝑃𝑡+10 𝑥 (1 −
|𝑃𝑡+10− 𝑃𝑡−0.05∗𝑅𝑃|

𝑅𝑃
)
  

(4-10) 

where RP is the Rated Power, Pt is the Active Power, and Pt+10 is the Active 

Power measured 10 minutes later. 

4.2.4 Partial Results and Discussion of WTG01 

To simplify the analysis, Table 4-5 presents the summary of results per week. 

The number of the week is the official one, according to the calendar and it was 

sort in chronological order. The average OEE was 70%, which for an onshore 

turbine can be considered a low value, as discussed in section 3.4. However, as 

mentioned before, it was not provided further information about faults or 

mechanical problems. This information could explain the reason behind low 

availability from the weeks 27 to 34. Ignoring this period, the availability would be 

98%, close to the average found in the literature.  
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Table 4-5 Summary of the results of WTG01 

Week 
Average of 
Availability 

(A) 

Average of 
Performance 

(B) 

Average of 
Quality  

(C) 

Average of 
OEE 

26 1.000 0.641 0.966 0.619 

27 0.706 0.755 0.928 0.495 

28 0.522 0.816 0.946 0.403 

29 0.307 0.862 0.939 0.248 

30 0.612 0.895 0.963 0.527 

31 0.704 0.802 0.965 0.545 

32 0.870 0.768 0.952 0.636 

33 0.906 0.765 0.960 0.665 

34 0.486 0.732 0.977 0.348 

35 1.000 0.757 0.959 0.725 

48 1.000 0.915 0.975 0.892 

49 1.000 0.876 0.985 0.863 

50 0.982 0.868 0.976 0.833 

51 1.000 0.790 0.987 0.779 

52 1.000 0.868 0.969 0.842 

53 1.000 0.771 0.989 0.763 

1 1.000 0.850 0.969 0.823 

2 1.000 0.852 0.983 0.837 

3 0.897 0.849 0.974 0.741 

4 0.923 0.853 0.964 0.759 

5 0.921 0.834 0.976 0.750 

6 0.979 0.808 0.969 0.767 

7 0.996 0.874 0.965 0.840 

8 0.999 0.833 0.960 0.799 

9 1.000 0.763 0.962 0.734 

10 0.922 0.803 0.963 0.713 

11 0.998 0.882 0.955 0.841 

12 1.000 0.812 0.967 0.786 

Total 0.867 0.830 0.967 0.699 

Table 4-5 shows an average performance rate of 83%, which is below the 

average reported in the literature. However, unlike availability, performance did 

not fluctuate significantly over the assessment period. With the exception of 

weeks 32 to 35, where the performance was approximately 75%, the rate varied 

from 80% to 90% for most of the period. To illustrate one advantage of the 

proposed analysis, assuming that the low availability recorded in weeks 28 to 31 

was due to maintenance and the performance below 80% was seasonal, the 
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overall productivity of the farm would be higher if the maintenance was done in 

this period, without any substantial changing in the project. In terms of quality, 

the values were consistent with the literature, although other losses such as 

transmission were not considered. While further testing is necessary to validate 

the criteria and rules used, the results are promising. 

Other analyses can be conducted using the proposed OEE assessment. An 

investigation of performance variance revealed significant differences in 

situations with similar wind features. Table 4.6 exemplifies this observation, 

demonstrating that even with similar wind speed bin (WS), wind direction bin 

(WD30), TI class (TI_Class), and season (both were during summer and night-

time), the performance varied by approximately 23%. The average performance 

during the first period was nearly 100%, while in the second period, it dropped to 

77%. It is important to mention that OEE helps to identify abnormalities in the 

system, but further investigation is necessary to understand the root cause of this 

performance difference. This information is crucial for identifying possible 

solutions to minimize such variations and optimize wind energy productivity, 

ensuring efficient and cost-effective operation. The data provided does not allow 

further investigation, which could include even production reduction due to 

curtailment. However, it is important to consider this potential loss in the OEE 

assessment to ensure the metric captures the overall performance accurately 

and accounts for any operational limitations or curtailment effects.  
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Table 4-6 Comparison of two different periods with different performance 

Month Day Time WS WD30 TI_Class 
Average of 

Performance 
(B) 

July 30 02:00 12.5 330 1 0.992836 

July 30 02:10 13 330 1 0.999962 

July 30 02:20 13 330 1 0.99995 

July 30 02:30 13.5 330 1 0.994367 

July 30 02:40 13.5 330 1 0.994346 

July 30 02:50 13.5 330 1 0.994366 

Month Day Time WS WD30 TI_Class 
Average of 

Performance 
(B) 

August 20 21:00 13 330 1 0.748819 

August 20 21:10 13 330 1 0.75835 

August 20 21:20 13 330 1 0.764873 

August 20 21:30 13 330 1 0.772976 

August 20 21:40 13 330 1 0.785902 

August 20 21:50 13 330 1 0.793626 

Other patterns can be found when the elements are grouped according to 

different criteria. Table 4-7, 4-8, 4-9, 4-10, and 4-11 summarizes the results 

grouped by temperature range, month, TI class, wind speed bin, and wind 

direction bin, respectively. About the temperature criteria presented in Table 4-7, 

the results are clearer correlated, but when the temperature is above 35º C, the 

performance decay is more evident. According to the manufacturer`s manual, 

above 35ºC, the production is reduced for equipment`s safety. This could also 

explain the performance variance when assessed per month (Table 4-8). As 

expected, higher turbulence caused lower performance and lower quality (Table 

4-9), and the performance is higher when wind turbine works in its rated power 

(Table 4-10). Regarding wind direction presented in Table 4-11, only the angle 

bins 240 and 270 had a significant difference in the result, probably by the 

increased wake losses. It is worth mentioning that the rate considers the 

maximum in the same bin, so the reason for lower stability needs to be better 

investigated. Although the availability has varied among the tables, no conclusion 

can be done, due to the limited and size of the sample, as already shown in Table 

4-5.  
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Table 4-7 Results of WTG01 grouped per Temperature Range. 

Temp 
(ºC) 

Average of 
Availability 

(A) 

Average of 
Performance 

(B) 

Average of 
Quality  

(C) 

5-15 0.963 0.898 0.973 

15-25 0.978 0.839 0.972 

25-35 0.977 0.847 0.966 

35-45 0.739 0.808 0.964 

>45 0.614 0.752 0.945 

Total 0.867 0.830 0.967 

 

Table 4-8 Results of WTG01 grouped per month. 

Month 
Average of 
Availability 

(A) 

Average of 
Performance 

(B) 

Average of 
Quality  

(C) 

January 0.944 0.844 0.972 

February 0.991 0.843 0.965 

March 0.972 0.823 0.962 

July 0.571 0.835 0.952 

August 0.777 0.759 0.961 

December 0.996 0.858 0.979 

Total 0.867 0.830 0.967 

 

Table 4-9 Results of WTG01 grouped per TI Classes. 

TI_Class 
Average of 
Availability 

(A) 

Average of 
Performance 

(B) 

Average of 
Quality  

(C) 

1 0.919 0.834 0.977 

2 0.906 0.844 0.962 

3 0.762 0.784 0.938 

Total 0.867 0.830 0.967 
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Table 4-10 Results of WTG01 grouped per Wind Speed Bin. 

WS_5 
Average of 
Availability 

(A) 

Average of 
Performance 

(B) 

Average of 
Quality  

(C) 

5 0.939 0.735 0.981 

5.5 0.884 0.768 0.977 

6 0.911 0.751 0.975 

6.5 0.900 0.771 0.970 

7 0.883 0.783 0.962 

7.5 0.905 0.784 0.958 

8 0.888 0.787 0.947 

8.5 0.877 0.790 0.946 

9 0.885 0.775 0.939 

9.5 0.901 0.794 0.945 

10 0.919 0.863 0.966 

10.5 0.865 0.930 0.978 

11 0.839 0.960 0.985 

11.5 0.831 0.969 0.990 

12 0.796 0.972 0.995 

12.5 0.806 0.967 0.994 

13 0.785 0.961 0.996 

13.5 0.798 0.943 0.989 

14 0.816 0.925 0.979 

14.5 0.798 0.948 0.987 

15 0.745 0.954 0.994 

15.5 0.667 0.960 0.976 

16 0.649 0.948 1.000 

16.5 0.833 0.996 0.999 

17 1.000 0.974 0.992 

17.5 1.000 1.000 1.000 

18 1.000 1.000 1.000 

18.5 1.000 1.000 0.996 

19 1.000 1.000 1.000 

21.5 1.000 1.000 0.896 

Total 0.867 0.830 0.967 

 

 

 

 

 



 

73 

Table 4-11 Results of WTG01 grouped per Wind Direction Bin. 

WD30 
Average of 
Availability 

(A) 

Average of 
Performance 

(B) 

Average of 
Quality  

(C) 

0 0.872 0.931 0.938 

30 0.908 0.812 0.968 

60 0.928 0.847 0.956 

90 0.770 0.846 0.948 

120 0.830 0.853 0.961 

150 0.926 0.845 0.969 

180 0.933 0.827 0.972 

210 0.943 0.824 0.965 

240 0.924 0.730 0.949 

270 0.915 0.747 0.957 

300 0.875 0.846 0.970 

330 0.816 0.833 0.973 

360 0.790 0.842 0.962 

Total 0.867 0.830 0.967 

4.2.5 Results of the Wind Farm 

Table 4-12 summarizes the results considering the entire farm. The first aspect 

to notice is that on average all elements performed slightly better when the entire 

farm is assessed. The total OEE of the period assessed was 73%. The availability 

only improved 3%, however, the low value was achieved in the same period, 

which means some abnormality or event might have occurred in the entire farm.  
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Table 4-12 Results considering all wind farm. 

Week 
Average of 
Availability 

(A) 

Average of 
Performance 

(B) 

Average of 
Quality  

(C) 

Average of 
OEE 

26 0.705 0.714 0.986 0.496 

27 0.685 0.773 0.970 0.516 

28 0.696 0.760 0.977 0.522 

29 0.664 0.772 0.980 0.510 

30 0.677 0.813 0.981 0.547 

31 0.732 0.812 0.981 0.587 

32 0.793 0.785 0.974 0.608 

33 0.846 0.781 0.971 0.641 

34 0.804 0.785 0.980 0.617 

35 0.907 0.769 0.968 0.674 

48 1.000 0.923 0.980 0.906 

49 0.974 0.887 0.988 0.855 

50 0.977 0.875 0.979 0.838 

51 0.990 0.807 0.988 0.789 

52 0.973 0.879 0.972 0.834 

53 1.000 0.781 0.991 0.774 

1 0.980 0.858 0.972 0.819 

2 0.962 0.863 0.985 0.815 

3 0.890 0.872 0.976 0.753 

4 0.984 0.862 0.969 0.822 

5 0.987 0.841 0.978 0.813 

6 0.998 0.814 0.969 0.788 

7 0.952 0.873 0.967 0.801 

8 0.951 0.830 0.963 0.756 

9 0.930 0.818 0.967 0.733 

10 0.990 0.852 0.967 0.816 

11 0.960 0.880 0.960 0.813 

12 1.000 0.818 0.976 0.797 

Total 0.891 0.832 0.975 0.727 

4.3 Alternative of Performance Analysis 

The performance analysis discussed in the subsection 4.2.2 considered only 

external factors, as turbulence and some weather features. However, it is also 

possible to evaluate performance by considering internal factors such as the 

generator rotational speed or the pitch angle. In this section, some alternative 

methods to measure performance will be presented. 
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4.3.1 Wind Speed x Generator Speed 

Similar procedure as shown in subsection 4.2.2 was adopted for this analysis. 

However, instead of the wind direction and the turbulence, the best performance 

in each wind speed was found considering the generator rotational speed. The 

generator speed was grouped in bins of 50 rpm. To facilitate comparison and 

visualization, the average results are presented on a weekly basis in Table 4-13. 

Table 4-13 Summary of Performance Analysis - Wind Speed x Generator Speed 

Week 
Average of 

Performance 
(B) 

Week 
Average of 

Performance 
(B) 

26 0.757 1 0.898 

27 0.832 2 0.925 

28 0.881 3 0.903 

29 0.899 4 0.919 

30 0.902 5 0.926 

31 0.836 6 0.900 

32 0.816 5 0.926 

33 0.791 6 0.900 

34 0.760 7 0.905 

35 0.810 8 0.904 

48 0.921 9 0.878 

49 0.927 10 0.890 

50 0.935 11 0.906 

51 0.870 12 0.898 

52 0.905  

53 0.887 Total 0.888 

The result of this method was 0.888, 0.058 higher than the previous method, 

which considers only weather features. By adding the generator speed the 

performance was more stable, however, the value is still lower than the average 

performance found in the literature. As mentioned before the techniques used to 

measure performance can vary a lot, which makes comparisons less precise. 

Unfortunately, there is not enough information to interpret these results properly, 

but machine learning techniques have provided a couple of solutions to explain 

black box models that can give some tips on what might be happening.  

There are several methods for interpretability of machine learning models, 

including feature importance, partial dependence plots, permutation importance, 
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LIME (Local Interpretable Model-agnostic Explanations), SHAP (SHapley 

Additive exPlanations), and integrated gradients. After careful evaluation, SHAP 

values were chosen as the preferred method for interpretability in this model.  

SHAP is a comprehensive and unified method that provides detailed explanations 

of feature impacts on individual predictions. It utilizes Shapley Values, a game 

theory concept, to distribute predictions fairly among features. In this study, the 

open source SHAP library [234], available for Python users, was employed. Given 

the high accuracy achieved by RFR in the performance analysis of wind turbines, 

presented in section 4.1, the 'tree explainer' method recommended in the SHAP 

documentation was selected for this analysis. The assessment metric for the 

model was R2.  

