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Abstract 

One of the key coupling mechanisms between the FPSO and the mooring/riser, which 

remains to be a challenging topic, is the damping contribution from the mooring lines. 

The mooring line damping especially from hydrodynamic drag forces is of vital 

importance to FPSO’s low frequency motion in deep water and its associated 

maximum mooring line tension and the maximum offset. The coupled analysis can 

take the mooring line damping into account automatically, but it suffers from the 

extremely high computational cost. Some methods use a linear damping coefficient to 

represent the damping effect but that estimate may not be accurate due to the line 

damping depending on several factors such as the wave frequencies, the response and 

offset position. An efficient and accurate analysis method is required to balance 

accuracy and efficiency. Morison’s equation with a drag coefficient is often employed 

to calculate the hydrodynamic drag loads of mooring lines. The drag coefficient is not 

easily determined, particularly for chain, with its complex shape. The variation of 

hydrodynamic drag coefficient would alter the level of line damping. That means the 

drag coefficient is important to the damping and the ensuing extreme offset and 

maximum line tension. Therefore, it is worthwhile to investigate the effects of the 

hydrodynamic drag coefficient on the damping contribution to the extreme low 

frequency FPSO motion and the maximum mooring line tension. 

To begin with, a hybrid time and frequency domain method is developed for 

dynamic analysis of moored FPSO. The time domain simulation with a large time 

step is performed for low frequency motion of the FPSO, whilst the wave frequency 

response of the mooring lines at a given mean offset position will be conducted in the 

frequency domain. The frequency domain analysis will be based upon a specific 

linearization approach where the damping to the low frequency FPSO motion from the 

wave frequency response of the mooring line can be accounted for in the form of an 
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increased mean tension. Comparison is made of the tension/motion results with that of 

the dynamically coupled time-domain analysis, as well as the computational 

efficiency. 

Next, the methodologies for the long term extreme analysis are validated. The all sea 

state method for the long term extreme analysis is performed by use of Kriging 

metamodel (Simpson et al., 1998; Wang and Shan, 2006). The Monte Carlo 

simulation is applied for the long term probability integral based on the Kriging 

metamodel. The improved method based on the environmental contour method and 

accurate distribution tail extrapolation method is proposed. The contour line method 

assumes that the short term variability could be accounted for separately. This method 

evaluates the extreme response based on limited sea states along a well-defined 

environmental contour line with a given return period. Then the short term variability 

is considered by selecting a high fractile. The distribution of the response is 

evaluated by the average conditional exceedance rates (ACER) method. The ACER 

method, which can accurately capture the effect of statistical dependence for the 

extreme value prediction problem, is less restrictive and more flexible than the one 

based on asymptotic theory.  

Finally, the reliability analysis for the extreme response considering the uncertainty 

influence of the drag coefficient is performed. The conditional distribution for the 

long term extreme response with given the drag coefficient is estimated by contour 

line method and ACER method. The perturbation method based on 4th-order 

expansion is developed. The asymptotic approximation method based on the 

Laplace’s method is also employed for the approximation of probability integral. The 

asymptotic evaluation is based on the assertion that the greatest contribution to an 

integral derives from the locations where the integrand is a maximum point.  
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1 Introduction 

1.1 Background 

As offshore oilfield developments have been moving toward deeper water, Floating 

Production Storage and Offloading unit (FPSO) are commonly used for processing 

and storage of oil and gas prior to offloading it to a tanker that can eliminate the need 

for costly long-distance pipelines to an onshore terminal. It is particularly effective in 

remote or deep water locations where seabed pipeline are not cost effective. In 

addition, FPSO can be relocated that can offer an alternative in short life oil fields. 

Due to these advantages, the demand to FPSOs increased dramatically during the last 

decade. Figure 1.1 presents the worldwide distribution of FPSO vessels. There are 

total 151 FPSOs until August 2014, which 67% are conversions and others are new 

builds (Barton, 2018). 

 

Figure 1.1 Worldwide distribution of FPSO vessels (Barton, 2018) 
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Under environmental loads such as wind, waves and current, the FPSO exhibits offsets 

different from the desired point for normal operations. The mooring systems are 

utilized to maintain it on a station within a specified tolerance which is typically based 

on an offset limit determined from the configuration of the risers. If the mooring lines 

fail, it will cause the operation interruption, oil-spill, even casualty and environmental 

issues. In the past decade, the relatively high failure rate of permanent mooring 

systems, more than 20 incidents, is raising a concern in the offshore industry (Ma et 

al., 2013). The incidents with single line breakage often have additional lines that 

sustained damage or failed prematurely. For the latter case, it would cause the vessel 

to drift a short distance, riser ruptures, production shutdown and small amount of 

hydrocarbon release. Some were of substantial consequence, with the need to repair 

or replace damaged lines. 

 

Table 1.1 North Sea mooring line failure data, 1980 to 2001 (HSE Report, 2003) 

 

Type of Unit Number of Operating  

Years per Failure 

Drilling Semi-submersible 4.7 

Production Semi-submersible 9.0 

FPSO 8.8 

 

The failure statistics for North Sea operations for different floating units between 

1980 and 2001 are shown in Table 1.1. It can be seen that the probability of line 

failure per operating year for an FPSO is relatively high (in comparison for example 

with the probability of structural failure). The cost of mooring line failure is 

significant when considering the expense of anchor handling tugs, ROV and dive 

support vessels, replacement parts and lost production. These total costs have been 
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estimated at a minimum of £2 million for a 50,000 bpd FPSO in the North Sea 

according to the JIP FPS mooring integrity Report (Noble Denton, 2006). For 

example, the four mooring lines of Gryphon Alpha FPSO (in the UK North Sea in 

February 2011) failed when subjected to high environmental forces. The subsequent 

loss of position resulted in significant damage to the subsea infrastructure and then 

operations were forced to shut down. It was estimated that the cost is in excess of $1 

billion and still counting from the incident. Fortunately, there was no loss of 

hydrocarbons, and no one was injured. Therefore, it is crucial to ensure the integrity 

of mooring systems for successful marine operations and safety. 

Mooring lines are often subjected to the environmental loads such as wave and current, 

and the motions of FPSO. The wave forces on the FPSO include first order forces at 

wave frequency (WF) and second order forces which comprise mean wave drift forces, 

forces at sum frequencies (HF) and forces at difference frequencies (LF). The first 

order wave forces are the dominant dynamic loads, orders of magnitude larger than 

any other dynamic loads. For the frequency of low frequency slow drift motion is 

usually near to the natural frequency of moored system, which means resonant motion 

could be excited. Once it occurs, large low frequency motion can yield quite high 

mooring load.  

To the response of floating structure and mooring/ riser system, the traditional method 

first analyze the motions of floating structure where load effects from the moorings/ 

risers are modeled as non-linear position dependent forces (stiffness), and apply the 

responses of floating structure to the top of mooring lines as the boundary conditions, 

then calculate the response of mooring lines. This uncoupled method neglects or 

simplifies the hydrodynamic damping contribution from mooring lines. Huse (1986) 

had found out that the hydrodynamic damping of lines has an important effect on the 

low frequency motions of floating structure. As shown in Figure 1.2, the mean offset 

and low frequency motion increase considerably with increasing water depth. And in 
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2000 m water, offset related to mean offset and low frequency motion constitutes 

approximately 95% of total offset (Ormberg and Larsen, 1998). In order to obtain a 

more accurate estimate of the low frequency motion and improved estimates of 

dynamic loads in the moorings, coupled analysis should be performed, particularly in 

deep water. 

 

Figure 1.2 Typical characteristics of motion response for a catenary moored ship at 

different depths 

(Ormberg and Larsen, 1998) 

In fully coupled time-domain analysis, the dynamic motions of the moored FPSO are 

simulated together at every time step, which is prohibitively time consuming, and may 

be quite unnecessary, particularly for tanker-shaped FPSOs. Here the vessel’s motions 

are calculated with the impulsive response function for the fully coupled analysis 

(proper fully coupled analysis need to obtain the vessel motion by Rankin source 

method in time domain). Under the assumption that FPSO’s wave frequency 

motion/loading is unaffected by the mooring/riser due to its much greater mass, the 

fully coupled analysis can be simplified to some extent, e.g. mooring/riser 

dynamically coupled to the FPSO low frequency motion. However, such an approach, 

when simulated in time domain, will still be very expensive as the mooring/riser 

dynamic response needs to be computed at every time step, and moreover the time step 

has to be very small for the mooring/riser. Typically, it may take several hours to 
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complete a 3-hour sea sate time-domain simulation on the computer and mooring 

design will involve a large number of cases when taking into account of the 

combination of environmental parameters (e.g. wind, wave, current) and combination 

of direction of environmental parameters. So it is significant to develop a fast method 

for dynamic analysis of FPSO/mooring/riser. 

For the FPSO/mooring/riser system, one of the key coupling mechanisms between the 

floater and the mooring/riser, which remains to be a challenging topic, is the damping 

effects of the latter and its impact on FPSO’s low-frequency motion and its associated 

maximum mooring line tension and the maximum offset which is important for riser 

design. On this critical issue of the mooring design, the current industry practice is still 

largely empirical. A linear damping coefficient is often used to represent the effects, 

and the low-frequency vessel motion is then simulated on the horizontal water surface 

in extreme sea states. Maximum line tensions are calculated by including the FPSO’s 

wave-frequency response in the extreme sea states. The input value of the damping 

needs to be calibrated against model test results. In the absence of model test results, it 

relies upon experience to select an appropriate damping level. The dynamically 

coupled analysis is also used in the industry, but it suffers from the aforementioned 

computational cost. It should be noted that other damping mechanisms also need to be 

considered, e.g. hull friction, wave drift damping, but typically these do not require 

extensive computation. 

Hydrodynamic loads on mooring lines are usually calculated using Morrison’s 

equation. Changes in hydrodynamic drag coefficients alter the level of line damping. 

There have been studies showing that the line hydrodynamic coefficients are important 

to the damping and the ensuing maximum line tension (Brown and Mavrakos, 1999). 

Given that, it is rather surprising that, for example, BS EN ISO 19901-7:2005  does 

not stipulate the values of hydrodynamic coefficients for mooring line analysis. 

Instead, it suggests that one should consult with relevant RCS (reorganised 
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classification society) rules. Similarly, API RP 2SK (2005) does not provide any 

guidance either. DNV-OS-E301 (2010) does give provide some information but it is 

extremely brief. In comparison, DNV-RP-F205 (2010) is an improvement of this 

rather unsatisfactory situation. It is however apparent that this is far from sufficient 

either, partly because of the wide range of coefficient values, and partly because the 

values were obtained mainly from towing tests, i.e. in steady flow conditions. It is also 

noted that these recommended values differ from the "normal values" used by some 

mooring line design houses. They are also different from the figures used in some 

technical publications. 

Predicting the extreme response of the mooring line is one of the key problems for 

the mooring system design and selecting proper diameter and grade of mooring line. 

API RP 2SK (2005) recommend that the mooring systems should be designed to 

withstand the extreme load caused by the maximum design condition which is 

combination of wind, wave and current. However, we also should pay more attention 

to large ship-shaped FPSOs, which are dominated by low frequency motions. The 

maximum design condition, i.e. 100-year waves, may not yield most severe mooring 

loads since low frequency motions increase with decreasing wave periods. Lower 

waves with shorter periods could yield larger low frequency motions and thus higher 

mooring loads (API RP 2SK, 2005).  

1.2 Literature Review 

1.2.1 Mooring Line Damping 

The slow oscillatory drift motions at resonant frequencies, which excited by second 

order wave forces, are a characteristic feature of moored floating structure. The 

resonant slow drift motion is normally much larger than the first order motions 

occurring at wave frequencies. They are correspondingly important to the maximum 
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offsets of the floating structure and the maximum tension in the mooring lines, riser 

design requirements, etc. 

 

The slow drift motion amplitude of moored structure is controlled primarily by the 

level of damping. Thus, it is essential to accurately estimate the damping for reliable 

prediction of slow LF motion and tension. The contributions to the damping arise 

mainly from drag and friction on the vessel, wave drift damping and mooring line 

damping (hydrodynamic drag force). The first two terms have been treated by many 

researchers theoretically as well as experimentally. Early studies often assumed that 

the damping effects from the mooring system can be neglected and only consider the 

effect of stiffness when predicting the surge and sway motions of moored structures. 

However, Huse’s work indicated that the effect of mooring line damping should be 

taken into account (Huse, 1986; Huse and Matsumoto, 1989). It can lead to obvious 

reduction in surge amplitudes, which will have a very significant effect on maximum 

tensions in the mooring lines and riser system performance. They found out the 

mooring line damping contribution to LF surge damping can provide over 80% of 

total damping, as shown in  

Table 1.2. They also indicated that superimposing the wave frequency motions of the 

moored structure with the low frequency motion led to a dramatic increase in the low 

frequency surge damping. Matsumoto (1991) attempted to quantify the level of 

mooring line damping relative to other contributions. Results as given in Figure 1.3 

show that the dominant effect is caused by mooring line damping, particularly for sea 

conditions corresponding to intermediate and high significant wave heights. 
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Figure 1.3 Relative energy dissipation caused by surge damping contributions  

(Matsumoto, 1991) 

 

 

Table 1.2 Relative importance of different surge damping contributions 

(Huse and Matsumoto, 1989) 

Hs (m) Tp (s) 
Damping contribution % 

Mooring Wave Drift Viscous 

8.64 12.7 81 15 4 

16.29 16.9 84 22 4 

 

 

Generally, the mooring line damping includes hydrodynamic drag damping, damping 

caused by seabed interaction, line structural damping. It is usually considered that the 

dominating line damping component is caused by hydrodynamic drag force (In this 

work, the mooring line damping only considers the hydrodynamic drag damping), 

which depends on the water depth, line pretension, weight and azimuth angle and the 

top end motions etc. Webster (1995) performed a comprehensive parametric study 

about the influence of line pretension, oscillation amplitude and frequency, scope, 

stiffness, drag coefficient and current on the line damping. Brown and Mavrakos 

(1999) summarized a comparative study to evaluate the level of uncertainty in 
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predicting the mooring line damping, where analytical results were provided by 15 

contributions based on time or frequency domain methods. The influences of 

variations in line oscillation amplitude and frequency on line damping were 

discussed.  

 

Huse and Matsumoto (1988) and Huse (1991) presented a model and an improved 

model to evaluate the mooring line damping, which was based on estimates of 

energy dissipation from drag on the mooring line due to an imposed motion at the top 

of the line. Liu and Bergdahl (1998) also have proposed an improvement to this 

method. They concluded that the quasi-static models of energy dissipation have 

compared favorably with results obtained using nonlinear time domain simulation of 

the mooring line response to imposed motion. These methods appear to be an easy 

way to estimate mooring line damping, but the fairlead motion as input should be 

provided in advance. An iterative process is really required because the vessel motion 

and the mooring damping are coupled. These methods may have limitations for 

practical application. Fan (2017) proposed an improved quasi-static model for 

predicting mooring line damping for designing truncated mooring system. 

 

1.2.2 Integrated Dynamic Analysis of Moored Floating Structure 

A deep water floating system is an integrated dynamic system of a floater, moorings 

and risers responding to wind, wave and current loadings in a complex way. The 

floater motions may contain the following components: mean response due to steady 

current, mean wave drift and mean wind load; wave frequency response due to first 

order wave force; low frequency response due to wave drift, wind and viscous force; 

high frequency response (TLP). These response components will consequently be 

present in the mooring line and riser response. Due to the importance of the effect of 

mooring line damping, coupled analysis should be performed for moored floating 
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structure to obtain a more accurate estimate of the LF motion and improved estimate 

of the tension in mooring lines. This method yields dynamic equilibrium between the 

force acting on the floater and mooring line response at each time step, which 

automatically includes the damping contribution from mooring lines. A number of 

coupled analyses for floating structure have been introduced (Garrett, 2005; Kim et 

al., 2005; Low and Langley, 2006; Ran et al., 1999; Tahar and Kim, 2003). 

 

For the coupled analysis of a moored floating structure, the dynamic analysis of lines 

and the wave frequency analysis need a small time step. In addition, enough length 

of simulation should be performed (often 3 hours) to get the adequate statistical 

representation of dynamic response. These will lead to excessively high 

computational costs for the application of coupled analysis. Several strategies have 

been proposed to achieve computational efficiency.  

 

1) Linear damping coefficient method 

 

These strategies have in common that the floater motion and mooring line analyses 

are carried out separately. The floater motions are evaluated firstly and the damping 

contribution from mooring lines are taken into account by a prior estimation of 

damping coefficient. The damping can be estimated by various methods:  

 

Ormberg and Larsen (1998) developed an improved method, i.e. “State-of-the-Art” 

method (SoA), to evaluate the motions of floating structures using a linear mooring 

line damping coefficient. The linear damping coefficient was estimated based on 

fitting a polynomial to the energy dissipation from mooring lines and risers. The 

mooring lines, which using a finite element model, are subjected to the prescribed 

top end motions including irregular wave frequency floater motions and sinusoidal 

low frequency floater motions corresponding to several low frequency oscillations. 
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The low frequency motion amplitude applied is equal to twice the standard deviation 

of the actual low frequency motion that estimated by a frequency domain method. 

Then, the damping coefficients are used in an uncoupled time domain motion 

analysis of the floater, leading to the floater motions. The current forces on the lines, 

as calculated by static analysis, are added to the forces on the floater. The responses 

of lines are estimated by applying the floater motions to the top end of the mooring 

lines. Since the floater motion and the mooring damping are coupled, an iterative 

process is really required for estimating the damping. Garrett et al. (2002) concluded 

that SoA method would produce as much as 30% too large a motion, for the example 

of a West Africa FPSO, even though the input was the best possible. 

 

Ormberg et al. (1998) proposed a method similar to the SoA method where the linear 

damping estimated by short coupled analysis (20-25 LF motion cycles) with lines by 

coarse meshing. Then the floater motions including wave and low frequency motions 

are applied to top end of refined mooring lines to obtain the mooring line response. 

Alternatively, the low frequency motions may be accounted for by an additional 

static offset. They also proposed another method to perform the coupled analysis of 

moored structure where the lines using coarse mesh. 

 

This coarse mesh for lines would be adequate to represent the global nonlinear 

behavior of the lines and their interaction with the vessel in terms of stiffness, 

damping and mass, but maybe not sufficiently refined for a localized assessment of 

the structural behavior. Furthermore, long simulation times are still needed for the 

adequate statistical representation of the response of floater and mooring lines. 

