
University of Strathclyde

Department of Physics

Submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

Theory of self-organisation in

cold atoms

Author:

Enrico Tesio

Supervisor:

Dr. Gordon Robb

Second supervisor:

Prof. Gian-Luca Oppo

March 11, 2014



This thesis is the result of the author’s original research. It has

been composed by the author and has not been previously sub-

mitted for examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms

of the United Kingdom Copyright Acts as qualified by University

of Strathclyde Regulation 3.50. Due acknowledgement must al-

ways be made of the use of any material contained in, or derived

from, this thesis.

SIGNED:

DATE:



Before I came here I was confused about this subject.

Having listened to your lecture I am still confused.

But on a higher level.

ENRICO FERMI

To my family



Contents

Published material

Abstract i

Introduction iii

1 Introductory concepts 1

1.1 Mechanical effects of light on atoms . . . . . . . . 1

1.1.1 Light forces: atoms at rest . . . . . . . . . 5

1.1.2 First-order velocity dependence: Doppler

cooling . . . . . . . . . . . . . . . . . . . . 12

1.1.3 Cooling limitation: the Doppler temperature 17

1.1.4 Building an optical trap: dipole forces . . 20

1.1.5 The dipole force ‘revisited’ . . . . . . . . . 22

1.2 Self-organization outside equilibrium . . . . . . . 28

1.2.1 General features . . . . . . . . . . . . . . . 28

1.2.2 Linear growth: instability types . . . . . . 30

1.2.3 Nonlinear saturation: ideal patterns . . . . 33

1.3 The self-structuring scenario . . . . . . . . . . . . 39

2 Self-structuring instabilities: viscosity-free systems 43

2.1 Model equations . . . . . . . . . . . . . . . . . . . 45

2.2 Linear stability analysis . . . . . . . . . . . . . . 48

2.2.1 Stationary homogeneous solution . . . . . 48



2.2.2 Perturbation analysis . . . . . . . . . . . . 49

2.2.3 Dispersion relation . . . . . . . . . . . . . 54

2.2.4 Growth rate . . . . . . . . . . . . . . . . . 57

2.2.5 Threshold condition . . . . . . . . . . . . 62

2.3 Low saturation limit . . . . . . . . . . . . . . . . 63

2.3.1 Threshold condition . . . . . . . . . . . . 66

2.3.2 The detuning dependence . . . . . . . . . 67

2.3.3 Critical wavenumber . . . . . . . . . . . . 69

2.3.4 Periodicity in |q2| and the Talbot effect . . 71

2.3.5 The self-focusing nature of the nonlinearity 74

2.4 Internal and external degrees of freedom . . . . . 74

2.4.1 Growth rate divergence . . . . . . . . . . . 76

2.4.2 Cooperation and competition between in-

ternal and external degrees of freedom . . 81

2.5 Numerical simulations . . . . . . . . . . . . . . . 82

2.5.1 Low-saturation limit: linear scatterers . . 85

2.5.2 Internal-state driven instabilities . . . . . 90

2.6 A sync perspective: Kuramoto model without damp-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3 Self-structuring instabilities: viscous systems 102

3.1 Ring cavity . . . . . . . . . . . . . . . . . . . . . 104

3.1.1 Model equations . . . . . . . . . . . . . . 104

3.1.2 Linear analysis . . . . . . . . . . . . . . . 109

3.1.3 Low saturation limit . . . . . . . . . . . . 116

3.1.4 Numerical results . . . . . . . . . . . . . . 120

3.2 Single-mirror feedback . . . . . . . . . . . . . . . 123

3.2.1 Linear analysis . . . . . . . . . . . . . . . 123

3.2.2 Numerical results . . . . . . . . . . . . . . 129

3.3 Opto-mechanical cavity solitons . . . . . . . . . . 139



3.4 A sync perspective: Kuramoto model with damp-

ing and noise . . . . . . . . . . . . . . . . . . . . 144

4 Experimental considerations, open problems 147

4.1 Experimental observations of self-structuring . . . 147

4.2 Wavenumber selection . . . . . . . . . . . . . . . 151

4.2.1 Fractal pattern formation . . . . . . . . . 154

4.3 Longitudinal effects . . . . . . . . . . . . . . . . . 158

Summary and outlook 162

Appendices 167

A: Main derivations . . . . . . . . . . . . . . . . . . . . 167

B: Numerical methods . . . . . . . . . . . . . . . . . . 181

Viscosity-free case . . . . . . . . . . . . . . . . . . 181

Viscous case . . . . . . . . . . . . . . . . . . . . . 186

C: The zero-temperature limit. Self-structuring as a

phase transition . . . . . . . . . . . . . . . . . . . 190

Bibliography 201



Published material

Papers published or submitted to peer-reviewed journals:

• E. Tesio, G.R.M. Robb, G.-L. Oppo, W.J. Firth, P.M. Gomes,

T. Ackemann, G. Labeyrie, R. Kaiser, Self-organisation in

cold atomic gases: a synchronisation perspective, submitted

to Roy. Soc. Proc. A (2014)

• E. Tesio, G.R.M. Robb, T. Ackemann, W.J. Firth, and G.-

L. Oppo, Kinetic theory for transverse optomechanical insta-

bilities, Phys. Rev. Lett. 112, 043901 (2014)

• G. Labeyrie, E. Tesio, P.M. Gomes, G.-L. Oppo, W.J. Firth,

G.R.M. Robb, A.S. Arnold, R. Kaiser, and T. Ackemann,

Optomechanical self-structuring in cold atomic gases, accepted

for publication on Nature Photonics (2014)

• E. Tesio, G.R.M. Robb, T. Ackemann, W.J. Firth, and G.-

L. Oppo, Dissipative solitons in the coupled dynamics of light

and cold atoms, Opt. Exp. 21, 26144 (2013)

• E. Tesio, G.R.M. Robb, T. Ackemann, W.J. Firth, and G.L.-

Oppo, Spontaneous optomechanical pattern formation in cold

atoms, Phys. Rev. A 86, 031801(R) (2012)



Contributions to conferences (talks and poster presentations):

• Opto-mechanical dissipative solitons in cold atoms, talk at

the ‘Extreme Nonlinearities and Solitons’ (ENOS) Work-

shop, Weierstrass Institute for Applied Analysis and Stochas-

tics (WIAS), Berlin, 2013

• Symmetry breaking instabilities in cold atomic gases, poster

presented at the workshop ‘From Dynamics to Statistical

Mechanics and Back’, Max Planck Institute for the Physics

of Complex Systems (PKS-MPI), Dresden, 2013

• Transverse self-structuring in cold atomic gases, talk at the

Collective Scattering of Light (COSCALI) meeting, Naples,

2013

• Spontaneous Opto-Mechanical Structures in Cold Atomic Gases,

talk at the International Quantum Electronic Conference

(IQEC), Munich, 2013

• Opto-mechanical transverse patterns in cold atomic gases,

talk at the European Optical Society Annual Meeting (EOSAM),

Aberdeen (UK), 2012

• Spatial opto-mechanical structures in cold atomic gases, poster

presented at the Insitute of Physics (IOP) Photon12 confer-

ence, Durham (UK), 2012



The following conference presentations are related to the work

presented in this thesis, but I did not present them:

• T. Ackemann, Optomechanical self-organization in cold atomic

gases, talk at the ‘Rio de la Plata’ Workshop on Lasers Dy-

namics and Nonlinear Photonics, Montevideo, Uruguay, De-

cember 9− 12, 2013.

• G.R.M. Robb, Kinetic model of optomechanical self-structuring

in cold atomic gases, talk at the Physics of Quantum Elec-

tronic (PQE) 5−9 January 2014, Snowbird, Utah, USA

• W.J. Firth, Spontaneous spatial structures in cold atoms due

to opto-mechanical coupling, talk at the XXXIII Dynamics

Days Europe, 3− 7 June 2013, Madrid, Spain

• W.J. Firth, Extreme nonlinearity from linear optical scatter-

ing in cold atoms, talk at the ‘Extreme Nonlinearities and

Solitons’ (ENOS) Workshop, Weierstrass Institute for Ap-

plied Analysis and Stochastics (WIAS), Berlin, 2013

This work is related to my research activity as a graduate student
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Abstract

Since the first realization of a laser source in 1960, tremendous

progresses have been made in the theoretical understanding and

experimental control of interacting atomic-optical systems. Opti-

cal fields can nowadays be used to engineer long-range interactions

in cold atomic gases, manipulating the external degrees of free-

dom of the atoms via optical forces. This opens the possibility

for the study of highly controllable and tunable long-range inter-

acting systems, in which a complex dynamics for the motional

properties of the gas can arise due to the effective atom-atom

coupling induced by the field.

In this thesis the spontaneous emergence of spatial structures in

non-equilibrium atom-optical systems is theoretically and numer-

ically investigated, for different geometries and physical config-

urations. Extending previous research in hot atomic gases, self-

organising instabilities involving the external degrees of freedom

are studied, and in contrast to other cold-atom spatial instabilities

the spontaneous breaking of continuous symmetries is predicted.

The main focus of the work presented in this thesis is on dynam-

ical instabilities in cold gases. However, connections are found

with other fields of nonlinear physics, such as synchronisation of

coupled oscillators and phase transitions in many-body systems.

Part of the research presented here has been conducted in the con-

text of a collaboration with the Photonics group at Strathclyde

i



and the Institut non Linéaire de Nice, in which experimental ob-

servations of self-organisation and continuous symmetry breaking

were obtained.
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Introduction

The spontaneous emergence of order lies at the heart of much of

the observed world: we can experience it looking at sand dunes

in the desert, or at the clouds every time we are on a plane. We

witness (and take part in) a remarkable biological diversity with

millions of different species, and our heartbeat is determined by

the synchronization of countless pacemaker cells. We can observe

entire riverbanks of fireflies flashing in unison, planets forming

galaxies, galaxies forming clusters, and our brain itself is a self-

organizing system. How can complexity arise spontaneously from

the simple laws governing the dynamics of these systems? Should

we expect only intelligent systems to be capable of ordered, col-

lective behaviour? As a matter of fact, the answer is no: the

interaction between ‘simple’ and rather unintelligent constituents

of a physical system can in fact be responsible for the spontaneous

emergence of ‘complex’ and beautiful spatio-temporal structures.

The study of self-organization has made enormous progresses

since the seminal works by Turing [1] and Prigogine [2] in chem-

ical systems, by Haken [3] in optical systems and other pioneers

of the field [4]. We have nowadays a quite general framework to

understand complexity, and in particular the spontaneous emer-

gence of structures and order. Spatio-temporal structures can

emerge in nonlinear systems driven far from equilibrium, when
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the homogeneous state loses stability against another state which

displays some form of spatio-temporal variation − a pattern −
which is maintained stationary by a flux of energy through the

system. Over the years a long list of pattern-forming models

have been built, ranging from chemical, to fluid-dynamical, and

biological [4]. However, very often these systems are not easily

controllable experimentally, or they are not describable from first

principles; highly controllable and well-understood systems dis-

playing self-organization are precious and rare.

Nonlinear optics proved to be a powerful benchmark for testing

pattern-formation models, as it offers great flexibility and an ex-

treme level of control, as well as a well-established microscopic

understanding of the underlying dynamics. Typically, optical

self-organization experiments are arranged as follows: a relatively

intense plane wave beam is shone onto a nonlinear optical mate-

rial, and feedback is provided by retroreflecting the transmitted

beam [5, 6, 7, 8] or via the interaction of two counterpropagat-

ing beams [9, 10]. A large variety of nonlinear media has been

employed through the years, such as atomic gases [11, 8], Liq-

uid Crystal Light Valves [12, 13], or photorefractive media [14]

to name a few. Above a given threshold for the incident power,

spatial structures emerge in the plane transverse to the propa-

gation direction of the optical beam(s); this explains why this

field of research (particularly active during the 1990s) fell under

the name of transverse nonlinear optics [15, 16, 17]. Thanks to

the high level of experimental control and the detailed theoretical

understanding of these systems, the agreement between theoret-

ical/numerical results and the experiments reached an unprece-

dented level among self-organizing studies. Structures such as

hexagons, rolls, squares have been predicted and generated [16],
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as well as more exotic ones such as quasi-crystals [18]. More-

over, transverse nonlinear optics is still opening unexplored areas

of research, including the implementation of optical fractal pat-

terns [19, 20], or self-organizing arrays of optical vortices [21].

All these studies belong to the realm of nonlinear optics, where

the interaction between the optical fields and the medium is me-

diated by an internal excitation of the medium. This internal

excitation is the carrier density in photorefractive media, or (for

the case of interest in this thesis) is given by the internal-state

populations and coherence of the atoms composing a gas [8]. This

means that hexagon formation is realized, for instance, by encod-

ing complementary structures in the medium polarization, which

(at the microscopic level) corresponds to the atomic coherence.

The external degrees of freedom are untouched by nonlinear op-

tics experiments at room temperature, as even for strong optical

gradients optical forces are overwhelmed by thermal effects.

Parallel to the development of transverse nonlinear optics, how-

ever, another field of research developed and quickly became an

important part of modern science: cold-atoms physics. Evolv-

ing from the first realizations of laser cooling in 1978 [22, 23],

modern setups are now used everyday in numerous laboratories

worldwide that can confine up to 1010 − 1011 (neutral) atoms at

extremely low temperatures (∼ 10µK) and high peak densities

(∼ 1011at/cm3). Laser cooling and the realization of cold ther-

mal gases has rapidly become a ‘standard’ procedure, let aside

the realization of Bose-Einstein condensates at even lower tem-

peratures and higher densities [24]. Cold atoms offer numerous

benefits in terms of reduced Doppler broadening, extremely low

speed, and sensitivity to optical forces: dipole traps are in fact
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extremely effective in confining atoms for long times in the po-

tential imposed by light fields. Dipole traps nowadays represents

a true workhorse for the realization of condensed matter hamil-

tonians [25, 26], modern studies of quantum computation and

information protocols [27], and fundamental studies of nonlinear

dynamical systems [28].

Can we bring together this opto-mechanical coupling between

light and cold atoms and the general ideas of self-organization?

In particular, can we investigate self-organizing dynamics in cold

atoms where the center of mass of the atoms is affected, and not

their internal excitation? The answer to this question is that

we can, and there already exist a variety of setups showing self-

crystallization and ordering of cold atoms. Since the advent of

laser cooling it became clear that atomic motion exerts a back-

action on the dynamics of the optical fields: early examples in-

clude, for instance, recoil-induced-resonances [29], the Collective

Atomic Recoil Laser (CARL) [30, 31, 32, 33], or superradiant

Rayleigh scattering [34]. In the presence of feedback, spatial in-

stabilities can be expected for the coupled light-atom dynamics,

as the stationary state for the system might not be homogeneous.

Generally speaking, cold atoms in optical lattices (and self-orga-

nizing optical lattices) received notable interest in recent years as

they offer the possibility of emulating magnetism in highly con-

trollable systems (both in terms of classical and quantum spin

systems). The realization of complex and tunable many-body in-

teractions is in fact possible in cold atoms, leading for example to

the realization of Bose-Hubbard [25] and Dicke hamiltonians [26],

or spin-glass behaviour and frustrated interactions [35, 36]. Both

classical and quantum phase transitions can be explored using
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these many-body cavity quantum electrodynamics setups, giving

the possibility of testing fundamental models of magnetism and

condensed matter.

Collective Atomic Recoil Lasing

The first proposal for spatial instabilities due to opto-mechanical

coupling arose in what has been termed Collective Atomic Recoil

Laser (CARL) [30], where a cloud of cold atoms is placed within a

bidirectional ring cavity and pumped by one side. A backscattered

field is generated by the atoms, which counterpropagates with the

pump. Interference between the two beams results in a dipole po-

tential which in turns cause the atoms to bunch in its minima,

maximizing the Bragg condition for backscattering. A dynamical

instability is therefore obtained where the homogeneous state (no

backscattered beam, no density modulation) is converted into a

patterned state (two counterpropagating beams, λ/2 modulation

of the density) [32, 33]. Moreover, the location of the potential

minima along the cavity axis is self-selected, which results in a

breaking of a continuous symmetry. CARL essentially realizes

the atomic equivalent of a Free Electron Laser (FEL), where the

electrons composing a plasma self-bunch and emit coherent radi-

ation (with extreme properties of tunability and power, see [37]).

The denomination CARL highlights some of the essential features

of all cold atoms self-organizing systems:

• Collective. The self-organization process is essentially a many-

body effect, as the atoms composing the gas are coupled in

an all-to-all fashion through the optical field.

• Recoil. The fundamental process in the dynamics is the

atomic recoil which follows scattering events; in other words,
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the interaction involves the motional degrees of freedom of

the atoms (and not the internal-state polarization, at least

in a fundamental way)

• Lasing. The self-generated radiation (the backscattered beam

in this case) is coherent, which means that the self-organization

process results in an unconventional form of lasing1.

Cavity-pump setups

A second setup which gained notable notoriety in the cold-atoms

community is what we term here the cavity-pump setup. Orig-

inally proposed by Domokos and Ritsch [38] for cold (thermal)

atoms, it has been more recently extended to a Bose-Einstein con-

densate in a series of experiments at ETH [39, 40, 41, 42]. The

phenomenology is similar in the two cases, but a simple and in-

sightful analysis [43] shows that in the zero-temperature limit the

self-organization process realizes the superradiant quantum phase

transition of the Dicke-model hamiltonian. For deep potentials,

the dynamics of the system can be mapped into a Bose-Hubbard

model, so that the spontaneous emergence of a pattern effectively

realizes the celebrated superfluid-to-Mott transition [13].

In the cavity-pump setup, a cloud of cold (or condensed) atoms

is placed within a Fabry-Perót cavity, and pumped from the side

(transversely to the cavity axis). Some of the pump photons are

scattered into the cavity mode by the initially homogeneous cloud,

which creates a standing wave ∼ cos2 kx. As in CARL, the atoms

bunch into the minima of the corresponding optical potential,

which optimizes the Bragg condition and enhances scattering into

the cavity mode. As a result of this runaway mechanism, the ho-

mogeneous state is unstable (above a critical value for the pump)
1Unconventional for atomic systems, but not in plasma/FEL setups.
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and is converted into a periodic , wavelength-scale checkerboard

pattern [38, 44, 39]. Due to the interference between the pump

and the cavity fields not all the potential wells are populated, but

the system can self-select whether to occupy the ‘odd’ or the ‘even’

wells. This results in a spontaneous breaking of a discrete Z2 sym-

metry (which is in fact broken by the Dicke phase transition), and

in the superradiant population of the cavity mode. With a view

to the pattern-forming dynamics, however, it is important to bear

in mind that no continuous symmetry is broken by the system,

as the spatial periodicity is determined (as in CARL) by the op-

tical wavelength. Otherwise stated, placing a cavity in the empty

space already breaks the translational symmetry, and the cavity-

pump self-organization further breaks the discrete Z2 symmetry.

Extending this setup to a multi-mode cavity a continuous sym-

metry breaking is expected, as the system can choose between a

continuum of transverse modes to populate. This in turns has

been proposed to realize frustrated interactions and glassiness, as

a disordered spin dynamics can effectively be realized using the

motional degrees of freedom of the atoms [35, 36].

Counterpropagating beams in an elongated cloud

A third setup that we wish to briefly discuss here has been re-

cently implemented at Duke University in the group led by Daniel

J. Gauthier. It consists of an elongated cloud of cold (thermal)

atoms, pumped by two counterpropagating beams. This system

has been shown to display collective behaviour, and again the

superradiant emission of wave-mixing beams was reported [45].

Moreover, the light-atoms interaction leads to an extremely strong

χ(5) nonlinearity at remarkably low light levels [46].

In terms of pattern-forming dynamics, the spontaneous emer-
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gence of off-axis sidebands have been reported in [47]. In the

near field, this indeed corresponds to the spontaneous emergence

of spatial patterns, but the system is quite limited by its small

aspect-ratio (the longitudinal dimension is much larger than the

transverse one). As can be seen from Ref. [47], in fact, the trans-

verse domain accommodates the fundamental wavenumber but is

not capable of resolving higher-order spatial harmonics. These ex-

periments thus show the first realization of a true pattern-forming

dynamics due to opto-mechanical coupling, but in a quite small

aspect-ratio system, so that the results are hard to interpret and

analyse.

What is new in this work?

The expression ‘true pattern-forming dynamics due to opto-me-

chanical coupling’ used above means the spontaneous breaking

of continuous translational degrees of freedom (unlike in cavity-

pump setups), where spatial patterns are encoded in the motional

degrees of freedom of the gas, and emerge with self-selected scales

and self-selected orientations (unlike in CARL). As in all the sys-

tems discussed above, we also expect such an opto-mechanical

pattern formation to lead to cooperative behaviour; in the rest

of the thesis, a synonym for opto-mechanical pattern formation

will be self-structuring, emphasizing that spatial structures are

realized for the atomic density (and not the internal-state prop-

erties as in hot-atoms pattern formation). The work presented

in this thesis is concerned with the theoretical and numerical

study of cold-atoms setup in which a self-structuring transition

can be observed in the plane transverse to the propagation of

a single optical beam. Systems of interest for this thesis are

those which ‘naturally’ possess a multi-mode nature (similar to
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the multi-mode proposals of [35, 36]), allowing the observation of

continuous symmetry breaking for the motional degrees of free-

dom of the system. Extending previous research in hot-atom

pattern formation, we will focus on two feedback schemes: the

single-mirror feedback geometry (Chapter 2 and Sec. 3.2) and a

ring cavity geometry (similar to CARL or the Lugiato-Lefever

model [6], Sec. 3.1). These systems show remarkable elegance,

simplicity and tunability, offering the possibility of implement-

ing a variety of nonlinear states, including localized patterns and

solitons (Sec. 3.3). Our investigation will take a ‘nonlinear dy-

namics’ viewpoint, addressing the linear stability of semiclassical

model equations, but a close connection exists with studies ad-

dressing the ground-state properties of similar systems (see e.g.

the cavity-pump literature [43, 13]). We wish to clarify this con-

cept throughout the thesis, but a clear example is given by the

study of cavity-pump systems: for thermal gases self-organization

is interpreted as a dynamical instability [38], while in the zero-

temperature limit a description can be given in terms of a many-

body hamiltonian whose ground state is degenerate at the critical

point [43]. As we will deal with thermal atoms in our work, we do

not investigate the quantum limit and always deal with classical

transitions. However, a Dicke-like interaction is still underlying

dispersive light-atom interactions, and it is therefore legitimate

to ask what kind of quantum transition realizes the continuous

symmetry breaking corresponding to self-structuring instabilities.

Future research in this direction could aim at deepening the un-

derstanding of self-structuring transitions, using the ultimate sim-

plicity and elegance of self-structuring in cold atoms to investigate

fundamental aspects of many-body physics.
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Chapter 1

Introductory concepts

In this first Chapter some introductory notions concerning the

physics of cold atoms (Sec. 1.1) and the study of self-organization

outside equilibrium (Sec. 1.2) are presented. These two topics

are seldom found together in a single work, but the intention is

to emphasize from the beginning that the aim of this thesis is

to bring together these two fields. The following Chapters will

clarify how the very general concepts of self-organization can be

used in the realm of cold-atoms physics. In Sec. 1.3 the general

scenario for self-structuring analysed in the following chapters will

be presented and discussed.

1.1 Mechanical effects of light on atoms

This Section is concerned with the physics underlying cooling,

trapping and manipulation of atomic gases. Far from being ex-

haustive on this broad subject, the concepts used in the context

of this work will be presented concisely, focusing on theoretical

aspects. Atoms will be systematically thought as two-level sys-

tems, a useful idealization for understanding the underlying phys-

ical mechanisms. Such a simplified theory of light-atom interac-

tion is indeed capable of describing the relevant physical mecha-
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nisms which lead to a mechanical manipulation of atoms by light,

namely the scattering (radiation) force and the dipole (gradient)

force.

Since Maxwell first developed the fundamental theory of electro-

magnetism [48], it has been clear that light can exert forces over

matter, as the momentum carried by a light beam gives rise to

the so-called radiation pressure. In 1933 Frisch made the first ex-

perimental studies of radiation pressure on atoms [49], following

Lebedev [50] and Nichols and Hull [51] who quantitatively stud-

ied radiation pressure on macroscopic objects at the beginning

of the twentieth Century. With the advent of the laser, Ashkin

foresaw the potential use of intense beams to manipulate atoms:

the deflection of atomic beams by laser light was demonstrated

in 1970 [52]. The use of light radiation forces exerted by lasers to

slow down and trap atomic gases was first proposed by Hänsch

and Schawlow [53] and Wineland and Dehmelt [54]. In 1978,

Ashkin proposed a trapping scheme based on a combination of

radiation forces (used to slow down an atomic beam) and dipole

forces (used to trap it afterwards) [55]. In the same year the

first two realizations of gas cooling were obtained, by Wineland

et al [22] with Mg ions held in a Penning trap, and Neuhauser

et al with trapped Ba+ ions [23]. Thirty years after these pio-

neering contributions, the cooling of atomic gases down to tens of

µK exploiting laser light (hence the widely used term, laser cool-

ing) is an everyday procedure in many laboratories worldwide.

The exploding scientific interest in the field of cold-atoms physics

led to the Nobel prize in 1997, awarded to Steven Chu, Claude

Cohen-Tannoudji and William Phillips for their outstanding con-

tributions in the ‘development of methods to cool and trap atoms

2



with laser light ’.

It must be stressed at this point that the denomination ‘cold

atoms’ may be misleading if one thinks of ‘temperature’ in terms

of the thermodynamic, equilibrium temperature of an atomic gas.

The reason why laser cooling attracted so much interest in the sci-

entific community, in fact, is mainly that cold atoms are meant

to be slow, free atoms. For instance, this would make measure-

ments easier (long measurement times for atomic beams), and

would drastically reduce Doppler line broadening: just to name

an application, these are aspects which are crucial for the real-

ization of an atomic clock. If the average speed of an atom at

room temperature is about the speed of sound (∼ 300 m/s), in

principle, one could reduce it by simply refrigerating the room,

as the average speed scales with the square root of the tempera-

ture. However, already at 77 K a nitrogen (N2) gas will condense,

while the atoms still move at an average speed of 150 m/s. Be-

fore reaching low speed values (i.e., less than 1 m/s) by simple

refrigeration, any kind of gas will reach such a low vapour pres-

sure that essentially no atoms are in the gas phase, and thus no

atoms are free. Laser cooling is concerned with the slowing down

of the particles composing a gas via a non-equilibrium procedure,

which leaves the particles moving at extremely low speed values

(∼ cm/s) in the gas phase.

The desire to reduce the motional degree of freedom of a gas,

yet avoiding condensation, was a major motivation in the early

studies of laser cooling. As the field progressed, however, the

horizon of possible applications further broadened: the realiza-

tion of Bose-Einstein condensates, for instance, paved the way

for the study of an entirely new state of matter [24]. Optical

lattices, briefly discussed in Sec. 1.1.4, form the basis of many
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studies of fundamental quantum mechanics and quantum infor-

mation [25, 28]. This thesis work is not concerned with laser

cooling, but with one of its direct consequences: once the atoms

are cooled down (i.e., are slowed down), in fact, forces exerted by

light become detectable as they can compete with thermal effects.

One can envisage a situation where a gas is cooled down by use

of light forces, and thereafter interacts with another light beam.

Because the atoms are ‘frozen’ at extremely low speeds, the light

forces originating by this second beam will be only marginally

counteracted by the thermal motion of the atoms for a long time,

while these optical forces would be completely non-detectable at

room temperatures.

The rest of this Chapter is organized as follows. Sec. 1.1.1 de-

scribes the mechanical action of light on atoms at rest. We will

follow the line of Gordon and Ashkin [56] in introducing dipole

and radiative forces, but the same concepts can be found in many

reviews and textbooks [57, 58, 59]. In particular, a particularly

insightful interpretation of the dipole force, due to Dalibard and

Cohen-Tannoudji [60], will be presented in Sec. 1.1.4. Appendix

B contains a more detailed derivation of the Maxwell-Bloch equa-

tions for two-level atoms, which complements the definitions given

here.

Atoms in motion will then be discussed, and the main concepts

related to Doppler cooling are presented in Sec. 1.1.2. Since the

main focus of this thesis is not the laser cooling process itself, but

rather to exploit low temperatures in order to make light forces

dominant over thermal effects, radiative forces and optical mo-

lasses will be dealt with only briefly. However, a comprehensive

description of light forces is still necessary to understand, at least
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in principle, how such temperatures can be achieved experimen-

tally.

The role of dipole forces is discussed in Sec. 1.1.4. Radiation

pressure and scattering forces, in fact, are not the only players in

the game: dipole forces play a fundamental role in the trapping

and manipulation of cold atoms. Originally recognized by Ak-

sar’yan [61], dipole forces can be thought of as originating from

the interaction between light an the induced dipole moment of

the atom. The potential use of dipole forces to trap and confine

dielectric particles was shown already in 1970 by Ashkin [62], who

also proposed its use to trap laser-cooled atoms [52, 55].

To conclude, in Sec. 1.1.3 the inherent limitations of laser cooling

are discussed and the Doppler temperature is derived.

1.1.1 Light forces: atoms at rest

The aim of this Section is to give an introductory presentation of

the main actors in laser cooling and trapping: radiative (scatter-

ing) forces and dipole forces.

To understand how light can modify the motional degree of free-

dom of an atom, consider a two-level system interacting with a

monochromatic plane wave. Let the wave be composed by pho-

tons of frequency ω0, wavenumber k0 = ω/c, where c is the speed

of light in vacuum, and propagation axis ẑ. The two-level sys-

tem is characterized by the energy of the ground state E1 = ~ω1,

separated from that of the excited state E2 = ~ω2 by Eat = ~ωat,

where ωat = ω2−ω1. A 2×2 density matrix is used to describe the

evolution of the two-level system: % = |i〉 〈j|, where i, j = g, e for

the ground and excited state, respectively. A fundamental quan-

tity in the light-atom interaction is the detuning δ, defined as the

difference between the incoming radiation frequency ω0 and the

5



atomic transition (resonance) frequency ωat:

δ = ω0 − ωat (1.1)

At the moment of interaction between the incoming photon and

the two-level system (i.e., the simplified ‘atom’), two processes

are possible. If the atom is in the ground state |g〉, absorption

occurs with a given probability: the photon energy is converted

into the internal energy of the atom, which operates a transition

and ‘jumps’ on the excited state |e〉. If the atom is already in the

excited state, stimulated emission occurs with a given probabil-

ity: the internal energy of the atom is converted into a photon,

which gets emitted coherently with the incoming, ‘stimulating’

photon. The photon emission is accompanied by an atomic tran-

sition from |e〉 to |g〉. Even in the absence of any photon, a third

fundamental process is possible: spontaneous emission causes an

atom in the excited state to decay to the ground state, converting

its internal energy into a photon which gets emitted in a random

direction. The corresponding process of ‘spontaneous absorption’,

which converts fluctuations in the environment into an excitation

in the internal degree of freedom of the atom, is virtually absent

due to the large optical transitions involved (typically hundreds

of MHz). A detailed treatment of these fundamental single atom-

single photon processes can be found in [63]. As a final remark, it

is common to refer to transition rates instead of transition prob-

abilities. Hence the spontaneous emission process is associated

with a lifetime τ of the excited state, and the rate of spontaneous

emission is Γ = τ−1.

The Hamiltonian governing the atom-field evolution is given by

H = Hfield +Hatom +Hint , (1.2)
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whereHfield is the energy in the electromagnetic field, andHatom =

p2/2M + ~ωat |e〉 〈e| the sum of external (motional) and internal

(electronic) energy of the atom. The third term is simply given

by the dipole interaction: Hint is the energy required to align the

induced dipole of the atom by applying an electric field ~E :

Hint = −~E · ~P , (1.3)

where ~P is the atomic dipole moment.

A widely used and well-verified assumption in laser physics goes

under the name of Slowly Varying Envelope Approximation (SVEA)

[64]. The results presented in Appendix A concerning the deriva-

tion of the Maxwell-Bloch equations, and indeed all the results

presented in this thesis, also rely on this approximation. The

main idea underlying the SVEA is that given the following rep-

resentation of the electric field and polarization,

~E(x, t) = E(x, t)ei(k0z−ω0t)ε̂+ c.c. (1.4a)

~P(x, t) = N0P (x, t)ei(k0z−ω0t)ε̂+ c.c. (1.4b)

the spatial and temporal variations of the field envelope E(x, t)

are much slower than the wavelength λ0 = 2π/k0 and the period

T0 = 2π/ω0, respectively. Here N0 denotes the density of the

medium, while the polarization direction is represented by ε̂ and

assumed to lie in the x-y plane, with the wave propagating along

ẑ. The dipole moment P = P ε̂ describes the polarization response

of the material to the incoming radiation. In the Maxwell-Bloch

picture, this is connected to the raising/lowering operators of the

atom (see Appendix B Eq. (13)), and can be expanded as

P = µdip

[
|g〉 〈e| ei(k0z−ω0t) + |e〉 〈g| e−i(k0z−ω0t)

]
ε̂ , (1.5)
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where µdip can be taken real without loss of generality, and the

polarization vector is parallel to the electric field. Using (1.4) and

(1.5), the dipole energy (1.3) reads

Hint = − ~P · ~E = −µdip |g〉 〈e|
(
Ee2i(k0z−ω0t) + E∗

)
+

− µdip

(
E∗e−2i(k0z−ω0t) + E∗

)
|e〉 〈g| '

' −µdip {|g〉 〈e|E∗ + E |e〉 〈g|} . (1.6)

The last approximation consisted in neglecting the terms vary-

ing as exp[±2i(k0z − ω0t)], and is usually referred to as Rotating

Wave Approximation (RWA). The key concept under this approx-

imation is that performing a spatial and temporal average over

characteristic time and space scales of the systems, these terms

will eventually have zero mean [64].

Given the above expression for the interaction energy Hint, an

expression for the average force exerted on the centre-of-mass of

the atom can be given. A natural (and effective) way of pro-

ceeding would be to stick with a semiclassical approach and write

the force components as fi = − ~P · ∂ ~E/∂xi. Alternatively, in the

Heisenberg picture states are constant in time and the operators

evolve according to

dO
dt

= − i
~

[O,H] .

The force f is thus given by the familiar expression (performing

the substitution p→ −i~∇):

f =
dp

dt
= − i

~
[p,H] = −∇H .
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The only non-commuting term in the Hamiltonian is the interac-

tion term, so that from Eq. (1.6) the force is found as

f = µdip {|g〉 〈e| ∇E∗ +∇E |e〉 〈g|} . (1.7)

It should be emphasized that a rigorous treatment would have

taken into account the quantum field operators E and E†, con-

nected to the annihilators and creators of the field Fock space.

However, these can exchanged with their classical expectation

values, E and E∗, by assuming the field to be in a coherent state.

Hence, normal ordering of the operators needs not be respected

in what follows. Also, an identical result to Eq. (1.7) can be ob-

tained from the classical expression f = −( ~P · ∇)~E .

Eq. (1.7) is written in terms of the raising and lowering operators

of the atom, |e〉 〈g| ≡ %̂21 and |g〉 〈e| ≡ %̂12. A standard derivation

of the Maxwell-Bloch equations, presented in Appendix B, leads

to the following equations of motion for the expectation values

%12 = 〈%̂12〉 and w = 〈%̂11 − %̂22〉 (see Appendix A):

%̇12 = −Γ

2

(
1− i2δ

Γ

)
%12 + wg (1.8a)

ẇ = −Γ (w − 1)− 2 (%12g
∗ + %21g) (1.8b)

Here relaxation of the population difference w with a decay rate

Γ has been introduced, together with a dephasing rate Γ/2 for the

coherence %12. Such dephasing rate is based on the assumption

that collisional dephasing is negligible, which is well-verified in

laser-cooled gases [58]. The detuning δ has been introduced in

Eq. (1.1), while the Rabi frequency g has been defined as

g =
iµdip

~
E . (1.9)
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With this notation, the average force is found from (1.7) as

f = −i~ [%12∇g∗ − %21∇g] .

