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Abstract 

The actual offshore wind farms are mainly located near the shore, only tens 

of kilometres offshore. The development of this sector is forecasting offshore 

wind farms over deeper seas. This fact is complicating and increasing the 

cost of a wind resource monitoring campaign by meteorological masts. 

Hence, the industry has been searching for cheaper technologies capable to 

measure wind vectors on deep seas, such as floating LIDAR or satellites. The 

European project NORSEWInD created wind atlases from satellite 

measurements for the North, Irish and Baltic Seas. After that project, the 

creation of software to undertake wind resource assessments by satellites 

was aimed by a new project named WindRes. This aim was the starting point 

of the present thesis. 

New software was created which merges knowledge from different fields, 

microwave remote sensing, satellite Earth Observation and wind resource 

assessment. The capabilities of the tool, and more important, the capabilities 

of satellites to match requirements by the wind industry were tested. In this 

initial analysis, advantages and disadvantages were identified as well as lack 

of knowledge. Two main points were concluded to need further research; the 

vertical extrapolation of wind vectors, and the creation of climatology from 

satellites measurements. 

In a second analysis, different extrapolation methods suggested in the 

literature were tested. These include methods to calculate aerodynamic 

surface roughness length (z0) and friction velocity, (𝑢∗). The logarithmic law, 

the law to calculate wind speed in the surface layer at different heights, is 

dependent on these two parameters, z0 and 𝑢∗. Since previous methodologies 

were found to mismatch in situ measurements, a new expression for z0 was 

developed. New equations were reached by application of knowledge in 

oceanography and boundary layer meteorology. Although a definitive 

expression was not reached, the high z0 values found under young waves 

conditions suggested the need of a complete logarithmic law for offshore 

environments. Results pointed the necessity to include the energy transfer 

from wind to the sea into the logarithmic law.       
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Preface 

Different space borne devices have been measuring the wind vector over the 

seas using different instruments with different characteristics for several 

decades. Satellite wind retrievals over the ocean surface are arranged in a 

plane parallel to the ocean surface representing wind speed (U) and direction 

at 10 meters above the sea surface under neutral stability conditions. Some 

researchers joined together several satellite datasets thereby trying to 

increase the number of measurements which was too low for a confident 

wind resource assessment. There would be a significant advantage if 

operational software to perform wind atlas and wind resource assessments 

by satellites for potential offshore wind farms could be developed. Hence, 

the aim of this analysis was to check the capability of satellite remote sensing 

to match the wind industry requirements, identify what is required to 

improve the quality of the data and to develop the tool and enhance models. 

To carry out the analysis a database was constructed from the combined data 

output of several satellites (SSM/I, Quikscat, ASCAT, and Sentinel-1) in order 

to solve the problem of data shortage. The database allowed offshore wind 

assessment to be carried out at any location where satellite surface wind 

measurement data were available. In this study output from the software are 

presented for the test areas of the Firth of Forth (Scotland) and the river 

mouth of Ems (Germany). Also data are compared with the offshore 

meteorological masts, Fino-1 and Egmond aan Zee located off of the coast of 

the Netherlands. However, for the data to be useful, it is necessary to 

extrapolate the wind vectors to turbine hub height which is usually around 

100 meters above sea level. The satellite extrapolated wind speed was 

calculated and the difference between the Fino-1 and the satellite data was 

found to be between 1% and 2.26% of the mean speed.  The logarithmic law 

was fitted to measured data at the mast allowing the vertical extrapolation to 

hub height. This law is a function of surface roughness (z0) and friction 

velocity (𝑢∗). It was found that the enhancement of surface roughness, 

atmospheric stability correction parameterization and short-term calculations 

could improve the accuracy of the wind resource assessment. Unlike onshore 

locations, z0 over the ocean is not constant. Many oceanographers have been 

parameterizing both, z0 and 𝑢∗, in order to study the atmosphere-sea 

interaction. Since there is no consensus, a review of methods for 𝑢∗ and z0 is 
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presented in this study. The capability to calculate wind profile was tested 

for different combinations of methods. Calculated 𝑢∗, z0 and U100 were 

compared with an offshore meteorological mast measurement at Egmond 

aan Zee. The best correlation was found for a wave slope dependent method 

with R2, the slope of linear regression and bias of 0.8, 0.99 and 0.20 

respectively. Nevertheless, 𝑢∗ and z0 were always underestimated when 

compared with in situ measurements. Low values of 𝑢∗ and z0 were found to 

compensate each other in the logarithmic law making possible a reasonable 

wind extrapolation even when both parameters are underestimated. None of 

the reviewed methods were capable of achieving high accuracy under all 

kinds of sea-atmosphere conditions. Furthermore, all studied methods 

include empirical coefficients in their algorithms which depended on the 

chosen datasets.  

Another goal of this study was the development of an algorithm capable of 

determining z0 under any condition. The main challenge was to parameterize 

a non-static surface. The approach used in this study was to adapt Lettau’s 

equation for z0 which is widely accepted for onshore locations. The proposed 

equation is a synergy between wind and sea parameters which does not 

include empirical coefficients. The method was validated by comparison 

with the wind profile measured by the meteorological mast Egmond aan Zee 

located in the North Sea. Results showed high accuracy where the correlation 

coefficient reached a value of 0.987. However, only 15% of the time, when 

z0>0.4, was the predicted z0 accurate enough to determine the wind speed 

profile successfully. The method has also been proved to achieve a 

remarkable accuracy when wave age, cp/𝑢∗, is under 5 in what are considered 

calm seas. The last analysis in this study was the parameterization of 

atmospheric stability correction. The aim was to include all observations 

including those under unstable, stable and neutral conditions. Then, z0 was 

calculated again by the logarithmic law including the stability correction 

parameter and compared with the proposed z0 method in this study. Low 

agreement was found under unstable conditions. Also, a complete lack of 

agreement was observed for stable conditions. This fact was caused by the 

stability correction. This parameter presented a difficulty of parameterization 

for the short-term basis of 50 minutes average. Fluctuations of different 

parameters are necessary to calculate, but a lack of frequency of 
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measurements led to miscalculated parameters, such as 𝑢∗ and vertical heat 

flux. Furthermore, 𝑢∗ observations by ultrasonic anemometers under neutral 

conditions indicated lower values than those calculated by the logarithmic 

law. 
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Nomenclature 

A  Area of the domain under study  [m2] 

ac  Wave crest amplitude   [m] 

aT  Wave trough amplitude   [m] 

C  Weibull’s scale parameter   [m/s] 

Cd  Drag coefficient    [dimensionless] 

Cd10  Drag coefficient at 10 metres  [dimensionless] 

cp  Phase speed     [m/s] 

cp/u*  Wave age     [dimensionless] 

cw  Composition of waves coefficient  [m] 

d  Depth      [m] 

ep  Partial pressure of water vapor  [kPa] 

es  Saturated vapor pressure   [kPa]  

g  Gravitational acceleration   [m/s2] 

H  Wave height     [m] 

Hs  Significant wave height   [m] 

Hs/Lp  Wave slope     [dimensionless] 

h*  Effective obstacle height   [m] 

k  Wavenumber    [m-1] 

kw  Weibull’s shape parameter   [dimensionless] 

L  Wavelength     [m] 

Lp  Wavelength at the peak of the spectrum [m] 

Lc  Length of the wave crest   [m] 

Ls  Mounin-Obukhov length   [m] 
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LT  Length of the wave trough   [m] 

n  Number of obstacles   [dimensionless] 

P  Pressure     [kPa] 

P0  Reference pressure    [kPa] 

r  Mixing ratio of unsaturated air  [g/g] 

RH  Relative humidity    [%] 

s  Silhouette (cross-section area)  [m2]  

t  Time      [s] 

T  Temperature     [K] 

Tp  Wave period     [s] 

u*  Friction velocity    [m/s] 

U  Wind speed     [m/s] 

Ū  Mean wind speed    [m/s] 

U(z)  Wind speed at height z   [m/s] 

U10  Wind speed at 10 metres   [m/s] 

U116  Wind speed of 116 metres   [m/s] 

w  Wave angular frequency   [s-1] 

WA  Side length of the squared domain [m] 

WW  Wave width     [m] 

x  Position along the wave propagation [m] 

z  Height     [m] 

zr  Reference height    [m] 

z0  Surface roughness length   [m] 
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α  Drag coefficient exponent   [dimensionless] 

αc  Charnock’s coefficient   [dimensionless] 

Є  (kH)/2      [dimensionless] 

θ  Incidence angle    [°] 

θv  Virtual potential temperature  [K] 

κ  von Karman constant   [dimensionless] 

μ  Sea surface elevation above still water level [m] 

ν  Kinematic viscosity of air   [m2/s] 

σ  Standard deviation 

χ  Fetch      [m] 

Ψs  Atmospheric stability correction parameter [dimensionless] 
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Acronyms 

CLS  Collecte Localisation Satellites 

CSA  Canadian Space Agency 

DB  Database 

DDM  Delay Doppler Mapping 

DMSP Defense Meteorological Satellite Programm 

DTU  Technical University of Denmark 

EEO  Edinburgh Earth Observatory 

EODA Earth Observation Data Access 

ESA  European Space Agency 

GIS  Geographic Information System  

GLONASS Global'naya Navigatsionnaya Sputnikovaya Sistema 

GNSS  Global Navigation Satellite System 

GPS  Global Positioning System 

HDDC High Data Density Cell 

IPCC  International Panel Climate Change 

ISRO  Indian Space Research Organisation 

JAXA  Japan Aerospace Exploration Agency 

LEO  Low Earth Orbit 

LIDAR Laser Imaging Detection and Ranging 

MABL Marine Atmospheric Boundary Layer  

MCP  Measure-Correlate-Predict 

NASA National Aeronautics and Space Administration 

NOAA National Oceanic and Atmospheric Administration 
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NWP  Numerical Weather Prediction 

RMSE  Root Mean Squared Error 

RSS  Remote Sensing Systems 

SAR  Synthetic Aperture Radar 

SODAR Sonic Detection and Ranging 

TRMM Tropical Rainfall Measuring Mission 

UAV  Unnamed Aerial Vehicle 
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1. Introduction 

Nowadays, the power mix in developed countries includes different types of 

renewable sources, [1]. One of the most mature technologies within the 

renewable sector is the wind power, [1]. Most of its production belongs to 

large wind turbines; medium and small turbines are marginal technologies, 

[1]. Furthermore, there are two types of wind farms; those located onshore 

and those offshore. Onshore wind farms are well spread along the world 

since this type of wind farm was the first to be developed, [1]. This source of 

electricity is now capable of creating an important percentage of the power 

mix, [1]. On the other hand, offshore wind farms are mostly located in the 

North Sea, [1]. The weather and bathymetry characteristics of the North Sea 

made this area of the world an optimal location, [1]. 

Offshore wind farms present some advantages and disadvantages. Overall, 

the wind resource in offshore environments is larger than onshore, [1]. 

However, the costs of offshore wind farms are also larger than onshore wind 

farms, [2]. The reason for an increment in costs is due to the foundations, 

offshore electrical substations, electrical cables to shore and larger wind 

turbines, [2]. Also the amount and cost of maintenance of the equipment is 

higher because of the corrosion and extreme weather conditions offshore, [2]. 

Hence, offshore wind projects require a higher investment than the 

equivalent onshore project. This fact represents a higher financial risk for the 

developer company. Hence, the wind resource over the area must be well 

parameterized. This concludes with the installation of a meteorological mast 

prior to the installation of any wind turbine. It is in this initial stage where 

companies assume the highest risk. Until a location has been proven to be an 

optimal location, there will not be any type of financial support made 

available from the banks, [3]. Furthermore, if the chosen location is studied 

and then found to be poor in wind resource, the developer will incur 

considerable losses. This point is important since a meteorological mast costs 

between £10 to £15 million to install and run, but an accurate wind resource 

assessment is crucial to a successful development, [3].   
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In order to reduce the financial risk during wind resource campaigns, the 

wind industry has been searching for alternatives, [2]. A possible source of 

extra wind measurements comes from Earth Observation. Remote sensing by 

satellites is still a field of active research, not only for wind retrievals but also 

for many environmental parameters. Although there is literature about wind 

retrievals by satellites, which is detailed in the following Chapters; there is 

no application specifically developed for the wind industry. The existence of 

such a tool could reduce the financial risk associated with an offshore wind 

resource campaign. However, although satellite data could reduce the risks 

associated with offshore resource assessment, this technique is not expected 

to replace in situ measurements. 

The present thesis was created in the framework of the WindRes. This project 

pursued the development and completion of operational software for wind 

resource assessment by satellites. The project was funded by the Satellite 

Applications Catapult and the Offshore Renewable Energy Catapult centres 

in the UK and was assisted by Oldbaum Services. The WindRes project was a 

continuation of a previous European project called NORSEWInD, [4]. This 

European project provided a dependable offshore wind atlas of the North, 

Irish and Baltic Seas. Furthermore, the project was undertaken with a 

partnership of 21 institutions or companies throughout Europe.    

1.1 Thesis objectives 

The research, which is contained in this thesis, was initiated for a one-year 

project, WindRes. This project was aimed to define a programme of work for 

translating previous basic EU FP7 funded research into a commercial 

operational tool for satellite-enabled offshore wind resource optimization. 

The fundamental methodology that was to be employed had been developed 

and verified under the EU FP7 project NORSEWInD. The key challenges to 

developing commercial exploitation of this satellite-enabled technology were 

identified as: 

 Translate NORSEWInD research into commercial, operational tool. 

 Develop key applications for offshore wind and demonstrate impact. 

 Demonstrate opportunities offered by satellite services in the Energy 

sector. 
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Following on from a Phase 1 Project that identified the willingness of 

international Partners, previously involved in NORSEWInD, to support the 

activity WindRes was to show how these challenges could be met, and a 

programme of work carried out that would: 

 Bring the capabilities of satellite remote sensing of wind resources to 

the offshore renewables industry. 

 Take the methodology developed under NORSEWInD and convert it 

into an operational tool that could be used by the offshore renewable 

industry. 

 Highlight the benefits of satellite remote sensing to the wider Energy 

sector, which could enable further commercial applications. 

 Achieve a full understanding of satellite remote sensing for wind 

measurements and in doing so identify the possibilities, advantages, 

and disadvantages of this technique for the wind industry.  

 The project was also to identify areas which required further research 

which might be required before deploying the final software package. 

After the end of the WindRes project and once the gaps in the knowledge 

were identified, research in these fields was undertaken. The objectives of the 

thesis were the improvement of wind retrievals by satellites and also to 

increase the satellite dataset’s capability to match the wind industry 

requirement. In order to do so, these were identified as the possible fields to 

extend the research: 

 Increase accuracy of satellite measurements. 

 Extrapolate satellite wind retrievals to different heights, since satellites 

measure the wind speed at 10 metres above the sea level. 

 Decrease the satellite data shortage problem. 

 Building climatology from satellite retrievals.  
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1.2 Thesis structure 

This chapter introduces the reader to the reasons for the research into wind 

retrievals from space and the thesis objectives.  

Chapter 2 is an explanation of the state of the art for both wind resource 

assessment and satellite remote sensing for wind measurements. The reason 

for this chapter is to introduce satellite remote sensing to the reader from 

within the energy sector and introduce readers familiar with satellite 

applications to wind resource assessment. Therefore, the chapter is just an 

introduction to both fields. More information and a deeper explanation of the 

topics can be found in the cited references. 

In Chapter 3, the development of the code is explained. It is mainly focused 

on how the data is processed. The chapter explains the different possibilities 

of the software.  

In Chapter 4 the first wind resource study of this thesis is explained. The first 

analysis was a test of the code as well as a method to evaluate the 

possibilities of satellite remote sensing for the wind industry. The results of 

this assessment highlighted areas where there was a lack of knowledge. 

Chapter 5 is an analysis of the different methods for surface roughness 

length and friction velocity parameterization. In the previous chapter, the 

lack of accuracy for both parameter methods was found. Results were also 

analyzed under different wave age, wave height and wind speed conditions. 

Chapter 6: This chapter includes the development of a new method for 

surface roughness length and drag coefficient parameterizations. However, 

the drag coefficient method was not tested since this was not included in the 

thesis objectives. On the other hand, the new surface roughness method was 

tested and proven to be relatively successful. As in the previous chapter, this 

new formulation was also analyzed under different conditions. 

Conclusions and recommendations for future work are contained in the last 

chapter of this thesis, Chapter 7. 

Only part of the work was made public before the materialization of this 

thesis. The code of the tool has been made open source and it is accessible 

online. Along with the code a user manual an installation specifications were 



5 

 

published. These correspond to most of the material from Chapter 3 and 

Appendix A. Furthermore, some results have been presented in the 

International Ocean Vector Winds Science Team meetings of 2016 and 2017. 

The exposed results correspond to results from Chapters 4 and 5. 

Although there is a will to publish the work in peer-reviewed journals, any 

article has been sent to journals. However the articles were written before the 

confection of this thesis. The three written articles correspond to Chapters 4, 

5 and 6. Finally, Chapters 2 and 3 correspond to the work and material from 

the WindRes project.    
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2. State of art 

2.1 Introduction 

The goal of this chapter is to be a literature review giving an overview of the 

state of the art for satellite mapping of offshore wind resource. Because of the 

possible different background of potential readers, wind resource or remote 

sensing, it is necessary to introduce offshore wind resource assessment and 

satellite microwave remote sensing technology separately.   

The literature on wind assessment and the use of satellites in wind 

engineering is reviewed in the first part of this chapter.  A description of the 

processes involved in the conventional wind resource assessment is 

included. Although this is not the goal of this thesis, non-specialized readers 

will need to know the basics of wind resource assessment.   

The use of satellite data for the wind industry is reviewed and the question 

of access to satellite data is addressed. The different types of satellite-

mounted instruments for wind measurement and some of the main missions 

using those instruments will be described. The basics for each instrument 

will be explained. However, it is not a deep explanation and some aspects are 

missing such as instrument design, principles of radar systems and signal 

processing. For a deeper insight into the technology, the reader is 

recommended to follow the cited references. 

A review of the previous work carried out in satellite based wind resource 

assessment is presented and a list of existing software to process wind 

retrievals provided. Also, there are a few lines about the work carried out by 

other research institutions. Finally, conclusions are drawn from this literature 

review including proposals for future research based on the gaps found in 

the published literature.  

2.2 Wind resource assessment review 

Wind resource assessment is the collection of technologies and analytical 

methods used to estimate how much energy will be available for a wind 

power plant over the course of its useful life. A realistic assessment of the 

energy production for a specific site is very important for the “bankability” 
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of a project. There are best practice guidelines to assess quality during the 

process of wind mapping, [5]. 

To provide the basis for an accurate estimate of energy production the wind 

resource must be characterized not only by the mean speed but also by 

variations in speed and direction in both time and space. 

Temporal variation can be divided into 4 categories: inter-annual (climate 

variability), annual (seasonal variation), diurnal (due to differential heating 

of the earth surface over 24hrs) and short-term (gust and turbulence).  

Spatial variation of the wind depends on the topographical and ground 

cover variations for a horizontal plane parallel to Earth’s surface. It also 

includes the vertical variation of the wind or wind shear [6]. 

A lot of research has been carried out in the area of wind resource assessment 

and a recent review from G.M. Joselin Herbert et al. [7] describes in detail the 

research and development carried out over the last decades in the area of not 

only wind resource assessment but also estimating and forecasting of wind 

energy production. However, the New York State Energy Research and 

Development Authority (NYSERDA) [8] has provided a more comprehensive 

overview of the wind resource assessment process with a detailed 

description of the analysis involved with the estimating wind form energy 

production. This chapter is intended to give guidance to professionals 

practitioners on the accepted methods of wind resource assessment for 

utility-scale wind farms. A summary of the processes involved is reported 

below. 

2.2.1 Wind resource assessment process 

Wind resource assessment is carried out in a different range of scales for 

both, time and space. Thus, and according to Sempreviva et al. [9], there are 

two differentiated steps: 

1. Regional mapping. Large-scale wind assessment to find out potential 

locations to place a wind farm. Nowadays it is common to consult a 

wind atlas or existing measurement and modeling approaches, [10]. 
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2. Micro-siting. This is a detailed wind assessment in specific areas, 

usually undertaken on-site by wind developers. NYSERDA has 

categorized the wind resource investigation for a targeted area in 6 

main stages. 

2.2.1.1 Wind monitoring 

The objective of a wind monitoring campaign is to obtain the best possible 

understanding of the wind resource across a project area. Actually, the 

measurement campaign could be conducted by different instrumentation: 

 The most traditional is a meteorological mast consisting of cup 

anemometers and wind vanes, to measure wind speed and wind 

direction respectively.  Other sensors for monitoring temperature, 

humidity, pressure and other parameters may also be included to 

determine the atmospheric stability and air density. 

 Sonic anemometers. This is a different type of anemometer based on 

the Doppler effect. It also can be installed on a meteorological mast 

and can give 3D vector information. 

 Remote sensing. 

o SODAR emits sound pulses to measure the backscattered part 

reflected from refraction index fluctuations in the atmosphere; 

this instrument can determine the wind profile.  

o LIDAR works in a similar way than SODAR but uses a laser 

instead of sound pulses. 

o Satellites, this is the newest remote sensing method in wind 

remote sensing which will be explained in section 2.3. 

 

Measurement parameters might include wind speed and direction, wind 

shear, turbulence intensity, pressure, humidity, and temperature.  Once the 

data from the monitoring system have been collected, the data can be 

validated. In this validation process, the completeness and the accuracy of 

the data are assessed and invalid or suspicious values are flagged within the 

data record. 



9 

 

2.2.1.2 Observed wind resource characterization 

A report summarising the observed wind resource is normally produced on 

a monthly, quarterly or annual basis as well as at the end of the monitoring 

program. Summary statistics in the report might include observed mean and 

annualized mean speeds, mean wind shear, air temperature and air density, 

humidity, turbulence intensity and wind power density. A wind speed 

frequency distribution chart and fitted Weibull curve, [11], help to establish 

how much energy the site might produce at a given wind speed, figure 2.1. A 

wind and energy rose indicates the directional distribution of the wind 

resource, which will strongly influence the turbine layout. 

 

Figure 2.1. Example of Weibull distribution (left) and wind rose(right). Source: [9] 

The probability of the wind speed having a value P(U), is given by Eq. 2.1. 

Where kw represents the shape parameter, C is the scale parameter and U is 

the wind speed.   

 
𝑃(𝑈) = (𝑘𝑤/𝐶) (𝑈/𝐶)(𝑘𝑤−1) e[−(𝑈/𝐶)𝑘𝑤  ]   (2.1) 

   

First, to calculate C, it is necessary to calculate mean wind speed, Ū, at a 

targeted height. Once the mean wind speed and standard deviation at hub 

height are known Weibull parameters are calculated using Equations 2.2 and 

2.3. Standard deviation is represented by σ. 

 
 𝐶 ≅ (2�̅�/𝜋)(1⁄2)   (2.2) 

𝑘𝑤 ≅ (𝜎/�̅�)(−1.086)  (2.3)  
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2.2.1.3 Hub height resource estimation 

It is known that wind speed increases with height, but it has been observed 

that the wind profile is different depending on the atmospheric stability and 

terrain profile, figure 2.2. Since the majority of field data are collected below 

the hub height of modern, large, wind turbines it is usually necessary to 

extrapolate the wind resource data to the turbine hub height.  

 

 
 

 

The most common method of extrapolating wind speeds to turbine hub 

height is through the logarithmic law, Eq. 2.4. This is based on the 

logarithmic equation containing a parameter linked to the height and density 

of elements surrounding the tower and the friction velocity. Because some of 

the parameters within the logarithmic law are difficult to measure, another 

approach to extrapolate the wind speed is recommended. The logarithmic 

law under neutral stability, Eq. 2.5, can be rewritten to exclude friction 

velocity, as shown in Eq. 2.6.  

 

𝑈(𝑧) = (
𝑢∗

𝜅
) [ln (

𝑧

𝑧0
) + Ψ𝑠 (

𝑧

𝐿𝑠
)]  (2.4) 

 

𝑈(𝑧) = (
𝑢∗

𝜅
) [ln (

𝑧

𝑧0
)]  (2.5) 

 

𝑈(𝑧) = 𝑈 (𝑧𝑟) [
ln(𝑧 𝑧0⁄ )

ln(𝑧𝑟 𝑧0⁄ )
]  (2.6) 

Figure 2.2. Wind profile on several terrains. Source [12] 

http://www.carbondescent.org.uk/blog/wp-content/uploads/2011/07/Figure-2.jpg
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Where U(z) represents the mean wind speed at height z, 𝑢∗ is the friction 

velocity, κ is the von Karman constant (usually 0.4), z0 is the aerodynamic 

surface roughness length, Ψs  is the atmospheric stability correction 

parameter and U(zr) the wind speed at reference height zr. After Eq.  2.5, the 

friction velocity and aerodynamic surface roughness length can be found 

from wind speed measurements, U1 and U2, at two different heights, z1 and 

z2, as shown in Equations 2.7 and 2.8. 

 

ln 𝑧0 =
𝑈1 ln 𝑧2−𝑈2 ln 𝑧1

𝑈1−𝑈2
   (2.7) 

𝑢∗ =
𝜅(𝑈2−𝑈1)

ln(𝑧2 𝑧1⁄ )
   (2.8) 

 

2.2.1.4 Climate adjustment process 

The uncertainty in the long-term mean wind speed on a year’s measurement 

is typically 3-5%, corresponding to around 5-10% of the mean wind plant 

production. Reducing this uncertainty is the primary goal of climate 

adjustment. The leading method for performing climate adjustment is the 

MCP method (Measure-Correlate-Predict) [13]. For an explanation of this 

method see figure 2.3. The observed winds at a target site are correlated with 

the observed wind recorded at a long-term reference, such as an airport 

weather station and, a relationship between them is established.  

The key assumption underlying all MCP methods is that the wind resource 

in the future will be similar to what it has been in the past, in other words, 

the wind climate is invariable. 
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Figure 2.3. Scheme of the technique of MCP. Source: [13] 

2.2.1.5 Wind flow modeling approach 

The main purpose of wind flow modeling is to estimate the wind resource at 

every potential wind turbine location so that the wind plant’s overall 

production can be calculated and its design can be optimized. In an ideal 

world, wind flow modeling would not be necessary. Wind measurements 

would be taken at every likely turbine location to estimate any possibility of 

significant error. However, for most projects, this would be an expensive 

proposition. Aside from estimating the variation in the wind resource across 

the project area, wind flow modeling must account for each turbine’s 

influence on the operation of other turbines, the so-called wake effect. 

There are several wind flow models in use by the wind industry today, 

which are based on a variety of numerical approaches.  The models fall into 4 

categories: 

- Mass consistent 
- Jackson Hunt 
- Computational fluid dynamics (CFD) 
- Mesoscale numerical weather prediction models (NWP) 
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The mass consistent flow model 

The model solves just one of the physical equations of motion, the governing 

mass conservation. The models predict stronger winds on hill and ridge tops 

and weaker winds in valleys. However, they cannot handle thermally-driven 

wind patterns, such as sea breezes and mountain-valley circulations, and 

flow separations on the Lee phenomena side of hills or mountains. 

Jackson-Hunt model 

The model solves the linearized form of the Navier-Stokes equations 

governing fluid flow. This model came into wide use when computing 

resources were limited. It runs fast while performing reasonably well where 

the wind is not significantly affected by steep slopes, flow separations, 

thermally driven flows, low-level jets and other dynamic and nonlinear 

phenomena, [14]. The most widely used Jackson-Hunt model in the wind 

industry is the model contained in the software WAsP, see section 2.4.2. This 

model proceeds in 2 stages: 

 The observed wind at a mast is used to derive the background wind 

field, which represents the wind resource that would exist in the 

absence of terrain. This background wind field is typically 

summarised in a file known as a wind atlas or library file.  

 The process is subsequently reversed using the background wind as 

an input to predict the wind profile at other points. WAsP also 

contains several modules that address various needs in wind flow 

modeling, including the ability to incorporate the effects of surface 

roughness changes and obstacles. However, it is recognized that 

WAsP is not equipped to handle complex terrain and ignores the 

effects of thermal stability and temperature gradients.  

CFD approach 

CFD models solve a complete form of the mass and momentum equations of 

motion known as the Reynolds-averaged Navier-Stokes, or RANS equations, 

[14]. The model is capable of simulating non-linear responses of the wind to 

steep terrain, such as flow separation and recirculation. Although CFD 

models have not always proven to be a significant improvement over other 

modeling technique, they nonetheless can provide useful information 
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concerning turbulence intensities, shear, direction shifts and other features of 

wind flow in complex terrain. However, CFD models do not usually take 

into account any circulations due to temperature gradients although this is 

theoretically possible. 

Mesoscale numerical weather prediction model  

The next step in sophistication is the Numerical Weather Prediction (NWP) 

model, [14]. The mesoscale model solves the Navier-Stokes equation and 

includes parameterization schemes for solar and infrared radiation, cloud 

microphysics and convection. Thus, it incorporates the dimensions of both 

energy and time and is capable of simulating such phenomena as thermally 

driven mesoscale circulations (sea breezes) and atmospheric stability or 

buoyancy. However, the model requires enormous computing power to run 

at the scales required for the assessment of wind projects. The typical model 

resolution for most mesoscale simulations is on the order of kilometers 

meaning a single grid cell is a kilometre across. It is impossible to obtain a 

detailed picture of the wind resource within a project area at such scale. One 

way around this problem is to couple mesoscale models with microscale 

model of some kind.  

2.2.1.6 Wind energy yield and Micro-sitting 

After the calculation of the wind resource over the targeted area, it is time to 

allocate wind turbines and calculate the future energy production. There is 

some software for that purpose which is specified in section 2.4.2. These will 

calculate the optimum location for a wind turbine according to wind 

resource in each point of the area according to orography, and avoid the 

wake effect of wind turbines. One example is shown in Fig. 2.4.  

In order to understand how this is calculated, and the total energy 

production per year forecast, it is necessary to know the power curve of the 

wind turbine. Different types of wind turbines will have different power 

curves. These are provided by the turbine manufacturers. The power curve 

will depend on the drivetrain, starting from blades and finishing in the 

applied generator. In Figure 2.5 there is an example power curve in red. 

Different power curves may have different cut-in and cut-out wind speeds. 

In Fig. 2.5, the wind turbine will reach its maximum power at 13 m/s.  



15 

 

 

Figure 2.4. Onshore micro-sitting using WAsP. Source: [15] 

The final step is to calculate the energy yield. To do this it is necessary to 

know the Weibull curve or probability density distribution of wind speed 

and the power curve of the wind turbine. Graphically, the energy produced 

will be the area below both curves. Figure 2.5 shows an example of such a 

curve. The maximum energy production will occur for 8 m/s wind 

conditions, since these are more frequent than 13 m/s when the maximum 

power is reached.  Even so, it is always necessary to calculate the future 

energy production numerically.  

2.2.1.7 Uncertainty in wind resource assessment 

Wind resource estimation should be accompanied by an estimation of the 

uncertainty or margin error. The uncertainty present in all wind resource 

estimates is primarily related to the following factors: wind speed 

measurements, historical climate adjustment, potential future climate 

deviations, wind shear and the spatial wind resource distribution. 
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Figure 2.5. The intersection between Weibull distribution and power curve. Source: [16] 

2.3 Satellite remote sensing for wind engineering review 

2.3.1 Background  

Satellite data are relatively new in wind engineering, but not in wind 

monitoring. In 1987, the first satellite on board the passive Special Sensor 

Microwave/Imager (SSM/I) was launched to deliver a continuous ocean wind 

speed time series [17]. This instrument has delivered wind data for more 

than 30 years. One of the disadvantages of the SSM/I is its use of passive 

microwave technology and can only provide time series on wind speed. A 

few years later, in 1991, the European Space Agency (ESA) launched a 

satellite equipped with an active microwave remote sensor capable of 

retrieving not only wind speed but also the wind vector. Since then several 

studies have been reported where satellite data have been used in wind 

resource estimation [18] to [34], some results are shown in section 2.4.4. In 

their review of methodologies for offshore wind resource assessment, 

Sempreviva et al. [9] details the various investigations involving satellite-

borne remote sensing for wind resource mapping in European seas. Recently 

another study, Hasager et al. [34], explains wind resource assessment by the 

synergy of different satellite remote sensing instruments.   
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2.3.2 Satellite missions to measure ocean surface winds 

Five types of instruments measure ocean surface winds: microwave 

radiometers and microwave scatterometers, Synthetic Aperture Radar (SAR), 

altimeters and Global Navigation Satellite System (GNSS). 

 The microwave radiometer measures ocean surface roughness and 

correlates it to wind speeds approximately 10 meters above the 

water’s surface. A special type of radiometer, a polarimetric 

radiometer, can derive wind speed and wind direction using more 

observations, [35]. 

 The microwave scatterometer sends a signal to the ocean surface 

which reflects off the Bragg waves on the surface of the larger scale 

ocean waves. The reflected energy measured by the scatterometer 

is translated using a geophysical model function into 10 meter 

neutral wind speeds and wind direction, [36]. 

 The SAR is a type of scatterometer which improves the method of 

processing the backscattered signal, and so, enhances the azimuth 

and spatial resolutions, [36]. 

 The altimeter is also similar to scatterometers, but simpler. This 

sends a signal directly to the surface below with an incidence angle 

of 0°, i.e. perpendicular to the surface. This instrument basically 

measures the time delay of the echo to calculate altitude. But it is 

also possible to calculate wind fields following the same principles 

as scatterometers, [37]. 

 The GNSS is a different type of instruments. Until 2017, this kind 

of satellite was only transmitting but not receiving. This was until 

ESA (European Space Agency) decided to send receiver satellites 

into low earth orbit which can measure wind speed at 10 meters 

over the sea by the same method as scatterometers. At the moment 

there are three different networks: GPS (Global Position System), 

GLONASS (Globalnaya Navigazionnaya Sputnikovaya Sistema) 

and BeiDou from the United States, Russia, and China 

respectively. The GNSS satellite network offers an extensive 

coverage of the earth which will be increased by ESA, French, 

Indian, and Japanese space agencies, [38]. 
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A series of missions have been launched over the last few decades with 

onboard instrumentation to map wind speed and directions over the oceans. 

In Fig 2.6, a representation of the time in orbit of the scatterometers and 

radiometers monitoring the wind is shown. Also included in the figure are 

the types of measurement devices (scatterometers, radiometers and SAR’s) 

on board some of the satellites. For more information check CEOS Database 

by ESA, [39]. Extra information is also contained in Table 2.1. 

 

Figure 2.6. Devices measuring wind vectors from space over time.  The black line 

represents scatterometers, blue lines are for the different radiometers of SSMI missions, 

pink lines are radiometers and green lines represent L-band radiometers. Source: [40] 

 

 The European remote sensing satellite (ERS) was the ESA’s first 

earth observing satellite program launched in 1991. ERS-1 carried a 

wind scatterometer used to calculate information on wind speed 

and wind direction. ERS-1 failed in March 2000 and was replaced 

by ERS-2, launched in 1995 which was in operation until 2010. The 

successor of ERS-2 (Envisat) was launched in 2002 but, after losing 

contact with the satellite, ESA announced the end of the Envisat’s 

mission in 2012. The Envisat’s mission has been replaced by the 

Sentinel series of satellites with the first, Sentinel 1A, launched in 

April of 2014. This is within the European Copernicus programme. 
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In 2016 Sentinel 1B will be launched, followed by other Sentinels 

according to the programme, [41]. 

