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Abstract 

 
The role of modelling and simulation to the development of marine and aerospace 

electrical power distribution systems is becoming increasingly important as these 

industries embrace the more-electric concept. The large penetration of novel 

technologies employed in these designs places a great need on identifying key 

operating deficiencies and issues at an early stage in the design process. However, 

this thesis identifies that existing techniques which are potentially suitable for the 

modelling and simulation of marine and aerospace electrical power distribution 

systems primarily suffer from being either very time intensive to implement of 

numerically unstable during simulated fault conditions. Such challenges can limit the 

potential usefulness of modelling and simulation as part of the overall design 

process.  

 

As such, this thesis addresses the need for methods which enable the efficient 

simulation of electrical network architectures with a significant penetration of power 

electronics. Two new simulation methods are developed which address the different 

shortcomings of existing techniques. These methods are also complementary and 

compatible with other existing simulation techniques.   

 

The first method presented, Multi-Level Model Discretization, is a framework which 

enables the development of a power system model as a conventional continuous 

model before applying a range existing techniques tailored to reduce the overall 

computational burden of associated simulations. This can be readily achieved even if 

the model developer does not have extensive prior modelling and simulation 

knowledge and expertise. 

 

The second method, Advanced Functional Modelling, incorporates novel 

functionality into the existing functional modelling method in order to overcome the 

occurrence of numerical instability during simulated fault conditions, whilst still 

facilitating efficient simulation of networks with a significant penetration of power 

electronics. 
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Chapter 1 – Thesis Outline and Principal 

Contributions 

 

This thesis investigates the challenges faced in the dynamic simulation of more-

electric marine and aerospace electrical distribution networks. On the basis of this 

investigation, novel abstraction techniques for power electronic converter models are 

developed to facilitate accurate and computationally efficient simulation of the 

aforementioned networks. The techniques developed will be demonstrated on models 

of representative marine and aerospace more-electric architectures. 

 

1.1 Chapter Overview 

This chapter will briefly introduce the more-electric aircraft and ship concepts, 

discussing the technologies utilised, potential benefits and the challenges faced in 

their development. The importance of modelling and simulation to these application 

areas will be discussed and an outline of some of the challenges faced will be given. 

The principal contributions described within this thesis are then summarised and 

finally, a chapter-by-chapter outline of the thesis is given. This concludes with a list 

of related publications by the author. 

 

1.2 Background and Justification for Research 

The marine and aerospace industries are experiencing a significant step change in 

technological development to embrace the more-electric concept [1, 2]. This change 
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sees the partial or complete replacement of the traditional bulky and heavy 

mechanical, hydraulic and pneumatic based power distribution systems with a 

common electrical power system. The more-electric concept is expected to provide 

potentially significant benefits in system efficiency, capability and flexibility.   

 

Such a significant step change in technologies brings with it many new challenges 

and difficulties, and although the development of individual technologies is still a 

key issue, it is the integration of these that will provide perhaps the biggest 

challenges [3, 4]. For example, the absence of any grid connection to marine and 

aerospace power distributions systems (unless connected to a shore supply or ground 

cart respectively) distinguishes them from conventional land based systems. They are 

instead, finite inertia islanded systems. As such they are also particularly sensitive to 

network disturbances (e.g. load changes and faults). Furthermore, the significant 

penetration of power electronic converters within marine and aerospace more-electric 

networks requires that particular care must be taken in the coordination and control 

of separate systems to avoid instability and other unfavourable operating conditions 

[5, 6]. 

  

Modelling and simulation will play a key part in supporting the development of 

marine and aerospace more-electric systems by allowing the network-level behaviour 

of these architectures to be investigated [7]. It will enable the study of interactions 

between the network systems and will facilitate the identification and correction of 

adverse operating conditions, de-risking the novel technologies utilised.  
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However, there are many challenges that currently prevent the full capabilities of the 

modelling and simulation from being realised. One particular challenge is the 

extensive computational burden of dynamic network-level simulations, which often 

causes slow running and failed simulations. Techniques which improve the 

computational efficiency of dynamic simulations whilst retaining the key model 

characteristics are invaluable to the development of more-electric systems [7]. 

Indeed, the efficient simulation of power electronic converter models is especially 

important as these impose a particularly substantial burden on the computation of the 

overall network model [8]. However, because of their key role in determining the 

underlying behaviour of many marine and aerospace more-electric networks, the 

behaviour of the power electronic converters must still be accurately captured to 

ensure that representative simulation results are produced.  

 

This thesis investigates those techniques currently available for improving the 

efficiency of simulating power electronic converters within the context of larger 

electrical network models. It assesses their suitability to network-level dynamic 

simulations of marine and aerospace more-electric architectures, identifying the best 

suited methods and discussing their key strengths and limitations. Building on this 

knowledge, novel techniques are proposed in this thesis to facilitate an improved 

simulation capability for network-level simulations of marine and aerospace more-

electric architectures during both normal and fault conditions. 
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Note that although marine and aerospace more-electric applications appear to be 

significantly different in nature, many of the key challenges faced are concurrent and 

so the core research themes laid out in this thesis are relevant to both applications.  

 

1.3 Research Objectives 

The research presented in this thesis addresses the following objectives: 

• To analyse the requirements and challenges faced in the modelling and 

simulation of marine and aerospace more-electric power distribution network 

architectures. 

• To investigate existing options for improving simulation efficiency of 

electrical power distribution networks with a significant penetration of power 

electronics whilst retaining appropriate levels of accuracy, identifying those 

techniques and methods which are best suited for this domain. 

• To fully assess the capabilities and limitations of these techniques and make 

recommendations for their use. 

• To develop novel methods to improve the computational efficiency of 

simulating electrical power distribution networks with a significant 

penetration of power electronics in order to maximise the potential benefit of 

modelling and simulation to the development of marine and aerospace more-

electric systems.  
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1.4 Principal Contributions 

The principal contributions of this thesis are summarised as follows: 

 

• Unique challenges are identified with respect to the modelling and simulation 

of marine and aerospace more-electric network architectures. These stem 

from the difficulties of achieving computationally efficient and yet accurate 

dynamic simulations of the electrical networks containing power electronics. 

Functional based modelling approaches are identified as being the most 

suited for use within more-electric applications.  

• The barrier presented by algebraic loops to the effective simulation of larger 

‘more-electric’ type networks is analysed. This is a result of their adverse 

impact on the accuracy and numerical stability of functional converter 

modelling approaches and other modelled systems commonly found in 

marine and aerospace electrical network models. 

• The functional modelling approach is shown to be unreliable for simulating 

electrical faults in network-level models of marine and aerospace more-

electric architectures. This is the result of a detailed analysis of the 

capabilities, limitations and resulting suitability of the functional modelling 

technique for marine and aerospace more-electric networks.  

• A novel modelling approach, Multi-Level Model Discretization (MLMD), is 

developed to facilitate the efficient and accurate simulation of more-electric 

marine and aerospace electrical networks. It is also numerically stable during 

simulated electrical fault conditions. This technique cannot represent the time 

averaged behaviour of converters though. 
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• A second modelling technique, Advanced Functional Modelling (AFM), is 

developed to model the time-averaged representation of power electronic 

converters and maintain stability under simulated fault conditions. AFM 

builds upon the existing functional modelling approach but includes novel 

features to address its existing weaknesses during simulated fault studies.  

 

1.5 Thesis Outline 

This section will summarise core technical chapters of this thesis. 

 

Chapter two reviews more-electric marine and aerospace technologies, discussing 

the opportunities and unique challenges faced in each application. It also addresses 

the core technologies employed within more-electric marine and aerospace networks 

before discussing the underlying common challenges faced in both domains. 

 

Chapter three outlines the role of modelling and simulation in supporting the 

development of more-electric technologies. The challenges faced in this field are 

discussed with particular aspects such as accurate and efficient dynamic simulations 

being recognised as key difficulties. To overcome these aspects, the need for 

techniques which improve the computational efficiency of simulating electrical 

power networks with a significant penetration of power electronics is identified. 

Existing techniques are reviewed and the functional modelling technique is identified 

as being particularly suited for this task. The strengths and weaknesses of this 

technique (as discussed in existing literature) are considered before a research path 

forward is proposed. 
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Chapter four introduces algebraic loops and provides examples of their presence 

within functional converters and other models common to marine and aerospace 

electrical networks. Through detailed analysis, it demonstrates how iterative solvers 

are necessary to solve models containing algebraic loops and discusses the negative 

impact these have on simulation efficiency. Techniques to lessen the adverse impact 

of algebraic loops are reviewed in detail, with the positive and negative qualities of 

each being considered. These techniques are analysed further in order to identify 

their best use within marine and aerospace more-electric architecture models. 

 

Chapter five investigates the capabilities and limitations of the functional modelling 

technique for the simulation of marine and aerospace more-electric networks. 

Weaknesses are found relating to poor accuracy and numerical instability during 

simulated electrical fault studies. Conclusions are drawn regarding its usefulness for 

the specified application areas. 

 

Chapter six proposes an alternative approach for modelling electrical networks with 

a high penetration of power electronics. This new approach builds on the findings of 

the previous two chapters. The technique, Multi-Level Model Discretization, 

facilitates computationally efficient and accurate network-level dynamic simulations, 

even during fault conditions. Example case studies are included to demonstrate both 

its effectiveness and limitations. The chapter closes with a discussion regarding the 

application of this technique to models of marine and aerospace more-electric 

network architectures. 
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Chapter seven proposes an additional novel technique, Advanced Functional 

Modelling, developed to improve the fault performance of functional models. This 

technique can be utilised to implement both pulsed output and time-averaged output 

converter models which maintain accuracy during fault conditions. Detailed analysis 

and case studies are utilised to demonstrate its effectiveness. The chapter concludes 

by considering the capabilities and limitations of this technique and outlining how 

the method could be developed further. 

 

Chapter eight reviews the contribution made by this thesis and draws conclusions 

on the use of the Multi-Level Model Discretization and Advanced Functional 

Modelling techniques for use within marine and aerospace more-electric network 

simulation.  

 

1.6 Related Publications 

Publications by the author and related to this thesis are:  

 

P. Norman, G. Dudgeon, J. R. McDonald, “A Review of the Current and Future 

Role of Power Electronics within Marine More-Electric Environments,” in Proc. 38
th

 

International Universities Power Engineering Conference (UPEC), Thessaloniki, 

Greece, 2003, pp 197 – 200. 

 

P. J. Norman, G. J. W. Dudgeon, J. R. McDonald, “Assessment and 

recommendations for the modelling of faults and interactions within power 
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electronics based power systems,”  in Proc. Ninth IEEE Workshop on Computers in 

Power Electronics COMPEL 2004, University of Illinois, August 2004. 

 

P. J. Norman, C.D. Booth, J.D. Schuddebeurs, G.M. Burt, J.R. McDonald, J.M 

Apsley, M. Barnes, A.C Smith, S. Williamson, E. Tsoudis, P. Pilidis, R. Singh, 

“Integrated electrical and mechanical modelling of integrated-full-electric-propulsion 

systems,” in Proc. The 3
rd

 IET Power Electronics Machines and Drives conference 

(PEMD 2006), April 2006, Dublin, Ireland. 

 

P. J. Norman, C. D. Booth, J. D. Schuddebeurs, S. J. Galloway, G. M. Burt, J. R. 

McDonald, A. Villasenor, R. Todd, J. M Apsley, M. Barnes, A.C Smith, S. 

Williamson, E. Tsoudis, P. Pilidis, R. Singh, “Simulating IFEP Systems,” Marine 

Engineering Review (MER), pp. 26 – 31, October 2006. 

 

I. M. Elders, P. J. Norman, J. D. Schuddebeurs, C. D. Booth, J. R. McDonald, J. 

Apsley, M. Barnes, A. Smith, A. Forsyth, S. Loddick, I. Myers, “Modelling and 

analysis of electro-mechanical interactions between prime-mover and load in a 

marine IFEP system,” IEEE Electric Ship Technologies Symposium (ESTS), May 

2007. 

 

P. J. Norman, S. J. Galloway, and J. R. McDonald, “Simulating electrical faults 

within future aircraft networks,” IEEE Transactions on Aerospace and Electronic 

Systems, Vol. 44, no. 1, pp. 99 – 110, January 2008. 
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P. J. Norman, S. J. Galloway, G. M. Burt, D. R. Trainer, M. Hirst, “Transient 

analysis of the more-electric engine electrical power distribution network,” The 4
th

 

International Conference on Power Electronics Machines and Drives 2008 (PEMD 

2008), 2
nd

-4
th

 April 2008, York. 

 

P. J. Norman, S. J. Galloway, G. M. Burt, J. E. Hill, D. R. Trainer, “Evaluation of 

the dynamic interactions between aircraft gas turbine engine and electrical system,” 

The 4
th

 International Conference on Power Electronics Machines and Drives 2008 

(PEMD 2008), 2
nd

-4
th

 April 2008, York. 

 

J. D. Schuddebeurs, P. J. Norman, S. J. Galloway, G. M. Burt, J. R. McDonald, J. 

Apsley, “A high fidelity integrated system model for marine power systems,” The 2
nd

 

Annual IEEE International Systems Conference, 7
th

 – 10
th

 April 2008, Montreal. 

 

P. J. Norman, S. J. Galloway, G. M. Burt, J. R. McDonald, “Functional converter 

models for electrical fault simulations within aircraft power systems,” submitted to 

IEEE Transactions on Aerospace and Electronic Systems. 

 

In addition to the research papers listed above, numerous other technical reports 

relating the modelling and simulation of marine and aerospace more-electric 

networks have also been produced. 
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Chapter 2 – Overview of Marine and Aerospace More-

Electric Applications 

 

2.1 Chapter Overview 

Marine and aerospace industries are poised for significant technological step changes 

in the near future as the more-electric concept is applied to system designs within 

both of these application areas [1 - 3]. This concept sees the traditionally mechanical, 

hydraulic and pneumatic power distribution systems replaced to a varying degree by 

power dense electric equivalents offering potentially significant space and weight 

savings. The advanced electrical power distribution employed in these systems 

should also provide a greater system capability, operational efficiency and increased 

design flexibility than was previously capable with the traditional approach. 

 

This chapter will give a general overview of how the more-electric concept is being 

applied to the marine and aerospace industries, outlining the key developments in 

recent years. Looking at each application in turn, it will describe the individual novel 

technologies utilised, discussing the potential benefits and challenges these 

technologies bring. Power electronics underpin the successful utilisation of many of 

these novel technologies and the evolution of their role within marine and aerospace 

more-electric architectures is discussed. The chapter concludes by highlighting the 

commonality between marine and aerospace more-electric applications and 
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discussing the key research challenges faced in the development of both of these 

areas. 

 

2.2 Marine More-Electric Systems 

In the marine sector, the more-electric concept is being incorporated into new 

designs of both commercial and naval vessels giving competitive advantages over 

traditional designs [1]. It also represents a key stage in the progression towards the 

all-electric ship. Figure 2.1 illustrates conventional and more-electric marine power 

systems  
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Fig. 2.1.  Evolution of ship power distribution technologies 

 

Figures 2.2 and 2.3 provide examples of the power distribution systems of traditional 

and Integrated Full Electric Propulsion (IFEP)/all-electric vessel designs. 
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Fig. 2.2. Example traditional marine power distribution system 

 

 

Fig. 2.3.  IFEP/All-electric equivalent of the network shown in figure 2.2. 

 

Figures 2.1 and 2.2 illustrate how conventional ship power systems see the use of 

dedicated prime movers to mechanically power the ship’s propulsion systems and 

separate smaller prime movers to drive electrical generators. This electrical power is 
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then distributed throughout the ship to the various electrical loads by means of a 

(traditionally) low voltage distribution network. This approach offers high efficiency 

operation for vessels which spend a large proportion of their service life travelling at 

a constant cruising speed, such as tankers and ferries. The technologies utilised are 

mature and reliable and as such, the mechanical direct-drive approach is well 

established in most types of marine vessel [1].  

 

Figures 2.1 and 2.3 illustrate how IFEP utilises a single prime mover set to drive 

electrical power generation in order to supply both the ship’s propulsion systems and 

electrical hotel loads. Additionally, it sees many significant non-electrical loads 

(such as hydraulic and pneumatic systems) replaced by electrical equivalents [1].  

 

This approach provides a number of key benefits. Firstly, the main prime movers no 

longer have to be located close to the ship’s propellers, thus providing increased 

design flexibility [1, 4]. This gives the option for locating the prime movers close to 

the deck of the vessel in order to provide better access for maintenance as well as 

easier ducting for air inlet and exhaust outlets. This also frees up space within the 

hull of the vessel for other more beneficial usage. 

 

Secondly, many new IFEP vessels build upon this design flexibility and employ 

podded propellers [4], where the propulsion motor and drive is embedded in a 

streamlined pod, located outside the hull of the vessel. This approach allows even 

more space to be vacated within the vessel’s hull. The propeller pods can also be 

rotated to provide improved vessel manoeuvrability at low speeds.  
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Another key benefit of IFEP is the greater flexibility in generator scheduling 

provided by the common set of prime movers. This enables higher system 

efficiencies at lower cruising speeds and part-load operation [1], and hence makes 

IFEP particularly suited to vessel types with a widely varied operational profile such 

as cruise liners, yachts and naval vessels.  

 

The main drawbacks to utilising the IFEP approach are an increased build cost, 

decreased efficiencies at full load operation, higher network voltage levels (to 

accommodate the increased installed power levels) and the utilisation of newer, less 

proven technologies [1].  

 

Figure 2.4 shows an example IFEP network layout and loading [5]. 

 

 

Fig. 2.4.  Example IFEP network 

(source: “A short power system appreciation course”,  UTC internal document) 
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The network depicted in figure 2.4 is an example network for one particular 

application. The size and nature of the more-electric vessel in question will dictate 

particular network aspects such as the number and configuration of medium voltage 

(MV) and low voltage (LV) switchboards, the voltage levels employed, generation 

options, and the available redundancy in supply (e.g. through tie-lines).  

 

There is no existing standard for the propulsion motor although multiphase 

permanent magnet synchronous motors and advanced induction motors are two 

favourable options [6]. The power electronic motor drives are generally designed 

around the requirements of the motor type and often employ multi-level or series 

connected architectures in order to operate at the voltage levels of the MV 

switchboards [7].  

 

At the LV switchboard there is some considerable debate over whether to utilise ac 

or dc power distribution [8, 9]. The advantages of dc distribution include fewer 

power conversion stages and greater power transfer through existing cables. 

However, current dc circuit breaker technology is much bulkier and heavier than its 

ac counterpart. Alternatively, ac power distribution utilises more proven technologies 

but presents greater challenges in providing redundancy through fast acting 

reconfiguration. 

 

Finally, IFEP systems are aiming towards the utilisation of more power electronic 

interfaced loads and sources to provide greater network control and flexibility [10]. 

An example of this is the use of power electronic converters to actively limit or block 
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fault current contributions in order to reduce the large variations in fault level that are 

common within IFEP networks [11]. However, this also requires the implementation 

of revised network protection strategies in order to accommodate the resulting non-

standard fault characteristics of the network. 

 

Finally, with respect to figure 2.1, the all-electric ship represents the final stage of the 

evolutionary process where all the significant power systems on the ship will be 

electrical. This concept is mainly aimed at naval vessels, which may also utilise 

electromagnetic aircraft launches and pulsed electrical weapons [12, 13]. 

Opportunities for novel functionality and features such as intelligent post-fault 

network reconfiguration have also been considered for all-electric ships [14].  

 

2.3 Aerospace More-Electric Systems 

Within the aerospace sector, the application of the more-electric concept sees the 

replacement of the mechanical aircraft systems such as wing flaps, engine guide 

vanes and air conditioning systems by electrical equivalents. With space and weight 

at an even greater premium than in marine electrical systems, this substitution of the 

bulky and heavy mechanical equipment with lighter, more compact electrical 

systems could provide users of the more-electric aircraft with potentially significant 

savings in fuel consumption [2, 3]. This aspect is particularly relevant amid the 

concerns over the growing pollution from commercial air travel. 
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Although not yet a reality, the more-electric aircraft concept when fully developed, 

could also provide increased flexibility in the design of the power distribution system 

and increased levels of safety through improved system redundancy [2, 3].  

 

One example of research in this area is the Power Optimised Aircraft (POA) 

programme, a European consortium aiming to develop a ground-based technology 

demonstrator to investigate the potential challenges and benefits of the more-electric 

approach [15]. The POA concept is illustrated in figure 2.5, which also highlights the 

core aspects of the more-electric aircraft. 
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Fig. 2.5.  Power Optimised Aircraft (POA) concept 

Source: www.poa-project.com 

 

Although the traditional mechanical systems have not been completely replaced, 

figure 2.5 illustrates how the POA concept incorporates a much greater penetration 
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of electrical systems, which will allow for a high level of equipment and concept de-

risking. 

 

A core stage of the POA program and indeed more-electric aircraft concept is the 

more-electric engine [16]. A high level schematic of this is shown in figure 2.6 (note 

that the intermediate pressure shaft of the gas turbine engine and its components have 

been omitted for greater clarity). 

  

 

Fig. 2.6.  Typical More-Electric Engine Network and Technologies 

 

Figure 2.6 illustrates how within the more-electric engine, inline electrical generators 

are utilised, allowing the removal of the bulky and heavy engine-mounted gearboxes. 
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Many of the engine support systems (fuel pump, oil pump and guide vanes) have also 

been replaced by electrical equivalents, interfaced through power electronic 

converters. Permanent magnet synchronous machines are proving popular in the 

early concept stages of the more-electric engine as these provide power dense 

options for the electrical pumps, motors and generators [16, 17]. Switched reluctance 

machines are also being considered for both motor loads and generation due to their 

robust nature and high power density [16, 18].  

 

Options for proposed designs of the power distribution network within the more-

electric aircraft vary widely. A mixture of ac (fixed and variable frequency) and dc 

power distribution could be utilised, with architecture options ranging from fully 

interconnected networks (utilising paralleled generation) right through to multiple 

islanded power systems being considered. Much research still needs to be conducted 

in order to find the design which provides the optimal combination of weight, 

robustness, and availability of supply to critical loads [19, 20]. 

 

The choice of which of the turbine shafts to mount the electrical generators onto and 

draw power from is also a subject of much debate [16]. Power may be drawn from 

more than one shaft, although aspects such as power sharing and whole system 

optimisation during different stages of the flight cycle require further research.  

 

Lastly, one of the greatest challenges faced in making the more-electric aircraft 

concept a reality is the immaturity of many of the key technologies [2, 16]. These are 

largely still in the development stage and as such are not fully proven. In such a 
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safety critical environment, it is essential to have full confidence in the technologies 

utilised, as there is no room for error within this particular application. 

 

2.4 The Evolving Role of Power Electronic Converters in 

Marine and Aerospace Applications 

Both the marine and aerospace more-electric networks see a significant increase in 

the utilisation of power electronic converters within the electrical power distribution 

networks over more conventional systems. In addition to this, the role of power 

electronics within these networks is also evolving. 

 

In conventional power distribution networks, power electronics have found common 

use as motor drives, active filters and interfaces for small generation sources. The 

behaviour of the converters in these applications is well understood. However, in 

marine and aerospace more-electric applications, power electronic converters are 

finding increased use in many other applications [1, 17]. Examples of this include 

interfaces to novel generator technologies and energy storage systems, advanced 

propulsion drives, and power flow control and regulation devices.  

 

As a result of their novel nature, the response of many of these converters to network 

transients and fault conditions is not well understood. The characteristics of these 

very responses will significantly impact upon the dynamic behaviour of the overall 

network and as such it is essential to consider the behaviour of the power electronic 
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converters when evaluating of network-level dynamics of marine and aerospace 

more-electric power distribution networks [21]. 

 

2.5 Underlying Research Challenges in the Development of 

the More-Electric Concept  

Although the more-electric ship and the more-electric aircraft appear to be 

significantly different, they do in fact share many common research challenges in 

their development. The following section discusses some of the unique 

characteristics of these systems that contribute to a network behaviour which is very 

different to that of the more conventional land based systems. The research and 

development challenges associated with each characteristic are also briefly 

discussed. 

 

The absence of any grid connection in both marine and aerospace more-electric 

networks means that they possess only finite inertias. Indeed, this islanded nature 

makes them significantly more sensitive to large network state changes compared to 

the more robust land based power systems [21 - 23]. Highly dynamic load variations 

can potentially lead to voltage and frequency regulation issues and even network 

instability [12]. Loads of this nature are commonly found in marine and aerospace 

systems (e.g. bow thrusters, propulsion drives, wing flap actuation systems) creating 

a need for improved network operation and management [24]. In addition to these 

aspects, marine and aerospace architectures are separated by only short cable lengths 

of very low impedance. As such, there is a high potential for interactions between the 

separate systems, even including interaction between the mechanical prime movers 
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and electrical network systems [25, 26]. This is especially relevant in IFEP 

applications at present, where large loading variations can lead to poor dynamic 

operation of the prime movers reducing their life span and potentially leading to 

unexpected shutdowns of plant.  

 

Within aerospace applications, the aspect of interactions between the prime mover 

and electrical systems has so far been of a lower concern. This is due to the electrical 

loading forming only a small proportion of the total loading on the prime mover 

(with the propulsion of the aircraft being the dominant load) [2]. However, with the 

increasing levels of electrical loading being proposed for future generations of 

aircraft, there is a growing need to identify the electrical-mechanical interactions that 

could potentially occur [26]. Given the criticality of the prime mover to the safety of 

the aircraft, it is essential that appropriate measures be taken to eliminate all the 

problematic interactions so that the safe and reliable operation of that prime mover is 

ensured. A good network-level understanding of the system is hence required to 

minimise the effects of the electrical-mechanical interactions within aerospace (and 

indeed marine) more-electric architectures and improve the robustness of these 

designs. 

 

The implementation of effective fault detection and protection schemes for marine 

and aerospace more-electric networks represents a significant research challenge. 

Aspects such as highly variable fault levels, a high penetration of power electronic 

converters, mixed ac and dc distribution, novel generation and load systems and 

unearthed/high impedance earthed network parts all combine to produce fault 
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behaviour characteristics which are very different in nature to those of land based 

systems [27, 28]. As such, conventional protection schemes have a much-reduced 

effectiveness in marine and aerospace more-electric applications. The development 

of new schemes particularly suited to marine and aerospace networks is hence of 

great importance. In addition, the criticality of many of the electrical loads produces 

a real requirement for reconfiguration capabilities to be built into the network [28, 

29]. 

 

Space and weight are at a premium within marine and aerospace applications. The 

smaller the electrical power generation, distribution and load technologies are, the 

greater the space that is freed up within the body of the ship/aircraft to be used for 

other purposes. In addition, a smaller, lighter ship/aircraft consumes less fuel, 

providing reduced operating costs. Hence, there is a great need for the continued 

development of novel technologies whose purchase cost may be higher than 

conventional technologies, but whose power dense characteristics (achieved through 

reductions in weight in size) will give rise to reduced through-life costs [1, 16]. The 

successful integration of these novel technologies into the power distribution 

network will also present further challenges though. 

 

Lastly, the unique characteristics of marine and aerospace more-electric networks 

listed above place an increased requirement on the use of modelling and simulation 

to support the design and development of these systems [30, 31]. This is particularly 

true for network-level studies, where there is a great need to capture the dynamic 

behaviour of large parts of, or even the whole network, to facilitate the identification 
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of key operational deficiencies at an early stage in the design and development 

process. However, the time constants present in marine or aerospace more-electric 

networks range from a few microseconds for power electronics and protection 

systems right through to a few seconds for mechanical prime movers and loads. As a 

result, the effective and efficient modelling of such highly dynamic networks 

presents many significant challenges [31, 32]. Indeed, the requirement to model such 

large networks in an efficient manner is often beyond the capabilities of existing 

simulation software and methods. Hence, whilst the challenges described above are 

of little concern for smaller and simpler models (for example, single motor drive 

systems), the model size and complexity required to fully capture interactions in 

marine and aerospace more-electric networks makes these challenges very significant 

[31]. This issue is explored further in the next chapter. 

 

Given the importance of modelling and simulation to the overall system development 

process, the associated challenges outlined above must be addressed in order to 

maximise its role. This aspect is indeed the focus of this thesis, which proposes novel 

methods for the more effective modelling and simulation of electrical networks with 

a high penetration of power electronics, typical of those found in marine and 

aerospace more-electric applications. 

 

2.6 Chapter Conclusions 

This chapter has given a brief overview of the more-electric concept as applied to 

marine and aerospace technologies. It has reviewed the novel technologies used in 

each application, discussing the benefits and challenges associated with them. Power 
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electronic converters were identified as being essential to the operation of more 

electric marine and aerospace systems by providing both the means to interface other 

novel technologies to the electrical distribution network as well as facilitate the 

control and conditioning of electrical power around the network. The chapter 

concluded by discussing the challenges faced in the development of marine and 

aerospace more-electric systems. 
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Chapter 3 – Research Justification and Literature 

Review 

 

3.1 Chapter Overview 

In the review of marine and aerospace more-electric systems conducted in Chapter 2, 

the significance of modelling and simulation to the development of these systems 

was discussed. More specifically, it was argued that there is a great need to utilise 

network-level dynamic simulations to identify key operating deficiencies and issues 

at an early stage in the design process. Thereby, de-risking the system to some 

extent. The size and complexity of the modelled systems however, presents 

significant barriers to their efficient and accurate simulation [1]. Appropriate 

methods and techniques are hence required to overcome the difficulties faced and 

maximise the contribution of modelling and simulation to the development of future 

marine and aerospace systems. 

 

This chapter discusses the role of network-level modelling and dynamic simulation 

in the development of marine and aerospace more-electric systems and explores the 

challenges faced which limit its effectiveness. It investigates the consequences of 

having significant levels of penetration of power electronic converters within these 

networks and identifies how this leads to computationally inefficient simulations. As 

a result, the potential benefit of modelling and simulation to the design and 

development of marine and aerospace more-electric architectures is not achieved in 

full. 
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This chapter presents a review of the existing literature covering suitable methods 

which could improve the efficiency of simulating multi-converter network 

architectures. Whilst several of the methods reviewed show real promise for this type 

of application, all have key factors limiting their effectiveness. This chapter hence 

identifies that there is still a requirement to develop novel methods for this purpose.  

 

3.2 The Importance of Modelling and Simulation to the 

Development of More-Electric Systems 

This section will discuss in detail the role of modelling and simulation to the 

development of marine and aerospace more-electric systems and its importance in 

this process. By considering this aspect, and later, the challenges faced which limit 

the potential benefit of modelling and simulation to the overall design process, it is 

intended that this section will provide the context from which the methods in existing 

literature can be properly evaluated.  

 

As discussed previously in Chapter 2, one of the key underlying challenges faced in 

the successful development of more-electric network architectures for marine and 

aerospace applications is the uncertainty concerning the integration of so many new 

technologies into a single low inertia network [2, 3]. Little is known about how these 

technologies will interact and what the subsequent impact on the operation and 

management of the rest of the network will be [4]. A good example of this is the 

negative impedance phenomenon deriving from the use of constant power loads in dc 

distribution networks [5, 6]. Whilst the performance of these load types is perfectly 
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robust in isolated test environments, their reaction to other network events can 

potentially lead to the collapse in voltage across the entire electrical power network. 

 

As such, whilst the need still remains for device level modelling (i.e. the 

representation of single loads/generators and/or converters), there is now an 

emerging need for network-level modelling of these systems (i.e. the representation 

of large sections of, or even the whole of the power distribution network) in order to 

characterise the interactions between individual systems and evaluate the dynamic 

response of the electrical power network [1, 4]. Indeed, it is in this area, that 

modelling and simulation could provide an especially valuable role by derisking 

more-electric architectures at an early stage of their development. 

 

3.2.1 The Challenge of Computational Efficiency 

There is one key challenge which prevents the benefits of network-level modelling 

and dynamic simulation being fully realised though. In order to accurately represent 

the behaviour of a large number of active systems, interconnected through an 

electrical network, a complex model is often required [1, 4]. The key challenge of 

this complexity is the significant associated computational burden and the slow 

running simulations that result from this. The latter aspect is particularly 

disadvantageous for network level modelling and simulation, where large numbers of 

separate simulations often have to be conducted to achieve the result required [1, 4]. 

For example, if modelling and simulation is used as the first stage of designing an 

electrical protection system, the impact of all possible fault types on the network 

must first be considered [7]. The completion time of the simulations conducted must 
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be reasonably short if this and other similar tasks are to be completed over a practical 

time scale. 

 

Slow running simulations are also problematic when longer transient events such as a 

generator restart or propeller torque oscillations are simulated [1, 4]. For 

investigations such as these, it is important that the true behaviour of every system 

affected by the transient event is accurately captured. However, this requirement can 

lead to long running simulations if the model utilised is very complex in nature.  

 

Marine and aerospace more-electric architectures face an additional challenge in 

their efficient simulation. Many of the active systems within these networks are 

interfaced through power electronic converters. As discussed in Chapter 2, the 

behaviour of these converters is often very influential on the response of the overall 

network [3, 8]. As such it is necessary to represent the dynamic behaviour of these 

devices accurately if the simulation results produced are to be representative of the 

real system. Models of power electronic converters require small simulation step 

sizes to be utilised in order to accurately represent their typically high frequency 

switching behaviour [9, 10]. This aspect in itself is not a significant limiting factor 

though. The efficient simulation of a single converter system over a period of a few 

milliseconds can be readily achieved without the need to employ techniques to 

improve simulation efficiency [11].  

 

The difficulties arise when models of power electronic converters are incorporated 

into large electrical networks (such as those utilised in marine and aerospace 
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applications) where there are other systems with much slower responses. Table 3.1 

illustrates the typical range of system responses that might be found in marine and 

aerospace applications [12]. 

 

Table 3.1.  Typical system response times 

System Response Time  

Semiconductor switch commutation ~1µs 

PWM period 0.5ms – 2ms 

Rotor time constant 50ms – 1s 

Propeller run up time 20s – 60s 

Mechanical disturbance 10s – 100s 

 

 

Hence, in order to fully capture the dynamic behaviour of the electrical network 

containing systems with a wide range of response times, it is often necessary to 

simulate transient events over periods of several seconds or more. As such, the 

models of the power electronic converters are also simulated over this period, but 

using a finer resolution so that the behaviour of the converters is accurately 

modelled. Simulations of this nature thus have a high computational requirement and 

as a result run very slowly. This behaviour is particularly undesirable for network-

level simulations of marine and aerospace more-electric architectures as it prevents 

the full benefit of modelling and simulation to the design and development of these 

systems from being realised. 

 

Whilst there is some comfort from the developments in microprocessor technologies 

providing improved computing power, the ever increasing demands on modelling 

and simulation are likely to go some way to cancelling out any gains from these [4]. 
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In essence, as computing power increases, the complexity of models utilised often 

also increases, effectively providing no net benefit. As such, there is a clear need to 

identify and utilise methods which can reduce the computational burden of 

simulating electrical networks with a significant penetration of power electronic 

converters whilst still maintaining an appropriately high degree of accuracy. 

Achieving this will maximise the potential benefits of modelling and simulation to 

the design and development of marine and aerospace more-electric systems. 

 

3.3 Literature Review 

Existing literature on the modelling and simulation of power electronic converters is 

very extensive, addressing a variety of research challenges relating to a wide range of 

applications [13, 14]. As such, only the literature concerned with improving 

computational efficiency of simulating power electronic converters utilised in the 

setting of a larger electrical network will be considered as this aspect is the most 

relevant to marine and aerospace domains. It is worth noting that there is a relatively 

small range of such methods in comparison to the multitude of work being conducted 

on small power electronic systems. This reflects the fact that the requirement to 

perform network-level dynamic simulations of marine and aerospace more-electric 

architectures (and indeed other network types) is an emerging application [1, 4, 15]. 

 

3.3.1 Model Abstraction Methods and Solver Considerations 

This section will first consider model abstraction methods. These involve 

representing devices or systems at a low level of detail so that the primary 

behavioural aspects of interest are represented whilst other aspects which are of 
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lesser interest are neglected [1]. It then reviews solver options for effective and 

efficient simulation of electrical power networks containing power electronics, 

examining how these may be different to those of small converter systems (i.e. those 

typically containing one or two converters). 

 

The authors in [14] provide guidelines for modelling power electronics in electrical 

power applications. These are aimed at power engineers who wish to incorporate 

power electronics into their power systems models. The core theme of this paper is 

utilising model abstraction methods to reduce the computational burden of 

simulating power electronics within an electrical power network model. Through 

abstraction, the governing equations of the converter model are simplified, and the 

computational requirement associated with it is reduced. This in turn leads to quicker 

simulations.  

 

The paper gives several good examples of how the abstraction of power electronic 

converters within electrical power systems models can be achieved. Of the methods 

given, there are a few which are particularly relevant to marine and aerospace 

applications. These are given below. 

 

The first method utilises simplified semiconductor switch models instead of detailed 

models to characterise the power electronics. The paper argues that when conducting 

network-level simulations, the loss in accuracy incurred by representing the turn-on 

and turn-off characteristics of the converter switches in a simplified linear fashion is 

negligible. This method is particularly relevant for marine and aerospace applications 
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where the longer term controlled response of the power electronic converters in 

relation to some other network event or transient is usually the aspect of interest. 

Whilst the operation of the semiconductor switches within these converters is the 

means for which the response of the controller can be realised, the specific 

transitional behaviour of these switches is usually of a lesser importance. In this 

manner, as long as the dynamic response of the modelled converters is not affected 

significantly, errors in their high frequency pulsed outputs are often acceptable in 

light of the reductions in simulation computation that can be achieved. 

 

An example of this first method is illustrated in figure 3.1, which shows detailed 

switching characteristic of a diode (part (a)) and the simplified equivalent 

characteristic (part (b)) [14]. 

 

 

Fig. 3.1.  Detailed and simplified representations of a diode static characteristic 

 

Part (a) of figure 3.1 incorporates aspects such as reverse breakdown, leakage current 

and forward voltage drop. These aspects are represented in a simplified manner or 



44 

neglected altogether in part (b), which illustrates the characteristics of a simplified 

model with reduced computational requirements. 

 

A second method listed in [14] involves representing groups of similar power 

electronics interfaced loads as a single scaled equivalent (where feasible). This 

method significantly reduces the number of converter models within the network, 

hence reducing the level of computation associated with it. In marine and aerospace 

applications, it is common to find groups of similar power electronics loads such as 

pumps, small motor drives and actuator systems [3, 8, 16]. By representing these 

similar systems as a single unit, the underlying dynamic response of the group of 

converters as a whole can still be captured accurately. Meanwhile, the number of 

converter models being simulated is significantly reduced, resulting in notable 

reductions in computational burden. Some of the higher fidelity model behaviour 

will be lost by grouping converters together like this, but this loss of detail is likely to 

be acceptable for most applications. 