The R2 achieved in this activity was 0.85, indicating a strong correlation. The bee 

swarm graph in Figure 4-8 provides a summary of the SHAP analysis. Each point 

represents an instance, positioned vertically based on feature importance. The 

swarm's centre represents the central tendency, indicating the impact on the 

prediction (positive or negative). The colour signifies the feature's value, 

indicating its correlation with the final accuracy. The width of the swarm 

represents the uncertainty or spread associated with the SHAP values. From the 

analysis of the Figure 4-8, it is evident that Stator Active Power had the highest 

contribution to the performance, followed by Rotor Speed, Generator Speed, 

Ambient Temperature, and Pitch Angle. 

Given that this is a DFIG (Double-Fed Induction Generator), the significant impact 

of Stator Active Power on performance can be attributed to its direct connection 

to the grid, aiding in reducing disturbances. As previously discussed, ambient 

temperature plays a crucial role in performance, particularly when temperatures 

exceed 35ºC. Some studies have proposed solutions to increase productivity in 

such scenarios without compromising equipment safety, as mentioned in [133]. 

In this study, modifications to existing dust filters and enhancements in nacelle 

ventilation allowed for an increase in the start protection temperature from 35 to 

40ºC. The operational temperature of several components had a marginal impact 
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on the performance, but should be investigated, since this could indicate some 

abnormality in the equipment. 

 

Figure 4-8 SHAP results of the performance. 

4.3.2 Power Coefficient (PC) 

As demonstrated in Equation 4-5, the power coefficient (PC) is directly related to 

the power output, and it is function of the tip speed ratio (TSR) and the pitch angle 

(β). Both values can be retrieved from the data provided. The tip speed ratio is 

the rotor speed divided by the wind speed, so this could be calculated following 

by taking the rotor speed measured by SCADA and converting the speed, as 

follows: 

𝑇𝑆𝑅 =  
𝑅𝑜𝑡𝑜𝑟 𝑇𝑖𝑝 𝑆𝑝𝑒𝑒𝑑

𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑
=  

𝑅𝑜𝑡𝑜𝑟 𝑆𝑝𝑒𝑒𝑑 𝑥 𝜋𝐷 

60. 𝑉10𝑚𝑖𝑛
 

(4-11) 

D is the rotor diameter. 

To assess the best performance, the tip speed bin and pitch angle bin was 

rounded as integers numbers. Table 4-14 presents the results of this analysis, 
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where the average value was 75.4%. By considering the pitch angle and the rotor 

speed it was expected a better efficiency of the equipment, but the result was 

lower than the previous methods selected.  

Table 4-14 Summary of Performance Analysis – CP. 

Week 
Average 

of B 
Week 

Average 
of B 

26 0.669 1 0.751 

27 0.776 2 0.759 

28 0.763 3 0.759 

29 0.821 4 0.749 

30 0.836 5 0.743 

31 0.801 6 0.729 

32 0.754 5 0.768 

33 0.719 6 0.736 

34 0.715 7 0.708 

35 0.725 8 0.736 

48 0.823 9 0.782 

49 0.767 10 0.740 

50 0.752 11 0.751 

51 0.696 12 0.759 

52 0.767  

53 0.683 Total 0.754 

4.3.3 Discussion 

Regardless of the method selected, the most important thing is to not narrow too 

much the criteria for assessing performance. For the author, considering only 

external factors would be the best way to identify the equipment and operational 

losses, as demonstrated in subsection 4.2.2. Since, conceptually, if the wind 

conditions and weather features are the same, the equipment should provide 

same power output in normal situations. The problem behind narrowing the 

criteria too much is that this would mislead operators and managers about 

possibilities to improve the equipment productivity. In chapters 2 and 3, some 

simple solutions to improve the performance of the equipment, found in the 

literature, were briefly presented. However, according to OEE concept, this 

means that the equipment was not extracting power output at its maximum 

capacity. 
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4.4 Chapter Summary 

This chapter was divided in two main parts. The first, section 4.1, a model was 

proposed to monitor and predict wind power output through traditional machine 

learning techniques. MET MAST Data was used as input and provided a high 

accuracy, even in daily average forecasts. The second part, sections 4.2 and 4.3, 

presented a data analysis of the same farm considering only SCADA data. The 

assumptions to calculate availability was discussed in subsection 4.2.1 and a 

method to estimate wind energy rejection was proposed in subsection 4.2.3. How 

to monitor and measure the performance was first presented in subsection 4.2.2, 

where only wind features was considered. Alternatives methods using internal 

information, such as generator speed and/or rotor speed, was presented and 

discussed in section 4.3. Finally, OEE was estimated, and its rate was grouped 

considering different categories for a better understanding of productivity and 

losses behaviour. This was presented in subsection 4.2.4 and 4.2.5. 
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5 LOSSES TRENDS & COST IMPACTS4 

It was found in the literature three main reasons for projects to not achieve 

financial return along its entire operational life. They are the increase in OPEX 

more than expected in medium and long term, the decline of wind turbine 

performance due to the ageing of components, and finally, the curtailment and its 

tendency to be higher in the future. Therefore, the first section will introduce each 

of these problems with more details. Later, in section 5.2, an economic analysis 

is performed, considering the losses discussed previously. Finally, section 5.3 will 

present a cost analysis of a hypothetical onshore farm. Besides the loss trends 

discussion, this simulation will also check and compare the impact of different 

wind turbine classes in same location and layout. 

5.1 Losses Trends 

5.1.1 Failure Rate 

As demonstrated in the Figure 3.2, the life cycle of an equipment can be 

represented by the bathtub curve, which represents the three main phases of an 

equipment life. First, the equipment starts with a high failure rate, also known as 

infant mortality, then, during the operational life, its failure rate stabilizes, and 

finally, failure rate starts increasing again, until running the equipment is not 

considerable viable anymore. Nonetheless, for some authors, the parameter 

shaper of the operational life period of wind turbines can be slightly higher than 

one [15], which indicates a slow constant increase in failure rates. 

Some studies have shown this behaviour. According to [13], maintenance is far 

from being uniform across projects. As demonstrated by [235], annual failure 

rates of wind turbines rated above 1MW tends to increase significantly with time. 

In worser scenarios, the average annual failure rate starts close to 0.25, but it 

overpasses 2 failures per year in seven years. [236] and [237] have shown similar 

trends and [238] shown an increase in downtime during the operational life of 

wind turbines. Since the increase of failure rates directly affects the OPEX and 

 

4 This chapter was based on the publication by Sathler, Yeter and Kolios [289]. 
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the availability of an equipment, investigating these aspects can help to confirm 

if this is a consistent trend. 

According to [239], the leading cause of the increase of costs are the more 

frequent failures with age. [14] found that operational costs of onshore farms can 

quadruple during its lifespan, similar scenario was pointed by [15]. Although 

offshore wind projects are newer and relies on more robust technology and 

engineering, the behaviour is comparable. In 2012, [12] affirmed the costs are 

likely to be 3.6 times higher after 20 years. [239] estimates the costs are likely to 

double in 10 years, without considering transmission costs. Regarding the 

availability index, [28] estimates a decay in the availability close to 95% after the 

11th operational year for onshore projects. [240] investigated several databases, 

and found old projects, with 30 years, can have availability close to 80%. 

It is worth mentioning that some of database investigated in the literature are old 

and can bring some bias in the analyses. However, although the technology has 

improved during the last years, it is difficult to confirm if this trend has been 

minimized, since most of companies, do not provide this information in detail. 

According to [13] which has followed the costs of some farms, the overall costs 

have indeed reduced, however, they still seem to increase with the age. In their 

study, newer or older projects have almost doubled its costs in five years, though 

the sample size of their investigation was limited.  

5.1.2 Ageing 

Any engineering system is at the risk of degradation during its lifetime. For system 

such as wind turbine this scenario can be worse, due to uncontrolled environment 

in which they are located. Besides the wear out of components, problems such 

as corrosion or blades erosion are examples of reasons why the performance of 

a wind system can deteriorate with the age and replace them can be costly and 

time consuming. According to [191], the increase in failures and downtime cannot 

explain the decreasing trend in capacity factor and expects that at least two thirds 

of the performance reduction is due to worsened efficiency, particularly resulting 

from the loss of aerodynamic efficiency caused by worn-out blades. In other 
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words, an older turbine tends to produce less than expected in the same wind 

regime, when compared to its early operational years. 

In a study conducted by [16], for oldest turbines the yearly relative loss was on 

average 0.53% during the first 10 years, then this rate increased to 1.23%. The 

study concluded that this was due to the end of subsidies from the government, 

hence, companies tend to compensate for costs by reducing maintenance 

activities to keep the profit margin at the same level. For newer projects, they had 

the data from only the first 10 years, and the relative degradation level was 0.17% 

per year. These results illustrate the importance of a good maintenance routine 

and how newer turbines are more prepared to resist degradation. 

Other studies have also investigated the theme. [115] assessed the performance 

of one farm through SCADA for one year and found no significant loss, but they 

found an impact on the temperature and vibration of the system. [17] investigated 

performance losses in wind farms in Germany from 2000 to 2014 and found that 

yearly ageing losses are, on average, 0.63%. [191] calculated an early decrease 

rate of 0.15%, which would account a total of 6% reduction in performance until 

the end of the turbine`s life. A worser rate was identified by [18], where farms 

from UK were investigated from 2002 to 2012, and the average relative ageing 

loss found was 1.6%. Although this study was well conducted, it is more likely 

that this rate is an outlier, when compared to other studies investigated. 

5.1.3 Curtailment Trend 

Curtailment is when the production needs to be interrupted or reduced, 

regardless of the wind regime and the availability of the turbine. This could be by 

operational problems, when production is out of requirements and could put the 

system in risk, or by external factors, such as bird migrations, shadow flickers, or 

lack of demand. The last one is particularly a big problem, since they are 

unexpected and in case of the project assumes these losses, this could affect the 

viability and the final price of the energy. As discussed in section 3.3, while some 

countries experience curtailment rates below 5%, others have reported energy 

dispatch curtailment of more than 15%. This issue has raised concern among 

several countries. 
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According to [149], who investigated curtailment in Nordic countries, although 

there are no big concerns nowadays, this can become a problem in the future if 

new transmission lines are not constructed. [19] had similar conclusion, where in 

their simulation 15.5% of the wind energy produced in USA in 2050 could be 

curtailed without expansion of transmission lines. [241] simulated various 

scenarios to assess the impact of increasing renewable energy penetration, and 

their findings showed that curtailment loss in Great Britain could reach 17%. 

However, they also examined how power grid limitations could mitigate these 

losses. 

Given the global push to increase renewable energy sources rapidly, there is a 

genuine risk of increased curtailment levels. As noted in [220], the installation 

time for wind farms is usually shorter than that of transmission networks. Although 

there are some solutions (discussed in 6.3) to reduce curtailment and increase 

wind power penetration, it might not be feasible to use or store all excess of 

energy generated [212]. With higher levels of wind energy penetration, the cost 

of grid strengthening may increase significantly. 

5.2 Cost Impacts 

5.2.1 Methods 

There are several methods to assess a project viability, profitability, and its total 

costs. In this section, the three methods selected to develop this work will be 

presented. LCOE, to check the average cost expected to produce one unit of 

energy and NPV, to assess its viability. Additionally, a Monte Carlo Simulation 

and Sensitivity Analysis are included for a better analysis of results.  

5.2.1.1 LCOE 

The levelized cost of energy (LCOE) is one of the most commonly used metrics 

for estimating the cost of energy production, allowing for comparison of different 

energy sources or projects within the same energy source. In brief, the LCOE 

takes into account the present value of all costs and expenses over the lifespan 

of the project, from its conception to decommissioning, and divides it by the 
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discounted sum of all energy delivered over the same period. The main formula 

and its adaptation to the wind power model being developed are shown below: 

𝐿𝐶𝑂𝐸 =
𝐿𝑖𝑓𝑒 𝐶𝑦𝑐𝑙𝑒 𝐶𝑜𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑
=  

𝐶𝐴𝑃𝐸𝑋 + 𝐷𝐸𝐶𝐸𝑋 +  ∑ 𝑂𝑃𝐸𝑋𝑡
𝑖=1

(1 + 𝑟)𝑡  

∑ 𝐴𝑛𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑂𝑢𝑡𝑝𝑢𝑡𝑡
𝑖=1

(1 + 𝑟)𝑡

 

 

(5-1) 

Where r is the discounted rate and t corresponds to the lifespan of the project. 

5.2.1.2 NPV 

The net present value (NPV) provides insight to confirm the viability, profitability, 

and value added by the project. Unlike LCOE, this metric considers the revenue 

value, comparing the cash flow expected throughout its lifespan. The projects 

that are worthwhile to invest in, need to have a positive value at the end of the 

project's lifespan, while the project with a negative value should be rejected. 

Figure 5.1 illustrates a diagram with the cash flow analysis. It is essential to check 

that even if the project has some negative years, as illustrated in year 4, the 

overall analysis of the project could still be positive in the end. When this method 

is used to compare different projects, the one with the highest value, where the 

expected return is higher, should be selected. The NPV formula is as follows: 

𝑁𝑃𝑉 =  ∑
𝑌𝑒𝑎𝑟𝑙𝑦 𝐶𝑎𝑠ℎ 𝐹𝑙𝑜𝑤

(1 + 𝑟)𝑡

𝑡

𝑖=1

− 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝐶𝑎𝑝𝑖𝑡𝑎𝑙

=  ∑
{(𝑌𝑒𝑎𝑟 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑥 𝑅𝑒𝑣𝑒𝑛𝑢𝑒) − 𝑂𝑃𝐸𝑋}𝑖

𝑡

(1 + 𝑟)𝑡

𝑡

𝑖=1

− 𝐶𝐴𝑃𝐸𝑋 

 

 

(5-2) 

Where r is the discounted rate and t corresponds to the lifespan of the project. 
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Figure 5-1 Diagram with cash flow analysis 

5.2.1.3 Monte Carlo Simulation 

It is very difficult, if not impossible, to develop a fully accurate model for any long-

term project. During the design phase, some assumptions need to be made, 

which affect the results, in turn misleading investors’ decisions. In order to 

address this issue, several methods are available to create a more reliable 

financial model, one of which is the Monte Carlo Simulation (MCS). In a Monte 

Carlo Simulation, the range of uncertain inputs is randomly selected, and the 

model is run a significant number of times, producing the range of all possible 

outcomes. Therefore, MCS helps investors to understand the variability of 

financial outcomes, providing a better insight into the risks associated with the 

viability of an offshore wind project. 