 

 MetOp is another mission developed by ESA, EUMETSAT 

(European organization for the exploitation of meteorological 

satellite) and NOAA (National Oceanic and Atmospheric 

Administration) for the launch of three satellites with an ASCAT 

instrument on board. The first satellite MetOp-A was declared 

fully operational in 2007, then replaced by MetOp-B in 2103. 

MetOp-C is scheduled for launch in 2018 for the replacement of 

MetOp-B. Currently ESA is preparing the next generation of 

MetOp’s satellites to ensure this supply of meteorological data, 

[42]. 

 

 NSCAT (NASA Scatterometer) was a microwave radar 

scatterometer to measure both wind speed and wind direction 

over the sea surface. This instrument was mounted and launched 

on the Advanced Earth Observing Satellite (ADEOS) in 1996 by the 

National Space Development Agency of Japan, [43]. 

  

 QuickScat was launched in 1999 with the mission of reducing the 

ocean-wind vectors data gap after losing the NSCAT, which failed 

in 1997. Basically, QuickScat followed the same mission as the 

NSCAT; to study the sea surface wind speed and direction. 

SeaWinds was the main instrument which was an active radar 

scatterometer mounted on the QuickScat satellite, [43]. 

 

 OSCAT is another scatterometer, but this one uses a Ku-band, 

conically scanning, system. It was built by the India Space 

Research Organization (ISRO) and Space Applications Centre 

(SAC), but NOAA is also working with its data products. This 

instrument was launched on the Oceansat-2 satellite in 2009. 

Similar to previous scatterometers, this one is studying wind 

vector retrievals but at different resolutions, [44]. 
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 After QuickScat stopped measuring the wind in 2009, NASA 

worked to replace the instrument with RapidScat, which was 

launched in September of 2014. Unlike the others missions, this 

instrument was not mounted on a satellite. Instead, it was 

mounted aboard the International Space Station. As QuickScat, its 

mission is to measure the wind speed and direction on the ocean 

surface, [43]. 

 

 The Canadian Space Agency (CSA) also launched its own SAR in 

1995 mounted in the RadarSat-1 satellite. This was launched with 

the mission of studying different fields, one of them oceanography 

and it was used by Hasager et al. [25] in their study of wind 

resource. The end of the mission was in 2013. The CSA also sent a 

second satellite with SAR into orbit in 2007, RadarSat-2, although it 

is not used primarily to study the wind resource, [45]. 

 

 A radiometer has been carried on board the Defence 

Meteorological Satellite Program (DMSP), also known as SSMI. 

Satellites and the data from the Special Sensor Microwave/Imager 

are produced as part of  NASA’s measurement program. The first 

instrument, F8, was launched in 1987 and the last instrument, 

launched in 2009, is the F18 and it is still in operation with the F16 

and F17 at the start of 2018, [43]. 

  

 The Tropical rain Fall Measuring Mission (TRMM) satellite also 

from NASA (National Aeronautics and Space Administration), has 

on board a  passive microwave radiometer (TMI) similar to SSM/I 

but with a better resolution of data measurement due to the lower 

altitude of the satellite orbit. It was launched in 1997 and is still in 

operation at the beginning of 2018, [43]. 
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Agency missions instrument availability 

ESA ERS-1 SAR, scatterometer 1991-2000 
ESA ERS-2 SAR,  scatterometer 1995-2003 
CSA RadarSat-1 SAR, scatterometter 1995-2013 
ESA Envisat-Sentinel ASAR (Advanced Synthetic 

Aperture Radar) 
2002-2012 

ESA Sentinel 1 ASAR 2014-
present 

ESA/NOAA MetOp-A ASCAT (Advanced 
Scatterometer) 

2007-
present 

ESA/NOAA MetOp-B ASCAT,  scatterometer 2013-
present 

ESA/NOAA MetOp-C ASCAT,  scatterometer 2016 
NASA ADEOS NSCAT, scatterometer 1996-1997 
NASA QuikSCAT SeaWind, scatterometer  1999-2009 

NASA (DMSP) (F16) SSM/I, passive microwave 
radiometer 

1987-
present 

NASA/JAXA TRMM TMI, passive microwave 
radiometer 

1997-
present 

NASA Aqua AMSR-E, Advanced 
microwave radiometer 

2002-2011 

JAXA GCOM-W1 AMSR-2, Advanced 
microwave radiometer 

2012-
present 

JAXA ADEOS II AMSR-J, Advanced 
microwave radiometer 
 

2002-2003 

US NRL Coriolis Windsat, Polarimetric 
radiometer 

2003-
present 

ISRO/SAC OceanSat-2 OSCAT, scatterometer 2009-
present 

NASA ISS-RapidScat Scatterometter 2014-
present 

Table 2.1. Satellite missions for measuring ocean surface winds. Sources: NASA, ESA, 

EumetSat, ISRO, and CSA.  

 Advanced microwave radiometers have been carried by a series of  

satellites such as Aqua, GCOM-W1, and ADEOS-II operated by 

NASA and Japan Aerospace Exploration Agency (JAXA). A key 

feature of the ASMR instrument is to see through clouds, thereby 

providing an uninterrupted view of the ocean. The mission 
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ADEOS-II had, in addition to a radiometer, a scatterometer to 

measure the wind speed and the wind direction. However, this 

satellite was in operation for only one year due to solar panel 

failure, [43]. 

 

 Finally, the Windsat polarimetric radiometer was developed by the 

Naval Research Laboratory (NRL) and launched in 2003 with the 

main goal to demonstrate the capability of this instrument to 

measure ocean surface wind vectors. Prior to this launch, the only 

instrument capable of measuring ocean wind vectors were 

scatterometers, [46]. 

 

 

2.3.3 Instrument performance 

2.3.3.1 Microwave radiometers 

Microwave radiometry has been well studied for remote sensing, [35, 47, 48, 

and 49]. SSM/I instruments were evaluated in 1990, and the first polarimetric 

measurements of sea surface brightness and temperatures were realized in 

1995. The energy received by the radiometer is the sum of the energy 

released from the sea surface, radiation from atmosphere and energy from 

the sky reflected off the surface [50]. Radiometers measure the microwave 

emission within the field of view of its antenna: and in doing so, quantifies 

the energy which is known as brightness temperature. A conceptual 

description of this is shown in Fig. 2.7.  

Following the equation shown on Fig 2.7, Tsky represents the brightness 

temperature from the sun, TB is the temperature emitted from the Earth, Tatm 

for radiation from the atmosphere, (1-e)Tsky is the energy reflected off the 

surface and eTw is the energy from the sea surface.  

Previous studies shown that microwave emissions from the ocean surface 

depend not only on the wind speed but also on the wind direction. Wind 

vectors may produce roughness on sea surface due to the increasing waves. 

With a rougher sea the microwave emissions increases, therefore the 

intensity of emission depends on the wave structure and orientation. 
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Figure 2.7. Principles of a microwave radiometer. Source: [50] 

The first radiometer instruments, such as DMSP or TRMM, could only 

measure vertical and horizontal polarization, but the last radiometer released 

to space, WindSat, can measure vertical, horizontal and cross-correlation of 

the vertical and horizontal polarizations. 

2.3.3.2 Microwave scatterometers 

There are several different types of scatterometer; SAR, ASAR, ASCAT, RAR 

(Real Aperture Radar), but all of them work following the same principle. 

They are mounted on a moving platform, such as satellites, and transmit 

pulses of energy to illuminate a section of the Earth surface. They work in the 

microwave spectrum, but not all instruments work on the same wavelength, 

Table 2.2 shows the five different bands. The most common is band C. In 

scatterometry only bands with centimetric wavelength are used. It is also 

important to know that the higher the frequency, the higher the resolution.  
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The wave polarization can be vertical or horizontal, but always 

perpendicular to the direction of propagation [29]. These pulses can 

penetrate clouds, light rain or fog; thus scatterometers can acquire data in 

adverse weather conditions. Therefore images can be acquired taking into 

account the time delay, the angle of incidence and Doppler shift of the 

returned radar signal.  

 

Band 

Wave 

length 

[cm] 

Frequency [GHz] 

L 15-30 1-2 

S 8-15 2-4 

C 4-8 4-8 

X 2.5-4 8-12 

Ku 2.5-1 12-18 

Table 2.2. Wavelength and frequency for scatterometers according to the band. Source: 

[29] 

It is also important to know the geometry of scatterometers signals, as Fig. 

2.8 illustrates. Spatial resolution depends not only on the distance between 

the satellite and the surface, but but also on the slant range, the spectral 

resolution depends on the bandwidth only. 

In Fig. 2.8 a special kind of scatterometer is represented; the 

windscatterometer. This is different because it uses multiple look angles (a 

minimum of three). Comparing asymmetry in the backscatter of each angle 

can define wind direction with an ambiguity of 180°.  There is another way to 

get different look angles, using a conical scanning as shown in Fig 2.9. Some 

windscatterometers use this technique but, another beam is required to have 

a minimum of three look angles. With conical scanning, it is only possible to 

achieve two measurements with different angles. 
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Figure 2.8. ERS windscatterometer geometry. Source: [36] 

 

 

Figure 2.9. A conical scanning as used by QuikSCAT. Source: [36] 
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Another mechanism to understand is backscattering because, depending on 

the reflection of the signal, it is possible to create wind retrievals. Fig. 2.10 

shows how backscattering works for different surfaces. A calm sea surface 

situation is like a smooth surface and it is considered as the direct scatterer. 

When there is an obstacle, such as a corner reflector, the back signal is very 

strong as shown in Fig 2.10. Finally, there is a lot of dispersion for rough 

surfaces such as land. For this reason, it is not possible to receive a clear 

signal from land. 

 

Figure 2.10. Scattering from a) smooth surface, b) corner reflector, c) rough surface. Source: 

[29] 

Thus, scatterometers measure the backscatter, the alteration of which is 

physically related to the wind stress over the sea, [51]. This backscatter it is 

translated to wind speed through a Geophysical Model Function (GMF). The 

C-band V-polarisation GMF is also called CMOD. Nowadays, the most 

widely used GMF for scatterometers is CMOD5.N which allows the 

calculation of 10-metres height neutral wind speed. All CMOD models use 

an empirical functional relationship where the normalized backscatter is a 

function of 10-metres wind speed, incidence angle and wind direction 

relative to the antenna azimuth look direction, [52]. The expression is solved 

by iterations in order to find the wind speed for a measured backscatter. The 

incidence angle is always known because the position and angle of the 

antenna are always known. Thus, a key parameter to calculate the wind 

speed is the wind direction. If no wind direction is provided or measured by 

the scatterometer, the wind speed cannot be found. The general CMOD 

expression is shown in Eq. 2.6. 



27 

 

𝜎0(𝜃, 𝑣, ∅) = 𝐵0(𝜃, 𝑣). [1 + 𝐵1(𝜃, 𝑣) cos(∅) + 𝐵2(𝜃, 𝑣) cos(2∅)]𝑝    [2.6] 

Where σ0 is the normalized backscatter, θ is the incidence angle, v is the wind 

speed at 10 metres, Ø is the wind direction relative to the azimuth look 

direction. The rest of terms, B0, B1, B2, and p, are empirically derived. 

2.3.3.3 Altimeters 

As explained before, altimeters are a type of scatterometer but simpler due to 

their geometry, as shown in Fig 2.11. Altimeters are the most frequently used 

radar system as they are installed in many aircraft and satellites. There is no 

angle of incidence because the beam is almost vertical.  

 

Figure 2.11. The basic geometry of a simple altimeter. Source: [36] 

They have been used to determinate the distance to a target or surface. The 

performance of an altimeter is simple, the device sends the signal and counts 

the time delay before reception of the echo, knowing the speed of the 

waveform and the time taken it is possible to calculate the distance. Height 

measurement is slightly more complicated over the sea because it is 

necessary to take into account the sea surface height, the geoid, and ellipsoid 

as shown in Fig. 2.12. 
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Geoid is the shape that the surface of the oceans would take under the 

influence of Earth’s gravity and rotation alone. On Fig. 2.12, hg is the geoid 

height, hd is the height between geoid height a sea surface height, H is the 

satellite orbit height, and h is the range or distance from orbit to sea surface. 

  

 

Figure 2.12. The principle of altimetry measurements. Source: [53] 

With some more complicated analysis of the signal returned it is possible to 

use altimetry to measure wind speed. Determination of wind speed is based 

on the measurement of backscattering with the maximum angle of incidence, 

i.e. near the boundary of the beam where there is a significant angle of 

incidence. Comparing this with the vertical value of backscattering and 

applying the algorithm of Witter & Chelton [37], it is possible to determinate 

wind speed at 10 meters above the sea. 

There are two problems with altimeters; firstly the swath is very narrow in 

comparison with windscatterometers and secondly it is not possible to 

determine the wind direction.   

2.3.3.4 Synthetic Aperture Radar 

SAR’s are instruments similar to scatterometers but designed to have high 

resolution. As explained before, resolution is higher with high frequencies. 

But this is not the case for SAR’s, which work in the C-band. The azimuth 
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spatial resolution is dependent on neither the distance from the instrument to 

the target nor the wavelength of the radar. A summary of its performance is 

shown in Figure 2.13. 

 

 

Figure 2.13. Side-looking airborne radar geometry. Source: [36] 

The most straightforward explanation is that SAR’s work by improving the 

analysis of the Doppler Effect. SAR’s large antenna is made of small antennas 

working sequentially instead of simultaneously. By the joining of the echoes 

is possible to synthetize a large antenna. The Doppler shift is not detectable 

on individual echoes, but it is possible for a sequence of many successive 

echoes. This is possible not for the echoes frequency, but for the echo phase 

change. The echo is divided into bins according to the Doppler Effect and so 

it is possible to analyze a very wide beam by bins. The last step is that by 

using wide beams the footprints overlap and the antenna will receive 

different signals of low resolution from the same point of the earth surface, 
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see Fig. 2.14. By combining many footprints it is possible to achieve a high-

resolution signal.  

Thus, SAR’s obtain high-resolution images over a wide swath. There is also 

another reason, regarding its geometry but this is complex to explain and 

beyond the scope of this thesis. For more information consult [36] and [51]. 

From here the process and principles to achieve wind vectors are exactly the 

same as scatterometers. 

 

 

Figure 2.14. SAR geometry. Source: [36] 

2.3.3.5 GNSS-R 

 There is an important difference between this system and previous systems, 

which are monostatic (the same antenna is transmitting and receiving). GNS 

satellites are always transmitting, so it is necessary to have a separate 

receiver, this is referred to as a bi-static system.  
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Satellite Status 
Developed by  

UK-DMC Finished 
UK  

Techdemosat-1 Operating 
UK  

PARIS Proposed 
ESA  

CYGNSS (8 satellites) Launched in October 2016 
NASA  

GEROS-ISS Under study 
ESA  

Cat-2 Launched in 2015 
UPC, Spain  

CubeSat Launched in February 2016 
Europe  

Table 2.3. GNSS-R remote sensing missions. 

The GNS signal is also a microwave signal, but consists of two 

monochromatic carriers, with two different L-band frequencies. Actually, 

there are many GNS satellite transmitters in space, 24 by GPS, 24 by 

GLONASS and 15 by BeiDou. Recently, ESA launched 30 satellites more 

known as Galileo. 

The problem with this system is that there is only actually one Low Earth 

Observation (LEO) satellite receiver operating. In Table 2.3, there is a list of 

previous and upcoming missions, according to the table, there was twelve 

LEO receiver satellites operating by the end of 2016. These satellites are able 

to capture reflected L-band signals from GPS and Galileo constellations, 

some of them could also use GLONASS and BeiDou constellations. Each LEO 

satellite will do at least four simultaneous measurements, each one from a 

different GNSS satellite as Fig. 2.15 shows.   
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Figure 2.15. Simultaneous signals from different GPS satellites. Source: [38] 

GNS signals can be refracted or reflected, and a LEO satellite can receive both 

(depending on the orientation of antennas), but these signals measure 

different parameters. Refracted signals (GNSS-RO) measure atmospheric 

parameters such as water vapor, temperature, pressure, and humidity; 

reflected signals (GNSS-R) measure land and ocean surfaces, including sea 

surface roughness and therefore wind vectors. There are some papers which 

have assessed the capability of GNSS-R to determine wind vectors, [54] to 

[61], with successful results. In order to measure the wind, a technique called 

Delay Doppler Mapping (DDM) is used which is based on the same 

principles used by scatterometers.  

 Although in this section wind resource assessment by satellites has been 

explained, using GNSS signals aircraft could be used. In fact, with reflected 

signals only the receiver is missing so instead of mounting a receiver on a 

LEO satellite there is the option of mounting it on aircraft. In [56] a receiver 

was mounted on a balloon but it would also be feasible to mount a receiver 

on a small airplane or unmanned aerial vehicle (UAV) or drone. This could 

open many possibilities where each offshore wind farm could have their own 

UAV/drone. This option is much cheaper than any meteorological mast or 

LIDAR. 
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2.3.4 Instrument characteristics 

Satellite data have different spatial resolutions, locations, and temporal 

sampling. Pryor et al. [62] have demonstrated that approximately 250 

independent wind observations or images are required to estimate the 

Weibull scale and shape parameters. It is important to know the spatial and 

temporal characteristics of the different space-borne instruments. It will help 

to assess the potential of these instruments for wind resource assessment. 

 

Missions Instrument Swath 
width 
(km) 

Resolution 
(km) 

Revisit cycle 
(days) 

ERS-1to 2 SAR 500 5 35 
Envisat-
Sentinel 

ASAR 50-100 2 35 

Sentinel 1 ASAR 20-400 1-2 6 
MetOp-A to C ASCAT 500 12.5 29 

ADEOS NSCAT 600 25 41 
QuikSCAT seaWind  1800 26 4 

(DMSP) (F16) SSM/I 1400 25 6 
TRMM TMI  25  

Aqua and 
GCOM-W1 

AMSR-E or 2 1450 5-50 
(dependent 

on frequency) 

16 

ADEOS II AMSR-J 1800 25 4 
Coriolis Windsat 1000 25 8 

OcenaSat 2 OSCAT 1400 25 2 
ISS RapidScat 1100 17.3 5 

Table 2.4. Example of spatial and temporal characteristics of some space-borne 

instruments. Source: NASA, ESA, EumetSat, ISRO, and CSA. 

The repeat cycle of the satellite is the period between 2 successive identical 

orbits and the swath width is the total width of the area covered by the 

sensor on the ground. With a repeat cycle of 4 days, the sampling period of 

Quikscat is approximately one day. However, the resolution of this 

instrument is low compared to the ASAR instrument. The high spatial 

resolution of ASAR is associated with a low temporal sampling (sampling 

period greater than 150 hours). This is due to the low swath width of this 

instrument, [63]. 
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In order to take advantage of the synergy between high-repetitiveness low-

resolution scatterometer data and low-repetitiveness high-resolution 

synthetic aperture radar, a data fusion method has been proposed, [64]. 

Another method for data synergy is proposed in this thesis as explained in 

Chapter 4. 

Some studies have shown the synthetic aperture radar is an adequate tool for 

local wind resource assessment and mapping in coastal and offshore areas. 

The wind statistics can be evaluated from scatterometer satellite data (e.g. 

QuikScat) from a nearby location [24] and [65]. 

2.3.5 Instrument data  

Raw sensor data are collected by the ground station and dispatched to 

processing dedicated facilities as the images require a large amount of 

processing before they are usable. The amount of processing done to the 

images is commonly classified into levels [66]. It is important to get a good 

understanding of these levels of processing before ordering satellite data 

from one of the agencies which supply it. 

 

Level 0 The data is raw as collected at the sensor. There are some 

fundamental corrections to be applied to the data before they 

are usable. Therefore, most agencies will not distribute Level 0 

imagery. 

 

Level 1A Data is corrected for detector variations within the sensor.  

A remote sensor has many light detecting devices or detectors. 

So it is important that the brightness measured by each detector 

on a sensor is recorded uniformly across the scene. A series of 

data calibrations involving the pre-launch value and in-flight 

measurements are carried out to equalize the detector response.  

The in-flight readings come from pointing the sensor at targets 

with known brightness levels: an onboard calibration lamp, the 

blackness of deep space and/or the brightness of the sun. 

Absolute calibration coefficients are posted in the ancillary data 

and can be used to convert pixel values into real radiances 

measurements.  
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Level 1B Due to the movement of the satellite in orbit above the earth’s 

surface and the rotation of the earth beneath the satellite, the 

sensor’s view of the surface can be more oblique towards the 

edges of the scene and create distortions in the geometry of the 

imagery. These distortions are predictable and are corrected to 

improve its geometry qualities to give Level 1B data.  

 

Level 2A Images from level 1B are mapped into a standard cartographic 

map projection based on a prediction where the satellite was 

when the image was acquired. With systematic geometry 

correction application, these images still have expected location 

errors. 

 

Level 2B In order to create a precise geo-referenced product, the image 

analyst registers the image to an existing base map by selecting 

pairs of well-defined ground control points from both the 

image and the map. With a sufficient number of ground control 

points accurately identified, the image can be geo-referenced. 

The position accuracy of the level 2B image generally matches 

the spatial resolution of the original data (Location resolution 

from 30 m down to 10 m depending on the satellite).  

 

Level 3A In an area of high local relief, the location errors for level 2B 

data remain high as the relief displacement is not accounted 

for. To reduce these errors, a digital elevation model is applied 

to level 2B imagery to obtain level 3A images that match the 

spatial resolution of original data, including areas of high local 

relief.  

 

Level 3B If the region of interest is very big, level 3A images can be 

mosaicked together. Therefore these images have the same 

attributes as level 3A scenes, but they cover a large area. 

 
An overview of the processing applied to the raw satellite data is shown in 
Fig. 2.16. 
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Figure 2.16. The processing applied to each level of satellite data. Source: [66] 

Data from any of the automated processing levels such as level 0 to level 2A 

generally costs the same price. When the processing requires an analyst’s 

intervention, the prices begin to jump by around 25% between levels 2A and 

2B and an additional 25% when going from level 2B to 3A.  

With some image experience and access to a remote sensing image analysis 

system or a robust GIS (Geographic Information System) with geometric 

correction capabilities, then level 1B data can be a good starting point for 

remote sensing applications. However, if there is no access to the necessary 

software and time to process the imagery, then level 2B or 3A data are 

required. These images will import directly into a GIS and be ready for use. 

2.3.6 Example of processing 

The NORSEWInD project is an example where satellite data have been used 

to develop a wind map of the Baltic Sea, Irish Sea, and the North Sea. In this 

study, wind observations from space have been retrieved, processed and 

analyzed in order to quantify the wind resource, [67]. 

These satellite observations were focused on 4 sensors (Envisat ASAR, 

QuikSCAT, ASCAT coastal, SSM/I). The study gives a good understanding of 

the processing chain from satellite data to 10 m wind speeds or to a final 

product such as a wind resource map. An overview of the processing chain is 

reported below for data from Envisat ASAR sensors, see Fig. 2.17. 
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- L0 data acquired by the network of ESA.  

- L0 data processed into L1 products by ESA. The product is made 

available to Collecte Localisation Satellites (CLS). 

- The L1 product is processed into the L2 product by CLS using the 

software Maestro developed by CLS. 

- L2 products processed in near-real-time can be downloaded by users 

utilising the Soprano web interface. 

- Use algorithm for the reprocessing of the data for wind map 

production at 10 m above sea level. 

(A version of the algorithm is described by Dagestad K.F. et al. [68]. It 

is worth noting that a new algorithm, at the time of writing this thesis, 

is currently under investigation by Mouche et al. [69] and it has been 

stated by the author that this work will be reported in the near future). 

- Data used in WAsP for wind resource calculation. (Final product is a 

Weibull wind speed distribution for 12 bins each representing a 30 

degrees wind direction sector). 

- Wind data lifted from 10 m to hub height using information on 

vertical wind profiles at high levels as reported by Peña et al., [70] and 

[71], and Weather Research and Forecasting parameter [72]. However, 

this process is still in a stage of development and more work is 

required before getting an acceptable model as it will be explained in 

this thesis. 

 
 
 

 

Figure 2.17. Process chain involving Envisat ASAR data. Source: [68] 
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2.3.7 Difficulties and influences on wind retrievals  

At the present time satellite instruments are not as accurate as on-site 

instruments such as meteorological masts or even other types of remote 

sensing such as LIDAR or SODAR. Hence, every wind resource assessment 

by satellites should be accompanied by an accuracy study. In many of the 

published articles in this field, researchers have remarked on the difficulties 

of carrying out a wind assessment using satellites. Barthelmie et al., [73] and 

[62], have undertaken a sensitivity analysis of these difficulties, which are: 

 Average periods of observations.  

 The time between measurements. 

 Data density. 

 Temporal biases. Diurnal and seasonal variability are difficult to see. 

 Truncation of wind speed distribution due to limitations of 

measurement instruments, in situ or remote. 

 Criteria for image processing. 

 Calibration on wind retrievals. 

 Lift of wind speed data to hub height. 

 Merging of wind retrievals from different satellites. 

There are also some studies [25], [62], [73], and [74] where it is intended to 

determine the minimum number of images required to carry out a wind 

assessment with enough accuracy. This research is aimed primarily at trying 

to resolve the issues related to low data density. At present there is still no 

consensus among researchers regarding the feasibility of satellite resource 

measurement due to this problem. This problem will be returned to in the 

following sections. 

The used GMF in the translation of radar backscatter to wind speed is also a 

source of uncertainty. This could be englobe as criteria for image processing 

because radar backscatter images are translated to wind maps. As explained, 

the backscatter backscatter is related to wind stress instead of wind speed. 

Even so, all CMOD models link backscatter with wind speed; plus the sea 

state is not taken into account. Furthermore, CMOD models are empirical 

relationships. For all these reasons, the GMF is expected to introduce 

uncertainty in wind retrievals.   
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Other problems of remote sensing are related to some phenomena in the 

Marine Atmospheric Boundary Layer (MABL) and also some oceanic 

influences. For example, in the MABL, researchers should take into account: 

 Internal boundary layers 

 Thermal internal boundary layers 

 Atmospheric stability 

 Convective cells and roll vortices 

 Lee phenomena 

 Gap flows and barrier jets 

 Rain cells 

On the other hand, oceans affect wind measurements due to surface waves, 

internal waves, currents and bathymetry, and also surface slicks. 

2.3.8 Methodology for vertical wind extrapolation 

Like conventional wind resource assessment, it is necessary to extrapolate to 

wind speeds at hub height since satellite wind retrievals are given at 10 

meters over the ocean. With satellite data it is not possible to follow the same 

methodology as used with meteorological masts because there is no second 

measurement at different height to calculate surface roughness and hence 

extrapolate. Wind measurements are also too low, at 10 meters, when 

compared with traditional meteorological masts where the highest 

measurement is near the hub height. This fact has pushed researchers to find 

an alternative method to extrapolate winds from 10m to hub height. In 

Badger et al., [72], a reasonably successful methodology for extrapolation 

was proposed. Fundamentally this involved applying the logarithmic law for 

neutral stability but by keeping the friction velocity, Eq. 2.5, and Charnock’s 

equation, Eq. 2.9, it was possible to calculate the friction velocity by iteration 

and thereafter extrapolate the wind speed. In Eq. 2.9, αc represents the 

Charnock’s parameter and g is the gravitational acceleration. 

𝑧0 =  𝛼𝑐
𝑢∗

2

𝑔
  (2.9) 

When calculating the friction velocity, neutral stability should be assumed 

since satellite wind retrievals at 10 meters corresponds to neutral wind 

speeds if the CMOD5.n GMF was applied. Knowing U10 from satellites it is 
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possible to extract the friction velocity and surface roughness, once this is 

done, applying again Eq. 2.4 the wind speed at any height may be calculated. 

However, at the moment of measurement by satellites, the stability might not 

be neutral or zero. So here are two alternative ways of extrapolating wind 

speeds: 

1. Assuming neutral stability. 

 

2. Calculating a stability correction. For this, it is necessary to 

use Weather, Research, and Forecasting data to extract the 

friction velocity, air temperature, and surface heat flux. 

The first method is obviously the simplest but not as accurate as the second. 

The difference between wind extrapolated values is roughly 0.5 m/s as 

shown in [72], but this difference would increase in warmer seas. The 

complete methodology to apply stability correction is also explained in [72].  

2.3.9 Combination of different instruments 

In order to solve one of the main problems of satellite instruments, 

specifically data density, there are three studies [26], [34] and [75], where 

satellite synergetic data were used.  In the most recent study, [34] in 2014, 

researchers found a couple of advantages in comparison with the use of a 

single satellite. 

1. Obviously the greater the number of samples the greater the 

accuracy. 

2. Increase in overpass data gives a better representation of the diurnal 

variation in wind speed. 

3. Possibility to develop more detailed wind maps. 

4. Inter-calibration of wind retrievals between different satellites in 

order to have solid, valid and high-quality data, [76]. 

2.3.9.1 Methodology to merge different instruments   

Once the winds are extrapolated to hub height, they can be merged, but 

never before lifting, since some of the parameters to lift winds change along 

with the time and location. Here again, there are two methods for merging: 



41 

 

1. Grid selection. This is the straightforward method.  

I. First, it is required to choose the resolution of the grid for 

the final wind map. 

II. Divide lower resolution cells into small cells until they fit 

with the chosen resolution. With this method, it must be 

known that mixing different datasets at different resolution 

can produce a loss in resolution. To solve that, instead of 

taking values for all divided small cells, it is better to take 

values only from central small cells and around the centre.  

III. Calculate the average for each cell. For this reason, high-

resolution data can be lost, when creating the average with 

low-resolution datasets. 

 

2. Power spectra density. This method is more complex and requires 

more calculations. Basically, the power of the wind is calculated 

but, instead of on a time-scale basis, it must be calculated on a 

spatial-scale basis i.e. by different grid sizes. Traditionally, the 

power spectra density it is calculated on a time-scale basis since 

met masts provide data every 10 minutes or more frequently if 

required. But, with satellite data, this is not possible. However, it is 

feasible on a spatial-scale since it is possible to choose the grid 

resolution because satellites provide data over a wide area.   

Nowadays, experts are still arguing about which method it is better, and how 

they should be applied.  

 

2.4 Starting point for novel research 

2.4.1 Access to satellite data 

Some of the most widely used satellite in the study of ocean wind vectors are 

listed in Table 2.5 including their data access and the processing level. 
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Table 2.5. Satellite data accessibility. 

2.4.2 Software 

Since the amount of data received from satellites is huge, some researchers 

have developed specific software to facilitate the data processing. Some of 

the wide range of software used in wind assessment by satellites are: 

 

Instrument Data access Type of data 

ERS 1&2 
website https://earth.esa.int 

Go to data access/browse data product 

Earth topic = ocean and coast                  Mission = 

Envisat 

Instrument = ASAR                                   Typology = 

Radar imagery 

 

Processing 

level = 0 / 1 / 

1B / 2 Envisat ASAR 

NSCAT 
ftp://podaac-ftp.jpl.nasa.gov/OceanWinds/ 

 
L2 product 

 

QuikSCAT 

 

 

RSS website  http://www.remss.com/ L2 product 

ASCAT 

ftp://podaac-ftp.jpl.nasa.gov/OceanWinds/ 

 
L2 product 

RSS website  http://www.remss.com/ L2 product 

 

SSM/I 

 

 
RSS website  http://www.remss.com/ 

 

10 m above sea 

level 

Daily / 3-day / 

weekly / 

monthly data 

L2 product 

 

WindSat 

AMSR 

TMI 

OSCAT 
ftp://podaac-ftp.jpl.nasa.gov/OceanWinds/ 

 

Level 2B 

product 

Sentinel-1 

https://sentinel.esa.int/web/sentinel/sentinel-data-

access/access-to-sentinel-data/ 

 

L0 or L1 

products 

RapidScat 
ftp://podaac-ftp.jpl.nasa.gov/OceanWinds/ 

 
L2 product 

https://earth.esa.int/
ftp://podaac-ftp.jpl.nasa.gov/OceanWinds/
http://www.remss.com/
ftp://podaac-ftp.jpl.nasa.gov/OceanWinds/
http://www.remss.com/
http://www.remss.com/
ftp://podaac-ftp.jpl.nasa.gov/OceanWinds/
https://sentinel.esa.int/web/sentinel/sentinel-data-access/access-to-sentinel-data/
https://sentinel.esa.int/web/sentinel/sentinel-data-access/access-to-sentinel-data/
ftp://podaac-ftp.jpl.nasa.gov/OceanWinds/
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 WEMSAR: Developed by Risø and the Nansen Environmental and 

Remote Sensing Center (NERSC) in 2000-2003. This software was 

designed to manage wind retrievals from calibrated ERS-2 SAR, only 

wind speed but not wind direction. Previously called RWT. 

 WiSAR: Developed by GKSS Reseach Center in Germany. It is a tool 

to find the wind direction from SAR datasets, [77]. 

 ANSWRS: Developed at the Johns Hopkins University, it is software 

to enable near real-time calibration and wind retrieval from 

RADARSAT-1 and ASAR, [78]. 

 There is a software package from BOOST Technologies, which 

processes SAR images to wind maps, but users have to load wind 

directions from another source, [79]. 

 BEST: Software developed by ESA, this one is used to calibrate raw 

images from SAR images, [41]. 

 Satellite WAsP: Another tool developed by Risø, which can extract 

the wind field of a specific area and calculate wind statistics. As with 

previous tools, it was used for SAR processing. 

 Sentinel 1 Toolbox: This software has been developed by ESA taking 

as a base the other previous software. The user can use more SAR 

satellites and will work with any C-band SAR. Actually, this is the 

most important software on the list, [41]. 

Also well-known mathematical/wind analysis software can be used for wind 

resource assessment such as Matlab, WAsP, Windpro or Windfarmer. But none 

of them is open-source so their source code is not available for modification 

and also they were designed to carry out wind assessment from on-site 

measurements. 

2.4.3 Research teams working in satellite wind retrievals 

Before organizing the research line of this thesis, and following the literature 

survey, the work of other research teams working in satellite wind retrievals 

was consulted. NASA and ESA agencies have been launching satellites for 

Earth observation in the past decades. They also made datasets available to 

scientific community. Furthermore, there were some researchers improving 

the accuracy of remote measurements. However, possible applications were 

not only studied by NASA and ESA, but also by other institutions, 
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companies or research teams. In the following subsections, the most relevant 

European research teams working in wind satellite retrievals are introduced. 

Remote Sensing Systems was the only American company included here due 

to its important datahub which was used to undertake the present research.  

2.4.3.1 Edinburgh Earth Observatory 

The Edinburgh Earth Observatory (EEO) it is a multidisciplinary research 

entity including Geography, Ecology, Meteorology, Geology & Geophysics. 

Their strengths are remote sensing and GIS modeling, measuring and 

modeling land-atmosphere fluxes of traces gases, modeling atmospheric 

transmissivity and stratospheric ozone, seismology, and hydrocarbon 

detection. The EEO aims to address a range of interdisciplinary science 

issues, such as the carbon cycle, atmospheric composition and human health, 

land use change, rapid climate change, vegetation change, long-term trends 

in the biological activity of the planet. But they have also carried out some 

studies on offshore wind mapping by SAR, [80]. 

