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Abstract

Assessments of required technologies for space systems has highlighted the need for better
autonomous control. Space-based autonomous control is a requirement of many missions,
including those in Earth orbit and deep-space missions. This thesis will investigate em-
bedded autonomous control applied to both these mission scenarios.

The purpose of this thesis is to investigate the benefits that can be made from moving
towards ‘bottom-up’ embedded autonomy that can be provided using a dynamical systems
theory approach. Dynamical systems theory permits control algorithms to be developed
that are based on differential equations. Different dynamical phenomenon, such as bi-
furcation theory and heteroclinic cycles are investigated in this thesis, and the stability
properties of each system investigated through stability analysis.

Two main themes are covered. First embedded autonomy for a deep-space asteroid
lander is investigated. The descent onto, contact with, and operations on, the surface of
the asteroid are modelled and a quantitative comparison between conventional and new
attitude and translational controllers is presented. The second main theme is embedded
autonomy for computationally limited micro-spacecraft. A range of action selection con-
trollers are developed and implemented into a generic Earth orbiting spacecraft model.
The characteristics of the controllers are assessed by stability analysis.

An overarching theme is an investigation of the ability of all the controllers to re-
cover from failures. This is a feature that all new controllers must posses in order to
provide robustness in an effective manner. A range of different failure studies are pre-
sented throughout the thesis. In conclusion, this thesis presents an alternative embedded
‘bottom-up’ approach to spacecraft autonomous control which can enhance mission ro-
bustness, particularly for computationally limited systems. The work has been funded by
EADS Astrium Ltd and the Science and Technology Facilities Council under the CASE
studentship scheme.



Chapter 1

Introduction

1.1 Preface

New science missions to locations far from Earth is one of the main goals proposed by
space agencies. Also, space agencies are pushing for the continued return from investment
in Earth observation (EO) missions. One common system that can be introduced (or im-
proved) in either of these scenarios, to better achieve these goals, is on-board autonomous
control. Functions that are conventionally performed by ground stations or individuals
‘in-the-loop’ such as: planning activities, sequencing spacecraft actions, ensuring correct
functioning and recovering from failures, can be delegated to the autonomous spacecraft
and real benefits can be achieved [6].

Autonomy can be defined as:

“self-government; the capacity to make an informed decision; the capacity of a system
to make a decision about its actions without the involvement of another system or opera-
tor” [7].

Most spacecraft to date have had little autonomous control authority and any decision
making capability has been restricted to preprogrammed schedules. With continued inter-
est and investment this will change, and over time spacecraft will become more independent
systems.

By investing in autonomous control, space agencies are ultimately trying to build
intelligent spacecraft. These intelligent spacecraft will have the capacity to make fully au-
tonomous decisions based on the spacecraft state and the mission goals. The introduction
of these autonomous algorithms will remove the need for continuous communication with
spacecraft, thereby improving performance. It is also foreseen that the introduction of
autonomous ground-station operations will reduce operating costs, generally estimated to
be 10% of the total mission cost [8].

The improvement of any spacecraft’s ability to act autonomously is considered to be
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the answer to many of the problems associated with conventional spacecraft operations.
In particular autonomy has been identified as a tool that will increase robustness, reduce
errors and operator stress, enhance safety and cut communication bandwidth requirements
[9]. Autonomy techniques have already been used in some spacecraft operations. The first
example of this was Deep Space 1 (DS1) and the Remote Agent Experiment [10]. During
this mission several autonomy based concepts were validated for spacecraft including:
high-level goal orientated commanding, on-board planning, robust plan execution and
model-based fault protection and recovery. The results of the DS1 experiments established
that aspects such as: artificial intelligence, software engineering and systems engineering
are all important factors in the development of spacecraft that will be able to conduct
increasingly complex tasks with decreasing interaction from other systems [11].

This thesis investigates new control concepts in spacecraft autonomy. In particular,
the concept of embedded autonomy is proposed as a ‘bottom-up’ approach, rather than
conventional ‘top-down’ artificial intelligence. Research into embedded autonomy will be
considered over a range of applications including:

• Descent control of an asteroid lander. A comparison between a novel implementation
of direct adaptive control and more conventional phase-plane and potential function
controllers will be drawn. The fault detection, isolation and recovery (FDIR) at-
tributes of the respective controllers will be compared. Also, a study into the appli-
cability of using an adaptive controller during the sampling procedure of the lander
mission will be presented.

• Autonomous action selection algorithms for micro-spacecraft. Three different types
of novel low computational cost action selection algorithms are developed and imple-
mented. The relative merits of each controller are discussed and the FDIR abilities
of each are shown.

• Autonomy by embedded electronics. One of the autonomous action selection al-
gorithms is developed further by creating an analogue electronic integrated circuit
where an action is selected based upon the voltages in circuitry.

By conducting investigations into each of these points the overall objectives of the
thesis are met. The objectives in question are two fold. The first objective is to demon-
strate the applicability of novel implementations of adaptive control techniques to space
systems as a form of embedded autonomy. Here the advantages of adaptive control laws
will be demonstrated and a quantitative comparison between adaptive and conventional
controllers provided. The second objective is to demonstrate the use of dynamical sys-
tems theory for implementation as an action selection control law. The use of dynamical
systems theory is used to decrease the burden on CPU limited micro-spacecraft. The aim
of the thesis to to show how these new control laws can be implemented successfully and
efficiently into future micro-space systems.
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Chapter 1 provides a brief overview of the thesis objectives and aims. Current and
proposed future missions that are associated with, and will benefit from, this research are
described.

Chapter 2 discusses various aspects of spacecraft autonomy. A brief introduction to
conventional forms of autonomous action selection and attitude control is given. Then,
the theory behind the autonomous control used throughout this thesis will be introduced
and described with relevance to the work undertaken.

Chapter 3 deals with the first part of the deep-space embedded autonomy concept.
A model of a micro-gravity asteroid lander is presented. The dynamics and kinematics
associated with the descent onto, and landing on, the surface of the asteroid are given.
The subsystems of the lander that are relevant to the work conducted here are described
and an investigation into possible behaviour from encountering different asteroid surface
materials is conducted.

Chapter 4 applies different autonomous controllers to the asteroid lander model. Three
different controllers, including a novel implementation of adaptive control, are developed
and implemented, then a quantitative comparison between the three is shown. The FDIR
capabilities of the three controllers are then assessed by investigating the response of the
controllers to a range of faults.

Chapter 5 deals with a range of novel autonomous action selection algorithms for Earth
orbiting micro-satellites. The model into which the algorithms are implemented is defined
and a comparison between the controllers is discussed. Again, an FDIR study is conducted
and the responses of the controllers shown.

Chapter 6 investigates the practical application of a low computational overhead micro-
satellite action selection algorithm. First, the algorithm is developed and is then applied
to the model defined in chapter 5 and a study regarding the controllers effectiveness and
FDIR capability is conducted. Subsequently, a practical design for implementation of the
control law using analogue electronics is presented. The functionality of the controller is
then embedded in the electronic circuit.

In chapter 7 the work is summarised and conclusions are drawn from the results. An
overview of the outcomes from the research and areas of interest for future work are
presented.

1.2 Autonomy in Space Missions

Autonomy has been highlighted as one of the main focus areas in space systems engi-
neering. It will allow space science missions to be conducted cheaper and also permit the
insertion of spacecraft into more exotic, deep-space locations. By removing the ‘human-
in-the-loop’ aspect entirely, or to some increased degree, space systems will be expected
to work as efficiently, if not more, than legacy systems.

To achieve this level of autonomy, research has been conducted in the field of artifi-
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cial intelligence where autonomous systems are designed to synthesize the mechanisms of
logical deduction. Space systems adopting these methods of autonomy have resulted in
some success, but the limitations of the techniques have also been discovered. In particu-
lar, conventional artificial intelligence cannot be completely validated for mission critical
applications.

A mathematically robust technique for autonomous control is therefore desirable. In
this case, through stability analysis, the convergence of any control problem can be in-
vestigated and the control engineer can then be guaranteed of any output as a result of
any sequence of inputs to the control law. In this thesis such means of mathematically
robust autonomous control will be demonstrated. The space systems to which they will
be applied will be discussed in the following sections.

1.2.1 Marco-Polo Asteroid Sample Return Mission

Marco-Polo [12] has been proposed as an M-class joint mission by the European Space
Agency (ESA) within the Cosmic Vision programme and by the Japanese Space Explo-
ration Agency (JAXA). The primary goal of this mission is to return a sample from a near
Earth object (NEO) to the Earth, where investigations will lead to a better understanding
of the evolution and origins of the solar system. Some of the investigations that must be
conducted before such a mission can proceed include:

• studies into the ability of the spacecraft to operate safely, including manoeuvring,
close to the asteroid

• a definition of the proposed scientific experimentation that can be conducted on the
surface of the asteroid

• a parallel study to understand exactly what is being collected and how it relates to
the solar system evolution

The technical requirements of the Marco-Polo mission have already been assessed.
Data has already been determined for the optimal launch and transfer to the asteroid, the
operations that can be performed while near or on the surface of the asteroid, and the
best method by which to return the sampled asteroid material to the Earth. Alongside
this, the technologies that must be developed to successfully achieve the mission have been
determined and a strategy for realising these has been identified.

Mission Specifications

The general mission time-line in order to present a robust design case for this M-class
mission is known. The aim is to launch the mission in 2017, with a backup in 2019.
After launch the spacecraft is proposed to stay in the proximity of the asteroid for 8-24
months to conduct scientific experimentation and take relevant samples. To achieve this
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time-line, new technologies necessary for successful completion of the mission should be
at technology readiness level (TRL) 5 by 2009, or plans must be in place to raise the TRL
to 5 by 2011.

There are a range of options regarding the spacecraft system design. Due to the
complexity of landing the spacecraft on the surface of the asteroid, a dual spacecraft with a
small lander and parent orbiting system was initially proposed but due to mating/demating
problems a final single system option was selected. This spacecraft will use a single
chemical propulsion system for both outbound and return journeys to the asteroid but
with a separate propulsion system for attitude control during the landing phase. The
samples collected from the asteroid will be held in a seperate capsule, which will be the
only element of the spacecraft to return to the Earth’s surface.

For orbit injection the spacecraft will be launched from Kourou in French-Guiana by a
Soyuz-Fregat. The asteroid chosen is 1999JU3 [13] due to its close proximity to the Earth
at the time of the 2017 launch.

There have been similar systems developed in the past regarding landing on and oper-
ating on the surface of other solar system bodies, examples include Rosetta/Philae [14] and
elements of the Mars/Venus Express [15] [16] missions. The proposed landing spacecraft
will therefore be developed using the bests aspects of these missions.

The spacecraft is designed to land at any location on the illuminated side of the
asteroid using visual navigation to ensure the landing velocities are limited and a meter-
level landing accuracy is achieved. The target asteroid selection (with a rotation period
of 7.5 hours) ensures that there is sufficient time to carry out the descent, sampling and
ascent under full illumination conditions. The impact energy is absorbed using 3 legs
which are sized to operate up to 3 times for multiple sample opportunities.

A dual-floor hexagonal shape is the main body for the spacecraft. The floor towards the
base of the spacecraft supports the fuel tanks, thrusters for orbital transfer and insertion,
pipework, landing gear, and proximity cameras and landing sensors. The upward facing
floor supports the remote sensing payload and avionics with radiators for heat transfer.
The thrusters for attitude control during landing are mounted on the outer framework of
the spacecraft. This baseline concept can be seen in figure 1.1.

Guidance Navigation and Control (GNC)

There has never been a mission with the intention of directly landing on and then taking
samples from the surface of an asteroid before. As a consequence, the main requirements
of the Marco-Polo GNC are those associated with the landing phase onto the asteroid.
The mission will begin in orbit around the asteroid so that it can be characterised.

Although the GNC technology for descent onto the surface of the asteroid is a focus area
of continued interest, a preliminary scenario for the descent phase is as follows (reference
figure 1.2). The spacecraft will begin from a home position that is 2 km above the surface
of the asteroid. From here it will await until the optimal time when a de-orbit burn is
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Figure 1.1: Marco-Polo lander (EADS Astrium Ltd)

performed. During this time the pointing attitude of the spacecraft will ensure electrical
power through the solar arrays.

The de-orbit burn will subsequently enable the spacecraft to leave the home position
en-route to the gate position. This gate position is defined at 500 m above the landing site
on the surface of the asteroid. The attitude of the spacecraft during this phase is arranged
so eclipse is avoided and power is maintained through the solar arrays.

Another burn is now performed to stabilise and hold the spacecraft at the gate position.
The spacecraft waits at the gate position for one hour while all final communications with
Earth are concluded. During this hour the spacecraft controls its velocity so it is zero
relative to the asteroid surface below. This is the point where full autonomy is passed to
the spacecraft for the remaining phase of the descent.

Now that the spacecraft is stable at the gate position, a controlled vertical descent can
commence. An initial vertical velocity of 20 cm/s is initiated and the spacecraft moves
towards the surface of the asteroid while maintaining the lateral velocity of the spacecraft
with respect to the desired landing site to be zero.

When the spacecraft reaches 50 m above the surface of the asteroid the vertical velocity
control is removed and the spacecraft is free to fall towards the surface of the asteroid.
During this time lateral control continues. At the point where the spacecraft is 15 m above
the asteroid all control is removed until contact is made.

For the purposes of mapping and then selecting the desired landing location the MAG-
ELLAN [17] algorithm is used. MAGELLAN is an autonomous feature extraction and
matching algorithm that uses visual information obtained from the on-board cameras.
Being autonomous it reacts quickly to features of the asteroid encountered by the camera
during descent. Determination of an appropriate descent path is provided by the navi-
gation for planetary approach and landing system software (NPAL) [18]. This technique
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alongside a doppler velocimeter gives an accurate definition of the spacecraft velocity and
position.

Position and velocity control is performed by 10 N hydrazine thrusters arranged in
an 8-thruster configuration. The attitude is estimated by a gyro-stellar estimator. Star
trackers will also be used to detect the target in the acquisition/insertion phase.

The measurement of the relative attitude of the spacecraft with respect to the terrain
is required for the last part of the descent. Vision-based relative navigation could be used
for that purpose, a back-up option could be to use multiple beams such as the laser range
finder that has been used successfully on the Hayabusa mission [19].

Figure 1.2: Marco-polo descent phase (EADS Astrium Ltd)

Spacecraft Leg Configuration

Landing simulations carried out have proven that two options for the leg deformation
processes are feasible. Primarily, a simple crushable damper integrated into the legs shows
stable landing can be achieved within all the envisaged landing scenarios. Another option
considered is a spring-ratchet assembly where the kinetic energy absorbed by the spring
is stored by a ratchet.

The landing gear consists of three independent legs. Each leg consists of a tube which
includes either the crushable material, or spring (plus external ratchet), at its top and a
piston tube that penetrates into the crush material, or spring cavity, while landing.

Technology Development

There are several technologies that need to be developed to the required TRL by 2011.
The technologies outlined in an EADS Astrium Ltd assessment study all related to the
new scenarios expected to be encountered in the proximity to the asteroid.

The GNC software discussed above has not been used in this situation before and so
must be validated. The leg configurations for the spacecraft have not been developed and
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tested. Methods for obtaining a sample of the asteroid regolith have not yet been devel-
oped. Due to the composition of the asteroid being unknown, the sampling mechanism
will have to be capable of operating with a wide range of materials. Finally, the Earth
re-entry capsule is an area of development that needs consideration.

For each of these technology development areas activities have been planned. This
thesis aims to consider two of these areas, the GNC for proximity operations and the
contact dynamics for the spacecraft legs. All of these activities are planned to be finished
before 2012. Therefore they all should be available in time for the proposed Marco-Polo
mission planning where the earliest launch date is November 2017.

Relevance to Thesis

The asteroid chosen for the Marco-polo mission is 1999JU3. Although the semi-major axis
of the asteroid’s orbit is close to the Earth’s, the eccentricity and inclination of its orbit
means that it does not pass close enough to the Earth to make communication delays
insignificant. Therefore, a degree of autonomy is required regarding aspects of the mission
where descent to the surface of the asteroid and operations on the surface of the asteroid
must be conducted without continuous contact with a ground team.

A section of this thesis is dedicated to the autonomous control problems encountered
in an asteroid sample return mission. The main focus will be on attitude control during
the descent and contact phase on the surface of the asteroid and a subsequent translation
control during the regolith sampling procedure. Alongside the attitude and translation
control studies, a range of FDIR studies are conducted where the response of each of the
controllers to failures in the hardware of the spacecraft system are given. The general
aspects of an asteroid lander autonomous attitude (and translational) control considered
and investigated in this thesis are given in table 1.1.

Table 1.1: Asteroid lander control relevance to thesis

Key Issue Impact of Autonomy Impact from Thesis
Uncertain contact dynamics Controller must be robust Direct adaptive control

due to unknown and capable of dealing investigated for real time
asteroid material with changes in real time gain changing properties
Uncertain regolith Controller must deal with Direct adaptive control

properties uncertain translation algorithm capable of
using minimal fuel working in uncertain

during sampling process environments
Possibility of encountering Controller must react quickly Direct adaptive control

unexpected faults to recover from any stability properties
during operation failure scenario can be verified and validated
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1.2.2 Action Selection in Spacecraft

The process involved when a spacecraft chooses an appropriate action is most typically
defined before the mission begins. This process is known as tasking and scheduling. The
long-term tasking of a spacecraft deals with accomplishing a mission objective over the
life-span of the mission. Short-term tasking defines what action the spacecraft should be
doing at that specific moment. It is this short-term action selection that is investigated
in this thesis.

Although the main focus for autonomous action selection in current missions is in the
field of rovers [20][21][22], there also exists similar requirements for orbiting spacecraft.
These deep-space planetary spacecraft are used to return the data collected by rovers to
Earth as the rovers themselves do not have the necessary bandwidth needed for this task.
These spacecraft are subject to the same communication time delays while selecting the
appropriate tasking to return data to Earth.

The following sections will discuss the evolution of the control algorithms used for con-
ducting such tasking. The first use of algorithms are presented alongside the development
of tasking algorithms that are of interest to the work in this thesis. This is mainly for
micro-satellites where the CPU computational power available for the algorithm is limited.

Deep Space 1

Deep Space 1 (DS1) [10] was the first of NASA’s New Millennium missions. It was used as
a platform for testing a variety of new technologies and most relevant to this thesis, DS1
tested an artificial intelligence system designed to plan and execute spacecraft activities.
This Remote Agent Experiment (RAX) [23] acted as a synthetic member of the operations
team and scheduled tasks on-board the spacecraft. RAX defined its task schedule by
combining the goals provided by the ground team with the data that instrumentation
provided regarding it own internal state. These developed plans where then executed
while monitored by a ground team to assess their efficiency. An additional aim of the
RAX experiment was to redefine the task scheduling when artificial faults were imposed
on the system.

RAX was made up of three components, each playing a significant role. The planner
and scheduler (PS) produced flexible plans, specifying the basic activities that must take
place in order to accomplish the mission goals. The smart executive (EXEC) carried
out the planned activities while the mode identification and recovery (MIR) monitored
the health of the spacecraft and attempted to correct any faults that occurred. These
three elements worked together and communicated with each other to make sure that DS1
accomplished the goals of the mission.

When DS1 was launched in May 1999 a milestone in the history of development of
spacecraft autonomy was achieved. In two separate experiments the remote agent was
given full control of DS1 and demonstrated numerous autonomy concepts ranging from
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the ability to respond to high level goals by generating and executing plans on-board, to
robust plan execution and model-based fault protection.

On completion of the DS1 mission it was proposed that future work regarding au-
tonomous control should be conducted. The RAX framework was to be improved upon in
three categories: improvements in the capabilities of each of the three main components,
improvements in the applicability of the framework, and an investigation into possible
missions where the framework could be utilised.

The RAX framework was pursed by development of contingency planning that enabled
the PS to create a plan with multiple options that could be chosen if any of a range of
likely events were to occur, reducing the need to re-plan. By improving the ability of
MIR to handle uncertainties permitted better tracking of multiple plans the spacecraft
may have been following. A range of new user-centric tools for developing the associated
algorithms for RAX were created. This implies that RAX could be implemented into
similar technologies faster, while being easier to validate. The technology in DS1 and
RAX was also transferred to other NASA missions [10].

PROBA - Project for Onboard Autonomy

PROBA [24] was successfully launched by ESA in 2001, initially for a one year mission. The
purpose of the mission was to demonstrate new onboard technologies and the opportunities
and benefits of increased spacecraft autonomy.

The mission was based around not only the spacecraft using on-board autonomy but
the ground-segment of the mission being automated as well, greatly decreasing the op-
erational costs. Some of the autonomy functions operated on-board PROBA included;
operation and resource management, control of camera pointing, task scheduling and data
transmission. PROBA automated ground-segment functions included: spacecraft pass op-
erations, spacecraft performance evaluation, and user requests being autonomously trans-
ferred to the spacecraft via the Internet.

Successfully demonstrated autonomy elements in the PROBA mission were mainly
attributed to the autonomous operation of the attitude and control navigation system
(ACNS) [25]. A general ACNS is responsible for acquiring and maintaining on-board
knowledge of the attitude and orbit for applying the necessary attitude manoeuvres. An-
other important aspect of the PROBA mission was the demonstration of autonomous
fault detection isolation and recovery (FDIR). Any fault occurring in the ACNS system
was compensated for by new control commands as a consequence of any detected failure.

When the spacecraft was operating normally all attitude information for the space-
craft was acquired autonomously. Also, knowledge of the spacecraft orbit was acquired
autonomously via a GPS receiver, in another important demonstration of on-board au-
tonomy.
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Micro-spacecraft

To support future science missions a new trend is to investigate decreasing spacecraft size
by orders of magnitude. This is becoming more practical with rapid electronic advances
and decreasing size and in greatly increasing capability with very low power consumption.
This decrease in size also directly benefits the mission in lower launch costs.

Selecting a weight of < 1 kg and the size of a 10 cm cube, a design has been established
termed the CubeSat (figure 1.3). Alongside this a launch tube was developed that can
hold three CubeSats. The launch tube is easily attachable in almost any location on the
last stage of an expendable launch vehicle (ELV) and requires only one signal to open the
launch tube door for release.

Figure 1.3: CubeSat [1]

CubeSats have become a standard in developing low cost space missions. The intro-
duction of CubeSats into an otherwise agency dominated industry has permitted smaller
institutions such as some businesses and universities to conduct their own space missions.
CubeSat missions have been involved as technology demonstrators [26] and for small scale
science experiments [27], but they can be utilised for complex science missions where mul-
tiple cheap spacecraft are needed in different locations for taking measurements at the
same instant [28].

Along with the benefits that are gained from moving to smaller spacecraft systems
there are inherited disadvantages. Most of these come as a result of the small physical
size of the system. Everything that is necessary for the spacecraft to survive and operate
must be contained within the small physical dimensions of the CubeSat. This means that
all subsystems, including conventionally large subsystems such as power and propulsion,
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must either be miniaturised or alternative means incorporated. Another drawback to the
CubeSat system is that for orbit insertion the CubeSat is usually ‘piggy-backed’ with a
larger more expensive system, so the CubeSat must go to the same orbit as the primary
payload.

Relevance to Thesis

With regards the implications of the previous examples of spacecraft tasking and command
scheduling the aim of this thesis is to develop means of autonomous action selection for
use in miniature spacecraft, such as the CubeSat. One of the main problems associated
with a decrease in the size of a spacecraft is the decrease in the mass, volume, and power
available for computational processors.

Any micro-spacecraft action selection algorithm will not be capable of using conven-
tional means of autonomous control, such as artificial intelligence, as these traditionally
command significant computational load and memory allocation. To overcome these lim-
itations the use of dynamical systems theory as a control method is investigated. Using
this method, dynamical phenomenon, implicit in the differential equations that describe
the system to be controlled, are manipulated resulting in an efficient means of controlling
a computationally limited spacecraft. The general aspects of micro-satellite autonomous
action selection considered and investigated in this thesis are given in table 1.2.

Table 1.2: Micro-spacecraft control relevance to thesis

Key Issue Impact of Autonomy Impact from Thesis
Conventional forms of Micro-spacecraft need Dynamical systems theory

autonomous action control algorithms that use investigated as
selection are low processing power and alternative means of

computationally expensive memory allocation autonomous action selection
Traditional means of Cheaply constructed micro- Stability analysis of
action selection are satellites need robust control algorithms provide
expensive to develop control that has good action selection assurance

and cannot be validated and stability characteristics
verified mathematically

Small satellites have Micro-spacecraft must Control algorithms
limited interactions operate for long time presented can be simulated
with ground teams periods without assistance and outcomes predicted

over long time frames

1.3 Thesis Goals

Throughout this thesis ideas taken from dynamical systems theory are applied to two main
topics. The first of these is spacecraft autonomous attitude and translational control and
the second is spacecraft autonomous action selection. Consequently the main aim of this
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thesis is to provide new and novel approaches to the control problems that exist in current
and proposed future space missions that result as a consequence of conventional forms of
control.

Two specific space systems have been selected for investigation for during the course
of this research. These were selected based on the current needs and proposed missions of
space agencies, industrial companies, and academic institutes. The first type of spacecraft
is an asteroid lander. This system was chosen as a result of the proposed ESA Marco-
Polo mission which aims to return asteroid regolith to the surface of the Earth. The
second spacecraft type is the micro-satellite. Organisations are becoming interested in
micro-satellites due to the capability of launching independent experiments at much lower
costs. By investigating various scenarios using the two spacecraft types, a broad range of
applications for the proposed controllers can be considered.

Various problems exist with some of the conventional methods of autonomous control
for spacecraft. Algorithms involving expert systems tend to be expensive in the computa-
tional cost associated with running the algorithm onboard the spacecraft. Alongside these
there exists a real problem in the validation and verification of these methods. A control
designer will conduct intensive testing processes on a controller covering every possible
scenario that the spacecraft may encounter to ensure the controller works efficiently, but
unexpected scenarios cannot of course be captured.

All of the controllers investigated in this thesis therefore aim to cover some of the
conventional problems associated with autonomous control. By developing controllers
based on dynamical systems theory, which results in the controllers consisting of sets of
differential equations, mathematical stability analysis can be applied to determine their
stability characteristics. Controllers are developed that utilise the inclusion of control
parameters into the differential equations that lead to changes in the qualitative nature of
the equations as these control parameters are varied. It is these changes in characteristics
that constitute the action selection procedures developed. Also, as the control algorithms
exist solely as a set of differential equations, the costs associated with CPU computation
and memory allocation are decreased meaning that in principle they can be applied to
smaller space systems.

1.4 Published Work

Dynamic Autonomous Control for Future Space Science Mission, IAC-08.E2.2.6, Interna-
tional Astronautical Congress, Glasgow, 29th September - 3rd October 2008 [Winner of
best UK student entry to student competition].

Autonomous Control of an Asteroid Lander, European Air and Space Conference, CEAS-
09.4.E4/5.1 Manchester, 26th - 29th October 2009.
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Dynamic Intelligent Autonomous Control of an Asteroid Lander, 224(8), 865-879, Pro-
ceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engi-
neering, January 2010.

A Dynamical Systems Approach to Micro-Spacecraft Autonomy, AAS 10-179, AIAA AAS
Specialists’ Conference, San Diego, 14th - 17th February 2010.
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Chapter 2

Autonomous Control

2.1 Introduction

Before a detailed description of the autonomous control methods developed in this the-
sis are described, a precise definition of what is implied by autonomy must be given.
Autonomy is different from automation. Automation is used widely in many industrial
applications and can be described as:

“the practice of using computers or advanced electronics to conduct repetitive procedures”
[29].

Automation procedures expect a specific result as a consequence of a defined input pa-
rameter set. Autonomy, however, is an entirely different field of study. Autonomy, with
regards to spacecraft engineering, may be defined as:

“the practice of using a reasoning engine to make decisions and implement actions on
the basis of a complex set of input parameters” [29].

As discussed in chapter 1 autonomous control algorithms have begun to appear in space
systems. Most notably in deep-space science missions such as past and current rovers
[30][31]. Autonomy algorithms are based upon achieving a goal, therefore they tend to be
adaptable to changes in the system state, or environment, during operations.

In this chapter a review of autonomy is presented. To begin the review general char-
acteristics of autonomy with respect to application in the space industry will be defined
and discussed. The importance of, and the benefits to be gained from, the implementa-
tion of autonomous systems in spacecraft is discussed. Then, the individual components
of autonomy that comprise an overall framework of autonomous systems are described.
Emphasis will be placed on the areas of autonomy addressed in this thesis.

Following this will be a review of artificial intelligence (AI). AI has made significant
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advances and has been responsible for improvements in the ability of spacecraft to perform
tasks autonomously. It is therefore prudent to have an understanding of these techniques
and how they are applied to autonomy. Although modern AI methods have been proven
capable of providing efficient solutions to some spacecraft autonomy problems, they are
not without limitations. They are inherently hard to validate due to the nonlinear nature
of the input-output mapping and they also tend to be computationally expensive.

One of the main aims of this thesis is to produce an alternative to current AI methods
of autonomous control used for spacecraft. The branch of mathematics used to develop
such alternative autonomous algorithms is dynamical systems and bifurcation theory, and
it is with this field that the next section of this chapter is concerned. The methodology
behind the utilisation of dynamical systems and bifurcation theory is presented alongside
a description of the dynamical phenomenon associated with how the autonomous control
algorithms are developed. Dynamical systems theory provides an alternative to AI with
the benefit that the control laws all exist as one (or more) differential equations, requiring
less computational effort by the spacecraft CPU. Also stability analysis techniques can be
applied to the differential equations leading to methods for verifying and validating the
response of controllers.