 



 12 

 
Figure 1.4 Numerical decay test 

 

Connaire et al. (1999) and Correa et al. (2002) introduced a numerical decay test 

method to estimate the damping coefficient, where the moored floater is given an 

initial displacement and then released to oscillate freely. The decay test can be 

performed using the coupled model of floater and lines to obtain the damping 

estimate for the whole system. Then floater damping should be turned off in the 

uncoupled motion analysis to prevent superimposing the damping effects. It is not 

the best approach, since it introduces unnecessary simplifications in the floater 

damping. Another method is to perform a second set of decay tests with an 

uncoupled model of the floater. The difference between the first and the second set of 

tests gives the damping coefficients of the mooring and riser system. The direct 

approach however is to perform the decay test with the finite element model of 

mooring lines only. The estimation of the damping coefficient for a given motion 

component assumes that the decay is expressed as logarithmic decrement te −  as 

given in Figure 1.4, where   is the damping ratio,   is the frequency of the 

response, and t  is the elapsed time. Ai is the motion amplitude of i-th oscillation. 

 

This method disregards the line damping behavior dependent on the initial 
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displacement due to changes in line geometry. They suggested estimating a series of 

damping coefficients by performing the decay test over a range of static positions. 

Given that the wave frequency motions and the environment excitation (wave height, 

period, current etc.) have influence on the line damping, this method still has some 

limitations to accurately estimate the damping.  

 

2) Frequency domain method 

 

Another method for dynamic analysis is in frequency domain，which is based on 

linear system assumptions. The nonlinear terms in the dynamic analysis should be 

linearized. Efficiency is the significant advantage of this method. Some researchers 

have performed the coupled analysis in frequency domain (Garrett, 2005; Lang et al., 

2005; Le Cunff et al., 2008; Low and Langley, 2006; Ran et al., 1999).  

 

Ran et al. (1999) compared the coupled frequency domain analysis with the coupled 

time domain analysis for a moored Spar. The first order wave forces, added mass and 

radiation damping, and the second order mean and difference frequency forces were 

computed for the time-domain or frequency-domain analysis. The two-term Volterra 

series model was adopted for the generation of the time series or spectra of first and 

second order wave loads for irregular waves. The mean position was first estimated 

based on the static loads, such as current and second order mean drift force. Then the 

dynamic analysis was performed with respect to the mean position. The nonlinear 

drag forces of lines were stochastically linearized by an iterative procedure. The 

results show that the time domain results generally give greater low frequency 

amplitudes than the frequency domain results, which implies that the viscous 

damping is likely to be overestimated by stochastic linearization. 

 

Garrett (2005) performed the coupled analysis of a moored semi-submersible in the 
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frequency domain. The stiffness coefficient was calculated at the mean position and 

the hydrodynamic drag forces were linearized by a stochastic linearization method. 

An under-relaxation was employed to ensure convergence of the linearization. The 

results demonstrated an excellent match of the low frequency motions with time 

domain results. Garrett also found that the frequency domain and time domain results 

do not match as well for all cases, e.g. for the 100 year hurricane load case. The 

limitation of the frequency domain methods is a result of neglecting the nonlinear 

effects. 

 

Low and Langley (2006) carried out the frequency domain coupled analyses for 

moored FPSO. The first and second order wave force transfer functions were 

calculated by diffraction analysis. The second order force spectrum was estimated 

from the cross-spectra matrix of the second order force. The frequency dependent 

added mass and radiation damping matrices of the vessel were obtained from a 

radiation analysis. The lines were modeled using a lumped mass method. Two 

nonlinear terms, geometric nonlinearity arising from large deflections of the lines and 

the nonlinear drag forces, were linearized. They concluded that that the frequency 

domain approach is likely to be robust and accurate when geometric nonlinearity is 

not prevalent. The nonlinear drag force was computed independently in two 

orthogonal directions which are each perpendicular to the line and linearized by 

formula for a one-dimensional drag force in a random sea with current. However, 

this approach is not strictly frame invariant (Hamilton, 1980). 

 

1.2.3 Dynamics Analysis of Mooring Line 

1) Lumped mass method 

 

The mooring line is discretized into a number of point masses (nodes) that are joined 
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together by massless elements of finite lengths. All the forces are concentrated at the 

nodes. The governing equations, which lead to a set of ordinary differential equations, 

can be derived directly according to Newton's law of motion. The lumped mass 

method has the following advantages:  

 Straightforwardness - The modelling and mathematical formulation has clear     

physical interpretation. 

 Economy - The moderate amount of computation time. 

 Versatility - A simple method can solve many different types of problems, 

including those of nonlinearity, unsteady state, non-uniform cable and 

oscillatory current. 

 

Walton and Polachek (1960) were the first authors to apply this method to the 

dynamic analysis of a mooring line. The model was available for two dimensional 

and large displacements. The forces acting on the nodes were the drag force, inertia 

force, weight and buoyancy. The material elasticity was neglected. The finite 

difference method was used to solve the motion equations. Nakajima et al. (1982) 

modified this method for two-dimensional dynamic analysis of multi-component 

mooring lines under the excitation caused by the motion of platform. The elastic 

deformation of the mooring line was considered in his model. The time histories of 

dynamic tension calculated by this method have excellent agreement with the 

experimental results. 

 

Huang (1994) extended this method to three-dimensional dynamic analyses of 

marine cables. The finite difference method was employed and the stability of the 

numerical scheme was discussed. Huang and Vassalos (1993) also applied the 

lumped mass method for predicting the snap loading of marine cables. A bi-linear 

axial stiffness was used for the calculation of operations in alternating taut-slack 

conditions. The results were validated and had a good agreement with the model 
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tests.  

 

2) Finite element method  

 

The finite element method (FEM) has been very popular for structure dynamic 

analysis. It divides the continuous structure into a number of elements that are 

connected by nodes. The forces are distributed along the element. Each element 

employs an interpolation function or shape function to describe the behavior of a 

given variable internal to the element in terms of the displacements of the nodes. For 

the nodal values of forces and displacements, it is intended to preserve the energy 

balance of stored and expended energy between the finite element model and the 

continuum model. This balance yields a set of coupled differential equations. 

 

The finite element method for the dynamic analysis of mooring lines has been 

presented by many researchers. Garrett (1982) developed the three-dimensional finite 

element model of an inextensible elastic rod with equal principal stiffness for 

dynamic analysis of mooring lines. The rod is linearly elastic and torque free. This 

method permits large deflections and finite rotations. It also can consider the tension 

variation along the length. The governing equations, which are partial differential 

equations, are reduced to a system of ordinary differential equations by the Galerkin 

method. Mavrakos et al. (1996) studied the dynamics of mooring lines with attached 

submerged buoys using the FEM model based on rod theory in time and frequency 

domains. They presented that numerical predictions correlated very well with the 

experimental results.  

 

Numerical efficiency and simplicity are the main advantages of the lumped mass 

method. The FEM requires higher computational cost. FEM is probably a closer 

approximation to the continuum than the lumped mass method. It is not easy to 
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establish which one is better. According to the study of Chen (2001), the lumped 

mass method and FEM both can evaluate well the dynamic response of mooring lines 

and agree well with experimental data.  

 

1.2.4 Drag coefficient of Mooring Line Chain 

 
 

Figure 1.5 Geometry of chain (D is bar diameter of chain) 

 

For a specified body shape, the drag coefficients depend on the following parameters: 

Reynolds number Re, Keulegan-Carpenter number KC and roughness number Δ. The 

drag coefficient is generally a function of these parameters. Mooring lines for deep 

water floating structures generally comprise different components, such as studless 

or studlink chain, unsheathed or sheathed wire or polyester rope. For the chain, its 

shape is complex, as shown in Figure 1.5. 

 

1) Experiment of chain drag coefficient 

 

Numerous investigations of hydrodynamic forces acting on slender bodies have been 

conducted. A limited number of model tests have been performed for evaluation of 

drag coefficient of chain. Occasionally, the manufacturers provide the drag 

coefficients for their own chain obtained from simple towing tests. Hwang (1986) 

performed the towing tests to estimate the drag coefficients of chain for steady state 
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flow conditions. He proposed the function of drag coefficient as Reynolds number as 

given in Figure 1.6. Figure 1.7 presents the drag coefficient from towing tests by 

Marintek (FPS2000, 1992). The drag coefficients of chains are normally defined with 

respect to their nominal diameters. These results only consider the effect of Reynolds 

number. 

 

Figure 1.6 The function of drag coefficient as Reynolds number (Hwang, 1986) 

 

 

Figure 1.7 Drag coefficient of chain (FPS2000, 1992) 

 

Lyons et al. (1997) performed drag coefficient tests with bi-harmonic oscillations in 
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order to consider the interaction between the low frequency and wave frequency 

flows. The large scale model test was employed to ensure that the Reynolds number 

flow regime was as close as possible to that encountered at full scale. A chain line 

segment was tested at various amplitudes and frequencies. The drag coefficients of 

chain, on which superimposed wave frequency motion was applied, would increase 

compared to the drag coefficients under low frequency oscillations only. But the drag 

coefficient has some reduction with higher WF amplitude. In particular, the drag 

coefficient for lines oscillated at wave frequencies in the transverse direction of 

mooring line can be up to 30% higher than those for in-line harmonic oscillation.  

 

As computational fluid dynamics (CFD) has become more popular, some researchers 

have attempted to determine the drag coefficients of mooring line using this method. 

Xu and Huang (2014) evaluated the drag coefficients of a fixed studless chain under 

steady flows using the large eddy simulation (LES) model. They found that the drag 

coefficients for different, normal to the chain axis, flow directions are similar. The 

drag coefficients are 2.42, 2.36 and 2.41 under the 0, 45 and 90 degree flow at the 

Reynolds number of 6×104, respectively. The effect of the predicted Reynolds 

number was also discussed. As shown in Figure 1.8, the drag coefficients decrease 

with the increase of the Reynolds numbers. The range of the estimated values is in 

quite good agreement with DNV recommended range. The effect of Reynolds 

number on the drag coefficient of the smooth chain is not as important as for a 

smooth circular cylinder.  
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Figure 1.8 Predicted drag coefficient of stud-less chain as function of Reynolds 

number (Xu and Huang, 2014) 

 

 

Figure 1.9 Drag coefficients of stud-less chain under different Re and KC numbers 

(Xu, 2014) 

 

Xu (2014) evaluated the effect of KC on the drag coefficients of the chain, as given 

in Figure 1.9, by simulating a smooth chain segment oscillating in water using 

unsteady Reynolds-Averaged Navier-Stokes URANS model. The results show that 

the effect of KC number on drag coefficient is significant for the flows with lower 

Reynolds number. 

 

2) Effect of drag coefficient 
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Ideally, the chain drag coefficient of dependence on Re, KC and roughness number 

should be implemented by choosing coefficients from tables and curves during the 

coupled analysis. However, present state of the art within coupled analyses usually 

does not make use of this option. It is difficult to come up with simple 

recommendations for which drag coefficients to use and (DNV-RP-F205, 2010) 

recommends a range of drag coefficients (relative to chain diameter) as listed in 

Table 1.3. 

 

Table 1.3 Typical two-dimensional drag coefficients, CD for Re = 104 - 107. 

 

Type CD Range 

Stud chain  2.2 - 2.6 

Studless chain  2.0 - 2.4 

 

The variation of drag coefficient will alter the level of damping, which is important 

to the vessel low frequency motion and the associated line tension. Some researchers 

have studied the importance of damping effect on motions of floaters by changing 

the drag coefficients of moorings. Wichers and Devlin (2001) concluded that the 

effect of variations on motions of floaters and line tension are significant for the 

loop-current condition. The damping of moorings could be very important in 

reducing amplitudes of LF motions. The existing conclusions on the effects of the 

hydrodynamic coefficients on damping and line tension have typically been derived 

from and quantified by analyses in simplified environmental conditions, e.g. 

prescribed motion of the fairlead, regular waves or extreme sea-states with given 

vessel mean positions (Brown and Mavrakos, 1999). However, these conclusions 

should be treated with caution. For example, an increase in the line drag coefficient 

will increase the mean offset as well as typically the dynamic tension, but reduce low 

frequency dynamic offset. The net impact on LF motions and the maximum line 

tension may not be obvious. This will depend on the contributions of these two 
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components (Luo and Baudic, 2003).  

 

1.2.5 Extreme Response Estimation 

One of the important aspects for offshore structure design is to accurately predict the 

extreme responses in a random environment. The maximum vessel excursions and 

mooring line/riser tensions are of interest for floating production systems. One of the 

following approaches is usually employed to evaluate the extreme response of 

offshore structure (Larsen and Olufsen, 1992): 

 Design wave method. 

 The short term stochastic method. 

 The long term stochastic method. 

 

1) Design wave method 

 

This method is often used for linear system, e.g. fixed offshore platform, with the 

analysis based on a deterministic wave description (Barltrop and Adams, 1991). The 

wave height and period are determined according to the wave statistics. The response 

estimation by this method is simple due to the character of the load that periodic load 

produces periodic response at the same frequency. This method could be used to 

obtain structural action effects in certain circumstances (NORSOK N-003, 2007). It 

has been common practice to carry out the design check for a so-called 100-year 

wave, which means a wave with wave height H100 being exceeded on the average 

only once every 100 year or being exceeded with a probability of 10-2 during one 

year. This method will become questionable for nonlinear system and it would not be 

applicable to the moored floater motion analysis (Lim, 2018). 

 

2) The short term stochastic method 
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API RP 2SK (2005) recommend that the mooring system analyses should be 

performed for combination of wave, current and wind conditions causing the extreme 

load, which is noted as the maximum design condition. Different combinations of 

wave, current and wind yielding the same return period for the combined 

environmental condition are typically applied. The stochastic wave is descripted in 

one specific sea state defined by its wave spectrum. The extreme responses are then 

identified as the expected or most probable maximum response for a specific 

duration (e.g. 3 hours) of this environmental condition. The main challenge is to 

select an adequate probabilistic distribution model for the peaks of response process. 

For the linear system, the peak of response process, which is a Gaussian process, 

follows a Rayleigh distribution. For a nonlinear system such as a moored floating 

structure, the peaks of the non-Gaussian response process can be modelled by a 

Weibull distribution. The extreme value distribution will approach a Gumbel 

distribution for increasing number of peaks (DNV-OS-E301, 2010). Another 

approach to evaluate the statistical distribution of extreme response based on 

time-series is by use of the upcrossing rates (Naess et al., 2013; Naess and Gaidai, 

2008). The upcrossing events are assumed to be independent that is, the so-called 

Poisson assumption is adopted. They proposed a more robust technique for extreme 

response prediction by fitting the tail of the crossing rates to a natural exponential 

function. 

 

For the coupled analysis of moored floating structure in frequency domain, the 

extreme response may be evaluated by empirical combination or upcrossing rates. 

For the former method, extreme responses are predicted from a combination of wave 

frequency and low frequency components of vessel motions and line tensions 

statistics. Turkstra’s rule has been implemented in API RP 2SK (2005). Liu and 

Bergdahl (1999) compared different combination formulae and suggested a formula 
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considering WF and LF correlation effects where the correlation factor estimated 

from the cross-correlation information between the LF process and the WF envelope 

process. Grime and Langley (2003) compared various methods for prediction of 

crossing rates and estimated the extremes from the derived statistics of combined WF 

and LF motions using narrow band random vibration theory. The upcrossing rates 

were computed using the Rice formula that needs the joint probability density 

function for the displacement and velocity of combined WF and LF motion.  

 

The design wave method and short term method are based on the environmental 

statistics. The shortcoming of them is basically that the largest response is assumed 

to be a result of the largest load. This may not be the case for dynamically 

responding systems such as moored floating structure (Farnes and Moan, 1993, Lim, 

2018). The true return period or long term probability of the estimated extreme 

response remains unknown and this will in general lead to an inconsistent safety 

level. 

 

3) The long term stochastic method 

 

The most consistent way for estimating the extreme response is to establish a 

probabilistic description of the response from the long term environmental action. 

The most obvious and direct approach to evaluate the long term statistics of response 

is to work through all the sea states. The dynamic analysis is performed for each 

interval. Probability distributions are generated for the short term variability and the 

long term variability in the severity of sea states. Convolution of the two produces a 

probability distribution for the long term for the extreme response of interest. Baar et 

al. (2000) performed the long term response analysis of turret moored tankers in the 

deep water Gulf of Mexico based on the hurricane hindcast database. The short term 

distribution for each sea state was generated, where the motion responses calculated 
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in frequency domain were fitted to a Rayleigh distribution and line tension was fitted 

to an exponential distribution.  

 

An alternative method for estimating the long term extreme response is the random 

storms method which was proposed by Jahns and Wheeler (1972), Haring and 

Heideman (1978) and Tromans (1995). In their approach, the focus is on storm 

events which considered as independent, similar to the peaks-over-threshold analysis. 

The hindcast time series of environmental variables is broken into storms by 

identifying the sea states whose significant wave height is higher than a threshold. 

Each storm consists of several steps that duration of each step is 3 hours. The 

dynamic analysis is performed to calculate statistics of extreme response for each 

step. It is assumed that the distribution of the storm extreme response value can be 

approximated by a Gumbel extreme value distribution conditional on the most 

probable extreme response for that storm. The distribution of the most probable 

extreme value itself is assumed to follow a generalized Pareto distribution. These are 

combined to produce a probability distribution of the extreme response for each 

storm. Then these probability distributions for each storm can be combined to 

produce a complete probability distribution for long term response. Leong (2018) 

proposed a subset simulation for long term extreme response prediction which 

dividing burdensome low probability problems into simpler ones of intermediate 

conditional probabilities.  

 

The all sea states method is inefficient due to it involving the response analysis for a 

large number of sea states. The random storm method doesn’t need the joint statistics 

of the environmental variables and environmental variables can be included without 

additional difficulty. It reduced the number of sea states by selecting a proper 

threshold. However, it still requires the analysis of a lot of sea states that may be too 

time consuming to apply to the complex analysis such as moored floating structure. 
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1.3 The Issues 

The integrity of mooring system is of importance for the safety operation of FPSO. 

The mooring line should have enough strength to withstand the extreme loads. It will 

be conservative using uncoupled dynamic analysis method to predict the extreme 

loads of mooring line system due to the effect of mooring lines/risers damping. 

Coupled analysis considering the damping effect of mooring lines/risers is necessary 

for precise evaluation of the FPSO/mooring line extreme response. The chain drag 

coefficient is not easily determined due to the influence of several factors such as 

Reynolds number, Keulegan-Carpenter number and roughness number. The variation 

of drag coefficient will alter the level of mooring line damping. As discussed above, 

this work will attempt to address the following issues. 