In their studies, they were trying to prove the accuracy of SAR 

measurements and show its high resolution. But also, they tried to develop a 

Directional Wind Speed Algorithm (DWSA) for SAR. They compared the 

results of that algorithm with results a Unified Mesoscale Model (UMM), the 

union of both methods and in-situ measurements. However, they used the 

CMOD5 algorithm to retrieve SAR wind speed which does not retrieve 

neutral wind speed like the CMOD5.N; and in-situ measurements were 

placed on the coast, not offshore. That methodology implies a low accuracy 

in validation due to the nature of the wind retrievals.  

2.4.3.2 DTU Wind Energy 

DTU Wind Energy is a department of the Technical University of Denmark, 

previously known as Risø, the National Laboratory for Sustainable Energy. 

DTU has carried out the major part of wind energy research in Denmark, 

becoming one of the most important research entities for wind energy in the 

world. DTU integrates research, education and public/private sector 

consulting. Their goal is to develop new opportunities and technology for 

global and Danish exploitation of wind energy, [81]. 



45 

 

DTU developed the most widely used software for wind energy assessment, 

WAsP. In their offices, there is one team focused on the study of wind by 

remote sensing. As shown in previous paragraphs, they also developed two 

tools for wind assessment by SAR, WEMSAR and Satellite WAsP. The newest 

and most interesting one is Satellite WAsP, which can calculate the wind field, 

Weibull curve, and parameters. Even so, the software only works with 

SAR’s, SAR imagery must be included one by one and wind retrievals are 

placed at sea level.  

2.4.3.3 IFREMER 

IFREMER is the French Research Institute for Exploitation of the Sea, and one 

of the most important institutes in ocean research. Their areas of research 

include climate change effects, marine biodiversity, pollution prevention, 

seafood quality among others. Also in IFREMER, there is a laboratory for 

oceanography from the space named CERSAT. Their scientists contribute to 

several major international projects about climatology, sea waves, sea ice, sea 

surface temperature and so on, [82]. 

They are not specifically involved in any project about offshore wind, but 

there is an interesting project about SAR’s and oceanography. The project is 

called GlobeICE and is focused on the Arctic sea ice. In the project, they also 

use Quikscat and SSMI satellites.    

2.4.3.4 KNMI 

The Royal Netherlands Meteorological Institute (KNMI) is the Dutch 

national weather service. Their primary tasks are weather forecasting and 

monitoring, but it is also the national research centre for meteorology, 

climate, air quality, and seismology. KNMI also contributes to the process 

and reports of the International Panel on Climate Change (IPCC), [83]. 

KNMI and ECMWF developed the C-band geophysical model functions 

CMOD5 and CMOD5.N. These algorithms were initially designed for ERS 

and ASCAT but they can be applied to any C-band SAR. In order to calculate 

winds, they developed software, NWP SAF, which is capable to process 

ASCAT, ERS, Seawinds, OSCAT, HSCAT and RapidScat data. Furthermore, 

they developed IDL, Fortran, and Python packages to calculate wind vectors.  
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2.4.3.5 RSS 

Remote Sensing Systems (RSS) is a world leader in processing and analyzing 

microwave data from satellites. Their work involves algorithm development, 

instrument calibration, ocean product development, and product validation. 

They work with more than 30 satellites, mainly radiometers, and 

scatterometers. With all these satellites they are measuring brightness 

temperature, atmospheric water vapor, CCMP, cloud liquid water content, 

rain rate, sea surface temperature, upper air temperature and wind, [84]. 

Another important task carried out by RSS is their freely available data hub. 

They process satellite data applying their own algorithms or freely available 

algorithms to calculate atmospheric and meteorological parameters; plus, 

they inter-calibrate measurements from satellites in order to obtain confident 

measurements. RSS is a very important source of data in satellite microwave 

remote sensing of the Earth.    

2.4.3.6 CLS 

Collecte Localisation Satellites (CLS) is a subsidiary of IFREMER and CNES. 

CLS provides services for environmental monitoring, sustainable 

management of marine resources, marine security and telematics. CLS works 

with 40 different satellites carrying in total more than 80 instruments. They 

provide expertise in location and environmental data collection, monitoring 

land and maritime activities, geolocation of land vehicles and ocean 

observation, [85]. 

One of the most relevant works is EODA, Earth Observation Data Access; 

which is a free online service. In order to select the data an online GIS tool is 

available, but there is no possibility to export or save maps. The capabilities 

of the tool are: 

 Near-real-time ocean surface wind measurements: showing some 

(but not all) images from RadarSat-2 were wind vector was 

calculated in less than 10 minutes. 

 Global swell monitoring from space 

 Offshore wind energy - resource assessment: This was a work 

partnering DTU and under the NORSEWInD project. Here it used 
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historical data from Envisat-ASAR satellite to produce wind maps 

of the North Sea. 

 Offshore wind energy – wake from space: Also partnering DTU, 

here is shown the wake effect downstream of some offshore wind 

farms. 

 Early warning system for oil spill threats to sensitive areas and 

wildlife 

 Ocean surface current measurements 

 Oil spill aging and polluter identification 

2.4.3.7 ECMWF 

The European Centre for Medium-Range Weather Forecast (ECMWF) is an 

independent intergovernmental organisation supported by 34 states. This 

institute offers operational services as well as undertakes research in 

meteorology and weather forecast. The ECMWF uses and develops 

Numerical Weather Prediction models and global forecasts, [86].  

The most interesting fact about ECMWF related to this thesis is the reanalysis 

datasets ERA and CERA. Both datasets represent old datasets achieved years 

ago which are recalculated by combining new models with observations to 

improve accuracy for the monitored parameters. These datasets contain 

atmospheric parameters, such as wind, pressure, humidity and temperature, 

and surface parameters, such as rainfall, soil-moisture, roughness, etc. It is 

remarkable the amount of sea, land, climate and atmosphere parameters 

included in their datasets.   

2.4.4 Previous results in wind scatterometry and radiometry 

The study of ocean wind vectors from space is not a new field or technology. 

As explained, the first radiometer was launched in 1987, and the first 

scatterometer in 1991, see section 2.3.2. Although, there is still research 

ongoing for all five type of instruments capable of measuring the wind which 

appear in section 2.3.2. Obviously, the level of confidence of these 

technologies has been tested before. Most of the time, the validation device 

for ocean winds was a buoy in the middle of the sea. A few studies used a 

meteorological mast to check the uncertainty in satellite retrievals. Results 

from these studies are shown in Table 2.6. Since buoy data was not used in 
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this thesis, only studies where meteorological masts were included appear in 

Table 2.6. 

 

Met. mast Instrument 
Height (m) 

(mast/sat) 
R 

Std. Dev. 

(m/s) 
Reference 

Horns Rev Quikscat 15/10 - 1.3* [17] 

Fino-1 SSM/I 100/100 0.72 1.75 [87] 

Egmond 

aan Zee 
Envisat ASAR 10/10 0.86 - [34] 

Horns Rev Envisat ASAR 10/10 0.79 - [34] 

Horns Rev 
Envisat ASAR 

+ ERS-2 
10/10 0.86 1.34 [18] 

Horns Rev Quikscat 10/10 0.93 1.32 [88] 

Fino-1 Quikscat 10/10 0.96 0.96 [88] 

Greater 

Gabbard 
Quikscat 10/10 0.92 1.43 [88] 

Hainan 

59765 
Envisat ASAR 10/10 0.74 2.00 [89] 

Hainan 

M1328 
Envisat ASAR 10/10 0.81 2.37 [89] 

Hainan 

59765 
ASCAT 10/10 0.79 1.77 [89] 

Hainan 

M1328 
ASCAT 10/10 0.82 2.13 [89] 

Table 2.6. Results from previous studies where meteorological masts were used as 

validation device. *standard error 

2.5 Summary 

In order to define the wind resource assessment of a targeted site, the process 

should start with on-site assessment for a minimum of one complete year. 

This short-term analysis will be related to a wind climate from long-term 

measurements at nearby sites or from model outputs to identify whether the 
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measured wind speed is representative on the timescales the wind farm is 

expected to be producing electricity (20 to 30 years). However, in-situ 

offshore observations of wind speeds are sparse due to the cost of the 

installation of measurement system offshore. Satellite-borne system can help 

solving this issue of lack of data. The principal advantage in the use of 

satellite data is in spatial coverage that they provide over a large area. The 

next chapter of this report describes the characteristics of the data collected 

from space observations. 

The goal is to collect information such as monthly average or diurnal average 

wind speeds, wind speed distribution (or Weibull distribution) and wind 

roses from the satellite observations. From this information and the power 

curve of the wind turbine, an annual production output can be estimated. 

Satellite observations provide ocean wind maps valid at 10 meters above sea 

level only (see section 2.3). An extrapolation of this information to higher 

height to obtain a hub height resource assessment is required. This 

extrapolation is currently the subject of a lot of research. 

Despite a large number of missions to study the wind from space, and the 

well-identified process to convert raw data; there are still difficulties which 

mitigate against the use of satellite data for wind resource assessment. In 

most of the papers, the accuracy when compared with measurements in situ 

is the main issue. However, this may become less of a problem due to the 

number of missions planned for the near future. 

Due to the different types of instruments with different characteristics, it is 

obvious that the balance between data density and data quality (or 

resolution) is not well defined. Probably with higher resolution images fewer 

samples will be required. But the minimum number of samples required is 

still and area of study. The manner of how to combine different types of 

satellite datasets is also a field of research that is requires considerable work. 

Also, the effect of the use of different algorithms or criteria to analyze the 

data from satellites needs to be considered. 

Software currently available software has not been designed to compute 

scatterometers, radiometers and SAR’s data together. Furthermore, this 

software does not meet the requirements of the wind industry. The analysis 
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software was designed to compute one satellite image or a few images at 

once. In order to undertake a wind resource assessment it is necessary to 

analyse a very large amount of data, therefore there is a requirement for 

software capable of processing a large amounts of satellite images and 

producing wind resource assessments. 

The aims and objectives of the thesis, as explained with detail in section 1.1, 

were selected to solve the gaps in knowledge explained in previous 

paragraphs, which are: 

 Decrease the satellite data shortage problem. 

 Bring the capabilities of satellite remote sensing of wind 

resources to the offshore renewables industry. 

 Increase accuracy of satellite measurements. 

 Extrapolate satellite wind retrievals to different heights, since 

satellites measure the wind speed at 10 metres above the sea 

level. 
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3. Development of a tool for wind resource 

optimisation by a different type of instrument 

3.1 Introduction 

This chapter is a synopsis of the structure and capabilities of the software 

that has been developed. The main goal of the tool is to process satellite data 

to achieve a wind map as a product. Although nowadays there are wind 

maps from satellite data, see section 2.4.3, these represent the mean wind 

speed at 10 meters over the sea and cover very large areas of the world, such 

as the North Sea. The present software was designed to cover small areas 

and so be able to carry out a wind resource assessment for a potential 

offshore wind farm. The other difference present in this software is the 

calculation of winds at the chosen hub height. Therefore, the main outputs of 

the tool are a wind map for a targeted area with winds at hub height and a 

data density map, but this is not the only output. Although not present in the 

current software output, energy or wind direction maps could be easily 

implemented. Development of the resource assessment software leads to 

further research which is explained in chapter 4. Validation of the data 

produced is paramount and therefore correlation between satellite and 

ground devices was included in the assessment.  

The main characteristics of the software are: 

 The tool has been developed in Python, an open-source programming 

language. 

 The input or data source is a database (DB) composed of satellite data. 

 The DB was developed to cover the entire world and work efficiently 

with a huge amount of data. Future users of the software will only 

need to handle a small portion of the database for their chosen area. 

 By the end of 2015, the DB included data from 9 different satellites: 

Sentinel-1, Windsat, Quikscat, ASCAT, OSCAT and SSMI (only f08, 

f10, f11, f13). All data are freely available through different data hubs, 

see section 2.4.1. Therefore only freely available data for those 

missions, from the beginning of their mission until December of 2015, 
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were included in the DB. The analyses included in this thesis only 

comprise the data present in the DB. 

3.2 Database 

Although satellite datasets are available online, freely for many devices, the 

datasets are not arranged in the same format. Each data hub has its own 

format. Hence, it was necessary to transform the data to a standard format. 

Furthermore, because of the nature of the different devices, this new format 

had to be capable of including all instruments; radiometers, scatterometers 

and SAR.  Altimeters and GNSS-R were discarded because of their narrow 

swaths. The main difficulty with this was the combination of different 

resolutions. 

The first step was to set a format. For wind resource assessment, the more 

data that is included in an analysis, the better the accuracy. Hence, the DB 

was devised to host the data from complete missions when possible. This 

meant a very large amount of data would need to be manipulated, i.e. 

satellite Big Data. For that reason, and in order to decrease the amount of 

data to compute simultaneously, the DB was composed of 1,200 tables. These 

tables represent a UTM square as shown in Fig. 3.1. Exceptions were located 

in the X and V rows which were removed and divided in a similar form as 

the rest of the rows. Thus, all boxes have the same size. 

 

Figure 3.1. World map with UTM division. 
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Satellite datasets are arranged by daily products for radiometers and 

scatterometers. Each product includes the different measurable parameters 

for the entire globe. Where the satellite was not observing, non-valid values 

are found. This fact leads to an unnecessary multiplication of data. The case 

for Sentinel-1 is different since their datasets are arranged by single images. 

Thus, the first scripts to be written were designed to read each kind of 

satellite dataset, removing the non-valid data and inserting the remaining 

data into the appropriate table of the DB. 

As explained previously each device has its own resolution. In order to place 

data from different satellites into the same table, four different fields for 

geolocation were added. These are low and high longitude, plus low and 

high latitude. Along with these fields, Satellite name, Type of Instrument, 

Date and Time, Wind speed and direction, and Rain were also included. 

Once all data was inserted into the DB, the scripts to read and select data 

from the DB were written. Since the tool was designed to be focused on small 

areas, there was no need to work with all tables at once. Thus, the tool is 

capable of selecting the data according to the location and date, and export it 

to a csv (comma separated values) file. The benefits of this process are 

minimum work with the DB and again a decrease in the amount of 

unnecessary data being processed. As a result, the speed at which the whole 

tool operates was kept as high as possible.    

3.3 Data analysis design 

In order to explain all of the capabilities and structure of the software, the 

whole analysis process is explained. The process is also represented in Fig. 

3.2 to ease comprehension. 

1. Working with or without satellite data. Although the goal was to use 

satellite data, the software is able to do a wind assessment with only 

in situ or satellite measurements or both at the same time. However, 

users must provide in situ data when this option is selected. At this 

point, the software only reads in situ data in one format of data table. 

Extra scripts were written to create a specific template according to 

user preferences. Thus, users can transform their data in order to be 

readable by the tool. 
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2. Acquiring satellite data. As explained, satellite datasets are contained 

in a DB. Once the target area is set, the tool exports a file containing all 

satellite wind measurements for the specified location.  Since the 

tool was designed for small areas, a maximum of four UTM squares 

were allowed as an area definition. The software works with a 

coordinate system in degrees; from −180° to 180° for longitudes, and 

from −90° to 90° for latitudes. 

           

3. Filtering data. This filtration removes missing values, and it is done 

according to some optional parameters that the user can choose, such 

as: 

 

 Rain rate. 

 Satellites to work with. 

 Instruments (or type of devices) to work with.  

 Atmospheric conditions. 

 Overlaps between ground and satellite measurements. 

 Period of study. This option is very flexible since it is not just a 

selection of the start and end date. Different temporal analyses 

can be undertaken; by year, by months of one year or by the 

same month but different years, by day and night and also by 

selected time for different days.  

 

4. Setting grid or resolution. This option depends entirely on the user’s 

selection of satellites because the resolution on the wind map is 

exactly the same as the resolution of the satellite data. By default the 

highest resolution is chosen automatically. For example, SAR satellites 

have the best resolution with pixels of 2km x 2km, whereas the most 

common resolution is 25km x 25km. Satellite data is adapted to the 

grid. 
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Figure 3.2. Flowchart of the software structure. Grey line represents in situ data, red lines 

means satellite data. 
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In this process, a problem was considered, which was named “data 

spreading”. This problem consists of the increase in the number of 

measurements when low-resolution data is fitted to the high-

resolution grid. Since low-resolution pixels cover a larger area than 

high-resolution pixels, the low-resolution data could be represented in 

many high-resolution pixels. Fig. 3.3 is a representation of data 

spreading. If every high-resolution pixel contains the values from low-

resolution data, the low-resolution data is multiplied by a factor of 

(low resol. / high resol.)2, this factor is 25 in Fig 3.3. Furthermore, this 

fact will automatically be a loss of resolution and, when represented, 

high-resolution pixels will not be observed. 

In order to solve data spreading, every single low-resolution pixel was 

inserted in only one high-resolution pixel from the grid. A single pixel 

in microwave remote sensing represents the average wind speed over 

that area. The maximum representativeness of the measurement is 

expected to be the centre of such a pixel. Hence, the high-resolution 

pixel hosting the measurement from a low-resolution pixel is the one 

closest to the centre of the low-resolution pixel. As it is explained in 

chapter 4, this method leads to the production of cells or pixels with a 

huge amount of data called HDDC (High Data Density Cells).    

 

Figure 3.3. Representation of data spreading. 
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5. Vertical wind extrapolation. Here winds at hub height are calculated. 

The user must choose the hub height. It is possible to work on a long 

or short-term basis. There are three different models for shifting the 

wind; from simple to complex data analysis: 

      

 Iteration with constant Charnock parameter 

 Variable Charnock parameter and friction velocity 

 Air-sea interaction models to calculate surface roughness 

Methodologies for vertical extrapolation of the wind speed are 

explained and analysed in chapters 5 and 6. 

 

6. Choosing output parameters. Users can select what it is going to be 

represented. The software can do comparisons between different 

years, months or day and night; and so, observe yearly seasonal and 

diurnal variations. Hence, the software is capable of producing 

different maps. Otherwise, the user may select to make one wind map 

with all available data and higher data density. It is also possible to 

select those satellite measurements that overlap in time with in-situ 

measurements and so be able to undertake a fair comparison and 

correlation between satellites and ground devices. 

 

7. Calculating statistics. According to which parameters were chosen in 

the previous step not only are the mean, minimum, maximum wind 

speed and standard deviation calculated but also Weibull parameters. 

At this point, it could easily calculate power density, turbulence 

intensity, etc. However, these were not included in an analysis as 

explained in chapter 4. The reason for this is that the most important 

parameter to be studied is the wind speed.     

        

8. In-situ measurements. There is an option to include in-situ 

measurements inside the area under study, and so be able to do an 

accuracy study. This data will be processed under the same 

parameters as the satellite data. In order to use in-situ data, it is 

necessary to adapt the data to the templates used by the software 

thereby allowing the analysis software to read it. 
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3.4 Outputs 

As explained previously, at the moment the main output is a wind map. 

However, in the future, it could be possible to include more outputs such as 

energy yield, turbulence intensity, extreme winds and risk calculations. If the 

user selects a set of coordinates inside the map, the software can release the 

following:       

 Wind roses. 

 Weibull curves. 

 Bar charts of comparison for wind speed, temperature, 

pressure, and humidity. The last three parameters were 

included for in-situ measurements only. 

 CSV file with all parameters for each pixel of the map. 

 CSV file is pre-formatted to be an input for a GIS tool. This is 

useful when a user needs a better layout of the wind map. 

 Regression analysis for wind speed at calculated height and 

surface roughness between satellites and in-situ devices. 

Some of these outputs are discussed in this thesis, but not all of them. 

Examples and interpretations of some of them are explained in chapters 4, 5 

and 6. 

3.5 User manual 

Previous sections in this chapter already explained the software architecture. 

Basically, the software can be divided in two blocks. The first block is the 

code for database creation, and the second block is only related to wind 

resource assessment. Outputs of the software are also included in the second 

block. 

Since the software has not been deployed and the user interface has not 

designed, future users will need to launch the code from the scripts. This 

means users are required to have minimum IT skills for its use. As explained, 

the software was written in Python, version 2.7 to be precise. All the work 

was developed under a Linux OS environment, in this case Ubuntu 14.04 LTS 

was chosen. All the instructions are based on the use of the same operating 

system and can be found in detail in Appendix A. 
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3.5.1 Software installation 

First at all, it is mandatory to install the same database, MySQL. This could 

be done by the use of the Ubuntu Software Center. Installing the MySQL 

Workbench may be useful for beginners to database programming. After 

MySQL installation, the password for user “root” will be set initially. It is 

recommended that the username and host name as given by default, “root” 

and “localhost” respectively are not changed. Also, the password must not 

be changed.  

Once the database software is installed, some Python libraries must be 

installed. The Python version must be the same; if this is not the case it will be 

necessary to install it. Here is the list of the Python packages included in the 

software; pandas, numpy, scipy, MySQLdb, netCDF4, xml, gzip, openpyxl, 

windrose, matplolib and basemap. All these packages are available through 

PiPY, the online repository for Python.  

One of the packages, MySQLdb, is especially important. This is the bridge 

between Python and MySQL. By default, the data directory is set to a folder 

created during installation. It is possible to change the data directory. The 

change is convenient due to future DB size, thus the operating system and 

DB can be placed on different hard drives. Setting a new data directory for 

MySQL is not straightforward. It is necessary to edit a few files from the 

operating system. Further details for software installation are given in the 

Appendix A; all the steps of this section are included. 

3.5.2 User interaction 

Once the software is installed, there is no requirement for programming skill 

with Python. However, since there is no user interface, it will be necessary to 

run Python scripts from the command line, as well as a very basic knowledge 

of Unix/Linux. Before running any script, all the database scripts must be 

kept in the same folder. It is the same case for the wind assessment scripts. 

Database scripts and wind assessment scripts are completely independent. 

Thus, it is better to separate both script groups into different folders. All the 

code is open source and already available through Github platform; more 

information in Appendix A. 
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Once the command prompt is opened, the directory must be changed to the 

folder containing the scripts. This is done by simply writing: 

cd path/to/the/folder 

After, the script can be summoned easily by writing: 

python name_of_script.py 

There are only two scripts to remember, one for each software block; 

database creation and wind assessment. Once any of these two scripts are 

called, the processes will start asking the user to make some choices and/or 

set some parameters as shown in Figure 3.4.  

The script name to be called for starting the database creation is 

Insertion_process.py. On the other hand, the script name to begin the wind 

assessment is sat_options.py. It could be helpful to follow the flowcharts from 

Figures 3.6 and 3.2 for database creation and wind assessment respectively. 

After any of these two scripts are run, the user will only interact with the 

command line window for making choices and decisions, setting some 

parameters and inserting the path to specified files. The software has been 

designed to be easily used from the command line.  There is an exception, 

every time an output, such as a map, graph, or wind rose, is reached, a new 

window will be displayed. That window is created by the Python package 

matplotlib. A few options will appear on the window such as zoom, grid and 

more important save file as a picture. An example of an output window is 

shown in Figure 3.5. Furthermore, in Figure 3.4 is shown the example of the 

software interface for the output represented in Figure 3.5. 
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Figure 3.4. Software interface used to achieve the output from Figure 3.5. 
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Figure 3.5. Software output window example, in this case for a data density map. 

3.5.3 Database creation 

Before the database, the first step is to download the satellites datasets. The 

datahub websites were already shown in section 2.4.1. It is recommended 

that a full mission of a satellite is downloaded before inserting the data into 

the database. Datasets can be kept in the same folder or directory tree. After, 

the datasets can be transformed into a new format, CSV files. At this point 

datasets are ready for insertion into database. Parallel to satellite data 

transformation, the database with its 1200 tables must be created. Scripts to 

carry out all of these processes have been created. The whole DB creation 

process is shown in Figure 3.6. 
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Although the code was designed to have high performance, some routines 

are slow. Scripts were written to handle only one satellite mission at time. 

Thus, the risk of a process being interrupted, and therefore data lost, was 

reduced. However, an advanced user may try to modify the code to 

automate the process or to work in parallel. For any user, here are some 

recommendations when preparing a computer to host the DB: 

 Hard drive larger than 3 TB. 

 Memory RAM larger than 32 GB. 

 Process each satellite mission separately or independently. 

Satellite datasets can be processed in parallel strings, but 

insertion into DB must be a single string. 

 Build indexes only when all satellite data has been inserted into 

DB.  

3.5.4 Wind assessment 

This process is much faster than the database creation. Since the tool was 

designed to undertake wind assessments for small areas, the amount of data 

is drastically reduced once the domain under study is set. In fact, the 

extracted file from database could be shared with or sent to other computer 

where the wind assessment would take place. There is no need for special 

hardware requirements for the second computer or laptop. In this case, it is 

not necessary to install the MySQL database since no database would be 

required. 

All processes required to run a wind assessment have already been well 

explained in section 3.3. 
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Figure 3.6. Full process for the creation of the database. Brown lines represent satellite 

data; green lines represent database management. 
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3.6 Summary 

The tool was designed to handle an extremely large amount of data 

although, in this study, only some satellite missions were fully or partially 

included. In all steps, from insertion into the DB, exporting from the DB and 

the whole process of data analysis, the possibility of working with large 

datasets or Big Data was considered. Therefore, computational speed was 

measured and processes were enhanced to increase speed. This was one of 

the reasons Python was chosen as the programming language since 

nowadays the majority of Big Data applications are written in Python. The 

other reason was the possibility of making the code freely available as open 

source software. 

The method used to avoid data spreading was developed to prevent taking 

into account an unrealistic number of measurements and keep a high 

resolution. However, a significant assumption has been made due to the 

measured wind speed of microwave remote sensors being biased towards 

that located in the centre of the measured area. Because of this the wind 

speed measured by these microwave remote sensors over the area of a pixel 

is biased toward the real wind speed at the centre of each pixel. This 

assumption is a source of inaccuracy that must be remembered in the 

analysis. 

The best summary of the whole data analysis process is the Fig. 3.2. There are 

two parallel processes, one for in situ data and the other for satellite data. As 

shown, both processes are completely independent with one exception, when 

models including air-sea interaction are selected. Furthermore, the tool 

allows a comparison between results from the ground and remote sensors. 

This is a critical and necessary function to validate not only the tool but also 

satellite measurements and vertical extrapolation methods. 

As explained in section 1.2, the code has been published along with some 

material of the present chapter. More information and the link to the code 

were included in Appendix A.  
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4. Satellite-enabled wind resource optimisation 

analysis  

4.1 Introduction 

Usually, an offshore measurement campaign is conducted by meteorological 

masts located near the coast. However, the cost of an offshore met mast can 

exponentially increase with deeper waters, [90]. In order to reduce costs, the 

wind industry is introducing remote sensing instruments in measurement 

campaigns such as Sonic Detection and Ranging (SODAR), Light Detection 

and Ranging (LIDAR) and satellites, [91]. Satellite data are relatively new in 

wind engineering, but it is not in wind monitoring. In 1987, a satellite with an 

onboard passive, microwave sensor was launched to deliver continuous 

ocean wind speed time series, the Special Sensor Microwave/Imager (SSM/I). 

Since then many studies have been reported where satellite data was used in 

wind resource estimation, [17, 23-28]. Recently, another study [34] explained 

how wind resource assessment could be carried out by the combination of 

different satellite remote sensing instruments. Five types of instrument can 

measure ocean surface winds from satellites; the microwave radiometer, 

altimeter, scatterometer, Synthetic Aperture Radar (SAR) and Global 

Navigation Satellite System Reflection (GNSS-R) receivers.  

Satellite measurements are not as accurate as on-site instruments such as 

meteorological masts, LIDAR or SODAR, therefore, every wind resource 

assessment by satellites should be accompanied by an accuracy study. In 

many of the published articles in this field, researchers have noticed the 

difficulties of carrying out a wind assessment using satellites. Sensitivity 

studies for those difficulties have been undertaken, [62, 73]. Difficulties were 

found, such as the time between measurements, data density, diurnal and 

seasonal variations, truncation of wind speed measurements due to the 

limitations of measurement instruments, criteria in image processing, 

calibration of wind retrievals, vertical extrapolation of winds and merging 

wind retrievals from different satellites. There are also some studies [25, 62, 

73, and 74] where it was intended to determine the minimum number of 

images required to carry out a wind assessment with sufficient accuracy in 

order to resolve the low data density problem. However, there is still no 

consensus among researchers regarding the required minimum data density. 



67 

 

Other problems of remote sensing are related to phenomena in the Marine 

Atmospheric Boundary Layer such as internal boundary layers, thermal 

internal boundary layers, atmospheric stability, convective cell, roll vortices, 

lee phenomena, gap flows, barrier jets and rain cells. Also, some Oceanic 

influences such as surface waves, internal waves, currents, bathymetry and 

surface slicks may create distortion on the backscattered signal that leads to 

an underestimate or overestimate of the wind speed. On the other hand, 

satellite remote sensing presents a significant advantage in being able to take 

multiple measurements over large areas of the world’s oceans every day.  

The aim of this chapter is a study of the application of satellite remote 

sensing for the wind industry at the wind resource assessment stage. The 

study will also investigate satellite capabilities and methodologies and test 

these according to wind industry requirements thereby highlighting their 

strong and weak points and allow suggestions for future studies. A 

combination of many different satellite data could improve the accuracy and 

coverage of wind maps and wind resource assessment by satellites. To test 

this capability the creation of wind maps using satellite data, not only for 

large areas but also for small areas such as an offshore wind farm, was 

undertaken. At the small, wind farm, scale a resolution of 1 or 2 km is 

desirable to see possible wake effects and to cover coastal areas. A secondary 

capability, to undertake a basic wind resource assessment at a specific point 

of the area under study and carry out a posterior comparison with ground-

based measurements, was also carried out in order to validate the tool. A 

comparison with an offshore met mast was undertaken for the area located 

north of the river mouth of Ems (on the border between Germany and the 

Netherlands) and the results are presented.      

4.2 Materials and Methods  

4.2.1 Fino-1 data processing 

The selected in situ device to check accuracy for satellite measurements and 

post-processing was the Fino-1 platform located 45 km offshore of Borkum, 

Germany (6.59°E, 54°N) as shown in Fig. 4.1. In 2001, the German 

government adopted the objective of the construction of research platforms 

in the North and Baltic Seas. The first platform erected was Fino-1, built and 
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operated by GL Garrad Hassan Deutschland GmbH. The present platform 

provides meteorological, technical, biological and oceanographic 

measurements for the analysis of environmental conditions leading to the 

exploitation of wind energy, [92]. Fino-1 became operational from the 

autumn of 2003 until the present and data are available through two different 

databases; Fino-1 database and the NORSEWIND database. Only the 

NORSEWIND database was used in this study, [4]. 

 

Figure 4.1. Location of Fino-1 (blue point) meteorological mast, and offshore wind farms 

(red points) with wind turbines already installed by October of 2015 near the river mouth 

of Ems in the North Sea. 

In the present analysis, only wind speed and direction measurements at 

different heights are considered. The necessity of data at different heights is 

the reason to use Fino-1 instead of buoys for which wind speed needs to be 

extrapolated to 10 meters. Many cup and ultrasonic anemometers were 

mounted on Fino-1 as well as vanes. However, due to device performance 

over the years, only some of them were included in this analysis. In the 

present study cup anemometers and vanes at 33 and 90 meters were used. 
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The data from NORSEWIND covers from January of 2004 until November of 

2011. Once data was downloaded this was filtered according to two 

conditions. First, valid data must be from the highest processing level in 

order to use already corrected measurements. Second, data was only 

considered when there were valid data at 33 and 90 meters simultaneously, 

since measurements at two heights were needed to calculate surface 

roughness. In order to obtain surface roughness, the logarithmic law for 

neutral stability with two different heights instead of friction velocity was 

used, see Eq. 2.5. The same equation was used for vertical extrapolation. 

However, in this chapter, the in situ data was not filter according to the 

atmospheric stability. 

4.2.2 Satellite data processing  

In order to work with a range of different satellites, it was important to use 

inter-calibrated datasets and also to work only with neutral wind speeds. 

Inter-calibrated datasets have been reprocessed using a consistent 

methodology to develop their particular GMF’s with another satellite as a 

calibration target, [76, 93, and 94]. For this reason, the Remote Sensing 

Systems (RSS) data hub was ideal. They have inter-calibrated some missions 

such as Quikscat, ASCAT, WindSat, SSM/I and TMI. Also, they have 

processed wind retrievals to achieved neutral wind speeds over the ocean 

surface. From the RSS data hub, the entire missions of Quikscat, ASCAT and 

SSM/I were downloaded with all available data until March of 2015. 

Actually, there is no SAR inter-calibrated data, therefore, when different 

missions are merged, this needs to be noted. The applied GMF was CMOD5, 

as it is implemented in the Sentinel-1 toolbox, which does not retrieve 

equivalent neutral winds. Due to the use of different GMF’s differences or 

bias can be expected between Sentinel-1 and other devices. Sentinel-1 data is 

downloaded through the Sentinel Data Hub by ESA. Their datasets are not 

daily gridded data, as Remote Sensing Systems products are, so it is 

necessary to calculate neutral winds. All available extra and interferometric 

wide swath images were downloaded and processed for the area around 

FINO-1. Thus, wind vector measurements by position were obtained and the 

dataset gridded. In the end, almost 100 Sentinel-1 images were processed 

from the beginning of the mission to October of 2015. 
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Data were filtered according to rain rate, default missing values and satellites 

and instruments to work with. In this study, only rain-free measurements for 

SSM/I, Quikscat and ASCAT were selected. In the case of Sentinel-1, there is 

no rain flag. Although Sentinel-1 can measure winds under all-weather 

conditions, it is thought that there is some bias under rain conditions. 

Another important difference between Sentinel-1 and the other satellites is 

the number of images. One hundred images were taken from Sentinel-1 

while a few thousands of images were taken for each of the other missions. 

Due to rain presence and the limited number of SAR images, a strong bias 

between Sentinel-1 and the other satellites was expected. Satellite data can 

have different spatial resolutions. Therefore it was necessary to formulate a 

method to merge different datasets and avoid data spreading. In section 3.3 

there is an explanation of the method.  

Like conventional wind resource assessment, it is necessary to calculate wind 

speeds at hub height since satellite wind retrievals are given at 10 meters 

over the ocean. Here, it is not possible to follow the same methodology 

because there is no second measurement to calculate surface roughness and 

extrapolate. Wind measurements are too low in comparison with traditional 

met masts where the highest measurement is close to hub height. This fact 

has pushed researchers to find another method to extrapolate winds. In 

Badger et al. (2016), a method for extrapolation to hub height was proposed, 

[95]. Basically, the logarithmic law for neutral stability was applied but 

keeping friction velocity, see Eq. 2.5, and Charnock’s equation, Eq. 2.9. The 

Charnock’s parameter, αc, was considered 0.0144 in the long term. Since the 

algorithm applied represents the neutral wind speed, Ψs is neglected and Uz 

is the satellite wind speed and z is 10 meters. Then it becomes a system of 

two equations with two unknowns. The friction velocity and surface 

roughness can be calculated by iteration. Once surface roughness and friction 

velocity are known, z can be switched to 100 meters, or any desired height, in 

order to calculate wind speed. The simplest way to extrapolate winds, and 

the one used in the present study, is to always assume neutral stability and 

so the atmospheric stability correction is neglected. However, this is not 

realistic since the atmosphere can be unstable, stable or neutral. The way to 

apply stability correction on a long-term basis is also described by Badger et 

al. (2016) [95], where it is necessary to know heat fluxes and temperatures.   
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At this point, there are two possibilities; long-term basis or short-term basis. 

The first one, the long-term method, calculates the average, neutral wind 

speed at 10 meters for each square of the grid and afterward the vertical 

extrapolation is applied. The second one, the short-term method, applies the 

vertical wind extrapolation for every single measurement and afterward the 

average wind speed is calculated at 100 m. In this study, both long and short 

methods are applied and compared using different parameters such as wind 

speed, surface roughness length, standard deviation, Weibull parameters. 