 

This second method is illustrated in figure 3.2, which shows how a model of an 

electrical power network from a marine vessel [17] can be simplified by grouping the 

four 300kVA pump loads into a single 1.2MVA equivalent. 

 



45 

 

Fig. 3.2.  Grouping of pump loads within a marine electrical network 

 

A third method given in [14] suggests representing only the front end of a drive 

system when the impact of its interface with the rest of the network is the primary 

interest. In a similar manner to the previous example, this method reduces the 

simulation computation of a network model by effectively reducing the number of 
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power electronic converter models present within it. Again, this approach may be 

feasible in some marine and aerospace applications where there are two-stage 

converters (e.g. rectifier-inverter combination) interfacing to other systems which are 

out with the scope of investigation. This method also appears to be particularly 

compatible with the previous one. 

 

Figure 3.3 illustrates how the third method suggested in [14] can be implemented on 

an ac:dc:ac motor drive system. 

 

 

Fig. 3.3.  Simplification of a motor drive system to a front end only system 
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In the example shown in figure 3.1, the diode bridge front end of the converter is 

retained so that the impact of its operation on the remainder of the busbar connected 

loads and systems is accurately represented. However, by removing the inverter and 

motor from the model of the drive system, the associated computational requirement 

is greatly reduced. 

 

The paper then provides a small number of examples to illustrate how the methods 

described can be implemented. These examples are typically only of one or two 

converters but the methods put forward are readily transferable to multi-converter 

systems such as those found in marine and aerospace more-electric architectures. 

 

Overall, the methods put forward in [14] are focused on reducing the computational 

burden of multiple power electronic converter models within the context of a larger 

electrical network model. Additionally, these methods can be readily implemented, 

are not limited to specific software packages or modelling approaches, and offer 

potentially significant savings in computational effort of network-level simulations. 

Hence, these methods (and indeed the theme of abstraction in general) are very 

relevant to the network level modelling and simulation of marine and aerospace 

more-electric systems. More generally, from [14], it is apparent that when 

investigating the response of the electrical network, detailed models of power 

electronic converters provide more detail than is often actually necessary. As such, 

there is a real potential for the abstraction of these models without creating 

significant levels of error in the simulation results. This theme should be investigated 

in further research work.  
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It is worth noting however, that the methods put forward in [14] do require some 

thought in their implementation. For example, it can be difficult to ascertain whether 

grouping several power electronic loads as a single system will lead to unacceptable 

levels of error or not. In a marine or aerospace network where there is often little 

cable impedance between separate loads (this was discussed in Chapter 2), the 

interaction between these similar systems under certain network operating states may 

then impact on the overall network behaviour. By grouping these power electronics 

loads together in the manner described in [14], this impact on the network response 

would be lost. As such, it seems that the model abstraction methods suggested must 

be implemented carefully (requiring some degree of technical appreciation) so that 

unacceptable levels of error are not introduced. 

 

The authors in [14] do make one more interesting point. They review different types 

of simulation software and discuss which is best for the modelling and simulation of 

electric power networks containing power electronics. Dedicated power systems 

transient simulation tools (for example ATP [18], PSCAD [19] and 

SimPowerSystems [20]) are recommended for this task. They claim that whilst these 

packages are not as capable as dedicated power electronics simulation tools (for 

example PSIM [21], Caspoc [22] and ORCAD [23]) for modelling detailed converter 

behaviour, their simpler converter models are still sufficient for network-level 

studies. Additionally, with their typically extensive model libraries and general 

flexibility, they are far more capable at modelling the rest of the electrical network 

than the dedicated power electronics simulation tools.  
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As such, the authors feel that power systems transient simulation tools represent the 

best overall choice for modelling electrical power networks containing power 

electronics. On this basis, power systems transient simulation tools are likely to be 

the first choice platform for network-level modelling and dynamic simulation of 

marine and aerospace architectures. As such, any novel methods identified should 

ideally be compatible with these packages. It is acknowledged that the selection of 

simulation software is often a personal choice with many other factors impacting on 

the final decision. However, to identify or later develop novel methods for the 

simulation of multi-converter networks which are not compatible with power 

systems transients simulation tools would be to severely limit the possible scope of 

application of such methods.   

 

A good example of this limited scope of application is the method presented in [24]. 

The authors put forward a method for the real time simulation of a small high-

voltage dc (HVDC) power electronic system. It utilises a custom solver algorithm for 

the fixed step simulation of detailed converter models. This algorithm re-adjusts the 

model architecture using hidden computational steps to maintain accuracy at switch 

transitions whilst minimising the computational requirement of the overall 

simulation. Whilst this method is clearly successful in reducing the computational 

requirement of simulating a power electronic system, it would be difficult to 

implement within power systems transient simulation tools, which employ their own 

solver algorithms. As such, the method presented in [24] is only truly applicable only 

in a limited range of software tools. In addition, these tools are also unlikely to be 

preferred choice for modelling marine and aerospace more-electric systems. 
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Additionally in [24], the use of fixed and variable step solvers for the simulation of 

power electronic converter models is discussed. It states that variable step solvers 

provide a greater level of accuracy than fixed step solvers by reducing the 

simulation step size taken during periods of the simulation in which the model 

exhibits highly dynamic behaviour. However, the simulation step size is increased 

during periods of almost steady state behaviour so that the overall computational 

effort required is minimised. Indeed, achieving the same level of accuracy with a 

fixed step solver, would require the application of a very small, constant step size 

throughout the entire simulation, and would hence be less efficient. In addition to 

this, the use of a fixed step solver in power electronics applications causes the 

switching transitions within converters to be delayed to coincide with the solver time 

steps, reducing the accuracy of the simulation results. The authors of [10] also 

discuss similar findings.  

 

Interestingly, both [10] and [24] claim that in some cases of power electronics 

simulation, the application of a fixed step solver may actually be more efficient than 

a variable step solver! They argue that by being able to fix the solver step size taken, 

it is possible to prevent small simulation steps being taken around switch transitions, 

reducing the computation required to simulate a converter model. Both papers warn 

that this approach produces notable errors in the results produced but state that in 

some applications, where the underlying lower frequency behaviour of the 

converters is the main aspect of interest, these errors may be acceptable. In these 

cases, reductions in the overall computational requirement of the simulation can be 

achieved.  
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Whilst variable step solvers are often preferred for small converter systems where 

the accuracy in the detailed behaviour of the converter is necessary, the opposite is 

true for larger power networks containing multiple converters. For these 

applications, the level of error produced by the use of a fixed step solver operating 

with a relatively large time step is often acceptable in light of the computational 

savings achieved. This issue is clearly a complex one, and given that many power 

systems transient simulation tools provide options for the use of variable step or 

fixed step solvers, it is also very relevant to the network-level simulation of marine 

and aerospace more-electric systems. As such, this issue is explored further in 

Chapter 6. 

 

3.3.2 Real Time Simulation Methods 

It is worth noting that whilst the method presented in [24] is not necessarily suited 

for use in marine and aerospace applications (as a result of its incompatibility with 

power systems transient simulation tools), it is working towards a very similar set of 

objectives as those laid out at the start of section 3.3. In order to achieve real-time 

performance of a simulated power electronic system, the authors were seeking to 

develop a method which either significantly reduced the computational requirement 

of the simulated electrical network or significantly improved the efficiency of this 

computation (or preferably both). These requirements also hold true for the network-

level modelling and dynamic simulation of marine and aerospace more-electric 

systems. 
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On this basis, Section 3.3.2 considers other papers which present methods 

specifically developed to achieve real time or near real time simulation of power 

electronics and power distribution systems. Whilst real-time simulation is not a 

specific requirement for network-level simulations of marine and aerospace more-

electric architectures, the methods and techniques employed could still be utilised to 

achieve significant increases in simulation speed (i.e. to achieve near real time 

simulation speeds).  

 

Four separate methods which facilitate real time or near real time simulation of 

power systems and power electronics are reviewed in this section. These are listed 

below. 

• The first example presented in [25] utilises clustered computer processors in 

order to deliver increased computational capabilities for achieving real time 

simulation of power electronics systems. In conjunction with this, a number 

of methods for refining models to reduce their computational requirement are 

also presented. In line with the guidance given in [14], these methods include 

utilising grouped network impedances and simplified switch models within 

the converters. The refined model is then split into fast and slow parts, 

forming a multi-rate model whose computation is split over several machines. 

Using this approach, the paper presents a model of a twelve-pulse rectifier-

inverter motor drive, constructed within a commercially available power 

systems simulation software package (the SimPowerSystems block set of 

Matlab Simulink [11]) and simulated in real time.  
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• A second publication on the real time simulation of power electronics [26] 

maintains the theme of model partitioning but this time using a single 

computational machine (compared to the clustered approach demonstrated in 

[25]). The method described isolates the equations defining the converter 

from the remainder of the network model. In this way, each switching action 

of the converter does not impact on the larger network equation set allowing 

more efficient computation of the model to be achieved.  

 

• The method put forward in [27] facilitates the real time simulation of AC 

motor drives. Again, the core issues of achieving computationally efficient 

simulation of power electronics systems are discussed throughout the paper. 

However, in contrast to [25, 26], this paper argues that partitioning a model 

across two or more computational engines results in stability issues and that 

the use of a single simulator is much more robust. The paper focuses on 

reducing the computational burden of power electronics simulation by 

combining the converter and motor models in order to achieve real time 

simulation of an AC drive system. 

 

• Whilst not striving towards real-time simulation capabilities, a clustering 

based approach similar to the methods discussed above is presented in [28]. 

This paper puts forward a software framework, Distributed Heterogeneous 

Simulation (DHS), which facilitates the integration of various models (even 

developed in different software packages), into a single combined model. The 

computation of this integrated model is then split across multiple processors 
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in order to achieve substantial reductions in simulation time. At this stage, it 

appears that a significant manual effort is still required to configure the 

models for use in the DHS framework. However, the capability to integrate 

multiple software packages is particularly appealing for some aspects of 

network-level modelling of marine and aerospace architectures where 

investigations into interactions between electrical and mechanical systems are 

being conducted [2, 29]. Indeed, some of the applications of this technique 

listed for DHS in [30] are marine and aerospace systems. Perhaps the most 

interesting aspect of this technique is that (unlike other real time techniques) 

it does not attempt to improve the simulation efficiency of individual models, 

but rather reduces the simulation time by spreading the simulation 

computation across multiple processors. As such, computational reduction 

methods such as those presented in [14] will be compatible with the DHS 

method, offering even greater potential savings in simulation run time. 

 

The four methods presented above for the real time or near real time simulation of 

power systems and power electronics are very effective at reducing the 

computational requirement and/or increasing the computational efficiency of 

simulations, providing potentially significant improvements in simulation completion 

times. These improvements are obtained without incurring unacceptable levels of 

error for the nature of the studies conducted. Indeed, some of the methods presented 

actually produced much lower levels of error than would be considered necessary for 

network-level modelling and simulation of large power networks. In addition to these 

aspects, the methods presented are compatible with power systems transient 
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simulation tools and often with other tools as well. All these attributes make these 

methods very applicable to the network-level modelling and dynamic simulation of 

marine and aerospace more-electric architectures. However, there is one key 

drawback which prevents their wide scale adoption to these domains at this point in 

time. 

 

In every method reviewed, a substantial build effort is required to refine the 

composition of the models into a format that is suitable for the real time methods to 

be applied. This refinement is largely a manual process, requiring a good knowledge 

and understanding of the real time or near real time simulation method in order to 

implement it properly and maximise the benefits achieved. This aspect is especially 

concerning given that most of the methods reviewed are demonstrated on electrical 

networks with only one or two power electronic converters without any real 

discussion on the practical implications of expanding these methods to cover     

multi-converter systems.  

 

Ideally, any methods employed for the network-level modelling and dynamic 

simulation of marine and aerospace more-electric applications should be capable of 

being readily implemented whilst providing significant reductions in computational 

burden. At this point in time, the real time methods do not deliver on both of these 

requirements. As such, this author does not believe that these methods are fully 

suitable for the marine and aerospace more-electric domains just yet. The long model 

build and development time far out weigh the computational benefits offered by 

these methods. In the future when these capabilities have been developed further and 
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the refinement/formatting process is more automated, and as a result much quicker, it 

is believed that these methods will become common place, transforming the potential 

capabilities and benefits of modelling and simulation to marine and aerospace more-

electric (and indeed other) applications. However, because this potential is still some 

way off, there is a requirement for intermediate techniques. Ideally, these should be 

compatible with the real time or near real time methods discussed so that whilst the 

two methods are developed in parallel, the benefits of each may eventually be 

combined.  

 

3.3.3 Behavioural Modelling Methods 

This section will now consider four papers discussing an additional type of 

abstraction method for power electronic converters. This method, behavioural 

modelling is generally applied to networks with one or two converters in the existing 

literature but is scaleable to accommodate multi-converter networks. It is also 

compatible with power systems transient simulation tools, and real time simulation 

methods making it a particularly flexible and adaptable method. The applicability of 

the behavioural modelling approach to marine and aerospace more-electric systems 

is discussed at the end of this section. 

 

In line with the guidelines given in [14], the author in [10] states that detailed switch 

models are not necessary for network-level simulations. This author argues rather, 

that it is the external behaviour of the power electronic converter that is often the 

main focus of interest during studies of this type. The paper then presents a group of 

modelling methods which are able to replicate the external behaviour of the 
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converter without specifically modelling the internal switching action. The paper 

claims that by doing this, the computational requirement associated with the 

converter model is reduced, while the behavioural aspects of interest (i.e. the external 

behaviour of the converter) are retained. This group of methods are another form of 

model abstraction (as discussed in [1] and [14]). 

 

The three separate methods described in [10] are termed behavioural modelling 

methods. These methods each achieve a different level of abstraction and are 

described below. 

 

• The first of these is the ideal-model method. This method involves 

representing the semiconductor devices of the converter with linear 

equivalents whilst neglecting any small stray impedances. Note that this 

method follows the same principles as one of the guidelines given in [14] 

regarding the representation of power electronic converters in a simplified 

fashion. The paper claims that both aspects of this method greatly reduce the 

computational burden of the converter model. It also points out that this is the 

most easily and readily implemented technique, and as such is the most 

commonly utilised. Note that according to the definition given by the author 

earlier in this paper, this first method is not actually a true behavioural 

modelling method as the internal behaviour of the converter is still 

represented, albeit in a slightly simplified form. The remaining two methods 

presented, do meet the author’s definition of a behavioural modelling method 

however. 
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• The functional model approach is the second method listed. This method sees 

the replacement of the switched converter model with an arrangement of 

controlled current and voltage sources. Using the control and pulse generation 

circuits of the original switched converter model, the voltage and current 

sources can be operated in such a manner as to replicate the external terminal 

conditions of this switched model. However, by neglecting the internal 

behaviour of the converter, its computational requirement is reduced 

significantly (even more so than with the ideal model approach). The paper 

highlights that with this approach, the high-frequency content of the converter 

model’s output is successfully retained. However, it does also indicate that it 

is not possible to monitor the internal voltages and currents of the converter 

and that any dead-time switching effects [31] can not be accommodated. In 

accordance with the guidelines given in [14] though, these aspects are often 

of little consequence for network-level modelling of large systems.  It is 

worth noting that in-line with guidelines given in [14], the functional 

modelling approach could also be utilised to implement just the front end of a 

converter, whereby the load or source conditions at the non-represented end 

would be assumed to be constant or modelled by some simple function. This 

approach greatly simplifies the equations of operation and provides further 

reductions in the computation of any associated simulations. 

 

• The third method listed in the paper is the average model approach. This 

method neglects the high frequency component of the converter, choosing 

instead to only represent the underlying low frequency components. This is 
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achieved through the use of controlled voltage and current sources in the 

same manner as the functional modelling approach, but this time with the 

behaviour of the converter being represented in a time-averaged fashion. The 

paper describes how by only modelling the low frequency components of the 

converter model outputs, its computation is greatly simplified and larger 

solver step sizes can also be employed, further reducing its computational 

requirement. The author of the paper quickly points out that the switching 

harmonics are lost with this approach though. However, because the averaged 

output of the converter is derived from its original control and pulse 

generation functions, its dynamic response is still maintained. Hence, the 

author claims that this approach still enables accurate investigations into the 

interactions between network connected systems whilst only requiring only a 

minimal level of computation to simulate it. To illustrate this aspect, the 

paper includes a number of worked examples where the averaged model 

approach is shown to simulate up to 30 times faster than the detailed switch 

model. 

 

The authors in [13] echo these views on the benefits of the averaged model approach. 

Whilst this paper is more focused on low power applications rather than networks of 

a similar size and nature to marine and aerospace systems, the same underlying 

concepts of detailed models, ideal models and averaged models are discussed. Indeed 

the authors in [13] feel that the averaged model approach is the ideal method for 

investigations into converter control and network response, and that the non-

averaged methods listed provide far more detail than is often necessary. The paper 
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uses an example of a dc-dc boost converter to illustrate how the higher frequency 

effects of the converter (such as the switching ripple) are lost through this approach, 

while the core underlying low frequency behaviour is unaffected. This is established 

by comparing the results of a time-averaged model to that of a detailed switching 

model.  

 

It is worth noting that this approach of comparing the response of a behavioural 

converter model to that of the equivalent detailed switch model appears to be the 

accepted method to validate the accuracy of that behavioural model. Indeed, this 

approach is also used in [10]. Some care should be taken using this approach though 

as it does not necessarily confirm that the response of the behavioural model matches 

that of the real hardware converter. The behaviour of the detailed model must be 

validated first to ensure this. Hence, although the response of the behavioural model 

may be an accurate representation of the detailed switch model, it may still be 

completely unrepresentative of the real device. 

 

In the absence of hardware rigs to achieve full validation of every converter model 

however, comparing the response of the behavioural model to that of an accredited 

switch model (i.e. one whose general operation has been checked by an expert to 

confirm that it is indeed representative of the real system [32]) offers a useful method 

to assess its accuracy. 

 

The remaining two papers to be reviewed in this chapter provide examples of the 

application of the behavioural modelling approach to network-level modelling and 
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simulation of electric power systems containing power electronic converters. By 

addressing issues that are relevant to the marine and aerospace domains, these papers 

will provide further insight into the utilisation of this method for these applications. 

 

The authors in [33] present a model of a space station electrical network. With 

multiple dc-dc converters incorporated and a desire to study the dynamic behaviour 

of the full network as efficiently as possible, functional converter models with time-

averaged outputs are recognised as a being particularly suited to this application. In 

line with the approach taken in [13] and [14], the performance of the functional 

converter models within the network is compared to that of the original switched 

models (which have been validated against the hardware system). This is done for 

different load change conditions and other network transients in order to validate 

their behaviour. Negligible differences between the functional and detailed models 

are demonstrated. Once again, significant reductions in the computational 

requirement of network simulation are reported. 

 

In addition to the case studies presented, the authors in [33] make some interesting 

observations on the application of time-averaged functional models to network-level 

simulation studies of electrical power systems. Firstly, they recommend retaining any 

circuit based filters for the power electronic converters when using behavioural 

models. This remains the case even if time-averaged models are utilised. In the 

absence of high frequency switching effects, it would appear that these filters are 

redundant. However, the authors of this paper point out that it is necessary to retain 
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the filter circuits so that their impact on the underlying dynamics of the electrical 

network is not lost. 

 

Additionally, the authors discuss the possibility of building hybrid network models 

which contain both detailed switch and functional converter models. If the 

investigations into the behaviour of a single converter within the network model are 

such that a detailed model of this converter must be used, the authors recommend 

against utilising detailed models for the remainder of the converters in the network. 

Instead, they state that utilising functional models for these remaining converters will 

reduce the computational requirement of an overall network model without having 

any notable impact on the response of the detailed converter being studied. Although 

the simulation step size may have to be much smaller than is typically required by 

functional or time-averaged functional models, the use of these models will still 

serve to improve the simulation speed in comparison to a network where all the 

converters are modelled as detailed switch models (which have a higher 

computational requirement than functional models). It is also possible that this 

approach could be beneficial if there is one particular converter within the network 

model that is difficult to represent in a functional manner (for example, if it has 

complex circuit topology or the relationship between its input and output is not easily 

defined [10]).  

 

The authors in [9] present functional models of matrix converters for marine 

applications. In line with previous papers reviewed, the authors of this paper claim 

that the functional modelling approach is ideal for developing control methods for 
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converters and for assessing their behaviour within larger electrical networks. 

Indeed, the novel control strategies presented in the paper are demonstrated using 

results obtained from a functional model of a matrix converter.  

 

In contrast to the other papers discussing behavioural or functional modelling 

methods, the authors of this paper include some discussions of the limitations of the 

functional modelling approach. Unfortunately, these discussions are not reinforced 

with mathematical proof or simulation results and as such would require further 

analysis to validate the claims made. However, these limitations are worth 

considering as they will give a fuller appreciation of the applicability of behavioural 

and functional methods to the network-level modelling and simulation of marine and 

aerospace more-electric systems. The limitations identified in [9] are listed below. 

 

• Functional models are not accurate for some modes of operation. One 

example of this is when all the semi-conductor switches within the converter 

are switched off.  

• Converters whose mode of operation is dependant on external circuit 

conditions are difficult to represent in a functional manner.  

• Functional converter models are not accurate under fault conditions [9] 

(although the paper fails to elaborate on this point any further). 

 

With reference to the first limitation, when the converter is operating in this 

particular state, it is not possible to replicate the open circuit conditions normally 

created by a switched converter model with the controlled voltage sources of the 
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functional equivalent model. This limitation does not have a particularly significant 

impact on the applicability of the functional modelling method for marine and 

aerospace systems though and is probably very straight forward to overcome. 

 

The second limitation listed above affects naturally commutating converters (e.g. 

diode and thyristor converters) and some types of resonant converters [31]. The 

authors in [11] and [34] discuss similar findings where it is noted that in order for 

functional type models of diode bridge rectifiers to be accurate, a knowledge of the 

circuit and power source conditions are required so that the switch transitions of the 

rectifier could be calculated in advance. Failing this, the co-dependancy between the 

operating state of the network and the converter results in highly erroneous model 

behaviour and even failed simulations. The authors in both papers quickly point out 

that for islanded systems such as a marine electrical power distribution networks 

operating with highly dynamic load conditions, this requirement for knowledge about 

the circuit and power source (or sources) is nearly impossible to meet. As such, the 

authors decide on the use of a simplified switch model for the given marine 

application. 

 

Hence, the limitation of the functional modelling approach identified in [11, 34] with 

regards to diode and thyristor converters has notable consequences on the application 

of functional models in marine and aerospace domains where such converters are 

common place. For electrical network models containing converters of this type, it is 

likely that the hybrid based approach described in [33] would have to be employed. 

This method suggests the utilisation of ideal switch models for any converters which 
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cannot be represented in a functional manner. This approach may still provide useful 

reductions in simulation computation, as the typical operating frequencies of 

naturally commutating devices such as diodes and thyristors are of the same order of 

magnitude as the fundamental circuit frequencies. It is expected that the ideal switch 

models of these converters could operate using similar simulation time steps to those 

required by averaged functional models of other converters (although with higher 

computational requirements). As such, the overall impact on the simulation running 

speed may not be particularly detrimental.  

 

With regards to the third limitation listed in [9], it is interesting that this aspect is not 

raised in [33] where a case study of a fault scenario is even given. However, it is 

possible that the current limiting control loop added to the functional converter 

model in [33] may have masked this behaviour. However, given that not all 

converters operate with such control schemes, this issue of potential inaccuracy has a 

notable impact on the applicability of the functional modelling to marine and 

aerospace more-electric domains where investigative fault simulations are of great 

importance (as discussed in Chapter 2). This aspect is not mentioned in any of the 

other publications considered (including those not mentioned in this review) and as 

such it is difficult to ascertain the reasons for this limitation. 

 

Initially neglecting the limitations of the behavioural and functional modelling 

approaches described above, these methods seem ideally suited for use within marine 

and aerospace applications. They can be implemented readily, are compatible with 

power system transient simulation tools (and also with the real time methods listed 
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earlier) and are scalable to accommodate any size of network with a significant 

penetration of converters. In addition, the potential reductions in the computational 

requirement per converter are significant, especially if time-averaged representations 

are implemented. 

 

The limitations of the behavioural and functional approaches listed above cannot be 

completely overlooked though. The implications of these are such that in the 

network-level modelling and simulation of marine and aerospace more-electric 

architectures, there will be some converter topologies and some simulation study 

types which are simply not compatible with these methods. Under these conditions, 

switched models of the converters (either ideal or detailed) must be utilised and the 

reductions in the simulation computation of the networks considered are lost. 

 

3.4 Conclusions  

From the review of existing literature, it is apparent that there is no single technique 

which will facilitate a significant increase in the computational efficiency of 

simulating electric power networks with a significant penetration of power 

electronics. Whilst the guidelines laid out in [14] present some good abstraction 

options for reducing the computational requirement of models of multi-converter 

networks, these alone are unlikely to be sufficient to achieve this aim.  

 

The real time and near real time techniques reviewed attempt to improve upon this 

position by employing methods to perform the required computation in more 

efficient ways. This is generally achieved through partitioning of models and by 
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delivering an increased computational capability through the use of paralleled 

processors. These methods offer substantial rewards in terms of increased simulation 

speed and would be ideally suited to the network-level modelling and simulation of 

marine and aerospace networks if it were not for the long model build time and 

expertise presently required to implement models on real time platforms. As such, 

although it is anticipated that these methods will be the future standard for modelling 

and simulation, it is this author’s opinion they are not at that stage yet. 

 

The behavioural modelling approach seems ideally suited to marine and aerospace 

applications for the reasons given in the previous section. The inability to represent 

natural commutation devices is not a significant shortcoming if the hybrid approach 

is adopted. However, the reported poor accuracy during simulated fault conditions 

severely limits the options for the use of the behavioural modelling approach. This is 

disappointing because the computational savings resulting from this technique and its 

modularity (making it suitable for multi-converter networks) would otherwise make 

it ideal for application to the network-level modelling and dynamic simulation of 

marine and aerospace more-electric networks. 

 

As such, there still remains a need for an effective method which enables efficient 

simulation of electrical network architectures with a significant penetration of power 

electronics. The absence of such a method presently places an effective limit on the 

potential contribution that can be made by modelling and simulation in the design 

and development of marine and aerospace more-electric architectures. 
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On the basis of this review, two recommendations can be made. Firstly, whilst the 

reasons behind the difficulties of modelling naturally commutated converters in a 

functional manner are well documented [34], there is lack of similar information 

regarding the inaccuracy of functional models under simulated fault conditions. 

There is hence an opportunity to investigate this poor quality model behaviour in 

order to identify and inform the research community of the reasons behind this. Such 

analysis could then direct further efforts into refining the functional modelling 

approach so that it is more reliable under the given operating conditions. Secondly, 

other methods should be also be developed to reduce the computational burden of 

electrical networks with a significant penetration of power electronics in order to 

produce a method or group of methods that will enhance the value of modelling and 

simulation to the design and development of marine and aerospace more-electric 

systems. 
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Chapter 4 – Analysis of Algebraic Loops 

4.1 Chapter Overview 

Algebraic loops occur commonly within many different dynamic models including 

those of marine and aerospace electrical power systems. They also feature heavily in 

the functional model representations of power electronic converters discussed in the 

previous chapter and are a key issue throughout this whole thesis. It will be shown 

that when algebraic loops are present, the model states become dependant on both 

system inputs and outputs, requiring the use of computationally expensive iterative 

solvers to find a solution. This consequence can often limit the operating capabilities 

of many models and also cause difficulties during dynamic simulations. Identifying 

methods to address the problems caused by algebraic loops is hence vital to 

improving the capability of modelling and simulation to support the development of 

marine and aerospace more-electric systems. 

  

This chapter will discuss the concept of algebraic loops, providing examples of how 

they may occur within network-level models of marine and aerospace more-electric 

architectures (including within functional models of power electronic converters).  It 

will then describe the how these algebraic loops can be solved, examining the 

difficulties of this process as well as the resulting impact on simulation efficiency 

and accuracy. Commonly utilised methods for removing algebraic loops will be 

compared and contrasted. Through this analysis, the chapter will show that one of 

these removal methods does not in fact remove the algebraic loop, but actually serves 

to lessen the impact of its presence, which alters the ways in which this method 
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should be utilised. To conclude the chapter, the marine and aerospace algebraic loop 

examples are revisited and the process of determining which removal method is best 

suited to each is outlined. 

 

Currently, there is only limited literature available on the subject of algebraic loops 

in power systems simulation, but it is believed that they are one of the reasons that 

many simulations fail. As such, this chapter makes a notable contribution to the 

understanding of the impact of algebraic loops upon dynamic network-level 

simulations of power systems. 

 

4.2 Introduction to algebraic loops 

This section will introduce algebraic loops, discuss the forms in which they might 

occur within network-level models of marine and aerospace more-electric systems 

and outline why their presence may be problematic for the efficient computation of 

such models. The concepts presented in this section will form the basis for further 

analysis and discussions in later sections. 

 

An algebraic loop is a feedback loop containing only functions with direct feed-

through characteristics (i.e. those which have no inherent delay). As a result, the 

input of each function in the loop is directly dependant on its own output at any 

instant [1, 2]. In this manner, a co-dependency between the input and output of each 

function is created.  

 

It is important at this stage to make a distinction between the two main ways in 
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which algebraic loops can occur within power system simulation. The first results 

from the manner in which some non-linear components are modelled within power 

systems simulation tools [3]. The outputs and operating state of these models are co-

dependant, and as such they cannot be computed in a linear fashion with dedicated 

inputs and outputs.  

 

A good example of this is a diode, which possesses a turn-on characteristic driven by 

its terminal voltage and a turn-off characteristic driven by its output current. These 

interdependent characteristics make the diode difficult to model efficiently [4]. For 

example, if the model is configured such that the input is the terminal voltage and the 

output is the current conducted, the turn-on instant of the diode will be readily 

obtainable but the turn-off instant will be much more difficult to determine. This is 

because the diode should turn off when the current output of the model reaches zero. 

However, this requires that the current output of the model be fed back to form a 

second input so that state of the diode can be determined. This instantaneous 

feedback loop is an example of an algebraic loop. 

 

The algebraic loop of the type described above occurs in most circuit simulator 

packages and is largely solved out of sight of the end user [3] (although Chapter 6 

shows that this is not easily and efficiently achieved though). As a result, this type 

will not be considered in this chapter.  

 

The second way in which algebraic loops can occur is in the development of active 

models. These models have some control or behavioural characteristics that are a 
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function of external parameters (e.g. functional converter models). As will be 

illustrated later in this chapter, this feedback system can lead to the development of 

algebraic loops. These types of algebraic loops are common to all simulation 

packages, but are not usually out of sight of the end user. As such, this type will be 

the key focus of this chapter.  

 

Some simulation packages deal with the presence of this second type of algebraic 

loop by inserting delays into all measurement functions (i.e. those which provide 

information regarding the state of the modelled electrical system) [5]. This is in an 

attempt to break the causal dependence of the loop. However, this chapter will show 

that whilst this approach is an effective method for removing algebraic loops, it can 

also have a negative impact on the stability of the overall model, potentially leading 

to erroneous or even failed (i.e. divergent) simulations. As a result, although hard 

coding this solution method into the software tool keeps the issue of algebraic loops 

out of site of the end user, it is not always the best suited solution for a model. It can 

also have a significant impact on the effectiveness of the behavioural converter 

methods described in the previous chapter. 

 

Formally, an algebraic loop may be expressed mathematically as 

 

( ))(,)( tytfty = , (4.1) 

 

where y(·) and f(·, ·) are continuous real valued functions of variable t. A simple 

example of an algebraic loop is shown in figure 4.1. 



78 

 

Fig. 4.1.  Simple example of an algebraic loop 

 

This system is a linear feedback system and is defined mathematically as 

 

)()()( 21 tyktxkty −= , (4.2) 

 

where k1 and k2 are constants and x(·) is a continuous real valued function of variable 

t. The dependency of y(t) upon itself is evident in this equation. Whilst in the case of 

equation (4.2), a simple rearrangement will express the equation in standard form, 

this type of co-dependency can make more complex functions difficult to solve, often 

requiring the use of additional solver algorithms to find an approximate solution. 

This aspect will be explored in more detail later in the chapter.  

 

This chapter will now consider some examples of algebraic loops commonly found 

in models of marine and aerospace more-electric architectures. It is intended that 

these examples will provide some context for the later theoretical sections of this 

chapter as well as illustrate the impact on simulation efficiency and accuracy that the 

various forms of algebraic loop might have. 
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4.3 Examples of Algebraic Loops in Marine and Aerospace 

Models 

Within marine and aerospace power system models, algebraic loops are typically 

found embedded within representations of active devices or as part of control 

systems [6]. The following section describes three examples of algebraic loops 

commonly found within dynamic models of marine and aerospace more-electric 

architectures. These examples will be revisited at the end of the chapter to evaluate 

their impact on the network-level modelling of these applications in light of the 

analysis conducted later. 

  

4.3.1 Control System Example  

Consider the example shown in figure 4.2 of an electrical generator connected 

through a switched rectifier interface to a DC distribution busbar. 
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Fig. 4.2.  Power electronics interfaced generator system 

 

 

This system is typical of the generators utilised on the More-Electric Engine as part 

of the Power Optimised Aircraft (POA) program (described in Chapter 2 and 

depicted in figure 2.6) [7]. In this application, the converter control system receives a 

measurement of the DC busbar voltage magnitude and controls the converter 

switching pattern to regulate the current output of the converter and maintain this 

voltage at the required level [8, 9]. Within the hardware system, there will be delays 

in the measurement process, controller response and the actuation of the converter 

switching. However, within the modelled system, unless these delays are explicitly 

accounted for (and are often neglected in abstracted network-level dynamic models), 

all stages of this feedback loop could exhibit direct numerical feed-through and result 

in the creation of an algebraic loop. 
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Whilst the characteristics of this loop ultimately depend on the nature of the control 

system in operation, algebraic loops of this type are generally slow acting and stable 

in nature. In other words, any change in conditions external to the loop will typically 

only result in a slow and small change in the state of the loop. As will be discussed 

later in this chapter, loops of this type cause only minor difficulties in modelling and 

simulation. 

 

4.3.2 Surge Arrestor Example 

A surge arrestor is designed to protect electrical equipment from transient over-

voltages. This type of device operates by rapidly decreasing its internal impedance 

when the voltage across its terminals exceeds a threshold level. By doing so, it forms 

an effective short circuit, rapidly diverting the main flow of current away from the 

equipment it is protecting. During all other times, it maintains a high-impedance, 

non-conducting state so that there is little leakage current during periods of normal 

voltage conditions. Surge arrestors are often employed within various electrical 

applications to provide protection against high magnitude voltage transients which 

can be potentially damaging to the power electronic converters and other sensitive 

equipment types found within these networks [10, 11, 12]. 

 

Figure 4.3 shows a cross section of a Raycap StrikeSorb 80-20 surge arrestor [13], 

which has been fitted to the Engine Systems Validation Rig (ESVR) as part of the 

POA program [7].  
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Fig. 4.3.  Cross Section of a Raycap StrikeSorb 80-20 surge arrestor  

(www.raycap.com) 

 

For network-level simulations, it is often not desirable to model the internal physics 

of the device as this approach could be very computationally demanding. Instead, an 

abstracted model is often utilised (this aspect is discussed in Chapter 3) [14, 15]. This 

can be implemented using a voltage-controlled current source, which allows the 

straight forward implementation of the manufacturer’s supplied V/I device 

characteristics into the model. This approach is shown in figure 4.4. 
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Fig. 4.4.  Schematic of a look-up table based surge arrestor model 

 

The model operates by monitoring its own terminal voltage, Vm, and then derives the 

required level of current to be sunk by the controlled current source based on the 

implemented V/I curve. In this way, when the threshold terminal voltage is exceeded, 

the controlled current source is operated to draw current in order to reduce this 

voltage. 

  

To demonstrate the effectiveness of this device, figure 4.5 shows the line voltage 

generated in a simple test circuit model when the surge arrestor is not in use. Figure 

4.6 shows the line voltage and current drawn by the surge arrestor when it is included 

in this test circuit. It demonstrates the voltage being suppressed to less than 600V by 

the action of the surge arrestor sinking current.  
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Fig. 4.5.  Line voltage with the surge-arrestor not in use 

  

Fig. 4.6.  Suppressed line voltage (dashed line) and current sunk by surge arrestor 

(solid line) 

 

This type of surge arrestor model contains a single algebraic loop. The current sunk 

by the device is a function of the terminal voltage at that instant. However, this 

voltage in turn is directly affected by the current sunk; thereby creating a co-
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dependency between device voltage and current. In reality, the device would have a 

short operating delay, typically of the order of a few hundred nanoseconds at most. 

However, as almost all network-level simulations of marine and aerospace more-

electric networks are conducted using simulation time steps of at least one order of 

magnitude greater, the surge arrestor is usually represented as an instantaneous 

device in this setting. This in turn leads to the formation of an algebraic loop. 

 

Due to the high current sensitivity of the device during transient over-voltage 

conditions and the potential impact its operation can have on the behaviour of a 

number of other systems within the modelled network, the algebraic loop present 

within the surge arrestor model can be very computationally intensive to solve. It 

will be shown later that this aspect causes many difficulties when trying to utilise the 

device in larger marine and aerospace network models.  

 

4.3.3 Functional Model Example 

The implementation of the functional approach to modelling power electronic 

converters outlined in the previous chapter also creates algebraic loops [6, 15]. 

Although this aspect will be covered in greater detail in Chapter 5, it is necessary to 

also consider it in this chapter in order to gain a better appreciation of the impact of 

the algebraic loop on this modelling approach. 

  

Figures 4.7 and 4.8 show schematics of a three-phase inverter and its functional 

equivalent model.  
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Fig. 4.7.  Switched model representation of a three-phase inverter 

 

 

Fig. 4.8.  Functional model representation of a three-phase inverter 

 

The governing equations for both models are 

 

dcA VSV 1=
 

(4.3)
 

dcB VSV 3=
 

(4.4) 

dcC VSV 5=
 

(4.5) 

indcdc RIVV −=
 

(4.6) 

CBAdc ISISISI 531 ++=
, 

(4.7) 

0V 
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where VA, VB, VC and IA, IB, IC are the ac side voltages and currents of the inverter. 