5.2.2 Cost Assessment 

This simulation will focus on offshore projects. Usually, the distribution of costs of 

an offshore deployment are on average 20 to 30% of costs from OPEX, 70 to 

80% to CAPEX, and 1 to 3% from the DECEX. In the next subsections, the values 

found on literature related to these elements will be presented. Additionally, some 
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other essential elements will be discussed, the strike price, capacity factor, and 

operational losses to determine the production and incomes of the project; and, 

finally, the discounted rate, a key component used in long-term economic 

analysis. 

5.2.2.1 CAPEX 

Going further away from the shore requires more complex engineering solutions, 

consequently, the cost of energy produced is expected to be higher and thus 

potentially unviable. However, even though offshore wind is more expensive than 

its onshore counterpart, operating in better wind regimes makes it a competitive 

energy source when considering cost per unit. According to [242], offshore 

projects can be cheaper than onshore wind or even compete with some gas 

plants in few years. 

According to [243], the average CAPEX in 2019, considering projects delivered 

in the UK, Netherlands, France, and Norway was around 3.7m£/MW. Although 

more expensive, this value is not far from the models developed by [10], [244], 

[198], achieving respectively, 3.1m£/MW, 3.3m£/MW, and 2.8m£/MW. Two other 

important renewable energy agencies, NREL [245] and IRENA [246], registered 

respectively, 2.7m£/MW and 2.2m£/MW, while the UK government predicts that 

this cost could be around 1.6m£/MW in 2025 [247]. 

5.2.2.2 OPEX 

The share of OPEX in the total costs of offshore projects, can be as high as five 

times, when compared to onshore [248]. Besides the harsher environment, which 

can cause more fatigue loads combined with degradation mechanisms, the 

bottleneck regarding supply vessels and the dependency on weather conditions 

for maintenance activities are the main reasons why operations can be quite 

costly. Storm conditions could make the journey to the turbine riskier. According 

to [52], in offshore only 22.2% of the mean time to repair are related to repair 

activity itself, and the rest is due to preparations and the waiting for appropriate 

conditions and spare parts. Moreover, according to [38], components might be 

changed before its ideal life cycle because of limited interventional opportunities, 

which could also affect the cost.  
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The values regarding OPEX found in literature vary significantly. Most agency 

reports have shown a lower cost, from 50 to 60k£/MW per annum, while in 

economic simulations, prices were shown to be higher than 100k£/MW. This 

could be explained by the fact that there are ambiguous assumptions about the 

distance. Furthermore, the cost associated with offshore wind would vary for each 

country due to salaries, taxes, bureaucracy, and infrastructure affecting all 

operational activities. Another problem is that most companies do not provide the 

actual costs, considering it confidential and strategical. 

5.2.2.3 DECEX 

Wind farm projects are designed with a specific operating period in mind, and 

after this period, it is expected that the investor will decommission the project and 

clean the area, leaving the environment as close to its original state as possible. 

Although projects can be extended, the DECEX needs to be taken into 

consideration when the project is no longer financially viable. [249] conducted a 

bottom-up analysis and found that the DECEX would fluctuate from 175 k£/MW 

to 480k£/MW. This range is close to what was found in another research, such 

as cost of 462k£/MW [10], 244k£/MW [244], and 135k£/MW [198]. As presented 

in Figure 1-1 it is likely that part of these costs will be covered by the recycling of 

residuals, but this was not considered in this analysis.   

5.2.2.4 CF 

The expected wind speed varies considerably throughout the year, and due to 

other inefficiencies in offshore wind operations, the actual energy output can differ 

from the theoretical maximum energy output from offshore wind assets. The 

difference between the actual energy output and the theoretical maximum output 

is represented by a ratio called the “Capacity Factor (CF)”, which provides a more 

realistic estimate of expected energy output from an offshore wind site and is 

used in energy resource and feasibility assessments. For accurate capacity factor 

estimations, it is crucial to know the wind regime, site characteristics, and 

technical information from wind turbines. 

There is an optimistic expectation that technological advances, larger wind 

turbines, and offshore wind sites with higher wind potential will allow for much 
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higher capacity factors. In this regard, some agency reports forecast capacity 

factors surpassing 60% in the next few decades [247]. However, the present 

study only considers the actual capacity factors available in the literature, rather 

than what is expected in the future. Thus, the capacity factors used in the analysis 

vary from 42.5% to 53.5%. 

5.2.2.5 Strike Price 

The revenue estimate is a vital part of the economic viability analysis. This value 

corresponds to the strike price of the energy delivered and depends on the 

contract details of each project. Most wind farm projects have an agreement 

about their prices and do not compete directly in the market, which has been an 

effective way to incentivize offshore wind development. Nonetheless, the strike 

prices have been reducing drastically, as shown by The Low Carbon Contracts 

Company (LCCC) and the Electricity Settlements Company (ESC) projects. At 

this moment, they manage 40 offshore projects through contract for difference 

(CfD), where the current strike prices to offshore projects fluctuate from £45.73 

to £176.57 [250].  

A similar difference is described by [242] where they state that between 2017 and 

2020, the average value from offshore dropped from £167 to £112 per MWh, and 

the average future values expected is £59.25/MWh. Other researchers estimated 

to their simulation £140/MWh [10], £74/MWh [198], and £87.60/MWh [251]. 

5.2.2.6 Discounted Rate 

To perform a long-term economic analysis, the time value of money must be 

considered. As money can depreciate over time and future expenses can have a 

lower value in the present, investments made in different periods must be 

corrected to eliminate the effects of time. According to [252], the discount rate 

varies from 5 to 7% in most developed countries, while this value can be higher 

than 10% in other emerging countries. [239] reports that the discount rate in 

subsidized wind projects fell from 8% in 2009 to 4% in 2019. Other studies, such 

as [253], [247], and [10] which estimated 8.06%, 6.3%, and 6.15% respectively. 
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5.2.2.7 Summary 

In light of the discussion above, estimating the costs and production of offshore 

installations can be challenging. The distance to the shore, structural basis, 

logistics, policies in each country, and the expertise and size of the company are 

the main reasons why costs fluctuate significantly. 

Table 5-1 summarizes the values found in the literature, which will be the cost 

basis for this study. Regarding the assumption outside Table 5-1, the mean value 

shown in Figure 3.4 will be considered, So, the availability, performance, and 

quality rates used will be 92%, 90%, and 95%, respectively. The discounted rate 

assumed is 6%, according to values discussed in the subsection 4.2.2.6. The 

lifespan assumed is 20 years, since this is the technical life most wind turbines 

are certified for [254] [255]. 

Table 5-1 Costs from the literature review 

CAPEX OPEX DECEX CF Strike Price Reference 

£3,079,650.00 £112,300.00 £243,770.00 0.425* £140 [10] 

£2,276,384.00 £66,122.24  0.44  [246] 

£2,701,000.00     [256] 

£3,305,526.24 £180,218.75 £461,655.81 0.535  [244] 

£2,837,500.00 £53,250.00 £135,000.00 0.49 £74 [198] 

  £327,500.00   [249] 

 £100,018.86    [257] 

£2,737,500.00 £54,750.00   £87.60 [251] 

£3,784,000.00     [243] 

£1,630,000.00 £54,170.40*  0.51  [247] 

 £146,200.00    [258] 

    £167 - £47 [242] 

    £155 - £59 [250] 

Conversion Rate (2021) £ = 0.73US$ 
£ = 0.86€ 

*Stipulated by the authors 

5.2.3 Scenarios 

As discussed in the section 5.1, there are three main risks to be considered during 

operational life. The rates for each scenario will be discussed in following sub-

sections. After that, the economic model proposed will be briefly explained and a 

summary of the scenarios, parameters and costs considered in the simulations 

will be presented.  



 

90 

5.2.3.1 Scenario A - Failure Rate Increasing 

OPEX includes all operational costs, from administrative to maintenance. As the 

increase in the costs are related to the increase of failures, only maintenance 

costs will be considered to rise in this simulation. The other costs are going to be 

considered as constant throughout the lifespan, as inflation are not incorporated 

in this work. In the model developed by [10], around 50% of the OPEX are due to 

maintenance. While to [251], [244], [259], the share is 58%, 45%, and 43% 

respectively. Considering the average of these values, this work will consider that 

49% of OPEX costs are due to the maintenance.  

Following the trends found and discussed in the section 4.1.1, the increase in the 

maintenance costs will be 3 times during its entire life, which means an increment 

of 6% per year. It is important to notice that more failures result in more production 

losses. In this study, it will be considered that half of availability losses, or 

downtime, are planned (preventive maintenance); while, the other half are 

considered unplanned, so failures and breakdowns. Thus, for each increase in 

cost, a further deduction in the production following the same rate will be added. 

Since it is difficult to determine when these failures will occur, these losses are 

multiplied by its CF, as an attempt to be closer to real life scenario. 

5.2.3.2 Scenario B – Ageing 

According to subsection 5.1.2, the yearly relative ageing rate fluctuates from 0.17 

to 1.6%. Great part of the studies assessed focused on onshore deployments 

and in some cases older deployments. To convert this to offshore to aspects 

needs to be considered. First, offshore wind turbine can be considered a recent 

technology, especially the ones that go further to the shore. In that case, 

assuming a lower ageing rate could fit better to offshore farms. However, offshore 

are exposed to a harsher environment and face more loads in its operational 

periods. So, it is reasonable to consider the range presented, therefore a constant 

relative ageing rate of 0.5% will be considered.  
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5.2.3.3 Scenario C – Curtailment and Quality Losses Trends 

It is difficult to determine how much energy will be curtailed in the future. The 

energy can be curtailed by several reasons, including lack of demand and power 

quality. As described in the section 2.2.4, this work will consider all losses after 

the turbine as a quality loss. It is expected that the losses in cable and the power 

quality reduces together with the degradation of the turbine. Therefore, in this 

scenario, the initial quality loss of 5% will triple during the entire life. Considering 

all risks involved and the curtailment rates discussed in the subsection 5.1.3, this 

assumption is not only consistent, but also a conservative, since this loss can 

occur by several reasons. 

5.2.4 Economic Model Application 

The proposed model is divided into two parts. The first part presents a projection 

of the real-time behaviour and extracts key financial metrics such as LCOE , NPV, 

critical year, and breakeven year. These metrics are calculated based on average 

values. The critical year helps determine when the costs will exceed the benefits, 

while the breakeven year represents the point at which the accumulated benefits 

surpass the total costs. The concept of the breakeven year is similar to that of the 

discounted payback year, which takes into account the time value of money. 

It is important to note that the assessment of the critical year considers the fixed 

instalment payments of the CAPEX. Therefore, it is possible for a project to have 

a critical year before its end of life, while the investment breakeven can still occur 

during the operational life, as the analysis focuses on cumulative cash flows 

without considering investment obligations. This distinction will become clearer in 

the subsequent sections when discussing the results of the simulations. Figure 

5-2 provides a visual representation of how the critical and breakeven years are 

determined, aiding in the understanding of these key concepts. 
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Figure 5-2 Diagram of Breakeven and Critical year analysis – Part I 

The second part of the model proposed is the Monte Carlo Simulation (MCS). In 

addition to the scenarios presented before (Scenarios A, B, and C), a reference 

scenario is created in which no loss trends occur. This is more common to find in 

the literature, where costs and benefits are considered constant throughout the 

project life. Additionally, since it is more likely that the scenarios defined will occur 

at some level together, a mix of scenarios is investigated. To do this, all possible 

combinations are explored: Scenarios A+B, A+C, B+C, and A+B+C.  

Figure 5-3 summarizes the economic model proposed and illustrates the MCS. 

For each simulated scenario, 100,000 iterations were randomly run, selecting the 

defined cost range, one positive and one negative standard deviation, and 

dividing them into 25 possible values with the same interval. There is no fixed 

rule or concept for determining the exact range size in Monte Carlo Analysis. 

However, a larger number of values generally enables a more comprehensive 

exploration of the variable space, creating a greater range of feasible scenarios. 

It is important to balance this with computational resources and time constraints. 

In this case, considering the standard deviation and average values, a range of 

25 values was chosen, which was deemed sufficient to capture variability and 

provide robustness to the model. 
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Figure 5-3. Flowchart of Economic Model and Monte Carlo Simulation – Part II 

Table 5-2 presents the costs and all considered assumptions to run this model. 

The values correspond to the mean value, μ, found in the literature. The standard 

deviation, σ, was calculated assuming the values have a normal distribution. The 

assumptions regarding initial losses and performances, the operational period, 

and the discount rate are the same in all simulations. The parameters used in 

each scenario are presented in Table 5.3. 

Table 5-2 Average Costs and Basic Assumptions to the model 

 

 

 

 

 

 

 

 

 

   μ σ 

CAPEX £2,793,945.03 £608,267.09 

OPEX £95,878.78 £44,813.62 

DECEX £291,983.95 £119,396.26 

Revenue £111.40 £37.43 

CF 0.49 0.04 

Availability 0.92 - 

Performance 0.90 - 

Energy Losses 0.05 - 

Operational Period 20 years - 

Discount Rate 6% - 
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Table 5-3 Scenarios investigated 

Scenario Parameters 

Reference - 

Scenario A OPEX Increase rate = 6% per year. 