In order to compare the results with in-situ measurements, Fino-1 data is also 

included in the grid according to its location. However, due to the limited 

amount of data from Sentinel-1, Fino-1 is only compared with the nearest 

HDDC, which is located at 6.63°E, 54.13°N.  

Before comparing in situ and satellite data, data is selected only when the 

time stamp coincides. Then wind speed and wind direction averages are 

calculated for Fino-1 over a period of 50 minutes. Since satellites retrieve the 

mean wind vector over an area, it is more representative to make a 

comparison with average, in situ measurements over a period of time than 

with instantaneous measurements. There is the exception of SAR’s due to 

their high resolution. However, Sentinel-1 is not compared with Fino-1 in 

this study. 

All satellite missions were processed separately for both short and long 

methods. The results were compared to in situ observations. The same 

process was undertaken for all satellite data merged together.      

4.2.3 Methodology for wind resource parameters  

Conventional wind resource assessment is undertaken with large datasets 

from meteorological masts, LIDAR’s or SODAR’s with wind measurements 

every ten minutes for various years of observation. With a large amount of 

data, it is possible to realize a confident assessment by directional sectors. 

This is not the case with satellite wind resource assessments. Even when 

different missions were merged there was not enough data due to the 

various filters applied and posterior matching between Fino-1 and satellite 

data. For this reason, in the present study, the assessment was only 

undertaken for all wind directions at the same time.  
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Once winds are vertically extrapolated and the wind grid is calculated a 

wind map can be produced. Weibull parameters and curves are obtained 

through the mean wind speed and standard deviation. Wind roses are also 

produced but only on a short-term basis under the assumption that wind 

direction will remain the same from 10 meters to 100 meters. Wind direction 

can change with height; possible reasons are effects of surface friction, tidal 

streams, Coriolis Effect, Ekman spiral, currents or inertial oscillations, [96]. It 

is not possible to produce wind roses for the long term since there is only one 

available wind speed value at 100 meters. In order to check accuracy, all 

parameters were compared and a regression between satellites and Fino-1 

was undertaken for both wind speed at 100 meters and surface roughness 

length. 

All data processes, calculations of parameters, wind maps, wind roses and 

other graphs were made by the use of the designed tool. This tool was 

explained in detail in chapter 3. It is worth to remember that the tool was an 

essential part of the research showed in this thesis. 

4.3 Results 

Two of the main outputs of the tool is the wind map and data density map 

which is made to show the number of samples involved in the wind map. 

Excepting a posterior application of a numerical weather prediction model, 

there is no way to spread wind speed over an area as satellites are capable to 

measure. Hence, wind maps are only compared with in situ data on the exact 

point where the met mast is located. Even so, wind maps are compared for 

the selected satellites. Furthermore, due to the use of density maps, the 

strong relationship between a number of samples and quality of wind map is 

shown.  

Some previous studies [25, 27, 34 and 73] show the accuracy of satellites for 

both instant measurements and average wind speeds with very good results 

for rain-free measurements. However, all of them compare satellite wind 

speed at 10 meters with offshore masts or buoys. In the present analysis, 

wind speed data are compared after vertical extrapolation for both, satellite 

and offshore mast. Weibull parameters, standard deviation and surface 

roughness length between devices are also compared. Vertical extrapolation 
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depends on surface roughness and friction velocity calculations due to the 

extrapolation method used. Therefore, surface roughness is an indicator of 

accuracy and can be used for validation of the method.    

The last comparison is between long and short term. Here, the same 

parameters are compared. Stability correction was not applied for long-term 

[95]; however, through the analysis of the standard deviation and Weibull 

parameters, some conclusions were reached. 

4.3.1 Comparison of wind maps 

Wind speed maps are the most common output in wind analysis by satellites 

over the ocean. In all cases, they represent wind speeds at 10 meters over the 

sea for either average or instant wind speed. Most of them also include the 

wind direction. In this analysis, all wind maps represent average, 

extrapolated, winds at 100 meters but wind direction is missing. The wind 

maps cover a period from January of 2004 to November of 2015. 

Because only a small area has been studied poor maps by satellites with low 

resolution may be expected as shown in Fig. 4.2. Quikscat, ASCAT and SSM/I 

show similar wind speeds, around 9 m/s, with some differences. The 

differences are produced by small speed differences for some low resolutions 

squares. By contrast, the data density maps are very different. For Quikscat 

there are between 4000-4500 samples, 1500-2000 samples for ASCAT and 

finally between 2000-2500 samples for SSM/I f13. Unlike the others, ASCAT 

presents a homogeneous density. The case of Quikscat is similar. However, 

some points near the coast lost measurements due to coastal disturbance, 

land-sea pixels masked out of satellite products. The SSM/I density map is 

completely different. First the gap between coast and measurements is bigger 

(~25 km or ~0.25°) and second, there is a gradual loss of data toward the coast 

and west. This map is missing many details on wind speed since the 

resolution for SSM/I is 0.25°, even so, there is a gradual reduction of samples 

from 2000-2500 in the open sea to 100-200 images near the shore.  
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Figure 4.2. Wind maps at 100 meters for Quikscat, ASCAT at 50 km and SSM/I f13 at left 

and corresponding data density maps to the right. The area represented is the river mouth 

of Ems. 

With the inclusion of SAR data at 2km resolution, the wind map is drastically 

improved in Fig. 4.3 because of its high resolution and coverage near the 

coast. The mean wind speed map seems to be divided in two, east and west 
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of meridian 7°E. Due to the small amount of data, 100 images, the mean wind 

speed is very sensitive to bias by a few images. This is supported by 

comparison with the data density map, because it is possible to observe the 

same patterns on both maps, such as the vertical, straight lines in dark blue. 

However, it is possible to see the wake effect produced by the islands located 

in the north of the main land. Furthermore, the wind speed gradient from 

coast to open seas is represented as could reasonably be expected; low speed 

near the coast increasing to open waters. There are two anomalies, located at 

54.5°N 6.4°E and 54.5°N 7.7°E, these locations match with the position of 

some offshore wind farms, Global Tech I, Amrumbank West, Nordsee Ost 

and Meerwind Sud/ Ost. However, the presence of other offshore wind 

farms, are not observed in the wind map. Comparing the wind maps in Fig. 

4.3 to the wind maps in Fig. 4.2, there are wind measurements near the coast 

due to the higher resolution of SAR; even the wind speed in the river mouth 

of Ems is measured. 

 

 

Figure 4.3. Wind maps at 100 meters by satellites on the left. Data density to the right. 

These maps are the product of a merging between Sentinel-1, Quikscat, ASCAT and 

SSM/I data. The area represented is the river mouth of Ems. In the wind map, blue point 

is Fino-1 and red 
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The data density map of Fig. 4.3 includes red and white rhombuses which 

are the HDDC points as explained in the methodology. These points, 

separated by 0.25°, are samples from Quikscat, ASCAT and SSM/I and a few 

images from Sentinel-1. HDDC’s have a white colour because they are out of 

scale on the map since there are approximately 30,000 samples in each. Even 

so, there are differences between HDDC’s near the coast and west HDDC’s 

and HDDC’s located in open seas. The white area inside the HDDC’s is 

smaller or non-existent for those points near the coast than HDDC’s in open 

seas.  The rest of the points on the map have between 50-100 images (green 

area) except near the coast and north (blue areas) where there was between 

20-50 images.    

4.3.2 Comparison of wind assessment parameters 

The chosen HDDC for comparison is the nearest to Fino-1, inside the red 

square in Fig. 4.3, as explained in methodology. It is located at 54.13°N 

6.63°E, approximately 13 km away from the met mast. There was another 

HDDC as near as the one selected located to the south of Fino-1 but it was 

discarded due to the absence of enough data overlapping in time.  

The results shown in Table 4.1 have Quikscat, ASCAT and SSM/I results 

included. Sentinel-1 was excluded in the wind resource assessment due to 

the low number of samples. The results from each satellite were compared 

with Fino-1 always using the same number of measurements for both and 

only those measurements were taken with less than one minute difference in 

time. Differences in low wind speeds were expected since it is a comparison 

between 10 and 33 meters therefore FINO-1 results are always a bit higher 

than the satellite data. Due to the wind profile characteristics it is usually 

expected to have a higher wind speed at greater heights. Here there is no 

difference between long and short-term data. Unlike data at low height, 

results at 100 meters should not differ if measurements and methods are 

precise. However, from the data in Table 4.1 it may be seen that there is a 

significant bias, always positive in the short term basis and negative for the 

rest in a long-term basis. These differences are higher for long-term 

calculations. 
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Table 4.1. Comparison between Fino-1 30 minutes mean and satellites when there was 

overlap between measurements. Average wind speeds at a low height (U10/33, 10 meters for 

satellites and 33 meters for Fino-1) and 100 meters (U100), number of samples (N) and 

standard deviation (σ) are included. Percentages on the table represent the difference with 

Fino-1 results when overlaps specifically with each satellite. Weibull k and C, and σ are 

calculated at 10 m for long term, and 100 m for short term. 

One interesting parameter is the standard deviation, σ, because Weibull 

parameters, mainly Weibull K, depend on its value. Here there is a 

significant difference between long and short-term datasets. In long term, it 

is not possible to calculate standard deviation at 100 meters because there is 

only one value at that height and it was therefore calculated at 10 m. For that 

reason, results were not compared with Fino-1 and the percentage difference 

is missing in Table 4.1. Unlike long-term, on a short-term basis there is the 

same number of values at 10 and 100 meters, thus standard deviation 

difference at 100 meters with Fino-1 was calculated as shown in Table 4.1. 

The higher the number of measurements, the lower difference in standard 

deviation with in situ measurements. Looking at Weibull parameters, it was 

found that scatterometers achieve better accuracy for Weibull K. This 

parameter shows an obvious correlation with standard deviation differences 

for short term. On the other hand, Weibull C differences show correlation 

with hub height wind speed differences for both short and long terms. Short-

term results achieved slightly better accuracy for scatterometers but not for 

SSM/I. However, hub height wind speed and Weibull C are better calculated 

 Instrument U10/33 (m/s) U100 (m/s) Weibull k Weibull C σ(m/s) N 

L
o

n
g

 t
er

m
 

Quikscat/Fino-1 8.03(-1.35%) 9.65(2.55%) 2.33(3.05%) 10.89(2.54%) 3.68 3787 

ASCAT/Fino-1 7.55(-4.43%) 9.05(-3.72%) 2.09(-6.28%) 10.22(-3.76%) 3.82 1464 

SSMIf13/Fino-1 7.51(-1.83%) 9.00(-4.25%) 

1.95(-

10.55%) 

10.16(-4.33%) 4.05 595 

S
h

o
rt

 t
er

m
 

Quikscat/Fino-1 8.03(-1.35%) 9.70(2.21%) 2.24(1.38%) 10.95(2.24%) 4.61(0.65%) 3787 

ASCAT/Fino-1 7.55(-4.43%) 9.12(0.22%) 2.02(-7.45%) 10.29(0.10%) 4.76(7.20%) 1464 

SSMIf13/Fino-1 7.51(-1.83%) 9.07(1.91%) 1.88(-11.3%) 10.22(1.69%) 5.07(13.45%) 595 
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when short-term data is applied. Overall, Quikscat is the best satellite for 

accuracy in both cases, short and long-term.  

Another parameter not included in Table 4.1 is wind direction. In order to 

represent wind direction, it is commonly presented in a wind rose. In Fig. 4.4 

Fino-1, Quikscat, and ASCAT wind roses are shown. SSM/I data is missing 

because there is no wind direction measurement from radiometers. For all 

roses, the most predominant wind direction was south-west. This was clearer 

for Fino-1 than for the satellite data. The frequency for each sector was not 

equal to Fino-1 but, for most of the sectors, was similar for winds above 12 

m/s. Unlike Quikscat, ASCAT measured practically the same frequencies. 

Even so, there was no match between devices for winds below 6 m/s; 

between 6 and 12 m/s a better match was observed. 

Although Weibull parameters were shown in Table 4.1, it is useful to see 

them graphically expressed through the Weibull distribution equation to 

calculate wind probabilities by wind speed, as shown in Fig. 4.5. Long and 

short terms have been separated in order to appreciate and highlight the 

difference between satellites and the met mast. As observed in Table 4.1, 

Quikscat is more accurate and draws a similar line to the Fino-1 data. ASCAT 

and SSM/I draw similar lines; both show higher frequency for winds 

between 0 and 10 m/s. For all curves in Fig. 4.5 the peak is reached between 

14 m/s and 18 m/s. Fino-1 peak reaches similar probability than satellites in 

long term. In short-term,   Fino-1 reached the highest probability with 

significant difference.  

In order to compare short and long terms, Fino-1 data were analysed for both 

terms independently of satellite measurements, i.e. for more than 300,000 

measurements. The result is shown in Fig. 4.6. Basically, they are very similar 

curves to Weibull curves for Fino-1 which appears in Fig. 4.5. Therefore, the 

difference between term methods is observed without the possible 

uncertainty or bias from satellites and also without the necessity of 

atmospheric stability correction. The difference between them is only caused 

by the surface roughness calculations. As in Fig. 4.5 the probability between 0 

and 12 m/s is higher for short-term and after 12 m/s, long-term presents 

higher probability. 
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Figure 4.4. Wind roses for Fino-1, Quikscat, and ASCAT at Fino-1 location. Legend of 

colours represents wind speed (m/s), and each internal circumference represents the 

frequency of winds (%). 
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Figure 4.5. Weibull curves for Fino-1, Quikscat, ASCAT and SSM/I f13 by long and short 

basis, right and left respectively. 
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Figure 4.6. Regression graphs for wind speeds at 100 meters on a short-term basis. 

Satellites calculations are compared with Fino-1 calculations. It is included N as a number 

of measurements, R2, the equation of trending line and RMSE. 
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4.3.3 Comparison of regression graphs 

In order to know if satellites are being accurate enough it is necessary to 

compare not only averages but also instant measurements. Hence, wind 

measurements and surface roughness are studied. Since there are some 

previous studies comparing different satellites with buoys or met masts at 

sea level in this thesis wind speeds at 100 meters were compared. It must be 

highlighted that the accuracy of measurements is not only related to 

instrument performance and signal processing for satellites but it is also 

dependent on the vertical extrapolation method. For this reason, the effect of 

surface roughness is also studied the accuracy of which is an indicator of the 

precision of the vertical extrapolation method. 

For long term, it is not possible to undertake a regression analysis since 

extrapolated wind speed and surface roughness are a single, averaged value. 

Regression analysis has been done for satellites as a group and separately as 

shown in Fig. 4.7. Furthermore, a trend line has been drawn and some 

parameters have been calculated such as R2, Root Mean Square Error (RMSE) 

and the equation for the trend line. Wind speed regression shows a very low 

correlation in all cases where R2 is around 0.65. Here a value of 0.9 should be 

reached in order to conclude that there is good precision in the measurement. 

RMSE is also very high with values around 3 m/s. This represents a large 

uncertainty in energy production by wind farms. Apparently, regressions are 

better for Quikscat and ASCAT than SSM/I according to results on Fig. 4.7. 

Satellites as a group achieved practically the same results as Quikscat itself. 

ASCAT achieved the lowest RMSE, the highest R2 and also the highest slope 

of the trending line. 

That trend is also observed in Fig. 4.8 where surface roughness regressions 

are shown. In this case, the regression shows a very low level of correlation. 

The trend line has a negative slope in all cases excepting SSMI when the ideal 

slope should have a value of one. Also, R2 has values under 0.1 in all graphs, 

and RMSE is around 0.5, which is a significant uncertainty since surface 

roughness values usually lie in the range between 2x10-2 and 3x10-4 m, only in 

case of a storm or extreme weather conditions is this value exceeded in 

offshore locations. Satellite surface roughness calculations are always 

between 0 and 0.02 m. However, meteorological mast calculations are higher 
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around 20% to 30% of the time. Despite this, Weibull curves were 

surprisingly accurate as shown in Fig. 4.5 and 4.6.  

In all surface roughness regressions, there was an accumulation of points 

near the 0 value for Fino-1 values. A big proportion of points were located in 

this area. If points above 0.002 meters for Fino-1 were removed, it is possible 

to find a correlation. Under this possibility, a new regression with 

logarithmic scale was calculated as shown in Fig. 4.8. Again there was an 

accumulation of points around low magnitude values. The last regression 

was showing that the method to calculate aerodynamic surface roughness 

length was only agreeing with the meteorological mast when z0 is very low.  

4.4 Discussion 

The capability of satellites to measure ocean winds has been well 

documented and studied but using satellite datasets for wind industry 

applications is still requiring further study. In the case of offshore wind 

farms, there is one main challenge; the extrapolation of wind speeds from sea 

level to hub height in order to know wind probability distribution at 

different heights. Once the distribution is known, a wind farm can be 

designed and the expected energy production calculated. This wind 

distribution depends on Weibull parameters and average wind speed at hub 

height. However, during the design of a wind farm, other wind parameters 

are required such as extreme wind speed distribution, return period, 

standard deviation and turbulence intensity at hub height. These parameters 

are used to select the optimal wind turbine for the area under study. 

Therefore, a complete wind resource assessment by satellites must include all 

of these parameters.  
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Figure 4.7. Regression graphs for surface roughness length (m) in short-term basis. 

Satellites calculations are compared with Fino-1 calculations. It is included N as a number 

of measurements, R2, the equation of trending line and RMSE. 
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Figure 4.8. Regression graphs for surface roughness length (m) in short-term basis with 

logarithmic scale. Satellites calculations are compared with Fino-1 calculations. 
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Another challenge for the application of satellites into the wind industry is 

the use of wind maps to locate wind turbines in their proper positions 

according to wind conditions. This process is called micro-siting. It is always 

necessary to calculate wind conditions over an area to find the best positions 

and also to avoid wake effects from other wind turbines. In order to spread 

wind conditions measured at one point to an area, computational fluid 

dynamics is commonly used. This can be a slow process depending on the 

model applied. Since satellites can produce wind maps, these have been 

studied to check their capability for micro-siting but also to study the wake 

effect. 

The present study is not a complete wind assessment as only Weibull 

parameters, average wind speed and standard deviation were calculated and 

compared with in situ measurements. Following the hypothesis that 

increasing the amount of satellite data would improve the quality of wind 

parameters and wind maps, datasets from several different satellites were 

combined. The first problem found was the availability of overlapping 

measurements. In order to validate satellite measurements with consistency, 

only data overlapping in time between satellites and Fino-1 was used. This 

fact reduced drastically the number of samples. Even so, because many 

satellites were included, 5816 overlaps in total were found. In order to 

corroborate the hypothesis three points are discussed, wind maps, the 

comparison between satellites and Fino-1, and finally, the comparison 

between long and short-term datasets. 

Wind maps from Fig. 4.2 and 4.3 showed the big difference between low and 

high-resolution datasets. Obviously, only SAR’s are able to draw a map with 

precision in coastal areas according to wind industry requirements where the 

optimal is between 0.5 and 1 km. The presence of a shore nearby produces 

loses of measurements by scatterometers and radiometers as observed in Fig. 

4.2. This fact was already found [34] where the Envisat ASAR satellite was 

used instead of Sentinel-1; with more samples, but wind maps covered big 

areas such as the North and Baltic Seas. As commented, the problem of 

SAR’s is the lack of inter-calibration and error model. Another problem for 

SAR’s is the shortage of data, in comparison with scatterometers and 

radiometers, covering open seas since they use to be designed to study the 

shore or inland locations. In order to use a wind map for wind farm design 
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more SAR data will be required which presents the highest resolution and so 

produce maps without data density influence as was observed in Fig. 4.3. 

This SAR data can come from Envisat ASAR, PALSAR, Radarsat-2 or some 

other SAR’s. Another point to highlight is the presence of HDDC’s. These 

points are the centre of the area of representativeness for low-resolution 

products. However, it does not necessarily mean that wind speeds at that 

point are exactly what is measured by satellites since a satellite measurement 

represents the average of an area. Nevertheless, HDDC data could be used in 

computational fluid dynamics to spread winds measurements over the area 

and perhaps achieve better resolution maps, [97]. 

When differences between satellites and Fino-1 are shown as a percentage or 

Weibull curve, these do not seem to be relevant, but when regressions are 

plotted differences are easily observed.  This is obvious for regression 

graphs, mainly surface roughness, but important discrepancies were also 

found between satellites and between satellites and Fino-1. Thus, Quikscat 

with more samples than ASCAT and SSMI achieved the most similar Weibull 

curves and the best regression in comparison with Fino-1. The reason is the 

reduction of the statistical error due to the increase in the amount of data. 

Also due to the same reason the Weibull K was more similar to Fino-1 

results. However, ASCAT achieved better wind mean speed at hub height 

and by extension better Weibull C. This is a fact to remember for future 

studies in other places to check if it occurs again. 

Some other researchers [25, 34, 62, 73, and 74] also studied the bias between 

satellites and in situ devices, including wind roses, at 10 meters with similar 

results, or percentage of difference, than the present study, see Table 2.6. 

Some of these studies tried to determine the minimum number of samples 

required, but there is no consensus. The percentage difference between 10 

and 100 meters can have two origins, first bias between devices and second 

the methodology to extrapolate the winds from sea level. For a few satellites, 

such as Quikscat and ASCAT, this bias is well documented. In previous 

studies [26] the difficulty of wind retrieval by satellites for high winds from 

15 m/s and above was explained. This fact is another reason that there may 

be differences in standard deviation and wind averages. Even so, it would 

require a sensitivity study to show its relevance to the final results. 
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Due to the limited amount of satellite data, the wind resource was not 

analysed by sector. Even so, wind roses can give an approximated idea. 

ASCAT and Fino-1 presented similar frequencies by sector in general, unlike 

Quikscat. However, comparing frequencies by sector and wind interval, the 

results differ significantly. Hence, if wind resource was studied by sectors, it 

would be expected to find higher differences in wind speed and Weibull 

parameters between satellites and Fino-1. Wind roses were also calculated 

with very small differences which are caused by the difference in the periods 

studied, [34].    

There are two parameters with a high influence on the vertical extrapolation 

methodology; atmospheric stability correction and surface roughness. The 

first one was not included in this analysis as it was in Badger et al. (2016) [95] 

where the correction represented an addend of 0.5 m/s. However, their study 

was based on long-term average wind speed instead of instantaneous 

measurements or short term. This fact led to finding a close to neutral 

stability because unstable and stable conditions override each other since 

stability correction was calculated over a long period. This issue can produce 

a big difference in some parameters at hub height such as average wind 

speed, Weibull C, standard deviation, turbulence intensity and extreme 

winds distribution.  

The problem with surface roughness calculation is similar to stability 

correction because it is based on the long-term i.e. averaged roughness. In 

onshore wind assessment, it is common to work with averaged wind speeds 

to calculate surface roughness. This method is realistic onshore, where 

orography and vegetation are not expected to change significantly and 

neither is the surface roughness. Nevertheless, in offshore areas, this is no 

longer true because the surface is in constant movement. Therefore, surface 

roughness and Charnock’s parameter are changing constantly in a time scale 

of minutes or hours. Furthermore, the methodology to calculate surface 

roughness cannot be extrapolated to short-term because; using the present 

methodology, roughness is only dependent on wind speed. Certainly, wind 

speed produces sea waves but it is not the only phenomena that can produce 

waves. Hence, the sea state, i.e. waves, should be the variable to take when 

calculating surface roughness. This fact is also highlighted in some previous 

studies, [98] and [99]. As occurs with the atmospheric stability correction, an 
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averaged surface roughness will lead to bias in many wind parameters. This 

issue is also relevant even if a wind resource assessment is realized with 

offshore met mast data.  

4.5 Summary  

As explained in section 4.2, the preparation of data before analysis was 

essential and one of the main processes. Cleaning and filtering of large 

datasets were necessary to obtain valid and valuable data. The synergy of 

different type of datasets was also an issue. An extra complexity was found 

when data from different kinds of sensors was mixed. In order to do it 

properly, it was necessary to acquire knowledge the performance of all the 

sensors included.  

Some of the possible outputs of the developed tool have been showed here. 

Three different tools have been tested in this chapter. Spatial coverage by 

satellites in the form of wind speed and data density maps was the first. The 

second tool was the calculation of Weibull parameters which are essential to 

building a wind climate. The last tool studied was the vertical extrapolation 

of wind speed. Furthermore, an analysis of wind direction as a comparison 

between satellites and mast measurements was also undertaken. 

This chapter represents the first look at wind resource assessment by 

satellites. The main objective of this first study was to identify strong and 

weak points of this technology. It was a test for the developed software. 

Thus, once the lack of knowledge was known, research was focused on 

solving two main issues. The first is the vertical extrapolation of wind speed 

and surface roughness length parameterization. The second is the insertion 

of atmospheric stability in the vertical extrapolation method. 
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5. Review of methods for vertical extrapolation of wind 

speed over the ocean for satellite retrievals 

5.1 Introduction 

Before an offshore wind farm is designed it is necessary to undertake a wind 

resource assessment over a target area.  The main goals of such assessments 

are to describe the wind profile and climatology of the location under study. 

The wind resource campaign can be executed using different instruments. 

The most common is a meteorological mast with anemometers, vanes, 

thermometers and hygrometers among other sensors. However, there are 

more instruments capable of measuring wind vectors, such as LIDARs or 

SODARs. Also, in recent decades, spaceborne instruments have been proven 

to be accurate in the measurement of wind speed and direction over the 

ocean, [17]. Altimeters, radiometers, SAR’s, GNSS-R, and especially 

scatterometers have been analysed successfully by researchers, [26], [27] and 

[34]. The inclusion of satellite wind data into wind resource assessments by 

the wind industry has become interesting for offshore wind farm developers. 

The main advantages are the reduction of costs during wind resource 

measurement campaigns and the acquisition of data over large parts of the 

world. Nevertheless, two main challenges must be overcome before the 

application of satellite wind data becomes acceptable in the wind industry.  

The first one is building climatology from limited daily data, and the second 

is wind vertical extrapolation. The second challenge was already addressed 

in [95], where friction velocity (𝑢∗), the surface roughness (z0) and 

atmospheric stability parameterizations were studied. However, that study 

was undertaken under long-term premises, with constant Charnock 

parameter and averaged 𝑢∗ meaning constant z0. Hence, that study is 

considered highly idealized. 

Over the ocean, the interaction between the air and the sea must be 

understood in order to study 𝑢∗, z0 and atmospheric stability. Unlike 

onshore, the complexity of the subject is higher due to the non-static sea 

surface and dynamics under the sea surface. Both, 𝑢∗ and z0, have been 

studied by many researchers when wind stress and drag coefficient 

parameterizations were attempted, [100] to [105]. Even so, there is no 

consensus yet on the best method to calculate the drag coefficient or z0. Most 
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authors tried to calculate z0 through the well-known Charnock’s equation. 

All of them pointed to the difficulty in determining Charnock’s parameter 

and its dependence on wave age (cp/𝑢∗). In other cases, Charnock’s parameter 

has been related to the neutral wind speed at 10 meters or wave slope (H/Lp). 

However, all methods included empirical coefficients making the equations 

dependent on the datasets being used. Previous methods worked well under 

certain wave age conditions, as stated by the authors [106, 107, and 108]. One 

cause is the presence of swell or conditions where the sea is swell-dominated 

since the wind speed is low. Another cause is the presence of young waves 

which appear when the fetch or duration of wind are not long enough to 

develop completely under certain wind speed conditions [109]. On the other 

hand, when the sea is fully developed and wind dominated over deep seas, 

different authors found their best results [106 and 107].  

The second variable included in the logarithmic law is 𝑢∗. In this thesis, 

different methods for calculating 𝑢∗ are also compared. Unlike z0, 𝑢∗ can be 

calculated from direct measurements if horizontal and vertical wind speeds 

are known from in situ measurements. In their absence some authors suggest 

other methods for calculating 𝑢∗; wind speed dependent, [110], or wave 

parameters dependent, [111] and [112]. Nevertheless, these methods also rely 

on empirical coefficients in the same way as the z0 calculation methods.      

The aim of this chapter is to analyse and compare the different 

methodologies for friction velocity and surface roughness calculations which 

are necessary for the extrapolation of sea level satellite data to hub height. 

Due to a lack of consensus on z0 parameterization between researchers, it is 

necessary to make a comparison of the methods under different sea and 

wind conditions. Usually, studies are compared with measurements from 

instruments mounted on buoys for validation. However, in this study 

offshore meteorological mast data is used since the accurate modeling of the 

wind profile is the ultimate goal. For the comparison, the meteorological 

mast located at Egmond aan Zee was used.  

5.2  Material and methods 

In this study satellite data and in situ data were used, descriptions of datasets 

are explained in the following sections. Both datasets were filtered separately 
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and non-measurable wind and wave parameters were calculated for in situ 

data. Once filtering was done, only overlapping measurements were taken. 

Afterwards, 𝑢∗ and z0 were calculated for all different methods. The first 

regressions and tests between methods were 𝑢∗ and z0 regressions against in 

situ values. Finally, satellite wind retrievals were vertically extrapolated 

following Eq. 2.4.  More regressions for extrapolated winds were then 

undertaken. The last results were the same regressions but under different 

wave age, wave height and wind speed intervals.   

5.2.1 Satellite data 

Between the different spaceborne instruments, capable of measuring winds, 

the wind scatterometers Quikscat and ASCAT were chosen.  Scatterometers 

are an active, monostatic, instrument mounted on a moving platform and 

transmitting pulses of energy to illuminate a section of the Earth’s surface. 

This energy reflects off of the Bragg waves on the surface of the larger scale 

ocean waves. The reflected energy measured by the scatterometer is 

translated, using a Geophysical Model Function (GMF), with 10 m wind 

speeds and wind direction assuming neutral atmospheric stability, [113]. The 

monostatic scatterometer does not provide information about the wind 

direction. A special type of scatterometer, the windscatterometer, uses 

multiple beams, which achieve multiple look angles making possible the 

calculation of the wind direction, [36]. 

Quikscat was a satellite launched in June of 1999 with the mission of 

measuring winds near the sea surface. This NASA satellite was operating 

until November of 2009. Quikscat was the third Ku-band windscatterometer, 

working at 14 GHz, from the NASA SeaWinds instrument series. Its GMF for 

Ku-band has been improved over the years as discussed by [114]. However, 

the data from Quikscat still presents two main difficulties; contamination of 

the measured data by the presence of rain and validation of wind data at 

speeds in excess of 15 m/s. Quikscat delivered wind speed and direction at 10 

meters over the sea for ten years. In order to solve rain contamination, 

Remote Sensing Systems (RSS) added a rain flag to Quikscat measurement 

data by using radiometers such as TMI, and SSM/I f13, f14 and f15 on board 

different satellites. Quikscat has a spatial resolution of 50 km, but samples of 

25 km were used in the study as it is delivered by RSS. 



93 

 

The other windscatterometer used in this study, ASCAT, was developed by 

EUMETSAT. Although ASCAT represents two instruments on board 

different satellites, MetOp-A and MetOp-B, due to limitations in the 

availability of data from MetOp-B, only MetOp-A data is used. MetOp-A is a 

C-band scatterometer working at 5.2 GHz, [115] which makes its data less 

susceptible to contamination by rain than Ku-band scatterometers at high 

wind speeds. MetOp-A and MetOp-B were launched in October of 2006 and 

September of 2012 respectively and both are still operating at the time of 

writing this thesis. The GMF used to process MetOp-A retrievals is C-2013 

GMF [94], with which it is possible to calculate ocean surface wind speed and 

ocean surface wind direction. Like SSM/I and Quikscat, ASCAT has a spatial 

resolution of 25 or 50 km, samples of 25 km were used. 

5.2.2 Egmond aan Zee meteorological mast 

Ground-based, in situ, data came from meteorological masts and LIDARs in 

the NORSEWIND database, [4]. Among all of the instruments in this 

database, only two of them included wave height and wave period or length. 

These parameters are required for some z0 and 𝑢∗ methodologies, as 

explained in sections 2.4 and 2.5. The two possible instruments were the 

meteorological masts of Fino-1 and Egmond aan Zee. However, the quality 

of data for sea parameters was too low in the Fino-1 dataset; there are too 

many gaps between measurements. From this process of elimination 

Egmond aan Zee was selected to become the validation instrument. This 

meteorological mast is located 13.7 km offshore of Bergen, Netherlands 

(4.419°E, 52.606°N) as shown in Fig. 5.1. The mast was installed in November 

of 2003 by NoordzeeWind and it has been monitoring wind data until the 

present. In 2006, 36 wind turbines were constructed at the same location and 

Egmond aan Zee offshore wind farm has been in operation since then.  

In this analysis cup anemometers and vanes, located at 21, 70 and 116 meters 

above the mean sea level were used. Temperatures from sea and air were 

also taken at -3.8 meters and 21 meters respectively. Egmond aan Zee data 

from the NORSEWIND database covers a period from May of 2006 until 

December of 2008. The sea depth at the location of the meteorological mast is 

18.5m. 
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Figure 5.1. Egmond aan Zee meteorological mast location in blue. Red points represent 

offshore wind farms. Egmond aan Zee offshore wind farm is also located in the blue 

point. 

5.2.3 Data processing 

Both, satellite and mast data needed to be filtered in order to avoid device 

errors and erroneous measurements under certain conditions. Before 

applying these filters it was necessary to take into account how to mix two 

datasets created by different instruments. The satellite’s revisit cycle is about 

1-2 days; on the other hand, the mast takes measurements every 10 minutes 

for wind vectors. Every single measurement by a satellite represents a spatial 

average at 10 meters, assuming an atmosphere with neutral stability over an 

area of 25 by 25 km.  A parcel of wind at 8 m/s wind speed, roughly the 

average for Egmond aan Zee, will take 52 minutes to cover this 25 km. Based 

on this residence time mast measurements, usually, 10-minute average data, 

must be recalculated to 50 minutes average to allow them to be compared 

with satellite data. 
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In situ data were firstly filtered to avoid gaps between measurements, not 

only for every single sensor but also between sensors. Thus, only 

simultaneous sensor measurements from all selected sensors were 

considered valid data. The maximum time gap allowed between sea and 

wind sensors was 30 minutes. Wavelength (Lp) was calculated for deep water 

from the wave period (Tp) at the peak of the wave spectrum, gravitational 

acceleration (g) and depth (d), following the dispersion relationships shown 

in Eq. 5.1 and 5.2. 

𝐿𝑝 =
𝑔∗𝑇𝑝

2

2𝜋
  (5.1) 

𝑐𝑝 =  
𝐿𝑝

𝑇𝑝
  (5.2) 

The phase speed at the peak of the spectrum (cp) could be calculated once Lp 

and Tp were known. Surface roughness length could be calculated from the 

wind profile measured by the meteorological mast. Since wind speed at 

different heights, 21 and 116 meters were used here, the logarithmic law for 

neutral stability was applied, Eq. 2.5.  

The last filter for in situ data was the selection of measurements only under 

neutral conditions. This may be considered to occur when the sea surface and 

air temperature are roughly the same. A difference between T-3.8m and T21m of 

less than 1°C was considered to be required for the atmosphere to be near 

neutral. 

Satellite data was also filtered and only rain-free measurements were used in 

the analysis. Only those wind retrievals within the same time period of 

Egmond aan Zee mast were included. As expected, at this point there was 

more data available from the mast than from the satellites. The last filter 

applied to the data was to select in situ data only when data acquired from 

the met mast overlapped with satellite data. The application of these filters 

provided a dataset of concurrent 50 min-averaged mast data and satellite 

data.  

