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Abstract

Multi-input multi-output (MIMO) channels are known to increase the capacity of a

transmission link. This can be exploited to increase either the multiplexing gain or the

diversity gain, which leads to a higher data throughput or a better resilience of the link

to fading, respectively. This thesis is concerned with the diversity gain, which, in a

flat fading channel, can be maximised by Alamouti’s space-time block coding (STBC)

scheme and a number of derivative techniques. For frequency selective fading, i.e. dis-

persive, MIMO channels, a few solutions have been reported in the literature including

MIMO-OFDM, where the channel is decomposed into a number of narrowband prob-

lems, and a technique known as time-reversal STBC. For the latter, a number of blind

adaptive algorithms have been derived, implemented and tested in order to avoid the

requirement of explicit knowledge of the channel. The above diversity scheme for broad-

band MIMO are invariable block-based and often assume stationarity of the channel

over the duration of one block. Therefore, non-block based approaches appear useful

where tracking of fast changing channels is required.

In this thesis, a non-block-based constant modulus receiver is designed for the equal-

isation of STBC over channels with Inter Symbol Interference (ISI). Assuming the

transmitted symbols have a single modulus, known at the receiver, a trivial extension

of the Constant Modulus Algorithm (CMA) can be used at the receiver to combat the

temporal dispersion. The equaliser adapts its coefficients by forcing the outputs to

have the same modulus. The proposed algorithm adds a new term to the cost function

of the standard MIMO-CMA to minimize the cross correlation between the outputs
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and prevent extraction of the same source at multiple outputs. Simulation results will

show that the derived algorithm outperforms the block-based scheme over time-varying

channels.

Due to the slow converging nature of the CMA, this report explores the use of

fast converging implementations such as: Newton’s method, the Conjugate Gradient

method, and the matched PDF scheme. A thorough evaluation is carried out taking into

consideration the complexity of each implementation in terms of multiply-accumulate

(MAC) operations required per iteration. A concurrent CM and Decision Directed

(DD) equaliser is also developed in order to speed up the convergence and correct the

phase rotation of the recovered signals. Fractionally spaced equalisation (FSE) is also

investigated in this thesis. Computer simulations have been performed to evaluate the

performance of the proposed set of algorithms.

A blind CM based scheme is also developed for the equalisation of a multi-user STBC

system based on Space-Time Spreading (STS). The algorithm minimises the error at

a matched-filtered version of the output taking advantage of the implicit orthogonality

inherent in the CDMA spreading.
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Chapter 1

Introduction

1.1 Research Motivation

Wireless communication systems are becoming increasingly attractive due to the grow-

ing demand for data communications. In the early days of mobile communications, the

focus was on the transmission of voice data, which only required a moderate data rate.

This changed with the introduction of Internet and multimedia services in 2G and 3G

mobile cellular systems. Third generation wireless systems have demonstrated a data

rate of up to 2Mb/s and the latest Wireless-LAN systems, IEEE standard 802.11g,

allow a data rate of up to 54 Mb/s, [1]. However, to realise higher data rates , a higher

channel capacity is required for next generation wireless communication systems. The

Shannon-Hartley rule, [2, 3], indicates that the capacity of an Additive White Gaussian

Noise (AWGN) channel from one antenna to another can only be enhanced through

increasing either the bandwidth or the transmit power. The former is constrained by

the spectrum allocation, whereas the latter increases the cost of transmission, reduces

the battery life for mobile units, and increases the interference for users operating in

the same or adjacent frequency bands.

1



CHAPTER 1. INTRODUCTION 2

An alternative to increasing the capacity is to use multiple antennas at both ends

of transmission, a technique known as Multiple-Input Multiple-Output (MIMO). In [4],

the capacity of the channel, under certain condition, is shown to increase linearly with

the minimum number of transmit and receive antennas. Depending on the application,

the extra degrees of freedom introduced by MIMO can be exploited to either increase the

multiplexing gain or the diversity gain. The former leads to a higher data throughput,

whereas the latter leads to better quality of transmission, i.e. a lower Bit Error Ratio

(BER) , which can also lead to a higher throughput as it allows the application of more

populated constellations.

This thesis is concerned with diversity gain, which can be maximised in a Single-

Input Multi-Output (SIMO) scenario using Maximal Ratio Combining (MRC), [5].

However, in the mobile downlink scenario, MRC implies the placement of multiple

antennas at the mobile units, which is not feasible due to the limitations on the cost and

size of the units. In the pioneer work by Alamouti, [6], a transmitter diversity scheme,

named Space-Time Block Coding (STBC), was derived which achieves the same level

of diversity as MRC over flat fading channels. Space-Time Trellis Codes (STTC), [7],

achieve higher diversity levels than STBC. However, the number of Viterbi states is

exponential in the transmission rate, which constitutes a major limitation.

In most communication systems the channel is broadband, i.e. the channel fre-

quency response is not constant over the whole frequency bandwidth, which in the time

domain results in Inter-Symbols-Interference (ISI). This natural phenomenon makes

wireless transmission difficult, and in an STBC scheme destroys the orthogonality of

the sequences transmitted from different antennas. Hence, it prohibits the simple STBC

decoding at the receiver. In a general communication system, the effect of a dispersive

channel can be mitigated through the use of an equaliser prior to decoding.

A wide range of equalisation algorithms can be found in the literature, e.g. [8, 9, 10],

and can be mainly divided into the following three categories:

1. Trained, also known as (a.k.a) data aided: This class of algorithms relies on the
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periodic transmission of a training sequence known a priori to the receiver. The

difference between the transmitted and received sequences is adaptively minimised

using a number of criteria such as Wiener Hopf, LMS, RLS, ... etc. Trained al-

gorithms are reliable and require fewer symbols to adapt than other categories.

However, the reliability and fast acquisition come at the expense of added redun-

dancy reducing the bandwidth utilisation. Trained equalisers also suffer from the

inability to track channel changes during the transmission of data, which renders

them inefficient when the channel is fast time-varying.

2. Blind, a.k.a non-data aided: Blind equalisation algorithms utilise knowledge of

the characteristics of the transmitted data and do not require training or pilots.

They often require more data to adapt but have the advantage of maximising the

bandwidth utilisation. The most common blind receiver is the Constant Modulus

Algorithm (CMA) which relies on the assumption that all points in the transmit

constellation have the same modulus.

3. Hybrid: this includes semi-blind and decision directed schemes. Semi-blind schemes

are used when the training or pilot symbols are not sufficient to obtain a reliable

estimate.

This thesis investigates equalisation schemes for STBC over frequency selective chan-

nels. The channels used throughout the thesis are time-varying, which motivates the use

of blind equalisation due to the earlier mentioned reasons. The remainder of this chap-

ter presents the original contributions of this dissertation to digital signal processing

and communications and gives an outline of the following chapters of the thesis.

1.2 Original Contributions

The thesis reports the following contributions, which we consider novel to the best of

our knowledge:
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1. MMSE decoding for Space-Time Block Coding (chapter 2)

The STBC decoding scheme which was proposed by Alamouti in [6] is Zero-

Forcing (ZF) as it only takes into account the channel information. In section 2.5.2

we assess a decoding scheme based on a Minimum Mean Square Error (MMSE)

criterion, which minimises the noise level at the output. Computer simulation

results are presented to evaluate the performance gain.

2. Effect of imperfect channel estimation on TRSTBC (chapter 3)

Time-Reversal STBC (TRSTBC), [19], is a block based scheme which maximises

the diversity level over frequency selective channels. In [19], Maximum Likelihood

Sequence Estimation (MLSE) was used at the receiver assuming the availability

of full Channel State Information (CSI). Perfect channel estimation is shown in

section 3.2.1 to yield good performance. However, if the channel is fast varying,

perfect tracking becomes more difficult and estimation errors arise. Section 3.2.2

investigates the effect of the channel estimation errors on the performance of

MLSE.

3. Fast converging implementations of the TRSTBC-CMA (chapter 3),

[11]

A Constant Modulus (CM) receiver was proposed in [20] for the blind equalisation

of TRSTBC. Due to the slow convergence of CMA, the proposed receiver requires

data blocks of considerable length in order to reach the steady state, in which

case the channel is likely to change within the duration of the two consecutive

bursts. This leads to a significant degradation in the error performance as shown

in section 4.3. Section 3.4 investigates different search methods and criteria that

achieve faster convergence than the standard Gradient Descent method. The

complexity of the receivers is also analysed to gain a good understanding of the

performce gain against added effort.

4. CM equalisation for STBC over channels with ISI (chapter 4), [12, 13,
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14, 15]

We propose a non-block based approach to the blind equalisation of STBC based

on the CM criterion. In addition to enforcing the CM property on each of the

outputs, a new term is added to the cost function whereby the outputs collected

over two symbol periods are forced to have the same STBC structure employed by

the encoder. Due to the implicit orthogonality of the encoded streams, the new

term prevents multiple outputs from identifying the same source. The equaliser

is generalised to an arbitrary number of transmit and receive antennas.

5. Improving the performance of the STBC-CM Algorithm (chapter 5),

[16, 17]

A number of search methods are investigated for improving the convergence speed

of the derived non-block based CM receiver. The performance gain is evaluated

against the added complexity. A concurrent receiver is also derived in chapter 5

using the CM and Decision Directed (DD) criteria. The CM part of the equaliser

is updated for every iteration and a decision is made on the correctness of the out-

puts. The DD part of the equaliser is only updated when the CM step is deemed

correct. This takes advantage of the robustness of CMA and the fast convergence

of DD. Chapter 5 also investigates the Fractionally Spaced (FS) implementation

of the derived STBC-CMA.

6. CM equalisation for STS over broadband channels (chapter 6), [18]

In a realistic MIMO communications scenario, multiple users with multiple anten-

nas access the medium at the same time. Multiplexing is used to prevent users’

signals from interfering with each other. In this chapter, we consider Space-Time

Spreading (STS), which uses Code Division Multiple Access (CDMA) in an STBC

setting. STS assigns a unique code drawn from an orthogonal set to each trans-

mitting antenna. This allows the receiver to recover the signal of the user of

interest while suppressing the rest of the signals. However, the presence of Inter-



CHAPTER 1. INTRODUCTION 6

Symbol Interference (ISI) due to frequency selectivity of the channel destroys the

orthogonality of the signals thus preventing the receiver from correctly decoupling

the signal of interest. Chapter 6 derives a blind equaliser, which enforces the CM

criterion on the despread output signals in order to recover the orthogonality of

the user signals.
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3. A. Daas, S. Bendoukha, and S. Weiss: "A Blind Adaptive Equaliser for

STBC Based on PDF Fitting", Eusipco, Glasgow, UK, August 2009.

4. S. Bendoukha, W. Al-Hanafy, and S. Weiss: "A Concurrent Blind Receiver
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2009.

5. S. Bendoukha and S. Weiss: "Blind CM Equalization for STBC over Multi-

path Fading", IET Electronics Letters, Vol 44, Issue 15, July 2008 .

6. S. Bendoukha, M. Hadef, and S. Weiss: "A Constant Modulus Based Equal-

izer for Space-Time Spreading over Dispersive Channels", Eusipco, Lausanne,

Switzerland, August 2008.

7. S. Bendoukha and S. Weiss: "A Blind CM Receiver for STBC over Channels
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Time Block Codes over Frequency Selective Channels", International Conference

on Signal Processing and Communications, Dubai, UAE, November 2007.

9. S. Bendoukha and S. Weiss: "A Non-Block Based Approach to the Blind

Equalization of Space-Time Block Coding over Frequency Selective Channels",

European Signal Processing Conference, Poznan, Poland, September 2007.

1.3.2 Other Publications

1. M. Hadef, S. Bendoukha, and S. Weiss: "A Fast and Robust Blind Detection

Scheme for the Downlink UMTS-TDD Component", International Symposium on

Communications, Control, and Signal Processing, Marrakesh, Morocco, March

2006.

2. M. Hadef, S. Bendoukha, S. Weiss, and M. Rupp: "A New UMTS-TDD

Burst Structure with a Semi Blind Equalization Scheme", Asilomar Conference

on Signals, Systems, and Computers, Vol 1, Pacific Grove, CA, October 2005.

3. M. Hadef, S. Bendoukha, S. Weiss, and M. Rupp: "Affine Projection
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1.4 Outline of Thesis

The following chapters of this report are organised as below:

Chapter 2 gives a description of the different channel models considered throughout

this thesis. A MIMO channel can be stationary, time-varying, or quasi-stationary. This
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chapter also looks at the increase in capacity through the use of multiple antennas and

describes how an increase in diversity and multiplexing gains can be achieved. This

thesis is concerned with the diversity gain, which can be maximised through Space-Time

Coding (STC) and the remainder of this chapter reviews STC schemes for narrowband

channels.

Chapter 3 reviews the Time-Reversal Space-Time Block Coding (TRSTBC) scheme,

introduced in [21, 19]. TRSTBC is a block-based scheme, which maximises the diver-

sity gain over frequency selective channels. A CM based receiver for TRSTBC, [20], is

analysed in this chapter. Due to the slow convergence of the CMA, very long bursts

are required to achieve desired performance. This chapter looks at a few schemes that

can achieve faster convergence and investigates the performance gain against added

complexity.

Chapter 4 presents a non-block based approach to the blind equalisation of STBC

over channels with Inter-Symbol Interference (ISI), named STBC-CMA. The derived

algorithm adds a new term to the CM criterion, whereby the output of the equaliser

is forced to have the same structure as the transmitted STBC code word. Simulation

results are presented to evaluate the performance of the new algorithm to that of the

block-based TRSTBC-CMA for stationary and time varying channels.

Chapter 5 investigates a number of techniques that improve the convergence speed

of the algorithm derived in chapter 4. The considered techniques are, Newton’s method,

Conjugate Gradient method, PDF-Fitting, and Concurrent CM-DD. A fractionally-

spaced implementation is also considered for the derived blind equaliser.

Chapter 6 presents a blind CM equaliser for multiuser Space-Time Spreading (STS)

over dispersive channels. The algorithm operates in the chip rate and minimises the

error at the matched-filtered outputs as will be shown in this chapter. Simulation

results are shown to highlight the performance of the derived algorithm.

Chapter 7 gives a summary of the main ideas discussed throughout this thesis and

puts forward suggestions for consideration in the future.



Chapter 2

MIMO and Space-Time Coding

2.1 Wireless Channel Model

One of the main problems in wireless communications is to mitigate the effect of the

channel on the transmitted signal. Since computer simulations are used to compare the

performance of different transmitter and receiver structures, a realistic channel model is

required. The signals transmitted from an antenna are electro-magnetic waves, which

when colliding with an object will either reflect or scatter. Due to these two effects

multipath propagation arises, which requires the distinction between narrowband (or

frequency-flat) and broadband (or frequency selective) channels, and stationary as well

as time-varying characteristics, as shown in Figure 2.1.

Broadband

frequency flat

frequency selective

flat fading

frequency selective

fading

Non-stationaryStationary

Narrowband

Figure 2.1: Different channel models considered throughout this thesis.

9
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2.1.1 Channel Model

Throughout this thesis, the channel between a transmit antenna and a receive antenna

is denoted h[n, ν], where n is the time index and ν = 0, 1, . . . , Lh − 1 is the coefficient

index. Figure 2.2 shows that notation corresponding to each of the four channel types.

If n = 0, the channel is stationary and does not vary over time. The channel is said to

be flat, or narrowband, if its gain is constant in frequency over the whole bandwidth of

the signal, see [22]. The channel is frequency flat if the length Lh = 1, i.e. the filter is

memoryless. In the case of a flat channel, the coefficient index is set to ν = 0. Adversely,

if the channel gain does not remain constant over the whole frequency bandwidth, the

channel is said to be frequency selective, or broadband. In the broadband case, adjacent

symbols will interfere thus requiring an equaliser at the receiver to reverse the effect of

the channel.

h[n, 0]

Non-stationaryStationary

Narrowband

Broadband

frequency flat
h[0, 0]

frequency selective
h[0, ν]

frequency selective fading
h[n, ν]

flat fading

Figure 2.2: Notation corresponding to different channel types.

The wireless channel h[n, ν] can be represented by a finite impulse response filter

(FIR) with Lh coefficients as shown in Figure 2.3, where ∆ represents a delay of one

symbol period. For a non-line of sight (LoS) channel, the coefficients of h[n, ν] are

drawn from a complex Gaussian distribution

h [n, ν] = a+ b
√
−1 for ν = 0, . . . , Lh − 1, (2.1)

where Lh is the length of the channel impulse response (CIR), and a and b are in-

dependent complex Gaussian real processes with zero mean. The amplitude of the

resulting channel coefficients has a Rayleigh distribution, whose probability density
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function (PDF) is shown in Figure 2.4. The phase of the channel coefficients is uni-

formly distributed.

2.1.2 Correlated Rayleigh Fading

In realistic wireless communication scenarios, the channel changes over time, which is

commonly referred to as fading. If the CIR is coherent over the duration of at least one

symbol, the channel is termed slowly fading; otherwise, the channel is fast fading. A lot

of experiments have been carried out to find a sensible model for a time-varying channel,

such as [23, 24]. The distribution of the channel coefficients is Rician if a dominant

stationary contribution, such as a line of sight (LoS) component, exists between the

transmitter and receiver, [22]. In the absence of a dominant component, the channel

gain can be assumed to be Rayleigh distributed. In statistics, a Rayleigh distribution

is the sum of two quadrature Gaussian distributions and has the PDF shown in Figure

2.4.

Clarke’s model, [24], assumes isotropic scattering leading to a uniformly distributed

angle of arrival (AoA). In [25], a more realistic channel model was proposed using

multiple Von-Mises-Fisher distributions to accurately model the distribution of clusters

of scatterers leading to a realistic distribution of AoA. However, for simplicity, Clarke’s

model with a Rayleigh distribution has been chosen here and will be used throughout

this thesis.

The time-variation of the channel is mainly attributed to the movement of one or

both ends of the transmission. The movement causes channel coefficients to change,

thus modulating the transmitted signal and causing a frequency shift known as Doppler

shift. As shown in Figure 2.5, if the velocity vector ~v is perpendicular to the receive

path, no Doppler shift is observed by terminal B. The maximum Doppler shift occurs

when the angle of movement is equal to zero or 180o.

In the case of baseband transmission, the Doppler shift can be defined similar to

[24]:
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hij [n,Lh − 1]

s[n]

r[n]

∆∆∆

hij [n, 2]hij [n, 1]hij [n, 0]

Figure 2.3: Model of the channel impulse response (CIR) at time n.
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Figure 2.4: A Rayleigh distribution of a complex Gaussian random variable with vari-
ance σ2

h = 1.

fd =
v

λ
cosϑ = fmcosϑ, (2.2)

where ϑ is the angle of movement with respect to the reception path, λ is the wavelength,

v is the speed of the moving terminal, and fm is the maximum Doppler frequency. This

leads to the Doppler power spectrum defined in [26] and referred to as the Clarke and

Gans’ model:

S(f) =







1.5

πfm

√

1−( f
fm

)2
|f | < fm

0 |f | ≥ fm.

(2.3)

The Doppler filter’s frequency response is shown in Figure 2.6. Implemention of
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θ
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maximum shift

no Doppler shift

~v0

A
~vm

Figure 2.5: Effect of direction of movement on Doppler shift.

0

Frequency

S(f)

−f
m

+f
m

Figure 2.6: The frequency response of the Doppler filter.

the Clarke and Gans fading model is usually performed in frequency domain, [22], as

shown in Figure 2.7 for a single coefficient h[n, ν]. The FFT block before the filtering has

been omitted because the FFT of a Gaussian distribution is itself Gaussian distributed.

The algorithm for producing the evolution of a channel coefficient over NFFT sampling

periods can be summarised as follows:

1. Compute the spacing between adjacent frequency bins as δf = 2fs/(NFFT − 1),

where NFFT is the number of frequency domain points and fs is the sampling

frequency.

2. Generate NFFT/2 complex Gaussian random variables and use them to construct

negative and positive frequency values for each of the two noise sources.
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3. Multiply the frequency domain random signals by the frequency response of the

Doppler filter S(f). This is equivalent to the time domain convolution.

4. Transform the resulting signals to the time domain using IFFT blocks.

5. The outputs from the IFFT blocks represent the real and imaginary parts of the

correlated Rayleigh distributed random process, hij [n, ν].

Figure 2.8 shows the amplitude variation of 2 independent flat fading channels over

time. The channels are obtained by using the frequency domain implementation of the

Clarke and Gans model. Since the coding schemes considered throughout this thesis

are block based, the channel is generally assumed to be stationary over the duration of

one or two data bursts. Let us define the Quasi-Stationary channel model, whereby the

channel remains constant over a block of Qs symbol periods and varies only between

successive blocks.

2.1.3 Doubly Dispersive Channel

If the channel impulse response varies over time and its gain does not remain constant

over the whole frequency bandwidth, the channel is said to be doubly dispersive. As

shown in Figure 2.9, a frequency selective fading channel can be modeled by Lh in-

dependent correlated Rayleigh fading processes, each characterised by a path delay δν

and a gain βν .

Figure 2.10 shows the time-frequency plot of a doubly dispersive 3-tap Rayleigh

distributed channel. The power delay profile for this channel is given in table 2.1, with

Ts being the symbol period.

Delay Ts 2Ts 3Ts

Strength, [dB] 0 −3 −5

Table 2.1: Power delay profile for the channel shown in figure 2.10.
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Figure 2.7: Frequency domain implementation of the Clarke and Gans fading model.
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Figure 2.8: Time evolution of two independent correlated Rayleigh fading coefficients.

2.1.4 MIMO Channel

Multiple-input Multiple-Output (MIMO) systems utilise more than one antenna at

both the transmitter and receiver in order to increase the performance of the system.

Figure 2.11 depicts a typical MIMO system with M transmit and N receive antennas.

Throughout this thesis, an M ×N MIMO channel will be modelled as

H [n, ν] =












h11 [n, ν] h12 [n, ν] · · · h1M [n, ν]

h21 [n, ν] h22 [n, ν] · · · h2M [n, ν]

...
...

. . .
...

hN1 [n, ν] hN2 [n, ν] · · · hNM [n, ν]












. (2.4)
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Figure 2.9: Frequency selective Rayleigh channel simulator
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Figure 2.10: Rayleigh distributed frequency selective fading (doubly dispersive) channel.

The antenna separation is assumed to be greater than 10λ, where λ is the wavelength

of the minimum frequency component, to ensure uncorrelated channels. In the absence

of additive noise, the received signal vector is given by the convolution

r[n] =

Lh−1∑

ν=0

H [n, ν] s[n− ν]. (2.5)
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Figure 2.11: A Multiple-Input Multiple-Output system with M transmit and N receive
antennas

2.2 Diversity Techniques

Consider the flat Rayleigh fading channels depicted in Figure 2.8. Channel 1 is said to

have a deep fade at around 2000 iterations resulting in a very poor Signal to Noise Ratio

(SNR) at the receiver. This reduces the performance of the communication system and

may result in complete failure. Diversity techniques are widely used in mobile wireless

communications to combat the effect of fading on the transmitted signal. Diversity

techniques provide the receiver with multiple replicas of the same message having passed

through multiple independently distributed fading paths. If the probability of a deep

fade in each channel is pf , then the probability of deep fades across all N channels is

pNf < pf for N > 1.

The most common types of diversity are time diversity, frequency diversity, and

spatial diversity.

Time Diversity: In time diversity, the same message is transmitted at different

time slots, [27]. The slots are sufficiently separated to allow the channels to be uncor-

related. The minimum separation period is defined by the reciprocal of the fading rate,

as in [28]:

1

fd
=

c

vfc
(2.6)
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where c is the speed of light, v is the speed of the moving terminal and fc is the carrier

frequency.

