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Abstract

Emerging applications involving a high degree of uncertainty, dynamics, vari-

ability and unpredictability have begun to impart greater complexity to tasks

performed by robots. In these kinds of environments, one of the most common

causes for robot failures has been linked to the inability of the underlying planner

to adapt to changing conditions in the environment. While an extensive range of

methods have been developed to solve static planning problems in the robotics

domain, until now solving the dynamic counterparts of these problems remain

mostly elusive.

Motivated by these challenges, this thesis presents developments that advance

the state-of-the-art in optimal task and motion planning to address the dynamic

variant of common robotic planning problems. Studies into adaptive planning

problems are conducted to investigate the challenges that arise when extending

planning methods from offline planning to online planning. In particular, this

research seeks to characterise the interactions between plan quality and com-

putational efficiency when solving dynamic planning problems and to identify

the practical considerations for implementing adaptive planning algorithms in

physical systems. The contributions of this thesis are a number of fast yet prac-

tical planning techniques and methods that provide and maintain near-optimal,

collision-free solutions to complex planning problems involving dynamic environ-

ments.

In this thesis I first describe a case study that examines the challenges unique

to dynamic motion planning through a robotic pick and place task. The observa-

tions derived from this case study inspired the development of two new methods

for solving complex task planning problems. The first of these is an adaptive task

and path planning framework that addresses the optimal task planning prob-

lem for mobile robots under dynamic conditions. This framework integrates a

sampling-based multi-goal path planning algorithm with symbolic task planning
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to incrementally find high-quality task plans. Crucially, the framework supports

anytime-like planning and dynamic re-planning of both tasks and low-level mo-

tions to enable fast and adaptive computation of optimal solutions. To support

this, a tree pruning technique is proposed for multi-goal planning problems to

substantially reduce the time and memory complexity of the planner.

In the second half of this thesis, I present a highly competitive clustering-based

algorithm for robotic task sequencing problems (RTSPs). Unlike existing meth-

ods, the algorithm is capable of finding near-optimal solutions for complex tasks

involving hard spatial constraints. With a view towards dynamic robotic task se-

quencing, I go on to introduce two new concepts to the RTSP. The first is partial

planning, which adopts the idea of planning-during-execution to reduce the pre-

execution planning time of an algorithm for online applications. The second is the

concept of dynamic RTSPs, a new sub-class of RTSPs that involve dynamically-

changing problem variables. I subsequently present an adaptive algorithm for

online tracking of near-optimal RTSP solutions under dynamic influences. As a

pioneering work within the scope of dynamic task sequencing, I provide a quan-

titative evaluation of the algorithm for the purpose of benchmarking in future

developments.
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Chapter 1

Introduction

1.1 Motivation

Planning is a fundamental concept in robotics. For all autonomous agents, in-

cluding biological beings (such as humans) and non-biological entities (e.g. au-

tonomous robots), the paradigm of “sense, think, and act” forms the core of the

agent’s deliberation process in making informed decisions to act within its en-

vironment. Humans have learnt to develop this capability since birth, and are

often able to achieve many basic actions without explicit planning. Through the

process of continual learning, we have developed pre-stored plans for everyday

skills such as walking, writing, throwing, lifting and so forth. We generally are

not aware of deliberate planning until we are faced with new, complex tasks that

are unfamiliar to us.

While humans have made the execution of many tasks appear easy, this is

unfortunately not the case when translated to robotics. Even a seemingly simple

problem of grasping an object is rather complex to replicate, as it involves a high

Degree-of-Freedom (DoF) system, complex robot kinematics, object localisation

and geometric perception, grasp positioning, and force control. In actual fact

humans are able to achieve these tasks with ease due to the complex arrangement

of billions of neurons that form highly specialised networks, which underlie the

cognitive functions of the human brain. To date, researchers have only begun

to understand the inner workings of this complex system, and while the field of

artificial intelligence (AI) has sought to emulate these functions in non-biological

systems, robots still lack the capability to reliably learn primitive behaviours and

apply them in new tasks. This means even the simple act of moving between two
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points (before we begin to consider collisions) involves explicit planning to ensure

constraints such as joint limits and nonholonomic constraints are satisfied.

In the field of robotics, several forms of planning exist. The major classifica-

tions include motion planning, perception planning, manipulation planning, task

planning and mission planning.

Motion planning considers the general class of problems that deal with

low-level motion between a starting pose and a goal pose in space. By taking

into account geometric knowledge of the environment, and the robot’s kinematic

and dynamic constraints, motion planning seeks to find a collision-free geometric

path and the corresponding trajectory (a time-parameterisation of the path)

to realise the motion.

Perception planning addresses the problem of sensor placements to opti-

mally observe the entire set of manifolds for a particular scene of interest. One

example of its application lies in remote visual mapping of large components such

as wind turbine blades [1] and oil & gas tanks, where perception planning is used

to minimise the number of observation points for a drone while guaranteeing a

bounded level of coverage. In emerging assembly applications based on mobile

sensor and mobile robot platforms, the success of precise part insertion in un-

structured environments have relied upon sensor placement planning to obtain

an optimal view of the insertion features [2].

Manipulation planning is concerned with problems involving the interac-

tion of objects via contacts (e.g. using a robotic manipulator equipped with a

gripper). It consists of planning stable grasp positions, handling of forces, as

well as re-grasping for complex assembly tasks. Sensory capabilities are generally

required to deliberate about the geometries of objects being manipulated.

In task planning, the objective is to find a valid sequence of actions to

achieve a set of given objectives. Robotic task planning problems appear in

many different forms. For example, a simple routing task can involve finding an

optimal sequence to visit a set of goal locations in no particular order, while an

exploration task may involve numerous actions such as sampling soil, docking,

recharging battery, and taking images at points of interest. For more complex

problems such as robotic assembly tasks, task precedence may dictate certain

actions are performed before others. For example, obstacles may have to be

moved to give access to a target object, or a drilling action must be performed

before a dowel insertion action can be executed. Due to the highly abstracted
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form of many actions, the validity of a plan generally involves additional motion

and manipulation planning to determine the feasibility of individual actions.

Mission planning addresses planning problems of a high abstraction level

and is more loosely defined. In some contexts involving single robot systems,

the term mission planning have been used interchangeably with the concept of

task planning. Conversely in the context of multi-robot systems (e.g. fleets and

swarms), mission planning is generally defined as the planning of task allocation

for distribution to the team of robotic agents. This takes into account parame-

ters such as robot availability, battery level, robot capabilities and location. One

common example can be found in the logistics environment, where mobile robot

fleets operating in warehouses are used to provide transport operations as effi-

ciently as possible. In these scenarios, mission planning precedes task planning,

where the objectives given to an individual robot’s task planner is provided by

the mission planner. [3]

This thesis is specifically concerned with the areas of motion planning and

task planning. Both of these areas have been studied extensively as independent

disciplines, with large bodies of literature dedicated to extending existing meth-

ods and presenting new algorithms that seek to improve planning performance

in terms of completeness, convergence, generality and complexity. However, in

recent years, numerous authors have begun to investigate the concept of com-

bined task and motion planning (CTMP), which has, by and large, focused on

high-complexity planning problems involving manipulation tasks. CTMP fun-

damentally consists of leveraging the geometric and spatial relationships of the

robot, the objects and the environment, derived from the continuous state space

in motion planning, to guide the search for a feasible solution to a task planning

problem.

So far, the majority of developments in CTMP has primarily focused on static

planning problems, with few considerations for optimal planning in this do-

main. Yet the capability to develop optimal plans is important across many

applications as it directly affects aspects such as safety, productivity, and energy-

efficiency. Furthermore, while existing research in the area of motion planning

has dedicated some attention to the problem of dynamic re-planning, this has

been much less prominent in general task planning and indeed CTMP literature.

Nevertheless, re-planning capabilities are crucial in the real world, particularly

in modern applications that involve aspects of uncertainty, variability, unpre-
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dictability and dynamics. This necessitates further development in the area of

adaptive planning, which seeks to enable online re-planning capabilities to cope

with these challenging environments.

To this end, this thesis presents developments that extend the state-

of-the-art in optimal task and motion planning towards dynamic re-

planning.

1.1.1 The Progression of Robotics and Autonomy

Modern robotics have become a cornerstone of technological advancement in al-

most all aspects of human life. From medical and care assistance to manufacturing

and decommissioning, from disaster recovery to agriculture, and even in food pro-

duction and pizza making, robots have undoubtedly cemented their importance

in the 21st century.

While the exact origin of the term robots have long been debated due to

its vague early definition and differences in its interpretation, one thing is for

certain. The emergence of the first industrial robot in 1961 was the beginning

of an automation era that would give rise to the third industrial revolution,

where large-scale automation in production became widespread. Industrial robots

became popular for reasons commonly coined as the 4 Ds - to replace work

that were Dull, Dirty, Dangerous and Difficult.1 As a result, industrial robots

were widely known for their use in highly-repetitive, low-skilled tasks in rather

harmful environments to human workers. They provided economic benefits too,

as the efficiency of these systems often provided quick return on investment for

mass production processes, and were much more reliable in extended runs than

a human worker who would have otherwise been subjected to significant strain

over long hours.

However, these traditional applications of robotics had their limitations, which

confined the uptake of these technologies to large-scale industrial processes. Tra-

ditional automated robotic systems were generally purpose-built for a particular

process, involving custom-designed fixtures caged within a safety enclosure for

the safety of workers in its vicinity. Software to operate these systems were pre-

1In some contexts the 4th D have been replaced by other reasons for the adoption of robots
such as Dear (expensive manual labour), Dexterous (precision that is unachievable with human
hands) and Domestic (fulfilling emotionally-sensitive tasks such as cleaning toilets, though
without making a fuss!).
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programmed by a skilled programmer with a sequence of precisely-defined tasks

and actions, providing little to no tolerance for variation in the processes. This

meant fixtures had to be carefully designed to reduce positional and geometric

variability in parts and materials being handled as far as possible. Any changes

to the process required considerable offline programming effort and, at times, the

redesigning of fixtures, which is a costly and time-consuming procedure. Con-

sequently, industrial robots have traditionally been limited to fixed, structured

environments with minimal reliance on sensing technologies.

Since then, the concept of autonomy emerged, bringing with it a transforma-

tion in the landscape of robotics. Unlike traditional robotic systems that operated

as a “pre-programmed machine”, autonomy introduced the capability to compen-

sate for variation and uncertainty internally without human intervention. This

was a game-changer. Through the progressive developments in advanced control

theory, sensing technologies and AI, robotics and autonomous systems had cap-

tured the interest of both the research community and industry leaders across

the world for their potential to transform the way machines interacted with ob-

jects and environments. Robots began to possess basic planning, reasoning and

decision-making skills that allowed them to “think” about the tasks they were

required to perform, while having the tools they need to “see”.

Providers of robotic systems began developing more sophisticated software

packages that made it easier to program and re-program robots without extensive

training. Universal Robots, for example, have now made it possible for operators

to program a Universal Robot arm with just a few high-level commands to detect,

grasp and arrange small components randomly scattered on a table. The task

itself involves complex robot kinematics, machine vision and force-torque sensing,

yet at no point is the operator required to access and manipulate the low-level

code for simple behaviours. This provision of primitive skills have made robots

much more accessible to SMEs, who previously did not possess the in-house spe-

cialists to program robots nor justify the large investments for costly production

cells to minimize variation. This is reflected in the growth of industrial robots

being used across the world, with a recent forecast of 3.1 million industrial robots

to be deployed worldwide in 2020 [4].

Robots have now evolved beyond the conventional 6-DoF industrial robot and

can be found in a variety of forms across many more challenging environments.

Mobile ground vehicles have attracted the agriculture community for their po-
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tential to replace human labour in the harvesting stage amidst concerns over

the decreasing amount of labour in the sector [5]. Six-wheeled rovers [6] with

flexible suspension systems have been deployed to Mars for the purpose of plane-

tary exploration where no man has gone. In the field of disaster recovery, legged

robot systems such as crawler robots [7] and humanoids [8] are being developed

to navigate effectively through rugged terrain and interact with manipulatable

objects and obstacles. Unmanned aerial vehicles (UAVs) have found significant

importance in the fields of inspection [9, 10] and search and rescue [11] as they

are agile and low-cost, and possess greater freedom to navigate their environ-

ments. Remotely-operated underwater vehicles (ROVs) have had notable success

in deep-sea applications [12], while preliminary observations of humanoid robots

with modified bases have proven their feasibility for manipulating objects in ex-

treme environments such as the ocean [13] and in space [14].

There are indeed vast opportunities and possibilities for smarter, more intel-

ligent robots to support all aspects of human life, but while major milestones

have been achieved in the field of robotics to date, there are still long ways to

go before robots can truly operate autonomously in the tasks that are now being

demanded of them.

1.1.2 Limitations and Opportunities

Perhaps unsurprisingly, the aforementioned application areas in Section 1.1.1 in-

troduce new challenges as robots are deployed beyond the stable environment of

mass production cells that remain static over time. The harsher conditions of

operating in the outside world require robots to possess the capability to adapt

to environments that are unstructured, uncertain, unpredictable and dynamic.

Unfortunately, cases of robotic failure is not uncommon [15, 16]. Commonly

cited reasons for failure include the inability of a robot to handle small varia-

tions in a task (a problem that arose when tests were no longer performed in a

controlled laboratory environment), limitations in algorithms to cope with new

environments and challenges to adapt to changing environmental conditions (e.g.

lighting variations and dynamically-moving objects).

These limitations are well recognised across various sectors as human input is

still heavily relied upon for the safe operation of robots. In those highly dynamic

applications where substantial offline programming proves to be too costly, tele-
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operation and semi-autonomous operation modes are still the preferred method

for planning and executing actions. This particularly applies to sensitive, high-

risk applications where the consequences of failure is severe. Consider for ex-

ample the task of sorting and segregating legacy nuclear waste. Damaged or

corroded containers must be cut open so that internal legacy waste can be ex-

amined and sorted according to their contamination levels. Particularly highly

contaminated waste must be identified, retrieved and packed into safer storage

containers. These tasks all involve complex manipulation and grasping actions.

To add to the complexity, the environment is dirty and conditions change pro-

gressively as operations take place, creating a very dynamic environment. This

problem poses many challenges to autonomous robotics as decisions at several

planning levels must be made. To date, this is still achieved with a high reliance

on operators in a control room due to the strict requirements for reliability and

robustness [17].

Nevertheless, increased levels of autonomy is highly sought after, if not es-

sential, for these activities. Many of these scenarios involve remote environments

that are either too far or too dangerous for humans to enter. This can often mean

communications between operators in a control room and the robot is severely

hindered. Past planetary rovers on Mars are particularly clear examples, where

plans generated by human operators were limited to being sent once a sol (i.e.

Martian day) due to delays in transmission [6]. Additional challenges are intro-

duced in human-robot interactions within tele-operation due to differences in how

data is perceived and processed by humans and robots, which can often lead to

poor efficiency and the risk of human-error [15]. The operation of these robots

also required lengthy training to ensure proper and effective control by operators,

which, from an economic perspective, increases costs.

This creates opportunities for furthering the advancement of autonomous

robotic technologies in areas of perception, planning and control to address as-

pects of efficiency, optimality, flexibility and adaptiveness. Motivated by these

challenges and opportunities, this thesis presents a series of developments in task

and motion planning to enable adaptive robotic behaviours that can adequately

cope with changing observations obtained through perception. The planning algo-

rithms seek to provide collision-free task plans that carry the necessary low-level

motion commands required by a control system for safe execution on a robot.

The methods described in this thesis are industrially relevant, seeking to pro-
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vide near-optimal solutions while possessing efficient re-planning capabilities to

circumvent modes of failure due to environmental variation.

1.2 Research Aim and Hypothesis

1.2.1 Research Aim

This research investigates the problem of optimal and adaptive planning for robots

in dynamic environments. Specifically, I study problems that comprise of two

aspects of planning common to almost all robotic planning applications: task

planning and motion planning.

Task planning consists of finding a high-level sequence of discrete commands

that enables a robot to achieve a set of goals when actions are performed in the

given order from the initial world state. However, the high-level commands that

require driving the actuators of the robot in some way do not provide the low-level

control actions required to physically execute such commands. Motion planning

resolves this problem by translating a high-level command to continuous low-

level instructions to actuate the robot within its physical kinematic limits while

avoiding collision with itself and the environment. Accordingly, solving complex

task planning problems generally require the use of motion planning to first verify

the feasibility of high-level commands (e.g. ensure that the robot can execute the

action without collision) and subsequently provide the low-level instructions to

execute them. In addition to this, motion planning can provide the cost of low-

level motions required for solving optimal task planning problems, where each

command incurs an action-specific cost (such as the duration required to perform

the action).

Conventional planning problems assume that the environment is static and

solutions obtained offline remain valid when sent for execution. In these sce-

narios, extensive planning time can generally be allocated to obtain high-quality

solutions (relative to a particular optimisation criteria such as the time required

by the robot to perform all actions in the plan). Indeed for complex planning

problems, achieving a high-quality task plan has required extensive planning time

ranging from minutes to hours. However, when addressing the dynamic variant

of these problems, planners must be capable of finding plans within seconds to

be of practical use in real-world applications. Solving dynamic planning prob-
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lems become particularly challenging when the objective of the problem is to find

high-quality (i.e. optimal) solutions online. While some research on adaptive

task and motion planning do exist in literature, solving problems involving the

combination of both optimal and dynamic considerations remains mostly elusive

to this day.

The aim of this research is to identify common features of general dynamic task

planning problems and to provide adaptive planning algorithms and techniques

that enable the computation of low-cost solutions while achieving high planning

efficiency for applications involving dynamically-changing environments.

1.2.2 Research Hypothesis

In this research, a number of developments are presented to advance the state-

of-the-art in robotic planning. Some of these developments are applicable stand-

alone for static planning problems, but these have been further extended into

adaptive algorithms that can specifically cope with new observations of the envi-

ronment. For each adaptive task and motion planning algorithm presented in this

thesis, I test the following research hypothesis through experimental comparisons

and empirical findings:

“The adaptive algorithm obtains near-optimal, collision-free solutions faster

than an offline planning algorithm for a dynamic planning problem involving

changes in the observation of the environment.”

1.2.3 Research Questions

To develop a solution to each of the dynamic planning problems studied in this

thesis, the following research questions were identified during the initial phase of

literature review. Each of these questions proved difficult to address when applied

to relevant existing work in literature that provides an offline solution to the

static variant of the planning problems investigated. By addressing these research

questions during the development of solutions to dynamic planning problems, I

show that the presented adaptive algorithms successfully achieve the aim of this

research while extending the state-of-the-art in robotic task and motion planning.

1. What are the necessary considerations for planning in dynamic environ-

ments?
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2. What are the interactions between the goals of minimising plan cost and

maximising planning efficiency when solving a task and motion planning

problem?

3. How can problems that have conventionally been solved offline as a static

planning problem be addressed more efficiently to enable online planning?

4. What are the practical considerations for implementing adaptive planning

algorithms in physical robots?

1.2.4 Research Objectives

To achieve the research aim described in this Chapter, the following objectives

have been identified taking into consideration the research questions that must

be addressed.

1. Conduct a detailed literature review on the state-of-the-art for robotic task

and motion planning, covering both optimal planning and adaptive/dy-

namic planning methods, and identify the limitations of these work in rela-

tion to the optimal and dynamic planning problems studied in this research.

2. Conduct a study on the challenges of solving the dynamic motion planning

problem to identify the considerations that must be accounted for when

extending an offline planning problem to online planning.

3. Identify planning problems to serve as use cases for the study of optimal and

dynamic task planning and develop the methods for evaluation of algorithms

according to solution quality and planning efficiency.

4. Develop techniques that advance the state-of-the-art in task and motion

planning towards online planning by reducing the computation time re-

quired to obtain a high-quality solution to the static variant of the planning

problems identified in Objective 3.

5. Extend the techniques developed in Objective 4 into adaptive algorithms

that adequately cope with dynamic planning problems involving changes in

the observation of the environment.
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6. Evaluate the adaptive algorithms developed in Objective 5 to test the re-

search hypothesis introduced above and assess the deployability of algo-

rithms on physical robots.

1.3 Research Methodology

The methodology adopted in this research comprises of investigating two inte-

grated task and motion planning problems in dynamic environments. Since dif-

ferent types of robots often introduce unique considerations during planning due

to the particular characteristics of the robot and problem, this research widens

its considerations to two different robotic planning domains with the aim of iden-

tifying more common features of dynamic planning problems as well as general

techniques that can be applied across different domains to solve such problems.

The two planning problems identified for this research include task planning for

mobile wheeled robots and task sequencing for industrial robotic manipulators.

These were chosen based on the differences in the number of robot DoFs, the

differences in the typical number of goals in the planning problems and, from a

practicality point of view, the availability of physical robots that can be used for

experimental evaluations.

These investigations have been broken down into a number of smaller studies

that individually address one or more of the research questions introduced in

Section 1.2.3, as described below.

Finally, I note that different computing machines are used throughout this

research for the experimental evaluation of algorithms, as reported throughout

the chapters of this thesis. Where results are compared across different methods,

the same machine is used to ensure a fair comparison. These comparisons are

self-contained within each chapter, while results reported across different chapters

are not intended for cross-comparison. Thus the use of different machines do not

influence the validity of results and the findings thereof.

1.3.1 Literature Review

The literature review seeks to provide a critical analysis of the state-of-the-art

in robotic task and motion planning. Though the research in these areas are

extensive, this literature review narrows down on existing work that particularly
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addresses the problems of optimal planning and adaptive/dynamic planning. I

include literature that solely addresses task or motion planning as an independent

problem as well as literature that study these as an integrated planning problem

(i.e. a CTMP problem). Furthermore, the literature review explores the relative

advantages between search-based algorithms and learning-based approaches.

The purpose of this study is to summarise the limitations of existing state-of-

the-art methods for solving the problem of optimal and adaptive task planning

in dynamic environments and to identify the key knowledge gaps in literature,

which have subsequently been addressed in this research.

1.3.2 Case Study on Dynamic Motion Planning

A case study is conducted to explore the challenges and key considerations for

optimal planning in dynamic environments. Given that optimal and dynamic

motion planning is a comparatively less complex problem compared to optimal

and dynamic task planning (which remains a largely unsolved problem), I choose

to approach this case study from the perspective of motion planning. A dynamic

pick-and-place task for an industrial manipulator is chosen as an application ex-

ample for the problem of dynamic motion planning as it provides the opportunity

to explore the complexity of non-trivial state spaces due to the robot’s high num-

ber of DoFs. I stress, however, that pick-and-place is not one of the primary

planning problems examined in the rest of this thesis.

This case study will particularly seek to address Research Question 1 (see

Section 1.2.3) and findings will be discussed in the wider context of general robot

domains. As we will see, the development of algorithms for solving each of the

two integrated task and path planning problems studied in this thesis are driven

by the findings in this study.

1.3.3 Task Planning for Mobile Wheeled Robots

The first integrated task and motion planning problem studied in this thesis

addresses a general task planning problem for a mobile wheeled robot, where

the robot’s state space is defined by its x and y position in the world (i.e. a

2-dimensional configuration space).

The attention given to this problem is two-fold. In the first instance, the

problem is treated as a static optimisation problem were dynamic changes are
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not considered. Drawing from the findings of the case study on dynamic motion

planning, this first part of the investigation addresses the planning problem from

the direction of advancing the capabilities of motion planning. Consequently, a

new algorithm for motion planning between multiple goals is developed to effi-

ciently compute the cost of low-level motions necessary for optimal task planning.

I explore the benefits of this algorithm for solving optimal task planning problems

by integrating it with off-the-shelf task planners and comparing its performance

with alternative methods as a baseline. To this end, this segment of work sets

out to partially address Research Questions 2 and 3 by examining how the ef-

ficiency of motion planning can be improved and the effect this has on solution

quality. I also assess how decisions made at the task planning layer can affect the

performance of the integrated planner in terms of solution quality and planning

efficiency.

The second part of this investigation extends my considerations to the dy-

namic variant of the planning problem, where we turn our attention to the higher

level task and motion planning architecture. A number of techniques are explored

to determine how the integrated planner can be extended into a framework for

online planning. A key objective is to enable the online adaptation of both low-

level motions and high-level task plans to maintain optimality and avoid collisions

when new obstacles in the environment are observed. Since mobile robots must

generally rely upon on-board computing power to run the entire system, par-

ticular attention is devoted here to ensure that the developed algorithms can be

deployed efficiently to robots with limited memory capacity. Thus this latter part

of the investigation addresses Research Questions 2-4 for mobile wheeled robots.

The framework is evaluated on a physical differential drive mobile robot using a

comparatively light-weight computing machine to assess the performance of the

algorithm for a typical task planning problem.

1.3.4 Task Sequencing for Robotic Manipulators

The second integrated planning problem studied in this thesis comprises of a task

sequencing problem specific to high DoF serial-link manipulators. This problem

is notably more complex than the problem of task planning for mobile wheeled

robots for two reasons: Firstly, the high DoF nature of these robots introduce

the phenomena of kinematic redundancy, where a target position in the Euclidean
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space maps to a set of points in the robot’s configuration space. Secondly, the

number of goals in a typical task sequencing problem is often in the order of hun-

dreds, which is manifolds greater than the number of goals commonly encountered

in the mobile wheeled robot domain.

These two features can lead to a combinatorial explosion for a large number

of goals and high kinematic redundancy when solved using brute force methods.

Thus it is impractical to adopt the previous bottom-up strategy of solving the

motion planning problem for all possible actions and subsequently computing

the optimal task-level plan as this can quickly become intractable. Instead, the

problem is addressed using a top-down approach, where motion planning queries

are performed after a task sequence is determined.

Like before, this problem is investigated in two parts. The first part of

this work is devoted to the static optimisation problem where the poor plan-

ning performance of existing methods is addressed for particularly challenging

task sequencing problems involving hard spatial constraints. New techniques are

proposed to advance the state-of-the-art such that complex problems involving

spatial constraints can be solved more efficiently while providing high-quality so-

lutions. I go on to identify the necessary considerations for the deployment of

the algorithm to physical systems, taking into account different application re-

quirements. Thus the developments described here specifically address Research

Questions 2-4 from a static planning perspective for robotic manipulators. The

resulting algorithm is benchmarked against existing methods to quantify and

assess the performance of the proposed method.

The latter half of this study investigates the dynamic variant of the task

sequencing problem and seeks to extend the previously developed algorithm to

enable adaptive planning. More specifically, this segment of work examines how

the computation time required to generate a set of executable actions can be

drastically reduced to meet the stringent requirements of online planning while

satisfying the goals of the sequencing problem. I go on to identify techniques

that enable fast re-planning of task sequences and individual motions to preserve

high-quality solutions and avoid collision within a dynamically-changing environ-

ment. The outputs of this work are two new variants of the algorithm previ-

ously developed for static planning. Their performances are evaluated through

simulation-based experiments and compared against the benchmarked perfor-

mance of the original algorithm. Findings are discussed in the wider context of
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adaptive planning, providing additional insight into the practical considerations

for implementation on physical robots. Collectively this work addresses Research

Questions 1-4 from a dynamic planning perspective for robotic manipulators.

1.4 Thesis Organisation

This thesis is composed of eight chapters, including this introductory chapter.

Chapter 2 is dedicated to the literature review and covers the state-of-the-art

in task and motion planning within the context of optimal planning and adaptive

planning. The limitations of the current state-of-the-art are identified and the

knowledge gaps are discussed within the scope of the contributions of this thesis.

Chapter 3 presents the case study on the dynamic motion planning imple-

mented on a large-scale industrial robot for a dynamic pick-and-place task. I

discuss the challenges of enabling adaptive robot behaviour in low-level motion

planning and its general implications to re-planning in robotics. This chapter

also touches on the integration between the areas of planning, perception and

control and their requirements for flexible online adaptation.

The next four chapters provide the main contribution of this thesis. Chap-

ter 4 introduces the multi-tree-based motion planning algorithm that efficiently

computes all optimal paths between multiple goals. I show that the algorithm

can be applied to general cost spaces and demonstrate the use of the algorithm

for solving task planning problems in the mobile robot domain.

Chapter 5, addresses the problem of high- and low-level re-planning in mobile

robots for partially-known and dynamic environments. I present an adaptive task

and path planning framework that adopts and extends the algorithm presented

in Chapter 4 to efficiently cope with new environmental observations, and show

that the framework can support algorithmic anytime-like behaviour.

Chapter 6 shifts the focus to fixed-based manipulators, where I address

robotic task sequencing problems (RTSP) for spatially-constrained applications.

I present a novel clustering-based method that exploits the kinematic redundancy

of serial-chain manipulators to quickly find higher quality solutions compared to

existing state-of-the-art approaches.

Chapter 7 describes a preliminary study on the problem of dynamic task

sequencing, where two new variants of the algorithm introduced in Chapter 6 are

presented. In particular, this chapter introduces the concepts of partial planning
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Figure 1.1: Organisation of the thesis, indicating the problems investigated in each chapter
and the corresponding research questions that are addressed.

and dynamic re-planning to RTSPs and show how they extend the capabilities of

the original algorithm to achieve adaptive task sequencing for dynamic environ-

ments.

Finally, Chapter 8 concludes this thesis with a collective discussion of the

research findings derived from each of the studies in relation to the overall research
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aim and objectives. This is followed by a summary of the individual contributions

to knowledge made in this thesis. Limitations of the reported work are described,

followed by a discussion of possible directions for future work.

The organisation of this thesis is summarised in Fig. 1.1, where the focus

of each chapter and the underlying research questions addressed are shown on a

chapter-by-chapter basis.
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Chapter 2

Planning in Robotics

This chapter provides a literature review of task planning and motion planning,

where I cover the progression of successful planning techniques and discuss the

current state-of-the-art. The chapter is comprised of two sections covering motion

planning and task planning methods, respectively. I focus particularly on optimal

planning methods and adaptive approaches, and provide a summary of reviewed

literature to highlight their limitations, the current knowledge gaps and how these

are addressed in this thesis.

I note that the bodies of literature for these areas are vast, and the purpose of

this chapter is not to exhaustively review every major contribution made to date.

Instead, I aim to provide readers with the necessary knowledge to understand and

appreciate the significance of the contributions made in this thesis in relation to

the broader literature.

2.1 Motion Planning

Motion planning is a fundamental planning problem that commonly exists in

domains consisting of a moving agent. A classic example is the Piano Mover’s

Problem, whereby a piano located inside a house must be moved from one room

to another without collision [18]. The essence of this problem remains the same

for all motion planning problems. Simply put, the objective is to find a valid,

collision-free motion between a start configuration and a goal configuration sub-

ject to environmentally-imposed constraints (e.g. no-go regions, one-way roads,

obstacle regions) and body constraints (such as nonholonomic constraints, joint

limits, self-collision etc). These problems exist not only in robotics, but have also
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been particularly common in the context of gaming.

In this thesis, I narrow down on the path planning sub-problem, where we are

interested only in determining the geometric path that connects the start and goal

configurations while satisfying domain-specific constraints. In simple problems

involving agents that can be assumed to be a point body, motion planning can

be solved in the Cartesian (or x-y-z) space, which is generally most intuitive

to humans. This assumption can generally be adopted for gaming applications.

However, for agents in the real-world, it is necessary to take into consideration the

space of valid configurations. For example, a bicycle or 4-wheel car is incapable

of rotating on the spot due to the nature of the rolling wheel. Similarly, robots of

different forms possess different state transition constraints that must be adhered

to.

The entire space of possible state transitions is described by the configuration

space (C-space). The C-space is generally composed of the DoFs of the robot and

is specific to each robot. Consider a serial manipulator such as a conventional

industrial robot with 6 DoFs, where each joint is a revolute joint. The C-space for

such a robot would consist of 6 dimensions, associated to the axial angles of each

joint constrained within the robot’s joint limits. A configuration corresponds

to a single point in this C-space and fully describes the state of a robot at any

given time.

Planning in the C-space can provide a number of key advantages depending on

the application. First of all, any continuous path in C-space guarantees smooth

motion when executed as kinematic constraints of robots are adhered to in the

C-space. This can ensure that singularities and poor manipulability are avoided.

When a manipulator reaches a singularity, any further desired movement in a

certain direction would lead to large changes in joint angles (often 180 degree

changes) instantaneously, which is beyond the physical capabilities of the robot.

Manipulability describes how close a manipulator configuration is to a singular-

ity. As robots move into configurations that lie close to a singularity, the robot

suffers from poor manoeuvrability and fail to move at a given velocity at the

end effector. [19,20] This phenomena often arises when transforming a Cartesian

space trajectory for a manipulator end effector to joint motor commands. By

planning in C-space, this Cartesian space to joint space transformation is not

required. Secondly, because any continuous path in C-space can be directly exe-

cuted on the physical robot, any path planning algorithm that can be applied to
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one robot in the C-space can be generalised to any C-space without modification.

This is not equally true for Cartesian space planning. Finally, solutions to path

planning problems in C-space provide more information about how a robot would

move. This is because any point in the C-space completely describes the entire

robot configuration. Thus a continuous path would describe the robot’s complete

pose at any point along the path. Conversely, if we consider path planning for a

serial manipulator in Cartesian space, we could only represent the trajectory of

the end effector (or any single point on the robot) at any point along the path.

This is important as many robots cannot be represented as a point model for

collision-free path planning. Collision checking requires information about the

entire robot geometry that could only be derived from the complete configuration

information.

Despite these advantages, planning in C-space does come with a major short-

coming: it is comparatively difficult to represent external world objects in C-

space. Not only is it easier for humans to understand geometric knowledge in

Cartesian space, perceptive sensors universally sense objects in X-Y-Z coordi-

nates. A means for mapping objects in Cartesian space to C-space is therefore

necessary if we wish to represent obstacles in C-space, which, unfortunately, is

not a trivial process. Numerous works have presented strategies to perform this

transformation, including [21–23]. However, generally speaking it is a compu-

tationally expensive procedure and often difficult to scale for high dimensions,

which makes it particularly difficult to achieve real-time path planning.

In the following, I review the body of literature on motion planning for com-

puting a single path between a start and goal configuration. These work are

broadly grouped according to the following categories: deterministic methods,

sampling-based methods and machine learning-based methods.

2.1.1 Deterministic Methods

All deterministic path planning methods share two common traits. Firstly, they

are exact, and thus will always give the same solution to a path planning problem

each time. Secondly, they are either complete such that they will always find a

solution if one exists, or they are resolution complete, meaning they will always

find a solution for a problem at the resolution considered if it exists at that

resolution level. The methods presented herein are well established, some dating
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back as far as 1950s and have all been proven in 2D applications. However, in

this section I present these methods in the context of C-space planning, which

highlights the deficiencies of these methods for high-dimensional path planning

in robotics.

One of the classic approaches to 2-dimensional path planning is cell decom-

position, which consists of decomposing an environment’s free space into smaller

regions (referred to as cells) by using either exact or approximate cell decomposi-

tion. A connectivity graph (or roadmap) is generated based on the adjacency of

the cells, where each node is a cell and an edge between two nodes indicate that

they are adjacent. The start and goal cells are assigned by determining the cells

that contain the start and end configurations of the path planning problem. A

graph search algorithm can then be applied to the connectivity graph to find the

shortest route between the start and goal cells.

In exact cell decomposition [24], each vertex of the interior polygons of the

configuration space is used to produce a vertical segmentation towards the exterior

boundary of the space. Once a path through the connectivity graph is obtained,

an actual path in free space can be determined by connecting the start point to

the mid-point of each cell intersection and finally to the goal point by following

the path sequence previously obtained (see Fig. 2.1a).

Approximate cell decomposition [25] differs in the process of subdividing the

cells. Implementing the exact cell decomposition can be mathematically challeng-

ing in practice. Approximate cell decomposition resolves this by recursively sub-

dividing the search space into 4 equal cells until (i) all cells are either completely

contained within an obstacle or is completely free space, or (ii) a pre-defined

resolution is reached (see Fig. 2.1b).

After the decomposition ends, a path is obtained in the same way as exact

cell decomposition. A key difference in performance between exact and approx-

imate cell decomposition lies in their completeness. Exact cell decomposition

is guaranteed to be complete, while approximate cell decomposition is resolute

complete.

The visibility graph method [26, 27] also consists of generating a roadmap,

but unlike the cell decomposition approach, the edges of the roadmap represent

an actual segment of a path. The visibility graph is constructed by generating

nodes from the vertices of all polygonal obstacles, and edges are drawn where

any two vertices connect to each other by a straight segment without intersecting
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(a) (b)

Figure 2.1: An example of paths (shown in red) obtained by the cell decomposition approach
for 2D path planning among obstacles (shown in black), (a) exact cell decomposition, where
vertical lines represent segmentation boundaries, (b) approximate cell decomposition, where
black cells are fully occupied by obstacles and grey cells represent partial occupancy.

any obstacle regions. The start and goal points are also added as nodes of the

graph. Once the graph is constructed, a shortest path search algorithm may be

applied to find the shortest path to traverse the graph from the start node to the

goal node (an example is shown in Fig. 2.2). For obstacles with no vertices, such

as circular regions in 2D space, tangents of the surface may be used to generate

edges in the roadmap [28]. Indeed in this way the final path could be composed

of straight and curved segments.

While this method is conceptually simple, constructing the visibility graph

has been the focus of much research, specifically with the goal of reducing the

complexity of the graph construction step. Using a brute force approach to eval-

uate every possible connection for n obstacle vertices in a 2D environment would

require O(n3) time (every vertex must be checked with n− 1 other vertices, and

each corresponding edge must be checked against n polygonal edges). Various

algorithms have been proposed to improve the complexity of computing visibility

graphs. For example, [29] proposed two alternative methods that runs in O(n2)

and O(m log n) time, respectively.

The visibility graphs method also carries two major shortcomings. As the

graph is computed from obstacle vertices, the shortest path found will always

approach very closely to obstacles, providing little tolerance for collision-free mo-

tion. Unfortunately in the physical world where certainty and errors in path

tracking exist, such tight tolerances are generally inadequate for guaranteeing
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Figure 2.2: The visibility graph path planning method, where blue lines indicate a direct
line-of-sight between two vertices that form a valid path segment and the red line shows the
final path solution.

safe movement of the robot. Furthermore, the algorithm does not scale partic-

ularly well with the number of dimensions and have mostly been applied to 2D

applications. Even now its extension into 3D applications is an area of ongoing

research [30].

Another branch of methods adopt the concept of occupancy grid mapping for

the representation of an environment and solves the path planning problem using

graph-search methods. [31] This mapping discretises the environment into an

evenly spaced grid, where each cell in the grid stores a binary value to represent

the free and occupied space. For a basic occupancy grid, a value of 0 is used to

represent free space, while a value of 1 indicates that the cell contains an obstacle

(an example can be found in Fig. 2.3). The extended probabilistic occupancy grid

replaces this with finer representation by assigning a probability value to each

cell for the likelihood of an obstacle belonging in each cell.

The Dijkstra’s algorithm [32] was a pioneering algorithm developed by Edsger

W. Dijkstra in 1956 for finding shortest paths among nodes in a graph. In fact

it was commonly used to solve the search for the shortest path in a constructed

visibility graph and in the cell decomposition methods and have found extensive

use in applications far beyond the area of path planning.
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Figure 2.3: A simple 2D example of a binary occupancy grid, where black is used to represent
cells occupied by the obstacles (in grey).

Dijkstra’s algorithm is composed of the following steps. A set of unvisited

nodes is created from all the nodes in the graph and each node is assigned an

initial distance value. This value corresponds to the distance of the node from

the starting node, ns (determined by a distance function such as the Euclidean

or Manhattan distance) and is initialised to zero for ns and infinity for all others.

Beginning with ns, the algorithm recursively removes a node with the lowest

distance value from the unvisited list and expands it to compute new tentative

distance values for the neighbours of the expanded node by summing the distance

between the two nodes and the expanded node distance from ns. In the case

that the tentative distance is smaller than the neighbour’s current distance, the

neighbour node’s distance value is updated. For example, if A is ns with distance

value of zero, B is a neighbour node of A with a distance of 5 from A, and C

is a neighbour node of B with a distance of 1 from B, then the distance value

of C from A is 5 + 1 = 6. Following this procedure, the algorithm continues to

expand nodes until the goal node is found as a neighbour of an expanded node or

all nodes in the set of unvisited nodes has a distance value of infinity (indicating

that there are no other nodes in the unvisited list that is connected to ns). In

this way the algorithm searches through nodes with the shortest distance until

the goal node is found. During the expansion, the predecessor node (or the parent
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(a) (b)

Figure 2.4: Cell connectivity in an occupancy grid (a) 4-point connectivity, (b) 8-point con-
nectivity.

node) that led to the shortest distance value for a given node is kept tracked of.

When the goal node is found, the complete path can be obtained by backtracking

through the parent nodes starting from the goal node until the starting node is

reached.

When applied to occupancy grids, Dijkstra’s algorithm effectively treats the

grid as a connectivity graph, where cells adjacent to each other in the grid is

considered neighbours. Depending on the application, either 4-point connectivity

or 8-point connectivity is used to expand nodes. In 4-point connectivity, nodes

are considered a neighbour of an expanded node if it lies horizontally next to or

vertically above/below the expanded node. In 8-point connectivity, all nodes that

satisfy 4-point connectivity or lie diagonally to the expanded node are considered

neighbours (these are depicted in Fig. 2.4).

One shortcoming of Dijkstra’s algorithm is the lack of guidance towards to

the goal during node expansion. While searching through the shortest path nodes

guarantees that the optimal solution will be found (within the resolution of the

occupancy grid), much computation is spent on expanding “useless” nodes - those

which do not lead towards the goal node. This was addressed with the emergence

of the A* algorithm.

The popular A* algorithm [33] was developed for graph traversal and highly

resembles the Dijkstra’s algorithm, albeit requiring less node expansions to find

the optimal solution. It follows the same steps as Dijkstra’s algorithm for node

expansion, but replaces the distance function with a new cost function f(n) for an

arbitrary node n. It is composed of a cost from the starting node g(n) (equivalent
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to the distance function in Dijkstra’s algorithm) and a heuristic function h(n) that

estimates the cost of n to the goal:

f(n) = g(n) + h(n) (2.1)

This heuristic function provides the algorithm with the characteristics of in-

formed search, such that node expansion prioritises those nodes that are not only

the shortest distance away from the starting node, but would also lead to the

goal node via the shortest path. In this way A* is guaranteed to find the optimal

solution under the condition that the heuristic function is admissible, meaning

it never overestimates the true cost of n to the goal node. In 2D path planning

problems, the Euclidean distance function often serves as a simple but effective

heuristic function for the A*.

While both Dijkstra’s algorithm and A* guarantee an optimal solution, the

degree of optimality is strictly limited by the resolution of the occupancy grid.

This is due to the constraint of advancing between cells along the horizontal,

vertical and 45° directions. Seeking to address this, Daniel et al. [34] proposed

the basic Theta*, which enabled any-angle path planning on occupancy grids.

Theta* consists of a single modification to the A*: when calculating the tentative

cost function f(n) for node n, Theta* considers two candidate paths as opposed

to one. The first path corresponds to the path from the expanded node to node n

in the same way as A* does by default. The second path, however, considers the

path from the parent of the expanded node to node n. The path that provides

a lower cost function value is used to determine the parent of n, if the tentative

cost is accepted. As a result, the solution path can consist of path segments of

any angles and in general are shorter than solutions obtained by A*. However, it

is important to recognise that this does not completely eliminate the correlation

between resolution and optimality, as points of angle change along the path must

still lie on the corners (or centroids, depending on the implementation of the

algorithm) of the cells in the occupancy grid.

In terms of performance, all of the aforementioned methods for path planning

using occupancy grids are resolution complete. Furthermore, they possess similar

memory complexity as all algorithms store every found node in memory. In the

worst case, the memory complexity is O(bd), where b is the branching factor (the

average number of neighbour nodes for each node expansion) and d is the depth
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Figure 2.5: Local minima problem in the APF path planning method. The robot is attracted
towards the goal but the repulsive potential from the U-shaped obstacle traps the robot such
that movement in any direction would lead to an increase in energy.

of the solution (or the nodal length of the shortest path). The worst-case time

complexity of these algorithms is also O(bd). However in practice, A* and Theta*

generally outperforms this as the heuristic function allows the pruning of many

branches by informed search.

Unlike all of the aforementioned methods that consist of generating a graph

representation of the environment and subsequently applying a search, the Ar-

tificial Potential Field (APF) [35] is a reactive path planning method where an

explicit path is not directly computed. Rather, the movement of the agent is influ-

enced by the total effect of a potential energy function generated by the obstacles

in the environment and the goal point. Obstacles produce a repulsive potential,

while the goal point produces an attractive potential. In this way an artificial

vector field representing the net potential at each point in the search space is

obtained. The path taken by the robot then follows the negative gradient of the

potential field such that energy is minimised. Thus the movement of the robot

by APF highly resembles the behaviour of gradient descent, and therefore suffers

from local minima problems. Unfortunately this occurs rather commonly in path

planning problems. A simple example involving a U-shaped obstacle is shown in

Fig. 2.5.

The Bug family of algorithms, developed for mobile robots, also adopt a re-

active path planning strategy. Bug2 [36] was the first practical algorithm within
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Figure 2.6: An example path obtained by the Bug2 algorithm.

this family whereby the robot seeks to follow a direct line from the start to the

goal point. When this line encounters an obstacle, the algorithm redirects the

robot to follow the contour of the obstacle until it returns to the original line of

sight to the goal on the other side of the obstacle (see 2.6). The resulting path

is almost certainly sub-optimal as the robot would follow the boundary of the

obstacle further than necessary to reach the goal. This was addressed by the Vis-

Bug algorithm [37], which differs from Bug2 in the leaving condition used to stop

contouring an obstacle. Instead of requiring the robot to reach the line of sight,

the algorithm reattempts to send the robot directly to the goal once it can “see”

the original line of sight. Indeed this resulted in shorter paths in all instances.

Despite this improvement, the VisBug algorithm could still fail to find optimal

paths depending on the shape of the obstacle. Kamon and Rivlin improved upon

this algorithm with DistBug [38], where two new rules were introduced to induce

an earlier leave condition taking into consideration multiple obstacles. Rather

than seeking to find the original line of sight, the DistBug numerically compares

the distance between the current robot location to the next obstacle in the direc-

tion of the goal and the original distance to the goal at the first point where colli-

sion wasdetected. This enabled the robot to navigate past obstacles with far less

contouring than with VisBug and Bug2. Finally, the K-Bug algorithm [39] was

introduced by Langer et al. to further improve the quality of solutions obtained,
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particularly in environments involving multiple obstacles. Rather than seeking

to travel along a direct line from the current robot position to the goal, the algo-

rithm seeks to visit visible vertices of obstacles when obstruction is encountered,

choosing the direction (left or right) based on the nearest vertex. Only when no

further obstructions are observed does the algorithm resume a direct path to the

goal position.

This bug family of algorithms possess an interesting set of advantages and

drawbacks. First of all, their reactive behaviour to obstacles in the environment

enable to algorithm to adapt to both unknown and dynamic environments as they

do not involve explicit planning at a global level. While APF methods share a

similar advantage, bug algorithms do not suffer from being trapped in local min-

ima as they always seek to navigate past obstacles by following its contour. The

simpleness of these algorithms also mean they are fast and capable of responding

quickly to perceived obstacles in dynamic applications. However, one inherent

drawback of the algorithm being reactive in nature is the inability to account

for obstacles before the path intersects an obstacle. For instance, returning to

the concave obstacle example in Fig 2.5, the bug algorithms would not begin to

contour the obstacle until it has reached the inner wall of the concave. Naturally,

this leads to a sub-optimal path as the robot unnecessarily navigates further into

the concave obstacle. Furthermore, the natural tendency of these algorithms to

follow closely along the boundaries of obstacles mean that any deviation from

the nominal path during execution will likely lead to collision. This is a simi-

lar problem to the visibility graph that can often limit the practicality of these

algorithms for deployment in robots with poor tracking performance.

A common observation for all of the presented deterministic path planning

methods is the requirement to have explicit knowledge of the obstacles repre-

sented in the search space. As discussed in 2.1, this is convenient for path plan-

ning in Cartesian space as obstacle information are generally easily attainable in

this spatial representation. However, considering the difficulty of transforming

obstacles into C-space representation, many of these algorithms cannot be easily

extended to path planning in C-space. This has led to the rise in the popular-

ity of sampling-based approaches, which have proven to be effective for robots

possessing an arbitrary number of DoFs.
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2.1.2 Sampling-Based Methods

Sampling-based algorithms are generally described as being probabilistically-

complete, meaning that as the run-time tends towards infinity, the algorithm’s

rate of failure in finding a solution, if it exists, falls to zero. Unlike deterministic

methods, which always return the best solution within the resolution considered

by the planner, these algorithms are stochastic in nature as they explore the

search space through random sampling of points. As a result, different solutions

are obtained over multiple runs of an algorithm. Furthermore, these methods

are able to guarantee asymptotically-optimal solutions at best, meaning that

as the number of iterations tends towards infinity, the solution returned by an

algorithm converges towards the optimal solution. These two properties imply

that the quality of a solution returned depends on the amount of planning time

that is allocated to solving a motion planning problem.

A key advantage of sampling-based algorithms over deterministic methods is

the removal of any dependency on explicit knowledge of obstacles represented

in the C-space. Instead, these algorithms evaluate the validity of individually

sampled configurations by performing collision detection queries between the ge-

ometric models of the robot at the given configuration and the Cartesian space

obstacles within the environment. In the case of serial manipulators, the principle

of forward kinematics is used to determine the geometric configuration of the

robot given the axial angles of each joint defined in the C-space. For practical

implementation, the Flexible Collision Library is a widely-adopted open-source

library for performing fast collision and proximity queries [40].

The two fundamental algorithms that have widely been considered as the back-

bone of sampling-based algorithms are the Probabilistic RoadMaps (PRMs)

and the Rapidly-exploring Random Trees (RRTs). Both methods adopt a

random sampling strategy to explore the search space, but identify themselves

differently in the way that they connect sampled points.

2.1.2.1 Probabilistic Roadmap Methods

The PRM, proposed by Kavraki et al. [41], seeks to build a roadmap across the

search space during the construction phase by randomly sampling nodes and ac-

cepting those which are collision-free. Each accepted node is then edge-connected

to neighbours that either lie within a ball of fixed radius r, or by applying the
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Figure 2.7: (a) A simple path planning problem in 2D environment solved using the PRM
algorithm, (b) same problem solved using the RRT algorithm.

k-nearest neighbours selection [42], under the condition that they are not already

graph-connected. This avoids the formation of cyclic paths and reduces the num-

ber of edges stored. The construction phase runs until a given roadmap density

criteria is reached (e.g. when the number of nodes reaches a pre-determined

value). During the query phase, the start and goal configurations for a particular

path planning instance are added into the roadmap as nodes and connected to

neighbours in a likewise manner to the construction phase. With this complete

roadmap, a graph search algorithm such as Dijkstra’s algorithm or A* can be

applied to obtain the shortest path in the graph. An example of a roadmap and

resulting path for a simple 2D path planning problem is shown in Fig. 2.7a.

The PRM algorithm is particularly well suited for multi-query applications

as the same constructed roadmap can be used to solve path planning problems

with different start and goal points provided the environment remains static and

sufficient resources is devoted to the construction of the roadmap such that it

adequately explores the entire search space. However, this offline, pre-processing

stage is computationally costly for single-query applications as the construction

of the roadmap is not influenced by any particular path planning problem. It

simply seeks to explore the entirety of the search space without considering the

start and goal configurations.

Focusing on multi-query problems, a key limitation of the PRM is its non-

optimality characteristics. Due to the condition for edge-connection requiring

that neighbour nodes and newly sampled nodes are not already graph-connected,

often a detour is necessary to move between two graph-connected nodes that lie
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in close proximity via a central node. While the motivation for PRM’s design

was to reduce complexity while encouraging exploration, it meant solution paths

were generally longer than necessary. The PRM* algorithm was proposed by

Karaman and Frazzoli [43] to address this flaw. The PRM* consisted of two

modifications to the original PRM algorithm. Firstly, it removed the condition

for edge-connection that prevented an edge to form between nodes already graph-

connected. This “simplification” of the original PRM algorithm provided asymp-

totic optimality as any neighbour node could be connected to a newly added

node, but reintroduced the problem of high complexity [44]. To compensate for

this, the authors introduced a variable connection radius r(n) for the selection of

neighbouring nodes, which decayed at a logarithmic rate to the number of nodes

in the roadmap, as shown in Eq. 2.2:

r(n) = γ

(
log(n)

n

)1/d

(2.2)

where d is the dimension of the search space C, and, letting ζd be the volume of

a unit ball in d dimensions, γ is given by:

γ = 2

(
1 +

1

d

)1/d(
µ(Cfree)

ζd

)1/d

(2.3)

where µ(Cfree) is the Lebesgue measure (or volume) of the collision-free space.

This new variant of the original PRM algorithm became a powerful multi-query

sampling algorithm that, given sufficient offline pre-processing time to construct

the roadmap, could obtain a high-quality solution to general path planning prob-

lems. However, as previously discussed, this requires that no changes are made to

the environment. When applying the PRM* to C-space, it can be computation-

ally intensive to readjust the roadmap in response to changes in the environment.

Unfortunately in real-world applications, planning domains are often subject to

change. This renders the PRM and PRM* particularly unsuitable for dynamic

applications.

The Dynamic RoadMap (DRM) method [45] was proposed to overcome these

challenges by planning specifically in the C-space. It similarly consists of a pre-

processing stage that involves the construction of a roadmap. However, it does

not consider any environment-specific obstacles during this offline phase. Instead,

it discretises the robot’s geometric workspace into uniform cells (much like an
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occupancy grid). The roadmap is constructed either by uniformly or randomly

sampling configurations in the C-space and connecting nodes in the same way as

PRM or PRM*. Importantly, all nodes are accepted without performing collision

checks as obstacles are not considered. Then, a mapping process is performed to

map each cell in the discretized workspace to nodes and edges in the roadmap. A

cell is mapped to a node or edge if collision would occur at those configurations

when an obstacle is present in that cell. Given this mapping, the roadmap can

be dynamically adjusted by removing nodes and edges that become invalidated

due to changes in the geometric environment as long as the cells that become

occupied by obstacles can be identified (which is generally an easy problem as

both cells and obstacles are represented in Cartesian space). During the online

planning phase, the start and goal configurations are connected to the roadmap,

which is trimmed according to the obstacles in the environment.

Experimental investigations have shown that this method is capable of en-

abling dynamic re-planning, where paths are re-planned online in response to

dynamically-moving obstacles [46]. Furthermore, it would only be necessary to

compute the pre-processing stage once for a particular robot make and model as

it remains correct regardless of the environment it is deployed in. However, the

algorithm also possesses a number of shortcomings, including resolution problems

leading to reduced optimality due to workspace discretization, very expensive of-

fline computations and high memory requirements as the entire mapping between

cells, nodes and edges must be stored. These are explored in further detail in

Chapter 3.

2.1.2.2 Rapidly-exploring Random Tree Methods

The RRT algorithm [47] and its variants differentiate themselves from the PRM-

based methods by predominantly being a single-query path planner with strong

exploration capabilities and efficiency in solving high-dimensional problems.

As the name suggests, the basic RRT seeks to explore the search space by

growing a tree from a root node qs, taken as the start configuration of the path

planning problem. The algorithm iteratively samples a random configuration

qrand. The nearest node in the tree to qrand is chosen and steered towards the

sampled configuration by an incremental distance ∆q to generate a new candi-

date node qnew. The candidate node is tested for collision and, if accepted, an

attempt to add the node to the tree is made. The nearest neighbouring node that
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provides a collision-free edge to qnew from among all nodes within the current tree

is then assigned as the parent node of qnew to connect qnew to the tree. The algo-

rithm iterates through these steps until a node that lies within a pre-determined

distance from the goal configuration is added to the tree, or when an alternative

termination criteria is met (e.g. when N nodes have been added to the tree or a

specified computation time has been exceeded). The path from the start configu-

ration to the goal configuration is subsequently obtained by following the parent

nodes of the tree beginning from the node that lies in the goal region.

The transition-based RRT (T-RRT) [48] considers continuous cost spaces dur-

ing sampling through a filtering procedure by performing a transition test. In this

procedure, newly sampled points are immediately rejected if their cost is greater

than a defined maximum threshold. Points that satisfy this criteria is compared

with the cost of the parent node and accepted based on the Bolzmann probabil-

ity. In this way, the algorithm converges towards lower cost paths. The optimal

RRT algorithm (RRT*) [43] likewise improves the solution quality of the original

RRT algorithm by introducing a rewiring function. Firstly, rather than assigning

the nearest neighbour as the parent of a newly added node, the best neighbour

node (the point with the shortest path length) within a neighbourhood region

of the sampled configuration is chosen as its parent. Then, the parent of neigh-

bouring nodes are reassigned to this newly added node qnew if the path quality

to these nodes improve by going through qnew. The modification provides the al-

gorithm with an additional asymptotic optimality guarantee at the cost of longer

computation times (resulting from the use of the rewiring function). In [49] the

strengths of the T-RRT and RRT* algorithms were combined such that solutions

were asymptotically optimal in relation to the continuous cost space considered

by the transition test.

RRT-connect [50] sought to address the slow convergence rate of the RRT

algorithm for complex problems. Rather than growing a single tree to explore

the configuration space, two trees are grown simultaneously, with the second tree

rooted at the goal configuration of the planning problem. As these trees are

expanded, attempts are made to connect the trees by extending towards each

other using a simple greedy heuristic. This was later combined with the concepts

of RRT* [51], proposed by Jordan et al., to improve the optimality of solutions.

The authors also presented additional modifications that improved the planning

efficiency of the algorithm. Other authors have extended the work in [50] to
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consider the use of several RRT trees for applications such as inspection [52].

For example, the authors of [53] presented a multi-tree implementation of the T-

RRT (multi-T-RRT) algorithm for complex planning problems involving multiple

waypoints. The CFOREST parallelization framework [54] introduced the use of

multiple RRT* trees in parallel, where each tree was grown simultaneously to

solve the same planning problem between a start and goal configuration. These

parallel trees shared the best path found with all other trees to enable all trees

to bias growth towards regions with a high potential of improving the current

solution. Each time a better solution was found, tree pruning was used to remove

the nodes in every tree that, even at best, did not provide paths that would

improve the solution any further. This parallelization enabled significantly faster

convergence towards high quality solutions but, from a practical perspective, its

implementation required a computer system with multiple CPU cores. These

physical requirements can be demanding for lightweight robots.