Taking the ideas of dynamical systems theory further, another of the aims of the thesis
is to apply adaptive control algorithms, in a novel way, to space applications. The last
section of this chapter defines the adaptive control problem, then proceeds to describe
the mechanisms behind it and the stability of the control method. When a real system
can be defined by a set of differential equations then there exists the possibility of a
real-time control-gain varying solution that adapts to changes in the system plant and/or
environment. By introducing such an adaptive controller, substantial gains can be made
over conventional controllers as is demonstrated in subsequent chapters.

2.2 Autonomy in Space Systems

The promise of autonomy is that tasks which are conventionally performed by ground-
station teams can be transferred to the spacecraft. By realising these autonomous algo-
rithms costs can be saved by reducing, or completely removing, the ground-station teams
and thereby reducing the responsibility these teams have for spacecrafts actions. Also, by
implementing autonomous algorithms on-board the spacecraft for data analysis, the quan-
tity of data that is transmitted back to Earth is reduced. Therefore, mission performance
increases. This has been made possible by advances in fields such as miniature on-board
processors and improved software development [11].

The consequence of introducing autonomous algorithms that reduce the mission op-
eration and data analysis costs (MO and DA) and decrease the quantity of data being
transmitted to Earth is that new space missions can be realised. In deep-space missions,
where knowledge about the environment in which the spacecraft will operate is limited,

16



autonomy becomes a necessity. In such environments there is no possibility of repairing
the spacecraft and increased communications delays between operator commands require
that the system be capable of operating autonomously to a high level of efficiency [32].

Space-based autonomy can be characterised by six individual aspects. The develop-
ment and introduction of any of these components will lead to MO and DA cost reduction
and performance increases. These will be discussed next, with specific emphasis applied
to the areas addressed in this thesis.

2.2.1 The Six Components of Space-Based Autonomy

The capabilities which contribute to spacecraft autonomy are categorised into six different
areas that are listed below [32]:

• Guidance, navigation and control (GNC)

• Mission planning, scheduling and resource management

• Intelligent action selection

• Fault detection, isolation and recovery (FDIR)

• Onboard science data analysis

• System architecture

A brief description of each of these individual components will now be covered.

GNC

Autonomous controlled descent of an asteroid lander is one of the main topics of this
thesis. This is the control aspect of GNC, and can be defined as:

“the orientation maintenance of the spacecraft attitude and its trajectory control” [33].

The GNC system is responsible for defining the attitude state of the spacecraft, de-
termining the orbit the spacecraft is following, planning and executing the manoeuvres
required to meet mission goals and pointing instrumentation [34].

The traditional method of GNC involves spacecraft following a predefined sequence of
commands sent to the spacecraft from ground teams. The sequence of commands send to
the spacecraft requires continuous assessment of the information being received and can
lead to large time delays between commands. This process must be approved by each
subsystem affected by the command as no command must lead to the disruption of any
other task being conducted. During the implementation of any command sequence, if a
fault occurs the spacecraft is placed in safe mode until a ground-based operator can help.
Figure 2.1 illustrates a traditional GNC approach for spacecraft.
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Figure 2.1: Traditional GNC (adapted from [2])

This is a lengthy and time consuming process, but with the introduction of autonomy
the spacecraft can be left unattended for long periods of time. This provides a more
efficient operating process and greater return on investment. Autonomous techniques
succeed where traditional methods restrict the mission through ground operations and
larger costs [35].

In introducing an autonomous aspect of GNC to the system the spacecraft becomes
a closed-loop system. Any action that is implemented is now dependent on the internal
state of the spacecraft and not parameters send from the ground station. In this approach
only high-level mission commands are send to the spacecraft and all the GNC analysis is
conducted on-board. The spacecraft is then in a position to handle any unexpected events
by autonomously changing the applied action as the internal state of the system changes.
This technique decreases the information burden placed on the data cycle between the
spacecraft and the ground station and the spacecraft is left to execute its own decisions.
Figure 2.2 illustrates an autonomous GNC approach for spacecraft.

Figure 2.2: Autonomy flow chart (adapted from [2])
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Mission Planning, Scheduling and Resource Management

Planning is the process which constructs the potential consequences of actions and schedul-
ing is the assignment of resources to activities at a specific instant [36]. Similar to GNC
operations, traditionally these tasks are done by ground teams and uplinked to the space-
craft. New design approaches emphasise that through autonomy, requests can be evaluated
on ground and uplinked to the spacecraft, then the spacecraft later schedules the activities
in an efficient manner while considering all constraints [37].

The requests that are send to the autonomous spacecraft are high-level and goal ori-
entated. All subsequent tasking is conducted on-board. This greatly reduces mission
operation costs. Also, as no task is defined by the ground team, the spacecraft is free to
perform opportunity tasks based on unexpected events that would otherwise have been
missed by the ground team. An extra benefit comes in a reduced communications band-
width [38].

Resource management plays an important role in mission planning and scheduling. The
resources of the spacecraft must be well managed for proper implementation of autonomy
as failure of any resource can disrupt the mission planning and scheduling for a particular
activity or action.

Intelligent Action Selection

The second main topic dealt with in this thesis is autonomous action selection. An
autonomous action selection algorithm executes spacecraft activities while being robust
against failures in the system. Each task that the spacecraft performs is either to accom-
plish a mission goal or maintain proper functioning.

Conventionally, action selection algorithms are based on expert heuristic rules (such as
If-Then rules). Every possible outcome must be accounted for and the computational bur-
den can be large. These algorithms can be expensive to develop and are hard to validate.
This is a problem for smaller missions with limited on-board processing capabilities.

In this thesis a different approach to autonomous action selection is presented. The
action selection algorithms are defined by sets of differential equations that evolve as a
consequence of a change in the spacecraft internal state. This decreases the number of
rules necessary for control, decreases the computational expense, and through stability
analysis the algorithms can be validated.

Fault Detection, Isolation and Recovery

When a fault occurs the spacecraft system must continue to function as efficiently as
possible. Spacecraft FDIR software breaks this down into separate tasks. First, there is
an algorithm continually assessing the health of the spacecraft by limit checking. If any
thresholds are broken in the usual operating limits of the spacecraft then that system is
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isolated. The software then decides if a back-up redundancy system should be used in
place. This can be expensive in doubling, or tripling, the cost of some subsystems.

There are a range of different techniques used for FDIR. Most common are fault tree
analysis (FTA) [39], sneak circuit analysis (SCA) [40] and failure mode, effect, and critical
analysis (FMECA) [41]. Generally a range of different control parameters are stored in
the spacecraft memory in “look-up” tables that represent different operating conditions.
When the operating criteria satisfies the heuristic rule a different set of control parameters
are used in the spacecraft.

It is the aim of this thesis to investigate the FDIR characteristics of the autonomous
GNC and action selection algorithms developed. These algorithms remove the need for
separate software to conduct FDIR due to the control laws evolving with the spacecraft
internal state. This introduces an embedded aspect of autonomy to the control laws,
decreasing reaction times to any fault encountered.

Onboard Data Analysis

As new spacecraft are required to be smaller and lighter this poses demands in delivering
sufficient bandwidth for data return. A method for reducing the need for large data
bandwidths is to conduct some of the scientific analysis onboard the spacecraft. Only
important and relevant information is then returned to the ground-team.

An example of this is the ESA Gaia mission [42]. At any instant there is approximately
ten thousand observable objects that can be observed by space-based telescopes. The
Gaia mission has onboard data analysis techniques for deciding which objects are worth
investigating and only returns the information for these.

System Architecture

The system architecture brings together all the six components noted in section 2.2.1.
This involves all the spacecraft subsystems using universal parameters, such as the same
clock to regulate exactly when events occur in each of the individual segments of software.
All individual software components are then capable of reacting to any event in any other
component, improving reliability.

As many algorithms can be running simultaneously such complex software can be hard
to develop. Such software can then be notoriously hard to validate. More complex missions
require additional validation and this can increase total mission costs.

2.3 Artificial Intelligence

Autonomous control and artificial intelligence (AI) have been evolving simultaneous and
as a result many of the techniques used in one field have been implemented in the other.
Spacecraft have conventionally used AI methods for autonomous control in areas such
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as automated guidance, navigation, and control, or in task management and execution.
Using AI to perform these tasks leads to quicker decision making possibilities and relieves
some of the burden place on the supporting team. A definition of AI that is relevant to
autonomous space operations is:

“the study and design of intelligent agents” [43].

In this sense an intelligent agent is aware of its own environment and goals and implements
procedures with the aim of achieving a goal.

2.3.1 Modelling System Structures

Modelling the structure of a system has the aim of defining the relationships between
elements in the environment of the system or internal states of the system itself. These
structural models do not need to be defined mathematically and are usually heuristic
relationships and therefore can be learned over a period of time.

The most obvious example of a structural model is a map. Maps are based on dis-
tinctive locations and the directions and distances between them. The analogy with a
mechanical system would be locations as actions (or movements) and the direction and
distances would be the transitions between such actions. Robotic maps can be used for
planning a sequence of tasks where the last ‘location’ is the desired goal of the system [44].

Rules and heuristics are another example of structural models where the model is de-
fined as a set of conditional relationships between sensory input, from either internal state
sensors or external environment sensors, and actions. Such methods form the underlying
model for expert systems and fuzzy logic [44] [45].

Similar to physical modelling, the primary application for structural models is for
controlling a systems. Structural models can be used to interpret sensor data, as a con-
sequence of a change in the desired action, or to determine the appropriate control input
to achieve a desired result. Planning can also be done using structural models to predict
the results of actions, or to compare sensor data to expected sensor inputs. The ASPEN
and COSMO [46] tools use heuristical models to determine optimal command sequences
to achieve specified goal states - these systems are in use on Cassini.

2.3.2 Modelling System Unknowns

Many space-related environments are unknown and therefore the exact physics and struc-
ture of the environment is hard to model. Here a more probability oriented approach to
modelling is adopted where likely outcomes as a consequence of a certain series of inputs,
or subjectively known mathematical relationships, is adopted. Once the model begins to
produce outputs, these results can be retained and subsequent outputs reflect the previous
as the model ‘learns’.
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Neural Networks are the most common in the family of empirical models and are based
on a perceived understanding of the workings of the human brain. The human brain has
an immense number of interconnected neurons, where a number of neurons must be active
to influence the actively of another neuron. Individually, each of these neurons performs
the most basic of tasks but when they are combined together lead to complex behaviours.
A Neural Network is a network of interconnected artificial neurons used to learn and model
mathematical functions [47] [48].

Neural networks have been developed theoretically and can be trained to model practi-
cally any mathematical formula or logical expression. Limitations have been encountered
where, due to the requirements for large numbers of artificial neurons to solve some sim-
ple problems, the practicality of solving complex problems is reduced. Large numbers of
artificial neurons place a high burden on the controller and as a result long periods of
time are needed to converge to solutions of useful meaning. One method developed, for
relieving this problem, uses the idea of specialisation where a number of smaller subset
neural networks are trained to individual aspects of a bigger problem and then the results
are combined by a parent, higher-level, neural network.

A neural network consists of any number of interconnected layers of neurons. The input
to each successive layer is a weighted sum of outputs from the neurons in the previous layer.
Each neuron performs a simple mathematical calculation on this weighted sum. The first
layer, called the input layer, receives inputs from the environment. There are generally as
many input neurons as inputs, though inputs may outnumber input layer neurons. The
output layer consists of one neuron per output and calculates the final result of the neural
network calculation. The result of the network is a series of one or more numerical values,
often binary. The series can represent responses to individual signals or can be combined
into a single output. Figure 2.3 is an example of an architecture for a small neural network
with three inputs, a two-neuron input layer, a single three-neuron hidden layer, and two
final result outputs. The neuron function is represented by f, X represents inputs to the
neuron and W represents the weights applied to those inputs.

Figure 2.3: A feed-forward neural network

Each of the neurons in the network performs a simple calculation and these are defined
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by that neurons internal function. These simple functions are usually based on mathe-
matical thresholding or linear functions that contain a saturation limit. For the purposes
of trained networks the shape and/or magnitude of these functions are predetermined but
can be adjusted as a consequence of the eventual output of the network. Examples of
variable parameters are linear gradients, magnitudes of bias terms, and magnitudes of
threshold values.

A wide range of AI problems have been addressed by neural networks but only in
a few specific cases have efficient solutions been found. The main application for neural
networks is in highly nonlinear systems where the behaviour of the system is unpredictable
and hence a degree of ‘learning’ is most appropriate. If the inputs and outputs of a system
are being monitored and ‘learned’ by a neural network then a model of the system can
be created without specific knowledge of the system dynamics. Such a model can then
be used to control the system of unknown dynamics [49]. A space application for such a
control method has been found in neutral buoyancy docking maneuvers [50].

2.3.3 Expert Systems

Expert systems are designed with the intention of imitating the response of known experts
in the field. These systems use integrated mathematical formula alongside heuristic rules
to gain the best from physical and structural models and determine the optimum output.
Similar to neural networks, expert systems are based on human approaches to problem
solving. The input to the system is based on the human operator’s knowledge and hence
the ability of the system to perform to a high degree of efficiency is based on the operator
[43] [44] [45].

As a consequence of the operator input, an expert system is based solely on this
knowledge. Any problem solving capability is therefore derived from the data interpre-
tation through the heuristic rules. Searching methods drive the rules to determine the
rules most suitable to the problem under investigation. After deciding on the specific rule,
symbolic processing uses inference and the knowledge base to produce a procedure for
solving the problem or obtaining the goal.

The solution to a problem is generally presented as a model: a list of rules to be
followed, a network of states and goals with appropriate transitions specified, or by an
explicit mathematical model. Expert systems are expected to be able to explain the
reasoning behind and the method for achieving the solution.

The two classes of rules used in expert systems are procedural and heuristic. Procedural
rules are specific rules that are invariant and do not alter between operators. Heuristic rules
are rules built around the human operator’s experience. The rules and knowledge base
are generated either by human operators or by a sequence of learning. Human operators
provide the data sets around how the rules solve the problems. Learning generally occurs
through repetition of a task or by copying a similar task. In conventional learning some
classified examples of procedures or data are shown to the system and then incorporated
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appropriately. In learning by analogy, the system uses data or a rule similar, but not
identical, to the circumstance and adapts it, adding the new rule or data to its program.

The most common form of expert system is fuzzy logic. Since humans generally use
degrees and relative values to make decisions, fuzzy logic is often necessary to fully describe
expert system rules in order to approximate them more closely. In general, fuzzy logic is
applicable whenever degrees of truth are required or useful. One system using fuzzy logic
in space is Earth Observing-1 (EO-1). EO-1 uses fuzzy logic to determine and maintain
appropriate satellite constellation formations [51].

A system based on fuzzy logic begins with the definitions of the degrees of truth, i.e. the
association of belonging to a symbolic range. The degrees of truth for various conditions,
or the degree of belonging to each fuzzy set, are defined. Interpolation between these
definitions determines the degree to which new data belongs to the fuzzy set, which is in
turn used for mathematical logic.

While fuzzy logic allows for vague matching of symbols and rules, the rules of basic
logic and sets apply. Combining rules and applying them to data allows for making
implications and inferences. New sets can be generated from the old ones by set unions
or set intersections.

Several types of problems have been solved with the expert system approach including
data analysis, medical diagnostics, fault diagnostics, and design. Expert systems such
as that on Deep Space 1 can be used to plan and execute sequences of actions in order
to achieve mission goals. MYCIN [52] used the results of blood tests to diagnose blood
diseases and recommend appropriate treatments. Also, Jet-X [53] is an algorithm for
diagnosing military aircraft engine faults.

2.4 Dynamical Systems and Bifurcation Theory

In this section the theory associated with the concepts of dynamical systems and bifurca-
tion theory as applied to space-based autonomy are presented. Dynamical systems the-
ory can be used as an interesting alternative to conventional AI methods of autonomous
control. Dynamical systems theory provides the control design engineer with different
advantages to AI methods. Primarily, the computational cost associated with operating
control algorithms based on differential equations is less than AI methods. Secondly, the
differential equations that constitute the algorithm can be subject to stability analysis.
This stability analysis can then be used as a means of verification and validation of the
control laws to ascertain that a specific outcome will result as a consequence of a series of
inputs to the control law. While these new methods provide advantages for some applica-
tions, they do not provide high-level planning and scheduling which is only possible with
top down AI.

By defining the autonomous control law by a set of distinct differential equations, that
vary only as a function of the system state, a different approach to autonomous control
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is then realised. Conventionally, autonomous control algorithms use scenario driven ta-
bles that change the performance of the controllers based on sensor data that define the
dynamic situation. The control gains that are implemented from these look-up tables are
predefined from simulated control situations. A high level executive can select different
look-up tables of gains in the event of failures. The aim here is to reverse this proce-
dure by permitting the controller to define its own gains based on the current information
coming from the real-time sensor information. In doing so, the controller will be able to
react quickly to changes in the systems dynamics, due to the removal of the need to refer-
ence other algorithms, define certain scenarios, and implement new control gain schemes.
Alongside this a reduction in memory allocation is achieved by removal of unnecessary
internally stored information. This will be used as the basis of the embedded autonomy
algorithms in chapter 4.

2.4.1 Dynamical Systems

The transient settling of systems that dissipate energy, by damping, is something that is
seen regularly in engineering and has been thoroughly investigated. Through the transient
response, the system decays towards an equilibrium position. A simple example of a system
approaching an equilibrium position is to set the forcing term in equation 2.1 to zero -
this is shown in figure 2.4. For this system, defining an unforced oscillator, the stable
equilibrium position is at rest. Setting k = 0.08, if a plot of the trajectories is given on the
system phase plane (x, ẋ), the solution is seen spiralling towards the origin (x, ẋ) = (0, 0)
- this is the stable equilibrium state of rest. Therefore, for any initial position on the
phase plane (xi, ẋi), the equilibrium point (0, 0) attracts all the trajectories. For such a
system the evolution of the dynamics towards an equilibrium goal state can be verified
analytically. This is unlike AI methods discussed earlier which are algorithmic and difficult
to explicitly verify.

ẍ + kẋ + x3 = Bcost (2.1)

Similar to a system being attracted to a point, system trajectories can also be attracted
to stable periodic cycles in a phase plane. Figure 2.5 describes two stable motions that
can result as a consequence of different initial conditions applied to the same oscillating
system defined by equation 2.1. In these cases the oscillator is now forced with k = 0.08
and B = 0.2.

The plots in figure 2.5 do not show the transient settling trajectories for the system,
as there exists a range of initial conditions that would lead to different final cycles. One
method for observing the trajectories settling to specific attracting cycles is the stro-
boscopic Poincare section [54]. In the upper example in figure 2.5 the attractor is at the
fundamental frequency of the system, therefore leading to one Poincare section at point A;
the transient trajectory of this system would show a continuous strobing effect converging
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Figure 2.4: Attracting behaviour of an unforced oscillator (ẍ + kẋ + x3 = 0)

to point A.
The four most common types of attractors are: equilibrium points, periodic cycles,

quasi-periodic motion and chaotic mixing attractors. In the case for chaotic motion, a
prerequisite of the attractor to develop is the existence of at least three state variables in
the system. Any dynamical system can identify the final stable motions in a phase space
by using these attractors and subsequent analysis.

Dynamical systems, such as the forced and unforced oscillator described above, can
have their dynamic behaviour described in a qualitative manner by defining the known
attractors present in its associated phase space. In more complex nonlinear dynamical
systems there is the possibility of multiple attractors of different types existing at the
same time, leading to complex behaviours. Conducting analysis on the systems phase
space leads to an understanding of all the attractors of each type existing, and the initial
conditions that lead to the specific attractors. Once this is known, the areas encompassing
attracting trajectories is known as the basin of attraction. Generally, all the basins of
attraction pertaining to each attractor define the entire phase-space.

By means of defining all the locations of attractors and their relative basins of attrac-
tion, the attractor-basin phase portrait of the dynamical system is defined [55]. Subsequent
analysis of the phase portraits of dynamical systems using ranges of values for the system
coefficients leads to a better understanding of the system behaviour. For the oscillator
investigated above the system coefficients are the periodic forcing magnitude B and the
damping term k. For different ranges of B and k different attractors and hence final
motions exist. This can be plotted on a k − B coefficient plane to gain insight into the
system.

The different ranges of coefficients plotted on this plane are separated by certain
boundaries. To understand what occurs at these coefficient boundaries, analysis can be
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Figure 2.5: Attracting behaviour of a forced oscillator (ẍ + kẋ + x3 = Bcost)

conducted where the coefficients k and B are assumed to be control parameters. Incre-
mentally changing the values of the control parameters, leading to a boundary in the
coefficient plane being crossed, a qualitatively different behaviour ensues. There has been
a qualitative change in the long-term behaviour, associated with a change in an attrac-
tor. In theory there is a mathematically precise value of the control setting at which the
qualitative change, or bifurcation, occurs. A complete understanding of such qualitative
changes means knowing the topological changes in the structure of the phase portrait at
the bifurcation threshold.

Throughout this thesis ideas taken from dynamical systems theory will be applied to
control problems. Goal points on a phase plane will represent desired attitudes and/or
translational locations, and the manner by which the trajectories on the phase planes
propagate are used as a means of defining the characteristics of the controller. By ma-
nipulating sets of differential equations it is then possible to define specific attractors (or
goals), and the qualitative changes in the phase plane can be developed such that they
are desirable in the specific control problem. This will be used as the basis of the action
selection algorithms in chapter 5.

2.4.2 Bifurcation Theory

A bifurcation is the qualitative change in the behaviour of a dynamical system as a con-
sequence of a change in one (or more) of the control parameters present in the system.
Bifurcations can occur statically through local equilibrium points, and dynamically by
local periodic cycles, as well as global bifurcations in the phase portrait.

27



First, consider the two dimensional set of differential equations 2.2. Here a general
description of the types of local attractors present can be defined by using some mathe-
matical proof as the basis for behaviour validation.

ẋ1 = f1(x1, x2, . . . , xn)
ẋ2 = f2(x1, x2, . . . , xn)

...
ẋn = fn(x1, x2, . . . , xn)

(2.2)

Equations 2.2 define the general form of a system of differential equations used to
describe a dynamical system. The equilibrium points of this system are defined where:

f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

...
fn(x1, x2, . . . , xn) = 0

(2.3)

Stability analysis can then lead to the system being represented in vector form:

ẋ = Ax (2.4)

where x = [x1 x2 · · · xn]T and:

A =




a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann




(2.5)

with

a11 = ∂f1

∂x1
a12 = ∂f1

∂x2
a1n = ∂f1

∂xn

a21 = ∂f2

∂x1
a22 = ∂f2

∂x2
a2n = ∂f2

∂xn

an1 = ∂fn

∂x1
an2 = ∂fn

∂x2
ann = ∂fn

∂xn

(2.6)

The eigenvalues of the system then result as a consequence of the determinant of the
equation:

det [A− Iλ] = 0 (2.7)

where I is an identity matrix. This can then be used to define the characteristic equation
of the system.

The stability of the system is therefore defined by the mathematical trace p and the
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determinant q of the matrix A. Another quality of the system that defines the type of
stability characteristic the systems has is the discriminant (∆ = p2 − 4q) of matrix A.

The local phase portraits of this system can be classified according to the nature of
the eigenvalues of the linearised systems. All the possible cases are shown in figure 2.6.
In figure 2.6 the axes of the plot define the stability properties of the dynamical system
under investigation. The horizontal axis is defined by the trace of the matrix form of the
differential equations and the vertical axis is the determinant of the system.

Figure 2.6: Phase portraits and root structure of a linear system [3]

Saddle-Node Bifurcation

Close to a bifurcation point the properties of a dynamical system change. Consider the
one-dimensional system defined by:

ẋ = µ− x2 (2.8)

where x is a scalar. The equilibrium point (ẋ = 0) gives a quadratic relationship between
µ and x, and in the plane (x, µ) shows a parabolic equilibrium path. One of the branches
of this parabola is unstable, and marks the separation between the basin of attraction of
the stable path and the basin of attraction of the point leading to infinity.

The saddle-node bifurcation is also known as a fold bifurcation. This is because one or
more of the branches of the attractor change stability ‘folding’ the attractor basin of the
phase plane. This can be demonstrated by a second order equation analogous to equation
2.9:
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ẍ + ẋ + x2 − µ = 0 (2.9)

In figure 2.7 three phase portraits of this systems are shown. The first is drawn at
µ = 0.5, so there is an attracting equilibrium point and a saddle. As the control parameter
µ is decreased these two equilibria approach one another and at µ = 0 they collide. The
resulting critical phase portrait can been seen in the second diagram of figure 2.7. If µ is
decreased past zero the equilibrium point vanishes, as illustrated in the third diagram.
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Figure 2.7: Phase portraits for saddle-node bifurcation (µ = 0.5(a), µ = 0(b), µ = −0.5(c))

Hopf Bifurcation

Consider an unforced, damped nonlinear oscillator, whose motion can be described by:

ẍ + bẋ + ω2x + σ = 0 (2.10)

where σ is a non-linear function. Rewriting this equation in terms of two first-order
equations gives:
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ẋ = y

ẏ = −by − ω2x− σ
(2.11)

It can be shown that as b changes from positive to negative, the eigenvalues of the
linearised system cross the imaginary axis as a pair at: λ1, λ2 = ±iω2. This bifurcation
therefore addresses the change in the linear damping in the motion of an oscillator.

If σ = 0, the system reduces to being linear and the motion of the system can be
qualitatively described by oscillations. The addition of a nonlinear term (σ 6= 0) leads to
a different qualitative behaviour.

For analysis consider equation 2.10 where σ = ẋ3 and b = −µ. Here µ will act as the
control parameter, so that:

ẍ− µẋ + x + ẋ3 = 0 (2.12)

Stability analysis of this equation shows an attracting point at the origin but exhibits a
bifurcation as µ changes from a positive to a negative value. A sequence of phase portraits
is shown in figure 2.8. When µ < −2 the origin is an asymptotically stable node which
becomes a stable spiral as the eigenvalues become complex at µ = −2. When µ > 0 the
origin becomes an unstable spiral and the flow tends to a limit cycle. Finally at µ > 2 the
origin is an unstable node, and the phase paths wind away from the origin. This change
in qualitative behaviour with the creation of a limit cycle is a Hopf bifurcation.
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Figure 2.8: Phase portraits for Hopf bifurcation (µ > 2(a), µ = 0(b), µ < −2(c))

During the development of the controllers in chapter 5 it will be the bifurcating qual-
itative changes in the behaviour of the sets of differential equations that will be used to
define the response of the controllers. For example, a set of differential equations can be
manipulated such that if a certain threshold is broken in a specific control parameters
then a Hopf or Fold bifurcation occurs. This in turn leads to a change in the transient
behaviour and hence a change in the behaviour of the control law. These bifurcations are
embedded into the differential equations and hence also into the control laws, removing
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the need for separate algorithm, hence reducing the computational load on the spacecraft
CPU and memory allocation.

2.4.3 Heteroclinic Cycles

A heteroclinic cycle is a collection of trajectories that connect sequences of equilibria or
periodic solutions via saddle-sink connections. In the phase space of a dynamical system a
heteroclinic cycle is a path connecting a series of equilibrium points. The final heteroclinic
connection in the series is the unstable manifold of the last equilibrium point and the stable
manifold of the first equilibrium. This leads to a continuous cycling path being developed.

Heteroclinic cycles will be manipulated in this thesis in chapter 5 where sequences of
saddles will be connected to produce a dynamical system that bifurcates depending on
control parameters that lead to subsequent qualitative changes in the phase space of the
dynamical system. The heteroclinic cycle utilised in this thesis is of the structurally stable
type, therefore it has a basin of attraction that attracts all initial conditions.

A simple example of a heteroclinic cycle is shown in figure 2.9, and defined by equations
2.13 and 2.14.

ẋ = y(1− x2) (2.13)

ẏ = −x(1− y2) (2.14)

In figure 2.9 each of the four saddles, located at the four corners of a square, have
two stable and two unstable manifolds. The connection between the stable and unstable
manifolds then forms the heteroclinic cycle.
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Figure 2.9: Example heteroclinic cycle

2.5 Adaptive Control

One of the main aims of this thesis is to apply adaptive control algorithms to space-based
control problems as a novel means of embedded autonomy. What follows is a definition of
the control problem followed by the mathematical development and reasoning behind the
control algorithm that is used for two different control problems.

The first of the control problems addressed by an adaptive controller is attitude control
of an asteroid lander, discussed in chapter 4. In the case of the asteroid lander the adaptive
controller is used to demonstrate the advantages to be made by introducing an adaptive
embedded type control in a situation where the dynamics that may be encountered are
highly uncertain. The advantages gained in this case arise from the real-time gain changes
that are made to deal with these uncertain situations. Following from this, the asteroid
lander is subjected to FDIR studies and the advantages of having an adaptive controller
are explored.

An adaptive controller is also developed for the purpose of action selection in micro-
spacecraft, discussed in chapter 5. Here, the adaptive controller tries to find a solution to
a resource allocation problem and in doing so actively ‘searches’ for the most appropriate
action. Again FDIR studies are conducted and the benefits of the adaptive controller
under these circumstances becomes apparent.
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2.5.1 Definition of Problem

Many definitions of adaptive control exist in the literature [56] [57], but there is no standard
definition. There are however an excepted range of criterion that define the commonal-
ity between all adaptive controllers, and these are used universally in the developmental
process [4].