In wireless communications, time diversity is achieved through interleaving and

redundancy in the form of error control coding. This technique is impractical for delay

sensitive applications such as the transmission of voice over slow fading channels as a

large interleaver is needed. Time diversity also reduces the effective bandwidth due to

the added redundancy.

Frequency Diversity: In frequency diversity, the same message is carried by a

number of different frequencies. Independent fading channels can be achieved by ensur-

ing the carrier frequency separation is several times larger than the channel coherence

bandwidth, i.e. δf ≫ fb. Frequency diversity can be achieved by adding redundancy

in the frequency domain as in Direct-Sequence Spread Spectrum (DSSS), Frequency

Hopping (FH), and multicarrier modulation. Similar to time diversity, the redundancy

in this technique reduces the bandwidth efficiency.

Space Diversity: Multiple antennas can be used at either the transmitter or

receiver to achieve channel diversity. The antenna separation must be at least λ/2,

where λ is the wavelength, in order to achieve uncorrelated channels. In practice, the

separation is typically in the order of a few wavelengths. Unlike the other techniques,

space diversity does not affect the bandwidth efficiency of the system.

2.3 MIMO System Capacity

The use of multiple antennas has been shown to increase the capacity of the transmission

link over the Single-Input Single-Output (SISO) case [4]. This section will quantify the

capacity gain for a broadband MIMO channel.
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2.3.1 Capacity of Broadband MIMO systems

Consider the MIMO system shown in Figure 2.11. The N × 1 received data vector at

time n can be given by:

r [n] =

Lh−1∑

ν=0

H [n, ν] s [n− ν] + v [n] , (2.7)

where s [n] is the M × 1 transmitted data vector and v [n] is a vector containing N

independent additive white complex Gaussian noise (AWGN) processes. Assuming the

channel is stationary over a block of L symbol periods, with L ≥ Lh, (2.7) can be

rewritten in block format as follows

rn = H̄sn + vn, (2.8)

where

sn =

[

sH [n] sH [n− 1] · · · sH [n− Lh + 1]

]H

, (2.9)

and H̄ is the concatenated channel matrix

H̄ =

[

H [n, 0] H [n, 1] . . . H [n, Lh − 1]

]

. (2.10)

The time index on the left hand side of (2.10) has been dropped for simplicity by

assuming H̄ is stationary. The normalised capacity of the effective MIMO system is

defined similar to [29] as

CN =
1

Lh

log2
{
det

(
IN +R−1

vv H̄RssH̄
H
)}
, (2.11)

where Rss = E
{
sns

H
n

}
is the LhM×LhM covariance matrix of the transmitted signals,

Rvv = E
{
vnv

H
n

}
= σ2

vI is the N × N noise covariance matrix, and det (.) denotes

the determinant operator. Equation (2.11) refers to the normalised capacity where the
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bandwidth is left out.

Assuming the transmit vector xn is circular complex Gaussian, Rss can be given by

Rss =
P0

M
ILhM , (2.12)

where P0 is the total transmit power. Substituting (2.12) to (2.11) yields:

CN =
1

Lh

log2

{

det

(

IN +
P0

Mσ2
v

H̄H̄H

)}

, (2.13)

as in [28].

2.3.2 Special Cases

We can use the description in (2.7) to define a number of special cases

Narrowband Rayleigh Channel: In the narrowband case, Lh = 1, the effective

channel matrix reduces to H̄ = H[n, 0], and the vector sn = s [n]. Let us assume that

the number of transmit antennas exceeds receive antennas, i.e. M > N . The capacity

of a time varying channel can be defined in a number of ways depending on the available

channel knowledge and its distribution between the transmitter and receiver, [30]. Here,

the channel gains hi,j[n, 0] are assumed independent Rayleigh distributed with variance

σ2
h:

E
{
H̄H̄H

}
=Mσ2

hIN . (2.14)

Due to the time-variation of the channel, the capacity can no longer be calculated

exactly. Instead, the ergodic capacity is defined as the expectation of the instantaneous

capacity

E {CN} = log2

{

det

(

IN +
P0

Mσ2
v

E
{
H̄H̄H

}
)}

. (2.15)

Substituting (2.14) yields
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Figure 2.12: Capacity of an M × N MIMO channel with Rayleigh distribution and
variance σ2

h = 1.

E {CN} = N log2

{

1 +
P0σ

2
h

σ2
v

}

. (2.16)

Note from (2.16) that the channel capacity of an M×N MIMO system, where M > N ,

is increased N -fold over the SISO case.

Generalisation: Equation (2.13) can be generalised to

CN = log2

{

det

(

IN +
P0

Mσ2
v

Q

)}

, (2.17)

where

Q =







H̄H̄H , M > N

H̄HH̄, M ≤ N

(2.18)

Hence, the MIMO channel capacity can be defined as

E {CN} = min (M,N) log2

{

1 +
P0σ

2
h

σ2
v

}

. (2.19)
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Equation (2.16) shows that the capacity of a narrowband MIMO system with orthogonal

transmissions increases linearly with the minimum number of transmit and receive

antennas. The capacity of a 4× 4 narrowband MIMO system as a function of the SNR

is shown in Figure 2.12. The SNR is defined as the ratio between the received signal

power and the noise power

SNR =
P0σ

2
h

σ2
v

. (2.20)

SISO Channel: If only one antenna is employed at the transmitter and receiver,

i.e. M = N = 1, (2.20) reduces to Shannon’s capacity rule over a Rayleigh distributed

channel, as in [30]:

E {CN} = log2{1 +
P0σ

2
h

σ2
v

}. (2.21)

2.4 Diversity vs Multiplexing Gain

MIMO systems have shown a considerable increase in the capacity of a transmission link.

This extra capacity can be exploited to increase either the diversity or the multiplexing

gain. The diversity gain can be increased by means of transmit diversity schemes where

the source data is transmitted from each of the multiple transmit antennas to achieve

the maximum spatial diversity at the receiver. This does not increase the throughput of

the system but improves the SNR and the resilience of the link to fading. This increase

is known as the diversity gain. Techniques that can achieve full diversity gain include

Space-Time Block Codes (STBC), [6, 31], and Space-Time Trellis Codes (STTC), [7].

The diversity gain is defined in [30] as

d = − lim
SNR→∞

{
log10 (Pe (SNR))

log10 (SNR)

}

, (2.22)

where Pe (SNR) is the error probability for a given SNR. Note that, the diversity order is

proportional to the slope of the Bit Error Rate (BER) curve, when the SNR approaches

infinity.
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Thus, if a scheme achieves the BER of 10−b1 and 10−b2 at SNR1 and SNR2, respec-

tively, where b1 and b2 are significantly larger than 1 then

d = 10× b1 − b2
SNR1 − SNR2

. (2.23)

as in [32]. The maximum diversity order that can be achieved by a MIMO system with

M transmit and N receive antennas is given by dmax =M ×N .

In spatial multiplexing, the source data is divided into a number of substreams

transmitted from the different antennas [33]. Assuming the channel matrix is indepen-

dent identically distributed with a Rayleigh distribution, spatial multiplexing achieves

the full ergodic capacity but does not offer the same diversity gain as transmit diversity

schemes, [34, 35]. The multiplexing gain is defined in [36, 37] as

rmx = lim
SNR→∞

{
R (SNR)

log10 (SNR)

}

, (2.24)

where R (SNR) is the supported data rate for the given SNR. The maximum mul-

tiplexing gain is defined by the minimum number of transmit and receive antennas

rmx|max = min (M,N), as in [38].

Since most communication systems require a trade off between throughput and

quality, [34] introduced a scheme for switching between multiplexing and diversity gains

based on the instantaneous channel state. In the remainder of this thesis, we are

concerned with the diversity gain, which, in a flat fading channel, can be maximised

by Alamouti’s space-time block coding (STBC) scheme and a number of derivative

techniques as will be shown in the following section.



CHAPTER 2. MIMO AND SPACE-TIME CODING 24

2.5 Space-Time Block Coding

2.5.1 Alamouti Space-Time Block Coding

Space Time Block Coding (STBC) was first introduced in [6], and has received consid-

erable attention since. Using two transmit antennas and N receive antennas, Alamouti

achieved the same level of diversity as maximum ratio combining (MRC) [5, 39], but

only half the number of receive antennas. STBC is based on the orthogonality of the

signals transmitted from the different antennas. In this section, a brief explanation of

STBC is given and simulation results are shown to evaluate its performance.

Figure 2.13 shows an STBC system with two transmit (Tx) and one receive (Rx)

antenna. The data signal a [n] is divided into odd and even symbol sequences, a1 [l] =

a[2l] and a2 [2l + 1], respectively. The symbols are space-time coded as shown in Table

2.2. For simplicity, the time index n will be dropped in the following derivations, since

transmission is measured over a stationary flat-fading channel, such that a received

data block only depends on a transmitted data block, and time indices therefore have

no impact.

The resulting transmitted matrix can be written as,

S =






a1 −a∗2
a2 a∗1




 . (2.25)

Observe from equation 2.25 that the code matrix S has the following property

SSH =






a1 −a∗2
a2 a∗1











a∗1 a∗2

−a2 a1




 =

(
|a1|2 + |a2|2

)
I2. (2.26)

time n time n+1
Tx1 a1 [l] −a∗2 [l]
Tx2 a2 [l] a∗1 [l]

Table 2.2: STBC Block Structure.
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Figure 2.13: A 2× 1 Space-Time Block Coding (STBC) system.

The two flat Rayleigh channels are assumed to be stationary over the duration of one

block, i.e. 2 symbols, and expressed as h = [h1 h2]. The signal r picked up by the

receive antenna during two consecutive time slots can be represented as:

r =






r1

r2




 = (hS)T + v. (2.27)

Thus

r =






h1a1 + h2a2 + v1

−h1a∗2 + h2a
∗
1 + v2




 , (2.28)

where v = [v1 v2]
T is additive white Gaussian noise with zero mean and covariance

E
{
vvH

}
= σ2

vI2.

A new vector is constructed by complex conjugating the second entry of (2.27)

r̃ =






r1

r∗2




 =






h1a1 + h2a2 + v1

−h∗1a2 + h∗2a1 + v∗2






=






h1 h2

h∗2 −h∗1











a1

a2




+






v1

v∗2




 .

(2.29)
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Hence, we define the 2× 2 matrix H̄ and the modified noise vector ṽ such that

r̃ = H̄a+ ṽ, (2.30)

where the equivalent channel matrix H̄ has the same orthogonality property as the code

word matrix S:

H̄HH̄ =






h∗1 h2

h∗2 −h1











h1 h2

h∗2 −h∗1




 =

(
|h1|2 + |h2|2

)
I2. (2.31)

Therefore, the two received symbols can be easily decoupled by using H̄H as a matched

filter:

â =






ã1

ã2




 = H̄H r̃

= H̄HH̄






a1

a2




+






h∗1v1 + h2v
∗
2

−h1v∗2 + h∗2v1




 ,

(2.32)

yielding

â =
(
|h1|2 + |h2|2

)






a1

a2




+ v̂. (2.33)

The final operation performed by the receiver is the maximum likelihood detection,

which is similar to that of the MRC. The detector selects the element from the trans-

mitted symbol set with minimum distance to the combined symbol âi. The detector

selects ak if the distance between âi and ak is smaller than to any other permitted

symbol value.

Computer simulations have been performed to evaluate the performance of the

STBC scheme against MRC [5]. The source data is mapped using the BPSK mod-

ulation scheme. Full channel knowledge is assumed at the receiver, with the channel

being flat fading. The channel coefficients are drawn from an uncorrelated Rayleigh

distribution and are stationary for the duration of two symbols.
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Figure 2.14 shows the Bit Error Ratio (BER) curves for the STBC scheme with 1

and 2 receive antenna configurations. The SNR at each receive antenna is defined as

the ratio between the transmit power and the noise power, which is assumed to be equal

for all antennas, i.e.

SNRi = 10log10
P

σ2
v

, for i = 1, 2. (2.34)

STBC achieves the same diversity level as MRC with a 3dB loss in BER. For example,

the diversity order for STBC with 1 receive antenna can be calculated from Figure 2.14

using (2.23) as

dSTBC,1 = 10× 5− 3

24− 14
= 2, (2.35)

which is equal to the maximum diversity gain, dmax = M × N = 2. The 3dB loss is

attributed to the power normalisation at the transmitter, i.e. for STBC each antenna

radiates half the power transmitted by the one antenna in the case of MRC. As shown

in [6], the algorithm can be trivially generalised to an arbitrary number of receive

antennas, N , for higher diversity orders.

2.5.2 MMSE Decoding

The STBC decoding scheme proposed in [6] is only based on the channel gain and

ignores the channel noise contribution to the received signal. This section derives an

MMSE decoding approach for Alamouti’s STBC Scheme. Consider the two consecutive

symbols picked up by one receive antenna as in (2.29):

r̃ = H̄a+ ṽ , (2.36)

where Raa = E
{
aaH

}
is the covariance matrix of the STBC coder input and Rvv =

E
{
vvH

}
is the noise covariance matrix. For MMSE-STBC decoding, we assume the
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Figure 2.14: The BER curves for STBC and MRC.

use of a matrix G:

â = G






r1

r∗2




 = G

(
H̄a+ ṽ

)
. (2.37)

The resulting error vector is defined as

e = â− ρa, (2.38)

leading to the MMSE

ξ = tr
{
E
{
eeH

}}

= tr
{
G

(
H̄RaaH̄

H +Rvv

)
GH − ρ∗GH̄Raa − ρRaaH̄

HGH + |ρ|2Raa

}
.

(2.39)

The quadratic expression of ξ can be minimised by differentiation with respect to

(w.r.t) G [40],
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∂

∂G
ξ =

(
H̄RaaH̄

H +Rvv

)
GH − ρ∗H̄Raa (2.40)

and subsequently defining the optimum MMSE solution of the location where the gra-

dient is zero, i.e.

Gopt,MMSE = ρRaaH̄
H
(
H̄RaaH̄

H +Rvv

)−1
. (2.41)

Note that if Raa = σ2
aI2 and in the absence of noise

Gopt,MMSE|Rvv=0,Raa=σ2
aI2

= ρ∗H̄H =
ρ∗

|h1|2 + |h2|2






h∗1 −h2
h∗2 h1




 , (2.42)

which is the zero forcing solution and precisely what is used in standard STBC decoding

as shown in 2.32. The scalar factor (|h1|2 + |h2|2) is absorbed into ρ∗.

To evaluate the performance of MMSE decoding, we define the SNR as the ratio

between the afforded transmit power and noise power at the receiver

SNR =
tr {Raa}
tr {Rvv}

. (2.43)

Computer simulations have been performed whereby the channel coefficients are

drawn from a Rayleigh distribution with E {|h1|2} = E {|h2|2} = 1
2
. The simulation

results averaged over 1000 channel realisations are shown in Figure 2.15. The MMSE

solution requires calculating the inverse of the M × M matrix
(
H̄RaaH̄

H +Rvv

)−1
,

which increases the complexity of the receiver and may not be practical if the matrix is

ill conditioned. The results in Figure 2.15 suggest that the performance improvement is

not sufficiently large over typical SNR values over the range of 5dB upwards to justify

the effort.

If the noise is imbalanced, i.e. E {|v1|2} 6= E {|v2|2}, the performance does not

change with respect to Figure 2.15. Similarly, using correlated noise whereby the noise
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covariance matrix is not diagonal, does not result in any deviation from the results in

Figure 2.15.

2.5.3 Generalised STBC

Alamouti’s STBC scheme was originally proposed for two branch transmit diversity,

i.e. two transmit antennas. However, it can be generalised to an arbitrary number of

antennas, [31, 28]. During one time slot, the encoder is supplied with k symbols. The

symbols are transmitted from M antennas in p time periods. The rate of the code is

defined as:

Rc =
k

p
. (2.44)

The symbol streams transmitted from the different antennas are linear combinations

of the mapped symbols a1a2, · · · , ak and their complex conjugates a∗1, a
∗
2, · · · , a∗k. The

matrix of transmitted symbols is designed to fulfill the orthogonality condition similar

to 2.26,

SSH = η
(
|a1|2 + · · ·+ |ak|2

)
IM (2.45)

where η is a constant.

It is desirable to construct codes with a full rate, i.e. Rc = 1, due to their bandwidth

efficiency. The design of STBC codes differs for real and complex symbol constellations,

which will be discussed separately below.

2.5.3.1 Real Constellations

The following is an STBC code for real transmit constellations,
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S4 =












a1 a2 a3 a4

−a2 a1 −a4 a3

−a3 a4 a1 −a2
−a4 −a3 a2 a1












for M = 4, (2.46)

as in [31]. In general, the minimum number of time periods p to achieve full diversity

is given by

pmin = min
(
24η+ς

)
(2.47)

where 0 ≤ η, 0 ≤ ς ≤ 4, and 8η + 2ς ≥ M . Note that for any number of transmit

antennas M = 2i where i ∈ N, an STBC code with rate Rc = 1 can be constructed to

achieve full diversity at the receiver.

2.5.3.2 Complex Constellations

The following is an STBC code for complex symbol constellations [28]:
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S1
3 =









a1 a∗2 a∗3 0

−a2 a∗1 0 −a∗3
−a3 0 a∗1 a∗2









for M = 3, η = 1. (2.48)

This code achieves full diversity with a rate of Rc =
3
4
. Note that the Alamouti code is

the only code with rate Rc = 1 that archives full diversity. For any number of transmit

antennas M > 2, an STBC code with rate Rc = 1
2

can be designed to achieve full

diversity for any complex constellation.

Figure 2.16 shows the BER for different values of N . Compared to the BER curves in

Figure 2.14, a higher diversity level is observed for the same number of receive antennas.

Consider the case with 3 transmit and 1 receive antenna. The diversity level can be

calculated from the BER curve according to (2.23) yielding the maximum diversity,

d3×1 = 10 · 4− 2

14− 8
≈ 3 =MN. (2.49)

2.6 STBC for Multiple Users

One of the most important aspects of telecommunications is the ability to accom-

modate multiple users within the same medium. A number of different multiplexing

schemes have been derived for this purpose including Time-Division Multiple Access

(TDMA), Frequency Division Multiple Access (FDMA) and Space Division Multiple

Access (SDMA), [41]. However, due to its capacity improvement and ability to ac-

commodate all users within the same frequency band and at the same time, the most

promising multiple access scheme is Code-Division Multiple Access (CDMA), [42, 43].

CDMA has been chosen as the main standard for 3G communication networks and is

the first candidate for 4G networks, [44].

MIMO systems have demonstrated an enormous increase in system performance
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over a conventional SISO setup. A lot of work has concentrated on combining MIMO

and CDMA. Inspired by Alamouti’s Space-Time Block Coding, a transmit diversity

scheme for CDMA systems was derived in [45], named Space-Time Spreading (STS).

The STS scheme is briefly explained in this section, followed by a differential STS

scheme introduced in [46, 47].

2.6.1 Space-Time Spreading

Inspired by the STBC coding scheme, Space-Time Spreading (STS) was introduced

in [45] as a transmit diversity scheme for Wideband-CDMA systems. Consider a sys-

tem with two transmit and M receive antennas. Similar to STBC, the source data is

split into odd and even symbol sequences, s1 [n] and s2 [n], respectively. The signals

transmitted from the two antennas are defined in the blocks

s1 [n] = 1√
2
[s1 [n] c1 + s∗2 [n] c2]

s2 [n] = 1√
2
[s2 [n] c1 − s∗1 [n] c2] ,

(2.50)
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where c1 and c2 are unit-norm orthogonal 2K × 1 codes, with K being the CDMA

spreading gain. If only one code, c, is assigned to every user, the two codes can be

defined as c1 =
[
cT cT

]T
and c2 =

[
cT − cT

]T
. Note that c1 and c2 are still orthogonal,

cH1 c2 = 0.

The channel from the jth transmit antenna to the ith receive antenna is denoted

hij [l, 0], where l is the chip index, and is assumed to be flat fading. Channel hij [l, 0]

is also assumed to be stationary over one symbol period, i.e. 2K chips. Hence, the

time index n will be dropped in subsequent derivations because a received data block

is only dependent on a single transmitted block. The signal picked up by the ith receive

antenna during one symbol period can be written as

ri = hi1s1 + hi2s2 + vi, (2.51)

where vi is additive white Gaussian noise.

The received signals are then pre-multiplied by the Hermitian of the orthogonal

codes c1 and c2 to produce the despread signals dji,

d1i = cH1 ri

= 1√
2
[h1is1 + h2is2] + cH1 vi

d2i = cH2 ri

= 1√
2
[−h2is∗1 + h1is

∗
2] + cH2 vi.

(2.52)

For simplicity, let us define the following:

di =






d1i

d2i




 , H̄i =






h1i h2i

−h∗2i h∗1i




 ,

s =






s1

s2




 , and ṽi =






cH1 vi

cH2 vi




 .
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Using these definitions, (2.52) can be rewritten as

di =
1√
2
H̄is + ṽi. (2.53)

Pre-multiplying dj by the Hermitian of the equivalent channel matrix, H̄
H

j , gives

H̄
H

j dj = 1√
2
H̄

H

j H̄js + H̄
H

j ṽj

= 1√
2






|h1,j|2 + |h2,j|2 0

0 |h1,j|2 + |h2,j|2




 s + H̄

H

j ṽj

= 1√
2
(|h1,j|2 + |h2,j|2) s + H̄

H

j ṽj.

(2.54)

The next step is to combine the signals retrieved from the different receive antennas

through (2.54), which is achieved by averaging across all N decoded symbols,

ŝ[n] =

{
M∑

j=1

(

H̄
H

j dj

)
}

/N. (2.55)

It can be clearly observed from (2.54) that the source symbol sequences s1 [n] and

s2 [n] have been decoupled by the receiver, and that maximum diversity gain has been

achieved. Similar to STBC, STS can be derived for an arbitrary number of transmit

antennas, as in [45]. However, the two branch code used here is the only full-rate

code that achieves full diversity. Higher codes reduce the bandwidth utilisation of the

system.

The STS scheme assumes that the channel is stationary over the duration of 2K

chips and that the channel is estimated perfectly at the receiver. The performance of

STS has been analysed in [48, 49] in the presence of estimation errors.

2.6.2 Differential Space-Time Spreading

To overcome the need for channel estimation in STS, a differential technique was derived

in [47] based on differential STBC (DSTBC) in [46]. The idea is to transmit a pilot
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symbol, which is a symbol known a priori to the receiver, and recursively define the

transmitted data based on this symbol. At the receiver, the pilot symbol is used to

obtain an estimate of the channel, and then recursively recover the data.

In order to characterise DSTBC, consider a system with two transmit and one receive

antenna. Similar to STBC, the source data is split into odd and even symbol sequences

a1 [n] and a2 [n]. These sequences are then differentially encoded to form the signals

ã1 [n] and ã2 [n], respectively. At time instant n = 0, the known symbols ã1 [0] and

ã2 [0] are transmitted from the two transmit antennas. At the following time instants,

the transmitted symbols are recursively defined by






ã1 [n]

ã2 [n]




 =







a1 [n]






ã1 [n− 1]

ã2 [n− 1]




+ a2[n]






ã∗2 [n− 1]

−ã∗1 [n− 1]












/pn, (2.56)

where pn =
√

(|ã1 [n− 1] |2 + |ã2 [n− 1] |2) is used to normalise the power of the trans-

mitted symbols.