By representing ∇g =
(
~α + i~β

)
g, with α, β ∈ R, the following

expression for the force is reached:

f = −i~~α [%21g − %12g
∗]− ~~β [%21g + %12g

∗] . (1.10)

This representation brings no loss of generality, since if g = |g|eiφ
with |g| and φ real, then ~α = ∇ log |g| and ~β = ∇φ.

Since motionless atoms are of interest here, the field envelope

E (and hence the Rabi frequency g) can be taken to be time-

independent and %12, w are given by the steady-state solution of

the Maxwell-Bloch equations (1.8):

%̄12 =
2g

Γ(1− i∆)

1

1 + s
(1.11a)

w̄ =
1

1 + s
, (1.11b)

where the (adimensional) saturation parameter s has been defined

as

s =
8|g|2

Γ2(1 + ∆2)
(1.12)

and the dimensionless detuning ∆ is given by

∆ =
2δ

Γ
. (1.13)

Using (1.11) and (1.10), the force can thus be rewritten again to

reach its final form:

f = −~ s

1 + s

[
δ~α +

Γ

2
~β

]
. (1.14)
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The main features of the two terms appearing in the force expres-

sion (1.14) are now worth discussing: by recognizing in Eq. (1.14)

the steady-state excited state population, Π2 ≡ %22 = 1
2s/(1 + s),

the second term on the r.h.s. can be rewritten as

frad = −~~β Γ%22 .

This is the radiative (scattering) force: quanta of average momen-

tum ~~β are removed from the incoming optical field at the same

rate (Γ) that the atom is undergoing spontaneous decay. This

happens because a photon at average momentum ~~β is absorbed

and successively re-emitted in a random direction, in a scattering

process. The higher the probability of having the atom in the

excited state, the higher the force exerted, because an emission

process is more likely.

The first term in the r.h.s. of Eq. (1.14), in contrast, describes

the dipole forces originating from coherent redistribution of the

field due to the stimulated emitted photons. Such forces are of

conservative nature and can be derived from a potential. To show

this, ~α can be manipulated to obtain

~α = ~∇ log |g| =
~∇|g|
|g| =

1

2|g|2
~∇|g|2 =

1

2

~∇s
s
.

Plugging this result back into Eq. (1.14) one finds

fdip = −~δ
2

~∇s
1 + s

= −~δ
2
~∇ log(1 + s) (1.15)

which can be seen as the (conservative) force originating from the

potential

Udip =
~δ
2

log(1 + s) . (1.16)
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Two interesting limit cases are of particular interest: that of a

purely travelling wave, and that of a standing wave (that is, two

counterpropagating travelling waves). For a travelling (plane)

wave of wavevector k, the field envelope has no spatial structure,

and one finds immediately that ~α = 0, ~β = k. Therefore dipole

forces are absent in this case, as they originate from spatial gradi-

ents of the field envelope; equivalently, the potential profile (1.16)

is uniform. Scattering forces from a travelling wave, on the other

side, give rise to the removal of quanta with momentum ~k from

the field, with a rate Γ%22.

Conversely, for a pure standing wave radiative forces coming from

the two counterpropagating waves exactly balance each other,

while interference creates a modulation in the intensity profile

along the propagation axis. The effect of the corresponding po-

tential energy modulation can be used to confine and trap atoms,

as discussed in Sec. 1.1.4.

1.1.2 First-order velocity dependence: Doppler cooling

In the last Section the expressions for the dipole and scattering

forces acting on atoms at rest were derived. However, to un-

derstand the main idea underlying Doppler cooling one needs to

consider atoms in motion. If the atom moves with velocity v,

the time dependence of the electric field E (and thus g) must be

taken into account:

dg(x, t)

dt
=
∂g(x, t)

∂t
+
(
v · ~∇

)
g(x, t) .

For a purely monochromatic wave the first term is still vanishing,

∂g/∂t = 0, but now the second term is not since v 6= 0. Therefore

dg

dt
=
(
v · ~∇

)
g = v ·

(
~α + i~β

)
g . (1.17)
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Following [56], the first-order velocity dependence of the force

can be found in the following way. The steady-state solutions

for motionless atoms, Eq. (1.11), is derived with respect to time

using (1.17). Then the Maxwell-Bloch equations (1.8) are rewrit-

ten with these ‘corrected’ values of ẇ, %̇12 and the new steady-

state values are determined, %
(1)
12 and w(1). Finally, these velocity-

dependent values can be used in (1.10) to find the expression for

the force.

From the definition (1.12) of s, ṡ = 2sv · ~α. Eqs. (1.11) then lead

to

d%12

dt
=

ġ

(Γ/2− iδ)(1 + s)
− g

(Γ− iδ)(1 + s)2
ṡ =

=
v · (~α + i~β)g

(Γ/2− iδ)(1 + s)
− g

(Γ/2− iδ)(1 + s)2
2sv · ~α =

=
2g

(Γ− i∆)(1 + s)

[
(v · ~α)

1− s
1 + s

+ i(v · ~β)

]
=

= %12

[
(v · ~α)

1− s
1 + s

+ i(v · ~β)

]
(1.18)

and

dw

dt
= − ṡ

(1 + s)2
= −2sv · ~α

1 + s
w . (1.19)

The Maxwell-Bloch equations (1.8) are modified as

%
(1)
12

[
(v · ~α)

1− s
1 + s

+ Γ/2− i(δ − v · ~β)

]
=

g

1 + s
(1.20a)

w(1)

[
Γ− 2s

1 + s
v · ~α

]
= Γ

(
1− 2

s

1 + s

)
(1.20b)

Consider now the case of a plane wave with wavenumber k. As

discussed above, only scattering forces are present, as one imme-

diately finds that ~α = 0 and ~β = k. Hence the only velocity

modification in the previous treatment is found to be the fre-
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quency Doppler shift: δ → δ−v ·k. The corresponding value for

%
(1)
12 is given by

%
(1)
12 =

g

1 + s
[Γ/2− i(δ − v · k)]−1 ,

which leads to the following expression for the force (1.10):

frad = ~k

[ |g|2/(1 + s)

Γ/2 + i(δ − v · k)
+

|g|2/(1 + s)

Γ/2− i(δ − v · k)

]
=

=
~Γ

2

2|g|2
1 + s

k

Γ2/4 + (δ − v · k)2
.

Expanding to first order in v,

frad =
~Γ

2

s

1 + s

(
1 + 2δ

v · k
Γ2/4 + δ2

)
k . (1.21)

This result implies that if two waves counterpropagate along ±k,

the v-independent contributions will cancel, and the average radi-

ation force is linear in v. Radiative forces thus result in a friction

effect for negative detuning, δ < 0 (referred to as red detuning),

and conversely will cause heating on the blue side of the reso-

nance, δ > 0. In other words, if two red-detuned waves propagat-

ing along ±k are used to illuminate the atom, the overall result

will be a reduction in the translational energy of the atom, which

will get ‘stuck’ between the two beams. In three spatial dimen-

sions, six waves (in three orthogonal pairs) can be used to achieve

cooling. Because of this friction, momentum-damping effect, such

beams are usually referred to as optical molasses.

It is important to note that this cooling mechanism is an outside-

equilibrium process: energy is taken from the translational energy

p2/2M of the atom and converted into the energy of the photons

emitted by spontaneous decay. Since the spontaneously emitted

photons are ‘lost’ in the environment, energy is effectively being
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taken away irreversibly from the system. As stressed in the in-

troduction of this Chapter, this is the sort of dissipative situation

needed in order to reduce kinetic energy without reaching con-

densation of the gas.

Beside the formal derivation presented so far, the physical in-

terpretation of the cooling mechanism is also worth discussing.

The crucial point is that when an atom absorbs a photon not

only the photon energy ~ω needs to be converted into the in-

ternal energy of the atom, but the momentum ~k must also be

conserved. Therefore at the moment of absorption the atom expe-

riences a recoil ~k (i.e., gets ‘kicked’ by light). When the photon

gets spontaneously re-emitted, a momentum ~k′ is created, and

again by momentum conservation the atom must experience a re-

coil −~k′. Although these single momentum ‘jumps’ are small, a

sequence of many recoil events can add up to a dramatic reduc-

tion in kinetic energy.

To have a clear understanding of why this results in cooling for

red-detuned beams and heating for blue-detuned beams, consider

an atom moving along −k, in the direction of a red-detuned

beam of frequency ω < ωat, propagating along +k. The op-

tical frequency ωv observed by the atom is Doppler-shifted as

ωv = ω − v · k. Since v ∼ −k, this results in the atom ‘see-

ing’ the field more resonant with its own transition. In turns,

this makes absorption (and hence photon scattering) more likely

for an atom moving away from the intersection of the molasses

beams. This justifies the term Doppler cooling usually employed

in this context; reversing the signs of the argument, it is clear

that blue-detuned molasses would lead to the opposite situation

in which atoms scatter less when travelling away from the inter-
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section of the beams.

Otherwise stated, the spontaneous re-emission of the absorbed

photon results in an elastic momentum transfer for the photon,

k → k′, with a corresponding recoil for the atom. The impor-

tant point is that k′ points in a completely random direction,

while k always points along the beam propagation direction: af-

ter many scattering processes, on average the atom will feel a

recoil along k. If two counterpropagating beams are used (or six

for a full three-dimensional cooling), this leads to the cooling of

the gas. This argument also implies that the atoms composing

the gas perform a random walk in momentum space. Although

the recoil ‘steps’ have zero average because of the random nature

of spontaneous emission, in fact, fluctuations about this average

are unavoidable. Indeed, these fluctuations play the fundamental

role of determining the final temperature of the gas, since they

set the ultimate limit that can be reached by Doppler cooling:

this will be discussed in Sec. 1.1.3. Methods for the so-called

sub-Doppler cooling, based on multi-level atomic structures, are

nowadays available and widely employed. Indeed, the possibility

of reaching temperatures below the Doppler limit came out as an

unexpected result in 1988 [65], and was explained only the fol-

lowing year by Dalibard and Cohen Tannoudji [66] and Ungar,

Weiss, Chu and Riis [67]. However, we will limit our analysis to

two level atoms in this work, and we refer to Refs. [66, 67, 58] for

details on multi-level atomic cooling.

A second point worth noting about this random walk in momen-

tum space is that it leads to diffusive motion inside the molasses.

As the velocity spread grows with time as
〈
∆v2

〉
∼ t, atoms in

optical molasses are confined within the intersection region of the

beams for a much longer time than they would with purely ballis-
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tic motion. However, it must be stressed that optical molasses do

not form a trap for the gas, as there is no restoring force: optical

traps can be built based on dipole forces, discussed in Sec. 1.1.4.

1.1.3 Cooling limitation: the Doppler temperature

The aim of this Section is to briefly discuss the role of fluctuations

in optical molasses, and specifically their role in determining the

final temperature of a Doppler-cooled gas, usually referred to as

the Doppler temperature TD.

As discussed earlier, in fact, fluctuations due to spontaneous emis-

sion eventually limit the extent to which cooling can be achieved.

Consider the molasses force (1.21): for two counterpropagating

waves (six for 3D cooling) the average force is in the form fmol =

−αv. Hence the average momentum 〈p〉 evolves as ˙〈p〉 = −γ 〈p〉,
with γ = α/M , whose solution is given by

〈p(t)〉 = p0e
−γt . (1.22)

Given the evolution of the average momentum, consider the fluc-

tuations in the Langevin equation

ṗ = fmol + δf(t) (1.23)

〈δf〉 = 0 〈δf(t)δf(t′)〉 ∝ δ(t− t′)

where the two-time correlation is obtained under the Markovian

assumption. This is valid when the coherence time of the sys-

tem is short compared to its evolution; in this case the system

timescale is determined by the momentum damping, text = 1/γ =

M/α. The coherence time is the time needed for a spontaneous

decay to occur, tc = (sΓ)−1. Since text � tc the Markovian as-

sumption is valid and the autocorrelation coefficient is defined
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as

〈δf(t)δf(t′)〉 = 2D δ(t− t′) . (1.24)

The solution of Eq. (1.23) is given by

p(t) = p0e
−γt +

∫ t

0

dt′δf(t′)e−γ(t−t′) ,

so that the temperature can be found by computing
〈
p2 − 〈p〉2

〉
/2M =

3/2kBT . Hence we have〈
p2 − 〈p〉2

〉
=

∫ t

0

dt′dt′′ 〈δf(t′) · δf(t′′)〉 e−γ(t−t′)e−γ(t−t′′) =

=

∫ t

0

dt′dt′′2D δ(t′ − t′′)e−γ(2t−t′−t′′) =

= 2D

∫ ∞
−∞

dt′e−2γ(t−t′) =
D

γ

(
1− e−γt

)
,

where the integration limits have been stretched to ±∞ in the

last row since the interaction occurs on times much shorter than

t. In conclusion,

kBT =
D

3Mγ

(
1− e−γt

)
(1.25)

On ‘internal’ atomic timescales e−γt ' 1− γt, so that this result

reduces to diffusive motion,
〈
∆p2

〉
= 2Dt. Over long times, in-

stead, e−γt → 0 and a lower bound for the achievable temperature

is found in terms of the cooling rate α:

kBTD =
D

3α
, (1.26)

where TD is the Doppler temperature.

The next step would therefore consist in evaluating D. This has

been done for example in [56], where the general result for the

fluctuations arising from scattering and dipole forces is derived.
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Without reporting the details the result of interest is given here,

concerning the case of two counterpropagating waves, each with

saturation parameter p0. The overall intensity profile p(x) =

2p0 cos(k ·x) gives rise to an average dipole force: in the notation

of Sec. (1.1.1) ~β = 0 and ~α = −k tan(k · x). Fluctuations of the

atomic dipole lead to a correlation strength [56]

D = ~2|k|2Γp0 . (1.27)

For six beams, this value is multiplied by three; hence using

Eq. (1.26) we find

kBT =
D

3α
=

~2|k|2Γp0

α
.

The damping rate α is found from Eq. (1.21) in the limit of p0 � 1

as

|α| ' ~|δ|Γ
Γ2/4 + δ2

p0|k|2 ,

so that after some algebra

kBTD = ~
Γ2/4 + δ2

|δ| .

The most interesting quantity is the minimum value of TD, which

also corresponds to the maximum value of the damping α. De-

riving this last results with respect to |δ| the minimum values are

obtained as

kBTD =
~Γ

2
for δ = −Γ

2
. (1.28)

As a final remark, the Doppler temperature does not depend on

p0 in the limit p0 � 1. The maximum value of the damping rate

is found, in overall, at δ = −Γ/2 and p0 = 1.
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Figure 1.1: Sketch of the dipole forces acting in a modulated field: for blue
detuning (upper panel) atoms accumulate in the low-intensity regions, while for
red detuning (lower panel) atoms are attracted towards high-intensity regions.

1.1.4 Building an optical trap: dipole forces

The last Section focused on radiative (scattering) forces, and dis-

cussed how they can be used in order to achieve cooling of a gas

of two-level atoms. The aim of this Section is to discuss in more

detail dipole forces, introduced in Section 1.1.1.

We found in Eqs. (1.15) and (1.16) that the dipole force is conser-

vative and can be derived from the potential Udip = (~δ/2) log(1+

s). This suggests that dipole forces could be used to trap the

atoms (or any kind of dielectric particles) in the regions of min-

imum energy: a modulated field intensity s = s(x), in fact, will

create energetically favourable spatial regions for the atoms to

bunch. It is worth noting that, generally speaking, temperature

fluctuations may destroy the trapping action of dipole forces, and

thus should ideally kept to a minimum. To achieve this, consider

again the general expression (1.14) of light forces. Assuming small

light intensities, s� 1, the expansion log(1 + s) ' s is valid and
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the scaling of dipole forces is given by

|fdip| ∼ s|δ| ∼ |E|2|∆|−1 ,

while radiative forces scale as

|frad| ∼ s ∼ |E|2|∆|−2 .

Hence large detuning values, |δ| � Γ (|∆| � 1), can be used to

make radiative forces negligible compared to dipole forces. This

is motivated by the fact that radiative forces originate from the

absorptive response of the atom (proportional to |∆|−2), whereas

dipole forces originate from the dispersive response of the atom

(proportional to |∆|−1).

The sign of the detuning is important too, as it selects the sign

of the potential (1.16). For blue detuning, the potential is posi-

tive and the force is attractive when going ‘uphill’ the potential.

Since the potential is essentially given by the intensity profile,

intensity minima are attractive for δ > 0, while intensity maxima

are repulsive. Conversely, in red-detuned traps (δ < 0) the inten-

sity maxima attract atoms, and the intensity minima repel them:

Fig. (1.1) schematically represents this detuning dependence of

dipole forces.

We stress that, although the attraction of the atoms towards re-

gions of high/low intensity can be obtained directly from the form

of the dipole potential, a clear physical picture of this has to be

obtained through a dressed-state approach to the problem, which

will be the focus of the next Section.
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1.1.5 The dipole force ‘revisited’

All the quantities needed for discussing opto-mechanical insta-

bilities in cold gases were derived in the previous Sections. Be-

fore proceeding, an ‘alternative’ view of dipole forces is briefly

presented in this Section, originally proposed by Dalibard and

Cohen-Tannoudji [60]. The main reason of this is that the deriva-

tion presented earlier in the Chapter, based on the Maxwell-Bloch

Equations, does not provide a physical interpretation of dipole

forces - while it does for scattering forces. For instance, although

the expression (1.16) for the dipole potential turns out to be cor-

rect, no explanation is given as to why atoms seek high intensity

regions for red detuning, and low-intensity regions for blue detun-

ing. A quantum treatment of the problem, based on the eigen-

states of the complete Hamiltonian of the system (the dressed

states) will provide a satisfactory physical picture, at the same

time confirming the results presented earlier.

Consider again the Hamiltonian

H = Hfield +Hatom +Hint , (1.29)

where the atomic Hamiltonian is given by Hatom = p2/2M +

~ωatb
†b, with the raising and lowering defined as

b = |g〉 〈e| b† = |e〉 〈g| .

The quantum nature of the electromagnetic field is taken into

account by writing the free field as

Hfield =
∑
λ

~ωλ a†λaλ ,
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and again expand the interaction energy by keeping only the sec-

ular terms:

Hint = −P ·
[
b†E+(x) + bE−(x)

]
.

The positive and negative frequency components of the electric

field may be expanded as

E+(x) =
∑
λ

Eλ(x)aλ

E−(x) =
∑
λ

E∗λ(x)a†λ .

For an atom dressed (i.e., interacting) with monochromatic laser

radiation at frequency ω , thus, the position-dependent energy is

Hda = ~ωatb
†b+ ~ωa†ωaω − ~µ ·

[
Eω(x)b†aω + E∗ω(x)ba†ω

]
. (1.30)

If the light-atom interaction is switched off (P = 0), the eigen-

states of (1.30) are bunched in manifolds En, separated by the

energy gap ~ω. Note that in writing the eigenstates both the

atom and the field systems must be considered. In the absence of

coupling, these are simply given by the states |g;n+ 1〉 describing

a ground-state atom and n + 1 photons, and |e;n〉 describing an

excited atom and n photons. The manifolds En are ‘closed’ with

respect to absorption and stimulated emission, as the number of

quanta for the atom-field system is fixed. The relative energy

between |g;n+ 1〉 and |e;n〉 depends on whether there is more

energy in a photon or in the atomic transition: if ω < ωat (red

detuning δ < 0), the minimum energy configuration is reached

with the state |g;n+ 1〉, and vice versa for blue detuning (δ > 0)

the ground state is |e;n〉.
Spontaneous emission, i.e. the coupling of the atom with the
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vacuum state of the radiation field, connects manifolds at dif-

ferent energies: spontaneous emission events will make the sys-

tem collapse from the manifold En to En−1, until eventually the

zero-quanta configuration is reached, |g; 0〉. The dressed-state

approach allows one to deal with spontaneous emission, for in-

stance explaining the triplet-sideband structure of the atomic

spectrum [60]. However, since dipole forces are the main focus

in what follows, spontaneous emission is neglected by assuming

the field to be far-detuned from resonance, |δ| � Γ, and the light-

matter coupling described by Eq. (1.30) is considered.

The eigenenergies of the Hamiltonian (1.30) can be found exactly

as [60]:

E1n = (n+ 1)~ω − ~δ
2

+
~Ω(x)

2

E2n = (n+ 1)~ω − ~δ
2
− ~Ω(x)

2
,

with the correspondent eigenstates (dressed states) being given

by:

|1;n,x〉 = +eiϕ(x) cos θ(x) |e, n〉+ e−iϕ(x) sin θ(x) |g, n+ 1〉
|2;n,x〉 = −eiϕ(x) sin θ(x) |e, n〉+ e−iϕ(x) cos θ(x) |g, n+ 1〉 .

Here generalized Rabi frequency was defined using the notation of

Sec. 1.1.4 as

Ω(x) =
√

4|g(x)|2 + δ2 , (1.31)

and the angle θ(x) by

cos 2θ(x) = −δ/Ω(x) sin 2θ(x) = 2|g(x)|/Ω(x)

With this picture in mind, the populations and coherences in the

dressed state picture can be defined, given by the expectation val-
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Figure 1.2: Schematic representation of the dressed-atom picture for the red-
detuned case, δ < 0. Outside the optical beam (red dashed line) the ‘bare’
eigenstates of the manifold En (upper panel) are |g, n+ 1〉 and |e, n〉, sepa-
rated by δ. Moving inside the region illuminated by the beam, instead, the
level splitting is given by the generalized Rabi frequency Ω(x); correspond-
ingly, the two eigenstates are the dressed states |1;n,x〉, |2;n,x〉. Note that
both this energy splitting and the wavefunctions are position-dependent. Dif-
ferent manifolds En are separated by the laser frequency ω0 and correspond to
different total excitation numbers (photons + atom internal energy).
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ues of the density matrix operator %̂ over all the possible photon

number values:

Πi(x) =
∑
n

〈i;n,x | %̂ | i;n,x〉

%ij(x) =
∑
n

〈i;n,x | %̂ | j;n,x〉

In the limit of well-resolved lines, Ω(x)� Γ, the stationary values

for the Πi’s and %ij’s are found to be

Πst
1 =

sin4 θ

sin4 θ + cos4 θ

Πst
2 =

cos4 θ

sin4 θ + cos4 θ

%12 = %21 = 0

Note that the limit of well-resolved lines is satisfied either with

large intensities (|g| � Γ) or large detunings (|δ| � Γ); as dis-

cussed above, spontaneous emission is here neglected assuming

the field to be detuned far from resonance.

Physical insights related to the nature of dipole forces can be ob-

tained by considering the work dW = fdip · dr needed to move a

dressed atom by dr. It turns out [60] that two contributions are

relevant:

dW =
∑
i=1,2

[ΠidEi + Ei(dΠi)NA] .

The second contribution is related to nonadiabatic (NA) changes

in the dressed state populations due to atomic motion; since the

intention is to make a connection with Sec. 1.1.1, which deals

with atoms at rest, this contribution will be neglected here.

The first term is instead related to the gradients of the dressed
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states energy deviations from to the (position-independent) value

(E1n+E2n)/2, that is, is related to the gradients of the light shifts

E1 =
1

2
~Ω(x) E2 = −1

2
~Ω(x) = −E1

For atoms at rest the Πi’s can be exchanged with their stationary

values, and therefore the dipole force can be written as

fdip =
(
Πst

2 − Πst
1

)
∇E1(x) (1.32)

=
~δ
2
∇ log

(
1 +

2|g(x)|2
δ2

)
,

which is identical to (1.15) in the limit |δ| � Γ.

It should be stressed at this point that, even if the result obtained

by the dressed-state approach for the expression of the dipole force

is identical to (1.15), we now are provided with a clear physical

picture. The force (1.32) is in fact given by the balance of two op-

posite tendencies, weighted by the probabilities of populating the

state |1〉 and |2〉. To explain the dependence from the detuning,

consider the case of blue detuning, δ > 0, where the dressed state

|1〉 coincide with the bare state |g〉 outside the beam. Since the

occupation probability of the ground state always exceeds that of

the excited state in a two-level system, it means that the state

|1〉 will always be more populated than the state |2〉. As a con-

sequence, the dipole force (1.32) will be negative, expelling the

atom from high-intensity regions. Conversely, for negative detun-

ing the state |2〉 will be more populated than |1〉, as there are

fewer spontaneous decays starting from |2〉 than from |1〉. Hence

|2〉 will prevail and make the force (1.32) positive, which in turns

will attract the atom towards regions of high intensity.
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1.2 Self-organization outside equilibrium

1.2.1 General features

In this Section some general concepts of dynamical systems and

pattern formation outside equilibrium are briefly reviewed. A de-

tailed discussion of pattern formation in non-equilibrium systems

can be found in the classic review by Cross and Hohenberg [4], or

in the more recent book by Cross and Greenside [68]. For a de-

tailed presentation of the concepts used in the study of dynamical

systems the reader is referred to the booktexts by Strogatz [69]

or Guckenheimer and Holmes [70].

The spontaneous emergence of spatial order is a pre-eminent fea-

ture of non-equilibrium physical systems which are under con-

stant external drive from the environment. In these systems it

is in fact possible to observe macroscopic spatial structures at

steady state, which can exist as long as the system is driven

far from equilibrium. Note that the non-equilibrium condition

is essential in order to have ‘ordered’, anti-entropic steady states

which violate the entropy principle. The spontaneous emergence

of spatial order (in short, pattern formation) received many dif-

ferent denominations in past research, such as disspative struc-

tures formation (Prigogine [2]), synergetics (Haken [3]), or more

simply self-organization (Krinsky [71]). A pioneering study of

pattern formation was carried by Turing in 1954 [1] to describe

biological morphogenesis, but the applications of the concepts of

self-organization are nowadays virtually endless. Ref. [4] contains

an exhaustive bibliography on the subject and its many, multi-

disciplinary applications.

A crucial point to bear in mind when dealing with non-equilibrium
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systems is that there exists no reason to assume that there is

a Gibbs ensemble or some energy functional to minimize in or-

der to obtain the steady-state behaviour. The approach there-

fore consists in describing the system in terms of ‘microscopic

equations’, typically partial differential equations. The term ‘mi-

croscopic’ does not imply necessarily an ‘atomic’ scale of these

equations, but only refers to the fact that these equations form

the elementary blocks of the analysis. The booktext example is

fluid dynamics, where the Navier-Stokes equations are taken as

‘microscopic’ equations (see for instance the prototypical Swift-

Hohenberg model [72]). Such a ‘dynamicist’ approach will be

taken in the following, describing the system under analysis by

means of a set of partial differential equations (pde’s) for the sys-

tem variable E(x, t):

∂E

∂t
= G

[
E, ∂xE, ∂

2
xE;λ

]
.

Note that in general E may be a vector (or a complex quantity).

The functional G depends (nonlinearly) on E through its first and

second-order spatial derivatives. In general G may depend also

on higher order derivatives of E, but this possibility will not be

considered here. The parameter λ is called the control parameter,

and parametrizes the strength of the external driving. We remark

that upon introducing the dependence from the spatial coordinate

x the phase space of the system is made infinite-dimensional, the

trajectory of the system following a curve in this space. In ‘stan-

dard’ dynamical systems (with no x dependence), instead, the

phase space is typically finite-dimensional [70].

Dynamical systems can be divided in two general classes: conser-

vative (or Hamiltonian) systems where the phase space volume is

conserved through the evolution, and dissipative systems where
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any subvolume will contract to zero as time progresses. The work

presented in this thesis focuses on the latter case, where an energy

flux is maintained through the system via driving and dissipation.

In dissipative systems, the dynamics eventually brings the system

in a lower-dimensional portion of phase space (with zero volume),

called an attractor. A specific attractor needs not to be the only

possible solution for the system: different attractors can have dif-

ferent basins of attractions of initial conditions. Moreover, attrac-

tors come in two species: regular attractors with ‘simple’ geomet-

rical shape (such as fixed points, limit cycles, tori), and chaotic (or

strange) attractors corresponding to chaotic dynamics and pos-

sessing unusual geometric properties [70, 69]. The difference be-

tween a conservative system and a driven-dissipative system can

be summarized by the following simple example, see Fig. (1.3). A

conservative oscillator is characterized by a limit cycle in phase

space: if more energy is provided to the system a ‘larger’ limit

cycle is obtained, but as long as there are no fluctuations energy

is conserved and any cycle represents a marginally stable solution

for the system. A driven-dissipative oscillator could have a similar

limit cycle attracting the dynamics, but any small perturbation

to this trajectory will be amplified or decay: the limit cycle is

stable. If the injection of energy is interrupted, the dynamics is

attracted toward the fixed point with zero energy (the origin of

phase space).

1.2.2 Linear growth: instability types

One of the main instruments for the study of pattern formation

goes under the name of linear stability analysis. The idea underly-

ing the use of linear stability analysis to study pattern formation

is that the homogeneous solution E0 for the system (independent
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hamiltonian

E1

E2

driven
dissipative

Figure 1.3: Hamiltonian versus driven-dissipative oscillators. In the hamilto-
nian case (left) every limit cycle is marginally stable, and perturbations can
move the system from the cycle at energy E1 to the cycle at energy E2 > E1.
In the driven-dissipative case (right), the dynamics is attracted towards a sta-
ble limit cycle, and perturbations are amplified or suppressed if the system
tries to leave the stable cycle.

on x) loses stability when the control parameter exceeds a critical,

or threshold value λc. Introducing the dimensionless quantity

ε =
λ− λc
λc

, (1.33)

which measures the distance from threshold, ‘something interest-

ing’ is expected to happen when ε ≥ 0. This ‘something interest-

ing’ is a qualitative change in the macroscopic spatial properties

of the system, that is, what is commonly termed a phase tran-

sition in the realm of statistical mechanics. We remark that a

connection can indeed be established between dynamical bifurca-

tions and phase transitions [4]: for instance, in this context su-

percritical bifurcations are mapped into second-order transitions,

while subcritical ones correspond to first-order phase transitions

(see e.g. [3] for the subcritical lasing transition). In our ‘nonlinear

dynamics’ approach the starting point is given by a system of n

differential equations

∂E

∂t
= G

[
E, ∂xE, ∂

2
xE; ε

]
,
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where E = E0 = 0 is assumed to be a solution for all values of

λ. Note that given a homogeneous solution E0 6= 0, the rescaling

E → E −E0 will automatically set E0 = 0. The initial condition

for the system is set to be E(t = 0) = E0 = 0, and the evolution

of modes

ej(x, t) = ej(0)eiq·x−iωt (1.34)

is studied. The linearized system

∂E

∂t
= A · E Aij ≡

δGi

δej

∣∣∣∣
E=E0

has a set of eigenvalues ωi(q), among which a specific one of them

can be selected, say ω(q), with the property of having largest

imaginary part. The critical point λc is defined as follows: the

growth rate of the system is Im(ω) < 0 when λ < λc (ε < 0),

and Im(ω) = 0 when λ = λc (ε = 0). The critical wavevector is

defined as the wavevector qc at which the eigenvalue crosses zero

at the critical point. Because of the exponential dependence of

the fluctuations ej ∼ exp(−iωt), this means that fluctuations at

the critical wavenumber becomes marginally stable at the critical

point, i.e. they are not suppressed nor amplified by the dynamics.

Above the critical point, ε > 0, there is a (bounded) region in q

space where Im(ω(q)) > 0 and the corresponding fluctuations

ej(q) ∼ exp(iq · x − iωt) undergo exponential growth. Dynamic

instabilities are usually divided in three classes [4], depending on

the value of the critical wavevector. To simplify the discussion in

the following the properties of the system are assumed to depend

only on the wavenumber q = |q|. If Im(ω) = 0 at qc = |qc| 6= 0

at the critical point a class-I instability occur. Another kind of

instability is possible if the growth rate is zero at q = 0, which

typically happens in the presence of a conservation law. The
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Figure 1.4: The different types of instability, see text. In addition, each insta-
bility type is classified as stationary if Re(ω) = 0, and oscillatory if Re(ω) 6= 0.
ω represents the eigenvalue with largest imaginary part.

critical wavenumber is thus q = 0, and an unstable band 0 <

q < q+ is obtained above threshold, ε > 0: this is termed a type-

II instability. The last option, which goes under the name of

type-III instability, is realized when both the maximum growth

rate and the critical wavenumber are found at q = 0. All these

instabilities, moreover, can be of two types: oscillatory if Re(ω) 6=
0, or stationary if Re(ω) = 0 [4].

Note that type-III stationary instabilities do not involve pattern

formation in a fundamental way, since the instability is at q = 0.

In the nonlinear-optical framework of this thesis we will deal with

type-I stationary instabilities.

1.2.3 Nonlinear saturation: ideal patterns

The role of the nonlinearity is to saturate the linear growth of

perturbations. Since the superposition principle does not hold,

the system is free to select between different symmetry-related

states which grow equally fast in the linear regime. In particular,

for rotationally symmetric systems in which the stability proper-

ties depend only on the wavenumber |q| any roll pattern at the

critical wavenumber in the form exp(iqc · x) is linearly unstable.

Superpositions of rolls at different angles give rise to different pat-
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terns, such as squares (created by a π/2 angle between rolls) or

hexagons (±π/3 angle). In a variety of systems without inversion

symmetry E → −E, however, hexagons are often favoured close

to the critical point [4].

The main point of these nonlinear states, obviously, is that they

all break the translation symmetry which is instead preserved be-

low the critical point. Hence a spontaneous breaking of a contin-

uous U(1) symmetry is observed in one dimension, and additional

groups are broken in higher dimensions. For the two-dimensional

situations analyzed in Chap. 3, for example, we also obtain a

breaking of the rotational symmetry. For the simple case of a roll

pattern, the self-selection of a critical wavenumber qc 6= 0 breaks

the translational symmetry, while the choice of the roll rotation

breaks the rotational symmetry. Looking at this in the Fourier

(qx−qy) plane, in particular, this means the the Fourier peaks are

obtained at a self-selected distance from the origin |q| = 0, with

a self-selected orientation. Other symmetries, however, may be

preserved by the transition. In particular, discrete translational

symmetries are not broken in the case of ideal patterns. These are

in fact defined as periodic solutions E(x) = E(qcx), so that given

the phase ϕ = qcx the system is invariant under the transforma-

tion ϕ → ϕ + 2π. In general, ideal patterns are invariant under

some subgroup of the original symmetry group, as was also found

in the Landau theory of phase transitions [4, 73]. While deter-

mining the overall stability of a system is a relatively easy task,

the same cannot be said for the determination of which nonlin-

ear state will arise above threshold. Far from the threshold point

ε = 0, one typically relies on numerical simulations of the model

equations. Close to the critical point, instead, linearization of the

non-homogeneous solution can determine whether rolls are stable
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Figure 1.5: Ideal patterns in two dimensional systems: rolls (top left), squares
(top right), hexagons (middle left). Full white lines indicate the maxima of
the corresponding roll state, dashed white lines its minima. The middle right
panel shows in detail the configuration for the hexagonal state, where three
rolls intersect at an angle of 2π/3 (120◦). In the bottom row we show the
far-field corresponding to each state.
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against hexagons, or squares, etc. Some insightful results related

to this problem, at least for system with cubic nonlinearities, are

presented below.

Addressing the stability of ideal patterns: the amplitude equation

Consider first a single unstable roll mode: the quantity E(x, t) is

expanded as

E(x, t) = E0 exp(iqc · x− iωt)

and close to threshold, 0 < ε � 1, it can be approximated as

(assuming the roll state to be periodic in x)

E(x, t) = [E0A(x, y, t) exp (iqcx) + c.c.] +O(ε)

Note that, since a phase change results in a spatial shift of the

pattern, a complex amplitude A is chosen. For isotropic systems

the complex amplitude A obeys an amplitude equation of the

form [4]

τ0
∂A

∂t
= εA+ ξ2

0

[
∂

∂x
− i

2qc

∂2

∂y2

]2

A− g0|A|2A (1.35)

A particularly insightful derivation of Eq. (1.35) can be found

in [3], emphasizing the idea that the critical mode slaves all the

other modes close to threshold (since it has largest growth rate).