1) An efficient approach for coupled analysis of moored FPSO 

The coupled dynamic analysis is time consuming. It requires a more 

computationally efficient method, other than the fully coupled time domain 

analysis, for analyzing moored tanker-shaped FPSOs that is capable of including 

automatically the damping effects of mooring/riser. 

2) Prediction of the extreme response by probabilistic method 

The traditional design approach based upon extreme load case analysis may not 

necessarily produce safe designs in deep water. Probabilistic design provides a 

more rational basis. However, it is understood that a probabilistic analysis 

approach is much more computationally expensive. For example, to perform a 

response based analysis of the mooring line tension, its long term probability 

distributions of extreme responses are required. A large number of sea states, in 
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the order of hundreds/thousands, need to be analyzed. To this end, we again need 

an efficient, as well as accurate, analysis method. 

3)  The effect of uncertainty of drag coefficient on extreme response 

Since the low frequency drift motion of the vessel is at or close to the resonant 

frequency of the mooring system, the low frequency drift motion amplitude and 

corresponding line tension is controlled primarily by the level of damping. Thus, 

accurate estimation of damping is essential for accurate motion prediction. This in 

turn relies on appropriate selection of the drag coefficient. The estimation of drag 

coefficient involves several factors, the effects of which are difficult to evaluate. 

There are no specific rules for selecting these coefficients. Therefore, it is 

worthwhile to study the effect of hydrodynamic coefficients on extreme response 

of FPSO/mooring line by a probabilistic analysis approach. 

1.4 Objectives  

Based on the issues discussed above, the main objectives of this work can be 

summarized as follows. 

1) To develop a computationally efficient method for predicting the response of 

FPSO and mooring lines. It should take the damping contributions from the 

mooring lines into account. 

2) To propose an improved method for the extreme response. It should be based 

on a probabilistic approach. 

3) To ascertain the effects of the hydrodynamic coefficients on the damping 

contribution to the low frequency FPSO motion and the maximum mooring line 

tension based upon a probabilistic approach.  



 28 

1.5 Outline of The Thesis 

The thesis is organized in 3 main parts and each part is introduced as follows. 

1) Hybrid time and frequency domain analysis method: In order to establish 

probability distributions of the extremes, fast and repeated simulations are 

required for different environmental conditions. The low frequency motion of 

the FPSO will be computed in the time domain, whilst the wave frequency 

response of the FPSO/mooring/riser at a given mean offset position will be 

conducted in the frequency domain. Relatively large time steps can be used for 

the time domain simulation. The frequency domain analysis will be based upon a 

specific linearization approach where the damping to the low frequency FPSO 

motion from the wave frequency response of the mooring/riser will be accounted 

for in the form of an increased mean tension. Comparison of the tension/motion 

results with a dynamically coupled time-domain analysis will be made, and the 

computational efficiency of the proposed approach demonstrated. 

2) Probability distribution of extremes: The methodologies for the long term 

extreme analysis are validated. The all sea state method for the long term 

extreme analysis is performed by use of a Kriging metamodel. The Monte Carlo 

simulation is applied for the long term probability integral based on the Kriging 

metamodel. The improved method based on the environmental contour method 

and accurate distribution tail extrapolation method is proposed. The contour line 

method assumes that the short term variability could be accounted for separately, 

i.e. decoupling the environmental problem and the response problem. This 

method evaluates the extreme response based on limited sea states along a 

well-defined environmental contour line with a given return period. Then the 

short term variability is considered by selecting a high fractile. The distribution 

of the response is evaluated by the average conditional exceedance rates (ACER) 
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method (Naess et al., 2007; Naess and Gaidai, 2008). The ACER method, which 

can accurately capture the effect of statistical dependence for the extreme value 

prediction problem, is less restrictive and more flexible than the one based on 

asymptotic theory.  

3) Effect of hydrodynamic drag coefficient on long term extreme response. The 

reliability analyses for the extreme response considering the uncertainty 

influence of drag coefficient are performed by a perturbation method and 

asymptotic approximation method. The perturbation method is based on a 

Taylor expansion. The 2nd-order and 4th-order expansion have been derived. 

The asymptotic approximation is a method based on the Laplace’s method for 

asymptotic approximation of the probability integral. The asymptotic evaluation 

is based on the assertion that the greatest contribution to an integral derives 

from the locations where the integrand is a maximum point. The conditional 

long term distributions of responses are estimated by the contour line and 

ACER methods. 

The flowchart of the research strategy of the thesis is illustrated in Figure 1.10. 
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Figure 1.10 Research strategy of the thesis 
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2 Dynamic Analysis of Mooring Line  

2.1 Introduction 

In order to predict extreme responses such as line tensions, anchor loads, and vessel 

offsets under the design environment a mooring analysis is performed. The responses 

are then checked against allowable values to ensure adequate strength of the system 

against overloading and sufficient clearance to avoid interference with other structures. 

The quasi-static analysis method is usually used for mooring line design in shallow 

water. In deep water application, this method is not accurate and dynamic analysis 

should be performed. Dynamic analysis accounts for the time varying effects due to 

mass, damping, and fluid acceleration. Two methods, frequency domain and time 

domain analyses, can be used for predicting dynamic mooring loads. In the time 

domain method, all nonlinear effects including line geometry, hydrodynamic loading, 

and sea bottom effects can be modeled. The frequency domain method, on the other 

hand, needs linearization as the linear principle of superposition is used. This chapter 

derives the dynamical equations of mooring lines in time domain and frequency 

domain respectively and develops the program for dynamic analysis of mooring lines.  

2.2 Mooring Line Model and Forces 

The mooring line is discretized using lumped mass method for dynamic analysis. The 

lumped mass method divides the mooring line into segments and it is modeled as a 

series of lumped mass node and massless elastic segments (as shown in Figure 2.1). 

There are N nodes and (N-1) segments. The lumped mass model assumes that strains 

are small but large deflections are allowed.  
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Figure 2.1 Discretized with lumped mass method 

 

 

 

Figure 2.2 Mooring lines in global coordinate 

A mooring line element in the global coordinate is shown in Figure 2.2. The i-th 

node’s position is  Tiiii zyx=r . 2/1+ie  is the unit vector parallel to the centerline 

of the segment between i-th node and (i+1)-th node.  
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Then we can rewrite the equation (2.1) as follows 
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All forces along the mooring lines are assumed to be concentrated at the node. The 

equation of motion of i-th node is:  

iii FM =r                                                        (2.4) 

where Mi is the mass of i-th node from the mass of adjacent segments and added 

mass,  T
iiii zyx  =r  is the acceleration of i-th node, Fi is the force concentrated at 



 34 

the node including tension forces, inertia force, drag force, buoyancy and weight in the 

two segments.  

The expression of forces is as follows. 

iiDiIii WFFTF +++=                                           (2.5) 

where iT ,
iIF ,

iDF is the tension, inertia force and the drag force at the i-th node, iW  

is other force such as gravity and buoyancy. In the following sections, these force 

components are detailed.  

2.2.1 Tension 

Tension forces at the i-th node including the tension forces in the lines segments on 

either side of the node i which respectively indicated as Ti+1/2 and Ti-1/2. The tension 

force at node i is as follows. 
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where E is the elastic modulus; A is cross-sectional area; li+1/2 is the original length of 

segment between i-th node and (i+1)-th node ; li-1/2 is the original length of segment 

between i-th node and (i-1)-th node. 
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Considering the equation (2.3), then the tension at i-th node is 

                 (2.9) 

The tension force in the segment between i-th node and (i+1)-th node is: 
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2.2.2 Inertia Force 

Wave forces on the mooring line are computed using Morison equation which assumes 

the force to be composed of inertia and drag forces linearly added together. The wave 

particle velocity at node i is , , ,( , , )i x i y i z iu u u=u . The normal wave particle velocity 
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Similarly, the normal wave particle acceleration across the half of upper segment that 

connecting the i-th node is: 

, 1/2 1/2Nn

i i i i+ +=u u                                                (2.13) 

The tangential wave particle velocity , 1/2i i



+u  across the half of upper segment that 

connecting the i-th node is:  
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and the tangential wave particle acceleration across the half of upper segment that 

connecting the i-th node is  

, 1/2 1/2i i i i

 + +=u u                                                (2.16) 

The inertia or drag forces are usually computed separately for directions normal and 

tangent to the lines. The inertia force on the upper half segment on the side of node i is: 
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where 
n

mC  and 

mC  is normal and tangential inertia coefficient. 

As the tangential component is usually small it is assumed that it can be neglected, i.e.  
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it is assumed that tangential inertia coefficient 0=t

mC . Then the inertia forces on node 

i including two lines segments on either side of the node are: 
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mi lCDDI  , here the normal inertia coefficient n

mC =2. 

2.2.3 Mass and Added Mass 

The structural acceleration is not included in the inertia forces and it is usually 

accounted for by the inclusion of an added mass term of mass matrix in the equation of 

motion. 
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where 2/1

2

2/1
8

1
 = i

n

ai lCDDA  , The normal added mass coefficient 1−= n

m

n

a CC . 

The added mass on the node i is: 

2/12/12/12/1, −−++ += iiiiia DADA NNm                                 (2.20) 

The mass including added mass matrix is: 
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iaii ,mmM +=                                                (2.21) 

where im represents the mass of two mooring line segments on each side of i-th node, 
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2/12/1 −+ += iimi llAm  ,and m  is the density of mooring lines.  

And the weight and buoyancy force is  
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where Bif is the buoyancy )(
2

1
2/12/1 −+ += iiBi llAf   and   is the density of seawater. 

2.2.4 Drag Force 

Using the Morrison’s equation, the drag force on the upper half segment on the side of 

node i is: 
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where riV is relative velocity (between the water particle velocity from wave iu  and 

current ciV  at node i and the velocity of node ir ): 

 ri i i ci= − +V u r V                                              (2.25) 
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And , 1/2

n

ri i+V and , 1/2ri i



+V  are the normal and tangential relative velocity to the upper 

segment connected with node i respectively. 
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n

DC  and 

DC  is the normal and tangential drag coefficient. 

The tangential drag is assumed to be neglected as it is usually small. The drag forces 

on the i-th node including two lines segments on either side of the node are:  
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where 2/12/1
4

1
 = i

n

Di DlCDT  . 

2.3 Line Dynamics in Time Domain 

2.3.1 Equations of Line Dynamics in Time Domain 

According to previous derivation about node, we summarize the equation of motion of 

mooring line as follows: 

WFFTM +++= DIr                                          (2.29) 
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where mass matrix, 

1

2

N

 
 
 =
 
 
 

M

M
M

M

 , iaii ,mmM += ;  

The displacement matrix are  T21 Nrrrr = ; the acceleration matrix are 

 T21 Nrrr  =r ; tension matrix are  T21 NTTTT = ; Inertia force 

matrix are  T21 INIII FFFF = ;  T21 DNDDD FFFF =  are the drag 

force matrix; the weight and buoyance force matrix are  T21 NWWWW = . 

And for the end of lines, there is only one segment attached. So the relative equations 

are different. 

Bottom end:  

Mass 1,11 ammM +=  

where 
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2

1
+= Alm m  and 2/112/111, ++= Nm DAa ; 

Tension 2/111 += TT ; Inertia force 12/112/112/11,1 u+++ == NFF DIII  

Drag force  1 ,1 1/2 1 1/2 1,1 1/2 1,1 1/2F  F n n

D D r rDT+ + + += = V V  

Top end:  

Mass NaNN ,mmM +=  
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where 
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−= NmN Alm   and 2/12/1, −−= NNNa DA Nm ; 

Tension 2/1−= NN TT ; Inertia force N2/12/12/1, u−−− == NNNIIN DI NFF ; 

Drag force  , 1/2 1/2 , -1/2 , -1/2F  F n n

DN D N N rN N rN NDT− −= = V V  

2.3.2 Boundary Conditions 

The upper end connects with vessel, so the motion is the same as the vessel. 
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where )(txV , )(tyV  and )(tzV  are the motions of vessel in surge, sway and heave. 

The bottom end is considered as a fixed point: 
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2.3.3 Initial Conditions 

The initial positions and initial velocities for the second order ordinary differential 

equations: 
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2.3.4 Solving the Equation of Motion by Modified Euler Method 

The equation of motion of mooring lines can be solved using numerical integration 

schemes. Here a modified Euler method (Hahn, 1991; Huang and Vassalos, 1993) is 

used to solve the equation of motion. 

iiDiIiii WFFTM +++=r                                        (2.34) 

j

ir and j

ir are the known displacement and velocity of the i-th node, respectively, at 

time tjt j = . The displacement and velocity of the i-th node, 1+j

ir and 1+j

ir , at time 

are evaluated as follows. 
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where t is the time step, The new displacements, velocities and accelerations of all 

the nodes can be evaluated easily using this method. 

It can be seen that the modified Euler method is very simple and can lead to accurate 



 43 

response evaluations (Hahn, 1991). It is explicit and forward different from the 

Newmark beta method which needs iteration for each step. This method is 

conditionally stable, time step should satisfy the condition of stability as follows. 

. nT
t


                                                      (2.38) 

where 
nT  is shortest natural period of vibration of the system. 

 

2.4 Dynamic Analysis of Mooring Line in Frequency Domain 

The dynamic analysis in frequency domain is based on the linear system. There are 

nonlinear effects that can have an important influence on mooring line behavior. One 

is geometric nonlinearity, which is associated with large changes in shape of the 

mooring line. The other is fluid loading, the Morrison equation is most frequently used 

to represent fluid loading effects on mooring lines. The drag force on the line is 

proportional to the square of the relative velocity (between the water particle velocity 

from wave and current and the line’s velocity), hence is nonlinear. In addition, the 

contact with line with seabed also is nonlinear. These nonlinearities have to be 

linearized. 

2.4.1 Linearization 

1) Linearization for Stiffness 

Frequency analysis is inherently linear, so the nonlinearities in the mooring dynamical 

equations must be linearized. One of the nonlinear effects inherent in the dynamic 

analysis of mooring is the geometric nonlinearity. It is assumed that dynamic 

deflections around the static equilibrium position are small. Thus, it is assumed that 

the stiffness matrices do not change during the analysis.  
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The tangent stiffness matrix for node i is  
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The stiffness matrix for segment between i-th node and (i+1)-th node is:  
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where: 

























−
+−

−−−−

−−−
+−

−−

−−−−−
+−

=

+

+

+++

++

+

++

+

++

+

+

+++

++

+

++

+

++

+

+

++

3

2/1

2

1

2/12/1

3

2/1

11

3

2/1

11

3

2/1

11

3

2/1

2

1

2/12/1

3

2/1

11

3

2/1

11

3

2/1

11

3

2/1

2

1

2/12/1

)(
)

11
(

))(())((

))(()(
)

11
(

))((

))(())(()(
)

11
(

i

ii

iii

iiii

i

iiii

i

iiii

i

ii

iii

iiii

i

iiii

i

iiii

i

ii

ii

i

l

zz

lll

yyzz

l

xxzz

l

zzyy

l

yy

lll

xxyy

l

zzxx

l

yyxx

l

xx

ll

EAk

(2.41) 

And  Tiiii zyx=r  is the static equilibrium position of node i, 2/1+il  is the length 

of segment between i-th node and (i+1)-th node at its static equilibrium position.  

Then we can obtain the global linearized stiffness matrix: 
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2) Linearization for Drag Force  

The drag force is often calculated using Morison’s equation as follows.  

1

2

1
( )

2

r r

c c

n n

D D

n n n

D

ρC L

ρC L

=

= + +n

F V V

V V V V

                                 (2.43) 

where  r c

n n n

n n n

= +

= −

V V V

V u r
  

n

r
V  is the relative velocity between the normal water particle velocity from wave n

u  

and current 
n

c
V  and the normal line’s velocity n

r  to the axis of lines. n
V  is the 

relative velocity between the normal water particle velocity from wave n
u  and the 

normal line’s velocity n
r . 

The drag force is nonlinear and should be linearized for frequency domain dynamic 

analysis which is based on a linear system. There are several linearization methods 

for the drag force. The linear form of drag force in regular wave can be obtained by 

the equivalent energy method (Chakrabarti and Cotter, 1979). In random wave, the 

statistical linearization is often used (Atalik and Utku, 1976; Krolikowski and Gay, 

1980; Spanos et al., 2005). It is based on minimization of the expected square error 

between the nonlinear drag force and linearized drag force. Wu (1976) derived the 
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equivalent linear form for a one-dimensional drag force in a random sea with current. 

And the one-dimension linearization is extended to the three-dimension case by 

linearizing each component with this equivalent linear form. Hamilton (1980) pointed 

out this approach is not strictly frame invariant, i.e. it depends upon the choice of 

reference axes. Langley (1984) found that this linearization method can lead to a 

significant underestimate of the drag force, since coupling between perpendicular 

flows directions is neglected. Langley formulated a frame invariant linearization 

method for random waves with current that is more rigorous. This method is used here.  

The nonlinear term in drag force is replaced by the linear form: 

( ) F
c c

n n n n n

e mC+ + = +V V V V V                                  (2.44) 

where Ce  is the equivalent linear coefficient and Fm is a constant force vector. The 

normal water particle velocity from wave n
u  is a Gaussian random process, the 

corresponding structure’s velocity n
r  and the relative velocity n n n= −V u r  is also 

a Gaussian random process. The Ce and Fm can estimated from minimizing the 

expected square error between the nonlinear and linearized form. 

The expected square error is: 
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[ F ]
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e mE C+ + − +V V V V V                            (2.45) 

Minimization of the error with respect to Ce and Fm leads to the following: 
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Since the relative velocity n
V  is normal to the centerline of the line, it has only two 

nonzero components in a coordinate system that has the tangent to the centerline as a 

basis vector. If the two components are uncorrelated, evaluation of the expected 

values in the above equations can be simplified. We can choose the coordinate based 

on the principal directions of the relative velocity covariance matrix: one base vector, 

denoted as axis 1, is in the direction of the maximum velocity variance and the other, 

denoted as axis 2, is in the direction of the minimum velocity variance. In this 

coordinate system, the two components of the relative velocity 1 2[ , ]n v v=V  are 

un-correlated, or the covariance of vl and v2 is zero. The current velocity is 

1 2[ , ]n

c c cV V=V  in this coordinate system. The transformation about the local 

coordinate from global coordinate can be found in Appendix A. 