After differential encoding, STS is performed to obtain the transmit signals, s1 [n]

and s2 [n]. Similar to (2.50), the transmit signals are defined by

s1 [n] = 1√
2
(ã1 [n] c1 + ã∗2 [n] c2)

s2 [n] = 1√
2
(ã2 [n] c1 − ã∗1 [n] c2).

(2.57)

Using the same notation and making the same assumptions as in Section 2.6.1, the

signal picked up by the ith receive antenna are given by

ri [n] = hi1 [n] s1 [n] + hi2 [n] s2 [n] + vi [n] , (2.58)

where vi [n] is additive white Gaussian noise. To retrieve the two transmitted signals,

first despreading is performed using the Hermitian of the orthogonal codes assigned to
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a specific user,

d1i [n] = cH1 ri [n]

= 1√
2
[hi1 [n] s1 [n] + hi2 [n] s2 [n]] + cH1 vi [n]

d2i [n] = cH2 ri [n]

= 1√
2
[−hi2 [n] s∗1 [n] + hi1 [n] s

∗
2 [n]] + cH2 vi [n] .

(2.59)

This is followed by differential decoding. Let us define

R1i [n− 1] =






d∗1i [n− 1]

d2i [n− 1]




 , R2i [n− 1] =






d∗2i [n− 1]

d1i [n− 1]




 , Ri [n] =






d∗1i [n]

d2i [n]




 .

(2.60)

The differential decoding process is carried out by using two consecutive data blocks as

follows:

s̃1i [n] = RH
i [n]R1i [n− 1]

= αi,ns1 [n] + ṽ1i [n] ,

s̃2i [n] = RH
i [n]R2i [n− 1]

= αi,ns2 [n] + ṽ2i [n] ,

(2.61)

where αi,n = (|hi1 [n] |2 + |hi2 [n] |2) ·
√

|v1 [n− 1] |2 + |v2 [n− 1] |2. The signals are then

averaged in the same way as in STS,

ŝ [n] =

[
M∑

i=1

s̃i [n]

]

/M, (2.62)

where s̃i [n] = [s̃1i [n] s̃2i [n]]
T , although it may be possible to further enhance the system

performance by combining the contributions in (2.62) weighted by the their SNRs as

in MRC.

Since the αi,n is a positive real number, it is safe to say that the transmitted signals

have been recovered. Simulation results will be presented in 2.6.3 to compare the BER
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performance of DSTS to that of STS.

2.6.3 Performance of STS and DSTS

Computer simulations were carried out to analyse the performance of STS and DSTS.

The channel matrix is drawn from a slow fading correlated Rayleigh distribution as

shown in Figure 2.1. Figure 2.17 shows the BER curves for the two schemes using

different antenna configurations. It can be clearly observed that using more antennas

at the receiver increases the error performance of both schemes dramatically. The BER

of the DSTS scheme is 3dB worse than that of the STS scheme. The reason is the

noise amplification inherent in the differential decoding process. The source of this 3dB

penalty is analysed in detail in [46].

Even though the BER performance of DSTS is 3dB worse than that of STS, it is

still an attractive scheme, since the STS simulation assumes perfect channel estimation,

which is not the case in practice. The presence of channel estimation errors results in

the two BER curves being brought closer together. Another advantage of the DSTS

scheme is the ability to receive the transmitted data without the need for a channel

estimator which reduces the complexity and ensures robustness of the system. However

differential encoding requires a slow fading channel.

2.7 Concluding Remarks

This chapter has introduced the concept of space-time block coding, which utilises the

extra capacity provided by MIMO to exploit diversity. Unlike multiplexing techniques,

the aim of diversity schemes such as STBC is not in increasing the data rate but in

improving the resilience of the transmission link to fading. Full diversity can be achieved

by placing multiple antennas at the receiver and using MRC [5, 39]. However, this is

not practical for the downlink scenario due to the limitation on the cost and size of

the mobile terminals. STBC achieves the maximum diversity order by placing multiple
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Figure 2.17: The BER curves for STS and Differential STS using BPSK modulation.

antennas at the transmitter. Section 2.6 presented a general overview of space-time

spreading, which effectively combines STBC and DS-CDMA, and the differential STS

scheme, which does not requires channel state information.

So far in the thesis, the channel matrix has been assumed flat fading. This is not

true for most communications systems as the channel is usually frequency selective.

The next chapter will present broadband solutions for Space-Time Block Coding.



Chapter 3

STBC for Broadband Channels

In the previous chapter, we looked at Space-Time Block Coding (STBC), which max-

imises the diversity gain over flat fading channels. The performance of STBC drops if

the channel is frequency selective, i.e. the delay spread is not negligible. The resulting

Inter-Symbol Interference (ISI) has to be combatted in order to achieve the maximum

diversity. This chapter reviews schemes which have been proposed in the literature to

maximise the diversity gain over broadband channels.

3.1 Overview of Existing Schemes

Frequency selectivity of the channel destroys the orthogonality of the transmitted STBC

streams. Hence, using the Hermitian of the effective channel matrix, H̄H , as a matched

filter at the receiver is not sufficient to decouple the original sequences. Only two

schemes have been proposed in the literature for combatting the effect of ISI on the

MIMO diversity gain. Firstly, STBC can be combined with Orthogonal Frequency

Division Multiplexing (OFDM) in order to create narrowband subcarriers which offer

the same properties as the channels assumed for STBC in Chapter 2. Secondly, a block

based scheme known as Time-Reversal STBC (TRSTBC).

MIMO-OFDM has been widely used to divide the broadband channel into a number

40
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of narrowband subchannels, where STBC is applied separately to mitigate the effect

of fading, see [50, 51]. However, similar to the SISO case, MIMO-OFDM suffers from

a very poor Peak-to-Average Power Ratio (PAPR) and sensitivity to frequency offsets,

which leads to significant Inter-Carrier Interference (ICI). The remainder of this chapter

analyses TRSTBC as introduced in [19, 21] and investigates blind equalisation methods

for this broadband STBC approach.

3.2 Time-Reversal STBC

Recall from Section 2.5.1 that the channel was assumed to be flat fading, i.e. the fre-

quency response of the channel is constant over the signal bandwidth. This assumption

is invalid for communication systems where the coherence bandwidth of the channel is

less than the bandwidth of the signal. The TRSTBC transmit diversity scheme, intro-

duced in [19, 21], will be explained in this section. Simulation results will be shown at

the end of this section to evaluate the TRSTBC scheme.

Consider the transmission of a block of data whose length is 2La using a two transmit

and one receive antenna configuration. The source data is divided into odd and even

symbol sequences, denoted a1[k] and a2[k], respectively. In order to mitigate the effect

of ISI, data is transmitted in blocks and guard periods are inserted between consecutive

blocks. We define the sequences s1[n] and s2[n], whose structure is shown in Figure 3.1.

The sequence P [n] is used as preamble and postamble. The length of P [n] is an integer

Lp, which satisfies Lp > Lh, with Lh being the length of the longest multipath channel.

The first part of transmission is called the regular burst, s[n], and the second part

is called the reverse burst, due to the time reversion performed on the sequences −s∗2[n]

and s∗1[n]. Notice that if the length of the source data block La = 1 and the length of

the redundancy Lp = 0, the burst length Ls = 1 and this scheme reduces to Alamouti’s

STBC. For the remainder of this section, assume La > Lp > 1.

The data model of the TRSTBC system with two transmit and one receive antenna,
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s1[0] · · · s1[Ls − 1]

P [0]....P [Lp − 1]

P [0]....P [Lp − 1]

P [0]....P [Lp − 1]

P [0]....P [Lp − 1]

a1[0].....a2[La − 1]

a2[0].....a2[La − 1]

s2[0] · · · s2[Ls − 1] s∗1[Ls − 1] · · · s∗1[0]

regular burst reverse burst

(a)

(b)

s[n]

s1[n]

s2[n]

−s∗2[Ls − 1] · · · − s∗2[0]

Figure 3.1: Block structure in Time-Reversal STBC: (a) structure of the regular burst,
(b) regular and reverse bursts.

M = 2 and N = 1, is shown in Figure 3.2. The TR (·) and (·)∗ are non-linear func-

tions denoting time reversal and complex conjugation, respectively. Considering the

transmission of a specific block of data and assuming the channel is stationary over the

regular and reverse bursts, we define the polynomial channel matrix

H̄ (z) =






h1 (z) h2 (z)

h∗2 (z
−1) −h∗1 (z−1)




 , (3.1)

where hi (z) is the z-transform of the frequency selective channel from the ith transmit

antenna to the single receive antenna,

hi (z) •−−◦ hi [n] , (3.2)

i.e.

hi (z) =
∞∑

n=−∞
hi [n] z

−n. (3.3)

Note that the polynomials on the second row of matrix H̄ (z) are complex conjugated

and time reversed.

As shown in Figure 3.2, the signal received during the regular burst is denoted

r1 [n] and the signal received during the reverse burst is time-reversed and complex
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TR(·)

s1[n]

s2[n]

v[n]
r1[n]

r2[n]

-1

h1[n]

h2[n]

(·)∗

(·)∗
(·)∗

TR(·)

TR(·)

Figure 3.2: A 2× 1 Time-Reversal STBC (TR-STBC) system.

conjugated to produce r2 [n]. The vector of received signals is given by

r[n] =






r1[n]

r2[n]






=
Lh−1∑

ν=0

H̄νs[n− ν] + v[n],

(3.4)

where H̄ν is the νth matrix valued coefficient of the polynomial channel matrix H̄ (z),

v[n] represents additive white Gaussian noise, and s [n] = [s1[n] s2[n]]
T . It can be ob-

served that the received signals contain contributions from the two transmitted signals.

In other words, the detection of s1[n] and s2[n] is coupled.

Define the para-Hermitian operator, denoted by (̃·), as the extension of the Hermi-

tian operator to polynomial matrices. Applied to a polynomial matrix, it transforms

its rows into columns, conjugates all the entries and reverses the polynomials. The

para-Hermitian of the channel matrix can be given by:

˜̄H (z) = H̄H
(
z−1

)
=






h∗1 (z
−1) h2 (z)

h∗2 (z
−1) −h1 (z)




 . (3.5)

Pre-multiplying the channel matrix by ˜̄H (z) produces a diagonal matrix whose diagonal

elements are identical:
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˜̄H (z) H̄ (z) =






h∗1 (z
−1) h2 (z)

h∗2 (z
−1) −h1 (z)











h1 (z) h2 (z)

h∗2 (z
−1) −h∗1 (z−1)






=






d (z) 0

0 d (z)






︸ ︷︷ ︸

D (z)

,
(3.6)

where

d (z) = h∗1
(
z−1

)
h1 (z) + h∗2

(
z−1

)
h2 (z) . (3.7)

Therefore, ˜̄H (z) can be used as a matched filter bank to decouple the transmitted

data allowing equalisation to be carried out separately on the outputs y1 [n] and y2 [n],

as shown in Figure 3.3. Ignoring the noise component, the output of the matched filter

is given by

y[n] =






y1[n]

y2[n]




 =

Lh−1∑

ν=0

˜̄Hνr[n− ν]

=
Ld−1∑

j=0

Djs[n− j]

(3.8)

where Ld is the length of the polynomial d (z) and Dj is the jth time slice of D (z).

Thus, we can write

yi[n] =

Ld−1∑

l=0

d[l]si[n− l] for i = 1, 2, (3.9)

where d[l] is the lth coefficient of d (z), which characterises the overall response of the

channel and matched filter.

This scheme can be trivially extended to an arbitrary number of receive antennas,

N , for higher diversity gains. The channel matrix is generally defined similar to (3.1),
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â[n]?

-

-
-

-

-

?
MLSE

MLSE

Channel Estimation

r1[n]

r2[n]
H̃ (z)

?

Figure 3.3: Matched filtering and equalisation in TRSTBC.

H̄ (z) =






h1 (z) h2 (z)

h∗2 (z
−1) −h∗1 (z−1)




 , (3.10)

with

hi (z) = [hi1 (z) · · · hiM (z)]T for i = 1, 2, (3.11)

where hij (z) is the channel from the the jth transmit antenna to the ith receive antenna,

and the received signals are represented by the vector

r[n] = [r11[n] r21[n] · · · r1N [n] r2N [n]]
T . (3.12)

3.2.1 Maximum Likelihood Sequence Estimation

The equalisation scheme chosen here is the Maximum Likelihood Sequence Estimation

(MLSE), which is a form of Viterbi decoder, see [52]. More information on the maximum

likelihood rule can be found in [21, 19].

Computer simulations were performed to evaluate the performance of Time-Reversal

STBC with MLSE. QPSK modulated data was transmitted from two antennas over

frequency selective channels. In the first experiment, one and two receive antennas

were used to pick up the transmitted data and perform combining, decoding, and

equalization. The channel is assumed to be stationary. The BER is averaged over an
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Figure 3.4: The BER curves for TR-STBC using different antenna configurations.

ensemble of 100 Rayleigh channel realisations, the power delay profile for the channel is

given in Table 2.1. Figure 3.4 shows the BER curves for the two antenna configurations.

The second experiment looks at the effect of non-stationarity of the channel on a

2×2 TRSTBC system. The length of the data bursts is set to Lv = 236 and the length

of the preamble and postamble is set to Lp = 10, making the overall length of the regular

and reverse bursts 512 symbols. The channel realisations are drawn from a correlated

Rayleigh distribution with normalised Doppler shift fd = 100, which corresponds to a

vehicular speed of 55km/h assuming a carrier frequency of 2GHz and a transmission

bandwidth of 50KHz. The channel is assumed to be stationary for a duration Qs symbol

periods. The same power delay profile is used as in the first experiment. Figure 3.5

shows the BER curves for different value of Qs assuming the channel variation can be

tracked at the receiver. It can be observed that the effect of channel non-stationarity

on the performance of the MLSE is not considerable. However, the accuracy of time-

varying channel identification is inversely proportional to the rate of variation Qs. Thus

for a fast time-varying channel, a noisy channel estimate is obtained, which degrades

the performance as will be shown in the next section.
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Figure 3.5: BER curves for TRSTBC for different values of the stationarity variable
Qs.

3.2.2 Effect of Noisy Channel Estimation

So far in this thesis, the availability of perfect channel state information (CSI) has been

assumed at the receiver. This generally implies the inclusion of redundancy, commonly

known as training, in the transmitted data. Based on the measured response of the

channel to the training sequence, the channel can be estimated at the receiver using a

number of algorithms. A finite measurement interval and the presence of channel noise

lead to a noisy channel estimate as opposed to a perfect one. This estimation error

generally reduces the performance of the system.

The channel imperfection is modeled by a white Gaussian error, E (z), with variance

σ2
e added to H̄ (z) to produce the inaccurate estimate

Ȟ (z) = H̄ (z) + E (z) . (3.13)

Pre-multiplying the channel by the para-Hermitian of the estimate yields
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˜̌H (z) H̄ (z) = ˜̄H(z)H̄ (z) + Ẽ(z)H̄ (z)

=






d (z) 0

0 d (z)




+ Ě(z).

(3.14)

where d (z) is defined in (3.7). Even in the absence of noise, the additive matrix Ě (z−1)

makes the product a non diagonal polynomial matrix, i.e. the entries will not be fully

decoupled.

Simulations were performed to evaluate the robustness of TRSTBC with MLSE

to channel estimation errors. A 2 × 2 MIMO system is assumed with QPSK symbol

mapping at the transmitter. Figure 3.6 shows the BER curves corresponding to different

values of the variance σ2
e . A considerable degradation is observed, even for a variance

as small as 0.1, i.e. 10dB. Note that the BER curve tends to level out at high SNRs.

This is due to the noise variance being negligeable compared to the variance of the

estimation error, σ2
v ≪ σ2

e .

Figure 3.7 shows the BER with respect to the estimation error variance σ2
e for 6dB

SNR. The BER ranges from 10−4 in the absence of estimation errors to 10−1 when the

variance reaches 0.5, i.e. 3dB. In order to overcome the degradation associated with

imperfect channel estimation, a blind receiver was derived in [20] based on the Constant

Modulus (CM) criterion, in [53]. This algorithm will be investigated in Section 3.3.

3.3 CM Equalisation for TR-STBC

In most STBC systems the availability of CSI is assumed at the receiver, which generally

implies channel estimation based on training. The channel estimate is used to equalise

the received signal by reversing the effect of the channel. The periodical transmission

of a training sequence reduces the throughput of the system and is not practical in

fast time-varying channels. Therefore blind and semi-blind equalisation algorithms are

investigated in this thesis. The most commonly used blind equaliser is the constant
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modulus algorithm (CMA) [53, 54, 55]. It is based on the constant modulus property

of the transmitted signal, although it still converges for non-constant-modulus source

constellations [56]. CMA has been proven to be robust and is similar to the Least Mean

Square (LMS) algorithm in its complexity.

In the following, we first review the derivation and analysis of the CMA. Thereafter,

we state the signal model for TRSTBC, which has motivated the modification of the

CMA, known as tap-constrained CMA as proposed in [20]. This algorithm exploits the

structure of the TRSTBC transmission by placing a constraint on the multiple equaliser

vectors, hence the term tap-constrained.

3.3.1 The Constant Modulus Algorithm

Blind equalisation algorithms employ a priori knowledge about the transmitted sig-

nal to remove the effect of Inter-Symbol Interference (ISI). The objective of the CM

algorithm is to restore the output signal to a form, which on average, has a constant

modulus equal to that of the source constellation. This can be done by adapting the

weight vector of the adaptive filter w [n] to minimise the following cost function,

ξ = E{(|y [n] |q1 − γq1)q2}. (3.15)

Over the remainder of this thesis, q1 and q2 are assumed to be equal to 2 yielding the

cost function

ξ = E{(|y [n] |2 − γ2)2}, (3.16)

where γ is the constant modulus, y [n] is the output symbol

y [n] = wH [n] rn, (3.17)
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and rn represents the transversal delay line of the filter

rn = [r [n] r [n− 1] · · · r [n− L+ 1]]T . (3.18)

Given a cost function and a filter structure, there are a number of methods that

could be followed to obtain an update equation for the equaliser. The gradient descent

method, known for its simplicity and robustness, has been chosen to update the weight

vector w,

w [n+ 1] = w [n]− µ∇w∗ξn, (3.19)

where µ is a positive step size and ▽w∗ denotes the gradient operator with respect to

w∗. Note that the CMA cost function in (3.16) is biquadratic, thus has local minima.

Gradient methods such as (3.19) are generally not well suited for this purpose, but are

widely used in the literature nonetheless. Using Wirtinger’s complex valued calculus

explained in Appendix A, it can be verified that

▽w∗ξn = E{[|y [n] |2 − γ2] .▽w

[
wH [n] rnr

H
n w [n]

]
}

= E{[|y [n] |2 − γ2] rnr
H
n w [n]}

= E {[|y [n] |2 − γ2] y∗ [n] rn} .

(3.20)

We following a stochastic gradient approach similar to the Least Mean Square (LMS)

algorithm using an estimate of the cost function ξ̂n. In the simplest case, the instanta-

neous estimate of the cost function is obtained by removing the expectation operator,

yielding

∇w∗ ξ̂n = [|y [n] |2 − γ2] y∗ [n] rn

= e∗ [n] rn ,
(3.21)

where e [n] = y [n] [|y [n] |2 − γ2]. Equation (3.19) then becomes

w [n+ 1] = w [n]− µe∗ [n] rn. (3.22)
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Figure 3.8: The cost function ξ̂ as a function of a complex valued single wight w0.

Figure 3.8 shows the cost function of the CM algorithm as a function of a single

weight w0 with QPSK modulation and in the absence of noise. It can be seen that the

cost function experiences a manifold of optimum solutions that lie on the circle that is

centered at the origin with a radius equal to the constant modulus γ. The reason for

this is the insensitivity of the CM algorithm to phase variations as it only corrects the

amplitude of the received signal.

A key factor in the performance of the constant modulus algorithm is the initial-

ization of the weight vector w [n]. The method that has been proven most effective is

the single spike initialization, in which all the taps are set to zero except the first or

central tap. The value of the spike as well as its location may affect the convergence

and steady-state mean square error (MSE) of the equaliser due to the presence of local

minima in the cost function, see [54] for examples.

3.3.2 Data Model

Similar to [20], let us consider a system with two transmit and two receive antennas,

although this can be easily generalized to N receive antennas. The transmitted data is

divided into two sets of symbols a1 [n] and a2 [n], as explained in the previous chapter.
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Data is transmitted in bursts. During the regular burst, s1 [n] and s2 [n] are transmitted

from first and second antennas, respectively. During the reverse burst, the sequences

are time reversed and conjugated in the way shown in Figure 3.1. The data model is

shown in Figure 3.9.

Let r [n] be the received signal of dimension 4× 1,

r [n] =












r11 [n]

r̃21 [n]

r12 [n]

r̃22 [n]












, (3.23)

where ri1 [n] and ri2 [n] are the signals picked up by the ith antenna during the regular

and reverse modes of transmission, respectively. Note that the signals received during

the second phase of transmission are complex conjugated and time reversed to produce

r̃12 [n] and r̃22 [n]. The vector r [n] can be written as

r [n] =

Lh−1∑

ν=0

H[0, ν]s [n− ν] + v [n] , (3.24)

where v [n] is the additive white Gaussian noise vector, s [n] = [s1 [n] s2 [n]]
T , and Hν

is the νth time slice of the effective channel transfer function

H (z) =






h1 (z) h2 (z)

h∗2 (z
−1) −h∗1 (z

−1)




 , with hi (z) =






hi1 (z)

hi2 (z)




 , (3.25)

where hij (z) is the channel from the jth transmit antenna to the ith receive antenna.

The length of the channels is assumed to be identical, denoted Lh.

As shown in Figure 3.10, two space-time equalisers, w1 [n] and w2 [n], are used to

retrieve the transmitted data. Each space-time equaliser consists of four adaptive FIR

filters of length Lw. At the nth iteration, the weight vector of the ith space-time equaliser
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Figure 3.9: Data Model for a 2x2 TR-STBC system.

is given by

wi [n] =












w∗
i,11 [n]

w∗
i,21 [n]

w∗
i,12 [n]

w∗
i,22 [n]












, (3.26)

and the corresponding output is

yi [n] = wH
i [n] rn, (3.27)

where the regressor vector of the equaliser is given by,

rn =
[
rH11,n rH21,n rH12,n rH22,n

]H
, (3.28)

with rji,n = [rji [n] rji [n− 1] · · · rji [n− L+ 1]]T .

3.3.3 Tap-Constrained CMA

To blindly retrieve the transmitted signal at the receiver, the redundancy introduced

by TRSTBC is exploited. A tap-constrained CM algorithm, which will be explained in

this section, was derived in [20] for TRSTBC systems.
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Figure 3.10: CMA Equalization for TR-STBC.

The para-Hermitian of the effective channel matrix is given by

˜̄H(z−1) =






h∗11(z
−1) h∗12(z

−1) h21(z) h22(z)

h∗21(z
−1) h∗22(z

−1) −h11(z) −h12(z)




 . (3.29)

Similar to (3.6), pre-multiplying the effective channel matrix by its para-Hermitian

yields

˜̄H(z−1)H̄(z) =






d (z) 0

0 d (z)






︸ ︷︷ ︸

D (z)

. (3.30)

From (3.30), it can be observed that D (z) is diagonal, which means the signals radiated

from the two transmit antennas, i.e. s1 [n] and s2 [n], can be ideally decoupled when

full channel information is available at the receiver. Another observation is that the

diagonal elements of D (z) are identical, which means the equalisers needed for s1 [n]

and s2 [n] after matched filtering are identical. Since the diagonal elements d (z) are

symmetric in time, the total response of the matched filter and equaliser should be
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identical to ˜̄H(z).