The voltage Vdc is the magnitude of the non-ideal dc voltage source (derived from the 

ideal dc source magnitude V, and the product of the dc side current Idc and source 

internal resistance Rin). The impedances RA, RB and RC are the ac side loads. The term 

Sj is the j-th switch state and is defined as  

 

6,5,4,3,2,1for     
0

1
=





= j
otherwise

closedif
S j . (4.8) 

 

The states of switches S2, S4 and S6 are defined as, 

 

12 1 SS −=  (4.9) 

34 1 SS −=  (4.10) 

56 1 SS −= . (4.11) 

 

As discussed in Chapter 3, the functional equivalent model replicates the terminal 

behaviour of the switched converter model without specifically simulating the 

operation of its semi-conductor switches, providing significant reductions in 

computational requirement. It also readily interfaces with the same control and pulse 

generation systems as utilised by the switched model.  

 

However, a key disadvantage of the functional approach to modelling power 

electronic converters is that the functional converter models contain one or more 
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algebraic loops (depending on the converter topology). To illustrate this, figure 4.9 

shows the simplified process diagram of three-phase functional inverter model. 

 

 

Fig. 4.9.  Simplified process diagram of the three-phase functional inverter model  

 

By considering equations (4.3) through to (4.11) and figure 4.9 it is evident that the 

magnitude of the non-ideal dc source voltage (Vdc) is a function of the ideal source 

voltage (V) and the dc source current (Idc). This voltage determines the magnitudes of 

the ac side voltages (VA, VB and VC). These in turn, impact directly on the ac side load 

currents (IA, IB and IC) which then determine the dc current (Idc) magnitude. Hence, 

the dc side voltage (Vdc) is effectively dependant upon itself and an algebraic loop is 

thus present.  

 

In practice, because the ac side of the inverter has three phases, there are actually 

three parallel algebraic loops present in this model. Like the surge arrestor model, 

these are fast acting loops and are often governed by particularly complex equations 

of operation, especially when the converter is part of a larger network, making them 

more difficult to solve.  
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4.4 Root Finding Techniques 

Given the complexity of solving algebraic loops within larger network models, most 

simulation packages utilise iterative solver algorithms to perform this task [1, 16]. 

These algorithms estimate input and output values of all the functions within a loop, 

in this way seeking to reduce the error at each step until every function holds true to 

a specified tolerance. Some of the most common methods utilised are adaptations of 

root finding techniques.  

 

This section will introduce root finding techniques, providing some illustrative 

examples of their use. These descriptions form the basis for the following section 

which illustrates how these methods can be adapted to solve algebraic loops within 

network-level models of marine and aerospace more-electric systems. 

 

Roots of an equation f(x) = 0, are the values of x for which the equation is satisfied 

[17]. Figure 4.10 illustrates this concept where the roots for the non-linear function 

f(x) = 0, are marked A, B, C.  
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Fig. 4.10.  Roots of f(x)=0 

 

For equations utilising simple functions, it is often possible to find the roots 

algebraically. However, for equations with more complex functions (such as those 

arising from algebraic loops within marine and aerospace electrical network models) 

this is not usually possible. Under these circumstances it is necessary to utilise a 

dedicated solver routine. Two such routines are described in the following sections. 

 

4.4.1 The Bisection Method 

The first root finding technique considered is the bisection method [18]. This method 

iteratively converges upon a root within a given region by evaluating the equation in 

question at the boundaries of the region and then again at its midpoint. By 

considering the sign of the solution from all three points, it is possible to determine 

in which of the two subintervals the root lies. At this stage, the process is repeated 

with the bisection of the subinterval containing the root. In this manner, the region 

under consideration is halved at each iteration until it reaches a predefined size and 
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the root is approximated. One stage of the bisection method is illustrated in figure 

4.11. 

 

 

Fig. 4.11. Bisection method 

 

In the figure shown, the function f(x) is considered in the region (a, b). The sign of 

this function is evaluated at the end points of the region and again at its midpoint, 

indicating that the root of f(x) = 0 lies in the region (a, ½(b-a)). This process will 

then be repeated on the new region for the corresponding boundary points and 

midpoint, and so on until convergence on the root occurs (to within a predefined 

tolerance). 

 

Clearly, the larger the initial region, the more iterations are required to find the root. 

If more than one root exists within the region, an additional decision algorithm or a 

suitably augmented version of the bisection method is required to avoid non-

convergence. This is illustrated in figure 4.12. 
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Fig. 4.12.  Failed convergence of the bisection method 

 

In this second example, the region being considered is again (a, b). However, the 

analysis of the function f(x) at the end points and the midpoint of the region does not 

indicate which sub-region contains a root of f(x) = 0. In this case, the region 

specified contains four roots and is hence too large. Under these conditions, the 

bisection method would fail to converge on a root. A possible solution would be to 

investigate the two subregions (a, ½(b-a)) and (½(b-a), b) separately. 

 

The bisection method is not however affected by the shape of the function. If only 

one root exists within the region, the number of iterations required to find the root 

will always be determined by the size of the region under consideration and the 

predefined tolerance. In this way, the bisection method is a robust root finding 

method but it is not necessarily very computationally efficient. 
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4.4.2 Newton’s Method 

A second root finding method is Newton’s Method (NM). This method is more 

computationally efficient than the bisection method. As such, it is the favoured root 

finding method in many commercial software packages [1]. It should also be noted 

that these commercial packages often utilise more complex adaptations of NM than 

that discussed in this and the following sections. However, these methods are based 

on the fundamental concepts of NM and as such, the description and case studies 

given provide a useful illustration of the use of similar iterative methods to solve 

algebraic loops. 

  

To locate the roots of a real valued function f(x), ℜ∈x , the discretized form of the 

NM iteration formula is 

 

)('

)(
1

n

n

nn
xf

xf
xx −=+ , (4.12) 

 

where xn and xn+1 are successive estimates of the root of f(x) [16, 19], and f'(x) is the 

derivative of f(x). 

 

NM operates by taking iterative calculations from an initial trial point in order to 

converge upon a root of the function being considered. The first trial point, x0, is 

specified either manually or by some additional algorithm. From this, ƒ(x0) and ƒ´(x0) 

are calculated and then used in the NM iteration formula specified above in equation 

(4.12). This formula provides a value for x1, the next trial point. This process is 
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repeated, iteratively updating estimates of trial points until one of the stopping 

criteria is reached. Two commonly used stopping criteria are: 

 

A When NM has failed to achieve convergence within a preset number of 

iterations. This can often occur if the gradient of a trial point is zero or close to 

zero, an aspect which will be explored in more detail later. The limit to the 

number of iterations is usually put in place to prevent NM running indefinitely 

under these circumstances.  

B When NM achieves convergence. A number of methods can be implemented to 

indicate this. A common example is 

 

ε<−+ nn xx 1 , (4.13) 

 

where ε is a predefined tolerance level.  

 

The NM iteration formula works by initially finding ƒ(x) for a specified value of x. 

The tangent to f(x) at this point is calculated. Geometrically, in terms of the 

algorithm, this tangent is extended to the x-axis and the value of x at which this 

occurs becomes the new trial point. The whole process is then repeated until one of 

the stopping criteria is achieved.  

 

This conceptual consideration of NM is illustrated in figure 4.13 which shows a stage 

by stage operation of NM converging on a root of f(x) = 0. An accompanying 

explanation of this example is given following the figure.  
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Fig. 4.13.  Graphical illustration of Newton’s Method converging on a root 

 

In stage one, x0 is specified for the first trial point and f(x0) is calculated from this. In 

stage 2, the tangent to f(x0) is extended to the x-axis to find x1. In stage 3, f(x1) is 

found using this new trial point. In stages 4 and 5, x2 and f(x2) are found by extending 

the tangent from f(x1) to the x-axis. In stage 6, x3 is generated from the tangent to 

f(x2). This point lies very close to a root of f(x). Within this region, f(x) is almost 
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linear. As a result, the tangent generated to f(x3) (in stages 7 and 8) follows the same 

path as f(x). In this manner, x4 is a very close approximation to the root of f(x) = 0 

and the subsequent stages would meet the stopping criteria ‘B’ (given on page 95), 

for convergence on a root. 

 

Note that for NM to find the second root of the f(x) = 0 shown in figure 4.13, a 

different initial trial point would have to be specified. This is illustrated in figure 

4.14 

 

 

Fig. 4.14.  NM finding the second root 

 

The last example illustrates one of the weaknesses of NM. It may find a root of the 

function, but not necessarily the one sought. An additional algorithm is needed to 

evaluate whether the located root is the desired one (where possible) and to 

appropriately vary the initial trial point if it is not. Note that this process can also be 

performed manually. Convergence on the wrong root can lead to erroneous 

simulation results and potential numerical instability for other subsequent 

computations. 

 



97 

If the initial trial point selected is too far from a root, or there are local maxima or 

minima present in the function, NM is likely to take a large number of iterations to 

converge on this root (increasing the computational burden of the associated 

simulation). In some cases, NM may not even converge on the root at all! This is 

illustrated graphically in figure 4.15, where the presence of the local maximum 

turning point produces an almost zero gradient, causing the NM iterations to actually 

diverge from the root. As highlighted earlier as part of stopping criteria ‘A’, it is 

common to set an upper limit to the number of iterations taken by NM before 

declaring a failed attempt. This is to prevent NM taking an unnecessarily large 

number of iterations to find a root, as might be the case in the example shown in 

figure 4.15.  

 

 

Fig. 4.15  NM failing to converge on a root 

 

Note that if a trial point falls exactly on a turning point, where the derivative of the 

function is zero, this will create a division by zero in the NM iteration formula 

causing it to fail unless some additional preventative algorithm is employed. 
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4.5 Utilising NM to Solve Algebraic Loops  

This section will describe how NM can be utilised to solve algebraic loops within 

power systems (and indeed other) simulations. This will be achieved through the use 

of two case studies which will also highlight the detrimental effect on simulation 

efficiency and accuracy that arises from utilising an iterative solver algorithm such as 

NM to solve algebraic loops. Additionally, the case studies will form the basis for 

understanding how one of the loop removal methods discussed later (insertion of a 

small filter) serves to lessen this detrimental effect. 

 

4.5.1 Simple Feedback System Example 

The first example is based on the simple feedback system given by equation (4.2). 

Although in reality, this system can be readily solved algebraically to yield a solution 

for y(t), applying NM to this simple example allows many of the core features of NM 

to be clearly demonstrated before a more complicated case study is considered. 

 

The first stage of using NM to solve algebraic loops is to perform some algebra on 

the equations for the loop in order to convert them into a suitable format for later use. 

Equation (4.2), can be rewritten as 

 

)(

21

)( ba ykxky −= , (4.14) 

 

where y
(b)

 is an estimate for the original variable y, and y
(a)

 is the resultant of this 

estimate. When these are equal, a valid solution for the algebraic loop has been 
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found. Note that in equation (4.14), y and x are still functions of t, but t is being held 

constant for one particular sampling interval. As a result, x is also treated as a 

constant during the NM iteration process. The y
(b) 

term
 
is a variable that will be 

modified in order to find suitable values for y which will give a valid solution for the 

algebraic loop at that sampling interval. 

  

Mathematically, a valid solution for the algebraic loop is found when  
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Substituting the expression for y
(a)

, given in equation (4.14) and performing some 

algebra gives  
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The NM iteration formula can then be applied, adjusting trial points of y
(b)

 until a 

root of G = 0 is found.  When this is achieved, y
(b) 

will represent a value for the 

variable y which achieves a valid solution for the algebraic loop expressed in 

equation (4.2) at the sampling interval being considered.  

 

This process is repeated at each sampling interval of the simulation, where the valid 

solution for the current sampling interval is used as the initial trial point for the next 

[2]. When the dynamic model is unperturbed and resting in a steady state, the initial 

trial point at each sampling interval will actually provide the valid solution for the 
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next sampling interval. For small changes in the model state, the initial trial point at 

each sampling interval will be close to the valid solution for the loop at that interval. 

Under these conditions the NM will only need to take a few iterations to converge on 

a solution. For larger perturbations in the model state or periods of highly dynamic 

behaviour, a greater number of iterations may be required to achieve convergence. 

As such, this operating condition will be much more computationally demanding 

than the steady state conditions discussed above and as a result will lead to slow 

running simulations during periods of this nature.   

 

Writing the general NM iteration formula for this unity feedback system case study 

gives 
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where  
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and 
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For greater clarity in this particular case study, x, k1 and k2, will all arbitrarily 
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assigned the value of 1. This gives  
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and 
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The first stage of the NM iteration process is to select an initial trial point, )(

0

b
y , 

which in this case will be chosen to take the value of zero.
 
Using this value to find G0 

gives
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NM can then be applied to find the next trial point 
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The entire process is now repeated using this new trial point. 
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The repeated value for y
(b)

 indicates convergence on a root of G = 0 (indeed, 

equation (4.2) can be solved algebraically to verify this). As y(t) (and hence G) is 

linear and therefore only possesses one root, selecting other initial trial points will 

lead to NM converging on the same root. Also, this analysis shows that for linear 

functions, NM will always find the root of the function in one step regardless of the 

initial guess (although a second iteration may be necessary for the algorithm to 

confirm that convergence on a root has occurred). This is because the tangent at any 

point on a linear function will always cross the x-axis at the root of the linear 

function.   

 

4.5.2 Non-Linear Feedback Loop Case Study 

Whilst the previous case study clearly demonstrates the application of NM to solving 

algebraic loops, it does not provide an appreciation of the complexities associated 

with solving non-linear algebraic loops. This section will present a second case study 

which is more representative of the modelled systems found in marine and aerospace 

more-electric architectures in order to better explore this aspect. It will also argue 

that it is necessary to remove all algebraic loops from complex models such as those 

of marine and aerospace more-electric systems in order to achieve more 

computationally efficient simulations. 

 

The governing equation of the non-linear feedback loop for this second case study is  

 

( )2
)()(2)( tytxty −= . (4.26) 
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The dependence of y(t) upon itself in equation (4.26) indicates the presence of an 

algebraic loop. As before, NM can be utilised to find valid solutions for this system. 

The first stage of this analysis is to modify equation (4.26) into a form that can be 

accommodated by NM. This is achieved in the same manner as before where y
(a)

 and 

y
(b) 

(the estimated and resultant values of the original variable y) are incorporated and 

t is held constant. 
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The next stage is to develop the expression for G which in this case gives 
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The derivative of G with respect to )(b

ny therefore is 
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For greater clarity in this particular case study, the values of x and )(

0

b
y  will be 

chosen to be 2 and 0 respectively. NM can now be employed. Table 4.1 illustrates 

the implementation of NM to find a root of G = 0 described in its original form by 

equation (4.28). 
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Table 4.1.  NM applied to the nonlinear case study 

Trial 

Number 

)(b

ny  G  G′  

G

G
yy

b

n

b

n ′
−=+

)()(

1  

0 0 4 -1 4 

1 4 -16 -9 2.2222 

2 2.2222 -3.1604 -5.4444 1.6147 

3 1.6147 -0.3369 -4.2834 1.5631 

4 1.5631 -6.4x10
-3

 -4.1262 1.5616 

5 1.5616 -1.9456x10
-4

 -4.1232 1.5616 

6 1.5616 -1.9456x10
-4

 -4.1232 1.5616 

 

Convergence is achieved by the sixth iteration. An additional initial trial point is 

required to find the second root of this function, which in this case occurs when           

y
(b)

 = –2.56. This aspect is illustrated in figure 4.16, which shows the function G, and 

the two roots for G = 0. For initial trial points to the right of the minimum turning 

point (which occurs at y
(b) 

= -0.5), NM will converge on the first root found in the 

analysis above. For trial points to the left of this minimum turning point, NM will 

converge on the second root. Also note that initial trial points close to the minimum 

turning point will result in very large magnitudes of y
(b)

 at the next iteration. 

However, for a parabolic function such as the one considered in this case study, the 

absence of any other turning points means that it is unlikely that this initial divergent 

behaviour will cause any longer term convergence problems.  
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Fig. 4.16.  Graphical illustration of the nonlinear NM case study 

 

Comparing this case study to the previous one of section 3.6 demonstrates that whilst 

convergence will occur within a relatively small number of steps for functions that 

are linear or very close to being linear, more complex functions with localised 

maxima and minima may cause NM to take a substantially more iterations to achieve 

convergence. By requiring a greater number of iterations at each sampling interval, 

the computational burden of a particular simulation will be substantially increased. 

This in turn will lead to lengthened simulation completion times for associated power 

system problems which can be particularly disadvantageous if the model is already a 

complex, computationally intensive model. Some simulations may also fail if the 

algebraic loop(s) cannot be solved within the predefined number of iterations. 

 

In summary, when simulating simpler, more convenient models, it is often 

acceptable to leave any algebraic loops in place as the governing equations defining 

these loops can usually be solved with just a few iterations of NM. However, within 
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more complex models such as power electronics dense marine and aerospace 

electrical network models, the governing equations of any algebraic loops present 

will be far more complex in nature due to the interaction between the various 

functions of the network model. These loops will require a greater number of 

iterations to solve, causing a substantial increase in the simulation computation and 

increasing the risk of failed simulations if convergence is not achieved. As a result, it 

is hence a necessity to remove all algebraic loops from a complex model if reliable 

and computationally efficient simulations are to be achieved.  

 

4.6 Removing Algebraic Loops 

Given the need outlined above to remove all algebraic loops from network-level 

models of marine and aerospace more-electric architectures in order to achieve more 

accurate, faster running simulations, this section will discuss and contrast the three 

main methods listed in the literature which facilitate this. By doing so, the key 

strengths and limitations of each method will be outlined, providing guidelines for 

their implementation. 

 

There are three main methods listed in literature that enable the removal of algebraic 

loops in order to produce more stable, faster running simulations [1, 2, 5]. These are: 

• Reducing the loop to a feed-forward equivalent system 

• Inserting a unit delay into the loop 

• Inserting a simple low pass filter into the loop 

 

Each of these methods will be considered in turn in the following subsections. 
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4.6.1 Feed-Forward Equivalent System 

In some cases, the algebraic loop is simple enough to be re-expressed as a feed-

forward equivalent function, where the removal of the feedback path negates the 

effects of the algebraic loop. To illustrate this, consider the feedback system 

described in equation (4.2). As mentioned earlier, this linear equation can be solved 

algebraically for y(t) in a straight forward manner, giving 
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(4.30)

 

 

which is effectively now a feed forward equivalent system. The new form of this 

system is illustrated in figure 4.17. 

 

 

Fig. 4.17.  Feed-forward equivalent of the simple feedback system 

 

Some commercial simulation software packages utilise embedded algorithms to 

identify any simple algebraic loops in a model prior to its computation and replace 

these with feed-forward equivalent functions [2]. However, feedback systems of a 

greater complexity are much more difficult to reduce to feed-forward equivalents. 

This is especially true in more-electric marine and aerospace systems where the 

complex nature of the electrical network and the equations governing it often make it 

impossible to implement this solution method. 
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4.6.2 Utilisation of a Unit Delay 

An alternative to the feed-forward equivalent system method is the placement of 

small delays into the algebraic loop, typically of the order of one simulation time step 

(or unit). By delaying the data fed around the loop, the input of a particular function 

now becomes dependant on it own output from the previous simulation sampling 

interval, effectively breaking the direct feed-through of the loop. Some existing 

power system software packages utilise this method in all measurement type 

functions (i.e. those which provide information regarding the state of the modelled 

electrical system) to prevent any algebraic loops occurring [5]. However, as will be 

discussed below, this solution method is not always the most appropriate and can 

lead to numerically unstable models. 

 

To illustrate this, consider the example system described by equation (4.2). If a 

single unit delay is placed into the feedback path, the expression for the output y(t) 

becomes 

 





−−

=
=

otherwise       )1()(

0for                         )(
)(

21

1

tyktxk

ttxk
ty    , (4.31) 

 

where y(t) is some integer function.  

 

This approach is readily achievable in almost all cases. It should be noted though, 

that adding delays into feedback loops marginally reduces their stability and can 

potentially compromise the dynamic performance of the entire models, especially 
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those with larger simulation step sizes [20]. Indeed, the governing equation for the 

delayed feedback system given in (4.31) is an example of a first order recurrence 

relation and has finite limits to its numerical stability. To illustrate this, consider the 

general solution to equation (4.31) which is  
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(4.32) 

 

for y at N+1 stages. Note that x(t) has been considered as a constant in order to 

simplify the expression for y and provide a clearer illustration of the impact of the 

unit delay method on numerical stability.  

 

In terms of numerical stability, if |k2| > 1, equation (4.32) becomes unbounded and 

any simulation containing loops of this type would be unstable. Naturally, the 

magnitude of k2 is dependant upon the algebraic loop in question but this example 

illustrates the risks associated with utilising the unit delay method. The use of this 

method in functional converter models is explored in more detail in Chapter 5. 

 

4.6.3 Utilisation of a Simple Filter 

The insertion of a filter is the third solution method mentioned in existing literature 

for the removal of algebraic loops [2]. Like the unit delay method, the filter method 

is easy to implement although the impact of its presence is very different to the 

former method. However, this section will argue, that contrary to the view presented 

in the existing literature [1, 2], the filter method does not actually remove the 
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algebraic loop within the model, but rather aids the numerical convergence of 

iterative solvers such as NM. As such, it will be shown that the effectiveness of the 

filter method is very much dependant on the nature of the algebraic loop and the 

surrounding model.  

  

To illustrate the use of the filter method, consider the mathematical expression for 

the simple feedback loop given in equation (4.2) but with a first order low pass filter 

inserted into the feedback path. The governing equation of this new feedback system 

is given by 

 

)()()( 21 taktxkty −= ,  (4.33) 

 

where y(t) is some integer function and a(t) is the function of the modified feedback 

path (where y(t) is fed through a first order low pass filter). The function a(t) takes 

the following form 

 

( ) 00)()( yytykta f +−= ,  (4.34) 

 

where y0 is the magnitude of y(t) prior to a perturbation and is considered constant. 

When the algebraic loop is resting in a steady state, y0 = y(t) and equation (4.33) is 

equal to equation (4.2). The effective gain of the low pass filter is represented by kf 

and is defined by  
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where t0 is the time instant at which the initiation of any perturbation from a 

previously steady state condition occurs, and τ is the time constant of the filter. The 

step response of this function is illustrated in figure 4.18.  

 

 

Fig. 4.18.  Time domain response of a low pass filter 

 

Considering the expression for kf (given in equation (4.35) and illustrated in figure 

4.14 earlier), it can be seen that the effective gain (kf) of a low pass filter on the 

change in y(t) (i.e. y(t) – y0) is almost zero following a perturbation on the function. 

This gain increases as a non-linear function of time until some point later when it 

reaches unity again. The key point to note here is that the function does not become 

discontinuous as a result of the inclusion of the low pass filter. In this manner, the 

use of a low pass filter will not remove the presence of an algebraic loop either. This 

aspect can be illustrated by substituting for a(t) in equation (4.33) to obtain the 

following 



112 

( )( )0021 )()()( yytykktxkty f +−−= .  (4.36) 

 

Equation 4.36 shows that the dependence of y(t) upon itself is only removed when kf 

has a magnitude of zero. This is only true when t = t0, i.e. when the perturbation 

occurs (consider the definition of kf given in equation (4.35)). At all other times there 

will be some interdependence of y(t) upon itself and the algebraic loop will exist. 

 

Despite the fact that the filter method does not remove the algebraic loop, it is still an 

effective method in reducing the computational burden of solving algebraic loops 

and as such is still an effective counter-measure. For example, in the sampling 

interval immediately following a perturbation in system, the effective gain of the low 

pass filter in the feedback loop is almost zero. As such, the feedback component of 

the loop remains largely unchanged and the desired root is easily found. To illustrate 

this, consider the expression for the non-linear function y
(a)

 given earlier in equation 

(4.27). If a low pass filter were added to the feedback loop of this function, the 

effective magnitude of the (y
(b)

)
2
 term would be constant following a perturbation in 

the function input (x). As such, the expression for G' given in equation (4.29) would 

be almost constant (indicating that the function G is nearly linear), for which the 

roots could be readily found by NM. 

 

At successive sampling intervals after the perturbation has been applied, as the 

effective gain of the low pass filter in the feedback loop increases, the feedback 

system moves towards its original unfiltered form. This behaviour should result in 

progressively more iterations being taken to achieve convergence on the desired 
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solution of the root. However, as stated earlier in section 4.5, iterative solvers such as 

NM utilise the solution to the loop from the previous sampling interval as the initial 

trial point for the next. In this manner, as the effective gain of the low pass filter in 

the feedback loop increases, the solution to the loop at each sampling interval will 

usually lie close to the initial trial point used by the iterative solver and the number 

of iterations required to achieve convergence will be minimised.  

 

In contrast to this, if a significant perturbation was applied to the same system with 

the low pass filter removed, there would be a substantial change in the valid solution 

to the algebraic loop from one sampling interval to the next. The solution at the 

sampling interval before the perturbation would not provide a good initial trial point 

for the iterative solver at the next (post-perturbation) interval. A larger number of 

iterations would hence be required to achieve convergence on a valid solution after 

the perturbation (resulting in an increased computational burden) and there would 

also be the likely possibility of a failed convergence occurring. 

 

In this manner, the low pass filter method serves primarily to aid the numerical 

convergence of the iterative solver by slowing the transition of the algebraic loop 

from one state to the next and be providing good initial trial points as the loop is 

restored to its original unfiltered form following this change. It does not however 

actually remove the algebraic loop, like the other two solution methods discussed 

earlier. 
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This understanding of how the filter method operates also exposes some of its 

weaknesses. Following significant perturbations or during periods of highly dynamic 

variations in the model’s state, this method may not sufficiently aid the iterative 

solver in achieving convergence if the time constant of the low pass filter chosen is 

too small. In some cases, failed simulations may even occur. This is because the 

effective gain of the low pass filter increases so rapidly that the initial trial point 

provided by the solution of the previous sampling interval is not close enough to the 

new solution to achieve convergence efficiently or even at all. 

 

The complexity of the network model also has an impact on the effectiveness of the 

filter solution method. For example, a modelled subsystem containing an algebraic 

loop may simulate efficiently and accurately in isolation with the implementation of 

a low pass filter in the feedback path of the loop. However, inserting this modelled 

subsystem into a larger network model may lead to less efficient and even failed 

simulations. This is because the interactions between the loop and the surrounding 

model produce more complex governing equations for the loop, requiring a greater 

number of iterations to achieve convergence. Thus while the time constant chosen is 

effective for the development of the isolated subsystem model, it may prove to be too 

small to have any significant impact on aiding the convergence of NM in a more 

complex model. 

 

To compensate for these limitations, it is necessary to increase the time constant of 

the filter. However, in doing so, the dynamic behaviour of the modelled system may 

be altered. Given that the aim of simulating marine and aerospace more-electric 
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architectures at a network level [21, 22] is often to assess the impact of this dynamic 

behaviour, such an outcome is unacceptable. Whilst higher order filters may offer 

further options, their effectiveness is still not guaranteed.  

 

4.6.4 Review of Methods 

The previous sections have shown that whilst the filter method improves the 

computational efficiency of models containing algebraic loops it does not in fact 

remove the algebraic loop and as such is not a guaranteed solution. The other 

methods presented in this chapter always remove the algebraic loop. However, given 

that the unit delay method increases the risk of numerical instability and the feed-

forward equivalent system method is not always achievable, it is clear that the 

presence of algebraic loops within a model can present real difficulties in achieving 

efficient and accurate dynamic simulations. 

 

As a final point, it is worth noting that there is a fourth approach that should be 

considered when addressing the difficulties associated with algebraic loops. 

Reducing the size of the period between sampling intervals (i.e. the simulation step 

size) taken by the simulation solver does not remove algebraic loops but is still an 

effective fourth option for reducing the impact they have on the efficiency of 

simulations. This method aids convergence in the same manner as the filter method 

by providing better initial trial points at each sampling interval. However, given the 

desire to utilise maximum levels of abstraction in order to facilitate the use of large 

sampling intervals in network-level dynamic simulations of marine and aerospace 

more-electric power networks [21, 22], the use of this method is not desirable. 
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4.7 Evaluation of Solution Types to Marine and Aerospace 

Algebraic Loop Examples 

This section will revisit the marine and aerospace based power system examples of 

algebraic loops investigated at the start of this chapter. It will consider the potential 

effectiveness of each of the solution methods considered above and identify the best 

suited one for each example. In doing so, this section will provide useful guidelines 

on mitigating the effects of algebraic loops within models of marine and aerospace 

more-electric architectures. These guidelines have been developed based on the 

theoretical analysis given in earlier sections of this chapter and the personal 

modelling experience of this author. 

 

It should be noted that the feed-forward equivalent method is not particularly 

applicable to any of these examples. This is due to either the complexity of the 

feedback loops themselves (control system example) or the complexity of the 

interactions between the loop functions and the surrounding power system (surge 

arrestor and functional model examples) when modelling marine and aerospace 

more-electric architectures.  

 

4.7.1 Control System Example 

Algebraic loops found within control systems are typically slow acting loops with a 

low sensitivity to changes in conditions external to the loop. As a result, the insertion 

of a unit delay is often the preferred solution method (this applies for both simple and 

complex models). It is readily implemented, is guaranteed to remove the loop and the 
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reduction of the stability margin will usually have little impact on the overall model 

stability. Alternatively, whilst not removing the algebraic loop, the use of a low pass 

filter is also likely to aid the numerical convergence of NM sufficiently enough to 

cause only a slight increase in simulation run time. However, in complex models 

involving many control systems, the slight increase in simulation run time resulting 

from solving each loop may be compounded. If this occurs, the unit delay method 

remains as the only viable solution. 

 

4.7.2 Surge Arrestor Example 

As discussed at the start of the chapter, the algebraic loop present within the surge 

arrestor model is a very fast acting, sensitive loop. In other words, any change in 

circuit voltage could potentially result in a significant and rapid change in the current 

sunk by the surge arrestor model. As a result, implementing the unit delay method 

will often create numerical stability problems when the surge arrestor model is not 

resting in a passive state. Unfortunately, implementing the filter solution is also 

difficult to achieve successfully. Whilst a filter with a large time constant will 

substantially aid the convergence of NM, the very fast dynamic response of the surge 

arrestor will be misrepresented. Implementing a filter with a small time constant will 

only produce a negligible impact on the convergence of NM and as such will have 

very little benefit.   

 

The only remaining solution for achieving simulation accuracy therefore is to leave 

the algebraic loop in place. It is easily solved when the surge arrestor model is not 

active (i.e. no voltage surges are occurring) and although the use of NM during the 
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periods of active operation will impact significantly on the computational burden of 

the simulation (resulting in much increased simulation durations), these periods 

generally occur infrequently and usually very briefly. However, if the surge arrestor 

model is contained within a more complex network model (and as a result the 

governing equations of the algebraic loop are also very complex), it is likely that NM 

will not be able to converge on a valid solution for the algebraic loop, causing a 

failed simulation. 

 

Hence there is a real difficulty in representing surge arrestors in dynamic models of 

complex electrical power networks, like those found in marine and aerospace more-

electric applications. The only remaining options are to either represent the surge 

arrestor model behaviour very simply so that the governing equations of the 

algebraic loop are simplified (aiding convergence) or to substantially decrease the 

period between sampling intervals so that the operation of the surge arrestor is no 

longer considered to be instantaneous. Both of these approaches will allow the filter 

and unit delay methods to be utilised more effectively. However, as discussed earlier, 

the action of decreasing the simulation solver step size will lengthen the overall run 

time of the dynamic models, which is particularly undesirable for network-level 

models of complex systems.  

 

4.7.3 Functional Converter Model Example 

Like the surge arrestor example, the algebraic loop present within functional 

converter models is typically fast acting and very sensitive to changes in conditions 

external to the loop. As before, these characteristics make the filter method 
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unfavourable for this application as it is not guaranteed to prevent failed simulations. 

This is especially true if the converter model is utilised within the larger network 

models where the governing equations of the algebraic loop are complex in nature 

and are more difficult to solve. 

 

In simpler network models, where the interactions between the functional converter 

model and other network elements are well known, it may be possible to utilise the 

feed-forward equivalent method. However in the larger marine and aerospace 

electrical network models, this method is not easily implemented and as such, the 

unit delay method is the only remaining solution for these applications. This latter 

method is easily implemented within the functional converter model and will 

guarantee the removal of the algebraic loop providing more efficient, faster running 

simulations. However, as discussed earlier in the chapter, there will be some 

degradation in the numerical stability of the model, which in turn could lead to 

erroneous or failed simulations in some operating scenarios. A full understanding of 

the impact of the unit delay on the behaviour of the functional converter model is 

essential to enabling its successful application within marine and aerospace       

more-electric network models. Chapter 5 will explore this issue in greater detail as 

part of an in-depth analysis of functional approach to modelling power electronic 

converters. 

 

4.8 Chapter Conclusions 

This chapter has explored the concept of algebraic loops. They have been defined 

and examples have been given to illustrate how they might occur within marine and 
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aerospace more-electric network models. This chapter has highlighted the use of 

iterative solvers as a popular means to overcoming the co-dependency between 

inputs and outputs of functions within algebraic loops. A commonly used iterative 

solver within power system simulation software packages is Newton’s Method and 

this technique is both described and demonstrated using case studies in order to give 

a greater appreciation of the typical numerical processes involved in solving 

algebraic loops. One of the key disadvantages of employing iterative solvers like NM 

for this task is the increased computational burden resulting from the additional 

calculations performed. This can produce a significant increase in simulation 

completion times, which are particularly disadvantageous for network-level models 

of marine and aerospace electrical systems whose typically complex nature will 

exacerbate this effect. As a result, it is desirable to seek methods to remove the 

algebraic loops from the models in order to achieve more efficient simulation. 

 

Three of the most popular methods for removing algebraic loops were reviewed and 

discussed. This chapter demonstrated that one of these, the filter method, does not in 

fact guarantee the removal of the algebraic loop as stated in the literature but instead 

serves to improve the performance of NM in converging on a valid solution, 

impacting on its application to network-level models of marine and aerospace more-

electric architectures. 

 

Finally, this chapter revisits the three marine and aerospace examples of algebraic 

loops given at the start of the chapter and considers the best solution method for each 



121 

example. This was done in order to illustrate the process of selecting the best suited 

solution method for each application. 
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Chapter 5 – Analysis of Functional Converter Model 

Behaviour 

5.1 Chapter Overview 

In Chapter 3 the capabilities and limitations of the functional modelling approach (as 

described in existing literature) were discussed. Its ease of implementation (without 

the requirement of prior specialist simulation expertise) and resulting large 

reductions in model computational requirement were considered to make this 

technique well suited to the network-level modelling and simulation of marine and 

aerospace more-electric architectures. 

 

Chapter 3 also discussed the shortcomings of the functional modelling technique 

during some operating conditions as indicated in existing literature. In order to fully 

assess its suitability to marine and aerospace applications, an in-depth analysis of the 

functional modelling technique must be conducted. 

 

This chapter will hence investigate the capabilities and more importantly, the 

limitations of the functional approach for modelling power electronics converters and 

consider the implications of these for marine and aerospace application areas. This 

chapter represents a significant contribution of the thesis.  

 

This chapter is divided into two main parts. The first evaluates general functional 

converter behaviour and investigates which behavioural functions of the real 

converters are and are not accurately represented. It investigates what features are 
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required to address these aspects and evaluates the impact of these on the overall 

simulation efficiency. The second part considers the impact of the algebraic loops 

found in functional models (as outlined in Chapter 4) and assesses the implications 

for the numerical stability within marine and aerospace more-electrical applications. 

 

5.2 Definition of Functional Converter Models 

As described in Chapter 3, functional type power electronic converter models derive 

from the behavioural modelling approach where the characteristics of a converter are 

represented without specifically modelling the switching action of its semi-conductor 

switches. This is achieved by utilising controlled voltage and current sources to 

replicate the terminal conditions of the converter, greatly reducing the computation 

required to simulate the model. By utilising the same control and pulse generation 

systems that would be employed by a switched converter model, the dynamic 

behaviour of the converter is retained [1, 2]. 

 

5.3 Examples of Functional Converter Models 

This section will provide examples of functional models of the following converter 

topologies: 

• Three-phase inverter/switched rectifier 

• DC-DC forward converter 

• Diode bridge rectifier 
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It is acknowledged that other converter topologies are also utilised within marine and 

aerospace network architectures [3, 4]. However, these are too numerous to consider 

individually and the core principles from the examples provided can be readily 

applied to these other topologies. 

 

5.3.1 Inverter/Switched Rectifier Functional Model 

Consider the three-phase inverter shown in figure 5.1. 

 

Fig.  5.1.  Three-phase inverter schematic 

 

The behaviour of this converter is described by  

 

dcA VSV 1=
 

(5.1)
 

dcB VSV 3=
 

(5.2) 

dcC VSV 5=
 

(5.3) 

CBAdc ISISISI 531 ++=
, 

(5.4) 
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where VA, VB and VC are the ac side phase voltages of the inverter and Vdc is the 

voltage across the dc terminals of the converter. The term Sj is the j-th switch state 

and is defined as  

 

6,5,4,3,2,1for     
0

1
=





= j
otherwise

closedif
S j . (5.5) 

 

The states of switches S1, S3 and S5 are determined by the converter control system. 

The states of switches S2, S4 and S6 result from these, and are described by the 

expressions below, 

 

12 1 SS −=  (5.6) 

34 1 SS −=  (5.7) 

56 1 SS −= . (5.8) 

 

Now consider the functional equivalent circuit of the three-phase inverter shown in 

figure 5.2. 

 

Fig.  5.2.  Functional equivalent model of a three-phase inverter 
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In this representation, the switched model is replaced by three controlled voltage 

sources and a single controlled current source. The equations describing the 

operation of this model remain the same as for the switched model except that the 

controlled sources now replicate the terminal conditions of the inverter without 

explicitly simulating the operation of the switches. As discussed in Chapter 3, this 

achieves large gains in computational efficiency which in turn leads to a reduction in 

overall simulation run times.  

 

If the switching functions S1, S3 and S5 are replaced by the continuously varying 

modulation waves of the pulse generation circuit, the time-averaged output of the 

converter will be represented. Figure 5.3 illustrates this process of pulse averaging. 

 

 

Fig. 5.3.  Illustration of pulse averaging  
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Utilising time-averaged converter behaviour permits larger solver step sizes to be 

utilised further reducing the overall simulation computation.  

 

5.3.2 DC/DC Forward Converter Functional Model 

Consider the circuit schematic of the dc-dc forward converter shown in figure 5.4. 

 

 

Fig. 5.4.  DC-DC forward converter schematic 

 

The behaviour of this forward converter is described by  

 

12 SVV =
 

(5.9) 

21 SII = , (5.10) 

 

Where V1, V2 and I1, I2 are the input and output voltages and currents of the 

converter. S is the switch state and is defined as  

 





=
otherwise

closedif
S

0

1
. (5.11) 
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Figure 5.5 shows the functional equivalent model of the DC-DC forward converter. 