The form of this equation reflects the symmetries of type-I sta-

tionary instabilities, with the scaling determined by the linear
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properties of the system:

τ−1
0 =

∂Im(ω)

∂ε

∣∣∣∣
q=qc,ε=0

τ−1
0 ξ2

0 = − 1

2

∂2Im(ω)

∂q2

∣∣∣∣
q=qc,ε=0

The parameter g0 > 0 sets the scale of the amplitude variation:

upon rescaling

X = |ε|1/2x/ξ0

Y = |ε|1/4y (qc/ξ0)
1/2

T = |ε|t/τ0

A = (g0/ε)
1/2A ,

Eq. (1.35) can be written in the universal form

∂A
∂T

= ±A+

[
∂

∂X
− i

2

∂2

∂Y 2

]2

A− |A|2A . (1.36)

The amplitude equation (1.35) forms the basis of many general

considerations about pattern formation processes, including the

study of ideal pattern stability. Consider in fact the linear super-

position of roll states

E = E0

[
n∑

i=−1

Ai(x, t) exp (iqi · x) + c.c.

]
+O(ε)

where all the qi’s lie on the critical circle, |qi| = qc. Here we

denote by x = (x, y) the transverse coordinates. Rescaling x →
x/ξ0, qc → qcξ0, t → t/τ0, and A → g

1/2
0 A the amplitude equa-

tion (1.35) for each mode reads

∂tAi = εAi −
n∑
j=1

gij|Aj|2Ai
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Figure 1.6: Hexagons become unstable via a saddle-node bifurcation at ε =
εSN < 0. Further increasing ε far from threshold, rolls become stable at ε = εR.
Here AH : hexagons amplitude, AR: rolls amplitude. Adapted from Ref. [74].

where gij depends on the angles qi · qj = cos(θij) via a function

gij = G(θij). Suppose that one wishes to study the stability of

hexagons, formed by three wavevectors at 2π/3 angle, satisfying

q1 + q2 + q3 = 0. This condition brings an additional quadratic

nonlinearity, and the amplitude equation for the mode amplitude

A1 reads [74] (similar equations holds for A2,3):

∂tA1 = εA1 − γA∗2A∗3 −
[
|A1|2 + g1

(
|A2|2 + |A3|2

)]
A1 , (1.37)

where g1 = G(2π/3). If γ 6= 0 the quadratic nonlinearity ∼ A∗2A
∗
3

dominates at threshold, and this is the generic case when inversion

symmetry E → −E is absent. In particular, for γ � 1 it can be

shown that hexagons dominate the dynamics close to the critical

point via a saddle-node bifurcation, but are unstable against rolls

far from threshold (see Fig. (1.6)). The critical values of ε can be

obtained from the amplitude equation as [74]:

εSN = − γ2

4(1 + 2g1)
< 0 saddle-node: hexagons become stable

εR =
γ2

(g1 − 1)2
rolls become stable
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This argument shows that hexagons are expected close to thresh-

old for systems following the amplitude equation (1.37). This pre-

diction will be confirmed in the numerical simulations of Sec. 3.1.4

and Sec. 3.2.2.

1.3 The self-structuring scenario

In this Section the general setup analysed in the rest of the thesis

is presented, in order to clarify the basic ideas of self-structuring

in cold atoms.

The term self-structuring instability refers to the spontaneous for-

mation of spatial structures in the density of a cold atomic gas, in

the plane transverse to the propagation of a single pump beam.

Corresponding structures are then encoded in the transverse pro-

file of the optical beams, which drive the instability and transport

the information to and from the atomic medium. Alternatively,

this process can be thought in terms of a spontaneous bunching

of the atoms, which scatter light in off-axis sidebands. Such side-

band emission further supports the bunching, which creates the

runaway process leading to a macroscopic bunching starting from

infinitesimal fluctuations. As the spatial scale and orientation of

the emerging structures is self-selected, self-structuring instabili-

ties break the rotational and translational symmetries1.

A key point worth emphasizing is that self-structuring instabili-

ties are diffractive in nature, as diffraction of the optical beams

provides spatial coupling between neighbouring points. With this

respect, self-structuring in cold atoms realizes a Turing instabil-

ity [1, 75], where

1In two transverse dimensions; only the translational symmetry is broken in one trans-
verse dimension.
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• the nonlinearity is provided by dipole forces;

• the spatial coupling is provided by diffraction;

• the driving is provided by continuously injecting energy through

the pump beam.

To fully understand the role of diffraction in nonlinear optical sys-

tems, consider for the moment the general situation of a medium

with an intensity-dependent refractive index, n = n(I) (I being

the optical intensity). As the pump beam propagates through the

sample, any refractive index modulation (in the plane transverse

to the propagation axis z) results in a phase modulation of the

transmitted beam. This phase modulation is converted into an

amplitude modulation by diffraction after 1
4zT , where zT is the

Talbot distance at which the phase structure of the input field is

rebuilt (see also Sec. 2.3.3 for a discussion of the Talbot effect).

Using an optical mirror the intensity-modulated optical beam can

be resent back onto the medium, and since the refractive index

is intensity-dependent an effective ’self-interaction’ is created for

the medium (with a delay time determined by the round-trip to

the mirror and back). If the round-trip time is much shorter than

the typical timescale for the refractive index dynamics, this inter-

action is effectively instantaneous and long-range.

The general mechanism outlined above lies at the heart of trans-

verse pattern formation in any kind of nonlinear optical media

(see e.g. [8]); what is new in cold atoms is the source of the inten-

sity dependence in the refractive index. This comes in cold media

from optical forces, and specifically from dipole forces in the work

presented in this thesis. Otherwise stated, the density distribu-

tion of the gas determines the refractive index profile of the could

(more atoms → stronger response, as the polarization is propor-
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Figure 1.7: The basic scheme of the self-structuring feedback loop. A plane
wave (with transversally flat phase and amplitude profiles) illuminates the
medium, which imposes a phase modulation on the transmitted beam. Diffrac-
tion converts phase modulations into amplitude modulations, which conse-
quently affect the refractive index of the medium via dipole forces.

tional to the density), this density distribution being shaped by

the dipole forces arising from the intensity modulations which

result from diffraction. The feedback loop is therefore built as

follows:

• A plane wave (no transverse structure in phase nor ampli-

tude) illuminates the gas

• Fluctuations in the atomic density profile (i.e. in the refrac-

tive index) impose fluctuations in the phase profile of the

beam (equivalently, infinitesimal off-axis sidebands are emit-

ted in the far-field)

• Diffraction in the round-trip to the mirror and back converts

phase fluctuations into amplitude fluctuations. The mirror

distance sets the preferred transverse spatial scale as the one

that fulfils the Talbot requirement, see Sec. 2.3.3

• Amplitude fluctuations result in dipole forces, which move

the atoms towards the minima of the optical potential

• Atomic motion enhances the initial refractive index fluctua-
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tion

The scenario depicted above indicates that opto-mechanical self-

structuring due to dipole forces should occur every time a feed-

back loop is created for an atomic sample which is sufficiently cold

and dense. It is the aim of the next Chapters to investigate in

more detail this scenario, and provide answers to questions such

as: what is the required temperature to observe the formation of

a pattern? What is the minimum pump intensity? What is the

role of the velocity distribution? What is the role of the atomic

internal state?
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Chapter 2

Self-structuring instabilities:

viscosity-free systems

This Chapter presents the theoretical and numerical analysis of

symmetry-breaking instabilities in cold atoms, occurring in vis-

cosity-free arrangements. By ‘viscosity-free’ (or ‘damping-free’ in

the following) it is meant that no optical molasses are assumed

to act on the atomic cloud during the pattern formation process,

so that no velocity damping is present. The basic functioning

of optical molasses in cooling and velocity damping is illustrated

in Sec. 1.1.2. The ‘viscous’ situation where cold-atoms pattern

forming instabilities take place in the presence of velocity damp-

ing is discussed in Chap. 3. The main consequence of the absence

of optical molasses is that the atomic velocities are left free to

evolve, so that their dynamics must be taken into account. The

dynamics of the atomic cloud will be captured by a phase-space

distribution f(x,v, t), while a simplified description in terms of a

spatial density distribution n(x, t) suffices in the ‘viscous’ regime.

The resulting theory is strongly reminiscent of plasma stability

theory [76]. This is not surprising, since the results discussed

below are obtaining starting from the same premises, namely a

collisionless Boltzmann equation for the gas (also known as the
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Figure 2.1: On the left, a sketch of the single-mirror-feedback scheme. The
‘forward’ plane wave F illuminates a diffractively thin layer of cold atoms and
is retroreflected as the ‘backward’ beam B by a mirror of reflectivity R placed
at a distance d from the medium. If a transverse modulation for the optical
intensity is obtained, the atoms will seek the minima of the resulting dipole
potential (right).

Vlasov equation). A Vlasov-based method for the study of cold-

atoms dynamics in optical resonators already proved to be effec-

tive in previous research [77], and the analysis is extended here to

single-mirror configurations. The damping-free dynamics investi-

gated in this Chapter realizes an effective long range interaction

between the atoms, and the resulting collective behaviour can give

rise to a synchronization process analogous to the one studied in

Refs. [78, 79, 80] (Sec. 2.6).

Our study will be focused on the so-called single-mirror-feedback

geometry [5, 81, 82]. This can be seen as a ‘half-cavity’, where

the cloud is illuminated from one side, and the transmitted beam

is then retro-reflected by a mirror placed at a distance d, see

Fig. (2.1). The single-mirror setup is particularly attractive from

a theoretical/computational standpoint because the light-matter

interaction can be separated from the propagation, at least in the

simple case of a medium which is diffractively thin. All the work

presented in this thesis will rely on the thin medium assumption,

discussed below, and effects of propagation within the medium

will be neglected. However, it should be stressed that the theory

developed here is in good agreement with experimental results
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from a setup where the medium thickness is non-negligible. This

indicates that the main physics of self-structuring instabilities (see

e.g. the experimental results of [83]) is captured by a thin-medium

model. Ref. [83] also presents some results obtained taking into

account the thickness of the medium, which somewhat ‘corrects

at higher orders’ the results presented in the following Sections,

particularly with respect to the spatial size of the structures ob-

served experimentally (see Chap. 4).

2.1 Model equations

The coupled light-atoms dynamics is investigated starting from

the description of the medium. The atomic sample is assumed to

be cooled at a temperature T ∼ 100µK, and subsequently is left

free to interact with the pump beam (with the molasses beams

turned off). The analysis presented in this thesis focuses on the

dynamics in the plane of coordinates x = (x, y) transverse to the

pump propagation axis ẑ; the atomic properties are homogeneous

along the ẑ direction. Alternatively, one could consider a pancake-

shaped cloud which is extended along the x − y directions. At

the temperatures under consideration collisions are rare, and are

neglected in what follows. Low temperatures thus result in a

strong simplification, since the collision integral can be set to zero

in the Boltzmann equation for the gas [84], and the dynamics is

governed by (see also [77]):

∂f

∂t
+ v · ∂f

∂x
+

fdip

M
· ∂f
∂v

= 0 . (2.1)

Eq. (2.1) can be rigorously derived starting from the microscopic

equations for the system: such derivation is discussed in the Ap-

pendix A and can be found in more detail in [77]. Here M denotes
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the atom mass, v = (vx, vy) the transverse velocity coordinate,

and fdip the dipole force given by Eq. (1.15):

fdip = −~δ
2
∇ log(1 + s(x, t)) , (2.2)

with δ = ω0 − ωat the light-atom detuning and s the saturation

parameter associated to the total intensity illuminating the cloud.

Without loss of generality the phase-space distribution function

can be be normalized to the system transverse size A⊥:∫
A⊥

dx

∫
R2

dv f(x,v, t) = A⊥ . (2.3)

The total intensity s(x, t) entering the force expression (2.2) is

obtained by summing up incoherently the forward and backward

beam intensities, s(x, t) = |F |2 + |B(x, t)|2. This is consistent

with the assumption of a diffractively thin medium; similar as-

sumptions also proved to be effective in describing internal-state,

‘hot-atom’ instabilities [11]. As also discussed in the following,

accounting for propagation inside the medium is not crucial to

describe the main physics of self-structuring instabilities.

To describe the coupling between light and the atoms one needs

to express the force (2.2), and thus the backward field B(x, t).

This is obtained by propagating the forward pump field through

the cloud, and successively calculating its evolution in the free-

space propagation to the mirror and back. Assuming the atoms

to be two-level systems as in Sec. 1.1, the forward field is simply

absorbed and phase-shifted by the cloud as

∂F (x, z, t)

∂z
= −α0(1− i∆)n(x, t)w(x, t)F , (2.4)

where ∆ = 2δ/Γ as already defined in sec. 1.1, n(x, t) is the

transverse atomic density, and w(x, t) the population difference
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between the ground level and the excited level of the atoms. For

two-level atoms the cloud susceptibility is parametrized by (see

Appendix A)

α0 =
b0

2L(1 + ∆2)
, (2.5)

where b0 is the optical density in line center and L the medium

thickness. Eq. (2.4) is obtained from the full wave equation in the

slowly-varying, paraxial and rotating wave approximations by ne-

glecting diffraction within the medium (which is exactly the thin

medium assumption). As a consequence, the thickness L will turn

out to be an unessential parameter in the theory, as everything

will depend only on the product α0L and the dependence from

L will cancel out. Diffraction takes place only in the free-space

propagation to the mirror and back:

∂F

∂z
= − i

2k0
∇2F , (2.6)

where k0 is the radiation wavenumber.

As in Sec. 1.1.1, where dipole forces on atoms at rest were dis-

cussed, using the steady-state solution of the Maxwell-Bloch equa-

tions the population difference is given by

w(x, t) =
1

1 + s(x, t)
. (2.7)

This is justified by the fact that the ‘external’ timescale for atomic

motion is much slower (typically, τext = 10µs to move 1µm at a

temperature of 100µK) than the ‘internal’ timescale for relaxation

of the populations and coherences (Γ−1 ∼ 10 − 100 ns). Essen-

tially, the assumption taken here is that the internal degrees of

freedom of the system to evolve infinitely fast, Γ→∞, which will

have important consequences in Sec. 2.4.1.

Once a solution f(x,v, t) is found for the Boltzmann equation (2.1),
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the spatial density n(x, t) to be plugged into Eq. (2.4) is obtained

by integrating over the velocities:

n(x, t) =

∫
dv f(x,v, t) . (2.8)

Note that the backward field B, and thus the total intensity s,

depend on f only through the spatial density n = n(x, t), so that

s = s(x, t) depends on x but not on v.

2.2 Linear stability analysis

2.2.1 Stationary homogeneous solution

The first step in the linear analysis consists in determining the

stationary and spatially homogeneous solution of the coupled sys-

tem (2.1-2.4). If the optical field is spatially homogeneous, there

are no dipole forces active on the system, fdip = 0. Therefore

the Boltzmann equation is solved by any spatially homogeneous

velocity distribution f0(v). Taking f0(v) to be normalized to

unity without loss of generality, and given the normalization con-

dition (2.3), the corresponding homogeneous density is simply

n0 = 1. To obtain the spatially homogeneous solution for the

field, consider first the propagation of a pump beam of amplitude

F0 =
√
p0 through a cloud with homogeneous n = n0 and s = s0:

from Eq. (2.4) the transmitted field is

F (z = L) = F0 exp

{
−α0L(1− i∆)

1 + s0

}
.

It is important to realize that this contribution represents the

zero-frequency component of the field spectrum, and as such it

does not undergo diffraction in the free-space propagation, see

Eq. (2.6). This can be seen moving to Fourier space for the trans-
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verse coordinate x:

F (x) −→ F (q) =

∫
dxF (x)eiq·x ,

so that ∇2 → −|q|2 and the field after a propagation distance lpr

is obtained by solving Eq. (2.6) as

F (z = lpr,q) = F (z = 0,q) exp

(
ilpr

2k0
|q|2
)
. (2.9)

As a consequence the homogeneous mode F (q = 0) is unaffected

by the propagation, and the homogeneous component of the back-

ward field amplitude |B| is simply the transmitted part of the ho-

mogeneous forward beam, further reduced by a factor
√
R due to

the mirror reflectivity R. The total homogeneous intensity then

reads

s0 = |F |2+|B|2 = p0+Rp0 exp

(
− 2α0L

1 + s0

)
= (1+Rγ0)p0 , (2.10)

where the absorption factor has been defined as

γ0 = exp

(
− 2α0L

1 + s0

)
. (2.11)

The presence of this term makes Eq. (2.10) implicit in s0, so that

a numerical zero-finding method is needed in practice to evaluate

s0. In this thesis the Newton-Raphson method [85] implemented

within the FindRoot function of Mathematica [86] will be used.

2.2.2 Perturbation analysis

Now that the stationary, homogeneous solution for the system

has been established, linear analysis is performed by considering
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small perturbations to such solution,

f(x,v, t) = f0(v) + f1(x,v, t) (2.12a)

s(x, t) = s0 + s1(x, t) , (2.12b)

and studying the dynamics of these perturbations to first order

in f1, s1. The forward field is found at the exit of the medium

(z = L) as

F (z = L,x, t) = F0 exp

{
−α0L(1− i∆)

n(x, t)

1 + s(x, t)

}
'

' F0 exp

{
−α0L(1− i∆)

1 + s0

[
1 + n1(x, t)

] [
1− s1(x, t)

1 + s0

]}
'

' F0 exp

{
−α0L(1− i∆)

1 + s0

}[
1− α0L(1− i∆)

1 + s0

(
n1(x, t)−

s1(x, t)

1 + s0

)]
.

The backward field is obtained propagating F to the mirror and

back for a distance lpr = 2d (d being the mirror distance). This

is done moving to Fourier space for the coordinate x and us-

ing Eq. (2.9):

B(q, t) =
√
R

{∫
F (z = L,x, t) exp (iq · x) dx

}
exp

(
i
d|q|2
k0

)
where the factor

√
R again captures the losses due to a finite

transmittivity of the mirror. Note that no special symbol is used

to denote spatially Fourier-transformed functions (or temporally

Laplace-transformed one, see below): these will be distinguished

by means of their arguments, or otherwise the distinction will be

clear from the context.

Combining the last two equations, the backward field in Fourier
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space is found as

B(q, t) =
√
R exp

(
−α0L(1− i∆)

1 + s0

)
×

×
[
δ(q)− α0L(1− i∆)

1 + s0

(
n1(q, t)−

s1(q, t)

1 + s0

)]
eiΘ ,

(2.13)

where the diffractive phase shift Θ has been defined as:

Θ =
d|q|2
k0

. (2.14)

The expansion s(x, t) = s0+s1(x, t) corresponds to settingB(q, t) =

B0[δ(q) + b1(q, t)] in Fourier space, and correspondingly s(q, t) =

s0δ(q) + |B0|2[b1(q, t) + b∗1(q, t)]. The homogeneous contribution

|B0|2 = Rγ0p0 was found in the previous Section, while the inho-

mogeneous perturbation in Eq. (2.13) can be recognized as

b1(q, t) = −α0L(1− i∆)

1 + s0

(
n1(q, t)−

s1(q, t)

1 + s0

)
eiΘ . (2.15)

The corresponding intensity perturbation is

s1(q, t) = Rγ0p0 [b1(q, t) + b∗1(q, t)] =

= Rγ0p0

[
−α0L(1− i∆)

1 + s0

(
n1(q, t)−

s1(q, t)

1 + s0

)
eiΘ + c.c.

]
=

= −Rγ0p0
2α0L

1 + s0

(
n1(q, t)−

s1(q, t)

1 + s0

)
[cos Θ + ∆ sin Θ] .

Isolating s1(q, t) the following expression is obtained:

s1(q, t) = −
2Rγ0p0
1+s0

[cos Θ + ∆ sin Θ]

1− 2Rγ0p0α0L
(1+s0)2 [cos Θ + ∆ sin Θ]

∫
f1(q,v, t)dv ,

(2.16)

where the density perturbation n1(q, t) was explicitly expressed

as the velocity integral of the distribution function perturbation
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f1(q,v, t):

n1(q, t) ≡
∫
dv f1(q,v, t) .

The term [cos Θ+∆ sin Θ] is found in complete analogy with pre-

vious research on single-mirror-feedback instabilities. The two

contributions derive respectively from the medium absorptive re-

sponse (the cos Θ term) and the dispersive response (the ∆ sin Θ

term), independently on the physical mechanism underlying the

nonlinearity. In the large detuning limit analyzed in the follow-

ing Sections one retrieve the simpler ∆ sin Θ dependence of pure

dispersive media, see e.g. the original treatment of [5].

In order to obtain a closed expression for s1(q, t) an expression for

f1(q,v, t) has to be obtained from the linearization of the Boltz-

mann equation (2.1), which is rewritten here for convenience:

∂f

∂t
+ v · ∂f

∂x
+

fdip

M
· ∂f
∂v

= 0 . (2.17)

The dipole force fdip derives from spatial gradients of the opti-

cal intensity, and is therefore already a first-order quantity (the

zero-order contribution s0 only shifts the potential energy of the

system). In Fourier space the last, nonlinear term of the Boltz-

mann equation becomes a convolution integral, but since the force

is a first-order quantity only the zero-order term ∂f0/∂v will sur-

vive linearization. Given the intensity perturbation s1(q, t), the

force (2.2) is found in Fourier space as (∇ → iq)

fdip(q, t) = −~δ
2

iq

1 + s0
s1(q, t) . (2.18)
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The last step needed to obtain f1(q,v, t) involves a Laplace trans-

form in the temporal variable:

h(λ) =

∫ ∞
0

h(t) exp(−λt)dt (2.19a)

h(t) =

∫ a+i∞

a−i∞
h(λ) exp(λt)

dλ

2πi
(2.19b)

where a lies to the right of all the singularities of h(λ) in the

complex λ-plane. For future convenience the λ-plane can be ro-

tated by π/2 defining ω = −iλ, so that temporal derivatives are

Laplace-transformed as ∂th(t) → −iωh(ω) − h(t = 0). Using

Eq. (2.16) and (2.18) the Boltzmann equation (2.17) is thus lin-

earized as

f1(q,v, ω) =

[
f1(0) +

~δ
2M

s1(q, ω)

1 + s0
iq · ∂f0(v)

∂v

]
× [iq · v − iω]−1 ,

(2.20)

where f1(0) = f1(q,v, t = 0) denotes the initial disturbance to

the atomic distribution.

With the expression of f1(q,v, ω) at disposal the main result

concerning the stability of the system can be derived. Plugging

Eq. (2.20) into the Laplace-transformed Eq. (2.16), and again

isolating all the contributions in s1 one finds:

s1(q, ω) = −
2Rγ0p0
1+s0

[cos Θ + ∆ sin Θ]

1− 2Rγ0p0α0L
(1+s0)2 [cos Θ + ∆ sin Θ]

∫
f1(q,v, ω)dv =

= −
[

(1 + s0)K

1−K

∫
f1(0)

iq · v − iω

]
×

×
[

1− ~δ
2M

K

1−K

∫
êq · ∂f0(v)

∂v

ω/|q| − êq · v
dv

]−1

, (2.21)
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where êq ≡ q/|q| , and the quantity K has been defined as

K =
2Rγ0p0α0L

(1 + s0)2
[cos Θ + ∆ sin Θ] . (2.22)

2.2.3 Dispersion relation

Before proceeding, a brief summary of the results obtained in the

previous Sections is presented. The coupled dynamics of light

and cold atoms was modelled in terms of a wave equation for

the light fields and a collisionless Boltzmann equation for the

atoms. Propagation inside the cloud by assuming the medium to

be diffractively thin, the atomic dynamics was considered in the

plane transverse to the pump beam propagation. A spatially ho-

mogeneous solution for the system was identified, corresponding

to a flat density profile (n0 = 1) and plane-wave profiles for the

forward and backward beams. So far the form of the initial veloc-

ity distribution was specified, as any normalized function f0(v)

of the velocity only will produce a valid stationary homogeneous

solution.

Assuming infinitesimal fluctuations around this homogeneous so-

lution the dynamical equations for the light and the atoms has

been linearized Fourier-transforming the spatial variables (x→ q)

and Laplace-transforming the temporal variable (t→ ω). Consid-

ering the linearized equations for the perturbations modes f1(q,v, ω),

s1(q, ω), these solutions for these modes evolve as

f1, s1 ∼ exp (−iωt+ iq · x)

Of course it would be non-physical to have exponentially explod-

ing modes: as soon as f1, s1 grow to macroscopic values, the

nonlinearity will saturate their growth. The reader is referred to

Sec. 1.2 and Refs. [68, 4] for a deeper analysis of the concepts
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of linear stability analysis, but for the moment it suffices to note

that

if Im(ω) > 0 infinitesimal fluctuations will grow

if Im(ω) < 0 infinitesimal fluctuations will decay

In the first case the system is said to be unstable to fluctua-

tions, in the second case it is said to be stable. In the critical

limit Im(ω) = 0 the system is marginally (or neutrally) sta-

ble. Given that ω = −iλ in the definitions (2.19), we will re-

fer to Im(ω) = Re(λ) as the growth rate of the system. The

real part of the eigenvalues Re(ω) = −Im(λ) captures the fact

that when Im(ω) > 0 the resulting instability can be oscillatory

(Re(ω) 6= 0, the perturbation grows and oscillates in time) or sta-

tionary (Re(ω) = 0, the perturbation grows without oscillations).

From the above general expression of the perturbation modes we

see that when Im(ω) > 0 the growing perturbations are sinusoidal

waves of wavevector q (rolls states in the language of Sec. 1.2).

Of course it could be the case that Im(ω) > 0 for many different

modes, so that a complex periodicity is eventually observed in

real space. As will be demonstrated in the following, however,

there is a critical mode qc 6= 0 which grows faster than all the

other modes and suppresses them, at least close to the critical

point for the instability. In the language of Sec. 1.2, it will be

found that the system undergoes a type-I stationary instability.

The next step in the analysis requires us to find relation which

links the eigenvalue ω to the wavevector q, i.e. the so-called dis-

persion relation ω = ω(q). To do so, consider again the expres-

sion (2.21) for the intensity perturbation modes s1(q, ω). The

dynamics of the system is in principle fully captured by anti-
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Laplace-transforming this expression in ω, but this presents itself

as a task of formidable difficulty. The dispersion relation can

be found, however, relying on the definition (2.19) for the anti-

transform, and specifically on the fact that contributions to the

integral (to be carried in the complex ω-plane) will come only

from the poles of s1(q, ω). In particular, the pole with largest

imaginary part Im(ω) will dominate the dynamics, as it corre-

sponds to the mode with largest growth rate.

From inspection of Eq. (2.21) it can be seen that a pole can be

found in two relevant cases:

• when K = 1. The divergences arising when K = 1 have an

important physical interpretation, which will be discussed in

detail later. They identify the condition for an electronic in-

stability to occur, i.e. a pattern-forming instability triggered

by the internal-state nonlinearity. Unless otherwise stated,

the emphasis will always be on the case K < 1, as this cap-

tures the main novelty of the work presented in this thesis,

namely opto-mechanical self-structuring instabilities.

• when the denominator (i.e. the second square bracket term)

of Eq. (2.21) vanishes. Since this can happen also for K < 1,

this condition triggers opto-mechanical self-structuring in-

stabilities.

Discarding the first point as a possible origin of poles in the anti-

transform of (2.21) (this point will be considered in Sec. 2.4.1), a

non-zero contribution to the anti-transform of s1(q, ω) must arise

from the condition

D(q, ω) = 1− ~δ
2M

K

1−K

∫
êq · ∂f0/∂v

ω/|q| − êq · v
dv = 0 . (2.23)
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As a consequence, the condition D(q, ω) = 0 implicitly identifies

the dispersion relation ω = ω(q) for our system.

2.2.4 Growth rate

Solving Eq. (2.23) for ω provides the eigenvalues for the system.

If Im(ω) > 0 for some q a periodic structure will appear with

periodicity Λ = 2π/|q|. Naturally one has to provide an initial

condition for the system, i.e. specify the initial velocity distribu-

tion f0(v). In this thesis a Maxwell-Boltzmann initial distribution

will be used, which represents the equilibrium distribution for the

gas before interacting with the pump beam and is given by:

f0(v) =
1

2πv2
th

e−|v|
2/2v2th , (2.24)

where the thermal velocity of the gas is connected to the initial

temperature T as

vth =

√
kBT

M
. (2.25)

Before facing the task of solving the dispersion relation (2.23),

however, a remark should be made regarding the dependence on

the system dimensionality of the dispersion relation. In other

words, the question is whether the stability properties of the sys-

tem differ in one and two transverse dimensions. A dependence

on the number of dimensions can arise only from the dispersion

integral ∫
êq · ∂f0/∂v

ω/|q| − êq · v
dv ,

which involves scalar products of q and v. Since the analysis will

be limited in this thesis to initial velocity distributions which de-

pend only on the modulus of the velocity, f0(|v|), one has that

57



∂f0/∂v = (v/|v|) (∂f0/∂|v|) is parallel to v. Then for a given

q the dispersion integral can be evaluated rotating the v-plane

until vx is parallel to q, so that for the Maxwell-Boltzmann dis-

tribution (2.24)∫
êq · ∂f0/∂v

ω/|q| − êq · v
dv =

∫ ∞
−∞

(vx/|v|)∂f0/∂|v|
ω/|q| − vx

dvxdvy =

= − 1

v2
th

∫ ∞
−∞

vxf0(vx, vy)

ω/|q| − vx
dvxdvy ,

where the fact that

∂f0

∂|v| = −|v|
v2

th

f0 .

was used. Another property of the two-dimensional Maxwell-

Boltzmann distribution is that it is simply obtained as the prod-

uct of two one-dimensional Maxwell-Boltzmann distributions:

1

2πv2
th

e−|v|
2/2v2th =

(
1√

2πv2
th

e−v
2
x/2v

2
th

)
×
(

1√
2πv2

th

e−v
2
y/2v

2
th

)
.

Hence the vy integral can be evaluated independently and gives

unity due to the normalization of the vy-distribution. The dis-

persion integral can thus be rewritten as∫
êq · ∂f0/∂v

ω/|q| − êq · v
dv = − 1

v2
th

∫ ∞
−∞

vxf0(vx)

ω/|q| − vx
dvx , (2.26)

where f0(vx) is a one-dimensional distribution. The dispersion

integral (2.26), in its one-dimensional form, finds a one-to-one

correspondence in the study of Langmuir wave instabilities in

one-species electron plasmas [76].
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Interlude: the Lorenz distribution

A natural next step would be to look for a solution to the dis-

persion integral (2.26) with f0(vx) given by a one-dimensional

Maxwell-Boltzmann distribution. However, such a solution does

not exist, i.e. no analytic result can be found for the Maxwell-

Boltzmann case. Since the eigenvalues of the system are identical

in one and two transverse dimensions, however, one can turn the

attention to different one-dimensional initial distributions f0(v)

which admit an exact solution. Hopefully the study of analyti-

cally solvable cases can shine some light on the solution of the

Maxwell-Boltzmann case, and this indeed will be the case.

It is known for the study of plasma systems [76] that the one-

dimensional Lorenz velocity distribution

f0(v) =
vth

π

1

v2 + v2
th

(2.27)

gives rise to an exact solution of the dispersion integral, namely∫ +∞

−∞

∂f0/∂v

ω/|q| − vdv =
|q|2

(|q|vth − iω)2
if Im(ω) > 0 . (2.28)

Here vth denotes the half width at half maximum (HWHM) of

the distribution. The solution (2.28) holds for Im(ω) > 0, that is,

as long as the poles along the real axis are left above the path of

integration. The study of the correct solution to the dispersion

integral dates back to the works by Landau [87], who corrected

earlier results by Vlasov containing contributions from both paths

circumnavigating the poles from above and from below. This can

be shown to be a subtle mistake with tragic consequences, as

causality is violated if the path circumnavigating the pole from

above is considered [88].

Inserting the result (2.28) into the dispersion relation (2.23) the
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dispersion relation becomes (in one dimension)

D(q, ω) = 1− ~δ
2M

K

1−K
|q|2

(|q|vth − iω)2
= 0 ,

which can be easily solved for ω as

ω±(q) = i|q|
{
−vth ±

√
~δ
2M

K

1−K

}
. (2.29)

It can be seen from inspection of thus result that the two eigen-

values are complex conjugates of each other, but the condition

Im(ω) > 0 requires

J ≡ ~δ
2M

K

1−K > 0 ,

as this ensures that the square-root term in Eq. (2.28) is real.

Moreover, the solution ω− is to be discarded since Im(ω−) < 0;

in the following we will refer simply to ω = ω+ as the eigenvalue

of the system. The definition of J will be useful in discussing the

relative roles of opto-mechanical and internal-state nonlinearities,

see Sec. 2.4.1.

Moreover Re(ω) = 0, so that the instability is of stationary type.

The Maxwell-Boltzmann distribution

The aim is to make use of result (2.29) for the Lorenz growth rate

in the Maxwell-Boltzmann case. In this case no analytic solution

is possible, but the following technique can be used

• given a set of parameters δ, T , b0, p0, numerically evaluate

the dispersion integral

• select a value of the wavevector q
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Figure 2.2: Linear stability analysis results for the Maxwell-Boltzmann case:
growth rate versus injected power (top left), power threshold versus q (top
right), power threshold versus temperature (bottom left), and power threshold
versus optical density. Common parameters in all the plots are: δ = 10Γ
(∆ = 20), d = 5 mm, R = 1. Fig. a and b are obtained at T = 300µK,
b0 = 100.
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• use a Newton-Raphson routine to numerically determine the

zero of the dispersion relation (2.23)

• the value of ω at which the zero occurs is the desired eigen-

value of the system

In particular, this routine is followed to evaluate the growth rate

ω as a function of the injected pump p0. The growth rate ω is

found to be well-fitted by an expression which is identical (up to

a numerical prefactor
√

2) to the one obtained for the Lorenz case

(see Eq. (2.28)):

ω(q) = i
√

2|q|
{
−vth +

√
~δ
2M

K

1−K

}
. (2.30)

Note that the numerical evaluation of the dispersion integral is

performed in one dimension, as the result is known to be iden-

tical in two dimensions, see Eq. (2.26). The FindRoot built-in

function of Mathematica [86] was used. As in the Lorenz case,

opto-mechanical self-structuring requires the square-root term to

be real:

J ≡ ~δ
2M

K

1−K > 0 .

Numerical evaluations of the growth rate from the dispersion rela-

tion, together with the theoretical predicition (2.30), are plotted

in Fig. (2.2a).

2.2.5 Threshold condition

The threshold condition for the instability can now be determined

by setting Im(ω) = 0 in Eq. (2.30). Since the analysis is restricted

here to the case where the square root term in (2.30) is real we
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have

Im(ω) = 0⇐⇒ v2
th −

~δ
2M

K

1−K = 0 .

By defining the dimensionless quantity

σ =
~δ

2kBT
(2.31)

the threshold condition can be written as

1− σ K

1−K = 0 . (2.32)

From this expression all the threshold values for the quantities of

interest can be (numerically) evaluated, such as injected power,

optical density, and temperature. Sec. 2.3.3 contains a more de-

tailed discussion related to the critical wavenumber qc. Note that

the threshold condition (2.32) can also be found by simply setting

ω = 0 in the dispersion relation (2.23), as the eigenvalue (2.30) is

purely imaginary: ω = i Im(ω).

2.3 Low saturation limit

The results presented in the previous Sections involve two nonlin-

ear mechanisms in the cloud polarization P = χE (see Eq. (2.4)):

• the internal-state nonlinearity stemming from the saturation

of the atoms two-level transition, χ ∼ w = 1/(1 + s(x, t))

• the opto-mechanical nonlinearity arising from density redis-

tributions, χ ∼ n(x, t) =
∫
f(x,v, t)dv

The second point represents the main novelty of this work, and it

is worth asking the following question: is an instability possible

arising only from the density-redistribution nonlinearity?
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Answer this question requires to move into a regime where the

‘electronic’ polarization is linear, i.e. in a regime of low saturation

s� 1 where the polarization response to the field E (of associated

saturation parameter s) can be approximated as

Pel = −α0(1− i∆)

2(1 + ∆2)

E

1 + s
' −α0(1− i∆)

2(1 + ∆2)
E .

Reducing the saturation of the transition will naturally make it

necessary to work at large detuning, |∆| � 1 (as well as small

intensities). Hence we simplify our model by neglecting absorp-

tion:

Pel ' i
α0∆

2(1 + ∆2)
E .