From these observations, a tap constraint can be placed on the CMA weight vectors

as follows,

w1 [n] =
[
q∗T11 [Lh − 1− n] q∗T12 [Lh − 1− n] qT

21 [n] qT
22 [n]

]T

w2 [n] =
[
q∗T21 [Lh − 1− n] q∗T22 [Lh − 1− n] − qT

11 [n] − qT
12 [n]

]T
,

(3.31)

where q11, q12, q21, and q22 are vector quantities obtained from ˜̄H(z) in (3.29). For

example,

q∗11 [Lh − 1− n] =












h∗11[n, Lh − 1]

h∗11[n, Lh − 2]

...

h∗11[n, 0]












. (3.32)

This observation leads to the following relation between w1 [n] and w2 [n]

w2 [n] = PTw∗
1 [n] , (3.33)

where

P =












0 0 −ĨLw
0

0 0 0 −ĨLw

ĨLw
0 0 0

0 ĨLw
0 0












, (3.34)

with ĨLw
being the reverse-identity matrix of size Lw × Lw, e.g. Ĩ2 =






0 1

1 0




.

The cost function for the two space-time equalisers is given by,

ξ = ξ1 + ξ2

= E{(|y1 [n] |2 − γ2)
2}+ E{(|y2 [n] |2 − γ2)

2},
(3.35)

where γ is the constant modulus of the PSK constellation assumed at the transmitter.
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According to the stochastic gradient method,

w1 [n+ 1] = w1 [n]− µ∇w∗1
ξ̂

= w1 [n]− µ
[

∇w∗1
ξ̂1 +∇w∗1

ξ̂2

]

.
(3.36)

where ξ̂ is derived from ξ in (3.35) by dropping the expectation operator.

Similar to the derivation of the CMA in Section 3.3.1, it can be verified that

∇w∗1
ξ̂1 = [|y1 [n] |2 − γ2] y∗1 [n] rn

= e∗1 [n] rn

(3.37)

and

∇w∗1
ξ̂2 = [|y2 [n] |2 − γ2] y2 [n]Pr∗n

= e2 [n]Pr∗n

(3.38)

with the matrix P as defined in (3.34). Substituting (3.37) and (3.38) into (3.36) gives

w1 [n+ 1] = w1 [n]− µ [e∗1 [n] rn + e2 [n]Pr∗n] , (3.39)

whereby w2 [n+ 1] is calculated from w1 [n+ 1] according to (3.33). This defines the

update operation of the weight vectors w1 [n] and w2 [n] at the nth iteration. A summary

of the algorithm is listed in Table 3.1.

3.3.4 Tap-Constrained CMA Receiver Performance

Computer simulations have been used to compare the performance of the Tap-Constrained

CMA equalizer with that of the ideal case presented in Section 3.2.1, where full CSI is

available and MLSE is used. The length of s1 [n] and s2 [n] is set to 256 symbols and

QPSK modulation is used to form the signal set {±1± j}. The BER was calculated

over 1000 channels drawn from a correlated Rayleigh distribution corresponding to a

vehicular speed of 55km/h. A 15-tap transversal filter (FIR) per equalizer wi,j is used.

As mentioned in Section 3.3.1, choosing the optimum initialization of the weight vector
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Recursion: Update vector rn

y1 [n] = wH
1 [n] rn

y2 [n] = wT
1 [n]P∗rn

ei [n] = [|yi [n] |2 − γ2] yi [n] for i = 1, 2

w1 [n+ 1] = w1 [n]− µ [n] [e∗1 [n] rn + e2 [n]Pr∗n]

Table 3.1: Summary of the Tap-Constrained CMA for TRSTBC.

w1 [n], and consequently w2 [n], is crucial for the best performance of CMA. The central

spike technique has been chosen for initialising w1 [n]. The step size µ = 3× 10−4 was

chosen as it gave the best stable convergence.

Figure 3.12 shows the BER curve for the Tap-Constrained CM algorithm compared

to the MLSE algorithm in Section 3.2.1. Figure 3.11 shows the Mean Square Error

(MSE) over time. Due to the slow convergence of the CM algorithm, long bursts are

required in order to achieve a desirable MSE level. Since the channel is assumed to be

stationary over the duration of two bursts, the algorithm might not be suitable for non-

stationary channels. In the following section, different variations of the TRSTBC-CMA

will be explored in order to strive for faster convergence.

3.4 Fast Converging Implementations

This section presents three fast converging variations of the TRSTBC-CMA based

on the conjugate gradient approach, Newton’s search method, and the Matched-PDF

method. Simulation results will be presented at the end of the section to study the

advantages and disadvantages of the different methods in terms of convergence speed,

steady state BER, and computational complexity.
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3.4.1 The Conjugate Gradient Search Method

This section describes the conjugate gradient (CG) search method and develops an

adaptive implementation for the TRSTBC-CMA based on [57]. The notation used here

is consistent with literature on conjugate gradient algorithms while retaining standard

notation for e.g. the weight vector. In general, a linear system of equations is given by

Ax = b, (3.40)

where A is an Lw × Lw matrix, x is a variable vector, and b is a vector of unknown

variables. The optimum least squares solution, xopt, for the linear set of equations

minimises the quadratic function

Q(x) = xTAx− xTb. (3.41)

The shape of the quadratic function depends on the matrix A. If A is positive

definite, the parabola has a single minimum, whereas if A is negative definite, it will

have a single maximum. The word semi-definite is used where the rank-deficient case

is included, and the function may have a manifold of solutions. Assuming A is positive

semidefinite, the function Q (x) can be minimised iteratively using a search method of

the form

x [n+ 1] = x [n] + µng [n] , (3.42)

where µn is the step, and g [n] is the direction vector at time n, [58]. In words, the

estimate of xopt is refined by taking a step in a certain direction. The simplest and most

commonly used direction is the negative gradient of the quadratic function, commonly

referred to as the gradient descent method. This method is simple and robust. How-

ever, if the condition number κ (A) = λ1(A)
λn(A)

is large, the gradient is dominated by the

eigenvector selection to the largest eigenvalue, and converges slowly in the direction of
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weaker modes.

Taking multiple steps in the same direction can be prevented by drawing the direc-

tions from a set of A-conjugate vectors [58]. Two direction vectors g [i] and g [j] are

said to be A-conjugate if

gT [i]Ag [j] = 0, ∀i 6= j. (3.43)

In [57], the search direction is defined recursively by

g [l] = −p [l] + ℓl−1g [l − 1] , (3.44)

where p [l] is the gradient vector and ℓl−1 is suitably chosen to ensure A-conjugacy of

g [l] and g [l − 1] ,g [l − 2] , . . . ,g [0].

The same update equation can be used for the first space-time equaliser as in 3.36.

The cost function is estimated over a window of Lw symbols, as in [57]. The gradient

w.r.t. w∗
1 is given by

∇w∗1
ξ̂ =

2

Lw

Lw−1∑

i=0

{
e∗1 [n− Lw] rn−Lw

+ e2 [n− Lw]Pr∗n−Lw

}
. (3.45)

For every new data input, m = min(L,Lw) iterations are performed by the CG ap-

proach. The CG recursion is identical to [57, 59]. A description of the algorithm is

given in Table 3.2.

3.4.2 Newton’s Search Method

The form of Newton’s algorithm is given in [60] as:

w1 [n+ 1] = w1 [n]− µR−1
rr ▽w∗1

ξ; (3.46)

Under the following ideal conditions, using Newton’s algorithm leads to the optimum

weight vector wopt in a single step:
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Step 1:

Compute:

p [0] = ▽ξ̂ (w0) ,f [0] = w0 − p [0] ,u [0] = ▽ξ̂ (f [0])

Set g [0] = −p [0]

Step 2:

For l = 0, 1, · · · ,m− 1

(a) wl+1 = wl + pH [l]g[l]

gH [l](wl−u[l])
g [l]

(b) Compute:

p [l + 1] = ▽ξ̂
(
wl+1

)

f [l + 1] = wl+1 − p [l + 1]

u [l + 1] = ▽ξ̂ (f [l + 1])

(c) If l < (m− 1),

g [l + 1] = −p [l + 1] + pH [l+1]p[l+1]
pH [l]p[l]

g [l]

Step 3: Replace w0by wmand go back to step 1.

Table 3.2: The adaptive Conjugate Gradient algorithm.

1. µ = 1
2
.

2. Exact knowledge of the gradient vector, ▽w∗i
ξ, at each iteration.

3. Exact knowledge of the received signal’s inverse correlation matrix R−1
rr .

Using a step size less than 1
2

increases the number of steps required, but the algorithm

still proceeds in a straight path towards the optimum wopt. Since exact knowledge of

the cost function, ξ, cannot be obtained in practice, a noisy estimate is used instead.

Furthermore, the third condition cannot be realised in real time communication systems

so an estimate of R−1 is used, hence the name Quasi-Newton. The weight vector update
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equation becomes

w1 [n+ 1] = w1 [n]− µR̂
−1

[n]∇w∗1
ξ̂. (3.47)

3.4.2.1 The Fast Quasi Newton Implementation

In this section, the same data model from section 3.3.2 is used. From equations 3.37

and 3.38, the gradient for the estimated tap-constrained CM cost function is given by

∇w1 ξ̂n = e∗1 [n] r [n] + e2 [n]Pr∗ [n] , (3.48)

where

ei [n] =
[
|yi [n] |2 − γ2

]
yi [n] for i = 1, 2. (3.49)

The covariance matrix Rrr of a vector rn is defined as the expectation of the inner

product of rn with its Hermitian,

Rrr = E{rnrHn }. (3.50)

Since Rrr is not known a priori, an estimate, R̂rr [n], of the covariance matrix is used.

Similar to [61, 62, 63], R̂rr [n+ 1] is defined recursively by

R̂rr [n+ 1] = αfqnR̂rr [n] + (1− αfqn)rnr
H
n , (3.51)

where αfqn is a number between 0 and 1, referred to as the remembrance factor. The

value of αfqn allows a trade-off between the the convergence speed of R̂rr [n] and its

steady-state error. In the initialization stage, R̂rr [0] is set to the identity matrix,

R̂rr [0] = I4Lw
, and the input r [n] is set to zero for all n < 0.

Calculating the inverse of the covariance matrix R̂rr [n] is a complex operation. A

Fast Quasi-Newton algorithm was derived in [63], which decreases the complexity from

O(L2
w) to O(Lwlog(Lw)) in the SISO case. The idea is that the input to an adaptive
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Initialization:

Define matrix P

w
(i)
1 = 0, ∀i 6= centre

R̂rr [0] = I4Lw

Rinv = inverse
(

R̂rr [0]
)

Recursion:

Update vector rn

y1 [n] = wH
1 [n] rn

y2 [n] = wT
1 [n]P∗rn

ei [n] = [|yi [n] |2 − γ2] yi [n] for i = 1, 2

µ [n] = 1
4[rHRinvr+δ]

R̂rr [n+ 1] = αfqnR̂rr [n] + (1− αfqn)rnr
H
n

Rinv = R̂
−1
rr [n] , for n an integer multiple of Lw

w1 [n+ 1] = w1 [n]− µ [n]Rinv [e
∗
1 [n] rn + e2 [n]Pr∗n]

Table 3.3: Summary of the Fast Quasi-Newton TRSTBC-CMA algorithm.

system is in theory required to be stationary, although it might change slightly in

practice. It can be verified that an auto-correlation estimate which is accurate at time

n will remain accurate until time n+Lw−1, which means the inverse Rinv [n] need only

be calculated every Lth
w iteration. The Toeplitz structure of matrix R̂rr [n] can also be

exploited to reduce the complexity of the inversion using low complexity methods such

as the Livinson-Durbin Recursion (LDR), [64], .

Similar to [65], the inverse of the covariance matrix, Rinv, is also used to adaptively

update the step size µ [n],

µ [n] =
1

4 [rHn Rinvrn + ǫ]
, (3.52)
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where ǫ is a small number compared to the product rHn Rinvrn. A summary of the Fast

Quasi Newton TRSTBC-CMA is shown in Table 3.3.

3.4.3 PDF-Fitting

This section considers a new blind equalisation scheme for TRSTBC, based on [66].

The PDF-fitting algorithm utilises knowledge of the transmitted constellation and its

probability density function (PDF) at the receiver by forcing the equaliser output to

exhibit the same characteristics. This has been proven to achieve faster convergence and

better residual ISI for non-constant modulus constellations than the CMA, [66]. The

idea is that the distribution of the data contains more information than the statistics

employed by the CMA [67].

The received signal is assumed to be corrupted by additive white Gaussian noise.

The cost function for the 2× 2 TRSTBC equaliser can be given by

ξPDF =
2∑

i=1

{
ˆ +∞

−∞

(

fY 2
i
(z)− fS2

i
(z)

)2

dz

}

, (3.53)

where Y 2
i =

{
|yi [n]|2

}
, S2

i =
{
|si [n]|2

}
, and the function fX (z) denotes the PDF of X

at z. Similar to [67], we use the Parzen window estimator, proposed in [68], to estimate

the PDFs:

fY 2
i
(z) =

1

L

L−1∑

i=0

Gσ

(
z − |yi [n− i]|2

)
i = 1, 2, (3.54)

where σ is the standard deviation of the Gaussian kernel function Gσ (z). For consis-

tency, the PDF of the transmitted symbols is calculated using the same estimator

fY 2
i
(z) =

m∑

i=1

PaiGσ

(
z − |ai|2

)
, (3.55)

where Pai is the probability of symbol ai, which is drawn from a constellation of size

m.

Following the same steps as in [67], the gradient for the new cost function can be
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Recursion:

Update vector rn

y1 [n] = wH
1 [n] rn

y2 [n] = wT
1 [n]P∗rn

ei [n] = [|yi [n] |2 − γ2] yi [n] for i = 1, 2

w1 [n+ 1] = w1 [n]− µ̃PDF [e∗1 [n] a1 [n] rn + e2 [n] a2 [n]Pr∗n] ,

where, ai [n] = e
−(|yi[n]|2−γ2)

2

2σ2 , for i = 1, 2

Table 3.4: Summary of the PDF-Fitting algorithm for TRSTBC.

shown to be

∇w1 ξ̂PDF =
1√
2π

{

e∗1 [n] rne
−(|y1[n]|2−γ2)

2

2σ2 + e2 [n]Pr∗ne
−(|y2[n]|2−γ2)

2

2σ2

}

, (3.56)

where the summation in (3.55) has been dropped and only the modulus of yi [n] is

corrected. Given a step size µPDF , the update equation for the matched PDF equaliser

is given by

w1 [n+ 1] = w1 [n]− µ̃PDF∇w1 ξ̂PDF , (3.57)

and w2 [n+ 1] is derived from w1 [n+ 1] similar to the TRSTBC-CMA. A summary

of this algorithm is given in Table 3.4, where the factor 1√
2π

is absorbed into µ̃PDF =
√
2πµPDF . Note that the gradient of the derived PDF-fitting algorithm is identical to

the standard STBC-CMA multiplied by the exponential term. Hence, as will be seen

in Section 3.4.5, their complexities are very similar.
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Figure 3.13: MSE curves for the different implementations of the TRSTBC-CMA.

3.4.4 Performance Comparison of the Different Equalisers

Computer simulations have been carried out to evaluate the performance of the pro-

posed equalisers. QPSK symbol mapping was used with a modulus equal to
√
2. An

appropriate burst length was chosen to allow time for the equalisers to converge. 1000

channel realisations were drawn from a correlated Rayleigh distribution with a nor-

malised maximum Doppler frequency fd = 100Hz. Subequalisers of order 15 were

used in the simulations. The first space-time equaliser w1 [n] was initialised using the

central spike technique and the step size was fixed at 3 × 10−4. The equaliser specific

parameters were intialised according to Table 3.5.

Figure 3.13 shows the MSE curves for the different TRSTBC equalisers. It can

be clearly observed that the proposed implementations outperform the standard tap-

constrained CMA in terms of convergence speed. The FQN algorithm converges faster

than all other methods, followed closely by the PDF-fitting approach.

Figure 3.14 shows the BER achieved by the different equalisers with respect to the

burst length at SNR = 10dB. The channel was varied after two bursts of size 256

symbols. The channel coefficients were drawn from a 3-tap doubly dispersive Rayleigh
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Conjugate Gradient FQN-CMA PDF-Fitting

Lw = 10
αfqn = 0.999
ǫ = 0.002

R̂rr [0] = I4Lw

σ = 1
µPDF = 2× 10−3

Table 3.5: Simulation parameters for the different blind equalisers.
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Figure 3.14: BER for the different implementations of the TRSTBC-CMA, SNR =
10dB.

channel with maximum Doppler frequency fd = 100Hz, corresponding to a vehicular

speed of 55km/h. A gradual decrease in the BER is observed as we move from one

equaliser to the other in the same sequence as in the MSE curves. This translates to

faster adaptation to channel variations. However, even with the FQN implementation,

a burst size of at least 150 symbols is required to achieve a BER lower than 10−2.

This implies the channel has to be stationary over a duration longer than 300 symbols.

Hence, TRSTBC with blind equalisation is generally not suitable for fast time-varying

channels.
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CM Algorithm Conjugate Gradient FQN-CMA Matched-PDF-Fitting

4Lst + 6 47Lst + 116

4L2
st + 6Lst + 23

+LDR/L
4Lst + 8

Table 3.6: Complexity of the different equalisers, in terms of accumulative multiplica-
tions and the Levinson-Durbin recursion (LDR).

3.4.5 On the Complexity of the Algorithms

Section 3.4.4 showed how the derived algorithms achieved faster convergence and low-

ered the bound on the burst length. However, to fairly evaluate the performance gain,

the complexity of the different algorithms must be considered. Table 3.6 shows the num-

ber of Multiply-Accumulate (MAC) operations required by the proposed algorithms in

terms of the ST equaliser order Lst = MNLw = 4Lw for every iteration n. The multi-

plication by matrix P has been ignored because it is a permutation matrix that can be

implemented by indexing.

In Table 3.6, the number of recursions for the CG scheme is assumed to be m = 5.

The division operation can be performed in a number of MACs equal to the wordlength,

which is assumed 16 here. In the FQN-CMA column, the Levinson-Durbin Recursion

is evaluated to invert the covariance matrix once every Lw iterations. The PDF-Fitting

algorithm requires evaluation of the exponentials in addition to the complexity in Table

3.6. The exponential term is assumed to be evaluated using a look-up table, where the

accuracy of the result depends on the size of memory allocated to the table. Hence, the

added complexity compared to the standard STBC-CMA is only one MAC operation

for each output.

Figure 3.15 shows the complexity plot in terms of the order Lw. When weighting

the gain against complexity, the PDF-Fitting algorithm stands out. The complexity

difference between the standard STBC-CMA and the PDF-Fitting algorithm is very

negligible, yet its performance approaches that of the FQN-CMA.
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Figure 3.15: Number of MACs required per iteration for proposed algorithms.

3.5 Concluding Remarks

This chapter has looked at space-time coding for frequency selective channels. Most of

the schemes proposed in the literature are block based including OFDM-STBC and the

technique discussed in this chapter, namely Time-Reversal STBC, [21, 19]. A blind CM

receiver was proposed in [20] for TRSTBC. The tap-constrained CM receiver performs

well over stationary channels but suffers from slow convergence. Different implemen-

tations of the blind receiver were investigated in this chapter. The equaliser with the

fastest convergence is based on the Fast Quasi-Newton method. Even with the fastest

converging equaliser, a burst of significant length was required to achieve desirable BER

levels. This renders the TRSTBC scheme unsuitable for use over fast time-varying chan-

nels. Furthermore, long bursts require a larger memory at the receiver, which is not

always feasible. Therefore, in the next chapter, a non-block based CM algorithm is

derived for the blind equalisation of STBC over frequency selective channels.



Chapter 4

Non Block-Based Approach

The previous chapter looked at the Time-Reversal STBC scheme proposed for frequency

selective fading channels. A blind equalisation scheme was discussed based on the

Constant Modulus criterion. Simulation results showed that the block-based TRSTBC

scheme is unsuitable for time-varying channels. This chapter looks at the derivation

of a non-block based scheme for blind equalisation of STBC, which is also based on

the CM criterion. In addition to enforcing the CM property, the derived algorithm

forces the outputs to be orthogonal in terms of the STBC structure employed by the

transmitter. Due to the orthogonality of the STBC code word, the new term minimises

the cross-correlation between the output streams. Computer simulations are used to

demonstrate the performance of the proposed algorithm. Results show that the non-

block based approach outperforms the block based scheme under time-varying channel

conditions.

4.1 Two-Branch STBC-CM Algorithm

4.1.1 Signal Model

Consider the 2-transmit and 2-receive antenna configuration shown in Figure 4.1. The

transmitted data si [n] , i ∈ {1, 2}, is encoded in space and time using STBC as described

71
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Figure 4.1: Channel and equaliser for a 2-by-2 MIMO system.

in Section 2.5.1. At times n and n + 1, two symbols, a [n] and a [n+ 1], arrive at the

encoder, which are drawn from a PSK constellation set. The transmitted symbols are

calculated as,






s1[n] s1[n+ 1]

s2[n] s2[n+ 1]




 =






a [n] a∗ [n+ 1]

a [n+ 1] −a∗ [n]




 . (4.1)

The received signals at time n are given by

r [n] =






r1[n]

r2[n]




 =

Lh−1∑

ν=0

H̄ [n, ν] s [n− ν] + v [n] , (4.2)

where s [n] is the data vector passed to the transmit antennas at time n,

s [n] =






s1[n]

s2[n]




 . (4.3)

The vector v [n] represents Additive White Gaussian Noise (AWGN) with zero mean

and E
{
v[n]vH [n]

}
= σvI2 corrupting the received signal and H̄ [n, ν] is the νth time

slice of the channel transfer function at time n is defined as

H̄ [n, ν] =






h11 [n, ν] h12 [n, ν]

h21 [n, ν] h22 [n, ν]




 , (4.4)
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with hij [n, ν] being the νth entry of the CIR between the jth transmit antenna and the

ith receive antenna, given by

hij [n] =












hij [n, 0]

hij [n, 1]

...

hij [n, Lh − 1]












. (4.5)

The channels are assumed to be of the same length, Lh. If the length of the channels

varies, then Lh is the length of the longest channel and the remaining channels are

assumed to be zero padded. The transfer function of the dispersive MIMO channel can

be written as

H̄(z) =

Lh−1∑

ν=0

H̄νz−ν . (4.6)

4.1.2 MIMO-CMA

The trivial extension of the CM algorithm, first proposed in [53], to MIMO systems

leads to the cost function

ξMIMO = E
{

M∑

i=1

(|yi[n]|2 − 1)2

}

, (4.7)

where yi [n] represents the output of the ith space-time equaliser at time n given by






y1[n]

y2[n]




 =






wH
1 [n]

wH
2 [n]




 · rn, (4.8)
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where rn is the transversal delay line vector

rn =



















r1[n]

...

r1[n− Lw + 1]

r2[n]

...

r2[n− Lw + 1]



















(4.9)

and wi[n] is the coefficient vector of the ith equaliser,

wi[n] =






wi1 [n]

wi2 [n]




 =



















w∗i1 [0]

...

w∗i1 [Lw − 1]

w∗i2 [0]

...

w∗i2 [Lw − 1]



















. (4.10)

Minimising the cost function ξMIMO forces the sum of errors across the M outputs

of the equaliser to zero. Using the stochastic gradient method, the coefficient vector

wi[n] can be updated by

wi [n+ 1] = wi [n]− µ∇w∗i
ξ̂MIMO, (4.11)

where µ is the convergence step size, and ∇w∗i
denotes the gradient operator with

respect to w∗
i . The cost function ξMIMO in (4.7) is approximated by a coarse single-

sample estimate ξ̂MIMO, which arises by dropping the expectation operator from (4.7).