In another direction, a number of extensions have been proposed to enable

RRT re-planning in dynamic environments by reusing the information available

from an initial tree. The execution extended RRT (ERRT) [55] introduced the

waypoint cache concept. When a path becomes invalidated due to a new ob-

struction, nodes along this path are inserted into a waypoint cache. A new tree

is then grown using the original RRT algorithm with one modification: during

node sampling, there is some probability that nodes are drawn from the way-

point cache rather than from random generation. Consequently, the algorithm

reuses information from the previous planning query to guide the tree expansion

process. On the other hand, the dynamic RRT (DRRT) algorithm [56] adapts

the tree to dynamic obstacles by trimming disconnected branches and continuing

to expand the remaining tree until a new path to the goal is found. A further

extension of this algorithm consists of biasing sampling towards regions where

dynamic changes took place to recover a previously feasible path. Following on

from the direction of the ERRT and DRRT, the multipartite RRT (MP-RRT) [57]

attempts to preserve disconnected branches of the tree by inserting the roots of

disconnected subtrees into a cache. During sampling, there is some probability

that a root in this cache is sampled. In this way it is possible for the main tree

to reconnect to subtrees of valid nodes previously sampled. The RRTX [58] was

developed for unpredictable obstacles and is capable of adapting to suddenly ap-

pearing and disappearing obstructions. When nodes of the tree are invalidated,
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the algorithm propagates a series of rewiring procedures across affected nodes to

reconfigure the tree such that a shortest path to the goal is maintained. Like-

wise, nodes that are reintroduced into the tree when obstacles disappear trigger

a rewiring cascade to update the tree.

It is crucial to note that while for many variants of RRT it is conventional

to select the robot starting configuration as the root of the tree, several dynamic

variants of RRT [56–58] set the root as the target configuration of the planning

problem. This modification eliminates the requirement to update the root of

the tree as the robot traverses along a planned path. Furthermore, in real-world

applications newly perceived obstacles often lie in the vicinity of the robot. As

such, algorithms that retain valid branches are able to preserve more information

as detected changes would generally affect branches furthest away from the root.

Consequently, re-planning to the goal in these instances refer to planning a new

path from the target configuration to the current robot configuration.

Others work in RRT have demonstrated the possibilities of anytime applica-

tions, whereby an initial feasible solution is quickly found and subsequent solu-

tions from the planner improves in quality as further computation time is allowed.

In [59], each run of the RRT algorithm was guided by sampling only nodes that

may contribute to a solution with a lower cost than a previously found solution,

determined by simple heuristics. These heuristics were again applied during node

selection and extension procedures to permit only those tree expansions that may

improve the quality of the solution. This work was combined with DRRT in [60],

incorporating the properties of continuous quality improvements during initial

planning time with adaptive re-planning in dynamic environments. Neverthe-

less, these methods provided no optimality guarantees. To address this, anytime

RRT* [61] applies two extensions to the RRT* to enable real-time implemen-

tation: committed trajectories and branch-and-bound. A committed trajectory

consists of the initial segment of a current solution path. After the initial planning

phase, the robot commits to executing this committed trajectory as the planner

seeks to improve the remainder of the path. This repeats until the robot reaches

the goal by iteratively traversing each of these committed trajectories. Similar

to the concept of tree pruning, in branch-and-bound heuristics were used to de-

termine a set of nodes that even at best provided a higher cost to reach the goal

than the current solution. These nodes were periodically discarded to improve

computational performance.
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2.1.3 Machine Learning Methods

2.1.3.1 Reinforcement Learning

Numerous researchers have investigated the viability and potential of machine

learning techniques for solving motion planning problems. Reinforcement learning

in particular has attracted much attention for their potential to learn solutions

and reapply them to similar scenarios.

Reinforcement learning seeks to replicate the biological behaviour in humans

and animals when interacting with its environment and revolves around the notion

of choosing actions based on a current world state and rewarding actions that

progress the agent towards a goal state in the environment (as illustrated in Fig.

2.8). Q-learning methods have been demonstrated particularly successfully for

motion planning, where the general problem is modelled as a Markov Decision

Process. For example, the work in [62] applied Q-learning to solve a path planning

problem in a 2D environment for mobile robots. Since Q-learning relies on being

able to choose discrete actions at discrete states in the environment (referred

to a state-action pair), the authors chose to represent the environment as an

occupancy grid, while restricting the motion of a robot to vertical and horizontal

movements between cells. During each learning trial, Q-function values for each

action, which describes the probability of the action being taken at a given state,

were updated according to the path found in the trial. Actions that consistently

led to the goal being reached converged to higher values than those actions that

did not contribute to reaching the goal.

A key limitation of using the classic Q-learning approach is the necessity

to represent the environment as a grid, which introduces resolution problems

familiar to methods that use an occupancy grid such as the A* algorithm. Jiang

et al. [63] extended the Q-learning approach to enable path planning in free

space, eliminating the dependency on fixed and uniform grids. This was achieved

by applying a fuzzification to state variables to partition the C-space, effectively

reducing the size of the state space addressed in Q-learning. These state variables

were obtained by segmenting the distances from the robot to the target point

and obstacles, and the robot heading. 8 discrete actions were permitted for the

navigation of the robot, corresponding to 45° heading directions between 0° and

360°. Q-learning was applied to choose an action based on the fuzzified state

variables. While this approach no longer restricted the movement of a robot to
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Figure 2.8: The state-action-reward cycle in reinforcement learning, where actions are chosen
according to the current state of the world and known reward values. Once an action is per-
formed in the environment, a new reward value is assigned according to the progress achieved
by the action to advance towards the goal state.

horizontal and vertical movements across a grid, it still involved discretising the

environment, which could prevent the algorithm from finding a solution due to

poor resolution.

The work in [64] further addresses this problem by combining the RRT algo-

rithm with Q-learning. Here the concept of growing a search tree was employed

to explore the obstacle-free C-space, while Q-learning was used to bias the sam-

pling of configurations. In each iteration of tree growth, the algorithm obtained

the nearest node in the tree to the goal configuration and applied Q-learning to

sample a set of configurations that were added to the tree. It achieved this by

partitioning the range of possible heading angles (i.e. from 0° to 360°) into 8

directions, which were defined as the set of actions for Q-learning. Based on the

distance and direction of obstacles around a robot at any given configuration,

Q-learning was used to select a direction for configuration sampling such that a

new node always lay within a bounded angle range taking into consideration the

distribution of obstacles around the robot. In practice, this produced a planning

behaviour similar to the Bug algorithms, where the path avoided obstacles by fol-

lowing their contours (though a minimal distance from obstacles was maintained,

leading to safer paths). This algorithm was shown to provide faster convergence

to a solution compared to the original RRT as it enabled the planner to learn the

best samples to use for tree growth, reducing the number of samples required to

explore the search space.

So far, all of the above methods based on Q-learning do not extend well for
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higher dimensions. In fact their success has only been proven for 2D environments

where the heading angle between the robot and obstacles could be determined

quickly and easily. This, however, cannot be generalised for higher DoF C-spaces,

where obstacles cannot be easily represented in the state space.

In this regard, some preliminary work have been conducted to extend Q-

learning to path planning for manipulators. For example, Park et al. [65] investi-

gated the integration of PRM with Q-learning to extend the PRM’s path planning

capability to dynamic environments, where changing obstacles could affect the

validity of nodes and edges in the roadmap. The key idea of their work was to

model each node in the roadmap as the states in the environment and the set of

roadmap edges, corresponding to motion between two configurations, as the set

of possible actions. After the Q-values for each roadmap edge converged through

extensive learning, the algorithm was capable of finding new high-quality paths

when small changes in the environment invalidated portions of the roadmap.

However, this work highlighted one of the key challenges of deploying Q-learning

for general path planning problems - explicit representation of C-space obstacles

are required. The authors relied upon a spherical wrist assumption [66] to reduce

the C-space from six to three by exploiting the unique characteristics of industrial

manipulators, where the last three joints affect only the orientation of the end

effector without changing the geometry of the entire robot. This meant that the

explicit representation of obstacles in C-space could be derived more easily by

adopting a simplified slice projection strategy. Another limitation specific to this

approach is the lack of evidence showing the advantages of applying Q-learning

for searching a roadmap compared to conventional search algorithms.

Meyes et al. [67] also investigated the use of reinforcement learning for indus-

trial manipulators, where Q-learning was applied to teach a 6-DoF robot to play

a wire loop game1. The problem investigated here could be considered a reduced

motion planning problem as it simply involves following a predefined path with

the end effector. The authors further reduced the complexity of the problem by

addressing the problem in two dimensions only. Here a camera was used to detect

the two-dimensional shape of the wire, and an end effector carrying a loop was

permitted to perform 6 actions: move left, move right, move up, move down,

rotate left by 45° and rotate right by 45°. The environment was represented as a

1The wire loop game consists of a wire with various bends, and the objective of the game is
to move a loop along the wire from start to end without making contact with the wire.
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grid where states were defined by a local window containing the relative position

of the end effector, the wire, and an intermediate goal specified a fixed distance

away from the robot along the wire. The authors demonstrated that the algo-

rithm could successfully solve the problem for a given wire after a few minutes

of computation time. Furthermore, the authors showed that the method could

enable a robot to adapt to different wire shapes using only the learnt behaviour

from a single training problem, but this required several hours of training.

As seen in the above reviewed literature, a number of common limitations ex-

ist across the various implementations of Q-learning for motion planning. Firstly,

Q-learning methods generally require the discretisation of the environment in

some way to reduce the continuous C-space into a discrete state space. This has

important implications on the completeness of the algorithm as poor resolutions

can lead to failure in finding solutions that exist. Secondly, the process of dis-

cretising the environment has, without exception, required the use of obstacle

information (either to specify the occupancy of cells or for defining the states of

the environment). Therefore, like deterministic methods, Q-learning algorithms

require explicit representation of the environment in C-space, which, as we already

know, is a computationally expensive process. These two limitations mean that a

reinforcement learning approach generally scales poorly with the dimensionality

of the problem. Furthermore, its effectiveness and reliability for general motion

planning problems involving different start and goal configurations have yet to be

proven. In all of the reviewed literature, the process of learning was applied to a

single problem involving a fixed start and goal configuration. It is currently un-

clear how a learning-based algorithm’s performance deteriorates when these start

and goal configurations change. However, reinforcement learning has proven use-

ful for dynamic applications where the start and goal configurations remain fixed

but the environment is prone to change. They offer a fast, adaptive approach

to these problems as explicit computation is not required once extensive learning

has identified useful actions in reaching a goal state. As the algorithm continues

to learn through repeated trials, improved performance can be observed. This

does, however, come at the cost of a computationally long learning phase involv-

ing large iterations of solving the same planning problem before good results can

be achieved.
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2.1.3.2 Learning from Experience

An alternative learning-based approach consists of using a “learning from experi-

ence” framework, where solutions of past problems are stored in a database that

is retrieved for similar problems and repaired to satisfy any new problem con-

straints. The Lightning framework proposed by Berenson et al. [68] is a highly

influential work that follows this paradigm. The authors proposed a parallel plan-

ning framework comprising of a planning-from-scratch component and a retrieve

and repair component. The idea revolved around the use of both components to

attempt to solve a path planning problem in parallel. Whichever method obtained

a feasible solution first was taken forward for post-processing and returned as the

solution to the problem. This solution was then stored within a library contain-

ing past solutions. Planning-from-scratch simply consisted of using a standard

motion planner such as those already covered to compute a solution. Retrieve

and repair, on the other hand, used the past solutions stored in the library to

devise a solution to the current problem. It first retrieved a number of similar

solutions to the problem at hand by comparing the respective start and goal con-

figurations. All similar solutions were then graded by evaluating the percentage

of each path that were in collision for the current problem. The best solution was

taken forward and repaired by removing any infeasible segments and applying a

bi-directional RRT to reconnect broken paths.

One drawback of the Lightning framework was the high computational cost of

storing many past solutions. Coleman et al. [69] addressed this with the Thunder

framework, which can be considered an extension of the Lightning framework.

Here the authors leveraged the fact that past solutions often share some of the

same nodes that make up a path. Instead of storing each past solution directly,

the framework employed a sparse roadmap spanner [70] (a more efficient vari-

ant of roadmap structures) that was progressively built up using the nodes of

past solutions, allowing duplicate nodes across past solutions to be removed. As

continued planning and learning took place, those nodes that were rarely used

were also removed to limit the size of the sparse roadmap spanner. Like with

the Lightning framework, this was run in parallel with planning from scratch

such that entirely new planning problems could still be solved using conventional

motion planning methods.

The key advantage of both the Lightning and Thunder frameworks is their

capability to leverage past solutions to speed up the search for a solution, which is
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particularly important for complex environments where individual motion plan-

ning queries are expensive to solve. However, a major drawback of these frame-

works is the lack of guarantee for finding high-quality solutions. Since retrieved

solutions are repaired locally, there is no guarantee that a previously optimal so-

lution will remain optimal after repairing for the current problem. Furthermore,

if a past solution was generated from a complex, cluttered environment and sub-

sequently reused for a clutter-free environment, the learning process will carry

over a highly sub-optimal solution for the new environment. These problems can

be partly addressed through post-processing, but the quality of such a path is

highly dependent upon the computation time allocated to post-processing.

This was later addressed by Abdelwahed et al. in [71], who proposed two new

case-based reasoning methods for motion planning based on learning from past

solutions. These methods, named CBR-FPath and CBR-Graph, respectively,

follow the same principle of storing the solution of past planning problems in a

library. For any new motion planning query, both methods retrieved a set of

similar solutions based on the start and goal configurations and the percentage of

paths that weere invalid (much like the Lightning framework). However, rather

than seeking a single best solution from among this set and repairing it, the

CBR-FPath method used the nodes that form these solutions as a candidate set

of configurations for the expansion of a path from the start configuration towards

the goal configuration. At each iteration of this expansion, the algorithm selected

the newest point along the point and sought the best configuration from among

the candidate set according to an A*-like heuristic function. This was added to

the path and the expansion continued. In a similar way, CBR-Graph retrieved all

nodes from among the similar solution set. It then constructed a PRM* roadmap

using these nodes and the path planning problem was solved by searching the

roadmap with A*.

The difference between CBR-FPath and CBR-Graph lies in the performance

of the algorithms in terms of plan quality and planning efficiency. CBR-FPath is a

greedy method, where the best candidate configuration at a given state is always

added to the path and no backtracking takes place. This can lead to sub-optimal

solutions or, in the worst case, failure to find a solution. On the other hand, CBR-

Graph guarantees that the best possible solution that can be obtained from the

set of configurations is always found. However, since it involves the construction

of a roadmap during an online planning query, it is less computationally efficient
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compared to CBR-FPath. Nevertheless, both methods overcome the problem

of Lightning and Thunder where the retrieve and repair framework can lead to

sub-optimal solutions.

A key limitation of using either CBR-FPath and CBR-Graph is the necessity

to sacrifice either solution quality or planning efficiency to achieve good perfor-

mance in the other aspect. This is apparent as CBR-FPath can fail to find a

solution altogether due to its greedy characteristics, while CBR-Graph requires

the construction of a new roadmap every time is it used. For dynamic planning

applications, these respective limitations can negatively affect the robustness of

the robot to respond and adapt to changes quickly.

2.1.3.3 Evolutionary Algorithms

Numerous authors have investigated the viability of applying evolutionary algo-

rithms to solve motion planning problems. For example, the Genetic Algorithm

(GA) was used in [72] to solve a 2 dimensional motion planning problem where

the environment was represented by a discretised grid. An objective function was

developed to evaluate solutions according to both path length and the number of

invalid points along the path that lie in collision. The approach possessed two key

flaws that limit its practicality for solving real-world motion planning problems.

Firstly, a good initial population consisting of feasible solutions was required to

ensure the rate of convergence to a high-quality solution. Yet the time required

to generate this population was substantial, which accumulated with the already

costly computation of solving the GA problem. Secondly, the approach scales

poorly with the dimensionality of the search space and the granularity of the grid

representation.

Achour et al. [73] sought to improve the performance of GAs for motion plan-

ning by combining it with sampling. Rather than explicitly discretising the en-

vironment into cells, the algorithm first generated a large set of random samples

across the C-space, much like the idea of sampling the search space adopted by

PRM and RRT. The chromosome used in GAs then encoded a path as a sequence

of samples. By applying the GA, it was possible to obtain a path formed by a

connection between the sampled configurations. Compared to the PRM, this al-

gorithm was able to find shorter, smoother solutions as the connections between

samples were not limited by an upper bound on its length, unlike the PRM. How-

ever, this came at the cost of very high computation time. Though this method
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could in theory be extended to higher DoFs, the computational cost of doing so

would generally be impractical.

In [74] and [75], authors studied the use of classic Ant Colony Optimisation

(ACO) for motion planning. ACO was inspired by the biological tendency of

ants to deposit pheromones along their route that evaporates over time. These

pheromones attract other ants to follow the same trail. When sourcing food,

shorter paths taken by a sub-population of ants will have a greater deposit of

pheromones as ants traverse these paths more quickly than the longer routes,

leading to a greater concentration of pheromones. Over extended periods a pop-

ulation of ants will converge to the shortest path according to their attraction

to stronger pheromones. Likewise, the ACO in motion planning consists of con-

ducting a large iteration of trials in which a population of virtual ants explore

the environment in search for the goal. Like the GA and many other algorithms

already discussed, the environment is represented as a grid. The probability of

an ant to advance from one cell to the next is determined by the pheromones in

each cell. Higher pheromone content equates to a higher probability. At the end

of each trial, all successful paths are used to update the pheromones of the grid

according the length of the path found. Thus after a large number of iterations,

the algorithm will converge towards the best solution found across trials. The

authors of [74] highlighted that this behaviour gives the algorithm nice properties

for adapting to dynamic environments as previous pheromones provide a good

starting point to find the new shortest path, with their values continually being

updated as new solutions are obtained.

A major drawback of the ACO is the long planning times required to find a

solution due to the slow convergence to a solution during early iterations where

no pheromones have been laid. Dai et al. addressed this by combining the ACO

with A* heuristics [76]. Rather than relying solely on the pheromone content to

guide the actions of ants when navigating the environment, a heuristic value was

computed according to the pheromone content and the estimated cost to reach

the goal through the considered cell. Furthermore, the authors also proposed the

use of a MAX-MIN ant system to overcome premature convergence of solutions

in complex, narrow and cluttered environments. This can occur when a large

number of ants follow a sub-optimal route, leading to a higher probability of future

trials to converge to the same solution. Rather than using all successful paths

found in a trial to update the pheromones in each iteration, only the best solution
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among those found in the same trial were used. Using these two modifications,

the authors showed that higher quality solutions could be obtained with lower

computation time. However, despite this, the authors reported planning times

of up to 88 seconds for the 2D environments considered in their work. Indeed

subsequent re-planning in dynamic environments could be achieved much faster

as the majority of this time was consumed by the initial convergence of trials.

Thus considerations for the use of the ACO must account for the trade-off between

long computation times for solving an initial instance of a planning problem and

the potential for fast re-planning in dynamic environments.

While both the GA and ACO generally require a discrete representation of

the environment, the Particle Swarm Optimisation (PSO) method, which was

inspired by the swarming behaviour of biological animals, has been demonstrated

in continuous space more successfully in motion planning applications. The work

in [77], for example, applied the PSO for path planning in dynamic environments.

The initial behaviour of their approach was similar to the Bug algorithms, where

the planner sought to maintain a direct path from the start to the goal configu-

ration. When an obstacle was encountered, the planner called the PSO to locally

generate a new intermediate target point for avoiding the obstacle. When called,

the PSO algorithm distributed a population of points around the robot according

to a maximum radius and sought to find a point that minimised an objective

function. The objective function evaluated the quality of a point according to

the length of the path through the evaluated point from the robot’s location to

the goal. It included a penalty term for segments of the path that collided with

obstacles.

This method naturally extends well for dynamic applications as it adopts a

reactive strategy for navigating past obstacles. In fact, the PSO method for

motion planning produces behaviours very similar to the Bug algorithms, where

the robot contours obstacles as they are encountered to navigate past obstruc-

tions. It is advantageous over the Bug algorithms as the PSO does not require

explicit specification of rules for leaving the contour of an obstacle and can re-

liably produce high quality solutions. However, like the Bug algorithms, it also

requires the explicit representation of obstacles in the search space, which limits

its practicality for high DoF robots.
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2.1.4 Key Findings

Table 2.1 summarises the key limitations of each class of motion planning meth-

ods based on the findings from the literature review. As it shows, every class of

methods possess their own set of limitations that limit their effectiveness in cer-

tain scenarios. In particular, a common limitation across deterministic methods,

reinforcement learning-based methods and evolutionary algorithms is the depen-

dency on explicit knowledge of obstacles in the C-space and the requirement to

discretise the environment. This leads to poor scaling for high dimensionality

problems and expensive computations not suitable for dynamic applications.

Bug algorithms, APF and PSO methods provide an interesting reactive navi-

gation approach to planning, where explicit planning is not required for finding a

high-quality path to a goal. Their reactive behaviour by nature lend themselves

as effective approaches for responding quickly to dynamic obstacles. However,

they are susceptible to other problems such as the risk of being trapped in local

minima and failure to account for general optimisation criteria as they simple

seek to follow a straight path from the current robot configuration to the goal.

Sampling-based algorithms have proven popular in the robotics community

for their efficiency in exploring high-dimensional C-spaces. They are particularly

advantageous over other methods for being able to handle continuous state spaces

without discretization and do not require explicit representation of obstacles in

the C-space. However, they are probabilistically-complete and asymptotically

optimal at best, meaning that extended planning time is often required to find

high-quality solutions. Nevertheless, the concept of anytime planning has ap-

peared in these methods, providing a means of finding feasible solutions quickly

and subsequently improving the quality of solutions over time. This behaviour

also appears in ACO-based methods, which iteratively seeks to converge to the

optimal solution through repeated trials. Various works have also successfully

demonstrated the extension of these methods to dynamic applications, making

sampling-based algorithms very versatile.

Learning from experience opens up new possibilities for learning from past

planning problems, providing a mechanism to quickly retrieve and reuse existing

solutions without impairing the capability of the planner to find completely new

solutions through conventional planning. The effectiveness of these methods are

highly dependent on storing a large set of solutions. However, a key challenge

with these methods is the high memory costs required to store this information.
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Table 2.1: Motion Planning Limitations

Method Limitations

Deterministic
methods
(non-reactive)

• Obstacles must be explicitly represented in the C-space, which is
computationally expensive to compute.

• Some methods require discretizing the environment, which limit the
algorithms to being resolution-complete at best.

• Due to the above two limitations, all methods scale poorly and many
have not been proven for C-spaces beyond 3 dimensions.

Reactive
methods

• Unable to provide high-quality solutions as paths are planned locally
as obstacles are detected.

• The robot can be trapped in local minima.
• Some reactive methods cause the robot to remain close to obstacles,

increasing the likelihood of collision in practice.
• Unable to account for other optimisation criteria as the algorithms

naturally follow the shortest length path by default.

Sampling-based
methods

• Algorithms are probabilistically-complete at best, meaning they are
unable to identify the non-existence of a solution to a problem.

• Algorithms are asymptotically-optimal at best, requiring extended
planning time to obtain high quality solutions.

• Multi-query algorithms require pre-processing, which is computa-
tionally costly and requires high memory requirements.

Reinforcement
learning-based
methods

• Feasibility of reinforcement learning has not been proven for higher
dimension problems.

• Requires some form of discretisation to determine the best action
to take at any given state, which limit the scalability of these ap-
proaches to low-dimension problems.

• The generality of a learnt behaviour has not been proven for varying
start and goal configurations - learnt behaviours are confined to a
single planning problem.

• Requires extensive learning to develop high-quality solutions.

Learning from
experience

• These methods have a high memory cost for storing past solutions.
Ongoing research in this area are seeking to identify more efficient
representations of past solutions and to provide fast mechanisms for
their retrieval and reuse.

• Running two planning routines in parallel can be challenging for
systems with limited computing capacity.

Evolutionary
algorithms

• GA and ACO requires the discretisation of the environment and
explicit knowledge of obstacles in the C-space.

• Studies have been limited to 2D and 3D environments, and reported
computations are generally considered long for solving motion plan-
ning problems.

• Requires carefully chosen parameters that are specific to each prob-
lem and may not be known a priori.
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Based on these findings, this thesis proceeds with the use of sampling-based

algorithms for the investigation of optimal and adaptive planning in robotics.

While other classes of methods possess certain features that are also relevant to

adaptive robotics, sampling algorithms have been chosen for their reliability and

versatility. Crucially, sampling algorithms possess the nice property of scaling

efficiently for high DoF robots while being able to provide high-quality solutions.

However, with reference to the research questions identified at the start of this

research, a number of challenges must be addressed to effectively enable the use of

sampling-based algorithms for adaptive planning. Firstly, single-query sampling

algorithms are generally inefficient for solving multiple path planning problems

in the same environment as each query must be solved from scratch. Seeking to

achieve optimal solutions require long planning times to repeat the search across

each problem, while reducing the planning time results in poorer quality solutions.

Multi-query algorithms, on the other hand, are able to achieve high quality solu-

tions quickly but require an extensive pre-processing phase to extensively explore

the search space. However a large portion of explored information may never

be used for solving the actual planning problems. This makes multi-query algo-

rithms more costly than necessary, which is undesirable for fast, online planning.

In Chapter 4, I explore a new method that consists of leveraging the idea of using

one path planning problem to solve another for faster planning (a key paradigm

in learning-from-experience methods) by simultaneously planning a solution for

all problems such that the same sampled information is reused. Through a series

of evaluations, I demonstrate that the algorithm is capable of solving multiple

motion planning problems more quickly compared to using single-query planners

while eliminating the requirement for pre-processing. This chapter also discusses

how the algorithm can account for general cost criteria, a feature that is not

commonly available with other motion planners in literature.

Another limitation of sampling-based algorithms is the growth in memory

resources consumed by sampling algorithms over large iterations. This can sig-

nificantly slow down the system when deployed on-board to robots with limited

computing capacity. To overcome this limitation for the physical implementation

of the algorithm described above, I present a new strategy in Chapter 5 for limit-

ing the number of stored configuration samples without impairing the capability

of the algorithm to find high-quality solutions.

In Chapter 5 I also describe how the motion planner introduced in Chapter
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4 can be extended to enable dynamic re-planning such that new collision-free,

high-quality solutions can be computed without re-planning from scratch when

new observations of the environment is perceived.

2.2 Task Planning

Task planning seeks to provide intelligence to a robot by enabling reasoning capa-

bilities that translate a high-level set of commands into clearly-defined executable

actions. This type of problem falls under the umbrella of AI, which studies the

idea of intelligent agents that interact with its environment autonomously through

perception and actions. A common sub-problem of AI lies in defining an efficient

representation of world2 knowledge and the planning problem, while the final

objective is to determine a set of actions to meet defined goal requirements.

Planning actions toward a set of objectives require a clear specification of the

world states. The initial description of the world at the start of a planning problem

is an initial state, while the set of objectives describe the goal state. Each action

results in a state transition in the world described by its effect that depends upon

the prior state when performing the action. Thus the set of all possible robot

actions and their effects define the complete state space. To solve a task planning

problem, the set of actions, effects, and the state space (collectively described as

the problem domain) must be represented in a way that allows the state space

to be searched for a solution that gives the sequence of actions to transition from

the initial state to the goal state.

The first half of this section reviews fundamental literature in general task

planning for robotics. Given the wide range of research in the field, this thesis

will then narrow down on two specific task planning problems: (i) task planning

for mobile wheeled robots and (ii) robotic task sequencing. Thus the second half

of this section is devoted to covering the state-of-the-art relevant to these areas.

I first cover these two problems from a static planning perspective, and then go

on to highlight some recent work in the direction of adaptive task planning and

discuss the current knowledge gap that is addressed by the research presented in

this thesis.

2Note that the definition of world here strictly refers to the local environment that the robot
operates in, and representing this world often involves capturing a highly reduced set of domain
physics applicable to the local planning problem.
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2.2.1 Fundamental Task Planning Techniques

2.2.1.1 Constraint Satisfaction Problem

The constraint satisfaction problem (CSP) is a notably successful formulation

for solving symbolic task planning problems. In the CSP formulation, three

descriptors are used to represent all the components of a planning problem [78]:

1. X = {x1, x2, ..., xn}, a set of variables used to describe a state, where each

variable takes on a value from a set of allowed values defined by the domain.

2. D = {D1, D2, ..., Dn}, a collection of sets of valid domain values associ-

ated to each variable in X. Di ∈ D is composed of all the valid values

{vi,1, vi,2, ..., vi,m} that can be assigned to the corresponding variable, xi.

3. C = {c1, c2, ..., ck}, a set of constraints that specify the allowed relationships

between variables, where cj is described by a pair 〈scope, relation〉. scope is

the tuple of variables that are members of the constraint and relation spec-

ifies the combination of values that can be assigned to each of the involved

variables. relation can be given as a list of all the accepted combinations

of values, or as a relational descriptor (e.g. x1 ≥ x4 or x3 6= x6).

A solution to the CSP is composed of an assignment of values to each variable,

which defines the goal state based on the initial conditions of the problem. This

assignment is complete3 if every variable is assigned an allowed value, or partial

when only a portion of the variables have a value assigned. Additionally, the

assignment is consistent if all assigned values satisfy the constraints defined in C.

Consider as an example the simplified problem shown in Fig. 2.9. It consists

of finding a task plan for a mobile manipulator (e.g. a mobile robot integrated

with a manipulator) to transport two objects, a cup and plate, from a table

for washing at a sink, and then storing them on a shelf. The robot has three

possible actions for each object: move2sink, wash and store. For convenience,

let move be equivalent to move2sink. Representing these as variables in the

CSP formulation gives: X = {move cup, move plate, wash cup, wash plate,
store cup, store plate}.

3Note the difference in its definition compared to the use of this term for path planning. In
path planning, complete describes an algorithm’s guarantee to find a solution if it exists.
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Figure 2.9: A simple task planning problem for a mobile manipulator in a kitchen environ-
ment. The plate and cup placed on the table is required to be moved to the sink, washed and
transferred to the shelf.

As this planning problem consists of finding a valid sequence of actions, each

set of domain values in D can correspond to integer numbers that describe the

order of the action in the solution sequence. In this case we could assign Di =

{1, 2, 3, 4, 5, 6} for all actions such that they may take any value between 1 and

6. Alternatively, we could model the values as the time for the task to start by

representing minutes with an integer value.

In either case, constraints must be formulated appropriately for the domain

value representation chosen. In this example, the robot is given the following

rules: (i) the robot can only move one object at a time, (ii) the plate cannot be

moved before the cup as the cup sits on top of the plate, (iii) an object cannot be

washed until it has been moved to the sink, and (iv) an object cannot be stored

until it has been washed. These rules can be translated into precedence constraints

(that is, constraints that dictate that a certain action must take place before an-

other) as follows. Rule (i) and (ii) can be formulated as move cup < move plate4.

This constrains the value of move plate (and its order of appearance in the se-

quence) to always be greater than move cup. Likewise, rules (iii) and (iv) im-

pose the following constraints: move cup < wash cup, move plate < wash plate,

wash cup < store cup and wash plate < store plate. Finally, rule (i) also im-

4For brevity, let this be equivalent to 〈(move cup,move plate),move cup < move plate〉.
The same shortened representation is used for all constraints when referring to CSP formulation.
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poses the final constraint store cup 6= store plate such that the cup and plate

cannot be moved for storage simultaneously.

Even for this simple problem, there exists multiple solutions. A valid solution

could involve moving the cup to the sink, then the plate to the sink, wash the

cup and plate sequentially, and finally move both to storage one at a time. Al-

ternatively, moving, washing and storing the cup and repeating for the plate is

also a valid solution. To obtain these solutions by search, a choice between two

main types of algorithms are generally adopted.

In backtracking search, a depth-first search strategy is applied to generate a

partial assignment that grows towards a complete, consistent solution. Starting

from a single variable with an initialised value, each step involves advancing

through a branch by adding a value assignment to an empty variable and checking

for consistency. The search cycles through all allowed values for the considered

variable until either a value that is consistent with all constraints is found or all

values would violate a constraint. In the latter case, the search backtracks to the

previous level and selects another branch to explore, terminating when a valid

solution is obtained or when all branches have been explored [79].

Alternatively, one may choose to use a local search algorithm. Local search

algorithms differ from backtracking search by initially assigning a value to all

variables. It then seeks to eliminate all violated constraints by locally adjusting

one value at a time. Heuristics are used to determine the best value to reassign

to a variable from among the domain value set. The min-conflicts heuristic

deserves particular mention for its effectiveness in solving CSPs. It objectively

selects values based on minimising the number of conflicts with other variables

and have proven its effectiveness for complex problems including the scheduling

of observations for the Hubble Space Telescope [80].

CSPs offer a number of advantages for solving task planning problems com-

pared to conventional state space search. Firstly, rather than individually as-

sessing single states to check satisfaction of goal objectives, partial assignments

to CSPs can determine quickly whether a branch of candidate solutions violate

the constraints of the goal objectives. This can enable fast elimination of large

regions of the search space when values have been assigned to a number of vari-

ables. Furthermore, CSP provides transparency in how an inconsistent solution

violates goal requirements, which can inform a search algorithm to correct such

conflicts. Ultimately, CSPs are able to solve planning problems very quickly in
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many scenarios where conventional search methods would suffer from intractabil-

ity.

The downside to using CSPs for robotic task planning is the difficulty in

representing some rules and constraints in the real-world using CSP formula-

tion. This is particularly true for modern robotic applications involving complex

interactions between a robot, obstacles, and objects, especially in a dynamic en-

vironment. Furthermore, a large number of variables are needed to represent a

robot’s diverse skillset, which can be complex and time-consuming to model for

largescale problems.

2.2.1.2 Planning Domain Definition Language

While CSPs have demonstrated high efficiency in solving problems that can be

represented as constraints, it lacked the expressiveness to represent many common

task planning problems in robotics in a concise way. As we saw in the example

shown in Fig 2.9, every action involving the transfer of an object must be defined

individually as an action variable for every object and every possible transfer.

This can quickly expand into to a very large number of variables for a set of

very similar actions. This section introduces the Planning Domain Definition

Language (PDDL), an expressive language to overcomes these limitations.

The PDDL was first conceptualised in 1998 as a standardised way of repre-

senting AI planning problems [81] and serves as a standard for assessing entries

to the International Planning Competition (IPC). With each IPC, the number

of features supported by PDDL grew, resulting in the release of several official

versions of PDDL (the latest being PDDL3.1). Since PDDL is a standardised lan-

guage fit for a broad range of planning problems extending well beyond the scope

of robotic task planning, I do not exhaustively describe the individual features

supported by the various versions of PDDL. Instead, I cover the core features of

PDDL set in the context of robotic task planning, though these features discussed

is common to all planning problem representations.

At the core of PDDL are two definitions that completely describe a task:

the domain and the problem.5 As the name suggests, the domain definition

describes the representation of world states and all state transitions through

5In practice, these two definitions are stored in two separate text files, both with a .pddl
file extension, which are then parsed by whichever planner is used to solve the actual planning
problem.
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four components: predicates, actions, preconditions and effects.

Predicates are used to describe propositional formulas (or atomic formula,

atom for short) to be assigned to objects considered in a task planning problem.

It is important to recognise that PDDL represents planning problems in symbolic

form. Consider an object6 called Arm1 representing a manipulator for which we

would like to plan a set of tasks for. By itself, Arm1 carries no meaning, and could

in fact be assigned any arbitrary name such as 6dofArm, manip, or even John.

Now let us define a predicate (IsRobot ?object). We may think of this predicate

as a symbolic function. Here, we instantiate a predicate called IsRobot, which is

assigned to any object passed into the predicate as the input for ?object (the ‘? ’

prefix is used to identify an input to the predicate). For example, once we have

defined this predicate, the line (IsRobot Arm1) specifies that Arm1 is a robot.

Predicates enable the description of ’relationships’ between objects by supporting

multiple inputs to a predicate definition. A predicate defined as (holding ?robot

?object) would specify that the first input object is holding the second input

object. All objects are initially false for all predicates. Once an assignment is

made to an object, this instance of the predicate becomes true. The truth values

for each atom is called a fact. By using these predicates, the complete state of

the world can be described by a conjunction of facts. Conditional evaluations of

the world state can then be performed by testing the logical value of atoms. To

reverse a predicate assignment, a negation can be used such as not(holding ?robot

?object), which assigns the value of false to the atom (indicating that the robot

is no longer holding the object).

Actions are used to describe the possible state transitions in the world and

are comprised of preconditions and effects. For every action, a set of pa-

rameters are defined to specify the objects that are considered in the action.

Preconditions impose requirements that must be met for an action to take place,

while effects describe the new state of the world resulting from said action tak-

ing place. Following the examples before, let us first define a new predicate (At

?object ?location), which specifies that input 1 is located at input 2. Now sup-

pose the parameters of the action transfer are ?object1, ?object2, ?location1 and

?location2. A precondition (IsRobot ?object1) ∧ (holding ?object1 ?object2) ∧ (at

6Note that the term object does not necessarily refer to a physical object, but any subject
of interest. For example, this could be a point in space that is of particular importance (e.g. a
home position).

54



Wong, C. Planning in Robotics

?object2 ?location1) enforces the constraint that object2 cannot be transferred

unless object1 is a robot, object1 is holding object2, and object2 is at location1.

An effect specified as not(at ?object2 ?location1) ∧ (at ?object2 ?location2) gives

the resulting state change corresponding to object2 no longer being located at

location1 and is located at location2.

Following this action schema, it is easy to see how the numerous action vari-

ables required in CSP can be condensed into a single action description in PDDL.

Simply by substituting different objects into the specified parameters for the

transfer action, all possible state transitions associated to the transfer of objects

can be accounted for. Thus PDDL provides a powerful platform for represent-

ing the range of actions that can be executed by a robot when operating in less

structured environments.

The problem definition defines the objects considered in the problem, and the

initial and goal states of the world. These are specific to a particular problem

instance for the given robot domain. For example, a service robot could be tasked

on one occasion to set up a table with plates and cutlery, while on a separate

instance be required to clean dirty dishes on the same table. Each of these would

be defined as an individual problem but correspond to the same domain definition.

The set of objects are specified as a list of readable symbolic names chosen for

human interpretation. Initial and goal states are then defined as a conjunction of

atoms using this set of objects, e.g. for a problem consisting of the objects Robot,

Sink, Cupboard and plate, an initial state may include (IsRobot Robot), (at plate

Cupboard) and (at Robot Sink), while a goal state may consist of (at plate Sink).

Any atoms that are not explicitly defined in the initial state are assumed to be

false by default, while any atoms not included in the goal are not considered a

constraint on the solution. For the above example, solutions with either (at Robot

Sink) or (at Robot Cupboard) as an end state would satisfy the problem as long

as (at plate Sink) is satisfied.

Once a problem is represented in PDDL, the objective of a planner is to

find a sequence of symbolic actions (including the corresponding objects involved

for each action) that, when applied sequentially at the initial state, leads to a

sequence of state transitions ending at the goal state. Importantly, the precondi-

tions of actions must be met at the state in which they are performed.
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Figure 2.10: An example of forward state-space search in symbolic task planning, where two
planes P1 and P2 are located in airport A. Two possible fly actions can be taken to transport
either plane from airport A to airport B. The forward state-space search evaluates each of the
two possible resulting states to determine which branch to pursue.

2.2.1.2.1 FastForward Planning System A number of planners have gained

popularity for solving PDDL-based problems after finding success in the IPCs.

The FastForward (FF) planning system [82] is based on a forward state-space

search that is informed by heuristics to estimate the goal distance. This for-

ward chaining approach involves expanding the search from the initial state and

exploring branches through possible actions. A pure search without effective

heuristics for guiding the search is impractical as it would result in an exhaustive

search through many irrelevant branches of actions. Problems quickly become

intractable when states have on average a moderate to high branching factor. FF

addresses this limitation by adopting a goal distance heuristic estimate based on

the number of actions to reach the goal state. A simple illustration of forward

state-space search is shown in Fig. 2.10.

The FF planning system obtains this heuristic estimate by relaxing a task.

Generally speaking, a relaxed problem is subject to less goal requirements, which

makes it easier to solve. In the case of FF, the relaxed problem ignores all ’delete’

operators that lead to the negation of atoms in the effects of actions (such as not

functions). In other words, no action undoes the effects of actions earlier in a plan.

During a forward search, a heuristic goal distance estimate must be computed

for each expanded state. This estimate is obtained by representing the planning

problem from the expanded state to the goal as a relaxed planning task with no

delete operators. The authors of FF used the GRAPHPLAN algorithm [83] to

obtain a relaxed plan, which is substantially easier to solve. The length of the

relaxed plan is then used as the heuristic for the goal distance estimate. Critically,

this heuristic is admissible as it never overestimates the length of the plan.

The forward search is conducted using an Enforced Hill-Climbing (EHC)
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search to find successor states. Starting from the initial state and an empty

current plan, EHC seeks a successor state with a lower heuristic value (evalu-

ated using the relaxed plan) by performing a breadth-first search, and adding

the resulting sequence of actions that reach the successor to the current plan.

The FF planning system also incorporates search space pruning to improve FF’s

computational performance based on the concept of helpful actions. During the

construction of a relaxed plan for heuristic evaluation, all actions that can take

place in the first time step and would advance the search towards the goal are

stored as a set of helpful actions. When seeking a successor state in the EHC

algorithm, only helpful actions are considered for expansion during breadth-first

search, which avoids time spent exploring irrelevant action paths.

While these procedures have been shown to be effective in solving most prob-

lems, the EHC search is prone to fail (it does not guarantee a solution even

when one exists). The authors overcame this through the inclusion of a recovery

procedure that reverts to an exhaustive best-first search using the goal distance

estimate to expand all states until a solution is found when a mode of failure is

encountered.

The FF planning system originally handled only logical variables, that is

atoms possessing either a true or false value. The authors shortly extended

FF into Metric-FF [84] to incorporate support for numerical state variables,

or fluents. These enable the assignment of numerical variables that keep track

of numerical quantities such as battery levels, accumulated cost, distance trav-

elled etc. Comparisons of numerical values can be used to define constraints in

preconditions of actions, while numerical expressions enable changes to fluents in

the effects of actions using operators such as +, −, × and ÷. Planning a task with

Metric-FF enables the optimisation of solutions by minimising costs, or introduce

additional constraints that could not be represented by purely logical values (e.g.

limitations due to battery limitations of a mobile robot).

2.2.1.2.2 LPG The LPG [85] is a planner than solves a planning task rep-

resented as a planning graph [83] through local search. Planning graphs are

composed of two alternating types of layers, an action layer consisting of nodes

made up of actions, and a facts layer made up of fact nodes. The level of actions

and facts layers are separately numbered chronologically as shown in Fig. 2.11.

Each level t in the action layer represents the set of actions that can take place
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Figure 2.11: Example of a planning graph for a have cake and eat cake problem consisting of up
to facts layer 2. Blank squares represent dummy actions, straight lines represent pre-condition
and effect links, and grey dashed lines represent mutual exclusion. (Adapted from [79])

in the t th step of a plan, while the t th layer in the facts layer represents the pre-

condition of actions in action layer t and the effects of actions in action layer t-1.

Edges connect fact nodes to action nodes (pre-condition links) and action nodes

to fact nodes (effect links), while dummy action nodes and edges are used to pass

facts from one fact level to the next unchanged (i.e. when facts are unaffected

after an action takes place). When constructing a planning graph, the last level

of the fact nodes should contain all the facts that satisfy the goal state of the

planning problem.

Conflicts between actions are represented through mutual exclusion. This

occurs when an action either negates a required precondition or an add effect of

another action. Alternatively, two actions are considered mutually exclusive when

their preconditions are mutually exclusive. The latter occurs when two facts in

a layer cannot be true at the same time (i.e. if all ways of making one fact true

prevents the second fact from becoming true). Conflicting pairs are described as

possessing a mutex relationship.

LPG uses sub-graphs called action graphs as a search space to find partial

plans. When constructing an action graph, any action taken from the planning

graph must also include the fact nodes directly connected as a precondition or

effect in the planning graph. The objective is to construct a complete action graph

that contains the facts required to satisfy the goal state of the problem in the

final layer. LPG achieves this by iteratively adapting the graph through addition

and removal of action nodes starting from an initial action graph (generated

randomly at the start of each planning instance). In each iteration, the addition

and removal of actions are determined by the mutex relations in the action graph
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and any precondition facts that are unsupported. That is when no actions exist

in the action graph that connects the fact nodes of the first layer (i.e. the initial

state of the world) to the required precondition of an action later in the graph.

These two criteria for graph modifications are collectively referred to as constraint

violations.

When resolving a constraint violation, each possible modification to the action

graph that resolves the violation to generate a new action graph is stored in a

neighbourhood set. These graphs are ranked by an evaluation function that

determines the best action graph to take forward. This evaluation score, termed

action evaluation function, is determined by the number of mutually exclusive

actions, the number of unsupported facts, the number of unsupported actions that

become supported after adding an action, and the number of supported actions

that become unsupported after removing an action. Additionally, the quality of a

plan can be consolidated through weighted terms for criteria such as plan length

and action costs within the evaluation function. This mechanism provided LPG

with the capability to progressively improve the quality of a solution once an

initial feasible solution is obtained.

LPG was later extended into the LPG-td planner [86], which provided addi-

tional support for numerical expressions within preconditions and effects, as well

as compatibility with time durative actions. Durative actions carry an additional

duration parameter that specifies the time required to execute an action. LPG-td

thus enables the progressive improvements of solutions in relation to either action

costs, total plan duration or some other numerical function.

2.2.1.2.3 Sub-Goal Partitioning and Resolution in Planning The Sub-

Goal Partitioning and Resolution in Planning (SGPlan) system [87] solves

a planning problem by partition the entire task into smaller planning tasks, each

with separate sub-goals that are solved independently. Inconsistencies in the solu-

tions to individual sub-goals are corrected for by using the concept of an extended

saddle-point condition to evaluate the satisfaction of global constraints.

The SGPlan system comprises of a global-level planning step and a local

sub-goal level planning step. In the global-level, the planning task is broken

down into sub-problems, each consisting of only one sub-goal. The sequence in

which these sub-goals are evaluated matters as sub-goals are often dependent.

Solving one sub-problem may lead to reversing the result of a previous sub-goal.
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A meaningful ordering can significantly reduce the frequency of these conflicts.

Based on these considerations, SGPlan employs a multi-level procedure to de-

termine a suitable ordering of sub-goals. This procedure applies the following

heuristics in chronological order for partial ordering of sub-goals:

1. reasonable ordering - consider two goals A and B. According to the

reasonable ordering heuristic, B is ordered before A if it cannot be achieved

without negating A. In this scenario, solving A first would be meaningless

as its result would be undone.

2. irrelevance ordering - if reasonable ordering is not applicable to A and B,

then the irrelevance ordering heuristic evaluates the number of irrelevant

actions for each sub-goal. If B has less irrelevant actions than A, it is

considered a more difficult sub-goal that should be achieved first. Thus B

would be ordered before A.

3. precondition ordering - if neither of the above applies to A and B, then

precondition ordering compares the minimum number of preconditions re-

quired to achieve each sub-goal by considering all the actions that achieve

them. Following the idea that complex goals should be ordered first, B is

ordered before A if it requires a greater number of preconditions.

4. random ordering - if none of the above apply, then A and B are ordered

randomly.

At the start of any search, the global ordering of all sub-goals are randomly

generated while ensuring that the above heuristics are satisfied for all partial

sub-goals.

While these heuristics provide an ordering that helps minimise the number

of inconsistencies between sub-goals, it does not guarantee that all conflicts are

avoided. To resolve these inconsistencies, the concept of Extended Saddle-Point

Condition (ESPC) [88] is used to evaluate the satisfaction of global constraints

that ensure goals do not conflict. The ESPC is used to identify saddle-points

in the Langrangian space of a planning problem, which correspond to the lo-

cal minima of a constrained planning problem. SGPlan recursively computes a

global plan and evaluates the feasibility of the solution using ESPC. The val-

ues of Lagrange multipliers, used to weight the objective and constraints of the
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problem in the Lagrangian function, are adjusted according to the feasibility of

solutions. This recursion terminates when the Lagrange multipliers converge to

stable values, which corresponds to the satisfaction of the ESPC.

In the local sub-goal planning level, each sub-goal is solved by further decom-

posing it into smaller sub-problems based on the difficulty of solving the sub-goal.

These are referred to as intermediate goal agendas, and are solved as individual

planning instances by applying a planner such as FF or LPG. SGPlan takes ad-

vantage of the partitioned structure of the planning task to improve planning

performance by applying a pruning procedure prior to this step. Pruning is used

to reduce the search space of each sub-problem by removing irrelevant actions

that would otherwise have likely been relevant to the overall planning task. It

achieves this by recursively examining each atom inside an open list (initially

containing only the sub-goal atoms), and maintaining a list of relevant actions

(initially empty). As each atom is examined, all relevant actions are added to the

relevance list and those supporting atoms that are preconditions to these actions

are added to the open list if they have not already been examined. This process is

called backward relevance analysis and outputs a list of all relevant actions once

the open list becomes empty.

2.2.1.2.4 LAMA The LAMA planner [89] was developed around the Fast

Downward system [90], a forward state-space search that first translates a prob-

lem represented in PDDL into the multi-valued planning tasks representation.

Fundamentally, this converts implicitly represented constraints into explicit con-

straints.

In the LAMA planner, two types of heuristics are used to direct the state

space search. The first type called the landmark heuristic involves the use of

landmarks, which are defined as facts that must be true at some point in any

valid plan. Since each of these landmarks must be true at some point in time, an

estimate of the remaining goal distance from any state can be obtained by the es-

timated number of landmarks that has yet to be achieved at the evaluated state.

The landmark heuristic is thus evaluated as the sum of the unaccepted landmarks

and required-again landmarks. The unaccepted landmarks are all landmarks that

have not yet been true at some point along the path to the evaluated state. The

required-again landmarks are all the landmarks that have been achieved previ-

ously along the path to the evaluated state, but which is false at the evaluated
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state yet must be true in order to satisfy the conditions of the goal state or achieve

another landmark later in the plan. The second type of heuristics employed is a

modified FF heuristic that estimates the goal distance through the use of relaxed

tasks. While the FF planning system uses the plan length (i.e. the number of

steps) as the heuristic, LAMA takes into consideration the summation of action

costs (and the costs of action preconditions) added together with the plan length

when evaluating the modified FF heuristic. This mechanism balances the effort

to explore the search space to find a valid plan against the objective to seek a low-

cost solution, which is essential in complex planning tasks where purely seeking

a low-cost solution may hinder the effort to find a solution at all.

When performing forward search, rather than aggregating the two types of

heuristics directly, LAMA uses a multi-queue heuristic search strategy that con-

sists of maintaining two separate open lists, one for each heuristic. Both heuris-

tics are computed for all expanded states and stored in their corresponding open

lists, while the search algorithm switches between these lists based on priorities

assigned in the search.

LAMA uses two approaches to perform forward state-space search. At the

start of any planning task, a greedy best-first search is applied to quickly find an

initial feasible solution by always expanding the state with the lowest combined

heuristic value. Once a state has been expanded, it will not be revisited during

the greedy best-first search. When two states have the same heuristic value, the

search chooses the state that can be reached using a less expensive operator (e.g.

by comparing the last action needed to reach the state).

Once a valid solution is obtained, the LAMA planner seeks to improve the

quality of the solution by reiterating through the planning task using the weighted

A* algorithm. Recall that the A* algorithm evaluates the cost of a node by the

sum of the cost to reach the node from the initial node and the heuristic estimate

of the cost to reach the goal. In weighted A*, the heuristic value is scaled by a

weight that is reduced over each iteration. Thus over long iterations the weighted

A* relies greater on the true plan cost up to the considered state over the heuristic

estimate of the goal distance. Furthermore, the weighted A* permits revisiting a

state after it has been expanded if a less costly path to the state is found during

a search. In this way, LAMA provides anytime planning by continuing to find

better quality solutions until a termination criteria is met.
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2.2.1.3 Combined Task and Motion Planning

The task planning methods described in Sections 2.2.1.1 and 2.2.1.2 approach a

planning task in a purely symbolic form and provide plans that satisfy symbol-

ically defined constraints (i.e. action preconditions and goal states). However,

there are limitations to solving a planning problem purely in this discrete, sym-

bolic state space when considering the nature of many robotic domains.

Consider, for example, the common action move that requests a robot to

move from configuration A to configuration B. Symbolically, the preconditions

may only require that the robot is at configuration A. However, the true feasibil-

ity of this action depends on additional geometric and spatial constraints such as

joint limits, collision avoidance and reachability of configuration B. Attempting to

represent these constraints using the standard PDDL representation of precondi-

tions would require a discretisation of configurations, which for high-dimensional

spaces is generally infeasible [91]. Furthermore, the effect of moving obstacles in

the space of the robot is difficult to capture in symbolic form as it involves spatial

and geometric reasoning (i.e. motion planning theory). One workaround involves

searching for a complete plan in symbolic state space and sequentially evaluating

the feasibility of individual actions in the plan using a motion planner. When an

infeasible action is found, the task planning domain is updated and re-planning

is performed to obtain a new task plan. This would repeat until a fully feasible

plan is obtained. Problems arise when dealing with high-dimensional spaces as

this strategy quickly becomes highly inefficient or even intractable. Moreover,

it would be impossible to optimise a task plan based on costs derived from the

continuous configuration space without involving spatial reasoning.

Combined task and motion planning (CTMP) comprises of methods that seek

to address these challenges through the integration of motion planning in con-

tinuous configuration space with task planning in discrete symbolic state

space. In this section I summarise a number of key developments in the body of

literature devoted to CTMP. Note that this body of literature primarily addresses

problems comprising of manipulation tasks and therefore involves complex, high-

dimensional search spaces. In these problems, it is generally not possible to prove

the non-existence of solutions as an exhaustive search through all state expansions

cannot be performed in practical times. As a result, all competitive planners to

date are at best probabilistically complete and simply reports failure to find a

solution at time-out.
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In [92], a hierarchical planning in the now framework that interleaves planning

with execution was proposed. This planner constructs a plan at a high level

abstraction and commits to it by solving for the first sub-goal, and then the next

and so forth. Primitive actions are executed as they are found, progressively

achieving sub-goals of the task and continuing to plan in the now. This planner,

however, assumes that actions are reversible such that backtracking can take

place when the robot has committed to an infeasible plan. Another notable

consequence of the approach is that it sacrifices optimality by commiting to a

plan solved at a highly abstracted level. [93] performed CTMP by precomputing

motion graphs and collision tables for a mobile manipulator, which were used in

lookup procedures within a classical AI planning stage. During the compilation

phase, the workspace was discretised to consider virtual object locations that

were later used to transform object references from a virtual base reference to its

real-world reference. Manipulator trajectories and mobile base trajectories were

considered separately. A key contribution to the effectiveness of this approach was

the elimination of motion planning and collision-checking during actual planning.

However, the quality of solutions found were limited by the number of samples

considered in the compilation stage.

Other approaches have emerged that begin to address aspects of probabilistic

completeness and generality. aSyMov [94], a pioneering work in CTMP liter-

ature, integrated the Metric-FastForward (Metric-FF) planner [84] with motion

planning functions derived from Move3D. aSyMov expanded several linked proba-

bilistic roadmaps (PRMs) for individual agents and objects to reduce the number

of DoFs considered in each roadmap. This was performed in tandem with plan-

ning at the discrete task level, with a certain bounded computation time devoted

to roadmap expansion whenever this step was performed. The choice between

advancing an action to create a new state and expanding the roadmaps was de-

termined by a cost value derived from a heuristic cost and the number of action

failures. A key feature of aSyMov is the preservation of invalid actions, which

may later become valid through continuing expansion of roadmaps. This be-

haviour provides probabilistic completeness as aSyMov balances between finding

a plan with the current level of geometric knowledge and exploring the free con-

figuration space. [95] presented a CTMP interfacing layer developed with general

applicability to off-the-shelf task and motion planners. In this approach, instan-

tiations of pose references in the task planner were linked to continuous variables
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in the geometric environment through an interface layer. An initial task plan was

generated from setting ground atoms to default values. By employing a motion

planner, the interface layer determined the feasibility of each action in the initial

plan. In cases of infeasible actions, the interface layer updated the task planning

definition by identifying the obstructions to these actions due to movable objects.

This procedure iterated over all possible instantiations of pose references until a

solution was found.

The authors in [96] proposed a probabilistically complete planner that applies

an incremental approach to constraint-based planning to dynamically provide

the task planner with motion feasibility information. This approach was later

extended into the Task-Motion Kit (TMKit) [97], a general-purpose framework

for CTMP. The TMKit interfaces the symbolically-defined task domain with the

geometric-relational properties of the motion domain through a domain seman-

tics layer. The domain semantics describe the conversion between geometric

references with discrete task states and relates task actions with corresponding

motion plans. This enhances the generality of the framework by enabling addi-

tions to actions and domains without strictly requiring changes to the high-level

framework.

The FFRob [98], [99] is an integrated task and motion planner that extends

the FastForward heuristics used in symbolic planning to robot motion planning.

The approach consists of a preprocessing stage that generates a roadmap struc-

ture, referred to as a conditional reachability graph, to sample a subset of robot

configurations, manipulator grasps and object placements. By integrating these

two components, the planner was shown to perform efficiently for tasks involv-

ing the rearrangement of many objects. The original FFRob [98] was not a

probabilistically-complete planner as it relied on offline sampling to generate the

necessary conditional reachability graph. This was later addressed in [99], which

extended the FFRob to iterate between the sampling and planning phases such

that further symbolic actions were generated when a discrete search of the exist-

ing finite sample set was insufficient to produce a solution. The authors further

presented the extended action specification (EAS), derived from simple action

specification (SAS+) to extend the expressiveness of the planning representation

to include condition evaluations. The authors showed its application to pick and

place planning, where the validity of a movement action was evaluated using

the EAS representation. Through this framework, FFRob provides an integrated
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search that focuses the symbolic planner with geometric details efficiently.

2.2.1.4 Task Sequencing

An interesting yet highly relevant sub-problem of task planning is the problem

of task sequencing. Unlike the general task planning problem where a large set

of actions are considered, the task sequencing problem considers only visiting a

set of task locations with no consideration for what action takes place at each of

these task space points. These problems can exist where the goal is to perform

the same action at multiple locations, or where a continuous action takes place

throughout the entire task. An example of the former is an industrial robot

tasked with performing a number of spot welding or drilling operations on a

component, while an example of the latter includes a mobile surveillance robot

that continually monitors and inspects its surroundings while following a tour

around the environment.