49% of OPEX is due to maintenance, or variable. 

Scenario B Year Ageing Loss = 0.5%. 

Scenario C Curtailment/Quality losses Increase rate = 6% per year. 

 

5.2.5 Results and Discussion 

The scenarios have been sorted from the most positive to the most negative. To 

avoid repetition, only scenario A is presented graphically. The results from the 

economic projection of all scenarios are presented in Table 5-4, which 

corresponds to Part I of the model discussed in subsection 5.2.4. 

Table 5-4. Projected cost throughout lifespan considering average values. 

 
LCOE 

(£/MWh) 

NPV 

(£/MW) 

Critical 
Year 

Investment 

Breakeven 
Year  

Reference £98.93 £501,609.17 - 15 

Scenario C £102.41 £349,487.39 - 15 

Scenario B £103.64 £298,076.55 20 16 

Scenario B + C £107.16 £157,326.81 12 17 

Scenario A £110.89 £19,773.91 10 18 

Scenario A + C £114.69 -£124,287.95 9 - 

Scenario A + B £116.34 -£183,758.72 8 - 

Scenario A + B + C £120.19 -£316,448.53 7 - 

In Figure 5-4, a real-time and accumulated projection for scenario A is presented. 

The first aspect to notice is that, although the NPV of this Scenario was positive, 

the critical year was in the tenth year - half of the lifespan expected. This may be 

considered counterintuitive; however, this result is supported by some studies. 

According to [214], wind turbines require increased maintenance costs and 
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significant refurbishment around the 11th year of operation. The breakeven year 

was in the 18th year, which is closer to the end of turbine’s operational life. These 

results can be explained by the small margin projected, where the average LCOE 

(£110.89/MWh, 12% higher than the reference) was only £0.51 lower than the 

strike price assumed. 

 

Figure 5-4 Results Scenario A 

The impact on costs and viability is found to be lower in the other scenarios when 

assessed individually. While the increase in LCOE for Scenario C is around 3.5%, 

it is around 4.7% in Scenario B. This slight difference of 1.2% in Scenario B is 

enough to raise the breakeven year to the 16th year and bring the critical year to 

the last year of operation. Nonetheless, in both scenarios, NPV was higher than 

zero, meaning that the techno-economic analysis suggests it is worthwhile to 

invest in the project. In contrast, in the mixed scenarios, the results are not very 

positive. Apart from Scenario B+C, where the results are better than Scenario A 

alone, Scenarios A+C, A+B, and A+B+C appear to have negative net present 

values and do not achieve the investment breakeven year during the projected 

lifespan. 

As discussed before, in addition to the impact on operational loss trends, Part II 

of the analysis aims to understand how assumed costs could affect the LCOE 

and the project's viability. Therefore, Table 5-5 summarizes the results from MCS, 
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where the variation in LCOE is presented, considering a 95% confidence interval, 

together with the percentage of positive NPV values obtained in the simulation. 

Figure 5-5 presents the histogram with both analyses of Scenario A. The costs 

fluctuate from £81.64 to £140.65, and more than 50% of simulations considering 

Scenario A resulted in an NPV higher than zero. This means that despite the 

increased OPEX costs, there is still a considerable chance of the project being 

profitable for its investors. 

Table 5-5. Results from Monte Carlo Simulations in all scenarios. 

 LCOE (IC 95%) 
NPV > 0 

(%) 
 

Lower 
Limit 

Average 
Upper 
Limit 

Reference £73.81 £99.08 £124.34 0.65986 

Scenario C £76.44 £102.62 £128.81 0.61316 

Scenario B £77.33 £103.79 £130.26 0.59954 

Scenario B + C £80.02 £107.43 £134.84 0.55164 

Scenario A £81.64 £111.14 £140.65 0.50332 

Scenario A + C £84.46 £115.04 £145.61 0.45415 

Scenario A + B £85.52 £116.63 £147.74 0.43399 

Scenario A + B + C £88.36 £120.49 £152.62 0.38728 

 

 

Figure 5-5 Results of Monte Carlo Simulation of Scenario A 
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Scenarios B, C, and B+C are also very positive for investors, achieving NPV 

higher than zero in more than 50% of the simulations. On the other hand, 

Scenarios A+B, A+C, and A+B+C are considered riskier to investors. Besides 

reassuring an elevated increase in costs, found in Part I, less than half of 

simulations are considered worthy of investing. The worst case is Scenario 

A+B+C, where the average LCOE is £120.49/MWh, 21.6% higher than the 

reference, and only 38.7% of simulations has got a positive NPV. 

It is worth mentioning that these scenarios were investigated to understand how 

the operational loss trends would affect the projects financially. Nevertheless, 

operators and managers are expected to interfere in these projects before the 

situation becomes irreversible. Therefore, the proposed study not only provides 

an estimate of costs and risks but also serves as a guide for managers. Such 

guidance helps decision-makers monitor whether the project is going in the right 

direction and what the consequence would be if nothing is done to mitigate the 

risk. 

Furthermore, conducting a sensitivity analysis is crucial for understanding the 

relationship between the defined rates and the output. This analysis helps identify 

which factors are more critical and sensitive to the overall outcomes. In this study, 

in addition to the three previously discussed scenarios, the discount rate was also 

investigated, as it is a key element in cost models. The range of values 

considered encompassed both more likely range and extreme scenarios, with the 

previously determined average value serving as the central value. The chosen 

step size for the investigation was 0.02, except for Scenario B, where a smaller 

step of 0.002 was used. This step size adequately covers the relevant 

assumptions, and further narrowing of the step is not necessary. Figure 5-6 

presents the results for the levelized cost of energy (LCOE), while Figure 5-7 

depicts the percentage of net present value (NPV) higher than zero. Both 

investigations utilized the same methodology as shown in Figure 3, but with 1000 

iterations conducted instead. 
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Figure 5-6 Results of the sensitivity analysis on LCOE. 

 

Figure 5-7 Results of the sensitivity analysis when NPV>0. 

The first thing to notice is that the discount rate variation had the highest impact 

in the economic simulations, where the costs in the worst case, Scenario A+B+C, 

go from £97/MWh with a tax rate of 2% to £129/MWh with a tax rate of 10%. The 

result indicates that financial incentives are still important for the development of 

wind energy technology. OPEX rate variation was the second worst case. 

Although lower than the discount rate, it is evident by the graph that the impact 

due to the increase in OPEX has an exponential effect, so with higher rates is 

likely that OPEX becomes the most significant influence on LCOE costs. 

Variations of ageing and curtailment rates affected the costs less. In most cases, 

the percentage of positive NPV was higher than 50%, even considering worse 

rates. 
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To sum up, the model proposed showed that the inclusion of the scenarios 

discussed in Section 5.2.3 can explain why some projects are failing economically 

in the medium and long term. Nonetheless, this study does not consider any 

intervention by operators to reduce these losses, which is very unlikely to be true. 

For considering operators’ interventions, analyses which include refurbishment 

and new maintenance costs, should be developed to compare the financial 

advantages of such interventions. Nevertheless, the results obtained in the 

present work confirm what was found in the literature. The increase in operational 

losses might be the main reason for wind energy projects to have a shorter 

financial lifespan. In appendix A, a summary considering return tax of 4% and 8% 

is presented. 

5.3 Case Study5 

The present study case is a hypothetical onshore wind farm model built in 

Meteodyn WT, a commercial CFD-based software which makes use of the 

turbulence flow method RaNS (Reynolds averaged Navier Stokes), transport 

equations, and thermal stability to model wind flow [260][261]. It is out of scope 

from this work to discuss how CFD works. Some inputs cannot be disclosed due 

to confidentiality concerns, such as the modelled wind farm’s location, 

corresponding wind regime, and wind turbines’ model. The provided wind regime 

covers an entire year averaged by 10 minutes of reading. The motivation behind 

this simulation is to compare the performance and costs of different classes of 

turbines in the same conditions and the impact of the trend losses discussed in 

the previous sections. Therefore, the layout was not optimized; however, a 

minimal distance between rotors is considered, following manual requirements. 

Figure 5-8 presents the average wind speed analysis calculated in the software 

and the farm’s layout. This farm is located in a relatively open area, so there is 

no significant interference from the surroundings. In this case, ambient wind 

speed variation is stable within the farm. 

 

5 This section was based and contains extracts from the publication Sathler, Yeter and Kolios 
[290]. 
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Figure 5-8 Mean Wind Speed analysis of the hypothetical farm in Meteodyn. 

Figure 5-9 presents the power curve and the coefficient of thrust (CT) curve from 

each turbines assessed. which are 2 MW wind turbines. The classes tested were 

IA, IIA, IIIA, and IIB. Also, the hub height considered was the same for all turbines, 

80 m. The CT is necessary for calculating the downwind speed reduction with 

higher precision. It is crucial to notice that the cut-out of the wind turbine IIB is 20 

m/s, while the others are 25 m/s. Although in this case wind did not achieve higher 

value than 20m/s, by the distribution is very likely that this will eventually happen. 

For safety and durability of the turbine, the standard BS EN IEC 61400-1:2019 

defines the basic parameters and criteria according to the environmental factors. 

There are three different wind classes, I, II, and III, and four different turbulence 

classes, A+, A, B, and C. Class S is defined by designer and do not follow the 

standard. Table 5-6 presents the criteria of each class according to the standard. 
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Figure 5-9 Power Curve and CT Curve from turbines assessed. 

Table 5-6 Basic Parameters for wind turbines [IEC 61400-1:2019]  
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It is possible to calculate the operational safety limits expected from each turbine 

using these basic parameters. Three aspects were assessed in this work. The 

Rayleigh distribution of the wind speed distribution, Pr, turbulence intensity 

model, TIM, and the extreme turbulence model, TIETM. These parameters are 

estimated as follows: 

𝑃𝑟 (𝑉ℎ𝑢𝑏) = 1 − exp [−𝜋 (
𝑉ℎ𝑢𝑏

2𝑉𝑎𝑣𝑒
)

2

] 
(5-3) 

𝑇𝐼𝑀 =
 𝐼𝑟𝑒𝑓(0.75𝑉ℎ𝑢𝑏 + 𝑏)

𝑉ℎ𝑢𝑏
; 𝑏 = 5.6𝑚/𝑠   

(5-4) 

𝜎𝐸𝑇𝑀 = c𝐼𝑟𝑒𝑓 (0.072 (
𝑉𝑎𝑣𝑒

𝑐
+ 3) (

𝑉ℎ𝑢𝑏

𝑐
− 4) + 10) ; c = 2m/s  

(5-5) 

𝑇𝐼𝐸𝑇𝑀 =
𝜎𝐸𝑇𝑀

𝑉ℎ𝑢𝑏
 

(5-6) 

Vhub is the real average wind speed at the hub height. 

Figure 5-10 presents the average wind distribution in each turbine class. Figures 

5-11 to 5-14 present the average result of turbulence intensity analysis and 

extreme turbulence model of the turbines IA, IIA, IIA, and IIB, respectively. The 

blue curve in the figures refers to the limit stablish by IEC standard, as mentioned 

before, while the red one is the one measured through Meteodyn software.  

It is vital to notice in figure 5-10 that none of the wind distributions fits the wind 

classes perfectly, however, from the rated wind speed any of the curves were 

above the limit. Class III was the curve with closest shape, although the average 

wind speed in the hub height is more frequent. Also, it is worth noting that 

considering the rated speed of around 10 m/s, any of the curves are above the 

limit, which means less loading on the blades. Not meeting the standard means 

that the turbine is not working in the conditions in which the extraction of power 

output is maximized according to the turbine class.   
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Figure 5-10 Wind Distribution of each class. 

 

Figure 5-11 Turbulence Analysis of Wind Turbine IA. 
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Figure 5-12 Turbulence Analysis of Wind Turbine IIA. 

 

Figure 5-13 Turbulence Analysis of Wind Turbine IIIA. 

 

Figure 5-14 Turbulence Analysis of Wind Turbine IIB. 
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Regarding the turbulence intensity, the turbulence analyses are presented in 

Figures 5-11 to 5-14. The results suggested that only turbine IIB was out of 

standard limits. Since this behaviour is only in the Extreme Turbulence Model, 

reconfiguring the layout should reduce or solve this issue. The wind turbine 

manuals often note that if the turbulence intensity is high, the fatigue loads on the 

wind turbine are expected to increase; in turn, the expected turbine life 

decreases. Although the correct action would be to discard wind turbine IIB as an 

option, for educational purposes and comparison reasons, the complete analysis 

of the turbine IIB will be kept; however, a higher ageing and failure rate will be 

assumed, 0.7% and 8%, respectively. 

Besides the estimation of the Annual Energy Production (AEP) and the wake 

losses, the software allows the creation of criteria for performance losses and 

curtailment losses through temporal analysis. In this context, two rules were 

created to curtailment. The first one is a power limit of 75% of the rated capacity 

during early mornings from 2:00 a.m. to 5:00 a.m. to simulate a lack of demand. 

During peak times (weekdays from 7:00 p.m. to 9:00 p.m.), 10% of the energy is 

curtailed, simulating grid operators' preferences during critical times and allowing 

some flexibility to deal with inertia. This consideration may eventually happen in 

real world, allowing operators to assist grid if more energy is needed. For the 

performance, two criteria were created. As mentioned in section 4.2.2, 

temperature higher than 35ºC and turbulence intensity higher than 15% can 

cause performance restrictions, so a further 10% reduction is considered. In this 

paper, high ambient turbulence intensity is above 15%. Finally, quality loss was 

simulated similarly to what was discussed in 4.2.3, but the limit was 10% and the 

interval investigated was 1 hour. Table 5-7 presents a summary of the output 

from the software for each turbine class. 
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Table 5-7 Summary of Turbines and Meteodyn Results. 