Therefore the above equations can be rewritten as: 
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where: 

( )1 1 2( )
c c
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=  + +  V V V V V V                      (2.50) 
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( )np V  is the probability density function of n
V . Considering n

V  is a Gaussian 

random process and vl and v2 are un-correlated, the probability density function is: 
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The linearization needs the integration of double infinite integrals. Only a few special 

cases have the closed form of the integration. For the one-dimensional drag force, the 

linearization results are: 
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If there is no current, then the linearization coefficient for one-dimension drag force 

is:  




8
=eC                                                   (2.56) 
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Because the drag force is three dimensional, the integrals require numerical method.  

Rodenbusch et al. (1986) simplified the infinite integral required in the linearization of 

drag force. The infinite integrals are transformed into finite integrals by trigonometric 

functions. Then the finite integrals are evaluated by trapezoidal rule. The detail about 

this method can be found in Appendix B. 

Using the above linearization method, we can obtain the linearized drag force at node i 

is as follows. 
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where T

i 2/1
P is the orthogonal transformation from the local principal coordinate 

system to the global coordinate system as described in Appendix A. 
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4

1
 = iDi DlCDT   ; 
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= ie
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ii ii
CDT NPPQ ; 
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+= imiimimi ii

DTDT FPFPF .  

The drag force matrix can be written as: 

FrQF +−= )( uD                                             (2.58) 

where:  
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 TmNmm FFFF 21=  

3) Linearization for Line-Seabed Contact 

Another nonlinearity that should be treated for the frequency domain analysis is the 

line-soil contact. During the dynamic analysis, the TDP changes as the floating unit 

moves. To remove that nonlinear effect in this model, the static TDP is replaced by a 

pinned support (based on the static TDP?) and only the suspended part of the mooring 

line is dynamically analyzed.  

2.4.2 Equations of Line Dynamics in Frequency Domain 

After linearization, substituting the Eq.(2.42) and Eq.(2.58) into the motion equation. 

And then it is transformed into frequency domain. The equation of motion of mooring 

lines in frequency domain has the form as follows. 

   ))()(()()()(2  rQMKrMr  −++−=− uuI                (2.59) 

It can be written as: 

)()()()( 2  uu QMrKQM +=++− 
Ii                        (2.60) 

The wave kinematics is calculated using airy wave theory. The wave particle velocity 

and acceleration are   
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where real parts are implied. 

Then the equation of motion can be rewritten as follows: 
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2.4.3 Boundary Conditions 

The top end is connected to the floating structure, so its response is equal to the 

response of floating structure. For the bottom fixed end, its response is zero. For the 

boundary conditions, we can use the method of multiplying the stiffness by a large 

number or substituting the zero response of the support points into the equation to 

eliminate the related row and column. 

2.4.4 Solving the Equation of Motion 

After applied the boundary conditions, the displacement responses can be obtained as 
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where )(H  is the transfer function. 
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12 )()( −++−= KQMT  i , )()()(  GTH =   

And velocity of lines： 

)()(  rr i=                                                (2.65) 

Relative velocity response between water particle velocity and lines’ velocity： 
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Top Tension can be obtained as:  

 )()()( 11  −− −= NNNk rrT                                     (2.67) 

The Response Spectra of displacement and top tension are: 

2
( ) ( ) ( )rrS S  = H                                         (2.68) 

2
( ) ( ) ( )T TS S  = H                                        (2.69) 

 Mean square response of displacement and velocity are： 
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


=
0

22 )(  dSrrr                                            (2.71)  

The statistics of the response can be easily obtained from response at each frequency 

by a discretized approach. The variance and k-th spectrum moment of the response in 

i-th degree of freedom can be simply computed as  
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And the covariance matrix of relative velocities: 
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2.5 Numerical Case in Time Domain 

Table 2.1 Properties of the mooring line 

 

Type Diameter (mm) Axial Stiffness (kN) 
Weight (kg/m) 

Air Water 

R4 Chain 157 3350000 491 426 

Spiral Strand wire 144 1893000 106 84 

 

The codes for the dynamic analyses of mooring lines in time domain are programmed 

using Matlab. The numerical case analysis of single component and multi-component 

mooring lines are performed. To verify this program, the results are compared with the 

results from commercial software, Orcaflex. The detailed properties of the lines are 

listed in Table 2.1. The harmonic excitations are applied to the top end of the lines. The 

horizontal and vertical harmonic excitations represent the motions of wave frequency 

and low frequency of floating structure, respectively. 

 

Three test cases are performed and compared with the results from Orcaflex. The 

first case is a single component mooring line only under harmonic excitation applied 

to its top end. There are no environmental loads and no seabed contact. In the second 
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case, the environmental loads, wave and current are applied to the line. The third 

case is about multi-components mooring lines. The lines are subjected to wave, 

current and harmonic top excitation. In addition, the contact with seabed is also taken 

into accounted.  

 

2.5.1 Case for Single Component Mooring Line 

1) Single Component Mooring Line under Harmonic Excitation 

Dynamic response of a single component mooring line, R4 chain, is simulated. The 

mooring line is subjected to vertical, horizontal and combined vertical and horizontal 

harmonic excitations, respectively. The given harmonic excitations are as follows. 

)02.0cos(10)( ttxN =                                        (2.75) 

)2.0cos(5)( ttzN =                                          (2.76) 

The environmental loads are not taken into account here. Water depth is 400m. The 

length of line is 400m. The top end is 10m under the water surface and bottom end is 

at 50m from water level. The configuration of the mooring line is shown in Figure 2.3 

by static analysis. And the results of dynamic analysis are compared with Orcaflex’s, 

which use the lumped mass method too and implicit method is used here to solve the 

dynamic problem. There are 20 segments. Figure 2.4 to Figure 2.6 give the dynamic 

response of single component mooring line under vertical, horizontal and combined 

vertical and horizontal harmonic excitations. From the results, the codes described 

above agree well with the outputs of Orcaflex, although the top tension range is 1% 

greater in Orcaflex.   
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Figure 2.3 Configuration of single mooring line 

 

 

Figure 2.4 Single mooring line under the vertical harmonic excitation only 
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Figure 2.5 Single mooring line under the horizontal harmonic excitation only 

                                                  

 
          Figure 2.6 Single mooring line under the combined vertical and 

horizontal harmonic excitations 

2) Single Component Mooring Line under Harmonic Excitation and Wave and 

Current 

In this case, the environmental loads from wave and current are applied to the lines. 

The wave is an Airy wave that has wave height at 7.0m and the period of 8.0s. The 
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current is 1m/s in the x direction and linear decay along the depth until zero at seabed. 

And the mooring line is still subjected to three harmonic excitations (vertical, 

horizontal and combined vertical and horizontal harmonic excitations). Both the 

results of mooring line dynamic analysis by our code and Orcaflex are shown in Figure 

2.7 to Figure 2.9. It can be seen that they agree well and the difference is within 1%.  

 

           Figure 2.7 Single mooring line under vertical harmonic excitation with 

wave and current 

 

          Figure 2.8 Single mooring line under horizontal harmonic excitation 

with wave and current 
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Figure 2.9 Single mooring line under combined vertical and horizontal harmonic 

excitation with wave and current 

 

2.5.2 Case for Multi-Component Mooring Line 

This code can also perform the dynamic analysis for multi-component mooring line. 

Here a test case of a multi-component mooring line (R4 chain - Spiral Strand wire - R4 

chain) is simulated. The line length is 100, 400 and 1480 m, respectively. The static 

analysis for multi-component mooring line based on the Catenary equation is derived 

in Appendix A. The static analysis cases, given different offsets, are presented and 

the results are compared with Orcaflex’s which show they agree well. Then the static 

analysis results as the initial configuration for dynamic analysis as presented in 

Figure 2.10. The first part of 100m R4 chain is divided into 5 segments and the 

second part of Spiral Strand wire is divided into 6 segments. The third part of R4 

chain takes the seabed contact into account; parts on the touch down zone are 

meshed by 10m per segment (in total 58 segments) and other parts always on seabed 

are coarsely meshed by 100m per segment. The given harmonic excitations are as 

follows. 
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)02.0cos(40)( ttxN =                                        (2.77) 

)2.0cos(5)( ttzN =                                          (2.78) 

 

Figure 2.10 Configuration of multi-components mooring line 

Wave and current are the same as used in the single component mooring line. In 

addition, seabed interaction is also considered. For mooring line resting on the seabed, 

a modified bilinear spring is used to model the vertical contact force on a node 

(Ghadimi, 1988), which has the form as follow. Friction effects are considered to be 

less significant for the system analyzed and are neglected. A gradual transition is 

proposed for numerical stability. The effects of wave and current are considered, using 

the same parameters in the single line case. 









+++−= dcbz
b

zaFs )]ln[cosh(
1

2

1
                             (2.79) 

where a, b, c, and d are suitably chosen constants, which can be taken from Ghadimi, 

1988. In particular, d should have a value such that sF  is close to 0 when z is a suitable 

distance away from the seabed. 
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Figure 2.11 Multi-components mooring line under the vertical harmonic excitation 

 

Figure 2.12 Multi-components mooring line under the horizontal harmonic excitation 
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Figure 2.13 Multi-components mooring line under the combined vertical and 

horizontal harmonic excitation 

Dynamic response of multi-components mooring line under vertical, horizontal and 

combined vertical and horizontal harmonic excitations are shown in Figure 2.11 - 

Figure 2.13. According to the results of the dynamic analysis in timed domain, it can 

be seen that this program can perform as well as the commercial software and the 

difference is within 3%.   

2.6 Numerical Case in Frequency Domain 

The code for the dynamic analysis of mooring lines in frequency domain are 

programmed and compared with the results from Orcaflex. Orcaflex can only perform 

the limited dynamic analysis in frequency domain, the dynamic responses in time 

domain are transformed to response in frequency domain using FFT. The 

nonlinearities in the mooring lines are linearized using aforementioned method. Two 

cases of single component and multi-component lines are performed. 

2.6.1 Single Component Mooring Line 
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The configuration of the single component mooring line is shown in Figure 2.14. The 

length is 668.8m, water depth is 400m. Both top and bottom are pinned, top is at 

(366.89, 366.89, 390) and bottom is at origin point. The natural frquency can be 

calculated from the equation of 2 0− + =M K . The natural frequencies of lines 

from modal analysis are listed in Table 2.2 and also compared with results from 

Orcaflex. 

 

Figure 2.14 Configuration of single mooring line 

 

Table 2.2 Natural frequency of single component mooring line (Hz) 

Mode In-House Orcaflex 

1 0.0518 0.0518 

2 0.0961 0.0961 

3 0.1027 0.1028 

4 0.1439 0.144 

5 0.1531 0.1532 

6 0.1998 0.1998 

7 0.2028 0.2029 

8 0.2453 0.2454 

9 0.251 0.2511 

10 0.2963 0.2964 
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1) Harmonic excitation 

The dynamic analyses of a single component mooring line, R4 chain, under different 

horizontal surge harmonic excitations are performed in frequency domain and time 

domain, respectively. The surge motion amplitudes of 1m, 5m and 10m with period of 

10s are investigated.  

 

(a) Surge amplitude 1m                  (b) Surge amplitude 5m  

 

(c) Surge amplitude 10m              (d) Ratio between TFD and TTD 

Figure 2.15 Comparison of dynamic tension amplitude of single component line in 

frequency and time domain under harmonic excitation 

The dynamic tension amplitudes along the line under different surge amplitudes from 

analysis in frequency domain and time domain results from Orcaflex are presented in 

Figure 2.15. The difference here, particularly at low amplitude, may be due to the time 
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domain results were also slightly smaller than Orcaflex. The ratio of dynamic tension 

amplitude in frequency and time domain decreases with addition of surge amplitude.  

2) Regular wave 

The frequency domain simulations of single component mooring line under regular 

wave are performed. The wave height is 10m, 15m and 20m, respectively. The 

dynamic tension amplitudes under different wave heights are shown in Figure 2.16 

and compared with the results from Orcaflex. The difference of dynamic tension 

amplitude between frequency domain and time domain widens with the increase of 

wave height. 

  

          (a) Wave height 10m              (b) Wave height 15m 

  

(c) Wave height 20m                (d) Ratio between TFD and TTD 

Figure 2.16 Comparison of dynamic tension amplitude of single component line in 

frequency and time domain under regular wave 
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3) Random Wave with Current 

The dynamic analysis in frequency domain for a single component mooring line, R4 

chain, is simulated in random waves. The random wave is defined by an ISSC 

spectrum as shown as follows. The significant wave height is 7.8m and the peak 

period is 5.6s and the spectrum is shown in Figure 2.17. The current velocity is 1m/s 

in the x direction. 
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After linearization and performing the frequency analysis, the spectral density of top 

tension is presented in Figure 2.19. The dynamic analysis in time domain is simulated 

for 3-hour using Orcaflex as shown in Figure 2.18 and the response then transformed 

to frequency domain. The standard variance of top tension is shown in Table 2.3. The 

difference between them is 13.41%.  

 

Figure 2.17 Wave spectrum 
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Figure 2.18 Top tension in time series (3 hours) of single component line 

 

Figure 2.19 Spectral density of top tension single mooring line 

 

Table 2.3 Standard variance of top tension 

 

 In-House  Orcaflex 

Standard variance of  

Top Tension (N) 
368.3 318.9 

 

 

2.6.2 Multi-Components Mooring Line 
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The frequency analysis for multi-components (R4 chain - Spiral Strand wire - R4 

chain) mooring line is also performed. The line configuration is shown in Figure 2.20. 

The length is 100m, 300m and 268.8m, respectively. Both ends are pinned and 

positions are the same as single component line. The natural frequencies from modal 

analysis are compared with the results from Orcaflex in Table 2.4.  

 

Figure 2.20 Configuration of multi-components mooring line 

 

Table 2.4 Natural frequency of multi-components mooring line (Hz) 

 

Mode In-House Orcaflex 

1 0.0527 0.0528 

2 0.1076 0.1076 

3 0.1149 0.1149 

4 0.1373 0.1374 

5 0.1503 0.1504 

6 0.2014 0.2013 

7 0.2043 0.2043 

8 0.2379 0.2379 

9 0.2442 0.2442 

10 0.2964 0.2964 
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1) Harmonic excitation 

The dynamic analyses of multi-components mooring line under different surge 

harmonic excitations are also performed in frequency domain and time domain, 

respectively. Figure 2.21 gives dynamic tension amplitude along the line in frequency 

domain and time domain with the surge motion amplitudes of 1m, 5m and 10m. The 

ratios of dynamic tension amplitude in frequency domain and time domain under wave 

height of 10m, 15m and 20m are also presented. It can be seen that they agree well 

when surge amplitude is small. 

 

        (a) Surge amplitude 1m                  (b) Surge amplitude 5m  

  

          (c) Surge amplitude 10m            (d) Ratio between TFD and TTD 

Figure 2.21 Comparison of dynamic tension amplitude of multi-component line in 

frequency and time domain under harmonic excitation 
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2) Regular wave 

The frequency domain simulations of multi-components mooring line under regular 

wave are performed. The wave height is 10m, 15m and 20m, respectively. The 

dynamic tension amplitudes under different wave heights are shown in Figure 2.22 

and compared with the results from Orcaflex. The difference of dynamic tension 

amplitude between frequency domain and time domain widens with the increase of 

wave height. 

 

          (a) Wave height 10m              (b) Wave height 15m 

 

        (c) Wave height 20m            (d) Ratio of dynamic tension amplitude 

in frequency and time domain 

Figure 2.22 Comparison of dynamic tension amplitude of multi-component line in 

frequency and time domain under regular wave 
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3) Random Wave with Current 

The dynamic analysis in frequency domain for multi-components mooring line under 

random wave is simulated. The dynamic analysis in the time domain is simulated for 

3-hours using Orcaflex as shown in Figure 2.23. Then the  top tension response time 

series is transformed to frequency domain. The frequency analysis for 

multi-component line is performed to obtain the spectral density of top tension, which 

is presented in Figure 2.24. The standard variance of top tension is shown in Table 

2.5. The difference between them is 5.81%. 

 

Figure 2.23 Top tension in time series (3 hours) of multi-components line 

 

Figure 2.24 Spectral density of top tension single mooring line 
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Table 2.5 Standard variance of top tension 

 

 In-House  Orcaflex 

Standard variance of  

Top Tension (N) 
298.0 280.7 

 

2.7 Conclusion 

The numerical procedures for dynamic analysis of mooring lines in time domain and 

frequency domain are developed in this chapter. The lumped mass method is used to 

model the mooring lines. In the time domain dynamic analysis, the modified Euler 

method is used to solve the motion equation of mooring lines. The dynamic analyses 

of mooring lines under horizontal, vertical harmonic excitations and combined are 

performed. The cases of single component and multi-component mooring lines under 

these excitations are studied. The case considering the seabed contact is also included. 

The program is validated by comparison with the results from commercial software, 

Orcaflex. For the frequency domain dynamic analysis, an improved frame invariant 

stochastic linearization method is applied to the nonlinear hydrodynamic drag term. 

The cases of single component and multi-component mooring lines are studied. The 

comparison of results shows that frequency domain results agree well with time 

domain results when the nonlinearity is not very strong (the forced surge amplitude is 

small) and difference between the standard variance of top tension is 5.81% for 

random wave. The code developed in this chapter has been applied in LR’s mooring 

software. 
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3 Hybrid Time and Frequency Domain Method 

3.1 Introduction 

Coupled analysis should be performed for moored floating structure to obtain a more 

accurate estimate of the LF motion and improved estimate of the tension in mooring 

lines due to the importance of the effect of mooring line damping in deep water. In 

fully coupled time domain analysis, the dynamic motions of the moored FPSO are 

simulated together at every time step, which is prohibitively time consuming. Several 

methods considering the damping contribution from lines as a constant have been 

developed (Connaire et al., 1999; Correa et al., 2002; Ormberg et al., 1998; Ormberg 

and Larsen, 1998). However, the mooring line damping is nonlinear and thus 

dependent on the amplitude of the oscillation, which is unknown priori. It also 

dependent on the vessel offset due to changes in the line geometry and the associated 

dynamic behavior. In addition, WF motions are especially important for the mooring 

line damping. 

Considering the large mass of an FPSO, it can be assumed that the FPSO’s wave 

frequency motion/loading is unaffected by the mooring/riser, the coupled analysis can 

then be simplified to some extent, e.g. mooring/riser dynamically coupled to the FPSO 

low frequency motion. However, such an approach simulated in the time domain will 

still be very expensive as the mooring/riser dynamic response needs to be computed at 

every time step, and moreover the time step has to be very small for the mooring/riser. 