In a standard task sequencing problem, the objective is to find an optimal

tour around all the task space points that minimises a cost function. Common

criteria for optimisation include task execution time, which is strongly corre-

lated to efficiency and throughput of a system (this has often been cited as the

most important key performance indicator in industry [100]), energy consump-

tion, clearance from obstacles and curvature level (e.g. the frequency of sharp

turns, which is challenging for non-holonomic mobile robots). Since the cost of

performing an action is associated to each task point and is independent of the

visiting order of tasks, the optimisation lies solely in how these tasks are se-

quenced. This problem draws parallels with the classic algorithmic Travelling

Salesman Problem (TSP) [101] in the field of Computer Science. The TSP

describes the problem of a salesman who must travel between a set of N cities

using the shortest route possible. There are no precedence constraints on the

order of cities that must be visited, but he should only visit each city once and

return to his starting location after visiting all cities.

At first glance, the standard TSP appears to be an effective means of formu-

lating a task sequencing problem. However, its use is accompanied by a number

of caveats that must be considered when solving a task sequencing problem. First

of all, solving a TSP generally requires the computation of a pairwise distance

matrix, which stores the cost to move between any two points considered in the

TSP. Standard applications of the TSP use fast-to-compute metrics such as Eu-
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clidean or Manhattan distance as the cost measure, which is manageable for a

large number of sequencing points. In the robotics domain, these simple measures

can only provide an approximation of the true cost to move between two task

points, as this is determined by the actual motion required to realise a movement

between two task points. In complex or cluttered environments, path planning is

a necessity to determine a cost that takes into consideration obstacle avoidance

and robot kinematic constraints. This becomes computationally heavy for even

a moderate number of task points if solved by brute force search, as the path be-

tween every pair of points must be computed. Fortunately, when dealing with the

MTP problem for mobile robots, the number of points considered for sequencing

is generally few, making such an approach viable and indeed preferable thanks

to the higher quality solutions provided by computing true motion costs.

The sequencing problem becomes notably more complex when dealing with

the RTSP [102] for serial manipulators with arbitrary number of DoFs. Consider

a conventional 6-DoF industrial robot. Generally speaking, this kind of robot is

able to reach any single task space point using 8 different configurations (with the

exception of points near singularities). This capability to reach a point in mul-

tiple ways is termed kinematic redundancy and provides a robot with a degree

of flexibility to evade obstacles while reaching a desired task point. This oppor-

tunity to leverage the flexibility of manipulators also introduces greater levels

of complexity in the sequencing problem. Now, the problem of determining an

optimal sequence of motions to visit a set of task points involve choosing a con-

figuration that helps minimise the overall cost of execution. Solving the RTSP

using a standard TSP formulation for the set of task space points would not take

into consideration the varying costs associated with using different configurations

for each task point. Since the actual cost of motion between any two points is

determined by the chosen C-space configurations, we cannot expect a high quality

solution for complex problems using this approach.

The Generalized TSP (GTSP) conveniently provides a modified formulation

of the standard TSP that fits this class of sequencing problems well. In the GTSP,

rather than considering a salesman that must visit every city in the problem, the

salesman must now visit one (and only one) city in every state considered in

the problem, where each state contains a discrete number of cities [103]. Like

before, the salesman must return to his starting location at the end of the tour

(see Fig. 2.12 for an illustrative example of the distinction between GTSP and
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(a) (b)

Figure 2.12: Illustration of the TSP and GTSP. Red nodes represent the starting city and solid
lines represent the tour, (a) the standard TSP, (b) the GTSP, where dashed ellipses represent
the grouping of nodes and blue nodes represent the visited node within each group.

TSP.) Framed in the context of RTSP, every task point forms a cluster (the

state), containing all the configurations that can reach that point (the cities in

the state). The objective is to find a sequence of robot motions that starts

from a home configuration, reaches exactly one configuration within each cluster

contiguously, and then returns to the home configuration. Authors in [104] have

indeed addressed RTSPs as a GTSP, demonstrating the possibility to solve the

problem in this way. However, their investigations highlighted the complexity

of the problem, as reported results showed long computation times for problems

containing a small number of task points. Furthermore, the trade-off between

using simple cost metrics for faster computations versus considering true motion

costs (via path planning) for higher quality solutions still applies in the GTSP

formulation. In fact, in the latter case, the method of solving the RTSP aligns

with the multi-goal path planning7 formulation described by Wurll et al. [105],

where the authors referred to a GTSP involving obstacle regions in the search

space that the GTSP tour should not intersect. Interestingly, the use of the term

MTP in mobile robot sequencing literature somewhat overlaps, albeit with the

possibility of only one point being associated to each task rather than the multiple

configurations associated to a single task point considered in RTSPs.

In certain applications involving higher kinematic redundancy, the set of fea-

sible robot configurations for an arbitrary task point may be defined by a C-space

region. Take for example the problem of remote laser welding, involving a multi-

7Be careful that the definition of this term used here differs slightly from its appearance in
the context of task sequencing problems for mobile robots.
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DoF scanner mounted on a robotic arm. The scanner possesses adjustable mirrors

and variable focal length. Thus it is possible to position a laser beam at a tar-

get point from among many configurations within a bounded region determined

by the specification of the scanner system. In these kind of scenarios, one may

approach the problem as a TSP with Neighbourhoods (TSPN). TSPN is yet an-

other extension of the GTSP, where instead of clusters containing discrete points,

the problem involves visiting at least one point from within each region. This

time the constraint to visit only one point per task (as in the GTSP formulation)

is relaxed as it may be necessary to pass through a region in order to reach a

chosen configuration and subsequently move to another region [106]. Despite the

convenient formulation of TSPNs for RTSPs of this nature, solving the problem

directly becomes exceedingly complex when obstacle avoidance is also taken into

consideration. This was highlighted in [107], where the TSPN formulation was

applied to RTSP. The authors noted that obstacle avoidance had not been consid-

ered directly in their method. Instead, they reported the use of post-processing

to correct for any collisions in the TSPN solution.

Finally, I wish to clarify the difference between the use of the terms TSP

(and its variants) and MTP/RTSP. While both generally considers an equivalent

problem, I use MTP and RTSP as terms to describe real problems that must be

solved through planning, while TSP and its variants are formulations of these

problems to enable a way of solving them. However, it is entirely possible to solve

an MTP/RTSP without adopting TSP-based formulation. Several authors have,

for example, shown the feasibility of applying the Genetic Algorithm (GA) to

solve the same type of problems. I go on to explore these related works in further

detail within the context of MTP and RTSP in Chapters 4 and 6, respectively.

2.2.1.5 Key Findings

Table 2.2 summarises the strengths and limitations of each method discussed in

relation to the specific form of task planning addressed. CSP and PDDL are

two successful approaches for addressing symbolic task planning, where all

the possible states of the world are contained in a finite set and the feasibility of

actions are determined by the satisfaction of symbolic (and in some cases numer-

ical) pre-conditions. The CSP approach has proven to be an effective method for

solving problems efficiently, but suffers from a lack of expressiveness for represent-

ing the set of all actions in a compact and standardised way. In contrast, PDDL
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Table 2.2: Fundamental Task Planning Techniques

Problem Method Strengths Limitations

Symbolic task
planning

CSP • Capable of solving large problems very quickly
compared to conventional search methods

• Gives insight into how an invalid solution vio-
lates constraints

• Difficult to represent certain rules and con-
straints in the real-world

• Large number of variables required to represent
the complete set of possible actions

• Domain values and constraints must be specified
uniquely for each problem

Symbolic task
planning

PDDL • Compact representation of domain actions
• Standard representation for all problems
• Human-understandable language
• Able to represent many problem features

• Large complex search space
• Not as computationally efficient to solve as CSPs
• Unable to account for continuous search spaces

CTMP Planning in the
now

• Efficient planning for complex problems
• Interleaves spatial reasoning to provide feasible

actions

• Requires actions to be reversible
• Unable to provide high-quality task plans
• Cannot support dynamic task planning

CTMP aSyMov • Probabilistically-complete planner
• Combines motion planning knowledge with task

planning layer

• Does not provide optimal task plans
• Requires extended planning time to alternate be-

tween task planning and motion planning
• Cannot support dynamic task planning

CTMP TMKit • Probabilistically-complete planner
• Generalised framework for any robot
• Allows for the addition of new actions and do-

mains without changing the framework

• Does not provide optimal solutions
• Cannot support dynamic task planning

Continued on next page
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Table 2.2 – continued from previous page

Problem Method Strengths Limitations

CTMP FFRob • Support condition evaluations
• Efficient integration of motion planning with

symbolic task planning
• Probabilistically-complete planner

• Does not provide optimal solutions (but shows
sign of possible extension to compare solution
quality)

• Cannot support dynamic task planning

Optimal task
sequencing

TSP • Simple formulation
• Many algorithms exist to solve classic TSPs
• Simplest form of task sequencing to solve

• High time complexity (exponential in practice)
• Unable to account for kinematic redundancy

Optimal task
sequencing

GTSP • Suitable for robots with finite kinematic redun-
dancy properties

• Reverts to a TSP for problems involving only one
configuration for each task point

• A significantly more time-consuming problem to
solve compared to TSPs

• High time complexity (exponential in practice)
• Requires sampling for domains involving contin-

uous state spaces, which may fail to find the op-
timal solution

Optimal task
sequencing

TSPN • Suitable for robots with infinite kinematic redun-
dancy properties

• High flexibility for addressing different sequenc-
ing problems

• Capable of optimising solutions for continuous
state spaces

• Exceedingly complex to solve - long planning
times required even for small problems

• Intractable for large problems
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stands out as a highly expressive language that provides a consistent approach

to representing a vast range of planning problems while being able to support a

large range of features that would otherwise be very difficult to represent.

CTMP is an extension of symbolic task planning, where considerations for

motion planning in continuous C-spaces are combined with the discrete state

space in task planning. Task planning for manipulator robots have been inves-

tigated extensively for the study of CTMP, and indeed a number of different

methods have been proposed to interleave motion planning with task planning

for this domain. However, these research efforts have been dedicated to the de-

velopment of probabilistically-complete planners for finding feasible solutions to

highly complex planning problems. Yet there exists an opportunity to leverage

the concepts of CTMP to enable optimal task planning and facilitate adaptive

re-planning capabilities.

Task sequencing represents a special case of task planning, where the only

actions of interest consist of moving between goal points in the task space.

Though it shares much similarity to the class of TSPs, it carries increased com-

plexity due to the phenomena of kinematic redundancy and the necessity for

collision avoidance. This makes finding optimal task sequences very tricky due to

the large search space for these kinds of problems. While feasible solutions can

be obtained quite easily in this domain (e.g. by solving it as a standard TSP),

achieving optimal solutions is deceptively difficult. GTSPs and TSPNs provide

a more effective formulation for these problems and provide the opportunity to

use kinematic redundancy to improve task plans. However, these also carry in-

creased complexity that manifests in substantially longer computation times. A

key research challenge therefore lies in reducing the computation time required to

obtain high-quality solutions for sequencing problems involving both obstruction

and kinematic redundancy.

In the remaining sections of this chapter I will describe how these techniques

and methods are built upon by the current state-of-the-art to enable optimal and

adaptive task planning in the domains studied in this thesis.

2.2.2 Task Planning for MWRs

The concept of guiding a task planner with geometric knowledge inferred from

motion planning is not unfamiliar in the mobile robot planning domain. Numer-
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ous works have tackled mobile robot task planning as an MTP problem, whereby

solutions to individual path planning instances between pairs of goals were used

to determine an optimal visiting sequence of all goal locations. [108] presented one

example in which the authors treated the problem as a generic TSP and solved

it using the Genetic Algorithm (GA) applied to a graph representation of the

task. The GA chromosome represented a visiting sequence of goals and nodes,

evaluated according to idle time and energy consumption required to perform the

sequence. One caveat of their work was the assumption that the actual paths

between nodes and corresponding energy required to execute such motions were

known a priori, with no consideration for how to obtain these efficiently.

The work presented in [109] similarly applied a TSP representation for MTP

under uncertainty. Here motion planning was achieved through an offline-generated

feedback-based information roadmap, which consisted of nodes (representing robot

states) and collision-free edges that span across the robot’s configuration space.

During online planning, new nodes could be inserted into the roadmap to improve

its coverage when new information was discovered. One drawback of this method

was the high computational cost associated with the use of roadmaps. It is gen-

erally time-consuming to generate a roadmap for large environments and must

therefore be restricted to offline pre-processing. Furthermore, large roadmaps

consume significant memory due to the exponential increase in the number of

roadmap edges and are generally unsuitable for large, high-dimensional or com-

plex planning problems.

A self-organising map approach to solve polygonal MTP was presented in

[110]. In polygonal MTP, goal locations were specified as a goal region rather than

a single point, and only one point within each goal region must be visited. The

authors applied a two-layer network to incrementally improve the arrangement of

a pre-defined number of nodes to visit each goal region. This self-organisation is

based on the concept of advancing winning nodes towards a corresponding goal

centroid, which was determined from a shortest path approximation. Much like

the work in [109], the approximation of shortest paths from any point in the

search space to each goal region were pre-computed. Therefore, although authors

reported fast planning times for considered problems, the long pre-processing

time required for evaluating path feasibility and cost was not considered.

The use of multiple RRTs have proven advantageous in other works for ap-

plications such as in [52], where a multi-RRT approach was used to explore the
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search space for finding a flight path to maximise visual coverage of a pre-defined

manifold. Likewise, the work in [53] presented a multi-tree extension of the

T-RRT algorithm (Multi-T-RRT) for feasible path planning in MTP problems.

Through the use of the transition test, the Multi-T-RRT sought paths that fa-

vored lower path cost values, but the algorithm did not provide any optimality

guarantees.

Indeed MTP cannot represent more general mobile robot task planning prob-

lems as they fail to support additional actions and task dependencies. Numerous

pieces of existing work addressed this through the use of PDDL for general task

planning problems in the MWR domain. One recent example was presented by

Crosby et al. in [3]. Here the authors introduced an integrated mission and

task planning framework consisting of a top-level mission planner that allocated

abstracted tasks to a fleet of robots. A local task planner that adopts PDDL

planning was used to solve each set of tasks independently to generate a more

detailed set of action plans for each robot to execute. Notably, the framework

plans entirely in the symbolic state space, with the allocation of tasks in the

mission planner solved in relation to the individual skill set or capabilities of

each robot and the type of objects involved in the tasks. At the level of task

planning, the authors noted that re-planning (from scratch) took place when a

state of failure was encountered during execution. While this behaviour is useful

for recovering from failures, in the majority of applications we would normally

prioritise avoiding failures where possible. When considering obstacle uncertain-

ties for example, collision may result in damages to the robot or colliding object,

which could lead to downtime or early system failures over extended operation

and should be avoided entirely.

In [111], Zhang et al. demonstrated how heuristics could be combined with

PDDL planning to enable the search of solutions that meet application-specific

needs. The authors introduced the concept of plan explicability and predictability

to describe how easy it is for a human to understand the intentions and predict

a robot’s behaviour from observing its actions. Using heuristics that numerically

expressed these concepts, a modified FF planner that was guided by these two

concepts was used to find plans that were optimised for better explicability and

predictability.

The authors of [112] described the integration between a PDDL task planning

layer with a semantic information layer, which represents the relationship of
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objects as a hierarchy tree (e.g. the house contains a kitchen, which contains

a fridge and table). Through an interface between these two layers, the search

space of the task planner could be reduced significantly by filtering out irrelevant

information through the semantic hierarchy tree. Starting from a categorical plan

constructed from the semantic hierarchy, AI planners (such as the Metric-FF)

were recursively used to solve multiple planning sub-problems at various abstract

levels to finally obtain a solution to the problem. The authors explained that the

generation of semantic information was achieved through the use of sensors for

navigation and object localisation. However, their method does not capture the

geometric relationships of such objects within the task planner. As a result, this

approach was unable to optimise a task plan according to the cost of execution.

So far the work described above fail to account for the geometric knowledge

of the environment require for optimal task planning. This gave rise to the

opportunity to exploit the strengths of CTMP to improve the capability of mobile

robot task planners. The Unified Path Planning and Task Planning Architecture

(UP2TA) [113] pursued this direction for rover-based mission planning. The

UP2TA is composed of a PDDL task planning layer that integrates a deterministic

path planner (such as the A* [33] and Theta* [34] algorithms) to find optimal

plans. This approach consisted of a fast greedy algorithm for approximating

shortest path lengths between key locations, which were used to guide the task-

level deliberation layer. Once a task plan was obtained, a path planner based

on exact algorithms was invoked to determine the true motion path for each

movement action in the symbolic task plan.

The concept of task re-planning is not entirely new territory. For example,

Cirillo et al. [114] considered the problem of human-aware task planning, which

dealt with applications where the robot must take into consideration the presence

of humans (e.g. in households and offices). The authors proposed a planner that,

at its core, relies on a knowledge base of detectable human actions. Given a set of

possible human plans (e.g. in the form of a schedule of the human’s tasks during

the day), the planner computes a task plan for the robot that avoids interference

with the human’s anticipated tasks using PTLplan [115], a probabilistic, con-

ditional, temporal-logic planner that was developed to solve planning tasks that

involve a set of scenarios with associated probabilities of occurrence. Re-planning

takes place whenever the robot detects a change in the intended actions of the hu-

man to avoid interference. One limitation of this work is that only those actions
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that have been provided in the knowledge base are detectable, which does not

accommodate for unforeseen events. Other similar work on human-aware task

planning can be found in [116,117].

The authors in [118] explored the application of PDDL combined with motion

planning for manipulation and navigation re-planning. Using the FF-planner to

solve task planning queries, a reachability graph was initially constructed using

the solution to an initial task planning problem. Optimal solutions to individual

motion planning queries for each action in the reachability graph was obtained by

applying lazy kinodynamic motion planning by interior-exterior exploration (L-

KPIECE) [119], a motion planner developed for systems with complex dynamics.

When changes in the environment or failure was detected, the algorithm generated

an alternative plan by sampling a new symbolic state and performing a sub-task

planning query to connect this state to the reachability graph. A key feature of

this method was the capability to compare alternative plans and select the one

with the least effort to achieve the goal during the re-planning stage. For example,

when a movable obstacle is encountered, the planner would compare the option

of avoiding the obstacle against transferring the obstacle to another location and

choosing the option that required less effort. Although this approach enabled

the planner to choose the better plan from among multiple feasible solutions, it

did not provide any guarantee for optimality at the level of task planning, as it

did not integrate geometric knowledge within the task planner itself (i.e. motion

planning was performed after a task plan was obtained).

Key Findings The limitations of each of the above algorithms are summarised

in Table 2.3. As we have seen, MTP methods approach the task planning prob-

lem from the direction of low-level motion planning, where the objective is to

determine the most effective paths for navigating between goals. However, all of

these methods only supported simple task planning requirements and could not

accommodate additional planning features such as a wide set of actions and task

precedence constraints.

PDDL-based approaches on the other hand naturally cope well with these

requirements thanks to the expressiveness of the language, but they are generally

incapable of providing high-quality solutions that account for the cost of robot

motion. Various different mechanisms have been proposed in the literature to

determine a better plan from among several plans, but these have been inadequate
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Table 2.3: Limitations of Existing MWR Task Planning Methods

Ref. Method Problem Limitations

[108] GA MTP • Assumed known paths between every goal
a priori

• Only able to solve the MTP problem, not
general task planning

• Not suitable for dynamic environments
due to pre-computed paths between goals

[109] TSP +
roadmap

MTP • High computational cost
• Requires offline pre-processing
• Large memory required to store roadmap

[110] Self-organising
map

MTP • Requires pre-computing approximate
shortest paths from any point to goal

• Very expensive offline pre-planning re-
quired

• Cannot be extended to dynamic environ-
ments due to pre-computed paths

[53] Multi-T-RRT MTP • Does not possess any optimality guaran-
tees

• High memory requirements for extended
iterations

[3] PDDL Task
planning

• Unable to re-plan to adapt to uncertain-
ties in the task or environment

• Plans in purely symbolic space
• Does not return optimal solutions
• No guarantee that symbolic actions are

feasible at the execution-level

[111] PDDL +
intention-based
heuristics

Task
planning

• Does not account for geometric knowledge
when optimising task plans

• No guarantee that symbolic actions are
feasible at the execution-level

[112] PDDL +
semantics

Task
planning

• Does not account for geometric knowledge
- no optimisation performed

• Requires multiple calls to AI planners -
expensive for large state spaces

• No guarantee that symbolic actions are
feasible at the execution-level

[113] PDDL +
Theta*

Task
planning

• Requires discretisation of environment
• Not scalable to high dimension problems
• Requires explicit knowledge of obstacles

Continued on next page
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Table 2.3 – continued from previous page

Ref. Method Problem Limitations

[114] PTLplan Task
planning

• Supports adaptive planning to some ex-
tent but does not support unforeseen
events (relies on a priori knowledge of pos-
sible events)

• Does not account for geometric knowledge
- no optimisation performed

[118] FF-planner +
KPIECE

Task
planning

• Considers alternative plans to identify
better solutions, but does not actively
search for an optimal task plan

• Infeasible actions in symbolic domain not
known until after task planning - re-
planning until a feasible solution is found
can be inefficient for complex problems

for finding globally optimal solutions. I highlight the work in [113], which instead

followed the direction of CTMP to combine motion planning with task planning.

Their algorithm demonstrated the capability to achieve optimal task plans by

incorporating estimated motion costs derived from motion planning into PDDL.

However, the ongoing challenge in this direction lies in devising more efficient

approaches that scale well with the dimensionality of the problem. Even among

MTP methods that focus purely on the motion planning aspect of task planning,

efficient motion planning remains a challenge due to the number of path planning

queries that must be solved for multiple goals.

This thesis presents work that advance the state-of-the-art in this direction.

Specifically, Chapter 4 introduces a new method for integrating motion planning

with PDDL to solve task planning problems for MWRs. This work is inspired

by CTMP methods but, as discussed in Section 2.2.1.5, the concept of informing

a task planner with spatial reasoning is transferred to the domain of MWR to

enable the computation of optimal task plans. This work follows an approach

similar to UP2TA, but differs in its use of a novel sampling-based motion planner

that maintains high planning efficiency for high dimensional C-spaces. Focusing

in particular on Research Question 2 (Section 1.2.3) experimental evaluations

are performed to quantify the performance of the algorithm in terms of planning

efficiency and solution quality.

The work reviewed in this section have also shown that the practicalities of

some approaches were limited by the high memory resources required by the
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algorithms. Thus throughout the analysis of the presented algorithm, I give

particular attention to the viability of deploying the algorithm to lightweight

robots with limited computational power, which is a core research issue captured

by Research Question 4.

2.2.3 Robotic Task Sequencing

To highlight some of the ongoing challenges in the RTSP, this section provides a

concise summary of the progression of research developments found in literature to

date. Dubowsky and Blubaugh [120] were one of the first authors to consider the

use of TSP concepts for solving sequencing problems in robotics. They addressed

point-to-point tasks for an industrial robot arm and formulated the problem as

an asymmetric TSP, where the cost of moving between two task points accounted

for the influence of gravitational forces. In this early piece of work, the authors

did not consider the kinematic redundancy of the robot, and thus the problem

of configuration assignment had not been addressed. Likewise, the work in [121],

which studied a robotic sequencing problem for a fruit-harvesting manipulator

robot involving the use of TSP, had arbitrarily assigned a single configuration

to each task point. As a result, neither of the algorithms used in these works

provided a means to reduce the cost of a solution through the consideration of

assigning alternative configurations to task points.

The work presented in [104, 122] was one of the earliest works to consider

multiple IK solutions when solving RTSP. The authors formulated the problem

for a 3-DoF robot as a GTSP and solved it using the Traveling Salesman Algo-

rithm [123]. While this study proved the feasibility of the approach, the dimen-

sionality and scale of the problem considered were too small to be of relevance

for practical applications. Building upon this direction, Kolakowska et al. [124]

tackled the RTSP for a 6-DoF robot, where they proposed a multi-objective op-

timisation formulation that is subsequently solved by a constraint optimization

model. Reported results suggested that the method was viable for problems

involving up to 10 task points, but for larger problems the computation time

required became impractical (extending up to several hours for tasks involving

up to 12 task points and an upper limit of 6 IK solutions per point).

Some authors have approached the problem from a different direction and

formulated the RTSP as an optimization problem solved using the Genetic Algo-
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rithm (GA). Vitolo et al. [125] tackled a task sequencing problem for an optical

inspection system where each area requiring inspection could be observed from

any point within a system-defined task region. Any robot configurations that

positioned the on-board optical inspection system within this task region would

satisfy the requirement to inspect the given target area. Interestingly, rather than

explicitly considering the sets of IK solutions for each task region, the authors

computed multiple numerical descriptors such as pose quality, pose reachabil-

ity and collision to collectively evaluate each task region. Nevertheless, a TSP

formulation based in the task space was adopted and solved using the GA. Un-

fortunately, it is difficult to assess the performance of their proposed approach as

the authors did not provide a comprehensive evaluation of the described method.

The work in [126] also applied the GA to solve RTSPs. Here the authors pro-

posed a GA encoding that captured both the assigned configurations for each

task point and the task space tour of the points. In this way an optimal solu-

tion to the RTSP that directly considered the kinematic redundancy of the robot

could be obtained by applying the GA. The authors reported planning times of

approximately 1,800 seconds for a problem involving a 6-DoF robot and 50 task

points.

Kovác [107] addressed the sequencing problem in the context of robotic laser

welding applications. In his work, a modified TSPN was used to model the

problem in task space, which was solved within a fixed allocated planning time. In

the experiments, a planning duration of 600 seconds was used to tackle problems

of up to 71 task points. This work assumed the absence of obstacles within

the operational workspace of the robot taking into consideration the nature of a

purposely designed laser-welding cell, but the author acknowledged that this is

often not the case in practice. The author went on to show that when design

needs prioritised other objectives, the approach would require post-processing to

check for collisions and correct infeasible paths.

In all of the work discussed thus far, none had taken into consideration the

aspect of collision avoidance when solving the task sequencing problem. Contrast-

ingly, Jing et al. [127] treated the RTSP as a combined Set Covering Problem

(SCP) and TSP (SCTSP), which was subsequently solved using a Random-Key

GA. Their method involved travelling cost evaluations that used motion planning

queries to compute motion plans for all pose-to-pose pairs (only one configuration,

obtained by sampling, was considered for each task point). The exact costs of
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these paths, which captures the true motions required for navigating between any

two configurations, were used to directly inform the SCTSP planner. While the

authors had considered mostly clutter-free environments, their approach over-

came the limitations of simple distance metrics providing poor estimations of

motion costs required for collision avoidance. Despite this, computation times of

approximately 3 hours were reported for an obstacle-free environment involving

up to 400 task points. Unsurprisingly, it was shown that the most time-consuming

steps corresponded to the computation of pose-to-pose motion plans. The authors

had also presented an extension of this work to consider multiple IK solutions for

each task point [128]. In this case, the problem was formulated as a combined

SCP and GTSP. The efficiency of the approach had not been reported for the

trials conducted in their study, but one could expect planning times to be at least

several folds greater than their original work due to the exponential increase in

the number of pose-to-pose pairs introduced.

It is clear that an exhaustive search involving the computation of true motion

costs for all possible pose-to-pose pairs is impractical as it scales poorly with

the dimensionality and size of the planning task. In view of this, Spitz and Re-

quicha [129] proposed the use of a probabilistic roadmap to establish connectivity

between task configurations and subsequently solving for a tour of points in the

C-space. However, the authors did not consider the case of multiple IK solutions.

Rather, the method had been demonstrated on a problem in which each task

point was already assigned a single configuration, with no indication of how these

configurations were chosen. The authors of [130,131] extended their work in [126]

to account for obstacle occupancy information in the 2D and 3D space, respec-

tively, by adopting a bump surface concept. The distribution of the obstacles in

the search space was captured as a single mathematical entity and encoded into a

single objective function that is solved using a GA. However, in the experiments

reported in their papers, only tasks involving up to 15 task points were solved

using this method.

In all of the aforementioned work, a key limitation is the long, and sometimes

impractical, computation times required to solve problems involving a relatively

moderate number of task points. In real-world applications, a task sequencing

problem can often involve hundreds to thousands of task points, which simply

cannot be solved efficiently using many of the work described above. In constrast

to these work, Gueta et al. [132] proposed the use of clustering to reduce the
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planning time required to solve larger sequencing problems. Given the set of task

points for sequencing, their approach consisted of first partitioning the points

into a pre-defined number of groups (or clusters) according to their topological

distribution in task space. The 2-Opt algorithm [133], a popular method for solv-

ing TSPs efficiently while providing near-optimal solutions, was used to minimise

the cost of visiting the set of clusters according to the Euclidean distance metric

in task space. Entry and exit points between clusters were then chosen based on

closest points between successive clusters, and the Lin-Kernighan heuristic [134]

was applied to solve each sequencing sub-problem within the clusters. The as-

signment of robot configurations to task points was performed once the entire

task sequence was obtained.

The more recently proposed RoboTSP algorithm [135] has been demonstrated

successfully in solving sequencng problems involving large sets of task points by

several orders of magnitude less computation time while achieving plans of com-

parable quality to alternative methods. The algorithm achieves this by first for-

mulating a TSP problem in task space, which is solved using the 2-Opt algorithm

to obtain a task space tour of task points. Once this tour is obtained, the as-

signment of robot configurations is achieved by generating a graph where nodes

represent the IK solutions of task points, while edges connect configurations that

correspond to the immediate predecessor/successor task points in the task se-

quence. A graph search is performed using the Dijkstra’s algorithm to find the

best assignment of configurations for the given task sequence. Like many other

previous work, however, the limitation of this method lies in its inability to ac-

count for obstacles when determining an optimal sequence as it relies upon simple

distance metrics applied in the task space for ordering points. Therefore, even

though the algorithm is able to find the best assignment of configurations for a

given task space tour, the tour itself can often be sub-optimal in the presence of

spatial constraints.

In [136], authors presented an Equality GTSP formulation to the RTSP and

applied the Lin-Kernighan-Helsgaun (GLKH) solver to compute optimal task se-

quences for tracing open and closed contours using a remote laser processing

system. Here the objective was to optimize the sequence of entry and exit points

to sequentially access each contour, where open contours could only be accessed

through its end points, while closed contours could be accessed from any point

along the contour. Using a redundant 7-DoF system, sampling was used to gen-
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erate 100 configurations for every viable entry and exit points in the task. By

applying the GLKH solver, a tour across the access points (alternating between

entry and exit points) could be optimised taking into account the assignment of

the best configuration for the overall task. Importantly, the authors recognised

that the GLKH solver did not provide a guarantee for globally optimal solutions.

Instead, the GLKH solver provides incrementally better solutions by iteratively

solving the task sequencing problem. For a study involving a combined total of

52 access points (both entry and exit) and 3000 iterations for the GLKH solver,

an approximate computation time of 15 hours was required to obtain a solution.

These long planning times were also noted in the benchmarking studies conducted

in [135]. It can be concluded, therefore, that GLKH solvers offer the potential

to find high quality solutions (even among obstacles), but are strictly limited to

expensive offline planning.

For a more comprehensive review of existing methods for RTSP, I refer readers

to [102], which covers literature up to and including 2014.

Key Findings The limitations of existing work on RTSPs have been sum-

marised in Table 2.4. While a different approach has been used in each of these

works, their limitations broadly remain the same. With the exception of [135], all

of the reported methods were evaluated on small sets of task points that do not

accurately represent the scale of planning problems for many real-world applica-

tions. Consider for example the use of a point probe to carry out high-resolution

measurements of a component. A large distribution of points across the surfaces

of the component would be necessary to achieve a detailed profile. This is a

common requirement for applications such as in-service inspection, quality mon-

itoring and failure analysis, where problems can often involve several hundred to

thousands of points. Though various authors have demonstrated the viability of

their methods to find optimal solutions to small sequencing problems, the long

computation times (of up to several hours) reported prevent these algorithms

from scaling well in practice for numerous real-world applications. This is also

why these methods are restricted to offline planning.

The work in [132] and [135] are exceptions, as they have been shown to provide

solutions considerably faster. The RoboTSP method [135] in particular stands

out for being able to solve problems involving several hundred points in the order

of minutes while being able to provide near-optimal solutions in relatively clutter-
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Table 2.4: Limitations of Existing RTSP Methods

Ref. Method Limitations

[120] Asymmetric
TSP

• Only considers one configuration per task point
• Fails to find optimal solutions due to failure to account

for kinematic redundancy

[121] TSP • Only considers one configuration per task point
• Fails to find optimal solutions due to failure to account

for kinematic redundancy

[104,122] GTSP • Only evaluated on a 3-DoF robot - does not scale well
with robot DoF

• Method has only been evaluated on a very small set
of task points

[124] Constraint
optimisation

• Only evaluated on very small task sets
• Very long computation times (several hours for simple

problems)

[125] GA • Does not account for motion planning and collision
avoidance

• Evaluation results not available - performance not
proven

• Does not explicitly consider the set of IK solutions

[126] GA • Have only been evaluated for problems involving up
to 50 task points

• Long computation time (1800 seconds for 50 task
points)

• Does not account for motion planning and collision
avoidance

[107] TSPN • Assumes the absence of obstacles in the environment
• Only evaluated on relatively small task sets (<100

points)
• Relatively long computation time (600 seconds for 71

points)

[127,128] SCTSP • Requires computing motion plans for all pose-to-pose
pairs between every task point

• Very computationally expensive - requires approxi-
mately 3 hours when not accounting for kinematic
redundancy

• Planning becomes intractable when accounting for
kinematic redundancy for large task sets

Continued on next page
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Table 2.4 – continued from previous page

Ref. Method Limitations

[129] TSP + PRM • Does not account for kinematic redundancy
• No clear approach to choosing one configuration for

each task point prior to applying the algorithm
• Memory-intensive for motion planning using PRM

[130,131] GA + bump
surface

• Method has only been evaluated on very small task
sets (up to 15 task points)

• Poor scalability

[132] CTSP • Sequencing problem solved in task space - can result
in sub-optimal solutions

• Task sequence determined without considering kine-
matic redundancy

[135] RoboTSP • Sequencing problem solved in task space - can result
in sub-optimal solutions

• Task sequence determined without considering kine-
matic redundancy

[136] GLKH • Does not guarantee a globally optimal solution
• Very long computation time (up to 15 hours)
• Evaluated on a comparatively small set of task points

(up to 52 points)

free environments. This was achieved by solving the sequencing sub-problem in

task space, which has the drawback of producing sub-optimal solutions in heavily

spatially-constrained environments as it fails to account for problems such as poor

reachibility of task points and the possibility of encountering singularities. Thus

the improvements in planning efficiency are offset by poorer robot performance

during execution.

Achieving an effective balance between finding high quality solutions and min-

imising the computation time of algorithms remains an ongoing challenge in RTSP

literature. This is particularly true for problems involving large sets of task points

and complex spatial constraints. Chapter 6 of this thesis is devoted to these re-

search challenges, where I present a new method for solving static RTSPs with a

particular focus on improving planning efficiency without impairing the quality

of solutions obtained in spatially-constrained environments. This work serves as

an important milestone for advancing techniques towards online and adaptive

planning by addressing Research Question 3 (Section 1.2.3) in the context of
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RTSPs.

2.2.4 Adaptive Task Planning

Whilst the literature discussed until now have touched upon the concepts of adap-

tive and dynamic planning, this section provides a detailed review of the current

state-of-the-art in adaptive planning. Section 2.2.4.1 covers adaptive techniques

and methods for general robotic task planning domains, which is of particular rel-

evance to task planning for MWRs investigated in this thesis. Section 2.2.4.2 then

narrows down on the RTSP, which is a problem that, to the best of my knowledge,

has not been addressed thus far for online and dynamic environments. In fact,

the related work discussed for adaptive RTSPs do not adequately address the

problem, but rather solves a closely related dynamic travelling salesman problem

(DTSP).

2.2.4.1 General Task Domains

Enabling adaptive behaviours in robotic planning requires considerations for re-

planning at two levels: the top-level action sequence and the low-level robot

motions for executing any individual action.

Vannoy et al. introduced the real-time adaptive motion planning (RAMP)

method [137] to address the motion planning component of adaptive planning

in dynamic environments. Inspired by concepts from EAs, RAMP consists of

maintaining a population of trajectories (both feasible and infeasible) for a given

motion planning problem. At each planning cycle, the algorithm seeks to improve

the population of trajectories by iteratively applying operators to seek higher

quality trajectories according to a fitness function (the approach closely resembles

the strategy adopted by GAs). The fitness function evaluates the quality of a

trajectory according to the feasibility of the solution (e.g. the percentage of the

path in collision with the environment) and the cost of the path (e.g. length or

execution time). During execution, the planner selects the trajectory with the

best fitness value and deploys it to the robot. A key feature of this method is the

allowance for the execution of infeasible trajectories up until the point of expected

collision is reached. Planning cycles are continually performed during execution

and a control cycle is used to define the update rate of the executed trajectory.

When a better trajectory has been found at a new control cycle, the current
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execution is updated with the new trajectory. This enables the robot to adapt

to dynamic changes in the environment by switching to a better trajectory when

the current trajectory’s fitness value deteriorates as a result of new obstacles.

The method is advantageous for its high planning efficiency and its anytime

characteristics - that is, the planner is able to begin execution quickly while

additional planning time is used to improve the quality of the final trajectory.

RAMP was later extended to task-constrained manipulator motion planning in

[138]. The planning domain consisted of a robot whose motion was constrained

by a given task (e.g. holding a tool or object and maintaining a fixed orientation

for the end effector). Where no solutions exist for avoiding the obstacles due to

task constraints, the authors proposed the relaxation of constraints to enable the

robot to avoid the obstacle before returning to its original task. This was achieved

using RAMP by maintaining two populations of trajectories, corresponding to

those that achieve the task by following given constraints, and trajectories that

seek an intermediate goal location for obstacle avoidance without constraints.

While RAMP has proven efficient for motion planning in dynamic environ-

ments, it is limited by the inability of the algorithm to guarantee optimal solu-

tions. Since the quality of trajectories are determined by stochastic operators

without explicit considerations for the environment, the rate of convergence to

an optimal solution is low. This is particularly true for complex environments

where intricate motions are required to overcome obstacles.

The work in [139] presented an alternative approach to motion re-planning for

CTMP problems involving dynamically-changing task goals. Rather than explic-

itly computing a defined trajectory in the planning phase, the authors adopted

a reactive control approach that produced the necessary actuation commands to

move a robot towards changing goals through considerations at the controller

level. Task goals corresponded to goal poses for the robot end effector or manip-

ulated objects, which were defined relative to a target frame in Cartesian space

such that any changes in the world pose of the target frame would not affect

the representation of target goals. Robot motion was realised through a reactive

controller that sought to drive the robot to the defined goal poses according to

a sequence of actions obtained through PDDL task planning. This approach re-

sulted in fast, real-time adaptive behaviour to dynamic goals, but fails to account

for obstacle avoidance, joint limits and singularities as the actuation of the robot

was determined by a control scheme defined in Cartesian space. Furthermore, this
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method only supports adaptive motion planning. Task plans were assumed to re-

main valid (and optimal) across the entire duration of the task, but in real-world

applications this assumption generally does not hold true.

James et al. [140] also investigated end-to-end control for the execution of a

robot task without explicit motion planning. They proposed the use of convo-

lutional neural networks (CNN) that were trained in simulation to map visual

images of an environment to feasible trajectories that accomplish the task. A

large set of randomised planning domains were generated in simulation to pro-

vide training data that was generalised across different environmental variables

such as dynamic lighting and moving objects. Each of these planning domains

were solve using conventional motion planners to obtain a feasible solution, which

were supplied to the CNN with corresponding images of the environment to con-

duct training. The authors demonstrated that this approach could enable a robot

trained fully in simulation to conduct tasks of the same nature robustly in the

real world. The strengths of this work was the scalability of the method and

efficiency of the planner once trained for a given task.

This CNN approach to adaptive motion planning carries a number of limita-

tions that drastically affect the practicality of the approach for many applications.

Firstly, the performance of the system is highly dependent on the quality of so-

lutions generated for training instances. If the training data do not reflect the

current task well (e.g. if the task has not been seen before), the planner may

entirely fail to obtain a feasible solution. Secondly, the CNN requires a large

set of training data, making the process of training very time-intensive. Whilst

generating this data through simulations is comparatively easier than using real-

world data, it is still not possible to apply this method to new planning problems

rapidly. Finally, the method presented in the paper performs basic motion plan-

ning to obtain linear paths between Cartesian points, which can be encoded

efficiently without loss of detail in the CNN. However, it is unclear if this extends

well to complex, C-space trajectories necessary for obstacle avoidance in cluttered

environments.

Focusing on re-planning at the task-level, Zhou et al. studied the problem

of human-intention aware task planning and proposed the use of behaviour trees

(BTs) to represent a planning domain and problem more conveniently for adap-

tive re-planning [141]. BTs involve the use of internal nodes to represent logical

operators that capture the preconditions of actions and relaying these to leaf
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nodes that implement primitive actions such as the actuation of motors in a par-

ticular way. This representation streamlines the logical decisions for executing

specific actions given a known state of the world. The authors adopted the hier-

archical planning in the now framework [92] to map BTs to the planning domain.

As actions were executed according to the planning in the now framework, the

planner queried the BT to re-establish a new set of actions to reach the goal when-

ever failed actions were encountered. While this method allows for re-planning in

response to changes in the validity of actions, it does not provide optimal action

sequences nor guarantee the feasibility of individual actions due to the inherent

limitations of the planning in the now framework, as discussed in Section 2.2.1.3.

Furthermore, this framework does not account for low-level motion re-planning,

preventing the planner from avoiding collision with dynamic obstacles.

Planning in the now was similarly adopted in [142], where a cloud-based frame-

work was used to combine perception information on the wider world with robotic

task planning and execution for dynamic environments. While task planning was

performed on-board the robot, queries for global knowledge of the world was ful-

filled by the cloud. The authors introduced the concept of continual planning in

the now, where an original task was divided into sub-tasks. Rather than com-

puting a complete plan to fulfill the requirements of all sub-tasks, the strategy

consisted of solving the task and motion planning problem for each sub-task only

immediately before they were due to be executed. This reduced the frequency

of re-planning for actions that would not be performed in the early stages of a

plan. Though this method improved the efficiency of planning in the now for

online planning, it also failed to compute optimal task plans and required actions

to be reversible to overcome dead-ends. Furthermore, the framework proposed

in this work relied upon the cloud to provide processing capacity for percep-

tion information, which is not always available for robots deployed into remote

environments.

He et al. [143] introduced a task planner developed to accomplish tasks that

involved human intervention, where a human was capable of assisting or interfere

with the tasks of the robot. As the robot began to execute a planned sequence

of actions to accomplish a task, adaptation was required to respond to changing

world states that resulted from human actions. The authors proposed a reactive

synthesis approach based on game theory to develop planning strategies that guar-

anteed the success of the task by evaluating all the modelled human behaviours.
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The symbolic task planning problem was modelled using a compositional method

applied to linear temporal logic over finite traces (LTLf) synthesis to capture the

task and domain as binary decision diagrams. These were combined into a game

that was solved to obtained a winning strategy, which was subsequently mapped

back into the planning problem. This enabled the robot to adapt actions quickly

online by observing the state of the world during execution and performing the

corresponding actions based on the winning strategy to ensure the success of the

task. The limitations of this work is the absence of spatial reasoning, derived from

motion planning, to inform the search for an optimal task plan. Furthermore,

planning decisions took place after the execution of each action, but no support

for online dynamic obstacle avoidance was provided.

In [144], CTMP was combined with reinforcement learning to address task

planning problems with dynamic and uncertain environments. The framework

consisted of alternating between an inner and outer loop to progressively improve

the quality of solutions found. The inner loop used a conventional task planner

that solved the problem in purely symbolic form. The feasibility of the resulting

plan was then evaluated using a motion planner. This task-motion sequence

was then passed to the outer loop that employed reinforcement learning, where

the solution from the inner loop was used to learn rewards based on its quality.

When solutions were deployed through the outer loop, new observations of the

environment affecting the executed plan would be used to learn new rewards.

Any updates to the reward values were fed back into the inner loop to update

the quality of actions in the task planner. In this way the planning framework

enabled a robot to adapt to dynamic environments while learning higher quality

solutions over time. A key drawback of this method is the slow pace of learning

that results from incrementally updating the rewards and feeding it to the task

planner. This is not of substantial concern for slowly changing environments, but

in highly uncertain or rapidly changing environments, the planner would fail to

keep up with changes and consequently return sub-optimal solutions, or worse,

fail to return a solution. The latter can occur as the task planning layer of the

inner loop is not informed by motion planning knowledge and thus fails to identify

geometrically-infeasible actions.

Schmitt et al. [145] similarly employed the use of reinforcement learning to

achieve adaptive planning in dynamic environments. Focusing on the task of

manipulation, the authors represented the C-space as a finite, intersecting set of
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state spaces where transitions between a subset of states were mapped to discrete

actions. This provided a convenient representation for describing the switch be-

tween grasp-free states and contact-constrained states. When planning online, a

constraints-based model was used to derive a set of constraint-based controllers

that served as the discrete set of actions required for reinforcement learning. Each

of these controllers applied an APF-like behaviour for transitioning the robot to-

wards switching states while avoiding collision and satisfying existing constraints.

The reinforcement learning agent was trained in simulation to enable the selection

of appropriate actions (each corresponding to a single low-level controller) that

guide the robot towards the goal state. Under the right conditions, this method

can provide fast adaptive behaviours to avoid collision while finding feasible ac-

tions that contribute to reaching the goal. However, since this approach does not

perform explicit motion planning, the method cannot provide optimal task plans

through spatial reasoning. Furthermore, the method inherits the problems of

both APF and reinforcement learning, meaning that it can encounter local min-

ima during execution, while an extensive learning phase is required to converge

to optimal reward values.

Online re-planning for partially-observable planning problems was investi-

gated in [146], where the task involved a partially-occluded environment formed

by objects such as large obstacles, closed doors and walls. Accomplishing a task

in this type of environment involves planning actions online to progressively im-

prove the robot’s belief space of the world. The authors addressed this problem

by employing PDDLstream, a variant of PDDL that supports sampling of con-

tinuous variables, to model hybrid belief-state stochastic shortest path problems

(SSPP). Two key strategies were introduced to improve the planning efficiency

online. Firstly, the planner constrained the structure of new plans to retain the

unexecuted actions of previous plans, speeding up the process of solving multiple

task planning queries while avoiding the repetition of actions involving random

variables. Secondly, the planner postponed the computation of plan parameters

that were not immediately required for execution. This minimised the number of

computations performed by leveraging the assumption that changes would likely

be made to actions that appear in the later steps of a plan due to new observa-

tions. Nevertheless, this work did not address the problem of online re-planning

in dynamic environments, nor did it seek to optimise a task plan through spatial

reasoning.
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Table 2.5: Limitations of Adaptive Planning Methods

Ref. Method Limitations

[137,138] RAMP • No optimality guarantees
• Adaptive motion planning only
• Executed solutions may not be fully feasible - forced

stops may occur

[139] Reactive control • Adaptive motion planning only
• Motion planning takes place in the Euclidean space

- does not account for joint limits and singularities
• Does not address obstacle avoidance

[140] CNN • Adaptive motion planning only
• Training is required for each new type of task, and

large training data is required to achieve good per-
formance

• Quality of performance depends upon the quality of
solutions for training data

• Basic linear motion planning considered - perfor-
mance of system for complex trajectories unknown

[141] BTs + HPN • No optimality guarantees
• Adaptive task planning only
• Does not account for infeasibility of motions when

planning task actions
• BTs require careful construction to achieve conver-

gence to desired goal condition

[142] HPN + task
partitioning

• No optimality guarantees
• Requires reversible actions
• Requires access to the cloud - not practical for re-

mote deployment of robots

[143] compositional
method + LTLf

• Adaptive task planning only
• Re-planning takes place only at the end of each ac-

tion
• Does not address re-planning in dynamic environ-

ments

[144] CTMP + RL • Slow convergence as task planning is not informed
by feasibility in motion planning layer

• Slow pace of learning is ineffective for highly dy-
namic environments

• Extensive learning for an environment is required
for good solutions - not effective for rapid deploy-
ment in new environments

Continued on next page

92



Wong, C. Planning in Robotics

Table 2.5 – continued from previous page

Ref. Method Limitations

[145] Constraint-based
model + RL

• APF-like motion planning can encounter local min-
ima problems

• Reinforcement learning requires extensive learning
for each new planning domain

• Task planning not informed by motion costs

[146] PDDLstream +
SSPP

• Does not address re-planning in dynamic environ-
ments

• No optimality guarantees
• Re-planning takes place only at the end of each ac-

tion

Key Findings Table 2.5 summarises the limitations of the literature discussed

above. A key limitation common across the adaptive task planning methods that

have emerged in recent years becomes apparent through this review: no method

currently exists to achieve adaptive task planning in dynamic environments while

at the same time provide optimal solutions. This has important implications to

Research Question 2 introduced in Section 1.2.3 - it is generally difficult to achieve

both high quality solutions and high planning efficiency in the context of robotic

task planning. Evidently, this remains an ongoing challenge in the literature and

authors have so far only achieved high planning efficiency for dynamic planning

applications, or high quality solutions in extended offline planning.

The research reported in this thesis addresses this knowledge gap through

the investigation of task planning for MWRs and the problem of robotic task

sequencing for high DoF robots. Chapters 4 and 6, respectively, consider these

two problems from an offline planning direction. This enables the algorithms

developed in this work to be compared in terms of plan quality against baseline

planners in literature. Attention is also given to Research Question 3 in these

chapters as I describe techniques and considerations that improve the planning

efficiency of the algorithms to better cope with online planning requirements.

This is more fully explored in Chapters 5 and 7, where I extend developed al-

gorithms to dynamic environments. In particular, I evaluate the efficiency of

these algorithms for re-planning in terms of computation time and demonstrate

the capability of the algorithms to maintain near-optimal solutions relative to

their offline counterparts. The work presented in these chapters push the state-

of-the-art, demonstrating how an effective balance between plan optimality and
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computational efficiency can be achieved for adaptive planning problems.

Within the scope of dynamic planning, I make a clear distinction between

dynamic goals and dynamic environments, both of which constitutes to a dynamic

planning problem. As observed in the reviewed literature, some methods have

been develop to adapt according to changes in the task goals. For example,

the reactive controller method presented in [139] enabled the robot to adapt its

motion to successfully manipulate objects where the target is changing in time.

This requires the robot to track the moving target. This similarly applies to [140].

On the other hand, methods such as those reported in [137, 138, 142] seek to re-

plan tasks and motions to avoid collision with dynamically-moving obstacles in

the environment. In this research, I focus on the latter aspect of dynamic planning

involving obstacles that invalidate existing plans and trajectories.

2.2.4.2 Adaptive Robotic Task Sequencing

This section gives special attention to adaptive planning for RTSPs. To my

knowledge no existing work in literature directly addresses the RTSP online for

dynamic environments. However, one may find somewhat close resemblance of the

problem to the Dynamic TSP (DTSP), a variant of TSP that has been receiving

growing attention in the optimisation community. Let us briefly review some of

these work.

One of the first appearances of the DTSP actually came in the form of a

vehicle routing problem introduced by Psaraftis in 1980 [147]. Here the problem

considered a single vehicle required to respond to dial-a-ride requests with the

objective of minimising the vehicle’s total journey time and individual customer

waiting times. The dynamic nature of the problem appeared through the in-

termediate requests made during the execution of an existing route, which were

dynamically considered as they occurred such that the minimised route was up-

dated to reflect new customer requests. Generalising this, the DTSP describes

a problem in which a single agent is required to visit a set of n(t) cities once

and return to the starting city, where n(t) is a function of time t. The distance

matrix D(t) contains the set of individual distances (or costs to travel) between

each city d(t) ∈ D(t), which are also subject to change with respect to time t.

The objective of the DTSP then is to find the minimum-cost route to visit the set

of n(t) cities at any given time t subject to the time-varying distances in D(t).

It has been noted by authors that, similar to the DRTSP, many methods
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developed to solve the static TSP are generally too inefficient for DTSP due to

the computational costs required to converge to high quality solutions [148]. As

a result, many DTSP methods generally accept somewhat sub-optimal solutions

in exchange for achieving higher planning efficiency for solving TSPs in dynamic

scenarios.

Jurjee et al. [149] highlighted in their work the significance of Evolutionary Al-

gorithms (EAs) for solving DOPs as they benefit from the mechanism of exploring

the search space through population diversity. This particularly applies to swarm

algorithms inspired by nature that involve multiple candidate solutions formed

by individual members of a population. The general idea of solving DTSPs using

EAs consists of retaining the population used to obtain the optimal solution of

a previous search to solve a new instance of TSP when changes are observed in

n(t) or D(t). This eliminates the need to start from a fresh search that begins

further away from the new optimal solution. In fact as Tinós [150] had discovered

through a simulation-based analysis of the DTSP, new best solutions resulting

from changes in a TSP are generally not far away from the previous best solution.

Following in this direction, the work in [149] subsequently proposed a modified

harmonic search algorithm for DTSPs, where a multi-population search strategy

was combined to maintain population diversity. Although the work addressed

DTSP, the results presented only considered the offline planning performance in

relation to the quality of solutions obtained, with no reported results for the

planning efficiency of the approach.

In [151], a heterogeneous discrete Particle Swarm Optimization (PSO) algo-

rithm was proposed to solve the DTSP. Normally in a homogeneous PSO, all

particles that make up the population carry the same values assigned to search

parameters that determine the balance between exploration (i.e. searching across

the whole search space) versus exploitation (narrowing in on promising regions).

However, in the heterogeneous PSO, individual particles are assigned different val-

ues for search parameters such that different particles exhibit different levels of

exploration and exploitation. The discrete PSO is used to solve an initial instance

of the TSP, and each subsequent change afterwards generates a new instance of

the TSP that must be again solved (the authors referred to each instance as a

sub-problem). For all sub-problems after the first, the population of particles

used to obtain the previous solution is carried forward as a starting search for

the new sub-problem. Thanks to the heterogeneous nature of the PSO, parti-
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cles that prioritise exploration enable the algorithm to find the new optimal with

improved efficiency compared to starting a fresh search. For a DTSP problem

involving 442 cities and 11 sub-problems (i.e. an initial TSP plus ten subsequent

changes to the problem), the method required between 11.2 to 108.3 seconds to

solve all sub-problems. Note that this variation in time is correlated with the

number of iterations permitted for the search (PSO is an iterative method), with

more iterations leading to better quality solutions.

Following in a similar direction to the above work, Mavrovouniotis et al. [152]

proposed the use of a modified Ant Colony Optimization (ACO) algorithm to

solve DTSPs. The standard ACO, inspired by the trail-following behaviour of

ants in the real-world, is incapable of solving DOPs as the pheromones converge

towards a single trail (i.e. the solution) at the end of a search. To address

this, the concept of immigrants schemes was combined with the ACO to increase

population diversity such that trails from previous searches could be retained

and re-used for subsequent searches. In later work published in [153], the same

authors demonstrated that an ACO integrated with a local search operator could

return a new solution in response to dynamic change in approximately 1.5 seconds

for a DTSP containing 200 cities.

Perhaps the closest work in literature to investigate a problem that resembles

the DRTSP lies in [154], where the authors addressed a dynamic task sequencing

problem for a serial manipulator. Though at first this may appear to directly

address the DRTSP, the presented method in fact formulated the problem as

a DTSP, giving no consideration to a number of key features that define the

DRTSP. The authors proposed the use of a Monte Carlo tree search to generate

task sequences for a manipulator that dynamically received new tasks to execute

online. However, these tasks were defined by positions which were directly used in

a path planner to compute motions without considerations for kinematic redun-

dancy (it is unclear whether planning was performed in task space or C-space).

Secondly, in their considerations the environment remained static and only the

number of tasks (or cities in the TSP notation) were added dynamically. In other

words, the problem reverted to a standard DTSP with the distance between cities

determined by a motion planner. Planning times for producing solutions to the

sequencing problem had not been reported.

Despite the relevance of these advances in DTSP, it is important to recognise

that addressing RTSPs in dynamic environments is a much harder problem in
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comparison. In the RTSP, the distance between any two points is not simply

a direct line between them as it corresponds with physical robot motion that

must adhere to joint limits and avoid collision. Furthermore, kinematic redun-

dancy still applies in the dynamic version of the RTSP, which increases the scale

of the problem by manifolds. These two features of the RTSP jointly increase

the complexity of the problem exponentially compared to the standard DTSP.

Thus the methods reviewed here would not be adequate for solving RTSPs in

dynamic environments. The research presented in this thesis specifically targets

this knowledge gap and seeks to extend the state-of-the-art in RTSPs to enable

adaptive task sequencing. To this end, Chapter 7 presents a preliminary study

on Dynamic Robotic Task Sequencing Problems (DRTSPs), where I introduce

the concept of partial planning to show how planning problems can be addressed

more efficiently in light of the requirements for online planning (see Research

Question 3 in Section 1.2.3). The chapter then presents an adaptive RTSP algo-

rithm to address dynamically changing environments, where I also examine the

necessary considerations required to apply the algorithm in physical robots (see

Research Question 4 in 1.2.3).

2.3 Summary

This chapter has presented a literature review on optimal and adaptive task

planning and motion planning, covering both fundamental developments and the

current state-of-the-art.

Section 2.1 has been devoted to motion planning algorithms, where methods

have been categorised under deterministic methods, sampling-based methods and

machine learning-based methods (the latter further comprising of reinforcement

learning, learning from experience and evolutionary algorithms). Sampling-based

algorithms have emerged as the more reliable approach for their balance between

solution quality, planning efficiency and scalability to high dimensional prob-

lems. While machine learning methods have demonstrated good potential for

planning quickly online through building “experience”, they are heavily limited

by their poor scalability and requirement for a substantial learning phase. Tak-

ing into account the necessity for both performance and reliability in dynamic

environments, the research in this thesis follows the direction of developments in

sampling-based methods. Section 2.1.4 closed this section with a summary of the
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limitations of existing work and goes on to describe how the contributions of this

thesis overcomes some of these problems.

Section 2.2 comprises of task planning-related literature. I have introduced a

number of fundamental techniques across the areas of CSP, PDDL, CTMP and

task sequencing. Given the two main task and path planning problems studied

in this thesis, I go on to cover literature specific to optimal task planning for

MWRs and RTSPs, highlighting the limitations of these work and outlining the

knowledge gaps that are addressed in this thesis with respect to the research

questions introduced in Section 1.2.3. Finally, this chapter reviews recent state-

of-the-art methods in adaptive planning across various robotic planning problems.