Turbine IA IIA IIIA IIB 

Diameter (m) 80 88 97 100 

Rated (kW) 2000 2000 2000 2000 

AEP (/KWinstalled) 2551 2773 3462 3537 

Wake Effect (%) 5.48% 5.98% 5.94% 5.89% 

Ambient Performance (%) 2.08% 2.09% 2.11% 2.11% 

Quality Losses - Ramp (%) 3.41% 4.16% 4.29% 4.50% 

Curtailment (%) 1.44% 1.79% 2.14% 2.28% 

 

For the economic analysis, the three main components of costs, CAPEX, OPEX, 

and DECEX, discussed in subsection 5.2.2, will be considered. For CAPEX, the 

costs will be divided into two main parts. The first part is the wind turbine, whose 

cost depends on its class, hub height, and rotor diameter. The wind turbine cost 

can be calculated through a tool called Wind-Plant Integrated System Design and 

Engineering Model (WISDEM)  [262], tool developed by National Renewable 

Energy Laboratory (NREL). WISDEM correlates material mass and costs from 

several deployments, and through regression analysis generates easy-to-use 

equations to estimate wind turbine costs. 

The second part is the Balance of Station Cost (BOS), which includes civil works, 

assembly, installation, engineering services, permits, electrical, and connections 

costs. The NREL repository is also used to calculate BOS following the design 

and scaling model developed by [263]. OPEX can be considered into three parts: 

Land lease, O&M, and replacement. These costs (in USD) can be calculated in 

USD using the expressions given in the following [263]: 

O&M costs in USD = 0.007xAEP (5-7) 

𝐿𝑎𝑛𝑑 𝐿𝑒𝑎𝑠𝑒 𝐶𝑜𝑠𝑡 𝑖𝑛 𝑈𝑆𝐷 = 0.00108𝑥𝐴𝐸𝑃 (5-8) 

𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 𝑖𝑛 𝑈𝑆𝐷 = 10.7𝑥𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑅𝑎𝑡𝑖𝑛𝑔 (5-9) 

DECEX, as discussed before, is still hard to estimate effectively due to a lack of 

experience [264]. DECEX depends on the age of the project, the availability of 
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crane offers (second-hand market), and the price volatility of recyclable materials 

[265]. Although 5% of CAPEX was deemed as a reasonable estimate in [264], a 

recent study [266] estimated higher costs, ranging from 200,000 to 532,000 USD 

per turbine. The present work assumes that 10% of CAPEX covers the DECEX 

cost assumption, making it assumptions slightly less than 2% of the total costs, 

which is reasonable according to the literature. Additionally, the initial availability 

considered was 98% to all turbines, as demonstrated in section 3.4, while the 

economics elements assumptions, such as the discount rate and the operational 

life, are taken as 6% and 20 years, respectively (following subsection 5.2.2.7).  

Table 5-8 summarizes the cost analysis of each element of costs considering all 

the turbines investigated. As expected, turbines with larger rotors result in higher 

costs. In this study, the O&M is considered as “variable OPEX”, while the Cost 

associated with land and replacements are considered to be “fixed OPEX”. 

Finally, the costs were converted to pounds following the rate of £0.73 = 

USD1.00.  

Table 5-8 Summary of Cost Analysis of each Turbine Class. 

Turbine IA IIA IIIA IIB 

Foundation £40,512.53 £43,753.20 £47,331.91 £48,510.37 

Transportation £62,692.40 £62,692.40 £62,692.40 £62,692.40 

Civil Work £71,861.20 £71,861.20 £71,861.20 £71,861.20 

Assembly £42,035.70 £47,010.70 £52,702.00 £54,620.02 

Electrical £116,011.60 £116,011.60 £116,011.60 £116,011.60 

Permits £32,555.08 £32,555.08 £32,555.08 £32,555.08 

BOS - Total £365,668.51 £373,884.18 £383,154.20 £386,250.66 

Turbine/MW £587,940.28 £618,864.86 £685,054.98 £708,994.32 

  

CAPEX £953,608.79 £992,749.04 £1,068,209.18 £1,095,244.98 

DECEX £95,360.88 £99,274.90 £106,820.92 £109,524.50 

  

OPEX £22,389.74 £23,345.56 £26,311.90 £26,632.44 

O&M £13,037.39 £14,171.72 £17,692.07 £18,072.47 

Land Lease £2,011.48 £2,186.49 £2,729.63 £2,788.32 

Replacement 
Cost 

£15,622.00 £15,622.00 £15,622.00 £15,622.00 

 Conversion Rate (2021) £ = 0.73US$ 



 

108 

Table 5-9 summarizes the result of the economic analysis. the LCOE analysis of 

each turbine and each scenario. The turbine IIIA is found to be the best option in 

terms of cost-benefit, while the scenario “IA” is rated as the worst. This is 

explained by the fact that the smaller diameter wind turbines extract less power 

from the wind, which is not compensated by appropriated local wind regime. 

Turbine IIB is estimated to be the second cheapest average LCOE despite higher 

loss trend rates. However, this can be considered riskier to investors since the 

uncertainty related to LCOE is the highest. The reference scenario shows that 

IIIA would still be the best turbine for this site, regardless of the slightly smaller 

diameter. The reason behind this is the higher losses estimated through 

Meteodyn (Table 5-7), which was higher for curtailment, performance, and 

quality. Another negative aspect to the wind turbine IIB, it is that its cut-out speed 

of 20m/s, which could limit the production during good wind conditions. 

Table 5-9 Summary of Case Results. 

Scenarios/Turbine IA IIA IIIA IIB 

Reference £52.37 £51.05 £44.77 £44.92 

C £54.15 £53.22 £46.84 £47.13 

B £54.71 £53.34 £46.78 £47.83 

A £57.15 £55.89 £49.59 £52.27 

B+C £56.51 £55.54 £48.88 £50.08 

A+C £58.08 £58.26 £51.88 £53.54 

A+B £59.71 £58.42 £51.83 £55.69 

A+B+C £61.67 £60.81 £54.15 £58.28 

 
Avg. LCOE (£/MWh) £56.79 £55.82 £49.34 £51.22 

Std. LCOE (£/MWh) £2.85 £3.03 £2.95 £4.26 

To sum up, this case has shown how important is to create a scenario considering 

all losses. Although this did not directly affect the turbine selection, LCOE 

fluctuated considerably. The average LCOE was around 9.5% higher than the 

reference scenario for scenarios IA, IIA, and IIIA. For turbine IIB, this difference 

was 14%. This indicates that the costs can vary more than expected, which could 

explain why some projects fail to cover their costs in the medium and long term. 

The results indicated the importance of investigating different scenarios, turbine 

classes, and loss trends within the scope of economic analysis. Furthermore, 
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while the technology is improved to overcome these trends, a better economic 

analysis is essential to identify the actual costs and de-risk in projects making 

them more attractive to investors. Although the results can be considered 

consistent, some assumptions were simplified. An increase in loss rates was 

considered to demonstrate higher wear of equipment. However, a load fatigue 

analysis should be performed together for a more precise cost estimation since 

the impact on costs could be higher than estimated here. 

5.4 Chapter Summary 

Some wind energy projects are failing to deliver what they were expected in 

medium and long term. This is mainly due to increase of operational losses and 

costs along its lifespan. In Section 5.1, the three main losses trends were 

identified along with relevant figures. In Section 5.2, it was investigated the impact 

of these trends on LCOE and NPV and the “Critical Year” and “Breakeven Year” 

were also identified. The cost estimation was based on average values from the 

literature for offshore deployments. Furthermore, a stochastic analysis using 

MCS was conducted, followed by a sensitivity analysis. In Section 5.3, a 

hypothetical onshore farm was modelled in a CFD software. The AEP, wake-

effects, and other losses was estimated considering four different classes of 

turbines. Then, a cost-assessment was performed including the losses trends 

scenarios. The inclusion of the operational losses proved to be useful for decision 

makings and monitoring of project risks. It also has the potential to provide 

insights into the actual returns of proposed solutions aimed at reducing 

operational losses, as will be discussed in the next chapter. 
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6 SOLUTIONS TO REDUCE OPERATIONAL LOSSES 

As discussed in previous chapters, operational losses have a big impact on the 

costs of wind energy, especially in medium- and long-term analysis. This means 

that there is space for improvements and opportunities to increase the asset 

value and attract more investments. The main reasons for operational losses are 

the increase of failure rates, ageing, and curtailment. In this chapter, some of the 

main solutions proposed to reduce them will be discussed. Additionally, a brief 

economic analysis of these solutions will be performed considering the economic 

model developed in the chapter 5.2. Thus, the costs and scenarios will be the 

same as the ones presented in Tables 5-2 and 5-3. In case of values with different 

currencies, they were converted into sterling pounds at the same rate presented 

in Table 5-1. Finally, in section 6-4 a multivariate MCS including a range of loss 

trends and the findings and figures from solutions discussed in previous sections 

is presented. 

6.1 CMS 

There are three main types of maintenance: reactive, preventive, and predictive. 

Reactive maintenance occurs when equipment is visibly not working correctly, or 

when a failure has already happened. Preventive and predictive maintenance aim 

to prevent equipment failure before it happens. Preventive maintenance is usually 

performed periodically, with technicians checking equipment health and 

performing scheduled maintenance routines such as oil and filter changes, 

general cleaning, tightening bolts, or replacing damaged seals and roller 

bearings. Predictive maintenance involves the use of gadgets, sensors, or 

transistors to monitor and identify abnormalities in the equipment that are difficult 

to be identified by technicians. Figure 6-1 shows a potential failure (PF) curve, 

illustrating the reduction in performance over time before a failure occurs. It is 

possible to identify early signals of abnormalities during this period, which may 

vary depending on the equipment or component. However, in some cases, the 

start of failure can be identified months or even more than a year in advance 

[267]. 
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Figure 6-1 P-F Curve [268]. 

One common approach to monitor the safety and health of a machine is the CMS 

(Condition Monitoring System). This system is composed by a combination of 

sensors that can measure in real time different parameters, such as vibration and 

temperature of several components. Following these parameters could assist 

operational team to act before the failure happen or at least prepare beforehand 

to the intervention. As mentioned before, the time spent with repair itself is around 

20 to 40% of the downtime, great part of this is due to logistics and availability of 

spare parts [52][192]. Thus, only by reducing the waiting time of downtime, the 

productivity could significantly increase. It is important to mention that to be 

effective, the CMS still relies on interpretability of the parameters and maturity of 

the team to act at the correct moment. For that, a further investment in training of 

operators and maintenance team, improvements in the process, or even the use 

of algorithms to assist in decision makings and develop a reliable historical data 

repository needs to be considered. 



 

113 

Accessing the real costs and benefits of CMS can be challenging, as they are 

dependent on each project, and manufacturers often do not share this 

information, considering it strategic and confidential. However, some studies tried 

to estimate them. [269] found an increase of almost 10% in the revenue and an 

increase of one point in the availability rate during the period simulated. [270] 

developed a Life Cycle Cost (LCC) analysis and estimated a benefit 36% higher 

than the scenario without CMS. [271] developed a method considering CMS and 

could reduce on average about 35% of maintenance costs. Nonetheless, the 

trade-off of CMS cost and possible return are not clear and needs to be carefully 

investigated. 

To [38], it is unrealistic to install transistors to monitor all individual component, 

because of lack of space and high cost. According to [272], the payback of CMS 

investment could be from 5 to 7 years considering 45% downtime reduction, but 

10 years if 35% is selected. Although [273] recognizes the benefit to the 

maintenance team of adopting CMS, in some of the scenarios investigated, the 

economic return is achieved only if 47% of reactive maintenance become 

preventive. [274] points the importance of integrating results with SCADA, to 

avoid false alarms or missed faults, and the real performance and cost-benefit is 

almost unknown. The interpretation complexity of faults report and the difficult to 

identify false alarms have discouraged operators to use CMS effectively, 

although most of wind turbines in Europe (with rated capacity above 1.5MW) are 

fitted with this system [275]. 

In this thesis, the impact of LCOE will be investigated before and after CMS 

implementation. To this end, the offshore economic model developed in section 

5-2 is used. The investment cost by unit of power installed was £16,607.50/MW 

[276], £28,666.67/MW [270], and £63,266.34/MW [272]. The increase on O&M 

costs from the same references was £730.00, £2,580.00, and £2,075.00, 

respectively. Regarding the mitigation of losses, it was considered a reduction in 

downtime of 40% and 1%, 0.1% and 1% at the yearly rate from the scenarios A, 

B, and C, respectively. Finally, the CMS costs assumed were the average of 

values discussed in this paragraph. 
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Table 6-1 presents a comparison of the LCOE for the offshore scenarios 

investigated with and without the use of CMS. The low impact in the reference 

scenario suggests a low return on investment. However, by including the loss 

trends in the analysis, the economic benefits of CMS become more evident. With 

effective maintenance, the equipment is expected to perform at a high level of 

effectiveness over its lifespan, thereby reducing wear on components. Table 6-2 

presents the financial return of this simulation, considering £/MW installed. By 

factoring in the likely increase in losses over the equipment's lifespan, CMS plays 

an important role in reducing costs, and the real return on investment could be 

higher than 5%. This highlights the importance of considering loss trends in any 

analysis of CMS efficacy. 

Table 6-1. Comparison offshore case with and without CMS. 

 LCOE 
(£/MWh) 

LCOE + CMS 
(£/MWh)  

Reference £98.93 £98.51 

Scenario C £102.41 £101.20 

Scenario B £103.64 £102.13 

Scenario B + C £107.16 £104.86 

Scenario A £110.89 £106.76 

Scenario A + C £114.69 £109.65 

Scenario A + B £116.34 £110.75 

Scenario A + B + C £120.19 £113.67 
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Table 6-2 Results from financial return – With and without CMS. 