In this chapter, a computationally efficient method using a combined time and 

frequency domain analysis methodology is proposed where the time domain 

simulation is used for predicting the low frequency vessel motion and the frequency 
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domain analysis of the mooring/riser is employed for the wave frequency response. 

The wave frequency responses of mooring lines are performed for several fixed 

offsets within the range of the low frequency motion. The damping contributions 

from the mooring lines are calculated from the wave frequency responses of mooring 

lines and then updated and transferred to the time domain analysis of low frequency 

vessel motion. 

3.2 Dynamics of Floating Structure 

The diffraction of waves around the large-displacement floating structure is significant. 

The incident waves upon arriving at the structure undergo significant scattering or 

diffraction. Diffraction of waves from the surface of the structure has a most important 

effect on the wave loading for these structures. Diffraction analysis is usually used to 

account for this effect. The responses of the floating structure in a stationary 

environmental state often include three components: 1) Mean displacement due to 

mean environmental loads. 2) Wave frequency motions, where it oscillates in the 

frequency range of the incoming waves, due to first-order wave loads. Low frequency 

motion, in the frequency range of the natural periods of the moored structure in surge, 

sway and yaw modes of motion, due to second-order wave loads and low-frequency 

wind loads. The wave frequency motion of floating structure motion RAO (Response 

Amplitude Operator), is easily obtained from the linear diffraction analysis. And the 

low frequency motion in time domain can be calculated using QTFs (Quadratic 

Transfer Functions). Then the hybrid time/frequency domain method is used for 

coupled analysis of the FPSO/mooring lines. 

3.2.1 Wave Frequency Motion of Floating Structure 

The first order wave forces on floating structure are determined by linear (first order) 

diffraction analysis. The velocity potential a point in the fluid in the presence of a 
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moving structure in waves can be expressed as be the sum of the following 

components: the potential of the incident wave as described by linear wave theory; the 

potential of the diffracted waves when the structure is stationary; the radiated 

potentials caused by simple harmonic motion of structure in still water. The velocity 

potential can be written as follows: 
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jjX                                           (3.1) 

Where 0 and 
7  are the incident wave and diffraction wave potential for a unit wave 

amplitude. Xj denotes the complex motion amplitude in the j-th rigid body mode. j ( j 

= 1,2,...,6) are radiation potentials caused by a unit amplitude motion in the jth mode 

that represent the fluid generated as a result of wave radiated out from the body as it 

undergoes pure harmonic motion in j-th rigid body mode.  

To solve this velocity potential problem during the linear diffraction analysis, 

numerical methods such as boundary element method, also known as panel or 

source-sink method are often used. The panels are used to model the structure body 

surface and a source/sink, defined by a Green’s function, is placed in each panel with a 

strength and phase  calculated to meet the velocity potential boundary conditions on 

the surface of the FPSO hull. The dynamic pressures are computed using the linearized 

Bernoulli’s equation from the calculated velocity potential. The forces acting on the 

structure, P, are calculated by integrating the pressure over the wetted surface of 

structure. The total complex hydrodynamic force in a unit amplitude incident wave is: 
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The contribution from the incident potential is called the Froude-Krylov force, Funit,0 . 
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And the force from the diffraction potential is called diffraction force, Funit ,7. The sum 

of them is called wave excitation force. The forces from the radiation potentials are 

called the radiation forces and are normally expressed in terms of the added mass Ma 

and wave damping coefficients C, i.e. components in phase with the motion 

acceleration and velocity respectively.  

Then the motion equation of floating structure is:  

)()(][ )1(2  FXKCM =++− i                                  (3.3) 

where M=Mvessel+Ma is the mass matrix, C is the damping matrix and K is stiffness 

matrix. F(1) is the first order wave force vector on floating structure, which obtained 

from the vector of first order load transfer function G(1) with wave surface elevation , 

defined as 
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The displacement response of floating structure is  
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where )(H  is the displacement transfer function or RAO (Response Amplitude 

Operator).  

3.2.2 Low Frequency Motion of Floating Structure 

The linear diffraction analysis is only the first order approximation to the wave loads 

acting on a floating structure in waves. In linear analysis, forces and responses are 
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proportional to wave amplitude and response frequencies are at the wave frequency. 

Extension of the first order regular wave to an irregular wave is straightforward 

through the translation function or RAO. In a second order analysis, the basic case to 

solve is a bichromatic sea which includes two regular waves with amplitude ai, aj and 

frequencies ωi, ωj. The incident free surface elevation is to first order: 

)cos()cos(),()1( txkatxkatx jjjiii  −+−=                        (3.6) 

Both components are assumed to in the x direction. First, the first order diffraction 

analyses for each wave component are performed to get the first order velocity 

potential and first order response. Then the second order loading can be computed 

using the pressure integration method, or ‘near field’ method, introduced by Pinkster 

(Pinkster, 1980) as below.  
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Where )1(  denotes the vertical motion of a point linked to the waterline , )1(
A is the 

angular motion, 
)1(

pX  is the motion of a point P linked to the hull. Subscripts 0 refer to 

the geometry at rest: Sc0 is the wetted hull at rest and n0 is the inward normal vector. 

The second order force can be written as the following form. 



ti

jiji

ti

jiji

ti

jjj

ti

iiijdjidi

jiji

ji

eaaeaa

eaeaaat

)()2()()2(

2)2(22)2(222)2(

),(2),(2

),(),(Re)()()(









+−

+

−−

−

−

+

−

+

++

+++=

ff

ffffF
 

 (3.8) 

 where ),()2(

ji −f  and ),()2(

ji +f  are the difference and sum frequency QTF 
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(Quadratic Transfer Functions). ),()( )2(

iiid  −= ff  is the mean wave drift force 

terms. 

The second order analysis determines wave forces which are proportional to wave 

amplitude squared and oscillating with the sum (ωi+ωj) and difference (ωi–ωj) 

frequencies. The second order wave forces are made up of three components: a 

constant term called the mean wave drift force; difference frequency terms, which 

have frequencies given by the differences between combinations of different wave 

component frequencies; sum frequency terms, which have frequencies given by the 

sums of combinations of wave component frequencies. The constant and difference 

terms are known as the wave drift loads. The second order wave forces are much 

smaller than first-order ones and cover a much wider range of frequencies. The 

moored structure’s natural frequencies in surge, sway and yaw are typically quite low 

and so the difference frequency second order forces can generate large slow drift 

excursions in these directions, while sum frequency forces can cause the springing 

response of TLPs. In this study for the second order forces on FPSO, only the former is 

accounted for. 

The random wave can be represented by the summation of a large number of sine 

waves as fol1ows: 
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                                        (3.9) 

Then the corresponding wave drift force in random wave is given by the double 

summation: 
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For the difference frequency force, a large frequency difference (ωi–ωj) gives a smaller 

oscillation period which is further away from the resonance period of the structure. 

This means we can estimate the off-diagonal terms close to the leading diagonal using 

Newman proposed approximation: 

 )()(
2

1
),()2(

jdidji  fff +=−                                (3.11) 

However, direct summation for wave drift force is still relatively time consuming. 

Newman (1974) proposed an approximate method for the double summation by the 

square of a single series. The wave drift force can be written as 
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




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


+= 

=

jijd
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j

j tat fF                          (3.12) 

This method implies that only N terms should be added together at each step compared 

to N2 terms by Eq.(3.10). The calculated wave drift damping can also account for 

encounter frequency using a method that modifies the ordinary QTFs (Molin, 1994). 

The wind forces acting on a moored structure are calculated using the following 

equation (OCIMF, 1994): 

1

2
w w A w wC A=F V V                                          (3.13) 

where Fw is the wind force, Cw is shape coefficient and A is the projected area, A  is 

the air density, Vw is the wind velocity measured at an elevation of 10 meters above the 

water surface. The wind is assumed to be steady and it supplies a mean force for 

floating structure. 

The current force also uses the drag load formula, as for wind force.  
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1

2
c c c cC LD=F V V                                           (3.14) 

where Cc is coefficient,   is the seawater density, L is the length between 

perpendiculars and D is the draught. 

The low frequency motion equation of floating structure in time domain is as follows.  

 (2) ( )V w ct= + +M X F F F                                       (3.15) 

where VM  is mass matrix of floating structure, FPSO.  

3.3 Hybrid Time and Frequency Domain Method 

Coupled analysis in time domain should perform simulations of mean, low, and wave 

frequency vessel and mooring system responses together. Obviously this approach 

involves solving the general equations of motion for the combined mean, low, and 

wave frequency responses of the vessel, mooring lines/risers. This approach fully 

takes the coupling between the vessel and the mooring/riser system into account. The 

low frequency damping from the vessel, mooring lines/risers are internally generated 

in the simulation. However, this approach requires very high computer resources. 

To solve this computer resource problem, an improved hybrid method will be 

developed, in which the low frequency motion of FPSO is simulated in the time 

domain while the wave frequency motion of mooring lines at a given mean offset 

position is solved in the frequency domain. This method is based on the assumption 

that the LF and WF motion have different time scales because the low frequency 

motion is slowly varying compared to the wave frequency motion. In this method, 

the mooring line damping to the low frequency motion is evaluated separately from 

wave frequency analysis in frequency domain and transformed back for low frequency 
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motion. A series of frequency domain analysis of the WF response is carried out at 

fixed intervals. The schematic diagram of this method is shown in Figure 3.1. The 

calculation step is as follow: 

1. The vessel’s wave frequency (WF) motion with mooring is calculated in the 

frequency domain at several locations (X1, X2,…Xi)  along the LF motion 

range of vessel. The mooring analysis is performed with linearization of drag 

force. 

2. At position Xi, the frequency domain analysis of the mooring, provides the 

mean top tension of mooring Ti. 

3. LF motion is solved in time domain with second order force and the mean 

mooring top tension Ti between two locations (Xi, Xi+1). 

4. At position Xi+1, the top tension of mooring Ti+1 is updated from the frequency 

domain analysis of WF motion of vessel and mooring line. 

 

Figure 3.1 Illustration of Hybrid time and frequency method 

 

LF drift velocity  

Offset  

Wave frequency response of 

line in frequency domain 

Line damping 
Low frequency motion of 

FPSO in time domain 



 81 

 WF Analysis at Xi+1 

 

 

Figure 3.2 Wave frequency response of mooring line in frequency domain 

 

Wave frequency motion equation: 

)()()()( 2  uu QMrKQM +=++− 
Ii                        (3.16) 

where Q  is the linearized damping matrix, K  is the stiffness matrix, IM  is the 

inertia force coefficient matrix. Assuming that the FPSO’s wave frequency motion is 

unaffected by the mooring lines due to its much greater mass. The FPSO’s wave 

frequency motion can be obtained with displacement RAO. As the low frequency 

drift velocity is slow and can be treated as a constant current. The wave frequency 

response of mooring lines in frequency domain can be obtained based on linearized 

approach. Then the tension of top end will be fed back into the low frequency motion 

as the damping contribution. 

 LF Analysis 

 WF Analysis at Xi-1 

 
LF Analysis 

 WF Analysis at Xi 
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WF Analysis at Xi+1 

 

 

Figure 3.3 Low frequency motion of FPSO in time domain 

Low frequency motion equation of FPSO: 

DcwV TFFFXM +++= )2(                                      (3.17)                                         

where VM  is mass matrix of FPSO. DT  is the damping to the low frequency FPSO 

motion from the wave frequency response of mooring lines. It can be accounted for in 

the form of the top tension from frequency domain analysis. As there are two different 

time scale for wave frequency motion and low frequency motion and latter is very 

slow, therefore the effect of mooring in wave frequency motion on very slow LF 

motion is taken into account the mean top tension at different position during the low 

frequency motion. 

The total response of FPSO/mooring line can be combined wave frequency motions 

with response of the low frequency motions. The response of wave frequency motions 

in frequency domain is transformed to a time history, which is added to response of 

low frequency motions to arrive at the combined response. The seed values for 

generating wave frequency and low frequency time histories should be the same to 

yield consistent results. 

 WF Analysis at Xi 

   LF Analysis 

TD F(2)+Fw+Fc 
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3.4 Numerical Case 

The irregular wave assumes it is a linear superposition of a number of airy waves. 

The irregular wave elevation is generated with ISSC spectrum. The significant wave 

height is 7m and wave period Tz is 8s. The generated wave is compared with 

Orcaflex’s wave in Figure 3.4. Figure 3.5 and 3.6 present wave particle velocity at 

x=10 m varies along the water depth at t=0s and 15s. It matches well with Orcaflex’s 

results.  

 

Figure 3.4 Wave elevation in time series 

 

Figure 3.5 Wave particle velocity at x=10s and t=0s 
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Figure 3.6 Wave particle velocity at x=10s and t=15s 

 

Figure 3.7 Amplitude of surge RAO 

 

Figure 3.8 Phase of surge RAO 
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The prediction of wave frequency motion, from the motion RAO shown in Figure 3.7 

and 3.8 with the wave elevation above, is presented in Figure 3.9. The hydrodynamic 

analysis was assessed by use of AQWA. The prediction of initial low frequency 

motions are calculated from the QTF in Figure 3.10. The LF surge motion shown in 

Figure 3.11 and 3.12 only consider the surge LF force applied on the vessel. Only 

head sea is taken into account for the numerical case. 

 

Figure 3.9 Surge motion under random wave 

 

Figure 3.10 Surge QTF 
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Figure 3.11 LF surge motion under irregular wave 

 

Figure 3.12 LF surge velocity under irregular wave 

 

The configuration employed here is the same as in Figure 2.10, which is a 

multi-component mooring line (R4 chain - Spiral Strand wire - R4 chain). The line 

length is 100, 400 and 1480 m, respectively. Figure 3.8 presents the line tension and 

compared with the results from Orcaflex. The standard variance between them are 

5.7%. And the cost for time can be reduced to one tenth of conventional coupled 

simulation. 
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Figure 3.13 Line tension under irregular wave 

3.5 Conclusion 

This chapter proposed a combined time and frequency domain analysis methodology 

where the time domain simulation is used for predicting the low frequency motion of 

FPSO and the frequency domain analysis of the mooring/riser is employed for the 

wave frequency response separately. This method fully separated the analyses of 

FPSO and mooring line, meanwhile the position-dependent damping of mooring line 

was taken into account rather than just used a constant damping coefficient. This 

method could adopt a large time step for the low frequency motion of the FPSO. 

 

 



 88 

 

4 Long Term Extreme Analysis by All Sea States Method 

4.1 Introduction 

Mooring systems are used for station keeping of offshore floating installations 

including, for example, FPSOs. Mooring lines are subjected to environmental loads 

such as wave and current, and the motions of floating structure. The floater motions 

are commonly split into LF, WF and HF motion components. The slow drift low 

frequency motion is usually near to the natural frequency of moored FPSO, which 

means resonant motion could be excited. Once it occurs, large low frequency motion 

can yield quite high mooring load (Barltrop, 1998). The low frequency drift motion 

amplitude is very dependent on the surge damping and Huse found the damping from 

mooring lines makes a significant contribution to the surge damping, especially in 

deepwater (Huse and Matsumoto, 1989). The traditional global response analyses of 

moored floating structures are calculated in a way known as de-coupled analysis. The 

damping of mooring lines is neglected or simplified by an equivalent linear damping 

in the conventional de-coupled analysis. These simplifications will become less 

accurate when the water depth increases (Garrett, 2005; Ormberg and Larsen, 1998). 

Therefore, coupled analysis should be performed in order to accurately predict the 

FPSO motions as well as the mooring and riser responses with due regard of the 

FPSO/mooring coupling effects. In the coupled analysis, the mooring lines are 

included in the model along with the FPSO and damping of the mooring lines is 

incorporated directly.  

 

The mooring lines should have sufficient strength to withstand the load effects 

imposed by the metocean environment. In addition, the extreme response of FPSO 

offset has a great influence on riser design. Traditional design approach based upon 
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extreme load case analysis may not necessarily produce safe designs. Probabilistic 

design provides a more rational basis. Long term statistics of the response, which 

takes into account the contribution of every short term condition, is the most accurate 

method to determine extreme load effects. However, coupled dynamic analysis of a 

moored FPSO for every short term condition (often 3 hours) is time consuming 

because time domain simulation is required for taking into account the coupling 

effects between FPSO and lines (Ran et al., 1999) and the long term extreme analysis 

needs to establish short term probabilistic responses for a large number of sea states.  

 

In this chapter, an approach for the long term extreme analysis of moored FPSO 

systems, based on the Kriging metamodel, is proposed. First, a test case is devised to 

illustrate the Kriging metamodel. Then it is applied to the long term extreme analysis 

of FPSO mooring systems. A series of short term probabilistic distributions of 

mooring line tension and FPSO offset under the selected sea states by design of 

experiment are established. Kriging metamodels, which represent the mapping 

between the sea states characteristics and short distribution parameters, are 

established with the training data from a small number of short term distributions 

parameters. The accuracy of metamodel is checked. Finally, the long term 

distribution of FPSO mooring systems based on all sea states can be established 

based on the metamodel. 

 

4.2 Short Term Extreme Analysis 

For the short term stochastic method, the extreme response can be estimated as the 

expected or most probable largest response peak for the specified duration of the 

design condition. For the narrow banded Gaussian response process, the distribution 

follows the Rayleigh distribution. For the moored floating structure, the response is 

non-Gaussian due to the nonlinear effect, which can be considered by the nonlinear 
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time simulation. Since the limitation of the computational costs, the duration of the 

simulation is often shorter than the specified duration of the design condition. 

Therefore, the extrapolation is required for the estimation of the extreme response. 

 

4.2.1 Extreme Response Estimation Based on Peaks 

For the narrow banded stationary response process ( )X t , its peaks are the maxima 

between adjacent zero-upcrossing. The major challenge is related to selection of an 

adequate probabilistic distribution model for the individual peaks of the response 

process. Special attention should be paid to the upper tail of the distribution, which is 

of vital importance for the estimation of extreme values. For the linear system, the 

response process is a Gaussian process as the wave elevation is a Gaussian process. It 

can be well modelled by a Rayleigh distribution. For the nonlinear system, ( )X t  is 

non-Gaussian and can be modelled by Weibull distribution. The selected model can 

be fitted to the simulated peak samples by an appropriate statistical estimation 

technique, e.g. method of moments, maximum likelihood method etc.  

 

Let 1 2max{ , ,..., }e NX X X X=  and 1 2, ,..., NX X X  are the peaks of process ( )X t  

during the period T. Assuming that the peaks are independent, and then the 

cumulative distribution function of the extreme value for a short term period T can 

be expressed as follows. 
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The exact distribution of ( )
eXF x  can be accurately approximated by the Gumbel 

distribution for marine structures (Haver et al., 1998; Naess and Gaidai, 2009; 

Vázquez-hernández et al., 2011). 