Because satellite wind retrievals only measure the neutral wind speed at 10 

meters above sea level a second measurement, at a different height is 

missing, and Eq. 2.5 is not applicable. To solve this problem the logarithmic 

law with the inclusion of 𝑢∗, as shown in Eq. 2.4, could work for satellite 
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data. Since only neutral conditions measurements were used in this study, Ψs 

was neglected.  

5.2.4 Friction velocity parameterization 

In total, six methods to calculate 𝑢∗ were compared. The first one, for in-situ 

measurements, is based on a combination of Eq. 2.5 and 2.9. Once z0 was 

calculated, 𝑢∗ was found through the logarithmic law under neutral 

conditions. This method in combination with in situ data was selected as 

validation for the rest of the friction velocity methods. The two other 

methods are a function of wind speed at 10 meters, U10. The first of them, 

from [110], is Wu’s method shown in Equations 5.3 and 5.4.  

𝐶𝑑10 =  (
𝑢∗

𝑈10𝑁
)

2

  (5.3) 

𝐶𝑑10 =  (0.8 + 0.065𝑈10𝑁) ∗  10−3  (5.4) 

Where Cd10 is the drag coefficient, also called wind-stress coefficient, acting 

on the sea surface and U10N is the neutral wind speed at 10 meters over the 

sea. By combining Eq. 5.3 and 5.4, 𝑢∗ becomes a function of U10N.  This 

calculation method is acceptable as only neutral winds are considered in this 

paper. Another U10N dependent method was suggested in [116] and uses Eq. 

5.3 and 5.5 to 5.8; this is Hersbach’s method. Unlike Wu’s method, this one is 

also a function of Charnock’s parameter (αc) and the kinematic viscosity of 

the air (ν). 

𝐶𝑑10 =  (
𝜅

𝑏𝑛
)

2

   (5.5) 

𝑏𝑛 =  [(𝑏𝜈)−12 + (𝑏𝛼)−12]1 −12⁄   (5.6) 

𝑏𝜈 =  −1.47 + 0.93 log (
𝑧

0.11𝜈
(𝜅𝑈10𝑁))  (5.7) 

𝑏𝛼 = 2.65 − 1.44 log (
𝛼𝑐

𝑔𝑧
(𝜅𝑈10𝑁)2) − 0.015 [log (

𝛼𝑐

𝑔𝑧
(𝜅𝑈10𝑁)2)]

2

 (5.8) 

In this study, both ν and αc were considered to have constant values of 1.5*10-

5 m2s-1 and 0.018 respectively, [116]. It should be noted that the Wu and 

Hersbach methods require the inclusion of empirical coefficients in their 

equations. The friction velocity can also be calculated based on sea 
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parameters as published in [111] and [112]. Maat’s method is dependent on 

the significant wave height (Hs) and phase speed, as shown in Eq. 5.9. On the 

other hand, Toba’s method is a function of significant wave height and wave 

period Eq. 5.10. 

𝑢∗ =
𝑔2∗𝐻𝑠

2

𝐵2∗𝑐𝑝
3    (5.9) 

𝑢∗ =
𝐻𝑠

2

𝐵𝑇
2𝑔𝑇𝑝

3   (5.10) 

Where B and BT are empirical coefficients, 1.04 and 0.602 respectively. The 

last method includes Charnock’s equation, Eq. 2.9 or Eq. 5.11.a, and the 

logarithmic law without atmospheric stability correction as shown in Eq. 2.5 

and Eq. 5.11.b. With both, Eq. 5.11.a and 5.11.b, friction velocity and surface 

roughness can be solved by iteration as long as Charnock’s parameter, αc, is 

known. This last method creates different possibilities for the calculation of 

the friction velocity.  A constant αc may be set as was done for the Iteration 

method with αc=0.0144. Alternatively, αc may be calculated by other methods 

as explained in section 5.2.5. 

𝑧0 =  𝛼𝑐
𝑢∗

2

𝑔
  (5.11.a) 

𝑈(𝑧) =  
𝑢∗

𝑘
[ln (

𝑧

𝑧0
)]  (5.11.b) 

 

5.2.5 Surface roughness length parameterization 

There are many different methodologies in the literature for the calculation 

z0. These can be divided into four different categories according to their 

dependency: wave age, wind speed, wave slope and iterated methods. These 

are discussed in detail later in this section. All of them were combined with 

each 𝑢∗ method and used for vertical extrapolation of wind speed in this 

study. Most of the methods used to determine z0 are an expression to 

calculate α and solve for z0 through the use of Eq. 2.9. However, 𝑢∗ must be 

known a priori. Hence, z0 methods need to be combined with 𝑢∗ methods 

with a few exceptions.  
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5.2.5.1 Wave age expressions 

The first two methods for calculating αc are from [100] and [117] and are 

fundamentally the same. The only difference between the two is their 

empirical coefficients. This is due to the use of different datasets in their 

research. Eq. 5.12 is for Smith’s expression and Eq. 5.13 is Toba’s 

expression. 

𝛼𝑐 = 0.48(𝑢∗ 𝑐𝑝⁄ )  (5.12) 

𝛼𝑐 = 0.025(𝑢∗ 𝑐𝑝⁄ )  (5.13) 

Another straightforward method is suggested in [106]. Since this is not the 

only expression suggested in the same publication, this method is named the 

“Edson Age” method and is shown in Eq. 5.14. Unlike the two previous 

expressions for αc, here there are two empirical coefficients. 

𝛼𝑐 = 0.114 (
𝑢∗

𝑐𝑝
)

0.622

  (5.14) 

The final method was suggested in [107]. As with previous wave age 

equations, αc is a function of the inverse wave age. However, their expression 

is more complex and uses more empirical coefficients than the previous 

models as shown in Eq. 5.15. Furthermore, in their study, they calculated the 

inverse of wave age as a function of U10 and fetch (χ), Eq. 5.16. This 

expression sets the relationship between wave age and wind. Consequently, 

Eq. 5.16 was only expected to be accurate under fully developed, wind 

generated, waves over the deep sea without the presence of swell.  

𝛼𝑐 = 1.89 (
𝑢∗

𝑐𝑝
)

1.59

[1.0 + 47.165 (
𝑢∗

𝑐𝑝
)

2.59

+ 11.791 (
𝑢∗

𝑐𝑝
)

4.59

]

−1

  (5.15) 

(
𝑢∗

𝑐𝑝
) =

3.5

2𝜋
(

𝑈10
2

𝜒𝑔
)

1

3
   (5.16) 

Two methods were developed from Eq. 5.15 and 5.16. The first, called “DTU 

Age” method, calculates αc from the wave age as in previous methods 

described in this section. For the second, known as the Fetch method, Eq. 

5.16 is combined with Eq. 5.15. To employ this method the distance to shore 

was measured for each 10° sector of the Egmond aan Zee mast location. Then 

fetch was calculated depending on the wind direction. 
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5.2.5.2 Wind speed expressions 

Two methods are included in this section, Eq. 5.11 and 5.17. If U10 and 𝑢∗ are 

known, z0 can be solved with the logarithmic law shown in Equations 5.11.a 

and 5.11.b; this method was called “Log law” method. U10 was taken from 

satellite retrievals, and 𝑢∗ calculated according to the selected 𝑢∗ method 

explained in section 5.2.4. The second wind speed dependent method was 

proposed in [106] and is called the “Edson Speed” method. Empirical 

coefficients are included as shown in Eq. 5.17. 

𝛼𝑐 = 0.017𝑈10𝑁 − 0.005  (5.17) 

5.2.5.3 Wave slope expressions 

The first wave slope equation was also suggested in [106], Eq. 5.18. This 

equation includes a numerical constant and a non-empirical coefficient, 

unlike previous expressions. Again, Charnock’s parameter is calculated by 

the method called “Edson Wave” method. 

𝛼𝑐 = 0.09𝐻𝑠 (
2𝜋

𝐿𝑝
)   (5.18) 

Another expression was proposed in [108]. Unlike other methods, with Eq. 

5.19, surface roughness was calculated directly and Charnock’s equation, Eq. 

2.9, was not necessary. Even so, this Taylor method still includes empirical 

coefficients. 

𝑧0

𝐻𝑠
= 1200(𝐻𝑠 𝐿𝑝⁄ )

4.5
  (5.19) 

5.2.5.4 Iterative methods 

All iterations are based on the combination of Eq. 2.9 and 5.11. Using satellite 

data U10N is known and, if Charnock’s parameter is known, u* and z0 may be 

solved by iteration. The different methods are related to the different 

methods used to calculate αc. As explained in section 5.2.4, the first method 

was to set αc=0.014 and is named “Iteration”. A second method, named 

“Fetch iteration”, is where αc is calculated according to the fetch by Eq. 5.15 

and 5.16. Another is the “Edson speed iter” method where α was calculated 

according to Eq. 5.17. The “Wave iter” method was the last set of equations 

iteratively solved where αc relies on Eq. 5.18. The last method included in this 



100 

 

section is the “Taylor iter”. However, it was not necessary to calculate z0 by 

iteration since this could be solved using Eq. 5.19. Thus, in this case, Eq. 5.11 

was only used to calculate 𝑢∗. All methods that were dependent on 𝑢∗ to 

calculate Charnock’s parameter, αc, were excluded. 

5.2.6 Wave age, Wave height, and Wind speed analysis 

Once z0 was known this was combined with each 𝑢∗ method and so the wind 

speed at 10 meters could be extrapolated to hub height, at 116 meters in this 

study, by Eq. 5.11. In order to validate the methodologies the extrapolated 

wind speed was compared with real measurements. The target height of 116 

meters was the highest anemometer on the Egmond aan Zee mast. A 

different target height could have been selected but, in such a case, the wind 

speed from meteorological mast would have also needed to have been 

extrapolated which would have incorporated more uncertainties.  Linear 

regressions for wind speed at 116 meters were the choice for validation and 

comparison between methodologies. 

The next step was to analyse each regression under certain conditions. 

According to many authors in the literature, their methods have wave age 

limitations. Hence, three different sea conditions were studied; calm sea 

(cp/𝑢∗<5), growing sea (5≤cp/𝑢∗≤32) and decaying sea (cp/𝑢∗>32). Since wave 

slope was also included in two methods, wave height Hs effects were also 

studied. In this case, the following Hs intervals were selected; Hs<1 m, 1 

m≤Hs<2 m, 2 m≤Hs<3 m, Hs>3 m. The effects of wind speed were also 

analysed. The reason was the relative inaccuracy of satellite devices to 

measure low wind speeds (<5 m/s) and high wind speeds (>15 m/s). Intervals 

for wind speed were the following: U116<5 m/s, 5 m/s≤U116≤15 m/s and U116>15 

m/s. 

5.2.6.1 Wave age against fetch 

In previous research, for example [107] and [118], the aerodynamic surface 

roughness length is obtained through expressions which include the fetch. 

An example has been shown in Eq. 5.16. If z0 depends on the sea state, then 

the generation of waves must be an important process for z0 determination. 

Fetch, understood as the length of water over which the wind has blown, 

should have an important role. However, fetch it is not the only important 
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parameter in the generation of waves. Even if swell is neglected, there are 

three relevant parameters in wave generation. The first one is fetch; the 

second one is duration, and the third one is wind speed. Duration is related 

to the time that a given wind has been blowing towards a certain direction. 

There could be situations where there is a long fetch, but the wind direction 

varies before the minimum fetch to observe a fully-developed sea is reached. 

The wind speed is also important since the higher wind speed the longer 

minimum fetch will be needed. Therefore, an analysis on fetch must be 

always accompanied by an analysis on duration and wind speed. Otherwise, 

the analysis could be meaningless. Due to the high variation in wind speed 

and direction, this hypothetic analysis over 3 simultaneous parameters 

becomes very complex. 

At the end, a correct effective fetch, calculated according to duration and 

wind speed, will only be an indicator of the wave age. Young waves are 

expected for short fetches and fully-developed seas are expected to be 

observed for long fetches. Using fetch to control the wave age will obligate to 

know the wind history over a location plus the calculation of effective 

fetches. Nowadays, oceanographers use a simpler method. The relation 

between the phase speed of waves and the friction velocity (or wind speed) is 

widely agreed to be the wave age. The reason is that at certain wind speed or 

friction velocity, the waves will reach certain phase speed when these are 

fully developed. Thus, the relation between phase speed and friction velocity 

or wind speed is also an indicator of the wave age. 

Since an analysis on the wave age, cp/𝑢∗, is included in this research, an 

analysis on fetch is not necessary. An example of this can be found in [118] 

where there is no significant difference in results between the wave age 

method and the fetch method.    

5.3  Results 

All of the results shown in this study are either a friction velocity, wind 

speed or roughness length regression. As explained previously, the control 

𝑢∗ for the regressions was the 𝑢∗ measured in situ. In the case of z0, the 

control roughness was the one calculated from the wind profile, using cup 

anemometers at 21 and 116 meters, Eq. 2.7. Finally, for wind speed, the 
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anemometer at 116 meters on the met mast was the validation sensor. For all 

three types of regression, the control values from Egmond aan Zee are 

named “egmond_wave” as it appears in Fig. 5.2 to Fig. 5.11. 

Also, in all regressions four statistics were calculated, the linear regression 

equation, R2, normalized root mean squared error (NRMSE) and bias. Due to 

the number of figures produced by all possible combinations between z0 and 

𝑢∗ methods, regression was shown for only the best four combinations. The 

rest of results were grouped together in Tables 5.1 to 5.4. Table 5.1 

regressions plus the correspondent z0 regression are included in Appendix B. 

5.3.1 Friction velocity regressions 

Regressions from non-iterative methods are included in Fig 5.2. The first two 

graphs, upper graphs, were almost equal. These were the U10 dependent 

methods, Hersbach and Wu, first and second graph respectively. The other 

two graphs in Fig. 5.2 corresponded to sea state dependent methods, Maat 

and Toba, third and bottom. Unlike wind dependent methods there was a 

big difference between them. The Maat method presented the slope nearest 

to the ideal value of 1 of the trend line with 0.426. On the other hand, Maat 

produced a lot of scatter with R2=0.055. The Toba method was the opposite, 

low scatter with R2=0.039 but a very low value for the slope at 0.021. Wind-

dependent methods are located in-between since they presented lower 

scatter than Maat but higher slope than Toba. 

Iterative methods were included in Figures 5.3 and 5.4. Here the iterative 

methods for z0 and 𝑢∗ calculation presented plus a control regression where 

the in situ 𝑢∗ is plotted against the in situ 𝑢∗. This control graph is located 

bottom on Figure 5.4 proving the success of overlapping. The rest of the 

regressions in the figure can be grouped as Iterated, Fetch_iter, and 

Wave_iter in one side, and Speed_iter and Sea_shape_iter on the other side. 

These last two methods achieved a higher slope and lower NMRSE and bias 

but more scattered. 
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Figure 5.2. Friction velocity (𝒖∗) regressions for methods: Hersbach (first), Wu (second), 

Maat (third) and Toba (bottom). 
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Figure 5.3. Friction velocity (𝒖∗) regressions for methods: Iterated (upper), Fetch_iter 

(middle), Speed_iter (bottom). 



105 

 

 

Figure 5.4. Friction velocity (𝒖∗) regressions for methods: Wave_iter (upper), Taylor_iter 

(middle) and Insitu (bottom). 
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Overall, the highest R2 was achieved with a Fetch_iter method, 0.087, which 

obtained a very low slope. The Maat method reached the highest slope, 0.426, 

or the nearest to 1, even so, it could be considered far from optimal since R2 

was 0.055. The Speed_iter method obtained the best results for NMRSE and 

bias, with 0.835 and -0.034 respectively.  

5.3.2 Wind speed and roughness regressions 

With a total of 50 combinations, Table 5.1 shows the results for all wind 

speed regressions. All of them were contrasted with a cup anemometer at 116 

meters. Comparing results by z0 method and excluding Iteration and Taylor 

methods, there was no significant difference in R2 between methods. Slope, 

NRMSE, and bias presented certain differences, although these were small. 

Looking at R2, the method with highest values was Log_law, even when the 

Speed and Wu combination obtained the highest value, 0.804. Analysing 

NRMSE and bias, the lowest values were found in Smith, Edson_age, 

DTU_age, and Log_law methods. According to the slope, Edson_age, 

DTU_age, and Log_law obtained the nearest to 1 again.  

Comparing 𝑢∗ methods in Table 5.1, Hersbach and Wu methods are 

approximately equal. R2 values were slightly higher for the Wu method than 

any other 𝑢∗ method. Hersbach and Wu methods obtained lower NRMSE 

and bias and higher slopes, but there was no a big difference in these 

statistics between both methods. Maat and Toba methods, which are sea state 

dependent, gave lower R2 results than the wind speed dependent methods, 

Hersbach and Wu. Nevertheless, Maat achieved higher R2 than the Toba 

method. The last method, Insitu, where 𝑢∗ was calculated from in-situ 

anemometers, showed the lowest R2 results of all 𝑢∗ methods in all statistics 

with one exception. When Insitu method is combined with the Log_law 

method, its highest R2 was obtained, 0.9, and also a slope close to 1, 0.988. 

Within a selected, 𝑢∗ method, any possible tandem with a z0 method obtained 

similar results with the exception of the Taylor and Log_law methods. Those 

methods represent the lowest and highest R2 results of Table 5.1 respectively 

between all z0 methods. Even so, its results followed the same trend than the 

rest. Hersbach and Wu results were very similar, Insitu results were the 
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lowest R2 and Maat and Toba results showed smaller R2 than the wind speed 

dependent methods for 𝑢∗. The only difference is related to R2, where there is 

no a relevant difference excepting for Insitu regression. Iteration results 

obtained high R2 and low bias and NRMSE in comparison with the other 𝑢∗ 

methods. All Iterative methods achieved an R2 over 0.78, slope close to 1, 

between 1.135 and 0.903, plus a bias under 1. Statistics showed the best 

results for Iteration, Fetch_iter and Wave_iter methods. 

Due to the number of regressions, only four combinations are shown in this 

chapter. Those combinations are Wave_iter, Wu plus Log_law, Iteration, and 

Fetch_iter. Wave_iter obtained the slope nearest to 1 in Table 5.1, the third 

highest R2, and NRMSE and bias below 1. Also, this method is interesting 

since z0 was calculated through the wave slope. The 𝑢∗ method with highest 

R2 was Wu and the same for z0 method was Log_law. Hence the combination 

Wu plus Log_law was a logical choice. The cases of Iteration and Fetch_iter 

are something different since these methods do not need any in-situ 

measurement from either sea or atmosphere. Also, their results reflected high 

R2. 

As shown in Fig. 5.5 the number of points after filtration and overlapping 

was 229. Even when all four regressions showed slopes very near to 1 and 

very low bias and NRMSE, the R2 was still far from 1. All of them had an R2 

under 0.8, with too much scatter. Nevertheless, there is correlation unlike z0 

regressions in Fig. 5.6. Also for z0 it was expected a correlation 1:1 for the 

perfect regression. However, all four slopes are close to 0. In all four the 

calculated z0 from numerical methods was always significantly lower than z0 

from the wind profile. 

Another interesting combination is the Insitu 𝑢∗ plus Log_law methods, 

which reached the highest R2 with 0.900 and relevant slope with 0.988. Wind 

speed and surface roughness regressions are shown in Fig. 5.7. Even when 

the results in Fig. 5.5 showed similar slopes, this combination achieved less 

scatter i.e. higher R2. Surface roughness regression in Fig. 5.7 is worthy of 

highlighting since it achieved some correlation, which is completely missing 

in Fig. 5.6. However, statistics showed a low correlation; low R2, 0.648, and 

high NRMSE, 4.252.  
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Figure 5.5. Wind speed regression for methods: Iterated (upper-left), Fetch_iter (upper-

right), Log_law & Wu combination (bottom-left) and Wave_iter (bottom-right). 
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z0 METHODS 

u* METHODS Iteration Fetch Smith Toba Edson Speed Edson Age DTU_Age Log_law Edson Wave Taylor 

Hersbach 

R2 - 0.771 0.792 0.794 0.799 0.791 0.790 0.796 0.788 0.646 

slope - 1.166 0.865 1.181 0.708 0.928 0.864 0.958 1.132 0.564 

NRMSE - 2.370 0.626 2.298 2.505 0.190 0.301 0.021 2.597 2.995 

bias - 1.925 -0.508 1.867 -2.035 -0.155 -0.244 0.017 2.110 -2.433 

Wu 

R2 - 0.778 0.797 0.799 0.804 0.797 0.794 0.798 0.795 0.631 

slope - 1.119 0.833 1.136 0.679 0.893 0.831 0.949 1.089 0.528 

NMRSE - 2.565 0.471 2.511 2.358 0.029 0.146 0.053 2.790 2.818 

bias - 2.083 -0.383 2.040 -1.916 -0.024 0.119 0.043 2.266 -2.289 

Maat 

R2 - 0.696 0.689 0.680 0.656 0.681 0.666 0.784 0.679 0.686 

slope - 2.905 1.858 2.631 1.669 2.107 1.927 1.355 2.605 1.842 

NRMSE - 15.595 7.886 14.405 5.811 9.513 8.429 2.877 14.548 7.355 

bias - 12.668 6.406 11.702 4.720 7.728 6.847 2.337 11.819 5.975 

Toba 

R2 - 0.643 0.627 0.616 0.629 0.627 0.618 0.799 0.626 0.614 

slope - 0.249 0.235 0.238 0.182 0.234 0.237 0.772 0.283 0.100 

NMRSE - 11.944 12.206 12.195 12.458 12.208 12.197 2.346 11.921 12.964 

bias - -9.703 -9.916 -9.907 -10.120 -9.918 -9.908 -1.956 -9.684 -10.532 

Insitu 

R2 - 0.319 0.352 0.348 0.271 0.344 0.352 0.900 0.348 0.101 

slope - 1.232 0.878 1.199 0.722 0.959 0.881 0.988 1.177 0.569 

NRMSE - 9.566 4.042 8.817 2.250 5.047 4.313 1.429 8.984 3.717 

bias - 7.799 3.296 7.189 1.834 4.115 3.517 1.165 7.325 3.030 

Iterated 

R2 0.798 0.797 - - 0.781 - - - 0.799 0.797 

slope 0.943 0.903 - - 1.125 - - - 0.990 1.135 

NRMSE 0.043 0.266 - - 1.190 - - - 0.250 1.158 

bias 0.034 0.216 - - 0.967 - - - 0.203 0.941 

Table 5.1. Wind speed regression statistics for all combinations of z0 methods (columns) and 𝒖∗ methods (rows), including iterated methods. Bias in m/s.
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Figure 5.6. Surface roughness (z0) regression for methods: Iterated (upper), Fetch_iter 

(second), Log_law & Wu combination (third) and Wave_iter (bottom). 
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Figure 5.7. Wind speed and surface roughness regressions for Insitu 𝒖∗ plus Log_law 

combination. 
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5.3.3 Regressions for different wave ages 

As explained in section 5.2.6, regressions were tested under different wave 

age conditions. These were calm sea, growing sea, and decaying sea as 

appears in Table 5.2. Only the selected four combinations between z0 and 𝑢∗ 

were studied. All combinations achieved similar results. 

 

 

calm sea growing sea decaying sea 

cp/𝒖∗<5 5≤cp/𝒖∗≤32 cp/𝒖∗>32 

Iteration 

R2 0.877 0.834 0.901 

slope 1.129 0.967 1.308 

NMRSE 0.533 0.323 1.344 
bias -2.252 -0.301 2.165 

Wu_Log_law 

R2 0.877 0.834 0.900 

slope 1.140 0.973 1.318 
NMRSE 0.513 0.239 1.392 

bias -2.171 -0.223 2.242 

Fetch_iter 

R2 0.883 0.832 0.903 

slope 1.088 0.926 1.253 
NMRSE 0.577 0.529 1.266 

bias -2.438 -0.493 2.039 

Wave_iter 

R2 0.881 0.838 0.898 

slope 1.203 1.016 1.383 
NMRSE 0.472 0.064 1.480 

bias -1.995 -0.059 -2.384 

Number of points 12 184 32 

Table 5.2. Wind speed regression statistics for different wave ages. Bias in m/s. 
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Comparing the three different wave age intervals, the best correlation was 

found for decaying seas, obtaining the highest R2 in all cases where its value 

is around 0.9. This value was also the nearest to one in this study. R2 values 

for calm and growing seas are just slightly lower than decaying sea R2. Slope 

results were above one for calm and fully developed seas unlike growing sea 

slope with values around one. NRMSE was lower than unity for growing 

and calm seas, unlike decaying sea. Bias reached values between one and 

minus one only for growing seas. In other cases, bias was above two or 

below minus two. A relevant fact is the number of points for each case. Most 

of the points represented growing sea, leaving only 12 and 32 points for calm 

and decaying sea respectively. Even so, all R2 values in Table 5.2 are higher 

than the results shown in Table 5.1. Regressions for wind speed and z0 under 

decaying seas conditions are shown in Fig. 5.8 and Fig. 5.9 respectively. 

Unlike wind speed regressions, R2 values were always under 0.37 for z0 

regressions.  
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Figure 5.8. Wind speed regression when wave age >32 for methods: Iterated (upper), 

Fetch_iter (second), Log_law & Wu combination (third) and Wave_iter (bottom). 
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Figure 5.9. Surface roughness (z0) regression when wave age >32 for methods: Iterated 

(upper), Fetch_iter (second), Log_law & Wu combination (third) and Wave_iter (bottom). 
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5.3.4 Regressions for different wave heights 

Same combinations of methods were also studied under different wave 

heights, see Table 5.3. Again, the Wave_iter method found higher R2 and 

Fetch_iter the lowest R2 in the table. Even so, all four combinations showed 

similar statistics. Regressions for wave height between 1 and 2 meters were 

the highest R2. For Hs between 2 and 3 meters, the agreement found was 

certainly lower than for 1-2 meters. However, it was not as low an agreement 

as for wave heights under 1 or over 3 meters. The column with highest R2 in 

Table 5.3 was also shown in Fig. 5.10 were 87 measurements were found. In 

this case, statistics R2 and slope represented a lower correlation than 

regressions with all sea conditions. The correlation in Fig. 5.11 for z0 showed 

again a lower calculated z0 than values extracted from the wind profile. 

 
Hs<1m 1m≤Hs<2m 2m≤Hs<3m Hs>3m 

Iteration 

R2 0.528 0.722 0.657 0.252 

slope 0.610 0.783 0.748 0.633 

NMRSE 0.427 0.171 0.161 0.424 

bias -0.399 0.223 0.422 2.317 

Wu_Log_law 

R2 0.528 0.722 0.657 0.252 

slope 0.612 0.787 0.755 0.641 

NMRSE 0.365 0.115 0.203 0.454 

bias -0.341 0.149 0.532 2.481 

Fetch_iter 

R2 0.522 0.723 0.634 0.251 

slope 0.583 0.742 0.677 0.588 

NMRSE 0.536 0.281 0.036 0.316 

bias -0.500 -0.365 0.095 1.730 

Wave_iter 

R2 0.537 0.726 0.662 0.249 

slope 0.632 0.815 0.797 0.679 

NMRSE 0.349 0.006 0.346 0.583 

bias -0.326 -0.008 0.905 3.187 

Number of points 90 87 39 12 

Table 5.3. Wind speed regression statistics for different wave heights. Bias in m/s. 
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Figure 5.10. Wind speed regression when wave height was between 1 and 2 meters for 

methods: Iterated (upper), Fetch_iter (second), Log_law & Wu combination (third) and 

Wave_iter (bottom). 
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Figure 5.11. Surface roughness (z0) regression when wave height was between 1 and 2 

meters for methods: Iterated (upper), Fetch_iter (second), Log_law & Wu combination 

(third) and Wave_iter (bottom). 
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5.3.5 Regressions for different wind speeds 

The last regressions were those realized under different wind speed 

conditions. The same trend from Tables 5.2 and 5.3 was observed in Table 

5.4. Differences between methods were exactly the same and followed the 

same pattern. Wave_iter reached a slightly higher correlation and Fetch_iter 

reached the lowest R2 of all four different combinations. The main difference 

with other regressions was the low value of R2. The highest results in that 

sense were for wind speeds between 5 and 15 m/s, with an R2 around 0.6. 

Regressions under such conditions were shown in Fig. 5.12 and 5.13. As 

expected z0 graphs followed the same pattern than previous z0 results. On the 

other hand, wind speed regression was just a portion of the Fig. 5.4, but only 

measurements excluding points less than 5 m/s and over 15 m/s. 

 
U10<5m/s 5m/≤U10≤15m/s U10>15m/s 

Iteration 

R2 0.101 0.600 0.417 

slope 0.512 0.892 1.020 

NMRSE 1.428 0.174 0.016 

bias 1.530 -0.141 -0.044 

Wu_Log_law 

R2 0.101 0.599 0.416 

slope 0.513 0.897 1.032 

NMRSE 1.476 0.091 0.031 

bias 1.582 -0.074 0.085 

Fetch_iter 

R2 0.099 0.598 0.410 

slope 0.508 0.870 0.946 

NMRSE 1.431 0.307 0.203 

bias 1.533 -0.249 -0.558 

Wave_iter 

R2 0.101 0.603 0.418 

slope 0.520 0.931 1.095 

NMRSE 1.442 0.020 0.207 

bias 1.545 0.016 0.569 

Number of points 14 170 45 

Table 5.4. Wind speed regression statistics for different wind speeds. Bias in m/s. 
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Figure 5.12. Wind speed regression when wind speed was between 5 and 15 m/s for 

methods: Iterated (upper), Fetch_iter (second), Log_law & Wu combination (third) and 

Wave_iter (bottom). 



121 

 

 

Figure 5.13. Surface roughness (z0) regression when wind speed was between 5 and 15 m/s 

for methods: Iterated (upper), Fetch_iter (second), Log_law & Wu combination (third) and 

Wave_iter (bottom). 
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5.3.6 Surface roughness crosscheck 

In previous figures where z0 was represented, high values were observed. 

Over the ocean, the z0 is expected to remain lower than 0.01 metres. 

However, in this thesis higher values were found when z0 was calculated 

over a period of 50 minutes. These values were obtained by the logarithmic 

law under neutral conditions using two cup anemometers at 21 and 116 

metres. This methodology for z0 parameterization is the most frequently used 

within the wind energy sector and therefore there was the most confidence in 

the values determined by this method. In order to be sure there was no a 

miscalculation or measurement errors, a crosscheck was proposed using 

other anemometers mounted on the Egmond aan Zee meteorological mast. 

Unlike the other results in this chapter, meteorological mast observations 

were not overlapped with satellite observations. The reason for this was to 

obtain a more representative dataset. Instead of only 229 points, around 

14,000 points were used in this crosscheck. These points were assumed to be 

under neutral conditions since the difference between Tair and Tsea was lower 

than 1°C.  

First, it is important to clarify how often z0 values are higher than expected. 

In this subsection and in the results from Chapter 6, too many points were 

represented in the graphs and the data density was not clarified. Data 

density was calculated directly from the dataset. The majority of the data, 

55%, the values were lower than 0.01 metres and most of the data, 80%, z0 did 

not exceed 0.1 metres. 

For the crosscheck, cup anemometers at 21, 70 and 116 metres were used, 

plus an ultrasonic anemometer at 21 metres. By different combinations of 

two anemometers, the z0 was calculated and compared. In Figure 5.14 the 

different z0’s were compared for a timeline of 22 days, missing values were 

filtered out. Two main aspects were observed. The first one was that the 

combination 70/116 metres almost always produced much higher values than 

the other four combinations. The second aspect to highlight is the trend for 

all five lines; the trend is the same for of all them. There was one exception, 

the line 70/116 dropped after measurement 300 when the rest of the lines 

increased dramatically. Since 22 days cannot be fully representative, some 

extra comparisons were undertaken as shown in Figures 5.15 to 5.20. 
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Figure 5.14. 50-min sea surface roughness timelines calculated according to the neutral logarithmic law by different combination of cup 

anemometers (21, 70 and 116 m) and a ultrasonic anemometer at 21 m.
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Figure 5.15. Comparison of logarithmic law z0 between cup anemometers at 21 and 70 m, 

and ultrasonic anemometer at 21 m and cup anemometer at 70 m. Northern sectors. 
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Figure 5.16. Comparison of logarithmic law z0 between cup anemometers at 21 and 70 m, 

and ultrasonic anemometer at 21 m and cup anemometer at 70 m. Southern sectors. 
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Figure 5.17. Comparison of logarithmic law z0 between cup anemometers at 21 and 116 m, 

and ultrasonic anemometer at 21 m and cup anemometer at 116 m. Northern sectors. 



127 

 

 

Figure 5.18. Comparison of logarithmic law z0 between cup anemometers at 21 and 116 m, 

and ultrasonic anemometer at 21 m and cup anemometer at 116 m. Southern sectors. 
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Figure 5.19. Comparison of logarithmic law z0 between cup anemometers at 21 and 116 m, 

and ultrasonic anemometer at 21 m and cup anemometer at 70 m. Northern sectors. 
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Figure 5.20. Comparison of logarithmic law z0 between cup anemometers at 21 and 116 m, 

and ultrasonic anemometer at 21 m and cup anemometer at 70 m. Northern sectors. 
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The combinations 21/70, 21/116, Ultrasonic/70 and Ultrasonic/116 surface 

roughness lengths were compared between them in different regressions by 

sectors. First, in Figures 5.15 and 5.16, 21/70 and Ultrasonic/70 were tested. 

For all the sectors the regressions line was close to the line 1:1. The 

correlation coefficient was above 0.8 excepting the NE and SE sectors where 

R2 was 0.57 and 0.63 respectively. In all sectors, z0 reached high values, above 

0.1 m. 

The regressions between 21/116 and Ultrasonic/116 in Figures 5.17 and 5.18 

showed similar results than Figures 5.15 and 5.16. For all sectors R2 was 

above 0.8 excepting the SE sector with 0.75. The regression line was again 

close to draw a line 1:1. High z0 values were observed in Figures 5.17 and 

5.18; these were slightly higher than values observed in 5.15 and 5.16. 

The last two figures, 5.19 and 5.20, represent a comparison between 21/116 

and Ultrasonic/70 surface roughness lengths. In this case, the correlation 

coefficient was always below 0.6. The regression line pointed to higher z0 for 

21/116 than Ultrasonic/70. However, high z0 values were still present. 

Results from Figures 5.15 to 5.20 showed disagreement in the number of 

points per sector. This information was summarised in Table 5.5. Although 

the number of points was not the same by sector, they all are in the same 

range. The total number showed lower values when the cup anemometer at 

70 m was used. Thus, Figures 5.15, 5.16, 5.19 and 5.20 contained fewer points 

than Figures 5.17 and 5.18 where the cup anemometer at 70 m was not used.   

 Fig. 5.15 & 5.16 Fig. 5.17 & 5.18 Fig. 5.19 & 5.20 

N 529 670 535 

NE 1,503 1,527 1,506 

NW 2,060 2,095 2,061 

S 3,109 3,165 3,133 

SE 533 776 610 

SW 6,236 6,306 6,259 

TOTAL 13,970 14,539 14,104 

Table 5.5. Number of points from Figure 5.15 to 5.20 by sectors. 
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5.4 Discussion 

Satellite remote sensing techniques over the ocean are able to retrieve wind 

vectors. These represent neutral wind speed at 10 meters over the sea level. 