  

Without CMS With CMS Financial 
Return 

Comparison LCC Revenue NPV Return LCC Revenue NPV Return 

Reference £3,979,555.74 £4,481,164.91 £501,609.17 112.60% £4,036,324.42 £4,564,435.83 £528,111.41 113.08% 0.43% 

Scenario C £3,979,555.74 £4,329,043.13 £349,487.39 108.78% £4,036,324.42 £4,442,977.77 £406,653.35 110.07% 1.19% 

Scenario B £3,979,555.74 £4,277,632.29 £298,076.55 107.49% £4,036,324.42 £4,402,488.20 £366,163.78 109.07% 1.47% 

Scenario B + C £3,979,555.74 £4,136,882.55 £157,326.81 103.95% £4,036,324.42 £4,288,039.77 £251,715.35 106.24% 2.20% 

Scenario A £4,327,118.39 £4,346,892.30 £19,773.91 100.46% £4,313,865.54 £4,501,285.24 £187,419.69 104.34% 3.87% 

Scenario A + C £4,327,118.39 £4,202,830.44 -£124,287.95 97.13% £4,313,865.54 £4,382,722.81 £68,857.27 101.60% 4.60%* 

Scenario A + B £4,327,118.39 £4,143,359.67 -£183,758.72 95.75% £4,313,865.54 £4,339,337.61 £25,472.06 100.59% 5.05%* 

Scenario A + B + C £4,327,118.39 £4,010,669.86 -£316,448.53 92.69% £4,313,865.54 £4,227,784.81 -£86,080.74 98.00% 5.74%** 

*This result ignored that first scenario had negative return. 

**This result ignored that both scenarios had negative return. 
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6.2 Maintenance x Ageing 

Good maintenance activities are beneficial not only to increase the availability but 

also in deaccelerating the ageing effects, extending its lifespan. In other words, it 

means the equipment can work for a longer period than expected with similar or 

acceptable performance levels at lower failures rates. [277] shown how an 

enhanced risk-based maintenance could increase the useful life of elevators from 

25 to 35 years. [278] demonstrated how early decisions can influencing greatly 

the possibility of increase military equipment life. In this study, it was indicated 

the cost effectiveness should be assess for the decision about extension and how 

maintenance can contribute to that. 

The same behaviour is expected to wind turbines. Although part of the ageing 

effect is caused by external factors, a bad maintenance can also directly influence 

on it. High temperature, high vibration level, excess of dust, and/or loose bolts, 

are example of factors that forces the turbine to operate unbalanced, which can 

wear components faster and reduce performance of the turbine with age. In this 

scenario, the productivity is reduced in three different ways. Increasing failure 

rates and downtimes, shortening equipment lifespan, and reducing performance 

during operational useful periods. 

[16] has found that the decline in performance is also influenced by maintenance 

cost-benefit trade-offs. After the eligible period in which farms have access to 

Production Taxes Credits (PTC), the yearly performance ageing rate dropped 

from 0.53% to 1.27% per year. To [192], there is a strong relationship between 

operational maintenance expenditure and annual energy production. [16] also 

found an increase in curtailment during the period that the benefit is not paid, 

which indicates an attempt to maximize profitability from operators. 

The extra credit will depend on the type and size of the project. The full credit 

value in 2022 was $26/MWh [279], but some projects could be eligible to 

$10/MWh [280]. In UK a similar benefit is the Feed-in Tariffs (FIT), which also is 
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dependent on the project, and can vary from less than £5 to above 20£/MWh for 

wind projects [281]. 

To understand the impact of the maintenance and ageing trade-offs, three 

different scenarios was defined (Figure 7-2). The values assumed in this analysis 

were the same presented in Table 5-2. Considering the figures mentioned in 

previous paragraph, it was assumed a reduction of £10 after the 10th year. This 

year and the ageing rates were retrieved from the investigation performed by [16]. 

Therefore, Scenario I, after 10th year, the ageing rates dropped from 0.53% to 

1.27% per year, and half of maintenance expenses is cut. Scenario II, the 

reduction is accepted, without changing the maintenance routine, so the ageing 

is kept equal to 0.53% the entire period. Scenario III is the intermediate scenario, 

in which the ageing rate is set at 0.9% and maintenance costs reduced by 25%. 

It is important to note that maintenance costs are only a part of the OPEX, which 

was previously discussed as accounting for 49% of the total OPEX. 

 

Figure 6-2 Scenarios Investigated – Trade-off Maintenance x Ageing. 

Table 6-3 presents the results of the simulation. While the reduction in the strike 

price is significant, nearly 10%, keeping the maintenance activity would result in 

higher revenue for investors in the long term, as demonstrated in Scenario II. The 

NPV for Scenario II was above £200,000, which is 50% higher than Scenario I, 

where maintenance is reduced to compensate for the end of tax credit. 

Furthermore, the expected performance of the wind farm after 20 years of 

Scenario I                  Scenario II                 Scenario III 
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operation would be 0.894, indicating a decay of 10% compared to when the 

turbines were new. For Scenario I and III, this loss would be 27% and 18%, 

respectively. Thus, Scenario II presents a higher likelihood of having its life 

extended, making it both viable and profitable. 

Table 6-3 Results from Trade-off Maintenance x Ageing Investigation. 

 Scenario I Scenario II Scenario III 

LCOE 

(£/MWh) 
£104.84 £102.74 £103.71 

NPV 

(£) 
£126,188.59 £201,866.34 £166,185.73 

Performance 

(After 20 years) 
0.729 0.894 0.814 

It is important to note that this analysis does not take into account certain factors 

that are crucial for investors, such as opportunity costs and investment returns. 

Additionally, the figures presented in this analysis reflect the entire 20-year 

lifespan of the project and do not consider the potential risks and reduced margins 

associated with delaying outcomes from an investor's perspective. However, this 

simplified simulation serves as a demonstration of the importance of monitoring 

the financial aspects of the project and exploring various scenarios before making 

decisions. 

Figure 6-3 presents a sensitivity analysis of NPV, examining various 

combinations of maintenance cost reduction and ageing rates. The graph 

illustrates the results, with green values indicating increased returns compared to 

the base scenario (dark blue), and red values representing negative NPV. The 

ageing rates span from the reference rate (discussed earlier) in the middle, to 

extreme scenarios with no change on the left and double the estimated rate on 

the right. Five rates were considered in total, evenly spaced. Additionally, five 

levels of maintenance reduction were investigated, with a maximum assumed 

reduction of 50%. It is worth noting that this value represents an extreme scenario 

and is highly unlikely, particularly for projects with over 10 years of operational 

life. Overall, this range of values encompasses a wide spectrum of scenarios, 

covering the most probable situations in real-world settings. For reference, 
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maintaining the tax credit throughout the entire period would result in an NPV of 

£335,506.18. 

 

Figure 6-3 Sensitivity Analysis of Maintenance Cost Reduction X Ageing rates. 

6.3 Power Integration Solutions 

As renewables increase its share in energy market, more concerns about level of 

curtailment are addressed. Energy relies on the balance of production and 

demand, therefore, as renewables are considered non-dispatchable source, grid 

operators limit its penetration to avoid stresses in the grid. This creates a clear 

conflict of interests between grid operators and renewable plant operators. While 

the first tries to guarantee supply, with required quality and safety in the most 

economical way, the second needs to enhance power output at maximum to 

minimize costs [220]. 

To become economic viable and competitive in energy market, especially 

offshore projects that are more costly, a high productivity is extremely important. 

If the energy is not purchased by the utility, the revenue is reduced [213], whether 

is curtailed or rejected (some exceptions can occur, depending on the commercial 

arrangement). Therefore, some solutions have been proposed to increase the 

wind energy penetration, which can vary according to the country and grid. 

Although in some situations, especially in short-term higher wind penetration 

might occur, generally, grid operators limit wind energy penetration at rates that 

varies from 20% to 35% [210]–[212].  

#### 1.0053 1.009 1.0127 1.0164 1.021

0% 201,866.34£ 117,915.10£ 29,647.35£    63,151.92-£    185,183.62-£ 

10% 221,174.59£ 137,223.35£ 48,955.60£    43,843.67-£    165,875.38-£ 

20% 240,482.84£ 156,531.60£ 68,263.85£    24,535.42-£    146,567.13-£ 

30% 259,791.09£ 175,839.85£ 87,572.09£    5,227.17-£      127,258.88-£ 

40% 279,099.34£ 195,148.10£ 106,880.34£ 14,081.08£    107,950.63-£ 

50% 298,407.58£ 214,456.35£ 126,188.59£ 33,389.32£    88,642.38-£    

Sensitivity Analysis 
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The main problem of non-dispatchable energy is its uncontrollable nature and its 

high fluctuation. This suddenly change in production level can cause 

disturbances in the grid. One widely discussed solution nowadays to reduce 

curtailment losses is the Energy Storage System (ESS). In this system, the extra 

production, when there is a lack of demand, is stored to be used in periods where 

the production fluctuates significantly. Thus, the ESS keeps the output stable and 

become able to cover rapid ramp downs. There are different system types to store 

energy, as pumped hydro, compressed air, flywheel, electromechanical, super 

capacitors, and finally, through batteries [220][174]. None of them is capable of 

meeting both energy and power density simultaneously [174], however, battery 

is becoming popular due to its recent cost reduction [282]. 

Apart from ESS, there are other solutions to reduce wind energy curtailments, 

which includes: wind forecasting, demand-side management, electric cars, smart 

grids, super grids, and the adoption of electric water heating [283]. All these 

solutions are related at some level to increase the demand, bringing some 

benefits for consumers to use energy during predicted windy periods. Green 

Hydrogen is also getting popular, where hydrogen fuel is generated through 

renewables. According to [284], green hydrogen helps to overcome grid 

constraints of offshore deployments and it can be also cost-competitive with 

hydrocarbon fuel, if untaxed. Another common solution is overplanting, where to 

reduce curtailment, wind farms are built with higher capacity than the electrical 

infrastructure [165]. In this scenario, the individual turbine`s performance is 

reduced, so operators can regulate power output of the farm to increase overall 

productivity. This solution also minimizes losses related to availability.  

As the reason behind overplanting is to reduce farm energy rejection and 

curtailment, there are a limit at which overplanting is viable. Obviously, this 

depends on each project and the grid capacity. According to [165] overplanting 

from 2 to 8% can reduce total LCOE, and the optimal scenario found in their MCS 

was 4%. Some countries have suggested overplanting from 5 to 20%, to prevent 

grid restriction [285]. Nonetheless, the average LCOE reduction was about 0.5% 

in both cases.  
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To [286], the level of sophistication and costs required to transform wind power 

into largely dispatchable are controversial. For that reason, it is important to 

perform reliable economic analysis. It is out of scope of this thesis to investigate 

all pros and cons from each solution proposed. However, to check some of the 

findings related to overplanting, a simplified economic analysis was simulated. 

For this, a reduction of 10% in availability and performance losses at the 

reference scenario was considered as well as 50% in quality losses. To achieve 

average 0.5% LCOE reduction, 3.7% of overplanting was needed. This result 

aligns to what was found in the literature. 

6.4 Multivariate Monte Carlo Simulation Case 

Wind energy is surrounded by a diverse cause of uncertainties, which includes 

ambient conditions, wind features, dispatchability to the grid, levels of wear out 

and its costs. Therefore, a stochastic analysis as MCS is more appropriated than 

deterministic models to assess its viability and risks. In subsection 5.2.4, an 

offshore model was developed considering different scenarios of operational 

losses trends. Although, those rates can be considered reliable, since they were 

based in strong evidence retrieved from the literature, they can vary according to 

the project. Another two important aspects that can affect economic viability 

assessment are: how some early decisions and the use of solutions, as described 

previously in this chapter, can impact cost models. To this end, a more elaborated 

MCS, called here as Multivariate MCS (MMCS) will be performed and discussed 

in this section. 

Table 6-3 presents the range of operational losses trends that will be added to 

the model as well as some rules and assumptions created. Offshore figures can 

fluctuate considerably according to how far they are from the cost. More distant 

projects are only viable if the wind regime is higher, so it is reasonable that these 

projects contemplate higher capacity factor. Therefore, high CAPEX will 

randomly select a CF from upper limit and an additional rate was inserted to be 

more realistic. Another rule defined was about OPEX. To [263] a reasonable 

estimation is an annual OPEX equals to 2% of its CAPEX for offshore projects. 

However, more recent studies that also consider floating projects has considered 
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higher values. In the literature review developed and presented in Table 5-1, this 

value is on average 3.2%. A higher investment in maintenance can be related to 

ageing levels, as demonstrated in section 6.2. Therefore, for relative OPEX costs 

above 3%, the ageing and failure rate trend will be selected randomly in its lower 

range. 

Table 6-4 Operational Losses Trends and Rules for MMCS model. 

 

The adoption of overplanting and the use of CMS was also included in this 

simulation. For this, a random selection of ‘Yes’ and ‘No’ for each category was 

included in the algorithm. Table 6-4 presents the rules used as discussed in each 

of them. The overplanting calculated in Section 6.3 was 3.7%, however, this 

analysis only contemplated the reference scenario. Since overplanting makes 

sense only if some return is expected, this value was reduced to 3%, which 

makes less likely to have higher LCOE with overplanting in the model. The 

introduction of new wind farms in the future projects and/or expansion of 

transmission lines are not in control of operators, so a low curtailment rate was 

assumed, varying from 0 to 2% per year. The CMS followed the same 

assumptions discussed before. 
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Table 6-5 Overplanting and CMS Rules 

 

Figure 6-4 presents the NPV balance and the average LCOE results from 

100,000 iterations. Considering all new criterions more than half of scenarios 

simulated brought economic benefits to investors. The average LCOE was 

£107.61, which is around 10% higher than the reference scenario presented in 

Table 5-5. However, it is important to notice that the fluctuation in cost range is 

still high. Considering an interval of confidence of 95%, the LCOE can vary from 

£82.35 to £133.87. 