As a last approximation, in the limit s � 1 the dipole potential

can be approximated as

Udip =
~δ
2

log(1 + s) ' ~δ
2
s .

Note that the elimination of absorption from the problem au-

tomatically sets γ0 = 1 in Eq. (2.11). This results in a strong

simplification, as the homogeneous solution (2.10) reduces to

s′0 = (1 +R)p0 , (2.33)

and does not need a zero-finding routine to be evaluated. In

general, a remarkable advantage of the low-saturation treatment

described in this Section is that it allows for exact solutions. As a

matter of convention, all the primed quantities (such as s′0) denote

‘pure opto-mechanical’ quantities obtained in the low-saturation

limit. The only exception to this rule is made for the critical

wavenumber qc, see Sec. 2.3.3.
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All the analysis presented in the previous Sections could now be

repeated for the low-saturation case, but it is much more conve-

nient to jump to the final solution simply by keeping only first-

order contributions in p0 from the dispersion relation. In partic-

ular, this involves the following approximations:

• from Eq. (2.22), K ' K ′ = 2Rp0α0∆L sin Θ, where the

absorptive term cos Θ is neglected over the dispersive term

∆ sin Θ

• K ′ � 1 and K ′/(1−K ′) ' K ′

The dispersion relation (2.23) reads in the low-saturation limit:

D′(q, ω′) = 1− J ′
∫

êq · ∂f0/∂v

ω′/|q| − êq · v
dv = 0 , (2.34)

where

J ′ =
~δ
2M

K ′ . (2.35)

The additional quantity J ′ was introduced to clarify the following

point. In the ‘full’ theory presented in the previous Section the

quantity J = (~δ/2M)K/(1−K) was assumed to be positive in

describing density-driven self-structuring instabilities. When this

condition is not fulfilled the role of the internal-state nonlinear-

ity is crucial in triggering the instability, see Sec. 2.4.1. Since

K ′ ∼ δ, it now appears clear that J ′ ∼ δ2 > 0 always. This em-

phasizes the fundamental point of the low-saturation limit: if an

instability occurs, it must be of opto-mechanical nature since, as

a matter of fact, there is no internal-state nonlinearity to make

an electronic instability possible. This is also confirmed by the

fact that K ′ � 1, since the condition K ≥ 1 parametrizes the

regions of electronic-only self-organization, see Sec. 2.4.1.
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2.3.1 Threshold condition

The relevant quantities related to the stability of the system can

now be determined analytically, at least in the low-saturation

limit. The growth rate is found from Eq. (2.30) as (recall that

(2.30) is identical in one and two dimensions)

ω′(q) = i
√

2|q|
{
−vth +

√
J ′
}
, (2.36)

while the threshold condition is obtained from Eq. (2.32) as

1− σK ′ = 0 .

From the last expression the threshold value for the injected inten-

sity pc0 can be expressed as a function of all the other parameters:

p′c0 =
1

2σRα0∆L sin Θ
with σ =

~δ
2kBT

. (2.37)

Obviously this relation can be used to express other ‘critical’

quantities, notably the optical density b0 as a function of the in-

jected power. However, in the low-saturation limit there is no ab-

solute threshold for the optical density: for a given b0 it is always

possible to increase the injected power and reach the instability

threshold. This no longer holds for the ‘full’ model discussed in

Sec. 2.2, see also Fig. (2.2d).

However, the absolute threshold for b0 is not a consequence of

the internal-state nonlinearity, as it is retrieved if the approxi-

mation log(1 + s) ' s for the dipole potential is not made. For

linear scatterers (with no internal-state nonlinearity, i.e. popu-

lation difference w = 1) under the action of a dipole potential

Udip = (~δ/2) log(1 + s(x)), the threshold (2.37) is corrected as

p′c0 =
1

2σRα0∆L sin Θ− (1 +R)/2
, (2.38)
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which displays an absolute threshold for α0 (and thus b0), namely

αc0 =
1 +R

4σ∆RL sin Θ
αc0 =

bc0
2L(1 + ∆2)

. (2.39)

This result will not be used in the following, and Eq. (2.37) will be

referred to as the low-saturation threshold for the system. How-

ever, it is important to bear in mind that the theoretical model

presented here in general displays an absolute threshold for the

optical density if the approximation log(1 + s) ' s is not taken.

An analogous argument holds for ‘hot-atoms’ internal-state insta-

bilities: a pure Kerr medium does not display an absolute thresh-

old for the optical thickness, while a saturable Kerr medium does.

2.3.2 The detuning dependence

The dependence of the low-saturation threshold (2.37) from the

detuning is of particular interest, and deserves a separate discus-

sion.

The whole point of the low-saturation limit is to reduce the internal-

state response up to the point where density redistribution effects

become dominant, so that they can be studied independently from

internal-state ones. A natural way to obtain this is to increase the

detuning |∆| (either on the blue or the red side of the resonance),

weakening the dipole moment of the atom by a factor |∆|−1 (ab-

sorption drops even faster as |∆|−2). For this to work, however,

one must ensure that the power required to observe the insta-

bility, i.e. the power threshold, does not grow too fast with the

detuning. If the threshold for the saturation parameter cannot be

considered in the ‘low-saturation’ range s � 1, in fact, there is

no point in studying opto-mechanical-only self-structuring, since

internal-state effects cannot be neglected. The same problem, for
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examples, makes it difficult to reach the purely dispersive Kerr

limit in ‘hot’ two-level atoms. In this case the threshold grows in

fact as pKerr
0 ∼ ∆, so that one needs large optical densities to lower

the threshold into the low-saturation regime. This is achievable

in warm gases, but much harder to obtain in cold samples.

Inspection of the threshold expression (2.37), however, reveals

a remarkable property of the opto-mechanical nonlinear mecha-

nism. As one tunes the optical field far from resonance, in fact,

the threshold pc0 varies as (using ∆ = 2δ/Γ)

pc0 =
4kBT (1 + ∆2)

~ΓR∆2
∼ 1 + ∆2

∆2
∼ constant for large |∆|

As a consequence, one can increase the detuning at will, weak-

ening the internal-state response, but the saturation parameter

required for the instability stays the same. As the detuning is

increased while keeping the pump fixed, electronic-only instabili-

ties become out of reach and one approaches a regime where only

density redistribution effects are relevant for the self-organizing

dynamics. The physical origin of this peculiar behaviour, which

makes the opto-mechanical self-structuring instability different

with respect to usual internal-state instabilities, is the dipole en-

ergy dependence from the detuning: Udip ' (~δ/2)s. This detun-

ing dependence enters the parameter σ ∼ δ defined in Eq. (2.37),

and balance the 1/δ dependence of the atomic dipole moment.

The ‘extra’ detuning dependence coming in via the dipole poten-

tial also explains why one formally obtains a self-focusing nonlin-

earity on both sides of the resonance, see Sec. 2.3.5.

To show that the ‘pure opto-mechanical’, low-saturation limit

studied in this Section is indeed relevant and experimentally reach-

able, Fig. (2.3b) shows the power threshold of the ‘full’ model

(see Sec. 2.32) as a function of ∆, together with the ‘pure opto-
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Figure 2.3: On the left, the growth rate (at the critical wavenumber) for the
low-saturation case. Note that the ‘pure opto-mechanical’ system is symmetric
for blue/red detuning, and that the instability is suppressed on resonance. On
the right, the power threshold as a function of the detuning: the ‘full’ system
is asymmetric for red/blue detuning, and the low-saturation limit is reached
at large |∆|. Parameters are: b0 = 100, T = 300µK, d = 5 mm, R = 1.

mechanical’ prediction (2.37). Already at |∆| = 20 the required

saturation parameter for the instability is only pc0 < 0.1, and the

simple low-saturation theory is quite reliable for |∆| ≥ 20.

A close inspection of Fig. (2.3b) also reveals that the behaviour of

the ‘full-model’ threshold is not perfectly symmetric for blue/red

detuning. On the other hand, the linear properties of the low-

saturation model are completely symmetric on the blue and red

side of the resonance, as shown in Fig. (2.3a): this point will be

addressed in more detail in Sec. 2.4.2.

2.3.3 Critical wavenumber

A particularly important quantity that can be analytically derived

in the low-saturation limit is the critical wavenumber qc, i.e. the

value of q = |q| at which the growth rate Im(ω) crosses zero

when hitting the instability threshold. The critical wavenumber

sets in fact the spatial scale Λc of the structure emerging from the

instability, as close to theshold the critical mode dominates the
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dynamics:

Λc =
2π

qc
. (2.40)

Assuming that all the parameters fixed but the injected inten-

sity p0, the critical wavenumber can be found by minimizing the

expression for the power threshold pc0 = pc0(q). From the low-

saturation threshold (2.37) (or analogously from (2.38)) the crit-

ical wavenumber is obtained by simply setting sin Θc = 1, which

yields

Θc ≡ dq2
c/k0 = π/2 =⇒ qc =

√
πk0

2d
. (2.41)

Some points are worth remarking about this result. First, since

the threshold depends only on the wavenumber |q| any trans-

verse wavevector q on the ‘critical circle’ of radius qc will satisfy

Eq. (2.41). This means that at threshold the system can emit

any ‘sideband’ (off-axis) beam at the angle determined by qc, and

the fact that only some of these off-axis beams are eventually

selected is a signature that a symmetry-breaking process is oc-

curring. As different experimental runs are performed, in fact, it

is expected to observe the same structure (e.g. hexagons) with the

same spatial scale Λ = 2π/qc but different orientations. Differ-

ent near-field structures in turn correspond to different numbers

of peaks in the far-field profile: for instance two sidebands give

rolls, six sidebands give hexagons (see Sec. 1.2 for a discussion of

ideal two-dimensional patterns).

The second point is related to the ‘full’ theory discussed earlier,

involving both internal-state and opto-mechanical nonlinearities.

In this case the threshold expression cannot be found analytically,

but the driving term K depends on the diffractive phase shift

Θ as K ∼ cos Θ + ∆ sin Θ (and not just ∆ sin Θ as in the low-

saturation limit). As a consequence, the critical wavenumber is no
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longer given by the simple condition sin Θ = 1. However, all the

results presented in this work assume a large detuning (typically

|∆| ≥ 20) as we are interested in dispersive dipole forces, while we

neglect scattering forces (which are stronger close to resonance).

Hence the dispersive term ∆ sin Θ dominates over the absorptive

contribution cos Θ (independently of the value of the saturation

parameter), and the critical wavenumber is always found to be

very close to the low-saturation result (2.41). Fig. (2.4d) shows

the numerically determined critical wavenumber from the ‘full’

model (circles) versus the detuning. For |δ| ≥ 10Γ the relative dis-

crepancy between this ‘exact’ critical wavenumber (correspond-

ing to the lowest threshold) and the low-saturation result (2.41)

is ≤ 2× 10−2. In general, this distinction will not be made again

in the following and Eq. (2.41) will be referred to as the criti-

cal wavenumber of the system. This is why the low-saturation

critical wavenumber as is denoted as qc and is not ‘primed’ as q′c
(which would be consistent with all the other definitions of the

low-saturation limit): the low-saturation critical wavenumber ful-

fils its role sufficiently well also outside the low-saturation limit.

It should also be noted that the instability is of dispersive kind,

i.e. as δ → 0 one finds that even if the cos Θ term is dominant,

the growth rate is negative because

ω = i
√

2|q|
{
−vth +

√
~δ
M
J

}
−→ −i

√
2|q|vth

independently on J .

2.3.4 Periodicity in |q2| and the Talbot effect

The last point worth noting about the result (2.41) is that the

condition sin Θ = 1 is satisfied by any multiple Θn = (4n+ 1)Θc,
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Figure 2.4: In Fig. (a) a sketch of the instability mechanism is depicted: phase
perturbations at the critical wavenumber are fully converted into amplitude
perturbations by the free-space propagation. In Fig. (b) a Talbot carpet is
shown, see text. In Fig. (c) the threshold ‘balloons’ as a function of the
wavenumber are shown, while Fig. (d) displays the difference between the
(smallest) low-saturation critical wavenumber and the numerically exact one
for the ‘full’ theory. Parameters are as in Fig. (2.3).
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n = 0, 1, 2, . . . , of the ‘fundamental’ phase shift Θc = π/2. This

is indeed a quintessential property of the single-mirror feedback

scheme (for any kind of nonlinear medium), and relies on the Tal-

bot effect [89]. The key point of the single-mirror scheme, in fact,

consists of the conversion of phase fluctuations into amplitude

modulations operated by the free-space diffraction. The mirror

distance selects the self-amplifying perturbations at the critical

wavenumber qc as those which are fully converted from phase to

amplitude in the distance 2d, gaining a factor exp{i(4n+1)π/2} =

+i through the free-space propagation (see Fig. (2.4a)). If the

mirror distance is now doubled, these same phase fluctuations

at |q| = qc will re-appear as phase-only modulations at the re-

entrance of the medium, as amplitude modulations at distance

2d will be re-converted into phase modulations at distance 4d.

If an additional free-space propagation of 2d is added, the sit-

uation is identical to the original one: phase perturbations are

fully converted into amplitude perturbations at 2d, into phase

fluctuations at 4d, and again into amplitude modulations at 6d.

The periodic recurrence of these diffractive structures is termed a

Talbot carpet, and explains why a periodic behaviour is found in

the perturbation wavenumber for single-mirror-based transverse

instabilities. Phase modulations emerging from a grating of step

a = 2π/qc are in fact converted to amplitude modulations after

a propagation of 1
4zT = a2/2λ0. Setting 2d = 1

4zT we retrieve

qc =
√
πk0/2d as in Eq. (2.41). Fig. (2.4b) depicts the Talbot

carpet for a monochromatic beam, showing the periodic recur-

rence of diffractive structures.

As a final remark, the condition sin Θ = −1 also leads to a criti-

cal condition for self-defocusing media [5]. However, these modes

will not be considered in the following since opto-mechanical non-
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linearities are always of the self-focusing kind, as discussed in the

next paragraph.

2.3.5 The self-focusing nature of the nonlinearity

The fact that in the low-saturation limit J ′ > 0 always, inde-

pendent of the sign of the detuning, might seem surprising at

first. After all, in typical nonlinear optical experiments chang-

ing the sign of the light-atom detuning changes the nonlinearity

from self-focusing (for δ > 0) to self-defocusing (for δ < 0). The

nonlinearity emerging from density redistribution effects, on the

other hand, appears to be always of the self-focusing kind.

This was indeed already pointed out in early works on dielectric

particles, and can be explained as follows [90, 91]. Consider a

single atom, and compare its refractive index (nat) with respect

to the background value (nbg). Changing the sign of the detuning

results in swapping the relative roles of the atom and the back-

ground, with the blue detuning corresponding to a particle having

a refractive index lower than the background and viceversa for red

detuning. As particles are attracted towards the minima (max-

ima) of the optical intensity for blue (red) detuning, however,

regions of relatively high optical intensity always have a refrac-

tive index higher than the background, and thus attract light.

Hence for both signs of the detuning one finds that light attracts

light, yielding a self-focusing behaviour.

2.4 Internal and external degrees of freedom

The previous Sections were devoted to the study of the system sta-

bility under both internal-state and density redistribution nonlin-

earities. The focus was on identifying the conditions under which
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Figure 2.5: Dipole forces always lead to a self-focusing nonlinearity in which
regions of higher optical intensity s(x) correspond to higher refractive index
n(x), and thus attract light. Here nat: refractive index of the atom, nbg:
refractive index of the background.

fluctuations in the transverse profile of the atomic cloud and/or

the injected optical beam result in a runaway self-structuring in-

stability, leading to the spontaneous emergence of macroscopic

coupled light-density structures. An important point to stress is

the following: whenever transverse spatial structures emerge for

the optical fields, they do not result only in optical forces on the

atoms center of mass. Transverse modulations in the optical in-

tensity also affect the atomic internal-state polarization response,

stemming from populations and coherences of the two-level in-

ternal structure. These internal-state modulations also provide

feedback to the system, as they contribute to the overall refrac-

tive index of the atomic gas.

Although self-structuring instabilities involving the external, cen-

ter-of-mass degrees of freedom of the atomic cloud are the main

focus and novelty of this work, thus, the two-level internal state

was included in the theoretical analysis, see Sec. 2.1. Sec. 2.3

focused on the low-saturation limit and dropped the internal-

state nonlinear response from the atoms, but for generic choices

of the injected intensity these effects cannot be neglected. After

all, ‘standard’ optical self-organization typically relies exactly on

these internal-state nonlinearities. This Section is thus devoted
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to the study of the relative roles of the ‘internal-state’ and ‘opto-

mechanical’ nonlinear mechanisms.

2.4.1 Growth rate divergence

It has been stressed in Sec. 2.2.4 that a positive growth rate

Im(ω) > 0 (that is, an instability) is obtained under the con-

straint

J =
~δ
2M

K

1−K > 0 .

All the results derived earlier on the self-structuring threshold,

the growth rate, etc., rely on this condition. The quantity J ,

however, seems to be quite prone to misbehaviour as it diverges

when K = 1. Moreover, it is not known if something ‘interest-

ing’ happens in the regions J < 0, as in this case Im(ω) < 0

and the solution to the dispersion integral (2.28) breaks down.

For typical parameters the condition J ≤ 0 is obtained when

1−K ≤ 0, since the quantity (~δ/2M)K is always positive. This

holds for the large detunings assumed throughout this work be-

cause K ∼ cos Θ + ∆ sin Θ ' ∆ sin Θ, so that δK ∼ ∆2 > 0

(essentially as in the low-saturation limit, see Sec. 2.3). The bot-

tom line of all this is that to understand what happens in the

regions where J ≤ 0 it is sufficient to focus on the regions where

1−K ≤ 0, i.e. K ≥ 1.

To fully appreciate the importance of the ‘critical’ condition K =

1 the expression (2.21) for the intensity perturbation s1(q, ω) may
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be retrieved:

s1(q, ω) = −
2Rγ0p0
1+s0

[cos Θ + ∆ sin Θ]

1− 2Rγ0p0α0L
(1+s0)2 [cos Θ + ∆ sin Θ]

∫
f1(q,v, ω)dv =

= −
[

(1 + s0)K

1−K

∫
f1(0)

iq · v − iω

]
×

×
[

1− ~δ
2M

K

1−K

∫
êq · ∂f0(v)

∂v

ω/|q| − êq · v
dv

]−1

.

In the discussion following Eq. (2.21) poles arising from the nu-

merator were discarded and the focus was on the denominator,

which led to the dispersion relation (2.23). When K = 1, how-

ever, a pole arises from the numerator term, which in turns will

contribute to the anti-Laplace transform of s1(q, ω). Hence a

non-trivial behaviour should indeed be expected when K = 1

and J →∞, which will be demonstrate shortly to be an internal-

state-only transverse instability. The condition K = 1, in fact,

parametrizes the marginality condition for a system of ‘hot’ two-

level systems in which density redistribution effects are absent,

n(x, t) = 1∀t.

Fig. (2.6a) shows the growth rate Im(ω) as a function of injected

power and detuning. Note that it is not needed to study here

the linear stability of this system, as the threshold condition can

simply be obtained from Eq. (2.32) by setting σ = 1 [92]. It

can seen from Fig. (2.6a) that there is a region in parameter

space where the growth rate diverges (highly saturated region

in Fig. (2.6a)), triggering internal-state instabilities. This is con-

firmed by Fig. (2.6c), where the threshold curve for a ‘hot’ system

of two-level atoms is plotted (red dashed line). The black solid

line depicts the self-structuring threshold curve from the ‘full’
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Figure 2.6: The regions parametrized by 1 − K ≤ 0 identify electronic-only
instabilities, see Fig. (b). The marginality condition 1 − K = 0 identifies
the threshold for electronic-only instabilities (red curve in Fig. (c)). In corre-
spondence with this condition the growth rate diverges, see Fig. (a) and (d).
The curves in Fig. (a), (b) and (d) are obtained at the critical wavenumber
qc =

√
πk0/2d, see Sec. 2.2.5. Other parameters are: T = 300µK, δ = 10Γ,

b0 = 200, d = 5 mm, R = 1.

model for a temperature of T = 300µK (which gives σ ' 4.895).

The points where 1 − K = 0 are identified in the figure, and

clearly mark the points where the system ‘enters’ and ‘leaves’

the internal-state instability region1. Within these two points the

condition 1−K ≤ 0 is verified (see Fig.(2.6b)), parametrizing the

regions of electronic-only instabilities.

An important feature of electronic-only instabilities is that they

are expected to occur on a much faster timescale than density-

1The electronic-only stability balloon is expected to close at high p0 due the nonlinearity
saturation.
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driven ones. The timescale for the development of an internal-

state structure is in fact determined by the lifetime of the tran-

sition (Γ−1 ∼ 10− 100 ns for alkali gases), since it is sufficient to

excite an atom at the position x1 and de-excite an atom at the

position x2 to create a structure of size |x1 − x2|, independently

on the structure size. We remark that for typical parameters the

(self-selected) pattern size turns out to be rather large, in the

order of hundreds of micrometers. Therefore it will take a much

longer time to move atoms from x1 to x2 and form a density pat-

tern: for a typical temperature of ∼ 100µK this time is about

10µs. The same argument was used in Sec. 2.1 to adiabatically

eliminate the internal-state dynamics of the atoms. Indeed, this

timescale difference between the two nonlinear mechanisms is the

crucial feature which allows to distinguish between them, and is

naturally accounted for in our theoretical model. Consider in fact

Fig. (2.6d), where a section at ∆ = 20 of Fig. (2.6a) is shown.

The growth rate Im(ω) of the system is found to diverge between

the two vertical lines at 1 −K = 0, which is the reason why we

refer to this phenomenon as ‘growth rate divergence’. This means

that in this region a transverse internal-state instability occurs on

a much faster timescale than density-driven self-structuring. It is

worth pointing out that the spatial scale obtained from internal-

state and opto-mechanical instabilities is the same, see Fig. (2.6c),

and therefore it cannot be used to discern which one of the two

nonlinear mechanisms is driving the instability. This is due to

the fact that in the single-mirror scheme the scale selection is op-

erated by the free-space propagation, and not by the nonlinear

interaction.

The fact that the growth rate diverges to infinitely large values

is explained by the adiabatic elimination of the internal state dy-
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namics, which essentially sets the atomic inverse lifetime to infin-

ity, Γ =∞. This was justified in Sec. 2.1 by the fact that the inter-

nal state evolves much faster that the center-of-mass of the atoms,

but now that the relevant dynamics is the internal-state one we

are formally left with an infinitely fast timescale. Physically,

the instability will occur on a timescale which is dictated by the

atomic lifetime of the two-level transition. Outside the electronic-

only instability domain (i.e. where 1−K > 0 in Fig. (2.6b)) the

growth rate takes finite values which are compatible with atomic

motion at the considered temperature, Im(ω)−1 ∼ 10µs−1 ms.

As a final remark for this Section, even if internal-state instabili-

ties are expected in ‘hot’ as well as cold atoms, the outcome of the

instability is still very different in the two cases. For cold atoms,

in fact, modulations of the optical profile arising from internal-

state pattern formation will lead to trapping of the atoms, which

in turns will provide further feedback to the instability. Hence

at high saturation we expect a ‘fast’ pattern formation involv-

ing internal degrees of freedom, followed by a ‘slow’ bunching of

the atoms in the minima of the resulting potential. The reverse

is also true: pattern formation triggered by atomic motion at

low saturation levels will also call for modulation in the internal

state properties. This in turns will affect the overall refractive in-

dex and provide feedback for the instability. In general, the first

situation will be referred to as an internal-state driven (or elec-

tronically driven) instability, while the second as a density driven

(or opto-mechanically driven) instability.
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2.4.2 Cooperation and competition between internal and

external degrees of freedom

This Section deals with an issue which was already raised in dis-

cussing Fig. (2.3b), namely the fact that the power threshold

is higher for a red-detuned pump than for a blue-detuned one.

The dependence of the linear properties (i.e. the growth rate and

the threshold) of the system from the detuning, in fact, is not

‘symmetric’ when crossing the pump frequency across the reso-

nance. This is true despite the fact that the properties of the sys-

tem in the low-saturation limit are symmetric under the change

∆ → −∆, see Fig. (2.3a). The natural conclusion is that the

reason for this asymmetry is to be found in the internal-state re-

sponse of the system. An even more dramatic asymmetry can be

seen in Fig. (2.6a), where a divergence of the growth rate is found

only for a blue-detuned pump.

At this point it is important to bear in mind that the opto-

mechanical nonlinearity is always of self-focusing nature, both

on the red and the blue sides of the resonance, see Sec. 2.3. On

the other hand, changing the sign of the detuning will change the

internal-state nonlinearity from self-focusing to self-defocusing.

In the single-mirror feedback scheme both focusing and defocus-

ing nonlinearities lead to transverse instabilities, but on different

regions of the q−domain [5]. As shown in Fig. (2.7a), for blue

detuning both mechanisms are self-focusing and lead to an insta-

bility in the same wavenumber regions (marked as 1, 3, 5 and

7). Otherwise stated, they ‘cooperate’ to create a spatial pat-

tern on the same length scale. For red detuning, instead, the two

mechanisms ‘compete’ for the unstable regions, as the internal-

state nonlinearity lead to instabilities in the regions marked as

2, 4, 6 in Fig. (2.7b). For the parameters of interest, the opto-
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mechanical mechanism dominates over the internal-state effects

and the pattern-forming process eventually results in the same

spatial scale for both signs of the detuning. However, a sign of

the influence of internal-state effects is still evident in the de-

tuning dependence of the power threshold, which is higher on

the red-detuned side. The turning point where opto-mechanical

and internal-state effects are of the same strength is parametrized

by σ = 1, since for this case the ‘pure’ opto-mechanical thresh-

old (2.37) is identical to that of a Kerr medium [5].

An early discussion of the relative roles of opto-mechanical and

internal-state nonlinearities in determining the threshold for pat-

tern formation was already presented by Saffman and collabora-

tors [92, 93]. However, these works focused mainly on the thresh-

old for the instability (for a counterpropagating geometry). Here

the emphasis is put on the timescale of the two nonlinearities, i.e.

on the growth rate associated with internal-state and motional

processes. This in fact leads to the possibility of internal-state

driven instabilities (as discussed in Sec. 2.4.1). Moreover, the

main instrument to experimentally discern between the two mech-

anisms is the different timescale associated with the two mecha-

nisms, and not their relative contributions to the threshold (see

Chap. 4).

2.5 Numerical simulations

This Section presents the results from numerical simulations of

the dynamics given by Eqs. (2.1-2.4), which are rewritten here
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Figure 2.7: Threshold curves for the ‘full’ system (black full lines) and for a
system of ‘hot’ two level atoms (red dashed lines). The left panel corresponds
to ∆ = 20, the right panel to ∆ = −20: the opto-mechanical and internal-
state nonlinear mechanisms cooperate for blue red detuning, but compete for
red-detuning. This explains the blue/red asymmetry observed in Fig. (2.3b).
Parameters are: b0 = 200, ∆ = ±20, R = 1, d = 5 mm, T = 300µK (yielding
|σ| ' 5).

for clarity:

∂f

∂t
+ v

∂f

∂x
+
fdip

M

∂f

∂v
= 0 (2.42a)

∂F

∂z
= −α0(1− i∆)

n

1 + s
F . (2.42b)

All the numerical results presented below are obtained from

simulations in one transverse dimension, and the equations are

adapted accordingly. Limiting to one-dimensional (1D) simula-

tions has the obvious advantage of reducing computational costs

with respect to two-dimensional simulations (which require four

variables+time). However, limiting to the 1D case one does not

lose too much information about the system, since all the linear

properties depend on the modulus of the wavevector, but not its

orientation in the plane (qx, qy). The main aim of our numerical

work is in fact that of confirming the stability analysis presented

in the previous Section. We will not address here topics that

would necessarily require two-dimensional simulations, such as

whether hexagons are formed at threshold or competition effects
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between different patterns (e.g. rolls and hexagons). Insights on

these nonlinear effects can be obtained either from experimental

results [83], or from the simplified model presented in Chap. 3,

where velocity damping is assumed and the dimensionality of the

problem is reduced.

Eqs. (2.42) form a self-consistent set of equations given that s =

|F |2 + |B|2, B being the retro-reflected field, n(x, t) is the veloc-

ity integral of f(x, v, t), and fdip is the dipole force arising from

the gradients of s. Before proceeding, it is convenient to rewrite

the model equations in dimensionless form. First, given an initial

Maxwell-Boltzmann distribution for the gas

f0(v) =
1√

2πv2
th

e−v
2/2v2th vth =

√
kBT

M
,

the velocity variable v is rescaled to the thermal velocity vth,

v′ = v/vth. Space is subsequently rescaled to the critical length

Λc = 2πq−1
c by defining x′ = x/Λc. A characteristic time scale

is defined as the time it takes a thermal atom to travel a critical

length, τ = Λc/vth = 2π/(qcvth). The temporal variable is thus

rescaled as t′ = t/τ . Using these definitions Eqs. (2.42) read

∂f

∂t′
+ v′

∂f

∂x′
− σ∂s/∂x

′

1 + s

∂f

∂v′
= 0 (2.43a)

∂F

∂z
= −α0(1− i∆)

n

1 + s
F , (2.43b)

where the parameter σ = ~δ/2kBT parametrizes the strength

of density-driven nonlinear effects. Note that the choice of the

timescale τ in Eq. (2.43a) is arbitrary, and can be reset as τ → τ T̄

for any (dimensionless) T̄ . This can be used to ‘speed up’ or ‘slow

down’ the dynamics in the simulations: in the following the scal-
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ing T̄ = 10−2 will be used.

The remaining part of this Section is organized as follows: first,

numerical evidence of transverse self-organization due to opto-

mechanical effects only will be presented, see Sec. 2.3. The ‘pure’

opto-mechanical regime is of particular interest as it shows that

density redistribution effects alone can drive the instability, and

will be discussed in the next Section. Subsequently, numerical re-

sults showing transverse instabilities which involve both internal-

state and motional effects are discussed. In particular, the sce-

nario of internal-state driven instabilities (see Sec. 2.4.1) will be

numerically investigated.

2.5.1 Low-saturation limit: linear scatterers

As in Sec. 2.3, the analysis is restricted here to the low-saturation

limit where s � 1 and the internal-state dynamics can be ne-

glected. This leads to a model where the atoms essentially act

as linear Rayleigh scatterers under the action of dipole forces.

In Sec. 2.3 it was predicted that density redistribution effects

due to dipole forces can sustain the instability without the need

of the internal-state nonlinearity, similarly to e.g. CARL sys-

tems [30, 31, 32]. Neglecting nonlinear dispersion, absorption

and to first order in s the system (2.43) reduces to

∂f

∂t′
+ v′

∂f

∂x′
− σ ∂s

∂x′
∂f

∂v′
= 0 (2.44a)

∂F

∂z
= +iα0∆nF . (2.44b)

Figures (2.8) and (2.9) show the dynamics of the phase space

distribution f(x, v) up to 2.5 ms, obtained from numerical simu-

lations on both sides of the resonance (∆ = ±40). Details on the
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Figure 2.8: ‘Pure optomechanical’ instability (low saturation limit) for ∆ = 40,
T = 300µK, d = 5 mm, R = 1, b0 = 120, dt = 0.17µs. Noise of amplitude
10−3 is added to the initial atomic distribution, the injected power is 5% above
threshold. sB = |B|2 denotes the intensity of the backward beam.
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Figure 2.9: ‘Pure optomechanical’ instability (low saturation limit) for ∆ =
−40, T = 300µK, d = 5 mm, R = 1, b0 = 120, dt = 0.17µs. Noise of
amplitude 10−3 is added to the initial atomic distribution, the injected power
is 5% above threshold. sB = |B|2 denotes the intensity of the backward beam.
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numerical methods are discussed in Appendix B. The panels on

the right of each figure show the backward beam intensity profile

sB(x) ≡ |B(x)|2 (red) and the density distribution n(x) (blue).

The injected pump is set to p0 = 3.58× 10−2, which is 5% above

the threshold value pc0 = 3.41×10−2 for the parameters under con-

sideration. The spatial domain is set to accommodate 5 critical

lengths Λc and discretized using 256 grid points, implementing

periodic boundary conditions. The velocity space is limited to

the range −6vth < v < 6vth and discretized using 256 points. In

dimensionless units this translates as x′ ∈ (0, 5) and v′ ∈ (−6, 6).

Time is discretized using 1.5× 104 time steps, which gives a time

step of dt = 0.17µs. It was checked that different choices of the

velocity domain size, or of the grid steps (for space, velocity and

time) lead to analogous results.

The dynamics are started with a spatially homogeneous Maxwell-

Boltzmann distribution for the gas, which spontaneously evolves

into the phase portrait of an anharmonic oscillator. White noise

of amplitude 10−3 is added to the initial distribution f0(v). The

fact that 5 ‘potential wells’ are observed as a result of the instabil-

ity confirms that the system self-selects (at least close to thresh-

old) the critical wavenumber. A continuous symmetry breaking

is obtained as the resulting structure can be shifted in space as

qcx → qcx − ψ: the phase ψ ∈ [0, 2π) is in fact selected by the

initial fluctuation. The emerging structure for the phase space

distribution shows that a considerable fraction of the atoms is

trapped into the potential determined by the optical profile. The

velocity integral of f gives the atomic density profile, which shows

a considerable modulation around the homogeneous value n = 1.

It is observed that in the blue (red) detuned regime the atoms
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bunch in the minima (maxima) of the optical intensity profile, as

expected.

The timescale for the development of the pattern is consistent

with the timescale of atomic motion, as it takes a few millisec-

onds to develop a ‘high contrast’ pattern. To quantitatively ad-

dress this, the field bunching factor

B =

∫
B(x)e−iqcx dx∫
B(x) dx

≡ B(qc)

B(0)
, (2.45)

is calculated. B represents the amplitude of the backward field

sideband at the critical wavenumber rescaled to the homogeneous

mode, and is used to monitor the emission of an off-axis sideband

at the critical wavenumber. The field spectral properties are mon-

itored because they are easily accessible experimentally, but anal-

ogous results are obtained looking at the spectral distribution of

n. Viewing q as the transverse momentum of the pattern, then,

|B| can be seen as the relative population of a high momentum

state (q = 0 being the lower state). In any case, B acts as a

complex order parameter for the instability, with the property of

having a self-selected phase.

Fig. (2.11) shows the evolution of the bunching factor for the

dynamics of Fig. (2.8). As expected, initial fluctuations grow ex-

ponentially in time, with a least squares estimation of a timescale

of ω−1
fit ' 97µs.

It is also expected to observe oscillations of the atoms in the

self-organizaed optical potential. The typical timescale for this

process will be dictated by (qcvth)−1 ' 736µs for the parameters

of Figs. 2.8 and 2.9. This is indeed confirmed by the numerical

simulations, see the (damped) oscillations in the field bunching

factor shown in Fig. 2.10. The ‘sloshing’ time is found to be of

about 600µs, which is good agreement with the expected value
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Figure 2.10: Bunching factor evolution for same parameters as Fig. (2.8) (left)
and Fig. (2.9) (right). The red dashed line in the log-scale plot shows a least-
squares fit.
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Figure 2.11: Bunching factor evolution for same parameters as Fig. (2.8) (left)
and Fig. (2.9) (right). The conservative atomic motion in the self-organized
optical potential lead to oscillations in the field bunching factor.

at the temperature under consideration. It is important to note

that B measures only the transfer of energy to the mode at qc:

as other wavenumbers q 6= qc are introduced the bunching factor

decreases.

2.5.2 Internal-state driven instabilities

The next step in the numerical analysis consists in including

internal-state effects. Parameters are set as in Fig. (2.6a), so

that an internal-state driven instability is possible: at δ = 10Γ,

the threshold for this process is p0 ' 0.36 (as this satisfies the

condition 1−K = 0). We choose to operate in two regimes:

• for p0 = 0.6 an internal-state pattern formation process is
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Figure 2.12: Density driven instability for ∆ = 20, T = 300µK, d = 5 mm,
R = 1, b0 = 200, dt = 0.17µs, p0 = 0.2. Noise of amplitude 10−3 is added to
the initial atomic distribution. sB = |B|2 denotes the intensity of the backward
beam.

expected, with subsequent bunching of the atoms.