Findings showed that planning for high-quality task plans while achieving efficient

re-planning at the level of task planning and motion planning remains mostly

elusive. In fact, within the scope of RTSPs, no existing work have investigated the

problem of online planning in dynamic environments. These ongoing challenges

serves as motivation for the developments presented in this thesis, which advance

the state-of-the-art towards enabling both optimal and adaptive task planning in

dynamic environments.
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Chapter 3

Motion Planning in Dynamic

Environments: A Case Study

3.1 Introduction

As Chapter 2 has illustrated, solving a planning task for robotic applications is

by no means a trivial task. Both motion planning and task planning have largely

been addressed as offline planning problems, where extensive planning time is

invested into finding a high quality solution to each of the respective problems.

Doing so, however, requires that the environment remains static during execution

- no external influences should affect the state of the world. This imposes strict

limitations on the application of robotics in the real world, where environments

are often dynamic, unstructured, uncertain and unpredictable. Adaptive robotics

capable of dealing with change and uncertainty require online planning strategies

that allow the robot’s behaviour to adapt in response to perceived changes in

the state of the world. This introduces additional algorithmic challenges to an

already complex planning task.

Enabling dynamic planning at the level of task planning is difficult as it re-

quires a way to efficiently propagate changes to the feasibility of actions across

the search space when environmental observations are made. Perhaps because of

this the majority of research efforts in adaptive robotics to date has been devoted

to the area of dynamic motion planning, a comparatively simpler problem

that is often considered a sub-component of task planning.

This chapter presents a case study that explores some of the necessary con-
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siderations when implementing motion planning for dynamic environments by

investigating a dynamic pick and place task as a use case.1 I examine the chal-

lenges that are introduced through this case study and put it in the wider context

of both task and motion planning. The chapter concludes with a number of ob-

servations that have influenced the design of the planning algorithms presented

in Chapters 4-7.

The case study examined in this chapter is set in the context of industrial

robotics. The apparent shift towards more flexible and intelligent manufactur-

ing acts as a key driver for adaptive and autonomous robots on the shop floor.

Practitioners are becoming increasingly aware of the opportunities provided by

human-robot interactions and collaborations to improve the flexibility and effi-

ciency of many tasks, where robots and humans operate in shared spaces. To

ensure the safety of human workers in these scenarios, the robot must adequately

avoid collision with the human workers in all circumstances.

Various pieces of work in literature have sought to implement adaptive ca-

pabilities in robots to enable corrective behaviour to some extent when changes

are detected in their environments [156–158]. Nevertheless, this area of research

is still in its infancy, and the reliability of dynamic planning capabilities have

yet to be proven in the real-world. To better understand the considerations that

should be taken into account when implementing motion planning in dynamic

environments, a case study was conducted on a pick and place task involving

an industrial manipulator set within an environment consisting of a dynamically

moving obstacle2. The robot was required to approach a grasp object, pick it

up, and transport it to the placing location while avoiding collision with the dy-

namic obstacle. Achieving this involved the integration of machine vision, motion

planning and robot control.

In this chapter, I first introduce the high-level integrated robotic system for

1The case study described in this chapter has been partly published as a journal article
in [155], for which I am a co-author. Whilst the article reports research contributions from
the perspective of machine vision, my contributions in this chapter lies in the development,
implementation and critical analysis of motion planning for dynamic environments.

2I differentiate between a moving object and a dynamically moving object by the predictabil-
ity of its motion. For any moving object, if its motion is known a priori it would be possible
to determine a collision-free trajectory by planning in space-time (though I do not cover this
in this thesis). Conversely, I assume that the motion of a dynamically moving object at some
time in the near future is unknown and unpredictable. In these circumstances it would only be
possible to determine the object’s pose at the current time step and estimate its motion based
on its past trajectory.
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performing dynamic pick and place tasks. Sections 3.3, 3.4 and 3.5 then describe

each of the core components comprising of machine vision, path planning and

adaptive control, respectively, while in Section 3.6 I give the details of the exper-

imental setup. Experimental findings are presented in Section 3.7, while Section

3.8 provides a discussion on the findings of this case study in relation to Research

Question 1. Finally Section 3.9 summarises this chapter.

Note that although this chapter addresses the dynamic pick and place task for

the study of dynamic motion planning, the validity of results discussed at the end

of this chapter are not confined to this domain. Dynamic pick and place simply

serves as context for the necessity of adaptive planning. In fact the findings

observed in this chapter remain relevant for general adaptive task and motion

planning problems and contribute to the development of the algorithms for the

two core planning domains studied in the rest of this thesis.

3.2 System Overview

This case study was performed on the KUKA family of 6-DoF industrial ma-

nipulators. More specifically, the KUKA QUANTEC KR90 R3100 and KUKA

AGILUS KR6 R900 robots were used for implementation. In addition to these,

the integrated system comprised of a machine vision subsystem that used two

optical cameras for 2D visual detection of the dynamic obstacle, a motion plan-

ning module to fulfill dynamic path planning requests online, and a robot control

subsystem to execute planned paths on the aforementioned robots.

The machine vision subsystem provided the sensing capabilities of the sys-

tem necessary for understanding how the state of the environment was changing

during operation. Using images captured by the optical cameras, image process-

ing was performed to obtain a precise geometric and spatial description of the

obstacle in relation to the robot. This information was then transformed into the

coordinate frame of the robot and used as an input for a motion planning query.

Each of the two cameras were installed in fixed locations in the environment,

and only one image from either camera was required to be processed to determine

the geometric and spatial properties of the obstacle at any moment in time.

However, two cameras were used to overcome potential occlusion of the obstacle

as a result of the robot invading the view of a camera. Thus the two cameras

were deliberately installed to provide orthogonal perspectives of the environment
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such that one camera would always be able to view the obstacle.

In the motion planning module, user inputs provided the pose of the desired

grasp object and the required pose of the object after placement. The planner

then retrieved the geometric and spatial information of the obstacle from the

machine vision subsystem (via TCP/IP communications) to determine the state

of the dynamic obstacle in the environment. Using the C-space path length as a

measure of path quality, a collision-free path between the pick and place points

of the grasp object was subsequently planned in real-time. In this case study,

the time constraint for satisfying real-time performance was determined by the

average human reaction time, quoted as 180 milliseconds according to [157]. The

motion planning algorithm used in this case study was based on the dynamic

roadmaps method, which was implemented on the MATLAB software. I revisit

this algorithm in Section 3.4.

Once a target path was obtained, the execution of the planned motion was

realised by the robot control subsystem. It performed path tracking and ac-

tuator control to ensure that the robot followed the planned path precisely and

safely. For a fixed, unchanging trajectory, this is a well-solved problem and all

commercially available robot controllers can achieve good tracking performance.

However, when paths change on-the-fly during execution, path tracking becomes

a much harder problem due to sharp changes in the required motion resulting

from the switch-point between two trajectories. In these circumstances, care

must be taken to ensure that the control commands sent to the robot adhere to

dynamic constraints (such as velocity and acceleration limits) to avoid damaging

the robot. The integrated system used in this case study employed the Inter-

facing Toolbox for Robotic Arms (ITRA) [159] to enable this adaptive real-time

control capability. This toolbox is available as a Dynamic Link Library (DLL)

in Windows operating systems, or a Shared Object (SO) in Linux operating sys-

tems, and can be called from within various development platforms to establish

a connection with a KUKA robot.

3.3 Machine Vision

In this section I give a brief overview of the system used to obtain the geometric

and spatial information of the dynamic obstacle in real-time. However, since

the scope of this thesis lies in the aspects of planning, I do not give a rigorous
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Figure 3.1: Three-step calibration procedure for machine vision image processing parameters.
[155]

description of the methods used. Interested readers are directed to [155] for

further details of the sensing strategy.

The method for the detection of the obstacle and the retrieval of its spatial

information is based on color detection in the Hue-Saturation-Value (HSV) space

combined with a number of filtering procedures. Prior to running the machine

vision subsystem online, an offline calibration phase is required to configure a

number of image processing parameters. This calibration is comprised of three

steps: (i) mask specification, (ii) calibration point selection and (iii) HSV param-

eters adjustment, as shown in Fig. 3.1.

Mask specification is used to define a polygonal mask over the image that

specifies a sub-region of interest. This region covers the areas of the image rep-

resenting the workspace (the 2D view of the task space where the presence of an

obstacle could interfere with a robot’s task). Once this mask is applied, all pixels

in the image that do not overlap with the mask are discarded during online image

processing. This minimises the effects of noise and varying lighting conditions on

surfaces that lie outside the area of interest within the image. Calibration point

selection is used to choose a set of four points for which we know the equivalent

true world coordinates relative to the robot coordinate frame. These points are

used as reference points for a projection algorithm that transforms any pixel co-

ordinate in the image to its equivalent 2D (XY) spatial coordinates (the detection

of variable height of objects were disregarded in this case study as it was assumed

a single fixed-height obstacle would be present at any one time throughout the
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Figure 3.2: Example of a HSV parameter range threshold for color filtering. [155]

experiments). Finally, HSV parameters adjustment is used to specify the range

thresholds of HSV parameter values that correspond to the obstacle in the image

(see Fig. 3.2). By adjusting these parameters, irrelevant features in the image

can be removed to isolate the colour range applicable only to the obstacle. Impor-

tantly, HSV was chosen over RGB colour representation as it provides a greater

degree of colour specification through the parameterisation of true colour (hue),

colour depth (saturation) and colour darkness (value).

Once offline calibration is performed, the online image processing procedure

obtains all the pixels corresponding to the obstacle in the image by applying the

following steps. First, the standard RGB image obtained from the optical cameras

are transformed into a HSV image. Then, using the range threshold defined for

the HSV parameters in the offline calibration, the HSV image is converted into a

binary image where pixels are assigned a value of 1 if their HSV values lie within

the accepted range threshold. Lastly, the resulting binary image is filtered to

discard any groups of pixels that do not match the description of the obstacle

(e.g. size of a cluster of accepted pixels and the location of the pixels relative to

previous observations). From the remaining cluster of pixels, the centroid of the

obstacle and corresponding bounding box can be estimated in spatial coordinates

using the projection algorithm calibrated offline. Fig. 3.3 gives an example of

these steps.
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Figure 3.3: Illustration of the image processing workflow and examples of resulting images.
[155]

3.4 Dynamic Path Planning

This section describes the implementation of the dynamic roadmaps method,

which has been tailored towards the case study’s specific use case of pick and

place for practicality reasons. MATLAB® was used for the development and

implementation of the algorithm within this case study.

The dynamic roadmaps method is a sampling-based real-time variation of

probabilistic road maps (PRMs) that have demonstrated effectiveness in motion

planning within changing environments [45]. It is characterized by an offline

pre-processing phase followed by online planning and execution. During the pre-

processing phase, the algorithm creates a mapping between states sampled in the

C-space with cells in a discretized workspace. The sampled states are connected

with neighbouring states as characterized by PRMs. During online planning and

execution, the algorithm iteratively updates the roadmap using the spatial and

geometric knowledge of obstacles that lie in the discretized workspace. With

this information, motion paths can be planned quickly while taking into account

dynamic obstacles. In this implementation, the algorithm is assessed for real-time

performance based on its ability to plan paths faster than human reaction time,

approximated as 180 milliseconds [157]. This section revisits this method and

describes its implementation in detail in the context of the case study.
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Figure 3.4: Neighbourhood region and corresponding neighbour nodes (shown in black) for
an evaluated node at the centre of the neighbourhood region (shown in red). [155]

3.4.1 Pre-processing Phase

3.4.1.1 C-space Sampling

In the normal dynamic roadmap procedure, the first step is to sample a robot’s

entire C-space such that the robot is capable of reaching any desired goal state,

qgoal, from a starting configuration, qstart, by traversing the resulting roadmap.

To form this roadmap, these sampled configurations (also referred to as nodes)

are connected to neighbouring samples to form edges. A path from any point

in C-space is formed by traversing any number of these edges. Neighbouring

nodes are defined as all those that lie within a predefined radius, r, from an

evaluated node, as illustrated in Fig. 3.4. For the standard dynamic roadmap

method, this sampling procedure would only need to be performed once for a

particular robot as it considers only the system parameters of the robot and not

its environment. However, this is a very costly process both in terms of time and

memory, especially when the required resolution is high as it explores the entire

reachable workspace of the robot without consideration for the actual task.

In this case study, two changes are made to reduce the computational re-

sources required for this process. Firstly, instead of sampling from the entire

C-space of the robot, only the configurations in which the end effector lies within

a pre-defined Cartesian workspace are accepted into the roadmap. Here forward

kinematics is used as a fast check to determine which C-space samples meet this
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criterion. By doing so, irrelevant configurations that the robot would never reach

for the given application are ignored. Secondly, the spherical wrist assumption3

is adopted. By assuming that the robot’s 4th, 5th and 6th joints do not affect the

Cartesian configuration of the robot (neglecting the orientation of its end effec-

tor), it is possible to plan collision-free paths by considering only the first three

joints of the KUKA robots. Consequently, the last three joints of the robot are

only taken into consideration for the generation of motion paths when the goal

orientation is known. By adopting this assumption the dimension of the problem

is lowered from six to three, significantly reducing the number of samples required

to generate a dense roadmap that effectively explores the search space [66].

3.4.1.2 Workspace Discretization

The purpose of the dynamic roadmap pre-processing phase is to create a mapping

between the C-space roadmap and the Cartesian workspace. In order to form

this mapping, the workspace must be discretized into uniform cells of a pre-

defined size, n. The smaller the value of n, the higher the resolution, but at the

expense of more cells being needed to represent the entire workspace. As the

number of cells increases, the computation time required for the pre-processing

phase increases exponentially. Hence the parameter n must be carefully chosen to

ensure that good quality solutions can be obtained without incurring impractical

computational costs.

3.4.1.3 C-space to Workspace Mapping

The mapping between C-space and task space is achieved by recursively perform-

ing a collision check query between each configuration in the roadmap (corre-

sponding to both nodes and edges) and every cell within the workspace discreti-

sation. This collision check query determines which cells in the workspace would

collide with the robot at the evaluated node or edge when occupied with an ob-

stacle. To achieve this, each robot link is modelled as a rigid body represented

by point clouds. The spatial arrangement of these links for a given configuration

is determined by forward kinematics, enabling the transformation of the point

3The spherical wrist assumption states that the 4th, 5th and 6th joint of a 6 DoF robot,
where the axes intersect at a common point, only adjust the orientation of the end effector and
causes zero translation.
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Figure 3.5: Point cloud representation of the KUKA KR6 robot in the home configuration.

clouds to model any configuration of the robot. An example of the point cloud

representation of the KUKA KR6 is shown in Fig. 3.5.

To check for collision along a roadmap edge, an interpolation procedure is

performed to obtain multiple discrete configurations between the two node con-

figurations that form the edge, with each configuration being tested individually

for collision. While linear interpolation could be used to obtain these configu-

rations, it would be difficult to determine an appropriate step size that would

not generate an excessive number of configurations nor miss any cells that would

be in collision with a short segment along the edge. Instead, the interpolated

configurations are obtained as follows. In the first step, a collision check query is

performed on the midpoint of an edge. If at this configuration the robot collides

with cells not previously encountered at the two nodes that form the edge, then

further samples are obtained along the edge by taking the two midpoints from
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Figure 3.6: Illustration of the roadmap-to-cell mapping procedure for roadmap edges. Nodes
with hatch lines correspond to new points along the edge that are evaluated for collision.
Squares underneath each point represent a collision between the corresponding configuration
and the ith cell indicated by the internal number. Bold numbers show cells that had not been
in collision with the configurations checked in the previous iteration. Arrows show the chain
of configurations that lead to further evaluation. The procedure ends when no new cells in
collision with configurations along the edge are found.

the bisections formed by the evaluated midpoint configuration. These steps are

recursively performed until no new cells in collision with the robot are found.

Any cell that is in collision with at least one midpoint configuration or with the

two node configurations are considered to be in collision with a roadmap edge.

An illustration of this procedure is shown in Fig. 3.6.

Performing a collision check query between every cell in the workspace and

every configuration4 in the roadmap has a complexity of O(kn3), where k is the

total number of configurations in the roadmap and n represents the granularity

of the discretization along each Cartesian axis. Thus at high resolutions this

mapping procedure is very computationally costly. To improve the efficiency of

this mapping, the number of cells checked for collision for any single configuration

is restricted to those that are contained within the bounding box of the robot

point cloud, as all cells outside this region are guaranteed not to be in collision

4When referring to the number of configurations in the roadmap, I consider both node
configurations and the interpolated configurations along each roadmap edge.
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with the robot at the evaluated configuration.

Every cell, node and edge is given an identifier number. Each time a collision

between the robot and a cell is detected, the current node or edge being examined

is referenced in a cell database under the index of the cell. By doing so, updating

the roadmap during execution becomes a simple process of temporarily removing

all nodes and edges belonging to the cells that are occupied by an obstacle in

the workspace. Thus at the end of the pre-processing phase, the database would

contain a list of all the cells in the workspace along with the edges and nodes that

would become invalidated by a cell should it be occupied by a foreign object.

3.4.2 Online Planning Phase

In the online planning phase, the motion planner uses the database and roadmap

generated in the pre-processing phase to obtain a collision-free path between any

given start configuration qstart and goal configuration qgoal in real-time. The soft-

ware architecture for online motion planning is shown in Fig. 3.7. The remainder

of this section discusses each component of the software architecture in detail.

3.4.2.1 Updating the Roadmap

For any given motion planning query, the planner first updates the roadmap by

invalidating nodes and edges that would be in collision with the detected obstacle

in the workspace. The planner requests the current spatial and geometric informa-

tion of the obstacle represented by a centroid XY position and the dimensions of

the unoriented bounding box in the X-Y plane. In this way the planner treats the

obstacle as a non-oriented rectangular object, which indeed may not accurately

represent the geometry of the true obstacle. However, this over-approximation of

the obstacle provides added clearance between the robot and the obstacle, which,

for the purpose of collision avoidance, increases the safety of the system.

The set of obstacle-occupied cells in the workspace is determined from the

centroid and bounding box of the obstacle. By exploiting the C-space and task

space mapping generated offline, all nodes and edges of the roadmap in collision

with the approximated obstacle can be retrieved from the database. Updating

the roadmap then involves temporarily invalidating these nodes and edges such

that during the search phase of the planner, any path through invalid nodes

or edges would not be considered. When new obstacle information is retrieved,
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Figure 3.7: Program flowchart for dynamic path planning. Dashed box indicates portion of
code responsible for replanning capabilities.

all previously invalidated nodes and edges are returned to a valid state prior to

updating the roadmap.

Finally, the roadmap requires the insertion of qstart and qgoal to enable a com-

plete search from a start to goal state. This insertion involves a search for the

nearest neighbour nodes in the roadmap based on the Euclidean distance in C-
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space. Using the same neighbourhood region defined in Fig. 3.4, connections

between the neighbour nodes and qstart (or qgoal) are made subject to satisfying

a collision check query for each candidate connection.

3.4.2.2 Path Planning

Using the nodes qstart and qgoal, an A* search is performed on the active roadmap

to find an optimal (shortest length) path through the roadmap. Recalling that

A* is resolution complete, if the algorithm reports failure to find a solution in

the roadmap, then there is no solution that exists within the combined sampled

C-space and granularity of the workspace. When this occurs on an initial mo-

tion planning query before execution, the algorithm simply reports a failure and

terminates.

Dynamic obstacle collision avoidance behaviour is realised through the plan-

ner’s capability to plan paths in real-time. During execution of an initially

planned path, the planner retrieves the updated obstacle information from the

machine vision subsystem at each interpolation cycle and determines whether the

obstacles in the environment has changed. If a change has indeed occurred, the

planner performs collision check queries for the remaining segments of the sent

path. In the condition that a collision is detected along the remaining path, re-

planning is performed by updating the roadmap and searching for a new path to

qgoal using the robot’s current configuration as qstart. If during this re-planning

query no solution is found from the A* search, the robot is put into idle mode

where it would wait for an updated path. The planner would then make recursive

attempts to find a new feasible path. Indeed this means that the robot would

wait indefinitely if the obstacle continued to obstruct the robot, preventing any

further advancement towards the goal.

3.4.2.3 Path Smoothing Using B-splines

Since the A* algorithm searches through discretely sampled configurations, the

resulting path generally possesses sharp changes in joint angle velocities at the

switch-points between any two edges. This is highly undesirable as it leads to

inefficient motion and places unnecessary burden on the motors of each joint.

B-splines are used to remove these effects by providing a smooth continuous

path, eliminating any discontinuity in the derivatives (velocity and acceleration)
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of the original solution. In the following, I briefly introduce the core concepts of

B-splines.

Given a set of points, B-splines generate a smooth curve that approximates

these points using a series of n-order curves that connect smoothly to each other.

A key characteristic of B-splines is their insensitivity to round-off errors and

numerical uncertainty. B-splines achieves this efficiently by employing the use of

weighted averages to construct geometrical curves in nature and are conveniently

written in terms of basis functions.

Curves created through B-splines always lie within the convex hull formed by

control points - these are typically the points that must be smoothed. Smooth

curves are produced from convex combinations of polynomial curves through the

definition of knots – a way of controlling the weighted average and smoothing of

curves. With the right set of control points and knots, it is possible to construct

curves of almost any shape.

Letting M = (mi)
n
i=1 be the set of n control points and t = (ti)

n+d+1
i=1 be the

knot vector (a non-decreasing sequence of real numbers), a spline curve f of degree

d is given by:

f(t) =
n∑
i

miBi,d(t) (3.1)

Where t lies in the interval of [ti, ti+d+1], and Bi,d is the basis function given

by the recurrence relation:

Bi,d(t) =
t− ti
ti+d − ti

Bi,d−1(t) +
ti+d+1 − t
ti+d+1 − ti+1

Bi+1,d−1(t) (3.2)

For a detailed derivation of Eqs. 3.1 and 3.2, I refer the reader to [160], which

provides a comprehensive description of splines methods.

3.5 Robot Control

So far in my discussion of motion planning I have only described the aspects of

path planning. However, to realise the execution of a planned path on a physical

robot, the time evolution of the planned geometric path must be specified. This

trajectory planning sub-problem can be solved by either the host PC running the

machine vision and motion planning algorithm, or locally in the robot controller
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that manages the path tracking and actuator control capabilities of the system.

In this case study the latter approach was taken to realise real-time trajectory

generation through an adaptive control approach developed as part of the ITRA

toolbox.

ITRA provides a library of high-level functions to enable control of physical

KUKA robots compatible with the KUKA KR C4 controller. Through this tool-

box, three different external control approaches are made available to manage

the path tracking behaviour of the robot in response to sent commands. In all

three approaches, commands can be sent in either Cartesian or axial (joint angle)

coordinates.

In the KUKA Robot Language (KRL)-based approach, sent commands are

directly translated to target points to reach through a point-to-point (PTP) or

linear path (LIN) motion.5 When multiple commands are sent sequentially us-

ing the KRL approach, the controller ensures that each preceding command is

achieved before executing the next successive command, forming a first-in-first-

out queue that prevents any changes to the robot’s actions after the commands

are sent. For example, if a robot is commanded to go from point A to point B,

and mid-way during its motion a second command to move to point C is given,

the robot will first arrive at point B with zero velocity, then execute the motion

to move from point B to point C. In this approach, the robot is able to operate

at interpolation cycles of either 4 ms or 12 ms.

The second approach is the computer-based approach. This approach re-

quires trajectory planning to be performed at the host PC such that a sent

command contains the complete trajectory of the target motion. Rather than

receiving a single target point, the controller parses through a text file contain-

ing a sequence of configurations interpolated at 12 ms (this approach does not

support 4 ms interpolation cycles). The velocities and accelerations of each joint

(or the end effector when target points are sent in Cartesian coordinates) are

implicitly defined based on the interpolation of the geometric path. Like the

KRL approach, any preceding commands are always fulfilled before a succeeding

5PTP and LIN can often be mistaken to mean the same. This is not true. PTP refers
to an optimal movement between any two points, where all joints move synchronously with
the velocity profiles determined by a leading axis. This generally translates to a curved path
traced by the end effector. Conversely, LIN constrains the path of the end effector to a straight
line between two points. While this minimises the distance traveled by the end effector, it is
generally not optimal relative to the actuation of the motors.
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command is executed. Thus if a second trajectory is sent to the controller while

an earlier command is being executed, the trajectory is appended to the end of

the previous command.

Both the KRL and computer-based approaches do not support real-time adap-

tation of a robot path during execution. This means that even if a new path was

planned to avoid a dynamic obstacle, it would not be possible to overwrite the

previous commands sent to the robot. The Robot Sensor Interface (RSI)-based

approach was developed to overcome this limitation. This approach exploits the

real-time system of the KR C4 (operating at either 4 ms or 12 ms interpolation

cycle) to compute smooth trajectories to a target point while satisfying maxi-

mum velocity and acceleration constraints. Importantly, the approach is able to

handle any arbitrary values of initial velocities and accelerations (granted that

they do not exceed the maximum permitted velocity and acceleration). This was

achieved by implementing the second-order trajectory generation algorithm de-

veloped in [161] within the KUKA controller’s RSI system software. With this

approach, a new command can be sent to the robot while it is static or moving.

Any new commands sent while the robot is in motion automatically overwrites all

previous commands. Following the earlier example, suppose a robot is executing

a command to move to point B from point A. If, mid-way during the motion it

receives a new command to move to point C, the controller directs the robot to

follow a new trajectory towards point C without reaching point B. This new tra-

jectory is smooth and continuous, which avoids any discontinuity in the executed

velocity and acceleration profiles. An illustration is provided in Fig. 3.8.

Based on these capabilities, the RSI-based approach was employed for the

execution of geometric paths planned by the motion planner. Once an initial plan

is found by the A* search, the path is sent for execution at 4 ms interpolation

cycle. During this time, the motion planner retrieves a new observation from

the machine vision subsystem and determines whether a re-planning query is

required. Whenever a new plan is obtained, the resulting path is directly sent to

the robot. The RSI-based control then manages the fast online modification of

the robot trajectory to maintain smooth robot motion while tracking the updated

path.
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Figure 3.8: The RSI-based external control approach from the ITRA toolbox. When a new
target point C is sent to the robot during execution of an existing command to move to point
B, a smooth continuous trajectory is obtained in real-time to adapt the motion of the robot
on-the-fly. [155]

3.6 Experimental Setup

The integrated system comprising of the described components was implemented

on a physical setup within an industrial-like environment. Using the KUKA

QUANTEC KR90 R3100 industrial manipulator, a pick and place task was per-

formed to transfer a box between two locations on a table. The KUKA KR90

robot is a heavy-duty serial-link manipulator commonly deployed for traditional

industrial applications. A summary of the robot’s specification is given in Table

3.1, while Fig. 3.9 describes the geometric properties and work envelope of the

robot.

The pick and place task assigned to the robot involved the transportation of a

laser-cut box object using a hook end effector, as shown in Fig. 3.10. A number

of grasp and placement locations were chosen on the surface of a table measuring

160 cm × 110 cm × 85 cm (length × width × height) located near the base of

the robot. The dimensions of this table defined the workspace of the task used

to inform the configuration sampling procedure in the offline roadmap generation

phase of the motion planner. On the surface of the table was a radio-controlled

car used to simulate a dynamically-moving object. An extended marker was used
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Table 3.1: Robot Specification for the KUKA QUANTEC KR90 R3100

Property Value

Working envelope 66 m3

Weight 1121 kg

Axis 1 joint limits (max speed) ±185° (105°/s)

Axis 2 joint limits (max speed) -140°to -5° (101°/s)

Axis 3 joint limits (max speed) -120°to +155° (107°/s)

Axis 4 joint limits (max speed) ±350° (292°/s)

Axis 5 joint limits (max speed) ±125° (258°/s)

Axis 6 joint limits (max speed) ±350° (284°/s)

Figure 3.9: The working envelope and geometric description of the KUKA KR90 robot. [162]

to artificially increase the height of the object such that it would act as a moving

obstruction as the robot transports the box object between placement goals on

the table. After this modification, the dynamic obstacle measured 20 cm × 10 cm

× 35 cm (length × width × height) and was capable of travelling at an estimated

speed of 1 m/s. Fig. 3.11 shows the table setup and a photograph of the dynamic

obstacle used in the experiment.
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Figure 3.10: The hook end effector and box object used for the pick and place task. Both
parts were produced through laser-cutting.

(a) (b)

Figure 3.11: The workspace of the pick and place task, (a) Table setup showing a grasp
location of the box object and the dynamic obstacle placed on top of the table, (b) Dynamic
obstacle dressed with a yellow coloured cover and an extended marker for virtually increasing
the height of the object.

The machine vision setup consisted of two HD Pro AWCAMHD15 optical

cameras possessing a fixed frame rate of 30 fps and a resolution of 640 × 480

pixels. The first camera (labelled Cam-1 in Fig. 3.12) was placed 3 meters above

the surface of the floor to provide a near top-down view of the workspace. The

second camera (Cam-2 ) was used to provide an orthogonal view of the workspace

relative to Cam-1. The arrangement of these two camera placements enable each

camera to view the blind spots of the other camera.

The setup of the experiment described in this section was purposely designed

to simulate the harsh, noisy and dirty conditions common in real-world industrial

environments. Neither lighting conditions nor reflections were controlled during

the experiments. This meant that the ambient lighting, which changed according

to the time of the day, introduced varying lighting conditions throughout the
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Figure 3.12: Location of two camera installations within the experimental environment. Each
camera provides an orthogonal view relative to the other to cover for occlusions caused by the
robot invading the view of the cameras.

experiments. Furthermore, a non-uniform textured tablecloth was used to cover

the surface of the table. This tablecloth introduced speckle reflections that appear

as noise to the machine vision subsystem. These considerations are important

when evaluating the behaviour of an adaptive robotic system that is expected to

perform in environments that are dynamic in nature.

3.7 Experimental Findings

3.7.1 System Performance

The performance of the system was evaluated according to its reactiveness to

a dynamic obstacle during the pick and place task. Using an Inspiron 15 7000

laptop with a quad-core Intel i7 CPU and 16 GB RAM as the host PC, the com-

putational efficiency of the motion planner is first evaluated in isolation from the

machine vision and robot control components through simulation. Afterwards,

the computational performance of the complete system is evaluated on the phys-

ical setup described in Section 3.6.

A simulation-based environment of the physical setup was modelled within

MATLAB to enable virtual simulations of motion planning. The simulation con-

sisted of the KUKA KR90 robot, a table-like object and a box obstacle controlled

externally by the user to emulate random motion. The simulation enables the val-

idation of dynamic re-planning through visualisation of the original and updated

end effector paths in response to the dynamically-moving obstacle. Fig. 3.13

shows an example motion planning query where the dynamic obstacle (shown as
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(a) (b)

Figure 3.13: Example of a dynamic motion planning trial, where the blue trajectory represents
the initial planned path, while the red trajectory represents the time evolution of the true
executed motion. (a) Side view - the path of the red box obstacle is shown by green crosses,
(b) front view.

a red box) obstructs the original planned trajectory. The motion planner finds

a new collision-free path that directs the robot to move above the obstacle. No-

tice that the final trajectory is longer than the original trajectory, as the motion

planner always seeks an optimal solution. Certainly in the absence of obstacles,

this would correspond to a PTP motion.

The computational performance of the motion planner was evaluated using

three planning problems consisting of different start and goal configurations se-

lected from within the workspace of the pick and place task, as reported in Table

3.2 (see Fig. 3.14 for a visualisation of the trajectories). Five trials for each

planning problem was conducted to obtain a statistical representation of the

planner’s performance. A breakdown of the CPU time required to perform each

high-level procedure within the motion planning algorithm is provided in Table

3.3. Note that in all of these trials, the dynamic obstacle was kept static. Thus

the reported CPU time corresponds to the minimum required time to compute

a single solution (no re-planning took place).

Notice that the Update Roadmap procedure consumed the most resources

across the complete motion planning workflow. In fact the most computationally

heavy tasks correspond to the multiple queries to collision checking for connecting

the start and goal configurations to the roadmap (as we will see in the physical
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Table 3.2: Planning problems used to evaluate the computational performance of the motion
planner

ID Start x

(mm)

Start y

(mm)

Start z

(mm)

End x

(mm)

End y

(mm)

End z

(mm)

Solution

length (mm)

1 10500 -6400 975 10500 -5200 975 1643.5

2 11000 -6400 975 10300 -5200 975 1994.9

3 10200 -5700 975 11200 -5700 975 1981.9

Figure 3.14: Solutions to three different motion planning trials used to evaluate the compu-
tational performance of the motion planner under static conditions (obstacle does not move
during these evaluations).

experiment). Despite this, by exploiting the offline generated roadmap to explore

the environment, the DRM-based motion planner was able to achieve planning

times under 50 ms for all three test cases. These results suggest that even under

dynamic scenarios the planner would be capable of producing new collision-free

paths in well under the average human reaction time of 180 ms. Conversely,

if a motion planner that did not involve a pre-processing stage was used, the

computation time required to obtain a solution would likely lie in the range of

seconds due to the many collision-checking queries involved.
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Table 3.3: Breakdown of CPU time for solving a motion planning query (no
dynamic re-planning)

ID Update

Roadmap

A* Search Path

Smoothing

Total

1 30.3 ± 1.6 1.64 ± 0.4 3.06 ± 0.5 35.0 ± 2.4

2 17.8 ± 1.3 8.00 ± 0.3 3.62 ± 0.4 29.4 ± 2.1

3 38.5 ± 3.3 1.36 ± 0.6 2.42 ± 0.2 42.3 ± 3.8

Note: Update Roadmap comprises of updating the roadmap using the pre-

processed mapping between C-space and workspace, and the connection of the

start and goal configurations to the roadmap.

We now move on to the experiment conducted on the physical setup to eval-

uate the performance of the entire integrated system. While it has been shown

that the motion planner is capable of planning a single path in real-time, the sim-

ulation results are insufficient for proving the system’s response under dynamic

scenarios. Let us define the system’s reaction time as the time from when a

change in the environment occurs to when the robot begins to execute corrective

action. By this definition, the reaction time takes into consideration the cycle

time of the machine vision subsystem, the computation time of the motion plan-

ner, and the latency in the robot control module, where latency corresponds to

the delay between a command being sent to the robot and the robot beginning

to execute the command.

Multiple runs of the pick and place task were conducted on the physical setup.

In these trials, the obstacle was radio-controlled by a user externally and, as such,

the system did not know the true location of the obstacle at any moment in time.

At the beginning of each pick and place task, the obstacle was placed at the

outer edge of the table to maximise its clearance from the robot during the initial

planning phase (see Fig. 3.15). Once the robot began execution of an initially

feasible path, the obstacle was actively driven to obstruct this path, forcing a

dynamic re-planning query. Fig. 3.16 reports the approximate CPU times for

each high-level procedure observed in machine vision and motion planning for

dynamic re-planning averaged across multiple runs of the experiment.

The machine vision subsystem consists of image acquisition, image processing

and communication. The reported CPU time for image acquisition is a worst-case
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(a) (b)

Figure 3.15: Still video frames captured during a pick and place task involving a dynamic
obstacle, (a) image of experimental setup captured from an external camera (not integrated into
the physical system), (b) images from the two optical cameras superimposed with the obstacle
coordinates computed by machine vision (as seen by the user on the host PC).

(a) (b)

Figure 3.16: Average CPU times obtained in the pick and place task performed on hardware
for: (a) machine vision, comprising of image acquisition, image processing and data communi-
cation, (b) motion planning, considering only the dynamic re-planning queries and comprising
of reading the packages sent by the machine vision, checking collision along existing path, and
motion re-planning.

value determined by the maximum time required to obtain an image from the

cameras, which is limited by the frame rate of the hardware. While the cameras

used in this system had a rated frame rate of 30 fps, during physical tests it was

found that up to 45 ms could pass between two image frames. Communication
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corresponds to the time required to send the spatial information of the obstacle,

packaged as 8-bit units [155], to the motion planner (this does not include the

time required to receive the package, which is instead taken into consideration

in the motion planning side). The reported TOTAL CPU time corresponds to

the working cycle time of the machine vision subsystem. Here the three sub-

components of machine vision run in parallel threads, providing a working cycle

time determined by the most time-intensive component (image acquisition). How-

ever, when considering the reaction time of the system, the individual CPU times

must be summed to give the worst-case reaction time (assuming 45 ms was re-

quired to detect the latest change in the environment, subsequently followed by

image processing and communication to deliver this information to the motion

planner).

Conversely, each procedure within the motion planner runs in sequence. Thus

the TOTAL CPU time for dynamic motion planning is computed as the sum of

each individual component. Here, check collision corresponds to the time required

to test whether the remaining segments of the existing solution is in collision with

the obstacle at the currently perceived location, while re-planning consists of the

steps considered in Table 3.3.6

Finally, let us consider the system reaction time taking into account each of

the individual components. As mentioned earlier, the reaction time measures the

delay between a change taking place in the environment and the robot beginning

to execute corrective action. For us humans, the average reaction time is heavily

dependant upon the nature of the stimulus. For example, according to Grice et

al. [163], the average human reaction time can vary between 150 ms for haptic

stimuli, 170 ms for auditory stimuli, and 250 ms for visual stimuli. While the

use of machine vision more closely relates to visual stimuli, this case study takes

the more general average reaction time considered in [157] as the criterion for

satisfying real-time performance requirements.

In [159], the latency in robot control for a KUKA robot controlled through

the ITRA toolbox’s RSI-based approach is 30±3 ms. This value was obtained by

recording the timestamp for sending a command to the robot and measuring a

second timestamp corresponding to the first robot positional feedback that corre-

6During a dynamic re-planning query, the roadmap update step does not connect the goal
configuration to the roadmap since re-planning will always be preceded by a regular motion
planning query (assuming that the goal configuration does not change). Thus the re-planning
time is generally less than the total time for a single regular motion planning query
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(a) (b)

Figure 3.17: (a) Breakdown of the average worst-case reaction time for the integrated sys-
tem accounting for image acquisition, image processing, motion planning and latency in robot
control, (b) comparison of system reaction time against the average reaction time considered
in [157] and the average reaction time for visual stimuli [163].

sponds to a deviation of at least 0.01 mm from the original home position of the

end effector. This was repeated 100 times to obtain the reported latency. Com-

bining this with the previously presented results, the average worst-case reaction

time of the system was measured to be 146 ms, which lies within the threshold

to be considered as real-time response (see Fig. 3.17).

3.7.2 Failure Cases

A number of practical difficulties were encountered when conducting experiments

to assess the performance of dynamic motion planning. First of all, currently no

standard benchmarking experiment has been developed by the research com-

munity to enable consistent and accurate testing of adaptive motion planning

algorithms. This is due to the stochastic nature of dynamic planning problems

that make this difficult - dynamic obstacles do not in general move in predictable

ways. In this case study, a design decision to manually control the dynamic

obstacle was made to simulate the unpredictability of dynamic obstacles in the

real world. However, this heavily reduced the repeatability of experiments as

the obstacle does not move in exactly the same way nor at the same time across

repeated trials. On some occasions, dynamic re-planning was not induced across

the entire trajectory due to the obstacles failing to obstruct the initially planned

path within the short duration of the robot’s motion. In other trials, dynamic
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re-planning was successfully induced but the planner failed to find a new path as

the obstacle had either obstructed the placing location of the object, preventing

the robot from reaching that point safely, or moved too closely to the robot. The

latter scenario occurs due to the enlargement of the virtual obstacle considered

in the planner as a result of discretising the environment, which can indicate to

the planner that collision occurs between the robot and obstacle when in reality

no collisions had occurred. In either of these situations, the planner continued to

search for a new path whilst the robot remained stationary, allowing the system

to recover once the obstacle no longer interfered with the pick and place task.

The results reported in Section 3.7.1 contains all successful re-planning trials

where the obstacle successfully interfered with the planned path without obstruct-

ing the final placing task.

3.8 Discussion

First of all, it is necessary to recognise that the responsiveness of a robotic system

to adapt to its environment depends not only on the computational efficiency of

the underlying planner. Any planner has a high dependency on having a high

accuracy representation of the environment and the objects that the system in-

teracts with. However, this accuracy can often come at the cost of additional

processing time in the sensing subsystem prior to making the information avail-

able to the planning system. Furthermore, in this case study, a rather significant

amount of time was spent receiving packages from the machine vision subsystem

(12 ms or 21% of the total re-planning time) when passed through TCP/IP. This

latency in communication is highly undesirable, and spending time to identify the

most effective means of enabling communication between components within the

system can reduce the amount of computational resources spent on completing

the task.

On the other end, the capabilities and performance of the robot controller

also affects the real-time performance of the system. In this case study, the con-

troller based on the ITRA toolbox enabled trajectory generation to take place in

a real-time system at the controller side. While this can reduce the CPU time

required to convert a path to a trajectory, the optimality of the time parameteri-

zation suffers as the controller generates trajectories at a local level (it produces a

smooth trajectory between the current robot configuration and the latest target
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configuration without taking into account all future points along the remaining

path). Moreover, latency in the robot control can limit the responsiveness of

the system to change. In most circumstances, the duration of this latency is

considered insignificant. However, for those applications seeking extremely high

responsiveness (less than 100 ms), the latency can become a limiting factor, yet

is often neglected.

Focusing on the aspects of planning, the results of the experiments conducted

have shown that based on the MATLAB-based implementation used in this case

study, a substantial amount of computation time was spent on collision check-

ing. A common drawback of all sampling-based approaches is the large number of

collision checks that must be performed to evaluate the validity of sampled config-

urations (including the edges that connect between them). One way of reducing

this cost is to improve the collision-checking algorithm itself, which has indeed

been the focus of much research [40, 164–166]. The flexible collision library, an

open-source collision detection and proximity query project, deserves noteworthy

mention as it provides a particularly fast, ready-to-implement tool for collision

checking queries.

However, even with these tools available for fast collision checking, meet-

ing the demands of real-time motion planning generally requires some means of

retaining existing knowledge about the environment. Methods that involve a pre-

processing phase benefit from having this knowledge available from the beginning,

while methods that do not involve an offline graph generation procedure generally

requires to incrementally build up this knowledge (this is equally true from the

perspective of finding optimal solutions). Algorithms belonging to the latter that

are able to find a feasible solution quickly and incrementally improve a solution

over time are considered anytime algorithms, and may be particularly benefi-

cial to task planners that seek to find a feasible solution quickly and continue

to improve the solutions of future actions during execution without incurring

significant computation costs in an offline pre-processing stage.

While solving the above challenge can enable a planner to find a solution

more quickly (possibly in real-time for the case of motion planning), this does not

necessarily solve the more fundamental problem of adapting an existing solution

to changing conditions during execution. Since the primary drawback of planning

in C-space is the difficulty to represent obstacles in the same space, seeking to

efficiently update the validity of sampled configurations in relation to changes in
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the obstacle regions of the search space (i.e. ascertain that they are still collision-

free) is not a trivial task.7

The DRM method implemented in this case study is indeed a valid approach

to addressing the challenges described above. However, its use comes with a num-

ber of caveats. While extended pre-processing offline can improve the generality

of the planner during online execution, it comes at a high computational cost. As

mentioned earlier in this chapter, if an appropriate granularity is chosen for the

discretization of the workspace, accompanied by sufficient sampling for roadmap

generation, the pre-processing phase would only be required to be performed once

for a given robot. The resulting mapping would be sufficient for many applica-

tions. However, to achieve this generality would require very long pre-processing

times, which may not always be available. The computational resources consumed

is not only limited to the aspect of computation time, but the memory required

to store the subsequent map can also be a limiting factor. Lastly, the capability

of the planner to find high quality solutions is largely dependant on how well

the offline pre-processing phase explores the search space. Poor granularity or

insufficient sampling would lead to sub-optimal solutions when run online. This

is in contrast to incremental methods described earlier than continually improves

a solution over time, which may be capable of converging to the optimal solution

as planning time tends towards infinity.

3.9 Summary

This case study serves to provide an insight into the additional challenges faced

when addressing planning problems subject to dynamic changes during robot op-

eration. In the work presented in this chapter, I have demonstrated one approach

to enabling adaptive robot behaviour for low-level motion planning in dynamic

environments through a number of considerations made in the areas of percep-

tion, planning and control. In the rest of this thesis, I narrow down on some of

the challenges introduced so far from the context of planning and present a num-

ber of techniques that have been developed to extend the capabilities of adaptive

planning towards the level of task planning.

7Some exceptions to this exist. E.g. for an omni-directional mobile robot on a 2D plane,
an identical representation could be used for the Cartesian space and C-space. Under this
assumption obstacles do not need to be transformed between the two spatial representations,
making the problem simpler for adaptive planning.
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Chapter 4

Multi-Goal Path Planning for

Continuous Cost Spaces

In these next two chapters I focus specifically on task and motion planning for mo-

bile wheeled robots (MWRs). Chapter 4 primarily deals with the motion planning

sub-problem, where I present developments that advance the state-of-the-art in

multi-goal path planning and subsequently demonstrate how these developments

can be integrated with off-the-shelf task planners to obtain high-quality solutions

to static planning problems efficiently. Chapter 5 builds upon the work presented

in this chapter and addresses the dynamic task and motion planning problem,

where the environment is partially-known or dynamic, and re-planning online is

required to maintain safe yet optimal plans.

The developments reported herein stem from the observations of key consid-

erations identified in Chapter 3 for planning in dynamic environments. While the

planning domain investigated in this chapter differs from robotic pick and place

and focuses on the fixed, static environment, key considerations for improving the

efficiency of planning remain relevant and are discussed throughout this chapter.

4.1 Introduction

Task planning plays a fundamental role in autonomous mobile robotic systems

across many important applications. For example, in plant inspection and surveil-

lance applications, the concept of multi-goal path planning (MTP) is crucial for

formulating an optimal plan to visit a defined number of goal regions using the
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most efficient route available. Here the definition of most efficient depends upon

the optimisation criteria. Commonly used types of cost functions include:

• path length, the default cost function considered in most literature relating

to path planning

• total curvature, which correlates to the duration taken to execute a path

(just like cars, robot may need to slow down to make large curvature turns)

• energy consumption or effort, determined by the amount of work required

to act against gravity to traverse up sloped surfaces

• obstacle clearance, which considers how safe a path is by evaluating the

proximity of obstacles along the robot path.

Generating optimal solutions to these kinds of task planning problems can-

not therefore be obtained by estimating the distance between goals using simple

metrics such as the Euclidean or Manhattan distance function. Rather, explicit

considerations for the geometric and spatial nature of the task is necessary to

determine a good estimate of the true costs between goals.

As another example, consider the application of planetary exploration, where

a robot is assigned a long-term mission involving multiple different objectives

such as sampling soil, capturing images of key landmarks or monitoring envi-

ronment conditions within specified regions. Achieving a single objective of this

nature require the execution of multiple primary actions in a particular order.

For example, taking an image requires navigating to the landmark, adjusting a

pan-tilt unit carrying the camera, and then saving an image. The dependency

of some actions on other actions being achieved first is described as task prece-

dence. Furthermore, long missions often require considerations for replenishing

the battery life of the system. The majority of mobile robots achieve this through

docking to a charging station. Task planners will therefore need to account for

these secondary actions that do not directly achieve any single objective, but

nevertheless is essential for accomplishing the mission.

In these kinds of circumstances, application-specific cost functions may addi-

tionally be required. Returning to the example of planetary exploration, existing

Mars rovers have relied upon solar energy captured by on-board solar panels to

maintain battery levels for extended deployment. Here the solar influx received
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along a path may provide a significant contribution to the cost function for path

optimization.

For applications similar in complexity to the above, the planning task is no

longer a simple sequencing problem. While a poor sequence would only result

in a sub-optimal plan in MTPs, for the more general task planning problem

the addition of precedence constraints can mean that an ill-conditioned problem

would result in an infeasible solution. This necessitates the use of symbolic task

planning, but like before, optimising a solution requires inference from some

form of geometric and spatial reasoning. This type of reasoning is conveniently

addressed through motion planning.

In this chapter, I investigate the problem of motion planning involving multi-

ple goals. Solutions to these problems provide the necessary geometric informa-

tion required for optimal task planning in the MWR domain. While many motion

planning algorithms exist in literature (see Section 2.1), exhaustively applying a

single-query planner to compute a path between every possible combination of

goals is expensive. Conversely, the use of multi-query planners carry the dis-

advantage of long pre-processing times and high memory requirements. As the

literature review in Chapter 2 and the findings from the case study presented in

Chapter 3 have shown, the concept of reusing past state space exploration infor-

mation to solve new instances of motion planning can provide higher efficiency

planning. In this work I expand on this concept to simultaneously solve multiple

path planning queries by sharing the same exploration information between mul-

tiple problems. This chapter therefore introduces the Multi-T-RRT* algorithm,

an efficient method for computing high-quality paths between all pairs of goals

within an MTP-like problem. The algorithm enables fast computation without

the requirement for pre-processing while possessing probabilistic completeness

and asymptotic optimality guarantees through the adoption of sampling-based

algorithms1. The algorithm also supports general cost functions through explicit

considerations for continuous cost spaces.

Returning to the problem of task planning, I go on to validate the viability

of integrating the Multi-T-RRT* algorithm with PDDL task planning (the de

facto standard of symbolic task planning, as discussed in Section 2.2.1.5) to solve

1I chose to adopt sampling-based algorithms due to their superior reliability and generality
as identified in the literature-based evaluation of motion planning methods reported in Chapter
2.
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optimal planning problems in the MWR domain. The algorithm is benchmarked

against baseline planners to quantify its performance in terms of plan quality and

planning efficiency relative to existing methods, showing that the algorithm: (i)

scales well with the dimensionality of the problem, (ii) provides low-cost solutions

that adequately accounts for general cost spaces, and (iii) reduces planning time

by several fold compared to a single-query motion planning approach.

The rest of this chapter is organised as follows: in Section 4.2 I give a formal

definition for the path planning problem and describe the planning domain con-

sidered in this chapter. Section 4.3 then introduces the Multi-T-RRT* algorithm

and provides a description of its components. Sections 4.4 and 4.5 presents the

results of a series of simulation studies and benchmarks, respectively, conducted

to evaluate the behaviour and performance of the algorithm. Finally, Section 4.6

gives a discussion on the relevance of the Multi-T-RRT* algorithm in the wider

context of robotic planning, while Section 4.7 summarises the chapter.

4.2 Problem Statement

4.2.1 Path Planning Formulation

The path planning problem is defined in the following way. Let C be the robot

configuration space in d -dimensional Rd, where all infeasible regions due to colli-

sion is denoted as Cobs ⊂ C and all valid free space is denoted by Cfree ⊂ C \Cobs.
A single configuration within C is denoted by q. The standard path planning

problem is then given by {C, q0, qg}, where q0 ∈ C is the starting configuration

and qg ∈ C is the goal configuration. Thus we define the feasible path planning

problem as follows:

Problem (feasible path planning). Given a standard path planning problem of

the form {C, q0, qg}, find a collision-free path σ0,g such that σ0,g(τ) ∈ Cfree for all

τ ∈ [0, 1], q0 = σ0,g(0) and qg = σ0,g(1). If a collision-free path exists, the problem

is feasible.

Now let c : C → R+ be the cost function that maps all configurations within

the configuration space to a real positive value within a continuous cost space.

By denoting cp(σ) = f(c, σ) as the total cost of a feasible path, the optimal path

planning problem can be defined.
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Problem (optimal path planning). Let Σ be the set of collision-free paths to a

path planning problem {C, q0, qg}. Given the cost function c, find an optimal path

σ∗ such that cp(σ
∗) = min

σ∈Σ
cp(σ).

4.2.2 Task Planning Domain

The general task considered both in this chapter and in Chapter 5 consists of

a single mobile robot free to move within an R2 environment. Let us define

a set of landmarks L as the set of goal configurations where the robot must

visit to achieve a prescribed task. A basic MoveTo(li, lj) action for any pair of

landmarks li, lj ∈ L |i 6=j describes a movement action from goal configuration li

to goal configuration lj whose cost is determined by σi,j (obtained through path

planning). The robot starts from a root landmark l0 (which I will refer to as

the robot base) and must end at a goal landmark lg. Task precedence constraints

may additionally be specified to determine which tasks cannot be completed

before certain sub-goals are met. The objective of the planning problem is to

find a valid task plan and the corresponding collision-free motions to complete

a set of prescribed tasks while satisfying any task precedence constraints and

minimizing the total incurred cost of motion (according to the optimal path

planning definition).

For a problem with no task precedence and where no actions are specific to

any landmarks (e.g. where the same action is performed at every goal or the

robot continuously performs a secondary action during motion), the planning

task reverts to an MTP. In this scenario the solution to the planning problem

is an optimal visiting sequence for L and the corresponding shortest motions for

each movement action. An example of a general planning problem is illustrated

in Fig. 4.1.

This chapter primarily focuses on the path planning component of the task

planning problem (though some preliminaries are provided in relation to the task

planner). Chapter 5 gives further attention to the integrated planning architec-

ture while addressing the aspects of adaptive task and path planning for the task

domain described here.
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Figure 4.1: A conceptual illustration of the task planning domain, whereby the robot must
visit a set of landmarks (indicated by red star markers) starting from a robot base landmark
(shown as a blue marker). Collision with obstacle regions shown in black should be avoided.

4.3 Multi-T-RRT* Algorithm

4.3.1 Overview

Unlike the standard path planning problem where we would seek to find a path

between a single pair of start and goal configurations, I address a multi-goal path

planning problem where we seek to find all the paths between every possible

permutation pair of start and goal configurations. These start and configurations

are made up of all possible combinations between the set of L landmarks in the

task planning domain.

The path planning algorithm presented in this section, henceforth referred

to as Multi-T-RRT*, adopts a similar approach to the multi-tree extension of

the T-RRT algorithm [53], but further extends it by enabling optimal paths (as

opposed to purely feasible paths) to be found through the use of RRT* algorithm’s

rewiring procedures [43]. The efficiency of the algorithm is further improved by

the use of sorting procedures inspired by the Bi-RRT* algorithm in [51].

General cost spaces are accounted for through the use of a transition test first

proposed in [48]. Given this continuous cost space from which a cost value can

be derived for all robot configurations, we define the cost function for total path

cost as a discrete, weighted sum of integral cost and path length:
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cp(σ) = length(σ)

(
wa
ω

ω∑
k=1

c

(
σ

(
k

ω

))
+ wb

)
(4.1)

where ω is the number of subdivisions of σ and wa and wb are weights such that

wa + wb = 1, wa � wb. Here the left term in Eq. 4.1 corresponds to the discrete

approximation of the integral cost of path σ derived from the continuous cost

space c, while the right term corresponds to the length of path σ. According to

this equation, the objective is to minimize the integral cost with a bias towards

shorter paths. Note that the heuristic nature of this cost function means that it

is a dimensionless quantity.

The path planner terminates when a termination criteria is met. This could be

defined based on a bounded computation time, maximum number of iterations,

or the existence of a feasible solution for all possible movement actions. The

planner then returns the best set of paths and corresponding costs found for each

of these possible movement actions, if one is found.

Once the path planner terminates, the obtained path costs along with the

original task planning objectives are used to generate a PDDL problem file for a

predefined PDDL domain. Any movement actions for which a feasible path had

not been obtained (as a result of the termination criteria used) is assumed to

carry an infinite cost (the action is infeasible)2. The PDDL problem can then be

solved using a compatible planner. In this work I apply openly-available planners,

namely the successful Metric-FF and LPG-td, which are able to handle numerical

expressions for the optimisation of plan costs relative to the cost function used

to compute individual path costs. Example PDDL domain and problems files

for a small MWR task planning problem, configured for compatibility with the

LPG-td planner, can be found in Appendix A.

In the remainder of this section I devote the attention to the Multi-T-RRT*

algorithm. I refer readers to Chapter 5 for further details on the high-level task

and path planning architecture.

2Note that it is possible to solve the task planning problem without finding a feasible solution
for all movement actions. In fact, for a given planning domain consisting of a set of landmarks L,
a solution for any domain-specific problem can be solved if all landmarks form a fully-connected
graph such that any landmark li ∈ L can be reached from every other landmark lj ∈ L | i 6= j
by traversing the graph.
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4.3.2 Algorithm Description

The Multi-T-RRT* is summarised as pseudo-code in Algorithm 1. The algorithm

begins by creating m trees, one rooted at each landmark in L and only containing

the root as a node in the tree. At each iteration, a tree is selected for expansion

in a round-robin fashion. Then, like the T-RRT* algorithm [49], a sample qrand

is drawn from the configuration space and a nearest node qnear from the tree is

found. A configuration qnew is generated by using a steering function to guide

qnear towards qrand. The transition test is performed on qnew and poor quality

configurations are rejected according to its cost value c(qnew). If accepted, the

algorithm searches for the set of neighbours Qnear that lie within an adaptive

radius r [43] from qnew.

A neighbour sorting procedure, adopted from [51], is applied to sort a list

of path cost, configuration and path triplets u = {cp(σ), q, σ} obtained from

the neighbour nodes in ascending order according to the quantity cp. This step

reduces the number of computations required for finding the best parent node

by always assessing the best candidate node first. Subsequently, the algorithm

iterates through each neighbour node until a collision-free connection with qnew

can be achieved. The corresponding neighbour node is then assigned as its parent

node.

The list of neighbour nodes are then checked for rewiring, a characteristic step

of the RRT* algorithm. Nodes whose path from the root can be improved by

passing through the newly added node qnew are rewired as a child of qnew. This

necessary step ensures that paths obtained by the algorithm is asymptotically

optimal. The algorithm then searches for a feasible connection from qnew to every

other tree by finding a collision-free path from qnew to neighbouring nodes of

foreign trees. Where such a path exists, a complete path between the roots of the

two corresponding trees is found. The global set of path solutions is updated if this

local solution is of higher quality than any existing solution for the corresponding

pair of landmarks. Finally, a shortcutting procedure is applied at the end of the

tree expansion phase to further improve the quality of final solutions.