 

 

Fig. 5.5.  Functional equivalent model of a DC-DC forward converter 

 

In this representation, the switched model of the forward converter is replaced by a 

controlled voltage source and a controlled current source. The diode is required to 

prevent the load current reversing in direction when the output of the V2 is zero. As 

with the inverter functional model, the controlled sources now replicate the terminal 

conditions of the converter without explicitly simulating the operation of the 

semiconductor switch. Unlike the inverter however, this functional model will 

deliver only marginal increases in simulation efficiency due to the low switch count 

in the original switched model. However, representing more complex DC-DC 

converter topologies with functional model representations will provide more 

substantial gains in simulation efficiency.  

 

5.3.3 Diode Bridge Rectifier Functional Model 

In Chapter 4, the difficulties associated with modelling diodes were discussed. The 

dependence of the diode’s state on its own terminal conditions requires the use of an 

iterative solver to produce accurate results. This problem extends to functional 
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models of diode bridge converters where the decoupling of the ac and dc sides of the 

converter limits the capabilities of the model [5] or it leads to inaccurate behaviour of 

the model, including the creation of rapidly oscillating model outputs in some 

operational modes [2]. Unless the turn-on and turn-off times are easily predicted in 

advance (for example if the diode bridge is supplied by an ideal three-phase source), 

a functional representation of a diode bridge rectifier will be very inaccurate. As it is 

unlikely that an ideal source will be used in network-level models of marine and 

aerospace more-electric architectures, this poor behaviour necessitates the use of 

switched diode bridge models (which do not decouple the two sides of the converter) 

in these applications.  

 

However, because of the typically low switching frequency of diode bridges, the 

computation required for a switched model of this converter type is much less than 

for other fully-controlled topologies. As such, the potential benefits of employing a 

functional representation of a diode bridge converter are low in comparison to other 

converter types. In this manner, utilising both switched diode rectifier models and 

functional representations of the other converter topologies within a single network 

models represents a suitable compromise (as suggested in [6]). With this approach, 

the minimum level of accuracy is retained whilst the reduction in simulation 

computation is maximised. 
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5.4 Demonstration of Functional Modelling on an IFEP Case 

Study 

This section will consider a marine electrical network containing a single power 

electronic converter, comparing the accuracy and efficiency of switched, functional 

and averaged functional representations of that converter. 

 

The modelled system is an electrical network of an LV diesel electric vessel [7], 

driven by four diesel generators. The network loading consists of fixed hotel loads, 

electric propulsion loads as well as an LV pump system driven by a back-to-back 

switched rectifier-inverter motor drive. The single line network diagram for this 

system is shown in figure 5.6. 

 

 

Fig. 5.6.  Network diagram of the modelled LV diesel electric vessel  
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Note that the pump load is in fact a representation of four separate 300kW pump 

loads. However, for the purposes of these investigations, it is acceptable to group 

them together into a single equivalent system in order to reduce the overall 

computation required to solve this model. This is in line with the guidance given by 

[6], discussed in Chapter 3.  

 

Three simulations were performed with the model whilst maintaining consistent 

external conditions. The first employs a switched converter model, the second a 

functional converter model and the third a time averaged functional converter model.  

In these simulations, a step change in pump load from 250kW to 1MW takes place 

after 20s. Table 5.1 lists the details of the comparative simulations, including the 

respective completion times (averaged over five separate simulations). Note that all 

simulations were conducted using a 2
nd

/3
rd

 order Runge-Kutta variable step solver 

and the completion times were measured using Matlab functionality [8]. Figures 5.7, 

5.8 and 5.9 illustrate the line current of the pump load for the switched, functional 

and time-averaged functional models respectively over the same time period. Figures 

5.10, 5.11 and 5.12 illustrate the frequency response of the electrical network during 

the step change in pump load for the switched, functional and time-averaged 

functional models respectively.  
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Table 5.1.  Details of comparative simulation completion times 

Case Number Average Simulation 

Completion Time (for a 

35 second simulation) 

Average Simulation 

Completion Time as a % 

of Case 1 

1.   Switched converter       

model 

35491 seconds 100% 

2.   Functional converter 

model 

15848 seconds 44.65% 

3.   Time-averaged 

functional converter 

model 

778.5 seconds 2.19% 

 

 

 

Fig. 5.7.  Switched model line current 
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 Fig. 5.8.  Functional model line current 

 

 

Fig. 5.9. Time-averaged functional model line current 
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Fig. 5.10.  Switched model system frequency 

 

 

Fig. 5.11.  Functional model system frequency 
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Fig. 5.12.  Time-averaged functional model system frequency 

 

Table 5.1 illustrates how both the functional modelling approach and time-averaged 

functional modelling approach offer reductions in simulation completion time 

although the latter method is far more effective in this aspect. Indeed a simulation 

completion time of just under thirteen minutes offered by this technique is very 

favourable compared to that of almost ten hours for the switched model. Note that 

these times not only reflect the reduced computation and larger simulation time steps 

of the time-averaged functional modelling approach, but also the reduced data 

storage requirements resulting from these larger time steps.  

 

From figures 5.7, 5.8 and 5.9 it can be seen that the functional converter model 

closely matches the behaviour of its switched equivalent. Note however, that the 

peak current is slightly larger with the functional model. This is as a result of the 

effects of the semiconductor switch forward voltage and the on-state resistance being 
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omitted in the functional model. Also observe how the switching effects are not 

apparent in figure 5.10 as this is the time averaged converter output. However, the 

underlying lower frequency component of the line current is still replicated 

adequately. 

 

Perhaps the most interesting outcome of the comparative studies can be observed in 

figures 5.10 through to 5.12, where despite the small differences in output of the 

different converter representations, there are no noticeable differences in the plots of 

the system frequency, whose time constant is several orders of magnitude greater 

than that of the switching frequency of the converters. This is especially remarkable 

in the case of the averaged functional model, which shows that the high frequency 

components of an electrical system model can often be neglected without sacrificing 

any accuracy in the underlying behaviour of the network and the interactions 

between systems. The reductions in completion times of the simulations however, 

clearly illustrate the benefit of using functional and more significantly, averaged 

functional modelling techniques to study longer transient events within models of 

marine and aerospace networks. 

 

5.5 Analysis of the General Behaviour of Functional 

Converter Models  

The examples of functional converter models given in the previous section have 

illustrated how it is possible to replicate the terminal of switched converters without 

explicitly modelling the semiconductor switches. The IFEP case study illustrated in 
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the previous section supported this analysis by demonstrating how the underlying 

behaviour of the converter was retained with the functional modelling approach but 

at the same time achieving significant reductions in simulation completion times. 

 

It is important to consider however, not only the capabilities of the functional 

modelling approach but also its limitations. This complete picture will provide a 

better appreciation of the suitability of this approach for use in the modelling and 

simulation of marine and aerospace more-electric networks. With the exception of 

the difficulties of modelling diode bridge converters, which has been addressed 

separately, further conceptual consideration of the functional modelling approach 

gives rise to some general limitations, the main examples of which are as follows: 

• The forward voltages and on-state impedances of the semiconductor 

switches within the converters are not represented. 

• The non-linear transition of semiconductor switches is also not 

represented 

• The voltage and current limits of the semiconductor switches are not 

represented. 

• The effects of any anti-parallel diodes within a converter are not 

represented. 

• Converter turn-off (i.e. where all the semiconductor switches are opened) 

cannot be properly replicated with a functional model. Under these 

conditions, a switched model would create open-circuit conditions at both 

ends of the converter, preventing any current flowing. However, any 

controlled voltage sources employed within a functional model will still 
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allow the flow of electrical current when a zero voltage is applied, 

creating erroneous results. 

 

The first three limitations usually have little impact on the accuracy of network-level 

simulations of large systems [9]. As such, their absence in functional representations 

of converter models is not considered important. However, the last two limitations 

listed above could potentially cause more significant problems in the application of 

functional converter models to marine and aerospace more-electric networks. For 

example, if an electrical fault simulated on a dc network model (containing power 

electronic converters) causes the voltage at the terminals of a converter to reverse in 

polarity, it would be expected that any anti-parallel diodes present in the converter 

would conduct. However, the functional converter models would fail to represent this 

aspect. Additionally, the ability to turn-off converters when simulating electrical 

fault conditions is also of significant importance.  

 

Given these significant limitations of the functional modelling approach, it would 

seem that it is necessary to resort back to utilising the more computationally 

demanding switched converter models during cases in which they are inaccurate. 

However, by including additional components within the functional models, many of 

the existing limitations can be overcome. For example, by incorporating additional 

mathematical functions into the expressions for output voltage/current, the forward 

voltages and on-state impedances of the converter models can be accounted for. 

These forward voltages or on-state impedances would be represented as the total 

voltage drop occurring at the converter terminals. For example, the expression for the 
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phase ‘A’ output voltage of the functional inverter given by equation (5.1) could be 

modified to incorporate these additional factors, giving 

 

ABAdcA IkkVSV −−= 1 , 
(5.12)

 

 

where kA and kB are the forward voltage and on-state resistance of the active 

semiconductor switches. This revised expression for VA clearly impacts on all other 

associated system equations. 

 

Other limitations can be overcome by employing additional circuit features 

externally to the functional models. For example, the operation of anti-parallel diodes 

during periods of voltage reversal can be represented by placing an additional diode 

model across the terminals of the functional converter model. This approach also 

avoids the difficulties of representing diodes behaviourally with the functional 

modelling approach. In a similar fashion, converter turn-off can be represented by 

placing a single controllable switch model in series with any controlled voltage 

sources employed and opening it whenever all the converter switches are turned off, 

creating the required open circuit conditions. 

 

In conclusion it appears that almost all aspects of a converter’s behaviour can be 

represented with a functional model representation by employing additional 

mathematical expressions or external circuit features. The drawback of these 

however, is the increased computation required to solve these models. Hence, it is 
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desirable to represent only features required for the studies in question, maximising 

the efficiency of the overall model. 

 

5.6 Analysis of the Impact of Algebraic Loops within a 

Single Phase Functional Inverter Model 

There is an additional exception to the concluding points raised in the last section. 

The presence of algebraic loops within functional converter models and the 

limitations created by these cannot be simply overcome with additional mathematical 

expressions or external circuit features. As the previous chapter discussed, if not 

properly accommodated, the algebraic loops present within these models can lead to 

slow running or even failed simulations [10]. Both of these limitations are 

particularly undesirable for the functional modelling approach, which is intended to 

facilitate fast and stable simulations. Chapter 4 investigated potential solution 

methods for removing the algebraic loops present within the functional converter 

models and concluded that using unit delays to break the feedback loops is the only 

practical solution. However, the chapter indicated that this method reduced the 

numerical stability of the model, which may limit the application of the functional 

modelling approach. This section will investigate the presence of algebraic loops 

within functional converter models in more detail in order to assess the limitations 

associated with them. 
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The analysis will initially be conducted on a single-phase inverter in order to aid the 

conceptual understanding of the associated core issues before moving on to consider 

other converter topologies. 

 

Consider the switched and functional representations of a single-phase inverter 

shown in figures 5.13 and 5.14. 

 

 

Fig. 5.13.  Single-phase switched inverter model 

 

 

Fig. 5.14.  Single-phase functional inverter model 
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The equations of operation for the switched model are 

 

dcsac VkV =  (5.13) 

indcdc ZIVV −=  (5.14) 

acsdc IkI =  (5.15) 

L

ac

ac
Z

V
I =

,
 (5.16) 

 

where ks is defined as 

 

( )31 SSks −= , (5.17)
 

 

 

and where Sj is the j-th switch state and is defined as 

 

4,3,2,1for     
0

1
=





= j
otherwise

closedif
S j . (5.18) 

 

The states of switches S2 and S4 are described by the expressions below, 

 

12 1 SS −=  (5.19) 

34 1 SS −= . (5.20) 
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If the functional model is implemented with a unit delay in the feedback path of Iac in 

order to remove the algebraic loop that would otherwise be present, equations (5.13) 

through to (5.20) become 
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ac VkV =  (5.21) 

in

n

dc

n

dc ZIVV
)()( −=  (5.22) 
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4 1 nn
SS −= . (5.27) 

 

In this notation, superscripts (n-1) and (n) represent subsequent simulation time 

steps. As such, the magnitude of Idc is determined by that of Iac from the previous 

time step. Note that Zin, ZL and V are considered constant in this analysis although it 

is possible that they may vary from one time step to the next. However, this aspect 

has not been considered in the analysis conducted in order to provide greater clarity 

in the findings presented. 
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The transfer function of the functional inverter can be derived by combining 

equations (5.21) through to (5.24) to give 

 

( )
L

inn

ac

n

s

n

s

n

ac
Z

Z
VkVkV

)1(2)()()( −−= , (5.28) 

 

Equation (5.28) is an example of a first order recurrence relation which has the 

general solution (for Vac at stage N), 

 

( )∑
=

−=
N

i

iiN

s
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ac CVkV
0

)()( 1 , (5.29) 

 

where 

 

( )
L

inN

s
Z

Z
kC

2)(= . (5.30) 

 

If |C|<1, this expression is bounded and Vac will move towards the equivalent 

solution of the non-delayed function with the error decaying to zero over time, at a 

rate determined by C. However, for |C|>1, the expression becomes unbounded at 

which point the model is no longer numerically stable. Under these conditions it is 

likely that the model will become highly erroneous and may even result in a failed 

simulation.  
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Considering the definition of ks, it can be deduced that the maximum magnitude of 

this term will be unity. Hence, to guarantee numerical stability of the delayed 

functional model, it is necessary that the ratio of the absolute values of Zin and ZL is 

bounded by unity, or more simply, ZL>Zin. This condition is commonly met for most 

normal operating conditions, for which the model remains both numerically stable 

and accurate. However, if a low impedance short circuit fault is applied across the ac 

terminals of the functional inverter model, the effective value of ZL is likely to 

become lower than Zin producing significant errors and potential instability.  

 

It is worth noting at this stage that simply capping the input signals to Vac and Idc to 

their maximum values (V and V/Zin respectively) does not restore stability to the 

functional model. Rather, it causes Vac and Idc to alternate between these maximum 

values and zero at every simulation time step. In this manner, as Idc reaches its 

maximum, Vac is driven to zero causing Iac also to become zero. As a result, Idc, 

which is a function of Iac then becomes zero at the subsequent time step causing Vac 

to reach its maximum and so on. 

 

5.7 Impact of Complex Impedances on Model Stability 

In order to simplify the analysis conducted in section 5.5, the resistances, inductances 

and capacitances were intentionally grouped together as a combined impedance, Z. 

However, for a more complete understanding of the effects of algebraic loops in 

functional converter models it is necessary to consider the impact of the resistive, 

inductive and capacitive components individually. 
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Whilst the effective impedance of resistances are constant regardless of circuit 

conditions, the effective impedance of capacitances and inductances depends as 

much upon the circuit conditions from the previous time step as it does the present 

time step. This can create complications in the analysis and render the resulting 

stability criteria very difficult to determine. As such, conceptual consideration of the 

impact of inductances and capacitances is far more straight forward (and hence more 

effective), than can be achieved through a purely mathematical approach. 

 

In order to demonstrate the complexity of the mathematical approach to analysing 

the stability of functional converters with R-L-C components and also to demonstrate 

the clarity provided by a more conceptual approach, an example of a single phase 

functional inverter will be analysed using both methods. This converter model is 

similar to the one analysed in section 5.5, except that some inductance has been 

added to the ac side of the inverter (representative of cable impedance to the load) as 

shown in figure 5.15. 

 

 

Fig. 5.15.  Single-phase functional inverter model 

 



150 

With the mathematical approach, in order to determine the effect of the inclusion of 

L on the numerical stability of this model, it is necessary to first determine the 

expression for the ac side current Iac. This can be achieved by considering Kirchoff’s 

Voltage Law (“in travelling round any closed mesh (section) of a network (circuit), 

the algebraic sum of the emfs (voltages) acting in the mesh is equal to the algebraic 

sum of the IR voltage drops for the individual resistance in the mesh,” [11]) around 

the circuit loop on the ac side of the inverter. This gives 

 

( ) 0=−− Laaa RII
dt

d
LV . (5.31) 

 

Equation (5.31) is an example of a first order Ordinary Differential Equation (ODE). 

Rearranging this to form an expression for Ia gives 

 

( )
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= . (5.32) 

 

When this expression is included as part of the transfer function for the model, it 

makes the resulting stability inequality complex and hence difficult to solve. An 

alternative approach is to consider the rate of change of Ia as a discrete difference 

equation, where 

 

( )
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II
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d
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a
a

)1()( −−
≅

 

(5.33) 
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and where Ts is the magnitude of the simulation time step. 

 

However, once again this approach makes it difficult to develop a transfer function 

and stability criterion as there will now be two delayed variables; Va and Ia. This 

example demonstrates the difficulty in obtaining informative results regarding the 

numerical stability of the model from a purely mathematical analysis of the 

functional model. 

 

An alternative approach is to conceptually consider the impact of inductances and 

capacitances upon the numerical stability of functional models by developing 

expressions for the effective time-varying impedances of these components. For 

example, in the case of an inductor, the voltage developed across it is a function of 

the rate of change of current flowing through it, thus 

 

( )LL I
dt

d
LV = . (5.34) 

 

Therefore, the effective impedance of an inductor can be expressed as 

 

L

L
L

I

V
Z = , (5.35) 

 

which by simple substitution gives 
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( )

L

L

L
I

I
dt

d
L

Z = . (5.36) 

 

Equation (5.36) indicates that the effective impedance of the inductor is very high to 

current which is rapidly changing in nature. Conversely, the effective impedance of 

the inductor is very low to current which is almost steady state in nature. 

 

The effective impedance of a capacitor can be determined in a similar manner, where 

the current of a capacitor is a function of the rate of change of the voltage across it. 

 

( )CC V
dt

d
CI = . (5.37) 

 

Therefore, the effective impedance of a capacitor can be expressed as 

 

C

C

C
I

V
Z = , (5.38) 

 

which by simple substitution gives 
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V
dt

d
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V
Z = . (5.39) 
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Equation (5.39) indicates that to rapidly changing voltages across the capacitor, its 

effective impedance is very low. Conversely, the capacitor’s effective impedance to 

steady state voltages is very high. 

 

The main difficulty created by capacitors and inductances surrounding functional 

models is that it is nearly impossible to fully establish whether stability will be 

maintained under certain operating conditions or not. This is because the effective 

impedances of these components are dependant on the network state prior to the 

initiation of any fault and also on the other passive components in the network. 

Conceptual consideration of the impact of these components and to some extent, trial 

and error are the only practical ways to establish the numerical stability of a 

particular functional model and network architecture under fault (and other) 

conditions. 

 

This aspect can be illustrated by returning to the single-phase functional inverter 

model considered in section 5.5 and figure 5.15. It was shown that the numerical 

stability of this model is guaranteed if 

 

inL ZZ > , (5.40) 

 

where ZL is the ac side load impedance of the inverter and Zin is the dc side source 

impedance. Under normal operating conditions, it is expected that this condition 

would be easily met. However, if a short circuit fault is placed between the load and 

the ac terminals of the functional inverter, the effective impedance of ZL would be 
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equal to the fault impedance ZF (which would be very low for a typical short circuit 

fault) and would hence not be likely to meet this stability criterion.  

 

Consider now the impact on numerical stability if an inductor is placed between the 

functional inverter and the fault location (e.g. representing a fault at some distance 

from the converter terminals) as illustrated in figure 5.16. 

 

 

Fig. 5.16.  Inductor in the fault path 

 

In this case, following the application of the fault, the ac side impedance would 

effectively become ZF + ZLF. Under these conditions, the initial high rate of change 

of current would cause the ZLF to act as a high impedance. In these circumstances, 

the ac side impedance is likely to remain greater than the dc side source impedance, 

therefore maintaining numerical stability. However, as the initial transient dies away 

and the rate of change of current through ZLF decreases, the ac side impedance may 

become less than the dc side impedance leading to the initiation of numerical 

instability. Changes in the inverter’s output state caused by the representation of 

switching may also cause a higher rate of change in the inductor current, restoring 

numerical stability for a short period.  
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However, under these conditions, although the numerical stability of the model may 

be periodically restored, the accuracy of the results will be poor. Note also that if the 

fault location lies between ZLF and the functional inverter, the presence of this extra 

inductor will have very little impact on the numerical stability of the model as it 

would not lie in the fault path. 

 

If an inductor was instead present in series with Zin, representing some source 

inductance, this would create very different operating conditions. This circuit 

arrangement is shown in figure 5.17. 

 

 

Fig. 5.17.  Inductor in the source impedance 

 

Following the application of the fault, the rate of change of current flowing through 

ZLS becomes very high. This causes ZLS to appear as a very high impedance. Under 

these circumstances, it is unlikely that (Zin + ZLS) < ZF, implying that numerical 

stability will not be achieved. Again, as the transient dies away and the rate of 

change of current through ZLS will fall, reducing its impedance. Note, that with the 

circuit configuration shown in figure 5.17, it is possible that the conditions for 

numerical stability may not even be met during normal operation (depending on the 
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magnitude of ZLS). However, it is also likely that a smoothing capacitor would be 

applied to the dc terminals of the functional inverter which as will be shown, helps 

maintain the numerical stability of the model. 

 

As a final example, consider the implementation of a smoothing capacitor at the dc 

terminals of the functional inverter, as illustrated in figure 5.18. 

 

 

Fig. 5.18.  Capacitor across the dc terminals of the functional inverter 

 

Following the application of the ac side fault, the rate of change of Idc increases 

suddenly. This leads to a large rate of change of the voltage across the dc smoothing 

capacitor, Vdc. Under these conditions, ZCS appears as a very small impedance and the 

inclusion of this capacitor will aid the numerical stability of the functional inverter 

model. As the initial fault transient dies away, the effective impedance of ZCS 

increases, reducing its positive impact on the numerical stability of the functional 

model. It has also been found through experience that unless there is some 

inductance on the ac side of the inverter model, the inclusion of capacitance alone is 

not enough to maintain numerical stability when a short circuit fault is placed on the 

ac side of the inverter. 
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The findings of sections 5.5 and 5.6 have serious implications for the use of 

functional converter models within network-level modelling of marine and aerospace 

more-electric architectures. Whilst the results presented from the single phase 

inverter case study clearly outline the key trends and outcomes, the next stage of this 

investigation is to apply the stability analysis to other functional converter topologies 

to consider the wider implications of the algebraic loops contained within these 

models. 

 

In each of the cases presented in the next section, the impact of inductances and 

capacitances will only be addressed when they are a core part of the converter’s 

operation, otherwise, combined resistive, inductive and capacitive impedances will 

be utilised. 

 

5.8 Analysis of Other Functional Converter Models 

The following sections will consider the stability of a three-phase inverter, a 

switched rectifier and a dc-dc forward converter. Once again, it is acknowledged that 

other converter types are utilised within marine and aerospace more-electric 

architectures [3, 4], but to consider each of these on a case by case basis offers 

limited benefit. The core concepts of the analysis applied however can be readily 

extended to accommodate other converter types if required.  
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5.8.1 Stability Analysis of a Three-Phase Functional Inverter  

Consider the three-phase inverter supplying a three-phase star connected load and its 

functional equivalent model shown in figures 5.19 and 5.20. 

 

 

Fig. 5.19.  Three-phase switched inverter model with load and source 

 

 

Fig. 5.20.  Three-phase functional inverter model with load and source 

 

The governing equations for the switched converter model are 

 

dca VSV 1=
 

(5.41)
 

dcb VSV 3=
 

(5.42) 

dcc VSV 5=
 

(5.43) 
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indcdc ZIVV −=
 

(5.44) 

cbadc ISISISI 531 ++= . (5.45) 

 

where Sj is the j-th switch state and is defined as 

 

6,5,4,3,2,1for     
0

1
=





= j
otherwise

closedif
S j . (5.46) 

 

The states of switches S2, S4 and S6 are defined as, 

 

12 1 SS −=  (5.47) 

34 1 SS −=  (5.48) 

56 1 SS −= . (5.49)  

 

The terms ZA, ZB and ZC are the ac side load impedances and Zin is the dc side source 

impedance. In the same manner as the single phase inverter, the three-phase 

functional inverter model contains algebraic loops. To remove these, unit delays are 

inserted into the feedback paths of Ia, Ib and Ic such that the magnitude of Idc is 

determined by the respective magnitudes of these currents from the previous time 

step. With these delays incorporated, equations (5.31) through to (5.49) now become 
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6 1 nn
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Once again, superscripts (n-1) and (n) are subsequent simulation time steps. In this 

manner, the magnitude of Idc
 
is determined by that of Ia, Ib and Ic from the previous 

time step. Once again, V, Zin, ZA, ZB and ZC are considered constant in this analysis to 

provide a greater level of clarity in the findings presented. 

 

In order to develop a transfer function defining the behaviour of the three-phase 

functional inverter and its numerical stability, expressions for Ia, Ib and Ic must be 

developed. However, unlike balanced three-phase power systems where the neutral 

point of the load maintains a zero potential, ac side line currents in power electronic 

systems cannot be simply derived from Vphase/Zphase [12, 13]. Instead, they are formed 

by considering the electrical circuit on the ac side of the inverter and employing 

Kirchoff’s voltage and current laws. Full derivation of the ac side currents Ia, Ib and 

Ic is given in Appendix A. The resultant expressions are 
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where 
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Substituting equations (5.54), (5.58), (5.59) and (5.60) into equation (5.53) gives the 

transfer function for the three-phase functional inverter model as 

 

















+

+

+

+

+

−=
−−−

−

BA

ABC

n

C

n

CA

ABC

n

B

n

CB

ABC

n

A

n

n

dcin

n

dc

ZZ
Z

SS

ZZ
Z

SS

ZZ
Z

SS
VZVV

)1()(

5

)1()(

3

)1()(

1)1()( . (5.65) 



162 

Equation (5.65) is an example of a first order recurrence relation which has the 

general solution (for Vdc at stage N), 
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For the expression given in equation (5.67) to be bounded and hence numerically 

stable, it is necessary that C < 1. In its present form, it is difficult to ascertain the true 

implications of this stability criterion. Further simplification of the expression for C 

is needed. This can be achieved by first assuming a balanced load, where 

ZA=ZB=ZC=ZL. Imposing this assumption on the expressions for ZABC, SA, SB and SC 

(equations (5.61) through to (5.64)) allows (5.67) to be reduced to 
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At this stage there are still too many variables present to obtain a clear understanding 

of the model. One additional assumption will therefore be applied which will be to 

assume that the state of switches S1, S3 and S5 (and hence S2, S4 and S6) will be 

constant over a small number of time steps (this is especially true in time-averaged 

representations of the model). In this manner, for the short time period in 

consideration, it will be assumed that 
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The expression for C, in equation (5.68) can hence be further reduced to 
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where 
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For the eight possible combinations of S1, S3 and S5, Table 5.2 shows that HS adopts a 

value of either 0 or 1. 

 

Table 5.2.  Evaluation of (S1, S3, S5) Combinations 

( ))(

5

)(

3

)(

1 ,, nnn
SSS  

)(n

sH  

(0, 0, 0), (1, 1, 1) 0 

(0, 0, 1), (0, 1, 0), (1, 0, 0) 1 

(0, 1, 1), (1, 0, 1), (1, 1, 0) 1 

 

Therefore, to guarantee the numerical stability of the three-phase functional inverter 

model under the given assumptions regarding a balanced load and constant switch 

states, it is necessary that 

 

inL ZZ
3

2
> . (5.77) 

 

Under normal network operation, this stability criterion is easily met. However, 

under ac side, low-impedance fault conditions this may not be the case. The 

requirements for the three-phase functional inverter model to achieve numerical 

stability under phase-to-neutral, two phases-to-neutral and three phases to neutral 

fault conditions (where neutral is the star point of the load) are given as 
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Phase-to-Neutral Fault 

inL ZZ 2>  (5.78) 

 

Two Phases-to-Neutral Fault 

inF ZZ
2

1
>  (5.79) 

 

Three Phases-to-Neutral Fault 

inF ZZ
3

2
> , (5.80) 

 

where ZF is the effective fault impedance per phase. A full derivation of equations 

(5.78), (5.79) and (5.80) is given in Appendix B. By considering these equations 

more closely, it is observed that the requirements for numerical stability become 

more difficult to meet as the severity of the simulated fault increases. A point to note 

though is that the three-phase functional inverter model may actually still be stable 

under single and two phases-to-neutral faults. 

 

The analysis conducted on this model is not fully comprehensive, given the number 

of assumptions adopted. It does however, illustrate the clear degradation of 

numerical stability as the severity of the applied fault increases. In addition, the 

analysis could also be extended to included delta connected loads, unbalanced loads 

and faults, open circuit faults, dc side faults and earth faults. The impact of many of 

these scenarios can be established based on the procedure and findings presented 

above. For example, a dc side low impedance fault would effectively reduce Zin, 

serving to improve the numerical stability of the functional converter model. 
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However, the analyses of these additional fault scenarios have not been considered in 

this thesis as they provide only limited added value to the understanding of the 

behaviour of functional models under simulated fault conditions. 

 

5.8.2 Stability Analysis of a Single-Phase Functional Switched 

Rectifier 

This section will examine the numerical stability of a single-phase functional 

switched rectifier model. The three-phase equivalent model will not be considered, 

but the analysis of this can be readily achieved using the principles applied in 

sections 5.7.1. and 5.8.1. 

 

Figures 5.21 and 5.22 illustrate schematics of a single phase switched rectifier model 

and its functional equivalent. 

 

 

Fig. 5.21.  Single phase switched rectifier 
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Fig. 5.22.  Functional model of a single phase switched rectifier 

 

The operation of the switched converter model is defined by 

 

dcsac VkV =  (5.81) 

Ldcdc ZIV =  (5.82) 

acsdc IkI =  (5.83) 
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where  

 

31 SSk s −= , (5.85) 

 

and Sj is the j-th switch state and is defined as 
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The states of switches S2 and S4 are described by the expressions below, 

 

12 1 SS −=  (5.87) 

34 1 SS −= . (5.88) 

 

The functional model is implemented with a unit delay in the feedback path of Iac in 

order to remove the algebraic loop present in the model, such that the equations 

defining its operation now become 
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where (n-1) and (n) are subsequent simulation time steps. In this manner, the 

magnitude of Idc is determined by that of Iac from the previous time step. Combining 

equations (5.89), (5.90), (5.91) and (5.92) gives the transfer function of the 

functional switched rectifier as  
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If Vs is considered constant over the period between (n-1) and (n), equation (5.96) is 

an example of a first order recurrence relation which has the general solution (for Vac 

at stage N), 
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where 
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As with the single phase and three phase inverter functional model case studies, if 

|C|<1, this expression is bounded and Vac will move towards the equivalent solution 

of the non-delayed function with the error decaying to zero over time, at a rate 
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determined by C. However, for |C|>1, the expression becomes unbounded at which 

point the model is no longer numerically stable.  

 

Considering the definition of ks it can be deduced that ks
2
 will be either 0 or 1 for 

functional models with a pulsed output or will vary continuously between 0 and 1 for 

averaged functional models. Hence, to guarantee numerical stability of the functional 

model, it is necessary that  

 

inL ZZ < . (5.100) 

 

This condition for numerical stability presents a seemingly impossible situation, 

whereby ZL is highly unlikely to be of a smaller magnitude than Zin, creating an 

inherently unstable model. However, the operation of a real switched rectifier is 

underpinned by the inclusion of a smoothing capacitor placed across the dc terminals 

of the converter (as illustrated in figures 5.21 and 5.22) allowing a voltage to be 

established at this location [12].  

 

This capacitance, when subjected to rapidly changing dc voltage created by the 

switched rectifier effectively acts a low value impedance in parallel with ZL. If this 

capacitance is suitably sized, conditions for numerical stability will be readily met.  

 

Additionally, if a low impedance short circuit fault is placed at the ac terminals of the 

switched rectifier, Zin will experience a substantial decrease in magnitude. The lower 

rate of change of voltage experienced by the dc smoothing capacitor also means that 
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it will assume a much higher impedance, increasing the effective magnitude of ZL in 

the process. Under these conditions, the model is likely to become numerically 

unbounded. 

 

5.8.3 Stability Analysis of a Functional DC-DC Forward Converter 

This section will examine the numerical stability of a functional model of a dc-dc 

forward converter. Other dc-dc converter topologies will not be considered, but the 

analysis of these other converters can be readily achieved using the principles 

applied in this section. 

 

Figures 5.23 and 5.24 illustrate schematics of a DC-DC forward converter model and 

its functional equivalent. 

 

 

Fig. 5.23.  DC-DC forward converter schematic 
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Fig. 5.24.  Functional model of a single DC-DC forward converter 

 

The governing equations for switched converter model are 

 

12 SVV =  
(5.101) 

21 SII = , (5.102) 

inZIVV 11 −=
 

(5.103) 

outZ

V
I 2

2 = , (5.104) 

 

where S is the switch state, defined as 

 





=
otherwise

closedif
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 (5.105) 

 

and Zout is the combined impedance of L, C and ZL. As with previous examples, a 

unit delay is implemented in the feedback path of I2 in order to remove the algebraic 

loop present in the functional converter model. Hence, the equations defining the 

operation of the functional model now become 
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where the superscripts (n-1) and (n) represent subsequent simulation time steps. In 

this manner, the magnitude of I1 is determined by that of I2 from the previous time 

step. Combining equations (5.106), (5.107), (5.108) and (5.109) gives the transfer 

function of the functional forward converter as 
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Equation (5.110) is an example of a first order recurrence relation which has the 

general solution (for V2 at stage N), 
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where 
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As before, if |C|<1, this expression is bounded. Hence, to guarantee numerical 

stability of the dc-dc forward converter functional model, it is necessary that  

 

outin ZZ < . (5.113) 

 

This condition is readily met during normal operation of the converter and so 

numerical stability is achieved. The presence of the inductor on the load side of the 

converter means that faults placed after this point are unlikely to destabilise the 

model. However, if a short circuit fault is placed across the output terminals of the 

converter, effectively short-circuiting V2 the model will become numerically 

unstable. Under these operating conditions, the model will not become fully 

unbounded though, as the presence of the diode in series with V2 will provide a 

capping effect on I2. The impact of this effect is the same as the simple capping 

solution considered earlier in section 5.5, where the converter terminal conditions 

will become very oscillatory in nature but will remain bounded. 

 

5.9 Demonstration of Functional Model Stability Limits 

This section will illustrate the operation of a single-phase functional inverter model 

implemented within a power systems simulation package. Its output under normal 

and faulted conditions is validated against that of a switched model in order to 

illustrate the accuracy and numerical stability of the functional modelling technique.  
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5.9.1 Model Description and Parameters 

Figure 5.25 shows the simulated converter system, modelled within the 

SimPowerSystems toolbox of Matlab Simulink [8]. 

 

 

Fig. 5.25.  Simulated network architecture 

 

Note that this converter is controlled with an open loop control scheme and as such 

will not alter its operation following the application of the fault. This approach was 

taken to avoid masking the response of the converter models to the application of the 

fault. The parameters of this network and the inverter are described in table 5.3. 
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Table 5.3.  Network and inverter parameters. 

Parameter Value 

V 100V 

C 100µF 

Rin 0.1Ω 

Lin 10µH 

RL 5Ω 

LL 1mH 

Fault impedance 50mΩ (applied at 0.045s) 

PWM carrier frequency 2000Hz 

 

 

Figure 5.26 shows the single phase inverter switched model implemented within 

SimPowerSystems. 

 

 

Fig. 5.26.  Implemented switched model 
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Figures 5.27 and 5.28 show the functional equivalent model of the single-phase 

inverter implemented within SimPowerSystems. 

 

 

Fig. 5.27.  Implemented functional inverter – main schematic 

 

 

Fig. 5.28.  Implemented functional inverter – voltage and current source control 

 

5.9.2 Simulation Results 

Figures 5.29, 5.30 and 5.31 illustrate the steady state ac current between 0 and 0.02 

seconds of simulation time for the switched, functional and time averaged functional 
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inverter models respectively. These plots show the behaviour of the converter models 

during normal (i.e. unfaulted) operating conditions supplying an ac load of fixed 

impedance. Additional figures showing plots of ac side voltage, and dc side voltage 

and current for each of the inverter models listed above can be found in Appendix C. 

 

 

Fig. 5.29  Switched model Iac – Pre-fault 
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Fig. 5.30.  Functional model Iac – Pre-fault 

 

Fig. 5.31.  Time-averaged functional model Iac – Pre-fault 
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Figures 5.32, 5.33 and 5.34 illustrate the steady state ac current between 0.06 and 

0.08 seconds of simulation time for the switched, functional and time averaged 

functional inverter models respectively. This second group of plots shows the 

behaviour of the converter models after a low impedance rail to rail fault has 

occurred across the ac terminals of the inverter. Additional figures showing plots of 

ac side voltage, and dc side voltage and current for each of the inverter models listed 

above can be found in Appendix C. 

 

 

Fig. 5.32.  Switched model Iac – Post-fault 
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Fig. 5.33.  Functional model Iac – Post-fault 

 

Fig. 5.34.  Time-averaged functional model Iac – Post-fault 
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5.9.3 Summary of Findings 

The results shown in figures 5.29 through to 5.31 illustrate how the inverter 

successfully supplies a sinusoidal current to the load prior to the application of the 

fault. After the application of the fault however, its behaviour changes significantly. 

Figure 5.32 illustrates the discharging dc side capacitance creates an ac side current 

surge every time an active switching vector (i.e. one that creates a non-zero 

magnitude of Vac) is applied by the converter. Following this, the slower discharge of 

current from the dc voltage source is evident.  

 

By comparing the simulation results produced by the functional inverter models 

(figures 5.30, 5.31, 5.33, 5.34) to those produced by the switched inverter (figures 

5.29 and 5.32), the accuracy of the functional and time-averaged functional models 

can be assessed. It is observed that prior to the application of the fault, the functional 

and time-averaged functional models accurately replicate the behaviour at the 

terminals of the switched inverter model. However, after the fault is applied, the 

criterion for numerical stability (as described in Chapter 5) is not met by the 

functional and time-averaged functional models, leading to the creation of highly 

erroneous (although still bounded) outputs. It is worth noting that figure 5.34 shows 

that the time-averaged functional model actually remains stable for part of its 

operation.  In line with the analysis conducted in Section 5.6 however, the model 

becomes erroneous when the magnitude of Vac (and hence ks) is at its greatest. 