• for p0 = 0.2 a density driven instability is expected, essen-

tially similar to the one of Fig. (2.8) but further sustained

by a modulation of the internal-state population.

It is worth emphasized again that the internal-state process is

made artificially fast by the adiabatic elimination of the internal-

state dynamics, Γ → ∞. Any consideration on the timescale of

the internal-state dynamics is therefore not obtainable from the

simulations: internal-state effects will occur on the scale of a sin-

gle time step, independently on its value.

Fig. (2.12) shows our numerical results for the regime of rela-

tively low saturation, p0 = 0.2. In dimensional units, the pattern

period is Λc ' 125µm. The growth time of the structure is in

the hundreds of microseconds range, which is therefore consistent

91



0 1 2 3 4 5
x/ c

�6

�4

�2

0

+2

+4

+6

v/
v t

h

f(x,v)

0

0.1

0.2

0.3

0.4
0.47

sB (x)

0.95

1.05
n(x)

x/ c
0.0
0.5
1.0

w(x)

(a) t = 0

0 1 2 3 4 5
x/ c

�6

�4

�2

0

+2

+4

+6

v/
v t

h

f(x,v)

0

0.1

0.2

0.3

0.4

0.0
0.4
0.8

sB (x)

0.95

1.05
n(x)

x/ c
0.0
0.5
1.0

w(x)

(b) t = 1µs

0 1 2 3 4 5
x/ c

�6

�4

�2

0

+2

+4

+6

v/
v t

h

f(x,v)

0

0.1

0.2

0.3

0.4

0.0
0.4
0.8

sB (x)

0.95

1.05
n(x)

x/ c
0.0
0.5
1.0

w(x)

(c) t = 10µs

0 1 2 3 4 5
x/ c

�6

�4

�2

0

+2

+4

+6

v/
v t

h

f(x,v)

0

0.1

0.2

0.3

0.4

0.0
0.4
0.8
1.2

sB (x)

0.8
1.0
1.2

n(x)

x/ c
0.0
0.5
1.0

w(x)

(d) t = 30µs

Figure 2.13: Internal-state driven instability for ∆ = 20, T = 300µK, d =
5 mm, R = 1, b0 = 200, dt = 1 ns, p0 = 0.6. sB = |B|2 denotes the intensity
of the backward beam. Noise of amplitude 10−3 is added to the initial atomic
distribution.

with the time for atomic motion (an atom at T = 300µK travels

10µm in 10µs). The ‘long’ timescale is a signature of the fact

that the instability mainly relies, at least at its onset, on density

redistribution effects. However, the internal state provides fur-

ther feedback to the instability. The internal-state dynamics is

monitored through the steady-state population difference

w(x) =
1

1 + s(x)
s(x) = p0 + sB(x) , (2.46)

depicted in the bottom-right panel of each picture (gray line). As

in Fig. (2.8), the red line shows the backward field intensity, and

the blue line the atomic density. Fig. (2.14a) shows the evolution

of the field bunching factor |B|. As expected, the bunching factor

starts from zero and increases exponentially in time.

Increasing the injected power to a relatively high value, p0 =

0.6, the system enters the region of internal-state instability, see
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Figure 2.14: Evolution of the field bunching factor B as a function of time, for
the same parameters as Fig. (2.12) (left) and Fig. (2.13) (right).

Fig. (2.13). Now a fast (on the microsecond timescale) pattern-

forming process occurs for the optical field, with spatial structures

encoded in the population difference w(x). In such a short time,

the atomic phase-space profile is unaltered. On the tens of mi-

croseconds timescale the optical modulation starts to bunch the

atoms in the potential minima, which provides further feedback

for the instability. Fig. (2.14b) shows the field bunching factor

corresponding to this dynamics: as evidenced in the inset, a sharp

transition to a high-contrast pattern is obtained for the reentrant

field almost instantaneously (depending on the time step and the

numerical noise). Starting from this non-zero value, the bunching

factor increases exponentially.

2.6 A sync perspective: Kuramoto model with-

out damping

The Kuramoto model [94] is a prototypical framework for the

study of temporal synchronization processes, so it might seem

surprising to find it in a study of spatial instabilities. However,

as also pointed out by Steven Strogatz in its widely known book

Sync [95], spatial self-organization can always be seen as tempo-
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ral synchronization. Suppose in fact to have a periodic structure

emerging from a spatial instability, characterized by the spatial

wavenumber q. All the physical properties of the system (for ideal

patterns, at least) are periodic with period Λ = 2π/q, so that the

physically relevant quantity phase θ = qx. Atomic self-bunching

in the minima of a periodic potential, thus, corresponds to a syn-

chronization transition where all the ‘oscillators’ with phase θj

bunch around the same value of the phase ψ. This can be in-

tuitively visualized by ‘wrapping up’ the periodic structure on a

circle parametrized by θ ∈ [0, 2π), see Fig. (2.15). It thus ap-

θ θ

Λ = 2π/q

Figure 2.15: Spatial pattern formation as a synchronization process

pears natural to ask which model describes the synchronization

transition for the self-structuring instabilities analyzed in the pre-

vious Sections. Indeed, this line of research has already been suc-

cessfully investigated in the context of CARL [96], where it was

found that a Kuramoto model with phase noise describes the self-

organizing transition in viscous CARL systems. The analysis will

be extended here to single mirror geometries, and find an identical

model for our ‘viscous’ single-mirror self-structuring, see Sec. 3.4.

In the ‘viscous’ regime stochastic noise originates from the action

of optical molasses, but it is possible to describe also damping-

free self-structuring instabilities in term of the Kuramoto model.

As found in the low-saturation damping-free model (Sec. 2.3), in
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this case a threshold for the self-organization process is set by the

spread of the atomic velocities (i.e. the gas temperature), which is

reinterpreted here as a spread in the distribution of the oscillators

‘natural frequencies’.

The Kuramoto model describes the dynamics of N oscillators

with natural frequencies ωj subjected to an all-to-all coupling in

the form r sin(ψ−θj). The dynamical equations for each oscillator

is given by

θ̇j = ωj +Kr sin(ψ − θj) + ξj(t) . (2.47)

Here ξj(t) represents white noise with zero mean and autocor-

relation 2D, and K represents the externally-imposed coupling

strength. In our pattern-formation analogy, K represents the in-

jected energy. The coupling enters through the complex order

parameter B = r exp(iψ), defined by

r =
1

N

N∑
j=1

ei(θj−ψ) . (2.48)

Note that in this framework he atomic positions determine the

phases, and the velocities determine the frequencies:

θj = qxj ωj = qvj q critical wavenumber . (2.49)

In the following the system is assumed to be driven close to the

critical point, so that q is the only spatial mode excited in the

system.

From the definition (2.48) it can be seen that when all the os-

cillators are locked on the common phase ψ, then r = 1 and

the coupling Kr is strongest. If the oscillators are uniformly

spread on the limit cycle, the coupling strength vanishes. The
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synchronization transition exactly corresponds to the transition

from r = 0 to a value r 6= 0. In the pattern-formation analogy,

the order parameter B corresponds to what was termed bunching

factor above (also in line with CARL literature), and the self-

structuring transition to the emergence of a non-zero |B| = r at

some critical point Kc.

In the viscousless case analyzed here there is no source of stochas-

tic noise, so that the noise strength can be set as D = 0. In order

to establish a connection between Eq. (2.47) and single-mirror

self-structuring instabilities, the starting point is the wave equa-

tion (2.44b) in the low-saturation limit,

∂F

∂z
= iα0∆nF

describing the phase shift induced by the cloud on the forward

field F . Close to the critical point, the density modulation can

be expanded as

n(x) = 1 + r cos(qx− ψ) r � 1 ,

where r exp(iψ) represents the amplitude of the q-sideband (the

bunching factor). Since n(x) is real, the Fourier mode at wavevec-

tor −q is simply given by r exp(−iψ). A remarkable difference

with the original Kuramoto model is that the locking phase ψ is

now self-selected by the system, arising from a symmetry-breaking

process [96]. The forward field after the interaction with the cloud

(of thickness L) is then

F (z = L) = F (0)eiχ0 [1 + iχ0r cos(qx− ψ)] ,
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where χ0 = α0L∆. The backward field is obtained after a propa-

gation of z = 2d, and reads in Fourier space:

B(q, z = L+ 2d) =
√
RF (0)eiχ0

[
δ(q) + iχ0

r
2

(
ei(qx−ψ) + e−i(qx−ψ)

)]
eiΘ ,

where Θ = dq2/k0 is the diffractive phase shift of the q-mode. The

crucial point is now that q is not a generic wavenumber, but the

critical wavenumber for the system. This means that phase mod-

ulations are fully converted into amplitude modulations within

the distance z = 2d. This is encoded in the requirement that the

critical wavenumber satisfies (see Eq. (2.41))

sin Θ = 1 =⇒ eiΘ = i

Hence the real-space backward field intensity is obtained as

|B(x)|2 = R|F (0)|2 [1− χ0rq cos(qx− ψ)]2

' R|F (0)|2 [1− 2χ0rq cos(qx− ψ)] ,

where terms in r2 were neglected using the fact that at threshold

the sideband amplitude is small, r � 1. Defining as in previous

Sections the injected pump as |F (0)|2 = p0, the dipole force reads

fdip = −~δ
2

∂s(x)

∂x
= −~δ

2

∂|B(x)|2
∂x

=
~δ
2

2Rp0χ0rq sin(ψ − qx)

(2.50)

The dynamics of the N atoms is simply given by the Newton

equations

ẋj = vj (2.51a)

v̇j = fdip(xj)/M . (2.51b)
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In order to integrate these equations, the crucial idea is that at

the critical point the emergence of a macroscopic pattern (i.e. the

transition to a non-zero value r 6= 0) is subject to critical slowing

down. Since the growth rate Im (ω(qc)) vanishes at threshold

(p0 = pc0), in fact, fluctuations at the critical wavenumber have

infinite lifetime. As a consequence, one can assume there exists

a time t∗ at which atomic motion occurred in such a way that

the corresponding dipole fdip stays unaffected. The characteristic

time is given by the time it takes an atom at the thermal speed

(vth) to travel a pattern wavelength (Λc = 2π/qc):

t∗ =
1

qcvth
(2.52)

Assuming the dipole force fdip to be unchanged for t ≤ t∗, Eq. (2.51b)

can be integrated as

vj(t
∗) ' vj(0) +

1

M
fdip(xj)t

∗

so that Eq. (2.51a) reads

ẋj = vj(0) +
1

M
fdip(xj)t

∗

Multiplying this equation by q and using the definitions (2.49) and

the force expression (2.50), an equation for the phases is reached:

θ̇j = ωj +Kr sin(ψ − θ) , (2.53)

where the coupling strength has been defined as

K =
~δ
M
Rp0χ0q

2 .

The ‘natural frequencies’ ωj of the oscillators are determined

by the initial velocities of the atoms as ωj = qvj(0). In order
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to characterize the synchronization transition of the Kuramoto

model (2.53) one needs to specify an initial frequency distribution

g(ω), which in the notation of Sec. 2.2 is the initial velocity distri-

bution of the gas, f0(v). Unsurprisingly, the Kuramoto model is

analytically solvable for a Lorentzian g(ω), as was the case in the

single-mirror self-structuring theory: the two models share many

formal properties in the linear regime. This is ultimately due to

the fact that the linear properties of these systems are determined

by a dispersion integral in the form∫ +∞

−∞

∂g/∂ω

ω − iλdω (2.54)

where λ represents here the eigenvalue of the system.

Taking g(ω) to be a Lorentzian distribution with half-width at

half-maximum ωth = qvth, the critical point is given by [94]

Kc = 2ω2
th .

Using the definition of thermal speed, v2
th = kBT/M , in terms of

injected power we thus find again the threshold value of Eq. (2.37):

pc0 =
1

Rσχ0
. (2.55)

This argument shows that the spontaneous emergence of spa-

tial structures in damping-free single-mirror systems (with no

internal-state effects) can be interpreted as a synchronization

transition described by the Kuramoto model. The argument,

however, can be rephrased in a slightly more general way, as

the damping-free dynamics is captured by a collisionless Boltz-

mann equation which occur in many other physical systems (e.g.

plasma physics), and the light-atom coupling can be seen as an

effective atom-atom long range interaction. General studies of
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synchronization transitions in viscousless Vlasov2 systems with

long-range interactions can be found in Refs. [78, 79, 80]. We

showed above that cold atoms in a single-mirror arrangement are

a versatile and powerful tool for the study of these systems, as

they essentially realize a Vlasov dynamics with all-to-all coupling.

The results presented above are supported by numerical simula-

tions, as the emergence of periodic structures for the atomic den-

sity n(x) corresponds to a maximum of the phase probability dis-

tribution n(θ) describing the distribution of the θj’s. Fig. (2.16)

shows snapshots of the dynamics obtained for T = 300µK, ∆ =

30 (δ = 15Γ), b0 = 100, R = 1 and p0 = 0.043 (5% above thresh-

old). These results are similar to the ones shown in Sec. 2.5, but

now the density distribution is sampled with N = 105 ‘particles’

to build a discrete histogram of the n(θ) (depicted in the bot-

tom right panel of each figure). The phase θ is obtained from the

spatial coordinate x as θ = mod(qcx, 2π)−π, and the phase distri-

bution is approximated by a continuous spline curve (red dashed

line) whose values are represented in polar form in the top-right

panels of each figure. The self-structuring transition leading to

a modulated n(x) corresponds to a a self-synchronisation of the

phases around a value ψ ' π/2.

2The collisionless Boltzmann equation if often referred to as the Vlasov equation, partic-
ularly in the plasma community.
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Figure 2.16: Snapshots of the synchronization dynamics taken after 500µs (a),
1 ms (b), 1.5 ms (c) and 2 ms (d) for T = 300µK, ∆ = 30 (δ = 15Γ), b0 = 100,
R = 1 and p0 = 0.043 (5% above threshold). Each panel shows the intensity
profile s(x) (top left), the density profile n(x) (bottom left), and the discrete
sampling (N = 105 particles) of the phase probability distribution as a function
of θ = mod(qcx, 2π)− π in both a linear (bottom right) and polar (top right)
plot. In the bottom right panel, the black dashed line indicates the uniform
probability value (2π)−1, the red dashed line continuously approximates the
data.
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Chapter 3

Self-structuring instabilities:

viscous systems

This Chapter presents theoretical and numerical results for the

‘viscous’ situation in which strong velocity damping is imposed

by the action of optical molasses. A similar description proved

to be successful in the context of CARL [31, 32], and also in

more recent studies of counterpropagating instabilities [92, 93].

Its main advantage consists in a reduction of the dimensionality

of the problem, as the atomic velocities can be eliminated and

one is left with a theory involving only the atomic positions.

In Sec. 3.1 the viscous theory is specified in a ring cavity: the

resulting model is strongly reminiscent of the original Lugiato-

Lefever model for pattern formation in Kerr media [6], and in-

deed many features of Kerr systems are retrieved. One of these

features is the possibility of implementing opto-mechanical cavity

solitons (Sec. 3.3), where bistable localized states are encoded ‘at

will’ in the density distribution of the medium (and not its exci-

tation).

In Sec. 3.2 the single-mirror configuration of Chap. 2 is revisited,

but in the viscous regime. It will be found that many of the fea-

tures of the damping-free regime are recovered (e.g. the threshold
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properties), but numerical simulations are made much less expen-

sive in this case, and the numerical analysis is extended to two

transverse dimensions. This will show that hexagons are selected

close to threshold (as in Kerr media, for instance), but as in other

cubic nonlinear systems hexagons-to-rolls transition far from the

critical point are also possible.

As in the previous Chapter, a simple argument is presented to

show that ‘viscous’ spatial self-structuring can be interpreted (at

least at threshold) as a Kuramoto model for temporal synchro-

nization. In contrast to Sec. 2.6, the threshold for the synchro-

nization process will be set here by stochastic fluctuations. A sim-

ilar theory was already developed for viscous CARL, see Ref. [96].

The viscous theory for self-organization in cold atoms might ap-

pear over-simplified, as the role of optical molasses is modelled

simply in terms of damping and stochastic noise (with a scalar

coefficient). However, this simple model is prototypical for soft

matter systems, where linearly polarizable particles are subject

to a strong viscous force and follow a Fokker-Planck dynam-

ics. Opto-mechanical nonlinear effects were predicted and demon-

strated by Ashkin and collaborators in what was termed ‘artificial

Kerr media’, leading to self-focusing and wave mixing [97, 98].

Pattern formation was recently demonstrated in [99], and it is

perhaps unsurprising that in the presence of feedback transverse

self-structuring can be obtained (without the need of an inter-

nal structure, i.e. for linear particles). The viscous cold-atom

dynamics thus presents itself as a good candidate for the realiza-

tion of soft-matter complex dynamics [100, 101, 90, 91, 102] via

the implementation of tunable opto-mechanical, ‘artificial Kerr’

nonlinearities.
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3.1 Ring cavity

3.1.1 Model equations

This Section presents theoretical and numerical results for the

‘viscous’ situation where molasses beams act on the cloud, focus-

ing on a ring cavity configuration. The presence of momentum

dissipation and stochastic fluctuations qualitatively changes the

physics of the instability with respect to the ‘damping-free’ sit-

uation of Chapter 2. Moreover, the cavity configuration opens

up new opportunities for the control of the coupled light-matter

dynamics, which are absent in the single-mirror configuration:

in Sec. 3.3 the possibility of engineering bistable, nonlinearity-

sustained cavity solitons which arise from the opto-mechanical

coupling of light and cold atoms is discussed.

As in the previous Chapter, the starting point of the theoretical

treatment is the discussion of the medium dynamics. Consider

a sample of N identical, non-interacting atoms of mass M inter-

acting with an intracavity field E(x, t). Let xj and vj denote

the positions and velocities of the atoms in the plane transverse

to the cavity axis ẑ. Optical molasses are assumed to act on

the gas during the interaction, which yields momentum damping

with a rate γ/M and stochastic fluctuations with autocorrelation

strength 2D (see Sec. 1.1.2 for a brief discussion of the role of

optical molasses). The dynamics of the atoms is thus governed

by

ẋj = vj (3.1a)

v̇j =
1

M
{fdip − γvj +Mηj(t)} (3.1b)
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κ
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b0, T

L

Figure 3.1: Sketch of the viscous cavity setup. A plane wave of amplitude Ain

drives a single-longitudinal-mode cavity characterized by a length L, mirror
transmittivity T , and lifetime κ−1. The intracavity field E interacts with a
cloud of optical density b0 and temperature T . Optical molasses are assumed
to act on the cloud during such interaction, so that T is kept constant.

where the dot denotes a temporal derivative and the ηj’s rep-

resent stochastic force fluctuations due to absorption-emission

‘kicks’. The main assumption made on the system is the fol-

lowing: the damping effect of the molasses is so strong that the

velocity dynamics can be eliminated by setting v̇j = 0. Essen-

tially this requires the damping rate γ to be much larger than all

the other terms in the equation for vj. The system (3.1) then

becomes a first-order system for the xj’s:

ẋj = fdip/γ + ξj(t) , (3.2)

where ξj = Mηj/γ represents white gaussian noise:

mean 〈ξj(t)〉 = 0 (3.3a)

correlation 〈ξi(t)ξj(t′)〉 = 2Dδijδ(t− t′) (3.3b)

The theoretical analysis presented here deals with a ‘fluid-

dynamical’ description in terms of a continuous density n(x, t),

rather than individual particles. This is justified by the large den-

sity of the sample (N0 = N/V ∼ 1011at/cm3), and by the fact that

the spatial scales under consideration are much larger than the

interatomic distance N
−1/3
0 ∼ 1−10µm. Following standard pro-
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cedures [103, 104], Eq. (3.2) is transformed into a Fokker-Planck

equation for the probability density n(x, t) (see also Appendix

A):

∂n(x, t)

∂t
= −1

γ
∇ · [n(x, t)fdip(x, t)] +D∇2n(x, t) , (3.4)

where ∇ = ∂/∂x. Note that the Fokker-Planck equation can be

seen as the conservation law for the probability density n(x, t):

∂n(x, t)

∂t
+∇ · j = 0 j =

1

γ
nfdip −D∇n ,

where j represents the probability current.

Recovering the expression (1.15) for the dipole force in terms of

the intracavity intensity s = |E|2,

Udip =
~δ
2

log(1 + s) fdip = −∇Udip ,

the Fokker-Planck equation (3.4) becomes

∂n(x, t)

∂t
=

~δ
2γ
∇ ·
[
n(x, t)

∇s(x, t)
1 + s(x, t)

]
+D∇2n(x, t) . (3.5)

To write the Fokker-Planck equation in its final form the fluctuation-

dissipation relation can be invoked:

Dγ = kBT . (3.6)

This relation accounts for the fact that when the molasses beams

illuminate the gas, the damping effect tries to ‘freeze’ the gas at

T = 0, but this cooling effect is limited by stochastic spontaneous

emission processes. Hence the gas reaches a non-equilibrium tem-

perature (the Doppler temperature) which is obtained when the

two effects balance. For alkali gases this temperature is typically

around 100µK.
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Plugging (3.6) into (3.5) the Fokker-Planck equation for n(x, t)

reaches its final form (also known as the Smoluchowski equation,

see Appendix A and Ref. [105, 106])

∂n(x, t)

∂t
=

~δ
2kBT

D∇ ·
[
n(x, t)

∇s(x, t)
1 + s(x, t)

]
+D∇2n(x, t) , (3.7)

where the dimensionless parameter

σ =
~δ

2kBT
(3.8)

represents the strength of the nonlinear opto-mechanical coupling.

This coefficient was already encountered in the damping-free the-

ory (see Eq. (2.31)), and will again play a fundamental role in

determining the linear properties of the system.

Moreover, Eq. (3.7) is linear in n(x, t), and can thus be rescaled by

any constant factor. As everywhere in this thesis, n(x) is defined

to describe modulations around the homogeneous density N0. As

a consequence, n(x, t) is dimensionless and must have unity mean,

so that the conservation of the number of atoms translates as a

normalization condition in the form∫
A

dxn(x, t) = A transverse size of the cloud (3.9)

The dynamics of the intracavity field E(x, t) is described under

a set of assumptions which can be considered ‘standard’ in the

field of cavity optical pattern formation. Essentially the same

field dynamics was in fact considered in the original treatment of

Lugiato and Lefever [6] for pattern formation in Kerr media. A

more detailed presentation dealing with two-level ‘internal-state’

instabilities can be found in [107]. Essentially, the work presented
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here extends those works to the dynamics of the atoms center of

mass.

First, consider a cavity supporting only one longitudinal mode

(the fundamental one); this assumption commonly goes under

the name of mean field limit. Since this mode has no depen-

dence on the longitudinal coordinate z all the derivatives with

respect to z can be eliminated from the wave equation. The mir-

rors are assumed to have an overall reflectivity R (transmittivity

T = 1 − R), the medium to have a thickness L and the cavity

length to be L. Under the rotating wave, paraxial and slowly

varying envelope approximations, the dynamics of the slowly-

varying complex amplitude E of the electric field is described

by [107]

∂E

∂t
= −κ(1 + iθ)E + Ain + PE + iκ

L
2k0T

∇2E, (3.10)

where

• κ = cT /L is the cavity linewidth (equal for each transverse

mode)

• The −κE terms describe mirror losses. The −iθE term de-

scribes the phase shift imposed by an empty cavity, θ =

(ω0 − ωc)/κ being the dimensionless detuning between the

field frequency ω0 and the cavity frequency ωc of the closest

supported mode

• Ain is the pump rate associated with the injected plane wave.

Ain can be set real without loss of generality

• the last term describes field diffraction through the propaga-

tion, with a diffraction coefficient a = L/2k0T .

The last term left to discuss is the nonlinear coupling PE, where
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P parametrizes the gas polarizability. As in Chapter 2, there are

two sources of nonlinearity in the response P of the system. The

first arises from the internal-state structure of the two-level sys-

tem, and is the one involved in ‘hot-atom’ pattern formation [107].

The second arises from the coupling with the center-of-mass mo-

tion, whose dynamics is described by Eq. (3.7). For a single pass

of the field through the cloud the field dynamics is governed by

(neglecting propagation inside the medium):

∂E

∂t
= −α0c(1 + i∆)

nE

1 + |E|2 = −κα0L

T (1 + i∆)
nE

1 + s
(3.11)

where as usual ∆ = 2δ/Γ is the half-linewidth detuning, and

s = |E|2 the saturation parameter associated to the intracav-

ity intensity. The dimensionless cooperativity parameter can be

defined as C = α0L/T , which is connected to the on-resonance

optical thickness b0 of the cloud as

α0 =
b0

2L(1 + ∆2)
C =

b0

2T (1 + ∆2)
(3.12)

Eq. (3.10) can then be rewritten as

∂E

∂t
= κ

{
−(1 + iθ)E + Ain − C(1 + i∆)

nE

1 + s
+ ia∇2E

}
,

(3.13)

where the pump has been rescaled as Ain → Ain/κ.

3.1.2 Linear analysis

As a first step in the stability analysis the stationary homoge-

neous solution for the system is identified: a transversally ‘flat’

intracavity field E0 generates no forces, and hence n0 = 1 solves
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single-valued

bistable

s0

Ain

Figure 3.2: Qualitative representation of the input-ouput cavity characteristic:
varying θ (at given C and ∆) it is possible to switch from a regime where the
plane-wave steady-state intracavity intensity s0 is a multi-valued curve of Ain

to a regime where it is single-valued. For the multi-valued case, the system
displays histeretic behaviour, see Refs. [108, 109]. The dashed lines indicate
the bistability domain.

Eq. (3.7) identically. From Eq. (3.10), thus, E0 must satisfy[(
1 +

C

1 + |E0|2
)

+ i

(
θ +

C∆

1 + |E0|2
)]

E0 = Ain . (3.14)

Solving this equation for s0 ≡ |E0|2 gives the steady-state

input-output relationship for the cavity. Since the homogeneous

state is obtained for n = 1, this result is identical to the one

obtained for hot vapours. In particular, the internal-state non-

linearity is well-known to lead to the phenomenon of plane-wave

optical bistability [108, 109], see Fig. (3.2). This effect will not

be considered here, always operating in a region of parameter

space where plane-wave bistability is suppressed. This practically

means that the regimes of operations are such that the relation-

ship s0 = s0(Ain) is single-valued, and the intracavity homoge-

neous intensity s0 can be conveniently used as a control parame-

ter instead of Ain.

Consider now small perturbations around the homogeneous val-
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ues,

n(x, t) = 1 + n1(x, t)

E(x, t) = E0 + E1(x, t)

s(x, t) = s0 + E∗0E1(x, t) + E0E
∗
1(x, t)

with the perturbations in the Fourier form

n1, E1 ∼ exp(iq · x) exp(−iωt) .

As usual, the underlying idea is that if Im(ω) > 0 for a perturba-

tion at wavevector q, this perturbation will undergo exponential

growth and will give rise to a macroscopic pattern of spatial scale

Λ = 2π/|q|, see Sec. 1.2. To study the stability of the perturba-

tions, Eqs. (3.7) and (3.13) are linearized as

κ−1ṅ1(q, t) = −D
κa
σ|√aq|2E

∗
0E1(q, t) + E0E

∗
1(q, t)

1 + s0
+

− D

κa
|√aq|2n1(q, t) (3.15a)

κ−1Ė1(q, t) = −(1 + iθ)E1(q, t)−
C(1 + i∆)E0

1 + s0
n1(q, t)+

− C(1 + i∆)

1 + s0
E1(q, t)+

+
C(1 + i∆)E0

(1 + s0)2
[E∗0E1(q, t) + E0E

∗
1(q, t)] +

− i|√aq|2E1(q, t) (3.15b)

Moving to dimensionless units by rescaling time to the cavity

lifetime and space to the diffracion length:

t′ = κt x′ = x/
√
a q′ =

√
aq D̄ = D/(κa) ,

the stability of the perturbations is determined by the eigenvalues
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of the linearized system

∂

∂t′


E1(q

′, t′)

E∗1(q′, t′)

n1(q
′, t′)

 =


A11 A12 A13

A∗12 A∗11 A∗13

A31 A32 A33



E1(q

′, t′)

E∗1(q′, t′)

n1(q
′, t′)

 ,

where

A11 = −(1 + iθ)− C(1 + i∆)

1 + s0

[
1− s0

1 + s0

]
− i|q′|2

A12 =
C(1 + i∆)

(1 + s0)2
E2

0

A13 = −C(1 + i∆)E0

1 + s0

A31 = −D̄σ|q′|2 E∗0
1 + s0

A32 = −D̄σ|q′|2 E0

1 + s0

A33 = −D̄|q′|2 .

To obtain the critical properties of the system (such as threshold

and critical wavenumber) the eigenvalue is set to zero, λ = −iω =

0. This will be justified in the following, as it will be shown that

the instability is stationary, Im(λ) = 0. This gives the density

perturbation n1 as

n1(q
′) = − σ

1 + s0
(E0E

∗
1(q′) + E∗0E1(q

′)) ,

so that the equation for the field can be seen as a two-dimensional

system

0 =

[
B11 B12

B∗12 B∗11

](
E1(q

′, t′)

E∗1(q′, t′)

)
,
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Figure 3.3: On the left, the stability domain in q-space: note that in con-
trast to the single-mirror system, no periodicity is observed in q (there is
a single threshold minimum). On the right, the dependence of the power
threshold from the temperature: as expected, lower temperatures enhance the
opto-mechanical coupling and lower the threshold for the instability. Other
parameters are: b0 = 20, ∆ = 20, θ = −100, T = 0.1, T = 100µK. The corre-
sponding cooperativity is C ' 0.25, which yields a single-valued input-output
characteristic at θ = −100. The pattern size corresponding to the critical
wavenumber (the minimum in Fig. (a)) is in the tens of microns range, see
discussion below.

with

B11 = −(1 + iθ)− C(1 + i∆)

1 + s0

[
1− s0(1 + σ)

1 + s0

]
− i|q′|2

B12 =
C(1 + i∆)

(1 + s0)2
E2

0(1 + σ) .

The eigenvalues µ of this system are determined by (note that

we are interested only in µ = 0):

µ2 − Tr(B)µ+ det(B) = 0 =⇒ det(B) = 0 .
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The threshold condition is thus given by:

det(B) =|B11|2 − |B12|2 = 1 +
C2

(1 + s0)2

[
1− s0(1 + σ)

1 + s0

]2

+

+
2C

1 + s0

[
1− s0(1 + σ)

1 + s0

]
+ (θ̂ + |q′|2)2+

− 2(1 + σ)(θ̂ + |q′|2) C∆

(1 + s0)2
− C2

(1 + s0)4
s2

0(1 + σ)2 = 0 ,

where the total linear phase shift due to the cavity and the medium

has been defined as

θ̂ = θ +
C∆

1 + s0
. (3.16)

Fig. (3.3) shows the threshold curve s0 = s0(|q′|2) for the system,

together with the temperature dependence of the threshold. As

in the ‘viscousless’ case of Chap. 2, the threshold is lowered by

lowering the temperature. The dependence on the optical den-

sity is somewhat more complicated, as it enters the cooperativity

parameter which determines the critical wavenumber through θ̂.

Studying the limit of linear single-atom response (low-saturation

limit) will give insight into these effects. However, it can al-

ready be appreciate here one of the main advantages of the cav-

ity arrangement: already at b0 = 20 and δ = 10Γ, the required

saturation level is of the order of s0 ∼ 0.01. In contrast, single-

mirror experiments would require higher optical densities, around

b0 ∼ 100 or more to achieve the same threshold. The advantage

of the cavity is that light is recirculated many times, effectively

increasing the interaction strength. The ‘effective’ optical density

(which enters the cooperativity factor C) is in fact increased by

a factor 1/T , which is large in the limit considered here.

The next step consists in studying the growth rate for the sys-

tem. Beside yielding useful information on the timescale of the
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Figure 3.4: The top panel shows the growth rate for the viscous cavity sys-
tem, including internal-state effects. Parameters are as in Fig. (3.3a) with
|q′|2 = 100, varying the diffusion coefficient D̄. Note that varying D̄ leads
to different growth rates for the system, but does not affect the threshold
condition Re(λ) = 0. The flat dashed black line depicts the imaginary part
Im(λ) = 0 of eigenvalue: the instability is stationary (for any D̄). The bottom
panel displays the growth rate as a function of |q′|2 for the same parameters,
setting D̄ = 5× 10−9 and s0 = 0.1.
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process, the growth rate also gives information about the role of

the diffusion coefficient D̄, which does not enter the threshold ex-

pression (3.20). We remark in fact that D̄ appears in both terms

of the density equation (3.7), so that imposing the marginality

condition the dependence from D̄ is lost. The role of the diffusion

coefficient is that of ‘speeding up’ or ‘slowing down’ the instabil-

ity, but D̄ does not determine the threshold conditions for the

instability (see the inset of Fig. (3.4a)). Moreover, the instability

is found to be stationary, Im(λ) = 0 for any value of D̄ (black

dashed line in Fig. (3.4a)). This fact was used in determining the

threshold condition above, as imposing Re(λ) = 0 automatically

gives λ = 0. The values of D̄ considered corresponds to a cavity of

length L = 10 cm and 10% mirror transmittivity, and a diffusion

coefficient in the range 10−7 − 10−8 m2/s. The exact value of the

diffusion coefficient is dependent of the details of the optical mo-

lasses (detuning and saturation intensity), but as demonstrated

in [110] these numbers are obtainable in Rb molasses. The value

of D̄, however, does not change the main physics of the instabil-

ity, only the expected growth rate. For the values used here the

corresponding growth rates are of the order of 1− 10 (µs)−1.

3.1.3 Low saturation limit

In this Section the ‘viscous’ equivalent of the damping-free sit-

uation analyzed in Sec. 2.3 is studied, assuming low saturation

and neglecting internal-state effects. This means that the suscep-

tibility is a c-number independent on the intensity, so that the

polarisation is proportional to the field, P ∼ E. Neglecting ab-

sorption and keeping only first-order terms, Eqs. (3.7) and (3.13)
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reduce to (in dimensionless units):

∂E

∂t′
= −(1 + θ)E + Ain − iC∆nE + i∇′2E (3.17a)

∂n

∂t′
= σD̄∇′ ·

[
n∇′|E|2

]
+ D̄∇′2n , (3.17b)

where ∇′ = ∂/∂x′. Repeating the procedure described above

these equations are linearized, and imposing ṅ1 = 0 gives

n1(q
′) = −σ [E0E

∗
1(q′) + E∗0E1(q

′)]

Plugging this into the equation for E1(q
′) the following system is

obtained:

0 =

[
B11 B12

B∗12 B∗11

](
E1(q

′, t′)

E∗1(q′, t′)

)

with the matrix elements defined by

B11 = −(1 + iθ̂) + iC∆σs0 − i|q′|2

B12 = iC∆σE2
0

and the linear cavity shift defined by θ̂ = θ + C∆.

In the low saturation limit the threshold condition det(B) = 0 is

linear in s0, and can therefore be easily solved to give the thresh-

old value

s0(|q′|2) =
1 + (θ̂ + |q′|2)2

2Cσ∆(θ̂ + |q′|2)
. (3.18)

Two features of this threshold expression are worth remarking:

first, the threshold depends only on σ∆ ∼ ∆2, and therefore a

symmetric behaviour is found for blue/red detuning. This re-

sult replicates the one found in Sec. 2.3 for damping-free single-

mirror systems. Secondly, by setting ∂sc0/∂|q′|2 = 0 the critical
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Figure 3.5: Comparison between the ‘full’ threshold and the ‘low-saturation’
one, Eq. (3.18), for the same parameters as Fig. (3.3a) (left panel). On the
right panel, the temperature dependence is qualitatively similar for the ‘full’
and ‘low-saturation’ model. Here we used the same parameters as in the left
panel, and set |q′|2 = 96 (blue curve) and |q′|2 = 96.2 (black curve).

wavenumber q′c = |q′c| can be analytically obtained as:

q′c = 1− θ̂ = 1− (θ + C∆) (3.19)

so that the critical saturation value is found as

sc0 =
1

Cσ∆
. (3.20)

From this expression it can be seen that the threshold scales as

T/b0 (as in the viscousless case, see Chap. 2). The threshold is also

flat with respect to the detuning, since C ∼ ∆−2 and σ∆ ∼ ∆2.