Each of the sub-functions in Algorithm 1 are described in further detail below:

initTree - initialises a tree structure consisting of nodes, V , and edges, E,

such that T = {V,E}. Initially the nodes list contains only the root of the tree

and an empty set of edges.

sampleConfiguration - Goal biasing is adopted for sample generation. This
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Algorithm 1 Multi-Tree T-RRT*

Input: The configuration space C, the cost function c → R+ and landmarks
lk ∈ L | k = 0...m

Output: Trees Tk, k = 0...m and path solutions Σbest

1: for k = 1 to m do
2: Tk ← initTree(lk)
3: end for
4: Costbest ←∞; Σbest ← ∅
5: while not stoppingCriteria(Tk, k = 0...m) do
6: T ′ ← nextTreeToExpand()
7: qrand ← sampleConfiguration(C)
8: q′nearest ← findNearestNeighbour(T ′, qrand)
9: qnew ← steer(q′nearest, qrand)

10: if transitionTest(T ′, qnearest, qnew) then
11: Q′near ← findNearNeighbours(T ′, qnew)
12: Unear ← sortNeighbours(Q′near)
13: q′parent ← getParent(Unear, qnew)
14: addNodeAndEdge(T ′, q′parent, qnew)
15: for all (cp(qnew), q′near, σnear) ∈ Unear do
16: if cp(qnew) + cp(σnear) < cp(q

′
near) then

17: rewire(T ′, q′near, qnew)
18: end if
19: end for
20: for all Tk 6= T ′ do
21: (σsol, cp(σsol))← connectTrees(T ′, Tk, qnew)
22: if cp(σsol) 6= ∅ then
23: Costbest|T ′,Tk ← cp(σsol); Σbest|T ′,Tk ← σsol
24: end if
25: end for
26: end if
27: end while
28: Σbest ← shortcutting(Σbest)

function returns a random configuration sampled from C, with a small bias to-

wards returning one of the other tree roots, each with equal probability. In this

way the algorithm biases the growth of a tree towards all other landmarks.

findNearestNeighbour - Returns the nearest node to a configuration q from

a tree Tk in configuration space C.

steer - Given two configurations qA, qB ∈ Cfree, the steer function produces

configuration qC ∈ Cfree which is a result of advancing configuration qA towards
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qB with a maximum step distance of ηstep. The value of ηstep is normally set

according to the maximum dimensions of the environment and the degree of

clutteredness (smaller step sizes enable the tree to explore narrow passages). By

adjusting this quantity according to the size of the environment, the algorithm

scales efficiently across different units. Thus in the evaluations presented in this

chapter I consider environments in arbitrary units as the algorithm’s performance

is unaffected by this.

transitionTest - Let us define cmax and cmin as the maximum and minimum

cost space values of the nodes in the tree Tk, respectively. With a tree node qi

and a sampled node qj as input, the transition test filters configurations accord-

ing to the following rules. If c(qj) exceeds the maximum threshold cmax, it is

automatically rejected. If on the other hand c(qj) < c(qi), it is automatically

accepted. If neither of the first two statements are true, then qj is accepted with

the probability defined by:

pij = exp

(
− ∆cij

(K ·H)

)
(4.2)

where K is a normalizing constant determined by the average cost of query config-

urations, ∆cij is the slope of the cost between qi and qj, and H is the temperature

parameter that is adapted by a factor hrate in each function call based on accep-

tance or rejection. Letting α be the growth factor defined by Eq. 4.3, the tuning

of the temperature parameter H is given by:

H =

H
2α
, if qnew is accepted

H · 2hrate , otherwise

α =
cj − ci

cmax − cmin
(4.3)

Thus the parameter hrate directly controls the rate of exploration across high-cost

regions.

findNearNeighbours - The nearest neighbours to a node q within the same

tree is returned based on the concept of a shrinking ball radius centred on q,

which was introduced in the RRT* algorithm [43]. The equation defining this

radius is given by:
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rn = min

{(
γ

ζd

log n

n

)1/d

, η

}
(4.4)

where d is the dimension of the problem, ζd is the volume of a unit ball in Rd,

γ is a constant greater than a certain lower bound γL, and η is an upper bound

constant to limit the length of rn.

sortNeighbours - Arranges neighbour nodes Qnear into a list of triplets con-

sisting of u = {cp, q, σ} and sorted in ascending order according to path cost,

given by equation 4.1.

getParent - Given a set of sorted neighbour triplets U and the sampled

configuration qnew, getParent iterates through each triplet u ∈ U and performs a

collision check along a connecting edge between qneighbour and qnew, terminating

when either a feasible edge is found or when all neighbours are evaluated. The

purpose of sorting the set of triplets u is to minimise the number of collision

checks required, which speeds up computation, while guaranteeing that the first

feasible parent node found always provides the lowest path cost to qnew.

addNodeAndEdge - This function expands a tree Tk by adding the new

node qnew to the tree with a connecting edge from its parent node qparent.

rewire - The rewire procedure is a crucial component of the RRT* algorithm,

providing the algorithm with asymptotic optimality guarantees. After a new

configuration qnew is added to a tree Tk, the rewire procedure attempts to reduce

the cost to reach any of the neighbour nodes qi by reassigning qnew as the parent

node. Acceptance for rewiring is subject to the satisfaction of two conditions: (i)

the cost of the new path σnew to qi through qnew is less than the cost of the current

path σprev to qi, and (ii) the connecting edge between qi and qnew is collision-free.

When these two conditions are met, the original edge connecting qi to its parent

is updated to reflect the accepted rewiring. As the number of expansions in the

algorithm tend towards infinite, the shortest found path from the root of the tree

to any point in the free C-space corresponds to the optimal path.

connectTrees - For Ti, Tj ∈ T | i 6= j, and a configuration qi in Ti, the

function finds a nearest node qj ∈ Tj to qi. If ||qj − qi|| < ηstep, the function

proceeds to attempt a connection between Ti and Tj through qi. Lines 11-19 in

Algorithm 1 are re-applied with Tj and qi as inputs. If a parent is successfully

found, q′i = qi is added to Tj. Subsequently, the path between the corresponding

roots of Ti and Tj is given by σ =
(
σ(qi), f lip

(
σ(q′i)

))
and the total path cost is
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cp = cp(qi) + cp(q
′
i).

shortcutting - Although the Multi-T-RRT* is characterised by asymptotic

optimality guarantees, in practice a substantial number of iterations is required to

converge towards a high-quality solution. In other words, further improvements

can generally be made to paths found after a moderate number of iterations. The

shortcutting procedure refines the quality of a path σ by attempting to remove

redundant nodes along the path through a local search procedure. Unlike other

variants of RRT algorithms, where shortcutting only takes into consideration the

path length and collision avoidance criteria, the implementation here adopts the

segment cost, computed using equation 4.1, into consideration to account for

general cost functions. The shortcutting procedure iterates through each triplet

of consecutive points {qA, qB, qC} and removes qB if cp([qA, qB]) + cp([qB, qC ]) >

cp([qA, qC ]). Evaluations across each consecutive triplets of points are recursively

performed until no further local shortcuts can be made to σ.

4.4 Simulation Study

A series of simulations was conducted to validate the performance of the path

planning algorithm. These simulations were conducted on an Intel Core i5 3320M

2.6 GHz processor with 8 GB RAM, and in all cases the results from the path

planner were used to formulate a PDDL problem, which was subsequently solved

using the LPG-td planner.3

Simulation 1 considers an MWR within a cluttered environment, where the

cost function c is given by the inverse of the shortest distance to the nearest obsta-

cle. Minimising this cost function translates to increasing the obstacle clearance

along the planned path. Using a set of 5 landmarks (inclusive of the robot base)

distributed in a 100 × 100 environment, the Multi-T-RRT* algorithm was applied

to the task with the following parameters: the algorithm was set to terminate

after 5000 successful iterations (i.e. when a total of 5000 nodes were added across

all search trees), wa = 0.99, wb = 0.01, ηstep = 1, hrate = 0.01 and H = 10−6.

Fig. 4.2 shows the complete solution set obtained using the Multi-T-RRT*

algorithm for Simulation 1. In Fig. 4.2a, a visualisation of the five trees at the

end of the search is provided. These trees originally consisted only of the corre-

3Detailed benchmarking to assess the performance of two different planners, namely LPG-td
and Metric-FF, is provided later in Section 4.5.2.
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sponding landmark nodes (represented by colored markers), and were iteratively

grown to explore the search space. Although no individual tree by itself provided

effective coverage of the entire map, the algorithm is able to obtain a continuous

path from any one landmark to all other landmarks across the environment by

joining together multiple trees. This means that any one tree contributes to the

solution of several paths by making information obtained by exploration available

to all of the planning instances being considered simultaneously. This somewhat

resembles a multi-query planning algorithm by being able to support the search

of multiple solutions, but differs in that it does not require a time-consuming

pre-processing stage and each new planning query requires exploring the search

space from scratch.

Figs. 4.2b-4.2f show the entire set of continuous paths that are generated by

finding the shortest connections between the trees in Fig. 4.2a, where each plot

is organised to show the subset of paths that start or end at the same landmark.

Observe that in all the solutions obtained, whenever a path passes through narrow

regions where obstacles lie on either side, the path lies close to the medial axis

of the environment, where obstacle clearance is at its maximum. Finally, Fig.

4.2g shows the final route obtained by applying the LPG-td planner to solve the

corresponding PDDL problem.

In Simulation 2 I consider the application of the algorithm to an outdoor

navigation task involving the traversal of rough surfaces. Here I define the cost

function as the elevation of the robot, such that paths that require ascending steep

slopes incur particularly high costs. I perform two planning queries for solving

this problem. In the first query, the algorithm is set to terminate once a collision-

free path for all pairs of landmarks is obtained (i.e. an initial solution is found

for all path planning sub-problems). In the second run, I set the algorithm to

run for exactly 3000 iterations. This gives the planner additional time to explore

the search space. In both trials wa = 0.01, wb = 0.99, ηstep = 1, hrate = 0.008 and

H = 10−6. The resulting solutions are shown in Fig. 4.3.

In this simple problem, the optimal visiting order for the 5 landmarks is quite

intuitive. We can see that by providing further planning time, the algorithm

is able to find a better quality solution to the task planning problem. This

optimisation takes place not only in the low-level paths, but at the high-level

ordering task, which is informed by the path costs derived from the continuous

cost space.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.2: Sample sets of solutions to a Multi-T-RRT* planning query. Triangle marker
represents the robot base, while circular markers represent a regular landmark.
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(a) (b)

Figure 4.3: Incremental improvement to quality of solution over increasing iterations in the
mountain environment, (a) initial solution obtained after 1188 iterations of the path planning
algorithm, (b) solution after 3000 iterations of the path planning algorithm.

These simulation studies have demonstrated the capability of the planner

to meet different planning needs based on the priority between plan quality and

planning speed. In simulation 1, extended planning time enabled the path planner

to obtain high quality paths by further exploring the search space after an initial

solution was obtained, while in simulation 2 I showed that a feasible solution (but

not necessarily a near -optimal solution) was retrieved with minimal iterations.

These behaviours are inherently controlled by the termination criteria that dictate

the required planning time of the algorithm.

4.5 Benchmarking

In the previous section I have shown that the integration of the Multi-T-RRT*

algorithm with PDDL planning is a viable approach to solving task planning

problems for mobile robots. In this section I provide a number of evaluations

conducted to benchmark the performance of the integrated planner.

4.5.1 Benchmarking Path Planners

To evaluate the quantitative advantage of applying the Multi-T-RRT* to compute

paths between all possible pairs of landmarks, I compare the performance of the

algorithm against a standard approach of performing multiple instances of the

T-RRT* algorithm [49] to individually compute each landmark-to-landmark path.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Example environments of various sizes for benchmarking Multi-T-RRT*. (a), (c)
and (e) show cluttered environments consisting of randomly generated obstacles as a percentage
of the C-space, while (b), (d) and (f) show examples of structured maze-like environments.
Triangle markers indicate the robot base position and circular markers indicate landmarks.
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Fifteen different 2D environments were generated to conduct these trials, with

the cost function defined as maximising obstacle clearance as considered in Sim-

ulation 1. These environments can be broken down into two groups: a cluttered

environment comprising of randomly generated obstacles and a maze-like envi-

ronment. Both groups contain a number of 50 × 50, 100 × 100 and 300 × 300

environments to enable the evaluation of each method’s scalability. Within the

cluttered environment group, three degrees of clutteredness were defined for each

environment size: 20%, 25% and 30%, where the percentages describe the per-

centage of the C-space occupied by obstacles. This gives a total of 9 environments

in the first group. As for the second group, two different structured maze-like

environments were developed for each environment size (giving a total of 6 envi-

ronments) to evaluate the effectiveness of the algorithms for exploring the search

space. A subset of these environments are provided in Fig. 4.4 as examples along

with the corresponding landmarks and robot base.

Fig. 4.5a reports the relative path costs of solutions obtained using the Multi-

T-RRT* algorithm and the T-RRT* approach for each environment, given as a

percentage cost difference computed using Eq. 4.5.

∆cp =
cp(σM−T−RRT ∗)− cp(σT−RRT ∗)

cp(σT−RRT ∗)
(4.5)

where ∆cp is the path cost difference, cp(σM−T−RRT∗) is the cost of the path

obtained by Multi-T-RRT* and cp(σT−RRT∗) is the cost of the path obtained by

T-RRT*. Each box plot captures the path cost differences between every corre-

sponding landmark-to-landmark path in the given environment, with a negative

percentage difference indicating a higher quality solution obtained by Multi-T-

RRT*. As the box plots show, the mean cost difference falls within the vicinity of

0% across all environments, demonstrating that the solutions obtained by Multi-

T-RRT* are indeed comparable to that of T-RRT*. Since Multi-T-RRT* is a

multi-tree variant of the T-RRT*, the results show that the extensions made to

Multi-T-RRT* preserve the properties of the T-RRT* with respect to the quality

of solutions obtained.

Fig. 4.5b reports the total computation time required by each approach to

compute a solution for all path planning problems within the same environment.

Here we can observe more significant difference in performance between the two

methods. In all but one case, the Multi-T-RRT* algorithm was able to solve the
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Figure 4.5: Performance evaluation of Multi-T-RRT* algorithm against T-RRT* [49] for
multi-goal path planning (a) Total path cost as a percentage of solutions obtained by T-RRT*
(b) CPU time required to compute paths between landmark-to-landmarks pairs.
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path planning problems faster than by solving each problem individually using

T-RRT*. In the best case, Multi-T-RRT* was able to reduce the computation

time required by approximately 85% (corresponding to the 300 × 300 maze 2

environment). The one case in which Multi-T-RRT* performs poorly in compar-

ison corresponds to the 30 × 30 clutter 20% environment. On this occasion the

planning problem was simple (only a small percentage of obstacles existed within

a small environment). Hence the overhead introduced by applying a multi-tree

search approach dominated the computation time on this instance.

These results indicate that the strategy of reusing the same sampled infor-

mation to simultaneously solve multiple path planning problems within the same

environment proves advantageous, since a potential time-saving in computation

time of up to 85% could be achieved with insignificant effect on the quality of solu-

tions obtained when compared to a standard single-query planning approach. Ad-

ditionally, it does not require the expensive pre-processing of multi-query methods

and substantially reduces the memory complexity of the algorithm by preserving

only the information relevant to the planning task (whereas multi-query planners

must adequate explore the entire C-space to adequately cope with all possible

path planning problems).

4.5.2 Benchmarking PDDL Solvers

A key component of the presented approach is the PDDL planner used to find

a high quality task plan given a PDDL problem file containing the true costs

provided by the Multi-T-RRT* algorithm. In the previous simulation studies

described in Section 4.4, I applied the LPG-td to obtain the final task plans. To

evaluate how the performance of the integrated approach might be influenced

by the choice of the PDDL planner used, a comparison between LPG-td and

Metric-FF, two planners that have proven particularly successful in past IPCs,

was conducted using the same PDDL problem file generated after applying the

Multi-T-RRT*.

Three different planning instances were considered for this benchmark, each

corresponding to a cluttered environment but with the number of landmarks var-

ied between 5, 7 and 9 (inclusive of the robot base), respectively. The planning

problem required that all landmarks were visited and that the robot returned to

the robot base on completion of its tasks. In each of these planning instances,
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Table 4.1: Benchmarking PDDL Planners

5 landmarks 7 landmarks 9 landmarks

Planner Plan

cost

CPU

time (s)

Plan cost CPU

time (s)

Plan cost CPU

time (s)

LPG-td 185.8 0.58 318.8±13.1 0.60 275.9±13.6 0.60

Metric-FF 185.8 0.03 275.1 4.73 249.6 429.62

the Multi-T-RRT* algorithm was used to compute all path costs for every com-

bination of landmark pairs required to generate the PDDL problem file. Each

planner was then called to solve the same PDDL problem for 20 runs.

The open-source implementation of the LPG-td used a random start to obtain

the initial action graph required to solve the planning problem on each run.

During a single planning instance, each time a solution to the problem was found,

the planner restarted the state-space search with a new action graph in an attempt

to find a better quality solution. This continued until a minimum predefined

search time was reached. In this benchmark, the planner was requested to conduct

a search for 0.5 seconds in each run. As a result, the LPG-td planner provided

solutions of a stochastic nature.

Table 4.1 reports the total plan cost (given by the sum of the path costs for

each movement action in the final solution), total path length (obtained as the

sum of the length of each individual path that makes up the final solution) and

the CPU time. A ±2 × SD is given in the table for the plan cost obtained by

LPG-td as it varied across the 20 runs.

In all planning instances considered, the Metric-FF planner consistently found

the lower cost solution between the two planners (for the simplest case of 5

landmarks, LPG-td was able to achieve a solution of the same quality). For the

problem involving 5 landmarks, Metric-FF was additionally able to converge to

a solution in significantly less time that the 0.5 seconds allocated to LPG-td.

However, as the size of the problem grew to 7 landmarks and 9 landmarks, the

efficiency of the Metric-FF deteriorated rapidly (requiring over 400 seconds for

the latter scenario). Conversely, LPG-td was able to converge to a solution in

under a second for all cases, with the potential to improve the solution quality

further if more time was allocated for the search.
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We can conclude from these results that the type of PDDL planner used

drastically affects the performance of the overall system. Even when we consider

only LPG-td and Metric-FF, we can find notable differences in the characteristics

of the system. The benchmarking results have shown that LPG-td can reliably

find a solution quickly (less than 1 second), but it does not provide any guarantee

for optimal solutions. Conversely, the Metric-FF can consistently provide a high-

quality solution, but potentially at the cost of reduced efficiency for large search

spaces. The choice of the PDDL planner is therefore largely dependent upon

the application. For example, for applications where anytime characteristics is

desirable, LPG-td proves advantageous as it can provide an initial solution quickly

for execution, but subsequently improve the later parts of a plan while early

actions are performed, while Metric-FF is suited for applications requiring highly

optimised plans for reasons such as safety and long-term productivity.

4.5.3 Benchmarking against UP2TA

The proposed integrated planner was benchmarked against two alternative ap-

proaches to solving the task and motion planning problem for MWRs: (i) a

standard approach that consists of estimating the cost of motion between all

pairs of landmarks using the Euclidean distance metric, combining the costs with

PDDL task planning to obtain an estimated optimal sequence of motions and

subsequently computing the true path for each of the motions in the sequence

sequentially using a bi-directional implementation of the T-RRT* algorithm, (ii)

the state-of-the-art UP2TA framework presented in [113], which consists of

employing a greedy search algorithm to approximate the cost metrics for each

possible movement action, solve the corresponding task planning problem, and

finally apply the Theta* algorithm to individually obtain the true paths for each

required motion in the planned sequence. For consistency, the LPG-td planner

was used for all three planning approaches to solve the task planning problem.

The set of environments described in Section 4.5.1 (see Fig. 4.4) were again

used in this comparison, where each planning approach was used to solve the

problem in each environment 50 times. The average total planning time, total

path length and total path cost are shown in Fig. 4.6.

Let us first consider the performance between the standard approach and

Multi-T-RRT*. Perhaps unsurprisingly, the standard approach requires less com-
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Figure 4.6: Benchmarking the DA-TPP against a simple planning approach and the UP2TA
method, (a) total computation time, (b) total path length of initial solution, (c) total path cost
of initial solution.
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putation time that the Multi-T-RRT*. This is due to the use of the simple Eu-

clidean metric to estimate motion costs prior to planning. Thus the number of

path planning problems solved in the standard approach is limited to the num-

ber of movement actions in the resulting task sequence. However, as Fig. 4.6b

and Fig. 4.6c show, both the total path length and total path cost suffer, as

Multi-T-RRT* outperforms the standard approach in all trials. This is a result

of the poor motion cost estimations that lead to sub-optimal task sequences that

are fixed by the time motion planning is performed to compute true paths. The

largest difference in solution quality was obtained for 300 × 300 maze 1, where

Multi-T-RRT* achieved a 32.9% reduction in total path cost compared to the

standard approach.

As for UP2TA, we can observe from Fig. 4.6a that the approach scales poorly

with the the size of the environment. While UP2TA had the shortest computa-

tion times for all 50 × 50 environments, it also required a substantially longer

computation time for all 300 × 300 environments (over 30 seconds for 300 times

300 maze 1 ). In contrast, the Multi-T-RRT* algorithm consistently required less

than 10 seconds for all trials, with the longest computation recorded at 7.6 sec-

onds for 300 times 300 cluster 30%. This finding agrees with the observations

made in Chapter 2 that sampling-based algorithms scale well with the dimension-

ality of the problem, while the majority of other methods do not. Furthermore,

while UP2TA was able to obtain solutions with the lowest path length for all

trials, it also returned solutions with the highest total path cost among the three

approaches (Multi-T-RRT* returned solutions up to 75.7% lower in total path

cost). This is due to the inability of Theta* (the motion planner used in UP2TA)

to account for additional cost criteria beyond path length, resulting in shortest

paths that lie very close to obstacles in the environment. Thus not only does

Multi-T-RRT* prove superior in terms of scalability, it is also able to account for

general cost criteria that are difficult to include in methods such as UP2TA.

Overall, this comparison has shown that the Multi-T-RRT* proves superior in

terms of solution quality compared to other existing approaches to task planning

and that it is capable of achieving computational performance that lies close to

the planning efficiency of naive strategies. Furthermore, the method scales well

with the size of the C-space and is able to consolidate different cost functions for

optimisation across general cost spaces.
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Table 4.2: Benchmarking Path Planning Algorithm

Initial Plan 5000 Iterations

Planner Env. type Mean

plan cost

CPU time

(s)

Mean

plan cost

CPU time

(s)

Multi-T-RRT
mountain 750.35 14.71 638.49 43.49

cluttered 196.14 7.17 189.30 13.38

Multi-T-RRT*
mountain 712.85 14.95 614.78 44.14

cluttered 190.97 7.96 181.49 15.78

4.5.4 Benchmarking against Multi-T-RRT

Finally, I compare the performance of the Multi-T-RRT* against the Multi-T-

RRT, a similar multi-tree variant of the T-RRT presented in [53], through the

task planning problems considered in Simulations 1 and 2 (Section 4.4). The fun-

damental difference between the Multi-T-RRT and my proposed algorithm is the

absence of rewiring procedures that provide the asymptotical optimality guaran-

tee present in Multi-T-RRT*. Through this comparison, I demonstrate that the

sorting procedures described in Section 4.3 enable the presented algorithm to find

higher quality solutions with minimal increase in computation time.

Using the environments in Simulation 1 (cluttered) and Simulation 2 (moun-

tain) for benchmarking, 50 trials were performed using both planners to first

obtain an initial solution, and subsequently an improved solution over 5000 it-

erations. For both methods the LPG-td planner was used to obtain the final

task-level plan. Planning parameters were assigned the same values used in Sim-

ulations 1 and 2. Table 4.2 reports the average plan cost and CPU time.

Observe that the proposed algorithm always obtains a higher quality solution,

both initially and after extended planning. Although the computation time is

always lower using the Multi-T-RRT, the Multi-T-RRT* falls behind by a very

small margin (generally less than 1 second). Arguably, this is an acceptable

trade-off for the resulting quality gained in the solutions. The key difference in

performance is the algorithm’s asymptotic optimality gain, which guarantees that

the algorithm will converge to optimal solutions when given sufficient planning

time.

The quality of the Multi-T-RRT solution does improve over time as the ex-
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tended growth of trees allow the algorithm to better explore the search space

(subsequently opening up shorter paths through more direct routes). However,

generally the resulting path from Multi-T-RRT contain significant oscillation-

like motions due to the rough paths that arise from the lack of rewiring. Hence

Multi-T-RRT* is able to obtain better quality solutions. This can be observed

particularly in the initial plans obtained by the two methods, where both algo-

rithms have only minimally explored the environment to find a feasible solution.

Despite this limited information, Multi-T-RRT* makes better use of the sampled

configurations by updating the tree structure to reflect the shortest path that can

be obtained given the current level of exploration across the environment.

4.6 Discussion

Based on the benchmarking and simulation study reported above, I wish to high-

light a number of key features of the Multi-T-RRT* algorithm introduced in this

chapter.

Firstly, the presented algorithm supports the use of any general cost criteria

that can be represented as a continuous cost space. This means the algorithm can

be directly applied to different applications without modification, which is unlike

the majority of path planning algorithms in literature that by default only search

for a shortest length path. Extending the use of these algorithms to encapsulate

other costs often require custom-designed modifications based on the application.

As described in Section 3.8, collision checks are generally a costly low-level

function. Eliminating the frequency of these calls can provide algorithms with

better planning efficiency. The Multi-T-RRT* achieves this by using sorting

procedures to order neighbour nodes when searching for a parent node so that

the algorithm only performs collision checks for a neighbour node when it is the

current best candidate. In Simulation 2, we saw that the planner is able to

incrementally improve the quality of solutions when given further planning time

(e.g. by running the algorithm for further iterations after an initial solution is

obtained). The results presented in Table 4.2 show how the algorithm is able

to find an initial solution to the cluttered planning problem in approximately 7

seconds while a notably better solution was obtained after 15 seconds. Similarly,

in the mountain environment an initial solution was found at approximately 15

seconds, and when queried after 44 seconds a significantly improved solution
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was obtained. This behaviour closely resembles an anytime algorithm, which

describes an algorithm that can return a valid solution when interrupted (or

queried before termination), but continues to find better solutions as further

computation time is permitted. Through iterative sampling and rewiring, the

algorithm is guaranteed to converge to an optimal solution as the computation

time tends towards infinity if a solution to the planning problem exists (i.e. the

algorithm is also probabilistically-complete). From a practical perspective, this

means an initial solution can be requested early to enable fast execution, while

the planner continues to run in the background to improve later steps in the plan

as the robot begins execution.

Another key feature of the algorithm is the way in which it maximises the

gain from every sampled configuration by using it to find solutions to multiple

path planning problems simultaneously. This provides the algorithm with two

key advantages: (i) it does not require a costly pre-processing phase offline prior

to planning, and (ii) unlike the DRM studied in Chapter 3, the Multi-T-RRT* is

a purely sampling-based algorithm that does not use any form of discretisation,

eliminating problems relating to granularity. The latter has important implica-

tions, as the use of discretisation generally restricts the scalability of an algorithm

(hence why deterministic algorithms such as A* and Theta* that discretise the

search space do not scale well with the size of the search space, as observed in

Section 4.5.3). Thus the Multi-T-RRT* can be effectively applied to robots be-

yond the 2-dimensional search space considered in this chapter (e.g. it can be

applied to 6-DoF manipulators directly).

I also wish to highlight a key observation at the level of task planning: the

choice of the planner is a critical consideration that depends upon the nature of

the application. As shown in the benchmarks, LPG-td provides no guarantee for

an optimal solution but can find feasible solutions quickly, making it very suitable

for fast applications. Metric-FF on the other hand requires extensive planning

times even for moderately sized problems (e.g. from 9 landmarks onward in

the mobile robot task planning domain), which limits its use to offline planning.

However, Metric-FF excels in applications where it is important to obtain the

highest quality solutions available (e.g. for maximising safety of a robot system

under uncertainty).

Finally, while this chapter has shown the use of the Multi-T-RRT* algorithm

in simulations only, in Chapter 5 I will go on to describe an experiment that
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involves the deployment of the paths found by this algorithm on a physical Pioneer

3-DX differential drive mobile robot.

4.7 Summary

In this chapter I have presented the Multi-T-RRT* algorithm for solving multiple

path planning problems simultaneously and have shown how it can be used to

provide task-level symbolic planning with spatial and geometric reasoning.

The path planning algorithm provides a more efficient way to compute the true

motion costs of optimal paths and supports any type of continuous cost space,

which improves the generality of the planner compared to many existing path

planners that only consider minimising path length by default. By integrating

the resulting path costs with a PDDL planner, I have shown that task-level plans

can be optimised according to the cost spaces considered at the low-level planning

domain. Finally, the algorithm also inherits the probabilistic completeness and

asymptotic optimality guarantees from the RRT* by preserving key sampling and

rewiring routines in the algorithm.

The benefits of applying the Multi-T-RRT* for solving multiple path plan-

ning problems simultaneously has been quantified through a comparison with

the standard approach of solving multiple instances of path planning separately,

showing that comparable solution quality can be achieved with up to 85% reduc-

tion in computation time. An evaluation of the behaviour of the algorithm when

integrated with the LPG-td and Metric-FF planners shows that there is indeed

a trade-off between maximising planning efficiency and minimising plan cost, as

first identified from literature in Chapter 2. The LPG-td has subsequently been

identified as a suitable planner for fast computational performance. The overall

performance of the resulting integrated planner has been benchmarked against

the UP2TA framework, showing that the proposed approach scales better with

the dimension of the problem and is capable of consolidating cost functions not

accounted for in standard path planning methods. Finally, I show that through

the adoption of sorting procedures, which minimise the number of collision checks

performed by the algorithm, solving task planning problems with Multi-T-RRT*

can enable higher quality solutions to be found with minimal increase in compu-

tation time when compared to the original Multi-T-RRT algorithm.

In Chapter 5 I extend the work presented here to show how the Multi-T-
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RRT* algorithm can be used to enable adaptive planning behaviours for anytime,

dynamic applications.
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Chapter 5

Adaptive Task and Path

Planning Framework for MWRs

5.1 Introduction

So far we have investigated the problem of static task planning for MWRs, where

I have presented an efficient path planning algorithm for integration with a PDDL

task planner. This integrated approach enables a fast way to compute optimal

solutions to task planning problems without relying upon offline pre-processing.

In the previous chapter, preliminary benchmarking results have demonstrated the

effectiveness of this approach for two different application scenarios, the first being

representative of a cluttered environment, while the second mimics an outdoor

navigation problem.

While Chapter 4 has primarily focused on the details of the path planning layer

comprising of the Multi-T-RRT* algorithm, this chapter devotes further attention

to the higher-level planning architecture. I first briefly revisit the integrated task

and path planner, which consists of a PDDL task planning layer embedded with

plan costs derived from the Multi-T-RRT* path planner (I shall refer to this

integrated architecture as the base planner throughout this chapter). As shown

in previous analysis, this method is capable of generating high quality solutions

to general MWR task planning problems. However, the performance of a system

relying on this base planner is generally sub-optimal and inadequate when we

take into account real-world dynamic considerations. This is due to the ever

present phenomena of change and uncertainty in the real world. Solving a task
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planning problem generally assumes the world is unaffected by external influences

or that future changes to the state of the world are known (and can therefore be

accounted for). However, uncertainty and dynamics mean that infeasibility due

to such things as the non-existence of a collision-free path between landmarks

or the existence of obstruction along specific paths are difficult or impossible to

determine offline.

Since the term ‘uncertainty’ encapsulates many different types of real-world

phenomena (such as noise, geometric variations, knowledge uncertainty, state un-

certainty etc.), let us narrow our considerations down to the uncertainties relating

to obstacles, which directly influence the feasibility of a path or configuration in

motion planning and the feasibility of movement actions in task planning. It is

not uncommon that at the start of a planning task, only a partial representa-

tion of the obstacles in the environment is known a priori. The location and

exact geometry of some obstacles may be uncertain, while freely movable and

possibly dynamically-moving objects capable of entering and exiting the consid-

ered environment could be unknown altogether. For those applications that fall

under this category and where reliable performance is required, existing imple-

mentations generally require a remote operator to provide manual override of

commands when unexpected events occur or are predicted. These are generally

labour intensive, difficult to detect remotely (as operators must interpret informa-

tion obtained remotely from sensors in real-time) and are prone to human errors.

As a result, there is a growing demand for more adaptive systems in complex,

modern applications beyond carefully-designed industrial cells.

Indeed, as discussed in Section 2.2.4.1, various adaptive algorithms for general

task planning have been developed to cope with dynamic changes in the environ-

ment. These methods focus on finding feasible solutions to planning problems

given new observations, usually through planning one action at a time while up-

dating the state of the world in between each action. However, according to the

findings derived from the literature review presented in Chapter 2, it remains an

ongoing challenge to maintain optimal solutions under these conditions as fast,

explicit planning is required to consider all the goals of the problem.

Let us return to the integrated base planner introduced in Chapter 4. In

addition to the above considerations for adaptive planning, another factor that

can limit the performance of a planner is the trade-off between solution qual-

ity and planning time. While the Multi-T-RRT* algorithm provides asymptotic

158



Wong, C. Adaptive Task and Path Planning Framework for MWRs

optimality guarantees at the level of motion planning, this usually means in prac-

tice that extended planning times are required to obtain high-quality solutions.

Where near-optimal solutions are specifically needed but planning time is an

equally important factor, it can be unclear when to terminate the path planning

algorithm to begin solving the task-level problem. A more desirable behaviour is

that of anytime-like characteristics, which describes algorithms that compute a

feasible solution to a problem in minimal time and then improve the solution us-

ing any further allocated planning time until interrupted or a termination criteria

is met. When a solution is requested, these algorithms return the best solution

found at that moment in time. In the context of task and motion planning, any-

time planning would enable fast computation of an initial solution for execution.

Once the plan is deployed for execution, the planner may then continue to im-

prove the quality of the task plan and corresponding motions for actions not yet

executed. In this way a planner could incrementally develop optimal solutions

for finite-horizon planning problems.

The rest of this chapter is devoted to exploring the concepts of anytime and

adaptive planning to extend the capabilities of the base planner towards online

planning in dynamic environments. Using the base planner and the Multi-T-

RRT* path planning algorithm as the core architecture, I introduce two exten-

sions to provide the planner with anytime-like characteristics and the capability

to re-plan both at the level of task planning and at the level of motion plan-

ning. The corresponding planning architectures are collectively referred to as

the Dynamic Anytime Task and Path Planning (DA-TPP) framework. The

contributions herein are summarised as follows:

1. I present an anytime extension to the base planner such that an initial fea-

sible solution is obtained when a solution to all path planning queries has

been computed, or when an initial termination criteria is met. Once ob-

tained, any further planning time allocated to the planner is used to improve

the quality of the existing solution by continued iterations of the Multi-T-

RRT* algorithm. Experimental results are provided for the evaluation of

the behaviour of the anytime task and path planner.

2. I present a dynamic re-planning extension to the base planner that enables a

solution to be adapted at both the task and path planning levels to maintain

an optimal solution on detection of changes in the environment. Local path
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correction procedures re-plan low-level paths to avoid potential collisions,

while a global re-planning procedure updates the task plan to maintain a

high-quality solution after updating the costs of all feasible motions. Both

of these procedures have been developed to retain existing trees generated

by the Multi-T-RRT* algorithm to maximise the use of previously sampled

nodes for fast computation.

3. I introduce a modification to the Multi-T-RRT* algorithm to enable the

pruning of nodes in trees, which limits the total number of nodes used to

explore the search space. This modification maximises the computational

efficiency of the dynamic re-planning routines by placing an upper bound

on the memory complexity for maintaining the search trees and limiting the

time complexity of any individual re-planning query.

The rest of this chapter is organised as follows. In Section 5.2 I provide

formal definitions to the task planning problem, while in Section 5.3 I introduce

the software architectures for the base planner, the anytime extension and the

dynamic re-planning extension. In Section 5.4, I describe the path planning

routines for dynamic re-planning and the modification to the Multi-T-RRT* for

tree pruning. Section 5.5 reports the experimental results conducted to evaluate

the various aspects of the DA-TPP framework, and finally Section 5.6 provides a

summary of the chapter given in the broader context of MWR task planning.

5.2 Problem Formulation

In this section I give formal definitions to the feasible task planning problem and

the optimal task planning problem. I then combine this with the notation used

in the formal definitions of feasible and optimal path planning as described in

Section 4.2 to formally define the integrated task and path planning problem

(ITPP).

5.2.1 Task Planning

As explained in Section 2.2, different notations can be used to represent the task

planning domain. In the development of the DA-TPP framework, the PDDL

representation was chosen due to its wide acceptance as the de facto standard for
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AI planning. Thus I adopt the notation used in this language for the implemen-

tation of task planning described in this chapter. Nevertheless, it is important to

note that alternative representations can be adopted according to the approaches

used for solving the task planning problem (see Chapter 2 for details).

Five components are necessary to define a standard task planning problem:

the finite state space S, the initial world state s0 ∈ S, a finite set of actions A

that are applicable within the domain, the finite set of state transitions E that

result from each action, and the goal state sg ∈ S. [79] An action ai ∈ A can

only be applied at step k if sk ∈ pre(ai), where pre(ai) is the precondition set of

ai. Here all states in pre(ai) satisfy the preconditions required to perform action

ai. The new state obtained at step k + 1 is given by eff(ai), the effect set of

ai, such that sk+1 = ai(sk)
1 where sk+1 ∈ eff(ai). This state transition mapping

from pre(ai)→ eff(ai) is denoted by ei ∈ E. Thus, the standard task planning

problem consists of the tuple {S, so, sg, A,E}. Subsequently the feasible task

planning problem is defined as follows:

Problem (feasible task planning). Given a standard task planning problem of

the form {S, so, sg, A,E}, find a valid action sequence p = (a[0], a[1], . . . , a[n])

such that s0 ∈ pre(a[0]) and sg ∈ eff(a[n]). If a valid action sequence exists, the

problem is feasible.

Suppose in addition to the standard task planning problem {S, so, sg, A,E}
a finite set of action costs is defined as GA : A → R+ such that every action ai

is mapped to a real cost value gi ∈ GA. The cost of a given action sequence p is

then given by the summation h = g[0] + g[1] + . . .+ g[n], where h is the total cost

of an action sequence. Using this notation, the optimal task planning problem is

defined as such:

Problem (optimal task planning). Let P be the set of all feasible action sequences

for a task planning problem {S, so, sg, A,E}. Given the finite set of action costs

GA, find an optimal action sequence p∗ ∈ P such that h(p∗) = min
p∈P

h(p).

5.2.2 Task and Path Planning

The planning domain for the ITPP problem consists of both the symbolic state

space S in the task planning problem and the geometric C-space C in the path

1Throughout this chapter I let ai[k] be the short-hand representation of ai(sk).
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planning problem. Movement actions defined in the symbolic state space must

be associated with feasible paths in the geometric configuration space. Thus a

means of linkage is required to translate task states and movement actions to

robot configurations and path plans, respectively, and vice-versa. Accordingly, a

standard ITPP problem consists of an extended tuple {S,C, δo, δg, A,E}, where

δ0 = {s0, q0} and δg = {sg, qg} are state-configuration pairs. Letting ψi = {ai, σi}
represent an action-motion pair, the feasible ITPP problem is defined as:

Problem (feasible ITPP). Given an ITPP problem {S,C, δo, δg, A,E}, find a

valid sequence of action-motion pairs Ψ = (ψ[0], ψ[1], . . . , ψ[n]) such that s0 ∈
pre(a[0]), sg ∈ eff(a[n]), q0 = σ[0](0), qg = σ[n](1), σ[k](1) = σ[k+1](0) and σk(τ) ∈
Cfree for all τ ∈ [0, 1]. If a valid action-motion sequence exist, the problem is

feasible.

Note that for all non-movement action-motion pairs in Ψ, σ[k](0) = σ[k](1) =

qk. Finally, the optimal ITPP problem is defined by re-introducing the finite

set of action costs GA (see Problem 5.2.1) and the path cost function cp (see

Problem 4.2.1). Additionally, recall that an optimal path is denoted by σ∗, where

cp(σ
∗) = min

σ∈Σ
cp(σ). Then ∀gi ∈ GA:

gi =

cp(σ∗i ), if ai is a movement action

0, otherwise

With a slight abuse of notation, let h(Ψ) = g[0] + g[1] + . . .+ g[n] denote the total

cost of the action-motion sequence Ψ. Finally, the optimal ITPP is defined as:

Problem (optimal ITPP). – Let Ω be the set of feasible action-motion sequences

for the standard ITPP problem {S,C, δo, δg, A,E}. Given the finite set of action

costs GA, find a feasible action-motion sequence Ψ∗ such that h(Ψ∗) = min
Ψ∈Ω

h(Ψ).

5.2.3 Task and Path Planning Domain

The task and path planning problem addressed in this chapter builds upon the

description given in Section 4.2. Previously the objective of the problem was to

find an optimal task plan and the corresponding collision-free motions to achieve

a set of prescribed tasks while satisfying any task precedence constraints and

minimising the total incurred cost with respect to a motion planning cost criteria.

The considerations in Chapter 4 were limited to offline planning problems where
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the environment was fixed and completely known a priori. This chapter extends

these considerations to partially-known and dynamic environments.

Recall from Chapter 4 that Cobs represents the obstacle-occupied regions of

the C-space where collision between the robot and the environment occurs. In

this chapter, let us consider Cobs(t) as the time-variant obstacle-occupied regions

of the C-space as perceived by the robot. Thus, Cfree, the collision-free regions of

the C-space, varies according to new observations made in the environment. The

objective of the planning problem in this chapter is therefore to adaptively com-

pute and maintain an optimal task plan and the corresponding set of collision-

free motions according to perceived observations of the environment until the

completion of all tasks while satisfying all previous requirements.

Since we are interested in defining the reaction time of the robot in response

to newly detected obstacles, a secondary objective of this work is to maximise the

planning efficiency of the base planner to adequately cope with dynamic changes

in the environments online.

5.3 Software Architecture

5.3.1 Base Planner

Let us revisit the base planner introduced in Chapter 4. Unlike the majority of

planners described in Section 2.2.2, a distinguishing property of the base planner

is the computation of all path plans prior to solving the task-level planning prob-

lem. Even in the CTMP literature discussed in Section 2.2.1.3, motion planning

queries are generally interleaved with the task planner to determine the feasibil-

ity of actions as they are considered. Indeed for general robotic task planning

problems (often involving the manipulation of objects) the search space of the

problem can be too large to compute all motion plans in practical times. However,

this work exploits the reduced search space unique to MWRs, which provides the

opportunity to enable optimal task planning using similar concepts common to

CTMP.

Using the Multi-T-RRT* algorithm, the execution costs of each movement ac-

tion is computed according to the function given in Eq. 4.1. An interfacing layer

then takes these cost values along with the original task-level planning problem

and generates a problem file that meets the convention laid out in PDDL, where
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movement-type actions are assigned the cost values from motion planning. The

task-level planning problem is then solved by applying a PDDL-compatible AI

planner to the PDDL domain file (presumably available beforehand given the

robot’s capabilities and application domain) and the newly-generated problem

file. Finally, a parser is used to extract the sequence of actions from the solution

and associate each movement action with the corresponding motion paths previ-

ously computed in the motion planning layer. It is worth noting here that when

the base planner is applied to MTP problems, the extracted sequence of actions

can be translated into a visiting sequence of goal points/landmarks. In the ITPP

problems considered in this chapter, let us assume that the solution returned is a

visiting sequence of landmarks together with the set of paths planned between

successive landmarks (recall the task domain definition presented in Chapter 4).

While any PDDL-compatible AI planner can be used to obtain a solution to

the problem in the task planning layer, the choice of planner matters in terms of

the performance of the overall base planner. Firstly, to address the problem as an

optimal ITPP problem requires the use of a planner that supports fluents (recall

from Chapter 2 that these are numerical state variables), such as the Metric-FF

or LPG-td planners. The use of other planners that are not able to support these

features would result in finding feasible solutions only. Secondly, as discussed

in Section 4.6, the use of different planners on the same problem can lead to

differences in planning behaviour. In this work, I choose to adopt the LPG-td

planner for solving the task-level planning problem in the DA-TPP framework

due to its adjustable planning speed while being able to support fluents. While

it is true that other planners such as the Metric-FF outperforms LPG-td from

a solution quality perspective, the DA-TPP framework is specifically concerned

with the problem of enabling fast adaptiveness to changes in an environment

during execution. Thus to achieve this, an effective balance between solution

quality and planning efficiency is highly important. Nevertheless, alternative

planners can be used within the DA-TPP framework according to the demands

of the application.

A high-level illustration of the described base planner architecture is shown

in Fig. 5.1.
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Figure 5.1: Base planner architecture

5.3.2 Anytime Planning

The anytime planning component of the DA-TPP framework is developed as

an extension to the base planner to overcome the limitations of the Multi-T-

RRT* algorithm’s asymptotic optimality guarantee. Although algorithms with

this guarantee can provide high quality solutions, they generally require extensive

planning times in order to converge to these solutions. The anytime extension

enables a system to first determine an initial feasible solution (where the cost is

generally sub-optimal) such that the robot may begin to execute the set of tasks,

and during this time the planner continues to reduce the cost of execution for

pending steps in the plan.

A flow diagram of the anytime planning routine is shown in Fig. 5.2. An

initial solution is first obtained using the previously described base planner with

an initial termination condition that could be specified as a fixed allotted time

or when connectivity between all landmarks has been achieved. This solution is

saved in memory, and the planner continues to iterate through the tree expansion

procedures of the path planning layer until a final termination criteria is met

(e.g. when the execution of tasks has been completed). A task planning query is

made to update the task plan whenever the cost of any path cp(σi,j) between two

landmarks li and lj, li, lj ∈ L decreases below an upper cost bound C+
s defined

by:
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Figure 5.2: Anytime planner flow diagram

C+
s = ηa · cp(σi,j)prev. (5.1)

Where ηa is the anytime bound constant with a value less than or equal to 1, and

cp(σi,j)prev is the cost of σi,j found at the time of the previous task planning query.

That is to say, whenever a new solution to a path planning problem between two

landmarks with a minimum guaranteed cost reduction is found, a new attempt

to find a better task sequence is made. By defining an appropriate value for

ηa, the number of task planning queries can be controlled to avoid unnecessarily

performing high-level task planning in instances where the planner has likely

converged to the optimal sequence of actions (i.e further improvements to the

path plans would not affect the ordering of the action sequence p).

Note that as the robot achieves each task during execution, the task planning

sub-routine first updates the PDDL problem file to reflect the changes to the

initial state of the world (within the scope of the task planning query) prior to

solving it, such that any updates to the task plan considers only those tasks that

have not yet been made. Thus as the planner continues to search for a better

solution, the current best plan for the remaining set of incomplete tasks is stored

as a pending output to any subsequent queries made to the anytime planner.
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(a)

(b)

Figure 5.3: Dynamic planning extension, (a) Re-planning sub-routines integrated with the
base planner, (b) Re-planning sub-routines integrated with the anytime planning architecture.

5.3.3 Dynamic Re-planning

Dynamic re-planning capabilities can be achieved through the extensions to the

base planner architecture as shown in Fig. 5.3. These extensions are made up of

two key components: a local path correction sub-routine and a global re-planning

sub-routine (a detailed description of the underlying algorithms for these two sub-

routines are provided in Section 5.4). In addition to these two additions, a source

of external perception is required to observe the robot’s environment (represented

by the block perception).

These extensions to the base planner provide the following dynamic re-planning
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behaviour. During execution, whenever unknown obstacles are detected by the

sensing system, the planner evaluates whether the new obstacle region in the C-

space would result in collision with the currently executed path. If no collision

is detected, the planner ignores the obstacle and no re-planning is performed. In

the reverse case, if the current path would lead to collision with the obstacle,

the local path correction sub-routine is called to find a new collision-free path

to the robot’s current goal landmark lj. Once this path is obtained, the planner

compares the cost of the new re-planned path cp(σj)new against the cost of the

previous path to the current goal cp(σj)prev. An instance of global re-planning is

subsequently performed if cp(σj)new is greater than a minimum cost bound C−s ,

defined by:

C−s = ηd · cp(σj)prev. (5.2)

where ηd is the dynamic bound constant with a value greater than or equal to

1. The global re-planning sub-routine seeks to find a new optimal task plan

by treating the new obstacles as permanent obstacles in the environment. All

path plans are checked and updated if necessary to ensure no collisions occur as a

result of the changes detected in the environment (new paths are also obtained by

finding connecting paths between the robot’s current location to all landmarks).

A task planning query is then performed on the updated set of path costs to

determine a new solution to the optimal ITPP problem.

Note that when cp(σj)new does not exceed C−s , global re-planning does not

occur. The planner resumes execution using the updated local path with the ex-

isting task plan intact. In this case, the detected obstacle information is discarded

after the local path correction sub-routine.

The purpose of Eq. 5.2 is to limit the number of unnecessary global re-

planning queries requested during execution (as this is an expensive sub-routine

that results in noticeable idle time in real-time applications). Generally, small

hazards (such as rocks, potholes or even other moving subjects) detected along a

robot’s path do not significantly impact the quality of an existing high-level action

sequence, though the low-level path must still be corrected to avoid such things

as collision. In these situations we would not expect the cost of the corrected

path to be drastically more expensive than the original path. In contrast, bigger

obstacles may require the robot to take large detours in order to reach its original

goal landmark (consider driving as an analogy, where significant diversions can
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result from a single roadblock). In these situations, it may be less costly to

perform a reordered sequence of tasks. However, this requires the updating of

all paths to ensure the new task plan takes into account the newly detected

obstruction for all actions. The relative balance between these two behaviours is

controlled by the value of ηd. Smaller values favor performing global re-planning

to optimise the task plan at the cost of longer idle times, while larger values

favor performing only the local path correction sub-routine for better real-time

performance but at the cost of potentially lower quality plans.

The dynamic re-planning extension to the base planner can be integrated with

the anytime planning extension by simply replacing the base planner module

in Fig. 5.3a with the anytime planning procedures described in 5.3.2 (see Fig.

5.3b). Using this combined architecture, the planner continues to improve the

quality of solutions by expanding the trees of the path planning layer during

execution. When new obstacles are encountered, the re-planning sub-routines of

the dynamic re-planning extension are called to update the currently executed

path and subsequently the entire task plan (when the condition in Eq. 5.2 is met)

using the most up-to-date set of trees expanded by the anytime component.

5.4 Extensions to the Multi-T-RRT* Algorithm

This section describes the sub-routines that are essential to the anytime and

dynamic components of the DA-TPP framework. I first present the algorithm

for the local path correction sub-routine, which re-plans purely in the low-level

motion planning layer. I then describe the global re-planning sub-routine, which

performs re-planning procedures both in the task planning layer and in the motion

planning layer. Several functions used in the local path correction sub-routine

is adopted here. Finally, I introduce a tree pruning extension to the Multi-T-

RRT* algorithm that periodically deletes nodes that are deemed not useful for

the search of an optimal solution to any path planning problem. This enables

the size of the trees to be capped at a specified upper limit, which significantly

improves the memory complexity of the planner and the time complexity of the

aforementioned re-planning sub-routines.

Note that in the following, the notation used in Chapter 4 for the description

of the Multi-T-RRT* algorithm is preserved.
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5.4.1 Local Path Correction

The local path correction sub-routine can be considered a dynamic path plan-

ning extension to the Multi-T-RRT* algorithm, which enables a new optimal

path to be found as new obstacle information is provided to the motion planner.

It involves a set of RRT tree update procedures that closely resembles a number

of functions in the RRTX algorithm presented by Otte and Frazzoli [58].

To enable the use of the local path correction routine, the representation of

relevant sampled configurations in the search space must be adjusted as follows.

Taking the RRT tree T0 rooted at the start landmark l0 and the RRT tree Tg

rooted at the goal landmark lg, a new tree Tmerge is generated by combining

the nodes in T0 and Tg into a single tree, rooted at lg. As previously noted

in Section 2.1.2, setting the root of an RRT tree as the goal location provides

better support for dynamic re-planning as the root of the tree does not need

to be updated to reflect the changing robot configuration. Without merging T0

and Tg, any dynamic re-planning procedures would be required to update T0 at

each query to take into account the new configuration of the robot. Furthermore,

additional complexity would be introduced to the re-planning procedures as new

connections between the two trees must be established. Instead, by using a single

tree Tmerge, we can avoid the aforementioned difficulties. To perform this merge,

a new tree is created with a single node at lg. An iterative expansion process is

applied to find the neighbours of lg from among T0 and Tg, and choosing the node

with the lowest travel cost from lg to add to the tree. This new node becomes the

next node to expand, with the algorithm continuing to select the next neighbour

node with the lowest cost to lg through the iteratively-constructed Tmerge. The

result is an RRT*-like tree where every node in the tree is connected to the branch

that provides the lowest cost to lg from among the sampled configurations. An

example of T0 and Tg before merging and the resulting tree Tmerge after the merge

function is shown in Fig. 5.4.

Now consider a path σ due for execution. As the robot advances along σ,

a collision checking query is conducted on the remaining segments of the path

each time a new set of obstacles O is detected. If collision is found at any point

along the path, the algorithm proceeds with the remaining procedures for path

re-planning. Otherwise, O is discarded.

The remaining path re-planning procedures is as follows (see Algorithm 2 for

the pseudo-code of the local path correction sub-routine). An invalidateNodes
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(a) (b)

Figure 5.4: Illustration of the tree merge function, (a) Trees T0 (red), rooted at qrob, and
Tg (blue), rooted at qgoal, grown across the configuration space. (b) The resulting tree Tmerge
(green) resulting from the merge function applied on T0 and Tg.

function (Line 5 of Algorithm 2) obtains all the nodes in Tmerge that comes into

collision with any obstacle o ∈ O and marks these as invalid (which is equivalent

to removing them from Tmerge). This results in a set of disconnected nodes and

branches that can no longer be reached from the root of Tmerge. The updateOr-

phans function (Line 6 of Algorithm 2) identifies all of these orphaned nodes in

the tree, removes any connections with parent nodes and assigns an infinite travel

cost (from the root of the tree) to these nodes. These two functions collectively

resembles the propagateDescendants function of the RRTX described in [58]. Af-

terwards, the algorithm establishes new connecting edges between the orphans

and the remaining valid nodes in the tree by iterating through a queue of nodes,

called the rewire queue, consisting initially of the neighbours of the orphaned

nodes. This rewire queue is ordered according to the travel cost of the nodes

from the root of the tree (lowest first). At each iteration, the front node of the

rewire queue is dequeued and an instance of rewiring is performed on its neigh-

bour nodes in an attempt to reconnect orphaned nodes. Any neighbour node that

is successfully rewired is added into the rewire queue. The algorithm continues to

iterate through the rewire queue until it is empty, at which point the algorithm

advances to the next step in the sub-routine. These procedures are encapsulated

in the rewireTree function (Line 7 of Algorithm 2) and resembles the reduceIn-

consistency function in the RRTX algorithm. Subsequently, the robot’s current

configuration qrob is added to Tmerge using a standard tree expansion procedure.

A new path σnew from qrob to lg is then obtained by searching the Tmerge.
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Algorithm 2 localPathCorrection

Input: Merged tree Tmerge, set of all planning trees T and current path σ
Output: Updated path σnew

1: Onew ← getObstacles()
2: qrob ← getRobotPose()
3: if collision(σ,Onew) then
4: cp(σ)← pathCost(σ, qrob)
5: Tmerge ← invalidateNodes(Tmerge, Onew)
6: Tmerge ← updateOrphans(Tmerge)
7: Tmerge ← rewireTree(Tmerge)
8: σnew ← updatePath(Tmerge, qrob)
9: cp(σnew)← pathCost(σnew, qrob)

10: if cp(σnew) > (1 + ηd) · cp(σ) then
11: globalReplanning(T,Onew, qrob)
12: end if
13: end if

Once a new path is obtained, the new path cost cp(σnew) is compared with

the lower cost bound C−s as defined in Eq. 5.2. If cp(σnew) exceeds C−s , the global

re-planning sub-routine is called to permanently propagate the current perceived

state of the world to the task-level planner. Otherwise, the algorithm discards

O such that their existence in the world is ignored until collision with these

obstacles are again detected. This behaviour offers the advantage of delaying re-

planning procedures for future steps as the effect of these obstacles are minimal

to the overall cost of the executed set of motions. In this way, small dynamically-

moving obstacles that are likely to have changed states when the robot returns

to the same area do not induce expensive global re-planning procedures.

5.4.2 Global Re-planning

The global re-planning sub-routine is comprised of a global update to the set of

path solutions in the motion planning layer and a subsequent task planning query

using the new action costs derived from the updated motion planning layer. It

takes as input the set of path planning trees T , the set of newly detected obstacles

O and the robot’s current configuration qrob.

With reference to Algorithm 3, the global update to the motion planning

layer consists of finding new optimal paths between every pair of landmarks in

the Multi-T-RRT* path planner. When called, every tree Tk ∈ T is updated by

172



Wong, C. Adaptive Task and Path Planning Framework for MWRs

Algorithm 3 globalReplanning (Motion Planning Layer)

Input: Set of all planning trees T , set of new obstacles Onew and the current
robot configuration qrob

Output: Set of updated planning trees T and set of path solutions Σbest

1: for all Tk ∈ T do
2: Tk ← invalidNodes(Tk, Onew)
3: Tk ← updateOrphans(Tk)
4: Tk ← rewireTree(Tk)
5: end for
6: Σbest ← updatePaths(T )
7: Σbest ← pathsFromRobotToLandmark(Σbest, T, qrob)

applying the same procedures in the local path correction algorithm (Lines 5-7 in

Algorithm 2) to invalidate nodes in collision with O, update orphaned nodes, and

re-establish connections through rewiring in conjunction with the rewire queue.

The optimal paths between landmarks are obtained by finding the connecting

nodes between associated trees and selecting the lowest cost path (the set of best

paths for all the ITPP problem is represented by Σbest).

In general, the robot’s current configuration qrob does not coincide with any

of the landmarks in L. In order for the task planner to find a valid action

sequence that starts from the robot’s current configuration, qrob is inserted into

the ITPP problem as a virtual landmark lrob (subsequently a new landmark object

is also added when generating the PDDL problem file in the task planning stage).

Using the updated trees associated to each of the original landmarks, attempts

are made to connect lrob to the original set of landmarks by testing connections

from the neighbouring nodes of each tree to lrob. Successful connections lead to

the addition of a continuous path from qrob to the corresponding landmark, while

unsuccessful connections indicate that a path has not been found (i.e. infinite

cost as assigned to the corresponding action during task planning). In this way

the integrated planner attempts to solve a new task planning problem involving

a different robot starting position, while all goals in the task remain the same as

the initial planning problem.

Finally, a new action-motion sequence Ψnew is obtained by generating a new

PDDL problem file and conducting another instance of task planning.
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5.4.3 Tree Pruning

A consequence of the Multi-T-RRT* algorithm’s asymptotic optimality property

is the requirement for extensive sampling to effectively explore the search space.

This means that converging to the set of optimal solutions during path planning

requires many nodes to be added to the set of trees, T . However, as the number

of nodes n in the trees increase, the computational resources consumed by the

planner also increases (in terms of time and memory). This is universally true

for all RRT*-based algorithms that involve a rewiring procedure. In fact in a

complexity analysis of the RRT* algorithm conducted by the original authors, it

was found that the time complexity of the RRT* was O(n log n). [43]

While this time complexity is tolerable for static applications, the same cannot

be said for dynamic re-planning, where planning efficiency is particularly impor-

tant if near-real-time performance is desired. Both the local path correction

and global re-planning sub-routines involve rewiring procedures and are therefore

computationally sensitive to n.