CHAPTER 4. NON BLOCK-BASED APPROACH 75

It can be shown that the gradient of the instantaneous cost function ξ̂MIMO at time n is

∂
∂w∗i

{(yk [n] y∗k [n]− 1)2} =







2(yk [n] y
∗
k [n]− 1)y∗k [n] rn k = i

0 k 6= i
. (4.12)

Substituting (4.12) to (4.11) yields

wi [n+ 1] = wi [n]− µe∗i [n] rn, (4.13)

where ei [n] =(yi [n] y
∗
i [n] − 1)yi [n], and the factor 2 has been absorbed into µ. Note

that the two space-time equalisers operate in parallel with no decoupling mechanism. In

other words, there is no constraint to force the outputs to extract different transmitted

sequences. This may result in multiple extractions of the stronger sequence.

In [69, 70, 71], a term was added to the cost function, whereby the cross-correlation

between the outputs is minimised. The modified cost function in [71] for a two transmit

antenna configuration can be given by

ξMIMO,XC = E
{

N∑

i=1

(|yi[n]|2 − 1)2

}

+ κ
Lw∑

τ=−Lw

E
{
|y2 [n] y∗1 [n− τ ]|2

}
, (4.14)

where the cross-correlation is calculated over a window of 2Lw+1 symbols and the factor

κ is used to scale the second term of the cost function. This cost function is suitable

for the equalisation of generic MIMO systems. However, in STBC, the structure of the

transmitted block is known to the receiver and thus can be used as a more efficient

cross-correlation minimisation criterion.

4.1.3 The STBC-CM Algorithm

As shown in Figure 4.1, two space-time equalisers are used, each with two subequalisers.

The outputs of the two space-time equalizers are collected over two consecutive symbol
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periods, n and n+ 1, and are given by

Yn =






y1[n] y1[n+ 1]

y2[n] y2[n+ 1]




 =






wH
11 wH

12

wH
21 wH

22




 [rn rn+1] =






wH
1 [n]

wH
2 [n]




 · [rn rn+1] . (4.15)

In order to enforce the STBC structure at the equaliser outputs, a new term is

added to the MIMO-CMA cost function in Section 4.1.2. Consider the improved cost

function given by,

ξSTBC = E
{

2∑

i=1

1∑

τ=0

(|yi[n+ τ ]|2 − 1)2 + aH
n an

}

, (4.16)

with

an =






y1[n] − y∗2[n+ 1]

y2[n] + y∗1[n+ 1]




 , (4.17)

where the first term of the cost function (4.16)represents the CM criterion over two

consecutive symbol periods. The second term minimizes the Euclidean norm of the

vector an, which when equal to the zero vector satisfies

y1[n] = y∗2[n+ 1] and y2[n] = −y∗1[n+ 1]. (4.18)

This forces the two outputs, y1[n] and y2[n], to exhibit the STBC structure,

Yn =






y1[n] y1[n+ 1]

y2[n] y2[n+ 1]




 =






â [n]

â [n+ 1]

−â∗ [n+ 1]

â∗ [n]




 , (4.19)

and consequently minimises the cross-correlation between them. Note that the two

outputs of the equaliser might exhibit different rotations due to the phase insensitivity

of the CM criterion. It can be shown that the cross-correlation term is still valid when

different rotations are exhibited. Denote the phase rotations for the data streams y1[n]

and y2[n] by ϑ1 and ϑ2, respectively. Assuming the output correctly identifies the
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transmitted sequences in the absence of noise, we can write






y1[n] y1[n+ 1]

y2[n] y2[n+ 1]




 =






a [n] ejϑ1 −a∗ [n+ 1] ejϑ1

a [n+ 1] ejϑ2 a∗ [n] ejϑ2




 . (4.20)

It can be shown that the orthogonality of the code word is preserved after rotation:

[

a∗ [n] e−jϑ1 −a [n+ 1] e−jϑ1

]






a [n+ 1] ejϑ2

a∗ [n] ejϑ2






= a∗ [n] a [n+ 1] e−j(ϑ1−ϑ2) − a [n+ 1] a∗ [n] e−j(ϑ1−ϑ2)

= (a∗ [n] a [n+ 1]− a [n+ 1] a∗ [n])
︸ ︷︷ ︸

0

e−j(ϑ1−ϑ2).

(4.21)

Similar to the derivation of the MIMO-CMA in Section 4.1.2, the instantaneous

estimate of the gradient for the first term of ξSTBC can be given by:

∂
∂w∗i

(yυ[n+ τ ]y∗υ[n+ τ ]− 1)2 =






2(yυ[n+ τ ]y∗υ[n+ τ ]− 1)y∗υ[n+ τ ]rn+τ υ = i

0 υ 6= i.

(4.22)

The cross-correlation term of the cost function requires closer evaluation. The fol-

lowing derivations can be verified with respect to (w.r.t.) the four subequaliser coeffi-

cient vectors:

• w.r.t. w∗
11:

∂
∂w∗11

aH
n an = ( ∂

∂w∗11
aH
n )an + ( ∂

∂w∗11
aT
n )a

∗
n
, (4.23)

hence,
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∂

∂w∗
11

aH
n an = [0 r1,n+1] ·






y1[n] − y∗2[n+ 1]

y2[n] + y∗1[n+ 1]




 +

[r1,n 0] ·






y∗1[n] − y2[n+ 1]

y∗2[n] + y1[n+ 1]






= (y2[n] + y∗1[n+ 1])r1,n+1 + (y∗1[n]− y2[n+ 1])r1,n. (4.24)

• w.r.t. w∗
12:

∂

∂w∗
12

aH
n an = [0 r2,n+1] ·






y1[n] − y∗2[n+ 1]

y2[n] + y∗1[n+ 1]




 +

[r2,n 0] ·






y∗1[n] − y2[n+ 1]

y∗2[n] + y1[n+ 1]






= (y2[n] + y∗1[n+ 1])r2,n+1 + (y∗1[n]− y2[n+ 1])r2,n. (4.25)

• w.r.t. w∗
21:

∂

∂w∗
21

aH
n an = [−r1,n+1 0] ·






y1[n] − y∗2[n+ 1]

y2[n] + y∗1[n+ 1]




 +

[0 r1,n] ·






y∗1[n] − y2[n+ 1]

y∗2[n] + y1[n+ 1]






= (y∗2[n+ 1]− y1[n])r1,n+1 + (y∗2[n] + y1[n+ 1])r1,n. (4.26)

• w.r.t. w∗
22:
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∂

∂w∗
22

aH
n an = [−r2,n+1 0] ·






y1[n] − y∗2[n+ 1]

y2[n] + y∗1[n+ 1]




 +

[0 r2,n] ·






y∗1[n] − y2[n+ 1]

y∗2[n] + y1[n+ 1]






= (z∗2 [y + 1]− y1[n])r2,n+1 + (y∗2[n] + y1[n+ 1])r2,n. (4.27)

Hence, the gradient of the cross-correlation term w.r.t. the first and second space-

time equalisers yields,

∂
∂w∗1

aH
n an = (y∗1[n]− y2[n+ 1])rn + (y2[n] + y∗1[n+ 1])rn+1

∂
∂w∗2

aH
n an = (y∗2[n] + y1[n+ 1])rn + (y∗2[n+ 1]− y1[n])rn+1.

(4.28)

Using the stochastic gradient method with an instantaneous estimate of the gradient,

the update equations for the two space-time equalizers are given by

w1[n+ 2] = w1[n]− µ
(
2(y1[n]y

∗
1[n]− 1

2
)y∗1[n]− y2[n+ 1]

)
rn

−µ
(
2(y1[n+ 1]y∗1[n+ 1]− 1

2
)y∗1[n+ 1] + y2[n]

)
rn+1,

(4.29)

and

w2[n+ 2] = w2[n]− µ
(
2(y2[n]y

∗
2[n]− 1

2
)y∗2[n] + y1[n+ 1]

)
rn

−µ
(
2(y2[n+ 1]y∗2[n+ 1]− 1

2
)y∗2[n+ 1]− y1[n]

)
rn+1,

(4.30)

respectively.

The derived algorithm is suitable for the spatio-temporal equalization of constant

modulus STBC signals. A windowed estimate of the cost function, ξ, can be used

instead of the instantaneous estimate for better convergence. The derived equations

can be easily extended to an N -receive antenna configuration for higher diversity gains.
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4.1.4 Phase Ambiguity

Due to the phase ambiguity of the CM criterion, the first and second data streams

may experience different rotations. Denote the phase rotations of the first and second

streams by ϑ1 and ϑ2, respectively. In the absence of noise, the output can be denoted

as

Yn =






a [n] ejϑ1 −a∗ [n+ 1] ejϑ1

a [n+ 1] ejϑ2 a∗ [n] ejϑ2




 . (4.31)

The vector an, which enforces decorrelation, therefore becomes:

an =






y1[n] − y∗2[n+ 1]

y2[n] + y∗1[n+ 1]






=






a [n] ejϑ1 − a [n] e−jϑ2

a [n+ 1] ejϑ2 − a [n+ 1] e−jϑ1




 . (4.32)

Thus, the CC term of the cost function is:

aH
n an =

(
a∗ [n] e−jϑ1 − a∗ [n] ejϑ2

) (
a [n] ejϑ1 − a [n] e−jϑ2

)
+

(
a∗ [n+ 1] e−jϑ2 − a∗ [n+ 1] ejϑ1

) (
a [n+ 1] ejϑ2 − a [n+ 1] e−jϑ1

)
(4.33)

= |a [n]|2 + |a [n]|2 − |a [n]|2 e−j(ϑ1+ϑ2) − |a [n]|2 ej(ϑ1+ϑ2) +

|a [n+ 1]|2 + |a [n+ 1]|2 − |a [n+ 1]|2 e−j(ϑ1+ϑ2) − |a [n+ 1]|2 ej(ϑ1+ϑ2)

= |a [n]|2


2− 2 cos (ϑ1 + ϑ2)
︸ ︷︷ ︸

∆



+ |a [n+ 1]|2


2− 2 cos (ϑ1 + ϑ2)
︸ ︷︷ ︸

∆



 (4.34)

Note that the term aH
n an is minimum when the term ∆ = 1. This condition is
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satisfied for

(ϑ1 + ϑ2) = ℓ2π ⇔ ϑ1 = −ϑ2 + ℓ2π, (4.35)

where ℓ ∈ Z. In other words, the CC term is minimum when the two rotation angles are

opposite. Computer simulations were performed to confirm this effect. In the absense

of additive noise, the equaliser outputs are shown in Figure 4.2. The asterisks denote

the transmit QPSK constellation and the clusters represent the equaliser outputs. The

phase rotations for the first and second streams are given by

ϑ1 ≈
4π

5
and ϑ2 ≈ −

4π

5
= −ϑ1. (4.36)

4.1.5 Subequaliser Length

It was proven in [72] that equalisation of a MIMO system with M transmit and N

receive antennas reduces to solving a linear system of M2 (Lh + Lw − 1) equations in

LwNM unkowns, where Lh is the length of the subchannels and Lw is the length of the

subequalisers. Hence, assuming more receive than transmit antennas, M < N , perfect

Zero-Forcing (ZF) equalization can be achieved if the system is fully determined or

underdetermined, i.e.

M2 (Lh + Lw − 1) ≤ LwNM. (4.37)

Hence, the length of the subequalisers, Lw must satisfy

Lw ≥
⌈
Lh(M − 1)

N −M

⌉

, (4.38)

where ⌈·⌉ denotes the rounding operation to the next larger integer. IfM = N , generally

an infinitely long equaliser is required to achieve perfect equalisation.
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Figure 4.2: Phase-ambiguity of the equaliser outputs, coupled by the constraint ϑ1 =
−ϑ2 + ℓ2π.

4.2 Error Performance of STBC-CMA

Computer simulations were performed using Matlab in order to assess the performance

of the derived STBC-CM Algorithm. The MIMO model described in Section 4.1 was

used with 2 transmit and 2 receive antennas. The channel matrix was assumed to be

quasi-stationary over a duration of Qs = 512 symbol periods. The channel coefficients

were drawn from a Rayleigh distribution with maximum Doppler frequency fd = 100Hz,

which corresponds to a vehicular speed of 55km/h, assuming a carrier frequency of 2GHz

and a transmission bandwidth of 50KHz. The source bits were mapped onto a QPSK

constellation with a modulus equal to 1. The length of the subequalisers was set to

Lw = 15 and the step size µ = 3× 10−4, which heuristically provided the fastest stable

convergence. The equaliser coefficient vectors w1 and w2 are initialized having only

two non-zero elements equal to unity at entries 7 and Lw + 7, respectively.

Figure 4.3 shows the BER curves for the derived receiver as compared to the flat

fading and full receiver CSI case. The BER achieved by STBC-CMA has a slope similar

to the ideal case, meaning no loss in the diversity gain of the system. A 2dB loss can

be observed at the BER of 10−5, which can be attributed to the blind nature of the
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receiver.

4.3 Performance over Quasi-Stationary Channels

The previous section showed that the derived algorithm sufferes a small loss in the

BER (2dB at BER = 10−5) compared to the flat fading case. This section analyses

the performance of the new receiver over time-varying channels. Simulation results will

show that the STBC-CMA receiver outperforms the TRSTBC-CMA scheme, in Section

3.3, over time-varying channels due to its non-block-based structure.

A 2×2 MIMO model was used in the computer simulations. The channel matrix was

obtained by sampling complex Gaussian distribution independently for all coefficients of

a 2×2 MIMO system containing 3-tap FIR filters. The random samples were correlated

to correspond to a vehicular speed of 50km/hour and held for a duration of Qs symbol

periods. QPSK modulation with a modulus equal to unity was performed on the source

bits. At the receiver, signals were corrupted by AWGN. The equalisers were initialised

in the same way as in the previous section. A step size µ = 3× 10−4 was used.

In the following, we first demonstrate the error performance exhibited by the derived

algorithm and the TRSTBC-CMA scheme [20], assuming the channel is stationary

over the duration of two bursts. The second experiment will show the performance

degradation of TRSTBC-CMA when the channel changes within the duration of the

two bursts.

Experiment 1: In this experiment, Qs = 512 symbols. For TR-STBC, a payload of

236 data symbols are packed with two guard intervals in order to create a data burst of

256 symbols length. The proposed scheme uses a standard STBC transmission, but over

a dispersive channel without guard intervals. Figure 4.4 shows that the TRSTBC-CMA

achieves a lower BER than the proposed algorithm when the stationarity assumption

is satisfied. This is due to the block-based nature of the transmission and the added

redundancy.
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Figure 4.3: Bit Error Rate curves for STBC-CMA and flat fading STBC.
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Figure 4.4: BER curves for TRSTBC-CMA (block-based) and STBC-CMA (non-block
based) for N = 256 and Qs = 512.
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Experiment 2: In this experiment, the same burst structure is utilized as in the

previous experiment. In order to study the effect of the non-stationarity of the channel,

Qs is set to different values. Figure 4.5 shows how the performance of TRSTBC-CMA

degrades dramatically even when the channel changes very slightly within the two

bursts whereas the derived scheme suffers a minor loss in BER. The effect of channel

variation can be observed more clearly in Figure 4.6. In words, the drived algorithm

performs better than the block-based TRSTBC-CMA scheme if the channel variation

rate, Qs < 240 symbol periods.

4.4 Generalisation to More Transmit Antennas

So far in this chapter, the number of transmit antennas has been assumed to be M = 2.

This allows the use of the simple and full rate Alamouti coding scheme. However, higher

diversity orders might be required in pratice. Using a large number of receive antennas

increases the diversity gain but is not practical for the downlink scenario due to the

limitation on cost and size of the mobile units. Hence, for applications requiring high

diversity gains, more transmit antennas must be used. This section will show how the

derived STBC-CMA can be generalised to an arbitrary number of transmit and receive

antennas for codewords that preserve the constant modulus property as well as ones

that contain zero elements.

4.4.1 Constant Modulus Codewords

Consider the following half rate code word for M = 3 transmit antennas [28],

S =










a1
︸︷︷︸

−a2 −a3 −a4 a∗1
︸︷︷︸

−a∗2 −a∗3 −a∗4

a2 a1
︸︷︷︸

a4 −a3 a∗2 a∗1
︸︷︷︸

a∗4 −a∗3

a3 −a4 a1
︸︷︷︸

a2 a∗3 −a∗4 a∗1
︸︷︷︸

a∗2










, (4.39)
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where the number of symbols at the input is k = 4. Note that similar to the Alamouti

scheme, this code preserves the constant modulus property of the source symbols, thus

allowing the use of CMA blind equalisation techniques at the receiver. The outputs of

the equalisers are collected over p = 8 consecutive sampling periods to form the matrix

Yn given by:










y1 [n]
︸ ︷︷ ︸

y1 [n+ 1] y1 [n+ 2] y1 [n+ 3] y1 [n+ 4]
︸ ︷︷ ︸

y1 [n+ 5] y1 [n+ 6] y1 [n+ 7]

y2 [n] y2 [n+ 1]
︸ ︷︷ ︸

y2 [n+ 2] y2 [n+ 3] y2 [n+ 4] y2 [n+ 5]
︸ ︷︷ ︸

y2 [n+ 6] y2 [n+ 7]

y3 [n] y3 [n+ 1] y3 [n+ 2]
︸ ︷︷ ︸

y3 [n+ 3] y3 [n+ 4] y3 [n+ 5] y3 [n+ 6]
︸ ︷︷ ︸

y3 [n+ 7]










.

(4.40)

Similar to the two-branch STBC-CMA in Section 4.1.3, the CM part of the cost

function can be given by

ξCM = E
{

M∑

i=1

p−1
∑

τ=0

(|yi[n+ τ ]|2 − γ2)2

}

, (4.41)

where all the elements of Y are forced to the circle whose radius is equal to the constant

modulus γ. The cross-correlation term of the cost function is defined as

ξXC =
k∑

i=1

aH
i,nai,n, (4.42)

where the vector ai,n is formed by forcing selected elements of Yn to yield the same

symbol. These are the elements which correspond to the entries of S containing some

form of the source symbol ai. For instance, in equation (4.40), all the elements of S

with underbrackets contain a variation of the same symbol. Hence, the corresponding

elements in Yn are forced to have the same structure through minimising the norm of

vector a1,n,
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a1,n =















y1 [n]− y2 [n+ 1]

y1 [n]− y3 [n+ 2]

y1 [n]− y∗1 [n+ 4]

...

y2 [n+ 5]− y3 [n+ 6]















. (4.43)

In the given codeword matrix S, the element a1 appears ̺ = 6 times. Hence, the vector

a1,n contains

La =
̺!

2! · (̺− 2)!
=

6!

2! · 4! = 15 (4.44)

elements, where (·)! denotes the factorial operator. This includes all possible permu-

taions of the ̺ entries containing the scalar quantity. The STBC-CMA cost function is

then given by the sum of the two terms

ξSTBC = ξCM + ξXC = E
{

M∑

i=1

p−1
∑

τ=0

(|yi[n+ τ ]|2 − 1)2

}

+
k∑

i=1

aH
i,nai,n. (4.45)

The derivation of the gradient of the instantaneous cost function, ∇ξ̂STBC, is analogous

to that of the Alamouti-based scheme in Section 4.1.3. Note that for the full rate

Alamouti coding, i.e. M = k = p = 2, (4.45) becomes identical to (4.16).

4.4.2 Non-Constant Modulus Codewords

Codewords with rates higher than 1
2

can be constructed by placing zeros at specific

entries. The following example was given in [28] for M = 3 transmit antennas:

S =










a1
︸︷︷︸

a∗2 a∗3 0

−a2 a∗1
︸︷︷︸

0 −a∗3

−a3 0 a∗1
︸︷︷︸

a∗2










. (4.46)
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Observe that the codeword S does not preserve the constant modulus property of the

source symbols si due to the added zeros. This has to be tackled at the receiver in

order to achieve good adaptation. Similar to Section 4.4.1, the output is collected over

a window of p = 4 symbols to form the matrix

Yn =










y1 [n]
︸ ︷︷ ︸

y1 [n+ 1] y1 [n+ 2] y1 [n+ 3]

y2 [n] y2 [n+ 1]
︸ ︷︷ ︸

y2 [n+ 2] y2 [n+ 3]

y3 [n] y3 [n+ 1] y3 [n+ 2]
︸ ︷︷ ︸

y3 [n+ 3]










. (4.47)

Consider the following cost function, assuming γ = 1

ξSTBC = ξCM + ξZeros + ξXC

= E
{

M∑

i=1

p−1
∑

τ=0

[
|Si,τ+1| (|yi[n+ τ ]|2 − 1)2

]

}

+

E
{

M∑

i=1

p−1
∑

τ=0

[
(1− |Si,τ+1|) |yi[n+ τ ]|2

]

}

+
k∑

i=1

aH
i,nai,n, (4.48)

where Si,τ denotes the entry at row i and column τ of the codeword matrix S. The first

term of the cost function has been modified to exclude outputs corresponding to the

zero entries of S. The term |Si,τ+1| is equal to zero for the excluded entries and unity

otherwise. The elements excluded from the CM term are minimised by the newly added

term ξZeros, where (1− |Si,τ+1|) = 1. The last term of the cost function is identical to

that in (4.45), with the exclusion of elements corresponding to the zero entries. Note

that the symbol ai appears ̺ = 3 times in the matrix S, thus the length of each vector

ai,n is calculated using (4.44) resulting in La = 3. For instance, the vector a1, which

forces the entries with under-brackets to identify variations of a1 and a∗1 is given by

a1,n =









y1 [n]− y∗2 [n+ 1]

y1 [n]− y∗3 [n+ 2]

y2 [n+ 1]− y1 [n+ 2]









. (4.49)
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4.4.3 Case Study: A 3-Branch scheme

The previous section gave a broad generalisation of the STBC-CM Algorithm for code-

words containing zero elements. The derivation of the gradients of the cost function

in (4.48) can be found in Appendix B. Computer simulation results are shown here to

demonstrate the convergence of the proposed algorithm assuming the availability of 4

antennas at the receiver. The 4 × 3 channel matrix used in the simulations was ran-

domised according to a decaying power profile with a length Lh = 4. Figure 4.7 shows

the overall response of the channel and equaliser for an SNR of 15dB. The response is

close to an identity.

Figure 4.8(left) shows the constellation of the output from the first space-time

equaliser, y1 [n]. The constellation comprises of QPSK symbols and some superim-

posed zero elements corresponding to the zero in the first row of the codeword matrix.

The equaliser outputs are then matched filterred with the Hermitian of the combined

response of the equaliser, channel, and encoder to recover the transmitted symbols

shown in Figure 4.8(right). Note that some points still exist around zero. These are

the first δw elements of the recovered stream, where δw is the delay introduced by the

channel and equaliser.

4.5 Concluding Remarks

This chapter presented a novel non-block based algorithm for the blind equalisation of

STBC over frequency selective channels. A new term has been added to the MIMO-

CMA cost function, whereby the STBC codeword structure utilised at the transmitter

is enforced at the output of the equaliser. A cross-correlation constraint is not needed

due to the implicit orthogonality of the STBC codeword. Simulation results have shown

that over stationary channels, the TRSTBC-CMA scheme achieves superior error per-

formance. However, if the channel is fast time varying, the new algorithm outperforms

TRSTBC-CMA even with lower complexity and the lack of guard periods.
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Figure 4.7: The overall response of channel and equaliser.
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Figure 4.8: Constellation of equaliser output y1 [n], left, and after STB-decoding, right.
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The derived STBC-CM algorithm has been generalised to more transmit antennas

for higher diversity gains. High rate codewords may include zero entries, which destroy

the constant modulus property. However, since the codeword is known to the receiver,

the CM term of the cost function is modified to exclude specific entries, which are

forced to zero through a new term. A generalised algorithm has been derived for a

specific 3-transmit antenna codeword of rate 3/4. Simulation results demonstrated the

convergence of the algorithm based on source symbols as well as the zero elements.