( ) exp exp ( )
eX

x
F x





  −
= − −  

  
                                  (4.2) 

 

4.2.2 Extreme Response Estimation Based on Upcrossing Rate 

Another statistical approach for predicting extreme values is based on the upcrossing 

rates. Assuming that the response ( )X t  can be modeled as a stationary stochastic 

process. The x-upcrossing means that the level x  is exceeded with positive slope. 

Figure 4.1 shows the example of process ( )X t  with upcrossings and each 

upcrossing is marked with a circle. 

 

Figure 4.1 Upcrossing analysis of process X(t) 

 

The random number of times that the process ( )X t  upcrosses the level x  during 

the time interval T  is ( ;T)N x+ . It can be expressed by E[ ( ;T)] E[ ( )]TN x v x+ +=  
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for stationary process, where ( )v x+  is the mean rate of x-upcrossing of ( )X t . 

Under the assumption that the upcrossing rates are statistically independent such that 

they constitute a Poisson process, then the extreme value distribution can be 

expressed in terms of the average upcrossing rate by the following formula for a 

stationary short-term sea state. 

F ( ) exp{ ( )T}X x v x+= −                                           (4.3) 

 

The mean upcrossing rate can be estimated from the ergodic mean value for the 

ergodic response process.  

T

( ;T)
( ) lim

T

n x
v x

+
+

→
=                                            (4.4) 

where ( ;T)n x+  is a realization of ( ;T)N x+ . It denotes the counted number of 

upcrossings during time T .  If M  times responses of a suitable time interval 0T  

are simulated, the appropriate mean value of ( )v x+  can be estimated by the formula 

given in Eq.(4.5), where the 0( ;T )jn x+
 is the counted number of upcrossings of the 

level x  for the no. j response.  
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The 95% confidence interval for the value ( )v x+
 can be evaluated as follows. 
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where ˆ( )s x  is empirical standard deviation of ( )v x+  and  

0 2

1 0

( ;T )1
ˆ ˆ( ) [ ( )]

1 T

M
j

j

n x
s x v x

M

+

+

=

= −
−
                                 (4.7) 

 



 93 

The mean upcrossing rate ( )v x+  as a function of the level x is in general highly 

regular in a particular manner. Naess and Gaidai (2008) proposed that the mean 

upcrossing rate tail behaves very closely like the exponential function 

exp{ ( ) }ca x b− −  ( *x x ). The *x  is the tail marker that corresponds to the 

beginning of regular tail behavior. The mean upcrossing rate can be expressed as 

 ( ) ( ) exp ( )cv x q x a x b+ = − − , *x x                               (4.8) 

where a , b , c  are suitable constants and the ( )q x  varies slowly compared with 

the exponential function such that it can be considered as a constant. These 

parameters can be estimated by plotting ln ln( ( ) / )v x q+
 versus ln( )x b−  or doing 

the optimization at the log level by minimizing the mean square error function, the 

detail will be discussed in Chapter 7. 

 

4.3 All Sea States Method 

The most accurate method for predicting extreme response is some sort of a 

stochastic long term response analysis if the response depends both on sea severity 

and on the period and on the previous history of the wave process (Naess and Moan, 

2012). In order to obtain a consistent estimate for the q-probability response, the long 

term distribution of the response is needed. The long term variability can be 

described in various ways. One may consider the long term distribution of:  

 The individual maxima or peaks of the response process. 

 The d-hour (0.5-hour for Gulf of Mexico or 3-hour for North Sea) maximum 

of the response process. 

 The annual extreme value of the response process.  
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The general approach for long term statistics of structural response is to work 

through all the sea states. Short term probabilistic distribution needs to be established 

for a large number of short term sea states (often 3 hours). Then long term 

distribution can be obtained based on all peak values by the following formula when 

the short term sea state is characterized by significant wave height HS and spectral 

peak period Tp (Battjes, 1972). 

|

1
( ) (0 | , ) ( | , ) ( , )

(0)p p s p s p

s p

X X s p X H T s p H T s p p s

X h t

F x V h t F x h t f h t dt dh
V

+

+
=                (4.9) 

Xp is the peak value of response process X(t) , defined as the maximum value of X(t) 

between two consecutive zero upcrossings. (0)XV +
 denotes the long term average 

zero-upcrossing rate given by 

(0) (0 | , ) ( , )
s p

s p

X X s p H T s p p s

h t

V V h t f h t dt dh+ +=                             (4.10) 

(0 | , )X s pV h t+
 is the average zero-upcrossing rate for each short term condition given 

Hs and Tp. ( , )
s pH T s pf h t  is the joint probability density function for the sea state 

characteristics, significant wave height Hs and spectral peak period Tp. 

 

An extreme value distribution of the short term response can be applied to predict the 

long term response distribution instead of using the distribution of each peak. We can 

obtain the conditional distribution of the largest peak values during a short term (3 

hours): 

   ( )
3

( , )

| |( | , ) ( | , )
s p

h s p p s p

k h t

X H T s p X H T s pF x h t F x h t=                       (4.11) 

where ( , ) v (0 | , )s p X s p
k h t h t T+=  is the number of peak values during a short term 

condition given Hs and Tp. 
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If the number is large enough, conditional distribution of the largest peak values can 

be accurately approximated by Gumbel distribution: 

3 |
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                     (4.12) 

where ( , )s ph t  and ( , )s ph t are location and scale parameters. 

 

Then the long term distribution of 3-hour extreme can be given as follows. 
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3 | ( | , )
h s pX H T s pF x h t  is the conditional distribution of the 3-hour extreme for each short 

term condition given Hs and Tp. ),( psTH thf
ps

 is the joint probability density function 

for the sea state significant wave height Hs and spectral peak period Tp. It consists of 

a marginal distribution of Hs and a conditional distribution of Tp for given Hs. 

( , ) ( ) ( )
s p s p s

H T s p H s p sT H
f h t f h f t h=                                  (4.14) 

 

Haver and Nyhus (1986) developed a hybrid lognormal and Weibull distribution for 

the marginal distribution of Hs. They used the transition parameter η to separate the 

lognormal distribution for smaller values of Hs from the Weibull distribution for 

larger values, as seen in Eq. (4.15), where λ and ζ2 are the mean and variance of lnHs. 

γ and ρ are the shape and scale parameters in the Weibull distribution. 
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The conditional distribution of Tp for given Hs, can be modeled by a lognormal 

distribution in Eq. (4.16), where 
sh  and 2

sh  are the mean and variance of lnTp. 
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                       (4.16) 

 

Then the value x  with return period T years or a probability q of being exceeded per 

year (q=1/T) can be found by 

3

1
1 ( )

2920ThXF x− =                                            (4.17) 

 

The long term distribution requires that the short-term response variability be 

available for all relevant sea states, which is quite time consuming to calculate for 

complex responses, especially when the coupled dynamic analysis needs to be 

performed. The challenge for the present problem is to establish a proper model for 

the conditional distribution of X3h for all sea states. Here, a Kriging metamodel is 

applied and the detail is given in the section below. 

 

4.4 Kriging Metamodel 

Metamodeling techniques, which use statistical techniques to describe the functional 

relationship between a vector of inputs or variables and the corresponding vector of 

outputs or responses, have been developed from many different disciplines including 

statistics, mathematics, computer science, and various engineering disciplines 

(Simpson et al., 1998; Wang and Shan, 2006). Among these, the Kriging metamodel 

has recently been applied to the analysis of offshore structures. Yang and Wang 

(2012) performed the reliability based design optimization of bending stiffener 
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fatigue life by the use of metamodels in an attempt to reduce the computational time 

without sacrificing the model accuracy. Three metamodels were used in their study, 

i.e. response surface model (RSM), radial basis function model (RBF), and Kriging 

metamodel, and it was found that the accuracy of Kriging model is superior to the 

other two. He et al. (2013) also used different metamodels for uncertainty 

quantification of resistance, motions and slamming loads and found that the Kriging 

model was the most effective metamodel for predicting wave periods and heights and 

geometry parameters for uncertainty quantification.  

 

The Kriging metamodel (Simpson et al., 1998) treats the deterministic response as a 

realization of a stochastic process, y(x). It is a two-step process, as seen in Eq.(4.18), 

a regression model G(x) is constructed based on the training data and a Gaussian 

process Z(x) which is constructed through the residuals. 

( ) ( ) ( )y G Z= +x x x                                             (4.18) 

 

Consider a set of normalized training data: sampled data X = (x1, x2, …, xm)T are a 

series of sea states, for variable xi has two components, xi = (x
(1) 

i , xi
(2)) which 

represent significant wave height and spectral peak period, and responses Y = (y1, 

y2, …, ym) T represent the short term extreme distribution parameters under different 

sea states. The distribution parameters can be treated as a realization of a stochastic 

process, y(x), which consists of a regression model G(x) and a Gaussian process Z(x). 

The Gaussian process is assumed to be mean zero, and covariance is as follows. 

2Cov( ( ), ( )) ( , , )i j i jZ Z R =x x x x                                (4.19) 

where σ2 is the process variance and the correlation function R(θ, xi, xj) between each 

sea state, as seen in Eq.(4.20), is element of the correlation model R with parameters 

θ.  
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The correlation function often can employ the form of linear, spline, exponent, or 

Gauss, as seen in Eq.(4.21)-Eq.(4.24). Figure 4.2 presents the four correlation 

functions for the one dimensional normalized training data, d is the distance between 

two arbitrary points. It can be seen that the correlation decreases with d increasing 

and it decreases faster for a larger theta. For the linear behavior near the origin, the 

linear or exponent correlation function usually perform well, and for the nonlinear 

behavior, the Gaussian or spline function would perform better (Isaaks and 

Srivastava, 1990). The Gaussian correlation function is used in this work. 

 

Linear correlation function: 

( ) ( ) ( ) ( ) ( , ) max 0,1
k k k k

k i j k i jR x x x x − = − −                              (4.21) 

Spline correlation function: 
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 (4.22) 

Exponent correlation function: 

( ) ( ) ( ) ( )
( , ) exp( )

k k k k

k i j k i jR x x x x − = − −                                  (4.23) 

Gaussian correlation function: 

( ) ( ) ( ) ( )
2

( , ) exp( )
k k k k

k i j k i jR x x x x − = − −                             (4.24) 
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Figure 4.2 Linear, Spline, Exponent and Gaussian correlation function 

 

The regression model G(X), can be a linear combination of basic function F=( f(x1), 

f(x2),…, f(xm))T as follows. 

( )G =X Fβ                                                  (4.25) 

where f(xi) = ( f1(xi), f2(xi),…, ft(xi)) and coefficients β = (β1, β2,…, βt)
T are regression 

parameters. 

 

The regression model has the generalized least squares solution and corresponding 

variance estimate as in Eq.(4.26) and Eq.(4.27), respectively.  

1 1 1( )β F F F Y
T T− − −= R R                                        (4.26) 

2 11
( ) ( )Y Fβ Y Fβ

T

m
 −= − −R                                   (4.27) 

 

The Kriging metamodel is a linear unbiased predictor. The distribution parameters 

can be obtained through minimizing the mean squared error (MSE) of the predictor, 

as seen in Eq.(4.28), where r(x) is the correlation matrix at predicted sea state x, 

r(x)=[R(θ,x,x1), R(θ,x,x2),…, R(θ,x,xm) ]T.  
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T 1( ) ( ) ( ) ( )Y
−= + −y x f x r x R F                                  (4.28) 

 

It can be seen that the predicted line tension response or offset response depends on 

unknown parameter θ. The optimal parameter θ can be determined by maximum 

likelihood estimation or its equivalent minimization problem. 

Max 21
( ln ln )

2
m − + R                                       (4.29) 

Or  

Min ( )
1

2
( ) m  + R                                           (4.30) 

 

The optimization problem for parameter θ employs the pattern search method (Song 

et al., 2008). It is a direct search method that does not involve the gradient of the 

problem. The process of pattern search contains two moves, exploratory move and 

pattern move. The former finds out the probable directions and latter execute actual 

minimizing of the objective function. The detail flow chart for establishing the 

Kriging metamodel is shown in Figure 4.3. The Design of Experiment (DOE) 

method, usesa prescribed set of experiments or computer simulations, to obtain the 

training data as input for Kriging metamodel. DOE can decide how to select the 

inputs for the deterministic computer code in order to most efficiently control or 

reduce the statistical uncertainty of the computed prediction. Latin Hypercube 

Sampling (LHS) (Huntington and Lyrintzis, 1998), a kind of design of experiment is 

employed in this work. LHS can divide the parameter space into bins of equal 

probability, with the goal of attaining a more even distribution of sample points in the 

parameter space than typically occurs with pure Monte Carlo sampling. 
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Figure 4.3 Flowchart of Kriging metamodel 

 

4.5 Long Term Extreme Analysis with Kriging Metamodel 

If k 3-hour short term simulations for all sea states are carried out, the Gumbel 

parameters, α and β, for each sea state can be obtained by point estimates. Then the 

long term extreme probability distribution or exceedance probability can be easily 

estimated through all sea states according to the Eq.(4.13). However, this is 

computationally time consuming, as discussed. Here, the Kriging metamodel is used 

to construct the metamodel of short term distribution by mapping the relations 

between the sea states characteristics and Gumbel distribution parameters, α=α(hs,tp) 

and β=β(hs,tp). The flowchart of long term extreme analysis based on Kriging 

metamodel is shown in Figure 4.4. Firstly, the Latin hypercube sampling is 

Latin Hypercube Sampling 

 

 

Long term extreme analysis 

 
Regression Model Correlation Model 

Least Squares Solution and Variance Estimation 

Maximum likelihood Estimation 

Optimization for theta by Pattern Search Method 

Kriging Metamodel 

Design of Experiment 
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performed to select the sampled sea states from all sea states. Then the short term 

probabilistic distributions of mooring line tension and FPSO offset for the selected 

sea states are established. For each selected sea state, the short term probabilistic 

distributions of the maximum line tension and FPSO offset are estimated by 

performing 20 3-hour coupled time domain simulations with random seeds for each 

3-hour. Subsequently, the short term distribution of the 3-hour maximum line tension 

response and FPSO offset are fitted by Gumbel distribution. Then the Kriging 

metamodel is established through the training data of the Gumbel parameters. The 

accuracy of metamodel is checked to assure its predictive ability. Finally, the long 

term distribution or exceedance probability of FPSO mooring systems can be 

estimated based on all the sea states. 

 

 

Figure 4.4 Long term extreme analysis of FPSO mooring system based 

on Kriging metamodel 

 

 

Design of Experiment 

Selected Sea States 

Coupled Dynamic Analysis of FPSO/Mooring  
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Long term distribution of Responses 
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4.6 Numerical Case 

4.6.1 Case for Test Function  

Here a mathematical function is used to illustrate and test the feasibility of Kriging 

metamodel. The test function is as follows and Figure 4.5 shows its plot. 

sin( 3)sin(2 y 5)z x= + +  [0,2 ]x  , [0, ]y                        (4.31) 

 

 

Figure 4.5 Test function 

 

Latin hypercube sampling is performed to select the training data from the value 

range. Here 100 sampled points are selected by Latin hypercube sampling and shown 

in Figure 4.6 (black dot). Then the Kriging metamodel is established according to the 

process presented in Figure 4.3. The established Kriging metamodel is shown in 

Figure 4.6. 
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Figure 4.6 Kriging metamodel of test function 

 

To assess the accuracy of the prediction, the R2 analysis is used here, as given in Eq. 

(4.32) where 
i

y  is the actual response, ˆ
i

y  is the predicted response, 
iy  is the 

mean of the actual responses.  

2
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R

y y
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=
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−




                                          (4.32) 

 

The maximum R2 value of unity indicates that predicted values and actual values are 

identical. The greater the value of R2, the more accurate the metamodel is. Here the 

R2 analysis is performed with another 50 sampled points to check the accuracy of 

metamodel. These predicted and observed points, calculated from the Kriging 

metamodel and the original function respectively, are shown in Figure 4.7. The value 

of R2 is 1.00 that shows the metamodel can nearly perfectly fit with the actual values. 

This test case demonstrates the Kriging metamodel can show the good mapping 

relationship only requiring a certain amount of training data based on the design of 

experiment method. 
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Figure 4.7 Accuracy check of Kriging metamodel of test function 

 

4.6.2 Case for Long Term Extreme Analysis 

 

Figure 4.8 Configuration of FPSO mooring system 

 

The model of FPSO mooring system is shown in Figure 4.8. The mooring lines are 

multi components (chain-wire-chain) and the properties of mooring lines are given in 

Table 4.1. The lumped mass method is used for dynamic analysis of mooring lines 
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using Orcaflex. The FPSO is modeled as a rigid body and the water depth is 400m. 

The wave force is considered as the main environmental force here. The marginal 

distribution of Hs and conditional distribution of Tp for given Hs are established from 

the data of Northern North Sea in literature according to the Eq. (4.14) - Eq. (4.16) 

(Haver and Nyhus, 1986). The joint probability density function of the sea state 

characteristics, Hs and Tp is shown in Figure 4.9. The wave is assumed to be 

unidirectional along the x direction as seen in Figure 4.8. The Line 1 and Line 2 are 

the most loaded lines and they are taken into account. 

 

Table 4.1 Particulars of the mooring lines 

 

Component 1st 2nd 3rd 

 Type R4 Chain Spiral Strand wire R4 Chain 

Diameter (mm) 157 144 157 

Length (m) 100 300 1480 

Axial Stiffness (kN) 3.35E6 1.893E6 3.35E6 

Weight (kg/m) 491 106 491 

 

 

Figure 4.9 Joint probability density function of Hs and Tp 
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Figure 4.10 Selected sea states by Latin hypercube sampling 

 
Figure 4.11 Top tension response of Line 1 and Line 2 

 

Figure 4.12 FPSO offset response 
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The Design of Experiment method is used to obtain the training data for constructing 

Kriging metamodel in advance. Firstly, Latin hypercube sampling is executed to 

select the 100 sampled sea states from all sea states as show in Figure 4.10. Then 20 

3-hour coupled dynamic analysis of FPSO mooring system are simulated for each of 

the selected sea states. Figure 4.11 presents the dynamic response of Line 1 and Line 

2 and Figure 4.12 gives the response of FPSO offset.  