 



 

124 

Figure 6-4 Result from Multivariate MMCSTable 6-6 summarizes the values into 

four categories: those without solutions, those with CMS, those with 

Overplanting, and those with both solutions. On average, the use of both 

solutions achieved the lowest average LCoE, £102.90. By using only one of the 

solutions, the return was similar to total average. For not using any solution, the 

result was £112.87, almost 5% higher than the average value. 

Table 6-6 Summary of MMCS per solution type 

 Sample Size Average LCoE 

Both 24970 £102.90 

Overplanting 24868 £107.32 

CMS 24880 £107.29 

Without 25282 £112.87 

Total 100000 £107.61 

 

In conclusion, the model has demonstrated the significant impact of uncertainties 

on the economic lifespan of wind energy deployment over the medium to long 

term. It's crucial to investigate the loss trends to mitigate risks and anticipate 

future patterns before losses become irreversible, leading to premature project 

end-of-life. This study investigates two popular solutions - overplanting and CMS 

- to reduce operational losses and increase production, resulting in a reduced 

LCoE. Unlike other studies that overlook loss trends, the return on investment for 

these scenarios is higher than what is typically reported in literature. In other 

words, investing in efficient maintenance and loss reduction solutions may not 

yield immediate returns but can decelerate loss trends, reduce risks, and increase 

financial returns over the medium to long term. Appendix B presents the MMCS 

for return rates of 4% and 8%. 

6.5 Chapter Summary 

This chapter explores several solutions to reduce operational losses in wind 

energy deployment. Section 6.1 discusses the Condition Monitoring System 

(CMS), which can have a low return on investment due to its high investment and 

requirement for specialized expertise. However, in a long-term analysis that 

considers the reduction of loss trends, CMS has been shown to have a more 
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significant impact on reducing LCoE. Section 6.2 investigates the relationship 

between ageing and maintenance activities, finding evidence of correlation 

between the two. Section 6.3 discusses solutions to increase power integration 

and reduce curtailment losses. While some of these solutions are gaining 

attention, they still need a reduction in investment costs to become more popular. 

All the solutions were analysed using the cost model presented in subsection 

5.2.4, and the values align with other studies. To further investigation of the 

effectiveness of these solutions, a Monte Carlo simulation (MMCS) was 

performed in section 6.4. The simulation created a range of possible loss trends 

and included the use of some of the solutions in the model. 
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7 DISCUSSION 

Wind energy is a promising solution to reduce fossil fuels dependency. However, 

it has been reported that some projects are forced to be shut or have significant 

refurbishments before completing its projected life, affecting investors return. The 

findings of this study indicate that the increase of failure rate along turbine`s life 

is the main reason for economic failure of wind energy assets. Although some 

studies have pointed to this problem, suggesting even a yearly increase in the 

OPEX on the economic models [255], they seem to be still underestimated. The 

increase of failure rate affects not only the OPEX costs, but also the availability 

of the turbine, consequently reducing its production, and this additional loss is not 

commonly added in economic analysis found in the literature. 

The concept of “critical year” developed and presented in the section 5.2.4 tries 

to predict when the cost would overpass the benefit if operational loss rates 

remained constant. Although the critical year considering failure rate scenario 

(Scenario A) was close to the 11th year of operation, period where according to 

[214] wind turbines require significant refurbish due to increased maintenance 

costs, more studies are necessary to validate the rates assumed. Apart from the 

increase of failure rates, other two possible causes were identified, ageing and 

curtailment. It is likely that all three losses and trends will occur together at some 

level. In this scenario, the critical year was the 7th year, indicating that possibly 

some of the assumed rates can be considered high. 

The inclusion of operational losses in economic models can be helpful not only 

to estimate investment risks, but also to understand the real return of some 

practical solutions. Referring to one of the solutions proposed in Chapter 6, [272] 

suggests that the investment in CMS could be paid back within 10-year period. 

Therefore, considering the projected operational life and the extra costs and risks 

involved to adopt CMS, this might not be very attractive for investors. However, 

none of the assessed studies reported on the potential reduction of degradation, 

which could mitigate ageing effects and slow down the growth of failure rates 

along turbine`s lifespan. Similar benefit is demonstrated in the sections 5.3, 6.1 

and 6.2. 
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Throughout the thesis, several economic analyses were conducted. The main 

findings indicate that the LCOE is underestimated by 10% in the MMCS results 

in section 6.4 when compared to the reference scenario presented in subsection 

5.2.5. Both scenarios used the same cost base. However, by implementing the 

two solutions discussed to mitigate operational losses and degradation, 

overplanting and CMS, this difference could be reduced to 5%. In today's highly 

competitive market, differences of this magnitude can be crucial for the wind 

energy industry. 

Regarding the adaptation of the metric OEE to wind energy assets, the findings 

was unexpected positive. Despite the uncontrollable environment and 

uncertainties surrounding wind power, the first case study (presented in section 

3.5) achieved an overall productivity rate of close to 91%. According to [23], an 

OEE higher than 85% is considered world class benchmark in manufacturing 

industry. This result indicates that the technology can be considered reliable 

enough to deliver what they are expected. Although the second case study 

(demonstrated in section 4.2) achieved 73% productivity, the short period 

assessed could explain its lower result. Also, it is clear that at first half of the data 

provided some abnormalities have occurred. By eliminating this period, the OEE 

would be close to 81%. 

It's worth noting that both case studies were based on early-age wind projects, 

which suggests a likelihood of bias in the results. Also, in this thesis, the OEE 

analysis covered the entire energy production process, not just the turbine. This 

means that external factors such as curtailment, which may not always be the 

responsibility of operators, were also taken into account. Although there is no 

consensus on whether external losses should be included in OEE analysis, the 

energy industry is inherently interdependent, with production relying on a balance 

between production and grid demand. Thus, it is crucial to consider these external 

factors in the OEE analysis as well as in the economic models, particularly 

because depending on the contract, these losses can reduce revenue and 

consequently the viability of project. Although in some cases, the government 

may cover these losses financially, consumers would ultimately bear the costs 



 

128 

through higher energy prices. Therefore, the strategy behind this was to avoid 

bias in the analysis by checking the real costs and productivity of the assets. 

In conclusion, the successful accomplishment of these two main aims, which 

were to adept OEE to the wind energy context and investigate the underlying 

factors contributing to occasional economic failures in wind projects, reinforces 

the importance of carefully assessing operational losses in wind energy for 

informed decision-making and comprehensive risk assessments. The creation of 

a unique metric that encompasses all possible operational losses has the 

potential to provide a more comprehensive overview of the equipment’s 

performance. The novelty lies especially in the inclusion of the quality element, 

usually neglected or assessed separately in other studies. Also, as discussed in 

Section 2.3, improving one specific part of the process can have negative impacts 

on other parts. Therefore, an overall analysis of the entire process, such as the 

adaptation of OEE, can be crucial in ensuring that the project reaches its full 

productivity capacity. It is important to mention that to be more effective, 

academia and the industry should try to use a unique procedure to calculate the 

OEE, so the results can be fairly compared. In any case, the scheme shown in 

Figure 2.2 has the potential to be kept as the basis of future analysis, since this 

would inevitably cover the entire process and consider all operational losses. 

Additionally, an attempt to estimate quality element was developed in subsection 

4.2.3, while in subsection 4.2.2 and section 4.3, the performance element was 

investigated, where different options were presented. To the best of knowledge 

of the authors, this is the first practical attempt to adapted OEE in wind energy, 

which means that there is room for future improvements.  

Regarding the economic analysis, as mentioned before, it was identified and 

investigated three main operational loss trends that could affect productivity along 

wind energy operational life: the increase of failure rate, ageing, and curtailment. 

The addition of these operational loss trends demonstrates when and why the 

project can fail before its projected life. It is very likely that if a project is failing 

economically, part of these rates has been neglected or underestimated. The 

study has revealed that ageing and curtailment have minor impacts on the overall 
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costs, despite the latter being a widely discussed topic in recent papers. However, 

it is important to keep in mind that grid structures and transmission lines usually 

take longer to be construct [220] than the wind farms, so this could become a big 

problem in near future. The increase of failure rate has shown to be the most 

impactful loss trends, which means that OPEX and maintenance are still the main 

bottleneck to wind energy to become completely independent from subsidies, 

competing directly in the energy market. It is important to remind that the rates 

outlined here must be carefully reviewed and tailored to the specific technology 

and scenario at hand. Although, the economic analysis used on the stochastic 

analysis was based in figures found on the literature to only offshore 

deployments, the particularities, country, and type of technology were not 

considered. As demonstrated in reference [255], which investigates LCOE by 

country, the costs can vary significantly, with the most expensive option being 

twice as costly as the cheapest. Also, it is expected that the implementation and 

operational costs of floating offshore wind turbines (FOWT), for instance, might 

be higher than from bottom fixed structures, which are closer to the shore. This 

indicates that the larger cost ranges assumed could be narrowed for specific 

projects, providing a more precise result. 

Beyond the results itself, the main contribution of this work was the development 

of a framework that can be easily adapted and tailored to different deployments. 

Additionally, it is expected that the methodology proposed would give a broader 

overview of possible causes of economic failure and also, considering the 

adaptation of OEE, a reliable metric to help operators to identify and eliminate 

wastes in the process, improving productivity and profitability. Although the focus 

of this thesis was on wind energy assets, the proposed methodology and 

framework are versatile enough to be applied to different technologies, 

particularly in the field of renewable energy, such as solar energy. Solar energy 

shares similar characteristics with wind energy and can thus easily adopt the 

principles and foundations developed here. 

As implied throughout this chapter, there are certain limitations in this thesis that 

need to be acknowledged and addressed in future studies. The primary limitation 
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is related to limited data due to confidentiality concerns. This is a common 

problem faced by researchers to develop an economic analysis in wind energy, 

which can reduce the confidence of results. As demonstrated by [287], the current 

strike prices from UK auctions are approximated half of the average LCOE 

predicted by different sources in the literature. This means that either the costs 

discussed in the literature will reduce drastically in coming years or the strike 

prices are underestimated, and those future projects might not be viable its entire 

life. Also, some generalizations had to be done to perform the economic analysis 

and should be revisited before assuming the rates stablished here. With regards 

to the estimation of OEE, the quality analysis was simplified by solely taking into 

account ramp rates and wind energy rejection, as demonstrated in subsection 

4.2.3. However, it should be noted that by following only this proposed quality 

analysis, many identified quality losses discussed in subsection 2.2.4 were 

disregarded. Different from manufacturing industry, measuring quality of the 

energy produced involves some subjectiveness and for better use of the tool this 

should be better defined in future to be efficiently measured and related to 

operational performance of the turbines. Finally, it would be important to extend 

the OEE analysis to older projects to observe how the metric changes over time. 

Moreover, future work could explore other factors that might impact OEE, such 

as workforce training and equipment maintenance.  
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8 CONCLUSION 

This chapter will conclude the research by summarizing and presenting the main 

findings related to its aims and objectives mentioned in the introduction chapter. 

Section 8.1 will present a summary of the chapters. Section 8.2 will discuss the 

thesis contributions. In section 8.3, the limitations are discussed, while in 8.4 a 

suggestion of future works.  

8.1 Summary of Chapters 

This thesis started with an introduction of the theme and the problem that would 

be investigated (Chapter 1). Some wind energy deployment is failing to deliver 

what they were expected in medium and long term and becoming economically 

inefficient before the end of its projected lifespan. Thus, the problem background 

and the scope of the thesis was defined together with its aim and specific 

objectives. Later, the structure followed along this work and the works and papers 

published and submitted are presented. 

The goal of chapter 2 was to identify the main operational losses in wind energy 

assets. The manufacturing industry has developed a metric called OEE to gather 

all operational losses and assist operators and managers in decision making. 

Therefore, the first part of the chapter presented this metric. Then an adaptation 

of OEE to wind energy was defined and finally an extended literature review was 

performed. The losses identified were classified according OEE elements and the 

benefits of this metric were discussed. 

While the previous chapter focused on the qualitative investigation, chapter 3 

estimated and established the general rate losses of each element of OEE. It was 

clear that these rates are not accounted following a common rule, which can 

reduce the reliability and make comparisons a hard task. Nonetheless, all these 

aspects were considered and a general OEE with its likely range was 

summarized for onshore and offshore projects. In section 3.5, a real case 

scenario was investigated and presented. 
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Chapter 4, through real data, some alternatives proposals to monitor and 

evaluate wind farms performance and productivity were discussed. First, using 

MET MAST data information, a script using traditional methods of machine 

learning was presented and have shown higher accuracy, even considering daily 

average values. Then, the OEE of a wind farm from provided SCADA data was 

evaluated. Due to the limitations of the data, part of losses was estimated, as the 

quality rate in which a simple procedure considering ramps rates and wind energy 

rejection was developed. The values were aligned with what was found in the 

literature. 

Chapter 5 identified possible reasons for the farms become inviable in medium 

and long term. The main aspects identified were the increase of failure rates, 

ageing and curtailment. The latter is getting much attention, because with more 

wind farms built, curtailment tends to be higher without changings in the grid 

and/or expansion of transmission lines. An economic analysis was performed 

considering the average of costs found in the literature and the losses trends 

investigated. In section 5.3, an onshore hypothetical farm was simulated in a CFD 

software, and its costs were calculated considering the losses and comparing the 

selection of different wind turbine classes. 

Chapter 6 shown some important and popular solutions to reduce the operational 

losses discussed in the previously chapter. While the thesis presents several 

interesting proposals such as new controllers, gadgets, and machine learning 

models, this chapter focuses on discussing CMS, the trade-off between 

maintenance efficiency and ageing, and solutions to increase power integration. 

The offshore figures discussed in chapter 5 were used to investigate and 

demonstrated possible economic return by adopting the solutions. Finally, a 

multivariate MCS is performed integrating the solutions and different trends rates 

randomly. 