Due to its robustness, the CM criterion is the most widely used blind equalisation

algorithm. However, it suffers from very slow convergence, which may affect the per-

formance over fast time-varying channels. In the following chapter of the thesis, we

investigate different search methods capable of achieving faster convergence than the

standard CMA.



Chapter 5

Fast Non Block-Based Schemes

Compared to TRSTBC, the previously derived STBC-CM algorithm improves the band-

width utilisation of a communication system and achieves low error performance over

time-varying channels. Due to its low complexity, the algorithm is also suitable for

real-time adaptation. However, the number of iterations required for steady state con-

vergence is very high, which impacts the performance over fast time-varying channels.

In this chapter, we will first investigate the application of a number of fast converging

search methods for the optimisation of the STBC-CMA cost function in Section 5.1.

Section 5.2 derives a concurrent CMA and Decision Directed (DD) equaliser, which

takes advantage of the robustness of the CM criterion and the fast convergence of the

DD scheme. The concurrent receiver also avoids the phase ambiguity of the CMA and

leads to better tracking of time-varying channels. The following Section 5.3 generalises

the STBC-CM and concurrent algorithms to fractionally-spaced (FS) equalisation, and

presents simulation results based on T/2 spaced data acquisition in the receiver.

93
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5.1 Fast Converging Implementations

5.1.1 Newton’s Search Method

In order to speed up the convergence of the STBC-CMA introduced in Chapter 4, we

investigate the use of Newton’s search method [60]. Similar to Section 3.4.2, the update

equation is given by

wi[n+ 2] = wi[n]− µR−1
rr ∇w∗i

ξ i = {1, 2}, (5.1)

where the received symbols are collected over two consecutive symbol periods to form

the STBC codeword. Newton’s algorithm leads to the optimum weight vector wopt in

a single step if µ = 1
2

and exact knowledge of the gradient of the cost function, ∇w∗i
ξ,

and the correlation matrix, Rrr, are available. Using a smaller step size increases the

number of iterations, but the algorithm still proceeds in a straight path towards the

optimum solution. Estimates of the cost function and the correlation matrix are used in

practice, resulting in some gradient noise. The weight vector update equation becomes

wi[n+ 2] = wi[n]− µnR̂
−1
rr [n]∇w∗i

ξ̂ , (5.2)

where the cost function for the STBC-CMA is defined as

ξ = ξ1 + ξ2 = E
{

2∑

i=1

1∑

τ=0

(|yi[n+ τ ]|2 − 1)2

}

+ E
{
aH
n an

}
. (5.3)

Below, we will discuss two techniques to obtain the inverse covariance matrix R̂
−1
rr [n].

5.1.1.1 Fast Quasi-Newton Algorithm

The correlation matrix Rrr of a vector rn is defined as the expectation of the outer

product of rn with its Hermitian,

Rrr = E{rnrHn } . (5.4)
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Since Rrr is not known a priori, an estimate,R̂rr [n], of the correlation matrix is used.

There is a number of different definitions for the estimate in the literature. Similar to

[61, 62], we define R̂rr [n] recursively as follows

R̂rr [n] = αfqnR̂rr [n− 2] +
1

2
(1− αfqn)(rnr

H
n + rn+1r

H
n+1), (5.5)

where αfqn is a number between 0 and 1, commonly referred to as the forgetting factor.

In a stationary scenario, the value of αfqn gives a trade-off between the convergence

speed of R̂rr [n] and its displacement. Note that the covariance matrix is updated

every second symbol period but no information is lost as both rn and rn+1 are used

in the update. Under time-varying conditions, the ability to track changes in the

autocorrelation matrix becomes an issue. If αfqn is chosen close to 1, (5.5) leads to a

confident estimate of R̂rr [n] but sufferes from poor tracking. On the other hand, if αfqn

is chosen close to zero, it leads to better tracking but a poor confidence of the estimate.

In the initialisation stage, R̂rr [0] can be set to the identity matrix, R̂rr [0] = I2Lw
.

The main drawback of Newton’s optimisation algorithm is the high complexity of

the inversion operation. In general, the inversion of a Lw × Lw matrix has a computa-

tional complexity of O(L3
w) and is required every iteration. However, the use of certain

correlation matrix estimators such as the Levinson-Durbin Recursion (LDR) reduces

this to O(L2
w). Similar to Section 3.4.2, the inverse correlation matrix is only updated

once every Lw samples only, thus reducing the complexity Lw-fold.

The inverse correlation matrix R̂
−1
rr [n] is also used to calculate the near optimum

step size as in [62]

µ [n] =
1

4 [rHn Rinvrn + δ]
, (5.6)

where δ is a small number compared to the product to avoid division by zero. A

description of this algorithm is shown in Table 5.1.
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Initialise w1 and w2

R̂rr [0] = I2Lw

Rinv = (R̂rr [0])
−1

Update vectors rn and rn+1

Calculate output matrix Yn, as in (4.15)

Calculate the gradient vectors ∇w∗i
ξ̂STBC, for i = 1, 2

µ [n] = 1

4[rHn R̂invrn+ǫ]

R̂rr [n] = αfqnR̂rr [n− 2] + 1
2
(1− αfqn)(rnr

H
n + rn+1r

H
n+1)

Rinv = R̂
−1
rr [n] , for n an integer multiple of Lw

wi [n+ 2] = wi [n]− µ [n]Rinv∇w∗i
ξ̂STBC

Table 5.1: Summary of the fast quasi Newton STBC-CMA.

5.1.1.2 Recursive Quasi-Newton Algorithm:

In order to avoid the matrix inversion in Newton’s method, a recursive estimate of the

inverse correlation matrix Rinv = R−1 can be used similar to the exponentially weighted

Recursive Least Squares (RLS) algorithm in [73],

Rinv [n+ 1] = α−1rqnRinv [n]− α−1rqnk[n]b
H [n], (5.7)

where

b [n] = Rinv [n] rn, (5.8)

and

k[n] =
α−1rqnb[n]

1 + α−1rqnr
H
n b[n]

, (5.9)
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Initialise w1 and w2

Rinv [0] =
1

σrµq I2Lw
, with a properly chosen q

Update vectors rn and rn+1

Calculate output matrix Yn, as in (4.15)

Calculate the gradient vectors ∇w∗i
ξ̂STBC, for i = 1, 2

µ [n] = 1
4[rHn Rinv[n]rn+δ]

for τ = 0, 1

b[n+ τ ] = Rinv [n+ τ − 1] rn+τ

k[n+ τ ] =
α−1

rqnb[n+τ ]

1+α−1
rqnr

H
n+τb[n+τ ]

Rinv [n+ τ ] = α−1rqnRinv [n+ τ − 1]− α−1rqnk[n+ τ ]bH [n+ τ ]

wi [n+ 2] = wi [n]− µ [n]Rinv [n]∇w∗i
ξ̂STBC

Table 5.2: Summary of the recursive quasi-Newton STBC-CMA.

and αrqn is a positive number used as a forgetting factor. In the initialization stage,

the inverse correlation matrix is set to Rinv [0] =
1

σrµq I2Lw
,where 1

σrµq is a small positive

constant compared to the variance of the input signal σ2
r .

The update equations for the algorithm are based on a direct estimation of the

inverse covariance matrix in (5.2), with the same variable step size µ [n] as in (5.6).

The estimate of the inverse covariance matrix, Rinv, has to be refined for every symbol

period, but only used every second period to update the coefficient vectors. The two

steps may be combined into a single one to reduce the complexity of the receiver. This

has not been investigated but is highlighted as an area for future research. A description

of the recursive implementations of Newton’s method is given in Table 5.2.
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5.1.2 Conjugate Gradient Search Method

The Conjugate Gradient (CG) search method relies on the concept of A-conjugacy

as shown in Section 3.4.1. The equaliser is prevented from taking the same direction

more than once, which reduces the convergence time irrespective of the shape of the

cost function. The CG adaptation is identical to Table 3.2, where the gradient of the

STBC-CMA cost function in (4.16) is given by the sum

∂

∂w∗
i

ξSTBC =
∂

∂w∗
i

E
{

2∑

k=1

1∑

τ=0

(yk[n+ τ ]y∗k[n+ τ ]− 1)2

}

+
∂

∂w∗
i

aH
n an. (5.10)

The gradient of the CM part is estimated over a window of Lw samples,

∂
∂w∗i
E {(yυ[n+ τ ]y∗υ[n+ τ ]− 1)2} ≈






∑Lw−1
δ=0 {2(yυ[n+ τ − δ]y∗υ[n+ τ − δ]− 1)y∗υ[n+ τ − δ]rn+τ−δ} υ = i

0 υ 6= i,

(5.11)

assuming ergodicity and a sufficiently large Lw. For the second part of the cost function,

the instantaneous estimate is sufficient as in (4.28),

∂
∂w∗1

aH
n an = {(y∗1[n]− y2[n+ 1])rn + (y2[n] + y∗1[n+ 1])rn+1}

∂
∂w∗2

aH
n an = {(y∗2[n] + y1[n+ 1])rn + (y∗2[n+ 1]− y1[n])rn+1} .

(5.12)

5.1.3 PDF-Fitting

The CM criterion only relies on knowledge of the modulus of the transmitted constel-

lation. However, in most applications, the receiver knows the exact constellation as

well as the probability of each point occurring. Since the probability density function

(PDF) contains more information than the modulus, [67, 74], a criterion was derived in

[66] matching the PDF of the equaliser outputs to that of the transmitted constellation.

The cost function for the PDF-fitting receiver is given by
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ξSTBC|PDF =
M∑

i=1

p−1
∑

τ=0







ˆ +∞

−∞

(

fY 2
i,τ

(z)− fS2
i,τ

(z)
)2

dz

︸ ︷︷ ︸

ξPDF|i[n+τ ]







+ E
{
aH
n an

}

︸ ︷︷ ︸
,

ξXC

(5.13)

where Y 2
i,τ =

{
|yi [n+ τ ]|2

}
, S2

i,τ =
{
|si [n+ τ ]|2

}
, and the function fX (z) denotes the

PDF of X at z. The first part of the cost function, ξPDF, minimises the difference

between the PDF of the equaliser outputs and the target PDF. The second part of the

cost function, ξXC, is identical to the cross-correlation term of the STBC-CMA cost

function. Hence, the focus will be on deriving the gradient for the PDF-fitting term.

Following the same steps as in [67], the gradient of the phase ambiguous PDF-fitting

term depicted in Figure 5.1 is

∂

∂w∗
i

ξPDF|υ [n+ τ ] =







K√2σ(|yi [n+ τ ] |2 − γ2)e∗ [n+ τ ] rn υ = i

0 υ 6= i,
(5.14)

where

e∗ [n+ τ ] =
1

4σ2
(|yi [n+ τ ] |2 − γ2)y∗i [n+ τ ] , (5.15)

with K√2σ(z) being the Gaussian kernel used to for the Parzen PDF estimator, [66, 67].

Note that the derived gradient is equal to the standard CMA gradient multiplied by

the exponential term. The coefficients of the ith equaliser are simply updated using the

stochastic gradient descent method,

wi [n+ 1] = wi [n]− µPDF∇w∗i
ξ̂STBC|PDF, (5.16)

where ξ̂STBC|PDF is the instantaneous estimate of the cost function obtained by removing

the expectation operator, and µPDF is a properly chosen step size.
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Figure 5.1: The PDF-fitting cost function for one output, assuming an equaliser of
length Lw = 1. Part of the surface has been removed to visualise the shape near the
origin.

5.1.4 Simulation Results

Computer simulation results are presented in this section to show the convergence of

the derived STBC-CMA algorithm. A 2× 2 MIMO model as indicated in Figure 4.1 is

used for the simulations. It comprises of dispersive channels of length Lh = 4, which

are randomised according to the delay power profile in Table 5.3. QPSK modulation

is used at the transmitter with a modulus equal to unity. At the receiver, signals are

corrupted by AWGN at an SNR of 20dB. The length of the subequalisers is set to

Lw = 11. The step sizes were initialised to µCM = 5 · 10−4 and µPDF = 10−2, and the

coefficient vectors w1 and w2 to having only two non-zero elements equal to unity at

entries 5 and Lw + 5, respectively. The two Newton algorithms were initialised in the

same way and given the forgetting factor αfqn = αrqn = 0.999.

Delay Ts 2Ts 3Ts 4Ts

Strength, [dB] 0 −3 −5 −7

Table 5.3: Power delay profile for the channel.

Figure 5.2 shows the MSE curves for the different implementations of STBC-CMA



CHAPTER 5. FAST NON BLOCK-BASED SCHEMES 101

at SNR = 20dB averaged over 50 channel realisations. The results are similar to

those achieved in Section 3.4.4. The MSE convergence slope varies according to the

employed cost function and search method. Newton’s method reaches the steady-state

in the lowest number of iterations. The recursive implementation of Newton’s method

achieves faster convergence then FQN without the need for matrix inversion, because the

RQN scheme updates the inverse covariance matrix for every symbol period, whereas

the FQN scheme only updates it once every Lw iterations. In order to evaluate the

performance gain fairly, the next section will investigate the complexity of the different

receivers.

5.1.5 Complexity Study

The previous section showed the convergence improvement achieved by the proposed

blind receivers. In order to evaluate the performance gain in a thorough and justified

manner, complexity has to be taken into consideration. Table 5.4 shows the number

of Multiply-Accumulate (MAC) operations required for the different schemes at every

iteration step. Similar to Section 3.4.5, the division operation is assumed to require

16 MACs and the evaluation of the Gaussian kernel is performed using a lookup table.

Note that due to the accumulation of received samples to form the STBC structure,

the algorithms are only evaluated every second iteration, thus the complexity in Table

5.4 is halved. The complexity of the first three columns is similar to Section 3.4.5.

Figure 5.3 shows the complexity as a function of the subequaliser order Lw. The FQN

implementation only updates the inverse covariance matrix once every Lw iteration,

thus it requires a lower number of MAC operations than the recursive implementation.

Even though it provides a considerable performance gain, the PDF-fitting algorithm is

very similar to the standard STBC-CMA with respect to complexity.
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Figure 5.2: MSE of proposed blind receivers, SNR = 20dB.

CMA CG PDF-Fitting RQN-CMA FQN-CMA

12Lst + 4 67Lst + 192 12Lst + 8 9L2
st + 13Lst + 59

6L2 + 12L+ 26

+LDR/L

Table 5.4: Complexity of the different equalisers, in number of Multiply-Accumulate
(MAC) operations. LDR = Levinson Durbin recursion.

5.2 Concurrent CMA and Decision Directed Equali-

sation

5.2.1 The Concurrent Algorithm

In this section, a concurrent CM and decision-directed (DD) equaliser is derived for

the blind equalisation of a 2 × 2 STBC system based on [75]. The algorithm uses the

modified cost function from the previous chapter in conjunction with a DD cost function.

Similar to the algorithm in [75], the CM part of the coefficient vectors, denoted w
(c)
i [n],

is updated for every iteration whereas the DD part, denoted w
(d)
i [n], is only updated

when the previous CMA adaptation is deemed to be correct. The cost function for the

DD equaliser can be stated as:
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w(d)[n]
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H[n]

w(c)[n]

Figure 5.4: Concurrent CM and DD equaliser for STBC.

ξDD = E
{

M∑

i=1

p−1
∑

τ=0

|ψ(yi[n+ τ ])− yi[n+ τ ]|2
}

, (5.17)

where the function ψ(.) represents a decision device that maps its input to the closest

transmit constellation point.

The concurrent algorithm can be described in the following steps:

1. The outputs y1[n+ τ ] and y2[n+ τ ] are calculated for τ = 0, 1






y1[n] y1[n+ 1]

y2[n] y2[n+ 1]




 =






wH
1 [n]

wH
2 [n]




 · [rn rn+1] . (5.18)
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2. Identical to (4.29) and (4.30), the constant modulus parts of the coefficient vectors

can be calculated as follows:

w
(c)
1 [n+ 2] = w

(c)
1 [n]− µCM

{

e
(c)
1 [n] rn + e

(c)
1 [n+ 1] rn+1

}

= w
(c)
1 [n]− µCM

(
2(y1[n]y

∗
1[n]− 1

2
)y∗1[n]− y2[n+ 1]

)
rn

−µCM

(
2(y1[n+ 1]y∗1[n+ 1]− 1

2
)y∗1[n+ 1] + y2[n]

)
rn+1

(5.19)

and

w
(c)
2 [n+ 2] = w

(c)
2 [n]− µCM

{

e
(c)
2 [n] rn + e

(c)
2 [n+ 1] rn+1

}

= w
(c)
2 [n]− µCM

(
2(y2[n]y

∗
2[n]− 1

2
)y∗2[n] + y1[n+ 1]

)
rn

−µCM

(
2(y2[n+ 1]y∗2[n+ 1]− 1

2
)y∗2[n+ 1]− y1[n]

)
rn+1,

(5.20)

where µCM is the CMA step size.

3. In order to evaluate the success of the previous step taken by the CM equalizer,

the receiver calculates intermediate outputs using the new CM vector and the

previous DD vector:

Ỹn =






ỹ1[n] ỹ1[n+ 1]

ỹ2[n] ỹ2[n+ 1]




 =






w̃H
1

w̃H
2




 · [rn rn+1] , (5.21)

where

w̃i = w
(c)
i [n+ 2] + w

(d)
i [n]. (5.22)

4. To avoid taking a large step in the wrong direction a decision must be made on the

correctness of the previous CM step. The work in [75] stated that if the equaliser’s

hard decision before and after the CM adaptation are the same then the decision

is likely to be correct. Hence, the DD coefficient vector w
(d)
i [n] should only be

updated if all decisions are deemed correct. This can be achieved by a binary
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switching function ϕi ∈ {0, 1}

ϕi =

p−1
∏

τ=0

δ (ψ (yi[n+ τ ])− ψ (ỹi[n+ τ ])) , (5.23)

where

δ(υ) =







1 υ = 0

0 υ 6= 0.
(5.24)

5. Similar to the STBC-CMA, the DD equaliser can be updated using the stochastic

gradient method defined as

w
(d)
i [n+ 2] = w

(d)
i [n]− µDD · ϕi · ∇w∗i

ξ̂DD. (5.25)

The derivation of the DD algorithm becomes identical to the Least Mean Squares

(LMS) algorithm, [73, 60], with the ith desired response at time n + τ being

equal to the mapped output ψ(yi[n+ τ ]). The instantaneous estimate of the cost

function is obtained by removing the expecation operator in ξ̂DD,

∇ξ̂DD = e
(d)
i [n] · rn + e

(d)
i [n+ 1] · rn+1 (5.26)

where

e
(d)
i [n+ τ ] = (yi[n+ τ ]− ψ (yi[n+ τ ]))∗ . (5.27)

Substituting the coefficient update into (5.25) yields:

w
(d)
i [n+ 2] = w

(d)
i [n]− µDD · ϕi ·

(

e
(d)
i [n] · rn + e

(d)
i [n+ 1] · rn+1

)

, for i = 1, 2.

(5.28)

A summary of the algorithm is given in Table 5.5 for Alamouti coding at the transmitter,

M = p = 2.
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1: Update rn and rn+1.

2: Calculate yi[n] and yi[n+ 1], for i = 1, 2.

3: Calculate e
(c)
i [n+ τ ], for i, τ = 1, 2.

4: w
(c)
i [n+ 2] = w

(c)
i [n]− µCM ·

{

e
(c)
i [n] rn + e

(c)
i [n+ 1] rn+1

}

5: w̃i[n] = w
(c)
i [n+ 2] + w

(d)
i [n]

6: Calculate outputs ỹi[n+ τ ] using w̃i[n], for τ = 0, 1.

7: e
(d)
i [n+ τ ] = (yi[n+ τ ]− ψ (yi[n+ τ ]))∗ · rn+τ .

8: ϕi =
∏1

τ=0 δ (ψ (yi[n+ τ ])− ψ (ỹi[n+ τ ]))

9: w
(d)
i [n+ 2] = w

(d)
i [n]− µDD · ϕi ·

(

e
(d)
i [n]rn + e

(d)
i [n+ 1]rn+1

)

10: wi[n+ 2] = w
(c)
i [n+ 2] + w

(d)
i [n+ 2]

Table 5.5: Concurrent CMA and Decision Directed Algorithm.

5.2.2 Performance of the Concurrent Receiver

Simulation results are presented in this section to provide an insight into the proposed

scheme and to demonstrate the performance of the concurrent algorithm. A 2 × 2

MIMO model as indicated in Figure 4.1 is used in the simulations. QPSK symbols

with a modulus equal to unity are transmitted. At the receiver, signals are corrupted

by AWGN. The length of the subequalisers is set to Lw = 11. In the following, we

first demonstrate the convergence behaviour and the steady-state MSE given a fixed

SNR value, and thereafter characterise the error performance of the two algorithms for

a variety of SNR values.
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Figure 5.5: Mean Square Error curves for STBC-CMA and STBC-Conc.

5.2.2.1 Mean Square Error

The step sizes for the CM and the DD terms are initialised to µCM = 1 × 10−3 and

µDD = 5 × 10−2. The SNR is set to 25dB. The same channels as stated in Section

5.1.4 are used. The equaliser coefficient vectors are initialised having only two non-

zero elements equal to unity at entries 5 and Lw + 5, respectively. The Mean Square

Error (MSE) is averaged over 50 channels drawn from a Rayleigh distribution with a

given power profile. Figure 5.5 shows the MSE curves for the STBC-CMA and the

concurrent equalizer. It can be clearly observed that the concurrent receiver achieves

faster convergence than the standard STBC-CMA.

5.2.2.2 Over Quasi-Stationary Channels

In order to demonstrate the BER performance of the two algorithms, the step sizes are

initialised to µCM = 3 · 10−4 and µDD = 5 · 10−3 and the equaliser vectors w1 [n] and

w2 [n] are intialised having only two non-zero elements equal to unity at entries 5 and

Lw + 5, respectively. The channels are assumed to be stationary over a window of 496

symbols and are drawn from the Rayleigh distributions shown in Figure 5.6. Figure

5.7 shows the BER curves of the two algorithms in comparison along with that of the
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Figure 5.6: A 3-tap block Rayleigh fading channel H[ν, n].

full channel information flat fading case proposed by Alamouti, [6]. The concurrent

receiver clearly outperforms the STBC-CMA BER-wise. This is achieved at a minimal

increase in system complexity as it has been shown that the implementation of the DD

equaliser is similar to that of the LMS algorithm. Figure 5.7 also shows the BER when

a Zero-Forcing (ZF) equaliser is used at the receiver. The inverse of the polynomial

matrix H (z) can be obtained in the frequency domain as shown in [76]. Both the

STBC-CMA and the concurrent equaliser achieve a lower BER at relatively low SNRs

due to the noise amplification inherent in the inversion of the channel matrix.

5.2.2.3 Over a Smoothly Time-Varying Rayleigh Channel

Due to the hard decision performed by the DD part, the equalisation algorithm is no

longer phase insensitive. This enables the tracking of a smoothly time-varying chan-
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nel as will be demonstrated by simulation results. In the simulation, channels were

assumed to be time-varying and frequency selective, thus the name doubly dispersive.