Primarily, the most common idea used in all adaptive control is a means of selecting a
performance measure through which all respective controllers can be compared. Generally,
this performance parameter is the same as for conventional forms of control such as settling
time, rise time, or steady-state error. In a system where the goal state is changing however,
other more system specific performance measures are used, for example power usage in
electrical systems.

The second universal idea is the evaluation of the actual on-line process behaviour
with respect to the desired or ideal behaviour. Again this is not exclusive to the adaptive
controller case as the desired output of any controller can be compared to the ideal case.
However, with the adaptive nature of this type of control a much wider range of useful
operation can be gained and therefore this must be reflected in the evaluation process.

The third idea is the parameter adjustment procedure used to drive the process towards
the desired behaviour. This is unique to adaptive control. Adaptive control can be used
in two main strategies: indirect adaptive control where the algorithm implements changes
in the plant dynamics and then changes the control gains accordingly, or direct adaptive
control where the feedback gains change solely as a function of the internal state of the
system. By defining the type of adaptive control, and subsequently the procedure used to
drive the behaviour, a good understanding of the control strategy can be gained.

Conventional and/or robust controllers are designed around the premise of using a
priori, or known system information. Adaptive controllers use a priori and posteriori
information. This posteriori information is used to refine the control algorithm, if the
output posteriori information matched the a priori information then the desired state of
the controller has been achieved, otherwise the difference between the two can be used
drive the adaptive nature of the controller.

In this thesis a direct adaptive control algorithm is developed based around the concept
of ‘following’. That being, the desired behaviour is defined by the output of a simulated
reference model a priori designed to account for standard specifications such as overshoot,
settling and rise times, and steady-state behaviour.

This section of the thesis deals with the evaluation of the system behaviour through
a reference model giving a comparison between desired and actual system states. This
instantaneously computed error between the desired and actual plant state is in turn used
to adjust the control gains. This adaptation rule reduces an index including a positive
weighted combination of the error signals and a positive weighted combination of the
differences between the instantaneous gains and their ideal values.
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The adaptive control problem dealt with in this thesis is control of a continuous multi-
variable linear system subject to uncertainty in the parameters. The continuous time,
linear model control problem is solved for the linear process equations:

ẋp(t) = Apxp(t) + Bpup(t) (2.15)

yp(t) = Cpxp(t) (2.16)

where xp(t) is the n × 1 plant state vector, up(t) is the m × 1 control vector, yp(t) is
the q × 1 plant output vector, and Ap, Bp and Cp are matrices with the appropriate
dimensions. The objective is to find, without knowing Ap and Bp, the control up(t) such
that the plant output vector yp(t) approximates the output of the reference model:

ẋm(t) = Amxm(t) + Bmum(t) (2.17)

ym(t) = Cmxm(t) (2.18)

where xm(t) is the n×1 model state vector, um(t) is the m×1 model output or command,
ym(t) is the q × 1 model output vector, and Am, Bm and Cm are matrices with the
appropriate dimensions. The dimension of the model state may be less than the dimension
of the plant state. Since yp(t) is to track ym(t), the number of model outputs must be
equal to the number of plant outputs.

Fixed gain robust controllers have numerous techniques for designing the system [58]
[59], although often these controllers do not satisfy the design criterion. The main reason
for this is robust controllers are optimised for a specific operational range. The controllers
perform well when within this range but inherent large errors when they are applied to any
regime not previously anticipated during the design phase. Not only will the operating
regime play a part in the performance of the controller but the range of uncertainty in
the system itself may be too great for a fixed gain to control. Another problem with a
fixed gain controller is that the controlled process itself may vary during operation due
to life cycle changes in the system. Fatigue and stresses not present in the system may
occur over time leading an eventual degradation in the performance of the controller as a
consequence.

Generally, in the case where a fixed gain controller can be applied to control a system
then it should be used due to the lower degree of complexity of the system and easier
implementation of the control laws. For a system that may only vary to a small degree
during operation then an alternative method to full adaptive control is to use a fixed
gain controller with an adaptive compensator. As a result less effort is placed on the
development of the adaptive controller, leading to a less complex controller, which uses
less resources as a consequence.
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2.5.2 Theory for Direct Adaptive Control

The concept of ‘following’ means that the control law is based upon driving the response
of a system to that of a known desired result. Models built to artificially represent a
mechanical plant include real plant design specifications so the outputs from the model
respond with a specific rise time, overshoot, and settling time. When the model controller
is designed well the inputs to the plant, which drive the resultant plant output, should be
an accurate representation of the desired response. A block diagram of a typical model
reference control system is shown in figure 2.10.

Figure 2.10: Model reference control system (adapted from [4])

Often there arises the case in space-based autonomy when the control designer has
limited knowledge of the dynamics of the plant during operation, an example being deep-
space missions. Therefore, benefits can be gained by adopting an adaptive control law
with the premise of reducing the effect of these unknown parameters on the system. By
implementing an adaptive controller a greater level of performance can be gained with
little knowledge of the plant dynamics. The control engineer has then to choose between
the two types of adaptive controller.

The first of these is indirect (explicit) adaptive control. Here the controller estimates
the plant parameters and as a result make changes to the resultant control gains. The
second type, which will be take further and used in this thesis is direct (implicit) adaptive
control where the error signal in the system is driven to a minimum by adjusting the
control gain as a function of this error.

In the process of developing controllers based on the idea of perfect model following
(PMF), interesting properties of the controllable system arise. A PMF controller can be
designed for a system of the form:

Plant:
ẋp(t) = Apxp(t) + Bpup(t) (2.19)

Model:
ẋm(t) = Amxm(t) + Bmum(t) (2.20)
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where all the symbols have their usual meaning.
It can be seen that if at some time t∗ the plant state vector is identical to the model

state vector (xp(t∗) = xm(t∗)) then at all subsequent times the plant state vector will be
equal to the model state vector. Also, if a controller is introduced of the form:

up(t) = Kc(xm − xp) + Kxxm(t) + Kuum(t) (2.21)

where Kc, Kx and Ku are control gain matrices. Then if the plant state vector is not
equal to the model state vector it should evolve to the model state asymptotically.

In the design phase for PMF controllers there are demands on the plant model struc-
ture. It has been shown that a PMF controller exists if the gains Kx and Ku can be found
provided that [60]:

(Am −Ap) = BpKx (2.22)

BpKu = Bm (2.23)

Equations 2.22 and 2.23 require that either the number of controlled states is equal to
the number of states, or if the case exists where the model and plant are similar. PMF
controllers therefore have a number of restricting criterion to their application. In general
a PMF controller is not easily applied to deep-space mission control problems because
there is the likelihood that it is not possible to determine all the plant states.

To address the problem associated with knowing all the system states, a similar type
of controller has been developed based on the concept of only tracking the model output
vector. These types of controller work on the same principles as the controller described
above only now the the system process output vector tracks the model output vector and
all the associated states in the control problem are bounded. This type of controller is
described next and then used subsequently as the basis for the adaptive controller in this
work.

2.5.3 Output Model State Following

As discussed earlier the continuous linear model reference control problem is solved for
the linear process equations 2.15 and 2.16. In addition to the criteria presented in the
previous section, there are three extra assumptions made about this type of controller.
Firstly, the characteristics of the system plant to be controlled (Ap,Bp) are controllable
and the associated output can be stabilised. Also, the system matrices Ap and Cp are
observable, i.e. all system states can be calculated. Finally, the rank of matrix Bp is
maximum.

The requirement for this new controller is now to find the control up(t), in a manner
which the plant output vector yp(t) is as close as possible to the output of the reference
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model, defined by equations 2.17 and 2.18. This must be done without knowledge of the
plant characteristics Ap and Bp. For this output model state controller the maximum
dimension of the model state may be less than the dimension of the plant state, but since
yp(t) is to approximate ym(t), the number of model outputs is always equal to the number
of plant outputs.

Stability of the Output Model State Following System

For adaptive controllers it is not always possible to use the frequency domain for stability
analysis techniques. This is due to the frequency domain characteristics of the modelled
system changing alongside the changing plant dynamics. Other means of stability analysis
do exist, such as that described in section 2.4.2, that analyse the system based on local
linearisations. These techniques can provide some insight into the internal structure of the
system but in general, due to the nature of the changing locations of the stability poles
in the frequency domain analysis, this does not prove sufficient to guarantee stability over
the operational range of the system.

There exists Lyapunov stability analysis techniques [61] that can be applied to complex
dynamical systems such as nonlinear nonautonomous systems. To illustrate these concepts,
consider a system:

ẋ(t) = f(x, t) (2.24)

along with some definitions regarding the properties of the function [4]:

Definition(1): “A continuous function W(x) is said to be a locally positive definite func-
tion if W(0) = 0, and W(x) > 0 in some neighborhood around the origin.” This implies
that the function under investigation is always positive unless the goal state (W(0)) is
reached.

Definition(2): “A continuous function W(x) is said to be a positive definite function
if W(0) = 0, and W(x) > 0 in Rn(W(x) ≥ 0 in Rn) and there exists some r > 0 such

that:
inf

‖x‖ > r
(W (x) > 0)” This definition states that the function is globally positive

definite but now the origin is not explicitly the goal position. Note that the definition for
positive definite functions require that W (x) be strictly positive.

Definition(3): “A continuous function V (x, t) is said to be a (locally) positive definite
function if there exists a (locally) positive definite function W (x), such that V (x, t) ≥
W (x) for all x in Rn.” Therefore, any subset of W (here V ) is positive definite if it be-
longs to the same neighborhood.

40



Definition(4): “A continuous function W (x, t) is said to be a negative definite function
if −W (x, t) is positive definite.” Hence the function under investigation has the inverse
properties in a similar neighborhood with negative sign.

The aim is to prove the stability properties of such a system defined by equation 2.24,
given the four definitions given above. Lyapunov techniques will now be used to associate
a ‘Lyapunov candidate function’ with equation 2.24. This Lyapunov candidate function
must be a positive definite function of the system state x.

To achieve stability it is desirable to show that the function V (x, t) decreases along the
trajectories of 2.24. As a consequence of this whenever x 6= 0 the derivative V̇ (x, t) < 0
until the final goal state is reached x(t) = 0 and V (x, t) = 0. Subsequently as V (x, t)
cannot increase, the neighborhood of operation containing x(t) is bounded. Also, as the
end state of the system is V (x, t) = 0, x(t) has evolved towards the goal point x = 0.

Validating the stability of the variation of V (x, t) it is necessary to differentiate the
function V (x, t) along the trajectories of equation 2.24 and check whether the derivative
is negative definite, hence evolving towards the goal state:

V̇ (x, t) =
∂V (x, t)

∂t
+

∂V (x, t)
∂x

f(x, t) (2.25)

The following is an example of the general stability properties of a simple system. The
stability analysis of the specific control used for autonomous control of the space-based
systems will be given when those problems are outlined in the subsequent chapters.

Consider the system:

ẋ(t) = Ax(t) (2.26)

To maintain the positive definite characteristic of the Lyapunov candidate function a
quadratic function is chosen of the form:

V (x) = xT (t)Px(t) (2.27)

where P is some positive definite symmetric matrix. The derivative of V (x) is:

V̇ (x) = xT (t)Pẋ(t) + ẋT (t)Px(t) (2.28)

Finding the derivative of the Lyapunov function along the trajectories of equation 2.26
is achieved by substituting ẋ(t) from 2.26 into 2.28:

V̇ (x) = xT (t)PAx(t) + xT (t)ATPx(t) = xT (t)[PA + ATP]x(t) (2.29)

The result is to produce the algebraic Lyapunov equation, defined as:
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PA + ATP = −Q (2.30)

Since equation 2.29 must be negative definite, a theorem for the stability of this simple
systems is obtained [57]:

Theorem:“The linear time-invariant system given by equation 2.26 is asymptotically sta-
ble if and only if for any positive definitive matrix Q there exists a positive definite matrix
P that satisfies the algebraic Lyapunov equation 2.30.”[62]

This theorem implies that if the system is asymptotically stable, then for any selection of
Q > 0, a positive definite solution for P exists.

When positive definite matrices P and Q, that satisfy equation 2.30 exist, then V (x)
in equation 2.27 is positive definite and it’s derivative equation 2.28 is negative definite. If
the derivative is not negative definite but semidefinite, it still guarantees that V (x) cannot
increase, and thus x(t) remains bounded [63]. However, x(t) may not go to zero. Thus
consider the next theorem for stability [57]:

Theorem: “The linear time-invariant system given by equation 2.26 is stable if there
exists a positive definite matrix P and a positive semidefinite matrix Q that satisfy the
algebraic Lyapunov equation 2.30.” [62]

2.5.4 Controller Based on Output Model State Following

Consider the controllable system defined by:

ẋp(t) = Apxp(t) + Bpup(t)
yp(t) = Cpxp(t)

(2.31)

where xp is the (n × 1) state vector, and up and yp are the control and output signals
respectively.

The stability of the system, defined by equations 2.31, is considered for a control law
based upon the Lyapunov function:

V (xp) = xT
p Pxp (2.32)

where P is a positive definite symmetric matrix.
The stability of the system, with no input (up(t) = 0) can be determined by the

derivative of V (xp):

V̇ (xp) = ẋT
p Pxp + xT

p Pẋp = xT
p PAxp + xT

p AT
p Pxp

= xT
p (PA + AT

p P)xp = −xT
p Qxp

(2.33)
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It was shown in section 2.5.3 that the linear time-invariant system is asymptotically
stable if there exists positive definite matrices P and Q, such that the following Lyapunov
equation is satisfied:

PAp + AT
p P = −Q (2.34)

Again, consider the plant given by equation 2.31, and use the Lyapunov equation to
determine if the plant can be stabilised by the constant output feedback controller:

up(t) = −Kcyp(t) = −KcCpxp(t) (2.35)

where Kc is the constant feedback gain matrix.
The closed loop system is now:

ẋp(t) = Apxp(t) + Bpup(t) = Apxp(t)−BpKcCpxp(t)
= (Ap −BpKcCp)xp(t)

(2.36)

As a consequence, the closed loop system and the plant are stabilisable if positive
definite matrices P and Q can be found so the algebraic Lyapunov equation is satisfied.

To develop this idea assume that there does exist some constant feedback gain Kc that
stabilises the plant. Now a means of describing how a variable gain controller finds this
associated gain is shown. Consider the controller:

up(t) = −K(t)yp(t);
K̇(t) = λyp(t)yT

p (t); λ > 0
(2.37)

where λ is a positive control law shaping parameter. The closed loop system now contains
this time varying gain:

ẋp(t) = Apxp(t)−BpK(t)Cpxp(t) = [Ap −BpK(t)Cp]xp(t) (2.38)

To include the concept of the constant stabilising gain matrix Kc being present in the
controllable system, add and subtract BPKcCpxp(t) to equation 2.38. Note that Kc is
known to exist but has no known value:

ẋp(t) = [Ap −BpKcCp]xp(t)−Bp[K(t)−Kc]Cpxp(t) (2.39)

The stability of this system must now be assessed. In addition to the system state
vector there is now a variable adaptive gain and this must be taken into account when
defining the Lyapunov candidate equation. The final goal state will be reached when
ẋp(t) = 0 or when both xp(t) = 0 and K(t) = Kc.

To fulfill the requirement of a candidate Lyapunov equation that contains all variables
of the controllable system consider:
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V (x) = xT
p Pxp + tr([K(t)−Kc][K(t)−Kc]T )/λ (2.40)

where ‘tr’ is the trace. The derivative of this equation is:

V̇ (x) = ẋT
p Pxp + xT

p Pẋp + tr([K(t)−Kc]K̇T (t))/λ + tr(K̇(t)[K(t)−Kc]T )/λ (2.41)

and substituting equation 2.39 gives:

V̇ (x) = xT
p P[Ap −BpKcCp]xp + xT

p [Ap −BpKcCp]TPxp − xT
p PBp[K(t)−Kc]Cpxp

−xT
p CT

p [K(t)−Kc]TBT
p Pxp + tr([K(t)−Kc]K̇T (t))/λ + tr(K̇(t)[K(t)−Kc]T )/λ

(2.42)
By further substitution of the control law given in equations 2.37, the derivative of the
Lyapunov candidate equation can now be expressed as:

V̇ (x) = xT
p P[Ap −BpKcCp]xp + xT

p [Ap −BpKcCp]TPxp − xT
p PBp[K(t)−Kc]Cpxp

−xT
p CT

p [K(t)−Kc]TBT
p Pxp + tr([K(t)−Kc]K̇T (t))/λ + tr(λyT

p (t)[K(t)−Kc]T )/λ

= −xT
p Qxp − xT

p [PBp −CT
p ][K(t)−Kc]Cpxp − xT

p CT
p [K(t)−Kc]T [BT

p P−Cp]xp

(2.43)
As Q is predefined to be positive definite then the first term in equation 2.43 is negative

definite. However, the second and third terms in equation 2.43 do not have the same
convenient property. An extra relationship is need to ensure that the full function is
negative definite. This is provided by the assumption that when the matrix P, used to
satisfy equation 2.34, also satisfies the relation:

PBp = CT
p (2.44)

then the second and third terms in equation 2.43, relating to the varying control gain
matrix, are equivalent to zero. Therefore as a consequence, equation 2.43 reduces to:

V̇ (xp) = −xT
p Qxp (2.45)

The extra condition is what is necessary to ensure that all the system states and gains
are bounded. Also, as a consequence of the stability properties, all the system states will
evolve to the goal state xp = 0. This analysis demonstrates the stability of the system
with adaptive gains. Bringing together this proof using the nonlinear adaptive gains, the
previous theorem states that the adaptive control algorithm is stable, allowing for the
existence of two positive definite matrices, P and Q, so the closed loop system, utilising
the the unknown (yet real) gain Kc, while at the same time satisfying equations 2.34 and
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2.44.
Equations 2.34 and 2.44 are derived from the relationship between the input and output

of the system. When both these conditions are satisfied but the matrix Q is positive semi-
definite the system is regarded as “positive real” (PR). If Q is positive definite, the system
is known as “strictly positive real” (SPR). As was described in section 2.4.3, when the
system is PR this condition still guarantees that V (x) cannot increase and thus x(t)
remains bounded, hence this type of controller can be implemented.

It is a controller of the type described above that will be implemented in the cases of
autonomous attitude control and autonomous action selection in chapter 4 and 5. The
stability analysis described above will guarantee that convergence to the desired state will
be achieved after some transient response.
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Chapter 3

A Deep Space Asteroid Lander

Mission

3.1 Introduction

This chapter deals with the dynamic model for the first technical challenge addressed.
The problem of autonomous attitude control of an asteroid lander during descent and
contact is investigated. Embedded adaptive control algorithms, developed in chapter 4,
are presented and incorporated into a relevant dynamic model, developed in this chapter.
The aim is to show that by the introduction of an embedded adaptive controller, issues
caused by environmental uncertainties and unexpected system failures can be dealt with
to a high level of robustness.

A description of the descent/landing/contact dynamics and lander model used for
the lander problem is presented. First, a description of the lander model is presented.
Subsequently the kinematic motion of the lander in micro-gravity conditions is described
and then modelling of how the lander interaction with different types of asteroid surface
material is presented and discussed.

3.2 Asteroid Lander Model

One of the proposed future flagship missions of the European Space Agency (ESA) was
the asteroid sample return mission Marco-Polo, as discussed in chapter 1. Although there
have been a number of past missions to asteroids, a sample has never been successfully
returned. The return of asteroid material to the Earth’s surface introduces new technical
challenges. This thesis deals with the attitude control problem for the descent onto and
contact with an asteroid in micro-gravity conditions. The concept of embedded autonomy
is investigated to compensate for uncertain surface properties.

This section focuses on modelling of the Marco-Polo asteroid lander, adapted from the
EADS Astrium Ltd near earth asteroid sample return technology reference study (NEA-
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SR TRS) [12] shown in figure 1.1. A representation of the lander has been adopted for
modelling purposes. Figure 3.1 depicts the layout of the lander as it exists in the model,
where the y-axis is positive out of the page. Each thruster has a maximum thrust value
of 10 N. The contractible spring constant is 1250 N/m, modelling the leg resistance to
compression only. The natural length of each lander leg (before deformation) is 1 m and
the mass of each leg is 7.3 kg. Laterally, the length of the lander base is 2.8 m and the
mass of the main structure is 985.4 kg. These parameters shown in figure 3.1 are constant
and are specified in table 3.1 and were supplied by EADS Astrium Ltd.

Figure 3.1: Model lander schematic

During the leg reaction to compression, the extension constant is modelled by a ratchet
constant, 22500 N/m, in addition to the spring. The ratchet assembly is included as a
means of absorbing the kinetic energy of the lander as it makes contact with the surface
of the asteroid. The rotating ratchet allows continuous linear motion of each leg in only
one direction, while preventing motion in the opposite direction by retaining the kinetic
energy in the mechanical device. The general layout of the ratchet is shown in figure 3.2 -
the gear can rotate around the rotational spring in only one direction, the pawl prevents
rotation in the opposite direction.
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Figure 3.2: Generic ratchet

Table 3.1: Lander properties

Parameter Value Unit
Thrust (T) 10 N

Spring Const (ks) 1250 N/m
Ratchet Const (kr) 22500 N/m

Leg Natural Length (LL) 1 m
Leg Stroke Length (LS) 0.3 m

Base Length (LB) 2.8 m
Base Mass (mB) 985.4 kg
Leg Mass (mL) 7.3 kg

Moment of Inertia (I) 677 Nm2

Several assumptions are made about the lander:

• The mass of the lander legs (mL) is much less than the mass of the lander base (mB)

• The center of gravity (C.G.) of the lander lies at the mid lateral point of the lander
base

• The lander base is rigid and does not deform

• The lander legs are perpendicular to the base

• The lander legs deform only in one axis, the z body-axis

The thruster layout associated with the lander is arranged in order to allocate thrusters
to specific axes. The thrusters are numbered 1-6 in figure 3.1 where; 1 and 4 individually
or together produce a moment in a positive sense around the y-axis, 2 and 3 produce a
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moment in the negative sense, and 5 and 6 individually produce a translation positively
and negatively respectively in the x-axis.

3.3 Lander Simulation Model

The lander simulation consists of a number of ordinary differential equation (ODE) solvers
running at specific time intervals to integrate the relevant equations of motion in two
dimensions using three degrees of freedom with respect to the translation and rotation of
center of gravity of the lander. Discontinuities in the dynamics of the system, such as leg
impacts, are defined heuristically and captured using Matlab algorithms.

With regards the internal dynamics of the lander model, all the equations of motion
are defined in body axes, where the axis system is defined in figure 3.3. The dynamics
of the model allow the system to exist in three different states, requiring three different
sets of equations of motion and three separate ODE solvers. The first of these states is
free-flight. This is the state the lander will assume in descent or rebound where neither leg
has contact with the asteroid. This state has 14 state variables to be solved for implying
a 14 degree of freedom system in the body frame of reference, including the deformation
of the lander legs. These are specified in equation 3.1.

Figure 3.3: Model axes definitions

ẍbase = Fxbase
mB

− qwbase − g sin(θ)
z̈base = Fzbase

mB
+ qubase + g cos(θ)

ẍL
leg =

FxL
leg

mL
− qwL

leg − g sin(θ)

z̈L
leg =

FzL
leg

mL
+ quL

leg + g cos(θ)

ẍR
leg =

FxR
leg

mL
− qwR

leg − g sin(θ)

z̈R
leg =

FzR
leg

mL
+ quR

leg + g cos(θ)
θ̈ = M

I

(3.1)
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where xbase and zbase are the translational components of the main lander structure in the
x and z-axes respectively. xL

leg, zL
leg, xR

leg and zR
leg are the translational components in the

x and z-axes of the left and right legs in the body frame of reference. q is the angular rate
of the lander and θ is the lander attitude. ubase and wbase are the components of velocity
in the x-axis and z-axis respectively for the main lander structure and uL

leg, wL
leg, uR

leg and
wR

leg are the components of velocity in the x and z-axes for the left and right legs. M is
the resultant moment acting on the lander body, I is the moment of inertia of the lander
and g is the gravitational acceleration of the asteroid. Both I and g are assumed to be
constant close to the asteroid surface during final descent and contact.

The leg forces are defined such that the force differs depending on the sense of the leg
contraction or extension as described below:

FzL
leg =





ks.((zbase − zrest
base)− (zL

leg − zLrest
leg )), żL

leg > 0

ks.((zbase − zrest
base)− (zL

leg − zLrest
leg ))+

kr.((zbase − zrest
base)− (zL

leg − zLrest
leg )− (LL − LS)), żL

leg ≤ 0

(3.2)

FzR
leg =





ks.((zbase − zrest
base)− (zR

leg − zRrest
leg )), żR

leg > 0

ks.((zbase − zrest
base)− (zR

leg − zRrest
leg ))+

kr.((zbase − zrest
base)− (zR

leg − zRrest
leg ))− (LL − LS)), żR

leg ≤ 0

(3.3)

where all the terms are in body axes. Terms defining a difference in the z locations
of the base (zbase) and legs (zL

leg and zR
leg) from the base (zrest

base) and leg (zLrest
leg and zRrest

leg )
rest positions are multiplied by either the spring constant only in compression, or the
spring and ratchet constant in extension to produce the leg forces that act on the system.
During the extension phases of the simulation (i.e. żleg ≤ 0) it is necessary to include a
term that simulates the maximum deformation of the spring/ratchet system (LL − LS ,
as defined in table 3.1) so the extension forces only act when appropriate. The reason
the ratchet force acts solely in one direction is to reduce the leg extension and absorb the
kinetic energy from the decent of the lander when in contact with the asteroid surface.

The component of force in the z -axis, in body axes (Fzbase), acting on the lander base
is the sum of the components of forces in the left (FzL

leg) and right (FzR
leg) legs in addition

to the thruster forces (T ):

Fzbase = FzL
leg + FzR

leg + T
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The component of force in the x -axis, in body axes, acting on the lander base is equal
to the component of force in the x -axis, in body axes, acting on the lander legs and is
given by:

Fxbase = FxL
leg + FxR

leg + T

where FxL
leg = FxR

leg = 0 since the legs are perpendicular to the base.

One leg contact

The first dynamic state of the lander is free-flight. The second dynamic state is when
there is only one leg in contact with the asteroid. This can be in a descent scenario or in
the rebound ascent phase. In this system there are 10 state variables to be solved for and
can be interpreted as equation 3.1 with two of the equations corresponding to one of the
legs, which is in contact with the asteroid surface, removed. The remaining four variables
that correspond to the displacement and velocity of the leg in contact with the asteroid
surface do not change during this dynamic state. The resultant force on the base Fzbase

is defined differently as:

Fzbase =





(−ks.(zbase − zrest
base)) + Fzfree

leg , żbase > 0

(−ks.(zbase − zrest
base)) + (−kr.(zbase − zrest

base)) + Fzfree
leg , żbase ≤ 0

where Fzfree
leg is the force, in the body z-axis acting on the base from the leg which is not

in contact with the asteroid surface. This force is defined as:

Fzfree
leg =





ks.((zbase − zrest
base)− (zfree

leg − zFreeRest
leg )), żfree

leg > 0

ks.((zbase − zrest
base)− (zfree

leg − zFreeRest
leg ))

+(−kr.((zbase − zrest
base)− (zfree

leg − zFreeRest
leg )))− (LL − LS)), żfree

leg ≤ 0

where zFreeRest
leg is the body z-axis rest position of the leg not in contact with the asteroid

surface. The same analysis applies as before regarding the leg compression and expansion
in the case of the application of the ratchet. Here:

Fxbase = Fxfree
leg + T

where Fxfree
leg = 0 due to the legs being perpendicular to the base.

The moment acting on the center of gravity of the lander during the scenario where
one leg is in contact with the surface is defined as:
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M =





1
2(Fzfree

leg − Fzcontact
leg )LB + MT , θ > 0

−1
2(Fzfree

leg − Fzcontact
leg )LB + MT , θ < 0

(3.4)

where Fzcontact
leg is the force from the leg in contact with the surface (Fzcontact

leg = Fzbase −
Fzfree

leg ), and MT is the moment produced by the thrusters.

Two leg contact

The third dynamic state is when both lander legs are in contact with the asteroid
surface. In this system state there are 6 variables to be solved for, because the leg states
now correspond to the location of the asteroid surface, defined in equation 3.5, so that:

ẍbase = Fxbase
mbase

− qwbase − g sin(θ)

z̈base = Fzbase
mbase

+ qubase + g cos(θ)

θ̈ = M
I

(3.5)

where the forces obey the usual conventions for application of the ratchet force.
In all cases M, the moment applied around the center of gravity of the lander is defined

by the difference in the forces in the legs and the distance between them in addition to
the moment produced by the control thrusters:

M =
1
2
(FzL

leg − FzR
leg)LB + MT (3.6)

The points at which the model switches between the set of dynamic equations are
defined heuristically (see figure 3.4, which demonstrates the flow of a descent). The descent
or rebound scenarios terminate when either of the z -components of the legs in inertial
axes is equal to the radius of the asteroid. The descent phase in which one leg has contact
finishes when the z -component of the other leg in inertial axes equals the radius of the
asteroid. The two leg contact phase ends when either; the rebound force in both legs
is great enough to overcome the weight of the entire lander, inducing a rebound, or the
lander finishes its transient response and comes to rest on the asteroid surface. The initial
rebound (one leg still in contact with the asteroid) phase ends when the force acting on
the leg still in contact with the asteroid is greater than the weight of one leg. In any
simulation if the attitude of the lander (θ), is small (≤ 0.50) then the one leg descent and
rebound phases are neglected and the model moves onto the next two leg phase.