 

These findings reinforce the key outcomes of the analyses conducted earlier in this 

chapter. 
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5.10 Conclusions 

This chapter has investigated the capabilities and limitations of the functional 

approach to the modelling of power electronics. The stability analyses conducted 

indicates that functional converter models will be stable for most operating 

conditions although there may be a need to utilise increased capacitances to maintain 

this numerical stability under some network conditions. Moreover this chapter has 

also provided some insight into the likely causes of numerical instability involving 

functional converter models, thus enabling appropriate corrective measures to be 

taken if such issues are experienced in practice. The consideration of the capabilities 

and limitations of the functional modelling approach conducted earlier in the chapter 

also illustrates that almost all behavioural aspects of switched converter models can 

be represented with functional models by incorporating additional mathematical 

expressions and circuit components as necessary. The examples of functional 

converters provided in this chapter illustrate the ease of implementing these models, 

and the IFEP case study provided also highlights the potential of the functional 

modelling technique to provide substantial gains in simulation efficiency, especially 

in multi-converter networks.  

 

These advantages suggest that the functional modelling approach could be beneficial 

to the network-level modelling and simulation of marine and aerospace more-electric 

architectures. The ease of implementation and effectiveness in reducing the 

computational burden of simulating power electronics make functional modelling 

particularly appealing to this field for the reasons outlined in Chapter 3. 
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However, the technique as it stands, does have two significant drawbacks limiting is 

use to the marine and aerospace more-electric applications. Firstly, the difficulty of 

modelling diode bridge rectifiers as functional equivalent models represents a very 

significant disadvantage for this technique. In large networks containing multiple 

power electronic converters, the likelihood of a diode bridge rectifier being present is 

high. As such, this chapter recommends the use of the hybrid approach suggested in 

[6], where ideal switch models of diode bridge rectifiers and functional models of 

other converter types are combined within a single network model to achieve both 

accuracy and a good overall computational efficiency. There is however, a clear 

opportunity to improve upon this approach. 

 

The second key drawback to the functional modelling approach is the likelihood of 

numerical instability during the simulation of some electrical fault conditions. In 

these cases, it would be necessary to resort back to using fully switched models of 

the converters to achieve the required numerical stability of the model. Given the 

importance of fault studies to network-level investigations of marine and aerospace 

architectures, this fallback represents a less than ideal solution though. 

 

Recalling the literature review conducted in Chapter 3, it was concluded that the 

functional modelling approach was the only method at present truly suited to the 

network level modelling of marine and aerospace more-electric architectures. Hence 

it is desirable to seek ways to improve the robustness of this method for the given 

application areas. As such there is a requirement to develop novel methods for two 

separate goals. The first is to improve the robustness of functional converter models 
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so that the models are numerically stable under simulated fault conditions. The 

second is to improve the simulation efficiency of switched converter models so that 

any switched diode bridge rectifier models may be simulated more effectively. This 

second goal will also provide an alternative path forward if the desired numerical 

stability of functional models during fault conditions cannot be attained.  
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Chapter 6 – Multi-Level Model Discretization 

6.1 Chapter Overview 

In this chapter, a method for reducing the computational effort of modelling and 

simulating electrical networks with a significant penetration of power electronics 

(typical of marine and aerospace more-electric network architectures) using switched 

converter models is proposed, and is hence a major contribution of this thesis. This 

method, Multi-Level Model Discretization (MLMD) achieves the following benefits: 

• A reduction in the computational requirement for switched converter models. 

• Variable levels of model abstraction. 

• Stable and accurate simulations of electrical fault conditions (an aspect in 

which functional equivalent models of power electronics have been 

previously shown to be unreliable). 

 

Specifically, MLMD is a framework which enables the modelling of a power system 

as a conventional continuous model before applying a range existing techniques 

tailored to reduce the overall computational burden of associated simulations. This 

can be readily achieved even if the model developer does not have extensive prior 

modelling and simulation knowledge and expertise. 

 

This chapter will discuss the use of fixed and variable step solvers, and continuous 

and discrete models for the dynamic simulation of marine and aerospace            

more-electric network architectures, highlighting the general capabilities and 

weaknesses of each approach. It will introduce the MLMD technique and outline its 
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application to the aforementioned application areas, demonstrating its capability on a 

case study of a typical aircraft electrical network architecture. Finally, the 

capabilities and limitations of MLMD will be discussed in detail.    

 

6.2 Research Justification 

Chapters 3 and 5 discuss how functional equivalent models of power electronic 

converters are ideally suited for use in the network-level modelling and dynamic 

simulation of marine and aerospace more-electric network architectures. They can be 

readily implemented and also provide significant computational reductions compared 

to detailed converter models [1, 2]. This is especially true if the time averaged 

behaviour, rather than the pulsed output of the converters is represented [3]. Indeed 

for many operating scenarios, they are the method of choice for modelling electrical 

networks with a significant penetration of power electronics [2, 3].  

 

The analysis conducted in Chapter 5 however, illustrates that there are significant 

shortcomings of the functional modelling technique when it is utilised for electrical 

fault simulations. Such studies are of importance as they allow the dynamic 

behaviour of systems under fault conditions to be investigated, facilitating the 

evaluation of proposed protection schemes at a network wide level. Poor accuracy is 

unacceptable. As a consequence, during studies of this type, it is necessary to utilise 

switched models in order to ensure accurate simulation results. However, doing so 

produces long simulation execution times due to the increased computation 

associated with switched converter models [1].  
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Additionally, Chapter 5 also discussed the difficulties in implementing accurate 

functional models of diode bridge rectifiers within complex network architectures 

such as those found in more-electric marine and aerospace applications. In these 

instances, switched models of diode bridge rectifiers must be used instead if reliable 

simulation results are to be achieved. 

 

Given the shortcomings of other modelling techniques outlined in chapter 3 and the 

inadequacy of the functional modelling technique for use in the modelling and 

simulation of marine and aerospace more-electric applications, a need hence exists 

for a technique which provides computationally efficient simulation of electrical 

networks with a significant penetration of power electronic converters whilst still 

maintaining accuracy during fault simulations. The remainder of this chapter will 

present a novel modelling and simulation method that meets this criterion, Multi-

Level Model Discretization. 

 

6.3 The Use of Fixed/Variable Step Solvers and 

Continuous/Discrete Models for the Simulation of More-

Electric Network Architectures 

This section will discuss the merits and drawbacks of using fixed and variable step 

solvers, and continuous and discrete models for use in the simulation of marine and 

aerospace more-electric networks.  
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6.3.1 Introduction to Fixed and Variable Step Solvers 

A numerical solver is an algorithm that implements numerical integration methods 

for solving systems of equations [4, 5]. When utilised for simulation, solvers step 

through a time interval, computing a solution for a particular model at each specified 

time step [4, 5]. A variety of solvers exist for a range of purposes and applications. 

Solvers which are utilised for dynamic simulations can be broadly split into two 

categories; fixed step solvers and variable step solvers. 

 

Fixed step solvers compute a solution for the model at regular sampling intervals, 

from the beginning to the end of the simulation [4, 5]. These time intervals are 

specified in advance and do not vary during the course of the simulation. For solvers 

of this type, the choice of sampling interval is a critical factor for both accuracy and 

simulation execution time. In this manner, utilising a smaller sampling interval 

produces greater levels of accuracy, but at the expense of an increased execution 

time, whilst utilising a larger sampling interval produces a lower computational 

requirement but also reduced levels of accuracy. 

 

Variable step numerical schemes are often adopted to limit the impact of this choice 

on the overall simulation duration. These methods vary the simulation step size in 

accordance with the rate of change of the model variables in order to achieve a 

desired level of accuracy, or tolerance [4, 5]. In this manner, small step sizes are 

utilised when the model’s state is rapidly changing and larger steps when it is nearly 

constant in nature [4, 5]. Updating the computational step in this way impacts on the 

global computational overhead as additional calculations must be made in order to 
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make an informed decision on the size of the next sampling interval. However, this is 

in an attempt to reduce the total number of steps required to yield a solution thereby 

reducing the overall computational requirement of the simulation and delivering a 

much reduced execution time [4, 5]. This aspect is illustrated in figure 6.1, where 

smaller solver steps are taken during the more dynamic regions of the plot displayed. 

 

 

Fig. 6.1.  Illustration of the variable step solver approach 

 

The use of a variable step solver is often the favoured approach for detailed models 

of converters and their control systems where the very small simulation time steps 

taken during switch transitions and other highly dynamic periods produces very 

accurate results whilst minimising the overall computational requirement [1]. This 

approach is illustrated in figure 6.2 where the transitions in the converter switching 

pattern are simulated using many small steps so that the transition times are 

accurately captured. The constant regions however, are simulated with very large 

steps to minimise the overall computational requirement, providing the ideal trade 
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off between simulation accuracy and efficiency. Note that many more simulation 

steps would be taken at the transitional regions than have actually been displayed in 

figure 6.2, but this aspect has been simplified for illustrative purposes. 

 

Fig. 6.2.  Variable step solver applied to a switched converter output 

 

In large, multi-converter network models, simulated over long time scales however, 

variable step solvers can actually provide more detail than is often necessary, which 

has a detrimental effect on the simulation duration [6]. This is because there are 

many rapidly changing variables within these models requiring the near-constant 

application of very small step sizes. As a result, many alternative modelling 

techniques have been developed to avoid modelling the specific switching of the 

converters in order to enable much quicker simulation times (these were reviewed in 

Chapter 3). The sacrifices in accuracy produced are generally acceptable within 

larger system models, where the higher detail level is not often required [7].  

 



194 

6.3.2 Introduction to Continuous and Discrete Models and 

Associated Solvers  

Continuous models by their nature provide a continuous characterisation between 

system states, which is typically valid over a predefined range of states or particular 

interval. Continuous solvers utilise numerical integration techniques to provide the 

solution of a continuous model’s state and as such, provide a better characterisation 

of system behaviour than the discrete equivalent. This improvement however is at a 

cost of increased computation. 

 

In contrast discrete models represent system states at specific intervals. The 

transitional behaviour between these states is not captured but instead may be 

approximated (e.g. interpolation, splines, zero-order hold), with a lower resulting 

computational requirement compared to continuous models. As a result of the 

uncertainty introduced between states, the error in the simulated data typically 

increases with the size of the simulation time step taken by the discrete solver 

algorithm. 

 

An example of a continuous function and its discrete equivalent are shown in Figure 

6.3. 
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Fig. 6.3.  Comparison of continuous (solid line) and discrete (dotted line) 

functions f(x) 

 

This figure illustrates the typical errors produced by discrete models, with both under 

and over estimation of the integral occurring. This level of error may be unacceptable 

for some detailed models of devices, particularly during periods where the model 

states are rapidly changing. However as discussed previously, the levels of 

computation associated with discrete models are much lower than that associated 

with continuous models providing reduced execution times for any simulations 

conducted [6]. 

 

Despite the apparent drawbacks of fixed step models and discrete solvers, this author 

believes that the computational savings offered by both methods are attractive for 

network-level dynamic simulations of complex electrical networks, such as those 

found in marine and aerospace more-electric applications, where small levels of error 

are acceptable for types of studies typically considered. As such, this thesis proposes 
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a method for the network-level simulation of marine and aerospace more-electric 

network architectures, which embraces discrete models and fixed step solvers as its 

core features. This method is described in the following section. 

 

6.4 Proposal of Multi-Level Model Discretization 

The method proposed in this section, Multi-Level Model Discretization (MLMD) 

[9], reduces the computational burden associated with simulating switched converter 

models whilst achieving stable and accurate simulation results during simulated 

electrical fault conditions. In addition, it also facilitates variable levels of model 

abstraction to provide increased versatility. 

 

The following sections will: 

• Outline the core concepts of MLMD. 

• Discuss its implementation and the factors involved in its successful 

utilisation. 

• Discuss the unique challenges of its implementation to uncontrolled 

semiconductor devices, with case studies to demonstrate the core concepts 

involved. 

• Demonstrate the effectiveness of MLMD in reducing the computational 

burden of electrical networks with a significant penetration of power 

electronics using a case study of a more-electric aircraft network. 

 

The proposed technique utilises discrete equivalent models and fixed step solvers for 

the simulation of power electronics based, more-electric architectures. There are 
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risks associated with this approach, as outlined later, but it provides a means to 

minimise the computational requirements of dynamic simulations of the 

aforementioned networks.  

 

It should be noted that in situations where the discretization of the electrical network 

model is not immediately possible (for example because of limitations in the 

capabilities of the simulation software employed), the method presented in this 

section can still be applied to continuous models, although this will reduce the 

maximum improvements in simulation efficiency possible with MLMD. 

 

6.4.1 Implementation of Multi-Level Model Discretization 

The first stage of MLMD is to develop a variable step, a continuous baseline model. 

The computational requirements of this model will be high in comparison to the 

discretized equivalent models developed later, but it will also provide the highest 

level of accuracy. Hence this model will be utilised as a benchmark to compare other 

lower fidelity equivalent models against. 

 

From this base model, the first discretized equivalent is developed utilising an 

appropriate discretization algorithm (where the zero-order hold and Tustin methods 

are popular examples [4, 10]) and is configured for use with a fixed step solver 

algorithm and a small step size (typically 1-5µs). This process can be achieved using 

continuous to discrete conversion algorithms supplied with various commercial 

packages [8]. From this stage, knowing the desired purpose and functionality of the 

model, further discrete equivalent models utilising progressively larger step sizes can 
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be developed until the maximum level of acceptable error for the studies in 

consideration is reached. Note that some degree of expertise is required in 

interpreting the simulation results of each model and establishing the maximum 

acceptable step size for that model in question (this aspect is addressed in the 

following section). The larger step size models can then be utilised to study longer 

duration transient events (e.g. those involving the mechanical response of systems). 

Shorter duration transients and particular portions of the longer transients can be 

investigated in greater detail with appropriately initialised smaller step size models. 

 

6.4.2 Choice of the Level of Abstraction 

The choice of level of abstraction is somewhat intuitive, with a number of aspects to 

consider when selecting the step size (and associated model) to be utilised. First and 

foremost is the switching frequency of converter models within the model. The 

simulation step size must be suitably chosen to represent the behaviour of these to 

the desired level of accuracy. This choice is critical to the accuracy of the fixed step 

simulation because network events (e.g. switch transitions) are delayed to coincide 

with simulation step times [1, 6]. Changes in key quantities such as switch states and 

pulse generation must therefore be delayed from their intended occurrence to the 

next occurring simulation step. This delaying process does not usually create any 

significant errors when utilising variable step solvers because the solver step size is 

reduced around the network event (as illustrated earlier in figure 6.2). However, with 

fixed step solvers (for both continuous and discrete models) the simulation time step 

size is not flexible and the delay to network events can be significant. 
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This aspect is illustrated in figure 6.4, where the section of a PWM pulse train is 

modified by the application of the fixed step solver.  

 

 

Fig. 6.4.  Delaying of PWM pulse train segments by the application of a fixed step 

solver 

 

Note that the fixed step size employed in figure 6.4 is intentionally large to provide a 

clear illustration of the delaying effect. In reality, the use of an appropriate solver 

step size would result in only marginal changes to the original PWM pattern. 

However, these delays can still result in poor representation of the model’s 
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behaviour, the generation of extra harmonics and ‘spikes’ within the voltages and 

currents of the model, and the degradation of the model stability, by slowing the 

potential response of any control system.  

 

Additionally, if the simulation step size chosen is completely inappropriate, this may 

result in the converter switching being poorly represented and other fast transients 

being missed altogether. For example, figure 6.5 shows a current trace illustrating the 

profile of a capacitor discharge current, typical of that experienced in DC sections of 

marine and aerospace more-electric architectures following the occurrence of a short 

circuit fault [11]. Figure 6.6 illustrates the typical results produced when this same 

event is simulated using a fixed step continuous (solid line) and fixed step discrete 

(dashed line) approach. Note that the continuous plot is overlaid in figure 6.6 to 

provide an easier comparison with the fixed step continuous and discrete plots. 

 

 

Fig. 6.5.  Capacitor discharge event simulated using a variable step continuous model 
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Fig. 6.6.  Capacitor discharge event simulated using a fixed step continuous (bold) 

and discrete (dashed) solver 

 

Although the fixed step size utilised in figure 6.6 is unrealistically large, it shows 

both fixed step models failing to properly represent the fast capacitor discharge 

event, creating unacceptable levels of error in the simulation results. This example 

illustrates the potential for fast transient events to be completely ‘missed’ by the 

simulation if the duration of the event is less than the fixed step size of the solver. To 

overcome this, the step size of the solver can be appropriately selected if some prior 

knowledge regarding the nature and timing of such an occurrence exists. However, if 

the purpose of the simulation is to identify the occurrence of such phenomena, this 

type of error is very difficult to eliminate, reinforcing the need for careful 

interpretation of simulation results when using the MLMD.  

 

As a general rule for network-level simulations, a simulation step size that is one 

tenth of the typical interval between the converter switch transitions (i.e. 1/f, where f 
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is the switching frequency) is about the largest step size that can be used before the 

converter switching becomes significantly disrupted. Other fast transient events such 

as the capacitor discharge illustrated in figures 6.5 and 6.6 however, may require the 

use of smaller step sizes than this. 

 

The performance of some controller architectures may also suffer if too large a step 

size is utilised, resulting in the poor regulation of electrical quantities. Additionally, 

harmonic studies require much smaller solver time steps so that the impact of the 

converters’ switching (and hence the harmonic content) is accounted for accurately.  

 

6.4.3 Multi-Level Model Discretization and Uncontrolled 

Semiconductor Devices 

Unlike controlled semiconductor devices, whose turn-on and turn-off instances are 

well known, uncontrolled devices such as diodes depend on circuit parameters to 

determine their state and transition times. This unique behaviour has additional 

implications when considering the use of a fixed step solver and discrete equivalent 

models to simulate these devices. Indeed, the impact of this behaviour on modelling 

uncontrolled devices in a functional manner was also discussed in Chapter 5. 

 

As described earlier in Chapter 3, uncontrolled devices such as diodes are 

represented by loop equations and require iterative solvers to compute them [5, 12]. 

Variable step solvers take small steps around zero crossings to ensure that each diode 

only switches off when the current flowing through it is zero. 
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When using a fixed step solver, the diode model does not stop conducting until the 

next time step after the current through it has reached zero. At this instant, the diode 

current is often negative and the simulation results presented at that instant are 

invalid. When the diode model is turned off, the current is forced to zero at the next 

time step [12, 13]. This is demonstrated in figures 6.7 and 6.8 which illustrate a 

typical plot of current flowing through a diode with two different solver methods 

applied. 

  

 

Fig. 6.7.  Variable step simulation of a diode turn-off 
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Fig.6.8.  Fixed step continuous simulation of a diode turn-off 

 

In figure 6.7, a variable step solver is employed and the diode turns off when the 

current through it falls to zero. In figure 6.8, the diode turns off at the time step 

immediately after the current reaches zero. The period when the diode current is 

negative does not represent the true behaviour of the diode (i.e. reverse recovery 

[14]) but is the result of the solver algorithm returning to a valid solution. This 

behaviour can create small numerical oscillations in the simulation results. In a 

multi-switch converter model, it can also lead to overlapping periods of conduction 

which can potentially lead to large numerical spikes in the line currents of the 

converter. 

 

Figure 6.9 illustrates a typical plot a diode turn-off current simulated using a fixed 

step discrete model. 
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Fig.6.9. Fixed step discrete simulation of a diode turn-off 

 

Whilst displaying the same underlying behaviour of the fixed step continuous model, 

the discrete model, with a higher rate of change of current experienced around the 

zero crossing (produced by the discretization of the model) will exacerbate any errors 

generated by the fixed step continuous model. Note that the solver step size chosen is 

in this example is unrealistically large for illustrative purposes. 

 

If a suitably small solver step size is utilised, the erroneous behaviour described 

above is largely negligible for most network-level simulations. However, it will be 

shown in the following section that if cables or other inductive elements connected to 

the diode or diode-bridge are modelled, this behaviour can create additional and 

more significant errors. Spikes in the line currents can lead to large voltage transients 

across the inductors (where the voltage across an inductor is a function of the rate of 

change of current through it). This behaviour in turn impacts on the state of all 

connected diodes causing them to sporadically conduct. The resultant complex 

behaviour leads to switches rapidly turning on and off in an unstable manner which 
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is unrepresentative of the real devices [5]. This is demonstrated in the case study 

below.  

 

6.4.4 Demonstration of Diode Discretization 

The system shown in figure 6.10 illustrates an ac:dc:ac motor drive supplied from a 

690V electrical network. This is typical of a pump system on low voltage         

diesel-electric IFEP vessel [15]. 

 

 

Fig. 6.10.  LV IFEP Pump System 

 

The pump motor drive consists of a 6-pulse diode rectifier, with dc link capacitor and 

an IGBT inverter. Figures 6.11 and 6.12 illustrate the dc link voltage profile and the 

phase-A load current when this system is modelled as a continuous system and 

computed using a variable step solver. 
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Fig. 6.11.  DC link voltage profile produced from a variable step solver based 

continuous simulation 

 

Fig. 6.12.  Phase-A load current produced from a variable step solver based 

continuous simulation 

 

The results presented are numerically stable and are inline with the anticipated 

performance of this system [14]. Note that the poor regulation of the phase-A load 
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current is a result of the open loop controller utilised for the inverter stage of the 

motor drive. 

 

Figures 6.13 and 6.14 illustrate the dc link voltage and phase-A load current plots, 

this time produced using a discretized version of the original continuous model and 

also simulated using a fixed step solver with a step size of 10µs. Poor numerical 

convergence and spiking is apparent in both of these figures. 

 

 

Fig. 6.13.  DC link voltage profile produced from a fixed step solver based      

discrete simulation 

 



209 

 

Fig. 6.14.  Phase-A load current produced from a fixed step solver based         

discrete simulation 

 

To achieve numerically stable simulation results similar to those generated by the 

continuous model and variable step solver (shown in figures 6.11 and 6.12), but 

using a discrete model and fixed step solver, a much smaller solver step size must be 

used in order to minimise the errors in the diode turn-off behaviour. Doing so negates 

any savings in simulation run time normally achieved using this approach though, 

and this path of action is hence clearly undesirable.  

 

However, under some circumstances, it may not be necessary to utilise an 

undesirably small solver step size. If there are no cables between the generator and 

the diode bridge, the impact of the overlapping diode commutation and the current 

‘spiking’ does not lead to significant voltage spiking (and in turn, oscillatory diode 

conduction). This is also true if the cables are modelled as being purely resistive, 

where the voltage across the resistor is directly dependant on the magnitude of the 
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current flowing through it. In this manner, the voltage spikes across resistive 

elements are of much lower magnitude than experienced when using cables with 

inductive elements (whose voltage is a function of the rate of change of current 

flowing through them). Under these conditions, the inaccurate diode behaviour has a 

negligible impact on the network-level accuracy of the simulation results. To 

demonstrate this behaviour, figures 6.15 and 6.16 show the dc link voltage and 

phase-A load current plots achieved when purely resistive cables are modelled. 

Again the model is a discrete model and is simulated using a fixed step solver with a 

10µs step size. Note that there is an increased level of high frequency harmonic 

content present in the dc link voltage. This is due to the absence of any inductive 

filtering (previously provided by the cables).  

 

 

Fig. 6.15.  DC link voltage profile produced from a fixed step solver based discrete 

simulation with purely resistive cables 
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Fig. 6.16.  Phase-A load current produced from a fixed step solver based discrete 

simulation with purely resistive cables 

 

Given the commonality of inductive components in marine and aerospace network-

level models (and indeed in many other models), there are likely to be very few 

instances when a larger solver step size can be satisfactorily utilised in conjunction 

with diode bridge rectifier models. As such, an alternative method to reducing the 

solver step size is required to facilitate valid simulation results when using discrete 

models and fixed step solvers. 

 

The proposed approach is to use resistors placed in parallel with passive non-linear 

elements in the model, such as cables. As the impedance of these resistors is much 

higher than the circuit elements, only negligible leakage current will flow through 

them causing no noticeable loss in accuracy. However, the inclusion of a parallel 

resistive path for the current significantly reduces the voltage spiking that takes place 
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during the simulation. This hence aids the convergence of the simulation solver 

producing more accurate results [5]. 

 

The impact of this approach is demonstrated in figures 6.17 and 6.18 where 5Ω 

resistors have been implemented in parallel with the cable impedances and the 

discrete model is simulated with a fixed step solver utilising a 10µs step size. 

 

 

Fig. 6.17.  DC link voltage profile produced from a fixed step solver based discrete 

simulation with parallel resistors employed 
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Fig. 6.18.  Phase-A load current produced from a fixed step solver based discrete 

simulation with parallel resistors employed 

 

In figures 6.17 and 6.18, numerical convergence is clearly restored. Note that some 

degradation of the simulation results is evident in these plots. This is a result of the 

delayed converter switching disrupting the dc link voltage and line current 

regulation. These small errors however, are usually acceptable in network-level 

simulations [7]. It is also worth highlighting, that although some degradation of 

simulation quality has occurred by using a discrete model and fixed step solver, 

much more efficient simulations are possible. In this particular example, the model 

simulates 8 times faster than the original continuous model simulated on a variable 

step solver. If more converters are present in the model, this time saving will be 

greater. This aspect is illustrated in Table 1 below, where simulation completion 

times (averaged over three separate simulations for a duration of 0.1seconds) are 

presented for further simulations conducted on the model depicted in figure 6.10 but 

with additional ac:dc:ac motor drives connected to the distribution busbar. 
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Table 6.1.  Details of Simulations Conducted 

Number of 

ac:dc:ac drives 

connected to the 

generator busbar 

Simulation 

completion time 

with a variable 

step solver based 

continuous 

simulation 

Simulation 

completion time 

with a fixed step 

solver based 

discrete 

simulation 

Completion time 

of discrete 

simulation as a 

percentage of that 

of the continuous 

simulation 

1 17.30s 2.17s 12.5% 

2 64.75s 5.92s 9.1% 

3 164.11 11.72 7.1% 

4 300.11s 20.34s 6.8% 

5 503.70s 31.02s 6.2% 

 

Table 6.1 illustrates how the reduction in completion time offered by the fixed step 

solver based discrete simulations becomes more significant as greater numbers of 

diode bridge converters are included in the IFEP network model (although the 

additional reduction diminishes for every converter added). 

 

It is worth noting that, in the same manner as the parallel resistor method, many 

power system simulation packages recommend the placement of snubber resistors in 

parallel with all semiconductor switches in order to aid numerical convergence when 

using discrete models and fixed step solvers [5]. This approach does indeed work 

satisfactorily, although this author has found the parallel resistor method to be much 

more effective in aiding numerical convergence. The reason for this is that the 

snubber resistors placed in parallel with the semiconductor switch models must have 

a high impedance value to prevent significant magnitudes of leakage current when 
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the switches are in the off state and there is a large voltage across their terminals. 

Resistors placed in parallel with cables however, are subjected to much lower 

terminal voltages and as such can be of significantly smaller magnitude whilst still 

only incurring a negligible amount of leakage current. The lower magnitude of 

resistor facilitates a much quicker numerical convergence following a diode current 

discontinuity. Hence, the parallel resistor method is recommended for MLMD. 

 

It should also be noted that because the state of fully controlled devices is not 

directly dependant on circuit voltages and currents, these devices are much more 

numerically stable than uncontrolled devices when utilising discrete models and 

fixed step solvers. This is because spurious voltage and current spikes do not impact 

on the state of these devices and hence preventing the creation of further, larger 

spikes. However, the modelling of the anti-parallel diodes employed with some 

semiconductor switch types can still lead to the generation of numerical effects of 

this type. Under these circumstances, employing the parallel resistor method 

appropriately will greatly improve accuracy. 

 

In summary, the use of discrete models and fixed step solvers as part of the MLMD 

technique in some power electronic based circuits (namely those with uncontrolled 

devices) requires the intuitive use of parallel resistors to aid convergence. However, 

by following the guidelines laid out above, efficient and accurate simulations can be 

readily achieved. This finding is in contrast to the functional modelling approach 

which cannot represent the terminal conditions of diode bridge converters to a 

satisfactory level of accuracy. 
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6.4.5 Demonstration of Multi-Level Model Discretization 

This section aims to demonstrate the potential savings in simulation execution time 

that can be achieved with the use of MLMD as well as illustrating the impact of its 

use on the accuracy of the results produced. The model chosen for this demonstration 

is shown in figure 6.19 and is typical of the more-electric engine distribution network 

proposed for the Power Optimised Aircraft [16, 17]. The model has been developed 

using the SimPowerSystems toolbox of Matlab Simulink [18]. It consists of a low-

pressure shaft mounted, inline ac generator feeding a central dc power distribution 

busbar (operating at 350V) through a switched rectifier. The model also contains 

inverter fed static and motor loads, representing the aircraft and engine electrical 

systems [16, 17]. A phase to phase fault is applied on the ac side cabling to the static 

engine load after 0.5 seconds resulting in a sequential discharge of all dc capacitors 

and a voltage collapse on the dc bus. The switching frequency of the static load 

inverter is 2kHz. Figure 6.19 shows the schematic for this model. 
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Fig 6.19.  Schematic of the demonstration model 

 

Multiple simulations have been conducted using the model whilst maintaining 

consistent external conditions. The simulation solver and step size are varied with 

each model execution to demonstrate the effect of MLMD on the simulation speed 

and accuracy. Table 6.1 lists the details of the comparative simulations conducted, 

and figures 6.20 through to 6.27 illustrate the plots of bus voltage and faulted system 

(ac side) line current for each of the simulations. The simulation execution times 

displayed in the table were measured using Matlab functionality.  

 

It is worth noting that the level of time savings achieved by MLMD will be 

dependant on the nature of the model used. This aspect is discussed later. Also note 

that in some detailed models of power electronic converters, it is not uncommon to 

find a discrete control system which is simulated at a different rate to the electrical 

system, representing the digital aspects of the real controller [8]. This however, is 

primarily to achieve more realistic behaviour from the model and not to provide 
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reduced computation. It should be noted though that MLMD is very amenable to this 

approach, where a fixed step size can be readily implemented on the controllers of 

the network-level model whilst the network solver step size is varied.   

 

Table 6.2.  Details of Simulations Conducted 

Case 

Number 

Electrical 

System 

Control 

System 

Solver 

Type 

Simulation 

Execution 

Time 

Execution 

Time as a 

% of 

Case 1 

1 Continuous Continuous 2
nd

 order         

Runge-

Kutta 

5346.7 S 100% 

2 Discrete (1µs) Discrete (1µs) Fixed step 

discrete 

1918.7 s 35.9% 

3 Discrete 

(10µs) 

Discrete 

(10µs) 

Fixed step 

discrete 

53.8 s 1% 

4 Discrete 

(50µs) 

Discrete 

(50µs) 

Fixed step 

discrete 

9.7 s 0.18% 
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Fig. 6.20.  Case 1 DC bus voltage 

 

 

Fig. 6.21.  Case 1 faulted system load current 
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Fig. 6.22.  Case 2 DC bus voltage 

 

 

Fig. 6.23.  Case 2 faulted system load current 
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Fig. 6.24.  Case 3 DC bus voltage 

 

 

Fig. 6.25. Case 3 faulted system load current 
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Fig. 6.26.  Case 4 DC bus voltage  

 

 

Fig 6.27.  Case 4 faulted system load current 
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6.4.6 Discussion of Results 

The trade off between simulation speed and accuracy is demonstrated in simulation 

results illustrated in table 6.2 and figures 6.20 through to 6.27. From these results it is 

observed that MLMD is an effective method for achieving computationally efficient 

simulations of dynamic models of complex electrical power networks with a 

significant penetration of power electronics, although at the expense of a loss in 

simulation accuracy.  

 

Figures 6.20 and 6.21 (case 1) show the results of continuous model, simulated on a 

variable step solver. These are taken as the benchmark for accuracy for which to 

compare the results of subsequent MLMD simulations against. Figures 6.22 through 

to 6.27 (cases 2, 3 and 4) illustrate the degradation in the simulation accuracy as a 

result of the discretization process.  This degradation is not particularly notable in 

figures 6.22 through to 6.25 however (cases 2 and 3), and indeed this level of 

accuracy is often satisfactory for network-level studies [7]. The purpose of case 4 

(figures 6.26 and 6.27) is to demonstrate the impact of the large step size on the 

control system performance with both the line current and bus voltage becoming 

more poorly regulated. A 50µs step size in reality would often be the operating limit 

for MLMD, as it equates to a significant time delay in control system operation. If 

utilising open loop control systems, this delay can significantly alter the desired 

behaviour of the converter. Closed loop control systems however, show the ability to 

adjust set points in order to compensate and maintain the desired converter 

behaviour. As such, under these circumstances, a solver step size of the order of 50µs 

is more acceptable. 
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The key point to note though, is that whilst there has been some loss in accuracy, the 

simulation time savings are substantial. Hence, whilst a variable step solver based 

continuous simulation may be favourable for detailed modelling of single converter 

systems [1], this chapter has shown that a discrete fixed step approach is more 

effective for network-level simulations of large complex networks.  

 

The reductions in simulation execution times provided by MLMD are especially 

valuable given that the functional converter models would fail to give valid results in 

the case study presented. This is demonstrated in figures 6.28 and 6.29 where the 

results shown have been generated from a model where all the converters have been 

represented as functional equivalents.  

 

 

Fig. 6.28.  Functional model DC bus voltage 
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Fig. 6.29.  Functional model faulted system load current 

 

Prior to the application of the simulated fault, the model is accurate. However, after 

the fault is applied at 0.5 seconds, the modelled network no longer meets the criteria 

for numerical stability (originally derived in Chapter 5) given as 

 

1<
L

in

Z

Z
, (6.1) 

 

where Zin is the effective dc side source impedance and ZL is the ac side load/fault 

impedance of the faulted inverter. As such, the load current becomes oscillatory. This 

does not become unbounded, but is clearly inaccurate. Furthermore, the changed 

nature of the fault current does not cause the dc bus voltage to collapse, which in turn 

impacts on the post-fault behaviour of the remaining systems on the bus. 
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6.5 Conclusions 

The results shown in section 6.4 demonstrate that MLMD can be very effective in 

reducing simulation execution times of complex power system models with a 

significant penetration of power electronic interfaces (of which marine and aerospace 

more-electric systems are prime examples). The capability of delivering different 

levels of abstraction from a single base model also greatly improves the reusability of 

the model and allows a high computational efficiency to be achieved for a range of 

simulation scenarios. In addition to this, MLMD can be readily implemented in a 

wide range of simulation software packages. This aspect is indeed a key advantage of 

this technique in comparison to many others (for example the real time power 

electronics simulation techniques outlined in Chapter 3) and can represent a benefit 

which is almost as important as the reductions in computational burden.  

 

It is worth noting that MLMD is also compatible with many of the real time 

simulation methods reviewed in Chapter 3 [19, 20]. By reducing the computational 

requirements of the models used, MLMD will further enhance the effectiveness of 

these methods. 

 

This author still believes that functional models can provide even greater benefits 

than MLMD for network-level dynamic simulations of complex electrical networks 

such those found in marine and aerospace more-electric applications, if (and only if) 

the instability issues associated with electrical fault studies and inaccuracy aspects 

associated with diode bridge models can be overcome. Their modularity provides the 

capability to readily interchange between detailed switch models, functional models 
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and averaged functional models to best meet the requirements of the simulations 

being conducted. Additionally, time-averaged functional models could provide even 

greater reductions in the computational burden of simulations than MLMD, 

providing further reduced simulation execution times.  

 

As such, although extending MLMD to be part of a multi-rate simulation approach is 

the most obvious follow-up to the work presented in this chapter, it will not in fact be 

pursued at all. This thesis will instead focus on the development of more robust 

functional models of power electronic converters in an to attempt to realise the 

significant computational gains that could be achieved. It is recognised however, that 

this capability will be difficult to fully develop, and that MLMD hence provides a 

robust and effective intermediate technique for the network-level modelling and 

dynamic simulation of marine and aerospace more-electric architectures. 
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7 Advanced Functional Modelling 

7.1. Chapter Overview 

This chapter proposes a new technique for the modelling and simulation of power 

electronic converters which is based upon the existing functional modelling approach 

[1, 2] described in Chapter 5, and is thus a major contribution of this thesis. This 

technique, Advanced Functional Modelling (AFM) provides substantial 

improvements in the numerical stability of the converter model during both normal 

and faulted conditions compared with the original functional modelling technique. In 

addition, it still provides similar levels of reduction in the computational requirement 

of simulating power electronic converters. This technique is also completely 

compatible with the Multi-Level Model Discretization technique described in 

Chapter 6 and is ideally suited to the network level modelling and simulation of 

marine and aerospace more-electric architectures.  

 

This chapter will present the core principles of the AFM technique, accommodating 

aspects such as the representation of time-averaged converter behaviour and the 

impact of complex network impedances, illustrating these aspects through a simple 

case study based on a single-phase inverter. The chapter will then move on to 

develop the core principles of AFM and apply them to other converter topologies, 

thus demonstrating the versatility of the proposed method. The wider application of 

the AFM technique to larger marine and aerospace more-electric network 

architectures and the difficulties associated with this are addressed. A selection of 

simulation results are then presented to reinforce the core theory presented in the 
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chapter. Finally, options for developing the AFM technique further are discussed 

before the chapter concludes with a general review of the technique’s potential 

benefits to the network-level modelling and dynamic simulation of marine and 

aerospace more-electric network architectures. 

 

This chapter is presented in three parts. 

• Part I describes the core concepts of the AFM technique and applies them to a 

single phase inverter case study. 

• Part II applies the core concepts of the AFM technique to other converter 

topologies to illustrate its versatility. 

• Part III investigates the robustness of the AFM technique when it is 

implemented within models of large electrical networks like those found in 

marine and aerospace more-electric applications. A case study is also 

included to illustrate the operation of the AFM. 
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Part I – The Core Concepts of the Advanced 

Functional Modelling Technique 
 

7.2. (I) Introduction and Justification for Research 

Chapter 5 concluded by expressing the need to develop novel methods for the 

network-level modelling and dynamic simulation of electrical networks with a 

significant penetration of power electronics that could address two separate goals. 

These goals are: 

 

• Develop a method which facilitates the computationally efficient simulation 

of switched models of power electronic converters.  

• Develop a method which improves the numerical stability of functional 

converter models in order to restore their accuracy during the simulation of 

normal (i.e. unfaulted) and simulated fault conditions.  

 

The first goal has been addressed in Chapter 6. The technique proposed, Multi-Level 

Model Discretization (MLMD), allows diode bridge converter models to be 

simulated efficiently and accurately (which is difficult to achieve with functional 

models) and is compatible with functional models of other converter topologies. This 

technique, although not as computationally efficient as the functional modelling 

technique, is accurate during simulated fault conditions and as such, also provides a 

useful default position for instances when functional converter models are unreliable. 

The current chapter will address the second goal by proposing a new method, 

Advanced Functional Modelling (AFM), which incorporates novel features into the 
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functional modelling technique to address the numerical stability issues associated 

with it. The remainder of this chapter shall present the AFM method and evaluate its 

capabilities and limitations for a range of potential applications. 