Moreover, varying the optical density b0 and/or the detuning will

result in a shift of the critical wavenumber (3.19). However, θ̂

(and hence qc) can be freely tuned by varying the cavity detuning

θ. Taking the D2 line of 87Rb as reference (λ0 = 780 nm), the

diffraction length associated to a 10 cm long cavity with mirror

transmittitvity T = 0.1 is
√
a = [λ0L/4πT ]1/2 ' 2.5× 10−4. The

typical value (see e.g. Fig. (3.3)) of the critical wavenumber is
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Figure 3.6: Detuning dependence of the power threshold in the ‘full’ and ‘low
saturation’ models for the same parameters as Fig. (3.5a) and |q′|2 = 1−θ̂. The
instability is suppressed on resonance, and the behaviour is non symmetrical
for blue/red detuning in the full model, due to the presence of internal-state
effects.

q′c ∼ 100, which gives

Λc =
2π
√
a

q′c
∼ 2π

√
a

100
∼ 15µm .

The tunability of q′c and
√
a (e.g. via the cavity length) offers

substantial tunability of the pattern size in the tens to hundreds

of micrometers range.

As a conclusive remark for this Section, for the choice of param-

eters used here the behaviour of the system is nearly identical

in the ‘full’ model (including internal-state effects) and in the

simpler ‘low-saturation’ model. This holds already for an inter-

mediate choice of detuning, δ = 10Γ (∆ = 20) in this Section.

However, the sign of the detuning is important: for the values

of cavity detuning used here, in fact, no internal-state-only in-

stability is possible. Otherwise stated, no ‘hot-atom’ pattern for-

mation [107] can occur for a self-defocusing medium. On the

other hand, as already discussed in the context of damping-free

single-mirror setups (see Sec. 2.3.5), density redistribution effects

always lead to a self-focusing nonlinearity. This is reflected by

the fact that the low-saturation model is completely symmetric
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for blue/red detuning, while the ‘full’ model is not, see Fig. (3.6).

3.1.4 Numerical results

This Section presents results from the numerical simulations of

the system in the ‘low-saturation’ regime (no internal-state ef-

fects). The role of internal-state nonlinearities will be investi-

gated in the single-mirror configuration, see Sec. (3.2).

We rewrite for clarity the model equations for the ‘viscous’ cavity

system in dimensionless units:

∂E

∂t′
= −(1 + iθ)E + Ain − iC∆nE + i∇′2E (3.21a)

∂n

∂t′
= σD̄∇′ ·

[
n∇′|E|2

]
+ D̄∇′2E (3.21b)

Since the aim of the numerical analysis is to determine the sta-

tionary state of the system, the task of solving Eqs. (3.21) can be

simplified as follows. The stationary state of the Fokker-Planck

equation is determined by the Gibbs state

neq(x) =
exp {Udip(x)/kBT}∫
exp {−Udip/kBT} dx

=
exp {−σs(x)}∫
exp {−σs(x)} dx , (3.22)

where the definitions Udip(x) = (~δ/2)s(x) and σ = ~δ/2kBT
have been used. Looking for the stationary state which satisfies

∂E/∂t′ = ∂n/∂t′ = 0, the Gibbs state neq can be plugged into

the field equation, solving the latter until a stationary value for E

is reached. Since neq depends from E through the dipole poten-

tial ∼ |E|2, this effectively introduces a nonlinearity in the field

dynamics. It should be emphasized that this technique, already

introduced in [92], is effective in determining the stationary state,

but it is not able to resolve the dynamics for the system. Its major
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Figure 3.7: Results from the numerical simulations of the damped cavity sys-
tem in the low-saturation regime, Eqs. (3.21). Above a threshold value sc0 for
the intracavity homogeneous intensity the formation of hexagons is found both
on the blue (b) and red (c) side of the resonance. The top panel (a) shows
the bifurcation diagram for blue detuning. Parameters are: θ̂ = −1, C = 5,
∆ = ±20, and σ = ±25 (obtained at b0 = 20, T = 60µK).

advantage lies in the fact that the dynamics of the atomic den-

sity is in practice eliminated from the problem, which results in

a strong simplification due to the different timescales of the field

and atomic dynamics (encoded in small values of D̄ ∼ 10−7).

Moreover, care must be taken at each time step in order to cor-

rectly renormalize the density distribution, which introduces an

additional nonlinearity through the normalization integral (which

will depend on |E|2).
In the previous Section we discussed the stability of the system,
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and we found that the homogeneous state n0 = 1, E0 = Ain/(1 +

iθ̂) becomes unstable when the intracavity intensity s0 exceeds

the critical value

sc0 =
1

σ∆C
.

As in Sec. 2.5, the emergence of spatial structures can be mon-

itored by calculating the field bunching factor, i.e. the intensity

of the sideband at the critical wavenumber. Note that in two

dimensions an entire circle at |q′| = qc is unstable. The choice

operated here is to take as bunching factor the largest sideband

on the ‘critical circle’, rescaled to the homogeneous background:

B = max
|q′|=qc

∫
E(x′) exp(iq′ · x′)dx′∫

E(x′)dx′
(3.23)

Another possible choice is the average intensity of the ‘critical

circle’, which was used for the analysis of experimental data [83].

Beside the specific definition of the bunching factor, the crucial

point is that B represents an order parameter for the system, i.e.

switches from |B| = 0 to a non-zero value at the critical point,

see Fig. (3.7a). Figs. (3.7b-3.7c) show the stationary state for

a control parameter 5% above threshold, for the same param-

eters as Fig. (3.7a) and blue/red detuning, respectively. Close

to threshold hexagons are selected, a unifying feature of sys-

tems with a cubic nonlinearity (see Sec. 1.2). As it will also

be stressed in Sec. (3.3), the self-structuring, opto-mechanical in-

stabilities discussed here shares many features of spatial instabil-

ities in Kerr, or Kerr-like, systems. The preference of the system

for hexagons [81, 111] is one of these features, as is the tran-

sition from hexagons to rolls far from threshold [112], see also

Fig. (3.17). However, in the low-saturation model studied here
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the nonlinearity stems uniquely from density redistribution ef-

fects, and therefore spatial structures are encoded in the atomic

density. Switching from blue to red detuning, thus, density struc-

tures form complementary to the optical profile, i.e. hexagons are

observed for blue detuning, and honeycombs (negative hexagons)

for red detuning. Hexagons for the optical intensity are formed

by self-organising filaments of high refractive index via the attrac-

tion/expulsion of atoms from high intensity regions for blue/red

detuning. Moreover, in the blue-detuned regime a higher satura-

tion is obtained than in the red-detuned one, because for ∆ > 0

atoms are expelled from high intensity regions up to the point

where no more atoms can contribute to the nonlinearity. For red

detuning, instead, there is no limit (in the model) to the achiev-

able peak density, and therefore to the peak in the refractive index

of the ‘filament’ guiding light.

3.2 Single-mirror feedback

In this Section the analysis of the viscous regime for the single-

mirror configuration is presented. Essentially the medium dynam-

ics of Sec. 3.1 is joined with with the feedback scheme of Chap. 2,

assuming optical molasses to eliminate the velocity dynamics but

no cavity. As in Chap. 2, the single-mirror configuration results

in a relatively simpler analysis (compared to the cavity case), as

the medium and field dynamics can be separated in a ‘split-step’

fashion.

3.2.1 Linear analysis

Under the same set of assumptions discussed in the previous Sec-

tion, the medium dynamics is governed by a continuity equation
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for the atomic density n(x, t):

∂n(x, t)

∂t
= Dσ∇ ·

[
n(x, t)

∇s(x, t)
1 + s(x, t)

]
+D∇2n(x, t) , (3.24)

where σ = ~δ/2kBT and the dipole potential is taken in its full

form Udip(x, t) = (~δ/2) log(1 + s(x, t)) (i.e. we do not assume

s� 1). The total intensity s(x, t) is obtained by summing up the

forward and backward intensities (see Fig. (3.8) and Chap. 2):

s(x, t) = |F |2 + |B|2 ≡ p0 + |B(x, t)|2 (3.25)

where p0 = |F |2 represents the injected intensity. The backward

field is obtained by propagating the transmitted field to the mirror

and back, for a total distance of z = 2d. Given a medium of

thickness L and optical density b0, the wave equation for the

forward field is (see also Eq. (2.4) for the damping-free case):

∂F

∂z
= −α0(1− i∆)n(x, t)

F

1 + s(x, t)
, (3.26)

where

α0 =
b0

2L(1 + ∆2)
(3.27)

and the internal-state dynamics of the atomic two-level system

was eliminated by taking the steady-state population difference

w(x, t) = 1/(1 + s(x, t)). Note that the field dynamics is iden-

tical to the one considered in Sec. 2.1, the only difference lies in

the definition of the atomic density. In the damping-free case of

Chap. 2 n is obtained from the atomic phase-space distribution

(obeying the Boltzmann equation (2.1)), while here it is given by

the continuity equation (3.24).

The linear analysis for the system can be performed by follow-

ing Sec. 2.2: the atomic density and the optical intensity are
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Figure 3.8: Sketch of the single-mirror ‘viscous’ setup. A plane wave of in-
tensity p0 (pump) illuminates the cloud (thickess L, optical density b0, tem-
perature T ) from the side, is transmitted and retroreflected by the mirror (re-
flectivity R, distance d). Optical molasses are assumed to act on the sample
during the interaction with the pump, resulting in a strong viscous damping
of the atomic momenta, see Sec. 3.1.

expanded as

n(x, t) = n0 + n1(x, t) = 1 + n1(x, t)

s(x, t) = s0 + s1(x, t) = (1 +Rγ0)p0 + s1(x, t)

where γ0 = exp [−2α0L/(1 + s0)] (see Eq. (2.11)) and R is the

mirror reflectivity. The transmitted field is expanded to first order

in the non-homogeneous perturbations as

F (z = L,x, t) = F0 exp

{
−α0L(1− i∆)

n(x, t)

1 + s(x, t)

}
'

' F0 exp

{
−α0L(1− i∆)

1 + s0

[
1 + n1(x, t)

] [
1− s1(x, t)

1 + s0

]}
'

' F0 exp

{
−α0L(1− i∆)

1 + s0

}[
1− α0L(1− i∆)

1 + s0

(
n1(x, t)−

s1(x, t)

1 + s0

)]
,

so that the backward field reads in Fourier space:

B(q, t) =
√
R

{∫
F (z = L,x, t) exp (iq · x) dx

}
exp

(
i
d|q|2
k0

)
,
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Θ = d|q2|/k0 being the diffractive phase slippage associated to

the mode q in propagating for a distance 2d. Recognising the

backward field expansionB(q, t) = B0[δ(q)+b1(q, t)] the intensity

perturbation becomes

s1(q, t) = Rγ0 [b1(q, t) + b∗1(q, t)] =

= Rγ0p0

[
−α0L(1− i∆)

1 + s0

(
n1(q, t)−

s1(q, t)

1 + s0

)
eiΘ + c.c.

]
=

= −Rγ0p0
2α0L

1 + s0

(
n1(q, t)−

s1(q, t)

1 + s0

)
[cos Θ + ∆ sin Θ] .

Isolating s1(q, t) the following expression for the intensity pertur-

bation is obtained:

s1(q, t) = −
2Rγ0p0
1+s0

[cos Θ + ∆ sin Θ]

1− 2Rγ0p0α0L
(1+s0)2 [cos Θ + ∆ sin Θ]

n1(x, t) , (3.28)

which is identical to its damping-free analogue, Eq. (2.16), upon

substituting n(x) →
∫
f(x,v)dv. This result can be used in

linearizing the density equation (3.24): writing the perturbations

in the Fourier form n1 ∼ exp(iq · x + λt), in fact, one finds

λn1(q, t) = −σD|q|2s1(q, t)

1 + s0
−D|q|2n1(q, t) =

= D|q|2
{
σ

K

1−K − 1

}
n1(q, t) ,

where K has been defined as (see also Eq. (2.22))

K =
2Rγ0p0α0L

(1 + s0)2
[cos Θ + ∆ sin Θ] . (3.29)

The dispersion relation is therefore given by

λ(q) = D|q|2
{
σ

K

1−K − 1

}
, (3.30)
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the threshold condition being identified by λ(q) = 0:

1− σ K

1−K = 0 . (3.31)

The threshold condition (3.31) is identical to the one found for the

damping-free case, see Eq. (2.32). Hence all the considerations

made in Sec. 2.2.5 apply here, and the same is true for the low

saturation regime s� 1. In particular, the critical wavenumber

qc =

√
πk0

2d

corresponds to the maximum growth rate for purely dispersive

systems; corrections due to absorption are small and will be ne-

glected, see Sec. 2.3.3. Since the threshold condition is identical

to the one obtained in the damping-free case its properties will

not be discussed here, and the reader is referred to Chap. 2 for de-

tails. However, the growth rate (3.30) differs from the damping-

free case, while it resembles the ‘viscous’ cavity case, with the

D|q|2 term entering the growth rate but not the threshold, see

Fig. (3.9b). Note that a closed expression for the growth rate

λ can be derived in the single mirror case, an advantage that

comes with the simpler geometry. As in the cavity ‘viscous’ and

the single-mirror ‘viscousless’ cases, the instability is stationary:

Im(λ) = 0.

The dispersion relation (3.30) displays a feature which was al-

ready encountered in Chap. 2, namely the fact that a divergence

is obtained when K = 1. This condition identifies the boundary

in parameter space for an internal-state instability to occur, that

is, a pattern-forming instability which is driven by internal-state

nonlinearities. This possibility will not be discussed here (the dis-

cussion can be found in Chap. 2), but numerical results related
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to internal-state driven instabilities will be discussed in the next

Section.

Fig. 3.9 shows the growth rate (3.30) for blue-detuned pumps

(∆ = 20): as expected a transverse instability is obtained at

|q| ' qc =
√
πk0/2d (absorption slightly modifies the critical

wavenumber, see Sec. 2.3.3). Since the theory presented here

accounts for internal-state effects, we expect the system to be

asymmetric under a change in the sign of the detuning. In-

deed, as shown in Fig. 3.10 the linear growth rate is smaller for

∆ = −20 (everything else being equal). Moreover, the thresh-

old condition is independent on the value of the diffusion coeffi-

cient D, as already found for the cavity system (Sec. 3.1). This

difference in the linear growth rate is expected because for red

detuning the internal-state nonlinearity is self-defocusing, while

the opto-mechanical mechanism is self-focusing. For the choice

of parameters operated here the system still undergoes a self-

structuring instability in the ‘self-focusing’ regions of the q-space,

but the internal state nonlinearity competes for the instability −
see Sec. 2.4.2 for a discussion of this phenomenon.

As a conclusive remark on the theoretical analysis of the ‘viscous’

single-mirror system,‘pure’ opto-mechanical instabilities due to

density redistributions only are still possible. These are described

by the system

∂F

∂z
= iα0∆n F

∂n

∂t
= σD∇ · [n∇s] +D∇2n ,

where as usual the approximation log(1+s) ' s was taken assum-

ing low saturation, s � 1. The linear analysis is not presented

for this system, as the results can be easily obtained by taking
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Figure 3.9: On the left, the growth rate λ taken from Eq. (3.30), as a function
of injected pump and transverse wavenumber with D = 10−7 m2/s. On the
right, a section at the critical wavenumber qc =

√
πk0/2d, showing that the

threshold condition λ = 0 is unaffected by the value of the diffusion coefficient
D. Other parameters are: b0 = 120, δ = 10Γ (∆ = 20), T = 300µK, d = 5 mm,
L = 1 cm.

the limit s � 1 of the results presented earlier. In particular, in

the low saturation limit

K ' K ′ = 2Rp0α0L∆ sin Θ

so that the dispersion relation and the threshold condition read:

λ′(q) = D|q|2 (σK ′ − 1) (3.32a)

1− σK ′ = 0 =⇒ pc0 =
1

2σRα0L∆
(3.32b)

sin Θc = 1 =⇒ |qc| ≡ qc =
√
πk0/2d . (3.32c)

3.2.2 Numerical results

This Section presents the numerical results for the ‘viscous’ single-

mirror geometry. As for the cavity case, the main advantage of

the strong damping assumption consists in a reduction of the

problem’s dimensionality, as only two spatial coordinates + time

are needed to describe the dynamics. Moreover, the single-mirror
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Figure 3.10: Same as Fig. 3.9 but for red detuning, ∆ = −20. The instability
is qualitatively similar, but the competition between internal-state and opto-
mechanical nonlinearity substantially lowers the growth rate for the instability.

dynamics is made particularly attractive from the computational

point of view by the fact that the light-matter interaction is com-

pletely separated from the free-space diffraction. Hence we will be

able here to ‘follow’ the medium dynamics until a stationary state

is reached without resorting to the stationary-state technique em-

ployed in Sec. 3.1.4 (see Appendix B for more details). Given the

inverse atomic lifetime Γ and the diffusion coefficient D, the time

and space variables are rescaled as t→ Γt, x→ x/
√
DΓ, so that

the medium equation becomes

∂n(x, t)

∂t
= σ∇ · [n(x, t)∇ log(1 + s(x, t))] +∇2n(x, t) .

The field dynamics is computed by first propagating the injected

field F through the cloud:

Ftrans =
√
p0 exp

{
− α0L(1− i∆)

1 + |F |2 + |B|2n
}

and successively obtaining the backward field as (F denotes the

spatial Fourier transform)

B(x, t) =
√
RF−1

{
F [Ftrans(x, t)] e

iΘ
}

Θ =
d|q|2
k0
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Figure 3.11: Numerical simulations for the same parameters as Fig. 3.9 (blue
detuning, ∆ = 20), injected intensity p0 = 0.6 and a final time of 2.6 ms.
Spatial coordinates are rescaled so that the transverse domain accommodates
7 critical wavelengths Λc = 2π/qc. Here sB = |B|2 denotes the intensity of the
backward beam, n the atomic density and Π2 = 1

2
s/(1 + s) the population of

the excited internal state.

Defining the backward intensity as sB = |B|2 the total intensity

illuminating the cloud is obtained as s(x, y, t) = p0 + sB(x, y, t),

neglecting interference effects under the assumption of a diffrac-

tively thin medium. As also stressed in Sec. 2.2, the homogeneous

state requires a zero-finding routine to be evaluated. In the follow-

ing the Newton-Raphson method implemented within the built-in

FindRoot function of Mathematica [86] will be used. The low-

saturation limit is obtained as usual approximating log(1+s) ' s

and computing the transmitted field as

F low−sat
trans =

√
p0 exp {iα0L∆n} .

Figs. (3.11) and (3.12) show the steady state resulting from

the ‘full’ dynamics (including the internal state) of the system

on the blue and the red sides of the resonance, respectively. As

expected, atomic bunching is obtained in the minima (maxima) of

the optical intensity profile. However, the internal-state steady-

state population of the upper level,

Π2 =
1

2

s

1 + s
(3.33)
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Figure 3.12: Numerical simulations for the same parameters as Fig. 3.10 (red
detuning, ∆ = −20), injected intensity p0 = 0.6 and a final time of 6.1 ms.
Spatial coordinates are rescaled so that the transverse domain accomodates 7
critical wavelengths Λc = 2π/qc. Here sB = |B|2 denotes the intensity of the
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Figure 3.13: The field bunching factor |B| versus time for the simulations shown
in Fig. 3.11 (blue detuning) and Fig. 3.12 (red detuning). As expected from our
analytical results (Figs. 3.9 and 3.10), the instability is slower for red-detuned
pumps. The bunching factor is calculated extracting the strongest sideband
on the critical circle |q| = qc =

√
πk0/2d, normalized to the homogeneous

background at q = 0 mode. The right panel shows the normalized far-field
profile (power spectrum normalized to the background) for the blue-detuned
case after 6 ms, with the q = 0 mode removed for clarity; the white dashed
circle identifies the condition |q| = qc.
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also shows a consistent modulation. Hence the observed pat-

terns originate from a combination of internal-state and opto-

mechanical nonlinearities, as expected given the relatively high

intensity (p0 = 0.6); on the other hand, no internal-state-only

instability is possible for the given set of parameters, since as

shown in Figs. 3.9 and 3.10 there is no ‘growth rate divergence’.

This is confirmed by Fig. 3.13, where the field bunching factor

obtained from the simulations is plotted versus time . As already

found in the previous Section, the red-detuned pattern formation

dynamics is considerably slower than its blue-detuned counter-

part because of the ‘competition’ effect between internal-state and

density driven nonlinearities, but it can be seen that no internal-

state only instability occurs (nothing happens on the microsec-

onds timescale). Note that the one-dimensional bunching factor

introduced in Chap. 2 was generalized to the two-dimensional

case simply by taking the overall largest off-axis Fourier mode

rescaled to the homogeneous, q = 0 mode. A different, slightly

more elaborate definition has been used in experimental studies,

see Chap. 4, but the key point is that B represents an order pa-

rameter for the system. Fig. 3.13 also depicts the far field profile

of the steady-state intensity from Fig. 3.11, the white dashed line

indicating the ‘critical circle’ |q| = qc =
√
πk0/2d.

As in the viscosity-free case, internal-state-only instabilities are

possible when the condition K ≥ 1 is met in Eq. (3.30); the blue-

detuned case is investigated here, in which both the internals-

state and the opto-mechanical mechanisms lead to pattern for-

mation at the same critical wavenumber. Fig. 3.14a shows the

growth rate versus injected intensity for the same parameters as

Fig. 3.9 but larger optical density, b0 = 200, identifying a range of
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Figure 3.14: Electronically-driven instability: growth rate at the critical
wavenumber (left) and bunching factor evolution obtained from numerical sim-
ulations at p0 = 0.6 (right, see Fig. 3.15). Parameters are: b0 = 200, δ = 10Γ
(∆ = 20), T = 300µK, d = 5 mm, L = 1 cm, D = 10−6 m2/s.

intensities where an internal-state instability is expected. This is

confirmed by the numerical simulations, as a transition to a non-

zero value of the the bunching factor |B| occurs already after a few

microseconds, see Fg. 3.14b. Fig. 3.15 shows snapshots of the evo-

lution after 5µs (top row) and 50µs (bottom row): hexagons are

encoded in the internal-state population after a few µs, and the

resulting optical potential causes the atoms to bunch on a longer

timescale. Atomic bunching further contributes to the instability,

as shown by the increase in bunching factor in Fig. 3.14b.

Numerical work also focused on the possibility of ‘purely’ opto-

mechanical instabilities, i.e. pattern-forming processes where the

only nonlinearity stems from density redistributions, see Fig. (3.16).

As expected from the theoretical analysis, opto-mechanical effects

lead to a self-focusing Kerr-like nonlinearity and to hexagon for-

mation on both sides of the resonance for the light field. Corre-

spondingly, the atomic density encodes negative hexagons (hon-

eycombs) and positive hexagons for blue and red detuning, re-

spectively. It is also found that red-detuned simulations are nu-
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Figure 3.15: Electronically-driven instability for the same pameters as
Fig. 3.14b, and for a final time of 5µs (top row) and 50µs (bottom row).
A ‘fast’ instability is observed, with spatial patterns encoded in the internal-
state population Π2(x, y), followed on a slower timescale by atomic bunching.
Both processes lead to positive feedback, enhancing the modulation of the
pattern and consequently the bunching factor (see Fig. 3.14b).

merically quite unstable, in the sense that no stationary state is

reached, and the observed pattern depends on the time step of the

simulation. On the other hand, simulations on the blue side of

the resonance show high numerical stability. This is interpreted

in terms of a ‘super-saturation’ of the opto-mechanical nonlinear-

ity on the blue side of the resonance: as atoms are expelled from

the intensity maxima, a saturation point is reached when the den-

sity is zero at some spatial point, as there are no more atoms to

move. On the red-detuned side, on the other hand, atoms are

attracted towards the intensity maxima and there is no limit to

the peak density achievable in the model − the only constraints

for n(x, y) being positiveness and normalization. This can be

understood in simple terms by following the work by Saffman

and Wang for the counterpropagating case [92]: the ‘full’ (inter-
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nal state+opto-mechanical) nonlinearity can be understood1 as

a saturable Kerr-like nonlinearity with a nonlinear susceptibility

given by

χ ∼ 1

(1 + s)1+σ
.

For σ = 0 (high temperature limit) the saturable Kerr response

for two-level systems is retrieved, as expected. For σ > 0 a ‘super-

saturating’ nonlinearity is obtained, while for σ < −1 (which is

typically the case in our red-detuned simulations, |σ| ∼ 5) one has

a nonlinear susceptibility χ ∼ (1+s)|σ|−1. Non-saturating nonlin-

earities are known to be unstable in two-dimensional simulations.

For instance, a pure Kerr medium (χ ∼ 1+s) is known to lead to

soliton collapse (known as ‘blow-up’) in two dimensional systems,

while it is well-behaved in one dimension [113]. The same issue is

encountered in cavity simulations, for example when dealing with

opto-mechanical solitons formation (Sec. 3.3).

As a closing result for this Section devoted to the numerical study

of viscous single-mirror systems, hexagons to rolls transitions (al-

ready discussed in Sec. 1.2) can be observed from the simula-

tions. Transitions from hexagonal states to rolls (or turbulent

states even farther from threshold) are a common feature in sys-

tems with a cubic nonlinearity [74], and were found for instance

in [82, 112] for a Kerr medium in the single-mirror feedback ar-

rangement. Fig. 3.17 shows that the dynamics investigated in

Fig. 3.15 eventually leads to roll formation, as hexagons lose sta-

bility on a timescale of a few hundreds of µs. This secondary

bifurcation transforms the six-peaks far field profile correspond-

ing to a regular hexagonal pattern (top left) into the two-peaks

1At least as long as the mere existence of an instability is concerned, and not the full
dynamics of the system.
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Figure 3.16: Purely opto-mechanical instability obtained at p0 = 0.04 for
blue detuning (∆ = 20, top row) and red detuning (∆ = −20, bottom row).
Other parameters are: b0 = 120, T = 300µK, d = 5 mm, L = 1 cm, D =
10−6 m2/s. The pattern is found to be numerically unstable on the red side
of the resonance, because there is no limit in our model to the peak density
achievable. On the other hand, the expulsion of atoms from the high-intensity
regions for blue detuning lead to a high saturation and the pattern is observed
to be stable for very long times.
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Figure 3.17: Hexagons to rolls transition, for the same parameters as Fig. 3.15.
Six off-sidebands are observed in the spectrum after 50µs (a), but hexagons
lose stability against rolls and after 450µs two off-axis peaks dominate the
far-field profile (f).

profile corresponding to a roll pattern (bottom right). It should

be emphasized that spontaneous symmetry breaking is observed

in correspondence with hexagon formation, but the hexagonal

pattern selects the symmetry of the roll pattern eventually ob-

served: note how the strongest Fourier peaks of the hexagonal far

field profile ‘survive’ the bifurcation and select the orientation of

the roll pattern.
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3.3 Opto-mechanical cavity solitons

This Section discusses the possibility of implementing opto-mechanical

cavity solitons, i.e. bistable, nonlinearity-sustained localized light-

matter structures. The term ‘opto-mechanical’ refers to the fact

that the localized structure is not encoded in the internal-state

properties or the excitation of a Kerr-like medium, but in the

spatial distribution of the atomic density.

To demonstrate this possibility, consider the ‘low saturation’ cav-

ity model of linear single-atom response introduced in Sec. 3.1.3:

∂E

∂t′
= −(1 + iθ)E + Ain − iC∆nE + i∇′2E (3.34a)

∂n

∂t′
= σD̄∇′ ·

[
n∇′|E|2

]
+ D̄∇′2E (3.34b)

In Sec. 3.1 it was shown that the homogeneous solution given by

n0 = 1

E0 =
Ain

1 + iθ̂
θ̂ = θ + C∆

is unstable to transverse perturbations when the intracavity in-

tensity s0 = |E0|2 exceeds the critical value sc0 = (Cσ∆)−1, see

Eq. (3.20). Close to the critical point, hexagons are selected, see

Sec. 3.1.4.

The focus of this Section consists in determining whether the

emerging patterns can coexist with the homogeneous solution. If

this is possible, in fact, localized ‘domains‘ are possible, essen-

tially given by portions of a full periodic pattern sitting on the

homogeneous background. Since pattern formation is an out-of-

equilibrium process occurring in driven-dissipative systems, a sin-

gle localized ‘spot’ is termed a dissipative soliton. The term ‘dissi-
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pative’ emphasizes the difference with what is commonly termed

a soliton, i.e. a solitary-wave solution solution of an integrable,

nonlinear system [114].

Dissipative solitons have the fundamental property of being bi-

stable, i.e. they can be switched on and off ‘at will’ by means of

appropriate control beams. This property fundamentally differ-

entiates opto-mechanical soliton formation from atomic lithogra-

phy [115], as here one is allowed to optically ‘write’ and ‘erase’

a given density structure which remains unaffected after the con-

trol beams have been turned off, sustained just by a homogeneous

pump.

This opens up new opportunities for the shaping and control

of potentially complex and reconfigurable atomic density distri-

butions, which only need homogeneous driving to sustain after

they have formed. Suppose in fact that a region of high den-

sity is created in the atomic cloud during the interaction with

the pump beam. This could be achieved for instance by using

additional control beams, completely incoherent with the pump.

The ‘slow’ timescale for this process is essentially dictated by

the time for atomic motion, τext ∼ 10µs (to move by ∼ 1µm

at T ∼ 100µK). Light from a red-detuned (and spatially homo-

geneous) pump beam would then be guided towards high den-

sity regions, effectively creating a bright light spot. The ‘fast’

timescale for this process will be determined by the cavity life-

time, κ−1 � τext. If localized states are stable for the system (i.e.

if bistability is obtained for the ‘homogeneous’ and ‘patterned’

solutions), such a localized spot of light can sustain itself via

nonlinear dipole forces. Analogously, one could create a ‘hole’ in

the atomic cloud (on the timescale of τext), which in turn would

attract blue-detuned light from the spatially homogeneous pump
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Figure 3.18: On the left, subcritical bifurcation for C|∆| = 4.5, θ = −3.7,
σ = 25. On the right, the ‘snaking’ diagram showing one-dimensional intensity
profiles corresponding to N = 1, 2, 3, 4 peaks.

(on the timescale of κ−1). Such a bright localized spot of light can

then sustain itself by expelling atoms from the high intensity re-

gion, again by means of dipole forces. In both cases, self-localized

structures are eventually sustained just by a homogeneous driv-

ing. Additional beams can then be used to erase any given density

structure present in the cloud, thus removing the entire light-

matter structure.

Fig. (3.18) shows the bifurcation diagram obtained from one-

dimensional simulations of the system (3.34), varying the in-

tracavity intensity across the critical point. Note that (as in

Sec. 3.1.4) all these data are related to the stationary solution of

the system, as its dynamical properties are not of interest here.

These simulations were performed using a split-step Fourier tech-

nique, as described in Appendix C. The domain size is set to

contain seven critical wavelengths Λ′c = 2π/q′c. Fig. (3.18a) shows

that the bifurcation leading to pattern formation is subcritical,
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i.e. there is a range of intensities where both the homogeneous

and the non-homogeneous solutions are stable, 0.9 < s0/s
c
0 < 1.

Increasing the pump from below threshold, in fact, a pattern ap-

pears on the whole domain at the critical point (blue circles).

The ‘order parameter’ is here simply obtained by measuring the

maximum value of the intracavity amplitude, |E|max. Approach-

ing the critical point from above the ‘patterned’ solution survives

below threshold, the system showing a hysteretic behaviour (red

squares). Fig. (3.18b) presents in more detail the behaviour of the

system below threshold: the upper branch of Fig. (3.18a), in fact,

does not correspond necessarily to a full periodic pattern (seven

periods in our simulations). A ‘snaking’ bifurcation diagram is

obtained where N peaks are stable below threshold, and where

one can switch between ‘even’ branches (N = 2, 4, . . . , red full

lines) , or ‘odd’ branches (N = 1, 3, . . . , blue dashed lines). The

stability of these branches is studied simply by imposing an initial

condition which is ‘close’ to the stationary state, and simulating

the field equation until the solution is stationary. We remark that

the stable branches are connected by unstable branches, which are

not studied here, as the technique used is not able to determine

unstable solutions. A detailed analysis of the snaking bifurcation

for a saturable absorber in a driven cavity, including the unstable

branches, can be found in [111, 116]. In general, the qualitative

features of cavity solitons for the case of Kerr, or Kerr-like, nonlin-

earities can be recovered here, as the optomechanical mechanism

essentially results in a Kerr-like nonlinearity. This was made ex-

plicit in the works by M. Saffman and collaborators [92], where

the stationary state for the density was approximated as

neq(x) = N exp
(
−σ|E(x)|2

)
' N

(
1− σ|E(x)|2

)
.
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(a) blue detuning

(b) red detuning

Figure 3.19: Opto-mechanical cavity solitons for blue (top panel) and red
(bottom panel) detuning. Parameters are: C|∆| = 4.5, θ = −3.7, σ = 25,
s0/s

c
0 = 0.93.

However it is important to note that, in general, neq contains a

dependence on the intensity |E(x)|2 also through the normaliza-

tion N .

Fig. (3.19) shows the stationary state obtained from two-dimensional

simulations of the system (3.34). Again, we start our simula-

tions with initial conditions which are ‘close’ to the stationary

state, and in particular with Gaussian profiles for the light inten-

sity (and corresponding profiles for the density), the height and

width of these Gaussian profiles being tailored from the station-

ary solution above threshold (that is, ‘cutting’ a soliton from a

full pattern).

An important feature of the states depicted in Fig. (3.19) is the

fact that multiple solitons can coexist independently − differ-
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ent realizations are shown for blue and red detuning. Moreover,

using a broader pump beam it is possible to excite localized do-

mains, i.e. multi-peaked cavity solitons sitting on the homoge-

neous background (see Ref. [116] for the saturable absorber equiv-

alent). The parameters used in Fig. (3.19) are within experimen-

tal reach (e.g. in cold Rb gases), as they correspond to an optical

density b0 = 180, a detuning of δ = ±10Γ and a temperature of

T = 60µK. For a cavity length of L = 1 mm and transmittivity

T = 0.1, the pattern size is in the 0.5 mm range, which is well

within the size of modern setups.

3.4 A sync perspective: Kuramoto model with

damping and noise

In this Section a simple theoretical argument is presented, show-

ing that the ‘viscous’ single-mirror self-structuring process an-

alyzed in Section 3.2 can be reinterpreted as a synchronization

transition governed by the Kuramoto model. The Kuramoto

model was already found in Sec. 2.6 for the damping-free single-

mirror system, where the threshold condition originates from the

initial spread in the oscillators natural frequencies (i.e. the atomic

initial velocities). Here it is found that, as in Sec. 3.2, the thresh-

old is set by the strength of stochastic fluctuations, D ∼ T . All

the analysis presented in the following is concerned with the low

saturation regime, that is, the word ‘atoms’ is used to describe

any form of linearly polarizable particle. Moreover, the analysis is

restricted to the one-dimensional case for simplicity. Results from

Sec. 3.2 can be easily adapted in the low-saturation regime follow-

ing the definitions given in Sec. 2.3 and 3.1.3. Essentially, these

results extend previous work in CARL system [32, 96], where it
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was already shown that CARL realizes a Kuramoto transition in

the viscous regime.

The Kuramoto model is defined in the thermodynamic limit of

infinitely many oscillators, N → ∞, initially distributed in fre-

quency according to some normalized function g(ω). Eq. (2.47)

then becomes a continuity equation for the oscillators density

% = %(θ, ω, t):

∂%

∂t
= − ∂

∂θ

{
% [ω +Kr sin(ψ − θ)]

}
+D

∂2%

∂θ2
, (3.35)

where the order parameter is now defined by

r =

∫ +π

−π
ei(θ−ψ)

∫ +∞

−∞
%(θ, ω, t)g(ω)dωdθ .