The point where the lander may leave the surface of the asteroid and return to the
free-flight state is defined by the difference between the lander weight and the resultant
forces acting on the lander base from the two lander legs. This results in a rebound force
acting on the lander equal to the sum of the two leg forces. If the sum of these two leg
forces is less than the lander weight a bounce occurs, otherwise the lander remains in
contact with the asteroid surface. Assuming momentum is conserved during contact with
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the surface, the velocity component of the momentum after leg deformation is the initial
velocity condition for the start of the simulation of any subsequent rebound.

The model continues in an iterative loop (see figure 3.4) until the lander is at rest on
the surface of the asteroid, or alternatively falls over on its side due to instability. These
processes are demonstrated in figure 3.5. In figure 3.5(a) a descent and one rebound can
be seen starting from an initially vertical attitude, in figure 3.5(b) the effect of adding a
10 attitude error to the descent and rebound causes a subsequent tumbling of the lander.
In both cases there is no attitude control. In figure 3.5 the blue line indicates the center
of mass of the base and the red and green lines indicate the feet positions during the
simulation. In both cases the asteroid surface is assumed to be solid.
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Figure 3.4: Lander descent flow
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Figure 3.5: Example of descent and rebound (a) no attitude error (b) 10 attitude error

3.3.1 Asteroid Surface Modelling

The material that composes the surface of the asteroid is assumed to be largely unknown.
Attempts at categorising material properties have been made, for example in the NASA
Deep Impact mission [64]. Therefore, for the purposes of modelling the surface of the
asteroid three different material types have been developed.

First, a basic solid non-deforming surface is used, see figure 3.6(a). The surface is
assumed to be dense and any kinetic energy that the lander possesses after leg deformation
is assumed to be conserved in the lander during rebound from the surface. Materials that
have similar properties to this are rock and non-malleable metal.

The second surface type modelled is an elastic deforming material, such as viscoelastic
porous materials, see figure 3.6(b). This surface is assumed to be less dense than the solid
case but reforms to its original state after some transient time. In this case, in addition
to leg deformation, some of the kinetic energy of the lander is absorbed by the asteroid
surface. Therefore any subsequent rebound force on the lander will be less than the solid
case. Modelling of the elastic surface is achieved by assuming the surface is viscoelastic
and can be modelled by a Kelvin-Voigt material [65].

Finally, a plastically deforming surface is modelled, see figure 3.6(c). As a true plastic
material is the most likely to be encountered on the surface of an asteroid, plastic de-
formation can be associated with the dynamics, and kinematics, of encountering packed
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gravel or dust. For the deformation process the material obeys a linear stress-strain rela-
tionship and Hooke’s law. When the legs in contact are then fully deformed any residual
momentum is assumed to be conserved and produces the rebound dynamics. The plastic
surface remains deformed after contact.

Figure 3.6: Examples of leg deformations (a) solid surface (b) elastic surface (c) plastic
surface

Some material properties of the elastic and plastic surfaces must be defined and are
given in table 3.2. The values for the spring and damper in the elastic material are chosen
to represent a stiff porous material. Young’s modulus, in the case of the plastic material,
is chosen in the range where some deformation can occur [66].

Table 3.2: Asteroid surface properties for elastic and plastic materials

Parameter Value Unit
Elastic Spring Const (kg) 2500 N/m
Elastic Damper Const (cg) 2500 N/m2

Young’s Modulus (G) 8 kN/mm2 (GPa)

A series of simulations using the different surfaces are now presented describing the
changes in dynamics as a consequence of changing the asteroid surface type. Similar
simulations to those defined by the figures 3.5 contain some interesting phenomena worthy
of investigation when incorporating different surface types.

First, each of the trajectories of the lander making contact with the three surfaces is
investigated. This is the same scenario as depicted in figure 3.5(a). As the interesting
dynamics occur during the contact phase of the simulations, plots of the resultant trajec-
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tories in the z -time plane during only the contact portion of simulation are given in figure
3.7.

Figure 3.7: Lander body and leg trajectories during contact with different surface types

The differences in how the lander interacts with the three surfaces is evident in figure
3.7. For the solid surface, trajectories for the body and legs, figure 3.7, shows how the
leg deformation starts when both legs make contact with the asteroid surface. Then,
when leg deformation is complete, the lander rebounds due to all the momentum still
being conserved in the system. For the plastic surface the dynamics are similar, although
slightly more kinetic energy has been absorbed due to the slight surface deformation. The
elastic case differs most as the surface has the greatest ability to deform. More kinetic
energy is absorbed by the surface and the subsequent rebound is smaller.

The second of these phenomena is an investigation into the attitude change as a con-
sequence of the legs contacting when in contact with the surface of the asteroid. A plot
of the attitude change during the contact phases of the simulation is shown in figure 3.8.
In the plot the initial attitude of 10 is evident and then the subsequent changes, for each
of the surfaces, to uncontrolled spins can be seen. The lander, in each case, begins to
rotate when contact with the surface with one leg is made. Rotation slows slightly when
the second leg makes contact, but a constant rate of spin is maintained when the lander
leaves the surface of the asteroid due to residual kinetic energy.
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Figure 3.8: Attitude changes for three surfaces with 10 initial incidence

The contact dynamics with the solid surface shows the most extreme case of rotation.
As the plastic surface material properties are close to a solid case, the change in attitude
is close to that of the solid case. The rotation in the plastic case is slower however due to
the deforming surface, but the final rate of spin is almost identical. In the elastic surface
case more kinetic energy is absorbed over a longer period of time leading to a slower spin
rate for the lander.

Another phenomenon is that of the lander leg deformations as a consequence of the
spring and ratchet which compose the mechanics of the legs. Results for these simulations
are shown in figure 3.9. Due to the initial attitude of the lander the left leg makes contact
with the surface of the asteroid first and begins deforming. At the point where the right
leg makes contact with the surface and begins deforming, the rate at which the left leg
deforms begins to decrease until it reaches its fully deformed value of 0.7 m. In these
particular examples the reaction forces in the legs of the lander become greater than the
weight of the lander before the right legs fully deform, explaining why the right legs reach
only semi-deformed states.
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Figure 3.9: Examples of leg deformations

The different surfaces cause slight variations in the contact dynamics relative to the
solid case. The plastic case is similar, only due to the plastic surface the leg deformations
starts 0.01 s behind the solid case, and the right (partially deformed) leg deforms by
somewhat more. The elastic case is more complex. As the elastic surface contact time is
greatest, this means more time for leg deformation. This can be seen in figure 3.9, where
the right leg deforms over a longer period of time and to a greater extent.

3.3.2 Reaction Control System (RCS)

In order to implement the control laws that will be defined, there are physical characteris-
tics of the propulsion system that must be included in the lander model. The first of these
results as a consequence of the nature of the desired rotational torque (or translational
force) that is demanded from the control laws.

These demanded controller torques (and forces) take the form of continuously changing
thrust magnitudes during the course of any simulation. In reality the torques (and forces)
that can be produced are discrete in nature due to the mechanical processes involved in
expelling reaction mass to either rotate or translate the lander. The process that derives
a discrete thrust from the continuous input signal is pulse width modulation (PWM) [67].

The simplest way to generate a PWM signal is the intersective method [68], which
requires only a sawtooth or a triangle waveform. When the value of the reference signal
(the green sine wave in figure 3.10) is more than the modulation waveform (blue), the
PWM signal (red) is in the high state, otherwise it is in the low state. An example of the
applied PWM process is shown in figure 3.11. Figure 3.11 shows one of the simulations
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that is conducted later and the PWM process can be seen. The triangular waveform in
the simulations has an amplitude of 1 Nm, a frequency of 200 Hz, and a threshold of 0.5
Nm to avoid unwanted chattering. In figure 3.11 the triangular waveform is not shown for
clarity but the reference (demanded) torque is depicted in red and the resultant modulated
waveform in black.

Figure 3.10: Pulse width modulation

Figure 3.11: Simulation example of PWM

The second physical characterisitic of the propulsion system that must be included to
represent a realistic system is the modelling of the thruster minimum impulse bit (MIB).
The minimum impulse bit of a propulsion system is the minimum quantity of momentum
a thruster can deliver. This is characterized by mechanical properties such as time to open
and close the solenoid valves. Here the MIB is taken at a value of 0.05 Ns (corresponding
to 10 N for 0.005 s) [33].

The last point to note is the relation between the MIB and the simulation integration
time step. The simulation time step must be kept smaller than the MIB of the propulsion
subsystem.

Thruster Mappings

There exists one final process before these discrete torques or forces from the RCS are im-
plemented. This is the method through which the discrete moments and forces demanded
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are distributed (or mapped) onto the thrusters that are available to produce these de-
mands. The technique applied is the cost function approach [69]. The same type of cost
function is applied to both controllers (developed later in chapter 4) in both control cases
(attitude and lateral translation) individually.

As a primary goal of the work is to define qualitative and quantitative differences
between the controller types a simple cost function is used in all simulations. The cost
functions are defined as:

CM = |Mdes −Mprod|2 (3.7)

CF = |Fdes − Fprod|2 (3.8)

where CM and CF are the cost functions for the attitude and translational control respec-
tively, Mdes and Fdes are the moment and forces demanded by the RCS respectively, and
Mprod and Fprod are the moment and force produced respectively as a consequence of any
combination of thrusters.

With reference to figure 3.1, this leads to a range of different thruster options, but
the selection of which thrusters is simply the option that minimises the cost functions
defined by equations 3.7 and 3.8. To make the process more efficient the translational
and rotational cost functions are separated. This is due to the fact that there are only
two translational thrusters (one for each sense of translation) and the required thruster
selection is obvious. In the case of rotation the problem resolves to whether to apply one
or two thrusters in the case of rotation in each sense, and the applied moment is that
which minimises equation 3.7.

3.4 Descent in a Rotational Frame

In section 1.2.1 the mission concept for the Marco Polo mission was described. There is a
need for the lander to descend onto the surface of the asteroid with a linear descent path
so the final contact site can be defined accurately. In order to achieve this, due to the high
rotation rate of the asteroid, a rotating frame of reference has been chosen for the descent
phase. What follows is a description of the differences in inertial and rotational frames
and the implications of implementing a rotational reference frame into the descent model.

Figure 3.12 compares an inertial descent with a rotational descent with the rotating
frame of reference located on the asteroid. The asteroid rotates at a constant angular
velocity represented by a vector Ω with magnitude ω with the y-axis pointing outward
according to the right-hand rule (Ω = (0, ω, 0)). If the lander descends radially towards
the surface of the asteroid at a constant speed, in a straight line path (initial descent
position φ) in figure 3.12, then it is in a rotational frame of reference. In the inertial frame
however the descent path a spiral.

61



Figure 3.12: Frame of reference comparison

3.4.1 Defining an Inertial Frame

An inertial frame of reference describes the path followed by the lander as a spiral. Adopt-
ing the coordinate system defined in figure 3.12, the descent path is described by r(t):

r(t) = R(t)uR = (x(t), z(t)) = (R(t)cos(ωt + φ),R(t)sin(ωt + φ)) (3.9)

where uR is a unit vector in the radial direction pointing from the center of the asteroid
to the lander at time t. The radial distance R(t) decreases uniformly with time according
to:

R(t) = R0 + ct (3.10)

where c is the radial descent velocity (c < 0) and R0 is the initial radial displacement.
The velocity in the inertial frame is then the first derivative of the position:

v(t) = d
dtR(t)uR + ωR(t)u⊥ (3.11)

where u⊥ is a unit vector that is always perpendicular to uR. Taking the derivative of the
the velocity provides the acceleration term:

a(t) = 2cωu⊥ − ω2R(t)uR (3.12)

The last term in equation 3.12 is radially inward with magnitude ω2R, which is defined
as the centripetal acceleration due to the circular motion. The first term in equation 3.12
is perpendicular to the radial direction and is defined as the Coriolis acceleration.
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3.4.2 Defining the Rotational Frame

In a rotating frame of reference the lander travels in a straight line from the initial orbit
to the asteroid surface, as shown by the dashed line in figure 3.12. The rotating observer
sees the lander move at a constant speed so there is zero resultant force on the lander.
The rotating observer has to introduce fictitious forces that appear to exist in the rotating
frame.

The force acting on the lander for the rotating frame is given by:

F = −2mΩ× vB −mΩ× (Ω× rB) (3.13)

where the velocity observed in the rotating frame is:

vB = cuR, (3.14)

where uR again has the same definition.
The position of the lander seen during the descent in the rotating frame is:

rB = R(t)uR, (3.15)

where it can be seen that:

Ω× uR = ωu⊥ (3.16)

and

Ω× u⊥ = −ωuR (3.17)

therefore:

F = −2mωcu⊥ + mω2R(t)uR (3.18)

To obtain straight line motion in the rotating frame, a force exactly opposite in sign
to the fictitious force must be applied to reduce the net force on the lander to zero.
The fictitious forces that must be combated are the Coriolis force (first term) and the
centrifugal force (second term). By applying thrust to counter these fictitious forces, the
lander follows a linear descent path in the rotating frame.

3.4.3 Rotating Asteroid Model

As discussed above, moving to a rotating asteroid frame of reference introduces two new
fictitious forces that must be implemented into the descent model. These new forces are
the Coriolis force (equation 3.19) and the Centrifugal force (equation 3.20):
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FCOR = −2mΩ× v (3.19)

FCEN = −mΩ× (Ω× r) (3.20)

where Ω = (0, ω, 0), v = (u, 0, w) and r = (x, 0, z).
The process of introducing these new forces will result in the lander appearing to

descend in a straight line towards the surface of the asteroid although in reality it will
curve around the surface of the asteroid with angular velocity ω, as shown schematically
in figure 3.13.

Figure 3.13: Rotational frame force breakdown

The fictitious forces are present in the model, but if these forces are not counteracted
the lander will drift in a lateral sense. To demonstrate this a non-controlled descent
simulation from 1000 m altitude is shown in figure 3.14 where figure (a) depicts the inertial
frame descent (the circular arc is the surface of the asteroid) and (b) the rotational frame
descent.

If the fictitious forces are not included in the model then translation drift will occur
during descent onto the asteroid surface. A consequence of this is for linear descent to the
landing site lateral control must be introduced to the model, as will be seen chapter 4.
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Figure 3.14: Reference frame comparison (a) inertial (b) rotational
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Chapter 4

Embedded Autonomy for a Deep

Space Mission

4.1 Asteroid Lander Controllers

When the asteroid lander makes contact with the asteroid surface it is required to remain
there for a period of time while surface sampling operations are conducted. Reaching
the surface of the asteroid with an attitude error leads to a subsequent unstable tumble
due to the contact dynamics between the lander and the asteroid surface. It is therefore
necessary to introduce autonomous control of the lander attitude to maintain this error
to within an acceptable tolerance. Also, as described in section 3.4, autonomous lateral
control is required to compensate for any lateral drift.

In this section the controllers used to autonomously control the asteroid lander are
developed and presented. Conventional phase-plane and potential function controllers are
defined and the direct adaptive control developed for embedded autonomy. The ability of
each controller to recover from attitude errors is investigated and a quantitative comparison
is presented. Subsequently a range of failures are induced into the lander system and the
ability of each controller to recover from these failures is quantified and discussed. Also,
a study detailing the ability of the adaptive control algorithm to control the translational
effects of the sampling procedure is presented.

4.1.1 Phase-Plane Control

The conventional phase-plane (PP) controller that is implemented is an adaptation of a
similar control algorithm used in applications such as the Apollo Lunar Module (LM) [70].

Figure 4.1 shows the logic for firing the control thrusters. The parabolas in the figure
are the ‘switch curves’ that determine when the thrusters are turned on and off. To
clarify this logic, a typical phase path is shown. The rate and the attitude are measured,
and based on this measurement a set of thrusters are turned on. For the measurements
shown at the initial position, the decision must be made to fire thrusters that provide a
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negative acceleration. The logic for doing this is based on where the state is relative to
the parabolas shown in the figure. As the thrusters fire, the trajectory in the phase plane
is shown. When the phase path crosses the ‘off-switch curve’ (the lower parabola), the
thrusters are turned off. Since the rate is negative at this point, the attitude drifts to
the left at a constant rate, until the trajectory crosses the switch curve for turning the
thrusters on with a positive acceleration.

Figure 4.1: Phase plane switching logic

A relation is necessary to define the parabolas for the switching curves. Four such
curves are needed, two for defining the points that the thrusters switch on and two that
define the points that the thrusters switch off. The curve definitions are given below
(equation 4.1 [70]) and they are denoted in figure 4.2.

fn(θ, θ̇) = θ + θ̇2

2.Nθ.Accelθ
−DBθ = 0 −Negative Acceleration

fp(θ, θ̇) = θ − θ̇2

2.Nθ.Accelθ
+ DBθ = 0 − Positive Acceleration

cn(θ, θ̇) = θ + θ̇2

2.Nθ.SwitchAccelθ
+ DBθ = 0 −Negative Coast

cp(θ, θ̇) = θ − θ̇2

2.Nθ.SwitchAccelθ
−DBθ = 0 − Positive Coast

(4.1)

where θ and θ̇ are the attitude and attitude rates respectively, Nθ is the number of thrusters
firing, Accelθ is the acceleration produced from one thruster and SwitchAccelθ is the
acceleration at which the thrusters are turned on/off. DBθ is the magnitude of the dead-
band. These numerical values are shown in table 4.1.
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Table 4.1: Phase plane for rotation switching curve parameters

Parameter Value Unit
Number of thrusters (Nθ) 2

Accelθ 0.02 rad/s2

SwitchAccelθ 0.035 rad/s2

DBθ 0.0025 rad

Figure 4.2: Phase plane for asteroid lander switching logic

The numerical values specified in equation 4.1 will determine the shape of the parabolas
depicted in figure 4.2. The performance of the controller is therefore dominated by these
parameters. Some can be selected by the user, such as the switching acceleration, but
others will be predefined, such as the single thruster acceleration, which is a function of
the thrust magnitude.

A phase plane controller for the lateral translational control of the lander is developed
in the same fashion. The switching curves in this case are defined by equations 4.2.
Here Xe and Ẋe are the lateral displacement error and error rate respectively. In the
rotational frame of reference Xe is the lateral displacement from the vector that projects
up perpendicular from the desired landing location below. NXe is the number of thrusters
acting to counteract the lateral displacement error. AccelXe is the acceleration produced
from one thruster and SwitchAccelXe is the acceleration at which the thrusters are turned
on/off. DBXe is the magnitude of the lateral displacement dead-band. These numerical
values are shown in table 4.2.

fn(θ, θ̇) = Xe + Ẋe
2

2.NXe .AccelXe
−DBXe = 0 −Negative Acceleration

fp(θ, θ̇) = Xe − Ẋe
2

2.NXe .AccelXe
+ DBXe = 0 − Positive Acceleration

cn(θ, θ̇) = Xe + Ẋe
2

2.NXe .SwitchAccelXe
+ DBXe = 0 −Negative Coast

cp(θ, θ̇) = Xe − Ẋe
2

2.NXe .SwitchAccelXe
−DBXe = 0 − Positive Coast

(4.2)
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Table 4.2: Phase plane for translational switching curve parameters

Parameter Value Unit
Number of thrusters (NXe) 1

AccelXe 0.01 m/s2

SwitchAccelXe 0.035 m/s2

DBXe 0.01 m

4.1.2 Potential Function Control

The potential function controller uses the attitude and attitude rate of the lander to define
an artificial potential function for the lander. The aim is then to minimise this potential.
This is achieved using Lyapunov’s second theorem.

The aim of Lyapunov’s second method is to guarantee the stability of a set of dif-
ferential equations which describe a dynamical system. In physical terms, this has been
described by Kalman and Bertram [71] [72]:

“If the rate of dE(x)/dt of the energy E(x) of an isolated physical system is negative for
every possible state x, except for a single equilibrium state xe, then the energy will continue
to decrease until it finally assumes its minimum value E(xe).”

This intuitively corresponds to the definition of all stability problems. If a stable sys-
tem is perturbed from its equilibrium state, it will always return to it. In mathematical
terms this can be expressed as:

“A dynamical system is stable (in the sense that it returns to equilibrium after any per-
turbation) if and only if there exists a Lyapunov function, a scalar function V(x) of the
state with the following properties”:

V(x) > 0 and V̇ (x) < 0 for x 6= xe

V(x) = 0 and V̇ (x) = 0 for x = xe

(4.3)

where xe is the equilibrium state of the system. If these conditions are satisfied, it is
possible to guarantee that the origin of the state-space is a point of asymptotic global
attraction and that all the trajectories inside the space, regardless of initial conditions,
converge to this point.

An extended form of the Lyapunov function is the potential function. This function
can be defined analytically and will be used to force the state vector of the dynamical
system to converge to the desired goal. The mechanism that drives the convergence is
based upon the rate of change of the potential function. If the rate of change of the
potential V̇ (x) is negative definite the state vector will converge to the goal point, which
is the global minimum of the potential function. If V̇ (x) is positive however, the state
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vector will diverge from the goal point. In this case, to render V̇ (x) once again negative,
control is required. It is therefore possible to derive a control methodology which forces
the convergence to a desired goal of the dynamical system. Defining a potential function
based on some state vector x so that:

V = f(x) (4.4)

and differentiating with respect to time gives:

V̇ = ∇f.ẋ (4.5)

where

∇f =
∂f

∂x
(4.6)

Therefore, if ẋ is a function of the control variable, by analytically determining the
potential derivative V̇ (x), it is possible to calculate the control inputs, which are required
to render V̇ (x) negative, and so ensure the convergence of the dynamical system to the
desired goal point.

The problem at hand is to bring the lander to rest at some desired attitude. The
terms which must be controlled are therefore the Euler angle θ, and the body rate θ̇. The
potential function, as defined in Radice [5], will be:

V = VEULER + VBODY RATE (4.7)

The component of the potential function due to the Euler angles will take the form of
a power law function:

VEULER =
1
2
(θ − θDesired)n, n = 2, 4, 6, . . . (4.8)

where θDesired is the goal attitude. The potential function component due to the body
rates will have a simpler form with the goal corresponding to null body rates:

VBODY RATE =
1
2
ωm,m = 2, 4, 6, . . . (4.9)

where ω (= [0 q 0]T , in this case) is the angular rate of the lander.
The total potential is the sum of the Euler and body rate components and will therefore

take the form:

V =
1
2
(θ − θDesired)n +

1
2
ωm (4.10)

To satisfy Lyapunov’s theorem, the rate of change of the potential V̇ must be rendered
negative definite. Therefore, differentiating the potential leads to:
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V̇ = n
2 (θ − θDesired)n−1θ̇ + m

2 θ̇m−1θ̈

= n
2 (θ − θDesired)n−1θ̇ + mM

2I θ̇m−1
(4.11)

which will be used to generate the control law. Here, θ̈ = M/I is selected to maintain
the linearity of the system to be controlled. The assumption is that the cross moments of
inertia are negligible with respect to the principle moment of inertia. A possible control
torque M which will render V̇ negative definite is expressed by:

M = − θ̇.I

mθ̇m−1
[2λ1θ̇ + n.(θ − θDesired)n−1] (4.12)

where λ1 is a positive definite shaping parameter for arbitrary m and n. When the control
torque is substituted into equation 4.11 the potential derivative then takes the form:

V̇ = −λ1θ̇
2 (4.13)

so that the control law that rotates the lander to the desired goal attitude is available in
analytical form. This solution to the control problem equates to a proportional derivative
(PD) controller for m=n=2.

The above example for the creation of a potential function control law for rotational
stability of the lander is repeated again for the case of the lateral displacement error of the
lander during descent. Following the same procedure and replacing the rotational terms
for the translational error terms lead to the following control law:

Tlat = −Ẋe.(mB + 2mL)

mẊe
m−1 .[2λ2Ẋe + n.(Xe)n−1] (4.14)

where Tlat is the lateral thruster force required, mB and mL are the masses of the lander
main body and leg respectively. All the other parameters have their usual meanings and
λ2 is a second positive shaping parameter for the case of lateral control.

The continuous demanded translational forces and rotational torques are then delivered
by the reaction control system (RCS) using pulse width modulation as discussed in section
3.2.1 to produce a discrete thrust.

4.1.3 Direct Adaptive Control

Robust controllers try to desensitise a control system to the uncertainties of the plant. An
adaptive controller aims to allow controller gains to vary continuously allowing larger levels
of uncertainty and therefore increasing system performance during control implementation,
as discussed in section 2.6.

Here, a direct adaptive control law is presented that provides robust attitude control for
the asteroid lander. It is shown that the control law is a function of known system param-
eters and does not require any model dependant parameters. The control problem under
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investigation has the potential for significant levels of uncertainty to occur, particularly
in the unknown characteristics of the asteroid surface upon which the lander contacts, as
discussed in section 3.3.1. With the embedded, bottom-up approach to autonomy that the
direct adaptive controller introduces, the response of the controller to any fault or failure
is fast as no other FDIR algorithm must be implemented. This is particularly important
for the lander problem where the delay due to a traditional top down FDIR approach may
be catastrophic due to the fast time scales associated with the contact dynamics.

Adaptive Controller Development

The direct adaptive control algorithm used in the lander problem is now developed. A
definition of the general control problem and the associated general solution are shown,
along with the proof for the stability of the controller. The linear system to be controlled
is:

ẋ(t) = A.x(t) + B.u(t) + d (4.15)

where x(t) is the system state vector, u(t) is the control vector, d is the disturbance, and
A and B are matrices with the appropriate dimensions.

A controller is required to force the state error to zero. Also, the controller is required
to deal with any uncertainty it might encounter. Although the system is linear, the nature
of the disturbance can be nonlinear and this must be controlled in an acceptable manner.

The controller presented here uses full-state feedback stabilisation subject to unknown
disturbances.

Theorem[73]: “Assume there exists Ks ∈ <nx such that As = A+B.Ks is asymptotically
stable. Let Q ∈ <nx×nx be positive semidefinite and assume (As,Q) is controllable. Let
P ∈ <nx×nx be the positive-definite solution to the Lyapunov equation 0 = AT

s P+PAs+Q.
Finally, let Γ ∈ <nu×nu and Λ ∈ <nx×nx be positive definite, and let λ > 0. Then the
control law

u(t) = K(t)x(t) + L(t), (4.16)

where

K̇(t) = −ΓBTPx(t)xT Λ, (4.17)

L̇(t) = −λBTPx(t) (4.18)

yields Qx(t) → 0 as t →∞ where K ∈ <nx”.
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The stability of the above controller is proven by considering the closed loop system
defined by applying the above theorem:

ẋ(t) = (As + B(K(t)−Ks))x(t) + BL(t) + d (4.19)

where all the vectors and matrices have the same definitions as above and it can be shown
that due to the structures of B and d that BLs = d and this represents the unknown
disturbance in the system [73]. To analyse the controller define:

K̂(t) = K(t)−Ks (4.20)

and
L̂(t) = L(t) + Ls (4.21)

giving:

ẋ(t) = (As + BK̂(t))x(t) + BL̂(t) (4.22)

As discussed in section 2.4.4, a positive definite Lyapunov candidate equation must
now be selected that includes all of the dynamic states of the system, i.e. x, K and L.
This can be provided by:

V (x, K̂, L̂) = xTPx + tr(Γ−1K̂Λ−1K̂T ) + (1/λ)tr(L̂L̂T ) (4.23)

where ‘tr’ is the trace of a matrix. The function is required to decrease so the derivative
must be negative.

V̇ (x, K̂, L̂) = ẋTPx + xTPẋ + 2tr(Γ−1K̂Λ−1 ˙̂KT ) + (2/λ)tr(L̂ ˙̂LT ) (4.24)

Substituting the closed loop system equation 4.19 gives:

V̇ (x, K̂, L̂) = ẋT (AT
s P+PAs)x+2xTPBK̂x+2xTPBL̂+2tr(Γ−1K̂Λ−1 ˙̂KT )+(2/λ)tr(L̂ ˙̂LT )

(4.25)
Now as AT

s P + PAs + Q = 0, the equation can be rearranged to:

V̇ (x, K̂, L̂) = −ẋTQx + 2trK̂(Λ−1 ˙̂KTΓ
−1

+ xxTPB) + (2/λ)trL̂( ˙̂LT + xTPB) (4.26)

It follows that by inclusion of the two control law equations 4.17 and 4.18 for the variable
control law gains that the last two terms of equation 4.26 are equivalent to zero. Therefore,
as a consequence of the closed loop system being bounded, as discussed in section 2.4.4, and
Q being positive semi-definite, for every initial condition (x(0), K̂(0), L̂(0)), Qx(t) → 0 as
t →∞ [63].