 

7.3. (I) The Advanced Functional Modelling (AFM) Concept  

This section will introduce the core concepts and design objectives of the Advanced 

Functional Modelling (AFM) technique. For greater clarity, these concepts will be 

demonstrated using a single-phase inverter as a case study. Other converter 

topologies will also be considered later in this chapter. 

  

7.3.1 (I) Review of a Single-Phase Functional Inverter Model 

The first stage of developing the AFM is to establish clear design objectives. This 

can be achieved by first revisiting the stability analysis for a single phase functional 

inverter model, originally conducted in Chapter 5. By identifying the cause of the 

numerical instability in this model (and indeed functional models of other converter 

topologies), a greater appreciation on how to resolve this issue will be gained. 

 

The single phase functional inverter model is based upon the operation of a single-

phase switched inverter model. A schematic for this switched model is shown in 

figure 7.1. 
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Fig. 7.1.  Single-phase switched inverter model 

 

The operation of the single phase switched inverter model is defined by 

 

dcsac VkV =  (7.1) 

indcdc ZIVV −=  (7.2) 

acsdc IkI =  (7.3) 

L

ac

ac
Z

V
I =

,
 (7.4) 

 

where V is the magnitude of the ideal voltage source and is constant. The component 

Zin is the dc side source impedance and ZL is the ac side load impedance respectively. 

The terms Vac, Vdc, Iac and Idc are the magnitudes of the ac and dc side voltages and 

currents respectively. These latter terms are determined by the states of the inverter 

switches (S1, S2, S3 and S4). These states are described by the variable ks, which is 

defined as 

 

( )31 SSks −= , (7.5)
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where Sj is the j-th switch state, defined as 

 

4,3,2,1for     
0

1
=





= j
otherwise

closedif
S j . (7.6) 

 

The states of switches S2 and S4 are described by the expressions below, 

 

12 1 SS −=  (7.7) 

34 1 SS −= . (7.8) 

 

As discussed in Chapter 5, the functional model of the single phase inverter 

replicates the terminal conditions of the switched inverter model without specifically 

simulating any of the switching action (utilising controlled voltage and current 

sources instead). This approach gives rise to significant reductions in the 

computational requirement of simulations conducted. The schematic of the 

functional equivalent model of the inverter is illustrated in figure 7.2. 

 

 

Fig. 7.2.  Single-phase functional inverter model 
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Figure 7.2 illustrates how the terminal conditions of the inverter (Vac and Idc) are now 

produced by controlled voltage and current sources respectively. Note that it is also 

necessary to implement a unit delay in the functional model, located in the feedback 

path of Iac, to remove the algebraic loop present (this was also discussed in Chapter 

5). Incorporating this addition, the operation of the functional model is defined as  
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In this notation, (n-1) and (n) are subsequent simulation time steps. In this manner, 

the magnitude of Idc is determined by that of Iac from the previous time step (equation 

(7.11)). Note that ZL, Zin and V are assumed to be constant in the analysis conducted 

in this chapter. While it is possible that these terms may vary from one time step to 

the next this aspect remains to be studied further. It is anticipated however, that the 

analysis presented in this and later sections can be readily adapted to accommodate 

variations in ZL, Zin and V.  
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The transfer function of the functional inverter can be derived by combining 

equations (7.9) through to (7.12) to give 
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Equation (7.17) is an example of a first order recurrence relation (see Chapter 5) 

which has the general solution (for Vac at stage N), 
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where 
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For numerical stability, it is necessary that |C|<1. By considering the range of values 

for ks, the condition for stability is only guaranteed if ZL>Zin (see Chapter 5). A short 

circuit fault at, or close to the ac terminals of the inverter is unlikely to meet this 

criterion for stability and that the model will then become inaccurate and possibly 

even unbounded (resulting in failed simulations). Analyses of other converter 

topologies conducted also gives rise to similar findings. Hence, despite the attractive 

characteristics of low computational requirements and ease of implementation, the 

highlighted shortcoming of functional converter models dictates that they are only of 
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limited usefulness for application to the network-level modelling and dynamic 

simulation of marine and aerospace more-electric architectures (where the simulation 

of fault conditions is often of significance [3, 4]). 

 

Thus, in order for functional converter models to be of any real value to the marine 

and aerospace applications, numerical stability and accuracy during simulated fault 

conditions must be restored. 

 

7.3.2 (I) AFM Objectives 

Building upon the previous section, this section will identify how the highlighted 

weakness of the functional modelling approach can be overcome. It will then define 

the design objectives of the AFM technique accordingly so that this goal might be 

achieved.  

 

In the case study provided in the previous section, it is the delayed term in the 

transfer function for Vac that introduces the finite limits to the numerical stability of 

the single-phase functional inverter model. It is worth reiterating at this stage that 

that it is possible to run the functional model without a unit delay present in the 

feedback path of the measured variable. By doing so, the algebraic loop is left intact 

and no delayed term is present in the transfer function for Vac. As such, the single-

phase functional inverter would be numerically stable under simulated ac side fault 

conditions. Indeed, Chapters 4 and 5 discuss that this is the preferred solution if the 

network model is small and of a simple nature (and hence readily solved). However, 

for larger, more complicated networks which are more computationally challenging 
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to solve (such as marine and aerospace more-electric architectures), the presence of 

algebraic loops will result in significantly slowed or even failed simulations. Chapter 

4 discusses how the use of unit delays to remove these algebraic loops is the only 

practical solution to this issue. However, as shown in Chapters 4 and 5, the presence 

of these delays can degrade the numerical stability of the model to unacceptable 

levels under some operating conditions. 

 

Hence, in order for the functional modelling approach to be viable for use within 

dynamic models of complex electrical network architectures, such as those found in 

marine and aerospace more-electric applications, a new method needs to be 

developed. This method must retain the use of unit delays to remove the algebraic 

loops present in the model whilst somehow replacing the delayed terms in its transfer 

function with non-delayed equivalent terms. By doing this, the accuracy of the 

functional model will be retained whilst its numerical stability under all operating 

conditions is guaranteed. In this manner, a robust method for reducing the 

computational requirements of simulating power electronic converters will have been 

developed. 

 

The design specification outlined above can be achieved by the successful 

completion of the following two design objectives: 

• Incorporate additional delayed feedback terms into the control algorithms of 

the functional model in order to negate the existing delayed terms in its 

transfer function. 
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• Include additional non-delayed terms into the transfer function of the model 

to restore accuracy to its terminal conditions.  

 

The following section will illustrate how these design objectives can be 

implemented, using a single-phase functional inverter model for illustration 

purposes. 

 

7.4. (I) The AFM Concept Applied to a Single-Phase Inverter 

– Lumped-Parameter Model 

As discussed in the previous section, the AFM method aims to replace all the delayed 

terms in the transfer function of the original functional model with non-delayed 

equivalents in order to guarantee the numerical stability of this model whilst still 

accurately representing the terminal conditions of the original switched model. This 

section will demonstrate how this approach can be implemented, using a single phase 

inverter as a case study. 

 

There are two variations in the manner in which the AFM can be implemented in a 

single-phase inverter, each has different merits and drawbacks (these will be 

addressed in section 7.7). The ‘lumped-parameter’ model, which introduces the 

minimum number of new model features, will be introduced first as this is also the 

simplest configuration. Later, the ‘per-phase’ model, which distributes the new 

model features evenly across the terminals of the converter, will be discussed. This 
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latter format also allows the core AFM concepts to be more easily extrapolated to 

accommodate three-phase converters. 

 

Consider the single-phase AFM inverter model illustrated in figure 7.3. The 

converter boundary illustrated in this figure indicates where the ac and dc terminals 

of the original switched inverter would lie. In this manner, any components inside 

this boundary are considered part of the converter model and any components 

located outside of the boundary are parts of the external circuit.  

 

 

Fig. 7.3.  Single-phase ‘lumped-parameter’ inverter AFM 

 

The following equations define the operation of this model, 
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where (n-1) and (n) are subsequent simulation time steps and the definition of ks 

remains the same as with the original functional model (equation 7.5)). The term XA 

is an additional delayed voltage term implemented through the controlled voltage 

source, Vout. The term ZA is a dynamic impedance component added to the terminals 

of the AFM. As such, the effective boundary of this AFM inverter is different to the 

original functional model. The terminals of the controlled voltage source no longer 

represent the boundary of the model. Instead, Vac now represents the ac voltage 

output of the AFM model (the notation is deliberately consistent with the original 

functional model) and is defined by 
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Combining equations (7.20), (7.21), (7.22) and (7.23) gives the transfer function (for 

Vout) of the AFM inverter to be 
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Substituting this into equation (7.24) gives an AFM ac output voltage of 
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Equation (7.26) can now be utilised in the derivation of XA.  
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7.4.1 (I) Derivation of the Variable XA 

In keeping with the first objective of the AFM technique (removal of all delayed 

terms from the converter transfer function) it is desirable to configure the voltage XA 

so that it cancels out the delayed term in equation (7.26). Doing this gives XA as 
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It is undesirable to implement this expression though, as ZL and Zin may not be 

known in complex networks. This position can be improved upon however by 

recalling the definition of Iac from equation (7.23) and substituting it into equation 

(7.27), giving 
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This expression can be further reduced by utilising equation (7.22) to give 
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Equation (7.29) represents a much more workable solution as the current Idc has 

already been derived as part of the functional model output and a knowledge of the 

load impedance ZL is no longer required. However, this expression is still dependant 

on a knowledge of the source internal impedance Zin. In addition to the difficulty of 

establishing the magnitude of this impedance in complex networks, the requirement 
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for knowledge about the external electrical network also infringes upon one of the 

key strengths of the functional modelling technique, its modularity and ease of 

implementation. 

 

However, it is not possible to readily remove the Zin term from the expression for XA 

without creating a further algebraic loop. For example, consider equation (7.21) 

rearranged to give IdcZin as the subject: 
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Substituting this into the expression for XA in equation (7.29) gives 
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At a first glance, this approach appears to provide the ideal solution, where a 

knowledge of Zin is no longer required to implement XA. However, substituting 

equation (7.31) into the expression for Vout given by equation (7.25) creates an 

algebraic loop. This is a result of the existing direct dependence of Vdc upon Vout 

which in turn is now a function of Vdc, hence forming the algebraic loop. Given the 

discussions earlier in this thesis regarding the problems of algebraic loops within 

functional models of power electronic converters, this is an unacceptable solution. 

Additionally, a knowledge of the ideal source voltage magnitude is also required to 

implement this solution, which may be particularly difficult to derive in complex 

network models or those containing a rectified ac voltage source. 
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Other approaches investigated to remove the Zin term from XA result in similar 

findings. As such, the expression for XA given in equation (7.29) represents the 

preferred solution. The noted drawback of the required knowledge of Zin will be     

re-addressed at a later stage in the chapter where the extent to which this limits the 

effectiveness of the AFM technique will also be evaluated. 

 

Substituting XA (equation (7.29)) into the expression for Vac in equation (7.26) gives 
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Based on the derivation of XA (given in equation (7.27)), this can be reduced to 
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Hence, equation (7.33) illustrates the effectiveness of the XA term in removing the 

delayed components from the converter output voltage Vac (and thus from the 

transfer function of the model too). As such, whilst the single-phase inverter AFM is 

not necessarily accurate at this stage of its development (this depends on the 

definition of ZA), it is no longer at risk of becoming numerically unstable as a result 

of algebraic loops or unit delays, regardless of external circuit conditions. The 

AFM is hence numerically stable even during simulated fault conditions, where the 

original functional modelling technique was shown to be unreliable (see Chapter 5). 
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It is important to note that although the derivation for XA is based on a scenario 

where no other system impacts on the magnitude of Vdc, the derivation presented is 

still effective when this is not the case. For example, consider a second scenario 

where there is additional loading on the dc side of the inverter, drawing a current, 

Iother, from the voltage source. In this manner, the expression for Vdc becomes 
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where Idc is the component of the total dc current being drawn by the inverter. In this 

manner Vac becomes 
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Implementing the substitution for XA (given in equation (7.29)), the expression for 

Vac reduces to 
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Equation (7.36) illustrates how the delayed component in the expression for Vac has 

been removed, whilst the impact of other dc systems on the magnitude of Vdc is still 

successfully accounted for. In this manner, the case study presented illustrates how 

the AFM approach maintains the adaptive characteristics of the original functional 

modelling method, allowing it to be readily and reliably implemented in a variety of 

applications. 
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7.4.2 (I) Derivation of Impedance ZA 

The next stage in the development of the AFM is the derivation of impedance ZA. 

Whilst the inclusion of XA guarantees the numerical stability of the AFM, the 

terminal quantities of this model no longer replicate those of the switched inverter 

model. This is clearly an unacceptable result. 

 

In order to compensate for the inclusion of XA, the magnitude of the additional 

impedance ZA should be appropriately set so that the ac voltage output of the 

converter model is an accurate representation of the original switched model again. 

By doing this, the accuracy will also be restored to all other terminal quantities of the 

model. This desired output (Vac-desired) is  
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Therefore, it is required that  
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Substituting for both sides gives  
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Substituting for Vdc on the right hand side of equation (7.39) gives 
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Now recall from equation (7.3) that the correct relationship between Idc and Iac in a 

switched model (i.e. one that does not require the use of a unit delay in the feedback 

path of Iac to remove the algebraic loop) is  

 

)()()( n

ac

n

s

n

dc IkI = . (7.41) 

 

Substituting equation (7.41) into the right hand side of equation (7.40) produces 
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Therefore, in order for equation (7.42) to be balanced it is necessary that 
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where SA is defined as 
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Figure 7.4 illustrates how the expression for ZA can be implemented within the AFM. 

The dotted boundary represents the terminals of this impedance element. 
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Fig. 7.4.  Revised single-phase ‘lumped-parameter’ inverter AFM 

 

The ac output voltage of the AFM inverter is now defined by 
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which equates to  
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Hence the output of the switched inverter model has been successfully replicated 

without utilising any delayed terms (hence guaranteeing the numerical stability of the 

converter model). It should be noted that by restoring the accuracy of Vac, the 

accuracy of all other terminal quantities of the model is also restored. 

 

It is worth highlighting at this stage that the inclusion of the controlled switch within 

the AFM will clearly increase the computational burden of the model in comparison 
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with the original functional model. This increase will be less notable with time-

averaged AFM models, where SA will only operate at considerably lower switching 

frequency than in pulsed output models. This aspect will be considered in more detail 

in subsequent sections. 

 

Despite this drawback, by employing the new term XA and the new impedance ZA, the 

AFM has successfully met its objectives of replacing all the delayed terms with non-

delayed equivalent terms in the transfer function of the original functional model. By 

doing this it guarantees numerical stability under all operating conditions whilst 

accurately replicating the behaviour of the original switched converter model. 

 

7.4.3 (I) Determining the Magnitude of Impedance Zin 

The previous section discusses the need to derive internal source impedance, Zin, in 

order to apply this within the AFM control equations and ZA, and hence implement 

the single phase inverter AFM successfully. This section will present the approach 

for determining the magnitude of this impedance. 

 

The impedance Zin can be found by considering the magnitude of the dc source 

impedance, as seen by the ac side load. This is effectively the Thevenin equivalent 

impedance [5] as seen from the relevant converter terminals. To demonstrate this, 

consider switched inverter model shown in figure 7.5. 
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Fig. 7.5.  Single-phase inverter with RLC internal impedance 

 

The Thevenin equivalent source impedance is calculated from the dc terminals of the 

inverter. This process is illustrated in figure 7.6 where all the impedance elements to 

the left of switches S1 and S2 have been accounted for and the ideal voltage source V 

has been short-circuited (as part of the Thevenin impedance derivation approach). 

 

 

Fig. 7.6.  Thevenin equivalent source impedance, Zin  

 

In this arrangement, the Thevenin equivalent impedance, Zin, is the parallel 

combination of ZC with R and ZL, and is defined by 
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where ‘//’ denotes a parallel combination of impedances and ‘+’ denotes a series 

connection of impedances. The term ZL is the impedance of the inductor and is 

defined by 

 

LjZ L ω= . (7.48) 

 

The term ZC is the impedance of the capacitor and is defined by 
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Substituting equations (7.48) and (7.49) into equation (7.47) and expanding gives 
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By performing some algebra, this expression can be reduced to 
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Equation (7.51) can be expressed within the Laplace domain to provide easier 

implementation within power system simulation software packages, giving 
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where 

 

ωjs = . (7.53) 

 

Clearly this process becomes more complicated if there are larger numbers of 

impedances in the circuit. This aspect will be considered later. 

 

Figure 7.7 illustrates how the derived Thevenin equivalent impedance (Zin), given in 

equation (7.52) can be incorporated into the single phase inverter AFM.  

 

 

Fig. 7.7.  Revised single-phase ‘lumped-parameter’ inverter AFM with Zin 

implemented 
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7.5. (I) Time-averaged AFM Representation 

In the analyses of the functional and AFM inverter models presented so far (and 

indeed of other functional converter models presented in Chapter 5), the equations of 

operation presented only apply to models with a pulsed output. In order to implement 

models with time-averaged terminal conditions, subtle modifications must be made 

to the equations of operation in order to achieve accurate simulation results.  

 

This section will present the modifications necessary to achieve accurate model 

behaviour, initially for the functional modelling approach and then the AFM 

approach. A case study of a single phase inverter will be utilised to aid the 

illustration of this concept. 

 

7.5.1 (I) Modifications to the Functional Model Equations 

Consider the equations of operation for the pulsed functional inverter model given 

earlier in equations (7.9) through to (7.16). The key equations to observe are those 

for Vac and Idc which are 
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where (n-1) and (n) are subsequent simulation time steps. For pulsed models, ks will 

only hold values of 1, 0 or -1. However, for time averaged models, ks will vary 

continuously between 1 and -1, effectively implementing the underlying modulation 

wave employed in the pulse generation circuit of the converter model [2, 6]. Under 

these conditions, the expression for Vac given in equation (7.54) is still correct and 

will now produce the required time-averaged ac voltage. However, the expression for 

Idc is incorrect. Even in time-averaged conditions, the magnitude of Idc should match 

that of Iac. In the present expression (equation (7.55)), Idc is (wrongly) attenuated by 

the multiplying factor of ks. As such, it is necessary to modify the equations of 

operation for the functional model, and indeed the associated AFM to properly 

represent the time-averaged conditions of the converter. This can be achieved by 

introducing a new variable, kdc, which is defined as 

 









<≤

=

≤<

−

=

01-for        

0for 

10for      

1

0

1

)(

)(

)(

)(

n

s

n

s

n

s

n

dc

k

k

k

k    . (7.57) 

 

The expression for Idc of the functional model now becomes 
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Hence, the magnitude of Idc is no longer attenuated and matches that of Iac. In this 

manner, the accuracy of Idc and indeed all the outputs of the time-averaged model is 

restored. All other equations of operation for the functional model remain the same 

as given before. Note that the stability criterion of the functional model is not 
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affected by this modification as the maximum magnitude of kdc is the same as ks. 

Also note that equation (7.58) still holds true for functional models and AFMs with 

pulsed outputs (where ks = kdc). 

 

7.5.2 (I) Modifications to the AFM Equations 

This section will show how the representation of a time-averaged converter output 

also requires additional changes to be made to the equations of operation for the 

AFM in order to maintain its accuracy. The impact of these modifications on the 

numerical stability of the AFM will also be considered and guidelines for the 

implementation of time-averaged AFMs will be given. 

 

If the updated expression for Idc given in equation (7.58) is implemented in the 

lumped-parameter AFM model, this impacts on the magnitude ZA. Note that XA is not 

directly affected however (see equation (7.29)). To demonstrate this impact on ZA, 

consider the expression for the desired ac voltage output (Vac-desired) of the time-

averaged lumped-parameter AFM model (originally given in equation (7.37)). 
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Expanding this in the same manner as illustrated in section 7.4.2 but this time 

accommodating the updated expression for Idc gives 
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As before, the ac terminal voltage, Vac (given in equation (7.33)) of the AFM inverter 

should match that of the switched inverter (Vac-desired). This gives 
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Going through the same process as that used in section 7.4.2 (derivation of ZA), ZA is 

hence required to be 
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Equation (7.62) presents an interesting problem for the successful implementation of 

the time-averaged AFM. Whilst a variable resistor model can be readily implemented 

in generic simulation packages (i.e. those which require the specific mathematical 

modelling of each component of the electrical network and are hence not necessarily 

suited to simulating complex power systems [7]) it is very difficult to implement in 

most power systems simulation software packages. These packages only permit the 

implementation of fixed value resistances. Variable resistor models for these 

packages involve utilising fast acting feedback loops with controlled sources [8], 

which inherently involve the creation of algebraic loops (which is clearly 

undesirable). As such, the requirement to utilise a variable resistor model within a 

time averaged AFM is not a desirable solution. 

 

It is however, possible to implement an alternative expression for ZA which is close 

to that given in equation (7.62) and which is of a form that can be readily 
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implemented within a power systems simulation package without resulting in the 

creation of algebraic loops. This alternative is given as 
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Whilst this expression is a simplification of the solution given in equation (7.62), it 

can however be readily implemented into a power systems simulator package as the 

magnitude of kdc
2
 will only be either 1 or 0. It is acknowledged that there will be 

some degree of error produced by this solution and as such, it is important to 

evaluate the potential magnitude of this when the expression for ZA given in equation 

(7.63) is implemented. Small errors in time-averaged models are often acceptable 

because of their low fidelity [1, 2]. As such, depending on the level of error produced 

and the application in question, the expression for ZA given in equation (7.63) may 

represent a viable alternative solution to that given in equation (7.62). 

 

7.5.3 (I) Evaluation of the Error in the Averaged AFM Voltage 

Output 

Implementing the single-phase inverter AFM using the expression for ZA as defined 

in equation (7.63), the error in Vac (compared to the switched model) will be 
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Substituting for Vac-desired, Vac and ZA (given in equations (7.60), (7.33) and (7.63) 

respectively) gives 
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This expression can be reduced to 
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where  
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The next stage of this analysis is to consider the potential variation in magnitude of 

Yk and its components over the full range of ks. This is shown in table 7.1. 

 

Table 7.1.  Variation of Yk over the range of ks. 

ks kdc kdc
2 

ks kdc Yk 

0 > ks ≥ -1 -1 1 |ks| 1-|ks| 

ks = 0 0 0 0 0 

1 ≥ ks > 0 1 1 |ks| 1-|ks| 

 

 

Table 7.1 shows that there is no error in the voltage Vac, of the time-averaged AFM 

when ks is equal to zero (i.e. when S1 = S3). However, this operating condition 

usually only arises at a rate of twice per cycle of the fundamental frequency of Vac, 
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and typically lasts for only one simulation time step. Therefore, there is nearly 

always some error present in the time averaged AFM ac voltage output Vac. As such, 

it is necessary to further analyse the variation in magnitude of this error, which can 

now be expressed as 
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By examining equation (7.68) and it can be deduced that the maximum error in Vac 

will occur when the magnitude of ks is almost zero. However, in most applications, a 

very small value for ks will also give a low magnitude of Iac. Conversely, when Iac is 

at its greatest, ks will also be at its maximum value. In this way the error in Vac is 

largely self attenuating and the behaviour of the time-averaged inverter AFM will be 

a good representation of the switched model in most applications. For these cases, 

the alternative form of ZA derived in equation (7.63) is an acceptable solution. 

 

Note that Verror (given in equation (7.68)) is dependant on other circuit parameters 

such as Zin, V and ZL, as these variables all serve to affect the magnitude of Iac. It is 

also worth noting that any error present in Vac will also propagate into an error in Iac, 

Idc and Vdc and so on. In other words, the error is not exclusive to Vac. 

 

There is however, one type of application when the error in Vac is not self 

attenuating. If the AFM is connected to an additional voltage source on its ac side 

(either for sourcing or sinking power to/from an external power source) the 

relationship between ks and Iac changes. Under these conditions, a low magnitude of 



262 

ks may give a large magnitude of Iac and vice versa, possibly leading to the formation 

of potentially significant errors. Under these operating conditions, it is highly 

unlikely that the use of the time-averaged inverter AFM will be acceptable. 

 

As such, the following section will explore the use of additional functionality 

implemented within the time-averaged AFM model as a method for reducing the 

level of error in Vac for applications where the level of error defined in equation 

(7.68) is not acceptable. 

 

7.5.4 (I) Additional Functionality for the Time Averaged Inverter 

AFM  

This section will propose and evaluate a method for reducing the level of error in Vac 

for the time averaged inverter AFM. It can be employed in applications where Verror 

(see equation (7.68)) is considered too great. The proposed method involves 

incorporating additional delayed variables into the expression for Vout, which up to 

this point, the AFM approach has previously gone to great lengths to avoid because 

of the possibility of creating numerical instability. However, this section will go on 

to show how the numerical stability of the AFM model is still guaranteed under all 

conditions even with the addition of these particular delayed terms. 

 

It should be noted though that the more generic modelling languages which can 

accommodate a variable resistor model without creating algebraic loops (as 

discussed in section 7.5.3) have no requirement for the solution presented here. 
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The proposed method sees an extra variable term added to the ac voltage output of 

the AFM (Vout) in order to negate the error in Vac. This variable, Aerr, takes on the 

magnitude but opposite polarity of the error defined in equation (7.68) and is given 

by 
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which gives 
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Notice that the Iac term in equations (7.69) and (7.70) is delayed by one time step in 

comparison to that of equation (7.68). This use of a delayed Iac term is clearly 

unattractive as it will have undesirable implications for the numerical stability of the 

model. However, this position is not easily avoided, as to include a non-delayed 

measurement of the term Iac would involve introducing an algebraic loop, which is 

even more undesirable than the presence of a delayed term in equation (7.70). 

Additionally, this section will go on to show that the numerical stability of the AFM 

is in fact not compromised by the inclusion of the term Aerr.  

 

It is also worth noting at this stage that with Iac changing from one simulation time 

step to the next, the use of a delayed Iac term in Aerr means that the error in Vac will 

not be completely negated. However, in situations where Iac varies slowly between 

time steps, like those experienced with time-averaged models, the remaining error in 
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Vac is likely to be negligible. In most cases, the output of the time-averaged AFM 

will not be of a high enough fidelity for this level of remaining error to be of any real 

concern [2].  

 

This section will now consider the operation of the AFM with this delayed term 

incorporated in order to demonstrate its guaranteed numerical stability.  

 

The full expression for Vac of the time-averaged AFM with the expression for Aerr 

(given in equation (7.70)) incorporated is 
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Using the appropriate substitutions, this can be expanded to 
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Cancelling terms, equation (7.72) can be reduced to  
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In order to work towards a transfer function for the time-averaged AFM in terms of 

Vac, the following substitution for Iac will be made 
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This gives 
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Substituting for ZA and rearranging equation (7.75) gives 
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and 
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Rearranging equation (7.77) to give Vac as the subject gives 
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Adopting a similar approach to the stability analysis conducted on the original 

functional model earlier in section 7.3.1, it can be shown that this model is 

numerically stable when 
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Table 7.2 evaluates this inequality for all combinations of kdc
(n-1)

 and ks
(n)

, indicating 

when the criteria for stability is met. 

 

Table 7.2.  Evaluation of equation (7.79) over the range of ks. 
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-1 0 > ks ≥ -1 -1 < 1 

0 0 > ks ≥ -1 -1 Dependant upon |Zin| and |ZL| 

1 0 > ks ≥ -1 -1 < 1 

-1 ks = 0 0 0 

0 ks = 0 0 0 

1 ks = 0 0 0 

-1 1 ≥ ks > 0 1 < 1 

0 1 ≥ ks > 0 1 Dependant upon |Zin| and |ZL| 

1 1 ≥ ks > 0 1 < 1 

 

 

Table 7.2 illustrates how numerical stability is guaranteed for all but two of the 

possible operating conditions of the time-averaged inverter. For these two instances, 

equation (7.79) becomes 
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From this equation, it would appear that numerical stability is not guaranteed, but is 

instead a function of the magnitudes of Zin, ZL and ks. 

  

Note however, that if kdc at time (n-1) is zero, then the magnitude of ks at time (n-1) 

will also be zero. Substituting these values into equation (7.73) gives Vac = 0 at time 

(n-1) under these conditions. As a result of this, the magnitude of the delayed term in 

equation (7.78) is zero and the time-averaged AFM is in fact completely stable even 

when the condition set out in equation (7.80) is not met. The implications of the 

findings presented in this section are discussed in the following section. 

 

7.5.5 (I) Discussion of Alternative Time-Averaged AFM 

Implementations 

The previous sections have shown that two options exist for the implementation of a 

time-averaged single phase AFM inverter (although the analyses and concepts 

applied can also be readily extended to other converter topologies). The first is to 

accept the errors introduced by implementing the impedance ZA and not include the 

error correction term Aerr. The resultant model is numerically stable under all 

conditions but may not produce acceptable levels of error in some cases. The 

alternative approach is to implement Aerr so that the level of error is minimised. This 

model is also stable under all conditions and will produce less error than the former 
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method. However, it may exhibit some oscillatory behaviour as a result of the 

presence of delayed terms in the expression for Vac. Hence, a trade off exists between 

these two methods and care must be taken when selecting which one to implement. 

 

7.6. (I) The AFM concept applied to a Single-Phase Inverter – 

Per-Phase Model 

This section will present an alternative approach to implementing the AFM technique 

on a single-phase inverter, the per-phase approach. The core concepts and the 

manner in which they are implemented will be described before the effectiveness of 

this AFM approach is evaluated.  

 

Additionally, the following section will build on the material presented thus far in 

this chapter by considering the comparative advantages and disadvantages of the two 

alternative AFM methods presented in sections 7.4 and 7.6. The purpose of this 

comparison will be to illustrate the need for two separate AFM methods and to 

provide guidelines on their use.  

 

Like the previously described lumped-parameter AFM, the per-phase model aims to 

replace all the delayed terms in the transfer function of the original functional model 

with non-delayed equivalents in order to guarantee its numerical stability whilst still 

accurately representing the terminal conditions of the original switched model. 

However, the key difference between the per-phase and ‘lumped-parameter’ 

approaches is that the former method only utilises one source and thus implements 
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XA and ZA in series with this source, whilst the latter method utilises two controlled 

voltage sources and evenly distributes the additional AFM features into both of these 

output lines. This approach adopted in the per-phase AFM has some advantages over 

the ‘lumped-parameter’ model (as will be discussed in section 7.7) and is more 

readily transferable to a three-phase inverter. However, it is also a more complex 

model architecture and as such has a higher computational requirement.  

 

Figure 7.8 illustrates the circuit schematic of the ‘per-phase’ representation of a 

single-phase inverter AFM. As with the lumped-parameter AFM, the converter 

boundary illustrated in this figure indicates where the terminals of the original 

switched converter model would lie. In this manner, any components inside this 

boundary are considered part of the converter model and any components located 

outside of the boundary are parts of the external circuit. 

 

 

Fig. 7.8.  Single-phase ‘per-phase’ inverter AFM 

 

The operation of this per-phase inverter AFM is governed by the following equations 
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where (n-1) and (n) are subsequent simulation time steps, XA and XB are additional 

delayed voltage terms implemented through the controlled voltage sources, VA and 

VB respectively. The definitions of Vdc, Vac, Idc, ZL and Zin remain the same as for the 

lumped-parameter inverter AFM described in section 7.4. The ac side currents IA and 

IB are artificial variables added in order to simplify later derivations of AFM 

variables. Note that IA = Iac = -IB at any instant in time. The term Sj is the j-th switch 

state at time step (n) and is defined as 
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As with the previous case, these equations already take account of the delays in the 

feedback paths of IA and IB which have been added to eliminate the algebraic loops 

present. Also note that Vac represents the effective ac terminals of the AFM model. 

Substituting equation (7.83) into equations (7.81) and (7.82) gives expressions for 

the ac side controlled voltage sources VA and VB as 
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Equations (7.87) and (7.88) can now be used to derive the voltages XA and XB. 

  

7.6.1 (I) Derivation of XA and XB 

In keeping with the first objective of the AFM technique (removal of all delayed 

terms from the converter transfer function) it is desirable to configure the voltages XA 

and XB so that they cancel out the middle terms (S1IdcZin and S3IdcZin) in equations 

(7.87) and (7.88), as these derive from the delayed measurements of IA and IB (as 

illustrated in section 7.4.1). Doing this gives XA and XB as 
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As with the lumped-parameter AFM, these solutions are considered convenient since 

Idc is already derived as part of the operation of the original functional model. 

Substituting these expressions into equations (7.87) and (7.88) successfully removes 

the delayed terms in these equations. As with the lumped-parameter AFM, the per-

phase AFM is not accurate at this stage of its development (this still depends on the 

definition of ZA and ZB), but it will not become numerically unstable as a result of 

algebraic loops or unit delays, regardless of external circuit conditions. As such, the 
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per-phase AFM is numerically stable even during simulated fault conditions, 

successfully meeting the first of its design criteria. 

 

7.6.2 (I) Derivation of ZA and ZB 

As with the lumped parameter AFM, the next stage in the development of the per-

phase AFM is the derivation of additional impedances ZA and ZB to negate the errors 

created in its governing equations by the introduction of the terms XA and XB. By 

doing this, the ac voltage output of the AFM will once again be an accurate 

representation of the original switched model.  

 

From the earlier lumped-parameter example, it is known that the desired ac voltage 

output (i.e. that which is produced by the original switched model) of the AFM 

model (Vac-desired) should be 
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Expanding Vdc in equation (7.91) in a similar manner to that performed in the 

derivation of the ‘lumped-parameter’ inverter AFM gives 
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Expanding this equation even further allows Vac-desired to be expressed in the 

following manner (which will later aid the derivation of expressions for ZA and ZB) 
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Now consider the AFM ac terminal voltage, Vac, incorporating revised expressions 

for voltages VA and VB, 
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In order for the ac voltage of the AFM (Vac) given in equation (7.94) to match that of 

the switched model (Vac-desired) given in equation (7.93), it is necessary that 
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where 
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The resulting magnitudes of ZA and ZB are shown in table 7.3. 
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Table 7.3.  Magnitudes of impedances ZA and ZB 

S1 S3 ZA ZB 

0 0 0 0 

0 1 0 Zin 

1 0 Zin 0 

1 1 0 0 

 

Hence, ZA and ZB can be readily implemented using a two-state switch and a fixed 

impedance of magnitude Zin, which is the desired result. The magnitude of the 

internal impedance, Zin, is calculated in the same manner as shown for the lumped-

parameter model (section 7.4.3). 

 

Figure 7.9 shows the revised ‘per-phase’ arrangement for a single-phase inverter 

AFM, illustrating the implementation of ZA and ZB. 

 

 

Fig. 7.9.  Revised single-phase ‘per-phase’ inverter AFM 

 

As with the lumped-parameter model, it is undesirable (although unavoidable) to 

utilise controlled switches in this AFM model, as these will decrease the AFM’s 

computational efficiency. Also in line with lumped-parameter model, these 
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additional controlled switches will have a much lower impact on the computational 

efficiency of the AFM when a time averaged converter output is implemented. 

 

Note that the time averaged ‘per-phase’ AFM inverter model can be implemented in 

a similar manner to that described in sections 7.5.2 through to 7.5.5. 

 

Through the inclusion of the new terms XA and XB, and the new impedances ZA and 

ZB, the per-phase AFM has successfully met its objectives of replacing all the 

delayed terms in the transfer function of the original functional model with non-

delayed equivalent terms. By doing this it guarantees numerical stability under all 

operating conditions whilst accurately replicating the behaviour of the original 

switched converter model. 

 

In addition to these benefits, the next section illustrates how the per-phase AFM 

provides increased fidelity in its output, when compared to the lumped-parameter 

AFM, although at the expense of increased computation. 

 

7.7. (I) Comparison of Lumped-Parameter and Per-Phase 

AFM Inverter Models 

This section will discuss the comparative advantages and disadvantages of the two 

alternative AFM representations presented in sections 7.4 and 7.6. By doing this, it is 

intended that the need for two separate AFM methods will be illustrated and that 

guidelines on their use will be provided. 
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7.7.1 (I) Computational Requirements 

The first aspect to consider is the computational requirement of both AFM 

representations. The lumped-parameter approach contains fewer additional 

controlled switches than the per-phase representation and as such, will require less 

computation to solve. In large networks with multiple converter models, this 

difference in the computational requirement could have a notable impact on the 

execution time of simulations conducted. Hence, on this basis, the lumped-parameter 

model is the preferred option for applications involving multi-converter networks. 

 

If the AFMs are used to implement the time-averaged behaviour of the power 

electronic converters, the typical operating frequencies of the additional controlled 

switches contained within the models will be significantly lower. As such, the 

lumped-parameter approach will be only marginally more computationally efficient 

than the per-phase approach. Hence, in applications considering time-averaged 

converter behaviour, the differences in simulation execution time are unlikely to be 

significant enough that this aspect would be a key factor in choosing between the two 

AFM approaches. 

 

7.7.2 (I) Specific AC Side Accuracy 

The second key difference between the lumped-parameter and per-phase AFM 

representations is the difference in ac voltage potentials. Whilst the rail to rail output 

voltage, Vac, of both converters is the same as the original switched converter model 

(taken as the benchmark for accuracy), the voltage potential of each ac terminal with 

respect to the dc side of the converter varies between the two representations.  
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The following case studies will illustrate how the lumped-parameter model is 

designed to achieve accuracy only in the reproduction of rail-to-rail voltages on the 

ac side of the converter model, but per-phase approach is designed to produce 

accurate specific ac voltage potentials (with respect to the dc side of the converter) in 

addition to this. 

 

Figure 7.10 shows the schematics of a single-phase switched inverter model, the 

‘lumped-parameter’ AFM equivalent and the ‘per-phase’ AFM equivalent (with 

additional annotations). Using the switched model as a benchmark for accuracy, the 

potentials between points A, B and M will be considered for both the lumped-

parameter and per-phase AFM models in order to illustrate the accuracy of these 

models under a variety of operating conditions. 
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Fig. 7.10.  (1) Schematics of a single-phase switched inverter, 

(2) ‘lumped-parameter’ AFM and (3) ‘per-phase’ AFM 

 

The schematics shown in figure 7.10 will now form the basis for a number of 

comparative studies to illustrate the accuracy of both AFM approaches for a variety 

of different converter operating states. The findings of these studies will form the 
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core guidelines for the application of both AFM methods, which will be given in 

section 7.7.5. 

 

7.7.3 (I) Switches S1 and S4 Closed 

With reference to figure 7.10 (1), if the switched inverter is in an operating state such 

that switches S1 and S4 are closed, and switches S2 and S3 are open, the potential of 

point A with respect to point M will be +Vdc. The potential of point B will be the 

same as point M (neglecting any voltage loss across the semiconductor switches of 

the converter).  