It is easy to recognize that the form of Eq. (3.35) is formally iden-

tical to Fokker-Planck equation derived in the ‘viscous’ analysis,

Sec. 3.1, provided that g(ω) = δ(ω). In this case in fact Eq. (3.35)

becomes
∂%

∂t
= −K ∂

∂θ
[% r sin(ψ − θ)] +D

∂2%

∂θ2
. (3.36)

As in Sec. 2.6, assuming the critical wavenumber q to be the

only mode excited in the system (i.e. working close to the critical

point) a one-to-one correspondence will be found between the

Kuramoto model (3.36) and Eq. (3.7). The condition g(ω) =

δ(ω) was indeed the leading idea in the ‘viscous’ theory discussed

in Sec. 3.1, where it was assumed that the molasses damping

action is strong enough to eliminate the atomic velocities from

the analysis. This essentially describes an ‘overdamped’ system

where v̇j = 0 ∀j and the atoms move adiabatically, continuously

damped in their motion by the molasses action.

Approximating ∇s/(1 + s) ∼ ∂s/∂x and using Eq. (2.50), the
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Fokker-Planck equation for the atomic density, Eq. (3.4) reads

∂n(x, t)

∂t
= −~δ

2

2Rp0χ0q

γ

∂

∂x
[n r sin(ψ − qx)] +D

∂2n

∂x2
.

In terms of the phase θ = qx, the last equation is rewritten as

∂n(θ, t)

∂t
= −2Rp0σχ0Dq

2 ∂

∂θ
[n r sin(ψ − θ)] +Dq2∂

2n

∂θ2
, (3.37)

which is formally identical to Eq. (3.36) upon identifying n→ %,

Dq2 → D, and 2Rp0σχ0Dq
2 → K. The fact that Dq2 appears

in both terms of this equation again captures the fact that the

threshold does not depend on the diffusion coefficient. Retrieving

in fact the threshold for the Kuramoto model (3.37) [94],

Kc = 2Dq2 ,

we immediately find the critical value of the pump intensity as

pc0 =
1

Rσχ0
, (3.38)

which was already found in Eq. (2.37). Eq. (2.37) was found in

the context of the damping-free theory (Chap. 2), but as dis-

cussed in Sec. 3.2 the threshold condition is identical in the vis-

cous and viscosity-free regimes, and therefore (3.38) is found to

be the power threshold for the viscous single-mirror system in the

low-saturation regime.
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Chapter 4

Experimental considerations,

open problems

In this final Chapter some details related to the experimental

realization of single-mirror viscousless instabilities are discussed,

as well as some questions left open by the previous Chapters. The

experimental results are reported in Ref. [83].

4.1 Experimental observations of self-structur-

ing

The theoretical work presented in Chap. 2 has been confirmed

in a series of experiments carried on by G. Labeyrie at the In-

stitut Non Linéaire de Nice. This led to the joint work by the

INLN (G. Labeyrie, R. Kaiser) and the Strathclyde groups, pub-

lished on the arXiv [83] and submitted (at the time of writing)

to Nature Photonics. Indeed, the experimental observation of

hexagonal pattern formation in the absence of damping was one

of the main motivations to the study of viscosity-free setups, as

the theoretical work focused on the ‘damped’ case of Chap. 3 be-

fore the realization of the experiment.
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Figure 4.1: Sketch of the experimental setup (from Ref. [83]).

A schematic representation of the experimental setup is shown in

Fig. 4.1: a pump beam illuminates a 87Rb cloud released from

the MOT, with a typical optical density of b0 = 120 and a tem-

perature T = 290µK. The cloud is ∼ 1 cm thick, and the mirror

is placed at a distance d of a few mm from the cloud. The ef-

fective mirror distance can be tuned by means of a telescopic

system placed between the cloud and the actual mirror − this

way, also negative distances (with the mirror before the cloud)

can be implemented. After the ‘pump’ beam is turned off, a

weak ‘probe’ pulse illuminates the cloud. This probe is orthog-

onally polarized with respect to the pump, so that is selected

by the polarizing beam splitter (PBS) and monitored through

a CCD camera (‘probe image’). The pump field instead is fed

back on the medium by the mirror, with the transmitted compo-

nent monitored by a second CCD camera (‘pump image’). The

idea behind this pump/probe experiment is to investigate (via

the probe) modulations in the cloud’s refractive index after the

interaction with the pump. Refractive index modulations can

be due to opto-mechanical redistribution effects (the main object

of the investigation), but also due to internal-state effects. The

internal-state dynamics of the two levels forming the D2 line were

under investigation, but care must be taken in ensuring that other

internal states play little or no role in the refractive index modu-

lations. For instance, as a ‘repumper’ beam is used to re-populate
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the D2 lower level, spatial structures in the Zeeman levels of the

atoms may be important; the reader is referred to Ref. [83] for a

more detailed discussion of these aspects.

Fig. 4.2a shows the experimental patterns resulting from a self-

structuring transition for a blue-detuned pump, detected by a

red-detuned probe. Since the density profile is clearly not acces-

sible directly, in fact, the probe is used to monitor the refractive

index profile of the cloud (i.e. the density, assuming there are no

other gratings). Due to propagation, the detuning of the probe

is important: a blue-detuned probe would result in hexagons in-

stead of honeycombs (and resonant imaging is not an option due

to the high optical density). Red-detuned probe beams are cho-

sen in order to emphasize the complementarity of light-matter

structures. The main idea is that the probe beam profile rep-

resents the atomic density, so that Fig. 4.2a is the experimental

counterpart of the two-dimensional profiles shown in Chap. 3 (al-

though for a ‘viscousless’ setup). To prove this, however, it must

be ensured that no other ‘internal-state’ grating contribute to the

refractive index modulation. As discussed in the previous Chap-

ters, the main instrument to discriminate density redistribution

effects from internal state ones is the relatively slow timescale of

atomic motion. This instrument comes with a dark side too, as

slow internal-state processes (such as Zeeman transitions) might

potentially lead to a misinterpretation of the results. Making sure

that no other ‘slow’ grating can form in the cloud, a dynamics on

the timescale of tens-hundreds of µs would be a clear signature

of atomic motion, while a ‘fast’ dynamics (few µs) would imply

an internal-state instability. A first experimental corroboration

that what is observed is indeed a density driven self-structuring

process can be obtained from Fig. 4.2b, where the decay of the
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patten ‘contrast’ is measured after switching the pump beam off

(i.e. increasing the delay between the pump and the probe beams).

The contrast is obtained by averaging the intensity of the far-field

profile along ‘circles’ of increasing radius q, until at the critical

wavenumber this quantity shows a peak. The contrast is given

by this peak value divided by the homogeneous background (see

Ref. [83] for details), and is therefore closely connected to what

was termed bunching factor in the previous Chapters (maximum

value on the critical circle rescaled to the background). Beside

the exact definition, the key point is that the contrast represents

an order parameter for the system: as the pump is switched off,

the pattern decays with a timescale of ∼ 80µs (as also shown

by the insets). This slow timescale is a clear indication that the

refractive index modulation is due to a modulation in the atomic

density, and not in the internal state properties of the medium.

The decay of the pattern shows that atomic motion is respon-

sible for the refractive index modulation observed by the probe

beam, but it is not enough to state that an opto-mechanical,

self-structuring instability occurred. As discussed in the previous

Chapters, in fact, internal-state instabilities may trigger the self-

organization process, so that after the pump beam is switched

off a density modulation may be observed as a result of what we

termed an electronically-driven instability. One of the main aims

of the experiment is to observe processes as close as possible to the

‘pure’ opto-mechanical instability discussed in Sec. 2.3. This in

turns requires low saturation levels, so that decreasing the pump

power we can investigate different regimes for the instability. As

Fig. 4.3 shows, decreasing the injected intensity no instability is

observed before atomic motion can take place (the pump contrast

is zero for curve 3 and 4 at short times). At high injected intensi-
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(a) (b)

Figure 4.2: On the left, experimental patterns obtained with a 200µs pump
pulse detuned by δ = 7Γ from the D2 line transition, illuminating a cloud of
optical thickness b0 = 120 and temperature = 290µK. The mirror distance is
d = 5 mm, the cloud thickness L = 1 cm. On the right, the slow decay of the
pattern (with the pump off) is a signature of atomic motion. Figure taken
from Ref. [83].

ties, on the other hand, an internal-state instabilities is observed,

with a non-zero contrast already after a few µs. Shining a probe

beam after a dark time of 10µs, it can be seen that no structures

are observed on a fast timescale, because all the internal-state

gratings are washed out in a few µs. On the other hand, the

opto-mechanical structures encoded in the atomic density are un-

affected by this dark time. Curve 4 in Fig. 4.3 represents (to our

knowledge) the closest realization of a self-structuring, symmetry

breaking transition due entirely to density redistribution effects.

4.2 Wavenumber selection

An important difference between the experimental setup and

the theoretical system considered in the previous Chapters is that

the medium cannot be considered diffractively thin; moreover, the

formation of a standing wave within the cloud is also a qualitative
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Figure 4.3: Experimentally observed dynamics of the contrast for the pump (A)
and the probe (B) beams, for a pump-probe delay of 10µs and pump intensities
of = 636 mW/cm2 (curve 1), I = 404 mW/cm2 (curve 2), I = 217 mW/cm2

(curve 3), and I = 91 mW/cm2 (curve 4) . The long timescale associated
with curves 3 and 4 identifies the corresponding pattern-forming dynamics as
mainly due to opto-mechanical effects. Figure taken from Ref. [83].

Figure 4.4: Experimental (circles) and theoretical (squares) values for the pat-
tern length scale (in µm) as a function of the mirror distance. The theoretical
values are obtained from a model consisting of a thick Kerr slab with feedback
mirror (from Ref. [83]).
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difference between the model (which assumes no longitudinal de-

pendence of the field) and the experiment. The role of the medium

thickness has been partially addressed in Ref. [83], by studying a

thick Kerr slab with single-mirror feedback. This system extends

previous studies of counterpropagating instabilities in thick Kerr

media [117], accounting for the different boundary conditions due

to the mirror. A remarkable improvement with respect to the

thin-medium theory is found looking at the spatial scale of the

emerging patterns. The lowest unstable wavenumber obtained

from the thin-medium theory is in fact in qualitative agreement

with the observed values, but adding the medium thickness the

agreement is excellent, see Fig. 4.4.

Such thick-slab theory is also a promising candidate to solve an

open problem connected to our thin-medium theoretical model:

as the threshold intensity depends on the wavenumber q only via

the trigonometric expressions sin Θ (dispersion) and cos Θ (ab-

sorption), the minimum threshold of each ‘balloon’ is identical,

see Fig. 4.5. This is exactly the kind of situation envisaged by Mc-

Donald and coworkers [20, 19] in proposing fractal optical pattern

formation: as many (in principle infinitely many) spatial scales

enter the system at threshold, the resulting pattern is expected

to display fractal, scaleless features. As discussed in the next Sec-

tion this is indeed observed in our numerical simulations, and a

low-pass filter is always employed to cut out the higher balloons

(see Appendix C), which might appear to be arbitrary but is ob-

served experimentally. Hence the opto-mechanical nonlinearity

investigated in the previous Chapter for thin media realizes the

‘degenerate’ situation of Ref. [20, 19], with many balloons be-

coming unstable at the same threshold value. Whether this can

be observed experimentally in thin media is an open problem:
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Figure 4.5: On the left, ‘degeneracy’ of the thin-medium single-mirror system:
all the instability balloons have the same threshold in correspondence with the
critical values q2n = (4n + 1)q2c , n = 0, 1, 2, . . . . On the right, sketch of the
threshold curve for a thick Kerr slab with mirror feedback: a global minimum
can be identified, corresponding to the spatial scale of the emerging pattern.

opto-mechanical instabilities in cold atoms (or soft-matter sys-

tems) appear to be a viable option for the observation of such

phenomenon. Since no fractal structures are observed in thick-

medium experiments, however, we conclude that something is

missing in the thin-medium theory which has the ability to se-

lect the critical wavenumber. In the thick-slab theory, on the

other hand, the threshold is a continuous, undulating function

of the wavenumber q, and depending on the values of the pa-

rameters a global minimum for the threshold can be obtained for

some q. Hence the medium thickness is found to modify only ‘at

higher orders’ the quantitative predictions for the pattern scale

(see Fig. 4.4), but seems to offer a qualitatively new explanation

for the problem of wavenumber selection.

4.2.1 Fractal pattern formation

In the previous Section the problem of wavenumber ‘degeneracy’

in single-mirror setups was discussed. Assuming to be in the low-

saturation limit (without absorption), as the wavenumber q enters

the linear properties of the system only through the trigonometric

expressions sin Θ all the wavenumbers satisfying Θ = π/2 have

minimum threshold. This yields the family of critical wavenum-
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Figure 4.6: Numerical results from 1D simulations, with real-space distribu-
tions on the left and the corresponding spectra on the right. The upper panel
(a) shows the evolution of the density distribution starting the dynamics with
a low-pass spatial filter acting on the field. The stationary state obtained with
the filter is depicted in the first row. The filter is subsequently removed and
the density distribution is monitored after 0.01τ (second row) and 0.05τ (third
row). The lower panel (b) shows the backward intensity (first row) and the
density (second row) after τ , starting the dynamics without the filter. The
insets show the evaluation of the Hurst exponent H, see text. Dots are numer-
ical data, lines are first-order least-square fits: we find H ' 0.55 and H ' 0.77
for the intensity and density profiles, respectively (R2 > 0.98). The driving
intensity is 5% above threshold.
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Figure 4.7: Real-space density distribution evolving in time for a system driven
5% above threshold. The stationary state obtained with the filter is shown in
the upper left panel, followed by the states reached, with the filter removed,
after 0.02τ (upper right) and 0.04τ (lower left). The evidenced region the lower
left panel is magnified to show self-similarity (lower right).

bers

q2
n = (4n+ 1)q2

c n = 0, 1, 2, . . .

where qc = q0 =
√
πk0/2d, as derived in Chap. 2 and Sec. 3.2.

The experimental results suggest that a wavenumber selection is

actually operated by the system, which selects qc as the most un-

stable wavenumber. Theoretical analysis of a thick Kerr medium

indicates that the medium thickness might be the responsible for

this selection, but it remains an open question whether multiple

scales can be experimentally observed in thin media.

The works by McDonald and coworkers investigated the possibil-

ity of implementing ‘fractal’ patterns in Kerr media [20], both in

multimode cavities and single-mirror setups [19]. The main idea

underlying these works is to exploit the ‘internal-state’ Kerr non-
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linearity to encode a self-similar, scaleless structure in the Kerr

excitation, and complementary in a fractal profile for the optical

field. The wavenumber degeneracy, however, is obtained only if

the diffusion of the carriers is neglected [19]. Opto-mechanical

instabilities, on the other hand, ‘naturally’ support fractal pat-

tern formation, with self-similar structures encoded in the density

of the medium. As usual, since this feature can be obtained for

any kind of linear dielectric particles, the considerations made

here are not limited to cold atoms but might be applied to any

soft-matter context. To emphasize the generality of the results

presented below the notation is slightly changed with respect to

the rest of the thesis, and the density is denoted by %(x) instead

of n(x) (which is intended for cold-atom results). Also, writing

the diffusion constant as D = τ−1l2D the time and space coordi-

nates can be rescaled to τ and lD, these value being defined by

the specific physical system under analysis.

All the numerical simulations shown so far use a spatial filter

to cut all the spatial frequencies q2 > 3q2
c , so that only the

first instability balloon is selected. Removing the filter, how-

ever, single-mode patterns evolve first in multi-mode structures,

and eventually in scaleless, fractal profiles. Fig. (4.6a) shows a

one-dimensional example of this kind of dynamics for the viscous

single-mirror case (see Sec. 3.2). The power spectrum P (q) of the

density is used to monitor the emergence of multiple modes.

In order to classify these structures as fractals, one needs to eval-

uate some form of fractal dimension. Many definitions of such a

dimension exists [118], and the so-called rescaled range analysis is

used here. This consists in the following: first the dataset (1024

points in Fig (4.6a)) is divided into 2W intervals fk, each inter-
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val containing at least 8 points. The rescaled range is defined as

RSk = Rk/Sk, where Rk = max(fk)−min(fk) and Sk denotes the

standard deviation of fk. Given the average 〈RS〉 over all the 2W

intervals, the quantity E = log2 〈RS〉 is calculated. The Hurst

exponent H is defined as the slope of the E − W curve shown

in the insets of Fig. (4.6b): the values obtained are H ' 0.56

and H ' 0.77 for the backward intensity |B(x)|2 and the density

%(x), respectively. The Hurst exponent is connected to the frac-

tal dimension D as D = 2 − H, which gives a fractal dimension

1 < D < 2. This indicates that the structures obtained from

our numerical simulations are indeed fractal self-similar objects.

Remarkably, such complex dynamics is obtained with a relatively

small amount of driving: the injected intensity id only 5% above

threshold.

Fig. (4.7) shows the results of 2D simulations for the same driving

as Fig. (4.6) (5% above threshold): here hexagons are obtained

as a result of single-mode spontaneous symmetry breaking, as al-

ready found in Sec. 3.2.2. After the filter is removed, reshaping of

the hexagonal pattern is observed first, followed by an increasing

level of details as an increasing number of spatial modes enters

the system.

4.3 Longitudinal effects

It has been stressed in Chapters 2 and 3 that the theoretical

analysis presented here accounts only for the spatial dimensions

x = (x, y) transverse to the propagation of the pump beam.

The only relevant ‘longitudinal’ effect considered was diffraction,

which in the paraxial limit is captured by the transverse Laplacian
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∂2
x + ∂2

y . As already discussed above, a further assumption con-

sisted in neglecting diffraction within the medium (thin medium

approximation), but a general theory can be developed for a thick

Kerr slab with feedback mirror, leading to spatial instabilities

which are qualitatively similar to the thin-medium case. How-

ever, there are longitudinal effects (involving the z coordinate)

which are not accounted for in the model, and it is the aim of

this Section to briefly discuss them.

The first effect is the the pushing of the cloud due to the radiation

pressure exerted by the pump beam. As discussed in Sec. 1.1, an

optical beam illuminating the cloud from the side will result in a

force (assuming the atoms at rest)

frad =
~Γ

2

s

1 + s
k0 k0 =

2π

λ0
ẑ

In the experimental setup discussed above, the D2 line of 87Rb

at λ0 = 780.27 nm is exploited, characterized by a lifetime Γ−1 =

27 ns and atom mass M = 1.44 × 10−25 kg. Hence for a fairly

typical saturation value s = 0.4 one obtains frad ' 4.5 × 10−22 N

and a displacement of ∼ 0.15 cm after 1 ms (along ẑ). Typically,

the cloud will be a cm thick or so, and this displacement is non

negligible for experiments where the expected growth time for

the pattern is of several milliseconds. Indeed, this is a critical

point in favour of the single-mirror setup over the cavity arrange-

ment: in the single-mirror setup, in fact, radiation pressure is

balanced between the two counterpropagating beams. As the for-

ward pump beam is partially absorbed by the cloud, the retrore-

flected (backward) beam will balance only partially the pressure

from the pump, but this still leads to a more ‘balanced’ situa-

tion which can survive for longer times before pushing becomes

dominant. For the typical values of the experiment (OD = 150,
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δ = 7Γ), the forward beam is ∼ 50% absorbed by the cloud, and

still the observation of self-organization processes is obtained in

experimental runs lasting a few hundreds of microseconds. The

obvious solution to this is to reduce absorption from the cloud,

by increasing the light-atom detuning |δ| while keeping the pump

intensity fixed (or better, by decreasing s). As discussed in the

previous Chapters, the threshold for the saturation parameter s

stays constant for large |δ|, so that absorption (and radiation pres-

sure imbalance) can be virtually eliminated from the problem if

one works at low temperatures and large densities (see the thresh-

old expression (2.37)). One basically needs to find a compromise

between having a large growth rate (relatively high s) and having

negligible absorption (small s); naturally electronically-driven in-

stabilities are fast enough to overcome this issue, but the main

interest of this thesis is concerned with opto-mechanically driven

processes.

The ring cavity arrangement, on the other hand, seems to be much

more problematic from this point of view, because there is no

counterpropagating beam to balance radiation pressure. Again,

the only viable option is to work at low enough saturation param-

eters that a ‘long’ experiment can be performed before ‘blowing

the cloud away’. A possibility to achieve this consists in building

a very high-finesse cavity, which would enhance the cooperativity

and allows for very low thresholds. Again, lower threshold are

achieved by colder and denser clouds, as described by Eq. (3.20).

The reference for this situation is given by CARL [32, 33], where

millisecond-long experiments were successfully performed in ex-

tremely high-quality ring cavities. It comes as a natural question,

then, whether the ring cavity setup discussed in Sec. 3.1 would dis-

play CARL sub-wavelength, longitudinal instabilities rather than
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the large-size, transverse instabilities analyzed here. This possi-

bility cannot be excluded, but the counterpropagating beam spon-

taneously generated by the CARL process could be suppressed by

means of direction-dependent optical elements such as Faraday

isolators.

The second ‘longitudinal’ effect is related to the formation

of a standing wave within the cloud: as this is several wave-

length thick, for equally polarized forward and backward beams a

wavelength-scale pattern is expected for the atomic density along

the z direction. Moreover, it might seem that this longitudinal

bunching should be dominant over transverse effects as it occurs

at smaller scales, where dipole forces are stronger and the re-

quired time for bunching is smaller. However, the formation of

a standing wave inside the cloud does not seem to be necessary

for the self-organization process, as hexagonal pattern formation

has been observed also for orthogonally polarized forward and

backward beams, with both linear and circular polarization [83].

Moreover, the heating effect due to the pump (along the z direc-

tion) is expected to destroy any bunching along the propagation

axis, while only thermal dephasing occurs in the transverse direc-

tion. As the pump and retro-reflected beams are tuned on the

blue side of the resonance, in fact, no cooling forces are provided

along the optical axis, and the confinement in the standing wave

is not favoured. The observed timescales for the pattern growth

(Fig. (4.3B)) and decay (Fig. (4.2b)) indicate that transport pro-

cesses take place on the transverse length scale of Λ ∼ 100µm

and not on the wavelength scale. The detailed investigation of

these hypotheses will be the object of future studies.
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Summary and outlook

This thesis presented theoretical and numerical results related to

the study of symmetry-breaking, self-organizing instabilities in

cold atomic gases. The spontaneous emergence of spatial struc-

tures in the coupled light-atoms dynamics has been termed self-

structuring in this context, and differs from previous studies of

pattern-forming instabilities in optical systems in different as-

pects:

• In contrast with hot-atoms pattern formation, in this work

the motional degrees of freedom of the atoms is involved.

The internal-state degrees of freedom has also been taken

into account, but it was demonstrated that opto-mechanical

self-structuring instabilities are (at least in principle) inde-

pendent from internal-state-driven process.

• with respect to other spatial instabilities in cold-atoms set-

tings (such as CARL or cavity-pump setups), here the spa-

tial scale of the emerging structures in self-selected, and the

selection of a ‘critical’ spatial scale breaks a continuous sym-

metry. In two transverse dimensions, the orientation of the

pattern is also self-selected.

In Chap. 2 the situation of a cold atomic cloud left ‘free’ to inter-

act with the pump beam , with the molasses beams turned off, was

analysed for a single mirror feedback configuration. This resulted
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in what was termed ‘damping-free’ or viscousless self-structuring,

which was also investigated experimentally in Ref. [83] (see also

Chap. 4). In Chap. 2 it was analysed under what circumstances

a self-structuring instability can be observed in a sample of cold

two-level atoms, and particular emphasis was put on the low-

saturation limit where the atoms behave as linear dielectric par-

ticles (no internal-state nonlinearity). The low-saturation model

captures the fundamental physics of opto-mechanical self-structuring,

as the center-of-mass degrees of freedom are ‘isolated’ from the

internal-state response. Analytic results for the critical quantities

(growth rate, threshold power, threshold temperature, etcetera)

are also available in this limit, while additional information can

be obtained through numerical simulations. If the internal-state

dynamics is taken into account a more realistic model is obtained,

which agrees well with the experimental realisations. An impor-

tant consequence of the internal-state dynamics is the possibility

of realising ‘electronically-driven’ instabilities, where modulations

in the populations and coherences of the medium drive the pattern

formation process. The ‘competition’ or ‘cooperation’ of external

and internal degrees of freedom depending on the value of the

parameters was investigated.

Chap. 3 dealt with self-structuring in the presence of strong vis-

cous damping, physically to be provided by optical molasses. The

theoretical and numerical analysis was extended here to a ring

cavity arrangement, where the possibility of realising light-density

cavity solitons was investigated, see Sec. 3.3. The study of single

mirror systems is strongly reminiscent of viscosity-free arrange-

ments, and indeed all the results obtained in the linear regime

are identical. However, the interpretation of the temperature is
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different in this context, as it arises from stochastic noise and

is not given by the kinetic temperature. In addition, numerical

simulations are made less demanding by the fact that the velocity

distribution needs not be taken into account, and were extended

to two transverse dimensions.

In both Chap. 2 and 3 a simple theoretical argument was pre-

sented to connect single-mirror-feedback opto-mechanical self-struc-

turing to the Kuramoto model for synchronization. Such a con-

nection is perhaps not surprising, as the proposed setup effectively

realises an all-to-all, instantaneous coupling between the atoms of

the sample. Essentially the same considerations also apply to vis-

cous CARL [96].

Chap. 4 presented the experimental results contained in Ref. [83],

and discussed some ‘open’ questions such as that of wavenumber

selection and ‘fractal’ pattern formation, see Sec. 4.2.1.

In the Appendices the main derivations needed in the rest of

the thesis are presented, together with the discussion of the zero-

temperature limit of self-structuring. The study of such a ‘quan-

tum’ limit illuminates a new feature of self-structuring instabili-

ties, connecting them with the Dicke phase transition for superra-

diance. In the zero-temperature limit, in fact, off-axis sidebands

are spontaneously emitted in a superradiant Dicke-like transition,

and since the angle of emission is self-selected by the system this

Dicke-like phase transition also breaks a continuous U(1) symme-

try.

It is hoped that the work presented in this thesis will stimulate

future research in different directions. The first one could be the
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experimental observation of transverse self-organization in cold

atoms using a cavity arrangement. This would open up new pos-

sibilities for engineering complex and reconfigurable light-density

structures, and could be extended to other kind of dielectric parti-

cles (e.g. soft matter). Another line of work could instead extend

into the quantum regime, investigating the nature of the U(1)

Dicke phase transition underlying the self-structuring process. A

third possible line of research, which was only touched in this

thesis, regards the possibility of implementing fractal, scaleless

structures in optical systems. While alternative setups based on

Kerr nonlinearity were already proposed, self-structuring insta-

bilities involving the motional degrees of freedom of the medium

should in fact ‘natively’ support this possibility, at least in the

thin-medium limit.
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Appendices

Appendix A: Main derivations

This Appendix presents a more detailed derivation of some fun-

damental equations used within the thesis, namely the field wave

equation, the Maxwell-Bloch equations and the corresponding

steady-state, the collisionless Boltzmann equation (viscosity-free

case), and the Fokker-Planck/Smoluchowski equation (viscous

case).

Field wave equation

The starting point for the study of the dynamics of the opti-

cal field is given by the Maxwell equations for a non-magnetic

medium:

∇× E = −∂B
∂t

(1a)

∇× B = µ0
∂D
∂t

, (1b)

where D = ε0E + P with P the macroscopic polarization and E
(B) the electric (magnetic) field. Using the vectorial identity

∇×∇× f = ∇ (∇ · f)−∇2f
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the wave equation for the electric field is obtained as (c−2 = µ0ε0):

∇ (∇ · E) +
1

c2

∂2E
∂t2
−∇2E = −µ0

∂2P
∂t2

. (2)

Since the radiation under analysis comes from a laser source (as in

any nonlinear optical context), we make use of the Slowly Vary-

ing Envelope Approximation (SVEA) and expand the field and

polarization as [64]

E = E(x, t)ei(k0z−ω0t) + c.c. (3a)

P = N0

[
P(x, t)ei(k0z−ω0t) + c.c.

]
(3b)

where N0 is the density of the medium, k0 = 2π/λ0 the radi-

ation wavenumber and ω0 its frequency. This expansion essen-

tial factors out a monochromatic plane wave at frequency ω0 and

wavenumber k0 = ω0/c, emphasizing that the laser field behaves

as a slowly-changing plane wave. Mathematically, this idea is

captured by the fact that the ‘envelopes’ E and P vary in x and

t much more slowly than the exponential terms exp(i(k0z−ω0t)).

Hence the source term in Eq. (2) reads

−µ0
∂2P
∂t

= −µ0N0

[
P̈− 2iω0Ṗ− ω2

0P
]
ei(k0z−ω0t) + c.c ' (4)

' µ0ω
2
0N0

[
Pei(k0z−ω0t) + c.c.

]
, (5)

where the fact that ω0|Ṗ| � |P| was used, which is precisely the

SVEA assumption. The term

∇2E − 1

c2

∂2E
∂t2

.
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captures the free-space field dynamics, and again considering only

SVEA-surviving terms for the temporal derivative it reads{(
∂2
x + ∂2

y + ∂2
z

)
E +

ω2
0

c2

}
Eei(k0z−ω0t) ,

while the z-derivatives give

∂2
zEe

i(k0z−ω0t) =

[
∂2E

∂z2
+ 2ik0

∂E

∂z
− k2

0E

]
ei(k0z−ω0t) .

The k2
0 term exactly cancels the temporal derivative (k0 = ω0/c),

so that the wave equation (including the source term) reads(
∂2
x + ∂2

y + ∂2
z + 2ik0∂z

)
E = µ0ω

2
0N0P (6)

Making use of the paraxial approximation, the beam is assumed

to be wide enough to have a slow variation along z:∣∣∣∣∂2E

∂z2

∣∣∣∣� k0

∣∣∣∣∂E

∂z

∣∣∣∣ . (7)

The paraxial approximation thus requires any off-axis sideband

emitted by the system not to deviate too largely from the optical

axis. Laser beams typically satisfy this condition unless ‘extreme’

conditions are under study, such as extremely narrow solitonic

beams [119]. Using the condition (7) the wave equation (6) takes

the form
∂E

∂z
=

i

2k0
∇2
⊥E− iµ0ω

2
0

2k0
N0P . (8)

where ∇2
⊥ = ∂2

x + ∂2
y denotes the transverse Laplacian (note that

the symbol ⊥ is omitted in the rest of the thesis, where the only

relevant coordinates for the Laplacian are the transverse ones).

The ‘split-step’ structure that we used in the single-mirror setup

(Chap. 2 and Sec. 3.2) can be recognized in Eq. (8) : the field-

medium interaction is contained in the source term (P), while
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the free-space diffraction is described by the transverse Laplacian.

For purely dispersive interactions the polarization is real and the

source term gives rise to a phase shift, but no absorption.

Maxwell Bloch equations for two-level atoms

The next step involves the description of the medium, i.e. the mi-

croscopic interpretation of the polarization P. The Hamiltonian

for the system is H = H0+H1, where the interaction Hamiltonian

is given by the dipole energy: H1 = −E · P ≡ −eE · r (r being

the position operator). The internal state |ψ〉 of a two-level atom

evolves according to

i~
∂ |ψ〉
∂t

= (H0 +H1) |ψ〉 ,

and using a perturbative approach can be expanded as

|ψ〉 =
2∑
j=1

aj(t) |ψj〉 (9)

where |ψj〉 denotes unperturbed states, H0 |ψj〉 = Ej |ψj〉. The

Schrödinger equation thus reads

i~
2∑
j=1

ȧj |ψj〉 = H0

2∑
j=1

aj(t) |ψj〉 − E ·P
2∑
j=1

aj(t) |ψj〉 ,

so that taking the expectation value with 〈ψi| the dynamics for

the amplitudes ai(t) is obtained as (〈ψi|ψj〉 = δij):

ȧi(t) = −iωiai(t) +
i

~
E ·

2∑
j=1

Pijaj(t) , (10)

where ωi = Ei/~ and the dipole matrix is Pij = e 〈ψi|r|ψj〉. Pij is

symmetric and has only zeros on the diagonal (due to the parity
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of the wavefunctions) [64]:

Pij =

(
0 ~µdip

~µdip 0

)

Note that in this derivation the electric field was taken out of the

expectation integral, an assumption that goes under the name of

dipole approximation:

−e 〈ψi|E · r|ψj〉 = −eE · 〈ψi|r|ψj〉

The idea behind this approximation is that the scale of spatial

variation of the field is small compared to atomic size, so that

E can effectively be considered constant. This holds as long as

λ0 � a0, where a0 is a typical atomic size [64].

Eq. (10) can be used to obtain the dynamics of the density matrix

elements %ij = aia
∗
j :

%̇ij = −i(ωj − ωi)%ij +
i

~

2∑
l=1

Pil%lj −
i

~

2∑
l=1

P∗jl%il . (11)

Considering a linearly polarized field, say along êx (that is, E =

Eêx), any phase contained in the polarization vector can be dropped

on the off-diagonal matrix element %21, so that ~µdip points along

êx and can be taken real without loss of generality. Isolating

again the ‘plane-wave’ term as E → Ee−iω0t and recalling that

%12 = %∗21, the only independent equations for the density matrix

elements are

%̇21 = −i(ω2 − ω1)%21 +
i

~
Eµdip(%11 − %22)e

−iω0t (12a)

%̇11 =
i

~
Eµdip(%21 − %12) (12b)

%̇22 =
i

~
Eµdip(%12 − %21) . (12c)

171



It is convenient in the following to introduce in the above equa-

tions the atomic resonance ωat = ω2−ω1, the light-atom detuning

δ = ω0 − ωat and the population difference w = %11 − %22. The

macroscopic polarization is given by the expectation value of the

microscopic one :

Pe−iω0t = 〈er〉 = Tr(er%) = (µdip%21 + µdip%12)êx ,

so that the ‘macroscopic’ polarization P = P êx (source term in

the Maxwell equations) is linked to the ‘microscopic’ dynamics of

the internal state (described by Schrödinger equation) as

P = µdip%21e
iω0t (13)

Hence Eqs. (12) can be rewritten as

Ṗ = iδP + i
µ2

dip

~
Ew

ẇ = i
2

~
(E∗P − EP ∗) ,

where the rotating wave approximation was used in keeping only

terms with no e±iω0t variation. The idea behind this approxima-

tion is that rapidly oscillating terms in the Hamiltonian have zero

average and do not contribute to the dynamics [64].

The last step in this analysis consists in taking into account the

fact that the upper state is pumped and decays with a rate Γ (the

atomic linewidth); moreover, the coherence %21 ∝ P decays with

a rate Γ⊥ = Γ/2. This last relation comes from the fact that at

low temperatures collisional dephasing is negligible [58]. Hence

Ṗ = −Γ

2
(1− i∆)P + i

µ2
dip

~
Ew (15a)

ẇ = −Γ (w − 1) + i
2

~
(E∗P − EP ∗) , (15b)
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where as in the rest of the thesis the half-linewidth detuning

has been defined as ∆ = 2δ/Γ ≡ δ/Γ⊥. Losses and dephasing

terms can be introduced in a more rigorous way by studying the

Lindblad operators associated to the interaction between the two-

level system and the environment [120]. This derivation will not

be presented here, but the important remark is that assuming

a Markovian system-environment interaction (i.e. spontaneously

emitted photons are lost forever) the somewhat phenomenological

argument discussed here leads to the correct result.