For implementation of the control law governed by equations 4.17 and 4.18 a solution
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for P in the Lyapunov equation AsP + PAs + Q = 0 is necessary. Since As = A + BKs

or Ks = B−1(As −A) and B 6= 0, As can be defined arbitrarily without knowledge of A

or B.
To develop the solution for a system with two state variables (nx = 2), then A ∈

<2×2 and all other matrices and vectors in the system given, by equation 4.15, have the
corresponding dimensions. Define p > 0, as1 < 0, as2 < −p and [73]:

Q =

[
−2pas1 0

0 −2p− 2as2

]

Then,

P =

[
−pas2 − as1 p

p 1

]

satisfies AsP+PAs+Q = 0 and equation 4.17 and equation 4.18 can be given in a general
form by:

K̇1(t) = −[λ1px2
1(t) + (λ1 + λ12p)x1(t)x2(t) + λ12x

2
2(t)] (4.27)

K̇2(t) = −[λ12px2
1(t) + (λ12 + λ2p)x1(t)x2(t) + λ2x

2
2(t)] (4.28)

L̇(t) = −λ[px1(t) + x2(t)] (4.29)

where [73]

[
λ1 λ12

λ21 λ2

]
= Γ−1Λ

is positive definite because Γ and Λ are both positive definite, and λ > 0 (as defined in the
above theorem). Using the control system defined by equations 4.27 - 4.29, then for any
value of p, λ1, λ2, λ12, λ21 > 0 and for any value of λ12 and λ21 such that λ12λ21 < λ1λ2

leads to the solution x(t) → 0 as t →∞.
A simplified scenario where λ12 = λ21 = 0 leads to the solution of the control problem

as:

K̇1(t) = −λ1[px2
1(t) + x1(t)x2(t)] (4.30)

K̇2(t) = −λ2[x2
2(t) + px1(t)x2(t)] (4.31)

L̇(t) = −λ[px1(t) + x2(t)] (4.32)
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Direct Adaptive Control for the Lander Attitude

The methodology defined above can now be applied to the lander attitude control problem.
Consider the lander attitude dynamics modelled by:

θ̈(t) = M/I (4.33)

where M is the sum of all the torques acting on the body, including the control torque u(t)
and the disturbing torque d, which is defined by the moment resultant on the lander as a
result of a difference in the force acting on the base from the individual legs, as defined in
section 3.2. This disturbance is unknown due to the highly uncertain physical properties
of the asteroid surface. I is the moment of inertia of the lander about the axis of rotation,
and so:

M = u + d (4.34)

The control objective is to require θ to approach θdes without knowledge of d, where
normally θdes = 0. Defining the error signal x1(t) = θ(t) − θdes and the state x =[

x1 ẋ1

]T
, equation 4.33 becomes:

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0 0

I−1 0

]
u(t) +

[
0
d

]
(4.35)

where u(t) = [0 u(t)]T .
Now solving Lyapunov’s equation using the general solutions to Q and P maintain-

ing As asymmetrically stable gives the variable control gains to the problem as (with
comparison to equations 4.30 - 4.32):

K̇1(t) = −(1.5θ2 + 2θθ̇) (4.36)

K̇2(t) = −(1.5θθ̇ + 2θ̇2) (4.37)

L̇(t) = −(7.5θ + 10θ̇) (4.38)

where the control parameters are: p = 0.75, λ = 10, and λ1 = λ2 = 2. These values were
selected based on an iterative trial and error approach that lead to a satisfactory controller
response, while maintaining the stability properties outlined previously.

By introducing different control parameters, consistent with the stability properties
outlined in the previous section, to equation 4.38 a more efficient controller can be devel-
oped:

L̇(t) = −(0.1θ + 10θ̇) (4.39)
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This in turn leads to the required control moment as:

u(t) = (K1θ + K2θ̇ + L)I (4.40)

The advantage of using this control algorithm is due to the fact it can react in real
time to any disturbing moment, in this case d. Due to the unknown composition of the
asteroid, the contact dynamics are unknown and the adaptive controller is well placed to
deal with these uncertainties. Also included is an embedded form of autonomy which is
quite different from traditional top-down FDIR.

Direct Adaptive Control for Lander Lateral Movement

The lander will be required to contact at a specified point on the surface of the asteroid,
as discussed in section 1.2.1. A rotational reference frame has been chosen for kinematic
modelling of the descent to ensure the lander remains in the correct lateral position during
descent, as discussed in chapter 3. This introduces an extra requirement on the lander for
lateral control during descent.

Introducing a DAC control law for lateral displacement using the same principles as
for the rotational control ensures that the lander will be in the correct position as it
approaches the asteroid surface. Drawing comparison with equation 4.33 and equation
4.35 produces:

ẍ1(t) = Tlat/(mB + 2.mL) (4.41)

and

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0 0
1

mB+2.mL
0

]
u(t) +

[
0
d

]
(4.42)

where, x = [x1 ẋ1], Tlat is the lateral force produced by the thrusters, therefore u(t) =
[0 Tlat]T , mB + 2.mL is the total spacecraft mass, x1(t) = x− xdes is the error signal and
is the lateral displacement x from the desired landing location xdes. Following the earlier
analysis a similar control algorithm is produced:

K̇1(t) = −(1.5x2
1 + 2x1ẋ1) (4.43)

K̇2(t) = −(1.5x1ẋ1 + 2ẋ1
2) (4.44)

L̇(t) = −(0.1x1 + 10ẋ1) (4.45)

subsequently leading to the required lateral control thrust:
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Tlat = (K1x1 + K2ẋ1 + L).(mB + 2mL) (4.46)

With regards the lateral control the disturbance d in equation 4.42 is now comprised of
the Coriolis and centrifugal forces defined in equation 3.19 and equation 3.20 in addition
to any translational forces that may be induced by the control thrusters minimising the
attitude error.

4.2 Controlled Lander Descent

Using the lander model and the three controllers a comparative simulation can be under-
taken to asses the performance of the controllers. The first step is to define a performance
metric that can be used as a basis for comparison. The performance metric selected is
the total impulse used by the thrusters to bring the lander to rest on the surface of the
asteroid. Total impulse is defined as:

IT =
n∑

i=1

∆t.T (4.47)

where ∆t is the integration step, T is the total thrust magnitude at the integration interval
from all thrusters and n is the number of integration steps. It is now possible to develop
a comparison between the three controllers.

The descent takes place in a rotational frame of reference as depicted in figure 3.3
and the equations of motion will be those defined by equation 3.1. A simple terminal
bounce alleviation algorithm is defined: if the attitude of the lander is within a small
error limit (−0.50 ≤ θdes ≤ 0.50) and the vertical velocity of the lander is negative (i.e.
ascending) then two thrusters are fired in a positive vertical sense (in body axes) to reduce
any residual bounces.

Before a direct comparison can be made, nominal values must be selected for the
controller constants in each controller. For the potential function controller this is a single
shaping parameter, λ, and the thruster threshold (0.1 N). The thruster threshold defines
the lower limit of demanded thrust before the thruster is switched on. This eliminates
any unwanted chattering by the thrusters. For the phase plane controller there are two
parameters: SwitchAccelθ and the dead band described earlier.

For the purpose of this comparison, for each lander descent scenario, the control pa-
rameters have been selected using a heuristic trial and error procedure. Therefore, an
appropriate value for the total impulse in each case has been established.

There also exists a number of other parameters. These are specified below in table 4.3
and are common to all the lander descent simulations. This data was supplied by EADS
Astrium Ltd for the Marco-Polo mission [12].

The scenarios selected for the comparison each have a different starting attitude. In
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Table 4.3: Scenario parameters

Mass of Base (kg) 985.4
Mass of Leg (kg) 7.3

Inertia of Lander (kg.m2) 677
Gravitational Accel (m/s2) 0.000145

Asteroid Rotational Rate (0/s) 0.013
Initial Inertial Position ([m,m]) [0,1000]

θdes (0) 0
Minimum Impulse Bit (Ns) 0.05

Leg Stroke Length (m) 0.3
Asteroid Radius (m) 500

each case the lander starts at [0,1000] m as specified in table 4.3, corresponding to an
initial altitude of 500 m. The lander initial attitude is then specified as 100, 200 or 300

and is permitted to descend towards the asteroid. In each case the lander must correct
the initial attitude error and the translational disturbance forces due to the rotation of
the asteroid.

Selection of the control parameters for each controller in each case gives the values
specified in table 4.4. In the case of the PF and DAC controllers a thruster threshold is
included to reduce chattering and is assigned to be 0.1 N. In the case of the PP controller
the dead band is selected to be 0.0025 radians. An optimal solution for the three initial
states of the DAC controller were found to be: κ1(0) = 0.0, κ2(0) = −2.75 and L(0) = 0.0,
for all three initial attitude states demonstrating the robustness of DAC.

Table 4.4: Controller optimised parameters

Initial Attitude PF PP
(0) λ SwitchAccelθ
10 1.8 0.035
20 2.35 0.035
30 2.8 0.035

The values for total impulse calculated in the scenarios described above are given in
table 4.5. The interesting result that appears is when the potential function controller
corrects the 30 deg initial attitude error more efficiently that the DAC algorithm. This
result is explained by analysis of the transient correction time necessary in the manoeuvre,
given in table 4.6. It follows that the DAC controller, in the 30 deg case, takes slightly
longer than the actual descent time of the lander to correct the error. Control is hence
carried through the contact phase and into the rebound resulting in a considerable increase
in impulse necessary.

A different result to that of the rotational control is found in the joint rotational and
translational control. Here, the thrusters are used to compensate for the Coriolis force
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Table 4.5: Total impulse for descent scenarios

PP PF DAC
Scenario Impulse Impulse Impulse

(Ns) (Ns) (Ns)
Rot 14.08 5.98 1.79

θi = 100 Trans 272 647 183
Σ 286.08 652.98 184.79

Rot 18.05 8.26 4.86
θi = 200 Trans 290 666 195

Σ 308.05 674.26 199.86
Rot 21.56 19.07 21.67

θi = 300 Trans 311 685 241
Σ 332.56 704.07 262.67

Table 4.6: Settling times for descent scenarios

Initial Settling Settling Settling
Attitude Time Time Time

(0) (s) (s) (s)
PP PF DAC

10 6.9 19.2 820
20 9.9 16.2 840
30 12.4 20.1 1010

and ensure a vertical descent. The magnitude of the impulse required to control the
lander in translational descent is largest for the potential function controller and smallest
for the direct adaptive controller with the phase plane magnitude somewhere between
the two results. As with the rotational control each controller is capable of maintaining
translational control but the DAC algorithm is the most efficient.

The difference between the results for the two studies (rotational and translational)
can be explained by the dynamics required to compensate for the Coriolis force. In the
attitude control case the aim is to correct a step error input, but in the translational case
the coriolis force is continually changing due to the continuous rotation of the asteroid.
The DAC algorithm is capable of reacting to both cases due to a real-time change in its
gains. The phase-plane and potential function controllers contain constants and these are
selected for a specific scenario, leading to a greater impulse as the time for the descent
increases.

An example of a descent and rebound scenario can be seen in figures 4.3 - 4.8. Here
the potential function controller corrects an initial attitude error of 100. The first of these
plots (figure 4.3) depicts the full kinematic process of the descent and bounce. The bounce
alleviation algorithm can also be seen working efficiently. Starting from 500 m above the
asteroid surface the micro-gravity conditions result in the lander making contact with the
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surface at approximately 1000 s. A subsequent bounce ensues but the bounce alleviation
algorithm quickly suppresses the kinematics.

A simulation of the initial attitude correction can be seen in figure 4.4, again for the
same potential function controller - this is a detailed plot of the first 20 s of descent, as in
most descent scenarios the attitude of the lander is quickly corrected. The black frames
in figure 4.4 are a representation of the lander, giving an appreciation for the manoeuvre
that has been conducted.

For the same simulation a more detailed depiction of the bounce kinematics is seen in
figure 4.5. Here the brief leg contact phase can be seen along with the resultant rebound.
Due to the kinetic energy absorbed by the lander legs and the bounce alleviation algorithm
the gradient of the ascending rebound is considerably less that of the descending approach.
Figure 4.6 shows how the legs deform during the contact phase of the simulation. The
plots for the left and right legs are almost identical as the attitude error has already been
corrected.

The associated attitude changes for the same simulated scenario are shown in figure
4.7. Again the fast response of the potential function controller can be seen with slight
corrections needed to maintain the attitude within the required error margins. The associ-
ated thruster commands for the torque (for rotation) and force (translation) are shown in
figure 4.8. In figure 4.8 the thruster mappings can be seen as the two different magnitudes
of thrust that can be selected for the rotation of the lander.

Figure 4.3: Example of descent and rebound
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Figure 4.4: Initial attitude correction schematic

Figure 4.5: Bounce kinematics for descent example
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Figure 4.6: Leg deformations for descent example

Figure 4.7: Attitude change for descent example
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Figure 4.8: Moments and forces for descent example

4.3 FDIR Studies

If an unexpected event were to arise during descent or during science operations on the
asteroid it is necessary for the system to have the ability to react. To this end it is
desirable to have fault detection, isolation and recovery (FDIR) embedded into the system
to minimise the chance of mission failure [74]. This section will explore a range of failure
scenarios and demonstrate the utility of DAC as an effective means of embedded autonomy.

4.3.1 Lander Leg Failures

The first analysis of the FDIR properties of the three controllers is a comparison of the
ability of the controllers to recover from three different leg failure scenarios. Firstly, one
of the two legs is induced to fail by becoming overly ‘stiff’ with regards to the other leg.
The failing leg is assumed to have a doubling of the spring constant in that particular
leg leading to an imbalance between the two legs. Similar to the first case, the second
failure scenario is when one of the lander leg spring stiffness constants is half the other.
Finally, the third failure scenario is when one leg is artificially ‘stuck’, where no movement
is permitted in this leg.

Ideally the lander is required to settle on the surface of the asteroid using as little
propellant as possible while maintaining a small attitude error. An example of the initial
descent, contact and first rebound phase of the scenario is given in figure 4.9. The insert
shows a close up of the contact phase. Also, the black frames show a representation of the
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attitude of the lander as the simulation progresses. During contact the insert shows that
the lander attitude increases and the potential function control law is capable of returning
the lander to zero attitude error before the next contact with the asteroid occurs.

The initial conditions for the simulations are the same as for the non-failure scenarios
in section 4.2. The lander simulation is again started at a height of 500 m above the
surface of a 500 m radius asteroid. The lander has an initial lateral velocity to match the
rotational rate of the asteroid at 1000 m radial distance from the center. The aim of the
simulation is to land at rest with zero attitude and lateral displacement error.

Figure 4.9: Scenario example using a conventional controller

For analysis there are two properties of the simulation that will be used for comparison.
As before the total impulse of the scenario will be used to compare the propellant necessary
to recover from each of the leg failures. Another property of interest here is the maximum
attitude that is induced by the leg failures. This property is representative of the ability of
the lander to maintain the necessary track on the asteroid surface for such instrumentation
as radar/LASER altimetry [75] as this instrumentation will be positioned on the lander
such that it points in the positive vertical body axis direction.
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Table 4.7: Impulse for leg failure scenarios

PP PF DAC
Scenario Impulse Impulse Impulse

(Ns) (Ns) (Ns)
Rot 852 871 653

ks × 0.5 Trans 995 1942 810
Σ 1847 2813 1463

Rot 850 878 654
ks × 2 Trans 1237 2022 900

Σ 2115 2872 1554
Rot 2062 1767 1880

ks ≈ ∞ Trans 2623 6017 930
Σ 4686 7784 2810

The results for the analysis are shown in table 4.7 and figures 4.10 - 4.16, where the con-
tact dynamics are evident at approximately 880 s. The relative attributes of the different
controllers now begin to become more apparent. As was evident with the previous stud-
ies, without disturbances, qualitatively the algorithms have inherent benefits/weaknesses.
The DAC algorithm is in general the most effective.

Figure 4.10: θ for potential function control
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Figure 4.11: Thruster commands for potential function control with 2ks

Figure 4.12: θ for phase plane control

Figure 4.13: Thruster commands for phase plane control with 2ks
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Figure 4.14: θ for direct adaptive control

Figure 4.15: Thruster commands for direct adaptive control with 2ks

Figure 4.16: Controller gains for direct adaptive control with 2ks
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Evaluating the evolution of the attitude during the controlled descent demonstrates
the weaknesses of the phase plane and potential function controllers with the maximum
overshoots being larger that the DAC results. In all cases the controllers are capable of
maintaining control of the lander. However, an overshoot of over 900 would be too extreme
for the altimetry to continue to function and hence the potential function and phase plane
controllers may be deemed to fail in some cases.

These large overshoots will also contribute to extra necessary translational control. As
the attitude of the lander increases any corrective control will contribute to the height of
the rebound. The higher this rebound the more time the lander will spend correcting for
translational errors leading to greater impulse requirements.

Alongside the plots of the attitude of the lander during each of the failure cases are
plots of the associated torque commands for each of the controllers in the doubled spring
constant scenarios. The first of these (for the potential function controller) seen in figure
4.11 shows how the controller leads to minimal thrust requirements after the failure has
been stabilised. The phase plane plot in figure 4.13 shows how, after dealing with the
failure, the controller periodically moves from one side of the dead-band to the other,
leading to a continuous need for thrusting.

For the case of the DAC controller two plots are provided, one for the thrust (figure
4.15) and one for the associated controller gains (figure 4.16). In the figure denoting the
torques the periodic nature of the controller can be seen, but this is not as extreme as the
phase-plane case. The gains plot shows how the controller deals with the fault. At the
point where the failure is encountered (approximately t = 885 s) the gains can be seen
to be rapidly changing. It is these gains that drive the demanded torque and hence the
thrusters. By using direct adaptive control, a large unknown disturbance is compensated
for without using FDIR and gain look-up tables.

4.3.2 Lander Thruster Failure

The second FDIR scenario to be investigated is when one of the thrusters used for rota-
tional control is failed. During this study we will consider two modes of thruster failure.
Firstly when one thruster (of the six) becomes inoperable - this leaves only one thruster
for control in one rotational sense and the usual two thrusters for control in the opposing
direction. Secondly, the case where one thruster continuously fires, leaving the lander with
a bias torque unless suitable corrective thrust is applied. Referring to figure 3.1 it will be
thruster 1 that will be assumed to fail in both cases. A comparison of the three controllers
leads to an another insight into the FDIR capabilities.

Thruster 1 is failed and an investigation similar to that described in the previous
section is performed. The same initial conditions and constants are used for both the
studies, although only the 100 initial attitude case is under investigation here.

Tables 4.8 and 4.9 show a comparison of the impulse and settling times required for
this failure. Interesting results appear in the tables. It appears that there is no large
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apparent change in the magnitude of impulse required to control the lander, indeed in the
cases of all control algorithms there is no significant gain to be made.

Table 4.8: Total impulse for thruster failures

Initial Total Total Total
Attitude Impulse Impulse Impulse

(100) (Ns) (Ns) (Ns)
PP PF DAC

No Failure 14.078 5.98 1.7898
Off Failure 14.299 5.84 1.461
On Failure 14.418 6.16 2.005

In table 4.8 the impulse used by the thruster which is continuously firing has been
removed so an easier comparison can be drawn. The numerical values for the impulse for
the continuously firing thruster in the three simulation are: phase plane control - 8923
[Ns], potential function - 8957 [Ns], direct adaptive control - 8998 [Ns].

Table 4.9: Settling times for thruster failures

Initial Settling Settling Settling
Attitude Time Time Time

(100) (s) (s) (s)
PP PF DAC

No Failure 6.9 19.2 820
Off Failure 10.1 21.1 850
On Failure 10.3 21.0 847

An explanation for these slight changes in impulse can be attributed to the model
being a freely rotating rigid body. The smaller thrust induced by the failure allows fine-
tuning of the attitude to be done more easily, although over a slightly longer time period.
Both these trends can be seen on analysis of figure 4.17 that depicts the DAC attitude
error. Here the longer settling times are associated with smaller individual error correcting
impulses.

The increase in settling time can be seen in figure 4.18 that depicts the attitude error
for each of the failure scenarios during the course of the potential function decrease. This
increase in settling time in the off failure case is due to only one thruster being available
for negative rotation. It is then evident that the on failure case only starts to differ from
the no failure case when positive rotation is required. Due to the continuous negative
thruster failure the result differs slightly when in the positive rotational sense.

Finally, to explain the slight increase in impulse and settling time in the phase-plane
cases figure 4.19 shows the attitude error. The longer time periods spent passing each end
of the dead-band accompanied by the longer settling time lead to the total impulse being
slightly larger.
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Figure 4.17: Attitude error for direct adaptive control

Figure 4.18: Attitude error for potential function

Figure 4.19: Attitude error for phase-plane
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4.4 Sampling Study

In addition to the attitude/rotational control and FDIR studies performed above, an
additional study has been performed to indicate propellant gains that can be made during
the asteroid sampling process by adopting a DAC algorithm. The control force in this
instance is intended to be used as a alternative mechanism for maintaining contact with
the asteroid during the sampling process. The current proposed method for maintaining
contact with the surface is a continuous thrust towards the asteroid using two cold gas
thrusters [76].

The aim of this simulation is to stabilise the lander at the stable position the lander
rests at after descent. Any deviation from this desired vertical location induces an error
into the control law and this error drives the thrusters. A schematic of the system under
analysis is given in figure 4.20.

To model the unknown composition of the asteroid a varying reaction drill force is
introduced. The maximum reaction force is limited at ten times the weight of the lander
base. Also, the reaction force is permitted to vary its form; firstly the reaction force follows
a sinusoidal path from maximum to zero and return, then an intermittent pulsing force
with discontinuous steps from maximum to zero force is introduced. By doing so most
of the possible surface materials that may be encountered are modelled. In these cases:
a solid rock (constant force), a porous material (sinusoid force), and a solid with voids
(pulsed force).

Visualisation of the control process is demonstrated with a plot of the required reaction
force in figure 4.21(a) with a plot of the thrust produced in figure 4.21(b). The impulse
required for this simulation is given in table 4.10 alongside the impulse that would be
required for the base-line approach with continuous thrusting.

Evidently the impulse required to stabilise the lander is much less using the DAC algo-
rithm compared to the conventional approach. The reason for this becomes apparent on
analysis of figure 4.21. Due to the varying type of reaction force that is encountered dur-
ing the sampling process it is not always necessary to continually counteract the reaction
force. The DAC algorithm is capable of selecting the appropriate times when a control
thrust is not needed, leading to savings in the total impulse and required propellant mass.

Figure 4.20: Sampling
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Figure 4.21: Reaction force (a), thrust force (b)

Table 4.10: Total impulse for stabilisation

Conventional DAC
Total

Impulse 600 46
(Ns)

4.5 Discussion of Results

In section 4.2 a quantitative comparison of the three controllers implemented is given. It
can be seen from the results that the direct adaptive controller performs best, in both
rotation and translation. These results are for non-failure cases and demonstrate the
larger range of operation that can be acquired through direct adaptive control leads to
impulse saving before any beneficial FDIR properties are considered. This larger range of
operation, for minimising impulse, came with an associated increase in settling time.

The subsequent FDIR studies conducted in section 4.3 provide more insight into the
properties of the three controllers. The first of these studies determined the comparative
impulse necessary to recover from failures in the lander legs. Again, the direct adaptive
control outperformed the other two controllers in both rotational and translational control.
The ability of the direct adaptive control algorithm to vary its control gains means it has
larger range of operation and the faults occurring are within this range.

The second FDIR study considered thruster failures. The direct adaptive control
algorithm uses the least impulse to recover from the failures but as a consequence takes
longer to recover.

A demonstration of another method of incorporating embedded autonomy associated
with the direct adaptive control algorithm is provided in the sampling study. A continuous
down-force is shown to be unnecessary. Instead, by changing the gains in the controller
the occasions when the down-force is needed can be provided. It was shown that direct
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adaptive control can decrease the impulse necessary significantly.
The studies conducted in this chapter demonstrate the relative advantages to be gained

from adaptive control. In the case of unexpected faults occurring in the system the DAC
method of control outperforms the phase plane and potential function controllers. The
ability of the controller to react and adapt to uncertainties in the plant dynamics and
environment could prove important in cases where there is little or no communication
with a ground station or when the communication time-lag with the spacecraft becomes
important, such as in deep space missions. This results as a consequence of the autonomy
being embedded in the control law and therefore the lander did not have to access any
other FDIR algorithms to react to uncertainties.

The asteroid lander control problem demonstrates that an evolutionary process of
moving to a ‘bottom-up’ internally embedded method of autonomous control will have
several advantages over conventional systems. First, through propellant mass savings,
second, through better tracking by minimising attitude errors, and third, by introducing
autonomous control algorithms that can be mathematically verified.
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Chapter 5

A State Deficit Approach to

Micro-Satellite Action Selection

5.1 Introduction

In this chapter a different application of autonomous control will be investigated in the
form of action selection for micro-spacecraft. A range of novel algorithms are developed
from dynamical systems theory and applied to an Earth orbiting spacecraft.

First the orbital model that the key control algorithms use is described. Then, the de-
velopment and stability analysis of the respective control algorithms is presented. Finally,
comparisons are drawn between the controllers and a fault recovery study is conducted.

Current research interest on spacecraft systems has a focus on miniaturisation. Con-
cepts such as formation-flying and swarming [77] [78] have demonstrated the advantages
that can be gained from having a system comprised of a number of smaller spacecraft as
opposed to one large platform. In doing so, and realising the benefits that are to be gained
from such a change, introduces new issues that must be addressed. Such micro-spacecraft
pose new challenges for on-board autonomy with limited computational overhead.

The key idea for the new algorithms presented here is for the system to adapt itself to
changes in its environment during its mission life. Using data from available sensors the
algorithm will self-organise into what is the appropriate response that should be realised
by the actuators. The actuator function can range from an upload or download of data
to battery charging or fault recovery.

Three different concepts for on-board autonomy will be investigated in this chapter.
Each of these concepts draws from ideas developed in dynamical systems theory [79] [80],
as described in chapter 2.

The first of the three control algorithms is based on the Lotka-Volterra model [81] [82].
The Lotka-Volterra model has been used extensively to analyse inter-species interactions
in ecological systems. Differential equations are used to describe the state of each species
and the degree they each affect the other. Here, this model has been adapted for the
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spacecraft action selection algorithm. Replacing each species with a spacecraft state and
permitting the states to compete for available resources (energy and memory) a control
algorithm has been developed.

Second, an artificial potential field algorithm [83] [84] is presented. Here each equi-
libria now represents a local minimum in the potential field. By associating a task to
each minimum and permitting the global potential to evolve as a function of the system
parameters (battery charge and data stored), the solution to the system of differential
equations motivates an action selection.

The third control algorithm develops the idea of Lyapunov stability [85] [86] through
direct adaptive control (DAC). Such robust controllers desensitise the system to the un-
certainties of the plant by varying the controller gains continuously. Here an attitude
control DAC algorithm is presented that attempts to minimise the artificial potential of
the system defined by state deficits. The state deficits define the state of the system with
respect to the ideal state. As these deficits are inter-related the DAC algorithm must
choose an appropriate attitude to bring the deficits closest to their minimum value.

Results from introducing each of the three controllers into a simple model of an au-
tonomous spacecraft in Earth orbit are presented. State-space mappings are presented
along with an analysis of the action selection. The results from these models demonstrate
that the use of modern dynamical systems theory to generate provable control algorithms
appears to be a promising concept for computationally limited micro-spacecraft.

5.2 Orbital and Spacecraft Model

In this section a description of the orbital and spacecraft model used for the micro-
spacecraft autonomy development is presented. First the kinematics of the orbital model
are defined. Subsequently the subsystems that comprise the spacecraft model will be de-
scribed and then how the control algorithms are incorporated into the model. The model
will follow the analysis of Radice [5].

5.2.1 Orbital Model

Earth orbiting spacecraft commonly adopt the center of mass of the Earth as the reference
point to define the inertial reference frame. This system of reference can be assumed to be
inertial, even although the Earth orbits the Sun. The Z-axis is the axis of rotation of the
Earth. The equatorial plane defines the X-Y plane of the coordinate system, perpendicular
to the Earth’s rotational axis. The X-axis is defined by the line formed where the Earth’s
equatorial plane crosses the ecliptic plane. The Y-axis is completed by a right-handed
orthogonal rule. Now that the geometry of the coordinate system has been defined, to
position the orbit of the spacecraft, three additional parameters must be introduced.

In figure 5.1, the inclination angle, i, of the orbit is defined with respect to the equa-
torial X-Y plane. By definition, the orbital plane and the equatorial plane intersect at
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Figure 5.1: Orbit parameters

the line of nodes. The angle that separates the line of nodes from the X-axis in the X-Y
plane is the longitude of the ascending node, Ω. The angle between the line of nodes on
the ascending side and the orbital perigee is the argument of perigee, ω. Regarding the
orbital plane, r is the position vector of the spacecraft and rp is the position vector to the
orbit perigee. Combining these three parameters with the eccentricity, e, the semi-major
axis, a, and the true anomaly, θ, of the orbit a set of orbital elements are given.

The time varying projection of the spacecraft position vector, r, in the three dimen-
sional inertial frame of reference can be defined. However true anomaly, θ, must be
calculated:

θ = M + (2e +
e3

4
)sinM +

5
4
e2sin2M +

13
12

e3sin3M + 0(e4) (5.1)

Thus knowing e, for e << 1, the orbit eccentricity, and M , the mean anomaly, permits
the direct calculation of the true anomaly using equation 5.1. Also, as M = n(t− τ), with
the mean angular velocity n =

√
µ/a3 where µ is a constant related to the local gravity,

and τ is the time of perigee passage, it is possible to express θ as a function of time for
small values of eccentricity.

Knowing the true anomaly permits the calculation of the radius vector magnitude |r|
using the equation:

|r| = p

1 + ecosθ
(5.2)

where p is the semi-latus rectum of the ellipse. Then the components of the orbital radius
on each of the inertial axes can be determined by:

rx = |r|[cosΩcos(ω + θ)− cosisinΩsin(ω + θ)]i (5.3)
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ry = |r|[sinΩcos(ω + θ) + cosicosΩsin(ω + θ)]j (5.4)

rz = |r|[sinisin(ω + θ)]k (5.5)

where i, j and k are the unit vectors along the X, Y and Z axis respectively.