Karaman et al. [61] had proposed the use of a branch-and-bound technique

for the standard RRT* to enable more efficient expansion in their anytime im-

plementation of the algorithm. Branch and bound is a popular technique in the

fields of AI and optimisation, where candidate solutions whose costs are worse

than the current best solution are automatically disregarded. In the context of

the RRT* algorithm, this refers to sampled nodes in the tree where the cost of

any path from the start to the goal that passes through the node will always be

larger that the current best path. Karaman et al. proposed the periodic deletion

of these nodes to limit the size of the tree as these nodes cannot be part of a

shorter path. Similarly, recall from Section 2.1.2 that Otte and Correll had pro-

posed the use of tree pruning to remove redundant nodes from a parallel set of

RRT* trees [54]. This was performed each time a new best solution was found,

allowing all nodes that do not provide better solutions even at best (according

to the same criteria as branch-and-bound used by Karaman et al.) to be iden-

tified and removed. Both of these techniques were shown to reduce the memory

consumption and rate of convergence of their respective algorithms by minimis-

ing the number of nodes stored in memory and limiting the number of rewiring

operations required in a single iteration of tree growth. However, in both cases

authors had only considered the use of this concept for a single path planning

query.
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In general, it is difficult to apply a tree pruning technique directly in the

context of solving multiple path planning problems simultaneously. To explain

why, consider three landmarks lA, lB and lC . Suppose we inspect a sampled node

qa that belongs in tree TA. Using an admissible estimate of the cost to go to lB,

let us suppose that no solution through qa can provide a lower cost solution to lB.

However, in order to conclude that qa cannot offer better solutions universally,

we must also prove that qa does not have the potential to offer better solutions

for a path to lC . As a result, the likelihood of a sampled node being removed falls

as it must now meet two criteria. Following this analysis then, as the number of

landmarks in the problem increases, the likelihood of a node being deleted tends

towards zero (that is, for a problem with many landmarks, a node might never be

completely irrelevant as it will always advance towards at least one landmark).

In this work, I extend the concept of tree pruning to the Multi-T-RRT* al-

gorithm to place an upper bound on the number of nodes across the entire set

of T-RRT* trees while preserving the capability of the algorithm to improve so-

lutions over time. This enables a substantial reduction in the computation time

required for re-planning (as less rewiring procedures are required in each instance

due to the upper bound on number of nodes) and minimises the memory con-

sumption of the algorithm. To address the problem of multiple goals as described

above, a heuristic procedure was developed to evaluate the usefulness of nodes

within the context of multiple trees. The method works as follows. Let Nmax

be a predefined upper bound on the number of nodes n across the set of trees

T . When n is less than Nmax, the expansion of the Multi-T-RRT* continues as

normal. Once n reaches Nmax, the addition of a new node to a tree can only be

accepted under the condition that an existing node of less usefulness within the

same tree has been found. Using this method, the number of nodes in the Multi-

T-RRT* is capped at Nmax without preventing the algorithm from continuing to

explore the search space for better solutions.

Letting qnew represent a newly sampled node, the conditions for searching for

an existing node of less usefulness are described below in chronological order:

Condition (Condition 1). A search within the neighbours of qnew is conducted to

find a node with only one child, and where the path cost from the tree root to the

child is less by passing through qnew instead. If no nodes that meet this criteria

are found, move to condition 2.
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Condition (Condition 2). A search within the neighbours of qnew is conducted

to find any nodes without children that possesses a higher cost space value than

qnew (recall that the Multi-T-RRT* algorithm samples nodes using a transition

test that accounts for a continuous cost space). If no nodes that meet this criteria

are found, move to condition 3.

Condition (Condition 3). A search across the tree is conducted to find a node

that has no children and has a lower usefulness value ρ than qnew (explained

below). If no nodes that meet this criteria is found, then qnew is rejected.

Note that in addition to each of the 3 conditions above, the selected node

must also not be a connecting node to other trees, otherwise it is considered as a

useful node. Once a node for deletion is found, the existing node is removed from

the tree and the new node qnew is added. Additionally, if the deleted node was

found in step 1, a connecting edge is formed between the deleted node’s child and

qnew. Finally, the algorithm resumes with the normal procedures by performing

rewiring on the neighbours of qnew. The complete process for tree-pruning is

summarised in the flowchart shown in Fig. 5.5.

In condition 3 of the search procedures listed above, a heuristic usefulness

value ρ was introduced to enable a comparison of existing nodes with qnew. This

value was computed in the following way. Let i be the index of the tree for

which qnew was sampled for, and let costToGo(A,B) be an admissible estimate of

the cost from A to B (e.g. a straight segment that connects A to B, where the

distance is given by the Euclidean metric). ρ is then given by:

ρ = min
k=[1:m],k 6=i

cp(σ(li, qnew)) + costToGo(qnew, lk)

cp(σk)best
(5.3)

Where m is the number of landmarks (and trees) in the ITPP problem, σ(li, qnew)

is the path from the root of Ti to qnew and cp(σk)best is the cost of the current

best solution path for landmark k. In other words, the usefulness value measures

the best case solution quality of any path passing through a node relative to

the current best solution for the corresponding path goal. Thus in step 3 of the

search procedures, rather than deleting a node with no potential to improve any

solution path (which may not exist), the algorithm chooses to delete a node with

lower potential to improve the path quality of a solution compared to the newly

sampled node.
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Figure 5.5: Flowchart showing the tree pruning procedure for adding nodes into a tree while
limiting the maximum number of nodes.

The tree pruning procedures described in this section can be implemented to

the base planner, anytime planner or dynamic planner of the DA-TPP framework.

When searching for high quality solutions, the use of tree pruning places an upper

limit on the computational resources of the planner (in terms of memory) and

improves the overall efficiency for converging towards optimal solutions. For

dynamic planning applications on the other hand, tree pruning improves the

near-real-time performance of the re-planning sub-routines by limiting the size of

trees that must be updated while enabling the search for high quality solutions.

I will show in Section 5.5.2 that the use of tree pruning allows solutions of

similar quality to be found with less nodes across the entire set of trees compared

to extended sampling without tree pruning.

5.5 Experimental Evaluation

A number of experiments were conducted to evaluate each of the components of

the DA-TPP framework. In the first experiment I demonstrate the behaviour of

the anytime planner and present an evaluation of its performance for various ηa
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values. Through the second experiment I show that the tree pruning technique

introduced as an extension to the Multi-T-RRT* algorithm enables the path

planner to find solutions of comparable quality to the same algorithm without

tree pruning, but with a smaller number of total nodes across the entire set of

trees. Finally, I present a third experiment conducted on a physical robot to

demonstrate the behaviour of dynamic re-planning in an office environment with

unknown obstacles placed across the environment.

In all three experiments reported in this section, a PC carrying an Intel®

Xeon® CPU E3-1270 v3 (3.50 GHz) was used to run the DA-TPP algorithms

implemented on Matlab version R2016b software.

5.5.1 Anytime Planning

To demonstrate the behaviour and performance of the anytime planner, a set of

trials was conducted on the ITPP problem shown in Fig. 5.6 using the anytime

planning procedures described in Section 5.3.2. In this experiment, the value of

the anytime bound constant ηa was varied between 0.80, 0.85, 0.90, 0.93, 0.95 and

0.97. For each ηa value, 50 trials were conducted for statistical significance with

an allotted planning time of 200 seconds. The task planning layer was allocated

a search time of 0.5 seconds for the LPG-td planner. Furthermore, to eliminate

the effects of randomness as much as possible in the evaluations (the Multi-T-

RRT* and LPG-td are both random in nature), two additional precautions were

taken. Fistly, the random number generator in Matlab was reset for each trial.

Since Matlab’s implementation of random number generation is actually based

on a deterministic algorithm, by resetting the random number generator we can

guarantee that the same sequence of randomly generated numbers are used in

each trial. This means that the only true unpredictability that leads to variation

between each run is the computation speed, which varies with each run as the

PC is not a real-time system. Secondly, the initial plan obtained by the base

planner in the very first trial was used as a starting point for all subsequent

trials. This removes variability in the initial solution, which minimises the effect

of randomness on the final comparison.

Fig. 5.8 shows the plan cost obtained by the anytime planner after 200 sec-

onds for each of the ηa values, with the distribution of results over the 50 trials

represented by a box plot. Immediately we can see that better quality solutions
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Figure 5.6: Environment and corresponding ITPP problem used for the anytime planner
evaluation.

are consistently found by the planner with ηa values closer to 1. Note, however,

that the lowest plan cost achieved across the 50 trials are comparable across all

values of ηa (inclusive of outliers). These observations are unsurprising, since for

the limit case of ηa = 1, the planner would perform an instance of task planning

every time a better path solution was found, which maximises the likelihood of

finding the optimal action sequence. Nevertheless, it is possible for the planner to

converge to the optimal action sequence across all of these ηa values if sufficiently

high quality paths are found in the path planning layer at the time when the

upper bound criteria is met.

In Fig. 5.8 the number of task-level re-plans performed by the end of the 200

seconds planning duration is reported for each ηa value, where the distribution

over 50 trials is again represented by box plots. Notice this time that as the value

of ηa approaches 1, more task planning queries are performed by the planner (the

variance over the 50 trials also increases with ηa). This is an indication of the

computational efficiency of the planner for converging to a stable action sequence

(though as observed above, this may not be the optimal sequence). For smaller

ηa values, a larger improvement in the quality of path solutions is required to

fulfill the upper cost bound criteria for task re-planning. In the extreme case of

ηa = 0.80, this consistently occurs once only over a period of 200 seconds. On
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Figure 5.7: Plan cost of solution found over 50 runs for various ηa values.
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Figure 5.8: Number of re-plans performed in anytime planning across 50 runs for various ηa
values.

the other extremity, a much larger number of task re-planning instances (up to

30) was performed within the 200 seconds duration for ηa = 0.97. Consequently,

while the likelihood of finding the optimal action sequence is higher for these

trials, less time is devoted to the expansion of the Multi-T-RRT* algorithm to

improve the quality of path solutions (a minimum of 15 seconds is required for

30 calls to task planning assuming the minimum search time of 0.5 seconds taken

for each query to the task planner).

Let us further examine these observations in Fig. 5.9, where the plan cost

improvements for a single trial against time is shown for each ηa value.

As we have already seen, the quality of the final plan reached by the end of
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Figure 5.9: An example of the improving plan costs over 200 seconds for varying ηa values.

the 200 seconds is generally better for larger values of ηa. In addition to this,

the implication of the increasing number of task planning queries performed by

the planner is observable as a slower convergence towards the solution found in

each trial. While the quality of the overall solution continues to improve slowly

due to refinements made at the path planning level, we can see that the solution

cost of trials involving smaller ηa values generally flatten out faster than the trials

involving larger ηa values. This is a consequence of the increasing number of task

planning queries performed, which reduces the overall efficiency of the planner to

reach a stabilised action sequence in the task planning layer.

From a practical point of view, this is generally not a major consequence if

anytime planning is performed in parallel with task execution. Since MWRs are

normally not fast moving robots (compared to robots such as drones or manipu-

lators), the time required to complete a task is generally at least several minutes

long. This provides sufficient time for the anytime planner to continue searching

for better plans even for large ηa values.

5.5.2 Tree Pruning

Let us now examine the effectiveness of the tree pruning technique for reducing

the computational resources required by the Multi-T-RRT* to improve the quality

of a solution. Using the same ITPP problem shown in Fig. 5.6, the base planner

was used to obtain an initial solution with the termination criteria of the Multi-
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T-RRT* algorithm set to return the solution when the number of nodes across all

trees reach na. This initial solution was saved for later re-use. The base planner

was then allowed to continue iterating through the expansion procedures of the

Multi-T-RRT* algorithm without tree pruning until a second termination criteria

was met such that an improved solution was returned when the number of nodes

reach nb. I refer to this as standard tree expansion. I then revert back to the initial

solution obtained with na nodes. Iterations of the expansion procedures were

again performed but this time the tree pruning technique described in Section

5.4.3 was applied to the Multi-T-RRT* algorithm with the number of nodes fixed

at na. Planning continued for the same length of time as what was required for

standard tree expansion to reach nb nodes. I refer to this as expansion with tree

pruning.

50 trials were conducted for nb set to 10000, 20000 and 30000 nodes, while na

was fixed at 3000 nodes for all three instances. Fig. 5.10 reports the plan costs

for the initial solution, the solution obtained by standard tree expansion, and the

solution obtained by expansion with tree pruning. Like before, the distribution

across 50 trials are represented by box plots. In Fig. 5.10a (nb = 10000), we

find that both methods of further expansion provides solutions of better quality

than the initial solution, though on average using standard expansion provides a

slightly higher quality solution. In Fig. 5.10b (nb = 20000), the average cost of

solutions obtained by both approaches for further expansion were approximately

identical. However, on two occasions the expansion with tree pruning found solu-

tions that were more costly than the maximum cost achieved with the standard

tree expansion. Finally, in Fig. 5.10c (nb = 30000), in addition to finding approx-

imately equal average plan costs, the expansion with tree pruning always found a

solution with a cost within the range achieved by standard tree expansion across

all 50 trials.

Table 5.1 reports the memory required to store the set of T-RRT* trees at

the end of expansion in each instance. Clearly, with tree pruning the storage

memory required is close to that of the initial solution, while the memory required

for standard tree expansion grows according to the number of nodes in the tree.

Importantly, the increase in memory is non-linear relative to the number of nodes

in the tree. This is due to the consequential increase in the number of branches

between nodes and connections between trees. In the limit case of nb = 30000

where tree pruning achieves solutions of comparable of quality to standard tree
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Figure 5.10: Plan cost of solutions obtained over 50 runs for initial solution, solution from
standard tree expansion and solution from expansion with tree pruning, (a) na = 3000 and
nb = 10, 000, (b) na = 3000 and nb = 20, 000, (c) na = 3000 and nb = 30, 000.

expansion, the total reduction in memory is 97.0%.
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Figure 5.11: The Pioneer 3-DX differential drive mobile robot

Based on these observations, we can conclusively say that expansion with tree

pruning can achieve solutions identical in quality to standard tree expansion given

sufficient planning time, but with the added advantage of requiring substantially

smaller search trees. As we have seen in Fig. 5.10c, only 1/10th of the nodes

were required by expansion with tree pruning to generate solutions of the same

quality as standard expansion. Even in cases similar to Fig. 5.10a where expan-

sion with tree pruning had not yet reached the same solution quality as standard

tree expansion, tree pruning provides a computationally efficient way of improv-

ing the cost of solutions found by Multi-T-RRT* without consuming additional

computational resources in terms of memory required to store the number of tree

nodes. This significant improvement in the use of resources has important practi-

cal implications, particularly for lightweight systems such as on-board computers

on MWRs with payload limitations. As the results in Table 5.2 have shown,

memory reductions in the range of 97% can be achieved, sparing a substantial

amount of computing resources for other processes performed on-board.

5.5.3 Dynamic Re-planning

To evaluate the behaviour of the dynamic component of DA-TPP, a physical ex-

periment was conducted on a Pioneer 3-DX (P3DX) MWR (see Fig. 5.11). The

P3DX is a differential drive mobile robot equipped with internal wheel encoders
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Figure 5.12: ITPP problem for dynamic re-planning experiment consisting of an a priori
known indoor office environment mapped with SLAM using the Pioneer 3-DX robot and a
Hokuyo URG-04LX-UG01 laser range finder (shown in red). A set of unknown obstacles were
placed after mapping as shown in blue.

Table 5.1: Storage memory required for all trees

na nb Init.

solution

Standard

expansion

Tree

pruning

3,000 10,000 1,340 KB 8,648 KB 1,495 KB

3,000 20,000 1,340 KB 28,862 KB 1,704 KB

3,000 30,000 1,340 KB 60,529 KB 1,825 KB

to provide odometry-based localisation. A Hokuyo URG-04LX-UG01 laser range

finder with a working range of 20 mm to 5600 mm was installed onto the P3DX

to provide external perception of the environment. Communications between the

host PC running the planner, the P3DX robot and the Hokuyo laser range finder

was achieved using the ROS framework [167]. An indoor office environment was

set up initially without movable obstacles and a preliminary map of this environ-

ment was obtained by mapping the environment using simultaneous localisation

and mapping (SLAM). Once the mapping was complete, a set of unknown ob-

stacles was placed in the environment such that the previously generated map

was only a partial representation of the true environment. The subsequent ITPP

problem is illustrated in Fig. 5.12, where known obstacles are shown in red while

unknown obstacles are shown in blue.

The experiment consists of finding an initial plan to visit all landmarks using
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the base planner with the Multi-T-RRT* algorithm set to return a solution when

the number of nodes n in the tree reached 3000. This initial plan was sent to

the robot for execution once obtained. Using the fully-integrated dynamic and

anytime planning components of the DA-TPP framework (as shown in Fig. 5.3b),

the planner continued to expand the Multi-T-RRT* search trees using the tree

pruning method, with Nmax = 3000 and ηa = 0.95. As the robot achieved each

task, a request was made to the anytime planner to retrieve the latest plan for

the remaining set of tasks to be completed. During execution, each time the

robot encountered an unknown obstacle that interfered with its current path,

the anytime expansion procedures were interrupted to run the re-planning sub-

routines. An instance of local path correction was first performed to find a new

collision-free path to the current goal landmark. Then, with ηd = 1.05, the

minimum cost bound criteria (Eq. 5.2) was used to determine whether global

re-planning was required. When called, the global re-planning procedure solved

a new instance of the ITPP problem using the robot’s current location as a new

starting point. Anytime planning procedures resumed as normal on completion of

the dynamic re-planning sub-routines. Throughout this experiment the maximum

velocity of the mobile robot was set to 0.15 m/s.

The results of the experiment are summarised in Fig. 5.13 and Table 5.2.

Fig 5.13a shows the initial plan computed by the base planner component of the

DA-TPP framework along with the Multi-T-RRT* search trees for n = 3000.

Here the initial visiting sequence of landmarks is2:

pinit = {l0, l2, l8, l4, l5, l6, l3, l7, l0, l1, l0}

In Fig. 5.13b, the true executed sequence of paths are shown together with (i) the

set of unknown obstacles overlaid in the environment and (ii) the set of search

trees at the end of execution, with n maintained at 3000 nodes through tree

pruning. The true executed visiting sequence of landmarks is:

pexe = {l0, l2, l8, l6, l4, l5, l4, l3, l7, l0, l1, l0}
2For convenience, I have represented the sequence of landmarks using the same notation

defined for an action sequence. However, the true action sequence should instead comprise of
the movement actions that connect each pair of successive landmarks. Let us assume that the
appearance of {...li, lj ...} implies a movement action ai,j that involves moving from landmark
li to landmark lj .
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(a)

(b)

Figure 5.13: Example results of dynamic re-planning application in an office environment,
(a) initial plan with only partial awareness of obstacles in the environment, (b) true executed
paths using the DA-TPP framework (originally unknown obstacles are overlaid in blue).

Observe that the final executed sequence of motions have been adapted both in

the low-level paths (e.g. when moving from l2 to l8) and at the high-level task

plan. These changes primarily arise from re-planning in response to the detection

of interfering obstacles. However, minor changes can also be observed in sections

of the plan where obstacles did not trigger any re-planning sub-routines. For

example, it is visually observable that the executed path for navigating from l4

to l5 does not match the initially planned path. These observable changes are

a result of continuous improvements made at the level of path planning through

the anytime planning procedures.
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In Table 5.2, a number of key performance indicators for this experiment are

reported, which includes:

1. the total length of the initial plan

2. the total length of the executed plan

3. the number of global re-planning calls

4. the number of local path correction calls

5. the planning time required to obtain the initial solution

6. the average CPU time for global re-planning

7. and the average CPU time for local path correction.

As we may expect, the total distance travelled in the true executed plan is

longer than the total path length of the initial plan. This extra distance travelled

was incurred through the additional path segments required to navigate around

obstructions (most noticeable when navigating from l3 to l7). Furthermore, in

this scenario the number of global re-planning calls is identical to the number of

calls to the local path correction sub-routine. In other words, global re-planning

was triggered every time a new interfering obstacle was detected.

With regards to planning efficiency, notice that the average CPU time required

for global re-planning is 57% less than the CPU time required to generate the ini-

tial solution. When we take into consideration the number of global re-planning

calls made over the entire duration of the task execution, global re-planning re-

duced the planning time by 17.7 seconds compared to re-planning from scratch

(i.e. performing a fresh instance of planning each time an obstacle was detected).

The sub-routine was able to achieve this by exploiting the previous exploration of

the partial environment. This meant that existing information was preserved and

re-used where possible to minimise the effort required to re-explore regions of the

environment that had remained unchanged. While the improvements observed in

this experiment conducted within the office environment can be considered mod-

erate, the time-saving achieved through global re-planning can be very significant

for more complex problems where generating an initial solution can require much

longer planning times. Furthermore, when combined with the anytime plan-

ning component, global re-planning enabled the planner to exploit the additional
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Table 5.2: Dynamic Re-planning Results

Name Value

Initial plan length 448.96 cm

Executed plan length 456.97 cm

Number of global re-plans 5

Number of local path corrections 5

tCPU for initial solution 6.19 s

t̄CPU for global re-planning 2.65 s

t̄CPU for local path correction 0.14 s

sampling obtained through continued tree expansion to obtain higher quality so-

lutions. This could not be achieved if re-planning from scratch was performed

instead.

As for local path correction, the average CPU time consumed by the sub-

routine was 0.14 seconds. This can be considered real-time according to the

definition given in Chapter 3. In addition to this, local path correction enables

the de-coupling of low-level path re-planning from global re-planning to enable

an MWR to evade small (and possibly dynamically-moving) obstacles without

re-evaluating its influence on the optimality of the global action sequence.

5.6 Summary

The DA-TPP framework is a probabilistically complete and asymptotically opti-

mal task and path planner developed to address ITPP problems for MWRs. At

its very core is a base planner that combines symbolic task planning with numeric

cost functions derived from motion planning in the continuous geometric domain.

Two additional components extend the capability of this planner according to the

requirements of the application.

The anytime planning component enables to robot to retrieve an initial feasi-

ble solution to an ITPP problem within seconds (varying according to the com-

plexity of the problem). Once retrieved, the anytime planner continues to refine

the quality of the solution by improving the plan at the level of motion planning

and in the higher level action sequence. The dynamic re-planning component

enables online adaptive planning in dynamic scenarios (where environments may
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either be partially-known or contain dynamically-moving obstacles etc.) and

can be further divided into two sub-routines: local path correction and global

re-planning. Local path correction handles re-planning at the level of motion

planning for individual paths to ensure collision is avoided while traversing to-

wards the current goal landmark. Global re-planning on the other hand seeks to

adapt the entire action-motion sequence with the aim of maintaining an optimal

plan for the remaining set of goal objectives that have not yet been met when

changes in the environment are detected.

The capabilities of the framework has been validated through a number of ex-

periments conducted to evaluate the individual aspects of the DA-TPP. Most no-

tably, I have shown that the DA-TPP framework can enable real-time dynamic

obstacle avoidance at the level of individually executed paths, while updates to a

high-level task plan can be performed in response to changes in the environment

through the use of global re-planning at a fraction of the planning time required

for re-planning from scratch (on average, a 57% reduction was achieved in the

experiment considered in this chapter).

From a practical implementation perspective, the anytime component of the

DA-TPP algorithm can provide an initial plan for a robot to begin execution

within seconds. Taking into account the generally lengthy duration of tasks

performed by MWRs (as well as the individual traversals between task locations),

by the time the robot is ready to execute the second task we can expect the

anytime planner to have converged to a near-optimal action-motion sequence for

the application’s underlying ITPP problem.

Finally, this chapter has also introduced a tree pruning method for multi-tree

based sampling algorithms that enable the search space to be further explored

without consuming additional memory. This has substantial implications on the

practicalities of the DA-TPP for deploying on-board mobile robots, which are

often limited in computational resources. Since sampling algorithms are asymp-

totically optimal at best, without tree pruning a large number of samples may

be required to converge towards an optimal solution. Through the use of tree

pruning, this challenge can be overcome by placing a limit on the burden of the

algorithm on computational resources (which can be adjusted by changing the

maximum permitted number of tree nodes).
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Chapter 6

Spatially-Constrained Robotic

Task Sequencing

In the remaining two chapters, I tackle a specific sub-problem of task planning for

manipulators called the Robotic Task Sequencing Problem (RTSP). Similar to the

MTP, the RTSP involves finding an efficient tour to visit a sequence of task points

defined in the task space, taking into consideration the kinematic redundancy

of the manipulator. A fundamental difference in the RTSP compared to the

previously studied task planning problem for mobile robots is the substantial

increase in the number of goals in the planning problem. Common application

domains for the RTSP typically consist of several hundred to thousands of task

points that must be visited by a robot’s end effector. Seeking to address this

problem using the strategy described in Chapters 4 and 5, where the solutions to

the motion planning problem between all possible combinations of task point pairs

were first computed and subsequently used to obtain the task sequence, becomes

intractable for RTSPs due to the massive search space arising from both large

task point sets and kinematic redundancy. This renders the use of the Multi-

T-RRT* (see Chapter 4) algorithm developed to simultaneously solve all path

planning problems between multiple goals inapplicable in this problem domain1.

While there exist numerous algorithms that solve a relatively relaxed version

of the RTSP, where the number of task points involved are few in number and

the environment is mostly clutter-free (see Section 2.2.3), they are generally in-

adequate for solving more complex problems that involve many task points and

1In the previous MWR domain we had only considered up to 9 landmarks in the environment.
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where the robot is subject to significant spatial constraints.

In this chapter, I introduce the challenges of RTSP and present a novel

clustering-based algorithm for efficiently solving spatially-constrained RTSPs. The

algorithm, called Cluster-RTSP, is capable of handling large sets of task points

and provides near-optimal solutions. The performance of the algorithm is eval-

uated through a number of benchmarks against an existing state-of-the-art ap-

proach both in simulation and through a case study conducted on a physical

surface inspection-like task. I show that the algorithm is able to reduce compu-

tation time by up to 90% and the task execution time of the resulting solution

by up to 60% when compared to the state-of-the-art.

6.1 Introduction

Robotic task sequencing is a fundamental problem that appears in one form

or another within modern industrial robotics. Consider applications such as

free-form surface inspection, thermal mapping, laser-welding, spray-painting and

drilling [168,169]. A common aspect in all of these applications is the requirement

for a manipulator to perform a large number of repetitive tasks at points defined

across a workpiece. From a practitioner’s perspective, developing an optimised

motion sequence to complete these tasks efficiently is important for maximising

process throughput, but obtaining this plan is no trivial matter. It is particularly

challenging and time-consuming to determine an optimal task point visiting order

and corresponding motion plans for tasks that involve hundreds or thousands of

points, yet in practice this has still been predominantly dealt with manually by

skilled programmers. This places limitations on the practicality of roboticising

applications that involve: (i) rapid deployment in single-use instances where a

developed plan is executed only once, making long offline planning particularly

costly, (ii) highly variable tasks and processes that change frequently, rendering

existing offline plans irrelevant, and (iii) unstructured environments beyond care-

fully designed industrial shop floors, where surrounding obstructions substantially

limit the reachable workspace of the robot.

In the face of these challenges, numerous efforts have been made within the

robotics research community to develop planning approaches that tackle the gen-

eralised version of these kinds of sequencing problems, which is what we now refer

to as the RTSP. Conceptually, the RTSP describes the problem of computing a
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sequence of robotic motions (optimised according to some performance criteria)

that enable a robot to visit a set of task points by starting from (and return-

ing to) a given home configuration. Certainly, the problem is closely related to

the Travelling Salesman Problem (TSP) [101], which fundamentally also solves

for a shortest visiting route for a set of ’cities’. However, recall from Section

2.2.1.4 that when considering TSP-like problems in the robotics domain, addi-

tional considerations must be taken into account in relation to a robot’s kinematic

redundancy. Put simply, the complexity of RTSP is increased by the existence of

multiple robot configurations that can reach a single task point described in the

task space. One may choose to formulate this type of problem as a GTSP, such

that configurations are partitioned into groups according to the task point that

is reached from each of these configurations and only one configuration from each

group should be visited.

The quality of a tour is determined by the cost of the motions required to

advance through each successive configuration within the sequence. In standard

TSP problems, the common distance metrics considered for evaluating the quality

of a tour are generally simple to compute. When applied to the RTSP, these

metrics are only able to provide an approximation of the motion cost. In existing

RTSP literature, some works have adopted these approximations with relative

success [107,132,135], but those studies have only considered mostly uncluttered

environments. When extending the application of algorithms to cases where

the robot is subject to more substantial spatial constraints, these metrics no

longer provide an effective approximation as they do not reflect the cost of more

elaborate motions required to avoid collision. To obtain the true cost of motion

for a single path in the TSP graph, it would be necessary to perform a path

planning query between the two configurations involved. Problematically, solving

the RTSP by exhaustively computing the true motion costs in this way would be

too time-consuming in practice for tasks that involve even a moderate number of

points, since the cost of motion between every single combination of configurations

would need to be computed.

Some of the earliest work in the RTSP simplified the problem by arbitrarily

assigning a random configuration to each task point, allowing the problem to be

formulated as a standard TSP. This methodology would in general lead to sub-

optimal solutions since C-space information is not considered. In fact, careful

selection of configurations from among the inverse kinematic (IK) solutions for
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each task point could enable better quality solutions to be found. Indeed more

recent work have proposed approaches that objectively select configurations in

an attempt to find better task sequences. Some authors have studied the use

of global optimisation methods to achieve this, but these required considerably

long computation times (in the order of thousands of seconds [126]) that strictly

limit their use to offline programming. Nowadays however, modern applications

demand methods that possess the flexibility to adapt to changing task parameters.

In these cases long planning times would unfortunately lead to bottlenecks in the

operational process.

In contrast to the above, the authors of RoboTSP [135] applied a decoupled

strategy to solve the RTSP as a two-step problem involving firstly a task point

ordering problem (solved in task space), and a configuration assignment problem

(solved in C-space). By tackling the problem using both task space and C-space

information, the authors were able to solve RTSPs involving several hundred

points in the order of minutes. Nevertheless, their method is unable to account

for the costs accumulated through collision avoidance (as I will show later in this

chapter).

In this chapter I build upon these prior works and present a new, competitive

method for solving RTSPs that is able to obtain near-optimal solutions in the

presence of spatial constraints imposed on a robot while possessing high plan-

ning efficiency2. Similar to the approach presented in [135], I decompose the

RTSP into two stages: the configuration assignment stage and the task sequenc-

ing stage. This method, henceforth referred to as the Cluster-RTSP algorithm,

applies a recursive configuration reduction strategy based on the concept of pop-

ulation similarity to reduce the number of candidate configurations for each task

point from the set of IK solutions to a single best-fit configuration. This individ-

ual configuration is subsequently assigned to the corresponding task point. The

X-means algorithm [170] is used to partition the set of assigned configurations

into clusters, allowing the RTSP to be formulated as a Clustered TSP (CTSP).

Effectively, this clustering procedure divides the task sequencing stage into multi-

ple TSP sub-problems, which are individually solved and subsequently combined

to form the complete solution. In this way a significant reduction in computa-

tion time can be achieved for problems involving many task points. Using the

2The method has been evaluated on tasks of up to 1500 points and in all cases a solution
was obtained in less than 2 minutes
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RoboTSP as a benchmark, I show that the Cluster-RTSP is capable of finding

solutions of a higher quality for spatially-constrained applications, while in un-

cluttered environments its performance is comparable to existing solutions. In

both cases the Cluster-RTSP outperforms existing methods in terms of planning

speed. Note that in this work I evaluate the quality of a solution according to

the task execution time, which is defined as the time required for the robot to

complete the task of visiting all task points from the start of execution based on

the planned task sequence. This is different from the computation time, which is

the time required by an algorithm to compute a solution (i.e. the planning time)

and is used to evaluated an algorithm’s planning efficiency.

Throughout this chapter I will analyse the algorithm with respect to optimal-

ity and complexity. Additionally, I present the results of a case study involving

the deployment of the Cluster-RTSP algorithm for a mock surface inspection task

consisting of a number of pipes arranged within a cell. Using the KUKA AG-

ILUS KR6 R900 sixx robot, I discuss a number of important considerations for

real-world implementation of the algorithm.

6.2 Cluster-RTSP Algorithm

Recall from the literature review presented in Section 2.2.3 that while existing

approaches have, by and large, been able to compute high quality solutions to RT-

SPs in mostly uncluttered environments, challenges still remain in balancing the

effort of optimising a task sequence that takes into account the spatial constraints

imposed by obstacles and solving the problem within practical time. It is crucial

that these challenges are addressed in order to enable the robotic capabilities re-

quired to meet the demands of more challenging applications and the increasing

need for greater flexibility in modern robotics. From a low-level perspective, a key

limitation exist in tackling the sequencing component of RTSPs using distance

metrics defined in the task space: these metrics do not take into consideration the

kinematic properties of the robot nor the spatial constraints imposed by obsta-

cles into account. Consequently, features such as the reachability of target points

and the possibility of encountering singularities have no influence on the solu-

tion provided by task space metrics. This can eventually manifest into unsmooth

trajectories or low quality solutions, especially in cluttered environments.

In this section I present the Cluster-RTSP, a fast algorithm developed to
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overcome the limitations of existing methods for solving spatially-constrained

robotic task sequencing problems. The algorithm achieves near -optimal solu-

tions to RTSPs by first assigning a good candidate configuration (according to a

similarity metric relative to the global population of IK solutions) to each task

point. This approach to configuration assignment avoids the explicit computation

of all motion costs (thus reducing the computational resources consumed by the

algorithm), while providing an effective way to estimate the best configuration

for each task point. The sequencing sub-problem is then formulated as a CTSP

to further reduce the computation time required to compute a low-cost task se-

quence for large problems. Importantly, the CTSP is formulated and solved in

C-space to overcome the limitations of solving RTSP problems in task space.

6.2.1 Problem Formulation

Let us formally define the RTSP in the following way. Given a task space T

and a set of n task points Pn = (p1,p2, . . . ,pn), pi ∈ T , specified in the task

space, a feasible task sequence is defined as ST = (p0,p{1},p{2}, . . . ,p{n},p0),

such that the robot visits every task point in Pn exactly once, starting from

(and returning to) the home position p0. Given a robot C-space C, the task

sequence may alternatively be represented by a configuration sequence SC =

(q0,q{1},q{2}, . . . ,q{n},q0), where each configuration q{i} ∈ C uniquely reaches

one task point in Pn, and q0 represents the home configuration.

Now, recalling the definition of an optimal path in Chapter 4, let us define σ∗i,j

as the optimal collision-free trajectory to move from configuration qi to qj, and

cp(σ
∗
i,j) as the cost of this motion. Letting Ω = (σ∗0,{1}, σ

∗
{1},{2}, . . . , σ

∗
{n},0) denote

the set of optimal trajectories that enable the sequence of configurations SC to

be visited contiguously, the objective of the RTSP is to determine the optimal

task sequence S∗C such that the accumulated cost of Ω is minimised.

Generally speaking, the primary objective of an industrial robotic sequencing

task is to maximise throughput, which corresponds to minimising the duration

of a task. Thus in this work I use the task execution time, computed as the

sum of the individual duration of each trajectory, to evaluate the quality of so-

lutions. This is also convenient for benchmarking purposes as the majority of

existing methods in literature also report the task execution time as the primary

performance indicator.
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For each task point pi ∈ Pn, there exists a set of IK solutions, Qi ⊂ C that

can reach pi, which is obtained by solving the inverse kinematics problem (as

described in Chapter 3). When spatial constraints are imposed on the robot,

some of these configurations may become invalid due to collision. Task points

can be identified as unreachable when no collision-free IK solutions exist (this

can occur either due to obstruction or when tasks points simply lie beyond the

robot’s work envelope). Let us denote Q′ as the set of assigned configurations

for Pn such that only one valid IK solution exists in Q′ for each task point in

Pn. Solving an RTSP therefore comprises of finding an optimal configuration

assignment q∗i ∈ Qi for each task point pi.

By the definitions given above, the problem of task sequencing and motion

planning is highly coupled: to compute the optimal trajectories between task

points, we require the selection of configurations for each task point and their

visiting order, but on the other hand, to solve for a configuration sequence we

require the motion costs between configurations, whose true values can only be

obtained through motion planning. As shown in previous literature, attempting

to solve the RTSP by brute force (including the computation of all motion costs)

becomes highly impractical even for a relatively small set of n task points.

In the method presented herein, I decompose the RTSP into two smaller

sub-problems, comprising of: configuration assignment and configuration

sequencing.

6.2.2 Algorithm Description

With reference to the pseudo-code provided in Algorithm 4, the Cluster-RTSP

applies the following steps to solve an RTSP:

1. For all task points pi ∈ Pn, the set of collision-free IK solutions Qi is

computed. In my implementation, the IKFast kinematics solver, a module

in the OpenRAVE environment [171], was used to achieve this. (See Lines

2-4)

2. A configuration assignment procedure estimates the optimal configura-

tion q∗i for each pi using a similarity heuristic to recursively evaluate the

similarity of every configuration in Qi to the population of all IK solutions

in Q, and reducing the number of candidate configurations in Qi until it
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Algorithm 4 Cluster-RTSP

Input: Set of n target points Pn and home configuration q0

Output: Ordered configuration sequence S and corresponding set of trajectories
Ω

1: S ← q0, Q← q0

2: for all pi ∈ Pn do
3: Q.append(getAllIKSolutions(pi))
4: end for
5: Q′ ← configurationAssignment(Q)
6: clusters← configurationClustering(Q′)
7: D ← computeDistanceMatrix(clusters,q0)
8: gtour ← globalTSP (clusters,D)
9: for all idx ∈ gtour do

10: cluster ← clusters[idx]
11: entry, exit← getEntryExitPoints(cluster)
12: tour ← localTSP (cluster, entry, exit)
13: S.append(cluster[tour])
14: end for
15: S.append(q0)
16: for all qi ∈ S do
17: trajectory ← planTrajectory(qi,qi−1)
18: Ω.append(trajectory)
19: end for

converges to one configuration. This generates the set of optimised3 config-

urations Q′, which lie in close proximity in the C-space. (See Line 5)

3. The set of assigned configurations Q′ is partitioned into configuration

clusters using the clustering algorithm X-means [170], which groups con-

figurations according to their distribution in C-space. (See Line 6)

4. A configuration sequence is computed by applying the CTSP formu-

lation to the configuration clusters. Using the 2-Opt algorithm [133], an

inter-cluster visiting order is first obtained by solving a high-level TSP

comprising of the set of clusters as the cities to be visited. Each cluster is

then used to form a low-level TSP, which is individually solved to obtain

the local configuration sequence within the cluster (i.e. the intra-cluster

configuration sequence). Finally, the solutions are aggregated to obtain the

3Note the subtle difference between the terms optimized and optimal. Here the heuristics
enable the assignment of good configurations, but there is no guarantee that this assignment
provides the global optimal solution to the RTSP. See Section 6.2.4 for more details.
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complete configuration sequence S∗C .4 (See Lines 7-14)

5. Motion planning queries are called for each pose-to-pose motion along

the solution S∗C . These planning queries can be fulfilled by any motion

planner applicable to robotic manipulators. In my implementation, the

bi-directional RRT [50] was used in conjunction with time parameteriza-

tion, both available within OpenRAVE, to obtain collision-free trajectories.

These trajectories satisfied both the joint limits and the maximum velocity

and acceleration limits of the robot. (See Lines 16-18)

Fig. 6.1 summarises the software architecture of the Cluster-RTSP algorithm.

I will empirically show later in Section 6.3 that by performing both configura-

tion assignment and configuration sequencing in C-space, the Cluster-RTSP is

capable of providing better solutions to sequencing problems involving spatial

constraints. Furthermore, by adopting clustering techniques to transform the

problem into a CTSP, the computation time required for sequencing large sets

of task points can be drastically reduced in comparison to existing methods.

Importantly, to the best of my knowledge no previous work in RTSP literature

have considered these types of sequencing problems collectively.

6.2.2.1 Configuration Assignment

To achieve a near-optimal assignment of configurations to the set of task points,

the algorithm computes a similarity measure for each configuration in the set of all

valid configurations Q. All configurations that are IK solutions to the same task

point are compared according to these similarity values, and the m configurations

with the worst similarity to the global set Q are removed from Q. That is, they

are no longer considered as candidate configurations for the corresponding task

point. This is performed recursively until the algorithm converges to a single

configuration q∗i for each task point.

The similarity heuristic is computed by first defining a dissimilarity function

δ between two configurations q and q′, which is given by the weighted squared

Euclidean distance in C-space:

4With a slight abuse of notation, I use the ∗ notation here to indicate that the configuration
sequence obtained by the Cluster-RTSP is an estimate of the optimal solution, rather than the
true optimal.
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Figure 6.1: Software architecture for the standard Cluster-RTSP algorithm.

δ(q,q′) =
DoF∑
j=1

wj(q
′
[j] − q[j])

2 (6.1)

Here wj is a positive weight for jth joint, and q[j] refers to the axial angle

of joint j for configuration q. The values for the weight of each joint is fixed

for a given robot and can be obtained by evaluating the maximum displacement

of any point on the robot when actuated about the corresponding joint [135].

Note that it is entirely possible to use alternative metrics, though this would lead

to somewhat different solutions to the configuration assignment problem. The

study conducted in [172] investigated the effects of applying different metrics to

the behaviour of a 7-DoF robot. It found that some metrics performed better

for expansion tasks, while other metrics such as the Euclidean distance were

more suited for contraction tasks. These findings indicated that no metric is

universally more effective across all types of tasks. In this work, the Cluster-RTSP

is benchmarked in several different environments. In order to main consistency
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across all of these trials, I chose to apply the weighted squared Euclidean metric

in all instances. In practice, it could be beneficial to evaluate the effectiveness of

different metrics for the given application.

Using Eq. 6.1, the similarity heuristic φ for any configuration q ∈ Q can be

defined as:

φ(q) = bδ · δ̄(q) + b0 · δ(q,q0) (6.2)

where bδ and b0 are bias terms such that bδ + b0 = 1, and δ̄(q) is the mean

dissimilarity between q and every other configuration in the set Q and is given

by Eq. 6.3.

δ̄(q) =
1

|Q|

|Q|∑
i=1

δ(q,qi) (6.3)

In words, Eq. 6.2 describes the similarity of configuration q to every other

candidate configuration, with an additional bias term that penalises those con-

figurations that do not lie in close proximity to the home configuration. Since φ

is derived from the dissimilarity function, a configuration with a larger φ value

is considered more dissimilar to the rest of the configurations considered in the

configuration assignment problem. Thus, to converge towards q∗, we seek the

configuration with the lowest φ value.

As mentioned earlier, the algorithm uses a recursive procedure to converge

towards a single configuration per task point. Indeed it is possible to evaluate

the similarity heuristic only once for all configurations and simply assign the

best configuration from among each set of IK solutions Qi ⊂ Q for task point

pi. However, doing so means that the poor candidate configurations currently

in Q would contribute to the values of φ for all other configurations, resulting

in somewhat deceptive heuristic values. This makes it difficult to discern the

best configuration from among multiple good configurations. To filter out these

effects, a recursive process was applied to eliminate mi configurations with the

largest φ values from each subset Qi according to Eq. 6.4:

mi = max
(
1, bln |Qi|e

)
(6.4)

Here the value of mi is chosen as the maximum between 1 and the natural

logarithm of the cardinality of Qi (rounded to the nearest whole number). Once
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these configurations have been removed from Q, the values of φ for all remaining

configurations are updated. By iterating this process, the algorithm converges

logarithmically towards q∗i for each task point pi (that is, |Qi| = 1 |1≤i≤n).

Finally, one modification was made to the described procedures above to im-

prove the computational performance of the algorithm. In Eq. 6.2, computing

the mean dissimilarity of a configuration against all other configurations in q can

be expensive for problems involving anywhere from several thousand configura-

tions onwards (for an example, Table 6.2 reports the number of configurations

considered in the trials conducted for benchmarking). This can significantly limit

the efficiency of the algorithm for large sets of task points. To resolve this, a pre-

liminary instance of clustering is performed on the set Q at the beginning of each

iteration to partition configurations into k clusters. This is achieved using the

X-means algorithm5, an extension of the well-known k-means algorithm [173].6

The outputs of the algorithm are the set of cluster centroids X, the number

of configurations in each cluster, stored within the set R, and the membership

information of each configuration describing which cluster they belong to.

Letting xc ∈ X denote the centroid of cluster c (computed as the mean of each

cluster) and rc ∈ R denote the number of configurations in cluster c, I modify

Eq. 6.3 to compute the weighted mean dissimilarity, δ̄w(q), given as:

δ̄w(q) =
k∑
c=1

δ(q,xc) · rc
rn

(6.5)

Where rn denotes the total number of configurations across all clusters. Now,

instead of computing the mean dissimilarity between q and every other configu-

ration in Q, only the centroids of each cluster is considered for the calculation.

This drastically reduces the number of δ computations from possibly several thou-

sand and upwards to just k times for each φ computation.

Algorithm 5 gives a summary of the procedures used to perform configuration

5We will explore how this algorithm works in Section 6.2.2.2, where a detailed description
of the algorithm is provided in the context of configuration clustering for Step 3 of the Cluster-
RTSP algorithm.

6The k-means algorithm clusters a dataset into a predefined number of k clusters. While
k-means is a simple and effective algorithm for partitioning data points into clusters, it is
generally difficult to determine an appropriate value for k. The extension provided by X-means
addresses this by enabling the algorithm to objectively determine the optimal number of clusters
according to a model fitness evaluation criterion. This results in a clustering that partitions the
dataset into identifiable groups without overfitting (e.g. creating a cluster for each data point
in the extreme case).
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Algorithm 5 configurationAssignment

Input: Population of all valid IK solutions Q
Output: Selected configurations Q′

1: while |Qi| 6= 1,∀Qi ⊂ Q do
2: X,R← Xmeans(Q)
3: for all Qi ⊂ Q do
4: Φ← similarityMeasure(Qi, X,R)
5: Qi ← sort(Qi,Φ)
6: mi ← computeReductionSize(Qi)
7: Q← trim(Qi,mi)
8: end for
9: end while

assignment as pseudo-code.

6.2.2.2 Configuration Clustering

Given the set of assigned configurations Q′, a configuration sequence can be

obtained by formulating the problem as a standard TSP, solved using C-space

distance metrics. The subsequent TSP sub-problem could then be solved us-

ing the 2-Opt algorithm for its notable efficiency. However, as noted in various

works [135, 174, 175], even for this algorithm the complexity of solving a TSP is

exponential in practice. Thus it does not scale well for particularly large sets of

task points. To overcome this, a clustering algorithm is applied to Q′ to partition

configurations into clusters. By doing so, the original sequencing problem can be

divided into several smaller sequencing sub-problems, which is simpler to solve

than the original problem.

A fundamental consideration for data clustering in general is the choice of an

appropriate value for the number of clusters k. In RTSPs, it can be difficult to

determine an optimal k for partitioning Q′ as this is generally not known a priori

and varies according to the nature of the particular task. To deal with this, the

X-means algorithm is applied to first compute k and then perform the actual

configuration clustering procedure. X-means is an extension of the k-means algo-

rithm, where both adopt a spherical Gaussian model assumption (the algorithm

partitions data points into spherical clusters). In k-means, data points are re-

cursively assigned to the nearest cluster among k centroids (initialised randomly)

according to a squared Euclidean distance metric. After the membership of data

points are determined, the location of centroids are updated as the mean of all
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points belonging to that cluster. These steps are repeated until the locations of

the centroids stabilise. The obvious drawback to the k-means algorithm is the

requirement for k to be defined explicitly as an input.

X-means eliminates this shortcoming by objectively computing an optimal k

value that lies between the given limits [Kmin, Kmax]. The algorithm first performs

an initial clustering using the same procedures as k-means with k = Kmin. A

model selection criterion is used to evaluate the quality of fit for this value of

k. The algorithm then loops over each cluster (referred to as the parent cluster)

and bisects the members into two children clusters. These children clusters are

collectively evaluated for fitness using the same model selection criterion and

their score is compared against the parent cluster. Under the condition that the

children clusters score better than the parent cluster (i.e. a better fit of these

local points is achieved), k is incremented by one. These steps are repeated until

no further bisections are accepted (due to poorer fit) or when k reaches Kmax. A

fresh instance of the k-means algorithm is applied to the original data set using

the resulting k value to obtain the final set of configuration clusters.

The model selection criterion plays an important role as it must adequately

discern whether the addition of a cluster would lead to overfitting the input set

of points. In the Cluster-RTSP, the model selection criterion is based on the

Bayesian Information Criterion (BIC) [176] as used by the original authors of

the X-means algorithm [170]. The BIC is based on the likelihood function and

incorporates additional terms to penalize the number of parameters in a model to

limit the case of overfitting. When applied to configuration clustering, parameters

refer to the number of clusters k and the dimensionality of the configurations, d

(i.e. the number of DoFs). By exploiting the spherical Gaussian assumption in

the context of clustering, the BIC is given by:

BIC(Ma) = l̂a(Q
′)− ha

2
· log rn (6.6)

Here Ma represents the ath model, ha denotes the number of parameters in model

a, rn is the cardinality of Q′ and l̂a(Q
′) is the log-likelihood function of the set

Q′. Let us define σ̂2 as the maximum likelihood estimate for variance (under the

spherical Gaussian assumption):

σ̂2 =
1

rn − k

rn∑
i=1

(qi − xi) (6.7)
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Where xi is the centroid associated to the ith configuration. Letting Qc denote the

set of points in cluster c and rc = |Qc|, the log-likelihood of a cluster is obtained

by:

l̂(Qc) = −rc
2

log(2π)− rc · d
2

log(σ̂2)− rc − k
2

+ rc log rc − rc log rn (6.8)

Suppose the parent cluster of the configurations Qc is represented by model

A and the corresponding two children clusters that spawned from the bisection

of the Qc is represented by model B. Model B is accepted as a better fit to Qc if

the following inequality holds:

BIC(MB) > BIC(MA) (6.9)

While I have not covered the derivations of the BIC formulation, interested

readers are directed to [177], which provides a concise derivation of Eqs. 6.6-6.8.

Finally, I wish to emphasise that the squared Euclidean distance metric used

for evaluating the distances between configurations and cluster centroids is ap-

plied in the C-space, as opposed to its more common use in task space. When

applied in the task space, the X-means algorithm would cluster configurations ac-

cording to how close the corresponding task points lie in the 3-dimensional world.

Conversely, by applying the metric in C-space, the resulting partitions take into

consideration the actual distances between configurations, which better reflects

the actual motions required to reach each task point.

To help illustrate this, Fig. 6.2 gives an example of the distance values be-

tween three task points (and the corresponding IK configurations) obtained in

task space (Fig. 6.2a) and in C-space (Fig. 6.2b). In this example, task points

A and B lie close together in the task space, while task point C lies comparably

further away. However, to actually reach these task points, the robot requires

a drastically different configuration for A and B, but C can be reached using a

configuration that more closely resembles configuration B. Thus when applying

the Euclidean distance metric, very different inferences would be obtained de-

pending on which space is considered. Since this work is concerned with finding

the shortest duration sequence for an RTSP, it is intuitive to apply clustering in

the C-space, which describes the robot state transitions that directly correlate to

the robot’s trajectories.
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Figure 6.2: Example of differences in task space and C-space metrics for three given task
points A, B and C, (a) distances between A, B and C given by Euclidean metric in task space
(b) distances between configurations for A, B and C given by Euclidean metric in C-space (only
first three joints are considered for visualisation).

6.2.2.3 Clustered Travelling Salesman Problem

Using the clustering procedures described in Section 6.2.2.2, the configuration

sequencing problem is reformulated as a CTSP, first introduced by Chisman in

1975 [178]. CTSPs can be expressed in various forms [179], but we will restrict
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our attention to the free CTSP. The free CTSP describes problems in which no

restrictions are placed on the visiting order of the clusters (i.e. they may be

visited in any order). The only requirement is that all points within a cluster

should be visited contiguously before advancing to the next cluster, otherwise

the problem would revert to a standard TSP. Free CTSPs also assume that any

point in each cluster can be used as the entry or exit point when moving between

clusters, though, like the standard TSP, any point should only be visited once.

In this work, a solution to the CTSP is obtained by solving multiple smaller

TSP sub-problems. Following the benchmarking results on TSP solvers presented

in [135], the 2-Opt algorithm [133] was selected to solve these instances of TSPs

thanks to its planning efficiency and near-optimal performance. The first TSP

deals with the ordering of the numerous clusters, each considered as a single

entity, to obtain an inter-cluster visiting sequencing. In order to apply the 2-

Opt algorithm, a pairwise distance matrix D containing the distance between

each element considered in the TSP is required. This is generated by finding the

closest points between each pair of clusters according to the C-space Euclidean

distance metric. Additionally, two dummy clusters containing q0 are added to

the set of clusters for sequencing. These are fixed as the start and end clusters

within the 2-Opt algorithm such that the solution takes into consideration the

cost of moving from the home position to the first cluster and returning to the

home configuration after the last cluster.

Once the inter-cluster visiting sequence is obtained, the required entry and

exit points can be determined simply from the closest points for the cluster pairs

along the sequence that were found when generating D. Each cluster (excluding

the dummy clusters added earlier) are used to formulate an individual TSP sub-

problem at the intra-cluster level. By defining the corresponding entry and exit

points in the cluster as fixed start and end points, a local configuration sequence

can be determined by again applying the 2-Opt algorithm. Finally, by aggregating

the inter-cluster visiting order with the local configuration sequences found at the

intra-cluster level, a complete configuration sequence S can be obtained. This

now provides sufficient information to compute the set of collision-free trajectories

by performing a motion planning query for each successive configuration in S.
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6.2.3 Complexity Analysis

An analysis of the complexity of the Cluster-RTSP is provided below, where I

consider each component of the algorithm in turn.

In Step 1 of the algorithm where IK solutions for each task point is obtained,

suppose λ is the upper-bound on the number of valid IK solutions for any task

point p. Then, for n task points, the complexity of computing IK solutions for

the problem set is O(λn).

In configuration clustering (used in steps 2 and 3), it is well known that using

k-means to obtain an optimal clustering for a set of input points is an NP-hard

problem [180].7 In practical implementations of the algorithm, however, k-means

is generally run for a defined number of iterations, t, where each run is initialised

with randomly generated cluster centroids. Consequently, the true complexity

of the k-means algorithm in practice is given by O(tkdn), where k denotes the

number of clusters and d is the dimensionality of the problem.

For the configuration assignment procedure in Step 2 of the algorithm, let us

define K as the maximum number of clusters obtained by the X-means algorithm.

Using the weighted mean dissimilarity δ̂w to compute φ gives a complexity of

O(Kn) for a single iteration. Recall that the procedure uses a recursive process

to converge logarithmically to Q′. Thus the overall complexity for configuration

assignment is O(Kn log n).

Compared to the other components of the algorithm, the theoretical proof

of the time complexity of the 2-opt algorithm is far more complex. Numerous

authors have studied the time complexity of the algorithm for problem instances

involving various types of point distributions [174, 175, 181]. I note in particular

that in the analysis conducted by the authors in [174], an upper bound of O(n4+ 1
3 )

was derived for Euclidean instances involving uniform distributions with dimen-

sion d ≥ 2. Nevertheless, several authors have reported a notable gap between

theoretical analysis and experimental observations. Broadly speaking, finding a

solution8 to the TSP using the 2-Opt algorithm has an exponential complexity

in practice. In the CTSP formulation involving multiple calls to the 2-Opt al-

7The quality of clustering produced by k-means varies according to the location of the
initial cluster centroids. Since the implementation of the k-means generally involve randomly
generating these initial centroids, a single instance of k-means is unable to guarantee an optimal
solution.

8The solutions obtained by 2-Opt does not guarantee convergence as it is subject to local
minima issues.
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gorithm, a theoretical upper bound on complexity based on the analysis in [174]

can be approximated as O(km4+ 1
3 ), where m � n. To put into perspective this

difference in complexity, let us consider the case where the n points are equally

distributed across k clusters. In this scenario, m = n
k
, and the theoretical upper

bound on the complexity of the CTSP becomes O( 1
k3
n4+ 1

3 ). This means that

even with only two clusters (i.e. k = 2), the upper bound on complexity falls

by a factor of 8, while for three clusters the complexity becomes just 1/27th of

the original problem. While in practice points tend not to be equally distributed

across clusters as in the given example, the actual reduction in complexity is

usually not far off from this analysis.

The final step of the algorithm consisting of the computation of the complete

set of trajectories has a linear complexity O(n), where a motion planning query

is performed for each task point to be visited. However, the actual planning time

required for a motion planning query itself is difficult to quantify as it varies dras-

tically according to the dimensionality of the problem, the nature of the planning

domain and the spatial constraints involved. In Section 6.4 I show empirically

that for problems where the robot is subject to substantial spatial constraints, the

computational resources consumed by the Cluster-RTSP algorithm is dominated

by motion planning queries.

6.2.4 Optimality

Throughout this chapter I describe the Cluster-RTSP as a near -optimal algo-

rithm. Thus in this section I make a key distinction between the terms near -

optimal versus the true optimal. I refer to a true-optimal algorithm as one that

possesses a guarantee to find the global optimal solution. To my knowledge, no

existing methods in literature so far has been able to provide this guarantee for

general RTSPs. For clarity, let us briefly review the properties of some of the

most common existing methods to solving RTSPs.

Consider the iterative GLKH solver, which formulates and solves the RTSP as

a GTSP. The algorithm seeks increasingly higher quality solutions by performing

a search over a large number of iterations, retaining the best solution found, but

it does not provide any guarantee that the search would converge to the true

optimal solution. The RoboTSP, an algorithm used to benchmark the Cluster-

RTSP in Sections 6.3 and 6.4, is able to assign configurations for a given sequence

209



Wong, C. Spatially-Constrained Robotic Task Sequencing

such that the cost of the complete set of trajectories is minimised, but there is no

guarantee that the actual sequencing of task points leads to the global optimal

solution. The GA, which has been applied to solve RTSPs in a number of works,

is well-known for its effectiveness in finding high quality solutions to many general

optimisation problems. However, the algorithm only heuristically improves the

likelihood of finding the true optimal and does not provide any means to evaluate

the closeness of a solution to the global optimum (it is not uncommon for a GA

to be stuck in local minima).