This affirmation is true as long as a convenient GMF is used since not all of 

them retrieve neutral winds. The fact that neutral wind speed is obtained 

does not mean measurements were taken under neutral atmospheric stability 

conditions. Hence, only data under neutral conditions were included in this 

chapter. A calculation of atmospheric stability correction would be necessary 

to include the full dataset in the analysis. 

Another issue is the necessity to extrapolate wind speed to hub height if 

satellite datasets are going to be used by the wind industry. Following the 

well-known logarithmic law, Eq. 2.5, wind speed could be extrapolated. In 

order to do so, surface roughness length, z0, and friction velocity, 𝑢∗, must be 

parameterized. A compilation of methods was explained and tested for both 

𝑢∗ and z0. Results were contrasted with ground measurements through linear 

regressions. 

The first parameter under discussion is 𝑢∗. It was assumed that the friction 

velocity calculated from the wind profile was a correct measurement. Hence, 

all different methods of 𝑢∗ parameterization were compared with that 𝑢∗. 

Once 𝑢∗ was calculated, it was expected to find a correlation 1:1 or similar, 

i.e. slope of linear regressions equal to 1. The results obtained are far from the 

ideal slope. The Maat method reached the highest slope with 0.426. For the 

rest of the methods, the slope was lower than 0.36. Even when the existence 

of a linear correlation was obvious, it was clear there was a lack of agreement 

with in-situ measurements. All regressions did not reach a high R2, with a 

maximum of 0.087 for Fetch_iter. All methods were underestimating 𝑢∗ 

according to anemometer measurements. 

Extrapolated winds were calculated through Eq. 2.5, meaning a directly 

proportional relationship between wind speed and friction velocity. 

Consequently, a lower calculated wind speed at 116 meters than the real 

wind speed measured by a cup anemometer at the same height could be 

expected. However, that was not the case according to Table 5.1 with wind 

speed regression results. Although R2 values were not higher than 0.804 

excepting the combination of Log_law with Insitu 𝑢∗, slopes near unity were 
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achieved. As expected, there was a direct relationship between 𝑢∗ slopes and 

wind speed slopes. The best slopes were found when 𝑢∗ was calculated 

through Wave_iter, Hersbach, Wu, Iterated or Fetch_iter, by this order. 

Those slopes were 0.990, 0.958, 0.949, 0.943 and 0.903; which were related to 

𝑢∗ regression slopes of 0.222, 0.193, 0.184, 0.179 and 0.152 respectively. This 

relationship was also observed for the rest of the 𝑢∗ methods. In Table 5.1 

Insitu and Maat obtained very high slopes since their 𝑢∗ slope was high; in 

the case of Toba it was exactly the opposite.  

When in situ 𝑢∗ was used the lowest R2 and the highest NRMSE and bias 

were found. This was not expected since 𝑢∗ was directly measured. In fact, 

using in-situ 𝑢∗ should have reached the best results of the table. 

Nevertheless, the best regressions were found with 𝑢∗ regression slope 

between 0.16 and 0.2. The reason for this was explained by observing z0 

regressions. Calculated z0 from these methods should have also reached 

similar values than z0 extracted from the wind profile through Eq. 2.7. This 

was not observed in Fig. 5.6. Calculated z0 was always low with slopes close 

to 0. Thus, all z0 methods underestimated the real z0. This fact is 

compensating an underestimated 𝑢∗ when wind speed was extrapolated. 

According to Eq. 2.5, the higher 𝑢∗, the higher the extrapolated wind speed. 

Also, the lower z0, the higher extrapolated wind speed. Then with a low, 𝑢∗ it 

was expected to calculate a low U116, but, because z0 is also low, the final U116 

calculated by the different methods is similar to the one measured by the 

meteorological mast. Even when both methodologies for 𝑢∗ and z0 were 

wrong, an accurate slope in wind speed regression was achieved by 

compensation. This effect can be assumed for all the z0 methods even for 

those where the z0 regression was not shown because all z0 methods achieved 

similar results. Significant variations in the results were only observed 

between different 𝑢∗ methods. This means their calculated z0 was as low as 

the methods shown in Fig 5.6. For that reason, it is also expected to find 

similar results in age methodologies for z0 where it is combined with Eq. 2.5 

and solved by iteration. 

There was one exception to all explained in the previous paragraph. 

Following the same explanation of Eq. 2.4, the Log_law was the best method 

for z0 parameterization showing the maximum R2, 0.9, combined with in situ 

𝑢∗. Through this equation, z0 was adjusted to compensate for the 



133 

 

underestimated 𝑢∗. That is the reason Log_law always achieved an R2 over 

0.7 and slope near to one. Even so, it does not mean the calculated z0 is the 

real surface roughness length. For this reason, the combination of Log_law 

and Insitu 𝑢∗ reached a similar regression than a comparison of wind speed 

at 10 meters. According to [96], regressions between ASCAT and in-situ 

measurements in the South China Sea achieved a correlation coefficient 

between 0.8 and 0.92 at 10 meters. In this study, a correlation R2 of 0.9 at 116 

meters was achieved. The location of both studies and heights were different, 

winds were not extrapolated in the previous study, but the same (or the same 

type of) remote and ground devices were used in both analyses. Therefore 

the lack of accuracy by Log_law and Insitu 𝑢∗ could be produced for the 

same reasons than in [96]. These are lack of accuracy by spaceborne devices, 

ground devices, algorithms for signal processing and GMF; but not by this 

combination of methods to extrapolate winds. Plus this proved Insitu 𝑢∗ as 

an acceptable control for 𝑢∗ methods. Even so, it cannot be considered the 

best wind speed regression due to NMRSE and high bias values. This 

position was achieved by the Wave_iter method. 

An interesting comparison is between Iteration and Fetch methods and the 

rest, i.e. methods without sea parameters and those using sea measurements. 

Since the availability of quality data is low, methods with fewer parameters 

in their equations are preferred. In Table 5.1 and regressions were shown that 

Iteration and Fetch_iter obtained the best statistics or were near to the best. 

The Iteration method should be the chosen one over Fetch_iter since this 

does not need to know the fetch. A part of that, the weak point of Fetch and 

Fetch_iter methods are in Eq. 5.16, where the inverse of wave age was 

calculated as a function of fetch and wind speed. Duration of the wind is also 

a parameter to take into account in order to know the wave age. The sea 

needs a minimum period of time to achieve a fully developed sea. The 

duration of wind should be also included in Eq. 5.16. Nevertheless, in this 

study it was assumed to have a fully developed sea when Fetch and 

Fetch_iter methods were used. According to Table 5.2, this was only true for 

32 measurements out of 229. 

Previous studies did not compare z0 from wind profile and z0 calculated from 

their own methods. Instead, comparisons or regressions of drag coefficients 

were shown. All of them obtained a fair correlation for every single method 
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explained in material and methods section. When authors compared 

different equations, they found small differences, [103] and [106]. Excepting 

[95], not one of the mentioned studies used measurements from a 

meteorological mast. Unlike this study, researchers used buoy data. Since 

they did not monitor the wind profile they could not extract z0 from it. Here 

it was proved that all methods underestimate z0. However, since all previous 

studies did not take place in Egmond aan Zee, all empirical coefficients may 

need to be recalculated. 

When regressions were plotted according to different wave ages some 

interesting points were found, see Table 5.2. First, the best agreement with in 

situ data was found under decaying sea conditions. This situation is the 

easiest to parameterize since it is wind dominated and swell becomes less 

relevant. All four methods achieved a correlation around 0.9 but high values 

for NRMSE and bias. The slope of linear regression was slightly higher than 

general results, but this could be due to a small amount of data points, only 

32. Under a calm sea, all results were very similar to the general results. 

Better slopes were observed but lower R2 in comparison with decaying sea 

results. According to previous studies, under growing sea conditions 

parameterizing z0 is very challenging. There are two reasons for this, first the 

possibility of finding a swell dominated sea; second, the growing sequence of 

wind-generated waves. Under growing seas, waves change their profile with 

time, unlike calm or decaying seas where the wave profile is constant in 

absence of swell. None of the methodologies for z0 was found to fit perfectly 

for all wave ages by authors. As a proof, results for growing seas in Table 5.2 

showed less correlation than any other sea condition. NRMSE and bias were 

smaller for growing seas due to a low number of measurements for other sea 

conditions. Nevertheless, there was still missing a correlation in z0 regression 

for the best case, fully developed sea, as shown in Fig. 5.9. 

Results were also divided by different wave heights as shown in Table 5.3. 

Unlike wave age results, Table 5.3, there was no improvement in regressions 

statistics. This was the case even for Wave_iter. This method incorporated 

wave slope, and hence wave height, in its equation. Due to this fact, it was 

expected to observe no relevant difference between different wave heights. 

However, this was not reflected in the present results. All four z0 methods 

followed the same trend for each wave height. Again, as with previous 
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regressions, z0 graphs in Fig. 5.11 showed no correlation. Calculated z0 was 

always too low in comparison with the wind profile z0 as calculated by Eq. 

2.7. 

The last regressions shown in Table 5.4 were classified by wind speed at 10 

meters. Researchers found a lack of precision for satellite retrievals under 

low and high winds, <5 m/s and >15 m/s respectively. Therefore it was 

expected to find an improvement in wind speed correlation after removing 

low and high winds. Nevertheless, a deterioration in regressions parameters 

R2 and slope was observed. On the other hand, NRMSE and bias remained 

under acceptable values, lower than one. Even so, regressions for mid wind 

speeds, 5-15 m/s, found much better agreement than low and high speeds. 

There was no relevant difference between z0 methods. Regressions for z0 in 

Fig. 5.13 showed the same trend as all previous results with low and almost 

constant z0. Considering all regressions from Tables 5.2, 5.3 and 5.4, the only 

improvement was found when wind speed was extrapolated under fully 

developed sea conditions. However, the fact that 𝑢∗ and z0 are always 

underestimated calls into question the improvement. 

The final results were a surface roughness length crosscheck since 

uncommon high z0 values were observed. Four different anemometers from 

Egmond aan Zee were used to calculate z0 through the logarithmic law. In 

Figure 5.14, the pair of anemometers at 70 and 116 metres was 

overestimating z0, although followed similar trend than the other four pairs 

of anemometers. From Figure 5.15 to 5.18, regressions were made between 

pair of anemometer where only the lowest anemometer was different; i.e. a 

cup anemometer or ultrasonic anemometer at 21 metres both. The fair 

agreement found in those figures means a good agreement between the cup 

and ultrasonic anemometers at 21 metres. The last two figures, 5.19 and 5.20, 

did not show the same agreement. If the agreement between the low 

anemometers was proved, the lack of agreement must come from 

anemometers at 70 and 116 metres. Furthermore, this could be the reason for 

an overestimated z0 in Figure 5.14 when the pair 70/116 metres was used to 

calculate z0. The disagreement in the number of points by sector between 

Figures 5.15 to 5.20 was due to the filtering out of missing values. Since the 

dataset by the anemometer at 70 m presented more gaps than the rest, 

Figures 5.15 and 5.16 had fewer points than 5.19 and 5.20 where the 
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anemometer at 70 metres was used only in one pair of anemometers. When 

the anemometer at 70 m was not used, Figures 5.17 and 5.18, the maximum 

number of points was observed. 

5.5  Summary 

The logarithmic law, as shown in Eq. 5.11 and widely used within the wind 

energy sector, is dependent on two parameters, friction velocity, and surface 

roughness length. As explained, different methods to calculate them have 

been suggested by many researchers. Before developing the satellite wind 

resource software further, it was important to identify the best methods for 

parameterization. Hence, in this chapter, all found methods in the literature 

review for 𝑢∗ and z0 were tested. Predicted parameters were compared with 

those calculated from the measured wind profile by an offshore 

meteorological mast, Egmond aan Zee. 

First, the analysis compared both parameters, 𝑢∗ and z0, separately between 

those predicted by methods and calculated from the wind profile. 

Afterwards, the different methods were combined to extrapolate the wind 

speed. Thus, the accuracy in these methodologies could be compared with a 

measurable parameter instead of calculated 𝑢∗ and z0. In the end, 52 different 

combinations were analysed. Since many researchers found reasonable 

agreement for their methods under certain circumstances, the best four 

combinations were also analysed under different conditions. These were 

different wave age, wave height, and wind speed conditions. 

Some reasonable regressions for extrapolated wind speed were achieved. 

However, this did not prove to validate any methodology. All the reviewed 

methods in this chapter showed a complete lack of correlation for z0, even the 

selected best four methods. The methods for 𝑢∗ also showed low correlation. 

None of the reviewed methods can be considered reasonable or acceptable.    

  



137 

 

6. Development of a method for surface roughness 

length parameterization over deep seas in absence of 

breaking waves 

6.1 Introduction 

Atmosphere-ocean exchange and interactions have become a relevant field of 

study for both the meteorology and the oceanography community. There is a 

clear consensus among researchers, air-sea interactions must be understood 

and modeled in order to describe ocean and atmosphere dynamics. Wind 

input on wave mechanics has been widely studied and there is a large 

amount of literature about it; [103], [109], [117], [119] and [120]. Even so, 

many questions in this field are yet to be solved. The effect of the sea state 

over the wind has also been studied; [101], [104], [105], [106], and [121]. Heat 

fluxes at the boundary layer, drag coefficient (Cd), surface roughness length 

(z0) and wind stress parameterizations have been described on many 

occasions by researchers; [100], [106], [107], [111] and [112]. However, there is 

not a widely agreed formulation for them. The reason is the oceans 

complexity due to its non-static surface, unlike onshore theories. Thus, z0 can 

be considered constant over the land but it is variable over the sea. 

Some researchers studied different formulations for z0. Most of these studies 

were based on Charnock’s equation and the coefficient for z0 

parameterization. Over long periods Charnock’s coefficient can be 

considered as constant, but there is a wide consensus on its variability and 

dependency of this coefficient on wave age; [106], [122] and [123]. Thus, 

researchers found rougher seas for young waves than for fully developed 

waves, [106]. Nevertheless, all methods described in the literature have been 

proven to underestimate z0 in chapter 5. Plus, all of them incorporate 

empirical coefficients which were calculated from selected datasets in each 

study. These facts show the existence of a lack of knowledge for this field. 

Following previous studies where Cd and z0 formulations were suggested, it 

was always necessary to know wave parameters. Most of the previous 

studies used single height wind vectors, usually from buoys at 3 meters 

height from still water level and after these were extrapolated to 10 meters. A 

complete wind profile was never included in these studies. Only a few 
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studies, [89], [95] and [124], where  researchers were trying to extrapolate 

wind speed from low to high heights included wind measurements at 

different heights tracing the wind profile variability. However, in these cases, 

wave parameters were never included in their analysis. Consequently, wind 

and wave profiles were never combined into the same formulation.    

Surface roughness is a key parameter to calculate the wind profile since the 

logarithmic law relies on it as does friction velocity (𝑢∗). Under neutral 

atmospheric conditions, the logarithmic law is expressed as Eq. 2.4. This 

formula is widely accepted for both, ocean and land, at least under 

atmospheric neutral conditions, Ψs=0, and within the atmospheric boundary 

layer. Therefore, a universal formulation for z0 over the ocean is necessary 

before using the logarithmic law to extrapolate wind speed to different 

heights. At present there is not a widely agreed formulation for z0. This 

parameterization is relevant not only for oceanography and meteorology 

community but also for the offshore wind industry and wind scatterometry. 

In scatterometry a confident model to parameterize z0 could change the 

method to calculate wind retrievals from satellites. Instead of using a wind 

speed dependent GMF, a friction velocity or wind stress dependent GMF 

could be used. It is expect to reduce uncertainty since the backscatter is 

related to the wind stress instead of wind speed. Once the z0 is known, the 

logarithmic law could be applied to calculate wind vectors at 10 metres. This 

new method could reduce the uncertainty related to the GMF. Furthermore, 

it will allow the calculation of the wind profile from satellites wind retrievals. 

This chapter presents the development of a new formulation for z0. The aim 

is to avoid empirical coefficients as much as possible. The present research 

was initiated as a development of a tool for offshore satellite-enabled wind 

resource optimisation, although satellite measurements were not included 

here. However, due to satellite data with spatial samples at 10 meters, 

ground data with measurements at different heights but the same point, has 

been adapted to be compared with them.  
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6.2 Datasets: description and processing 

In order to validate new formulations for both, z0 and Cd, two different 

meteorological masts were chosen. These were Egmond aan Zee (EZ) and 

Fino-1 (F1), both are included in the NORSEWIND database, [4]. There are 

more available meteorological masts, but only EZ and F1 have been 

monitoring wave and sea parameters, and atmospheric and wind conditions 

at different heights. Wind, waves and sea parameters at different heights and 

depths are not commonly monitored for the same location. Hence there were 

no other feasible locations to undertake the validation. Furthermore, due to 

the application of filters to the datasets, the amount of data can be drastically 

reduced. Another common issue is accessibility to data since this can be 

commercially sensitive. All these facts create complications regarding the 

availability of data to accomplish the required validation. 

6.2.1 Egmond aan Zee neutral stability 

The first meteorological mast was EZ, located in front of the Netherlands 

coast (4.419°E, 52.606°N). This mast, installed by NoordzeeWind, has been 

monitoring wind, waves, and sea since November of 2003. Offshore wind 

farms around EZ can produce wake effects and turbulence in the wind 

vector. In Figure 5.1 three offshore wind farms are represented. Prinses 

Amalia and Eneco Lochterduinen are both too far from EZ to create a 

problem. The third offshore wind farm was constructed at the same location 

of the meteorological mast. Since 2006, 36 wind turbines were erected and 

have been operating until the present. 

In this study, only data from July of 2005 to December of 2008 was used. The 

selected cup anemometers were those placed at 21 and 116 meters above still 

water level. Temperature (T), pressure and humidity were also monitored at 

those heights. Sea temperature was measured at different depths. Since it 

was necessary to know sea surface or low depth temperature, measurements 

at 3.8 meters depth were chosen. Obviously, wave parameters such as wave 

period and significant wave height (Hs) were also included in the study. The 

water depth of its location is 18.5 meters; therefore the location can be 

considered deep water as long as the wavelength of spectral peak frequency 

(Lp) is lower than 37 meters. These conditions were observed most of the time 
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(90% of the time) or only slightly exceeding the wavelength limit (10% of the 

time). Therefore deep water conditions were assumed at all times. 

The logarithmic law, as presented in Eq. 2.4, was simplified to avoid 

parametrizations of atmospheric stability correction which would add more 

complexity as shown in Eq. 2.5. Under neutral stability conditions, correction 

is null. There are different methods to recognize neutral conditions. The 

simplest method is a comparison of the sea and air temperatures, for neutral 

conditions TSEA≈TAIR. In this study, T-3.8 was compared with T21m allowing a 

difference of 1 °C to be considered neutral conditions. Another filter that was 

applied to the datasets was that only measurements were considered valid 

when there were no blanks or missing values for any parameter included in 

this study at the same time. Wind parameters were monitored every 10 

minutes. However, sea and wave parameters were obtained every 30 

minutes. Therefore it only a difference of 20 minutes between wind and sea 

measurements was allowed in order to be considered simultaneous values. 

In the end, 14,690 valid measurements were found. 

Some parameters need to be calculated after filtering since these are not 

possible to measure directly on the field or were not monitored. These were 

wavelength at the peak of wave spectrum (Lp), z0 and 𝑢∗. Commonly, for 

simplification and neutral conditions, Eq. 2.5 is written avoiding 𝑢∗ and 

replaced by a second height wind measurement as appears in Eq. 2.6. 

Surface roughness length was found through Eq. 2.7 for periods of 50 

minutes and after 𝑢∗ was calculated according to Eq. 2.8 for the same period. 

In this chapter, 𝑢∗ from mast measurements was applied instead of 

calculated 𝑢∗ from formulations with empirical coefficients. These obtained 

𝑢∗ and z0 were considered as in situ and real values and therefore used as a 

control in this analysis. 

6.2.2 Egmond aan Zee plus Satellites 

Egmond aan Zee plus Satellites (EZS) dataset was based on the EZ dataset. 

The difference was the necessary overlapping in time with the Satellites 

datasets. In this study, only data from Quikscat and ASCAT were 

considered. Wind measurements from these two scatterometers were not 

used, only the retrieval time was taken into account. The reason to do this 
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overlapping is to compare with the methodologies previously studied in 

chapter 5. The methodology for filtering data and overlapping was already 

explained in chapter 5. Even so, only z0 regressions are comparable with 

results from chapter 5 since different low-level measurements have been 

extrapolated. Wind vectors from satellites were extrapolated in chapter 5 

unlike the present chapter were in situ measurements were extrapolated. 

Therefore, the extrapolated wind speed will differ between studies, when 

this is not the case for z0. 

Another consideration that must be taken to build and process this dataset is 

that the nature of satellite data and in situ data is different. Whilst satellite 

data is a spatial single height wind measurement, met mast measurements 

are wind vectors at the same place with different heights. With a satellite 

data resolution of 25 km and an average wind speed of 8 m/s (from EZ), the 

wind will need 52 minutes to travel this distance. Hence, it is more 

representative to compare 50 minutes averages from masts with satellite 

data. This fact caused problems in finding data without gaps or missing 

values, in order to find valid measurements. Even so, the final number of 

valid measurements with enough valid values including average 

measurements from 30 to 50 minutes was 239. 

6.2.3 Fino-1 neutral stability 

The other meteorological mast included in the validation was Fino-1 (F1). 

This mast is also located in the North Sea (6.59°E, 54°N). As shown in Fig. 

4.1, there are 8 offshore wind farms in the area of F1. Due to the distance to 

the mast, only three of them must be considered as turbulence sources; 

Trianel, Borkum and more importantly Alpha Ventus. F1 was erected by GL 

Garrad Hassan Deutschland GmbH and it has been operational since 2003. 

However, in this study, only data from January of 2004 to November of 2011 

was included. Different available device heights than EZ were selected for 

F1. Cup anemometers, vanes, thermometers, hygrometers and barometers at 

33 and 90 meters were selected. In the case of sea temperature, 3 meters 

depth was chosen, F1 was also monitoring Hs and wave period. The 

meteorological mast is located in a place with 30 meters depth, meaning that 

for Lp<60m it is considered deep waters. According to measured period and 

calculated Lp, only 32% of the time measurements were taken under deep 
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water conditions. Processing and filtering data followed the same steps as for 

EZ, which were explained in section 2.1. Finally, a total of 980 valid 

measurements were found. 

6.3 Background 

6.3.1 Lettau’s equation 

Knowing the wind profile, or at least wind speed at two different heights 

allows the calculation of z0 through the logarithmic law. When this is not 

possible a different method must be chosen. Over the ocean, Charnock’s 

equation is usually selected even when Charnock’s coefficient remains 

difficult to determine. Overland and based on a visual site survey Lettau’s 

equation is a good approximation, Eq. 6.1, [125]. 

𝑧0 = 𝐶𝑑ℎ∗𝑠(𝑛/𝐴)  (6.1) 

Where Cd is the drag coefficient which took a constant value of 0.5 in studies, 

[125] and [126]. The effective obstacle height is h*, s stands for silhouette or 

cross-sectional area perpendicular to wind direction, n is the number of 

obstacles and A is the area or domain under study. Note that s(n/A) is named 

roughness density in [127]. Following Lettau’s equation, only obstacles of the 

same shape can be included. In [125], the predicted z0 is compared with the 

wind profile z0 from other studies with a fair agreement. Furthermore, in 

[126], different methods for z0 were compared to dust emitting surfaces. In 

the study different places were monitored and grouped together to plot 

regressions against wind profile z0. Lettau’s method did not achieve the best 

correlation for natural logarithm of z0; however, it reached an R2 of 0.756. All 

parameters included in this equation can be translated to wave parameters 

once wave geometry or shape is known. 

Another method to calculate z0 over land and widely used in the wind 

industry is the computation of orography of the area. Determining a Digital 

Elevation Model and slope of each point is possible in order to calculate z0. 

Nevertheless, the selected method in this study was Lettau’s equation. 
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6.3.2 Wave geometry versus wave age 

According to the fundamentals of wave mechanics, waves present 

asymmetry every time wave steepness (Hs/Lp) increases or as waves approach 

the shore. Considering only deep waters, horizontal asymmetry can be 

neglected, which is only present when a wave experiences a reduction in 

phase speed (cp) due to decreasing water depth. Only vertical asymmetry is 

present in deep waters. Because mature waves or fully developed seas do not 

present increments on wave steepness, these can be considered to be 

symmetric waves. On the other hand, young waves or growing seas can 

increase their wave steepness and so, present vertical asymmetry in wave 

geometry. Therefore, wave age indirectly defines the wave geometry. 

As explained, many previous studies determined Charnock’s coefficient as a 

function of wave age (cp/𝑢∗) and there is a good reason for this. Charnock’s z0 

has been demonstrated to be (𝑢∗)2 dependant [128] and z0 varied with wave 

age [129]. The highest z0 was found for young waves and decreasing once the 

wave was fully developed. Some other studies used wave steepness to define 

Charnock’s coefficient or directly z0. Both, wave age and steepness 

parameters are ways to define wave geometry. However wave steepness is 

ambiguous, because it could reach the same values at different ages for 

different waves, depending on significant wave height and wave period (Tp). 

Plus it is not indicative of the presence of vertical asymmetry. In order to 

know the presence or absence of asymmetry it is necessary to calculate the 

wave profile which is possible if Hs and Lp are known. This is relevant 

because the presence of vertical asymmetry could be the cause of higher 

surface roughness for young waves.  

6.3.3 The small amplitude and Stokes theories 

The wave profile can be calculated through Stokes finite amplitude theory, 

[130]. This theory presents different orders, the higher order the more 

detailed and accurate the wave profile. The first order is also called small-

amplitude theory, Eq. 6.2. This is applicable to symmetrical waves. 

𝜇(𝑥, 𝑡) =  
𝐻

2
× cos(𝑘𝑥 − 𝑤𝑡)  (6.2) 
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Where μ is the surface elevation above still water level, H is wave height, k is 

the wavenumber 2π/Lp, w is the wave angular frequency 2π/Tp, x is the 

position along the wave propagation, t is time and L is wavelength. Since the 

present study analysed z0 on a short-term basis, plus was searching the full 

wave profile and not the position of a particle along time;  Stokes theory for 

steady waves where t was neglected was considered. This simplification was 

also applied to second and fifth order formulas, Eq. 6.3 and 6.4 respectively. 

The easiest way to apply Stokes theory was published in [130].  

𝑘𝜇(𝑥) =∈ cos 𝑘𝑥 +
1

2
∈2 cos 2𝑘𝑥   (6.3) 

𝑘𝜇(𝑥) =∈ cos 𝑘𝑥 +
1

2
∈2 cos 2𝑘𝑥 +

3

8
∈3 (cos 3𝑘𝑥 − cos 𝑘𝑥) +

1

3
∈4 (cos 2𝑘𝑥 +

cos 4𝑘𝑥) +
1

384
∈5 (−422cos 𝑘𝑥 + 297cos 3𝑘𝑥 + 125 cos 5𝑘𝑥)   (6.4) 

Where Є is kH/2. According to [131], each theory has its range of application 

depending on H/gTp2 and depth/gTp2. For deep waters only the range of H/gTp2 

is necessary to be known; from 0 to 0.001 for small amplitude theory (Eq. 6.2), 

from 0.001 to 0.0075 for Stokes 2nd order theory (Eq. 6.5), from 0.0075 to 

breaking waves point, H/L>1/7, for Stokes 5th order theory (Eq. 6.4). The 

maximum μ or surface elevation point is reached when cos(kx) equals 1. H 

and L can be replaced by any other wave height or wavelength 

measurements in the above formulations. For cases where L is unknown but 

Tp is known, the dispersion relationship is used to calculate L (Eq. 6.5). For 

deep waters, 

𝐿 =
𝑔𝑇𝑝

2

2𝜋
   (6.5) 

Differences between these three theories are shown in Fig. 6.1. Small 

amplitude theory follows a symmetrical wave where LT (length of wave 

trough) equals LC (length of wave crest) and aC (amplitude of wave crest) 

equals aT (amplitude of wave trough). The 2nd and 5th Stokes theories 

represent asymmetrical waves where LT>LC and aC>|aT|. Comparing between 

Stokes theories, the 5th order wave reaches higher aC and LT and lower aT and 

LC than 2nd order waves. It was expected to find different values of z0 for the 

different waves represented in Fig. 6.1 even when they had same wave 

height and length. Presumably the aerodynamics of the wind flow should 
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behave differently in each case. It was assumed that the higher LT and/or aC, 

the bigger the wave area that would be impacted by the wind. 

 

 

Figure 6.1. Comparison of wave profiles for small amplitude (SA), 2nd (S2) and 5th (S5) 

order Stokes theories. 

6.4 Development of equation 

6.4.1 Logarithmic law 

In wind climatology assessment the logarithmic law is well known. Under 

neutral conditions, this is represented by Eq. 2.5 with Ψs=0 and replacing 𝑢∗ 

becomes Eq. 2.6. In order to validate the methodologies for z0 and 𝑢∗ 

calculations in Equations 2.7 and 2.8, these have been tested for the EZS 

dataset. According to [127], 𝑢∗ from wind profile is usually overestimated 

due to the adopted von Karman constant. Even if the correct κ is used, the 

reliability of the 𝑢∗ calculation depends on the reliability of the z0 

parameterization. After both parameters were known, wind speed at 116 

meters (U116) was calculated following Eq. 2.5. Then, a regression between 

measured and predicted U116 was plotted as shown in Fig. 6.2. Linear 

regression, bias and Normalised Root Mean Square Error (NMRSE) were 

calculated. The correlation coefficient was 0.96 and slope of regressions line 



146 

 

was 1.006. Both parameters are representing a good agreement since they 

were very near to its perfect value, 1. NMRSE and bias were also near to 0, 

the best value, and there was just a minimal amount of scattering in Fig. 6.2. 

Hence, it was demonstrated that wind profile was calculated with accuracy 

through the logarithmic law with 𝑢∗ and z0 calculated values. Therefore, z0 

produced by application of Eq. 2.5 with in-situ measurements can be 

assumed to be the real values for wind speed. In the next sections, these in 

situ z0 will be used to validate the predicted z0. 

 

 

Figure 6.2. Wind speed regression at 116 meters between measured wind and predicted 

wind (Eq. 2.5) by in situ z0 (Eq. 2.7) and u* (Eq. 2.8). Red line is the regression line. 

6.4.2 Adaptation of Lettau’s equation to ocean waves 

Once the wave profile is calculated, Lettau’s equation can be translated or 

adapted for a square domain of area equal to WA2. The number of waves 

inside the domain will be equal to WA/Lp. The silhouette, s, or cross section is 

the wave height per the wave width, H x Ww. Instead of simply wave height, 

significant wave height, Hs, it was used. Over deep water, waves can be 

considered to exist in straight lines since there is no lateral displacement, 

along the crest. Also, wave refraction does not affect the shape since the 
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water depth is greater than Lp/2, only these cases are included. Therefore all 

points along the crest will have the same phase speed meaning that the wave 

will keep being a straight line. Thus, Ww=WA if wave propagation is parallel 

to two sides and perpendicular to the other two sides of the squared domain. 

Substituting Ww by WA and the rest of the wave parameters in Eq. 6.1 gives 

𝑧0 = 𝐶𝑑 × 𝐻𝑆 × 𝐻𝑆𝑊𝐴 ×
𝑊𝐴

𝐿𝑝𝑊𝐴
2 = 𝐶𝑑

𝐻𝑆
2

𝐿𝑝
   (6.6) 

In Eq. 6.6 it is implicitly considered that h*= Hs, and this is probably not true 

as explained in the wave finite theories comparison section. The truth is that 

h* is a function of wind speed, Lp or LT, and Hs or aC. In fact, the use of aC 

instead of HS is adequate in order to make a difference between symmetric 

and asymmetric waves, i.e. young and mature waves. Even so, there is a 

relevant uncertainty to determine h*. Over the ocean it is widely assumed by 

researchers that Cd is a function of squared 𝑢∗, and the squared wind speed at 

10 meters over the sea, U10, Eq. 6.7. Then z0 can be expressed as shown in Eq. 

6.8. Note that roughness density is now equal to ac/Lp. 

𝐶𝑑 =
𝑢∗

2

𝑈10
2    (6.7) 

𝑧0 =
𝑢∗

2

𝑈10
2

𝑎𝐶
2

𝐿𝑝
   (6.8) 

6.4.3 Incidence angle correction 

As long as wind direction and wave direction are equal then Eq. 6.8 is true. 

Since gravity waves are generated by wind it is not unreasonable to expect 

similar directions most of the time. However, by the presence of swell, a 

sudden change in wind direction or just Ekman’s spiral [132], a relevant 

disagreement between both directions can be observed. In such cases z0 can 

be strongly affected, z0 will be reduced reaching its minimum for an 

incidence angle (θ) of 90° or 270° when waves present null cross-section area. 

Following Lettau’s equation, Eq. 6.1, the silhouette is the cross-section area of 

obstacles along the wind direction. Hence, the wind direction was taken as 

the reference direction. As explained, for a straight wave s=aCWA when both 

directions are equal.  
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As represented in Fig. 6.3, the perpendicular cross-section of a wave will not 

be WA, it will be A or in other terms WAcos θ. Then, adding the incidence 

angle correction into Eq. 6.8, Eq. 6.9, Lettau’s adaptation, becomes Eq. 6.10. 

𝑧0 = 𝐶𝑑 × 𝐻𝑠 × 𝐻𝑠𝑊𝐴 cos 𝜃 ×
𝑊𝐴

𝐿𝑝𝑊𝐴
2 = 𝐶𝑑

𝐻𝑆
2 cos 𝜃

𝐿𝑝
   (6.9) 

𝑧0 =
𝑢∗

2

𝑈10
2

𝑎𝐶
2

𝐿𝑝
| cos 𝜃|   (6.10) 

 

 

Figure 6.3. Incidence angle representation. WA is equal to wave width and A is the cross-

section perpendicular to the wind direction. 

6.4.4 Total roughness equation 

Different regimes for z0 are known. These are smooth, transitional and rough 

regimes. In Fig. 6.4, the three regimes are shown, plotted against friction 

velocity. The rough line follows Charnock’s equation with 0.018 as the 

Charnock coefficient. In most cases, the total z0 is given by Eq. 6.11.  

𝑧0 = 𝑧0(𝑠𝑚𝑜𝑜𝑡ℎ) + 𝑧0(𝑟𝑜𝑢𝑔ℎ)   (6.11)  

Transitional roughness is normally neglected for practical applications. As 

shown in Fig. 6.4, smooth z0 will only be relevant under very low wind 

conditions, when rough z0 is almost null. Adding transitional z0 is just an 

improvement for a small interval of 𝑢∗, but it can virtually increase z0 for 

smooth and rough conditions. Hence, transitional z0 was discarded in the 

present study. The rough regime equation in Fig. 6.4 should be substituted 

by Eq. 6.10.  



149 

 

Nevertheless, it is expected that Eq. 6.10 will follow a similar trend to 

Charnock’s equation since both formulas are directly proportional to (𝑢∗)2. 

 

Figure 6.4. Surface roughness length against friction velocity for smooth (z0s), transitional 

(z0t) and rough (z0r) regimes. 

Thus, the complete equation for total z0 is given by Eq. 6.12, where ν is the 

kinematic viscosity of air. 