 

Figure 4.13 Short term distribution of Line 1 tension 

 

Figure 4.14 Short term distribution of Line 2 tension 
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Figure 4.15 Short term distribution of FPSO offset 

 

Based on the generated response time series, Gumbel distribution parameters are 

fitted to the maxima response samples for each sea state and the results are shown in 

Figure 4.13 - Figure 4.15. Then the Gumbel distribution parameters for the short 

term extremes are obtained for all sampled sea states, α1(hs,tp) and β1(hs,tp) for top 

tension response of Line 1, α2(hs,tp) and β2(hs,tp) for top tension response of Line 2 

and α3(hs,tp) and β3(hs,tp) for FPSO offset. These location and scale parameters are 

used as the training data to construct the Kriging metamodel according to the process 

described in Figure 4.3. The established Kriging metamodels for the distribution 

parameters of line tension and offset are shown in Figure 4.16-Figure 4.18, 

respectively. 
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(a) Location parameter 

 

(b) Scale parameter 

Figure 4.16 Kriging metamodel for distribution parameters of Line 1 Tension 
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(a) Location parameter 

 

(b) Scale parameter 

Figure 4.17 Kriging metamodel for distribution parameters of Line 2 Tension 
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(a) Location parameter 

 

(b) Scale parameter 

Figure 4.18 Kriging metamodel for distribution parameters of FPSO offset 
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A different sub-set of the sea states are further sampled to check the accuracy of the 

metamodel. For this sub-set of sea states, the Gumbel distribution parameters are 

estimated from the coupled dynamic response as well as from the Kriging metamodel. 

The R2 analysis is used to quantify the prediction accuracy and the results are shown 

in Figure 4.19. It can be seen that the Kriging metamodel can predict the response 

very well. 

 

Figure 4.19 Accuracy quantification of Kriging metamodels for the distribution 

parameters by R2 analysis 

 

The long-term probabilities of exceedance for the tensions of Line 1 and Line 2 are 

estimated through integral over all the sea states probability and their corresponding 

short term distribution based on the Kriging metamodel. Figure 4.20 and Figure 4.21 

give the exceedance probability distribution of Line 1 and Line 2 top tensions and the 

FPSO offset, respectively. Table 4.2 presents the top tension and FPSO offset under 

different exceedance probabilities. Mooring design analyses are usually performed 

by a simplified design wave approach which given the environmental conditions with 

a certain return period. Here the characteristic tension (most probable maximum 

response) in a 100-year sea state (Hs=14.5m, Tp=15.9s) are estimated. Figure 4.22 

gives the comparison of characteristic tension with probabilistic extreme tension 

from long term distribution. 
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Figure 4.20 Exceedance probability distribution of Line 1 and Line 2’s top tension 

 

Figure 4.21 Exceedance probability distribution of offset 

 

Table 4.2 Responses under different exceedance probabilities 

 

Exceedance Probability  10-2 10-3 10-4 10-5 10-6 

Tension of Line 1 (kN) 2446 2571 2757 2986 3295 

Tension of Line 2 (kN) 2480 2621 2792 3039 3361 

FPSO Offset (m) 10.0 15.4 21.4 28.5 38.2 
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Figure 4.22 Characteristic tension in 100-year sea state and long term extreme 

tension (return period 100 years) 

 

4.7 Conclusion 

Calculating the long term distribution of 3-hour maximum response, X3h, usually 

involves response calculations for all sea states and the corresponding short term 

probabilistic distribution for each sea state. The process for long term extreme 

analysis is extremely time-consuming for complex nonlinear response problems such 

as coupled analysis of FPSO/ mooring lines. A computational efficient methodology 

for the long term analysis of FPSO mooring systems by the use of Kriging 

metamodel has been proposed in the present work. The results indicate that long term 

extreme analysis with Kriging metamodel avoids the short term extreme analysis 

over all sea states and this method can improve the efficiency of the long term 

extreme analysis due to it only involves the sea states selected by applying the design 

of experiment method. The Kriging metamodel is good alternative approach for the 

long term analysis which involve in large number of cases but the sampling is crucial 

to the accuracy of Kriging metamodel. 
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5 Long Term Extreme Analysis by Monte Carlo Simulation 

5.1 Introduction 

The traditional and accurate method to estimate the long term extreme needs to solve 

the integral given by Eq. (4.13) which accounts for the contribution of all short term 

conditions to the long term response. It is a very time-consuming process, mainly 

when nonlinear time domain simulations are employed to obtain the response. How 

to solve this integral efficiently seems to be the most challenging problem associated 

with long term response analysis.  

 

Monte Carlo simulation is a good and simple method for generation of samples from 

a probability distribution to estimate their probability distribution (Rubinstein and 

Kroese, 2007). Here, long term extreme response is estimated by Monte Carlo 

simulation that avoids the integration. An approach for long term extreme analysis of 

a moored FPSO using Monte Carlo simulation based on a Kriging metamodel is 

proposed. Exceedance probability of line tension and FPSO offset are estimated from 

the samples obtained by Monte Carlo simulation using inverse transform sampling. 

The Kriging metamodel which represent the mapping between the sea states 

characteristics and short distribution parameters, is established with the training data 

from a series of short term distributions. The effects of sample size for Monte Carlo 

simulation are discussed. The exceedance probabilities of line tension and FPSO 

offset are compared with the results obtained from full long term analysis that 

integral over all sea states. 

 



 117 

5.2 Monte Carlo Simulation Method 

Inverse transform sampling (also known as inverse probability integral transform) is 

a method for generating sample numbers at random from probability distribution 

given its cumulative distribution function (cdf) (Angus, 1994; Devroye, 1986). In 

this sampling method, it generates a random variable u from the standard uniform 

distribution between 0 and 1 and then the random variable x=F-1(u) is transformed 

from the distribution F, as seen in Figure 5.1. The details of long term extreme 

analysis by Monte Carlo simulation are illustrated as follows. 

 

Figure 5.1 Inverse sampling method 

 

Firstly, a random numbers u1 is generated from a variable being uniformly distributed 

between 0 and 1. The significant wave height Hs, which its probability is u1, can be 

obtained from the transformation in Eq. (5.1). 

1

1( )
Hs

sh F u−=                                                   (5.1) 

Then, a random number u2 is generated from uniform distribution between 0 and 1. 

The spectral peak period Tp given significant wave height Hs=hs can be transformed 

as follows. 
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|

1

2( )
T Hp s

p st F u h−=                                                (5.2) 

 

Given that the short term extreme distribution parameters for different sea states are 

obtained, the short term response of any required sea state can be calculated with the 

transformation method. A random number u3, being uniformly distributed between 0 

and 1, is generated. The short term extreme response in a sea state given by hs and tp 

can be calculated by: 

 3( , ) ( , ) ln ln( )s p s px h t h t u = − −                                  (5.3) 

 

A series of short term extreme responses are obtained from Monte Carlo simulation 

by repeating the aforementioned steps N times. Finally, we can estimate exceedance 

probabilities of long term response from these simulated samples as seen in Eq.(5.4), 

where m is the number of response larger than x0.  

0P(X x )
m

N
 =                                                 (5.4) 

 

Using Monte Carlo simulation, we can obtain a large number of observations of 

extreme response. The long term extreme distribution can be estimated directly from 

these observations. This method requires that the short-term response variability 

should be available for all relevant sea states, which is quite time consuming for 

coupled dynamic analysis of moored FPSO. Kriging is applied to establish a proper 

model for the conditional distribution of X3h for all sea states in order to solve the 

challenge for the present problem. The flowchart of the proposed method is 

presented in Figure 5.2. 
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Figure 5.2 Probabilistic analysis of moored FPSO using Monte Carlo simulation with 

Kriging metamodel 
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5.3 Numerical Case 

The model and data used in this case are taken from the chapter 4. The marginal 

distribution of Hs and conditional distribution of Tp for given Hs are established from 

the data of Northern North Sea as given in previous chapter. The marginal 

distribution of Hs and conditional distribution of Tp for given Hs are shown in Figure 

5.3 and Figure 5.4. 

 

Figure 5.3 Marginal distribution of Hs 

 

Figure 5.4 Conditional distribution of Tp for given Hs 
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The Kriging metamodels for the Gumbel distribution parameters, location and scale 

parameters including α1(hs, tp) and β1(hs, tp) for top tension response of Line 1, α2(hs, 

tp) and β2(hs, tp) for top tension response of Line 2 and α3(hs, tp) and β3(hs, tp) for 

FPSO offset, have been established in Section 4.5.  

 

The long-term probabilities of exceedance for the line tension and FPSO offset are 

evaluated by Monte Carlo simulation with Kriging metamodels. Random sea state 

characteristics are generated by inverse transform sampling. The short term extreme 

response for random sea state characteristics are estimated based on Kriging 

metamodel. The long term probability distribution or exceedance probability is 

assessed from sampled response. Monte Carlo simulations with different sample 

sizes (N=105, 106,107 and 108) are performed to study the effects of amount of 

sample data on the tail distribution.  

 

 

Figure 5.5 Exceedance probability distribution of Line 1 tension by Monte Carlo 

simulation with different sample sizes 
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Figure 5.5 and Figure 5.6 give the exceedance probability distributions of Line 1 and 

Line 2 top tensions for different numbers of sample points. The exceedance 

probability distributions of FPSO offset for different samples are shown in Figure 5.7. 

It can be seen that the accuracy of tail distribution by use of 105 and 106 sample sizes 

can reach the exceedance probability of 10-4 and 10-5, respectively. If the response 

with probability level of 10-6 needs to be evaluated, at least 107 sample size is used 

for the simulation. Using Mont Carlo simulation with the Kriging metamodel results 

in a very fast calculation. 

 

Figure 5.6 Exceedance probability distribution of Line 2 tension by Monte Carlo 

simulation with different sample sizes 
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Figure 5.7 Exceedance probability distribution of FPSO offset by Monte Carlo 

simulation with different sample sizes 

 

Table 5.1 Long term extreme responses estimated by Monte Carlo simulation (MCS) 

and all sea states 

 

Exceedance Probability 10-2 10-3 10-4 10-5 10-6 

Line 1 

Tension 

MCS 2466 2615 2801 3066 3485 

All Sea States 2446 2571 2757 2986 3295 

Error (%) 0.82 1.71 1.60 2.68 5.77 

Line 2 

Tension 

 MCS 2491 2642 2833 3125 3573 

All Sea States 2480 2621 2792 3039 3361 

Error (%) 0.44 0.80 1.47 2.83 6.31 

FPSO Offset 

 MCS 10.0 15.2 21.0 27.5 34.7 

All Sea States 10.0 15.4 21.4 28.5 38.2 

Error (%) 0 1.30 1.87 3.51 9.16 
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The long term extreme responses evaluated by Monte Carlo simulation with 108 

sample size are compared with extreme responses estimated by use of long term 

analysis that integral over all the sea states and their corresponding short term 

distribution, namely all sea states method. The exceedance probability of Line 1, 

Line 2 tension and FPSO offset estimated by the two methods are presented in Table 

5.1. The comparison of the calculation results show that Monte Carlo simulation 

method can predict the extreme responses very well. 

 

5.4 Conclusions 

Traditional long term extreme analysis, which should compute through all sea states, 

is a challenge for the design and analysis of mooring. A methodology for 

probabilistic analysis of FPSO mooring systems using Monte Carlo simulation with a 

Kriging metamodel has been proposed in this chapter for long term analysis. The 

effect of sample size for Monte Carlo simulation on the tail distribution was 

discussed. The exceedance probability distributions estimated by Monte Carlo 

simulation and all sea states, respectively, were compared. The results demonstrate 

that long term extreme analysis with a Kriging metamodel avoids the short term 

extreme analysis over all sea states and this method can improve the efficiency of the 

long term extreme analysis due to it only involving the sea states selected by 

applying the design of experiment method.  
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6 Long Term Extreme Analysis by Contour Line Method 

6.1 Introduction 

One of the design criteria for mooring systems is the ultimate limit state, which 

ensures that the individual mooring lines have adequate strength to withstand the 

load effects imposed by extreme environmental actions (API RP 2SK, 2005; 

DNV-OS-E301, 2010). The general method for the extreme analysis of the mooring 

line is a fully long term response analysis accounting for the contribution of every 

short term condition, i.e., an all sea states method. There are two inherent 

randomness during the long term extreme analysis. One is the long term variability 

for the slowly varying environmental characteristics and the other is the short term 

variability for the short term response given sea states. 

 

The long term extreme analysis by all sea states method requires that the short term 

response variability should be available for all relevant sea states and it is quite time 

consuming for complex responses, especially when time domain simulations for 

coupled mooring lines have to be performed to get correct response characteristics. A 

more practical and computationally cheaper method to estimate the long term 

extreme response without having to carry out the full long term analysis can employ 

the contour line method (Haver et al., 1998; Winterstein et al., 1993). The 

environmental contour line (or surface), which has a combinations of environmental 

parameters with identical return period, is determined on the basis of the inverse first 

order reliability method (IFORM). This method assumes that we could account for 

short term variability separately, i.e. decoupling the environmental problem and the 

response problem. The contour line method can be used to predict the extreme 

response based on limited short term analyses along a well-defined environmental 
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contour line with a given return period.  Baarholm and Moan (2001) used the 

contour line method to estimate the extreme ship hull loads considering operational 

restrictions. They found out the contour line method is useful to estimate extreme 

values for ships with and without forward speed. 

 

The long term extreme analysis of coupled mooring lines is estimated by the contour 

line method in this paper. The extreme response corresponding to different return 

periods are calculated. A high fractile value is selected to account for the short-term 

variability. The results are validated by comparing with the results from the all sea 

states method. The coefficient of variation (COV) of extreme response is also 

calculated by the bootstrap method.

 

6.2 Reliability Method for Extreme Response Estimation 

In connection with extreme value predictions, we will primarily be interested in an 

accurate prediction of the very upper tail of the long term distribution of the 3-hour 

maximum. The exceedance probability corresponding to a given high threshold, xc, 

can be estimated by a method from structural reliability analysis. The limit state 

function is defined as follows. 

3
( , )s pc h
h tg x X= −                                              (6.1) 

where g=0 is the limit state surface, which separates the failure domain (g<0) from 

the safe domain (g>0). The failure probability is determined by the following 

integral: 

3 |

0

( | , ) ( , )( )
h s pX H T s p HsTp s p s pf c

g

x h t df f h t xdh dtP x


=                      (6.2) 

The failure probability can be predicted by first order reliability method (FORM) and 

the above integral should be transformed over to the space of standard Gaussian 
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variables by Rosenblatt transformation (Madsen et al., 1986), as seen in 

Eqs.(6.3)-(6.5), where Φ is the standard Gaussian distribution function. The 

transformation is one-to-one correspondence between the point in standard Gaussian 

space, i.e. U-space, and the point in physical parameter space as the corresponding 

functions are monotonic. 

1( ) ( )
sH sF h u=                                                (6.3) 

s 2
( | ) ( )

p
p sHT

F t h u=                                            (6.4) 

3 s
3 s 3

( ), ( )
h p

hH T pX
F ux h t =                                        (6.5) 

 

The limit state surface in the U-space can be determined by the transformation. In the 

first order reliability method (FORM), the limit state surface in the U-space is 

approximated by a tangent plane at the design point, 1 2 3
ˆ ˆ ˆ( , , )u u u , which is the point 

on the limit state surface closest to the origin in the U-space as shown in Figure 6.1. 

The distance between design point and origin is calculated as seen in Eq. (6.6). It is 

the reliability index in structural reliability analysis, which uniquely related to the 

exceedance probability fP , as seen in Eq. (6.7). The points of constant probability 

density are located on a sphere (or a circle for two variables) in the U-space.  

3
2

1

ˆ
i

i

u
=

=                                                   (6.6) 

( )( )f c
P x = −                                               (6.7) 

The upper tail of the extreme value distribution can be estimated by repeating the 

reliability analysis for different values of xc.  
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Figure 6.1 The limit state surface in the U-space 

6.3 Inverse FORM Contour Line Method 

We can estimate the response value corresponding to a given annual exceedance 

probability by inverting the above procedure, i.e. the inverse first order reliability 

method (IFORM) (Haver et al., 1998; Winterstein et al., 1993). 

 

The relative importance of the randomness of a variable is reflected by its value at 

the design point. The more important the randomness of one variable, Ui, the value 

of Ui is larger. The variable Ui can be replaced by its mean value which is equal to 

the median for u-space variables if the randomness around the mean does not affect 

the failure probability. For the long term extreme problem, we assume that the short 

term probability density function of X3h given Hs and Tp is extremely narrow 

(approaching a Dirac delta function). It means that the variability of the 3-hour 

maximum response is not important regarding the failure probability. The 

randomness of U3 can be neglected and replace it by u3 = 0. Then the design point will 

locate on a circle with radius β in the U1-U2 plane as shown in Figure 6.2 and the 

radius β can be calculated by given the probability as follows. 
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1( )fP −= −                                                  (6.8) 

 

Figure 6.2 The limit state in the U1-U2 plane 

 

Then all points on this circle in the U-space can be transformed back to the physical 

parameter space by Rosenblatt transformation and contour lines which contain all 

combinations of hs and tp along the T-year return period (or annual exceedance 

probability q) are obtained as seen in Figure 6.3. We use the median values for short 

term extreme response Xd for all combinations along the constant probability contour 

as neglecting the randomness of U3. The median value is used as the characteristic 

short term response because the transformation conserves cumulative probability. The 

response corresponding to T-year return period is estimated by the maximum value of 

these median values. The extreme response given return period or probability of 

exceedance can be found along the contour line. 
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Figure 6.3 Transformation of contour line from U-space 

 

However, this method will tend to underestimate extreme response levels because it 

neglects the response variability due to different short term sea state realizations. Short 

term variability can be accounted for by selecting a high fractile value of short term 

extreme value distribution as shown in Figure 6.4. To obtain the action effect 

corresponding to an annual exceedance probability of 10-2, the fractile should be 85 % 

to 95 % (NORSOK N-003, 2007). 

 

Figure 6.4 Selecting a fractile value of short term extreme value distribution 

 

The contour line method is used to predict consistent estimates of extremes 

corresponding to given annual probability of being exceeded or return period. For full 
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long term analysis with all sea states, the short term probabilistic response needs to be 

established for a large number of short term sea states. This is difficult for complicated 

response problems requiring expensive time domain simulations in order to establish 

proper distributions of short term extremes. The contour line approach could eliminate 

the short term distribution and account for this source of randomness separately, i.e. 

decoupling the environmental problem and the response problem. We can estimate 

long term extremes without carrying out a full long term analysis for complicated 

response problems.  