 

The lumped-parameter AFM representation (figure 7.10 (2)) will operate with       

Vout = V and SA = 1 in order to replicate the operating state of the switched inverter. 

In this manner, the potential of point A with respect to point M will be +Vdc (as with 

the switched model). Point B will share the same potential as point M (again, in line 

with the switched model). 

 

The per-phase AFM representation (figure 7.10 (3)) will operate with VA = V, SA = 1, 

VB = 0 and SB = 0 in order to replicate the operating state of the switched inverter. In 

this manner, the potentials of points A and B will once again match that of the 

switched converter. 

 

Therefore, for the given operating state, the true potentials of both AFM 

representations match those of the switched model. The implications of these results 

will be discussed in section 7.7.5.  
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7.7.4 (I) Switches S1 and S4 Open 

It will now be shown that not both AFM representations are accurate however if the 

switched model (figure 7.10 (1)) is in an operating state such that switches S1 and S4 

are open, and switches S2 and S3 are closed. Under these conditions, the potential of 

point B with respect to point M will now be +Vdc and the potential of point A will be 

same as M. 

 

In order to match the operating state of the switched inverter, the lumped-parameter 

AFM (figure 7.10 (2)) will operate with Vout = -Vdc and SA = 1. In this case, the 

potential of point A with respect to point M is actually -Vdc and the potential of point 

B is still equal to that of point M. Hence, although the line-to-line output voltage 

(Vac) of the AFM remains accurate, an effective common-mode voltage [6] of –Vdc 

(which is erroneous) has been created in this case. Note that a similar error would 

also be created if the original functional model architecture described in Section 

7.3.1 was utilised.  

 

The per-phase AFM (figure 7.10 (3)) will operate with VA = 0, SA = 0, VB = 1 and SB 

= 1 in order to match the operating state of the switched inverter. Thus the true 

potentials of points A and B with respect to M are correct with reference to the 

switched inverter model (figure 7.10 (1)).  

 

Therefore, for this operating state, the true potentials of the per-phase AFM 

representation match those of the switched model but this is not the case with the 



281 

lumped-parameter AFM. The implications of these results will be discussed in 

section 7.7.5.  

 

7.7.5 (I) Switches S1 and S3 Closed – Zero Voltage Vector 

Consider the instance when the switched inverter (figure 7.10 (3)) is operating in a 

state such that switches S1 and S3 are equal. These conditions are classed as zero 

voltage switching vectors because the ac side rail to rail voltage of the inverter is 

zero. The first zero voltage vector case to consider is when switches S1 and S3 are 

both closed and switches S2 and S4 are both open. Under these conditions, the 

potential of points A and B with respect to point M in the switched model will now 

be +V (Idc is zero for the configuration of Zin illustrated in figure 7.10 (1)). 

 

In order to match the operating state of the inverter, the lumped-parameter model 

(figure 7.10 (2)) operates with Vout = 0 and SA = 0. In this manner, points A and B 

will erroneously both adopt the same potential as point M. Again, this error would 

also occur if the original functional model architecture was utilised. 

 

The per-phase model (figure 7.10 (3)) operates with VA = V, VB = V, SA = 0 and SB = 

0 in order to match the operating state of the switched inverter. In this manner, the 

true potentials of both points A and B are correct.  

 

Therefore, for this converter operating state, the per-phase AFM representation 

accurately reproduces the specific ac side potentials (with reference to the switched 

model), whilst the lumped-parameter AFM only achieves accuracy in the line to line 
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voltage output (Vac). The implications of these results will be discussed in section 

7.7.5. 

 

7.7.6 (I) Switches S1 and S3 Open – Zero Voltage Vector 

In this case, the operating state of the switched inverter (figure 7.10 (1)) is such that 

switches S1 and S3 are open and switches S2 and S4 closed. Under this condition, the 

potentials of points A and B in the switched model are both equal to that of M. 

 

The lumped-parameter model (figure 7.10 (2)) operates with Vout = 0 and SA = 0 so 

that its operating state matches that of the switched inverter. Under this operating 

condition, the true potentials of points A and B within this model are equal to M and 

are hence correct. 

 

In order to match the operating state of the switched inverter, the per-phase model 

(figure 7.10 (3)) operates with VA = 0, VB = 0, SA = 0 and SB = 0. Under this 

condition, the potentials of points A and B with respect to point M are also correct.  

 

Hence, for this operating state, both the lumped-parameter and per-phase AFM 

approaches are accurate for both the line to line ac side voltages and true ac side 

voltage potentials. The implications of these results will be discussed in section 

7.7.5.  
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7.7.7 (I) Discussions on the Comparison of AFM Representations 

This section will review the findings of the case studies presented in sections 7.7.1, 

7.7.2, 7.7.3 and 7.7.4 in order to establish guidelines for the application of both the 

lumped-parameter and per-phase AFM representations. 

 

As discussed in section 7.7, the lumped-parameter inverter AFM (figure 7.10 (2)) is 

more computationally efficient than the per-phase model. However, the case studies 

above have illustrated that it can only provide guaranteed accuracy in the rail to rail 

voltage output (Vac) of the converter. For other voltages that are referenced to the dc 

side of the converter, such as common mode voltages (depending on the earthing 

arrangement of the network considered), accuracy is not guaranteed. In order to 

investigate these aspects, it is necessary to utilise the less computationally efficient 

per-phase AFM (figure 7.10 (3)), which provides accuracy in these desired output 

quantities. However, in multi-converter network models, the additional 

computational requirement associated with the per-phase AFM representation may 

lead to a significant increase in simulation execution time. Hence, this representation 

should only be utilised if the true ac side voltage potentials are to be studied, 

otherwise the lumped-parameter representation should be employed to realise the 

maximum reductions in simulation computation.  

 

At this stage, it is also worth noting that the true potentials of points A and B in the 

per-phase model (figure 7.10 (3) remain correct for the other configurations of Zin 

considered (but not presented). For example, if there is some capacitance in parallel 

with the ideal voltage source V and its internal impedance Zin, the magnitude of Vdc 
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would not necessarily become V when Idc is zero (i.e. during the application of zero 

voltage vectors). The per-phase model however, still accounts for this by measuring 

the dc terminal voltage of the converter. Hence whilst XA and XB negate the impact of 

the delayed measurements of the ac side currents, they do not cancel out variations in 

Vdc caused by current flow internal to the source impedance, Zin. 

 

Also note that, like the original functional model, neither AFM representation can 

accommodate conditions where the states of switches S1 and S2 are equal or where 

the states of switches S3 and S4 are equal. These operating conditions are generally 

not utilised though as they cause the dc voltage source (Vdc) to be short circuited 

which is generally undesirable. 
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Part II - AFM Applied to Other Converter Topologies 

 
In the following sections, the core principles of the AFM technique will be applied to 

a selection of converter topologies in order to demonstrate its versatility. It is 

acknowledged that there are other converter topologies utilised within marine and 

aerospace more-electric architectures [9, 10] in addition to those considered in this 

section. However, to address each of these on a case by case basis offers only limited 

additional benefit. Instead, it is intended that the selection provided will be a 

demonstration of the versatility and capability of the AFM technique. 

 

In line with the two inverter AFM representations already presented in Part I of this 

chapter, all the converter AFM representations presented in Part II aim to replace the 

delayed terms in the transfer function of the original functional model with non-

delayed equivalents in order to guarantee its numerical stability whilst still accurately 

representing the terminal conditions of the original switched model.  

 

7.8 (II) Single-Phase Switched Rectifier – Lumped-

Parameter Model 

Like the single phase inverter, there are two variations of the single-phase switched 

rectifier AFM, the ‘lumped-parameter’ model and the ‘per-phase’ model. This 

chapter will consider both, starting with the ‘lumped-parameter’ model. This is 

illustrated in figure 7.11.  
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Fig. 7.11.  Single-phase lumped-parameter switched rectifier AFM 

 

As with inverter AFM, the converter boundary illustrated in figure 7.11 indicates 

where the terminals of the original switched model would be located. In this manner, 

any components within this boundary are part of the converter AFM and any 

components external to this boundary are parts of the surrounding electrical network. 

 

The equations governing the behaviour of this model are 
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where the definitions of (n-1), (n) and ks remain the same as previous models. The 

variables Vac, Iac, Vdc and Idc are the ac side voltage and current and the dc side 

voltage and current respectively. Terms Vs, Zin, and ZL are the magnitudes of the 

voltage source, internal impedance and the load impedance. The term XA is an 

additional voltage implemented with the controlled voltage source, Vout, to negate the 

delayed terms in its output. The impedance ZA is the additional impedance utilised to 

restore the accuracy in the AFM ac side voltage output.  

 

Following the same principles as previous AFMs, the governing equations for this 

switched rectifier can be developed to give the following definitions of XA and ZA as 
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From equation (7.104), it is possible to implement ZA using a fixed impedance of 

magnitude ZL and a controlled switch. This approach is necessary if the application 

of the AFM within power systems simulation packages is to be achieved. This 

implementation of ZA is illustrated in figure 7.12. 
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Fig. 7.12.  Single-phase lumped-parameter switched rectifier AFM with revised ZA 

 

Implementing XA and ZA and performing some algebra gives the ac side voltage 

output of the switched rectifier AFM as 
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dc

nnn
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Note, that in line with the inverter AFMs presented in sections 7.4 and 7.6, the Vdc 

term present in equation (7.105) is now made up of non-delayed terms. Hence, 

through the inclusion of the new term XA and the new impedance ZA, the AFM has 

successfully met its objectives of replacing all the delayed terms with non-delayed 

equivalent terms in the transfer function of the original functional model. By doing 

this it guarantees numerical stability under all operating conditions whilst accurately 

replicating the behaviour of the original switched converter model. 
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7.9 (II) Single-Phase Switched Rectifier – Per-Phase Model 

This section will present the AFM concept applied to the single-phase switched 

rectifier in a per-phase arrangement. The design objectives of this AFM model are 

the same as those for the other AFMs previously presented in this chapter. 

Additionally, the advantages and disadvantages of the lumped-parameter (described 

in the previous section) and per-phase AFM representations of a switched rectifier 

are the same as those for a single-phase inverter (discussed in section 7.7.5).  

 

Consider the single-phase, ‘per-phase’ switched rectifier AFM illustrated in figure 

7.13. 

 

 

Fig. 7.13.  Single-phase, per-phase switched rectifier AFM 
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In keeping with earlier AFMs, the converter boundary illustrated in figure 7.11 

indicates where the terminals of the original switched model would be located. The 

equations governing the behaviour of this model are 

 

)()()(

1

)( n

A

n

dc

nn

A XVSV +=  (7.106) 

)()()(

3

)( n

B

n

dc

nn

B XVSV +=  (7.107) 

L

n

dc

n

dc ZIV
)()( =  (7.108) 

)1()(

3

)1()(

1

)( −− += n

B

nn

A

nn

dc ISISI  (7.109) 

)()(

)()()(
)(

n

B

n

Ain

n

A

n

B

n

sn

ac
ZZZ

VVV
I

++

−+
= . (7.110) 

)()()()()()()( n

B

n

B

n

A

n

A

n

B

n

A

n

ac ZIZIVVV −+−= , (7.111) 

 

The definitions of (n-1) and (n) remain the same as previous models. Terms XA and 

XB are additional voltages implemented with the controlled voltage sources, VA and 

VB. The variables Vac, Iac, Vdc and Idc are the ac side voltage and current and the dc 

side voltage and current respectively. The ac side currents IA and IB are artificial 

notations added in order to simplify later derivations of AFM variables. It is assumed 

that IA = Iac = -IB at any instant in time. Impedances ZA and ZB are dynamic 

components added to restore the accuracy of the AFM.  

 

Following the same principles as previous AFMs, the governing equations for this 

per-phase switched rectifier AFM can be developed to give the following definitions 

of XA, XB, ZA and ZB. 
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Table 7.4 shows the variation in magnitude of ZA and ZB for all possible 

combinations of S1 and S3. 

 

Table 7.4.  Impact of the states of S1 and S3 on ZA and ZB. 

S1 S3 ZA
 

ZB
 

0 0 0 0 

0 1 0 ZL 

1 0 ZL 0 

1 1 0 0 

 

From Table 7.4, it can be seen that it is possible to implement ZA and ZB using fixed 

impedances of magnitude ZL and controlled switches (this is in line with the lumped-

parameter model). This approach is necessary to achieve the application of the AFM 

within power systems simulation packages. This implementation of ZA and ZB is 

illustrated in figure 7.14. 
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Fig. 7.14.  Single-phase per-phase switched rectifier AFM with revised ZA and ZB 

 

By following the same process as that presented for the per-phase inverter AFM, the 

ac side voltage output of the per-phase switched rectifier AFM can be expressed as 
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Note, that in line with the inverter AFMs presented in sections 7.4 and 7.6, the Vdc 

term present in equation (7.105) is now made up of non-delayed terms. Hence, the 

AFM has successfully met its objectives of replacing all the delayed terms with non-

delayed equivalent terms in the transfer function of the original functional model. By 

doing this it guarantees numerical stability under all operating conditions whilst 

accurately replicating the behaviour of the original switched converter model. 
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Additionally, the per-phase model is accurate even when common-mode voltages are 

studied (as discussed in section 7.5.5), where the lumped-parameter model is not. 

However, because of the increased number of additional controlled switches in 

comparison to the lumped-parameter model, the per-phase model is more 

computationally demanding than the lumped-parameter model. Hence, in order to 

minimise the computational requirement of any particular simulation utilising 

switched rectifier AFMs, the per-phase representation should only be utilised ahead 

of the lumped-parameter representation when specifically studying the variables 

described above. 

 

7.10 (II) DC-DC Forward Converter AFM 

Unlike the inverter and switched rectifier topologies studied, the AFM of the dc-dc 

forward converter considered in Chapter 5 can only be represented in one form as 

there is only one switch controlling the output of this converter. Otherwise, the 

design objectives of this AFM model are the same as those for the other AFMs 

previously presented in this chapter.  

 

The schematic of the dc-dc forward converter AFM is illustrated in figure 7.15. 
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Fig.  7.15. DC-DC Forward Converter AFM 

 

As before, the converter boundary illustrated in figure 7.15 indicates where the 

terminals of the original switched model would be located.  

 

The equations governing the behaviour of this model are 
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where the definitions of (n-1) and (n) remain the same as with previous models. The 

term S, is the state of the single switch in the original switched converter model and 

is defined as 
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The term XA is an additional voltage implemented with the controlled voltage source, 

Vout. Impedance ZA is a dynamic component added to restore the accuracy of the 

AFM. The impedance Zout is the combined impedance of components L, C and ZL. 

The terms V and Zin are the magnitudes of the source voltage and source impedance 

respectively. The terms V1, I1, V2 and I2 represent the input and output voltages and 

currents of the dc-dc converter AFM respectively. 

 

Following the same principles as previous AFMs, the governing equations for this 

dc-dc forward converter can be developed to give the following definitions of XA and 

ZA. 
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In line with earlier AFMs, it can be seen that it is possible to implement ZA using 

fixed impedances of magnitude Zin and a controlled switch. Again, this approach is 

necessary to achieve the application of the AFM within power systems simulation 

packages. This implementation of ZA is illustrated in figure 7.16. 
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Fig. 7.16.  Revised single-phase DC-DC forward converter AFM 

 

Implementing XA and ZA and performing some algebra gives the output voltage of the 

dc-dc forward converter AFM as 
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Note that in line with previous AFM topologies presented in this chapter, the V1 term 

present in equation (7.105) is now made up of non-delayed terms. Hence, the AFM 

has successfully met its objectives of replacing all the delayed terms with non-

delayed equivalent terms in the transfer function of the original functional model. By 

doing this it guarantees numerical stability under all operating conditions whilst 

accurately replicating the behaviour of the original switched converter model. 
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7.11 (II) Three-Phase Inverter  

This section will present the three phase inverter AFM. Like the DC-DC forward 

converter AFM, the three-phase inverter AFM only has one form. The higher number 

of phases of this converter means that it cannot be easily represented using the 

lumped-parameter approach, requiring the per-phase approach to be used instead. 

Otherwise, the design objectives of this AFM model are the same as those of other 

AFMs previously presented in this chapter. 

 

The schematic of a three-phase inverter AFM is illustrated in figure 7.17. 

 

 

Fig. 7.17. Three-phase Inverter AFM 

 

As before, the converter boundary illustrated in figure 7.17 indicates where the 

terminals of the original switched model would be located.  
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The equations governing the behaviour of this model are 
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The definitions of V, Vdc, Zin, Idc, (n-1) and (n) remain the same as the single phase 

inverter AFMs. Impedances ZA, ZB and ZC are the three-phase load impedances. 

Terms XA, XB and XC are additional voltages implemented with the controlled voltage 

sources, V1, V3 and V5. Impedances Z1, Z3 and Z5 are dynamic components added to 

the AFM to restore its accuracy. The voltages Va, Vb and Vc represent the effective ac 

side output voltages of the AFM converter. The terms S1, S3, S5 derive from the states 

of the switches of the original switched inverter model in the same manner as the 

single phase inverter AFM. 

 

Following the same principles as previous AFMs, the governing equations for this 

converter can be developed to give the following definitions of XA, XB and XC. 
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As a result of these changes, Va, Vb and Vc become 
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Hence, the delayed terms have been removed from these expressions indicating that 

this model is numerically stable under all operating conditions.  

 

In line with other AFMs, the next stage of the development process is the derivation 

of the additional controlled impedances Z1, Z3 and Z5 in order to compensate for the 

errors introduced by the inclusion of the voltages XA, XB and XC. However, Z1, Z3 and 

Z5 cannot be derived in the same manner as was shown for other AFM models. This 

is due to the additional complexity of the physical relationships governing the 

behaviour of the three-phase inverter in comparison to the other converters studied in 

this thesis. This aspect can be illustrated by considering the desired ac side voltage 

outputs (Va-desired, Vb-desired and Vc-desired) from the three-phase inverter AFM (i.e. those 

voltages which would be produced by the original switched converter model). These 

can be defined as 
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By substituting for Vdc, equations (7.140), (7.141) and (7.142) can be expanded to 
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In other AFM models, substituting for Idc in the equations for the desired output 

voltages leads to a workable solution for the additional dynamic impedance 

components. However, with the three-phase inverter, Idc is a function of the currents 

in all three ac side phases. Substituting for Idc in equations (7.143), (7.144) and 

(7.145) would lead to the development of expressions for Z1, Z3 and Z5 which could 

not be implemented with switches and fixed impedances, and thus could not be 

readily implemented within power systems simulation software packages. As a 

result, a different approach must be adopted.  

 

7.11.1 (II) Derivation of Additional Impedances Z1, Z3 and Z5 

This section will present the alternative approach utilised to derive expressions for 

the additional impedances Z1, Z3 and Z5 of the three-phase inverter AFM. 
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Consider the operation of the switched three-phase inverter shown in figure 7.18. 

The marked points a, b, c and d are highlighted for later use. 

 

 

Fig. 7.18.  Three-phase inverter (switched) model 

 

The magnitudes of the ac side output voltages Va, Vb and Vc illustrated in this figure 

will now be considered for all the possible operating states of the inverter in order to 

work towards deriving expressions for Z1, Z3 and Z5 of the AFM equivalent model 

(shown in figure 7.17).  

 

In this figure, if switches S1, S3 and S5 are either all open or all closed, there will be 

no voltage lost across Zin as a result of the ac side currents. In order for the AFM to 

replicate this behaviour, the magnitudes of impedances Z1, Z3 and Z5 should be zero. 

 

In all the other operating states of the switched inverter, two of the three ac phase 

voltages of the inverter (i.e. Va, Vb and Vc) will adopt the same magnitude. For the 

AFM to replicate this behaviour, the magnitude of its additional impedance elements 

(i.e. Z1, Z3 and Z5) for these matched phases must be zero. This is so that the voltages 

produced by the unequal ac side currents (i.e. Ia, Ib and Ic) flowing through these 
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impedance elements do not lead to the creation of errors in Va, Vb and Vc. Under 

these operating conditions, the magnitude of the current in the remaining phase will 

be equal to Idc and as such, the magnitude of the additional impedance element in this 

remaining phase must be equal to Zin so that the voltage drop across it is equal to that 

experienced in the switched converter.  

 

The operating logic for Z1, Z3 and Z5 described above is summarised in table 7.5. 

 

Table 7.5.  Derived values of Z1, Z3 and Z5. 

S1 S3 S5 Z1
 

Z3 Z5 

0 0 0 0 0 0 

0 0 1 0 0 Zin
 

0 1 0 0 Zin
 

0 

0 1 1 Zin
 

0 0 

1 0 0 Zin
 

0 0 

1 0 1 0 Zin
 

0 

1 1 0 0 0 Zin
 

1 1 1 0 0 0 

 

In line with earlier AFMs, it can be seen that the approach presented facilitates the 

implementation of Z1, Z3 and Z5 using fixed impedances of magnitude Zin and 

controlled switches. Again, this approach is necessary to achieve the application of 

the AFM within power systems simulation packages. The implementation of Z1, Z3 

and Z5 within the three-phase inverter AFM is illustrated in figure 7.19. 
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Fig. 7.19.  Revised three-phase inverter AFM  

 

Unlike previous AFM models, presenting equations for the ac side voltage outputs of 

the converter (Va, Vb and Vc) will not be an effective method for illustrating the 

accuracy restored to the AFM by the inclusion of Z1, Z2 and Z3. Instead, this will be 

achieved by considering Va, Vb and Vc for the different operating states of the three-

phase inverter. This analysis will be presented in the following section. 

 

7.11.2 (II) Illustration of Three-Phase Inverter AFM Accuracy 

This section will use three case studies to illustrate how the three-phase inverter 

AFM accurately replicates the line to line voltage output voltages (Va-b, Vb-c and Vc-a) 

of the original switched converter.  It should be noted however, that the accuracy of 
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specific phase voltages (Va, Vb and Vc) with respect to any point on the dc side of the 

converter or the neutral point of the load is not always guaranteed. Based on the 

analysis presented, this section discusses the potential applications for the three-

phase inverter AFM. 

  

The case studies presented are based on the switched model of a three-phase inverter 

shown in figure 7.20 (which is reproduced from figure 7.18), upon which the AFM 

equivalent given in figure 7.19 is based. 

 

 

Fig. 7.20.  Switched model of a three-phase inverter with load and source 

 

Case Study 1 

If the switched model three-phase inverter shown in figure 7.20 is in an operating 

state at time (n) such that S1 = 1, S3 = 1 and S5 = 0, the equivalent circuit of this 

converter will be of the form illustrated in figure 7.21 (neglecting the on-state 

resistance and forward voltage of all semi-conductor switches).  
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Fig.  7.21.  Equivalent circuit of the switched model three-phase inverter for case 

study 1 

 

By summing the individual voltage components between points c and a, the voltage 

between these points (Va-c) at time (n) can be expressed as 

 

in
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c
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ca ZIVV
)()( +=− , (7.146) 

 

where Va-c is the effective line to line voltage between phases a and c. Note that Vb-c 

also holds the same magnitude as Va-c, and Va-b is zero. 

 

In order to replicate the operating state of the switched model, the three-phase 

inverter AFM operates such that an additional impedance, Zin will be switched into 

the c phase of the inverter (as according to table 7.5) and V1 = V, V2 = V, V3 = 0. The 

equivalent circuit of the AFM under these conditions is illustrated in figure 7.22. 



306 

 

Fig.  7.22.  Equivalent circuit of the three-phase inverter AFM for case study 1 

 

Using a similar approach to that illustrated for the switched inverter model shown in 

figure 7.21, it can be seen that all line to line voltages of the AFM (Va-b, Vb-c and Vc-a) 

at time (n) are consistent with the original switched model. However, that there is 

some error in the voltage potentials of points a, b and c with respect to point d (e.g. 

the phase voltages Va-d, Vb-d and Vc-d). All three voltage potentials are a magnitude of 

IcZin less than those of the switched model. More simply put, an artificial common 

mode voltage [6] of -IcZin has been created in the phase voltages of the AFM 

converter. 

 

Hence, operating under the conditions given for this case study, the three-phase 

inverter AFM provides valid results for line to line voltages (Va-b, Vb-c and Va-c) but 

not for specific phase voltages (Va, Vb and Vc). The following two operating 

conditions also produce this result: 
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• When the inverter’s state is such that S1 = 1, S3 = 0 and S5 = 1. 

• When the inverter’s state is such that S1 = 0, S3 = 1 and S5 = 1. 

 

The implications of this finding will be discussed at the end of this section when the 

other operating states of the three-phase inverter have been considered. 

 

Case Study 2 

If the three-phase switched inverter shown in figure 7.20 is in an operating state such 

that S1 = 0, S3 = 0 and S5 = 1, the equivalent circuit of this converter will be of the 

form illustrated in figure 7.23 (neglecting the on-state resistance and forward voltage 

of all semi-conductor switches).  

 

 

Fig.  7.23.  Equivalent circuit of the switched model three-phase inverter for case 

study 2 

 



308 

By summing the individual voltage components between points c and a, the voltage 

between these points (Va-c) at time (n) can be expressed as 

 

in
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)()( +−=− . (7.147) 

 

The voltage Vb-c holds the same magnitude as Va-c, and Va-b is zero. 

  

In order to replicate the operating state of the switched model, the three-phase 

inverter AFM operates such that an additional impedance, Zin will be switched into 

the c phase of the inverter (as according to table 7.5) and V1 = 0, V2 = 0, V3 = V. The 

equivalent circuit of the AFM under these conditions is illustrated in figure 7.24. 

 

 

Fig.  7.24.  Equivalent circuit of the three-phase inverter AFM for case study 2 
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Using a similar approach to that illustrated for the switched inverter model shown in 

figure 7.21, it is observed that all line to line voltages (Va-b, Vb-c and Vc-a) produced 

by the AFM are again consistent with the original switched model. Additionally, the 

phase voltages (Va-d, Vb-d and Vc-d) produced by the AFM also match those of the 

switched inverter model. 

 

Hence, operating under the conditions given for this case study, the three-phase 

inverter AFM provides valid results both for line to line (Va-b, Vb-c and Vc-a) voltages 

and phase voltages (Va, Vb and Vc). This observation holds also true all for the 

following two operating conditions: 

• When the inverter’s state is such that S1 = 1, S3 = 0 and S5 = 0. 

• When the inverter’s state is such that S1 = 0, S3 = 1 and S5 = 0. 

 

Note that for the other two operating states of the three-phase inverter                     

(S1 = S 3= S5 = 1 and S1 = S 3= S5 = 0) the AFM accurately replicates both the line to 

line voltages and the phase voltages of the original switched model. The analyses of 

these states will not be presented however, as they only serve to provide a limited 

benefit. 

 

Discussion of Findings 

By considering all the possible operating states of the three-phase inverter, it is 

observed that the AFM produces accurate results for the line to line output voltages 

(Va-b, Vb-c and Va-c) of the three-phase inverter (i.e. matching those results produced 

by the switched inverter model). This ensures that the desired accuracy in the 
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modelled ac side currents is achieved and as a result, the dc side variables of the 

AFM inverter are also accurate (as shown by considering the derivation of the three-

phase inverter ac side current magnitudes in Appendix A). 

 

However, the case studies presented show that the AFM does not always produce 

accurate results for the specific phase voltages of the inverter. If the magnitude of the 

phase currents (Ia, Ib and Ic) and the dc voltage source internal impedance (Zin) are 

small compared to the magnitude of the dc voltage source, the error in the phase 

voltages will be negligible. Otherwise, the three-phase inverter AFM can not be 

reliably utilised for studying these variables. 

 

This outcome is clearly undesirable as the three-phase inverter AFM would ideally 

be valid for all types of studies conducted. However, this is a small sacrifice to make 

in order to achieve guaranteed numerical stability even during simulated fault 

conditions. In addition, the model is still of great benefit for the many types of 

studies conducted on marine and aerospace electrical network architectures which 

only require accuracy in the line to line voltages of the inverter model. 

 

Note that other three-phase converters would require a similar implementation 

approach to that illustrated in this section. 

 



311 

Part III – Assessing the Robustness of AFM 

 

7.12 (III) Impact of Inaccurate Derivation of AFM Variables 

In the earlier sections of this thesis, it was shown that the developed AFMs of each 

converter topology are dependant on an accurate derivation of certain network 

impedances in order to function correctly. Given the complexity of marine and 

aerospace more-electric networks, this derivation may be difficult to achieve (this 

aspect is explored in more detail in section 7.13). As a result, it is important to 

consider the impact of an incorrect derivation of one or more of these impedances on 

the accuracy and numerical stability of the AFM.  

 

This concept will be investigated in this section using the lumped-parameter single-

phase inverter AFM (developed in section 7.4) as a case study. The accuracy and 

numerical stability will be considered for a varying level of error in the derivation of 

the dc side internal impedance.  The analysis methods and findings presented in this 

section are also readily transferable to other AFM converter topologies. 

 

For the lumped-parameter single-phase inverter shown in section 7.4, consider the 

case where the derived magnitude of Zin, is different to the actual Zin by a factor of A, 

such that 

 

inderivedin AZZ =−  (7.148) 
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Where the term Zin-derived is the derived magnitude of the dc source impedance and Zin 

is the actual dc source impedance. The term A is a positive real number. 

Implementing the derived value of Zin in the equations of operation for the inverter 

leads to the following expressions for the additional voltage XA and the additional 

controlled impedance ZA: 
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As a result of the change to XA, the expression for Vout becomes 
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By incorporating the revised expressions for ZA and Vout given in equations (7.150) 

and (7.151), the ac terminal voltage of the inverter AFM now becomes 
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From this equation, when Zin is accurately derived (i.e. A = 1), equation (7.152) 

reverts back to the desired form for Vac of the AFM (given in section 7.4). Also, if A 

= 0, equation (7.152) is equal to that for Vac of the original functional model (as 

described in Chapter 5). However, for inaccurate derivations of Zin (i.e. A ≠ 1), an 

error is introduced into the magnitude of Vac. Note however, that if there is little 
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change in the magnitude Iac between time (n-1) and (n), Vac will be a close 

approximation to the desired ac terminal voltage. 

 

In addition to the error in Vac, the presence of the delayed term in equation (7.149) 

indicates that the numerical stability of this model is no longer guaranteed and that 

Vac may also become oscillatory under some operating conditions. This section will 

now assess the impact of this degradation in accuracy and numerical stability on the 

performance of the AFM and its ability to meet its objectives. 

 

Substituting for Iac in equation (7.152) gives the transfer function (in Vac) for the 

AFM as 
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314 

where the terms ks, Zin and ZL have the same definition as given in section 7.4. In 

order for numerical stability to be guaranteed, it is necessary that |C| < 1. Hence, 

when ks is zero, the AFM is stable regardless of the magnitude of the other terms 

within the expression for, C. However, when the magnitude of ks is equal to 1, this is 

no longer the case. Under this operating condition, the expression for C becomes  

 

( )

inL

in

AZZ

ZA
C

+

−
=

 1
. (7.156) 

 

Considering equation (7.156) more closely, it can be observed that the magnitude of 

C is less than unity when A > 0.5, regardless of the magnitudes of Zin and ZL (even if 

ZL is zero) and the AFM will be numerically stable in all operating conditions. 

However, at much larger magnitudes of A, such that AZin is much greater than ZL, the 

resulting magnitude of C will be very close to unity. Under these conditions, 

although it will be numerically stable, the AFM behaviour will become very 

oscillatory (see equation (7.153)). 

 

For |A| ≤ 0.5, the magnitude of C may be greater than unity (depending on the 

relative magnitudes of Zin and ZL) and as such, numerical stability is not guaranteed. 

Indeed, when the inverter is subjected to ac side short circuit conditions (where the 

effective magnitude of ZL is expected to be lower than Zin), the AFM is likely to 

suffer from the same instability problems as the original functional model (as 

described in Chapter 5).  
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Figure 7.25 summarises this analysis by illustrating the resulting magnitude of C for 

the range of A. The implications this analysis has for the application of the AFM 

method will be discussed at the end of this section. 

 

 

Fig.  7.25.  Variation of the magnitude of C over the range of A 

 

Figure 7.25 illustrates how the magnitude of C is zero when A has a unity magnitude 

(i.e. the AFM has been correctly implemented and there is no error in the derivation 

of Zin). The magnitude of C increases either side of this point, due to the error in the 

derivation of Zin. It also illustrates that the magnitude of C grows towards unity as the 

magnitude of A approaches infinity (i.e. when the derived Zin is significantly large). 

Lastly, the figure shows that the magnitude of C can only be greater than unity in the 

region 0 < A ≤ 0.5 (i.e. when the derived Zin is too small). However, the point at 

which C = 1 depends the ratio of the impedances Zin and ZL. 
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This section has shown that in complex networks where the derivation of Zin may be 

more difficult, AFMs of different converters are likely to remain numerically stable 

under all operating conditions even with a modest error in the derivation of Zin. For 

larger errors in this derivation however, the AFMs will become more oscillatory in 

behaviour and possibly even unbounded as the effective magnitude of the term C, 

approaches or even exceeds unity. Such findings would indicate that the AFM 

method is a robust and reliable method, whose successful operation does not depend 

on a perfect derivation of circuit parameters. This is an important finding, as it means 

that the AFM can be used in complex networks even if an accurate derivation of the 

required circuit impedance (e.g. Zin) is difficult to achieve. That is, the method is not 

restricted to simpler applications where the required circuit impedance can be readily 

derived.  

 

However, this analysis is not yet complete. In order to fully demonstrate the 

robustness of the AFM method, it is necessary to consider the likely sources of error 

in the derivation of the required circuit impedance (i.e. Zin) and quantify as best 

possible the impact they will have on the overall accuracy of this derivation. This 

aspect will be considered in the following section.  

 

7.13 (III) Impact of Network Architectures on the Inaccurate 

Derivation of AFM Variables 

The next stage of the assessment into poor derivation of AFM circuit impedances 

(e.g. Zin) is to consider the impact of the network architecture and size. This aspect 
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will be considered in this section using a model of a representative more-electric 

aircraft network as a case study [11, 12]. Figure 7.26 illustrates the schematic of this 

modelled network. 

 

 

Fig.  7.26.  More-electric aircraft network model 

 

The network illustrated in figure 7.26 shows a dc power distribution system being 

supplied by a single generator interfaced through a switched rectifier interface. 

Multiple ac and dc loads are connected through power electronics interfaces to the dc 

power distribution bus. 

 

This case study will consider the derivation of circuit impedance Zin for the motor 

drive inverter AFM highlighted in figure 7.26. As described in section 7.4.3, this 

impedance is found by evaluating the Thevenin equivalent impedance [5] considered 

from the dc terminals of the converter model. Figure 7.27 illustrates the individual 

impedances of the network that combine to form the Thevenin impedance, Zin for this 
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particular example. Note that in keeping with the Thevenin method, the voltage 

source representing the generator is not included in this network. 

 

 

Fig.  7.27. Equivalent impedance network 

 

In figure 7.27: 

• Zin is the Thevenin equivalent impedance as considered from the dc terminals 

of the motor drive inverter AFM. 

• Z1, Z5, Z9 and Z14 are filter capacitors for the power electronic converters and 

should be readily obtainable from the network model. 
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• Z2, Z3, Z6, Z7, Z10, Z11, Z12, Z13 are cable impedances within the dc section of 

the network and should also be readily obtainable from the network model. 

• Z15 and Z16 are ac side cable impedances. These will be more difficult to 

evaluate as they will vary with the switching state of the associated converter 

• Z4 and Z8 are load impedances of the other dc bus connected systems. Again, 

these will be difficult to evaluate as they will vary with the switching state of 

the associated converter. 

• Z17 is the internal impedance of the voltage source. This will be difficult to 

evaluate as it will vary with the switching state of the associated converter. 

 

ZA, ZB and ZC are equivalent grouped impedances and are defined as follows: 

 

( )4576 // ZZZZZ A ++=  (7.157) 

( )981110 // ZZZZZB ++=  (7.158) 

( )( )171615141312 // ZZZZZZZC ++++=  (7.159) 

 

where ‘+’ denotes a series connection and ‘//’ denotes a parallel connection of 

impedances.  

 

The effective magnitude of the Thevenin impedance Zin will now be considered in 

order to evaluate the most influential terms of its magnitude.  

 

The required AFM variable Zin is defined as 
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( )ABCin ZZZZZ ++= 321 //  (7.160) 

 

where  

 

CBAABC ZZZZ ////= . (7.161) 

 

The expression for ZABC can be expanded as 
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The expression for Zin given in equation (7.160) can also be expanded as 
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Based on equation (7.163), the impedances Z1, Z2 and Z3 are the key determining 

terms for Zin. In particular, the magnitude of Z1 impacts on this variable with the 

greatest influence. Other circuit impedances have a diminishing influence on the 

overall value of Zin. 

 

Overall, it is a good outcome that the three most influential terms in Zin are readily 

known and that any uncertainty in the other terms has a much lower impact on the 

determination of Zin. More generally, Zin is most sensitive to impedances ‘close to’ 

the AFM converter (i.e. those connected to the terminals of the converter), which are 
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also the most likely to be accurately derived. Additionally, Zin is less sensitive to 

impedances which are ‘more distant’ from the converter (i.e. those not directly 

connected to the converter), which are less likely to be accurately derived. These 

findings are also transferable to AFMs of other converter topologies. 

 

On the basis of the findings of this and the previous sections, it is evident that the 

AFM method is a robust method even if there is some error introduced in the 

derivation of Zin. 

 

It is worth noting at this stage though that there will be additional difficulties 

associated with implementing AFMs in complex electrical network architectures. 

High order impedances will be difficult to implement with fixed impedances and 

controlled switches and this arrangement will also be more computationally 

demanding to simulate. Clearly there is scope for further work in addressing the 

aspects of applying AFM within larger networks (details of this work will be 

discussed later in the chapter). However, the analysis conducted in this and the 

previous section indicates that when fully developed, the AFM method will be 

particularly suited for application within models of complex electrical network 

architectures, such as those found in marine and aerospace more-electric systems. 

 

7.14 (III) Demonstration of a Single-Phase Inverter AFM 

This section will illustrate the operation of a lumped-parameter single-phase inverter 

AFM model implemented within a power systems simulation package. Its output 
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under normal and faulted conditions is validated against that of a switched model in 

order to illustrate the accuracy and robustness of the AFM technique.  

 

7.14.1  (III) Model Description and Parameters 

Figure 7.28 shows the schematic of the modelled converter system.  

 

 

Fig. 7.28.  Schematic of the modelled network 

 

Note that the converter shown in figure 7.28 operates with an open loop control 

scheme and as such will not alter its operation following the application of the fault. 