Eqs. (15) are commonly named the Bloch equations, and describe

the dynamics of the populations (%11, %22) and coherences (%21,

%12) of the two-level atomic system driven by the optical field

E. The Bloch equations can be complemented by the field wave

equation (8) to form what goes under the name of Maxwell-Bloch

equations:

∂E

∂z
=

i

2k0
∇2
⊥E − i

µ0ω
2
0

2k0
N0P (16a)

Ṗ = −Γ

2
(1− i∆)P + i

µ2
dip

~
Ew (16b)

ẇ = −Γ (w − 1) + i
2

~
(E∗P − EP ∗) . (16c)

Consider now the steady-state solution of the system (16). A

result extensively used in the thesis, in fact, is the steady-state

value of the population difference, obtained under the assumption

that the internal-state dynamics is much faster than the dynam-

ics of all the other variables. Otherwise stated, it is assumed that

P and w evolve much faster than E and the atomic density. Note

that in this derivation the atomic density is assumed to be con-

stant, n = N0, but obviously the dynamics of the atomic density

is crucial in studying opto-mechanical instabilities. However, the
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motional degrees of freedom are the slowest to evolve, so that it

can be safely assumed that if P and w evolve much faster than E,

they also evolve much faster than n. Alternatively, one could re-

derive the wave equation by keeping derivatives ṅ, n̈ originating

from the source term ∂2
tP; however, these derivatives are small

and can be neglected. In conclusion, the fact that Γ is much

larger that any field timescale is exploited to set Ṗ = ẇ = 0:

P̄ =
2iµ2

dipEw̄

~Γ(1− i∆)

w̄ = 1 +
2i

~Γ

(
E∗P̄ − EP̄ ∗

)
=

= 1−
8µ2

dip

~2Γ2

w̄|E|2
1 + ∆2

which gives

w̄ =

(
1 +

8µ2
dip

~2Γ2

|E|2
1 + ∆2

)−1

≡ 1

1 + s
(17a)

P̄ =
2iµ2

dip

~Γ(1− i∆)

E

1 + s
. (17b)

Here the dimensionless saturation parameter has been introduced

as

s =
(ε0c/2)|E|2
Isat(1 + ∆2)

=
8µ2

dip

~2Γ2

|E|2
1 + ∆2

, (18)

which is extensively used in the thesis and parametrizes the effec-

tive strength of the radiation ‘perceived’ by the atomic system.

The saturation parameter is a fundamental quantity also in de-

scribing the center-of-mass dynamics: in order to connect with

the results of Sec. 1.1.1 we identify the Rabi frequency as (see

Eq. (1.9))

g = i
µdip

~
E ,
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so that the saturation parameter reads s = 8|g|2/[Γ2(1 + ∆)2] as

in Eq. (1.12).

From the above definitions the in-resonance optical density b0

can also be defined as follows: a weak field (inducing only linear

polarization effects) of amplitude E propagates through a sample

of two-level atoms of thickness L as

∂E

∂z
= −iµ0ω

2
0

2k0
N0P̄ = −µ0ω

2
0

k0
N0

µ2
dip(1 + i∆)

~Γ(1 + ∆2)
E .

Hence the transmitted fraction of the field amplitude is∣∣∣∣Eout

Ein

∣∣∣∣ = exp

(
−µ0ω

2
0

k0

A⊥N0µ
2
dipL

~Γ(1 + ∆2)

)
≡ exp

(
− b0

1 + ∆2

)
.

where A⊥ is the transverse size of the system (orthogonal to prop-

agation), and N0 is the density of the cloud (in m−3). This iden-

tifies the susceptibility of the cloud as

α0 =
b0

2L(1 + ∆2)
.

Collisionless Boltzmann (Vlasov) equation

In Chap. 2 the atomic dynamics has been modelled in term of a

collisionless Boltzmann equation for the phase-space distribution

f(x,v, t):

∂f

∂t
+ v · ∂f

∂x
+

fdip

M
· ∂f
∂v

= 0 .

In the following two alternative ways to derive this equation are

presented, and the corresponding approximations are discussed.

The first approach is quite straightforward: the total variation

of the phase space distribution in a small time increment dt is
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written as1

f(x,v, t)dxdv = f

(
x + vdt,v +

fdip

M
dt, t+ dt

)
dxdv ,

which follows from the Liouville’s theorem (phase space volumes

are conserved). The phase space distribution can be Taylor-

expanded to obtain

df

dt
≡ 1

dt

[
f

(
x + vdt,v +

F

M
dt, t+ dt

)
dxdv − f(x,v, t)

]
=

=
1

dt

(
∂f

∂t
dt+

∂f

∂x
· dx +

∂f

∂v
· v
)

=

=
∂f

∂t
+ v · ∂f

∂x
+

fdip

M
· ∂f
∂v

= 0 ,

where in the last step the relations dx = vdt and dv = fdip/Mdt

have been used. This last derivation assumes no variation of f

due to atom-atom collisions, i.e. all the force is due to the external

dipole force fdip. This force contains in fact the atomic positions

but only indirectly through the atom-light coupling, so that the

self-organized optical potential resulting from an opto-mechanical

instability essentially acts as an external one.

A second derivation of the collisionless Boltzmann equation can

be given starting from a ‘particle’ description of the Newton dy-

namics:

ẋj = vj

v̇j = fdip/M ,

where xj and vj are the positions and velocities of the atoms

labelled by the index j = 1, . . . , N . In the following the set of

1note that x and v denote transverse coordinates in the rest of the thesis, but the
argument presented here is general
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positions and velocities is denoted as q = {xj,vj}Nj=1. For large

N (typically N = 1010 in dense clouds) a numerical solutions of

the Newton equations is impractical, and one is interested in the

continuous probability distribution f(x,v, t). An ‘intermediate’

quantity can be introduced, named the Klimontovich distribution,

which allows for an exact rephrasing of the N -particle dynamics:

fK(x,v; q) =
1

N

N∑
j=1

δ(x− xj)δ(v − vj) (19)

The Klimontovich distribution can be used to extract ‘many-

body’ averages of any macroscopic quantity A:

〈A〉 =
1

N

N∑
j=1

a(xj,vj) =

∫
a(x,v)fK((x,v); q)dxdv .

In the sense of distributions, differentiating fK with respect to

time one finds (see Ref. [77])

∂fK
∂t

+ v · ∂fK
∂x

+
fdip

M
· ∂fK
∂v

= 0 , (20)

where the force should be considered as a macroscopic average in

the sense discussed above.

So far 6N ordinary differential equations were converted into a

single partial differential equation for fK , but the same informa-

tion is contained in both formulations and the task has not been

made easier by introducing the Klimontovich distribution. The

distribution fK is in fact highly irregular, see the definition (19),

and obtaining an exact solution for fK is hopeless. The Boltz-

mann equation is retrieved if one substitutes fK with a smooth

function on the phase space: fK → f . This is intuitively cor-

rect in the limit of large number of particles, but can be proved

formally [77] in the sense of the distributions, i.e. the distance
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between the probability measure associated to fK and the proba-

bility measure associated to f uniformly tends to zero as N →∞.

The Fokker-Planck/Smoluchowski equation

This Section presents the derivation of the density dynamical

equation for the viscous case, which was used in Chap. 3 and

reads
∂n

∂t
= Dσ∇ · [n∇ log(1 + s)] +D∇2n (21)

Here n = n(x, t) represents the dimensionless density variation

(its uniform value is scaled to n = 1), σ = ~δ/2kBT was intro-

duced in Eq. (3.8), and Udip = (~δ/2) log(1 + s) is the dipole

potential resulting from the optical field profile. Eq. (21) was

generically termed Fokker-Planck equation in Chap. 3, as it be-

longs to this broad class of equations, and can be derived in all

generality in statistical mechanics. The main assumption made

in Chap. 3 was the particular form of the relation between the

diffusion coefficient D, the viscous damping γ and the tempera-

ture T : Dγ = kBT . This constraint represents an instance of the

fluctuation-dissipation relation, and can be seen as a rephrasing

of the Einstein-Smoluchowski relation [121, 106]. In this context,

the Fokker-Planck equation (21) is also referred to as the Smolu-

chowski equation.

Suppose that some potential energy U acts on the system, gener-

ating a force f = −∇U . A particle (composing our atomic ‘fluid’)

responds by moving with velocity v = ζf . This assumption is

justified in our case because we assume strong damping, so that

M v̇ = −γv + f = 0 gives v = f/γ. The mobility ζ can thus be

defined as

ζ = γ−1 . (22)
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For a large number of particles described by a continuous distribu-

tion n(x, t) a drift-diffusion (continuity) equation can be written

in the form

∂n

∂t
+∇ · (jdrift + jdiff) = 0 ,

where the diffusion current is given by Fick’s law,

jdiff = −D∂n
∂x

and the drift current is given by

jdrift = nv = nζf = −1

γ
n
∂U

∂x
.

At equilibrium the solution of the Smoluchowski equation is given

by the Gibbs distribution:

neq(x) = N exp

(
− U

kBT

)
, (23)

where N ensures that the distribution is normalized. This is an

important point in numerical simulations, since the shape of U(x)

dynamically depends on n(x) and the normalization condition

introduces an additional nonlinearity (see Sec. 3.1.4). Deriving

the equilibrium distribution (23) with respect to x one has that

∂neq

∂x
= − 1

kBT

∂U

∂x
neq .

The mobility can found by requiring that the drift and diffusion

currents balance each other at equilibrium:

0 = jdrift + jdiff = −neqζ
∂U

∂x
−D∂neq

∂x
=

= −neqζ
∂U

∂x
+

D

kBT

∂U

∂x
neq
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which imposes the Einstein-Smoluchowski condition as

ζ =
1

γ
=

D

kBT
=⇒ Dγ = kBT . (24)

This result justifies invoking the fluctuation-dissipation theorem

in Eq. (3.6), and therefore validates using Eq. (21) through Chap. 3

of the thesis.
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Appendix B: Numerical methods

This Appendix presents and discusses the numerical methods em-

ployed in the simulations of Chap. 2 (viscosity-free case) and

Chap. 3 (viscous case).

Viscousless case

In Chap. 2 the collisionless Boltzmann equation was numerically

solved in one dimension,

∂f

∂t
+ v

∂f

∂x
+
fdip

M

∂f

∂v
= 0 , (25)

where fdip = −(~δ/2)∂x log(1 + s(x)) and s = |F |2 + |B|2 repre-

sents the total (forward+backward) intensity acting on the cloud.

As discussed in Sec. 2.5 time and space can be suitably rescaled

to be dimensionless, and it is assumed here that such scaling has

been performed. The backward (B) field is determined by prop-

agating the forward (F ) field through the cloud according to

∂F

∂z
= −α0(1− i∆)wnF (26)

where w = 1/(1 +s) is the steady-state population difference and

n(x, t) =

∫ +∞

−∞
dv f(x, v, t)

is the atomic density.

The numerical scheme involves the following steps:

• set the initial condition for B and w. If absorption is con-

sidered (i.e. outside the low-saturation regime) this requires

a zero-finding routine, see Sec. 2.2. The initial condition

for f is a spatially homogeneous Maxwell-Boltzmann distri-

bution with a width determined by the temperature, vth =
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√
kBT/M .

• propagate the forward field, simply imposing phase shift and

absorption as dictated by Eq. (26)

• diffract the forward field F to the mirror and back to obtain

B: this is done by moving to Fourier space (with the aid

of the Fortran libfftw libraries [122]), phase-shifting each

mode by Θ = Θ(q) (see Eq. (2.14)) and Fourier-transforming

back in the x-space. A low-pass filter is employed to cut high

spatial frequencies and avoid ‘fractal’ pattern formation, see

Sec. 4.2.1. This filter typically sets to zero all the modes

with frequency q2 > 3q2
c , qc being the critical wavenumber

determined by linear analysis (in the low-saturation regime)

• calculate s = |F |2 + |B|2, its gradients and solve the Boltz-

mann equation (25) for a time step

• iterate steps 2 to 4

The critical point of this scheme naturally consists in solving the

Boltzmann equation (25) for a time step; in this thesis the tech-

niques introduced by Cheng and Knorr in [123] for plasma sys-

tems are adapted to our cold-atom situation. The main idea is

that rather than solving Eq. (26) for a whole time step ∆t the

problem is split into two advection problems for a half time step

each:

∂f

∂t
+ v

∂f

∂x
= 0 (‘proper’ advection)

∂f

∂t
+
fdip

M

∂f

∂v
= 0 (‘velocity’ advection)
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The solutions to these two equations are known, and are given by

simple shifts along the x and v axes:

f(x, v, t+ ∆t) = f(x− v∆t, v, t)

f(x, v, t+ ∆t) = f(x, v − fdip/M∆t, t)

An important point is that the shift xp → x̄p = xp − v∆t (for

any given v) will produce a spatial point which is not in the origi-

nal mesh grid, and therefore one needs to interpolate the force to

find fdip at x̄p. Essentially this technique reduces the problem of

solving the Boltzmann equation into a series of successive interpo-

lations. To demonstrate that this indeed approximates properly

the solution of our problem suppose that these interpolations can

be performed to some order in ∆x, ∆v. Defining A(x) = fdip/M

and calling fn the distribution function at the n-th time step,

the ‘double-advection’ routine described above implements the

following steps:

f ∗(x, v) = fn(x− v∆t/2, v) (27a)

f ∗∗(x, v) = f ∗(x, v − A(x)∆t) (27b)

fn+1(x, v) = f ∗∗(x− v∆t/2, v) (27c)

These shifts are written here for generic for x and v, but are

applied to the mesh points in the numerical code. Substituting

the second and the first equations into the last one one finds that

fn+1(x, v) = fn(x−∆t(v − 1
2A(x̄)∆t), v − A(x)∆t) ,

where x̄ = x − v∆t. On the other hand, expanding this result

the corresponding characteristics (curves of constant f) are given
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by [123]

x(t) = x(t+ ∆t)−∆t
[
v(t+ ∆t)− 1

2A(x̄, t+ ∆t/2)∆t
]

v(t) = v(t+ ∆t)−∆tA(x̄, t+ ∆t/2)

which in the continuous limit simply read

ẋ = v (28a)

v̇ = A(x(t), t) , (28b)

A being calculated after the first shift along x (i.e. from f ∗).

Since the shift along the v axis leaves the density (and there-

fore A) unaffected, A(x̄, t+ ∆t/2) can be approximated by A(x−
v∆t/2, t+∆t/2). The point is that as the characteristic equations

for the approximated system reproduce the ‘correct’ characteris-

tic equations (28), and therefore to the Boltzmann dynamics (25),

the scheme (27) correctly approximates the Boltzmann solution2.

With a view to the practical implementation of this routine, note

that a half-shift in x is followed by another half-shift along x,

so that effectively whole-step shifts along x and v alternate in a

split-step fashion.

So far it was demonstrated that the scheme (27) correctly approx-

imates the Boltzmann equation, because it generates the same

characteristics. However, one needs to interpolate the force term

A(x̄) in points x̄ = x−v∆t which not necessarily fall on the mesh

grid. It is convenient (but not necessary) that vmax∆t ≤ ∆x,

where vmax is the maximum value of the velocity on the grid,

−vmax ≤ vj ≤ vmax. Typically the maximum velocity is set to

vmax = 6vth in the simulations, see Sec. 2.5.

2i.e. this scheme is consistent
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A spline interpolation method [123, 85] has been implemented in

the simulations, which has the advantage of a computational time

which scales linearly in the number of grid points. The numerical

code uses 4 processors in parallel using the openmp libraries [124]

to further reduce computational time. Any interpolated value

f(xp + ∆), where xp is a grid point and ∆ = δ∆x with 0 ≤ δ ≤ 1

can be expressed by a combination of the grid values fp and its

derivatives gi as [123]

f̄p = f(xp + ∆) =
[
gpδ(1− δ)2 − gp+1(1− δ)δ2

]
∆x+

+ fp(1− δ)2(1 + 2δ) + fp+1δ
2 [1 + 2(1− δ)] ,

where

gp−1 + 4gp + gp+1 =
3

∆x
(fp+1 − fp−1) .

This last equation identifies a tridiagonal linear system; since pe-

riodic boundary conditions are used this is supplemented by extra

elements at the top-right and bottom-left of the system matrix . A

Sherman-Morrison routine [85] has been implemented to solve this

linear problem, together with the DGTSV (real, double precision)

tridiagonal solver provided by the Fortran lapack libraries [125].

Periodic boundary conditions are then implemented also for fp,

i.e. fN+1 = f1 and f0 = fN .

In calculating the field phase shift one needs to use the density

n(x), obtained integrating f(x, v) over the entire velocity space.

This integral is calculated over the range (−vmax, vmax) via the

Simpson method [85]. Moreover, the Simpson method is also

used to normalize the density distribution at each time step. We

also verified that increasing the number of grid points and/or in-

creasing the time step, the results are unchanged if the condition
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vmax∆t ≤ ∆x is not fulfilled, but very large values of ∆t typically

lead to blow-ups and numerical instabilities. For ‘purely opto-

mechanical’ simulations (no internal state involved), a time step

in the microsecond range for a millisecond long simulation amply

ensures the stability of the routine.

Viscous case

This Section discusses the numerical methods employed for the

viscous simulations of Chap. 3. Different methods are used for

the cavity system, Sec. 3.1 and Sec. 3.3, and the damped single-

mirror system, Sec. 3.2.

For the cavity simulations the problem consists in solving the

coupled equations (in two dimensions and dimensionless units)

∂E

∂t
= −(1 + iθ)E + Ain − iC∆nE + i∇2E (29a)

∂n

∂t
= D̄σ∇ · [n∇s] + D̄∇2n , (29b)

where s = |E|2 denotes the intracavity intensity. As discussed in

Sec. 3.1.4 only the low-saturation limit is considered here, with

the goal of finding the stationary state of the system. The equi-

librium density is given by the Gibbs distribution (see Eq. (3.22))

neq =
exp {−σs(x)}∫
exp {−σs(x)} dx ,

which can be plugged into the dynamics of E to have a Lugiato-

Lefever-like [6] nonlinear equation of the field. This is solved

using a finite-difference Crank Nicholson method [85], which has

the advantage of being accurate to second order but asks only for

first-order time differences (and hence for only two values of the

function to be kept in memory at each step). The basic principles
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of the Crank Nicholson is the following: given an equation in the

form

∂f

∂t
= F [f ] ,

for a one-dimensional function f(x, t), limiting to the mesh points

fni = f(xi, tn) the system is written as

fn+1
i − fni

∆t
=

1

2
F
[
fn+1
i

]
+

+
1

2
F [fni ] .

Note that this essentially accounts for a weighted average (with

weights 1/2) of the forward and backward Euler methods. The

Crank Nicholson comes with the advantage in terms of stability of

the backward Euler method [85], but also with the disadvantage

of having an implicit nonlinear system for fn+1
i . However, one

can proceed by approximating the nonlinear term coming from

the nn+1
eq ∝ exp(−σ|En+1|2) ' exp(−σ|En|2), so that a linear sys-

tem for En+1 is obtained. Since the spatial gradients are given by

the transverse Laplacian associated to diffraction, up to second

order in ∆x the system is in tridiagonal form. Adding the extra

top-right and bottom-left values due to periodic boundary con-

ditions the problem can be solved using the Sherman-Morrison

routine [85], with the help of the tridiagonal solver ZGTSV (com-

plex, double precision) implemented in the Fortran lapack li-

braries [125]. This solves the one-dimensional problem, and can

be extended to two transverse dimensions by updating for half

a time step taking the gradient along the x direction, and using

this intermediate solution to update for another half time step

along the y direction. This is correct to order ∆x2, ∆y2, as the

one-dimensional Crank Nicholson scheme.
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An alternative approach to the problem which has been used for

the simulations regarding opto-mechanical cavity solitons, Sec. 3.3,

consists in a standard split-step routine. In this case the field

equation (with the nonlinear term neq) is split in two parts:

∂E

∂t
= −(1 + iθ)E + Ain − iC∆neqE+

+ i∇2E .

The first line (which has no spatial operators, and hence is a stan-

dard o.d.e.) is solved by a second-order Runge Kutta routine [85],

while the second line is simple diffraction and can be solved ex-

actly in Fourier space. Numerical simulations rely on the libfftw

libraries [122] for the Fourier transform. This was found to give

similar results as the Crank Nicholson method, both in terms of

speed and stationary states.

A Crank Nicholson approach has been followed for the simula-

tions of the damped single-mirror system, Sec. 3.2. As discussed

in Sec. 3.2.2, in fact, here the dynamics of the density is followed

in time, without resorting to the Gibbs state ‘trick’ to obtain the

stationary state. This allows, for instance, to distinguish between

density driven instabilities and electronically-driven ones.

In this case a Crank Nicholson routine with periodic boundary

conditions was implemented for the real-valued array ni, solv-

ing the resulting tridiagonal system (diffusion again gives only

second-neighbour finite-difference gradients) with periodic bound-

ary conditions via a Sherman-Morrison routine [85]. The tridi-

agonal solver DGTSV (real, double precision) from the lapack

libraries [125] was used. The field is then phase-shifted and

diffracted as in the viscousless case discussed in the previous Sec-
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tion. As in the viscousless single-mirror simulations one needs to

normalize the density distribution at each time step: the normal-

ization integral is calculated by a Simpson integration method [85].
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Appendix C: The zero-temperature limit. Self-

structuring as a phase transition

Self-organizing transitions due to cavity-mediated interactions [26]

received a notable attention in recent years, partly because a sim-

ple and insightful interpretation can be given in terms of phase

transitions in Condensed Matter models. In the limit of ultra-

cold gases, the self-organizing instability obtained in transversely

pumped cavities [39, 41, 42] can in fact be interpreted in term of

a Dicke model [126]. The breaking of a discrete Z2 symmetry in

the Dicke phase transition is obtained as initial fluctuations se-

lect whether the atoms will bunch in the ‘even’ or ‘odd’ potential

wells. These experiments are reviewed in Ref. [26], and provided

an important advancement in a fascinating field of modern re-

search, namely the study of Condensed Matter models in highly

tunable and controllable atom-optical systems. In term of dy-

namical instabilities, the same qualitative features are found for

a thermal cloud [127] (and indeed the original treatment [38] dealt

with thermal atoms), but the Dicke dynamics is found in the limit

of ultracold atoms, T → 0 [43].

It appears therefore quite natural to ask whether a ‘Condensed

Matter’ description can be given of the self-structuring instabil-

ities analyzed in this thesis. Indeed, the answer is that such an

interpretation can be given, and that the Dicke model again cap-

tures the fundamental physics of the transition − at least at zero

temperature. However, since a continuous symmetry breaking is

obtained in correspondence with transverse self-structuring insta-

bilities a U(1) symmetry is broken, and the corresponding phase

transition is referred to as a U(1) Dicke phase transition. The

analysis presented here will focus on the physically simplest and

190



Ωp

+q

−q

L

R
+q

−q

x

z

(a)

d
refractive index

modulation

phase
modulation

amplitude
modulation

diffraction

dipole
forces

(b)

Figure 8: Sketch of the single-mirror scheme. A plane-wave beam of Rabi
frequency Ωp illuminates an elongated BEC from the side, is transmitted and
retroreflected by a mirror placed at distance d. The critical wavenumber |q|
is selected by the mirror distance, as phase modulations with period 2π/|q|
are fully converted into amplitude modulations. A continuous symmetry is
broken in correspondence with the spontaneous self-organization of the gas,
which scatters off-axis sideband at wavenumber k = ±q.

most insightful case, that of a single-mirror setup in the low-

saturation regime (see Sec. 2.3). The single-mirror setup is chosen

also because it is of immediate interest, as experimental realiza-

tions are available [83].

The following analysis closely follows the original work by Nagy

et al. [43] for the transversely pumped cavity case, the important

differences lying in the different conservation laws. An ultracold

gas at T = 0 is considered, which is physically obtained with

Bose-Einstein condensates (BECs). However, it is important to

note that Bose-Einstein condensation is not a ‘requirement’ for

the theory presented here: the Dicke and the BEC transitions are

of different nature, and a Dicke transition can be obtained above

the condensation point. The reader is referred to Ref. [128] for a

field-theoretical analysis of the interplay between the two transi-

tions.

Consider a zero-temperature Bose-Einstein condensate formed by

N atoms of mass M . The gas is elongated along the x̂ axis (L

being its transverse size), and interacts with a monochromatic
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plane-wave pump beam of Rabi frequency Ωp travelling along

ẑ. The pump beam is transmitted by the condensate, and then

retro-reflected by a mirror of reflectivity R = 1 placed at a dis-

tance d (see Fig. 8a). The pump frequency ω0 is considered to be

largely detuned from the optical resonance ωat, so that the atomic

excited state can be adiabatically eliminated. The Hamiltonian

describing the interaction is (~ = 1):

H =
N∑
i=1

p2
i

2m
+ ω0

∑
k

a†kak + U0

N∑
i=1

E∗(xi)E(xi) , (30)

where E(x) represents the amplitude of the (adimensional) elec-

tric field and the last term accounts for dispersive dipole forces.

The strength of atom-light interaction is parametrized by U0 =

g2
0/δ, where g0 is the single-photon Rabi frequency and δ = ω0 −
ωat. The bosonic operators a†k (ak) describe creation (annihila-

tion) of a photon at transverse wavenumber k, k = 0 identifying

the spatially homogeneous (on-axis) mode. Note also that we ne-

glect atomic motion along the ẑ axis, and atom-atom interactions

in the condensate.

Transverse self-structuring is triggered by the spontaneous gener-

ation of optical off-axis sidebands at k 6= 0. The resulting density

grating (period Λ = 2π/q) then scatters the off-axis sidebands at

wavenumber q. The critical (most unstable) wavenumber is here

denoted by q, and for purely dispersive interactions is given by

q2 = πk0/2d, where k0 is the radiation wavenumber, see [5] and

Sec. 2.3.

The analysis presented in Chap. 2 dealt with thermal gases with a

continuous velocity distribution, its spread determining the tem-

perature of the gas. On the other hand, in the ultracold limit ana-

lyzed here the discrete motional states of the gas can be resolved.
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Assuming to be close to the critical point, thus, the Fourier ex-

pansion of the field can be truncated to only two modes (plus the

contribution from the homogeneous pump),

E(x) = η + a0 + aq exp(iqx) .

Correspondingly, the atomic wave ψ(x) will be in the form

ψ(x) = L−1/2 (b0 + bq exp(iqx)] , ,

the two momentum states identified by k = 0 and k = q forming

a closed two-level system: b†0b0 + b†qbq = N . The many-particles

Hamiltonian then reads

H = ω0

∑
k

a†kak +

∫ L/2

−L/2
dxψ†(x)

[
− 1

2m

∂2

∂x2
+ U0E

∗E

]
ψ(x) =

= ω̄a†0a0 +
√
Ny(a†0 + a0)+

+ ω̄a†qaq + ωRb
†
qbq + y

(
a†qb
†
0bq + aqb

†
qb0

)
/
√
N+

+ u0

(
a†0aqb

†
qb0 + a†qa0b

†
0bq

)
/N (31)

where the recoil frequency has been defined as ωR = q2/2m, and

as in Ref. [43] the quantities u0 = NU0, y =
√
NΩpg0/δ and

ω̄ = ω0 + u0 have been introduced. Importantly, these quantities

are kept constant in the thermodynamic limit N →∞, V →∞,

N/V = const. It is important to remark that the modal expan-

sion has been truncated here to only two modes, but at the critical

point also perturbations at k = −q are unstable. This point will

be reconsidered in the following, for the moment it suffices to say

that this simple two-modes theory is already able to capture the

essential features of the transition.

Before proceeding in the analysis of the Hamiltonian (31), con-
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sider first the k = 0 mode. Since this mode is pumped by the

classical amplitude y, the mode a0 is described by a coherent state

of amplitude α0, and can be formally substituted as a0 →
√
Nα0

(the
√
N ensuring that the classical Hamiltonian is extensive in

the number of particles). A representation of the angular mo-

mentum can be given by introducing the raising, lowering and

population difference operators as:

S+ = b†qb0

S− = b†0bq

Sz = (b†qbq − b†0b0)/2 .

The Hamiltonian (31) then reads:

H = ω̄a†qaq + ωRSz + y [1 + u0α0]
a†qS

− + aqS
+

√
N

(32)

The last step consists in invoking the Holstein-Primakoff trans-

formation to define bosonic operators γ, γ† such that

S+ = γ†
√
N − γ†γ '

√
Nγ†

S− =
√
N − γ†γγ '

√
Nγ

Sz = γ†γ −N/2 .

The approximations taken above hold in the thermodynamic limit

and for small excitations, γ†γ � N . The Hamiltonian (32) then

transforms as

H = ω̄a†qaq + ωRγ
†γ + y [1 + u0α0]

(
a†qγ + aqγ

†) , (33)

which is a U(1) Dicke Hamiltonian describing the interaction of

the field ‘sideband’ mode with the atomic motional two-level sys-

tem. The Hamiltonian (33) presents a phase transition at the
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critical point yeff =
√
ω̄ωR. The effective coupling is given by

yeff = y + u0α0, where in general α0 depends from y. In corre-

spondence with the critical point, a mean-field analysis (detailed

below) shows that α0 = −y/ω̄. Substituting this value into the

expression for the critical point, thus, the critical point is found as

yc = [ωRω̄/(1 − u0/ωc)
2]1/2. Below the critical point, y ≤ yc, the

ground state of (33) is characterized by 〈a†qaq〉 = 〈γ†γ〉 = 0. This

physically corresponds to a homogeneous optical profile E(x) =

E0 and a spatially homogeneous condensate. Above the critical

point, the ground state is characterized by a non-zero number of

photons being emitted into the sideband, 〈a†qaq〉 ∼ (y−yc)
1/2, and

correspondingly by a non-zero occupation of the higher momen-

tum state, 〈γ†γ〉 ∼ 1 − (yc/y)2 [129]. In the x-space, this zero-

temperature transition thus corresponds to the self-amplification

(from quantum fluctuations) of cosine-modulated optical fields

and atomic profiles, essentially realizing the one-dimensional ana-

logue of the observations presented in [83].

With respect to the well-known Dicke phase transition in cavity-

pump setups, an important difference of the single-mirror transi-

tion is encoded in the conservation laws of the system. The pres-

ence of a standing-wave cavity, in fact, breaks the translational

symmetry and creates an ambiguity in the sign of the momentum.

On the other hand, no symmetry is explicitly broken (below the

critical point) for the single-mirror scheme, so that a non-zero

homogeneous field represents a valid solution for the system. The

phase transition breaks a continuous symmetry, selecting one of

the infinitely many transverse modes available. In this sense, the

single-mirror phase transition discussed here is closer in spirit to

the multi-mode proposal of Refs. [130, 131], where atomic in-

ternal degrees of freedom are involved. Moreover, translational
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invariance implies that momentum must be conserved, so that

counter-rotating terms a†qγ
† + aqγ do not enter the interaction

term of Eq. (33). In other words, the Hamiltonian possesses a

conserved quantity, namely the total excitation a†qaq + Sz. Given

N excitations at disposal for the system, they can be stored as

〈a†qaq〉 = s, 〈Sz〉 = r for any choice of r, s such that r + s = N .

The phase transition thus corresponds to the transition from a

state with s = 0, r = N to a state with s 6= 0, r = N − s.

So far the interaction of a single field mode at k = q with the

atomic momentum states at k = 0, q was discussed. This sim-

ple treatment revealed the basic nature of the interaction, en-

coded in the U(1) excitation-conserving Dicke Hamiltonian. How-

ever, since the selection of the critical wavenumber is operated by

diffraction, and the diffractive phase shift of each mode is pro-

portional to |k|2, modes at k = −q should also be taken into

account. Indeed, there are processes which conserve the total ex-

citation and should therefore be considered, such as the emission

of a photon at k = q accompanied by the creation of an atom at

momentum k = −q and the annihilation of an atom at k = 0. In

order to account for such processes, the field and atomic wave are

expanded as

E(x) = a0 + η + aq exp(iqx) + a−q exp(−iqx)

ψ(x) = L−1/2 [b0 + bq exp(iqx) + b−q exp(−iqx)] .
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Repeating the procedure which led to Eq. (31) the following

Hamiltonian is obtained:

H = 1
2

[
ω̄a†0a0 + y(a†0 + a0)

√
N
]

+ ω̄a†qaq + ωRb
†
qbq+

+ yN−1/2
[
a†q

(
b†0bq + b†−qb0

)
+ aq

(
b†0b−q + b†qb0

)]
+

+ u0N
−1
[
a†qa0

(
b†0bq + b†−qb0

)
+ a†0aq

(
b†0b−q + b†qb0

)]
+

+ u0N
−1a†−qaqb

†
qb−q + {q ↔ −q} (34)

where the last part is obtained by swapping the mode labels. To

investigate the phase transitions of (34) the following mean-field

technique can be used, as discussed in Ref. [43]. First the bosonic

operators are expanded as aj =
√
Nαj + ãj and bj =

√
Nβj + b̃j.

Successively the Hamiltonian is expanded up to the first order

in the operators ãj, b̃j. Setting the linear terms in the displaced

Hamiltonian to zero a set of six equations is obtained, one for each

mode. The problem can be further reduced by imposing that the

classical amplitudes satisfy αq = α∗−q and βq = β∗−q, reaching the

following system of equations:

ω̄α0 + y + u0

[
αqβ

∗
qβ0 + α∗qβ

∗
0βq+

+αqβ
∗
0β
∗
q + α∗qβ0βq

]
= 0

ω̄αq + u0αq (βqβ0 + β∗0βq) + yβ∗0βq + u0α
∗
qβ

2
q = 0

ωRβq + u0β0 (α∗0αq + αqα0) + yαqβ0 + u0β
∗
qα

2
q = 0 (35)

The homogeneous solution for the system corresponds to αq =

βq = 0, which identifies the on-axis amplitude (up to the critical

point) as α0 = −y/ω̄. This result is unchanged in the two-modes

theory described above, and was used in determining the critical

point − see the discussion after Eq. (33). This homogeneous so-

lution becomes unstable when the coupling exceeds the critical
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Figure 9: On the left, mean-field amplitude of the sideband at k = +q. On
the right, mean-field occupations of the ground state (mode at k = 0) and
the higher momentum state (mode at k = q) of the atomic wave. The total
excitation is given by 2|βq|2. Parameters are: ωR = 1, u0 = 20, ω0 = 100.

value yc = [ωRω̄/(1 − 2u0/ω̄)2]1/2. Note that the critical point

is identical to the one obtained from the two-modes Hamilto-

nian (33), apart from a numerical prefactor of 2 which appears

because there are now two ‘channels’ for the transition.

Fig. (9) shows the mean-field amplitudes |αq|2 and |βq|2 obtained

from the system (35), varying the coupling strength y across

the critical point. These represent respectively the intensity of

the off-axis sideband and the population of the motional excited

state (divided by the number of atoms N). At the critical point

the system emits a ‘macroscopic’ sideband mode of amplitude

|αq| 6= 0, self-amplified from quantum fluctuations (left panel of

Fig. (9)). The corresponding dipole forces impose a modulation

in the gas density, populating the excited motional state (right

panel of Fig. (9)).

The three-modes theory described by the Hamiltonian (34) leads

only to a different threshold compared to the simple, two-modes

theory of (33). As long as momentum is conserved, in fact, cre-

ating an atom/photon at momentum +q (b†q/a
†
q) or destroying

an atom/photon at k = −q (b−q/a−q) is equivalent. Essentially,

thus, the transition shown by the two-modes Hamiltonian is repli-

198



cated in the three-modes theory. The denomination ‘Dicke-model

Hamiltonian’ is here generalized to what is effectively a three-level

system interacting with two bosonic modes.

A natural question is now whether this theoretical framework

can be extended to a non-zero temperature, and used to de-

scribe the experiments presented in Ref. [83]. As a matter of

fact, the Dicke phase transition (with or without counter-rotating

terms) is a classical one, occurring at a non-zero critical temper-

ature [132, 133]. In Ref. [128] the interplay between the Dicke

phase transition and the BEC transition at T 6= 0 was investi-

gated, and this work may be extended also to the single-mirror

case. As the temperature is increased to the point where ωR �
kBT (as it is the case in Ref. [83]), however, the approximation of

discrete momentum states breaks down. Although we would ex-

pect a thermal gas to reproduce the phenomenology of the quan-

tum phase transition described here, the dynamics would not be

captured by the Hamiltonian (34). The same holds, for instance,

in the transversely pumped cavity setup − Ref. [127] realizing the

thermal transition and Ref. [39] the quantum one.

As a final remark, the analysis presented here shares a common

trait with other studies of self-organization in quantum systems,

e.g. cavity-pump studies [43] or quantum CARL works [134].

While the threshold for self-organization derived from a classical

theory (high T ) vanishes if T → 0, a non-zero threshold is found

if the full many-body nature of the problem is taken into account

at zero temperature. When analyzing the results from our clas-

sical theory (and particularly the temperature dependence of the

threshold, see Fig. (2.2c)), it should be kept in mind that these

results do not extend to the T → 0 limit: even if thermal fluctu-
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ations vanish, in fact, quantum fluctuations still yield a non-zero

threshold for the transition.
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