The coefficients were drawn from a correlated Rayleigh process with a vehicular speed

of 55km/h. The same transmission and equalisation parameters were used as in the ex-

periment in section 5.2.2.2. The performance of the proposed equaliser is benchmarked

against a concurrent TRSTBC-CMA and DD scheme derived based on the work in [20].

Figure 5.8 shows the BER curves over a range of SNR values. The results confirmed

that the TRSTBC-concurrent scheme collapses for a time-varying channel due to its

block-based nature. The proposed algorithm exhibits a coding loss compared to the

quasi-stationary case, but still manages to track the channel and achieve a BER lower

than 10−4 at 20dB SNR.
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Figure 5.7: Bit-Error Rate (BER) curves for STBC-CMA and STBC-Conc.

5.3 Fractionally Spaced STBC-CMA

Fractionally Spaced (FS) equalisers operate in a rate higher than the baud (symbol)

rate, [77, 78, 8, 79]. FSE offers higher resolution for timing synchronisation and po-

tentially shorter equalisers (same length as the channel response Lfs = Lh). It has



CHAPTER 5. FAST NON BLOCK-BASED SCHEMES 110

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR, [dB]

B
E

R

TRSTBC−CMA+DD

STBC−CMA+DD

Figure 5.8: BER performance of the concurrent receiver over a time-varying rayleigh
channel.

the ability to equalise channels containing spectral zeros not common to all polyphase

components of the channel as well as minimising the noise gain through the pseudo-

inverse formulation, [80, 81]. In theory, any arbitrary spacing Ts/2, Ts/3, ... can be

used. However, in practise, the receiver filter is bandlimited to the symbol rate hence

in practice no benefit is gained beyond the case of Ts/2 spacing.

H[n]

∆

vm

sn
yn

s̃m

2 2

2

Wodd
n

Weven
n

Figure 5.9: Ts/Ns fractionally spaced CM equalisation signal model.

In this section, we consider the polyphase implementation of the Ts/2-spaced STBC-

CM algorithm as shown in Figure 5.9. The transmitted code word matrix Sn is over-
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sampled by a factor of 2 yielding

S̃n =






a1 0 −a∗2 0

a2 0 a∗1 0




 . (5.29)

Similar to the baud-spaced STBC-CMA in 4.1.3, the outputs of the equaliser col-

lected over two symbol periods are given by:

Yn =






y1[n] y1[n+ 1]

y2[n] y2[n+ 1]




 =






wH
1 [n]

wH
2 [n]




 · [rn rn+1] , (5.30)

where,

wi[n] =












weven
i1 [n]

wodd
i1 [n]

weven
i2 [n]

wodd
i2 [n]












and rn =






r1,n

r2,n




 , (5.31)

with ri,n being the vector containing tap delay line elements from both polyphose com-

ponents of the ith equaliser,

ri,n =



















reven
i [n]

...

reven
i [n− Lfs + 1]

rodd
i [n]

...

rodd
i [n− Lfs + 1]



















. (5.32)

The space-time equalisers shown in Figure 5.9 are given by

Wodd
n =

[

wodd
1 [n] wodd

2 [n]

]

and Weven
n =

[

weven
1 [n] weven

2 [n]

]

. (5.33)
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The superscripts (·)even and (·)odd denote the even and odd polyphase components,

respectively. These result from the decimation and delay operations performed prior

to equalisation, as shown in Figure 5.9. Concatenating the coefficient vectors and

tap delay lines simplifies the implementation of the algorithm. The FS-STBC-CMA

becomes identical to the STBC-CMA derived in Section 4.1.3. Fractionally spaced

equalisation can also be applied to the concurrent receiver described in Table 5.5 for

faster convergence and better error performance.

Simulation Results Simulations have been performed to evaluate the performance

gain achieved using fractionally spaced equalisation. A 2×2 STBC system was utilised

with quasi-stationary channels drawn from a 6-tap correlated Rayleigh distribution

with maximum Doppler frequency fd = 100Hz, which corresponds to a vehicular speed

of 55km/h, assuming a carrier frequency of 2GHz and a transmission bandwidth of

50KHz. The power delay profile of the channels is shown in Table 5.6. The source data

was mapped onto a QPSK constellation with a modulus equal to unity. Subequalisers

of length Lw = 9 were initialised having all elements equal to zero except the central

entries of weven
11 [n] and weven

22 [n], which were set to unity. The step sizes used in the

simulations are µCM = 3 · 10−4 and µDD = 10−3. Figure 5.10 shows the BER curves

for the baud spaced and Ts/2-spaced STBC-CMA and the concurrent (STBC-Conc)

algorithms. The fractionally spaced implementation achieves a considerable coding

gain over the baud spaced.

5.4 Concluding Remarks

This chapter has looked at fast converging non-block based blind receivers for STBC

over frequency selective channels. A number of implementations have been proposed

based on Newton’s search method, Conjugate Gradient, and PDF fitting. Simulation

results showed that the new receivers improve the performance of the STBC-CMA

proposed in Section 4.1.3 over time-varying channels. However, this improvement comes
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Delay Ts 3/2Ts 2Ts 5/2Ts 3Ts 7/2Ts

Strength, [dB] 0 −3 −4.5 −5 −8 −10

Table 5.6: Power delay profile for the channel shown in figure 2.10.
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Figure 5.10: BER curves for T/2-spaced STBC-CMA and concurrent STBC.

at the expense of added complexity.

A concurrent equalisation scheme was proposed for STBC. The scheme takes advan-

tage of the robustness of the CM criterion and the fast convergence of the DD equaliser.

It can be divided into two main steps. In the first step, the receiver updates CM parts

of the coefficient vector. In the second step, the receiver makes a decision on the success

of the first step. If the step is deemed correct in the sense that a correct decision is

expected from the equaliser output at that step, then the DD criterion is used to update

the second part of the coefficient vectors. Simulation results showed that the concurrent

equaliser is capable of tracking a smoothly time-varying channel with a vehicular speed

of 55km/h.

A fractionally spaced equalisation scheme based on the polyphase representation was

derived in Section 5.3. FS equalisation reduces the noise amplification due to spectral

zeros and provides higher resolution for timing synchronisation compared to its baud
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spaced counterpart. Computer simulations confirmed a considerable BER gain over

baud spaced equalisation for both the CM and concurrent cases.



Chapter 6

Blind Equalisation for Multiuser

STBC

The previous chapters have looked at blind receivers for STBC over frequency selec-

tive channels. However, most communication systems are designed to accommodate

multiple users through multiplexing. As discussed in Section 2.6, CDMA is the main

multiplexing scheme in 3G networks. Although 4G networks mostly use OFDM, CDMA

is still superior in certain scenarios such as the uplink as synchronisation errors are not

as fatal as in OFDM. Space-Time Spreading (STS) is an efficient CDMA-based mul-

tiuser space-time block coding scheme where each user’s spreading code is used in an

Alamouti-like combination over the multiple antennas, whereby the resulting rows are

orthogonal and can be easily decoupled at the receiver. If the channel response is

frequency selective, the orthogonality of the transmitted sequences is destroyed, and

equalisation is needed at the receiver. This chapter investigates blind CM-based equal-

isation for STS in the downlink scenario, as shown in Figure 6.1.

115
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Figure 6.1: Downlink scenario of a k-user Space-Time Spreading system.

6.1 Filtered CM Equalisation

Due to its simplicity and low requirements, the constant modulus algorithm (CMA)

is the most commonly used blind equaliser. The algorithm, first introduced in [53],

assumes a constant modulus constellation set at the transmitter and works by forcing

the received signal to have the same modulus. A MIMO-CMA algorithm was derived in

[69, 70, 82], which in addition explicitly forces the cross-correlation between the outputs

to zero in order to avoid multiple extractions of the same source. However, in a CDMA

scenario, the implicit orthogonality of the user signals can be expoited at the receiver,

similar to [83, 84, 85]. This section introduces a blind receiver which enforces the CM

property on the matched filtered outputs. For simplicity of the derivations, we shall

consider the Alamouti coding scheme with M = N = 2.

6.1.1 Data Model

Inspired by STBC coding, STS was introduced in [45] as a transmit diversity scheme

for Wideband-CDMA systems. Similar to STBC, the source data is multiplexed into



CHAPTER 6. BLIND EQUALISATION FOR MULTIUSER STBC 117

symbol sequences b1[n] and b2[n]. The index n is referred to as symbol time, whereas

the transmission will be at a chip rate K times higher than the symbol rate, with chip

index l. The chip rate signals transmitted from the two antennas, s1[l] and s2[l], are

defined as

s1[l] =
1√
2

∞∑

n=−∞
(c1[l − nK]b1[n] + c2[l − nK]b∗2[n])

s2[l] =
1√
2

∞∑

n=−∞
(c1[l − nK]b2[n]− c2[l − nK]b∗1[n]) ,

where c1[l] and c2[l] are orthogonal Walsh codes of length K, whose coefficients are

either 1 or −1 and are arranged in vectors ci ∈ R
K×1, i = {1, 2}. The code length

defines the CDMA spreading gain as K/2. If only one codeword, c, is assigned to every

user, then the two STS codewords can be defined as

c1 =






c

c




 and c2 =






c

−c




 . (6.1)

Note that the orthogonality of the user codes is preserved, i.e. cH1 c2 = 0.

Assuming a stationary channel, the signals received from two antennas are given by

r [l] =






r1 [l]

r2 [l]






=

Lh−1∑

ν=0

H [ν] s [l − ν] + v [l] . (6.2)

where s [l] is the vector of transmitted data

s [l] =






s1[l]

s2[l]




 . (6.3)

The matrix H [ν] is the νth time slice of the channel response at time n and is defined
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as

H [ν] =






h11[ν] h12[ν]

h21[ν] h22[ν]




 , (6.4)

where hij [ν] is the νth tap of the frequency selective channel from the jth transmit

antenna to the ith receive antenna. The channels have a maximum length of Lh in

terms of chip periods. Assuming the channel is stationary over the duration of two

symbol periods, i.e. 2K chips, the time index can be dropped and the transfer function

of the dispersive MIMO channel can be written as

H(z) =

Lh−1∑

ν=0

Hνz−ν . (6.5)

Note that in the downlink scenario, the transmitted streams for all users are subject to

the same channel. Additive white Gaussian noise (AWGN), vm, with zero mean and

ε
{
v [n]vH [n]

}
= σvI2 is assumed to corrupt the signals at the receiver.

As shown in Figure 6.2, a MIMO equaliser is used containing four subfilters, whereby

each subfilter has length Lw with respect to the chip rate. The 2K × 2K matrix

C in Figure 6.2 contains all 2K orthogonal codes for the K distinct users. In the

following section, a blind CM receiver will be derived for the equalisation of STS over

frequency selective channels. The equaliser reverses the effect of the channel and restores

the transmitted sequences based on the constant modulus property and the implicit

orthogonality of the transmitted STS signals.

6.1.2 The STS-CM Algorithm

As shown in Figure 6.3, the equaliser outputs y1[l] and y2[l] will ideally retrieve the

transmitted sequences s1[l] and s2[l], respectively. Due to the fact that the transmitted

signals are not constant modulus and the fact that multiple users are present in the

system, the conventional MIMO-CMA cannot be used.

In [83], a CM algorithm was derived for the equalisation of a single antenna DS-
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v1[l]
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y1[l]

y2[l]
CH

CH Decoder

b̂1[n]

Figure 6.2: Space-Time equalisation for STS. The user of interest here possesses the
first set of orthogonal codes.
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−1

d11[n]

d12[n]

d21[n]

Figure 6.3: Despreading and decoding for the user of interest, here assumed number 1.

CDMA system based on the orthogonality of the matched filter outputs. The algorithm

enforces the CM criterion on the matched filtered outputs in a similar manner to the

Filtered-X Least Mean Square algorithm, see [60]. To exploit the STS scenario similar

to [83] implies forcing the outputs b̂1 [n] and b̂2 [n] to the constant modulus circle.

However, the complex conjugation applied to the despread signals d21 [n] and d22 [n]

is a non-linear operation and prohibits the derivation of the gradient in the standard

form of [83]. As an alternative, we propose to apply the CM criterion directly to the
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despread signals dji [n]. Consider the following cost function:

ξ = E
{

2∑

i=1

2∑

j=1

(|dji[n]|2 − γ2)2

}

, (6.6)

where γ is the modulus of the source constellation and dji[n] is the received signal ri [l]

despread using code cj, as shown in Figure 6.3. Due to the explicit orthogonality of

the despread outputs, the proposed cost function is simply the CM criterion calculated

over the four signals. The despread outputs are defined as

dji[n] = cHj ·









yi[nK]

...

yi[nK −K + 1]









, (6.7)

where the output of the ith space-time equaliser is given by

yi[nK] = wH
i ·



















r1[nK]

...

r1[nK − Lw + 1]

r2[nK]

...

r2[nK − Lw + 1]



















, (6.8)

with wi containing two subequalisers,

wi =






wi1

wi2




 . (6.9)
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Let us define the convolutional equalisation matrix for the ith space-time equaliser,

Wi =









wH
i,1 · · · 0 wH

i,2 · · · 0

...
. . .

...
...

. . .
...

0 · · · wH
i,1 0 · · · wH

i,2









. (6.10)

Expanding 6.7 using the defined matrix Wi yields:

dji[n] = cHj ·Wi ·



















r1[nK]

...

r1[nK −K − Lw + 2]

r2[nK]

...

r2[nK −K − Lw + 2]



















. (6.11)

In order to simplify the derivation of the gradient vector, the terms of (6.11) are rear-

ranged to produce

dji[n] = wH
i ·Cj · rnk, (6.12)

where Cj is the convolutional despreading matrix corresponding to the jth spreading

code

Cj =



















cHj 0

. . . 0

0 cHj

cHj 0

0
. . .

0 cHj



















, (6.13)
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and rnK is the chip rate tap-delay line vector given by

rnK =



















r1[nK]

...

r1[nK −K − Lw + 2]

r2[nK]

...

r2[nK −K − Lw + 2]



















. (6.14)

Equation (6.12) shows that the matched filtering can be moved to the input of

the adaptive filter. Estimating the instantaneous gradient of ξ through omitting the

expectation operator in (6.6), the stochastic gradient method for the proposed algorithm

is defined as

wi[n+ 1] = wi[n]− µ · ∇w∗i
ξ̂, for i = 1, 2. (6.15)

The gradient of the instantaneous ξ for the ith space-time equaliser is identical to the

conventional CMA,

∇w∗i
ξ̂ =

2K∑

j=1

(
e∗ji[n]xj [n]

)
, (6.16)

where

eji[n] = dji[n] ·
(
|dji[n]|2 − γ2

)
, for i = 1, 2, and j = 1, . . . , 2K, (6.17)

and the filtered regressor vector

xj [n] = CjrnK . (6.18)

A summary of the iterative STS-CM algorithm is detailed in Table 6.1. Note that

proper convergence is only achieved if the equaliser recovers the signals from all the

users in the medium including the user of interest. Once the equaliser outputs have
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been computed, simple averaging is performed according to Figure 6.3.

6.1.3 Phase Ambiguity

Because the phase of the equaliser output is not constrained by the CM cost function,

the first and second output streams may experience different rotations. Denote the

phase rotations of the first and second streams by ϑ1 and ϑ2, respectively. In the

absence of noise, the steady state output can be denoted as

y [l] =






y1 [l]

y2 [l]




 =






s1 [l] e
jϑ1

s2 [l] e
jϑ2




 . (6.19)

For simplicity, we shall drop the chip index and consider the vector yi collected over K

chip periods. The combined outputs can be given by

b̂ =






cH1 y1e
jϑ1 − cT1 y

∗
1e
−jϑ2

cT2 y
∗
1e
−jϑ1 + cH1 y2e

jϑ2




 . (6.20)

Note that for ϑ1 = −ϑ2, (6.20) yields

b̂ =






(
cH1 y1 − cT1 y

∗
1

)
ejϑ1

(
cT2 y

∗
1 + cH1 y2

)
ejϑ2




 =






b1e
jϑ1

b2e
jϑ2




 . (6.21)

This observation has been confirmed through computer simulations as will be seen in

Section 6.2.

6.2 Fully Loaded STS-CMA Performance

Computer simulation results are presented in this section to provide insight into the

proposed scheme and to demonstrate the convergence properties of the derived STS-

CMA algorithm. A fully loaded 2× 2 MIMO model as indicated in Figure 6.2 is used
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For every time index n,

xj[n] = Cj · rnK , for j = 1, . . . , 2K

dji[n] = wH
i [n] · xj[n], i = 1, 2, j = 1, . . . , 2K

eji[n] = dji[n] · (|dji[n]|2 − γ2) , i = 1, 2, j = 1, . . . , 2K

wi[n+ 1] = wi[n]− µ ·
2K∑

j=1

e∗ji[n]xj [n] , i = 1, 2

Table 6.1: Summary of the proposed STS-CMA equalisation algorithm.

for simulations with K = 4 users. Fully loaded in this context means that the system

is servicing all K = 4 users for which it is dimensioned. QPSK modulation is used

at the transmitter with a modulus equal to γ =
√
2, i.e. the total transmit power

after normalisation is P0 =
√
2. At the receiver, signals are corrupted by AWGN at a

Signal-to-Noise Ratio (SNR) of 20dB. The length of the subequalisers is set to Lw = 7.

The step size is initialized to µ = 3 · 10−3, and the coefficient vectors for the four

subequalisers are set to all zeros except the first entries of w11 [0] and w21 [0], which are

set to unity.

Figure 6.4 shows the symbol values at the output of the adapted MIMO equaliser,

indicating that the equaliser has correctly extracted the transmitted sequences of the

user of interest. A residual rotation is present at the output due to the CMA’s phase

invariance. The rotation for the first and second stream are ϑ1 and ϑ2, respectively,

where ϑ1 = −ϑ2, which confirms the findings in Section 6.1.3.

To demonstrate the robustness in noise, the power delay profile shown in Table 2.1

was used in the simulations, on which basis 50 ensemble probes were drawn from a

Rayleigh distribution. The BER performance of the proposed algorithm compared to

the flat fading full CSI case is shown in Figure 6.5 over a range of SNR values. A

coding gain loss of around 2dB is observed, which can be attributed to the frequency

selectivity of the channel and the blind nature of the equalisation.
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Figure 6.5: BER curve for the derived STS-CM Algorithm in the fully loaded case.
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6.3 Partially Loaded Scenario

Recall from Section 6.1 that the derived algorithm forces the symbols for all K users

to have the same modulus as the transmitted constellation. A problem arises in the

partial loading scenario, i.e. when one or more users are idle. Data streams of idle users

can be filled with arbitrary data fulfilling the constant modulus criterion. This has the

benefit of persistently exciting the equaliser and thus aiding convergence, but results in

a higher transmit power than necessary [86]. The transmit power can be minimised by

inserting zero signals for idle users. This however requires a modification to be applied

to the proposed algorithm, setting the modulus for the detected signals of the zero users

to zero.

Let the number of active users be Ka ≤ K. The modified cost function is simply

given by

ξ = E
{

2∑

i=1

2K∑

j=1

(|dji[n]|2 − γ2j )
2

}

, (6.22)

where

γj =







γ, j ∈ [1; 2Ka]

0, j ∈ [2Ka + 1; 2K] .

(6.23)

Computer simulations have been performed to test the proposed algorithm in a

partially loaded scenario. The different parameters are chosen identical to the previous

section with Ka = 2 active users. Figure 6.6 shows the BER over a range of SNR

values benchmarked against the narrowband case with full CSI at the receiver. A slight

degradation is observed at high SNRs over the fully loaded scenario.

6.4 Concluding Remarks

In this chapter, a blind CM equaliser was derived for multiuser STBC systems over

frequency selective channels. The developed algorithm is based on novel work pre-

sented in [83], where the implicit orthogonality enforced by the CDMA spreading codes
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Figure 6.6: BER curve for the derived STS-CM Algorithm in the partially loaded case.

is exploited at the receiver. The equaliser operates at chip rate and minimises the

matched-filtered outputs in a fashion similar to the filtered-X LMS algorithm [60]. Like

the previously derived STBC-CMA, this blind receiver imposes a restriction on the two

phase rotations incurred at the output streams. In the fully loaded scenario, simulation

results showed a 2dB BER coding loss over the full CSI and narrowband case, which is

minimal considering that the channel is broadband and the detection is blind. In the

partially loaded case, the inactive users transmit zeros, which cannot be forced to the

constant modulus. Hence, the cost function has been modified by choosing a variable

modulus γj, which is equal to the modulus of the transmit constellation for active users

and zero for inactive users.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

The main objective of this thesis was to develop blind equalisation algorithms for STBC

over dispersive channels. Inspired by Alamouti’s pioneering work, a block based scheme,

known as TRSTBC, has been proposed in the literature for frequency selective channels.

A tap constrained blind equalisation algorithm developed in [20] based on the CM

criterion was reviewed in this thesis. Simulation results showed that even the fastest

converging implementation required a considerable burst length, over which the channel

must be stationary. This limits the practicality of this scheme and motivated the search

for a new non-block based approach.

Assuming a constant modulus transmit constellation, the trivial extension of CMA

to MIMO may lead to multiple equaliser outputs identifying the same transmitted

stream. An algorithm was developed in this thesis whereby in addition to the MIMO-

CMA cost function the equaliser takes advantage of the orthogonal structure of the

STBC codeword by enforcing the same structure on the multiple outputs. An algorithm

was derived for the basic M = 2 transmit antennas full rate Alamouti coding scheme

subject to the availability of at least N =M = 2 receive antennas. Extensive computer

simulations were performed to evaluate the performance of this STBC-CMA algorithm.

128
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Under time-varying channel conditions, the derived scheme exhibited better tracking

capabilities than the block-based TRSTBC scheme. The STBC-CMA is non-block

based, thus it does not require the storage of large amounts of data at the receiver.

It also provides a higher throughput since it does not require the guard periods that

otherwise need to be inserted between consecutive bursts in the TRSTBC scheme.

The STBC-CM algorithm was generalised to an arbitrary number of transmit an-

tennas. Due to the complex nature of the transmit constellation, an STBC codeword

with M ≥ 3 must sacrifice a considerable percentage of the throughput in order to

achieve the maximum diversity level. In the simple case, a rate 1/2 codeword can be

derived for any value of M . However, the rate of the codeword can be increased through

the insertion of zeros, which renders the constant modulus assumption invalid. A new

term was added to the cost function to specifically target the the output elements cor-

responding to the zeros and minimise their moduli. The generalised algorithm was

derived and simulated for a specific codeword with M = 3 transmit antennas, k = 3

codeword source symbols, and p = 4 codeword transmit periods.

The CMA is known for its robustness and low complexity but its stochastic gradient

implementation suffers from very slow convergence. Chapter 5 of this thesis investigated

various ways of reducing the convergence time. A set of algorithms was developed

based on Newton’s and the Conjugate Gradient methods. A new cost function was also

proposed based on the statistical information of the transmitted signals. It matches

the PDF of the equaliser outputs to that of the transmitted streams, hence the name

Matched-PDF. These algorithms achieved faster convergence and required various levels

of added complexity. While convergence time of the Matched-PDF receiver was less

than the CG-CMA, its complexity increase over the CM counterpart was negligible.

Newton’s method achieved the fastest convergence at the expense of a higher complexity

level. A concurrent CM and decision directed (DD) receiver was also developed, which

takes advantage of the robustness of CMA and the fast convergence of DD. Chapter

5 also investigated fractionally-spaced equalisation for both the STBC-CMA and the
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concurrent receiver. Simulation results showed a considerable coding gain over the

Baud-spaced implementation.