5.2.2 Eclipse Model

The time in eclipse is a function of the spacecraft orbital elements. Using the position
vector from the orbital model defined in section 4.2.1, a Boolean output is returned, 1 if
the spacecraft is in sunlight, and 0 if it is in eclipse as shown in figure 5.1. The Sun-line
is defined as being along the positive X-axis, therefore the spacecraft will be in sunlight
if rx ≥ 0. The spacecraft will also be in sunlight if rx < 0, and a second condition met:√

r2
y + r2

z > REarth, as can be seen in figure 5.1.
Two examples are shown in figure 5.2 for two different orbit altitudes but with eccen-

tricity and inclination both zero. The Sun availability will be used later in the development
of the action selection algorithms.

Figure 5.2: Sun availabilities (h = 1200 km - T = 109.5 mins, h = 200 km - T = 88.48
mins)

5.2.3 Spacecraft Model

The focus of this thesis is on action selection control algorithms, therefore a representation
of a simple spacecraft is presented here. The spacecraft is defined as having three rotational
degrees of freedom that are controlled with reaction wheels. The electrical power system
comprises a solar array, battery and electrical loads (which will be defined later). The
payload is assumed to be a camera recording data. For data download there is an antenna
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for downlink to a ground station. This is accompanied by solid state memory for on-board
storage of data. Each of the subsystems of the spacecraft can affect others. For example,
data uplink will increase the volume of data stored in the memory and decrease the energy
stored in the battery. By choosing to operate the appropriate action the spacecraft must
track one of the three objects, the Sun, target and ground station, by activating the
reaction wheels.

The spacecraft can therefore perform three different tasks. It may choose to charge its
battery by slewing towards the sun. It may uplink data by pointing the payload towards a
target. Or, it may downlink data by pointing the antenna towards the ground station. A
schematic is shown in figure 5.3. The spacecraft selects the appropriate action by applying
one of the control laws to be defined later.

Figure 5.3: Satellite model with body axes e1, e2 and e3

Model Structure

The spacecraft model comprises a range of subsystems, and the functions performed in
each subsystem defines the data flow in the model. A block diagram of the data flow in
the model can be seen in figure 5.4. In this section each of the subsystems is described.
An outline of the values of the physical properties associated with the spacecraft described
are given in table 5.1.
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Figure 5.4: Model data flow

Table 5.1: Spacecraft properties

Parameter Value Unit
Camera Data Rate 5 kb/s

Camera Power 0.09 W
Antenna Data Rate 10 kb/s

Antenna Power 2.88 W
Solar Array Power 8 W

Battery Maximum Charge 24 kJ
Battery Minimum Charge 8 kJ

Attitude Slew Power 1.5 W
Attitude Slew Rate 3 0/s

Memory Maximum Data 1 Mb

Payload

For the purposes of the generic satellite model the payload is assumed to be an optical
camera. In the camera payload model when the record action is selected by the control law
the data rate to the solid state memory of the satellite is 5 kb/s, and a power consumption
of 0.09 W acts as a load on the battery [87].

It is assumed that the data is digitally stored in the memory of the spacecraft until it
can be down-linked to an Earth ground station. The maximum volume of data that can
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be stored on-board is assumed to be 1 Mb [88].

Attitude Control

The generic satellite will use electrically powered reaction wheels for three axis control.
When operating the wheels represents a battery load of 1.5 W [89] and the maximum slew
rate of the spacecraft is assumed to be 3 0s−1 [90].

In order to generate the maximum level of power available, the solar array needs to
face the Sun. Therefore a relationship between the spacecraft pointing angles and relative
position of the target or ground station and Sun is required. In figure 5.5 the geometrical
configuration of the problem is shown.

Figure 5.5: Satellite line-of-sight [5]

The optimum position of the satellite with respect to the target or ground station for
imaging or downlink respectively is when the satellite is directly above the local vertical of
the target or ground station. In the model the availability of the target or ground station
is defined by the angle γ:

γ = cos−1(− rt · rs

|rt||rs|) (5.6)

where, with reference to figure 5.5, the position of the target is defined by:

rt = cosαtcosεti + sinαtcosεtj + sinεtk (5.7)

where αt and εt are the longitude and latitude of the target. Due to the rotation of the
Earth the longitude will vary with time as:

αt = αt0 + ωE(t− t0) (5.8)

with ωE the angular velocity of the Earth defined as:

ωE =
2π

TE
(5.9)
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where TE is the Earth’s rotational period. The satellite-to-target vector, rs, is now:

rs =
rt − r
|rt − r| (5.10)

The availability will be maximum when the satellite is directly above the target location
and zero when the satellite passes over the local horizon plane, so that the availability is
determined from cosγ (−π/2 ≤ γ ≤ π/2).

The positions of the target and ground station can be defined for each simulation. This
part of the model also receives the three components of the satellite position vector (rx,
ry and rz) from the orbital dynamics section of the model. The availability of the target
or ground station can then be determined.

Figure 5.6 and 5.7 illustrate availabilities as a function of the spacecraft orbit and the
location of the target. In figure 5.6 two equatorial orbits are shown with the resource
located at 0o latitude on the equator. In figure 5.7 a circular polar orbit is shown with
the target located on the Arctic circle, at 66.5o latitude.

Figure 5.6: Availabilities for two equatorial orbits with target located on Equator

Now that the required pointing direction has been defined it is now necessary to define
how the satellite performs the necessary slew manoeuvres.

The direction along which the spacecraft must direct its payload is given by equation
5.10 where r is obtained from the orbital dynamics and rt is the target location. The
generic satellite has the camera and antenna placed on the face of the y-body-axis:

rbody
p = e2 (5.11)

where e2 is the unit vector along the y-axis in the body frame of reference. It is now
necessary to define the rotational transformation between the inertial and body axes.
This is done by using a transformation matrix R, in this case the 3-1-3 Euler sequence so
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Figure 5.7: Availability for two polar orbits with target located on Arctic circle at 66.50

latitude

that:

rinertial
p = RT rbody

p (5.12)

where the rotation matrix R is defined as:

R =




cθ1cθ3 − cθ2sθ1sθ3 cθ3sθ1 + cθ1cθ2sθ3 sθ2sθ3

−cθ2cθ3sθ1 − cθ1sθ3 cθ1cθ2cθ3 − sθ1sθ3 cθ3sθ2

sθ1sθ2 −cθ1sθ2 cθ2


 (5.13)

where c and s denote cos and sin respectively. Therefore:

rinertial
p = (−cosθ2cosθ3sinθ1 − cosθ1sinθ3)e1

+(cosθ1cosθ2cosθ3 − sinθ1sinθ3)e2

+(cosθ3sinθ2)e3

(5.14)

Since the camera and antenna are directed along the e2 body axis θ2 is undefined.
This part of the model takes as input the longitude and latitude of either the target or

ground station depending on the action selection and the inertial position of the satellite.
The output is the desired Euler angles necessary to perform the respective task by slewing
toward the required direction.

Telecommunications

When active, the transmitter downloads to the ground station at 10 kb/s and requires
2.88 W of power to operate [91]. The input to this model is the Boolean as to whether this
action has been selected. The output is the transmitter data rate, affecting the memory,
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and power consumption, affecting the battery load.

Electrical Power

It is assumed that one face of the generic satellite is a solar panel with a 10 cm x 10 cm
solar array. Choosing silicon cells that have an energy conversion efficiency of 15% [89],
the solar panels produce a constant power of 8 W when in direct sunlight.

The battery model takes as input the Boolean signals as to which loads are selected
and the net power from the different subsystems which require energy. Upper and lower
lethal limits of the battery are defined. The battery is assumed to have a capacity of 24
kJ and a minimum charge to guarantee the spacecraft survival of 8 kJ. The output from
the model is the current battery charge level [89]. By combining the solar panel model
and the battery model an electrical power model is produced. The electrical power model
provides the battery charge which affects the action selection algorithm.

5.3 Controllers

This section defines the controllers used in the autonomous action selection process. Where
applicable, stability analysis of the control laws is provided. The model results from using
each of the controllers in the generic satellite model are then given.

5.3.1 Lotka-Volterra Model

The first type of controller developed for use in the autonomous control action selection
algorithms is based on the Lotka-Volterra predator-prey equations [81] [82] [92]. The
Lotka-Volterra model of species interaction has been used extensively as a means for
analyses of ecological systems. Any number of species can be introduced to the system
of differential equations that define the propagation of each species as a consequence of
competing for resources. The Lotka-Volterra model is presented here. Subsequently a set
of similar differential equations will then be developed to represent the internal competition
for resources in the generic satellite.

The generalised Lotka-Volterra model is given by:

τ
d

dt
xi(t) = xi(t)[µi −

n∑

j=1

φijxj(t)] + xi(t) · η(t), i = 1, · · · , n. (5.15)

and represents the dynamical analysis of competition among n agents [93]. In the gen-
eralised Lotka-Volterra model xi ≥ 0 represents each of the competing agents, τ is the
time-constant, µi represents the resources available to each of the species, φij is the com-
petition matrix which represents the interaction of the species involved in the competition,
and η(t) is noise perturbing the model.

The system of equations 5.15 capture the dynamical behaviour of the system being
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modelled. One of the dynamical phenomenon present is heteroclinic behaviour, which is
a consequence of the competition parameter φij and the resource parameter µi when they
are bounded within a certain range [94].

In the following section an amended form of the Lotka-Volterra model, adapted for the
generic satellite, is presented alongside a stability analysis of the subsequent cycle.

The Lotka-Volterra Controller

An action selection algorithm based on the Lotka-Volterra model is presented here. This
algorithm uses the concept of action ‘modes’ that are competing for available resources.
Each of the action modes are representative of an action that the generic satellite can
perform, and the resources available to the satellite in the model are defined by the ‘state
deficits’ of the system. When one of the modes breaks a certain threshold, the associated
action can be implemented in the control algorithm. The state deficits [5][95] are given
by, in the case of three competing actions:

Battery Deficit dc =
battmax − battcur

battmax − battmin
(5.16)

Information Deficit dr =
memmax −memcur

memmax
(5.17)

Transmission Deficit dt =
memcur

memmax
(5.18)

where batt corresponds to the battery charge at current (cur), maximum (max) and
minimum (min) values and mem corresponds to the data held in the satellite memory
at current (cur) and maximum (max) values. The magnitude of dc increases as energy
is consumed. The magnitudes of dr and dt hold an inverse relationship. By recording
data dt increases while dr decreases, while downlinking data causes dr to increase while dt

decreases.
The three action modes are now labelled x (battery charge), y (record data) and z

(downlink data). The amended version of the Lotka-Volterra model that is used as an
action selection algorithm, in the case of three action modes (x, y, z) is given by:

ẋ = x(σxdc − φyxy − φzxz) + x · η(t) (5.19)

ẏ = y(σydr − φxyx− φzyz) + y · η(t) (5.20)

ż = z(σxdt − φxzx− φyzy) + z · η(t) (5.21)

where φij represents the competition between the modes and σi is the threshold for each
of the modes. The definition of the thresholds define the magnitude each of the modes
must reach before the respective action is implemented.

A schematic describing the three dimensional state-space is shown in figure 5.8. Each
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axis of the state-space corresponds to one state variable in the above equation set. The
dots denote the positions of the equilibrium points that correspond to the thresholds for
the respective action.

Figure 5.8: Three dimensional state-space with associated actions: x (charge battery),
y(record data), z (downlink data)

The set of equations 5.19-5.21 define a permutating cycle occurring as a consequence of
the systems stability properties. Changes in the satellite state deficits cause the stability
properties of the equations to change, as will be discussed later. The internal state of the
generic satellite is modelled through the inclusion of these state deficits. However, it is the
dynamical competition between the action modes that define the action selection process.
This produces a controller where the resources, mutually available to each action (energy
and data), are under competition. The result is a controller that responds to changes in
the system state that can result as a consequence of environmental uncertainties or system
failures.

Stability Analysis of the Lotka-Volterra Controller

To describe the stability of the system of differential equations represented by the amended
Lotka-Volterra controller a simplified case is studied. This is so the stability characteristics
of the system can be easily identified. Following this the controller will be applied to the
satellite model, where an accurate representation of the generic satellite and internal state
interactions are included.

Equations 5.19-5.21 are refined where all the internal state interactions are equal (i.e.
φij = 0.05). The three mode thresholds σx, σy and σz are 0.1, 0.35 and 0.55 respectively,
and a small amount of noise is included (−0.001 ≤ η(t) ≤ 0.001):

ẋ = x(0.1dc − 0.05y − 0.05z) + xη(t) (5.22)

ẏ = y(0.35dr − 0.05x− 0.05z) + yη(t) (5.23)

ż = z(0.55dt − 0.05x− 0.05y) + zη(t) (5.24)

The φij numbers are normalised and are set to 0.05 to encourage a reasonable level
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of state interaction. Also, the thresholds are selected at three different magnitudes to
demonstrate manipulation of the control algorithm.

At any time during model simulation there are four equilibrium points. However, the
only point that is stationary is at (0,0,0), the other three points move as a function of the
system state deficits. The stability of all the points is found by determining the eigenvalues
of the Jacobian, J, defined as:

J =




∂ẋ
∂x

∂ẋ
∂y

∂ẋ
∂z

∂ẏ
∂x

∂ẏ
∂y

∂ẏ
∂z

∂ż
∂x

∂ż
∂y

∂ż
∂z


 (5.25)

With respect to the point (0,0,0) all the eigenvalues, λi (i = 1-3), are real and positive,
although varying in magnitude as a function of the state deficits. This implies that this
point is an unstable node/spiral. The exception is when any of three state deficits di = 1.
In this case the corresponding eigenvalue is zero implying a stable center. This is acceptable
because the interaction between the state deficits implies that all three deficits cannot be
equal to 1 and some evolution of the system will always occur.

The remaining three equilibrium points change their locations depending on the mag-
nitudes of the state deficits. Therefore to analyse the stability of the these equilibrium
points it is necessary to choose possible combinations for the state deficits and analyse the
resulting eigenvalues. The general solution for the Jacobian with respect to the system of
equations 5.22-5.24, assuming the noise terms are negligible, is:

J =




0.1dc − 0.05(y + z) −0.05x −0.05x

−0.05y 0.35dr − 0.05(x + z) −0.05y

−0.05z −0.05z 0.55dt − 0.05(x + y)




(5.26)

From this Jacobian eigenvalues can be calculated at specified locations with specified
state deficits. Eigenvalue analysis can be conducted over the range of operating scenarios
and examples of the action mode values, state deficits and resultant eigenvalues are given
in table 5.2. From the table, the appearance and subsequent disappearance of the stable
manifolds illustrates the behaviour of the action selection algorithm. Since only one stable
manifold is present the system flows towards the appropriate action mode.

A simulated example of this system running with artificial input state deficits in given
in figures 5.9 - 5.11. In figure 5.9 the artificial state deficits are shown. Here each one
of the state deficits dominates the others sequentially, leading to a simulation of all the
entries in table 5.2. Figure 5.10 shows the magnitudes of all the action modes as the
simulation progresses. Finally, figure 5.11 depicts the phase plane of the simulation.
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Figure 5.9: Artificial resources for stability analysis

Figure 5.10: Action modes for stability analysis
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Table 5.2: Lotka-Volterra stability properties

Action Mode (x, y, z) State Deficit (dc, dr, dt) Eigenvalues (λ1, λ2, λ3)
(0.1,0,0) (0,1,0) (0,0.345,-0.005)
(0.1,0,0) (0,0,1) (0,-0.005,0.545)
(0,0.35,0) (1,0,0) (0.0825,0,-0.0018)
(0,0.35,0) (0,0,1) (-0.0018,0,0.533)
(0,0,0.55) (0,1,0) (-0.0275,0.323,0)
(0,0,0.55) (1,0,0) (0.09725,-0.0275,0)

Figure 5.11: State-space for stability analysis

Figures 5.9 - 5.11 show the cyclic behaviour of the system of equations 5.22 - 5.24.
The changing magnitudes of the state deficits result in the system evolving in a controlled
manner. It is the ability to manipulate and control the cycle that leads to the utility of
the equations as a means of controlling the generic satellite.

Lotka-Volterra Orbital Model

For application of the control law to the generic satellite orbital model the parameters in
equations 5.19-5.21 are changed. These new parameters for the internal state interactions
reflect the change from a idealised environment in the previous example to an orbital
model, while still retaining the stability concepts of the control cycle.

The three mode thresholds for the orbital model for σx, σy and σz are maintained at
0.1, 0.35 and 0.55 respectively. The satellite internal state interactions are representative
of the satellites battery charge rate, camera data rate and antenna data rate given in
table 5.1, but they are normalised to reflect the range of the associated action modes
(0 ≤ (x, y, z) ≤ 1). The normalisation factor with respect to the charge mode is the
operational range of the battery (battmax − battmin), and for the record and transmit
modes the normalisation factor is the maximum data the memory can hold memmax, as
defined in table 5.1.
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This leads to the system of equations given by:

ẋ = x(0.1dca − 5.6× 10−6y − 1.8× 10−4z) + xη(t) (5.27)

ẏ = y(0.35dra − 0.01z) + yη(t) (5.28)

ż = z(0.55dta − 0.005y) + zη(t) (5.29)

These equations lack an x component in equations 5.28 and 5.29. This is due to the
fact that charging the satellite battery does not effect the internal state of the satellite
with regards recording or transmitting data. The magnitudes of the φij terms in equation
5.27 also appear small, this is because these parameters are again normalised, denoting
that the record and transmit actions take some time to use the available energy stored in
the battery.

Also included in the equation set is a degree of resource availability. This concept was
described in section 5.2.2. This implies that an action mode resource is now a function
of both the satellite internal state deficit and the resource availability. The new resources
are hence defined as:

dca = dcboolsun (5.30)

dra = dratar (5.31)

dta = drags (5.32)

where boolsun is the boolean of whether the satellite is in eclipse, atar is the availability of
the target, and ags is the availability of the ground station.

Since the cycle takes some time to move between actions, some performance could
be lost in scenarios where time is important. To overcome this problem an action is
presumed to be selected when the associated action mode dominates the others and passes
an associated threshold. Therefore, although the action modes take time to increase, the
thresholding permits a faster change of actions to be realised.

The time dependant characteristic of this controller is undesirable, but the controller
operates to a reasonable level of efficiency. In a more complex controller using some of
the same characteristics as the Lotka-Volterra controller, to be discussed in chapter 6, a
method for alleviating this issue is presented.

Model Results

To demonstrate the implementation of the method described above, results from the
generic satellite model are presented. The first of these is the action potentials and the
associated state space mapping. Figure 5.12 shows the individual action selection mode
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potentials evolving over a period of 24 hours. Each action mode can be seen dominating
respectively and this becomes evident when the same results are illustrated on a three
dimensional phase-plane, shown in figure 5.13.

Figure 5.12: Action potentials for Lotka-Volterra model

Figure 5.13: Phase plane for Lotka-Volterra model

Figure 5.13 looks significantly different to the result obtained previously in figure 5.11.
This is a consequence of the state deficits varying to a wider degree during this simulation
and no one dominating deficit causing the respective action. In this simulation the mag-
nitude of the record (y) and transmit (z ) modes become the triggering actions at different
magnitudes of the charge (x) mode. The phase-plane plot in figure 5.13 therefore looks
less like the cycle seen in figure 5.11, but the same stability properties are maintained
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leading to a controllable system.
Applying this controller, the results for the internal state of the system give an appre-

ciation of the performance of the controller. The scenario is an equatorial low Earth orbit
(500 km) with a target for data recording and ground station for data transmission placed
on opposite sides of the Earth. This scenario ensures that the satellite passes in and out
of eclipse at the same time as encountering either one or neither of the target and ground
station due to the rotation of the Earth.

The results for the 24 hours are given in figure 5.14 - 5.16. Figure 5.14 depicts the
different actions being selected during the course of the simulation. The integer ‘1’ in-
dicates the charge action, ‘2’ indicates the record action, and ‘3’ indicates the transmit
action. As expected different actions are selected based on the state deficits of the system.
There also exists a fourth action denoted ‘drift’(4) where none of the other actions can
be realised. Figure 5.15 depicts the data stored in the memory of the satellite. A cycle
is developed wherein the satellite uploads data until the memory is full when the target
is in sight, and then downloads the data until the memory of the satellite is empty when
the ground station is in sight. Figure 5.16 depicts the energy in the satellite battery. Here
the satellite reaches neither the upper or lower limits of the battery and so can be taken
as acceptable.

Figure 5.14: Action integers for Lotka-Volterra model

Discussion of Lotka-Volterra Controller

The results show that the control methodology is sufficient for the tasking demanded on
the satellite. There are however a number of issues with this controller that make it
undesirable and may cause problems if the tasking requirements were more complex or
demanding. The main problem for this controller is the time dependance of the cycle.
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Figure 5.15: Data in memory for Lotka-Volterra model

Figure 5.16: Energy in battery for Lotka-Volterra model
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This problem is partially overcome by the introduction of thresholding but this still does
not address the fundamental characteristic of the cycle taking some time to evolve. This
means that as the number of tasks demanded by the system increases the performance of
the controller is likely to decrease as a consequence.

The performance of this model varies with the definition of the threshold values. In
this section these values have been selected to produce a control cycle where a full up-
load/download memory sequence is obtained and the battery uses a significant proportion
of its operational range. If a failure were to occur in the system, for example a decrease
in the solar panel efficiency, then the performance of the system would be reduced, unless
the threshold value for the charge (x) mode was changed. This could be included in the
controller but in doing so the embedded aspect of the autonomous action selection is lost.
These extra values for the thresholds would put an extra burden on the satellite memory
and effectively result in a return to a conventional method of fault detection, isolation and
recovery.

This controller performs well when the number of task to be performed is small and
when the likelihood of encountering failures is low. Stability analysis has also shown that
the desired actions are obtained as a consequence of changes in state deficits. However, if
the number of tasks to be performed is increased or a fault is encountered then this con-
troller’s utility is reduced and use of a different controller, such as the controller described
in chapter 6 is advised.

5.3.2 Potential Field Controller

The next control algorithm presented adopts the ideas of the artificial potential field [96]
[97]. An artificial potential field can be defined by a system of ordinary differential equa-
tions (ODEs) that incorporate state deficits identical to those used in the Lotka-Volterra
control method. Solving the system of ODEs, and by manipulation of this predetermined
field, can then lead to a range of different control actions being selected.

Each action in this algorithm is defined by a potential field local minimum. This local
minimum can be defined to be in any location of the potential field and be a function of
a state deficit.

First, consider one local minimum given by an artificial potential V, defined by equation
5.33:

V = di.e
−λi.((X−ρx)2+(Y−ρy)2) (5.33)

where di (i = 1 − 3) is the state deficit, λi controls the diameter of the minima, X and
Y are the range of artificial potential field and [ρx,ρy] defines the position of the local
minima. A plot of such a field and minima is shown in figure 5.17, where di = 1, λ = 1,
−2 ≤ X ≤ 2, −2 ≤ Y ≤ 2 and [ρx,ρy] = [0,0].
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Figure 5.17: Single potential minimum

If the negative derivative of the potential is calculated with respect to each state of
the potential field, then the solution to this set of differential equations evolves to [ρx,ρy]:

ẋ = −∂V

∂x
(5.34)

ẏ = −∂V

∂y
(5.35)

The process of adding multiple minima to a potential field permits the creation of a
set of differential equations that can be a function of the system (satellite) deficits and
physical parameters. This potential field can then be used to develop action selection
control algorithms.

Single Spacecraft Model

For the single spacecraft model the same control actions as for the previous model are
selected, i.e. charge battery, record, transmit and drift. This pertains to four different
local minima that are located on the potential field. If one action is more important
than another then it has a more central geometric location and the solver more frequently
evolves to this location. For this model each of the three main tasks (charge, record,
transmit) are of assumed equal importance and are equally spaced around a circle of
radius 1 centered at [0,0]. The ρC , ρR and ρT coordinates that correspond to the local
minima locations for charge, record and transmit respectively are therefore:

[ρx
C , ρy

C ] = [1, 0]
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[ρx
R, ρy

R] = [−0.5, cos(
π

6
)]

[ρx
T , ρy

T ] = [−0.5,−cos(
π

6
)]

[ρx
D, ρy

D] = [0, 0]

where, ρD is the fourth drift state that the system can choose.
With reference to equation 5.33, the three state deficits that correspond to the three

main actions dca, dra and dta (charge, record, transmit respectively) are defined by equa-
tions 5.30 - 5.32. The values of λi determine the radius of the local minima and in doing
so also the gradient of the slope of each minima. To equalise the system the three param-
eters are set to λc = λr = λt = 1, again corresponding to charge, record, and transmit
respectively.

Finally, values for the drift minimum are selected. The drift action will only be selected
if none of the other three actions are available. To this end the drift minimum must act
as an all encompassing safety-net. Here the deficit value is set to dd = 0.1 so it does
not influence the selection of any other action when they are available. Also, the drift
minimum must cover the entire area of the potential field and to this end the value of λd

is set to 0.5, which defines it to be much wider than the other minima with a shallower
gradient.

The final potential field is therefore defined by:

V = dca.e
−λc.((X−ρx

C)2+(Y−ρy
C)2)

+dra.e
−λr.((X−ρx

R)2+(Y−ρy
R)2)

+dta.e
−λt.((X−ρx

T )2+(Y−ρy
T )2)

+dd.e
−λd.((X−ρx

D)2+(Y−ρy
D)2)

(5.36)

Examples of the potential field are given in figure 5.18. In figure 5.18(a) the deficit
values are dca = 0.9, dra = 0.5, dta = 0.1, dd = 0.1 and it can be seen that the differential
equation solver will evolve to the location of the local minimum for the charge action at
[0,1]. In figure 5.18(b) the deficit values are neglected as neither the Sun, record target,
or transmit target can be seen, therefore the only minimum on the potential field is the
drift action and the differential equation solver tends to [0,0], the location of the drift
minimum.

Results for the incorporation of the control algorithm into the satellite model are shown
in figures 5.19 - 5.22. The orbital parameters for this simulation are the same as those
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Figure 5.18: Multiple minimum in the potential field
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chosen for the simulations in section 5.3.1, i.e. a spacecraft in a circular orbit 500 km above
the surface of the Earth, with the ground station and target placed at αgs = 00, εgs = 00,
αt = 00 and εt = 1800. Figure 5.19 shows a plot of the phase plane during simulation.
The plot shows the solver moving from the central drift state to the appropriate action
locations whenever they become available. Figure 5.20 depicts the action selection process,
as the satellite moves in and out of eclipse or has access to the record and transmit targets,
the appropriate action can be seen to be selected. The first integer represents the charge
action, the second the record action, the third represents the transmit action and the
fourth denotes the drift state.

The battery charge and data stored are shown in figure 5.21 and figure 5.22 respectively.
The battery can be seen to cycle through a charge-discharge state and the record and
transmit actions can be seen as the satellite memory is filled and emptied.

This scenario does not put demand on the algorithm. In addition, the output of the
algorithm essentially maps the deficit directly to specific actions. However, for more com-
plex problems the use of the potential field allows a mediation between multiple competing
behaviours. In the following section a fourth option will be given to the satellite where it
may transfer data to another satellite in the same orbit but further ahead or behind the
specific satellite under investigation in order to off-load data and so load-balance across
multiple satellites.

Figure 5.19: Single satellite potential field phase plane
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Figure 5.20: Single satellite potential field actions

Figure 5.21: Single satellite potential field battery

Figure 5.22: Single satellite potential field memory
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Multi-Spacecraft Model

One of the main interests in micro-spacecraft is the benefit that can be gained from flying
a constellation of satellites [98] [99]. A similar control algorithm to that proposed in the
previous section will be implemented where the satellite has the option to transfer data to
an identical adjacent satellite which can transfer the data to the ground-station if visible.

The local minimum for the potential field is constructed using equation 5.33. Here
there are five actions that can be selected: charge, record, transmit to ground station,
transmit to a neighboring satellite, and drift. The location of the minima are as follows:

[ρx
C , ρy

C ] = [1, 0]

[ρx
R, ρy

R] = [0.309,−0.951]

[ρx
T , ρy

T ] = [0.309, 0.951]

[ρx
D, ρy

D] = [0, 0]

[ρx
IF , ρy

IF ] = [−0.809, 0.588]

[ρx
IB, ρy

IB] = [−0.809,−0.588]

where ρIF ρIB are the inter-satellite links for the satellite forward and back respectively.
Both satellites can always be seen by the primary satellite, this is guaranteed by selection
of an orbital altitude of 450 km. The deficit for the inter-satellite link for the forward
satellite is defined as:

dsf = 2.mempri/(memmax + mempri + memsec) (5.37)

where mempri is the data in the memory of the primary satellite, memsec is the data in
the memory of the secondary satellite and memmax is the maximum data the satellite can
hold. A similar relation is built for the other satellite. The potential field is now defined
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as:

V = dca.e
−λc.((X−ρx

C)2+(Y−ρy
C)2) + dra.e

−λr.((X−ρx
R)2+(Y−ρy

R)2)

+dta.e
−λt.((X−ρx

T )2+(Y−ρy
T )2) + dd.e

−λd.((X−ρx
D)2+(Y−ρy

D)2)

+dsf .e−λsf .((X−ρx
IF )2+(Y−ρy

IF )2) + dsb.e
−λsb.((X−ρx

IB)2+(Y−ρy
IB)2)

(5.38)

An example of this potential field is given in figure 5.23. Here the state deficits are:
dca = 0.1, dra = 0.1, dta = 0.9, dd = 0.1, dsf = 0.5, and dsb = 0.5. In this case the satellite
now has two local minimum present and the action selected will depend on the position
on the potential field and the local gradients. In this example the deficit corresponding
to the transmission action is larger than the deficits corresponding to the inter-satellite
links so the probability that the satellite will choose to transmit to the ground is more
likely but this also depends on the previous action selected, i.e. corresponding to the prior
location on the potential field.