Ultimately, the absence of a means to determine the true optimal solution

to an RTSP makes it difficult to quantify the quality of solutions obtained by a

planner. While theoretically speaking an exhaustive search could provide the true

optimal to an RTSP, it involves computing the costs of true trajectories to move

between all possible pairs of configurations among the global set of IK solutions.

Coupling this with the already complex problem of finding global solutions to

TSPs [182] make a brute force approach intractable for large problems in practice.

A common feature in the majority of RTSP planners is the use of approxi-

mated motion costs, obtained through simple task space metrics, to direct the

search for a solution to the sequencing sub-problem. The term near-optimal was

chosen to describe the Cluster-RTSP algorithm as it better approximates the true

cost of motion through the use of C-space metrics to inform the configuration

sequencing procedure. Previous work found this difficult as the complexity of the

sequencing problem increased significantly as a result of kinematic redundancy,

which introduced multiple configurations to consider per task point. GLKH-

based methods were an exception to this as they model the sequencing problem

as a GTSP, but, as previously reported, these methods are particularly compu-

tationally expensive. The Cluster-RTSP overcomes these challenges through the

introduction of a similarity heuristic (also informed by C-space metrics) to eval-

uate the fitness of configurations for assignment to task points prior to solving

the sequencing sub-problem. While some previous works have also considered

the assignment of configurations prior to sequencing, these were generally made

arbitrarily without deterministically evaluating the suitability of configurations

for the task at hand.

By following this approach, the Cluster-RTSP is able to avoid the explicit com-

putation of true motion costs that are irrelevant to the final solution. However,

for this very reason, there is no guarantee that the estimated motion costs used
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to inform the algorithm accurately represents the true motion costs for moving

between pairs of configurations, which is a limitation of this algorithm.

Little attention has been given to the optimality of 2-Opt for solving the TSP

sub-problems thus far. As briefly mentioned previously, 2-Opt is a comparatively

efficient algorithm for solving TSPs compared to methods such as those based

on neural networks [182–187]. However, the 2-Opt algorithm suffers from local

minima, resulting in solutions that are inferior in quality to the aforementioned

alternative methods. This is another limitation of the Cluster-RTSP that prevent

the algorithm from finding the true optimal solution to an RTSP.9

While these limitations of the Cluster-RTSP has important implications when

considered in relation to the true optimal, in Section 6.3 and 6.4 I show empirically

that the algorithm outperforms existing methods both in terms of solution quality

and planning efficiency for (i) problems involving large sets of task points, and (ii)

problems involving substantial spatial constraints. I also show that in the case of

uncluttered environments, the algorithm’s performance is comparable to existing

methods. Finally, I also provide a benchmark of the 2-Opt algorithm against

the aforementioned alternative TSP solvers to quantify the trade-off between

efficiency and solution quality at the level of the TSP sub-problem.

6.3 Benchmarking in Simulation

I now present a number of simulation-based experiments conducted to benchmark

the various key aspects of the Cluster-RTSP algorithm. I first provide an eval-

uation of the 2-Opt algorithm used in conjunction with the CTSP formulation

adopted in this work for solving standard TSPs (which are widely accepted as

the standard for TSP benchmarks) and compare its performance against other

effective methods reported in literature. I then investigate how the number of

clusters k affects the performance of the proposed CTSP approach when applied

to RTSPs. The Cluster-RTSP is then carefully benchmarked against RoboTSP to

quantify the quality of solutions obtained and the planning efficiency of the algo-

rithm. The RoboTSP algorithm was chosen to benchmark the Cluster-RTSP as it

is a competitive algorithm shown to outperform other existing methods in terms

9Although in this work I solely consider the use of 2-Opt to solve individual instances of
TSPs, practitioners may opt to use a different TSP solver according to application needs. The
Cluster-RTSP has been developed with modularity in mind to allow for such modifications to
be made.
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of computation time while being able to provide solutions of comparable quality

for the problems considered in [135]. To ensure a fair and consistent comparison,

the first set of trials was conducted on the Airbus Shopfloor Challenge problem

originally used to benchmark the RoboTSP. I then consider a series of test en-

vironments involving arrangements of obstacles to compare the two algorithms’

performances when subject to increasingly complex spatial constraints.

In all of the reported experiments, planning was conducted on a system run-

ning on an Intel® Xeon® CPU E3-1270 v3 (3.50 GHz) with 32 GB RAM and an

NVIDIA Quadro K2000 graphics card.

6.3.1 Benchmarking TSP Solvers

The approach used in this work to solve a sequencing problem using the 2-Opt

algorithm in conjunction with a CTSP formulation can be generalised for standard

symmetrical TSPs. Indeed it is necessary to quantify the behaviour of solving the

configuration sequencing sub-problem in this way as it directly contributes to the

overall performance of the Cluster-RTSP algorithm. A comparison was conducted

to benchmark the CTSP-based 2-Opt method (CTSP-2-Opt for short) used in

this work on a set of standardised problems available in TSPLIB [188]. The

TSPLIB is an open-access library resource that provides a collection of problems

along with the best solutions found to date to enable researchers to benchmark

TSP solvers on standardised data sets.

For each of these problems, I compare the results obtained by CTSP-2-Opt

with the solutions obtained by a number of alternative proven methods for TSPs.

Building upon the results originally collated in [182], Table 6.1 reports the per-

formance of the CTSP-2-Opt along with the solution quality achieved by the

following TSP solvers:

• Kohonen Network Incorporating Explicit Statistics Global (KniesG) [183]

• Kohonen Network Incorporating Explicit Statistics Local (KniesL) [183]

• Simulated Annealing with 2-Opt improvement (SA) [184]

• Budinich’s Self-Organizing Map (Budinich) [184]

• Expanded Self-Organizing Map (ESom) [185]
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• Efficient Self-Organising Map technique (Setsp) [186]

• Kohonen’s Cooperative Adaptive Network (CAN) [187]

• Recurrent Neural Network with ”Winner Takes All” (RNN-WTA) [182]

In Table 6.1, the quality of solutions obtained are given as a percentage error

that describes the deviation of the solution from the best known solution for the

given problem. According to this table, the quality of the solutions achieved with

CTSP-2-Opt is marginally worse than those obtained using other methods in all

problems except for the rat195 dataset. Quantitatively, CTSP-2-Opt provides

solutions that lie within an average of 0-6% error difference compared to other

methods, and is always within 3% error difference from the worst-case results

among the alternative methods (the worst solution among the benchmark results

for each dataset is emphasised in italics). Certainly, there is a much bigger gap

between the solutions found by CTSP-2-Opt and the best solution among the

compared methods. However, I wish to note that this always coincides with the

CAN method, which consistently outperforms all other methods by a large mar-

gin. Arguably, this showcases the exceptional performance of the CAN method

rather than discredit the performance of the CTSP-2-Opt method.

While from the outset it may appear that the CTSP-2-Opt approach is a

strictly inferior method for solving TSPs, the results provided in Table 6.1 does

not provide a full picture of each method’s computational performance. This is

because the quality of solutions does not reflect the computational cost required

to compute the solution. While the CAN method excels in findings solutions very

close to the optimal, the authors of the algorithm reported a computation time

of 159.3 seconds for the pcb442 dataset [187]. Granted, this result was obtained

in 2003 using a Silicon Graphics O2 workstation. Scaling this to the process-

ing power of the Intel® Xeon® CPU E3-1270 v3 (3.50 GHz) used in this work

according to the Whetstone benchmark [189] gives an equivalent computation

time of 23.5 seconds.10 In contrast to this, the CTSP-2-Opt required approxi-

mately 8 seconds to solve the pcb442 problem, while solutions to all other prob-

10The Whetstone benchmark is a general purpose benchmark for computer system perfor-
mance, where a machine’s speed is measured by the number of Millions of Whetstone In-
structions Per Second (MWIPS). Using these figures, the estimated computation time of an
algorithm for a given machine can be obtained by scaling its true computation time on another
machine according to the ratio between the two machines’ MWIPS ratings. According to [190]
the performance of the Silicon Graphics O2 workstation is rated at 424 MWIPS.
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Table 6.1: Comparison of methods for solving TSPLIB symmetric TSP problems

TSP problem Average error (%) CTSP-2-Opt

dataset n WRNN KniesG KniesL SA Budinich Esom Setsp CAN error

(%)

CPU

time (s)

eil51 50 1.16 2.86 2.86 2.33 3.1 2.1 2.22 0.94 4.20 0.06

st70 70 3.38 2.33 1.51 2.14 1.7 2.09 1.6 1.33 4.72 0.08

pr107 107 3.14 0.42 0.73 1.54 1.32 1.48 0.41 0.17 3.17 0.13

pr152 152 3.25 1.29 0.97 2.64 2.04 0.89 1.17 0.74 3.57 0.66

rat195 195 7.19 11.92 12.24 13.29 11.48 7.13 11.19 5.27 10.71 0.39

kroa200 200 10.6 6.57 5.72 5.61 6.13 2.91 3.12 0.92 10.92 0.17

pcb442 442 11.17 10.45 11.07 9.15 8.43 7.43 10.16 5.89 14.80 8.32

Notes: The errors refer to the percentage deviation of solutions from the best known solution for each TSP problem. The best-performing

result for each problem is highlighted in bold, while the worst performing solution among the compared methods (excluding CTSP-2-Opt) is

emphasized in italics. The results of the 8 compared methods were obtained from [182]
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lems were obtained in under 1 second. The authors of the RoboTSP also made

similar observations in terms of the planning efficiency when they benchmarked

their method for RTSP against a Recurrent Neural network (RNN)-based ap-

proach [135]. Going back to the requirements of modern applications that cannot

be met by substantial offline planning (refer to Section 6.1), when considering the

complete process cycle time it is generally necessary to consider not only the task

execution time (quality of solution) but also the total computation time required

to generate a plan. In these scenarios, being able to reduce the computation

time by several fold significantly outweighs the marginal improvements achieved

in task execution time. Thus when taking into account both solution quality

and planning efficiency, the CTSP-2-Opt can be considered a superior method

for applications were online planning capabilities is necessary.

6.3.2 Benchmarking CTSP

In Section 6.2.3, the theoretical upper bound on the complexity of the CTSP

procedure had been derived as O( 1
k3
n4+ 1

3 ) for the case where points are equally

distributed across clusters. However, as previous analysis of the standard 2-

Opt algorithm has found, practical observations showed an exponential growth

in complexity for the number of points in the problem. To evaluate empirically

the reduction in computational cost by applying a CTSP formulation to the

configuration sequencing sub-problem, an experiment was conducted whereby

the number of clusters k were manually assigned during the clustering phase of

the algorithm (i.e. the algorithm reverts back to a regular k-means clustering).

The experiment was conducted on a virtual KUKA KR6 R900 sixx 6-DoF

industrial robot and involved solving the planning tasks shown in Fig. 6.3, where

Fig. 6.3a shows the distribution of task points for each of the four environments

(though the actual number of points was varied across trials). Notice that each

environment represents a different arrangement of obstacles. Environment A cor-

responds to a clutter-free environment where no spatial constraints are imposed

on the robot. Environment B contains three planar obstacles that are difficult

to detect without performing motion planning as they generally do not invali-

date the majority of IK solutions for task points that lie close to the obstacles,

but nevertheless greater motion costs would be incurred from moving between

task points in the vicinity of these obstacles. Only one obstacle is present in
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(a) (b)

(c) (d)

Figure 6.3: Environments generated for evaluating the performance of the Cluster-RTSP. (a)
Environment A - clutter-free and shown with sample input target points, (b) Environment B
- contains three planar obstacles, (c) Environment C - contains a single bar obstacle limiting
motion of joint two, (d) Environment D - cluttered environment imposing significant spatial
constraints on robot.

Environment C, though the location of this obstacle introduces significant spatial

constraints on the robot as it lies very close to the robot’s second joint. This

prevents the robot from reaching the majority of task points in the upper half

of the distribution using an ’elbow-up’ configuration. Finally, Environment D

involves significant clutteredness around the robot that further restricts the set

of feasible motions available to the robot.

In numerous industrial applications such as inspection, thermal mapping and

drilling, the yaw angle of the end effector (i.e. the rotation about the approach
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vector) at each task point can be arbitrarily assigned. The authors of RoboTSP

accounted for this by treating the DoF that coincides with the yaw rotation of the

end effector (i.e. joint 6 for the KUKA KR6 R900 robot) as a free DoF. As a result,

there could be infinitely many IK solutions for any given task point. To maintain

consistency in the comparison against RoboTSP in later evaluations, I follow the

authors’ treatment of this free DoF in [135], which consists of discretising the free

DoF to generate a finite set of IK solutions. In all of the experiments reported

in this chapter, a discretisation level of π3 was used unless otherwise stated. For

the KUKA KR6 considered in this experiment (as well as others reported later)

up to 96 IK solutions could be obtained for any single task point. Table 6.2

reports the number of task points considered across multiple trials, along with the

corresponding total number of IK solutions Q found in each environment. Notice

that as the free C-space reduces from more spatial constraints being introduced

into the problem, the number of IK solutions decrease as a result of task points

becoming unreachable due to collision.

Fig. 6.4 reports the computation time required to solve the planning problems

in Environment A and D with k set to 1, 3, 6, 12 and 40 clusters. Here the trials

for k = 1 is equivalent to solving the RTSP without formulating the configuration

sequencing sub-problem as a CTSP. Since all points are considered in one single

instance of TSP, the algorithm simply reverts to applying 2-Opt to the set of task

points as in a standard TSP.

From these results it can be seen that for the trials that were solved without

applying clustering, the growth in computation time is approximately exponen-

tial, as already observed in previous studies. From approximately 600 task points

and upwards, there is a noticeably larger difference in computation time between

the trials solve with 1 cluster compared to all other trials. In Environment A, as

the number of clusters increases, the increase in computation time can be more

closely approximately by a linear function. This is unsurprising, as the theo-

retical analysis has indicated that the complexity can be reduced by a factor of
1
k3

, which significantly dampens the rate of exponential growth for large k val-

ues. In Environment D, the behaviour of the growth in complexity is not as well

defined from visual inspection. Nevertheless, while the trials for 1 cluster still

approximately indicate exponential growth, it is clear that even by setting k to

the smallest value of 3 considered in these trials, a significant decrease in compu-

tation time can be achieved. Interestingly, we can observe that the computation
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Table 6.2: Total number of valid IK solutions

Task points Env. A Env. B Env. C Env. D

224 11,206 10,830 8,324 4,954

328 16,452 15,832 12,206 8,118

561 28,462 27,230 21,056 13,632

763 38,648 37,154 28,840 18,087

919 46,650 44,944 34,246 21,624

1,402 70,993 68,141 52,360 32,668

1,844 94,128 90,588 69,619 44,145

Figure 6.4: Computation time for Cluster-RTSP with fixed k values in configuration cluster-
ing.

time for 1 cluster is less at times for problems involving less than 600 task points.

As discussed in Section 6.2.3, performing a motion planning query can be costly,

particularly for cluttered environments. Since the sequencing solution obtained

by applying different values of k can differ, the actual motion planning queries

performed in each trial may be different. When problems involve smaller sets of

task points, it is possible that the computation time required to perform motion

planning outweighs any reduction in computation time achieved with cluster-

ing. In section 6.4 a breakdown of the computation time required by individual

components of the algorithm is given (see Fig. 6.13).
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Figure 6.5: Task execution time for solutions obtained using Cluster-RTSP with fixed k values
in configuration clustering.

Fig. 6.5 shows the task execution times of the solutions obtained in these

trials. For the trials conducted in Environment A, solutions of comparable quality

was obtained regardless of the number of clusters used to divide the sequencing

problem. In contrast, the results for Environment D show a greater degree of

variability among the solutions obtained by different k values. For all but one

trials, the best solution was obtained using 1 cluster, suggesting that by applying

clustering in highly complex environments generally lead to some deterioration in

solution quality. Even among the trials that involved clustering, there is no clear

indication of an ideal k value that provided a lower cost solution in all instances

for Environment D. This suggests that the value assigned to k is an important

consideration and indeed requires the evaluation of model fitness objectively select

k for each individual problem. Ultimately I conclude that by adopting a CTSP

formulation for RTSPs, the complexity of solving the sequencing sub-problem

using the 2-Opt algorithm can be reduced to an approximately linear growth in

practice. However, in likeness to the conclusions drawn from the benchmark on

TSP solvers, doing so to improve planning efficiency comes at the cost of marginal

decrease in solution quality.
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Figure 6.6: The Airbus Shopfloor Challenge environment originally used to benchmark
RoboTSP [135]

6.3.3 Benchmarking on Airbus Shopfloor Challenge

To evaluate how the Cluster-RTSP performs for known RTSP problems, the

algorithm was evaluated on the original planning problem used to benchmark

RoboTSP. The development of the RoboTSP algorithm was motivated by the

Airbus Shopfloor Challenge [191], a competition that involved the task of drilling

a set of holes across a panel mounted on a jig. Fig. 6.6 shows a virtual represen-

tation of the environment developed by the authors of RoboTSP to participate

in the challenge.

In this drilling task, the jig acts as an obstacle that somewhat limits the set

of motions that can be performed by the robot. However, in this RTSP the task

points are distributed across a single planar surface optimally located in front

of the robot. In other words, the setup was carefully designed to minimise the

risk of collision between the robot and the jig for the anticipated drilling task.

For this reason, the spatial constraints present in this case is considered to be

relatively relaxed.

The Cluster-RTSP was benchmarked against the RoboTSP by using the open-

source implementation of the RoboTSP algorithm made available by the original

220



Wong, C. Spatially-Constrained Robotic Task Sequencing

authors. As such, all simulations were conducted in OpenRAVE version 0.9.0

using a virtual model of the Denso VS060 6-DoF industrial robot. Care was

taken to preserve the values of common parameters between the two alogirthms

to maintain a fair comparison. These parameters include the stand-off distance

(which describes the distance between a given task point and the actual point in

task space to be reached by the robot), the motion planner used to fulfill motion

planning queries, and the discretisation level. Table 6.3 lists all the parameters

used by each algorithm to solve the Airbus Shopfloor Challenge problem.

For both algorithms, sets of nine trials comprising of 93, 130, 180, 245, 354,

432, 542, 627 and 843 task points were conducted for the following four free DoF

discretisation levels: π
2 , π3 , π4 and π

6 . Fig. 6.7 reports the task execution times

for the solutions obtained in these trials. Generally speaking, the task execution

times for the solutions obtained by Cluster-RTSP and by RoboTSP are by and

large the same. These results indicate that the Cluster-RTSP provides solutions

of comparable quality to existing methods for simple problems involving relatively

few spatial constraints.11

I note however, that for the discretisation level of π
6
, RoboTSP was able to

find marginally better solutions than Cluster-RTSP, with an average of 4% shorter

solutions. As discussed in Section 6.2.4, the Cluster-RTSP is a near -optimal algo-

rithm, but possesses some limitations. Simply put, the configuration assignment

procedure uses heuristics to approximate the best configuration for each task

point. However, it does not guarantee that the assigned configuration is indeed

truly optimal. With a larger discretisation level, it becomes more difficult to dis-

cern the best configuration from among several ‘nearly as good’ configurations.

RoboTSP on the other hand first solves for a task sequence and then determinis-

tically finds the optimal configuration assignments to each task point according

to this sequence by applying Dijkstra’s search. This means that for any fixed

task sequence, RoboTSP can guarantee that the optimal configurations are used.

Its limitation, of course, is that there is no guarantee that the sequence itself leads

to the true optimal solution for the RTSP. In the Airbus Shopfloor Challenge sce-

nario, where the spatial constraints were relatively relaxed and task points were

11The RoboTSP had originally been benchmarked against a GLKH solver (yet another com-
petitive method) for RTSPs, where it had been shown that the RoboTSP was able to find
solutions of equal quality to this alternative method. Based on these findings, we can indirectly
infer that Cluster-RTSP provides solutions of comparable quality to other methods such as
GLKH.
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Table 6.3: Parameter settings for algorithm implementation

RoboTSP Cluster-RTSP
Parameter Value Parameter Value

Stand-off 0.001 mm Stand-off 0.001 mm

Motion
planner

Bi-RRT Motion
planner

Bi-RRT

TSP metric Euclidean
(task space)

TSP metric Euclidean
(C-space)

C-space
metric

Max joint
difference

Config. select
metric

Weighted Sq.
Euclidean

- - Clustering
metric

Sq. Euclidean

- - bδ, b0 {0.9, 0.1}
- - Kmin, Kmax {3, 40}

evenly distributed across a single planar surface, the task space metrics used by

RoboTSP generally sufficed for estimating the motion costs between task points.

However, as we consider more complex environments we will see that this is not

always the case.

To benchmark the planning efficiency of the Cluster-RTSP, the CPU times

required by both algorithms were also compared, as shown in Fig. 6.8. For

trials involving small values of n (less than 300 points), both Cluster-RTSP and

RoboTSP required approximately the same amount of computation time. This

is unsurprising as motion planning generally consumes the most computational

resources for problems involving relatively small sets of task points. In Section

6.3.2 I showed that the time-saving effects for a small number of task points is

minimal. Thus in these circumstances the computational differences between the

two algorithms are insignificant as both algorithms apply motion planning in the

same way. However, once n exceeded 300 points, the superior planning efficiency

of the Cluster-RTSP becomes clear. Taking the best case scenario as an example,

in the trial corresponding to 843 task points for a discretisation level of π
2
, the

Cluster-RTSP was able to obtain a solution in 19.6% of the computation time

required by RoboTSP, yet for this trial both algorithms provided a solution of the

same quality. In fact, Fig. 6.7 shows that the computational complexity of the

RoboTSP is always exponential in practice due to its use of the standard TSP

formulation. These findings are in agreement with the results of the benchmark
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Figure 6.7: Task execution time for RoboTSP and Cluster-RTSP algorithms applied to the
Airbus Shopfloor Challenge. The discretisation step size for the 6th free DoF was set to π

2 , π
3 ,

π
4 and π

6 respectively.

on CTSP (see Section 6.3.2). On the other hand, the Cluster-RTSP exhibits a

dampened exponential growth, which, for the trials corresponding to step sizes of
π
2

and π
3
, can be closely approximated as a linear growth. This similarly agrees

with the theoretical analysis of complexity presented in Section 6.2.3. Since it

had already been shown that the RoboTSP algorithm is able to solve the Airbus

Shopfloor Challenge scenario several orders of magnitude faster than existing

methods, then according to these findings I conclude that the Cluster-RTSP is

a competitive algorithm that can solve RTSPs at least as fast as other methods

reported in literature.
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Figure 6.8: Computation time for RoboTSP and Cluster-RTSP algorithms applied to the
Airbus Shopfloor Challenge. The discretisation step size for the 6th free DoF was set to π

2 , π
3 ,

π
4 and π

6 respectively.

6.3.4 Benchmarking on Environments A-D

Let us now consider the performance of the Cluster-RTSP for the environments

previously shown in Fig. 6.3. By applying the algorithm to solve the sets of

planning tasks listed in Table 6.2 for each environment, the behaviour of the

algorithm can be tested on RTSPs involving one or more of the following:

• Task points distributed across multiple planes (applies to all trials)

• Planar obstacles that do not invalidate most IK solutions but obstruct any

linear motion between task points that lie in close vicinity to the obstacles

(applies to Environment B)

• Obstacles located closely to the joints of the robot, which severely limits

the robot’s range of allowable motions (applies to Environments C and D)
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• high cluttered environments that introduce hard spatial constraints to the

RTSP (applies to Environment D)

Following the same procedures used in Section 6.3.3, the Cluster-RTSP was

benchmarked against RoboTSP for trials involving 224, 328, 561, 763, 919, 1402

and 1844 input task points in each of the four environments. Note that the

same sets of task points were used in each environment. However, since each

environment introduced different spatial constraints on the robot, only a subset of

the input task points were reachable and this varied according to the environment.

In the results that follow shortly, the computation time and task execution time

are reported for the true number of visited task points and not the size of the

input task set. Values for the number of task points visited in each trial according

to the environment are provided in Table 6.4, which also gives the number of

clusters computed by the X-means algorithm for partitioning the set of assigned

configurations. All parameter values reported in Table 6.3 were preserved for this

comparison.

Fig. 6.9 shows the task execution times, obtained from solving each set of tri-

als in Environments A-D, plotted against the number of task points. The results

corresponding to Environment A show that both algorithms were able to achieve

solutions of approximately the same cost, which is in agreement with the com-

parison made for the Airbus Shopfloor Challenge problem (in both problems no

hard spatial constraints are imposed on the robot). The results for Environment

B likewise show that both algorithms perform equally in the presence of planar

obstacles. This observation could have been anticipated since both algorithms do

not evaluate true motion costs to direct the search for an optimal configuration

sequence. The obstacles in Environment B has minimal impact on the reachabil-

ity of task points (i.e. they do not invalidate many configurations since they do

not occupy a large volume in space). Rather, they largely act as obstructions for

pose-to-pose motions that cannot be detected without performing motion plan-

ning queries. Thus both algorithms can be considered ’blind’ to these types of

obstacles.

As we move onto Environment C, we can begin to see differences in the quality

of solutions obtained. In all trials conducted in Environment C, the Cluster-RTSP

outperformed the RoboTSP algorithm with reduced task execution times of up

14.5%. These observations extend into Environment D, where the Cluster-RTSP

consistently found better solutions than RoboTSP. In the best case, a reduction

225



Wong, C. Spatially-Constrained Robotic Task Sequencing

Table 6.4: Number of target points reached and corresponding number of clusters obtained
for Cluster-RTSP

Env. A Env. B Env. C Env. D

Task
points

Points
reached

k Points
reached

k Points
reached

k Points
reached

k

224 224 3 214 3 180 3 128 3
328 328 3 314 3 261 3 201 3
561 561 3 531 3 444 4 342 5
763 763 3 721 3 605 4 448 3
919 919 3 885 3 723 4 554 4

1,402 1,402 5 1,331 8 1,117 4 846 3
1,844 1,844 8 1,772 8 1,459 5 1,095 4

Note: The number of target points visited depends on the constraints imposed by the
obstacles in each environment. For environments B-D, certain points cannot be reached due
to collision with all IK solutions for the given target point.

Figure 6.9: Task execution time for problem instances shown in Fig. 6.3
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Figure 6.10: Computation time for problem instances shown in Fig. 6.3

of 22.2% in task execution time was achieved with Cluster-RTSP (corresponding

to the trial involving 1095 visted task points). These results empirically show

that the use of task space metrics to estimate motion costs, a key feature of

the RoboTSP and indeed the majority of existing methods, can lead to sub-

optimal solutions for problems that involve hard spatial constraints. Conversely,

the Cluster-RTSP is able to find better quality solutions as it exploits the avail-

ability of C-space information to identify those task points that likely require

more costly motions to reach and generating a suitable sequence to account for

this accordingly.

Now let us direct our attention to the planning efficiency of the algorithms

for these trials. Fig. 6.10 shows the amount of computation time spent to com-

pute the solutions reported above. In addition to the superior solution quality

achieved by the algorithm, the Cluster-RTSP outperforms the RoboTSP in plan-

ning speed, as was the case in the Airbus Shopfloor Challenge (a time-saving of

227



Wong, C. Spatially-Constrained Robotic Task Sequencing

up to 70.3% was found for 1844 task points in Environment A). Interestingly,

the size of the planning task for which a difference in planning time starts to be-

come apparent differs across the environments. In Environment B for example,

both algorithms required approximately the same amount of computation time

for n ≤ 900 task points. In contrast to this, the Cluster-RTSP was able to find

solutions significantly faster for n ≥ 200. I will show in the next section that

these variations are related to the quality of the solution, as a poor sequence

can additionally manifest into more time-consuming motion planning queries for

environments with hard spatial constraints.

6.4 Experimental Evaluation

Building upon the evaluations conducted in simulation, I benchmark the Cluster-

RTSP on an application example that involves the surface scanning of an arrange-

ment of pipes. In addition to assessing the task performance and computational

efficiency of the algorithm, I discuss the advantages and key considerations for

the implementation of the algorithm in practical applications.

The setup of the task consists of a KUKA KR6 R900 sixx robot mounted

within a cell surrounded by walls on all four sides. A 3D-printed tool is attached

to the end effector to represent a typical sensing probe for inspection applica-

tions. Four hollow pipes were distributed across the front region of the robot’s

workspace as shown in Fig. 6.11. This arrangement of objects and surrounding

infrastructure impose hard spatial constraints on the robot as it must always re-

main completely inside the cell while being required to manoeuvre dexterously

between the pipes throughout the task. The inspection task itself requires the

robot to visit a set of inspection points equally distributed across the outer sur-

faces of the four pipes. Planning problems involving four sets of inspection points

that contained 425, 645, 948 and 1499 points, respectively, were used to compare

the performance of Cluster-RTSP against RoboTSP in this application. Again,

all parameters reported in Table 6.3 apply in these trials.

To operate the robot, solutions obtained by the algorithms were sent to the

robot’s control system - a KUKA KR C4 controller - via the ITRA toolbox de-

veloped for interfacing with this series of KUKA controllers (see Section 3.5 for

details). From among the multiple control methods available in ITRA, I use the

computer approach for external control to send the solution as a complete set of
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(a)

(b)

Figure 6.11: Physical setup for surface inspection of pipes task with the KUKA KR6 R900
sixx robot in the default ’elbow-up’ home configuration. (a) Top-down view, (b) side view.

trajectories, defined in C-space coordinates and interpolated at steps of 12 ms, as

described in [159, 192]. When computing the individual time-parameterized tra-

jectories during each motion planning query, the robot joint velocity and acceler-

ation limits were set to 50% of the rated maximum values, which were obtained

from the manufacturer’s manual [193].

The results for task execution time are provided in Fig. 6.12. Unlike previous

trials where task points were distributed across planes, in this application where

task points are more freely distributed across the entire task space. Furthermore,
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Figure 6.12: Task execution times for the pipe surface inspection task.

the layout of the robot’s environment introduces substantial spatial constraints

on the robot that were not present in some of the earlier trials. When solving

an RTSP of this nature, Fig. 6.12 shows that the Cluster-RTSP can achieve

significant performance improvements compared to the RoboTSP. Across the four

trials, the Cluster-RTSP was consistently able to reduce the task execution time

by 55-60%. This level of performance could be achieved as the Cluster-RTSP

algorithm was able to identify the small subset of task points whose collision-free

IK solutions were drastically different from the default ’elbow-up’ configuration

seen in Fig. 6.11b. The Cluster-RTSP clusters these configurations together

when partitioning the set of assigned configurations Q′, thus ensuring that these

configurations are visited contiguously. The RoboTSP on the other hand is unable

to recognise these features and thus finds itself alternating between drastically

different configurations where the corresponding task points lie close together

in the task space. From a practical standpoint, these contrasting behaviours

translate into substantial differences in productivity.

Fig. 6.13 reports a breakdown of the computation time in terms of the high-

level components for both algorithms. This compromises of the TSP solver and

motion planning procedures common to both algorithms, while all other sub-

functions unique to each algorithm is collectively grouped as miscellaneous op-

erations. Notice that in all cases the computation time for solving the TSP is
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Figure 6.13: Breakdown of computation time for the pipe surface inspection task. Misc.
operation includes all functions in each respective algorithm excluding motion planning and
solving the TSP with 2-Opt.

negligible for the Cluster-RTSP, while for the RoboTSP the computation time

is dominated by this step for n = 948 and n = 1499. Interestingly, while both

algorithms use exactly the same motion planner (Bi-RRT implemented on Open-

RAVE), motion planning incurs a significantly greater computational cost in the

RoboTSP. As briefly mentioned earlier in Section 6.3.4, a poor quality sequence

can negatively impact the planning time for fulfilling motion planning queries.

This is because finding a collision-free trajectory between two very different con-

figurations is a more difficult problem than finding a collision-free trajectory be-

tween two similar configurations in the C-space (particularly in the presence of

obstacles). As discussed above, the quality of the sequence obtained by the

RoboTSP is substantially poorer for this application, which leads to more costly

motion planning queries. Overall the Cluster-RTSP is able to achieve up to

89.7% faster planning as a result of both the CTSP formulation and the reduced

complexity in motion planning queries. When we consider the complete process

cycle that encapsulates both the time required for planning and for execution, the

Cluster-RTSP has the potential to reduce the total time to complete a given task
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by several folds, depending upon the difficulty of the RTSP (for the inspection

task comprising 1499 points, the Cluster-RTSP was able to save 1808.7 seconds

altogether from planning through to execution). This has clear advantages for

one-off applications where any single plan is executed only once.

I now give particular attention to some of the key considerations that apply

when implementing the algorithm for practical applications. To contextualise

this, a set of trajectory tracking experiments were conducted on the surface in-

spection task described earlier in this section. Using a task point set of n = 425,

I vary the maximum joint velocity and acceleration limits across the robot’s full

working range (from 10% through to 100%) and apply the Cluster-RTSP algo-

rithm to perform the inspection task. The solution was sent to the robot for

execution using the ITRA toolbox. Conveniently, the ITRA toolbox enables the

feedback of true robot coordinates to be returned to the host PC to monitor the

state of the robot at each interpolation cycle. This enables the evaluation of the

trajectory tracking error across the entire duration of the task by comparing the

sent coordinates against the robot’s true coordinates at any given time step. Let

us consider the following three specific types of error:

• Maximum joint error - the error in joint angles given by the maximum value

among the individual joint angle difference between the sent coordinates and

feedback coordinates (in degrees)

• Total joint error - the error in joint angles given by the Euclidean distance

in C-space between the sent coordinates and the feedback coordinates (in

degrees)

• Total position error - the end effector position error given by the Euclidean

distance in task space between the forward kinematic solution of the sent

joint coordinates (equivalent to a sent position) and the feedback position

(in millimetres)

Fig. 6.14 shows the maximum trajectory tracking errors between the exe-

cuted and sent trajectories across the range of velocity and acceleration limits.

It is apparent that the largest trajectory tracking errors were observed when the

limits were assigned values below 50%, where the peak total position error was

recorded at 15.2 millimetres, while the maximum joint error and total joint error

reached 2.8° and 3.7°, respectively. For all other velocity and acceleration limits,
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Figure 6.14: Trajectory tracking error for pipe surface inspection experiments.

the position and joint errors consistently remained below 2 millimetres and 0.5°,
respectively.

I first wish to clarify that these errors did not originate from the planned

motions generated by the Cluster-RTSP. Rather, these errors arise from the limi-

tations of the hardware and are specific to the test system. This is not universally

true for all RTSP methods, as algorithms that do not take singularities into con-

sideration may lead to unintended stops during execution due to failure of the

robot to transition through a singularity. That is why some authors of previous

work have mentioned the necessity for explicit consideration of robot manipu-

lability to identify regions in task space near singularities [19, 107]. However,

these problems are avoided in the Cluster-RTSP as it solves the RTSP entirely

in C-space. Nevertheless, systems in the real world often do not perform ex-

actly as it should in ideal circumstances. Trajectory tracking error is one such

common observation in practice and should therefore be considered when imple-

menting methods to solve RTSPs for critical applications (e.g. the oil & gas and

nuclear sectors commonly involve sensitive or high-risk applications where preci-

sion is paramount to the safety of the facility). In the particular system used in

this experiment, a practitioner would need to consider the benefits of executing

a robot will low velocity and acceleration limits against the reduced trajectory
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tracking performance achievable at those limits. Of course, these considerations

are specific to the robotic system deployed.

To deal with more general limitations of physical systems in the real-world,

a number of RTSP implementation considerations can be taken into account to

overcome tracking errors that cannot be tolerated by default. In applications

that require the robot to maintain a minimum amount of clearance from obsta-

cles, a common practice used within the robotics research community involves

the enlargement of obstacles, either by inflating obstacles while preserving their

3-dimensional form, or by applying various types of bounding boxes for a simpler

representation. Generally, attention should be given to the effects of obstacle

enlargement, as it can introduce substantially greater spatial constraints not pre-

viously present. The evaluations in this chapter have shown that the performance

of the Cluster-RTSP does not deteriorate when faced with problems that involve

hard spatial constraints. This is not the case for those existing methods that do

not account for spatial constraints when developing task sequences, while other

methods that do have not yet been proven to do so efficiently.

For some applications there may exist contact-based interactions between the

robot end effector and a workpiece. In these scenarios, virtually enlarging all ob-

jects in the environment to avoid minor collisions may prevent the RTSP solver

from finding a solution, as the robot must move close to the surface of the work-

piece to perform its tasks. Instead, it is possible to introduce standoff distances to

offset the actual positions reached by the end effector when visiting task points.

This standoff distance should be determined according to the maximum position

error of the system to ensure that the robot does not initially make contact with

the workpiece as a result of tracking error. Where contact with the workpiece

must then be made in order to accomplish a given task (e.g. for drilling tasks and

contact-based inspection), force-torque sensing could be used for fine precision in

order to achieve contact with the workpiece.

6.5 Summary

In this chapter I have presented a computationally efficient, near-optimal algo-

rithm for solving general RTSPs. The algorithm has been applied to a number of

different planning problems to demonstrate its effectiveness in addressing prob-

lems of varying complexity. I have carefully benchmarked the algorithm to evalu-
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ate the performance of individual components and the overall performance of the

algorithm. Through an in-depth comparison with the RoboTSP, a state-of-the-

art approach in literature, I have shown that the Cluster-RTSP is able to find

higher quality solutions to RTSPs involving hard spatial constraints while being

computationally more efficient than existing methods for problems involving large

sets of task points (as Section 6.4 showed, the Cluster-RTSP was able to reduce

the task execution time by up to 60% and the computation time by up to 90%

compared to the RoboTSP). When we consider the complete process cycle time

encapsulating both planning and execution, the Cluster-RTSP has the potential

to reduce the total time for task completion by manifold. Even in the worst case,

the Cluster-RTSP is able to provide solutions of comparable quality to existing

methods while always being at least as fast at finding this solution (this generally

occurs for simple problems where existing methods can adequately approximate

the true optimal solution). Finally, a discussion on the considerations for prac-

tical implementation was provided for readers interested in the practicalities of

the algorithm.

In the next chapter I provide a further investigation into the Cluster-RTSP

algorithm to show how it can be extended to enable partial planning and re-

planning, concepts which (to the best of my knowledge) have not been considered

so far in the RTSP literature.
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Chapter 7

Towards Dynamic Robotic Task

Sequencing

7.1 Introduction

In the previous chapter I introduced the Cluster-RTSP algorithm, a new method

for solving manipulator-based RTSPs. It is characterised by fast planning times

and near-optimal solutions even in the presence of hard spatial constraints. How-

ever, until now the RTSP has solely been addressed as a static planning problem.

With the exception of RoboTSP [135] and Cluster-RTSP, all existing methods

of solving RTSPs in literature require extensively long planning times even for

problems with a relatively small set of task points. One of the motivations for

the development of the Cluster-RTSP was the limitation of these existing meth-

ods being strictly for offline planning only. Certainly, these methods provided a

number of benefits in removing the necessity for a skilled programmer to develop

plans for RTSPs. Developing plans for RTSPs manually can be taxing on a human

programmer, especially for complex problems. These plans are prone to human

errors, and it is generally difficult to guarantee a high quality solution when the

set of task points is large. Manually solving RTSPs is very time-consuming to

begin with, but for safe implementation further preparation time is required to

validate plans to ensure robot motions are collision-free and tasks are correctly

executed as required by the application. Through the use of existing methods

developed for RTSPs, all of these problems can be overcome. Yet, as discussed

in Chapter 6, the majority of these methods are inadequate for applications that
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demand short planning times.

Taking these practical implementation considerations into account, the Cluster-

RTSP algorithm extends the range of applications that can be addressed through

RTSP planning. Though the RoboTSP is considered a fast method in its own

right, the complexity analysis presented in Section 6.2.3 and the experimental

evaluations presented in Sections 6.3-6.4 show that the Cluster-RTSP supersedes

the computational performance of RoboTSP (by up to 90% in trials considered)

for large sets of task points. To the best of my knowledge, no other method in

the RTSP literature has reported computational efficiency within the same order

of magnitude as Cluster-RTSP for similar problem sizes.

In this chapter I present work that further pushes the state-of-the-art in RTSP

by exploring two new concepts within the context of this problem. Motivated by

the ambition to enable adaptive planning capabilities in RTSP, I introduce the

concept of Dynamic RTSP (DRTSP), which considers applications in which the

problem parameters (e.g. tasks or environment) change during execution. Like

in the static case, the problem can be considered a close relative of the dynamic

TSP (DTSP), but with greater complexity due to the additional considerations

for kinematic redundancy, collision avoidance and motion planning. As an in-

termediate step towards realising this capability, I also introduce the concept of

partial planning to RTSPs, which adopts the idea of planning-during-execution

familiar to the anytime planning component of the DA-TPP presented in Chapter

5.

Using the Cluster-RTSP as the core building blocks, I describe two additions

that exploit the clustering feature of the algorithm to enable partial planning

and dynamic re-planning, respectively. Partial planning can be implemented

stand-alone from dynamic re-planning and allows the robot to begin executing a

task plan before a complete task sequence has been determined. From a practi-

cal perspective, this further reduces the idle time of the robot during planning.

Dynamic re-planning extends the elements of partial planning to provide online

adaptation of a task sequence for applications that are prone to dynamic changes

in the environment. These changes can affect the validity of the configurations

assigned to task points, or obstruct the planned trajectories for moving between

task points. Dynamic re-planning handles these events online through the re-

assignment of configurations to task points, re-planning of partial plans, and

re-planning of trajectories between configurations, avoiding the costly process of
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re-planning from scratch.

With these in mind, the contributions of this chapter is as follows:

1. I introduce and define the concept of DRTSP, a new variant of the RTSP

that extends the original static optimisation problem (SOP) into a dynamic

optimisation problem (DOP), which encapsulates dynamic change in prob-

lem parameters relating to the task or environment.

2. I describe the concept of partial planning in the context of RTSP and present

a modification to the Cluster-RTSP that makes use of configuration cluster-

ing to conveniently sub-divide a task into smaller sub-tasks for execution.

By solving for an executable partial plan of each sub-task sequentially, I

show that execution can begin before planning of all sub-tasks is complete.

Simulation-based evaluations are used to quantify the reduction in pre-

execution planning time for the pipe scanning task considered in Section

6.4. I refer to this modified version of Cluster-RTSP as partial -Cluster-

RTSP (p-Cluster-RTSP).

3. I present an approach to solving the DRTSP that is based on extending

the partial planning variant of the Cluster-RTSP algorithm. This exten-

sion, henceforth referred to as dynamic-Cluster-RTSP (d-Cluster-RTSP),

provides the following capabilities: (i) reassignment of valid IK solutions

to task points whose previously assigned configurations become infeasible

during execution due to collision, (ii) efficient updates to sub-tasks and re-

planning of partial plans to maintain an optimal plan corresponding to the

changes in (i), and (iii) re-planning of trajectories to avoid collision with

newly detected obstacles during execution. A preliminary investigation into

the performance of the d -Cluster-RTSP is reported, demonstrating the po-

tential of addressing DRTSPs through integrated task planning and motion

planning, and providing a set of quantitative evaluations for comparison in

further developments.

The rest of this chapter is organised as follows. In Section 7.2, I present the

fundamentals of DRTSP and provide a definition to this new variant of RTSPs.

Section 7.3 is dedicated to the modifications made to Cluster-RTSP to provide

the partial planning and dynamic re-planning variants of the algorithm. Then,

in Section 7.4, I describe the simulation-based evaluations of the two planners,
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respectively. A discussion on the DRTSP and the two new variants of the Cluster-

RTSP is provided in Section 7.5, and finally Section 7.6 summarises the chapter.

7.2 Fundamentals of Dynamic RTSP

The original RTSP for which all existing literature was aimed at solving is classed

as an SOP, where the objective is to find the best solution from among the set of

feasible solutions given fixed problem variables that do not change with respect

to time. This implies that offline planning methods can be adequately used to

solve a standard RTSP since any solution obtained would remain valid when sent

for execution. Interestingly, so far no existing work has considered the dynamic

variant of the RTSP, which can be considered a DOP extension of the problem.

In optimisation theory, the DOP is a widely considered class of problems that

seek to track the optimal solution for a problem involving dynamic variables that

change over time. Indeed the ITPP problem described for MWRs in Chapter 5

belongs to this category, where one of the objectives of the DA-TPP framework

was to update the action-motion sequence to maintain a high quality solution as

changes in the environment were observed.

Setting the RTSP within a similar context, let us consider sequencing prob-

lems for which the dynamic variables comprise of changes to the environment

and the task itself. An obvious scenario that involves these dynamic variables

is in human-robot collaborative tasks, where a dynamically moving subject (the

human) shares the same workspace with the robot. For both safety and pro-

ductivity reasons, we would ideally like the robot to re-plan around the human

when interference is detected, rather than sit idly until the human no longer in-

vades the original set of planned motions. Other examples where dynamics come

into play can be found in applications involving the inspection of corroded and

damaged parts (such as radioactive waste containers), where the geometries of

these objects no longer match their original models. In these instances, it may

be necessary to update the distribution of task points to account for geometric

deformations. As a final example, consider applications that involve the cutting

or reshaping of a workpiece. As these operations are performed, unforeseen loss

of structural integrity can result in deformations that act as an obstruction for

subsequent trajectories or require the addition of further task points to recover

from unsuccessful cutting/reshaping. Generally, applications that carry a certain
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degree of uncertainty in the task can be considered a dynamic process.

It is important to note that in terms of complexity, the dynamic variant of

RTSPs is unique even among general DOPs. While general DOPs are concerned

only with satisfying an objective function under the influence of dynamics, in RT-

SPs collision avoidance must be accounted for explicitly. This necessity for online

collision-checking during execution arises from both types of dynamic variables

(changes in the task and the environment). Addressing these dynamic variables

for RTSP must therefore take into consideration not only the quality of sequenc-

ing but also the feasibility of individual configurations and trajectories. Taking all

of these into consideration and building upon the notation introduced in Section

6.2.1, I define the Dynamic RTSP (DRTSP) as follows.

Definition (Dynamic RTSP). Given the dynamic set of non-static obstacles O(t)

and the dynamic set of task points Pn(t), where t is the real-world time, find and

track the optimal configuration sequence S∗C(t) that enables every reachable point

pi ∈ Pn(t) to be visited once in a contiguous sequence while guaranteeing that

the set of executed trajectories Ωexe used to visit each configuration qi ∈ S∗C(t) is

collision-free.

As noted in Chapter 2, there is a lack of literature that has specifically inves-

tigated the DRTSP. Perhaps the closest resemblance to the dynamic nature of

the problem is found in Dynamic TSP (DTSP), which describes a class of TSPs

where the number of cities and corresponding distances between cities vary with

time. I refer the reader to Section 2.2.4.2, where a literature review of related

work has been provided.

Based on the findings of the literature review, I wish to highlight a number

of remarks with regards to the differences between DRTSP and DTSP. Although

a number of commonalities exist between the two types of problems, the DRTSP

possesses additional unique features that make the problem substantially more

complex than the DTSP. First of all, the existence of kinematic redundancy

specific to the manipulator planning domain significantly magnifies the search

space. As changes in the environment affect the feasibility set of IK solutions,

the problem of assigning configurations must be dynamically handled in some

way to optimise the configuration sequence. Secondly, aside from updating the

visiting sequence to adapt to the addition and removal of task points, the DRTSP

involves explicit considerations for dynamic motion planning to ensure that the
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robot does not collide with the dynamic environment when moving between task

points. As a result, despite the success of EAs for DTSPs, they do not translate

well for solving DRTSPs (as we saw in Chapter 6, GA is generally inferior to

RTSP-specific methods due to the lack of an efficient means to handle kinematic

redundancy).

In addition to the above, the methods developed to address DTSPs have

generally sacrificed solution quality to some extent to enable more efficient plan-

ning. For EAs, these relate to the parameter settings unique to each algorithm

(e.g. the number of iterations performed for iterative methods). However, in

the general DTSP literature, the best quality solution achieved by an algorithm

appears to be the primary means of evaluating performance and has usually been

compared through offline planning trials. Less attention has been given to the

planning efficiency of algorithms as these studies have, for the most part, not

been concerned with achieving real-time performance (in fact several of the work

discussed above had no mention of the required computation time). However, in

adaptive robotics, there is a much greater emphasis on achieving short planning

times in dynamic scenarios to enable online adaptiveness for avoiding collisions

and minimising idle time.

Indeed one of the long-term goals of adaptive robotics is to provide real-time

planning behaviour. Putting this in the context of DRTSPs, we must acknowl-

edge a number of limitations. Even in the standard RTSP we have found that it

is difficult to obtain a close approximation of the true optimal solution due to its

notably greater problem complexity compared to TSPs. Taking into considera-

tion the current challenges in balancing solution quality and planning efficiency

in DTSPs, some form of trade-off between achieving high quality solutions and

achieving near real-time performance is necessary in the DRTSP. Furthermore,

even with the current state-of-the-art in DTSPs, the fastest re-planning perfor-

mance achieved well exceeds the threshold to be considered truly real-time (I refer

back to the definition provided in Chapter 3). Since the DRTSP additionally han-

dles motion planning, collision avoidance, inverse kinematics and configuration

assignments, we cannot expect to achieve truly real-time adaptiveness in dynamic

scenarios. For these reasons, when evaluating the method for addressing DRTSPs

presented in the remainder of this chapter, I place particular emphasis on quan-

tifying the near real-time performance of the algorithm with a view of setting a

benchmark for future developments on DRTSPs.
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7.3 New Variants of the Cluster-RTSP

This section presents a number of modifications to the Cluster-RTSP algorithm

aimed at providing the algorithm with the capability to handle DRTSPs. As

an intermediate step towards developing the adaptive capability required to re-

plan dynamically during execution, I first present the p-Cluster-RTSP, a modified

version of the original algorithm that supports the idea of partial planning. I then

introduce the d -Cluster-RTSP, which further builds upon the original algorithm

to directly address DRTSPs.

In this section, I will refer back to the standard Cluster-RTSP architecture to

aid the description of these algorithms and highlight the key modifications. This

standard architecture corresponds to the flow chart shown in Fig. 6.1.

7.3.1 p-Cluster-RTSP

In dynamic scenarios, an extensive plan devised in advance suffers from the risk

of becoming irrelevant by the time it comes to execution due to potential changes

in the environment. This renders a notable amount of pre-execution time wasted

as a new plan must be computed once the changes are perceived. One approach

to minimising this risk is to delay planning until the very last moment. This

opens up the way for the concept of partial planning, where the set of task points

are divided into subsets that form smaller sub-tasks. The process of computing

a partial plan for each sub-task can then be performed as separate planning in-

stances solved in a decoupled manner. By making this smaller plan self-contained

(meaning that the partial plan supplies sufficient information to enable the com-

pletion of the entire sub-task taking into account the robot’s current state when

sent to the robot for execution), it becomes possible to compute a preliminary

partial plan for the first sub-task that is sent for execution, while all subsequent

sub-tasks are solved online during the execution of the previous sub-task.

For now let us consider this concept for a purely static RTSP (we will return

to the dynamic considerations in Section 7.3.2). The Cluster-RTSP provides

a convenient yet deliberate mechanism for dividing the set of task points Pn

into multiple sub-tasks through the partitioning of assigned configurations into

clusters. Additionally, the sequencing of configurations within each cluster is

solved as a local TSP just as they would be when formulated as a sub-task

sequencing problem. In other words, the Cluster-RTSP easily extends to partial
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Figure 7.1: Software architecture for the p-Cluster-RTSP algorithm.

planning with very few modifications. I introduce here the p-Cluster-RTSP, which

provides a minor modification to the Cluster-RTSP to enable partial planning

behaviour as shown in Fig. 7.1 (modifications have been highlighted in color).

In the standard Cluster-RTSP algorithm previously shown in Fig. 6.1, the

computation of trajectories for moving between successive configurations in the

task sequence was performed once all TSP sub-problems had been solved. Only

when all trajectories have been obtained is the complete plan sent to the robot.

In contrast, the p-Cluster-RTSP performs a set of motion planning queries for

each local intra-cluster sequence as they are obtained. This provides a partial

plan, Γ that enables the sub-task consisting of the task points contained in the

local cluster of configurations to be executed by the robot. Now, rather than

awaiting for the entire plan before beginning execution, each partial plan is sent

to the robot prior to solving the next TSP sub-problem. From a practical point of

view, this means that the execution of a task can begin much sooner than before,

while the planner continues to devise a plan for visiting task points later in the

global sequence.
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Notice that in the p-Cluster-RTSP, all steps up to the computation of the

inter-cluster visiting sequence is kept unchanged. In other words, although the

algorithm decouples the computation of TSP sub-problems, it initially considers

all task points when identifying the grouping of task points (represented by as-

signed configurations) and the high-level sequence for visiting the groups of task

points. This guarantees that the overall solution is still optimised to reduce the

total execution time of the entire task as in the original version of the algorithm.

Finally, it is necessary to highlight that although the concept of partial plan-

ning was motivated by the desire to delay planning until directly before a sub-task

is executed to minimise the risk of dynamic changes rendering a plan irrelevant,

the p-Cluster-RTSP does not actually behave in this way. Rather than wait for

the robot to complete the execution of the current partial plan, the algorithm

continues to plan for all subsequent sub-tasks in isolation from the execution pro-

cess. If another partial plan to a later sub-task is obtained before the previous

one has finished executing, the new partial plan is placed in a queue to be sent

to the robot once it is freed from the earlier sub-task. This means that it is pos-

sible for the algorithm to finish devising plans for all sub-tasks before the robot

completes the execution of the first sub-task. I therefore wish to emphasise that

the p-Cluster-RTSP does not adequately address DRTSPs in any way.

Nevertheless, the p-Cluster-RTSP was deliberately developed as its own indi-

vidual variant of Cluster-RTSP as it offers a notable advantage over the standard

Cluster-RTSP in static applications. This variant significantly reduces the pre-

execution planning time required to obtain an initial set of executable actions that

contribute towards achieving the objectives of the RTSP. Furthermore, it accom-

plishes this without sacrificing solution quality. That is, for a static RTSP the

p-Cluster-RTSP and the standard Cluster-RTSP results in the same plan being

executed at the end of all planning procedures. In other words, p-Cluster-RTSP

produces solutions of the same quality but additionally minimises the idle time

of the robot while a plan is being devised at the start of a task. For applications

where substantial amount of time is available for offline planning, this does not

necessarily offer particular benefit. However, as we shift towards the direction of

online planning for RTSPs, where pre-execution planning times directly affects a

robot’s idle time, p-Cluster-RTSP proves superior.

It is important to note that there exists some situations where the behaviour

of p-Cluster-RTSP is less desirable than Cluster-RTSP. One drawback of partial
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planning is the inability to visualise and assess the intended actions of the robot

before execution. The standard Cluster-RTSP allows an operator to assess the

complete solution and make any manual adjustments desired prior to deployment

(this could be achieved through means such as simulations and numerical analy-

ses). p-Cluster-RTSP does not allow for this as the plan for visiting task points

later in the sequence is not known until during execution. This is a particularly

important consideration for applications where strict safety regulations must be

met (e.g. in the oil and gas, nuclear and petrochemical sectors).

7.3.2 d-Cluster-RTSP

The p-Cluster-RTSP was introduced above as a partial planning variant of the

Cluster-RTSP for static RTSPs. Building upon the principle of partial planning,

let us now consider the DRTSP that forms the core of this study.

To adequately address the effects of change in a DRTSP, a planner is required

to support some or all of the following:

1. Reassignment of a feasible IK solution to a given task point pi when the

previously assigned configuration to pi becomes invalid due to collision with

O(t) at time t.

2. Update the task sequence with new task points that are added to the set

Pn(t) over time t

3. Treatment of task points that become unreachable due to O(t), or equiva-

lently the removal of task points from Pn(t), at time t

4. Re-planning of trajectories to avoid collision with O(t) at time t when mov-

ing between task points

5. Tracking of the optimal configuration sequence S∗C(t), which varies with t

as a result of 1-3.

The d -Cluster-RTSP, presented herein, is proposed to address each of the

above features unique to the DRTSP. It was developed under the key underlying

assumption that the new best solution to a sequencing problem after changes to

O(t) and Pn(t) is close to the previous best solution as discussed in the analysis

of DTSPs provided by Tinós [150]. This generally remains true for problems
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Figure 7.2: Software architecture for the d -Cluster-RTSP algorithm.

involving a large set of Pn(t) and where the frequency/magnitude of changes at

any given time step ∆t are considered small.

The d -Cluster-RTSP builds upon the architecture of the Cluster-RTSP al-
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gorithm and adds three important online re-planning routines to the original

algorithm. These are: (i) configuration reassignment, (ii) sub-task re-planning

and (ii) trajectory re-planning. The overall high-level description of the algorithm

is shown in Fig. 7.2 and comprises of the following. The standard procedural

steps required to obtain a high-level cluster visiting sequence is performed as per

usual and forms the pre-execution planning procedures in the same way as p-

Cluster-RTSP. Afterwards, the mechanism for solving sub-tasks individually to

obtain partial plans is adopted from p-Cluster-RTSP. However, once the set of

trajectories is obtained for one sub-task, rather than continuing to plan for the

next sub-task, the algorithm recursively re-evaluates the validity of the current

plan using the latest task set and the currently known state of the world as the

robot executes the sub-task. This continues until the sub-task is completed.

The re-evaluation procedures comprise of the three re-planning routines intro-

duced above. For each trajectory planned within a sub-task, the algorithm first

checks the validity of the target configuration (i.e. the goal of the trajectory)

corresponding to a task point pi in the sub-task. if a collision is detected at this

configuration, a configuration reassignment routine is used to find a new con-

figuration for pi. It achieves this by finding the new set of feasible IK solutions

for pi and computing the similarity heuristic value φ (Eq. 6.2) for each resulting

configuration. The configuration q′i corresponding to the lowest value of φ (which

describes the configuration that is most similar to all the other configurations

assigned to the set of task points Pn(t)) is assigned to pi. Once the new config-

uration q′i is obtained, the sub-task re-planning routine re-allocates pi to the

sub-task (from among the remaining set of incomplete sub-tasks) that minimises

the cost incurred to reach the new configuration. This is achieved by comparing

the C-space distance between q′i and the centroids of all clusters xc ∈ X. The

configuration is then assigned to the cluster associated to the nearest centroid.

If this corresponds to the current sub-task, a new partial plan is generated by

re-solving for the intra-cluster visiting sequence and computing new trajectories

where the order of configurations is different to the previous plan. Otherwise, the

current partial plan is repaired by computing a trajectory from the current robot

configuration to the next configuration in the sub-task. If q′i is added to another

cluster, the corresponding xc is updated to account for this new member.