This approach has been taken to avoid masking the response of the implemented 

software models to the application of the fault. The parameters of this network and 

the inverter are described in table 7.8. 
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Table 7.6  Network and inverter parameters. 

Parameter Value 

V 100V 

C 100µF 

Rin 0.1Ω 

Lin 10µH 

RL 5Ω 

LL 1mH 

Fault impedance 50mΩ (applied at 0.045s) 

PWM carrier frequency 2000Hz 

 

Figure 7.29 shows the single phase inverter switched model implemented within the 

SimPowerSystems block set of Matlab Simulink [8]. 

 

 

Fig. 7.29.  Implemented switched model 

 

Figure 7.30 shows the top-level schematic of the equivalent lumped-parameter single 

phase inverter AFM also implemented within SimPowerSystems. 
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Fig. 7.30.  Implemented AFM – main schematic 

 

A comparison of figures 7.29 and 7.30 illustrates how the AFM utilises a controlled 

voltage source and a controlled current source in place of the inverter’s switches. 

Figure 7.30 also illustrates the location of the additional controlled impedance ZA 

(defined in section 7.4). The internal components of this controlled impedance are 

shown in figure 7.31. 
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Fig. 7.31.  Implemented AFM – internal components of ZA 

 

Figure 7.31 shows how the expression for ZA has been implemented using fixed 

impedance components and controlled switches (as described in Section 7.4). 

 

Figure 7.32 illustrates how the control of the AFM voltage and current sources is 

achieved. 

 

 

Fig. 7.32.  Implemented AFM – voltage and current source control 
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This figure illustrates how the AFM retains the unit delay, inherited from the original 

functional inverter model control architecture. As explained in section 7.4, this 

approach is taken so that no algebraic loops are present in the model. 

 

7.14.2  (III) Simulation Results 

Figures 7.33, 7.34 and 7.35 illustrate the steady state ac current between 0 and 0.02 

seconds of simulation time for the switched model, AFM and time-averaged AFM 

respectively. These plots show the behaviour of the converter models during normal 

(i.e. unfaulted) operating conditions supplying an ac load of fixed impedance. Note 

that the time-averaged model utilised to produce these results does not make use of 

the additional error reduction term Aerr (discussed in Section 7.5.4) because there is 

no additional voltage source on the ac side of the inverter and as such, the error in Vac 

produced by the AFM under these conditions should be negligible. 

 

Additional figures showing plots of ac side voltage, and dc side voltage and current 

for each of the inverter models listed above can be found in Appendix D. 
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Fig. 7.33.  Switched model Iac – Pre-fault 

 

Fig. 7.34.  AFM Iac – Pre-fault 
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Fig. 7.35.  Time-averaged AFM Iac – Pre-fault 

 

Figures 7.36, 7.37 and 7.38 illustrate the steady state ac current between 0.06 and 

0.08 seconds of simulation time for the switched model, AFM and time-averaged 

AFM respectively. This second group of plots shows the behaviour of the converter 

models after a low impedance rail to rail fault has occurred across the ac terminals of 

the inverter. Additional figures showing plots of ac side voltage, and dc side voltage 

and current for each of the inverter models listed above can be found in Appendix D. 
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Fig. 7.36.  Switched model Iac – Post-fault 

 

Fig. 7.37.  AFM Iac – Post-fault 
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Fig. 7.38.  Time-averaged AFM Iac – Post-fault 

 

7.14.3  (III) Summary of Findings 

By comparing the simulation results produced by the AFM representations (figures 

7.34, 7.35, 7.37, 7.38) to those produced by the switched inverter (figures 7.33 and 

7.36), the accuracy of the AFM and time-averaged AFM can be assessed. It is 

observed that inverter AFM representations successfully replicate the terminal 

behaviour of the switched model. This is still the case during simulated fault 

conditions, where the original functional model has been shown to be numerically 

unstable and inaccurate (as shown in Chapter 5).  
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Overall, this case study illustrates the success of the AFM approach in achieving its 

key objectives under this operating condition. That is, by replacing all the delayed 

terms in the transfer function of the original functional model with non-delayed 

equivalents, the numerical stability of the model has been maintained whilst the 

terminal conditions of the original switched model have still been represented 

accurately. 

 

These findings reinforce the key outcomes of the analyses conducted earlier in this 

chapter. 

 

7.14.5  (III) Additional Simulation Results – Erroneous 

Derivation of Zin 

In order to provide an illustration of the robustness of the AFM method even when 

the magnitude of Zin is inaccurately derived, this section considers the response of the 

AFM converter when it is implemented with a 50% error in the derivation of C, Rin 

and Lin, such that the derived C = 50µF, the derived Rin = 0.05Ω and the derived Lin = 

5µH (see Table 7.8 for original values). Section 7.12 highlighted this level of error as 

the maximum allowable error that would still guarantee numerically stable (although 

very oscillatory) simulation results. Hence, it is a worthwhile investigative exercise 

to assess the impact on the behaviour of the AFM with this level of error present in 

the derivation of Zin. 

 

Figures 7.39 and 7.40 illustrate the steady state ac current between 0 and 0.02 

seconds, and between 0.06 and 0.08 seconds of simulation time respectively. These 
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plots show the behaviour of the converter models during normal (i.e. unfaulted) and 

faulted operating conditions supplying an ac load of fixed impedance. Additional 

figures showing plots of ac side voltage, and dc side voltage and current can be 

found in Appendix D. 

 

 

Fig. 7.39.  Erroneous AFM Iac – Pre-fault 
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Fig. 7.40.  Erroneous AFM Iac – Post-fault 

 

As with the previous cases, by comparing the simulation results for this case (figures 

7.39 and 7.40) to those produced by the switched inverter figures 7.33 and 7.36), it is 

observed that the AFM still accurately replicates the behaviour of the switched 

inverter model even when it is implemented with a 50% error in the derivation of Zin. 

Any oscillatory behaviour in the model is not noticeable at this level of examination 

although it becomes more pronounced as the magnitude of either the term A (as 

defined in section 7.12) or the fault impedance decreases (this finding is in line with 

the analysis presented in section 7.12 regarding equation (7.156)). 

 

While it is acknowledged that the accuracy of AFMs in other applications may vary 

compared to this case, the results presented in figures 7.39 and 7.40 once again 
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illustrate the robustness of this method even when the accurate derivation of the 

required circuit impedance (Zin) is difficult to achieve. 

 

7.15 (III) Computational Efficiency Comparisons 

In order to evaluate the impact of the AFM’s novel features on its computational 

efficiency (in comparison to the original functional modelling method), table 7.6 

shows the comparative run times (averaged over multiple simulations) of the 

switched model, AFM, time-averaged AFM, functional model and averaged 

functional model for the case study presented in Appendix D. Note that all 

simulations were conducted using a 2
nd

/3
rd

 order Runge-Kutta variable step solver 

[13] and the completion times were measured using Matlab functionality [8].  

 

Table 7.7  Details of comparative simulation completion times 

Model Average Completion Time for a 

0.08s Simulation 

Completion Time as a 

% of Switched Model 

Switched 8.664s 100% 

AFM 2.016s 23.2% 

Time-averaged 

AFM 

0.797s 9.2% 

Functional model 1.594s 18.4% 

Time-averaged 

functional model 

0.75s 8.7% 
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Table 7.6 illustrates how the completion times achieved with the pulsed and time-

averaged AFM models are only slightly greater than those of the original functional 

models. This indicates that the presence of the additional features within the AFMs 

has not lead to a significant increase in computational burden.  

 

It should also be noted that the difference between the completion times of the time-

averaged functional model and time-averaged AFM is much smaller than for the 

pulsed output (i.e. non-averaged) models. This finding is in line with the 

observations made in Section 7.4. There it was stated that the additional controlled 

switches within the time-averaged AFM operate at a much lower frequency than 

within the pulsed model. This produces only a very small increase in the 

computational requirement compared to that of the time-averaged functional model.  

 

If the network shown in figure D.1 of Appendix D is modelled using the Multi-Level 

Model Discretization (MLMD) technique presented in Chapter 6, operating with a 

fixed step size of 10µs, the average simulation completion time is 3.1 seconds. This 

is comparable to the pulsed functional and AFM models but is much slower than the 

time-averaged versions. Note however, that the level of error produced by MLMD 

will be often be significantly higher than that produced by the AFM method due to 

the use of discrete models and fixed solver time steps (this aspect is discussed in 

Chapter 6). 

 

Additionally, larger comparative time savings with regards to the original switched 

model are presented for the MLMD technique in the case study given in Chapter 6. 
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This is a reflection of the cumulative effect on the simulation completion time 

produced by reducing the computational burden of every converter model within a 

multi-converter network model. Similar cumulative effects can be expected from the 

functional and AFM techniques also. 

 

7.16 (III) Further Work 

Based on the analyses of the AFM concept provided in this chapter, and its 

recognised limitations, the following further work is suggested in order to improve 

the capabilities of this method. 

• Expand the AFM concept to accommodate converter topologies not presented 

in this chapter. In particular, address the unique challenges that will arise in 

the implementation of AFMs of multi-level or multi-phase converters (i.e. 

greater than three ac phases). This will facilitate the use of the AFM method 

for the modelling of advanced propulsion drives in marine-electrical 

applications [14, 15] and novel generation technologies in aerospace-

electrical applications [10, 11]. 

• Develop a robust methodology to accommodate the effects of other 

converters’ switching effects (for both switched models and AFMs) on the 

derivation of the required circuit impedances (e.g. Zin). For example, given 

that sections 7.13 and 7.14 have shown the AFM to be accurate with small 

errors in the derived AFM circuit impedance, this methodology may involve 

selecting an appropriate fixed impedance which produces the smallest error in 

the total derived circuit impedance. 
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• Develop a software tool which automatically derives the Thevenin equivalent 

impedance for different points in a network. This should account for other 

active devices in the network (for example utilising a methodology similar to 

the one described above) and even quantify the maximum error in the derived 

impedance to allow the numerical stability of the AFM converter to be 

assessed. 

• Develop a methodology for reducing the order of the derived AFM 

impedance. It is likely that higher order terms in the expression for the 

derived impedance could be neglected without introducing any significant 

errors. Reducing the order of the derived impedance would simplify the 

implementation of the AFM and improve its computational efficiency. 

• Validate the behaviour of a network with multiple converter AFMs against 

that of a similar network with switched models when all of the above 

suggestions for further work have been addressed. This task would give 

increased confidence in the use of the AFM for applications involving 

complex electrical network architectures, such as marine and aerospace more-

electric systems. 

• Re-address the time-averaged AFM with a view to reducing the errors 

generated in terminal conditions. This may be achievable through a more 

complex arrangement for the derived AFM impedance. 

• Consider alternative approaches to implementing the AFM concepts in three-

phase converters such that accuracy in the phase voltages with respect to the 

dc side of the converter is achieved, thereby allowing earth fault studies to be 

conducted with this particular AFM. 
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• Adapt the AFM concept for use in behavioural models of other fast acting 

devices or systems. The surge arrestor model discussed in Chapters 3 and 4 is 

a good example of this, where the algebraic loop present within the model 

creates convergence and numerical stability issues similar to those faced in 

the use of behavioural converter models. Adapting the AFM method and 

applying it to this model may provide a solution to the noted challenges of 

modelling a surge arrestor. 

 

7.17 (III) Conclusions 

This chapter has demonstrated a novel technique, Advanced Functional Modelling 

(AFM), for the modelling and simulation of power electronics converters which is 

based on the functional modelling technique described in Chapter 5. This technique 

provides excellent computational reductions compared to switched converter models 

whilst maintaining numerical stability during simulated fault conditions, where the 

functional modelling technique has been shown to be unreliable. The core principles 

of this technique have been described, its application to a range of converter 

topologies has been demonstrated and guidelines on its implementation within larger 

electrical network models have been provided.  

 

As it stands, the AFM technique presented in this chapter provides an immediate and 

significant contribution to the stable and efficient modelling and dynamic simulation 

of individual power electronic converter systems operating in both normal and 

faulted networks. Further work is required to develop the technique to a stage where 

multiple AFMs can be readily employed in models of complex electrical network 
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architectures with a significant penetration of power electronics (such as those found 

in marine and aerospace more-electric systems). However, the concepts and analysis 

conducted in this chapter indicate that the AFM concept can become a very useful 

tool for these applications with further developmental effort applied. Additionally, 

the compatibility of this approach with the Multi-Level Model Discretization 

technique is also a key strength given its incomplete development as well as the 

difficulties associated with implementing functional models of diode bridges (as 

discussed in Chapter 5). Indeed, the use of both techniques in harmony will provide a 

strong foundation for efficient and robust modelling and dynamic simulation of 

marine and aerospace more-electric network architectures. 
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Chapter 8 – Thesis Conclusions 

 

8.1 Chapter Overview 

This chapter will summarise the key conclusions reached within this thesis and 

discuss the potential application of the novel methods presented for use within the 

modelling and simulation of marine and aerospace more-electric networks. 

 

8.2 Key Thesis Conclusions 

The key conclusions reached within this thesis are as follows: 

 

Chapter 2: 

• Due to the large proportion of novel technologies incorporated, the behaviour 

of many marine and aerospace more-electric network architectures is not 

fully understood and as such, there are many research challenges still 

outstanding within these fields. As a result, it is important to support their 

design and implementation with informed modelling and simulation to de-

risk the technologies employed. In particular, network-level dynamic 

simulations are required to assess the behaviour and interactions within 

electrical power distribution networks for operation during both healthy and 

faulted conditions. 

• Due to the complex nature of the models utilised for network-level dynamic 

simulations, the associated computational overhead is significant, often 
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resulting in impractically long simulation completion times (typically in the 

order of several hours or more). To overcome this, it is usually necessary to 

abstract the models to the lowest level of detail required. In particular, power 

electronic converter models can be especially computationally intensive and 

require appropriate levels of abstraction. 

 

Chapter 3: 

• The abstraction of power electronic converter models has been recognised as 

a matter of some significance in existing literature. A detailed review 

concludes that functional modelling techniques are the most suited to marine 

and aerospace dynamic simulations because they can be readily implemented 

and offer significant gains in computational efficiency (i.e. simulations 

complete up to 30 times quicker than those with detailed converter models). 

• However, the literature review also raises questions about the validity of 

these models in some operating circumstances, such as electrical fault studies. 

The ability to simulate fault scenarios is a key requirement of the dynamic 

marine and aerospace electrical system models and this noted drawback is of 

particular concern. A more detailed investigation is necessary in order to fully 

assess the capabilities of functional modelling techniques and their 

applicability to marine and aerospace, network-level dynamic simulations. 

 

Chapter 4: 

• Algebraic loops occur within many models, including those of marine and 

aerospace electrical power distribution networks. A conceptual analysis 
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indicates that these are also present within functional models. Algebraic loops 

are undesirable as they increase the computational overhead of simulations. 

As such, whilst algebraic loops cause few difficulties in smaller, more easily 

computed models, their presence in large and more complex marine and 

aerospace network models causes slow running simulations and possible 

convergence problems. 

• Although there are three main techniques discussed in existing literature that 

facilitate the removal of algebraic loops, detailed analysis shows that in fact, 

only two of these; reduction to a feed forward equivalent system and the 

insertion of a small delay, actually achieve this. The third method (insertion 

of a low pass filter) is instead shown to reduce additional computational 

burden of algebraic loops by aiding numerical convergence.  

• In complex models, such as those of marine and aerospace more-electric 

architectures, the option of reducing the feedback loop to a feed forward 

equivalent is rarely applicable and so the insertion of a small delay into the 

algebraic loops is the only viable solution for their removal. However, a 

detailed analysis shows that this approach introduces finite limits to the 

numerical stability of the model, which are determined by a number of its 

parameters. Therefore it is essential that the impact of this solution on the 

functional modelling technique is quantified in order to fully assess its 

potential applicability to the dynamic simulation of marine and aerospace 

electrical networks. 
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Chapter 5: 

• Numerical analysis shows functional converter models to be at a high risk of 

becoming inaccurate and unbounded during many simulated electrical fault 

conditions. This represents a particular limitation in the application of 

functional models to marine and aerospace network-level simulations, where 

many studies of this type will be conducted. 

• A need hence exists to develop novel power electronics model abstraction 

techniques which are suited to the modelling and simulation of marine and 

aerospace more-electric networks and which are also numerically stable 

during simulated fault conditions. 

 

Chapter 6: 

• Given the desire to avoid techniques which are build-intensive or inaccurate 

during some operating circumstances (e.g. fault studies), an alternative 

approach for the efficient and yet accurate simulation of electrical power 

networks with a significant penetration of power electronics is proposed. 

This technique is numerically stable under all operating conditions and is 

hence reliable during simulated electrical fault conditions. It is also readily 

implemented, thereby providing additional value. 

• The technique, Multi-Level Model Discretization (MLMD), applies the 

discretization of the modelled electrical and control signals, not for accuracy, 

but to improve the computational efficiency of simulations, reducing overall 

completion times to around 1% of that taken by equivalent detailed models. 
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The fixed step size of the simulation solver is used as a means to achieve 

varying levels of model abstraction. 

• Through case studies and conceptual analysis, it is shown that MLMD 

provides the greatest increase in simulation speed when applied to models of 

multi-converter networks and so is particularly suited to network-level 

modelling and dynamic simulation of marine and aerospace more-electric 

network architectures.  

 

Chapter 7: 

•  The Advanced Functional Modelling (AFM) technique developed as part of 

this thesis runs up to four times quicker than MLMD whilst still maintaining 

numerical stability under all operating conditions (based on the 

implementation of time-averaged converter behaviour) 

• Areas for further development and refinement of the AFM technique are 

identified in order to enhance its value and applicability to the specified 

application areas. 

 

8.3 Chapter Conclusions 

Overall, this thesis has investigated options for computationally efficient, but 

accurate methods for the network-level modelling and dynamic simulation of more-

electric marine and aerospace networks, with a particular emphasis on power 

electronic converter representation. The novel techniques presented have 

significantly increased the options to achieve these aims. Equally as important, these 

techniques can be readily implemented within existing electrical system models, a 
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feature which has been a key emphasis throughout the thesis. This aspect is largely 

not considered for many of the techniques proposed in existing literature, although 

this reflects the only recently emerging need for dynamic network-level simulation of 

novel electrical network architectures. 
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Appendix A – Derivation of Three-Phase Inverter AC 

Current Variables 

 

A.1 Formation of Basic Equations 

Consider the functional model representation of a three-phase inverter shown in 

figure A.1.  

 

 

Fig. A. 1.  Three-phase functional inverter model 

 

In three-phase power electronic systems, the neutral point of ac load is not balanced 

and as such does not hold a zero potential (with reference to the negative terminal of 

the dc source) during normal operating conditions [1, 2]. As a result, the ac line 

currents Ia, Ib and Ic cannot be simply derived from Va/Za, Vb/Zb and Vc/Zc. To 

demonstrate this, consider the inverter model in figure A.1 operating with Va = Vdc, 

Vb = 0 and Vc = 0. Figure A.2, shows the ac side network under these conditions. 
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Fig. A. 2.  Equivalent ac side circuit 

 

In this circuit arrangement, the ac side phase currents Ia, Ib and Ic are hence defined 

as 
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Note that in all parts of the analysis conducted, there are no delayed terms within the 

expressions presented. As such, notation of (n) has been omitted from all the non-

constant terms in these expressions to simplify the appearance of the equations 

presented. 
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If the ac side load is assumed as balanced, such that ZA, ZB, ZC = Z, equations (A.1), 

(A.2) and (A.3) can be reduced to 
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The unequal current magnitudes of this example hence demonstrate the necessity to 

derive expressions for the ac side line currents from first principles. Figure A.3 

shows the circuit diagram of the ac side of the converter with two loops and a node 

labelled for later analysis using Kirchoff’s laws. 

 

 

Fig. A.3.  AC side of the three-phase functional inverter 
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As there are three unknowns (Ia, Ib and Ic), three distinct equations must be 

developed to obtain a unique solution. The first of these is achieved by considering 

Kirchoff’s Current Law (“the algebraic sum of the current meeting at any point in a 

circuit is zero” [3]) around node N. 

 

cab III −−= ,
 

(A.7)
 

 

In order to form the second equation, Kirchoff’s Voltage Law (“in travelling round 

any closed mesh (section) of a network (circuit), the algebraic sum of the emfs 

(voltages) acting in the mesh is equal to the algebraic sum of the IR voltage drops for 

the individual resistance in the mesh” [3]) is applied to loop number 1. The sign 

convention adopted in this summation is given in figure A.3. 

 

0=−+− bBbAaa VZIZIV .
 

(A.8)
 

 

Similarly, performing Kirchoff’s Voltage Law on loop number 2 gives 

 

0=−+− cCcBbb VZIZIV .
 

(A.9) 

 

The next stage of the derivation process is to solve equations (A.7), (A.8) and (A.9) 

to yield expressions for Ia, Ib and Ic. 
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A.2 Formation of Expressions for Ia, Ib and Ic 

Substituting equation (A.7) into (A.9) gives 

 

( ) 0=−+++ cCBcBab VZZIZIV .
 

(A.10) 

 

Rearranging (A.10) to give Ia as the subject gives  
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Substituting equation (A.7) into equation (A.8) gives 
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Substituting equation (A.11) into (A.12) gives 
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Expanding and rearranging equation (A.13) to give Ic as the subject gives 
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In order to move towards a more manageable solution format, equation (A.14) is 

multiplied by  
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which gives 
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Further simplifications can be made to equation (A.16) by accommodating additional 

expressions for Va, Vb and Vc derived in Chapter 5. Thus  

 

dca VSV 1=
 

(A.17)
 

dcb VSV 3=
 

(A.18) 

dcc VSV 5=
, 

(A.19) 

 

where Vdc is the magnitude of the voltage source depicted in figure A.3 and S1, S3 and 

S5 represent the state of the inverter switches represented by the functional model and 

are defined by 
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Substituting equations (A.17), (A.18) and (A.19) into (A.16) gives 
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By introducing additional substitutions, equation (A.21) can be further simplified to 
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Performing similar algebra to that laid out in equations (A.10) through to (A.24) 

produces expressions for Ia and Ib. These are given below. 
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The validity of the derived expressions for Ia, Ib and Ic has been confirmed using 

numerical analyses on examples of three-phase inverters for each of their eight 

possible operating states. 
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Appendix B – Derivations of Functional Inverter 

Model Stability Criteria under Different Short Circuit 

Conditions 

B.1 Introduction 

Consider the three-phase inverter functional model shown in figure B.1. 

 

 

Fig. B.1.  Three-phase functional inverter model 

 

Chapter 5 showed that this model is numerically stable when |C| < 1, where  
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and 
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The terms ZA, ZB and ZC are the ac side load impedances and Zin is the dc side source 

impedance. The variables S1, S3 and S5 refer to the states of the corresponding 

semiconductor switches of the inverter (see figure 5.1 in Chapter 5), where  
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Chapter 5 shows that under balanced load conditions, where ZA=ZB=ZC=ZL, and 

accounting for the impact of the inverter switching state (where the states of all 

switches are considered constant over the interval (n-1) to (n), C is reduced to 
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Therefore, to guarantee the numerical stability of the model, it is necessary that  
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inL ZZ
3

2
> . (B.8) 

 

Under normal load conditions, this condition is readily met. However, under low 

impedance fault conditions on the ac side of the converter, the effective magnitude of 

ZL will be lower, hence producing a higher risk of numerical instability. The 

following sections will evaluate the impact of three-phases-to-neutral, two-phases-to-

neutral and phase-to-neutral fault conditions (where neutral is the star point of the 

load). In each case, the analysis conducted will maintain the assumption that the 

inverter switch states are constant over the period from (n-1) to (n) which is assumed 

small. 

 

B.2 Three Phases to Neutral Fault 

In this case, all three output phases of the inverter are subjected to a short circuit fault 

of impedance ZF, as shown in figure B.2. 

 

 

Fig. B.2.  Three-phase fault applied to functional inverter 
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As the fault impedance ZF, is considered much lower than the load impedance, the 

parallel combination of these can be taken as ZF. By simple substitution of ZF for ZA, 

ZB, and ZC, the numerical stability of the model can be shown to be guaranteed if 

 

inF ZZ
3

2
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This criterion is unlikely to be met in most short circuit fault circumstances. 

 

B.3 Single Phase to Neutral Fault 

In this case, a single phase (phase A) of the three inverter output is subjected to a 

short circuit fault of impedance ZF, as shown in figure B.3. The remaining two 

phases maintain an impedance of ZL. 

 

 

Fig. B.4.  Two-phase fault applied to functional inverter 

 

Substituting ZA = ZF and ZB = ZC = ZL into equations (B.2), (B.3), (B.4) and (B.5) 

gives 
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Substituting equations (B.10), (B.11), (B.12) and (B.13) into equation (B.1) gives 
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For low impedance short circuit conditions, it can be assumed that the magnitude of 

ZF is negligible when compared to ZL. This assumption allows equation (B.14) to be 

further simplified, yielding 
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Extracting the common term ZL and rearranging gives 
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Equation (B.16) can be rewritten as  
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In order to simplify equation (B.17) any further it is necessary to consider all the 

possible magnitudes of kA. This evaluation of kA is given in Table B.1. 

 

Table B.1.  Evaluation of kA for different switch states 

(S1, S3, S5) 
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(0, 0, 0), (1, 1, 1) 0 

(0, 0, 1), (0, 1, 0), (1, 0, 1), (1, 1, 0) 1 

(0, 1, 1), (1, 0, 0) 2 
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The worst case criterion for numerical stability occurs when the magnitude of kA 

equals 2. Substituting this value into equation (B.17) gives 
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Given that numerical stability of the three-phase functional inverter model occurs 

when |C| < 1, the condition for the numerical stability of this model under single 

phase to neutral fault conditions can be expressed as 

 

inL ZZ 2> . (B.20) 

 

B.4 Two Phases to Neutral Fault 

In this case, two of the three inverter output phases are subjected to a short circuit 

fault of impedance ZF, as shown in figure B.4. The remaining phase (phase C) has an 

impedance of ZL. 

 

 

Fig. B.4.  Two phase fault applied to functional inverter 
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Substituting ZA = ZB = ZF and ZC = ZL into equations (B.2), (B.3), (B.4) and (B.5) 

gives 
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Substituting equations (B.21), (B.22), (B.23) and (B.24) into equation (B.1) gives 
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The simplification of the expression for C is more complex here than in the single 

phase to neutral fault case however. If the assumption is made that the magnitude of 

ZL dominates over ZF to the extent that ZF is assumed to be zero, this will produce a 

division by zero in the first two fractions of equation (B.25). Clearly, more careful 
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consideration of an appropriate substitution must be utilised to yield a meaningful 

result.  

 

Hence, for this case it is assumed that the magnitude of ZL dominates over ZF to the 

extent that ZF is assumed to be zero when compared to ZL, but not to the extent that 

the product of ZF and ZL is zero. This yields the following substitutions 
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Substituting equations (B.26) and (B.27) into (B.25) gives 
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and after some rearranging yields 
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Given that ZL is assumed to be large compared to ZF, the first fraction in the brackets 

will have the greatest magnitude and will hence be the dominant term in determining 

the numerical stability of the functional inverter model under this operating 

condition. As a result of the assumptions made, equation (B.29) can be reduced to 
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The assumption that ZL is assumed to be large compared to ZF also implies that the 

last two terms of the numerator in equation (B.30) will have a negligible magnitude 

in comparison to the first three, allowing equation (B.30) to be further simplified to 
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which can be rewritten as 

 

B

F

in k
Z

Z
C

2
= , (B.32) 

 

where 

 

31

2

3

2

1 2 SSSSkB −+= . (B.33) 

 



368 

In order to develop this stability analysis any further it is necessary to consider all the 

possible magnitudes of kB. This evaluation of kB is given in Table B.2. 

 

Table B.2.  Evaluation of kB. 

(S1, S3) 
31

2

3

2

1 2 SSSSkB −+=  

(0, 0), (1, 1) 0 

(0, 1), (1, 0) 1 

 

The worst case criterion for numerical stability occurs when the magnitude of kB 

equals 1. Substituting this value into equation (B.33) gives 
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Given that numerical stability of the three-phase functional inverter model occurs 

when |C| < 1, the condition for the numerical stability of this model with a two 

phases to neutral fault applied can be expressed as 
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or more simply, 
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In summary, the stability criteria for a three-phase function inverter model under 

normal (unfaulted), single-phase-to-neutral, two-phases-to-neutral and three-phases-

to-neutral ac side short circuit fault conditions are given below. 

 

No Fault 

inL ZZ
3

2
> . (B.37) 

 

Phase-to-Neutral Fault 

inL ZZ 2>  (B.38) 

 

Two Phases-to-Neutral Fault 

inF ZZ
2

1
>  (B.39) 

 

Three Phases-to-Neutral Fault 

inF ZZ
3

2
> , (B.40) 

 

By considering these equations more closely, it can be seen that the requirements for 

numerical stability become more difficult to meet as the severity of the simulated 

fault increases. Additionally, it is acknowledged that other fault conditions could 

occur, but the analyses of these have been omitted as they would provide little 

additional benefit at this stage. However, if required, the methods and procedures 
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presented could be readily applied to other fault conditions in order to derive the 

stability criterion for each. 

 

 



371 

Appendix C – Demonstration of Functional Model 

Behaviour under Normal and Faulted Conditions – 

Additional Simulation Results 

 

C.1 Switched Model Simulation Results 

Figures C.1and C.2 illustrate the steady state ac current and voltage outputs between 

0 and 0.02 seconds of simulation time for the switched inverter model. Figures C.3 

and C.4 illustrate the dc current and voltage outputs also over this period. These plots 

show the behaviour of the switched converter model during normal (i.e. unfaulted) 

operating conditions supplying an ac load of fixed impedance. 
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Fig. C.1.  Switched model Iac – Pre-fault 

 

Fig. C.2.  Switched model Vac – Pre-fault 
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Fig. C.3.  Switched model Idc – Pre-fault 

 

Fig. C.4.  Switched model Vdc – Pre-fault 
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Figures C.5 and C.6 illustrate the steady state ac current and voltage outputs between 

0.06 and 0.08 seconds of simulation time. Figures C.7 and C.8 illustrate the dc 

current and voltage outputs for this period. 

 

This second group of plots shows the behaviour of the switched converter model 

after a low impedance rail to rail fault has occurred across the ac terminals of the 

inverter. 

 

 

Fig. C.5.  Switched model Iac – Post-fault 
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Fig. C.6.  Switched model Vac – Post-fault 

 

Fig. C.7.  Switched model Idc – Post-fault 
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Fig. C.8.  Switched model Vdc – Post-fault 

 

C.2 Functional Model Simulation Results 

Figures C.9 and C.10 illustrate the steady state ac current and voltage outputs 

between 0 and 0.02 seconds of the simulation time. Figures C.11 and C.12 illustrate 

the dc current and voltage outputs also over this period. These plots show the 

behaviour of the functional inverter model during normal (i.e. unfaulted) operating 

conditions supplying an ac load of fixed impedance. 
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Fig. C.9.  Functional model Iac – Pre-fault 

 

Fig. C.10.  Functional model Vac – Pre-fault 
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Fig. C.11.  Functional model Idc – Pre-fault 

 

Fig. C.12.  Functional model Vdc – Pre-fault 
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Figures C.13 and C.14 illustrate the steady state ac current and voltage outputs 

between 0.06 and 0.08 seconds of simulation time. Figures C.15 and C.16 illustrate 

the dc current and voltage outputs also over this period. This second group of plots 

shows the behaviour of the functional model after a low impedance rail to rail fault 

has occurred across the ac terminals of the inverter. 

 

 

Fig. C.13.  Functional model Iac – Post-fault 
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Fig. C.14.  Functional model Vac – Post-fault 

 

Fig. C.15.  Functional model Idc – Post-fault 
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Fig. C.16.  Functional model Vdc – Post-fault 

 

C.3 Time-Averaged Functional Model Simulation Results 

Figures C.17 and C.18 illustrate the steady state ac current and voltage outputs 

between 0 and 0.02 seconds of simulation time. Figures C.19 and C.20 illustrate the 

dc current and voltage outputs also over this period. These plots show the behaviour 

of the functional model during normal (i.e. unfaulted) operating conditions supplying 

an ac load of fixed impedance. 
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Fig. C.17.  Time-averaged functional model Iac – Pre-fault 

 

Fig. C.18.  Time-averaged functional model Vac – Pre-fault 
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Fig. C.19.  Time-averaged functional model Idc – Pre-fault 

 

Fig. C.20.  Time-averaged functional model Vdc – Pre-fault 



384 

Figures C.21 and C.22 illustrate the steady state ac current and voltage outputs 

between 0.06 and 0.08 seconds of simulation time. Figures C.23 and C.24 illustrate 

the dc current and voltage outputs also over this period. This second group of plots 

shows the behaviour of the time-averaged functional model after a low impedance 

rail to rail fault has occurred across the ac terminals of the inverter.  

 

 

Fig. C.21.  Time-averaged functional model Iac – Post-fault 
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Fig. C.22.  Time-averaged functional model Vac – Post-fault 

 

Fig. C.23.  Time-averaged functional model Idc – Post-fault 
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Fig. C.24.  Time-averaged functional model Vdc – Post-fault 
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Appendix D – Demonstration of Single-Phase Inverter 

AFM 

 

D.1 Switched Model Simulation Results 

Figures D.1 and D.2 illustrate the steady state ac current and voltage outputs between 

0 and 0.02 seconds of simulation time. Figures D.3 and D.4 illustrate the dc current 

and voltage outputs also over this period. These plots show the behaviour of the 

switched converter model during normal (i.e. unfaulted) operating conditions 

supplying an ac load of fixed impedance. 

   

 

Fig. D.1.  Switched model Iac – Pre-fault 
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Fig. D.2.  Switched model Vac – Pre-fault 

 

Fig. D.3.  Switched model Idc – Pre-fault 
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Fig. D.4.  Switched model Vdc – Pre-fault 

 

Figures D.5 and D.6 illustrate the steady state ac current and voltage outputs between 

0.06 and 0.08 seconds of simulation time. Figures D.7 and D.8 illustrate the dc 

current and voltage outputs for this period. 

 

This second group of plots shows the behaviour of the switched converter model 

after a low impedance rail to rail fault has occurred across the ac terminals of the 

inverter. 
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Fig. D.5.  Switched model Iac – Post-fault 

 

Fig. D.6.  Switched model Vac – Post-fault 
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Fig. D.7.  Switched model Idc – Post-fault 

 

Fig. D.8.  Switched model Vdc – Post-fault 
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D.2 AFM Simulation Results 

Figures D.9 and D.10 illustrate the steady state ac current and voltage outputs 

between 0 and 0.02 seconds of the simulation time. Figures D.11 and D.12 illustrate 

the dc current and voltage outputs also over this period. These plots show the 

behaviour of the AFM during normal (i.e. unfaulted) operating conditions supplying 

an ac load of fixed impedance. 

 

 

Fig. D.9.  AFM Iac – Pre-fault 
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Fig. D.10.  AFM Vac – Pre-fault 

 

Fig. D.11.  AFM Idc – Pre-fault 
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Fig. D.12.  AFM Vdc – Pre-fault 

 

Figures D.13 and D.14 illustrate the steady state ac current and voltage outputs 

between 0.06 and 0.08 seconds of simulation time. Figures D.15 and D.16 illustrate 

the dc current and voltage outputs also over this period. This second group of plots 

show the behaviour of the AFM after a low impedance rail to rail fault has occurred 

across the ac terminals of the inverter. 
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Fig. D.13.  AFM Iac – Post-fault 

 

Fig. D.14.  AFM Vac – Post-fault 
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Fig. D.15.  AFM Idc – Post-fault 

 

Fig. D.16.  AFM Vdc – Post-fault 
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D.3 Time-Averaged AFM Simulation Results 

Figures D.17 and D.18 illustrate the steady state ac current and voltage outputs 

between 0 and 0.02 seconds of simulation time. Figures D.19 and D.20 illustrate the 

dc current and voltage outputs also over this period. These plots show the behaviour 

of the AFM during normal (i.e. unfaulted) operating conditions supplying an ac load 

of fixed impedance. 

 

Note that the time-averaged model utilised to produce these results does not make 

use of the additional error reduction term Aerr (discussed in Chapter 7, Section 7.5.4) 

because there is no additional voltage source on the ac side of the inverter and as 

such, the error in Vac produced by the AFM under these conditions should be 

negligible. 

 

Fig. D.17.  Time-averaged AFM Iac – Pre-fault 
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Fig. D.18.  Time-averaged AFM Vac – Pre-fault 

 

Fig. D.19.  Time-averaged AFM Idc – Pre-fault 
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Fig. D.20.  Time-averaged AFM Vdc – Pre-fault 

 

Figures D.21 and D.22 illustrate the steady state ac current and voltage outputs 

between 0.06 and 0.08 seconds of simulation time. Figures D.23 and D.24 illustrate 

the dc current and voltage outputs also over this period. This second group of plots 

shows the behaviour of the time-averaged AFM after a low impedance rail to rail 

fault has occurred across the ac terminals of the inverter.  
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Fig. D.21.  Time-averaged AFM Iac – Post-fault 

 

Fig. D.22.  Time-averaged AFM Vac – Post-fault 
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Fig. D.23.  Time-averaged AFM Idc – Post-fault 

 

Fig. D.24.  Time-averaged AFM Vdc – Post-fault 
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D.4 AFM Simulation Results – Erroneous Derivation of Zin 

Figures D.25 and D.26 illustrate the steady state ac current and voltage outputs 

between 0 and 0.02 seconds of simulation time. Figures D.27 and D.28 illustrate the 

dc current and voltage outputs also over this period. These plots show the behaviour 

of the case study AFM during normal (i.e. unfaulted) operating conditions supplying 

an ac load of fixed impedance. 

 

 

Fig. D.25.  Erroneous AFM Iac – Pre-fault 
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Fig. D.26.  Erroneous AFM Vac – Pre-fault 

 

Fig. D.27.  Erroneous AFM Idc – Pre-fault 
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Fig. D.28.  Erroneous AFM Vdc – Pre-fault 

 

Figures D.29 and D.30 illustrate the steady state ac current and voltage outputs 

between 0.06 and 0.08 seconds of simulation time. Figures D.31 and D.32 illustrate 

the dc current and voltage outputs for this same period. This second group of plots 

shows the behaviour of the very erroneous AFM after a low impedance rail to rail 

fault has occurred across the ac terminals of the inverter.  
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Fig. D.29.  Erroneous AFM Iac – Post-fault 

 

Fig. D.30.  Erroneous AFM Vac – Post-fault 
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Fig. D.31.  Erroneous AFM Idc – Post-fault 

 

Fig. D.32.  Erroneous AFM Vdc – Post-fault 
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