Figure 5.23: Multi-satellite potential field

The inclusion of the extra actions requires two extra spacecraft parameters to be
defined. The inter-satellite data rate link is taken to be 1 kb/s and the power required to
perform the inter-satellite link is 0.1 W [89].

Results for the inclusion of the enhanced control law into the satellite model are shown
in figures 5.24 - 5.27. Figure 5.24 shows the phase-plane for the controller during the
simulation period. The associated actions are given in figure 5.25, where the integers
1, 2, 3, 4, 5, and 6 correspond to charge, record, transmit, forward inter-satellite link,
backward inter-satellite link, and drift respectively. Battery charge and discharge can be
seen in figure 5.26, and the data stored in each satellite is shown in figure 5.27.

With the exception of the initialisation of the satellite internal states and the effect of
the rotation of the Earth, the behaviour of each satellite is periodic. Therefore, after an
initial settling period the trace each satellite leaves on the phase plane is expected to be
similar. This is the result that can be seen in figure 5.24. A similar sequence of internal
states for each satellite is mimicked by a similar path on the phase-plane. The differences
in the phase plane plots can be attributed to the differences encountered as the model

120



Figure 5.24: Potential field multi-satellite phase plane

Figure 5.25: Potential field multi-satellite actions

Figure 5.26: Potential field multi-satellite battery
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Figure 5.27: Potential field multi-satellite memory

permutates with each subsequent orbit after initialisation.
The results for the individual satellite internal data and energy show a limitation of

the potential field method when the number of tasks to be performed increases. Because
the number of local minima has been increased, and two (or more) of these minima can
have the same depth simultaneously, the solution to equation 5.38 can evolve between
these competing actions leading to a degree of indecisiveness in the action selection. For
example, in the simulation defined by figures 5.24 - 5.27, for the simulation time between
7,500 s and 10,000 s there exists a continuous change in the action selected for each
satellite. This period of the simulation refers to a situation where satellite 1 is switching
between the charge and transmit actions, satellite 2 switched between record and interlink
with satellite 3, and satellite 3 switched between drift and both passing data to satellite 1
and 2.

The control system, as a consequence of this switching, is not as efficient as with only
one satellite. This can been seen from the upload/download sequence of data in figure
5.27 for each of the satellites. With comparison to figure 5.22 for a single satellite, where
the data sequence consists of almost filling then emptying the data in the memory, the
multi-satellite controller decides to interlink data when it is more important to continue
transmitting to the ground station.

Consequently the simulation solver times increase and this results in the controller
having a reduced efficiency when multiple satellites are introduced. Its utility can be
assigned to the single satellite case unless some improvements are made to the controller.
Improvements could be made by assessing different relative positions of the local minimums
- moving away from the circular distribution to more intricate patterns. Another possibility
is to redefine the inter-satellite state deficits where they take less preference over the
primary functions of recording target data and/or transmitting to the ground station. A
final suggestion is to introduce artificial repelling potentials to inhibit certain translations
across the potential field.
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5.3.3 Direct Adaptive Controller

In this section an adaptive control law is presented that provides robust action selection
for a micro-spacecraft. Direct adaptive control differs from the previous control algorithms
because in the controllers discussed in this chapter any control gains are constant. Here,
by utilising stability properties inherent in the controller, the control gains can vary con-
tinuously as a function of the error signals based on the state deficits of the satellite defined
by equations 5.16 - 5.18. The controller aims to minimise an artificial Lyapunov function
defining all the dynamic states of the system. This is achieved by implementing a control
signal built around the changing controller gains.

The direct adaptive control (DAC) law is a function of known system parameters
while being highly robust to external disturbances. DAC is therefore demonstrated as an
attractive option for the micro-spacecraft problem since fault recovery is embedded into
the system.

The theory for adaptive control was defined earlier in section 2.4, and can be applied
to the micro-spacecraft action selection problem. As the control law, by definition, is
applicable to linear systems, all the non-linearities associated with the orbital model make
the orbital model applied in the previous sections inappropriate. With this in mind a
different model is created for application of the DAC controller.

It will be assumed that the control is the spacecraft pointing direction and that the
spacecraft slews between three different directions corresponding to the required action
(Sun pointing for battery charging etc).

To implement the control law the system state differential equations, in this case the
spacecraft deficits, defined by equations 5.16 -5.18, must be a function of the controlled
variable, the spacecraft pointing angle ξ, with the aim of driving all deficits to zero. To
build a model capable of being controlled in this manner a linear relationship for the
variation of each of these deficits is created. A visualisation of the model is shown in
figure 5.28 and the linear differential equations governing the deficit relations are given by
equation 5.39 and equation 5.40, for the battery deficit. The equations for the information
deficit and transmission deficit are the same although centered on a different angular
position as indicated in figure 5.28, and given by equations 5.42 - 5.44. Note that the
relationship between the information deficit (record) and transmission deficit (transmit)
implies a selection of one action incurs a change in both deficits.
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Figure 5.28: DAC action selection model (a)linear action magnitudes (b)spacecraft point-
ing angles

In figure 5.28(a) the locations of the maximum charge, record, and transmit actions are
ξcha, ξrec and ξtra. The lines depicting the triangular regions running off from each of these
three points define the linear change in the magnitude of each of the three actions that
decrease from a maximum when pointing directly at either of the three actions until zero
when at 300 (ξ 1

2
band) in a positive or negative sense from any of the maximum locations.

The model is defined as:
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ḋc = ėmax(1 + ((ξ/(ξcha −Nbposξ 1
2
band))

ḋr = 0
ḋt = 0

for (ξ − ξ 1
2
band) ≤ ξ ≤ ξcha

(5.39)

ḋc = 3ėmax.(1− ((ξ/(ξcha + Nbnegξ 1
2
band)) + (ξcha/(ξcha + Nbnegξ 1

2
band))))

ḋr = 0
ḋt = 0

for ξcha < ξ ≤ (ξ + ξ 1
2
band)

(5.40)

ḋc = ėrec

ḋr = ṙmax(1 + ((ξ/(ξrec −Niposξ 1
2
band))− (ξrec/(ξrec −Niposξ 1

2
band))))

ḋt = ṙmax(−1− ((ξ/(ξrec −Niposξ 1
2
band))− (ξrec/(ξrec −Niposξ 1

2
band))))

for (ξ − ξ 1
2
band) ≤ ξ ≤ ξrec

(5.41)

ḋc = ėrec

ḋr = 11ṙmax(1− ((ξ/(ξrec + Ninegξ 1
2
band)) + (ξrec/(ξrec + Ninegξ 1

2
band))))

ḋt = 11ṙmax(−1 + ((ξ/(ξrec + Ninegξ 1
2
band)) + (ξrec/(ξrec + Ninegξ 1

2
band))))

for ξrec < ξ ≤ (ξ + ξ 1
2
band)

(5.42)

ḋc = ėtra

ḋr = ṫmax(−1− ((ξ/(ξtra −Ntposξ 1
2
band))− (ξtra/(ξtra −Ntposξ 1

2
band))))

ḋt = ṫmax(1 + ((ξ/(ξtra −Ntposξ 1
2
band))− (ξtra/(ξtra −Ntposξ 1

2
band))))

for (ξ − ξ 1
2
band) ≤ ξ ≤ ξtra

(5.43)

ḋc = ėtra

ḋr = 19ṫmax(−1 + ((ξ/(ξtra + Ntneg.ξ 1
2
band)) + (ξtra/(ξtra + Ntnegξ 1

2
band))))

ḋt = 19ṫmax(1− ((ξ/(ξtra + Ntneg.ξ 1
2
band)) + (ξtra/(ξtra + Ntnegξ 1

2
band))))

for ξtra < ξ ≤ (ξ + ξ 1
2
band)

(5.44)
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where ėmax is the normalised maximum charge rate, ṙmax is the normalised maximum
record rate and ṫmax is the normalised maximum transmission rate. ėrec and ėtra are the
normalised rate of energy used in the record and transmit actions respectively. To work
with the state deficits 0 ≤ di ≤ 1 (i = 1− 3), it is necessary to normalise these parameters
so the deficits change at the correct rate. The normalisation factor for the energy term is
the range of battery operation (battmax−battmin) and for the data flows the normalisation
factor is the maximum data that can be stored memmax. These parameters were defined
in table 5.1. ξcha is the angular position of the maximum charge rate, 300, ξrec is the
angular position of the maximum record rate, 1500, and ξtra is the angular position of the
maximum transmission rate, 2700. ξ 1

2
band is half the angular width of the band within

which each action occurs, 300.
Nbpos, Nbneg, Nipos, Nineg, Ntpos and Ntneg are positive integers that define the slope

of the linear dependance of each of the associated action rates - defined as 0, 2, 4, 6, 8,
and 10 respectively. The three real numbers (3,11,19) are related to the positive integers
defining the local positions of the beginning and end of the linear action relationships.

Altogether equations 5.39 - 5.44 define the linear model from which an angle will
associate a given action selected by the control algorithm. This is an idealised model
giving the control law a synthetic environment to work in. Note that when the record
action is selected, for example in the region (ξ − ξ 1

2
band) ≤ ξ ≤ ξrec, there is an inverse

relationship between the rate of change of the record deficit dr and the transmit deficit dt.
This is modeled by the associated negative number in the rate of change of the deficits
defined in equation set 5.41.

The control objective is to bring each of the systems deficits to zero. Defining the state
x = [dc dr dt]T , the control u(t) = [ξ 0 0]T , and bringing together equations 5.39 - 5.44, a
standard set of linear differential equations is obtained:

ẋ(t) = A.x(t) + B.u(t) + d (5.45)

where A is zero and B and d are constructed from the relevant components from equations
5.39 - 5.44.

Definition of Controller

Similar to the control problem defined in section 4.1.3 and with reference to equations
4.16-4.18, the control problem is to assume that there exists a control gain matrix Ks

that satisfies an asymptotically stable representation of the system As. As outlined in
section 4.1.3, As can be defined arbitrarily as long as there exists P and Q that satisfy
the algebraic Lyapunov equation AT

s P + PAs + Q = 0, where P is positive definite and
Q is positive semi-definite. Therefore defining As as:
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As =



−0.1 0 0

0 −0.1 0
0 0 −0.1


 (5.46)

The eigenvalues of the As matrix are all negative and real representing a stable
node/spiral. Two possible solutions that satisfy the Lyapunov equation are then:

Q =




0.02 0.002 0.002
0.0002 0.0002 0.0002
0.0002 0.0002 0.0002


 (5.47)

and

P =




0.1 0.01 0.01
0.001 0.001 0.001
0.001 0.001 0.001


 (5.48)

The last matrix that must be defined is the positive definite constant gain matrix that
involves both Γ and Λ. Similar to the process described in section 4.1.3, these matrices
can be combined:




λ1 λ12 λ13

λ21 λ2 λ23

λ31 λ32 λ3


 = (Γ−1)Λ (5.49)

For simplicity set all non-diagonal elements of the matrix in equation 5.49 equal to zero
and defining λ1 = λ2 = λ3 = 1, leads to the variable control gains as:

K̇1(t) = −(0.1d2
c + 0.01dcdr + 0.01dcdt) (5.50)

K̇2(t) = −(0.001d2
r + 0.001dcdr + 0.001drdt) (5.51)

K̇3(t) = −(0.001d2
t + 0.001dcdt + 0.001drdt) (5.52)

L̇(t) = −(0.015dc + 0.015dr + 0.015dt) + ε (5.53)

where ε is a degree of noise. When the system is in any of the other regions between the
action selection regions noise is included in the system through the parameter L.

This leads to the control:

u(t) = K1dc + K2dr + K3dt + L (5.54)
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The advantage of using this control algorithm is due to the fact it can react in real time to
any unknown disturbance d. Traditional top-down autonomy is computationally intensive
and requires an algorithmic approach to identify and recover from faults.

The results from the simulations of the DAC action selection controller are shown in
figures 5.29 - 5.31. It can be seen that the system settles into a limit cycle behaviour with
battery charge and discharge to drive the data acquisition from the target and down-link.
Figure 5.29 shows the real time changing gains that define the control angle choice. Figure
5.30 shows the corresponding values of ξ that lead to the action selection. Figure 5.31
depicts the deficits of the satellite changing as different actions are selected.

Figure 5.29: DAC gains

Figure 5.30: Control angle selection
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Figure 5.31: Action deficits

It can be seen that it is possible to develop a DAC algorithm for this problem. By
permitting the control gains to vary continuously, as can be seen in figure 5.29, the appro-
priate angle is selected as a consequence, through equation 5.54. This pointing angle then
defines the rate of change of the state deficits inherent in the system dynamics. Figure 5.30
shows the angle commanded by the control law, each of the horizontal lines corresponding
to an angle where a specific data-related action is being performed, and the length of
these lines shows the time taken to upload/download data. The final figure 5.31 shows the
continuous process of trying to decrease all the state deficits to zero. As the record and
transmit deficits are the inverse of one another, the perfect solution of all deficits reaching
zero is impossible. The control therefore continues to cycle between the upload/download
sequence while maintaining the battery charge at an acceptable level.

5.4 Fault Recovery Study

Each of the three controllers described above have the ability to select an appropriate
action. This however is rarely enough in terms of robustness characteristics of a controller.
An extra feature of any controller is its ability to recover from a system failure. This
section investigates the response of two of the three controllers (a controller similar to
the Lotka-Volterra controller will be assessed in chapter 6) to a failure in the solar array
of the spacecraft. In each case, at some specified time, the power output from the solar
array is halved. The results of each of these scenarios is presented and a short discussion
is included.

First, the potential field (PF) controller, detailed in section 5.3.2 is subject to the
solar panel failure. In this case the failure occurs after the start of the fourth orbit (20,000
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seconds of simulation time). The results for the failure scenario are given in figures 5.32
and 5.33 - the dashed line in each figure depicts the failure. Figure 5.32 shows the action
selections and figure 5.33 shows the battery charge during simulation.

Figure 5.32: Potential field FDIR actions

Figure 5.32 shows that after the failure occurs a longer time is spent charging the
battery, depicted by the longer times spent on integer 1. Figure 5.33 shows that after the
fault occurs the battery cycle re-stablises in a new cycle. Both of these results show that
the algorithm is capable of recovering from such a failure, albeit at a degraded level of
performance.

The second case is the same failure applied to the direct adaptive control law, defined
in section 5.3.3, in the linear pointing model. Due to this controller being applied to a
different satellite model the failure time is different but the failure type is the same. This is
simulated by halving ėmax. The response of the controller is of interest although no direct
comparison can be made between the direct adaptive control algorithm and the potential
field algorithm. In this simulation the failure occurs after 500 s. The results for the
simulation are shown in figure 5.34 and figure 5.35, and the change in control parameters
can easily be seen. Figure 5.34 shows the system deficits changing along with the values of
control, ξ, that have caused the action. Figure 5.35 shows the control parameters changing
to produce the relevant control angle. In both figures the dashed line represents the case
without a failure, and the solid line represents the failed solar panel case.

For the direct adaptive control algorithm the failure of the solar panel is dealt with
in real-time by a change in the control gains that define the control angle. Evidently the
spacecraft is going to be operating at a less than optimal configuration but the space-
craft autonomously recovers from the failure without explicit fault detection. This is a
demonstration of the concept of embedded autonomy.
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Figure 5.33: Potential field FDIR battery charge

5.4.1 Fault Recovery Evaluation

Although no direct comparison can be made between the direct adaptive controller fault
and the potential field controller discussed, the fault recovery merits are worthy of note.
The direct adaptive controller is the only controller to implement any change in the control
algorithm as a consequence of the fault occurring. Not only does the direct adaptive
control algorithm adopt a new sequence of control gains to deal with the fault as it occurs
but it does not need any supplementary information about how to deal with the fault.
Conventionally, after any fault has been diagnosed by a completely separate piece of
software, a new set of control gains is applied to the controller.

The embedded nature of autonomy contained within the direct adaptive control al-
gorithm means that both these conventional FDIR techniques become redundant. Fault
diagnosis becomes unnecessary and as the controller gains change autonomously, the mem-
ory allocation associated with look-up tables can either be used elsewhere or removed from
the system requirements. Also, there may be some time needed by the separate diagnosis
software or the ground support team to diagnosis the fault. In the case where mission
failure may result due to hesitant or indecisive action in fault diagnosis and resolution,
the direct adaptive control algorithm provides an efficient and rapid means of recovery.

131



Figure 5.34: Direct adaptive control FDIR system
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Figure 5.35: Direct adaptive control FDIR gains
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Chapter 6

A Practical Application of

Micro-Satellite Autonomy

6.1 Introduction

The control algorithms considered in chapter 5 are evaluated in simulation. The stability
of the control laws were analysed, applied to an orbital and satellite model, and some
scenarios were investigated. In this chapter another control algorithm will be developed,
analysed, and simulated in the same manner, but this controller will be taken a step
further. The controller defined in this chapter will be developed by an analogue electronic
circuit. As the requirement of the micro-satellite controllers was to reduce computational
burden, by embedding the autonomy onto a circuit board the need for a processor is
completely removed. In this way mission critical functions can be hard-wired into the
spacecraft, while other less critical functions can be embedded in software.

In this chapter the control algorithm will be developed and the stability analysis of
the controller performed. Results from incorporating the controller into the same orbital
and satellite models defined in section 4.2 are presented, alongside a fault recovery study
into the response of the controller to a solar panel failure. Finally, the process involved
with developing an analogue electronic representation of the control law for application in
a real system is described.

The control algorithm presented here uses heteroclinic connections [100] [101], but in
addition also uses bifurcation theory [102] [103]. Bifurcation theory captures changes in the
qualitative or topological structure of a given family of differential equations, as discussed
in chapter 2. Combining these concepts permits a more complex, yet more controllable
autonomous action selection law to be defined.
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6.2 Controller

The control law used for simulation and subsequently developed electronically is described
in this section. Stability analysis is performed before and after any bifurcation has taken
place to ensure the operation of the controller.

6.2.1 Bifurcating Heteroclinic-cycle Controller

The concept presented here is an action-selection algorithm built around the Guckenheimer-
Holmes (GH) heteroclinic cycle [104]. This is an example of a heteroclinic cycle involving
three equilibrium solutions of a system of ordinary differential equations proposed by
Guckenheimer and Holmes, equations 6.1-6.3, with state variables (x,y,z ):

ẋ = x− (Ax2 + By2 + Cz2)x + εy (6.1)

ẏ = y − (Cx2 + Ay2 + Bz2)y + εz (6.2)

ż = z − (Bx2 + Cy2 + Az2)z + εx (6.3)

From any initial condition set, cycling behaviour results between three equilibrium
positions. It is these three equilibrium positions that will constitute the three actions of
the algorithm. To generate the action selection algorithm a new form of the above equation
set, revised Guckenheimer-Holmes (RGH), is proposed that permits different behaviour.
The RGH equation set is shown in equations 6.4-6.6:

ẋ = Ωx− (A1x
2 + By2 + Cz2)x + εy (6.4)

ẏ = Ωy − (Cx2 + A2y
2 + Bz2)y + εz (6.5)

ż = Ωz − (Bx2 + Cy2 + A3z
2)z + εx (6.6)

The RGH equations permit the differential equations to stop cycling by introducing
three individual parameters Ai (i = 1 − 3) that correspond to the three state deficits,
defined by equations 5.30 - 5.32. Included in these control parameters is the degree of
‘availability’, where the control deficit is weighted by a function of the cosine of the angle
between the satellite and target/ground station location, i.e. a function which represents
the visibility of the target or ground station, as discussed in section 5.2.3. Whenever one
of these parameters becomes dominant the corresponding attractor does not permit the
cycling to continue and an action is determined according to the location in state space.
Similarly, the availability of battery charging is unity in sunlight and zero in eclipse. The
inclusion of the parameter Ω increases the frequency of the cycle so there is less time lag
between changes in action selection.

This type of controller has advantages. No set sequence of events must occur before
an action is selected and the time lag between actions is small. Some similarities can be
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drawn between this controller and a neural network. The idea of a threshold being broken
for an action to occur is comparable to the threshold signals between neurons that induce
an output. Aspects of neural network design could therefore be used to improve on the
efficiency of the heteroclinic controller. An additional benefit is the stability of the set of
differential equations can be proven by analysis.

Stability Analysis of GH Equations

The stability of the equilibria in equations 6.1-6.3 can be determined by linear stability
analysis. For example setting A = −1, B = −1.5 and C = −0.6 an attracting heteroclinic
cycle is produced. Equations 6.1-6.3 have four equilibrium points at (0,0,0), (

√
3,0,0),

(0,
√

3,0), and (0,0,
√

3). The stability of these points is then found by finding the eigen-
values of the Jacobian, J, defined by equation 5.25.

The results of the analysis, and the stability of the points can be quantitatively de-
scribed by computing the eigenvalues at the respective points. For point (0,0,0) all the
eigenvalues are real and positive, defining an unstable node/spiral.

λ1 = λ2 = λ3 = 1 (6.7)

where λi (i = 1− 3) represents an eigenvalues of the Jacobian J.
For all other equilibrium points the eigenvalues are real, but for each equilibrium point

one of the eigenvalues is positive while the others are negative. This is the condition
necessary for the appearance of the three stable saddle nodes described above. A sketch
of the state-space can be seen in figure 6.1.

Point(
√

3, 0, 0) : λ1 = −2 λ2 = −0.5 λ3 = 0.45 (6.8)

Point(0,
√

3, 0) : λ1 = 0.45 λ2 = −2 λ3 = −0.5 (6.9)

Point(0, 0,
√

3) : λ1 = −0.5 λ2 = 0.45 λ3 = −2 (6.10)

Figure 6.1: GH state-space
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Consider the set of equations defined by equations 6.1-6.3, and denote the state vector
as X=(ẋ, ẏ, ż), the stability of the cycle will now be assessed.

Consider a sphere S defined by x2 + y2 + z2 − 3 = G(x, y, z) = 0. It can be seen that
the flow of the sphere S, falls onto the cycle as:

1
2
(∇G).X = (x2 + y2 + z2) + A(x2 + y2 + z2)2

−(1 + 3A)(x2y2 + y2z2 + x2z2)

and since

(x2y2 + y2z2 + x2z2) ≤ 1
3
(x2 + y2 + z2)2

therefore

1
2
(∇G).X ≥ −G

3
(G + 3) (6.11)

It can be deduced that for trajectories inside S that G will increase implying all
trajectories beginning inside S will flow to the surface of S. Consider figure 6.2 and the
above result, equation 6.11. Applying equation 6.11, if -3 < G < 0, i.e. inside the sphere,
then ∇G.X > 0 and the flow is outwards towards the sphere. If 0 < G < ∞, i.e. outside
the sphere, then ∇G.X < 0 and the flow is inwards towards the sphere. Finally if G = 0
then ∇G.X = 0 implies that there is flow on the surface of the sphere.

Figure 6.2: Flow to and from Sphere

The Poincare-Bendixson theorem [105] implies that all trajectories in a coordinate
plane approach an equilibrium point or periodic orbit. This holds true here because
movement between saddle points is restricted to one plane at a time. No periodic orbit
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exists because there are no equilibria in the coordinate planes off the coordinate axes and
the coordinate axes are invariant. In the (x,y) plane, the equilibria at ±

√
(−1/A) are

stable (see above). Therefore, there will be a heteroclinic cycle formed from trajectories in
the coordinate planes that make a circuit from (0,

√
(−1/A),0) to (

√
(−1/A),0,0) to (0,0,√

(−1/A)) to (0,
√

(−1/A),0). This cycle forms the limit cycle attractor of all trajectories
lying off the invariant lines x = ±y = ±z and the coordinate planes.

All features described are maintained for evolutions of equation set X. There will
always be a spherical annulus [106] that attracts the trajectories and the trajectories in
this region approach an equilibrium on one of the lines x = ±y = ±z, or they approach
the coordinate planes. Since the coordinate planes are invariant, and the flows within
the coordinate plane are structurally stable, all evolutions of equation set X have stable
heteroclinic cycles.

Stability Analysis of RGH Equations

The stability analysis performed on the GH equations is pertinent with respect to the
RGH equations. As stated above the two main differences between the equation sets are
the inclusion of the control parameters, Ai (i=1-3) and a cycle frequency Ω. A1 and A2

correspond to the control parameters for the record and transmit actions of the system.
These are the same parameters used in the previous controller in section 4.3.1, but for
comparison with the GH cycle their names are changed, and defined by equations 5.30 -
5.32:

A1 = f(θsat, αtar,M) = dra

and

A2 = g(θsat, αgs,M) = dta

where θsat is the true anomaly of satellite, αtar is the longitude of target, αgs is the
longitude of ground station and M is the data in the memory of the satellite. A3 has a
slightly different relationship as it corresponds to the charge in the satellite battery:

A3 = h(θsat, Boolsun, E) = dca

where Boolsun is the boolean of the sun availability for charging the battery and E is
the energy stored in the satellite battery. The positions θsat, αtar and αgs are defined by
the dynamics of the satellite relative to a rotating Earth and are functions of parameters
including the satellite orbital elements and the relative positions of the satellite, target
and ground station.

The Jacobian for the eigenvalue analysis is defined in the method above by equation
5.25, although it is derived with respect to the system of equations 6.4-6.6. When values

138



for Ω, Ai, B and C are selected similarly to the values for the GH equations the response
of the system matches that discussed above, depicted in figure 6.1.

To increase the cycling frequency/decrease the orbit periodicity of the cycle the value
of Ω is increased. The first effect of this is to move the position of the stable saddle
points accordingly. The new locations of the saddle points are now (

√
−Ω/A,0,0), (0,√

−Ω/A,0), and (0,0,
√
−Ω/A), where A < 0. Eigenvalue analysis at these points draws

the same conclusions as previously found for equations 6.1-6.3, i.e. three stable saddle
points.

Interesting results occur when Ai are varied individually. Setting the requirement that
|A1| À |A2,3| for example, changes the stability of the equilibria. By setting this condition,
i.e. A1 high, the corresponding responsive axis (x in this case) now develops a stable
attracting node as opposed to the previous stable saddle. This ensures that although
a cycle may start, and pass through the two other saddle points, it will terminate and
tend to a stationary position at the newly developed attracting node. It should be noted
that the remaining nodes (i=2,3) will maintain their position on the state-space at the
respective positions of

√
Ω/Ai corresponding to the appropriate axis. The newly developed

attracting node has a slightly different position on the state-space, with the corresponding
non-zero value being higher than the two equivalent saddle point values.

Figure 6.3 describes this phenomenon with a schematic of three differing initial con-
ditions leading to convergence of the trajectories to the same point on the z-axis. The
three differing initial conditions display how the trajectories can join the cycle at three
locations, 1, 2 or 3, and still tend to the same end point (0, 0, ze). Here A3 would be the
dominant control parameter.

Figure 6.3: RGH state-space after bifurcation

6.2.2 Model results

In order to demonstrate the practicality of the method described, results from the model
are presented. The first of these is the state space mappings. A comparison can be
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drawn between the GH equation set and the RGH equation set from figure 6.4 and 6.5
respectively. In figure 6.4 the GH cycle, starting from some arbitrary point, is evident in
a continual cycle moving between the three equilibrium positions. Alternatively, in the
RGH equation set, with one control parameter set to dominate, figure 6.5 depicts the cycle
being broken and the state space coming to rest at a particular equilibrium position.
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Figure 6.4: Demonstration of GH cycle
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Figure 6.5: Demonstration of RGH cycle

Secondly an analysis of the action selection output is provided. The same model,
as described in section 5.2, is setup to run for 24 hours. This permits the satellite to
pass over both the target and the ground station several times and also pass in and out
of the Earth’s shadow with battery charge and discharge. Over the one day simulation
the satellite’s deficits vary along with the availabilities, leading to a control parameter
or ‘action potential’ becoming dominant. When the magnitude of this potential passes
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a certain threshold the model selects the appropriate action. This process can be seen
in figure 6.6 and 6.7, where the different peaks in figure 6.6 correspond to the different
action integers seen in figure 6.7. The first integer represents the charge action, the second
integer the record action and the third integer represents the transmit action. The fourth
integer denotes a state of ‘drift’ where none of the three actions may be realised. Figure
6.8 depicts the data in the satellite memory as the simulation progresses and figure 6.9
depicts the corresponding charge of the battery.

The scenario was chosen for simplicity and to allow the different prerequisites for each
action to occur during each orbit. This can be seen in figure 6.7 when the control algorithm
selects an approximate sequence of record-transmit-charge, with drift periods in between,
during each orbit. This comes as a consequence of each of the respective bifurcations
taking place and leading to an appropriate potential, corresponding to the respective
action, becoming dominant, as is seen in figure 6.6. The efficiency of the algorithm is
detailed in the memory and battery charge of the satellite, given in figure 6.8 - 6.9, the
volume of memory present in the memory over a cycle is approximately five percent from
being at full and empty capacity implying the control algorithm is making full use of most
of the memory available, and similarly there is a large discharge depth in the battery.