Chapter 7 presents a discussion about the main findings, some of the impacts of 

this study and some limitations. 
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8.2 Thesis Contributions 

Through different case studies and an extended literature review, this thesis 

found an indication of main problems that can reduce performance of wind energy 

assets along its lifespan. The impact of each loss trends was investigated 

stochastically considering different scenarios. Also, a metric was proposed to 

monitor and measure the operational losses and productivity stability of wind 

energy farms. The novelty, soundness, and value from each specific objectives 

presented in Section 1.2 are summarized in tables 8.1, 8.2, 8.3, 8.4, and 8.5. 

“Novelty” outlines what is new to academia and/or industry. Soundness sums up 

the methods used and how they were applied. Finally, the value explains why 

and to whom the outcomes can be significant.  
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Table 8-1 Summary of Objective 1 

Objective 1: Review of operational losses throughout the entire process, including wind penetration into the grid, and classify them into groups following 

OEE concepts to help operators to identify specific areas for improvements. 

Novelty Soundness Value 

At best of knowledge of the authors no 
similar work has been developed so far. 
Most of reviews identified in the literature 
treat specific groups of operational 
losses. In this activity, they were all put 
together, including some third-party 
causes, giving a widely overview of the 
losses and risks of wind energy assets. 
The focus of this review was on 
publications starting from 2010. 

 

This extended review used several key 
words as “operational losses”, “quality 
losses”, “performance losses”, 
“availability”, “grid losses”, together with 
“wind energy” or “wind power”. The 
losses were classified in three main 
elements, following basic concepts of 
the metric OEE. Apart from the 
classification, it was indicated what sort 
of discussion and solutions were 
presented. 

This review might be for interests of not 
only researchers, but also for the 
industry. Although there are many 
papers discussing the operational 
losses, they are not treated together. 
This review summarizes all possible 
operational losses and also has 
presented a reasoning line to 
accommodate them in the elements of 
OEE. This criterion has the potential to 
become the basis of OEE adaptation to 
wind energy assets. Additionally, some 
solutions are presented, and they were 
grouped according to its proposal. 
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Table 8-2 Summary of Objective 2. 

Objective 2: Apply OEE to wind energy following framework previously developed and perform quantitative analysis according to literature figures and 
real cases to evaluate wind energy effectiveness. 

Novelty Soundness Value 

OEE is a popular metric in 
manufacturing to measure equipment 
stability and productivity by assessing its 
operational losses. The advantage of 
this tool is that it puts all losses together, 
which contributes to find the best global 
solution. What outstands this metric from 
others is that it includes quality losses, 
often neglected in turbine performance 
analysis. 

 

By following a linear reasoning strategy, 
developed in the review, the losses were 
grouped in the three elements of OEE. A 
further quantitative review was proposed 
to estimate the average rate of each 
OEE element for onshore and offshore 
projects. Two real case scenarios from 
early age projects were also performed 
to this end. 

Any changing in a process can bring 
consequences in other stages of the 
process. This argument is also valid for 
wind energy assets. For the best of 
knowledge of the author, it was not found 
any metric where all possible losses are 
put together for wind energy, especially 
the ones related with quality. This metric 
is known as an important tool not only to 
measure equipment stability, but also to 
help to identify hidden losses to improve 
productivity and profitability. 
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Table 8-3 Summary of Objective 3. 

Objective 3: Conduct data analysis to develop different models and procedures to monitor and estimate OEE. 

Novelty Soundness Value 

The adaptation of OEE proposed is a 
novelty itself, however, there is no 
procedures regarding the application 
and how the rates should be accounted. 
For that, some common metrics was 
investigated, and data analysis and 
machine learning methods used. 

Availability is already a well-established 
concept in the literature. Although there 
are different options to calculate it, it was 
followed the time-based concept. 
Performance and quality, on the other 
hand, had to be developed. From a data 
analysis activity, the best performance 
registered in similar operational 
conditions was determined as reference. 
To the quality, by limited data, a script 
considering ramp rates losses and wind 
energy rejection was created. Therefore, 
OEE could be estimated in real 
scenarios. To monitor performance 
through MET MAST data, a model was 
developed considering RFR, achieving a 
high accuracy for wind power output 
prediction. 

Estimate and monitor OEE can be 
beneficial to operators to identify hidden 
losses and understand better how the 
equipment is performing along its life. 
The main value of this tool is that it 
includes all elements in one metric, 
including quality. The ramp rate x wind 
rejection criteria developed provided 
coherent outcomes and could become a 
starting point for a more complete 
assessment. The cases have shown the 
potential of the tool, where in similar 
events the performance, for instance, 
could be half of expected. 
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Table 8-4 Summary of Objective 4. 

Objective 4: Investigate in literature how some operational losses increases along the lifespan of wind energy assets and evaluate its impacts on costs 
and viability. 

Novelty Soundness Value 

A review of operational different causes 
of increase of operational loss were 
investigated and presented together. 
Here, common rates of operational 
losses trends were defined and its 
impacts on viability and costs were 
investigated. A diverse number of 
scenarios were drawn, considering them 
individually or together, to better 
understanding if they could be the 
reason of economic failures in the 
projects.  

 

The main causes of losses of 
productivity along wind assets lifespan 
were investigated through literature 
review. Scenarios considering likely loss 
trends were created and added to 
economic analysis to check the impact in 
the LCOE and its viability. The critical 
and breakeven year of each scenario 
was also assessed. A hypothetical 
onshore farm was created to assess the 
impact in costs from different wind 
turbine classes with different scenarios. 

Before deciding to participate in a 
project, investors want to have the risks 
drawn as clear as possible. By including 
the loss trends, a new range of possibles 
outcomes are created. It is not expected 
that operators will accept the losses 
without any action to minimize them. 
Therefore, the simulations are important 
to indicate how the costs could be in 
future and the consequences in case the 
trends keep growing at same rate. Some 
of externalities, such as curtailment by 
lack of demand was also investigated. 
Although this is not always responsibility 
of operators, depending on the contract 
their revenue can be affected, for that 
reason, they should be considered. 
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Table 8-5 Summary of Objective 5. 

Objective 5: Perform stochastic analysis to check viability, costs, and risk of economic failure of wind energy assets along its lifespan in different scenarios, 
combining different losses trends and some proposed solutions to reduce operational losses identified in literature. 

Novelty Soundness Value 

Some solutions to reduce losses were 
investigated, including CMS to reduce 
breakdown, and overplanting to increase 
wind dispatchability. Also, the trade-off 
between maintenance and ageing was 
considered. Thus, a stochastic analysis 
assuming not only costs uncertainties, 
but also, the losses trends rates and 
some of solutions discussed were 
performed. 

Due to the number of uncertainties in 
wind energy assets, stochastic analysis 
is the best approach to assess risk in 
wind assets. Two analyses were 
performed here. First, the impact of 
losses trends rates was investigated 
through MCS, considering only costs 
uncertainties. Later, a MMCS was run 
considering costs uncertainties, different 
losses trends rates, and finally, the 
implementation or not of some of 
solutions previously discussed.  

As demonstrated in this thesis, besides 
uncertainties on wind regimes and 
operational costs, loss trends rates, 
curtailment risks, and the return of some 
solutions can also affect final cost of 
wind energy. Therefore, the MMCS 
proposed can give a broader view of the 
risks to investors. Although the range of 
costs can be considered higher, the 
model proposed is easily adapted to 
attend each specific scenario in real life 
models. Also, some of solutions found 
on the literature demonstrates low 
financial return; however, the reduced 
degradation level is usually not 
assessed, which can mislead decisions.  
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8.3 Limitations  

Despite of prominent results achieved in this thesis; some simple assumptions 

were made due to data limitation. Real costs, productivity data, and level of 

operational losses, are considered key and confidential by the industry. Thus, the 

costs and values assumed were based in the literature and some international 

reports, which usually consider mean values from several deployments. In this 

case, it might be hard to avoid some sort of bias. 

Another approach to deal with the data limitation was to expand the research 

including data from different types of deployments, turbines, countries, and ages. 

Although this generalization can be considered good to bring a wide overview, 

this hinders specific analysis. Wind energy is surrounded by uncertainties, so 

some subjectiveness and simplifications are acceptable for general analyses as 

the one proposed here. 

The incomplete data also affected the attempt to measure OEE. In the data 

analysis activity, several assumptions had to be done, including that no 

abnormalities have happened during the period assessed. This could affect the 

rates of each element, since it was not informed for example, if the farm was in 

test or normal operation, if the losses in performance was due to grid restrictions, 

or if the farm was penalized by any disturbance created in the grid. Nonetheless, 

to best use of OEE, all losses, even the ones that could be justified, should be 

accounted. 

It is worth to add that one of the main characteristics of OEE is its simplicity. The 

way OEE was adapted to wind energy in this work tried to be very clear and 

concise, keeping the fundamental characteristic of the tool. Nonetheless, the 

definition of the six main losses, which ended up becoming nine, did not consider 

how the operational losses interact to each other. Quality losses, for instance, 

can cause downtime, reduced speed, and/or increase wind energy rejection and 

transmission losses. Thus, considering it just at the end of the process might not 

be the best approach. Either way, regardless of the main losses’ identification, 

the main purpose of OEE was achieved through the procedure suggested, which 
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is to gather all losses in a solid metric, helping operators to identify hidden losses. 

In other words, by following the procedure suggested here, these losses would 

be included in OEE, despite of its element classification. 

Finally, it is important to mentioned that this PhD has started in March of 2020, 

the same period of Covid outbreak. Part of the decisions and scope had to be 

changed and adapted, especially during the first two years, when companies, the 

university and the country had total or some level of restriction. Nonetheless, the 

overall structure and aims was kept as close as possible for the original goals 

and the results were satisfactory.  

8.4 Future Works 

This work has demonstrated the importance of including operational losses 

trends in economic analysis and the use of OEE for decision makings. However, 

some simplifications and generalizations had to be done due to the lack of 

complete data. Therefore, investigating if the considerations assumed here are 

coherent is an important sequence of this work. Also, as discussed along the 

thesis, OEE tries to find the best balance between all elements. Although the goal 

of the tool is to assist operators to find solutions to reduce all losses and not to 

decide the best configuration, this could still be used for this end.  

Relating fatigue with operational behaviour could help to link performance with 

availability, for example. Also, the use of software that estimates power quality, 

could be related to performance. Here, only the ramp rate issue was used to 

estimate wind power rejection. Although the values found was coherent, further 

investigation is important. Creating a theoretical link between elements of OEE 

could facilitate comparisons between configurations and/or scenarios. Many 

studies presented here suggest solutions to solve or reduce losses in each 

element, but how this affects other parts of the process is rarely discussed. As 

demonstrated, an increase of performance at the cost of reducing its quality could 

make overall effectiveness worser than before. 
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APPENDICES 

Appendix A  

Table_Apx A-1 Results of Economic Model - return rate = 4%  

 
LCOE 

(£/MWh) 

NPV 

(£/MW) 

Critical 
Year 

Investment 

Breakeven 
Year  

Reference £88.65 £1,084,481.25 - 13 

Scenario C £92.07 £887,195.71 - 13 

Scenario B £93.22 £823,880.50 - 13 

Scenario B + C £96.71 £641,849.25 20 14 

Scenario A £101.43 £459,592.91 15 14 

Scenario A + C £105.25 £273,207.45 13 15 

Scenario A + B £106.85 £198,992.16 12 16 

Scenario A + B + C £110.74 27,861.00 11 17 

 

Table_Apx A-2 Results of Economic Model - return rate = 8% 

 
LCOE 

(£/MWh) 

NPV 

(£/MW) 

Critical 
Year 

Investment 

Breakeven 
Year  

Reference £110.16 £42,534.77 - 19 

Scenario C £113.69 -£76,267.28 4 20 

Scenario B £114.99 -£118,490.43 3 20 

Scenario B + C £118.55 -£228,721.84 2 20 

Scenario A £121.37 -£333,762.53 1 - 

Scenario A + C £125.15 -£446,541.55 - - 

Scenario A + B £126.84 -£494,787.73 - - 

Scenario A + B + C £130.65 -£598,996.11 - - 
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Table_Apx A-3 Result MCS – return rate = 4%. 

 LCOE (IC 95%) 
NPV > 0 

(%) 
 

Lower 
Limit 

Average 
Upper 
Limit 

Reference £65.75 £88.81 £111.88 0.7771 

Scenario C £68.26 £92.22 £116.18 0.7503 

Scenario B £68.77 £93.27 £117.77 0.7301 

Scenario B + C £71.45 £96.84 £122.23 0.6835 

Scenario A £73.55 £101.51 £129.47 0.6236 

Scenario A + C £76.52 £105.48 £134.44 0.5776 

Scenario A + B £77.45 £106.93 £136.41 0.5534 

Scenario A + B + C £80.53 £111.18 £141.84 0.5082 

 

Table_Apx A-4 Result MCS – return rate = 8%. 

 LCOE (IC 95%) 
NPV > 0 

(%) 
 

Lower 
Limit 

Average 
Upper 
Limit 

Reference £82.60 £110.31 £138.02 0.5054 

Scenario C £85.01 £113.81 £142.62 0.4787 

Scenario B £86.21 £115.39 £144.57 0.4536 

Scenario B + C £89.21 £119.01 £148.80 0.4060 

Scenario A £90.22 £121.68 £153.14 0.3719 

Scenario A + C £92.68 £125.35 £158.03 0.3247 

Scenario A + B £94.02 £127.20 £160.38 0.3110 

Scenario A + B + C £96.31 £130.92 £165.52 0.2628 
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Appendix B  

 

Figure_Apx B-1 MMCS results for returning tax = 4%. 

 

Figure_Apx B-2 MMCS results for returning tax = 8%. 
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