𝑧0 = 0.11
𝜈

𝑢∗
+

𝑢∗
2

𝑈10
2

𝑎𝐶
2

𝐿𝑝
| cos 𝜃|   (6.12) 

Regressions for Eq. 6.12 showed a very low z0 as shown in Fig. 6.5. Here z0 

was underestimated as it was by all of the other methods studied in chapter 

5. Unlike the previous study where R2 was below 0.05 (with the exception of 

one discarded case by the presence of compensation), here an R2 of 0.75 was 

found. On the other hand, NRMSE was far from 0, considered the optimal 

value. The slope of regression line could be considered 0.  Wind speed 

regression also did not show a relevant correlation. R2 was too low, 0.489, 

even so, Eq. 6.12 reached a better correlation than previous methods when 
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compared with the results for in-situ 𝑢∗ in chapter 5. The rest of the statistic 

parameters of the regression followed the same trend as the previous study. 

 

Figure 6.5. U116 and z0 regressions for Egmond aan Zee overlapped with satellites dataset, 

according to Eq. 6.12. 

Although it was not expected, a strongly underestimated z0 was found, but 

the R2 of the z0 correlation was a step in the right direction, slightly confirmed 

by R2 from the wind speed correlation. After the results in Fig. 6.5 it was 

obvious that something was missing. In terms of Lettau’s equation, the cross-

sectional area or silhouette could be underestimated and consequently z0 

would also be underestimated. The first reason for this could be the 

composition of the wave’s effect. Sea surface shape is the sum of many 
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different sinusoidal waves, as can be observed in Fig. 6.6. Each singular wave 

can have different wave direction, Hs, Lp, and cp.  

 

Figure 6.6. The composition of waves. Source: [133]. 

Considering a single, dominant wave, the composition of waves could 

increase slightly the total silhouette. But over a large area of the ocean, this 

effect may increase relevantly the total silhouette or i.e. roughness density. 

Another point is the existent homogeneity of the composition of waves even 

when the sea surface is non-static. This fact suggests the possibility of a 

constant, or almost constant, parameter to include the composition of waves, 

cw. Taking in-situ z0, the coefficient cw can be found through Eq. 6.13. 

𝑧0 = 0.11
𝜈

𝑢∗
+

𝑢∗
2

𝑈10
2 | cos 𝜃| [

𝑎𝐶
2

𝐿𝑝
+ 𝑐𝑤]    (6.13) 

Over the same number of measurements, 238, that were included in 

regressions; an average cw of 9.16 metres was obtained. Maximum, minimum 

and standard deviation found were 35.70, -21.34 and 10.87 respectively. The 

value of the standard deviation means that cw is not constant; on the 

contrary, it is indicative of high variability as maximum and minimum cw 
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confirmed. Even so, regressions with cw=9.16 metres were worthy of 

analysis. These are shown in Fig. 6.7 for both z0 and U116. Using this equation 

and value for cw a remarkable regression for z0 was found. R2 rose from 0.750 

to 0.952, and the same trend was observed for the slope from almost 0 to 

0.271. The slope was still far from 1 but the improvement was obvious. This 

enhancement was reflected in the U116 regression. R2, NRMSE, and bias 

showed better values than before due to the reduction of scatter. The exact 

value of the coefficient cw did not affect the results since there was 

considerable variability in its selection but it did introduce an improvement 

into the regression. Hence, a sensibility analysis of the cw coefficient was 

undertaken in order to find the optimal value. 

6.5 Sensitivity analysis 

6.5.1 1st analysis on cw 

As logic, the first sensitivity analysis was for the value of the cw coefficient, 

but this time including all three different datasets. In Fig. 6.7, where cw was 

equal to 9.16, the correlation coefficient R2 was near unity i.e. near the best 

possible correlation. However, the slope was too low and far from its optimal 

value of one. This meant z0 was underestimated by Eq. 6.13 with cw=9.16 m.  

Hence, the chosen interval of cw to study was between 4 and 38. z0 all 

regressions are not shown due to their number. Instead, R2 and slope values 

from z0 regressions were plotted against cw coefficients in Fig. 6.8 thereby 

summarising all regressions. The first graph in Fig. 6.8 shows R2 variability. 

As observed R2 values remained constant for all three different datasets. This 

means cw has a very small or no effect on R2 for the chosen interval. This is 

not the case for slope variability. Slope value is directly proportional to the 

cw value as shown in the second graph in Fig. 6.8. The intersection point of 

different datasets with the horizontal line for slope=1 was different for each 

dataset. The optimal values of cw were reached at 34, 36 and 33 for EZS, EZ, 

and F1 respectively.  
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Figure 6.7. z0 and U116 regressions for Egmond aan Zee plus satellites dataset, according to 

Eq. 6.13 with cw=9.16 m. 

It should be noted that the optimal cw are much larger than aC2/Lp. Hence 

aC2/Lp can be neglected, and thus Eq. 6.13 can be simplified as shown in Eq. 

6.14. 

𝑧0 = 0.11
𝜈

𝑢∗
+

𝑢∗
2

𝑈10
2 | cos 𝜃| 𝑐𝑤   (6.14) 
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Figure 6.8. 1st sensitivity analysis on cw coefficient and its impact on R2 and slope. 

Each different dataset found a different optimal cw. Even so, this was inside a 

small interval, from 33 to 36. Calculated z0 through Eq. 6.14 plus their 

optimal cw were compared with in situ z0 in a regression again as shown in 

Fig. 6.9. A remarkable correlation was achieved where R2 was above 0.95 in 

all three cases. As expected, all three slopes were very close to 1. The main 

difference was the presence of a small amount of scatter for Egmond aan Zee 

plus satellites. This scatter was not observed in the other two regressions. 
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Figure 6.9. Surface roughness regressions between in situ z0 and Eq. 6.14 model with 

optimal cw for three different datasets: EZS, EZ, and F1. 
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The reason was related to the nature of the datasets. Unlike EZS, data were 

consecutive in time for EZ and F1; furthermore in situ data was processed 

differently for EZS as explained in the datasets section. It was expected that 

regressions should follow a straight line y=x, but this was not the case. All 

three regressions showed a different function, which was y2=x. This fact lead 

to a relevant disagreement for low values of z0, where z0<1. Small changes in 

this region are capable of producing a significant effect on extrapolated wind 

speed. Following the logarithmic law, the lower z0, the higher extrapolated 

wind speed. This means that low extrapolated winds, in comparison with in-

situ measurements, were produced because the predicted z0 was 

overestimated. This condition occurred for z0<0.4 as was shown in Fig. 6.9. It 

must be highlighted that this is the region with a higher density of 

measurements. Hence the importance of good correlation in that area. In 

order to solve this effect, a sensitivity analysis was undertaken for the 

exponent in the drag coefficient, which commonly takes 2 as its value.  

6.5.2 Analysis of drag coefficient exponent 

Another expression for Eq. 6.14 can be written with α as the drag coefficient 

exponent, see Eq. 6.15. 

𝑧0 = 0.11
𝜈

𝑢∗
+ [

𝑢∗

𝑈10
]

𝛼

| cos 𝜃| 𝑐𝑤   (6.15) 

Eq. 6.15 with the optimal cw coefficient for each dataset was studied in this 

section. The interval selected to study the drag coefficient exponent was from 

2.00 to 3.00. Results of this sensitivity analysis are shown in Fig. 6.10. 

Following the same reasons as the previous sensitivity analysis, only results 

for R2 and slope of z0 regressions are presented. Unlike the cw analysis, R2 did 

not remain constant. As observed in Fig. 6.10, there was an optimal Cd 

exponent in each case according to the value of R2. Obviously, this optimal 

point was the maximum value of R2. These points were 2.35, 2.35 and 2.65 for 

EZS, EZ and F1 respectively. In both cases for Egmond aan Zee datasets, the 

improvement was 0.01 in R2 values. However, for Fino-1, the difference was 

larger with an enhancement of 0.03 in the R2 value. The slope graph, Fig. 6.10, 

showed a decrease with a higher exponent. Hence once the drag exponent 

was replaced by the optimal value found in Fig. 6.10, another sensitivity 
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analysis for the cw coefficient was necessary. Otherwise, the slope would be 

below 1 again. 

 

Figure 6.10. Sensibility analysis on α coefficient and its impact on R2 and slope. 

6.5.3 2nd analysis of cw 

In this last analysis, the optimal cw coefficient was analysed again. z0 was 

calculated through Eq. 6.15 with the best values found for drag coefficient 

exponent in previous sensitivity analysis. The same trend was observed in 

Fig. 6.8 and 6.11; R2 was constant in all cases. The cw coefficient did not affect 

the correlation coefficient. Again as seen in Fig. 6.10, slope correlation from 
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Fig. 6.11 showed direct proportionality to the cw coefficient. However, there 

was a substantial difference between results from Fig. 6.8 and 6.11. This was 

the intersection point with a horizontal line for slope=1. In Fig. 6.11 these 

points were found at 60, 60 and 97 for EZS, EZ and F1 respectively. 

Intersection points were lower in Fig. 6.8 for all three cases. Also, these points 

were similar in the previous analysis, between 33 and 36, meaning a 

difference of only 8%. Now, following the results in Fig. 6.11, the difference 

between Egmond aan Zee and Fino-1 was a 61%. This was indicating that cw 

depends on the chosen dataset.  

 

Figure 6.11. 2nd sensibility analysis on cw coefficient and its impact on R2 and slope. 
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According to Eq. 6.15 and introducing the optimal α and cw found in Fig. 

6.10 and 6.11 respectively, z0 was recalculated and plotted against measured 

z0 in Fig. 6.12. All slopes of the linear correlation were almost 1. The main 

and the most relevant differences between Fig. 6.9 and 6.12 were R2 and the 

intercept coefficient. Achieved R2 was higher in Fig. 6.12 with an increment 

of 0.01 for Egmond aan Zee cases and 0.03 for Fino-1. On the other hand, 

intercept values decreased until half of its value from Fig. 6.9. This means a 

better correlation for low z0 values. As explained before this is important 

since most of the points were located when z0<0.5. In the two cases where 

satellite data processing was not applied, R2 was higher. However, 

regressions points are showing an overestimation of z0 for values above 1.5. 

This fact is not a real problem since z0 values over the ocean do not usually 

exceed z0=1. The three regressions of Fig. 6.12 showed a high correlation since 

all R2 coefficients were over 0.96 

Such good correlation was not observed in Fig. 6.13 for the U116 regression, 

where the maximum R2 was 0.77 for EZ. The slope in all three cases was 

below 0.8 and the nearest bias to 0 was -2.7 again for EZ. Egmond aan Zee 

results showed better correlations in all statistics with the exception of 

NRMSE. The lower amount of data the lower NRMSE was observed. As it 

was shown in Fig. 6.7, U116 was underestimated again. The reason was an 

overestimation of z0 at very low levels, where most of the points grouped. 

This fact was showing the importance to parameterize z0 under 0.5 where 

around 85% of points are located in EZ case.   
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Figure 6.12. Surface roughness regressions between in situ z0 and Eq. 6.15 model with 

optimal α and cw coefficients for three different datasets: EZS, EZ, and F1. 
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Figure 6.13. Extrapolated wind speed regressions between in situ z0 and Eq. 6.15 model 

with optimal α and cw coefficients for three different datasets: EZS, EZ, and F1. 
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6.6 Substitution of empirical coefficients 

Even when wind speed regressions in Fig. 6.13 showed lower correlation 

than z0 regressions in Fig. 6.12, z0 results showed higher agreement than any 

other z0 method in comparison with the results from chapter 5. Therefore, Eq. 

6.15 with the optimal empirical coefficients α and cw was considered to be 

the best method for calculating z0. However, one of the aims of this study 

was to develop a method without the presence of empirical coefficients. Both, 

α and cw, are empirical coefficients and showed differences between 

locations. In the case of cw, these differences can be large as shown in section 

6.4.3. Following all sensitivity analyses, the inclusion of physical parameters 

into the methods was proposed. For each case, the pertinent regressions were 

undertaken. 

6.6.1 Analysis by similarity theory 

The knowledge in boundary layer physics is still insufficient for certain 

situations. The similarity theory provides a method to analyse and merge 

variables, which helps to understand the physics involved. Similarity theory 

is based on the organization of variables into dimensionless groups. The 

right choice of groups can allow the discovery of physical relationships, 

[134]. 

 There are four different steps in developing similarity theory: 

1. Select or guess the relevant variables for the situation. 

For the logarithmic law, the chosen variables were Ū, 𝑢∗, z and z0. The 

goal was to describe the wind profile. In this thesis, the goal is to find 

the z0 equation for offshore environments. Following Lettau’s 

equation, Eq. 6.1, z0 is dependent on drag coefficient. Hence, z0, U10 

and 𝑢∗ variables were chosen. After the sensitivity analyses, the 

empirical parameters cw and α will be substituted by a physical 

parameter by guessing as the similarity theory indicates. 

The first sensitivity analysis was based on Eq. 6.14 where cw was 

analysed. The first tip for substituting cw was its units. According to 

Eq. 6.14, cw must have same units than z0, i.e. it has the dimensions of 

length, i.e. meters. cw does not have to be necessarily a single physical 
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parameter; it could be the product of different parameters. 

Nevertheless, the optimal cw values found in Fig. 6.8 indicated an 

interval for cw between 33 and 36. These values were near the average 

wavelength in Egmond aan Zee with average Lp=23.7 m. Since Lp is 

also a length, the first option was to substitute cw directly by Lp. 

The next step was the substitution of the coefficient α. As observed in 

Fig. 6.10, the optimal values of α were found between 2.35 and 2.65. 

This is not a wide interval of values, plus this coefficient must be 

dimensionless. The proposed approach is related to the von Karman 

constant, κ. Usually κ=0.4, then 1/κ=2.5; thus the inverse of κ is near to 

the optimal α found. Furthermore, researchers found different values 

for κ, as it appears in [127]. According to the literature, κ could take 

values from 0.35 to 0.435 and therefore its inverse varies from 2.29 to 

2.86. Both optimal values for α were inside the possible interval for 

inverse κ. 

Finally, the chosen variables were: z0,  U10, 𝑢∗, Lp and κ. Although κ is 

dimensionless and presumably constant, it was included after the 

sensibility analysis on α.  

2. Organize the variables into dimensionless groups. 

 

At this point, the dimensionless groups are obvious since two 

variables are lengths, and the other two are velocities. Hence, the first 

group was z0/Lp. The second group was, in fact, the expression for the 

drag coefficient with a different exponent, (𝑢∗ 𝑈10⁄ )1 𝜅⁄ . It was also 

considered the common expression for the drag coefficient, (𝑢∗ 𝑈10⁄ )2, 

for comparison. 

 

3. Perform an experiment; gather the data from previous experiments 

to determine the values of the dimensionless groups. 

 

The datasets EZ and F1 were chosen in this point. 
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4. Fit an empirical curve or regress an equation to the data in order to 

describe the relationship between groups. 

 

The regressions are shown below for both datasets and for both drag 

coefficient expressions. 

 

 

Figure 6.14. Regression for EZ with von Karman constant as kv. The red lines are the 

regression lines, and the blue line is the mean value for each bin. The purple light area 

shows the interval of values for each bin.  
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Figure 6.15. Regression for EZ without the von Karman constant. The red lines are the 

regression lines, and the blue line is the mean value for each bin. The purple light area 

shows the interval of values for each bin. 
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Figure 6.16. Regression for F1 with von Karman constant as kv. The red lines are the 

regression lines, and the blue line is the mean value for each bin. The purple light area 

shows the interval of values for each bin. 
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Figure 6.17. Regression for F1 without the von Karman constant. The red lines are the 

regression lines, and the blue line is the mean value for each bin. The purple light area 

shows the interval of values for each bin. 

On the first figure, Figure 6.14, a good correlation was observed with an R2 of 

0.805. However the slope of the equation is four times higher the perfect 

slope, 1; plus the NRMSE is very high, 162,058. On the other hand, the 

second plot showing the interval revealed that the regression line is very 

close to the mean values. Some disagreement was found for high values, but 

it could be due to the low number of points for that area. Comparing with 
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results from Figure 6.15, when the von Karman constant was not used, the 

correlation coefficient was a bit lower than Figure 6.14. The slope of the 

regression line and NMRSE showed lower values and therefore better 

results. Again, the regression line followed the pattern of the mean values 

line. 

Unlike EZ, a different trend was observed for F1 dataset. The correlation 

coefficient is still higher when κ was included, 0.754 in Figure 6.16 against 

0.725 in Figure 6.17. However, the NRMSE was lower for the expression with 

von Karman constant. The NRMSE’s were 4.116 and 13.096 in Figures 6.16 

and 6.17 respectively. Only the agreement between regression line and mean 

values line was better for the normal expression of the drag coefficient. 

Again, this is probably due to the low number of points for high values. 

In summary, a linear correlation between z0/Lp and  (𝑢∗ 𝑈10⁄ )1 𝜅⁄   was proved 

to be fair. Nevertheless, the slopes for EZ and F1 datasets are significantly 

different and showed scatter for high values. More variables should be 

included in the study before empirical parameters are removed. In the 

following sections some suggestions are tested.       

6.6.2 Wavelength as cw 

After the results in the sensibility analysis section and the analysis by 

similarity theory, cw was substituted by Lp. The results of this substitution are 

shown in Fig. 6.18. At first glance, there was more scatter than regressions 

from Fig. 6.9. R2 pointed to the presence of correlation with an important 

decrease in comparison to previous regressions; 0.71, 0.77 and 0.58 for EZ, 

EZS, and F1 respectively. The slope of the linear regression was also reduced 

to 0.60 and 0.58 for EZ and EZS but increased for F1 with 1.77. Even so, these 

regressions still achieved a higher R2 than any other previous method 

included in this study. Hence, it was considered to achieve a reasonable 

correlation.     
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Figure 6.18. Surface roughness regressions between in situ z0 and Eq. 6.14 model with 

cw=Lp coefficients for three different datasets: EZS, EZ, and F1. 



170 

 

6.6.3 Substitution of α 

After the analysis by similarity theory, α was substituted by 2.5. Then, the 

expression for Cd in Eq. 6.7 was rewritten as shown in Eq. 6.16. 

𝐶𝑑 = (
𝑢∗

𝑈10
)

(2.5)

   (6.16) 

Usually, the exponent in drag coefficient formula is 2 as shown in Eq. 6.7. 

This exponent was suggested by Taylor, [135], where the relation was also set 

by similarity theory. The drag of the atmosphere against the earth’s surface 

could be described by the velocity squared, and so, it could be expressed by 

the wind stress too. Since then, researchers applied Eq. 6.7 in their studies. 

However, as explained, the drag coefficient is still a field of research. Even 

so, it is agreed that Cd associates the frictional drag related to the surface 

layer and the mean wind, i.e. 𝑢∗ and U10. 

On the other hand, κ is described as a universal constant related to the 

turbulent flow near a surface. In [136], κ was interpreted as a geometric 

structural parameter, at least in the logarithmic law region. To be more 

precise, κ was described as the sinus of the angle between the streak ejected 

from the turbulent flow near a wall parallel to the fluid motion, and the wall. 

Hence, κ is here used as a parameter to describe the relation between 

frictional drag and the mean wind. This fact suggests the possibility that α is 

related to 1/κ. However, more research will be necessary to prove this 

relationship. Hence, it was not included into new formulations. 

As found in the previous section, the higher the α exponent, the lower the 

slope of the regression line in z0 graphs. Once, α was substituted by 2.5, cw 

cannot be equal to Lp. As explained and observed in the second sensitivity 

analysis for cw, this value must be higher. Nevertheless, because of the 

agreement found in Fig. 6.18 and the analysis by similarity theory, cw should 

be still related to Lp. Also, it was proposed to keep working with wave 

asymmetry or wave age parameters. Therefore, an equation was derived as 

appears in Eq. 6.17. 

𝑧0 = 0.11
𝜈

𝑢∗
+ [

𝑢∗

𝑈10
]

(2.5)

𝐿𝑝 [1 + (
𝐻𝑠

𝑎𝑇
⁄ )] | cos 𝜃|   (6.17) 
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Once again, the first results to analyse were z0 regressions. In Fig. 6.19 four 

different graphs are shown, one for each dataset plus a repetition of the EZS 

dataset against the predicted z0 without the incidence angle correction 

included in Eq. 6.17. As it occurred with the substitution of cw by Lp, there 

was an obvious correlation but also some scatter was found. Comparing the 

results with Fig. 6.18, R2 decreased for EZ and EZS; however, it increased 

slightly for F1 and more significantly for EZS without the incidence angle 

correction. The reduction of the independent value from the regression line 

was a generalized enhancement. This fact was also observed in the second 

sensitivity analysis for cw. Bias and NRMSE were nearer to 1 in Fig. 6.18 than 

Fig. 6.19. Only observing these two statistics plus R2, the agreement between 

in situ and predicted z0 fell for all Egmond aan Zee regressions. However, 

their results showed a small improvement for F1, even when its slope 

increased widening the distance to unity. 

Wind speed regressions in Fig. 6.20 followed the same trend as correlations 

from Fig. 6.13. The extrapolated wind speed was generally underestimated 

again. In detail, there was a small drop in R2 which means a reduction in the 

correlation. On the other hand, bias and NRMSE were also reduced meaning 

an increment of correlation. The main reason to underestimate wind speed 

was still the same. At low levels, when z0<0.4, predicted z0 is overestimated in 

the region with more data density in Fig. 6.19. In order to explain this fact 

and observe it more clearly, another regression was undertaken; a 

comparison between the natural logarithm of in situ z0 and predicted z0. 

Furthermore, results in Fig. 6.21 and z0 calculations became comparable with 

those from [126]. Here only R2 was calculated as a parameter to represent the 

quality of correlation.  
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Figure 6.19. Surface roughness regressions between in situ z0 and Eq. 6.17 model for three 

different datasets: EZS, EZ, and F1. 
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Figure 6.20. Extrapolated wind speed regressions between in situ z0 and Eq. 6.17 model for 

three different datasets: EZS, EZ, and F1. 
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Figure 6.21. Natural logarithm of surface roughness regressions between in situ z0 and Eq. 

6.17 model for three different datasets: EZS, EZ, and F1. 
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This was higher for EZS regressions than EZ and F1 with more points 

included. The best result was found to be EZS without incidence angle 

correction achieving an R2 of 0.769. Similarly, in [126] where onshore 

roughness is calculated, an R2 of 0.756 was achieved for the method based on 

Lettau’s equation and also validated against a meteorological mast. The 

contrast is the absence of bias in [105]. In Fig. 6.21 there is an obvious bias 

when ln(z0)<-2. According to results predicted z0 was never smaller than 

0.0001 for EZS. Although that was not the case for EZ and F1, it was obvious 

that predicted z0 was overestimated when z0 is smaller than 0.01.   

6.6.4  No incidence angle and average Lp 

The last improvement was applied to the developing equation. Eq. 6.17 was 

modified to remove the incidence angle correction and short-term Lp was 

substituted by average or long-term Lp.  

𝑧0 = 0.11
𝜈

𝑢∗
+ [

𝑢∗

𝑈10
]

(2.5)

𝐿𝑝
̅̅ ̅ [1 + (

𝐻𝑠
𝑎𝑇

⁄ )]   (6.18) 

In this first analysis, the long-term wavelength comprised between the 

beginning and end of data availability, more than 3 years for EZ. The results 

in Fig. 6.18 showed a drastic reduction in scatter. As a consequence, an 

improvement in correlation was found for the z0 regression. However, there 

is still an overestimation of z0 when z0<0.4. This was observed in the second 

regression of Fig. 6.22, for ln(z0).   

Hence, in order to test the developed equation, the method was analysed 

only when z0>0.4. Those points were overlapping the ideal correlation line in 

Fig. 6.22, right graph. These points are also shown in Fig. 6.23 the z0 

regression where R2 rises from 0.404 to 0.975; and so proving an almost ideal 

correlation. As explained, validation is proven by comparison of extrapolated 

wind speeds with measured wind speed. The results for the wind speed 

regression demonstrated a near-perfect correlation with R2=0.954. The slope 

of the correlation line was low, 0.909, although near to unity. NRMSE and 

bias achieved the lowest values for any wind speed regression in this study 

and, in the case of bias, close to zero.  
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Following Fig. 6.23, when perfect correlation in the ln(z0) regression was 

achieved, a perfect wind speed correlation was reached. Eq. 6.18 results 

provided almost perfect agreement between predicted and measured data 

when z0>0.4.  

 

 

Figure 6.22. Surface roughness regressions between in situ z0 and Eq. 6.18 model for EZ. 
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Figure 6.23. Wind speed and surface roughness regressions when z0>0.4 between in situ z0 

and Eq. 6.18 for EZ. 

6.7 Analysis of wave age, height and wind speed 

As studied in chapter 5, the z0 method was analysed under different wave 

ages, wave heights and wind speed conditions. All three parameters have an 

effect on z0, directly or indirectly. The aim was to find an optimal interval or 

by contrast those intervals where the developed equation does not 
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adequately represent the real roughness. Perhaps, there was also the 

possibility to find the conditions for low z0 where predicted roughness is 

overestimated. Furthermore, there are some sea conditions for which it 

should be easier than others to calculate z0; e.g. wind generated, fully 

developed seas. Testing the method under these conditions and comparison 

with chapter 5 could bring some light and new ideas to find the z0 calculation 

method valid for all conditions. 

6.7.1 Wave age 

Three different intervals were studied; cp/𝑢∗<5, 5≤cp/𝑢∗≤32, cp/𝑢∗>32 as 

observed in Fig. 6.24. These intervals represent calm, growing and decaying 

seas respectively. For calm seas, a z0>0.01 was practically always found. This 

agrees with the common idea of the younger the waves, the rougher the sea. 

In fact, this idea was proved to be right since higher values for z0 were found 

for calm and growing seas and only low z0 values were present for decaying 

seas. Even so, young and decaying seas only represented 16% of the data 

reflecting low representativeness. Another interesting point was the range of 

wind speed for each wave age interval. For calm seas, medium wind speed 

was found, from 7 to 16 m/s; for young seas, a wide range of wind speed was 

observed and finally, for decaying seas, low winds were found as expected. 

Calm sea conditions achieved the highest correlation coefficient, 0.947, and 

most of its points were located over the perfect correlation line. Therefore, 

predicted wind speed also achieved a high correlation with R2, slope, 

NRMSE, and bias near their optimal values and low scatter was found, as 

shown in Fig. 6.25. This trend was already observed for high z0 in the 

previous section. As z0 dropped, the correlation also decreased, as shown in 

Fig. 6.24, 0.889 and 0.539 for young and decaying seas. By simple observation 

of z0 regressions in Fig. 6.24 it was obvious that correlation decreased with 

increasing wave age. As z0 correlation fell, the wind speed correlation also 

fell. This fact reflected the importance of z0 parameterization to accurately 

determine the wind profile. Eq. 6.18 was proven to be fully capable of 

predicting z0 for calm seas or cp/𝑢∗<5. That was not the case for young seas 

were only a portion of the points found agreement. Finally, there was no sign 

of correlation for decaying seas. This contrasts with previously proposed z0 

methods where researchers found the worst agreement under very young 

wave conditions, cp/𝑢∗<15, in [106], [107] and [108].  
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Figure 6.24. Surface roughness regressions between in situ z0 and Eq. 6.18 for EZ under 

different wave ages. 
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Figure 6.25. Wind speed regressions between in situ measurements and predicted wind by 

Eq.6.18 and logarithmic law for EZ under different wave ages. 
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6.7.2 Wave height 

The chosen intervals to analyse were Hs<1 m, 1≤Hs≤2 m, Hs>2 m as shown in 

Fig. 6.26. The first two cases, where significant wave height was lower than 2 

meters, reached similar results. Both cases grouped a similar number of 

measurements, 6,976 and 5,118 and showed a low level of correlation, R2 was 

equal to 0.450 and 0.334 for Hs<1 m, 1≤Hs≤2 m respectively. Wind speed 

regressions achieved better correlation for both, however, the wind speed 

was underestimated. As explained previously the reason was an 

overestimated z0. The only relevant point in this analysis was the low z0 

observed when Hs>2 m. Seemingly contradictory to common sense, higher 

waves do not mean higher z0, in fact, the higher the waves the lower the 

surface roughness. In Fig. 6.27, this idea was proven by the decreasing slope 

observed for wind speed regressions; 0.908, 0.841 and 0.776 for the 1 m, 1-2 m 

and more than 2 m of Hs. If z0 is overestimated then the wind speed will be 

underestimated as happened in Fig. 6.26. Although, this effect did not 

produce big differences in z0 between cases. This only means a poor 

dependence of z0 on wave height. 
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Figure 6.26. Surface roughness regressions between in situ z0 and Eq. 6.18 for EZ under 

different wave heights. 
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Figure 6.27. Wind speed regressions between in situ measurements and predicted wind by 

Eq.6.18 and logarithmic law for EZ under different wave heights. 
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6.7.3 Wind speed 

In this section different wind speed at 10 m intervals were analysed. As 

shown in Fig. 6.28 these intervals are U<5 m/s, 5≤U≤15 m/s and U>15 m/s for 

low, medium and high wind speed. Most of the measurements were taken 

under medium wind speed conditions since the number of points was 11,076 

out of 14,675. Even so, low and medium winds achieved the same low 

correlation in z0 regressions, R2≈0.45. Nevertheless, low winds reached better 

correlation in wind speed regression where R2 and slope where 0.807 and 

1.047 respectively. Both statistics were lower for medium winds as shown in 

Fig. 6.28. The case of high wind speed regressions brought another 

interesting point in Fig. 6.29. All z0 values during high wind conditions were 

under 0.001 according to EZ, so can be fairly considered to be low roughness. 

It is well known that wind produces waves over the ocean, plus the younger 

waves, the rougher sea as explained in the previous section. Thus, it can be 

observed, comparing Fig. 6.24 for calm seas and Fig. 6.28 for high winds, the 

very young waves produce the highest roughness. High roughness does not 

correspond to high winds. Furthermore, when high winds over the ocean are 

reached, wave height is probably above 2 m since regressions for Hs>2 m in 

Fig. 6.26 and high winds in Fig. 6.28 did not show points for high z0. 

Therefore, a new conclusion can be drawn; the older sea, the higher waves or 

the higher wind speed, the lower aerodynamic surface roughness length. 

Under all these three conditions Eq. 6.18 was unable to calculate z0 with 

accuracy.    
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Figure 6.28. Surface roughness regressions between in situ z0 and Eq. 6.18 for EZ under 

different wind speed conditions. 
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Figure 6.29. Wind speed regressions between in situ measurements and predicted wind by 

Eq.6.18 and logarithmic law for EZ under different wind speed conditions. 
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6.8 Analysis of the atmospheric stability 

Normally, the expected aerodynamic surface roughness length over the sea is 

within the range from 0.01 m to 0.0001 m, [134]. The z0 regressions previously 

shown in chapters 4 and 5 and the present chapter, pointed to higher values 

than the expected range. Sometimes, z0 reached 2 metres, a value that is 

expected for cities with skyscrapers. Two possible reasons for it could be the 

atmospheric stability and the possible wake effect from the meteorological 

mast itself. 

It must be remembered that the meteorological mast dataset was filtered in 

chapter 5 and 6 to avoid stable and unstable atmospheric conditions. The 

chosen method for filtering was the comparison between TSEA and TAIR. When 

both temperatures were almost equal, neutral stability was assumed. This 

method is the most straightforward, but at the same time it is the less precise. 

Instead of measured temperatures the virtual potential temperatures, Θv, 

should be compared at different heights which also depend on the pressure 

and humidity. Here is the set of equations, Eq. 6.19 – 6.23, to calculate virtual 

potential temperature, [134]. 

Θ𝑣 =  Θ(1 + 0.61𝑟)  (6.19) 

Θ = 𝑇 (
𝑃𝑜

𝑃
)

0.286

  (6.20) 

𝑟 =  
0.622𝑒𝑝

𝑃−𝑒𝑝
   (6.21) 

𝑒𝑝 =  𝑒𝑠
𝑅𝐻

100
   (6.22) 

𝑒𝑠 = 0.6112 𝑒𝑥𝑝 [
17.67(𝑇−273.16)

𝑇−29.66
]  (6.23) 

Where r is the mixing ratio of unsaturated air, g/g, Po is the reference 

pressure, 100 kPa, RH is the relative humidity, %, ep is the partial pressure of 

water vapor, and es the saturated vapor pressure. In Eq. 6.23, temperature has 

units of degrees Kelvin and es is calculated in kPa. 

When ΔΘv = 0, it could be expected to find a static neutral stability if vertical 

convection is null. But, when there is adiabatic lapse rate equal to 0, it could 

be vertical wind speed producing turbulence. Hence, the most precise way to 

represent atmospheric stability is through the heat flux parameterization, 
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expressed as 𝑤′𝛩′𝑣
̅̅ ̅̅ ̅̅ ̅ . The overbar means the average over a period of time, the 

apostrophe means the fluctuation term, and w represents the vertical speed. 

Thus, when the heat flux is negative, the boundary layer is stable, a positive 

heat flux means unstable stability, and in cases where the heat flux is equal to 

0 there is neutral stability. In order to quantify the atmospheric stability the 

Obukhov length, Ls, is commonly used.  

 

𝐿𝑠 = −
𝑢∗

3Θ𝑣

𝜅𝑔𝑤′Θ′𝑣̅̅ ̅̅ ̅̅ ̅̅ ̅
  (6.24) 

Therefore, the Obukhov length was calculated in order to verify that the z0 

high values are not a consequence of the atmospheric stability. In table 6.1, 

the range according to stability is indicated.  

 

 
𝚯𝒗
̅̅ ̅̅  profile 

(K) 

𝒘′𝚯′𝒗
̅̅ ̅̅ ̅̅ ̅̅  

(ms-1K) 
z/Ls Ls (m) 1/Ls (m-1) 

Stable Θ𝑣1
̅̅ ̅̅ ̅ < Θ𝑣2

̅̅ ̅̅ ̅ < 0 > 0 ≤ 200 ≥ 0.005 

Neutral 

Near 

neutral/stable 

Θ𝑣1
̅̅ ̅̅ ̅ ≅ Θ𝑣2

̅̅ ̅̅ ̅ 

If there is 

no 

convection 

≅ 0 ≅ 0 

200 ≤ L ≤ 

500 

0.002 < 

1/L < 

0.005 

Neutral |L|≥500 

0.002 ≥ 

1/L ≥ -

0.002 

Near 

neutral/unstable 

-500 ≥ L 

≥ -200 

-0.005 ≤ 

1/L ≤ -

0.002 

Unstable Θ𝑣1
̅̅ ̅̅ ̅ > Θ𝑣2

̅̅ ̅̅ ̅ > 0 < 0 ≥ -200 ≤ -0.005 

Table 6.1. Summary of the range of values for different parameters according to 

atmospheric stability. The virtual potential temperature profile must be calculated at two 

different heights where z1<z2. [134] and [137]. 

All measurements included in the stability quantification were taken at 21 

metres height from the sea surface. In this section, stability conditions were 

filtered out after calculating Ls. Hence, the friction velocity could not be 
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parameterized from the wind speed at two different heights. In this case, the 

ultrasonic anemometer at 21 metres was used to calculate friction velocity. 

Since this kind of anemometer allows the measurement of vertical, lateral 

and horizontal speeds, 𝑢∗ was solved by Eq. 6.25. Where u’, v’ and w’ stand 

for horizontal, lateral and vertical speed fluctuation respectively. 