Figure 6.6: Model output for action potentials
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Figure 6.7: Model output for action selection

Figure 6.8: Model output for data in satellite memory
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Figure 6.9: Model output for satellite battery charge

6.2.3 Fault Recovery Study

This section investigates the response of the controller to the same failure as described in
section 5.4, i.e. the power output from the solar array is halved. The results for the failure
are presented and a short discussion is included.

The failure is applied to the heteroclinic-cycle bifurcation controller, detailed in section
6.2. Again the failure occurs after the start of the fourth orbit. The results given in figure
6.10 and figure 6.11 show the reaction to the failure. In figure 6.10 the action selections are
depicted and figure 6.11 shows the corresponding battery charge for the same simulation.

Here the failure encourages the RGH cycle to evolve at a slower rate when the charge
action is selected. The solution to the bifurcating heteroclinic cycle problem therefore
spends more time in the local attractor corresponding to the charge action. This is evident
in both plots, as is a new lower discharge level that occurs as a result of there not being
enough time out of eclipse to fully recharge the battery with the new, lower, solar power
input.

For this controller the main point to note is the increased time spent on the action
defined by integer 3 (charge) after the failure has occurred, as is evident when analysing
the battery charge plot. The failure here incurs a new battery cycle where a lower battery
depth of discharge is realised. Eventually the battery is discharged to such an extent (orbit
number 11) that the controller chooses to drift for a short period of time and then charge
again to bring the battery level back to an acceptable level.

Fault Recovery Evaluation

A direct comparison between the fault recovery characteristics of the potential field and
revised Guckenheimer-Holmes controllers can be established. For the potential field con-
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Figure 6.10: Revised Guckenheimer-Holmes fault recovery actions

Figure 6.11: Revised Guckenheimer-Holmes fault recovery battery charge
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troller, described in section 5.3.2, when the fault is encountered the only qualitative change
in the evolution of the potential field is the rate at which the local minimum corresponding
to the charge action changes. The controller parameters defining the shape and position
of the local minimum on the potential field could be changed to offset the effects of the
failure but the evolution of the minimum always remains the same.

As a consequence, the rate of battery charge in figure 5.33 can be seen to change but
the depth of discharge of the battery does not. This is a positive aspect of the controller
as although a fault is encountered and performance is reduced, the safe operation of the
battery is not jeopardised.

For the revised Guckenheimer-Holmes controller there is one performance parameter
permanently associated with the algorithm. This is the action threshold that must be
broken in any particular action potential before the action is performed. The threshold
that leads to the charge action being selected is therefore only crossed after a greater
degree of discharge occurring in the satellite. This is evident when analysing figure 6.11
where after the failure occurs a new lower discharge depth is realised in any subsequent
charge cycle.

For this simulation the maximum discharge depth is not a problem as it lies within
the operational boundaries of the satellite. If a satellite system had a more constrained
battery range this would be a problem where too much energy could be expended and the
satellite would be unable to recover.

6.3 Analogue Electronic Circuit Equivalent

The analogue electronic circuit developed in this section has the aim of providing a cheap,
robust method of autonomous control for action selection on-board a micro-satellite. By
synthetically reproducing the artificial potentials present in a set of mathematical differ-
ential equations with the electronic voltage in an analogue electronic circuit the need for
a processor is removed. Here the method for developing such an electronic circuit will be
derived from the original differential equations.

6.3.1 Matlab Baseline Model

It is necessary to define a baseline for comparison between the mathematical model de-
scribed here and the electronic model that follows. Due to the fact the electronic model
will not be incorporated into an orbital model it is necessary that the mathematical base-
line model equivalent is similarly not driven using an orbital model. Here, the satellite
state control parameters are artificially changed so the same control parameters can be
incorporated into the electronic model.

To produce the bifurcating phenomenon described in section 6.2, it is required that
one control parameter be dominant at specified instants. The time evolution for the three
control gains is shown in figure 6.12. Each control parameter changes with time but only
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one is ever dominant. This has the effect on the transient response of the system potentials
as shown in figure 6.13. When one parameter dominates the bifurcation can be seen and
the respective potential dominates.

Figure 6.12: Artificial control parameters

Figure 6.13: Transient response of mathematical model

6.3.2 Electronic PSPICE Model

Many mathematical operations can be synthesized in analogue electronic circuitry. For the
majority of these mathematical operations the electronic ‘work-horse’ is the operational
amplifier. Operational amplifiers (op-amp) have been used extensively through the history
of space systems [107] [108], some have space grade qualifications including OP484 [109],
and it is these Op-Amps that will be assumed for this controller.
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PSPICE (Personal Simulation Program with Integrated Circuit Emphasis) is analog
circuit and digital logic simulation software, and calculates circuit voltages and currents
much like how Matlab calculates mathematical procedures. What follows here are the
circuit diagrams in PSPICE containing the voltage equivalents to the action potentials
defined by the revised Guckenheimer-Holmes control law, given by equations 6.4-6.6. Sub-
sequently the circuits will be driven by the same state deficits that were used in section
6.3.1 to drive the Matlab model and the results are compared.

Revised Guckenheimer-Holmes model

The requirement is to build an electronic voltage equivalent of the Guckenheimer-Holmes
equations stated in equations 6.1-6.3. To accomplish this a general understanding of
electronic engineering principles alongside the use of the mathematical operators available
must be implemented. The final circuit constructed must represent a printable circuit
board (PCB) that can be fabricated and integrated with a micro-satellite.

The procedure adopted for constructing such a PSPICE model will now be described.
Reference will be made to figure 6.14, which depicts the final model for the equivalent ‘x ’
voltage potential. Due to the equations for the ‘y ’ and ‘z ’ voltage potentials being almost
identical, only the ‘x ’ circuit will be described here.

Figure 6.14: Guckenheimer-Holmes PSPICE model

As with any time dependant model the best place to start is with the integrator, this is
depicted by the green box section in figure 6.14. Using the op-amp configuration defining
the integrator function and the voltage relationship defined by equation:

i = C
dV

dt
(6.12)

where i is the current in the op-amp, C is the value of capacitance of the negative feedback
capacitor, and the dV

dt fraction is a calculus expression representing the rate of voltage
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change over time, the output of the op-amp is the integral of the op-amp input.
The next sequential step in the Guckenheimer-Holmes loop is to square the voltage

potential that is the output of the op-amp integrator. This operation is seen in figure
6.14 in the red box. Here the AD633 analogue multiplier [110] is used, where the voltage
operation is described by:

Vout =
(X1 −X2)(Y1 − Y2)

10
+ Z (6.13)

where X1, X2, Y1, Y2 and Z are all input voltages.
The circuit under construction takes its input for X1 and Y1 to be the voltage that

is the output from the integrator. With reference to equation 6.13, it is necessary to
boost the output voltage from the analogue multiplier by a factor of 10 to maintain the
correct relative relationship for the rest of the circuit. This gain of 10 is performed by the
subsequent op-amp depicted in the red box after the analogue multiplier in figure 6.14.

It is at this point in each of the three circuits, corresponding to the voltage potentials
(x, y and z ), that the squared voltage potentials are multiplied by three fixed gains: A,
B and C (see equations 6.1-6.3). To retain a degree of easy visualisation these operations
are performed on a separate PSPICE diagram, although in reality they would exist on
the same circuit board. Information is passed freely in PSPICE between different circuit
diagrams and the points where the flow is passed between diagrams are indicated by either
the ‘<<’ or ‘>>’ symbols. This can easily be seen in figures 6.14 and 6.15. Figure 6.15
depicts these three gains being performed on each of the three voltage flows. The three
gained voltages are then feed back into the main circuits as required.

The three gained voltage components from each of the three voltage potentials must
now be added together. This is conducted through an op-amp summing configuration,
indicated by the brown box in figure 6.14. It should be noted at this point that the format
for successfully summing the three components requires that the magnitude of the resistor
in the op-amp negative feedback loop be equal to the magnitude for each of the input
parallel voltage paths, in this case the magnitude for the four resistors is 10 kΩ.

Next the output from the summing op-amp (brown box - figure 6.14) is to be multi-
plied by the linear x potential, which is the output from the original integrator op-amp
configuration. Due to the fact that voltages in parallel have the same magnitude (see
Kirkchoff’s laws [111]) a direct circuit potential voltage line can be drawn from the output
of the integrator op-amp and used as one of the inputs to the analogue multiplier depicted
by the blue box in figure 6.14. The linear x potential is therefore multiplied by the output
from the summing block. Finally, this voltage must be amplified by a factor of 10 to
maintain the correct magnitude of the flow (see equation 6.13).

The last stage in constructing the looped voltage flow is to sum the output from
the previous analogue multiplier/gain combination in the blue box with another linear x
component of voltage. This is depicted by the hazel coloured box in figure 6.14. Again
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Figure 6.15: Voltage flow gains

the negative feedback voltage must be equal in magnitude to each of the parallel input
voltages and this is set at 100 kΩ.

With reference to figure 6.14 (and the pink box) there is one final aspect of the circuit
that must be described. Any set of differential equations must have initial conditions.
Mathematically this is easy to specify but for this voltage loop the same implications
must be addressed by another means. The initial conditions for the voltage loop are
incorporated through the inclusion of another parallel part to the summing op-amp (hazel
box, figure 6.14). Here an instantaneously desirable magnitude of voltage is pulsed into
the circuit through the summer. The initial conditions for the x, y and z voltages are 10
mV, 20 mV and 30 mV respectively, a depiction of this is given in figure 6.16.

Figure 6.16: Initial condition pulse

The above described method of constructing an electronic equivalent of the Guckenheimer-
Holmes cycle can now be put through a transient response and the time response of each of
the voltages measured. A simulation depicting the evolution of the voltages in the circuit
over a period of 100 ms is shown in figure 6.17. The cycle can be seen in the three voltage
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responses with only one voltage becoming dominant at any one time. After a settling
period initiated by the initial condition the cycle can be seen to relax into a heteroclinic
cycle after a period of approximately 50 ms. Quantitatively the magnitude of the upper
and lower bounds of the electronic Guckenheimer-Holmes cycle are not the same as is seen
in the mathematical equivalent but all the qualitative dynamic phenomenon are present
and this will be re-enforced when we look into the revised Guckenheimer-Holmes cycle.

Figure 6.17: Electronic Guckenheimer-Holmes cycle

A few changes to the circuit diagram of figure 6.14 must be made in order to develop
the revised Guckenheimer-Holmes cycle. These changes are described here and references
to figure 6.18 are made during this process. Figure 6.18 appears similar to figure 6.14,
however, there is one important addition.

With reference to equations 6.4-6.6, there are two new features of the revised Guckenheimer-
Holmes equations that must be implemented in the new revised Guckenheimer-Holmes
circuit diagram. The first of these is the cyclic permutation frequency Ω. It is possible
to include this parameter in the circuit, with a gain op-amp added to the linear potential
feedback component, but it is not necessary in this case. Due to the magnitude of the
reference voltages being in mV and temporal response of the op-amps being in ms, one
complete heteroclinic cycle period is in the order of approximately 15 ms. This is within
the range of response necessary for the scenario under investigation so the gain term is
omitted.

The important inclusion to the circuit is the addition of the control parameters Ai

(i = 1−3). This is shown in the green box in figure 6.18, where the squared potential term
is multiplied by a new input voltage which represents the respective control parameter.
The three control parameters represent the three state deficits of the spacecraft system
and are given in equations 5.16-5.18.

In the real satellite system these control signal parameters come from the satellite
battery, in the form of the voltage potential that represents the charge action selection.
For the record and transmit actions the signal would come from the satellite memory bus.
These signals would be digital in nature due to the digital nature of the modern components

150



Figure 6.18: Revised Guckenheimer-Holmes PSPICE Model

that compose the battery and memory. It would therefore be necessary to convert these
signals to analogue for use in this circuit. Fortunately such digital to analogue converters
exist and a typical converter converts the abstract digital numbers into a sequence of
impulses that are then processed by a reconstruction filter using some form of interpolation
to fill in data between the impulses.

For this circuit the process is assumed to already have been performed and the input
control parameter voltages that represent the parameters Ai are introduced synthetically.
A similar input to that described by figure 6.12 is created only this time the time scales
are different where each control parameter becomes dominant at 100 ms, 200 ms and 300
ms for the x, y and z potentials respectively.

A plot of the resulting voltage potentials can be seen in figure 6.19. After an initial
brief period of stabilisation of approximately 25 ms the revised Guckenheimer-Holmes cycle
settles into the heteroclinic cycle. At the times of 100 ms, 200 ms and 300 ms each of
the control parameters corresponding to the x, y and z voltage potentials respectively are
artificially held dominant for 20 ms. For each of these three 20 ms time periods the response
of the system is a definite change in the qualitative structure of the electronic voltages. A
bifurcation takes place in the system dynamics and the relative voltage potential can be
seen to rise. This is the phenomenon that was required for the circuit to produce a desired
action selection, and is evident in figure 6.19.

6.4 Conclusions

The aim of this chapter was to develop an electronic equivalent to a mathematical control
law. By de-constructing the mathematical operations necessary into their individual parts
and replacing them with electronic components capable of exactly the same principles such
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Figure 6.19: Electronic revised Guckenheimer-Holmes cycle

a system is possible.
It has been demonstrated here that analogue electronic components maintain robust

useful characteristics in control law application. In this example they have been selected
due to their space-qualification grading and known reliability. A single op-amp when
manufactured in mass can be low in cost, providing all the dynamical properties necessary
to develop an autonomous control algorithm. An expensive, radiation hardened, processor
can therefore be by-passed.

Adversely there is the fact that an analogue electronic circuit is not re-programmable.
Once an analogue circuit is in orbit doing its prescribed task it can never be changed to
a different task. Also, the mating between analogue and digital components is not always
sufficient for complex tasks. If the mission requirement is for low computational overhead,
performing relatively simple tasks, then this method has been shown to be of interest.
Again, it can be envisaged that mission critical tasks would be embedded in analogue
electronics, hard-wired for robustness, while other overlayed, embedded in software.
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Chapter 7

Conclusions

7.1 Remarks on Embedded Autonomy for a Deep Space As-

teroid Lander

In chapters 3 and 4 one of the two main challenges of the thesis was presented, embedded
autonomy for a deep space mission. Attitude and translational control of an asteroid
lander considered. Here three differing controller types (phase plane, potential function,
and direct adaptive control) were implemented into a model and the comparative merits of
the controllers analysed. A range of fault recovery studies were conducted to highlight the
benefits of the adaptive algorithm. The direct adaptive controller was also implemented
into a separate study where the controller had to control the translational movement of
the lander during a sampling process on the surface of the asteroid.

All of the control algorithms used in these chapters (phase plane, potential function
and direct adaptive control) are deemed autonomous because they do not require any input
during operation. One of these controller types (phase plane) also has extensive industrial
heritage. The aim was to introduce newer autonomous control concepts and highlight the
advantages that can be gained from appropriate selection and implementation of these
controllers.

The first outcome from the asteroid lander study was a quantitative baseline com-
parison study, between the controller types, of the impulse required to correct an initial
attitude error on the spacecraft body while simultaneously having to deal with the lateral
translational effects associated with the rotation of the asteroid. It was found that the
adaptive controller is capable of substantial savings in impulse over the other types of
controllers. This is due to the degree to which the adaptive controller can self-optimise to
the descent scenario in question. The consequence of this optimisation becomes apparent
however when the transient settling time of the controllers is assessed. The reason that
the adaptive controller could decrease the impulse required to alleviate the attitude error
was because the settling time for the scenario was increased by a similar margin. In the
case of the lander problem this is not a significant problem as the micro-gravity conditions
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leave a longer descent time during which the control action is implemented. Of course
this may not always be a desired effect but the ability to tune the controller to a given
situation gives the engineer using the adaptive control technique the choice during the
controller design phase.

Subsequently a range of fault recovery studies were conducted on the controllers. These
took the form of artificially failing one of the lander legs and also failing one of the
thrusters used for control. The first outcome of these studies was the positive ability of
all the controllers to react and return the lander rotational and translational errors to an
acceptable level. The degree to which the individual controllers could achieve this control
is the topic of interest.

Regarding the magnitudes of the impulse required to compensate for the lander leg
failures, the adaptive controller uses the least impulse but the degree of saving, with respect
to the non-failure cases, is much less. It is only when the maximum attitude errors are
investigated that the full advantage of the adaptive controller becomes apparent. If the
sensors on-board the spacecraft are taken to have the usual operational range requirements,
then for the radar altimetry (for example) to operate efficiently the underside of the lander
must be pointing towards the surface of the asteroid. The only controller capable of
maintaining this maximum angle to a reasonable degree is the adaptive controller. The
reason the adaptive controller is capable of such a degree of controllability lies in the
adaptive nature of the controller itself. Control gains driving the controller change in
real time with respect to the failure as it occurs unlike the other controllers where the
gains are fixed. This illustrates the concept of embedded autonomy which can replace
traditional FDIR approaches in mission critical applications such as safe landing on an
unknown surface.

Traditional methods of FDIR do allow for controllers to change their control gains.
This is done through fault diagnosis where the type of fault incurred would be defined and
then the spacecraft would react by changing the control gains after consultation of a ‘look-
up’ table. The problem here lies in the fact that most probably the time taken to diagnose
the problem then implement the new control gains may be too long, particularly for the
lander problem. In this time frame the spacecraft may have reached an unacceptable level
of failure that may be impossible to recover from. Also, if the diagnosis algorithms and
look-up tables are stored onboard the spacecraft this requires more memory allocation to
the process than may be available.

In the case of the thruster failure study a similar result to the baseline attitude control
problem is found. The adaptive controller uses less impulse but takes a comparatively
longer time to settle to the required attitude. Here a negative effect of the adaptive
controller results - due to the longer settling time associated with the adaptive controller
and the fact the failure could occur at any instant during the descent phase, the lander
attitude may not be within sufficient error tolerances when coming in contact with the
asteroid surface. This can be taken as an acceptable secondary effect however as the result
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of such a dynamic situation would be a bounce and the error would be rectified during
that period. The advantages gained from the adaptive control out-weight the drawbacks.

The short sampling study that was conducted again demonstrated the ability of the
adaptive control to cope with uncertain environmental conditions that could be encoun-
tered. Conventionally, to deal with the problem of the reaction force produced as a
consequence of drilling on the surface of the asteroid, a constant force from the thrusters
would be implemented to hold the lander on the surface. Although this method would
work, the impulse required for such a process far exceeds what is necessary to perform the
task. By introducing the adaptive control method the impulse necessary is reduced by an
order of magnitude. Although this is not large, the weight savings made could be put to
use somewhere else on the lander system. Also a reduction in burn time would reduce the
possibility of contamination of the sampling site.

The general conclusion that can be drawn is that by adopting a bottom-up approach to
autonomous control, with the autonomous control algorithms operating at an embedded
systems level with no external guidance mission, performance can be increased. By per-
mitting the control algorithm direct real time access to the associated control torques and
forces, the time taken for the spacecraft to react to any change in system or environmental
state is decreased. This comes alongside a reduction in the computation necessary for im-
plementation of the control law as no secondary FDIR algorithms are necessary with their
associated look-up tables. The one drawback from implementation of the adaptive control
is the additional development needed, in comparison to the more conventional algorithms,
which can be developed and implemented much quicker.

7.2 Remarks on the State Deficit Approach to Micro-Satellite

Action Selection

In chapters 5 and 6 the second of the two main parts of the thesis was presented. Novel
embedded, mathematically verifiable control algorithms for action selection on resource
limited micro-spacecraft was investigated. Three novel controllers were developed and
incorporated into a generic satellite model. A fourth controller, again utilising adaptive
control techniques, was developed although this controller was incorporated somewhat
differently.

The first action selection algorithm developed was based on the Lotka-Volterra predator-
prey model, originally designed to simulate species interactions in an ecosystem, but more
generally contains the phenomenon known as a heteroclinic channel. The beginning and
end of this heteroclinic channel can be defined as the same point and this leads to a
heteroclinic cycle being created. It is using this cycle that the control algorithm was
developed.

By drawing a comparison between an inter-species competing ecosystem and a similar
competition regime where it is the internal states of the satellite system that are com-
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peting, it is possible to create a novel control algorithm. The species interactions are
replaced by action consequences and natural resources are replaced by state deficits. This
is represented by a set of differential equations and the integrated time solution to which
gives the required action selection. Also, as all the dynamic phenomenon exist explicitly
in the mathematics of the differential equations, the stability of the cycle was analysed
and the stable regimes of operation were defined.

This method of action selection worked with a degree of efficiency, but this could
be attributed to the low dimensionality of the control problem (only three actions to be
selected). As the heteroclinic channel, developed into a cycle, must permutate at a limited
rate, there is a limitation in the time between actions. This limitation was overcome to a
degree by introduction of thresholds, much like synaptic thresholding in neural networks,
but this still leaves some degree of ambiguity as to what these thresholds should be.

It can be concluded that the Lotka-Volterra controller can be implemented as an action
selection controller but it falls short of the goal to define a relatively computationally cheap
control that can be verified and validated. The idea and inspiration behind the utilisation
of the heteroclinic cycle is of interest but can be elaborated on further.

To reach the research goal, the controller developed in chapter 6 continued with the
concept of the heteroclinic cycle but the additional concept of bifurcation theory was
introduced to remove the need for thresholding. In this context a bifurcation is taken as
a change in the qualitative structure of the dynamical system under investigation.

The heteroclinic cycle used in this controller is the structurally stable Guckenheimer-
Holmes (GH) cycle. This cycle is a three-dimensional cycle with proven stability charac-
teristics. By amending the GH cycle to suit the needs of the controller, i.e. by introducing
the controller parameters, the revised GH cycle becomes an effective dynamical system
for use as an action selection controller. The bifurcations occur in the cycle when one of
the control parameters (state deficits) dominates the others. In this dynamic state the
heteroclinic cycle ceases to exist and a singular global attracting node prevails. It is then
this attracting node that defines the action selection process depending on which of the
three possible bifurcations occur.

This heteroclinic cycle controller works along similar principles as the former controller;
with the cycle permutating as a function of the three artificial action modes corresponding
to the three actions that can be selected. The cycle evolves in a defined order (1-2-3-1),
however, this order is not significant as an action is defined as occurring when a bifurcation
occurs and this order only applies to the artificial mode order. Thresholding is no longer
required as when the bifurcation occurs the location, on the phase space, of the new
attracting node is unique to the individual action.

The new characteristics introduced to the heteroclinic cycle controller as a consequence
of the bifurcation phenomenon make this controller more attractive than the previously
discussed Lotka-Volterra model. By increasing the frequency of the cycle permutation,
instantaneous changes between any of the actions can occur. Also, as the need for thresh-
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olding has been removed the computational expense of the controller has also been de-
creased.

Another type of controller developed for action selection was a potential field controller.
This controller type works with the premise of defining local potential minima (or ‘wells’)
on a global potential field. Each of these local potential minima represent an individual
control option and each minima changes depth as a function of the associated state deficit.

Characteristics of this type of controller are defined by the designer of the controller.
Almost all the physical properties that will define the controller and hence its behaviour
are prescribed during the controller design phase. This gives the control engineer authority
as to the response of the controller, but as a consequence there is no inherent stability
characteristics present.

Modifying the three actions for a single spacecraft to five actions for multiple spacecraft,
entails placing either three or five local minima on a global field. As this work is mainly
concerned with the development of the controllers, a simple ring configuration for the
minima is chosen where each of the minima are evenly distributed around the circumference
of a circle of specified diameter. Then, depending on the solution to the differential
equations that represent the potential field, which in turn defines the action, causes the
depths of the minima to change leading to a new action being selected.

The general conclusion to this type of controller is that it gives excellent authority
during the design phase. However, when the number of tasks that can be selected by
the control algorithm increases, interference between the local minima becomes an issue.
Increasing the geometric distances between the minima to reduce this interference can lead
to singularities in the differential equation solutions and decreasing the gradients of the
local minima to accommodate this leads to time lags between action changes. Therefore,
although an efficient control design can be implemented, this control technique is not
desirable for complex action selection algorithms.

The last type of controller developed as an action selection algorithm is a modification
of the adaptive controller used earlier. Here the same principles used for the attitude
controller are incorporated in the action selection controller but now the action comes as
a consequence of the spacecraft pointing angle. The reason for the different orbital model
is that the mathematical conditions under which the controller must operate dictate a
linear system and the orbital model used for the other models contains non-linearities.

Adaptive controllers of this type operate with the aim for minimising an artificial po-
tential that is representative of the system state deficits through a Lyapunov equation.
Due to the fact that the individual internal system states of the spacecraft under inves-
tigation here are interconnected then there does not exist a solution that drives all the
system deficits to zero. Therefore the adaptive controller continuously tries to find a vary-
ing solution, in the form of the spacecraft pointing angle, that brings the system deficits
as close to zero as possible.

As with the attitude controller, this is done by permitting the controller gains to vary
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in real time. These controller gains then specify the angle that the spacecraft should point
at any instant through a relation that maintains the stability of the control law. This
real time variation in the control gains gives the same advantages as were inherent in the
attitude controller.

One additional feature of autonomous control algorithms that is of importance is the
ability of the control algorithms to recover from system failures. One such failure study
was conducted with regards comparing the performance of the controllers. At a specified
simulation time the solar array efficiency is presumed to half and the response of the
controllers investigated.

The general conclusion to the study is that the controllers all posses a good ‘bottom-up’
means of recovering from the systemic failure. As none of the controllers use conventional
fault identification followed by implementation of a different control law, then the real
time changes in the control dynamics, defined by the system state, which influence the
controller can work faster. The solar array failure leads to a degradation in performance
in all the controllers but it is the adaptive controller that sees the least degradation. This
is due to the continual change in the controller gains that occurs in this method only -
this is effectively an continual optimisation process that leads to the most efficient means
of dealing with the fault that has occurred.

7.3 Future Work

Adaptive control techniques are becoming more widely used in many areas of control
engineering where plant and environmental dynamics are susceptible to error or change.
More complex adaptive control algorithms to that developed and implemented here exist
for use in controlling nonlinear dynamical systems. However, alongside this applicability
to nonlinear systems come more complex and involved procedures for development of the
algorithms.

In chapter 4 the reason that the adaptive controller could be applied to the asteroid
lander control problem was due to the model having only one rotational degree of freedom.
For a six degrees of freedom model of the asteroid lander there would be three rotational
degrees of freedom and nonlinearities become present in the dynamics of the control prob-
lem. Developing a nonlinear adaptive controller should be one of the main aims of any
continued work in this field. These controllers would be a much better representation of
the true controlled systems that would be encountered.

With development of any nonlinear adaptive controller an associated increase in the
fidelity of the models of the asteroid lander or spacecraft to be controlled should accompany
this. Including the extra degrees of freedom of the asteroid lander model will increase the
understanding of the real lander system. More accurate representations of thruster layout,
lander leg reaction forces/moments, and lander interactions with a surface of unknown
composition could then be simulated. These models could then be put through a more
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rigorous FDIR investigation.
In chapters 5 and 6, for both the purposes of ease of visualisation and proof of concept,

the dimensionality of the action selection problem was limited to three (four if the ‘drift’
action is counted). As most task scheduling procedures require the selection of a greater
number of individual tasks than this attempts should be made to realise heteroclinic cycles
that contain greater numbers of saddle nodes, ideally having any number, specifiable by
the user.

This task is trivial when building a heteroclinic cycle based on the Lotka-Volterra model
as the heteroclinic channel can have any number of saddles. The problem occurs when the
same bifurcating phenomenon is desired, such as with the Guckenheimer-Holmes cycle, in
the dynamics of the differential equations. A comprehensive study of known heteroclinic
cycles could be conducted with their dimensionality and dynamical characteristics noted.
Alternatively, attempts could be made at creating a system of differential equations that
exist with the desired characteristics but can be extrapolated to a higher dimensionality.

In chapter 4 the only controller that was extended to simulate multiple satellites was
the potential field method. With the development of heteroclinic cycles with higher di-
mensionality then multi-satellite models can be created, that require the extra dimensions,
and a comparison can be drawn between the controllers while they control extra actions.
More multi-satellite modeling will also give a better appreciation for the advantages to be
gained from micro-satellite constellations involved in task sharing during formation flight
for example.

Also, for the potential field controller there is the possibility of increasing the effec-
tiveness of the action selection algorithm. By including local ‘repellers’ in the field by
inclusion of negative potentials certain undesirable trajectories could be removed. There
could also be an investigation into the placement of the attractors and repellers to discover
if more efficient fields can be realised. A problem with the potential field controller is when
the algorithm chooses to inter-link data instead of performing a primary action (record or
transmit). Therefore by introducing a biasing factor, the inter-link actions would only be
performed when the primary tasks could not be realised.

Similarly to the work proposed for attitude control there is a case for building a non-
linear adaptive controller for use in the action selection process. This was the main hin-
derance in the comparison of the controllers. A nonlinear action selection controller would
primarily permit a direct comparison of the controllers by permitting the inclusion of the
adaptive controller into the orbital model. Also, due to the fact the nonlinear controller
could work with nonlinearities it would be capable of dealing with more complex action
selection processes. For example by pointing in the correct direction the spacecraft may be
capable of conducting two tasks simultaneously if the payload camera and antenna were
on different faces of the spacecraft.

Once all the control algorithms could be applied to the same orbital model it would
then be of interest to have a quantitative comparison of the CPU requirements of each
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controller. Not only could a comparison between these controllers be made but also a
comparison with other forms of autonomous action selection could be made, i.e. neural
networks. The degree to which these controllers are more efficient could be quantified and
a better case for continued research or integration into real systems for these techniques
could be made.
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