Chapter 6 looked at the derivation of a blind CM receiver for multiuser STS systems

over channels with ISI. In STS, one CDMA code is assigned to each user. From that,

M codes are derived and used to combine and spread the source symbol streams. Over

narrowband channels, the received signals can be decoupled after despreading using a

simple matched filter. Over broadband channels, an equaliser is needed at the receiver to

remove the effect of ISI and restore the orthogonality. The proposed algorithm achieves

this by operating at the chip rate and minimising the error at the despread outputs.

Simulation results showed a small BER coding loss over the full CSI narrowband case.

7.2 Future Works

Based on the research presented throughout this thesis, the following areas are of in-

terest for potential further investigation:

STS-CMA Testing with Time-Varying Channel. The STS-CMA algorithm has

only been tested for stationary channels, investigating its convergence behaviour. It

would be important to assess the algorithm’s tracking ability under time-varying chan-

nel conditions.

Rayleigh Fading with Doppler Spectrum and Algorithm Tracking. Quasi-

stationary simulations are characterised by step-changes in parameters. In many real-

istic scenarios, such as Doppler-fading Rayleigh channels [3] exhibit smooth variation

in the channel coefficients, which may be important to investigate, as in the past re-

searchers have made a clear distinction between the convergence behavior on one hand

and the tracking behaviour of an algorithm on the other hand. This has lead to in-

teresting observations such as the RLS — superior in its convergence compared to the

LMS — may be inferior with respect to the LMS’ tracking [87, 88]. A smoothly time-
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varying channel rather than one with step changes would ensure that (i) the simulation

environment agrees with a more realistic communications scenario and (ii) it is really

the tracking behavior of an algorithm that is assessed.

STS-CMA with Maximum Ratio Combining. At present, the output of the

STS-CMA receiver is averaged over results obtained from the different receive anten-

nas, as evident from (2.62) in Sec. 2.6.2, which is also implicitly used for the proposed

broadband scheme in Chapter 6. The outputs obtained from different antennas can be

expected to exhibit variations in their SNR, and a maximum ratio combining (MRC)

approach, whereby contributions are weighted proportionally to their SNR, could po-

tentially provide further performance enhancement over simple unweighted averaging.

With the aid of the antenna substreams s̃i[n] and the finally detected symbol value

q(ŝ[n]), given the detection function q(·), the SNR values can be estimated if required.

Inclusion in Cooperative Relay Networks. In future communication systems,

such as 3G long term evolution or potential 4G systems, cooperative or relay networks

are likely to play a more dominant role [89, 90, 91]. Relay networks use several inter-

mittent radio transceivers between source and destination to relay a message and create

a virtual MIMO system by coordinating several spatially separated radio devices. In-

clusion of the derived algorithms into a cooperative relay network should be considered

with particular attention to the virtual MIMO aspect.

Combining of CM Algorithms and Transmit Beamforming. Advanced space-

time coding schemes such as extended orthogonal space-time block-coding [92, 93] can

be utilised to achieve both full code rate and full diversity order. However, such systems

require a degree of beamforming at the transmitter as well the availability of some CSI

via a feedback channel. Modifications of the STBC-CMA in order to incorporate such

advanced space-time coding approaches appear worthwhile, but are beyond the scope

of this thesis.



Appendix A: Wirtinger’s Calculus

The cost functions, ξ, used throughout this thesis are functions of a complex vector

w. The simplest way of minimising a function is following the direction of the negative

gradient, which requires derivation of ξ with respect to w. Therefore, two issues arise,

the complex and vector natures of the variable. This appendix highlights Wirtinger’s

vector valued calculus, as in [73, 40].

First, let us tackle the issue of complex valued derivation. Consider a function f(w)

where w is a complex scalar, w = a + bj. Note that f is a function of the two real

variables

a =
1

2
(w + w∗) and b =

1

2j
(w − w∗) . (7.1)

Hence, we can write

∂

∂w
=

1

2

(
∂

∂a
− j

∂

∂b

)

and
∂

∂w∗
=

1

2

(
∂

∂a
+ j

∂

∂b

)

. (7.2)

This leads to the following observations:

∂

∂w
w =

∂

∂w∗
w∗ = 1 and

∂

∂w
w∗ =

∂

∂w∗
w = 0. (7.3)

Now, let us consider the derivation of the complex valued function ξ (w). The
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derivatives with respect to w is defined as

∂

∂w
=

1

2












∂
∂a[0]

− j ∂
∂b[0]

∂
∂a[1]

− j ∂
∂b[1]

...

∂
∂a[Lw−1] − j ∂

∂b[Lw−1]












, (7.4)

whereLw is the length of w and a[n] and b[n] denote the real and imaginary parts of

the nth entry of w, respectively. Therefore the observations in 7.3 can be generalised

to vector valued derivatives through

∂

∂w
wT =

∂

∂w∗w
H = I and

∂

∂w
wH =

∂

∂w∗w
T = 0, (7.5)

where I and 0 represent Lw × Lw identity zero matrices, respectively.



Appendix B: Case Study with M=3

Antennas

Chapter 4 has derived the STBC-CMA for the case of M = 2 transmit antennas. In

the following, we briefly demonstrate how the algorithm can be adapted to the case

M = 3, and by implication, to a higher number of transmit antennas. We first outline

the signal model, then state the cost functtion, and thereafter derive the STBC-CMA

for M = 3.

Signal Model

For complex symbol constellations, Alamouti’s 2×2 STBC code is the only full rate code

that achieves the maximum diversity level. For a higher number of transmit antennas,

some diversity or throughput must be sacrificed. We consider the following codeword

with rate 3/4:

S =










a1
︸︷︷︸

a∗2 a∗3 0

−a2 a∗1
︸︷︷︸

0 −a∗3

−a3 0 a∗1
︸︷︷︸

a∗2










, (7.6)
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where M = 3, k = 3, and p = 4. Using the given codeword in an N -receive antenna

scenario leads to the pN ×M combined channel and encoder matrix given by

H̄ =









H̄1

...

H̄N









, (7.7)

where

H̄i =












hi1 −hi2 −hi3
h∗i2 h∗i1 0

h∗i3 0 h∗i1

0 h∗i3 −h∗i2












. (7.8)

It can be verified that H̄ possesses the same orthogonality property as the codeword

matrix, i.e.

H̄HH̄ =

(
N∑

i=1

M∑

j=1

|hij|2
)

IM×M . (7.9)

Hence, under narrowband channel conditions, H̄H can be used as a matched filter to

decouple the received sequences. If the channel is broadband, i.e. H̄ is a polynomial

matrix, the orthogonality of the transmitted signals is destroyed and simple STBC

decoding at the receiver is no longer feasible. In the following, a blind CM equaliser is

derived to combat the effect of the frequency selective channel on the transmitted data

streams and restore the orthogonality.

Algorithm Derivation

The outputs of the equalisers are collected over p = 4 symbol periods,



APPENDIX B: CASE STUDY WITH M=3 ANTENNAS 136

Yn =










y1 [n]
︸ ︷︷ ︸

y1 [n+ 1] y1 [n+ 2] y1 [n+ 3]

y2 [n] y2 [n+ 1]
︸ ︷︷ ︸

y2 [n+ 2] y2 [n+ 3]

y3 [n] y3 [n+ 1] y3 [n+ 2]
︸ ︷︷ ︸

y3 [n+ 3]










. (7.10)

The elements of Yn with under-braces correspond to those in S, which are based on

the same symbol a1. Due to the zeros in the codeword matrix, a new term, ξZeros, is

added to the cost function

ξSTBC = ξCM + ξZeros + ξXC

= ε

{
M∑

i=1

p−1
∑

τ=0

[
|Si,τ+1| (|yi[n+ τ ]|2 − 1)2

]

}

+

ε

{
M∑

i=1

p−1
∑

τ=0

[
(1− |Si,τ+1|) |yi[n+ τ ]|2

]

}

+ ε

{
k∑

i=1

aH
i,nai,n

}

,(7.11)

where the vectors ai,n, i ∈ {1, 2, 3} are appropriately chosen to minimise the cross

correlation between symbols that should be identical

a1,n =









y1 [n]− y∗2 [n+ 1]

y1 [n]− y∗3 [n+ 2]

y2 [n+ 1]− y3 [n+ 2]









. (7.12)

a2,n =









y∗1 [n+ 1]− y2 [n]

y1 [n+ 1]− y3 [n+ 3]

y∗3 [n+ 3] + y2 [n]









. (7.13)

a3,n =









y∗1 [n+ 2] + y3 [n]

y1 [n+ 2] + y2 [n+ 3]

y∗2 [n+ 3]− y3 [n]









. (7.14)
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In order to minimise the chosen cost function, the coefficient vectors of the three space-

time equalisers are updated recursively using the stochastic gradient method,

wi [n+ p] = wi [n]− µ
∂

∂w∗
i

ξ̂STBC , (7.15)

where µ is an appropriately selected step size. The following derivations are made to

obtain the gradient of the instantaneous estimate of the cost function:

• It can be shown that the gradient of the CM term is

∂
∂w∗i

ξCM =
M∑

i=1

p−1∑

τ=0

[
2 |Si,τ+1|

(
|yi[n+ τ ]|2 − 1

)
y∗i [n+ τ ]rn+τ

]
. (7.16)

• The gradient of the cost function term corresponding to the zero entries is derived

as

∂

∂w∗
i

ξzeros =
M∑

i=1

p−1
∑

τ=0

[2 (1− |Si,τ+1|) y∗i [n+ τ ]rn+τ ] . (7.17)

Minimising the norm of vector ai,n is achieved by minimising the expectation of

aH
i,nai,n,

aH
1,na1,n = y∗1 [n] y1 [n]− y∗1 [n] y

∗
2 [n+ 1]− y2 [n+ 1] y1 [n] + y∗2 [n+ 1] y2 [n+ 1]

+y∗1 [n] y1 [n]− y∗1 [n] y
∗
3 [n+ 2]− y3 [n+ 2] y1 [n] + y∗3 [n+ 2] y3 [n+ 2]

y∗2 [n+ 1] y2 [n+ 1]− y∗2 [n+ 1] y3 [n+ 2]− y∗3 [n+ 2] y2 [n+ 1]

+y∗3 [n+ 2] y3 [n+ 2] . (7.18)

aH
2,na2,n = y1 [n+ 1] y∗1 [n+ 1] + y1 [n+ 1] y2 [n] + y∗2 [n] y

∗
1 [n+ 1] + y∗2 [n] y2 [n]

+y∗1 [n+ 1] y1 [n+ 1]− y∗1 [n+ 1] y3 [n+ 3]− y∗3 [n+ 3] y1 [n+ 1]

+y∗3 [n+ 3] y3 [n+ 3] + y∗3 [n+ 3] y3 [n+ 3] + y3 [n+ 3] y2 [n]

+y∗2 [n] y
∗
3 [n+ 3] + y∗2 [n] y2 [n] , (7.19)
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aH
3,na3,n = y1 [n+ 2] y∗1 [n+ 2] + y1 [n+ 2] y3 [n] + y∗3 [n] y

∗
1 [n+ 2] + y∗3 [n] y3 [n]

+y∗1 [n+ 2] y1 [n+ 2] + y∗1 [n+ 2] y2 [n+ 3] + y∗2 [n+ 3] y1 [n+ 2]

+y∗2 [n+ 3] y2 [n+ 3] + y∗2 [n+ 3] y2 [n+ 3]− y2 [n+ 3] y3 [n]

−y∗3 [n] y∗2 [n+ 3] + y∗3 [n] y3 [n] . (7.20)

The gradient of this term with respect to the three coefficient vectors can be given

by:

∂

∂w∗
1

aH
1,na1,n = (2y∗1 [n]− y2 [n+ 1]− y3 [n+ 2]) rn

∂

∂w∗
2

aH
1,na1,n = (2y∗2 [n+ 1]− y1 [n]− y∗3 [n+ 2]) rn+1

∂

∂w∗
3

aH
1,na1,n = (2y∗3 [n+ 2]− y1 [n]− y∗2 [n+ 1]) rn+2 (7.21)

∂

∂w∗
1

aH
2,na2,n = (2y∗1 [n+ 1] + y2 [n]− y∗3 [n+ 3]) rn+1

∂

∂w∗
2

aH
2,na2,n = (2y∗2 [n] + y1 [n+ 1] + y3 [n+ 3]) rn

∂

∂w∗
3

aH
2,na2,n = (2y∗3 [n+ 3]− y∗1 [n+ 1] + y2 [n]) rn+3 (7.22)

∂

∂w∗
1

aH
3,na3,n = (2y∗1 [n+ 2] + y∗2 [n+ 3] + y3 [n]) rn+2

∂

∂w∗
2

aH
3,na3,n = (2y∗2 [n+ 3] + y∗1 [n+ 2]− y3 [n]) rn+3

∂

∂w∗
3

aH
3,na3,n = (2y∗3 [n] + y1 [n+ 2]− y2 [n+ 3]) rn. (7.23)
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The overall gradient of instantaneous cost function ξ̂STBC with respect to w∗
i is the sum

of the k = 3 contributions,

∂

∂w∗
1

ξ̂STBC =
[
2
(
|y1 [n]|2 − 1

)
y∗1 [n] + 2y∗1 [n]− y2 [n+ 1]− y3 [n+ 2]

]
rn

+
[
2
(
|y1 [n+ 1]|2 − 1

)
y∗1 [n+ 1] + 2y∗1 [n+ 1] + y2 [n]− y∗3 [n+ 3]

]
rn+1

+
[
2
(
|y1 [n+ 2]|2 − 1

)
y∗1 [n+ 2] + 2y∗1 [n+ 2] + y∗2 [n+ 3] + y3 [n]

]
rn+2

+2y∗1 [n+ 3] rn+3 (7.24)

∂

∂w∗
2

ξ̂STBC =
[
2
(
|y2 [n]|2 − 1

)
y∗2 [n] + 2y∗2 [n] + y1 [n+ 1]− y3 [n+ 3]

]
rn

+
[
2
(
|y2 [n+ 1]|2 − 1

)
y∗2 [n+ 1] + 2y∗2 [n+ 1]− y1 [n]− y∗3 [n+ 2]

]
rn+1

+2y∗2 [n+ 2] rn+2

+
[
2
(
|y2 [n+ 3]|2 − 1

)
y∗2 [n+ 3] + 2y∗2 [n+ 3] + y∗1 [n+ 2]− y3 [n]

]
rn+3(7.25)

∂

∂w∗
3

ξ̂STBC =
[
2
(
|y3 [n]|2 − 1

)
y∗3 [n] + 2y∗3 [n] + y1 [n+ 2]− y2 [n+ 3]

]
rn

+2y∗3 [n+ 1] rn+1

+
[
2
(
|y3 [n+ 2]|2 − 1

)
y∗3 [n+ 2] + 2y∗3 [n+ 2]− y1 [n]− y∗2 [n+ 1]

]
rn+2

+
[
2
(
|y3 [n+ 3]|2 − 1

)
y∗3 [n+ 3] + 2y∗3 [n+ 3]− y∗1 [n+ 1] + y2 [n]

]
rn+3.(7.26)

Simulation results for this algorithm are included in Section 4.4.3.



Mathematical Notation

General Notations

x scalar quantity

x vector quantity

X matrix quantity

h(t) a function of the continuous variable t

h [n] a function of the discrete variable n

H(z) z-trnasform of a discrete function h [n]

Sets and Spaces

N set of natural numbers

Z set of integer numbers

R set of real numbers

C set of complex numbers

(·)M×N set of all M ×N matrices with elements in (·)

Functions and Operators

•−−◦ transform pair, e.g. H(z) •−−◦ h [n]

(·)∗ complex conjugation

(·)T transpose
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(·)H Hermitian (conjugate transpose)

(·)−1 inverse

(̃·) para-Hermitian operator

|·| magnitude operator

E {·} the expectation operator

∇x gradient operator with respect to x

real (·) real part of the complex quantity (·)

imag (·) imaginary part of the complex quantity (·)

d2 (·) The Euclidean norm

diag (·) the diagonal matrix with elements (·)

argminf(x) returns x for which f(x) is minimum

det (·) determinant operator

min (a, b) minimum of scalar quantities a and b

lim
x→∞

(·) limit of (·) when x approaches ∞

∠ (·) angle of (·)

⌈·⌉ ceiling operator (round up)

⌊·⌋ flooring operator (round off)

(·)! factorial operator

ψ(.) maps (·) onto the nearest constellation point

ϕ (·) produces 1 if (·) is equal to 0 and 0 otherwise

O (·) complexity in the order of (·)

Symbols and Variables

α Rayleigh distributed variable

αfqn forgetting factor for the Fast Quasi Newton (FQN) scheme

αrqn forgetting factor for the Recursive Quasi Newton (RQN) scheme
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βν strength of νth entry in power delay profile

γ constant modulus

δf frequency spacing

δν νth element of power delay profile

∆ cosine of the sum of rotations

ǫ small number used to avoid numerical problems with division

and inversion

η gain of the space-time codeword matrix

ϑ angle of movement with respect to the reception path

ϑi rotation of the ith equaliser ouput after convergence is achieved

ι normalisation factor for differential encoding

κ

λ wavelength

µ [n] step size at time n

µCM CM step size

µPDF PDF-Fitting step size

µ̃PDF modified PDF-Fitting step size

ν frequency selective channel coefficient index

ξ cost function

ξCM CM cost function

ξDD Decision Directed cost function

ξPDF PDF-Fitting cost function

ξPDF|i,τ PDF-Fitting cost function for output i and delay τ

ξSTBC STBC-CMA cost function

ξSTBC|PDF STBC-PDF-CMA cost function

ξXC cross-correlation term of cost function
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ξZeros zero entries cost function

ρ STBC decoding gain

σ standard deviation of Gaussian kernel

σe standard deviation of estimation error

σh standard deviation of channel distribution

σs standard deviation of transmitted signal

σv standard deviation of the noise PDF

ς

τ delay index

ϕi decision on output i

̺ number of times each source symbol ai appears in the matrix S

ai [n] symbols entering the encoder at times n and n+ 1

a [n] vector containing symbols entering the encoder

an enforces STBC structure on equaliser outputs

c speed of light

c spreading code assigned to the user of interest

ci ith spreading code, derived from c

C channel capacity

CN normalised channel capacity

Cj convolutional despreading matrix corresponding to cj

d diversity gain

dji [n] signal received by antenna i and despread with code cj

d (z) diagonal element of matrix D (z)

di [n] vector containing the despread ith received signal

D (z) combined channel plus equaliser response in z-notation

e [n] error at time n
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e error vector

ei [n] error corresponding to output i at time n

e
(c)
i [n] CM error for output i at time n

e
(d)
i [n] DD error for output i at time n

E (z) channel estimation error

fb coherence bandwidth

fc carrier frequency

fd Doppler frequency

fm maximum Doppler frequency

f [l] vector difference between current guess and gradient

fS (z) denotes the PDF of S at z

g [l] search direction vector

Gσ (·) Gaussian kernel with standard deviation σ

G STBC decoding matrix

hij[n, ν] broadband fading channel from Antenna j to antenna i at time n

hij[0, ν] νth coefficient of channel from antenna j to antenna i

hij[n, 0] flat fading channel coefficient at time n

H narrowband channel matrix

H[0, ν] νth time slice of frequency selective stationary channel

H[n, 0] flat fading channel coefficients at time n

H[n, ν] νthslice of frequency selective fading channel at time n

H̄ effective channel matrix

Ȟ (z) noisy channel estimate

IM identity matrix of size M ×M

ĨN reverse identity matrix of size N ×N

k number of source symbols in the space-time codeword matrix
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K CDMA spreading gain

L window size

La length of data block in TRSTBC

Ld length of the polynomial d (z)

Lh length of channel impulse response

LFS length of fractionally spaced equalisers

Lp length of guard period

Ls length of regular and reverse burst

Lst length of space-time equaliser

Lw subequaliser length

m number of iterations for Conjugate Gradient

M number of MIMO transmit antennas

N number of MIMO receive antennas

NFFT number of frequency components

p number of symbol periods spanned by the codeword matrix

pf probability of a deep fade in a channel

p [l] gradient vector

P0 total transmit power

Pe(SNR) error probability corresponding to the given SNR

P [n] guard period

P permutation matrix

q used in intialisation of the Recursive Quasi-Newton method

q1 inside power of Godard’s algorithm

q2 outside power of Godard’s algorithm

qij constrained subequaliser vector

Qs number of symbols over which channel is assumed stationary
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Q(x) quadratic function of the vector x

ri [n] symbol received by antenna i at time n

rmx multiplexing gain

r[n] N × 1 data vector received at time n

Rc rate of the space-time coding scheme

R(SNR) the supported data rate for the given SNR

Rrr covariance matrix of the received vector

R̂rr [n] estimated covariance matrix at time n

Rinv estimate of the inverse covariance matrix

Rxx covariance matrix of signal x[n]

sj[n] symbol transmitted from antenna j at time n

s[n] M × 1 data vector transmitted at time n

S(f) Doppler power spectrum

S space-time codeword matrix

Si,τ entry at row i and column τ of matrix S

Ts symbol period

u [l] gradient vector with respect to f [l]

v speed of moving terminal

vi [n] AWG noise corrupting receive antenna i at time n

v[n] N × 1 additive white Gaussian noise vector at time n

−→v speed vector

w [n] equaliser coefficient vector at time n

w
(c)
i [n] CM coefficient vector for concurrent receiver at time n

w
(d)
i [n] DD coefficient vector for concurrent receiver at time n

w
(i)
j ith entry of coefficient vector wj

Wi convolutional equalisation matrix for STS
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xj [n] jth filtered input regressor vector at time n

X2
i short hand notation for |xi [n]|2

X2
i,τ short hand notation for |xi [n+ τ ]|2

y [n] output of adaptive equaliser

Yn equaliser outputs collected over a window of p symbol periods



Acronyms

2G second generation

3G third generation

4G fourth generation

AoA angle of arrival

AWGN additive white Gaussian noise

BER bit error ratio

CDMA code division multiple access

CM constant modulus

CMA constant modulus algorithm

CIR channel impulse response

CG conjugate gradient

CSI channel state information

DD decision directed

DS-CDMA direct sequence CDMA

DSSS direct sequence spread spectrum

DSTBC differential STBC

DSTS differential STS
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FDMA frequency division multiple access

FH frequency hopping

FIR finite impulse response

FQN fast quasi-Newton

FS fractionally Spaced

ICI inter-carrier interference

ISI inter-symbol interference

LAN local area network

LDR Levinson-Durbin recursion

LMS least mean square

LOS line of sight

MAC multiply-accumulate

MIMO multiple-input multiple-output

MIMO-CMA trivial generalisation of CMA to MIMO

MLSE maximum likelihood sequence estimation

MMSE minimum mean square error

MRC maximal ratio combining

MSE mean square error

OFDM orthogonal frequency division multiplexing

PAPR peak-to-average power ratio

PDF probability density function

PSK phase shift keying

QPSK quadrature phase shift keying

RLS recursive least squares

RQN recursive quasi-Newton

Rx receive antenna

SDMA space division multiple access
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SISO single-input single-output

SNR signal to noise ratio

ST space-time

STBC space-time block coding

STBC-CMA CM equaliser for STBC over ISI channels

STBC-Conc concurrent CM and DD equalisation for STBC

STC space-time coding

STS space-time spreading

STTC space-time trellis coding

TDMA time division multiple access

TRSTBC time reversal STBC

TRSTBC-CMA CM equaliser for TRSTBC over channels with ISI

Tx transmit antenna

ZF zero forcing
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