Note that in the above procedures, two special cases exist that require addi-

tional considerations. In the first case where no feasible configurations exist for
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Algorithm 6 configurationReassignment

Input: Task point pi, obstacles O(t) and set of assigned configurations Q′

Output: New assigned configuration q′i
1: Qi ← getIKSolutions(pi)
2: if Qi is ∅ then
3: return q′i = ∅
4: else
5: for all qi ∈ Qi do
6: φ(qi)← computeSimilarityHeuristic(qi, Q

′)
7: end for
8: return q′i ← arg minqi∈Qi

(φ(qi))
9: end if

pi (i.e. the task point becomes unreachable), the point is stored in an unreach-

able list (initially containing those task points that could not be reached when

computing IK solutions in step 1 of the standard Cluster-RTSP algorithm). This

list can be used to initiate a second instance of RTSP once all sub-tasks have

been completed to re-attempt to visit those task points that became unreachable

during execution, or it may simply be returned to the operator to inform them of

the incomplete tasks. In either instance, the algorithm resumes by repairing the

partial plan with a new trajectory from the robot’s current configuration to the

next configuration in the partial sequence. For the second case where the infeasi-

ble target configuration coincides with the entry point of the cluster (i.e. the first

task point to be reached in the sub-task), the algorithm must additionally assign

a new entry point to enable the robot to advance through the partial plan. This

new entry point is chosen as the closest configuration within the cluster to the

current robot configuration. The algorithm then resumes with the generation of

a new partial plan as normal.

These two routines are summarised in Algorithms 6 and 7, respectively.

Let us now turn our attention to the trajectory re-planning component of

the re-evaluation procedures. While the target configuration is not in collision

with O(t), the algorithm checks for collision along the planned trajectory. If no

collision is detected, the trajectory is sent to the robot for execution. Where

collision at any point along the trajectory is found, a new trajectory is obtained

by performing a motion planning query1 with the updated set of obstacles O(t).

1For the implementation of d -Cluster-RTSP I use the Bi-RRT algorithm from OpenRAVE.
However, in practice any fast motion planner that supports C-space planning for manipulators
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Algorithm 7 subtaskReplanning

Input: Task point pi, Assigned configuration q′i, set of cluster centroids X, cur-
rent partial plan Γ, current entry configuration qentry and unreachable list
L

Output: New partial plan Γ′ and unreachable list L
1: if pi was entry point of sub-task then
2: q′entry ← getNewEntryConfiguration(Γ)
3: else
4: q′entry ← qentry
5: end if
6: if q′i is ∅ then
7: L← append(L, q′i)
8: return Γ′ ← repairPartialP lan(Γ, q′entry) and L
9: else

10: for all xc ∈ X do
11: f(xc) = EuclideanDist(q′i, xc)
12: end for
13: x′c ← arg minxc∈X(f(xc))
14: Assign q′i to cluster corresponding to x′c
15: X ← updateClusterCentroids(X, q′i)
16: if x′c corresponds to current sub-task then
17: return Γ′ ← recomputePartialP lan(Γ, q′entry) and L
18: else
19: return Γ′ ← repairPartialP lan(Γ, q′entry) and L
20: end if
21: end if

These evaluations are recursively performed as shown in Fig. 7.2 until the

current target configuration has been reached or updates have been made to the

partial plan. Note that in instances where the robot has begun executing a tra-

jectory, any detected collision along the trajectory or at the target configuration

triggers an immediate halt command that stops the robot’s motion safely. Any

subsequent motion planning queries then use the robot’s current configuration as

the start configuration (i.e. when repairing the partial plan or re-planning the

current trajectory).

With reference to the five requirements described at the beginning of this

section, let us review the capabilities of the d -Cluster-RTSP for solving DRT-

can be used according to the requirements of the application. For example, if real-time dynamic
motion planning is required, one could implement the dynamic roadmaps method studied in
Chapter 3, though this carries its own limitations as discussed in the chapter.
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SPs. Firstly, the algorithm explicitly addresses the reassignment of feasible IK

solutions for task points that become unreachable from the originally assigned

configuration. Task points that have become entirely unreachable are removed

from their original sub-tasks and stored in an unreachable list, which allows for

the task point to be revisited in a later instance. During the execution of planned

motions, the algorithm continuously evaluates the feasibility of the current tra-

jectory and halts the robot when collision is detected. Re-planning is performed

with an updated obstacle set to obtain a new collision-free trajectory. In terms of

tracking the optimal configuration sequence S∗C(t), the d -Cluster-RTSP provides

the following behaviour. Since we assume that the new best solution always lies

close to the previous best solution, it is implicitly assumed that the high-level

inter-cluster visiting sequence always corresponds to the near-optimal solution (a

property of the original algorithm as discussed in the previous chapter). Thus

by adaptively re-allocating a task point (according to its assigned configuration)

to the best cluster from among the original set of clusters, the overall solution

executed by the robot is presumably always near the true optimal solution of the

DRTSP at any given time t.

Finally, I wish to note the following with regards to the planning efficiency of

the algorithm. The d -Cluster-RTSP has been carefully constructed to delay the

evaluation of the validity of target configurations and trajectories until immedi-

ately before they are executed (as well as during execution) to avoid consistently

re-planning all future actions due to the generally high computational cost of

solving an RTSP (this applies even within the level of sub-tasks). As a result

of this, any single sub-problem that is considered by the algorithm is generally

much smaller than the complete problem considered as a whole. This allows much

shorter planning times for generating a short-term partial plan and enables near

real-time adaptiveness to dynamic changes during execution.

In the next section, I report quantitative results that characterize the com-

putational performance of both the p-Cluster-RTSP and the d -Cluster-RTSP for

trials conducted in simulation.

7.4 Simulation-Based Evaluation

Two experiments were conducted to evaluate the performance of the new variants

of Cluster-RTSP introduced in the previous section. The first experiment is
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Figure 7.3: Simulation environment for the pipe scanning task.

based on the pipe scanning task described in Section 6.4 and is used to quantify

the benefits of p-Cluster-RTSP for static RTSPs. The second experiment was

developed to quantify the dynamic re-planning performance of the d -Cluster-

RTSP in terms of planning speed. It involves a dynamic setup consisting of a

manually controlled quadrotor that shares the same environment as the robotic

manipulator. The manipulator is required to complete an RTSP-based activity

while avoiding collision with the dynamically-moving quadrotor.

Both sets of simulations were conducted on a Linux-based system running an

Intel® Xeon® CPU E3-1270 v3 (3.50 GHz) with 32 GB RAM and an NVIDIA

Quadro K2000 graphics card. In all trials conducted, the minimum and maximum

number of clusters was set to Kmin = 5 and Kmax = 20, respectively. All other

algorithm parameters listed previously in Table 6.3 were preserved in these trials.

7.4.1 Partial Planning

The performance of the p-Cluster-RTSP was evaluated on a simulation of a pipe

scanning task consisting of four pipes located across the frontal workspace of the

robot. Reachable task points were equally distributed across the outer surfaces

of these pipes as illustrated in Fig. 7.3. Here four sets of trials were conducted

with the number of task points in the set Pn varied between 425, 645, 948 and

1499.
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Figure 7.4: Breakdown of CPU time for standard vs partial planning.

To quantify the achievable reduction in pre-execution planning time (equiva-

lent to the amount of time the robot spends in idle mode for online planning),

the computation time required to obtain an executable partial plan for the first

sub-task was compared against the time required by the standard Cluster-RTSP

algorithm to fully solve the complete RTSP (recall that the Cluster-RTSP only

returns an executable plan when the final solution has been obtained). Fig. 7.4

reports the computation times recorded for each of the four trials solved using

the Cluster-RTSP and the p-Cluster-RTSP. These are broken down into the com-

putation times required for: (i) configuration selection and clustering, which en-

capsulates steps 1-3 of the Cluster-RTSP (see Section 6.2.2), (ii) inter-clustering

sequencing, (iii) solving the first sub-task (i.e. the computation time for solving

the intra-cluster sequencing problem and computing subsequent trajectories) and

(iv) solving all other sub-tasks (applicable only for the standard Cluster-RTSP).
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Figure 7.5: Planning time for solving individual sub-tasks.

Observe that in all trials, partial planning was able to reduce the pre-execution

planning time by more than 50%. For smaller problems where less time was re-

quired for configuration selection and clustering, this reduction reached approxi-

mately 65%. This is a significant speed-up compared to the standard algorithm.

Taking into account that the original Cluster-RTSP already achieves much shorter

planning times than other existing methods in literature, the p-Cluster-RTSP sets

a new bar for the achievable planning speed in solving static RTSPs.

Let us now consider the planning-during-execution behaviour of the p-Cluster-

RTSP, which is used to obtain partial plans for subsequent sub-tasks during the

execution of preceding sub-tasks. It is desirable for the computation time required

to solve a single sub-task to be less than the execution time required to complete a

sub-task to enable continuous execution without intermediate idle time. However,

since clustering does not, in general, provide equally partitioned points across

clusters, a degree of variability exists in the planning and execution times across

sub-tasks. Fig. 7.5 reports the computation time required to obtain a complete

partial plan for each sub-task when solving the pipe scanning problem, where the

distributions across sub-tasks are shown as box plots. Similarly, Fig. 7.6 reports

the distributions of the resulting execution times for each sub-task.

Notice that, on average, the planning time required to compute a partial plan

is significantly lower than the average time required for completing a sub-task,

which generally satisfies the requirements for planning to be less than the execu-

tion time. However, it is important to note that the maximum planning times

observed (corresponding to sub-tasks with more task points) exceed the minimum
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Figure 7.6: Execution time of individual sub-tasks.

execution times (associated to sub-tasks with fewer task points) in all four trials.

In other words, it is possible that the robot completes the execution of a preceding

sub-task while the algorithm is still planning for the next sub-task. In these cases

the robot must remain in idle mode while waiting for the next set of instructions.

Indeed this duration does not exceed more than a few seconds. If we consider

the complete process cycle time consisting of both planning and execution, the

p-Cluster-RTSP algorithm still provides substantially higher efficiency compared

to the Cluster-RTSP due to the large reduction in pre-execution planning time.

Nevertheless, the frequency and likelihood of the robot entering idle mode during

execution is low as the algorithm continues to solve each sub-task in sequence

without waiting for the execution of a previous sub-task to complete. Since the

average planning time is well below the average execution time, the net differ-

ence between planning and execution generally offsets any individual instances of

extended planning time.

7.4.2 Dynamic Re-planning

7.4.2.1 Evaluating Planning Efficiency

To evaluate the planning efficiency of the d -Cluster-RTSP, a DRTSP simulation

environment developed on the open-source Gazebo simulator [194] was set up as

shown in Fig. 7.7a. It consists of the 6-DoF KUKA KR6 R900 sixx industrial

manipulator fixed on top of a surface in an open space. Commands were sent to

the robot through ROS [167]. A quadrotor was free to fly within the same space
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(a)

(b)

Figure 7.7: Simulation environment for the evaluation of d -Cluster-RTSP, (a) Gazebo en-
vironment consisting of the KUKA manipulator and a quadrotor in an open space, (b) the
distribution of task points that form the sequencing problem.

as the manipulator and was controlled manually through the ROS package teleop

twist keyboard [195]. The manipulator was required to visit a set of task points

distributed across the planes shown in Fig. 7.7b. During execution, the quadrotor

was dynamically flown to interfere with the manipulator’s task, triggering the

three re-planning routines: configuration reassignment, sub-task re-planning and

trajectory re-planning. With the maximum velocity and acceleration limits set

to 50% of the rate maximum of the manipulator, four trials were conducted

with n = {252, 363, 616, 972}. Note that to emulate the unpredictable nature of

dynamic environments, the quadrotor was flown randomly along different flight
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paths in each of the four trials.

Fig. 7.8 reports the computation times (plotted in log scale) for the main

planning procedures in the d -Cluster-RTSP for each of the four trials. As multiple

instances of each procedure were called in a single trial, the results are shown as

a box plot that captures the spread of the computation times recorded for each

procedure.

In these trials, all dynamic re-planning routines were completed within 10 sec-

onds of computation time. The configuration reassignment routine in particular

consistently consumed less than 0.1 seconds, which falls well within the threshold

for the re-planning procedure to be considered real-time. Importantly, the com-

putation times for each procedure were consistent across all four trials, meaning

that the size of the task set Pn had no influence on the computation times of

the re-planning procedures. This is unsurprising, since these procedures apply

only to a subset of task points that are contained within a single sub-task. In

other words, the efficiencies of these procedures are influenced by the size of a

sub-task, which is correlated with the number of clusters k formed during the

configuration clustering procedure common to all variants of the Cluster-RTSP

(i.e. the number of sub-tasks). For larger k values the number of task points

within each sub-task reduces, leading to shorter computation times for sub-task

(re-)planning.

The greatest variability in planning time corresponds to trajectory re-planning.

This variability is directly correlated to the complexity of the motion planning

query (i.e. the spatial constraints applied to the robot). In this experiment, the

complexity was determined by the relative pose of the quadrotor. If the quadro-

tor lay very close to the target configuration or to the joints of the robot, the

motion planner required significantly more time to find a collision-free trajectory.

Seeking an efficient approach to solving the motion planning problem subject

to difficult spatial constraints has been the primary focus of much research for

many years and still remains a challenge for applications that demand fast motion

planning. While the dynamic roadmap method investigated in Chapter 3 could

satisfy the real-time planning requirements for dynamic applications, it would

nevertheless fail when the quadrotor lies close to the target configuration or the

robot as the workspace discretization mechanism could make the start or goal

configuration appear in collision with the quadrotor from the perspective of the

planner (the discretization causes an unintended inflation of free-form obstacles).
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Figure 7.8: Breakdown of computation time for d -Cluster-RTSP re-evaluation routines.
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I do not address this concern further as the d -Cluster-RTSP has been developed

with modularity in mind, enabling the use of alternative motion planners as more

effective methods are identified and developed.

One particularly interesting observation across all four trials is that sub-task

re-planning requires more computation time than the initial instances of sub-

task planning. This may at first appear counter-intuitive, as we would expect

that as each task point in a sub-task is achieved, the time required to re-plan

the remaining points in the sub-task would fall. However, recall that sub-task

re-planning involves re-computing the trajectories to update and repair partial

plans. As discussed above, extra complexity is introduced into motion planning

when the quadrotor invades the space of the manipulator. Since a call to sub-task

re-planning implies that an obstacle has interfered with the robot, the complexity

of motion planning is generally higher for sub-task re-planning than for the initial

calls to sub-task planning.

7.4.2.2 Evaluating Solution Quality

To quantify the quality of solutions obtained using the dynamic variant of the

Cluster-RTSP, a comparison was made between the d -Cluster-RTSP and the stan-

dard Cluster-RTSP for a number of static planning instances. Planning problems

were obtained by taking “snapshots” of the state of the task and the latest partial

plan periodically during the dynamic planning trials described in Section 7.4.2.1.

These were recorded for use as standalone planning problems solved offline to de-

termine the quality of the solutions obtained using each method. The remaining

unvisited task points were used as a fresh input into the standard Cluster-RTSP

algorithm to compute a task sequence from scratch, while the d -Cluster-RTSP

reused the existing plan to solve the problem. Here re-planning procedures were

applied as necessary to repair originally assigned configurations that collided with

the quadrotor (which was treated as a static obstacle in each planning instance).

Since the Cluster-RTSP algorithm has already been carefully evaluated in Chap-

ter 6 to benchmark its performance in finding high quality solutions, let us con-

sider the quality of its solutions as a reference for the optimal solution for the

evaluation of d -Cluster-RTSP. Like in Chapter 6, the task execution time is used

to measure the quality of solutions.

Fig. 7.9 reports the task execution time of solutions obtained using Cluster-

RTSP and d -Cluster-RTSP for 12 planning instances that were randomly recorded
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Figure 7.9: Quality of solutions obtained using Cluster-RTSP and d -Cluster-RTSP for static
instances across a dynamic task.

during the DRTSP trial with n = 363. Since the number of unvisited task points

decreased as the original task progressed, the planning instances are represented

by a task progress percentage value indicating the time along the original task at

which the planning instances were recorded.

It is clear that the solutions of the d -Cluster-RTSP do not diverge from the

optimal solution across all planning instances. While the task execution time

of these solutions never fall below that of the optimal solutions (that is, the

performance of the d -Cluster-RTSP can only be as good as Cluster-RTSP even

in the best case), the differences in solution quality never exceeded more than

8.1%, while in some cases the solution of the d -Cluster-RTSP was as close as

0.9% from the optimal solution. This remains true even at 80% task progress,

where a large number of changes have taken place, showcasing the capability

of the d -Cluster-RTSP algorithm to track the optimal solution under dynamic

conditions.
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7.5 Discussion

The DRTSP is a class of problems specifically aimed at addresses applications

that involve dynamic considerations. Given that many applications in the real

world are plagued by uncertainty, methods that can adequately address DRTSPs

are, in general, more effective (or at least more safe) for practical implementation.

As noted in the related work on DTSPs, previous authors have highlighted the

necessary considerations for the trade-off between solution quality and planning

efficiency when addressing a DTSP. An interesting behaviour of the d -Cluster-

RTSP is that it reverts to the behaviour of the p-Cluster-RTSP when no changes

are observed during execution. Since both variants of the algorithm retains the

same initial steps to compute the inter-cluster visiting sequence (this includes

steps 1-3 of the Cluster-RTSP described in Section 6.2.2), in static environments

the quality of the executed plan resulting from both variants is identical to the

solution that would be obtained using the standard Cluster-RTSP algorithm,

which has already been shown to be near-optimal.

In dynamic scenarios, the d -Cluster-RTSP takes on the assumption that the

new best solution is close to the previous best solution after a change in the prob-

lem parameters. This implies that for large sets of task points and small changes

to the set Pn(t), the optimal inter-cluster visiting order remains unchanged (and

therefore the clustering of configurations do not need to be updated). Under

this assumption, the algorithm always preserves the original order of clusters and

(re-)allocates any new or dynamically-affected task points to the most fitting

cluster in order to maintain the optimality of the overall solution (re-planning

of sub-tasks ensures that the local configuration sequence is always optimal).

Thus when this assumption holds true, the d -Cluster-RTSP continues to return a

near-optimal solution. This was observed in the experiment reported in Section

7.4.2.2, where we saw that the algorithm successfully tracked the optimal solu-

tion across the full duration of the task (the deviation of the algorithm’s solution

from the optimal was as low as 0.9% and never exceeded 8.1%). Crucially, the

d -Cluster-RTSP was able to achieve this degree of optimality while requiring no

more than 10 seconds of idle planning time to repair a task sequence. Until now,

no other existing method in literature has provided support for re-planning in

RTSPs. Other methods must re-plan from scratch when changes occur, requir-

ing from minutes [135] to hours [136] of computation time depending upon the
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method used. With the d -Cluster-RTSP, updates to the executed plan could be

achieved consistently within 10 seconds while the quality of the overall solution

is maintained throughout the task. Even though a planning time of 10 seconds

is still notably far off from the threshold I defined in Chapter 3 for real-time

performance (< 180 ms), the algorithm presented in this chapter is a signifi-

cant step towards enabling online, adaptive planning for robotic task sequencing

applications.

One limitation of the above assumption made in this work, however, is that

it does not necessarily hold true when the size of the set Pn(t) is small, or when

the scale of dynamic changes in the problem parameters is large. In the first

case, changes that affect a subset of Pn(t) is more likely to have an impact on the

optimality of the cluster visiting order and indeed the set of clusters itself. In the

latter case, large changes over time would dramatically alter the landscape of the

RTSP, which would result in the true optimal solution being much further away

from the original best solution. For example, if task points are frequently added

and removed from Pn(t) while spatial constraints are modified concurrently, the

latest RTSP may not resemble the original RTSP at all. In these instances the d -

Cluster-RTSP would fail to provide a near-optimal solution (though the executed

plan would remain collision-free).

Additionally, unlike the methods reviewed for DTSP, the d -Cluster-RTSP

algorithm does not return a full solution to the overall RTSP task when a plan is

requested. Instead, it waits for the completion of a sub-task on execution before

progressing to planning for the next sub-task. This manifests into idle time when

transitioning between sub-tasks. For applications where the frequency and scale

of changes are very small (e.g. for tasks that are generally static but carries a

degree of uncertainty within the problem parameters), one could alleviate this

behaviour by solving for a complete plan as per the original Cluster-RTSP, and

conduct the re-evaluation routines of the d -Cluster-RTSP as described. When

transitioning between sub-tasks, a simple check could be performed to determine

if any changes had been made to the sub-task (i.e. had there been any task points

added or removed from the sub-task). Appropriate re-planning/repairing of the

partial plan would be performed only in instances where changes were found.

Finally, I wish to note that this preliminary study has only considered the

DRTSP from the perspective of planning. To successfully implement an adaptive

system in the real world for DRTSP applications would require special consid-
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erations for the real-time perception of the environment and adaptive control of

the robot to safely and reliably respond to these changes. Indeed this is a lim-

itation of this preliminary investigation, and thus evaluations have so far been

confined to a simulation environment. A cross-disciplinary approach, like the case

study presented in Chapter 3, would be necessary for further investigating the be-

haviours and performance of the d -Cluster-RTSP (or indeed similar algorithms)

implemented in the real world for solving DRTSPs.

7.6 Summary

In this chapter I have introduced the DRTSP, a new form of the RTSP that in-

volves dynamically changing problem parameters and, while adaptive approaches

have begun to emerge for general task planning problems (as presented in Section

2.2.4.1), no existing method has specifically addressed this particularly challeng-

ing planning problem. This variant of the RTSP cannot be solved using con-

ventional RTSP methods due to the necessity for online adaptive capabilities to

maintain an optimal solution and, more importantly, avoid collision. The DRTSP

shares some similarity with the DTSP, a class of TSP problems that have received

growing attention in recent years. While EAs have been particularly popular for

solving these problems, existing methods that have been proven successful for

DTSPs cannot be adequately extended to DRTSPs due to the additional con-

siderations required for kinematic redundancy, collision avoidance and motion

planning.

To address the specific requirements of the DRTSP, I have presented two new

variants of the Cluster-RTSP. The p-Cluster-RTSP was developed as an inter-

mediate step towards realising dynamic re-planning capabilities in the context

of RTSPs. Centred around the idea of partial planning, the algorithm enables a

system to retrieve partial plans that can be executed standalone to accomplish a

set of sub-tasks that collectively achieves the complete goal of an RTSP. By send-

ing instructions to a robot immediately after obtaining the first partial plan and

subsequently continuing to plan during execution to obtain partial plans for re-

maining sub-tasks, I have shown that the p-Cluster-RTSP achieves a substantial

reduction (between 50%-65%, as reported in Section 7.4.1) in pre-execution plan-

ning time when compared to the original Cluster-RTSP algorithm (and indeed

all other existing methods for solving static RTSPs in the literature).
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The d -Cluster-RTSP integrates the concept of partial planning with a num-

ber of online re-planning routines that enable the re-evaluation of feasibility for

configurations assigned to task points and existing planned trajectories. A config-

uration re-assignment routine enables the re-assignment of a feasible configuration

to task points that can no longer be reached through the previously assigned con-

figuration. When this occurs, a sub-task re-planning routine re-allocates the task

point to the sub-task that minimises the cost for visiting the task point and up-

dates the partial plan for the current sub-task. Finally, potential collisions along

previously planned trajectories are handled through a trajectory re-planning pro-

cedure, which evaluates the validity of trajectories during execution and performs

motion planning queries when an upcoming collision is detected. Experimental

evaluations show that the algorithm is able to maintain a high quality solution

within 0.9%-8.1% of the optimal in dynamic environments (Section 7.4.2.2) while

requiring no more than 10 seconds of idle planning time at any instance of re-

planning (Section 7.4.2.1).

To the best of my knowledge, the work presented in this chapter is the first to

consider the DRTSP. The p-Cluster-RTSP pushes the boundaries of achievable

planning efficiency for solving static RTSPs, while the d -Cluster-RTSP is the first

algorithm to demonstrate the potential for online planning in RTSP applications.

Thus in this work, the quantitative evaluations of both algorithms also provide a

resource for comparison and benckmarking for future developments that seek to

extend the state-of-the-art in RTSPs towards dynamic task sequencing.
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Chapter 8

Conclusion

The fast growing adoption of modern robotics has brought a plethora of new

challenges to the development of robotic technologies. As robots are assigned

increasingly complex tasks in the real-world, there has never been a greater drive

for the development of more adaptive robotic systems to adequately cope with the

unavoidable presence of uncertainty, dynamics, variability and unpredictability

in the real-world beyond the safe enclosure of carefully design cells, fixtures and

workstations. Emerging applications for robotics are beginning to place greater

emphasis on online planning capabilities to overcome the effects of dynamics for

both safety and productivity reasons. While existing research has led to the

development of an extensive range of offline planning methods that are effective

in addressing the full spectrum of static robotic planning problems, there is still

much to be desired in the dynamic counterpart of these classes of problems.

In this concluding chapter, I first discuss the research findings from each chap-

ter collectively in the broader context of adaptive planning and then I summarise

the contributions to knowledge presented in this thesis. Following this, I give a

discussion on the limitations of proposed methods and close with my views on

the future perspectives of this research.

8.1 Key Research Findings

This thesis has presented investigations on two different planning domains, where

the problems addressed for each study involve problem-specific considerations

that uniquely define one from the other. Hence the methods developed to enable

adaptive planning for one domain do not transfer directly to the other domain.
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Nevertheless, a number of common research findings have been observed across

these two investigations, as well as the literature review and case study reported

in Chapters 2 and 3, respectively, that relate to the original aim of this research.

Let us return to the four research questions introduced in Section 1.2.3, which

this research had initially set out to address.

What are the necessary considerations for planning in dynamic envi-

ronments?

In Chapter 2 we observed that in all methods developed for planning in dy-

namic environments, retaining previous knowledge in some form about the task,

the search space or the environment was necessary to achieve fast planning perfor-

mance. Multi-query motion planning algorithms such as the DRM, for example,

achieved this by generating a roadmap across the entire search space to map dis-

cretised regions in the task space to the feasibility of individual configurations

in the C-space. Dynamic RRT variants on the other hand, dynamically updated

search trees by trimming invalid branches and adding new nodes as new obstacle

information were perceived. Machine learning algorithms for both task planning

and motion planning also retained previous knowledge through learning, enabling

the planner to recall past solutions to quickly generate new solutions.

These findings were again observed in the case study on dynamic motion

planning, where the DRM algorithm was applied to a dynamic pick and place

task. We found that the performance of the algorithm to respond in real-time

was directly coupled to the granularity of the workspace discretisation performed

in the offline pre-processing phase. This offline planning stage was essential for

generating knowledge about the environment to enable the algorithm to success-

fully compute a path to any new planning problem online. In this research, I

stated that this offline planning stage is often undesirable for rapid deployment

of path planning algorithms, hence the concept of retaining knowledge had to be

transferred to any algorithms developed and used in this work. This considera-

tion appeared in Chapter 5, where dynamic re-planning routines heavily relied

upon reusing all valid portions of the search trees obtained by the Multi-T-RRT*

algorithm. Unlike the DRM method, where the original roadmap of the C-space

is preserved between planning instances, the structure of the search trees in the

Multi-T-RRT* change dynamically, retaining any changes made to the tree at a

given instance in time. Likewise, in Chapter 7, the top-level ordering of sub-tasks
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and assigned configurations for a given task point were retained in subsequent

re-planning instances, reducing the number of operations that were required to

generate a new solution.

This alone, however, is insufficient for successful planning in dynamic envi-

ronments. Though previous knowledge can substantially reduce the amount of

work needed to compute a solution, often some parts of this knowledge no longer

remains valid in the new planning instance. Hence an efficient approach for as-

sessing the validity of plans and individual configurations online is also required.

In the simplified C-space for MWRs, where the C-space directly maps to the 2 di-

mensional task space, it is generally simple to determine the status of collision for

any given robot configuration when treating the robot as a point body. The prob-

lem becomes much more difficult for general C-spaces due to the non-trivial task

of representing obstacles in C-space. The DRM method used in the case study

overcame this through the pre-processing phase, which determined the mapping

between these two spaces. For methods that avoid the use of pre-processing, it-

eratively checking each configuration for collision is impractical as this becomes

too time-consuming given that it must be performed every time a new update

is observed. In Chapter 7, I overcame this by limiting the collision check to the

points being visited immediately, and ignoring all subsequent configurations un-

til they were reached. This provided the added bonus of avoiding unnecessary

re-planning for tasks that lay far ahead in a plan as the environment would once

again change when future actions were finally reached. This resembles the strat-

egy for online re-planning used by the authors in [146], where some computations

for future actions were delayed until immediately before their execution.

What are the interactions between the goals of minimising plan cost

and maximising planning efficiency when solving a task and motion

planning problem?

Looking at the current state-of-the-art, the problem of finding an optimal

solution to a planning problem by itself is not considered challenging. For exam-

ple, in the ITPP one could in theory perform individual motion planning queries

exhaustively to compute the costs of motion between all landmarks, and apply

an optimal task planner such as the Metric-FF to obtain a high quality task plan.

As for the RTSP, a number of different techniques such as the genetic algorithm,

GLKH and set covering problem have been demonstrated successfully for solving
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RTSPs. Clearly, all of these methods are adequate in finding an optimal solution

to the planning problem. However, it is when we begin to consider planning

efficiency, which is a key consideration for adaptive robotics, that we begin to

encounter a more challenging problem. In fact, when the demand for planning

efficiency approach real-time requirements, the problem becomes what we refer

to as a dynamic planning problem, which can be considered the most challenging

variant of planning problems to solve.

Throughout the evaluations reported in this thesis, we consistently found that

the choice of a planner or solver for handling a sub-component of the planning

problem largely affected the balance between solution quality and planning effi-

ciency. Recall in Chapter 4 the comparison between the LPG-td and Metric-FF

planners for solving the PDDL problem. While LPG-td excelled in finding a

feasible solution quickly, it generally did not provide the best solution when com-

pared to Metric-FF. On the other hand, Metric-FF required significant planning

time even for problems involving relatively few goals. In Chapter 5, we observed

that by adjusting the value of the anytime bound constant ηa in the DA-TPP

framework, we could either prioritise a faster convergence rate or better solution

quality, but each at the cost of the other. In Chapter 6, the benchmarking of TSP

solvers for the Cluster-RTSP showed that the CTSP-2-Opt often found solutions

that were poorer than those obtained by other compared methods, but at the

same time the algorithm provided high planning efficiency. Finally, when bench-

marking the behaviour of the Cluster-RTSP for different numbers of clusters k,

we found that a single cluster consistently achieved the best quality solution,

but it required significantly longer computation time for large task sets. These

findings agree with the observations made in the DTSP literature that, gener-

ally, somewhat sub-optimal solutions should be accepted as a compromise for

higher planning efficiency (refer to Section 7.2). In other words, it is gener-

ally not possible to obtain a truly optimal solution when efficiency is prioritised.

Thus practitioners must carefully consider the requirements of an application and

choose the most appropriate planner according to the planning task when seeking

to implement planning algorithms that support adaptive planning behaviours.

Interestingly, however, the evaluations in this thesis suggest that the decrease

in solution quality is generally marginal when compared with the significant gain

in computationally efficiency. For example, when we compared the LPG-td to the

Metric-FF planner (Section 4.5.2), we found that although the LPG-td produced
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solutions that were up to 10% worse than the Metric-FF, it reduced the planning

time by 87.3% for a problem involving 7 landmarks and up to 99.9% for a problem

involving 9 landmarks. Similarly, when benchmarking the TSP solvers in Section

6.3.1, though CTSP-2-Opt approach found solutions up to 10% worse than the

best performing solver, it consistently solved most problems in less than 1 second.

This observation was again evident in Chapter 7 when evaluating the planning

efficiency and solution quality of the d -Cluster-RTSP. I showed that the algorithm

was capable of adapting a solution within 10 seconds of computation time (as

opposed to re-planning from scratch, which would require several minutes of

computation time), yet was able to maintain a high quality solution that lay

within 8.1% from the optimal solution for the given planning instance.

Thus adaptive planning algorithms that seek to obtain optimal solutions to

planning problems can generally be described as near-optimal relative to their

offline counterparts due to the priority given to planning efficiency.

How can problems that have conventionally been solved offline as a

static planning problem be addressed more efficiently to enable online

planning?

As previously mentioned, multi-query planners generally involve an expensive

offline pre-processing phase that limit their suitability for applications requiring

rapid deployment. However, achieving optimal solutions efficiently online is dif-

ficult without the information provided by offline planning. Existing methods in

literature have already demonstrated the use of certain techniques to overcome

such problems. For example, Karaman et al. [61] showed how anytime motion

planning could be used to quickly generate an initial feasible solution such that ex-

ecution could begin promptly. The quality of the solution could then be improved

during execution by continuing to search for a better plan to replace the later

parts of the solution not yet due for execution. However this required a mecha-

nism for deciding which portion of the solution should be refined. Karaman et al.

dealt with this through committed trajectories, where the robot commits to exe-

cuting the first segment of a path while the planner seeks to plan a better solution

from the end of the segment to the goal. This concept of anytime planning was

adopted in Chapter 5 and extended to the level of task planning such that both

low-level motions and the high-level task plan were refined over time as the robot

executed an initial plan. Applying this at the task level conveniently provided
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intermediate goals to consider for refinement - the first action in any plan that

was being executed by the robot was considered the only committed action that

provided a new starting state for subsequent planning. All other actions were not

fixed and was subject to further improvements.

A similar idea of planning during execution was also adopted in Chapter 7 for

the RTSP domain, where the concept of partial planning was introduced. Rather

than planning an entire solution from the outset, partial planning accelerated the

time from the start of planning to the beginning of execution by generating only

partial plans that satisfied a subset of goals. These partial plans were optimised

taking into account the entire task, but many lower-level computations were de-

layed for actions that were not immediately being performed. Instead, planning

was continued during execution to compute the actions required for achieving

the remaining sub-tasks. This idea of dividing a task into several sub-tasks that

are solved independently had also appeared in other literature, such as in [142].

Section 7.4.1 showed that the method of partitioning tasks into sub-tasks and

subsequently solving the problem using a partial planning approach enabled re-

duction of pre-execution planning time by up to 65%, which is substantial in the

quest towards extending competitive offline planning methods to online planning.

What are the practical considerations for implementing adaptive plan-

ning algorithms in physical robots?

Throughout the developments presented in this thesis, a number of practical

considerations have been investigated to identify the potential limitations of pro-

posed algorithms and the mitigation strategies to overcome them. Firstly, the

key findings from Chapters 2 and 3 have shown that the memory consumption of

incremental algorithms (i.e. all sampling-based algorithms) and those methods

that require offline graph or roadmap generation are generally very high, which

limit the use of these algorithms to high-performance machines. However, for

many moving-base robots, the computing power available on-board is highly lim-

ited as many other system functionalities beyond planning must be supported by

a lightweight machine. Hence in this thesis I have shown how the memory re-

quirements of sampling-based algorithms can be bounded without impairing the

capability of the algorithm to find high-quality solutions. Through the use of tree

pruning in tandem with a heuristic measure for usefulness, I have demonstrated

that the memory requirements of iterative sampling can be reduced by up to 97%
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while achieving solutions of comparable quality.

Secondly, in Chapter 6 I investigated the problem of trajectory tracking error,

showing that physical controllers in the real-world are imperfect. After quan-

tifying the magnitude of joint and position errors for a typical inspection task

using a robotic manipulator, I discussed how the Cluster-RTSP algorithm can be

implemented to overcome problems caused by imprecise trajectory tracking per-

formance. Furthermore, in Chapter 7 I discussed the performance of the proposed

variants of Cluster-RTSP in relation to robot idle time. While research based in

the laboratory often neglects this property, it nevertheless has important impli-

cations to the productivity of an industrial process in practice. The degree of

flexibility offered by planning algorithms to quickly adapt to different scenarios

is partly determined by the amount of time a robot remains stationary while

the algorithm plans actions to successfully accomplish a task. For this reason,

long computation times can be highly undesirable for applications requiring high

flexibility. The evaluation of the p-Cluster-RTSP in Section 7.4.1 looked at how

the robot idle time could be reduced prior to the execution of a plan for static

task sequencing problems. Conversely, in Section 7.4.2 I assessed the d -Cluster-

RTSP with respect to the robot idle time as a measure of the reactiveness of the

algorithm to adapt online to dynamic changes. In other words, when assessing

the performance of an adaptive algorithm for practical purposes, it is important

to consider not only the computation time in relation to existing methods, but

to also examine the implications of this to the reactiveness of the system for the

application it is intended for.

Finally, while this thesis has primarily been concerned with the aspect of

planning in adaptive robotic systems, additional considerations for fast, accu-

rate sensing and adaptive control are also necessary when developing physical

adaptive systems for the real world. As Chapter 3 has illustrated, task and mo-

tion planning requires the availability of reliable perception information. Poor

quality sensing data can render the solution to a planning problem irrelevant

as the real world would not correspond well with the system’s knowledge of the

environment. However, providing high-accuracy observations can be difficult for

dynamic applications as the data-processing routines must be fast in order to

support (near-)real-time robotic reactions (otherwise devised plans will always

be outdated in fast-changing environments). This can be challenging for machine

vision systems, where image processing is a necessary step in extracting useful
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information from recorded images.

From a control perspective, it is not only crucial that the controller is able to

track planned motions adequately (particularly in cluttered environments where

the robot may often be required to navigate through narrow spaces), but a unique

requirement of adaptive robotics is the capability of the controller to safely modify

the trajectory of a robot on the fly. This particularly applies to fast moving

robots such as manipulators where poor management of the robot’s velocity and

acceleration profiles can result in damage to joint motors when sudden and sharp

changes are made to a trajectory.

8.2 Contributions to Knowledge

This thesis has presented a number of developments that advance the state-of-

the-art in optimal and adaptive task and motion planning for robots in dynamic

environments. In the following, I summarise the major contributions to knowledge

that reflect the wide range of ongoing challenges in the field of adaptive robotics.

Limitations of Adaptive Planning Methods A literature review of exist-

ing methods for robotic task and motion planning has been presented, covering

fundamental techniques and the state-of-the-art in optimal planning and adap-

tive planning. Summary tables have been provided to highlight the limitations of

the reviewed work, which have been arranged according to the categories of the

problems addressed in each work. A thorough discussion on the knowledge gaps

based on an analysis of the literature has also been provided.

Optimal Path Planning for Multiple Goals A multi-tree Transition-based

RRT* (Multi-T-RRT*) algorithm has been proposed for solving multi-goal path

planning problems, which provides an efficient method for simultaneously com-

puting the paths between all combinations of goals in the problem. The algorithm

incorporates continuous cost spaces to account for general cost criteria, scales

with the dimensions of the problem, and preserves the asymptotic optimality and

probabilistic completeness guarantees of the RRT* algorithm.

Multi-goal Tree-Pruning A heuristic tree-pruning strategy has been pro-

posed to reduce the time and memory complexity of multi-tree-based algorithms
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for multi-goal path planning. This approach is able to identify candidate nodes

for deletion according to a heuristic measure that determines the usefulness of

tree nodes for improving existing solutions. The strategy has been shown to re-

duce the machine memory required for the Multi-T-RRT* algorithm by up to

97% without impairing its capability to find optimal solutions.

Integrated Task and Path Planning Building upon the Multi-T-RRT* al-

gorithm, a strategy for integrating PDDL task planning with multi-goal path

planning has been introduced. This base planner extends the advantages of

the Multi-T-RRT* to the level of task planning, providing an integrated solu-

tion that scales well with the dimensionality of the problem, optimises plans ac-

cording to general cost functions, and guarantees probabilistically-complete and

asymptotically-optimal task plans that adequately satisfy all planning features

that can be represented using PDDL.

Adaptive Task and Path Planning for Mobile Robots Through an in-

vestigation on online and adaptive task planning, an integrated task and path

planning framework has been proposed to provide fast planning and dynamic re-

planning capabilities for mobile robots. The framework enables anytime planning

behaviours such that an initial feasible solution can be found quickly for prompt

execution while improvements to the task plan is made continuously during exe-

cution. The framework supports both low-level path re-planning and high-level

task re-planning to repair paths that become invalidated by new obstacles and to

maintain high-quality task plans for dynamic applications.

Spatially-Constrained Robotic Task Sequencing A novel clustering-based

RTSP algorithm (Cluster-RTSP) has been proposed to overcome the limitations

of existing methods for solving spatially-constrained RTSPs, where solving a prob-

lem using existing methods either require substantially long computation times

or result in sub-optimal task sequences. The Cluster-RTSP algorithm is able

to compute near-optimal solutions for sequencing problems involving redundant

robots and complex arrangements of obstacles while achieving planning times

that are faster than the current state-of-the-art. The algorithm has been verified

on problems involving up to 1500 task points and has been shown to always re-

turn a solution within several minutes of planning time even when solving very
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complex planning problems.

Formal Definition for Dynamic RTSPs This thesis has investigated the

dynamic variant of the RTSP, a unique problem involving increased complexity

compared to general task planning problems. While methods exist for solving

adaptive task planning problems for general robotic domains, these methods do

not adequately cope with the specific requirements of robotic task sequencing.

Since no existing study has investigated this particular problem, a formal defini-

tion is given to the Dynamic RTSP along with a description of key requirements

for algorithms to satisfy this class of problems.

Partial Planning in RTSPs The p-Cluster-RTSP algorithm has been intro-

duced as a new variant of the Cluster-RTSP that enables the concept of partial

planning, where a complete task is divided into several sub-tasks that are indi-

vidually solved progressively during execution. By solving only the first sub-task

for an executable partial plan prior to execution, the pre-execution planning time

can be substantially reduced by approximately 50%-65% (depending upon the

complexity of the problem). The p-Cluster-RTSP provides an intermediate step

towards extending offline RTSP methods to online planning.

Adaptive Planning for DRTSPs A dynamic variant of the Cluster-RTSP

(d -Cluster-RTSP) has been introduced for addressing RTSPs in dynamic envi-

ronments. The algorithm combines the concept of partial planning with three

re-planning routines that re-assess the validity of configurations and trajectories

during execution. By integrating trajectory re-planning with sub-task re-planning

procedures, the algorithm is capable of maintaining near-optimal solutions under

dynamic conditions by adaptively updating a previous solution within seconds.

To the best of my knowledge, this work is the first to consider RTSPs in dynamic

environments and the evaluations presented in this thesis provides a resource for

benchmarking the performance of future developments for DRTSPs.

8.3 Limitations

This work has covered a wide range of considerations within the area of adaptive

planning for dynamic environments. However, as the review of the state-of-the-
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art in Chapter 2 has shown, seeking optimal solutions efficiently in dynamic

environments is a hard problem. Like all the related work in the literature, the

developments presented in this thesis possess a number of limitations that have

not been addressed within the scope of this research.

First, Chapter 4 presented a multi-goal path planning algorithm intended

to overcome the poor planning efficiency of performing multiple path planning

queries between several goals in the same environment. However, the experi-

mental results in Fig. 4.5.1 indicated that for some small subset of planning

problems involving simple, uncluttered environments, the time saved by reduc-

ing the collective number of sampled configurations required to solve the path

planning problems does not offset the computational overhead introduced by the

multi-tree expansion procedure of the algorithm. For machines equipped with

multiple processing cores, it may prove advantageous to run both standard path

planning and the Multi-T-RRT* algorithm in parallel much like the CFOREST

parallelization framework presented in [54] or the learning-from-experience based

motion planning frameworks described in [68,69].

In Chapter 5, the concept of anytime planning was extended to task plan-

ning in the DA-TPP framework. While this approach enables execution to begin

quickly and provides continuous improvements to an executed plan, one conse-

quence of committing to the first action of the initial solution is the high likelihood

of committing to a plan that leads to a local optima at best. While this does

not prevent the robot from completing the task successfully, it is possible for the

robot to commit to a very poor first action that leads to sub-optimal solutions

despite the continuous improvements made during planning.

Chapter 5 went on to introduce a tree pruning technique developed for mul-

tiple goals. While experiments showed that the technique enables the planner

to find comparable solutions to standard tree expansion after many iterations,

it is important to recognise that the rate of convergence of the algorithm to the

optimal solution is slower. Furthermore, the choice of a suitable value for the

maximum number of total nodes, Nmax, across all trees is an important consid-

eration. Too low a value can prevent the algorithm from adequately exploring

the environment, causing the planner to converge to local optima, while a large

value could lead to lowered memory efficiency. Determining a suitable value for

a given problem may not be trivial. Machine learning may provide a solution to

this problem. For example, by providing a machine with a diverse range of envi-
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ronments labelled with the optimal value for Nmax, it would be possible to train

the machine to map optimal values to the complexity and scale of environments.

Finally, Chapter 5 also addressed the problem of dynamic tasks and motion

planning within a 2-dimensional environment. Though the underlying Multi-T-

RRT* path planning algorithm scales with the dimensionality of the problem, a

limitation of the integrated framework is the difficulty to extend it to arbitrary

robots possessing varying DoFs. This is due to the reliance of the re-planning

procedures on being able to quickly identify all nodes in the search trees that lie

in collision with new obstacles. As highlighted in Chapter 2, mapping obstacles in

the Euclidean space to general C-spaces is a non-trivial task. Thus it would not

be possible to extend the DA-TPP to robots where the C-space is not equivalent

to the Euclidean space without a method for mapping obstacles into the C-space.

In Chapter 6, a key distinction was made between the terms near-optimal

and true optimal. Indeed, a key limitation of the Cluster-RTSP algorithm is

the failure to guarantee an optimal assignment of configurations to each task

point considered within an RTSP. Though the evaluations have shown that this

selection always produces high quality solutions across environments of varying

complexity, it was evident in the experimental results presented in Section 6.3.3

that for a very high number of configurations per task point, the solutions pro-

duced by Cluster-RTSP became marginally poorer than the results obtained by

RoboTSP [135]. Further investigation into the use of different metrics for defining

the similarity heuristic could provide further insight into what the best perform-

ing metrics for different tasks are (recall from [172] that some metrics performed

better for expansion tasks while others excelled in contraction tasks). Another

limitation of the Cluster-RTSP is the inability to consider true motion costs

when solving the task sequencing problem. This remains an ongoing challenge

for all methods that account for kinematic redundancy and it is currently unclear

whether true motion costs can be accounted for in task sequencing without using

a brute force search (the problem is NP-hard).

The d -Cluster-RTSP algorithm introduced in Chapter 7 can be considered

the first of its kind, as no previous study on adaptive planning has specifically

addressed the problem of robotic task sequencing. Nevertheless, the proposed

algorithm possesses a number of shortcomings that ultimately limit the perfor-

mance of the algorithm. Firstly, each time the algorithm begins planning for a

new sub-task, the robot must remain in idle mode until planning for the sub-task
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is complete. This is naturally undesirable as it reduces the productivity of the

robot and simply does not provide an elegant execution of tasks. As mentioned

in the chapter, this could be addressed by simply solving for a complete solution

prior to beginning execution, but this comes at the expense of longer pre-execution

planning time. Secondly, the algorithm relies heavily upon the assumption that

the new optimal solution to a problem following a change in problem variables

remains close to the previous optimal solution. Unfortunately when this assump-

tion does not hold, the algorithm fails to maintain a near-optimal task sequence.

One way of potentially overcoming this problem involves periodically re-applying

the X-means clustering procedure and re-solving the TSP problem at the level

of configuration clusters to obtain a new ordered set of sub-tasks that reflects

the updates made to configuration assignments. Thirdly, the experimental eval-

uations in Section 7.4.2.1 have shown that the algorithm can require up to 10

seconds of computation time to re-plan sub-tasks and trajectories. While this is

substantially faster than re-planning from scratch, the efficiency of these proce-

dures still remains far from being real-time. Consequently, the d -Cluster-RTSP

would not cope with fast-changing environments where the state of the world

changes at a much faster rate that the update rate of the algorithm.

Lastly, I wish to acknowledge the narrowed scope of this thesis within the

context of adaptive planning. In both Chapters 5 and 7, where the development

of algorithms have been extended to dynamic planning, considerations have been

limited to dynamically-changing environments. However, general adaptive plan-

ning problems could additionally involve dynamically-changing tasks and goals.

While the methods developed in this research has not specifically addressed this

aspect of adaptive planning, it is possible to extend the presented algorithms

to these scenarios. For example, in Chapter 5 I have already demonstrated the

capability of the DA-TPP framework to handle new robot starting locations in

global re-planning instances where the robot has partially advanced towards a

landmark. A similar strategy could be used to introduce a new tree whenever

a goal is dynamically added to the problem. Likewise, entire trees could be re-

moved for dynamically removed goals. In the case of the DRTSP, re-planning

procedures already provide the functionality to recompute the best configuration

for an existing task point and reassign it to the most appropriate sub-task. The

same procedures could be used to dynamically add new task points to the plan,

whilst the removal of task points closely match the behaviour of encountering
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task points that can no longer be reached. Hence, with minimal modification,

the d -Cluster-RTSP could also be extended to account for dynamically-changing

task points.

8.4 Concluding Remarks and Future Perspec-

tives

This research had set out to investigate the challenges of addressing dynamic

task planning problems and to develop adaptive planning algorithms that could

adequately compute low-cost plans while achieving high planning efficiency in re-

sponse to dynamically-changing environments. Until now, this combined problem

encapsulating dynamic re-planning and optimal planning in robotics has remained

mostly elusive.

Accordingly, the outputs of this research are a number of algorithms and

techniques that advance the state-of-the-art by demonstrating the capability to

compute near-optimal solutions under dynamic conditions while remaining com-

putationally fast and competitive. Thorough evaluations were conducted through

a number of experimental comparisons against baselines, benchmarks and the

state-of-the-art to validate and quantify the benefits of these methods.

The work presented in this thesis paves the way for some interesting research

directions for future development.

One interesting direction for investigation is the integration of the concepts

from the DA-TPP framework with the Cluster-RTSP algorithm to enable solving

RTSPs for mobile manipulators (i.e. a mobile base carrying a robot manipu-

lator). To date, RTSPs have been limited to fixed-base manipulators, yet mo-

bile manipulators offer the flexibility and dexterity to perform repetitive tasks

on large-scale components that would otherwise be impossible to achieve with

a fixed-base manipulator due to limitations with the robot’s reachability. This

type of problem would introduce a new challenge involving the optimal selection of

base placements that enable the manipulator to perform the necessary tasks while

minimising the incurred travel cost of the mobile base. One potentially viable

approach to solving the mobile manipulator RTSP involves applying a sampling-

based strategy in tandem with the IKFast module in OpenRave [171] to generate

a set of valid base placements and corresponding manipulator configurations to
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reach each task point. The heuristic configuration assignment procedure pre-

sented in Chapter 6 could then be extended to make an optimal selection of both

base placements and manipulator configurations, giving priority to minimising

configuration changes in mobile base placements were possible. Further work in-

volving the integration of adaptive planning components, including the concepts

of partial planning, anytime planning and dynamic re-planning, would form an

interesting long-term study. Future developments in this direction would particu-

larly benefit industries such as oil & gas, nuclear, construction and marine, where

inspection of large vessels and building infrastructure are common.

This thesis has also provided a preliminary investigation into the feasibility

and potential of addressing dynamic sequencing problems through autonomy.

However, a substantial amount of development is still required to begin to realise

a physical system truly capable of adapting to changes in a real-world task. As

an immediate goal, one area for future work is the development of an integrated

physical system, capable of achieve reliable perception, efficient planning and safe

yet accurate robot control, to demonstrate this potential of adaptive robotics to

adequately cope with dynamic environments. As mentioned in Chapter 7, this

requires a cross-disciplinary approach with special considerations given to the

real-time capabilities of the system from the perspective of sensing and control.

From the perspective of planning itself, I have introduced the d -Cluster-RTSP

as a viable approach to addressing the DRTSP. However, the algorithm possesses

a number of shortcomings that limit its effectiveness for some applications, in-

cluding its inability to achieve near-optimal solutions in the presence of large-scale

changes, the compulsory robot idle time when transitioning between sub-tasks,

and the response time of up to 10 seconds for re-planning. Consequently, further

research and development is necessary to overcome these limitations. This leaves

us with an important research question to consider: to what extent can we

enable real-time re-planning in DRTSPs?

A number of methods in literature have already shown promise for dynamic

motion planning, yet further in-depth evaluations are necessary to understand the

behaviour of these algorithms in real-world scenarios. Indeed a more comprehen-

sive study to review existing methods in literature that in some way relate to the

broader aspects of DRTSP could provide answers and inspiration for new ideas

in the quest to realise true real-time adaptive robotics for DRTSPs, and indeed

task planning problems in general. Machine learning methods and learning-from-
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experience methods in particular have begun to show promise for their potential

to quickly develop new solutions by learning from previous problems and corre-

sponding solutions. One of their key limitations is the requirement for substantial

training data, which is generally time-consuming to provide. However, conve-

niently, the RTSP naturally involves a large number of motion planning queries

that could be used to quickly generate a large set of training data to feed into

methods such as the Lightning [68] or Thunder [69] framework. In return, these

algorithms could provide fast trajectory re-planning performance beyond what is

currently achievable with d -Cluster-RTSP.

Research in adaptive planning for robotics is still in its infancy and many

challenges have yet to be solved. Even within the study of offline task planning for

manipulation, many complex problems have proven difficult to solve and in recent

years significant research efforts have been directed towards finding feasible plans.

Thus the development of adaptive task planning for general problems such as

manipulation remains elusive. Interestingly, adaptive manipulation is a particular

skill that humans have developed great proficiency in. In the fast growing world

of modern robotics, demand for adaptive robotics to possess similar capabilities

have already appeared in numerous industrial applications. All planning tasks

are, after all, plagued by the inescapable effects of uncertainty, variability and

dynamics in the real world beyond the safe enclosure of traditional robotic cells.
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[110] J. Faigl, V. Vonásek, and L. Pr̆euc̆il, “Visiting convex regions in a polygonal

map,” Robotics and Autonomous Systems, vol. 61, pp. 1070–1083, October

2013.

[111] Y. Zhang, S. Sreedharan, A. Kulkami, T. Chakraborti, H. H. Zhuo, and

S. Kambhampati, “Plan explicability and predictability for robot task plan-

ning,” in IEEE Int. Conf. on Robotics and Automation, (in Singapore),

2017.

[112] C. Galindo, J.-A. Fernández-Madrigal, J. González, and A. Saffiotti, “Using
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Appendix A

PDDL Domain and Problem

Files

PDDL Domain Example File

Listing A.1: MWR Nagivation Domain

(define (domain robot−world )

( : requirements : durative−actions : f luents : duration−inequal it ies )

( : functions

( co s t ? from−waypoint ? to−waypoint )

( t o ta l−co s t )

)

( : predicates

( waypoint ? waypoint )

( robot ? robot )

( task ? task )

( task−at ? task ? waypoint )

( task−done ? task )

( at ? robot ? waypoint )

( robot base ? waypoint )

)

( : durative−action move to landmark

: parameters

(? robot

? task
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? waypoint1

? waypoint2 )

: duration

(= ? durat ions 5)

: condition

(and

( at s t a r t ( robot ? robot ) )

( at s t a r t ( task ? task ) )

( at s t a r t ( waypoint ? waypoint1 ) )

( at s t a r t ( waypoint ? waypoint2 ) )

( at s t a r t ( at ? robot ? waypoint1 ) )

( at s t a r t ( task−at ? task ? waypoint2 ) )

( at s t a r t (< ( co s t ? waypoint1 ? waypoint2 ) 1000000))

)

: ef fect

(and

( at s t a r t (not ( at ? robot ? waypoint1 ) ) )

( at s t a r t ( i n c r e a s e ( to ta l−co s t ) ( co s t ? waypoint1 ? waypoint2 ) ) )

( at end ( task−done ? task ) )

( at end ( at ? robot ? waypoint2 ) )

)

)

( : durative−action move to base

: parameters

(? robot

? waypoint1

? waypoint2 )

: duration

(= ? durat ions 5)

: condition

(and

( at s t a r t ( robot ? robot ) )

( at s t a r t ( waypoint ? waypoint1 ) )

( at s t a r t ( waypoint ? waypoint2 ) )

( at s t a r t ( at ? robot ? waypoint1 ) )

( at s t a r t ( robot base ? waypoint2 ) )
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( at s t a r t (< ( co s t ? waypoint1 ? waypoint2 ) 1000000))

)

: ef fect

(and

( at s t a r t (not ( at ? robot ? waypoint1 ) ) )

( at s t a r t ( i n c r e a s e ( to ta l−co s t ) ( co s t ? waypoint1 ? waypoint2 ) ) )

( at end ( at ? robot ? waypoint2 ) )

)

)

)

PDDL Problem Example File

Listing A.2: MWR Navigation Problem

(define (problem robot−1)

( :domain robot−world )

( : objects

robotbase

landmark1

landmark2

landmark3

landmark4

task1

task2

task3

task4

robot1

)

( : in i t

(= ( to ta l−co s t ) 0)

(= ( cost−w1w2) 4523)

(= ( cost−w1w3) 6746)

(= ( cost−w1w4) 1488)

(= ( cost−w1w5) 780)

(= ( cost−w2w3) 4979)

(= ( cost−w2w4) 5922)

(= ( cost−w2w5) 2325)

(= ( cost−w3w4) 8438)

302



Wong, C. PDDL Domain and Problem Files

(= ( cost−w3w5) 2103)

(= ( cost−w4w5) 2666)

( waypoint1 robotbase )

( waypoint2 landmark1 )

( waypoint3 landmark2 )

( waypoint4 landmark3 )

( waypoint5 landmark4 )

( task task1 )

( task task2 )

( task task3 )

( task task4 )

( robot robot1 )

( at robot1 robotbase )

( can−move robotbase landmark1 )

( can−move landmark1 robotbase )

( can−move robotbase landmark2 )

( can−move landmark2 robotbase )

( can−move robotbase landmark3 )

( can−move landmark3 robotbase )

( can−move robotbase landmark4 )

( can−move landmark4 robotbase )

( can−move landmark1 landmark2 )

( can−move landmark2 landmark1 )

( can−move landmark1 landmark3 )

( can−move landmark3 landmark1 )

( can−move landmark1 landmark4 )

( can−move landmark4 landmark1 )

( can−move landmark2 landmark3 )

( can−move landmark3 landmark2 )

( can−move landmark2 landmark4 )

( can−move landmark4 landmark2 )

( can−move landmark3 landmark4 )

( can−move landmark4 landmark3 )

( task−at task1 landmark1 )

( task−at task2 landmark2 )

( task−at task3 landmark3 )

( task−at task4 landmark4 )
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)

( : goal

(and

( task−done task1 )

( task−done task2 )

( task−done task3 )

( task−done task4 )

( at robot1 robotbase )

)

)

( : metric

minimize ( t o ta l−co s t )

)

)
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