𝑢∗
2 ≡ [(𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ 2 + (𝑣′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ 2]

1/2
  (6.25) 

A 50-min period was used in this study to calculate the heat flux and friction 

velocity.  This period was the shortest possible to calculate fluctuations with 

confidence. The aerodynamic surface roughness was calculated by Eq. 2.6. 

Again, the wind speeds used to calculate aerodynamic surface roughness 

were 50-min averaged values. Thus, results from a 50-min averaged dataset 

can be compared with the EZ and EZS datasets results. The F1 dataset could 

not be used in this section because, due to the large number of gaps in the F1 

dataset, it was not possible to calculate fluctuations. 

In Fig. 6.30 the surface roughness was plotted against the inverse of the 

Obukhov length. In the graph, only measurements under neutral or near 

neutral conditions were included. The total number of points was 11,152. 

Compared with the EZ dataset, the number of measurements was reduced 

by 3,500 points. The difference increases if only neutral conditions are 

included for comparison with only 5,613 points under neutral conditions. 

Therefore, the 1°C of difference between sea and air temperatures was 

covering neutral and near neutral measurements plus some stable and 

unstable conditions. In summary, neutral and near neutral conditions were 

included (76% of time) and stable plus unstable conditions also included 

(24% of time).  

In this section, with more rigorous criteria for stability, many high z0 values 

were also found as shown in Fig. 6.30. These high values were seen under 

near neutral conditions, but also under strict neutral conditions. Even when 

1/Ls was close to 0, many z0 values were higher than 0.1 metres. With these 

results, atmospheric stability was discarded as a reason for high surface 

roughness values. 
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Figure 6.30. Analyses of surface roughness length under different stability conditions. N 

stands for number of points. 

Another possible reason was the wake effect from meteorological mast. If 

this was the reason, high z0 values should only appear for one or two sectors. 

In order to check this possibility, the stability was also studied according to 

the wind direction as shown in Figures 6.31 and 6.32. Only six sectors of 60° 

each were included here. The results showed that high z0 values were 

measured within all the sectors. This fact dismisses the idea of a possible 

wake effect from the meteorological mast itself.  

However, there is another possible source of wind shear, the wind turbines 

installed at the Egmond aan Zee offshore wind farm. These are located at 

North, North-East and South-East of the met mast, as shown in Figure 6.33. 

Hence, within these three sectors the turbulence could be the cause for an 

unusual wind profile and therefore unusual calculated values of z0. On the 

other hand, the South, South-West and North-West sectors should not 

experience such wake effect from wind turbines. Within these three wake-

free sectors high z0 values were also observed under neutral conditions as 

shown in Figure 6.32. 
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Figure 6.31. Analyses of surface roughness length under different stability conditions for 

the 3 sectors under a possible wake effect from wind turbines. 
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Figure 6.32. Analyses of surface roughness length under different stability conditions for 

the 3 assumed wake-free sectors. 
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Figure 6.33. Egmond aan Zee offshore wind farm map. The red square represents the 

location of the meteorological mast. All red lines represent electric cables and black 

circles over the lines are the wind turbines, [138]. 

6.9 Discussion on high z0 values 

The previous section was an analysis to discover the reasons for high z0 

values. Firstly, the atmospheric stability was checked. Since the method to 

filter neutral conditions was too simple, comparing air and sea temperatures, 

it was suspected that the stability could be a reason. It has been 

demonstrated that this was not the case. Many high z0 values were also found 

when 1/Ls≈0, i.e. under neutral conditions. Another possibility was a wake 

effect from an obstacle, such as the meteorological mast or a wind turbine. 

This was also not the reason since high z0 values were found for all sectors 

under neutral conditions. In this section a possible reason is discussed, 

although not demonstrated.    

In the boundary layer there are two sources of turbulence, these are 

buoyancy and wind shear. The first one, buoyancy, is caused by differences 

of air density at different heights. These are produced by changes in 
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temperature, humidity and pressure. In other words, the atmospheric 

stability depends on buoyancy. The second source, wind shear, is a 

mechanical production by the obstacles in the direction of the wind. Thus, 

under null buoyancy, turbulence and instability can be caused by wind 

shear. The following explanations of this section are written under the 

assumption of neutral buoyancy. 

The (kinetic) energy that is mechanically produced as turbulence is lost from 

the mean flow, and vice versa, [134]. It will be expected to have more losses 

when there are more obstacles on the surface, i.e. the surface is rougher. 

Therefore, the higher the losses, the rougher the surface. This is true onshore, 

where there is only one fluid, the wind, and a solid ground. These conditions 

are different offshore and over lakes. The turbulence mechanically produced 

by the surface is expected to be lower than onshore since the obstacles are 

smaller. Thus, the amount of losses from the mean flow by the increment of 

turbulence is low. However, there is another source of losses. Unlike 

onshore, offshore there is an interaction between two fluids. The fact that the 

ocean waves are produced by the wind proves that there is a kinetic energy 

transfer from the wind to the sea. In other words, in offshore environments 

the mean flow experiences losses by wind shear and wave production. If 

there is an increase of losses, it must be expected that there will be an 

increase in the aerodynamic surface roughness. This is especially true if z0 is 

calculated through the wind profile. 

The high z0 values shown in this thesis could be produced by losses due to 

wave production. The analysis on wave age, Figure 6.24, revealed that the 

highest roughness appears for the smaller wave ages; i.e. when the wave 

production starts. A reasonable idea is to expect the highest kinetic energy 

transfer from the wind to the sea at the beginning of the wave production. 

The losses in the mean flow, the wind, by wave production were studied in 

[139], [140], [141], and [142]. The growth rate of wave energy has been found 

to be higher for young waves than mature waves, [143]. This fact is 

demonstrated in Figure 6.34. At the same time, it has been demonstrated in 

Figure 6.35 that the non-dimensional wind energy is lower under young seas 

than mature seas. Both facts prove that the energy transfer from wind to 

waves is higher in the presence of young waves rather than mature waves.     
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Figure 6.34. Observed non-dimensional wind wave growth rates (vertical axe) against the 

inverse wave age (horizontal axe). Open circles and squares are field data, others are 

laboratory data. γ represents the non-dimensional wind input growth rate, f is the wave 

frequency, and c is the phase speed. Source: [142]. 

Another question is: Why these high z0 values have not been observed in 

previous studies? All the literature consulted for this thesis found small 

values for z0. However, all the literature consulted used a long period to 

calculate aerodynamic surface roughness. The usual approach is to calculate 

z0 from mean wind speed values for periods over months or years. This 

approach is correct for places with steady surface, i.e. onshore. With a non-

static surface, which can change significantly within a period of minutes or 

hours, the usual approach is inaccurate. Analysing parameters under long 

period terms in offshore environments may lead to miss uncommon 

situations. Since the analyses in this thesis were realised with 50 minutes 

periods, some unusual situations were observed. Therefore, the calculated z0 

in this thesis may not be wrong; it may be showing some situations of high 

kinetic energy transfer from the wind to the sea.   
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Figure 6.35. Non-dimensional wind energy (e’) in falling and rising wind conditions 

against the inverse wave age. Source: [139].  

The reason for high z0 values discussed above should modify the logarithmic 

law for offshore and lake environments. Here there are two options. The first 

one is to switch the aerodynamic z0 to a virtual z0, Eq. 6.18. The virtual z0 

must incorporate the common aerodynamic surface roughness length plus 

another length parameter representing the kinetic energy transfer from the 

wind to the sea. The second option is to incorporate a dimensionless 

parameter similar to the atmospheric stability correction, the energy transfer 

correction. This parameter should be dependent on the wave age, and 

perhaps on a ratio of kinetic energy from the sea and kinetic energy from the 

wind. With this second option, z0 may be independent of the wave age. If that 

was the case, the z0 could be calculated by the adoption of Lettau’s equation 

to the sea, as shown in Eq. 6.12. The z0 could still be only dependant on the 

drag coefficient and the quantity and size of obstacles. Obviously, this is still 

a theory which needs to be proved, and it should be tested in future research. 
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6.10  Summary 

This chapter explains the development of a new formulation to calculate z0. 

The study began with a tested method, Lettau’s method. This method was 

already validated onshore in the presence of only one type of obstacle over a 

domain. Over deep waters, it is expected to find only one type of obstacle, 

consecutive waves forming straight lines. Hence the adaptation of Lettau’s 

method seemed reasonable. A straightforward formulation was achieved. 

However, results did not show a remarkable agreement when compared 

with the wind profile measured in situ. Nevertheless, a direct relation 

between z0 and Cd was observed. 

Following the improvement found, in comparison with previous methods 

tested in chapter 5, a sensitivity analysis was undertaken. The objective of the 

sensitivity analysis was to find the appropriate empirical coefficients for the 

equation derived from Lettau’s research. Once both parameters, α, and cw, 

were found some interesting findings were achieved. The first finding is the 

relation between α and κ. For many researchers, α always takes a value of 2. 

In this study, it was suggested that α could be strongly related to von 

Karman’s constant, κ. The second finding was the similarity of cw with Lp. 

This fact was also analysed and a high correlation was observed in the z0 

correlation. Due to both findings, empirical coefficients were successfully 

removed from the formulations. 

The final equation, 6.18, was proven by different wave age, wave height, and 

wind speed conditions as was also studied in chapter 5. The reason to 

complete such analysis was to find a physical meaning to the new method 

for z0. It was found that the new equation reached high agreement only 

under certain conditions. 

Finally, a last analysis was undertaken due to the observed high z0 values 

along with this thesis. The atmospheric stability was studied and plotted 

against z0. This analysis was repeated for six different sectors according to 

the wind direction. Thus, any possible the wake effect could be checked.   
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7. Conclusions 

7.1 Identification of advantages and disadvantages of satellite 

wind retrievals for the wind industry 

Satellite datasets have a great potential to reduce costs in offshore wind 

resource assessment, not only for wind farms but also for other applications. 

Merging different satellites can be the solution to increase temporal coverage. 

However, satellites will always require the support of in situ devices to 

achieve high accuracy. It is known that all satellites studied here and in other 

studies present bias under certain conditions such as rain or high winds but 

this study also showed a small difference was observed for low wind speeds. 

The bias must be studied and corrected for each satellite before using it for a 

wind resource assessment. Clearly, satellites should be inter-calibrated, but 

even so, some satellites showed positive bias when others showed negative 

bias in comparison with the meteorological mast. Hence, and to achieve 

accuracy, all satellite data in an HDDC should be divided by satellite and 

analysed separately. To solve this issue, satellites should be correlated with 

in situ measurements, such as floating LIDAR or buoys but not 

meteorological masts in order to avoid the need for expensive mast 

foundations in the sea.  

A correlation with in situ devices could increase accuracy and, perhaps, 

satellite data could be used as an historical data source involved in the 

Measure-Correlation-Prediction technique which is common in wind 

resource assessments. Future studies should contemplate this possibility 

since it could be the first use by offshore wind farm developers. Before that 

an improvement in surface roughness and atmospheric stability 

parameterization is necessary. This will require the insertion of new methods 

into the software tool developed by the author of this thesis and an 

expansion of the database made in order to include more atmospheric and 

oceanic parameters.  

Differences related to the extrapolation methodology need to be removed 

and an accurate method for extrapolation determined. Wind assessment on a 

short-term basis seems to be the most realistic method and for the extension 

it should be the most accurate. However, the amount of data and parameters 
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involved in short-term calculations can be a real challenge. The long-term 

basis should still be kept in mind because it could be a fair approximation 

before undertaking an accurate resource assessment in detail.  

Only SAR’s seems to match wind industry requirements when building wind 

maps for small areas with high resolution. In order to improve coastal 

observations, the inclusion of computational fluid dynamics could increase 

coastal coverage and also resolution. Although it was not included in this 

thesis, daily and seasonal variations must be studied. Otherwise, wind 

climatology will be biased due to a higher amount of data acquired during 

the daytime. 

7.2 Analysis of different methodologies for offshore wind 

vertical extrapolation 

Vertical extrapolation of wind speed over the ocean is challenging when the 

wind profile is unknown. Satellite wind retrievals give information in two 

dimensions in a plane parallel to the ocean surface. All wind data, 

independently of spacecraft device type, is calculated at 10 meters over the 

ocean by its characteristic GMF. Meteorological masts and Lidars also 

monitor wind vectors but in a single dimension, along with the altitude, 

unlike satellite data. Transformation of satellite data from 2D to 3D was 

undertaken through knowledge in wind profile, i.e. the logarithmic law 

shown in Eq. 2.5. Since U10 is monitored by satellites, only 𝑢∗ and z0 must be 

parameterized.  

All results highlighted underestimation of 𝑢∗ by various methods when 

compared with in situ measurements. The same problem appeared for all z0 

regressions pointing to the fact that z0 calculated by all different methods was 

also underestimated. These two facts were proven to compensate each other 

by the nature of the logarithmic law. Wind speed regressions after 

extrapolation were found to be in good agreement. However, those 

regressions were not sufficient to validate the methods. Only the agreement 

between 𝑢∗ and z0, plus a posterior agreement in extrapolated wind speed, 

could validate a methodology.  

The main problem found was with the z0 method rather than 𝑢∗ 

parameterization. This fact was proved with the combination of different z0 
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methods and directly measured 𝑢∗. A combination of the z0 equation and the 

logarithmic law can be solved by iteration. However, as long as a z0 method 

underestimate z0, 𝑢∗ will also be underestimated. The research needed to be 

directed towards the resolution of z0. This one should reach a proper 

agreement with z0 from a measured wind profile, or at least some correlation. 

In chapter 5, that correlation was completely missing for z0. Since 

measurement or calculation errors were discarded in the surface roughness 

crosscheck, the most probable reason for such underestimation was the use 

of empirical coefficients in both 𝑢∗ and z0 methods. A new method without 

the use of empirical coefficients was deemed to be necessary. The new 

relation must include sea state parameters in order to include all possible sea 

conditions, such as the calm sea, growing sea, and the presence of swell. Any 

method relying only on wind speed will only represent fully developed, 

wind dominated seas which are not common conditions. The inclusion of 

satellite data into wind industry will not occur unless this new method is 

found and a vertical extrapolation is successfully achieved. In that sense, 

there is still a second challenge. This challenge is building climatology from 

satellite data, which should be remembered. 

7.3 The developed method for surface roughness length 

parameterization 

Two different locations were chosen for validation; however, Egmond aan 

Zee presented better data consistency over time. Hence, higher valid data 

were found despite a shorter survey period. Data quality in offshore 

environments was a big issue since a lack of quality can drastically reduce 

the volume of data as occurred with the Fino-1 mast. The synergy between 

different monitoring devices was another cause of data leakage. The third 

dataset of overlapping satellites and Egmond aan Zee measurements was a 

proof of this. Due to the amount of valid data Egmond aan Zee dataset 

covered a wide range of atmosphere and sea state conditions achieving high 

representativeness. Under neutral conditions, the logarithmic law was 

proven to be valid by reaching accurate, predicted wind profiles when 

compared with a meteorological mast. This fact was key in order to establish 

control u* and z0 parameters for validation. 
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The study from chapter 6 pursued a new formulation for z0 avoiding the use 

of empirical coefficients. Lettau’s equation was adapted to sea parameters 

following wave dynamics and wave amplitude theories.  Incidence angle and 

different z0 regimes were also included. Two big assumptions were made in 

order to simplify this; the proposed formulation was only written for deep 

waters and excluded breaking waves. As an output Eq. 6.12 was proposed, 

its results showed a poor correlation in z0 regression. Even so, better 

correlation than previous methods proposed in the literature was achieved 

with a correlation coefficient of 0.750. Three sensitivity analyses helped to 

make some changes and the final Eq. 6.18 was created. Furthermore, a 

slightly different formulation for drag coefficient was proposed, Eq. 6.16, but 

not validated. Finally, two sources of scattering were removed, incidence 

angle correction and instantaneous wavelength. A possible cause of error 

was that the wind direction measurements were taken at an excessive height 

where Ekman’s spiral effects could be present, leading to an unrealistic 

incidence angle correction. On the other hand, the instantaneous wavelength 

was substituted by long-term wavelength. Although the z0 formulation 

achieved a good correlation overall, it tends to overestimate z0 for low 

ranges, z0<0.4. Most of the measurement points were found to be located 

within this low range. This fact led to an underestimation of the wind profile 

which was compared with measured wind speed by an offshore 

meteorological mast.  

A deeper analysis of Eq. 6.18 for different wave ages, wave heights and wind 

speeds brought shed some light on this. The best correlation was surprisingly 

found under very young waves conditions when a better agreement was 

expected for fully developed seas. In fact, Eq. 6.18 was capable of 

determining z0 for such range of wave age where no other formulation in the 

literature was capable. It was also found that most of the decaying seas 

presented low roughness. Wave height analysis only showed that the higher 

the wave height, the lower the roughness. Similarly, wind speed analysis 

reflected that the higher the wind speed, the lower the roughness. Surface 

roughness regressions were more illustrative when the natural logarithm 

was plotted. According to previous z0 methods, these found correlation at 

very low z0; the proposed formulation covered high z0 but medium to low z0 

has not been successfully parameterized by any other equation. Further 
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research should keep studying z0 as a function of drag coefficient as Lettau’s 

equation and the present study since it found almost a perfect agreement in 

the overall regressions. Plus, there are still possibilities for improvement of 

the proposed formulation from this study. 

High z0 values were showed in the last chapter. These values are 

unexpectedly high for offshore environments. Hence, the atmospheric 

stability was analysed. This was discarded as a reason for such values. A 

possible wake effect was neither the cause. The energy transfer between 

wind and sea was demonstrated to be the reason. Since this energy transfer is 

not reflected in the logarithmic law expression, neither the z0, the energy 

transfer needs to be integrated into the logarithmic law to represent with 

confidence the offshore wind profile over short periods in offshore 

environments. 

This research was part of a bigger project, the development of a satellite-

enabled tool for offshore wind resource optimisation. Following the project 

line, a proper parameterization of z0 could improve satellite wind retrievals. 

Their lack of accuracy for low and high winds could be due to a loss in 

translation from measured wind stress to calculated wind speed at 10 meters 

above sea level. A proper parameterization of z0 plus the use of wind stress, 

retrieved from satellites, should allow the calculation of wind speed at any 

given height. This hypothesis will only stand under neutral conditions, to 

cover all atmospheric stability conditions, stability correction must be 

applied. 

7.4 Thesis objectives achievement 

After making conclusions from the analyses covered in chapters 4, 5 and 6, it 

is necessary to evaluate the fulfillment of the thesis objectives detailed in 

section 1.1. These objectives were split into two different blocks. First, the 

WindRes related objectives; and second, the further research for 

improvement of satellite retrievals or matching wind industry requirements. 

The analysis undertaken in chapter 4 was focused on the achievement of 

WindRes objectives. The benefits of satellite datasets for the wind industry 

were highlighted in section 7.1. The developed tool is capable of creating a 

wind atlas from any source of wind information, remote sensing or in situ. A 
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preliminary wind assessment can also be undertaken. This includes Weibull 

parameters, energy density, wind roses and other statistics. However, the 

software is not operational or ready to commercialize. The main reason for 

that is the further research required to improve the accuracy of the wind 

speed extrapolation.  

Advantages and disadvantages of the satellite wind retrievals were 

explained as well as the fields of research to match industry requirements. 

These are the capability to vertically extrapolate winds, calculate friction 

velocity and surface roughness length, plus the possibility to build 

climatology. From these four different research fields, surface roughness 

parameterization has been identified as essential. 

This fact led to the research undertaken and explained in chapters 5 and 6. 

These two chapters are focused on friction velocity and surface roughness 

methods. As explained in section 7.3, it is possible to take friction velocity 

directly from satellite measurements. But, surface roughness length must be 

known before calculating the wind speed. In this thesis, a new formulation 

for surface roughness length has been suggested as well as a new method for 

drag coefficient estimation. However, the new methods have been proved to 

work only under low wave age conditions. Nevertheless, the method is free 

of empirical coefficients and describes surface roughness length with 

accuracy for conditions where no other known formulation does. 

Even so, surface roughness length is not well parameterized under all 

conditions. Furthermore, a method to build climatology from satellites 

measurements has not been investigated yet. Thus, more research is needed 

to be carried out for confident parameterizations; details of this are explained 

in the next section.         

7.5 Future work 

This thesis followed the development of a tool which, while fully functional, 

is not yet fully operational. Before releasing any software to the market, it is 

still necessary to undertake further studies. Furthermore, some technical 

issues must be faced too. Here it is presented a list of the tasks in the future 

as follows. 
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1. Finish the development of a z0 model. Once a z0 model is achieved, it 

will be automatically possible to calculate wind vectors in 3 

dimensions from satellite retrievals and buoy (or other in situ devices) 

measurements. 

 

2. Calculation of the wind vector from wind stress. Satellites 

(scatterometers and SAR’s) are really measuring wind stress instead of 

wind speed. The actual algorithm, GMF, for conversion uses empirical 

coefficients resulting in a lack of accuracy for low winds (< 5 m/s), 

high winds (>15 m/s) and coastal areas. Applying an accurate z0 

method plus the measured u* by satellites, could enhance accuracy. 

 

3. The inclusion of atmospheric stability correction. In this thesis, only 

measurements under neutral conditions were used. This was so to 

simplify calculations and analyze z0 methods independently. With the 

inclusion of atmospheric stability correction into the algorithms, it will 

be possible to use measurements under all atmospheric conditions.  

 

4. Satellite wind climatology. The first use of satellite data by wind 

developers should be as support during the planning stage. Hence it 

would necessary to study how to use satellite data as historical data. 

Representativeness of daily, season and year variabilities by satellite 

data must be analyzed. 

 

5. Testing phase. In previous steps, results will be validated and 

compared with in situ devices. Even so, a testing stage where the 

methodology is applied in different points of the globe will be 

necessary. Hence, it will be required to acquire data from all over the 

world. There is another possibility; it could use ERA and MERRA 

databases. These databases contain data from ground and satellite 

measurements, plus parameters calculated trough Numerical Weather 

Prediction models. 

  

6. Build the satellite DB. This database can include gridded data from 

satellites, including scatterometers, radiometers, SAR’s and perhaps 

altimeters. Otherwise, the database could be a short register of 
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datasets per area including a link to original satellite DB. Thus, it will 

not be necessary to hold a large DB; however, analysis speed will drop 

due to required time to download datasets. A third and ambitious 

option is to build a massive DB with any ocean measurement from 

any remote sensing device onboard a satellite.  

 

7. Build in situ devices DB. This second and parallel database is the 

exact same idea but here only including in situ devices such as buoys, 

meteorological masts, offshore platforms, etc. Again, ERA and 

MERRA databases could be used as well. 

 

8. Further software development. The very last step before launching 

the software. The goal is to improve the output layout, build a user 

interface, etc. 
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Appendix A. Software user guide 

Software installation 

For any of the following installation instructions it is essential to have 

connection to Internet since all libraries, packages and repositories will be 

downloaded from Internet platforms. 

 MySQL installation 

There are two ways of installing MySQL and MySQL Workbench. The first is 

the use of the Ubuntu software center. The second is the directly from the 

command prompt. The first option is really straightforward, thus only the 

second way will be explained. 

Open the command prompt and type the following steps: 

1. To refresh the apt package cache to make the new software 

packages available. 

$ sudo apt-get update 

2. Install MySQL server. 

$ sudo apt-get mysql-server 

Here it will be necessary to introduce twice the new password for 

the user “root”. 

3. Testing MySQL. 

$ mysqladmin –u root –p version 

The password for user “root” will be asked. In the previous 

command, -u root refers to user, -p refers to the password. The 

output will be information about the MySQL version. 

4. Install MySQL Workbench. 

$ sudo apt-get mysql-workbench 
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5. Run Mysql. 

$ mysql –u root –p 

 As step 3, the password for user “root” will be asked. 

 

Python 2.7 version installation  

Ubuntu OS, by default, contains Python 3.6, but the tool was designed in 

Python 2.7. Hence, it is necessary to install the correct version of Pyhton. 

1. Refresh repositories. 

$ sudo apt-get update 

2. Update all the software 

$ sudo apt-get dist-upgrade 

3. Install Python 2.7 and pip. 

$ sudo apt-get install python2.7 python-pip 

  

 Python packages installation 

Here is the list of the Python packages included in the software; pandas, 

numpy, scipy, MySQLdb, netCDF4, xml, gzip, openpyxl, windrose, matplolib and 

basemap. All these packages are available through PiPY, the online repository 

for Python. There are two ways of installation, through pip or from the 

command line. It is recommended to install all packages via command line. 

Furthermore, some packages may need the installation of other python 

packages. These will be installed automatically after the user agreement. 

Some others may need the previous installation of Linux libraries. In these 

cases, instructions of installation are indicated in PiPY repository. 

1. Installation via command line (recommended). 

$ sudo apt-get install python-package_name 
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2. Installation via pip. 

$ sudo pip install package_name 

 

 MySQL change of data directory 

The DB size will be large, an important space is needed plus more space for 

the downloaded satellite datasets and csv files created prior to insertion into 

DB. Hence, installing an extra hard drive to the computer hosting the DB 

would be recommended. Thus, operating system and DB would be located in 

different hard drives. Once the large hard drive is installed and set to initiate 

when the computer turns on, the data directory can be changed. In the next 

steps, path2 will refer to the new directory. 

1. Stop the mysql server. 

$ sudo stop mysql 

2. Create the new directory. 

$ sudo mkdir /path2/mysql 

3. Copy over only the database folders. 

$ sudo cp –R /var/lib/mysql /path2/mysql 

$ sudo cp –R /var/lib/mysql/users /path2/mysql 

4. Copy the ibdata* and ib_logfile* files. It is necessary to copy the 

InnoDB tables; otherwise it will not be possible to use the tables. 

$ sudo cp –p /var/lib/mysql/ib* /path2/mysql/ 

5. Backup the my.cnf file. 

$ sudo cp /etc/mysql/my.cnf /root/my.cnf.backup 

6. Edit the my.cnf file. 

$ sudo gedit /etc/mysql/my.cnf 

Here, it is essential to change all mentions of the old data directory 

and socket to the new location. For example, 
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 datadir=/path2/mysql 

 socket=/path2/mysql/mysql.sock 

7. Update the directory permissions. 

$ sudo chown –R mysql:mysql /path2/mysql 

$ sudo chmod 771 /path2/mysql 

It may be necessary to change the permissions of each folder in the 

directory or path to the new containing folder. 

8. Rename the old directory. 

$ mv /var/lib/mysql /var/lib/mysql-old 

9. Let the apparmor know about the new data directory. 

$ gedit /etc/apparmor.d/usr.sbin.mysqld 

As step 5, change any mention of the old directory for the new 

directory. This is to avoid a future issue when MySQL receives an 

update. 

10. Reload the apparmor profile. 

$ sudo /etc/init.d/apparmor reload 

11. Restart MySQL. 

$ sudo /etc/init.d/mysql restart 

In case of the hard drive (for the new location of the DB) is not launched 

when the computer initiates, it will not be possible to connect with the DB. 

An error message will appear similar to: 

 /var/run/mysqld/mysql.sock doesn’t exist and nor does the directory 

In order to solve this issue every time the computer is initiated the steps 1, 10 

and 11 must be repeated in order; i.e. stop MySQL, reload apparmor and 

restart MySQL.  
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Software code 

As explained in chapter 3, the software has not been deployed and the user 

interface has not been designed. The user interaction with the software has 

been already well explained in section 3.5.2. Hence, there is no need of 

further explanations. However, the code has not been showed in this thesis. 

Due to size of the code, this is not included in the appendix. The code has 

been published through Github, it is open source and freely available. For 

those readers interested in the code, here is the link: 

https://github.com/SatelliteApplicationsCatapult/WindRes

https://github.com/SatelliteApplicationsCatapult/WindRes
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Appendix B. Regressions from table 5.1 plus z0 

regressions 

I. For Hersbach friction method 

 

B. 1. Wind speed regression for method Hersbach & Fetch combination. 

 

B. 2. Surface roughness regression for method Hersbach & Fetch combination. 
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B. 3. Wind speed regression for method Hersbach & Smith combination. 

 

B. 4. Surface roughness regression for method Hersbach & Smith combination. 
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B. 5. Wind speed regression for method Hersbach & Toba combination. 

 

 

B. 6. Surface roughness regression for method Hersbach & Toba combination. 
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B. 7. Wind speed regression for method Hersbach & Edson_Speed combination. 

 

 

B. 8. Surface roughness regression for method Hersbach & Edson_Speed combination. 
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B. 9. Wind speed regression for method Hersbach & Edson_Age combination. 

 

 

B. 10. Surface roughness regression for method Hersbach & Edson_Age combination. 



233 

 

 

B. 11. Wind speed regression for method Hersbach & DTU_Age combination. 

 

 

B. 12. Surface roughness regression for method Hersbach & DTU_Age combination. 
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B. 13. Wind speed regression for method Hersbach & Log_law combination. 

 

 

B. 14. Surface roughness regression for method Hersbach & Log_law combination. 
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B. 15. Wind speed regression for method Hersbach & Edson_wave combination. 

 

 

B. 16. Surface roughness regression for method Hersbach & Edson_wave combination. 
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B. 17. Wind speed regression for method Hersbach & Taylor combination. 

 

 

B. 18. Surface roughness regression for method Hersbach & Taylor combination. 
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II. For Wu friction method 

 

B. 19. Wind speed regression for method Wu & Fetch combination. 

 

 

B. 20. Surface roughness regression for method Wu & Fetch combination. 
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B. 21. Wind speed regression for method Wu & Smith combination. 

 

 

B. 22. Surface roughness regression for method Wu & Smith combination. 
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B. 23. Wind speed regression for method Wu & Toba combination. 

 

 

B. 24. Surface roughness regression for method Wu & Toba combination. 
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B. 25. Wind speed regression for method Wu & Edson_Speed combination. 

 

 

B. 26. Surface roughness regression for method Wu & Edson_Speed combination. 
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B. 27. Wind speed regression for method Wu & Edson_Age combination. 

 

 

B. 28. Surface roughness regression for method Wu & Edson_Age combination. 
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B. 29. Wind speed regression for method Wu & DTU_Age combination. 

 

 

B. 30. Surface roughness regression for method Wu & DTU_Age combination. 
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B. 31. Wind speed regression for method Wu & Log_law combination. 

 

 

B. 32. Surface roughness regression for method Wu & Log_law combination. 
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B. 33. Wind speed regression for method Wu & Edson_wave combination. 

 

 

B. 34. Surface roughness regression for method Wu & Edson_wave combination. 
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B. 35. Wind speed regression for method Wu & Taylor combination. 

 

 

B. 36. Surface roughness regression for method Wu & Taylor combination. 
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III. For Maat friction method 

 

B. 37. Wind speed regression for method Maat & Fetch combination. 

 

 

B. 38. Surface roughness regression for method Maat & Fetch combination. 
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B. 39. Wind speed regression for method Maat & Smith combination. 

 

 

B. 40. Surface roughness regression for method Maat & Smith combination. 
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B. 41. Wind speed regression for method Maat & Toba combination. 

 

 

B. 42. Surface roughness regression for method Maat & Toba combination. 
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B. 43. Wind speed regression for method Maat & Edson_Speed combination. 

 

 

B. 44. Surface roughness regression for method Maat & Edson_Speed combination. 
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B. 45. Wind speed regression for method Maat & Edson_Age combination. 

 

 

B. 46. Surface roughness regression for method Maat & Edson_Age combination. 
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B. 47. Wind speed regression for method Maat & DTU_Age combination. 

 

 

B. 48. Surface roughness regression for method Maat & DTU_Age combination. 
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B. 49. Wind speed regression for method Maat & Log_law combination. 

 

 

B. 50. Surface roughness regression for method Maat & Log_law combination. 
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B. 51. Wind speed regression for method Maat & Edson_wave combination. 

 

 

B. 52. Surface roughness regression for method Maat & Edson_wave combination. 
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B. 53. Wind speed regression for method Maat & Taylor combination. 

 

 

B. 54. Surface roughness regression for method Maat & Taylor combination. 
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IV. For Toba friction method 

 

B. 55. Wind speed regression for method Toba & Fetch combination. 

 

 

B. 56. Surface roughness regression for method Toba & Fetch combination. 

 



256 

 

 

B. 57. Wind speed regression for method Toba & Smith combination. 

 

 

B. 58. Surface roughness regression for method Toba & Smith combination. 
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B. 59. Wind speed regression for method Toba & Toba combination. 

 

 

B. 60. Surface roughness regression for method Toba & Toba combination. 
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B. 61. Wind speed regression for method Toba & Edson_Speed combination. 

 

 

B. 62. Surface roughness regression for method Toba & Edson_Speed combination. 
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B. 63. Wind speed regression for method Toba & Edson_Age combination. 

 

 

B. 64. Surface roughness regression for method Toba & Edson_Age combination. 
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B. 65. Wind speed regression for method Toba & DTU_Age combination. 

 

 

B. 66. Surface roughness regression for method Toba & DTU_Age combination. 
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B. 67. Wind speed regression for method Toba & Log_law combination. 

 

 

B. 68. Surface roughness regression for method Toba & Log_law combination. 
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B. 69. Wind speed regression for method Toba & Edson_wave combination. 

 

 

B. 70 Surface roughness regression for method Toba & Edson_wave combination. 
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B. 71. Wind speed regression for method Toba & Taylor combination. 

 

 

B. 72. Surface roughness regression for method Toba & Taylor combination. 
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V. For Insitu friction method 

 

B. 73. Wind speed regression for method Insitu & Fetch combination. 

 

 

B. 74. Surface roughness regression for method Insitu & Fetch combination. 
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B. 75. Wind speed regression for method Insitu & Smith combination. 

 

 

B. 76. Surface roughness regression for method Insitu & Smith combination. 
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B. 77. Wind speed regression for method Insitu & Toba combination. 

 

 

B. 78. Surface roughness regression for method Insitu & Toba combination. 

 



267 

 

 

B. 79. Wind speed regression for method Insitu & Edson_Speed combination. 

 

 

B. 80. Surface roughness regression for method Insitu & Edson_Speed combination. 
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B. 81. Wind speed regression for method Insitu & Edson_Age combination. 

 

 

B. 82. Surface roughness regression for method Insitu & Edson_Age combination. 
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B. 83. Wind speed regression for method Insitu & DTU_Age combination. 

 

 

B. 84. Surface roughness regression for method Insitu & DTU_Age combination. 
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B. 85. Wind speed regression for method Insitu & Log_law combination. 

 

 

B. 86. Surface roughness regression for method Insitu & Log_law combination. 
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B. 87. Wind speed regression for method Insitu & Edson_wave combination. 

 

 

B. 88. Surface roughness regression for method Insitu & Edson_wave combination. 
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B. 89. Wind speed regression for method Insitu & Taylor combination. 

 

 

B. 90. Surface roughness regression for method Insitu & Taylor combination. 
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VI. For iterated methods 

 

B. 91. Wind speed regression for Iteration method. 

 

 

B. 92. Surface roughness regression for Iteration method. 
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B. 93. Wind speed regression for Fetch_iteration method. 

 

 

B. 94. Surface roughness regression for Fetch_iteration method. 
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B. 95. Wind speed regression for Speed_iteration method. 

 

 

B. 96. Surface roughness regression for Speed_iteration method. 
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B. 97. Wind speed regression for Wave_iteration method. 

 

 

B. 98. Surface roughness regression for Wave_iteration method. 
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B. 99. Wind speed regression for Taylor_iteration method. 

 

 

B. 100. Surface roughness regression for Taylor_iteration method. 