 

6.4 Numerical Case 

The model of the FPSO mooring system is shown in Figure 4.8. The mooring lines are 

multi components (chain-wire-chain) and the properties of mooring lines are given in 

Table 4.1. The lumped mass method is used for dynamic analysis of mooring lines. 

The FPSO is modeled as a rigid body and the water depth is 400m. The wave force is 

considered as the main environmental force here. The wave is assumed to be 

unidirectional along the x direction. The most loaded lines, Line 1 and Line 2, are 

considered in the work. 

 

Figure 6.5 Contour lines of 50, 100 and 1000-year return period 
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Table 6.1 Selected sea states from contour lines 

 

Sea states 

No. 

50 year 100 year 1000 year 

Tp (s) Hs (m) Tp (s) Hs (m) Tp (s) Hs (m) 

1 9.1 8.8 8.2 8.1 8.4 8.8 

2 10.1 9.8 9.2 9.1 9.5 10.0 

3 11.0 10.7 10.2 10.1 10.6 11.2 

4 11.9 11.6 11.2 11.1 11.5 12.3 

5 12.7 12.3 12.0 12.0 12.4 13.3 

6 13.4 12.9 12.8 12.7 13.2 14.2 

7 14.0 13.4 13.5 13.4 14.0 14.9 

8 14.7 13.7 14.2 13.9 14.7 15.5 

9 15.3 13.9 14.8 14.2 15.4 15.9 

10 15.7 14.0 15.5 14.5 16.1 16.1 

11 16.2 13.9 15.9 14.5 16.6 16.2 

12 16.7 13.7 16.4 14.4 17.2 16.1 

13 17.1 13.3 16.9 14.2 17.7 15.8 

14 17.5 12.8 17.3 13.8 18.1 15.4 

15 17.8 12.2 17.7 13.3 18.5 14.8 

16 18.1 11.4 18.1 12.6 18.9 14.0 

17 18.5 10.6 18.4 11.8 19.2 13.1 

18 19.0 9.7 18.8 10.9 19.5 12.1 

19 19.6 8.7 19.2 10.0 19.9 11.0 

20 -- -- 19.8 8.9 20.5 9.8 

21 -- -- -- -- 21.4 8.6 

 

The contour lines of 50, 100 and 1000-year return period (or 1/50, 10-2 and 10-3 

annual exceedance probability) are transformed from the points on the circles with 
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radius β=4.35, 4.50 and 4.97 respectively in the U-space. The contour lines are 

shown in Figure 6.5. The sea states along the contour lines are selected as shown in 

Figure 6.5 (marked by circle dot) and the details are presented in Table 6.1.  

 

Then 20 3-hour time domain simulations for these selected sea states are performed 

and the short term extreme distributions are fitted by Gumbel distribution. The 

characteristic values of the short term line tension distribution are calculated for 

different return period, as seen in Figure 6.6-Figure 6.8. The critical sea state 

corresponding to the maxima response is found from these selected sea states. Figure 

6.6 - Figure 6.8 give the maxima line characteristic tensions for different return 

periods and the worst sea states are also marked in the Table 6.1, Hs=14.7 m and 

Tp=13.7 s for contour line of 50-year return period; Hs=16.9 m and Tp=14.2 s for 

contour line of 100-year return period; and Hs=18.1 m and Tp=15.4 s for contour 

line of 1000-year return period. 

 

 

Figure 6.6 The line tension response for selected sea states from contour line of 

50-year return period (circle denotes the maxima line characteristic tension) 
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Figure 6.7 The line tension response for selected sea states from contour line of 

100-year return period (circle denotes the maxima line characteristic tension) 

 

Figure 6.8 The line tension response for selected sea states from contour line of 

1000-year return period (circle denotes the maxima line characteristic tension) 

 

The critical sea states along the contour lines have been identified. Then the short 

term distributions of X3h , for these critical sea states are established according to 

largest responses of 600 3-hour time domain coupled dynamic analysis. The long 

term extreme responses corresponding to 50, 100 and 1000-year return period can be 

estimated by the short term distribution of maxima line tension under the critical sea 
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states. However, these estimated extreme responses neglect the randomness of short 

term extreme response. The omitted variability can be accounted for by selecting a 

higher fractile response instead of the median response as the short term 

characteristic. The estimated long term extreme responses by selecting different 

fractiles are shown in Figure 6.9 - Figure 6.11.  

 

Figure 6.9 Long term extreme response of 50-year return period with different 

fractiles (dash line is the long term extreme response of 50-year return period by all 

sea states method) 

 

Figure 6.10 Long term extreme response of 100-year return period with different 

fractiles (dash line is the long term extreme response of 100-year return period by all 
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sea states method) 

 

Figure 6.11 Long term extreme response of 1000-year return period with different 

fractiles (dash line is the extreme response of 1000-year return period by all sea 

states method) 

 

Table 6.2 Long term extreme responses by all sea states method and contour line 

method 

 

Return Period 

(years) 

All sea states Contour line Method 

Line 1 

 (kN) 

Line 2 

(kN)  

Line 1 

(kN) 

Line 2 

(kN) 
Fractile 

50  3033 3084 3032 3085 78% 

100  3121 3178 3124 3177 83% 

1000  3473 3534 3455 3536 92% 

 

The selected fractiles for the contour line method are verified by a full long term 

analysis using all sea states method from previous work. The results of the 

comparison between the two methods are listed in Table 6.2. The selected fractiles 

are 78%, 83% and 92% for 50, 100, and 1000-year return period, respectively. The 

fractile can be selected as about 80% for the 50-year return period and 90% for the 

1000-year return period. Line 1 and Line 2 tension are 3056 kN and 3109 kN for 
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80% fractile for the 50-year return period respectively. The errors are 0.75% and 

0.81% respectively by comparing them with the results from all sea states method. 

For 90% fractile for the 1000-year return period, the line 1 and line 2 tensions are 

3399 kN and 3477 kN and the errors are 2.1% and 1.6% respectively. 

 

The uncertainty in the extreme estimates can be assessed by the bootstrap approach 

(Efron and Tibshirani, 1993). The variance and confidence interval are evaluated 

based on the resampling from a distribution determined by the available sample of 

data. Figure 6.12 - Figure 6.14 present coefficient of variance (COV) for the 78%, 

83%, 92% fractile of the extreme response distribution corresponding to different 

numbers of 3-hour time domain simulation at the critical sea state for different return 

periods, respectively. The COVs decrease with the increase of number of simulation. 

When the number increases above 100, the rate of reduction of the COV becomes 

small and the COV itself is very small (close to or less than 1%). The 95% 

confidence intervals of extreme response of line 1 and 2, by selecting relevant 

fractiles, are shown in Figure 6.15 and Figure 6.16, respectively. It can be seen that 

the uncertainty in the extreme response analysis by contour line method is rather 

small. 

 

Figure 6.12 COV of extreme response for 50-year return period 
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Figure 6.13 COV of extreme response for 100-year return period 

 

 

Figure 6.14 COV of extreme response for 1000-year return period 
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Figure 6.15 95% confidence intervals of extreme response of line 1 for different 

return periods 

 

Figure 6.16 95% confidence intervals of extreme response of line 2 for different 

return periods 

 

6.5 Conclusions 

The contour line method which considers the environmental loads independently of 

the structural response is very useful for predicting the extreme response 
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corresponding to a given return period or annual exceedance probability for 

complicated coupled mooring line response problem. The environmental contour line 

can be established by inverse first order reliability method (IFORM). Time- 

consuming coupled dynamic analysis are only needed for a limited set of selected sea 

states along the contour line and critical sea state can be identified from them. The 

estimated long term extreme response corresponding to n-year return period is 

nonconservative as it neglects the randomness of short term extreme response. The 

randomness is accounted for by selecting a high fractile value of short term extreme 

distribution. The results were compared with the fully long term extreme analysis 

with all sea states. The fractile values about 78%, 83% and 92%, for 50, 100, 

1000-year return period respectively, were adopted in this paper. The uncertainty 

qualification analysis was performed by the bootstrap method to evaluate the 

coefficient of variance and confidence interval of extreme response. The results of a 

numerical case demonstrated the feasibility of the contour line method for the 

extreme response of a mooring line. 
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7 Improved Method for Long Term Extreme Analysis 

7.1 Introduction 

Extreme value analysis is generally based on asymptotic results. It often employs the 

generalized asymptotic extreme value distribution with unknown parameters to be 

estimated with the observed data. Or it is assumed that the exceedances above high 

thresholds follow a generalized asymptotic Pareto distribution with parameters that 

can be estimated from the data. However, the asymptotic extreme value theory itself 

cannot be used in practice to decide to what extent it is applicable for the observed 

data. It is significant to develop an approach for the extreme value prediction 

problem that is less restrictive and more flexible than the ones based on asymptotic 

theory. 

 

Naess and Gaidai (2009) developed the average conditional exceedance rates (ACER) 

method for the extreme value prediction problem that is less restrictive and more 

flexible than the ones based on asymptotic theory. It has the capability to accurately 

capture the effect of statistical dependence in the data and it could also incorporate, 

to a certain extent, the sub-asymptotic part of the data into the extreme value 

prediction, which is of some importance for accurate prediction.  

 

In this chapter, an improved method for long term analysis is proposed, which based 

on the ACER method and contour line method. The hybrid response method 

developed in Chapter 3 is employed for the dynamic analysis and critical sea states 

are identified by contour line method. The long term extreme responses are obtained 

by ACER method.  
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7.2 Average Conditional Exceedance Rate (ACER) Method 

Considering a stochastic process of ( )X t  during a time interval, i.e. 3-hours, 

1,..., NX X  is a sample of peaks of ( )X t (Naess et al., 2007; Naess and Gaidai, 2008). 

Then the extreme value distribution follows that 

 
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        (7.1) 

If assume that all the jX  are statistically independent, which leads to the classical 

approximation as follows. 

 
2

( )
e

N

X j

j

F x P X x
=

                                           (7.2) 

 

In general, the variables jX  are not statistically independent, the following one-step 

memory approximation will to a certain extent account for the dependence between 

the jX ’s, 

   1 1 1, , ,j j j jP X x X x X x P X x X x− −        2 j N          (7.3) 

 

If considering the two-step memory approximation,   

   1 1 2 1, , , ,j j j j jP X x X x X x P X x X x X x− − −       3 j N   (7.4) 

 

If considering the (k-1)-step memory approximation,   

   1 1 ( 1) 1, , , ,j j j j k jP X x X x X x P X x X x X x− − − −       , k j N   

(7.5) 

 

This approximation can capture the effect of statistical dependence between 
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neighboring data in the time series with increasing accuracy. For the distribution with 

the independence assumption, it can be rewritten as 

1 1

1 1

( ) ( ) (1 ( ))
e

N N

X j j

j j
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= =

 = −                                 (7.6) 

where  ( 1)( ) , ,kj j k jp x P X x X x− −=    for j k  

 1 1( ) 1 ( )j j jx P X x p x =  = −  

Then  
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e
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The extreme value distribution with the one-step approximation, the following 

relation is obtained. 
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where ( )kj x  denotes the exceedance probability conditional on ( 1)k −  previous 

non-exceedances 

 ( 1) 1

1, 1
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( )
1
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Considering that 11 11( ) exp( ( ))p x x − , the extreme value distribution can be 

obtained in the form that 
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2
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Similarly, conditioning on the two previous observations 2jX − , 1jX −  preceding 

jX or with the two-step memory approximation, The extreme value distribution can 

be expressed as 

3 3 22 11
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The distribution can be extended to general form when consider the ( 1)k − -step 

memory approximation. 
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The extreme value prediction by the conditioning approach reduces to estimation of 

the ( )kj x  functions. For most practical applications N >> k, 
1
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  is small 

compared to ( )
k
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  and it can be neglected. Then the extreme value distribution 

can be obtained as follow. 
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7.2.1 Empirical Estimation of the ACER Function  

The distribution that considers the ( 1)k − -step memory approximation can be 

rewritten in the form as follows. 
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where ( )k x  can be expressed as follows. 
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( )k x  is the average conditional exceedance rate (ACER) function. Extreme value 

prediction by the cascade of conditioning approach described above then reduces to 

estimation of average conditional exceedance rate (ACER) function, ( )k x .  

 

The numerical estimation of ( )k x , k=2,3,…, is based on the following random 

functions, 

 1 1( ) , , ,kj j j j kA x X x X x X x− − +=   1                          (7.16) 

 1 1( ) , ,kj j j kB x X x X x− − +=  1                                (7.17) 

For 2, ,...,k j k N = , where  Q1 denotes the indicator function of some random 

event Q  and  E[ ] ( )Q P Q=1 . Then the function ( )kj x  can be expressed as 
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where [ ]  denotes the expectation operator. Under the assumption that the process 

(t)X  is ergodic, obviously that ( ) ( ) ... ( )k kk kNx x x  = = = . Then by replacing 

ensemble means with corresponding time averages, it has the form as follows. 
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where ( )kja x  and ( )kjb x  are the realizations of the random functions ( )kjA x  and 
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( )kjB x , respectively, for the observed time series. ( )
N
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Then the estimate ˆ ( )k x  of the ACER function ( )k x  can be expressed as:  
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Considering that lim [ ( )] 1kj
x

B x
→

= , we can obtain the following modified ACER 

function. 
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for which the following holds: lim ( ) / ( ) 1k k
x

x x 
→

= . It turns out that the modified 

ACER function ( )k x  for k 2  is easier to use for non-stationary or long-term 

statistics than ( )k x .  
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Figure 7.1 Illustration of the exceedance estimation 

 

The process for the exceedances counting is explained by an example shown in 

Figure 7.1. Considering that the level 2000 kNx = , the points (green circle) under 

the level indicates the corresponding non-exceedances, which are used to taken into 

account for ( )kjb x . The points (red star) above the level are unconditional 

exceedances considered for 1 ( )ja x . The points are considered for ( )kja x , 2-5k =  

summarized in the table, which “1” shows the point should be considered and “0” 

means the point will not be considered, seen in the Table 7.1. We can have a look at 

what events are actually counted for the estimation of the various ( )k x , k 2 . For 

2k = , 2 ( )( 1)x N −  is the expected number of exceedances above the level x  

provided by conditioning on one immediately preceding non-exceedance. And 

2 ( )( 1)x N −  also equals the average number of clumps of exceedances above x  

for the realizations considered, where a clump of exceedances is defined as a 

maximum number of consecutive exceedances above x . In general, 

( )( 1)k x N k − +  then equals the average number of clumps of exceedances above 

x  separated by at least ( 1)k −  non-exceedances. 
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Table 7.1 Statistical result for the exceedance 

 

No. of point 1 ( )ja x  2 ( )ja x  3 ( )ja x  4 ( )ja x  5 ( )ja x  

1 1 0 0 0 0 

2 1 0 0 0 0 

3 1 1 0 0 0 

4 1 0 0 0 0 

5 1 0 0 0 0 

6 1 0 0 0 0 

7 1 1 1 1 0 

8 1 0 0 0 0 

9 1 0 0 0 0 

10 1 0 0 0 0 

11 1 1 1 0 0 

12 1 0 0 0 0 

13 1 0 0 0 0 

14 1 0 0 0 0 

15 1 0 0 0 0 

16 1 0 0 0 0 

17 1 1 1 1 1 

18 1 1 1 0 0 

 

Estimation of confidence interval 

To measure the reliability of an estimate of the ( )k x , we should estimate the 

confidence interval (CI) for ( )k x , assuming a stationary time series. In case several 
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realizations of the time series ( )X t  are provided, the sample estimate of ( )k x  

would be: 
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where M is the number of realizations, m is the index of sample no. m and the ( )ˆ m

k  

can be estimated by using either the result from Eq. (7.23) for the stationary process. 
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Or in case the considered stochastic process is non-stationary using the Eq. (7.24),  

( )

( )

( )

ˆ ( )
1

mN
m

kj

j km

k

m

a x

x
N k


=

=
− +


                                           (7.24) 

The sample standard deviation ˆ ( )ks x  can be estimated by the standard formula, 
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Then the confidence interval CI can be evaluated by the form as follows. 

ˆ ( )
ˆCI ( ) ( ) k

k

s x
x x

M
  =                                          (7.26) 

where   is the corresponding quantile of the Student’s t-distribution. 

 

For the non-stationary case, it is consistent with the adopted approach to assume that 

the stream of conditional exceedances over a threshold x  constitute a Poisson 

process. The Var[ ( )] [ ( )]
N N

kj kj

j k j k

A x A x
= =

=  .  

Then, the limits of the confidence interval of ( )k x  for high levels x  can be 

estimated as: 
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where   is the corresponding quantile of the normal distribution. 

 

7.2.2 Prediction of the ACER Function 

Based on the sampled time series only, possible sub-asymptotic functional forms of 

( )k x  cannot easily be obtained. Naess and Gaidai (2009) proposed that the 

asymptotic extreme value distribution is of Gumbel type can be used as a guide. 

Using the asymptotic form as a guide, it is assumed that the behavior of the mean 

exceedance rate in the tail is dominated by a function of the form  exp ( )ca x b− − , 

*x x b  , where a , b , c  are suitable constants and *x  is the chosen tail maker 

that corresponds to the beginning of regular tail behavior of the ACER function. This 

method has been applied for mean up-crossing rate estimation for extreme value 

analysis of the response processes related to different dynamic systems (Naess et al., 

2007; Naess and Gaidai, 2008). Then the ACER functions can be expressed in the 

tail as follows 

 ( ) ( ) exp ( ) kc

k k k kx q x a x b = − − , *x x                           (7.28) 

where ( )kq x  is slowly varying compared with the exponential function, and ka , 

kb , kc  are suitable constants. When 1k kc q= = , it corresponds to the asymptotic 

Gumbel form.  

 

The equation can be rewritten to the form as follows, 

( )
ln ln( ) ( ) ln( ) ln( )

( )

k
k k k

k

x
c x x b a

q x


− = − − −                           (7.29) 
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It can be seen that a plot of ln ln( ( ) / ( ))k kx q x  versus ln( )kx b−  reveals the linear 

behavior in the tail. Considering that the variation of ( )kq x  in the tail region is 

sufficiently slow and it can be replaced by a constant 
kq , possibly by adjusting the 

tail marker *x . The tail marker *x  can be identified from the log plot ( x , ln ( )k x ) 

where the value of x  corresponds to the start of the regular tail behavior. If the 

initial values estimates for parameters 
kb  and 

kq  are calculated by linearizing the 

tail on the transformed scale. Then the initial value of the parameters 
ka  and 

kc  

can be determined from the fitted straight line to the data tail.  

 

This representation of the ACER function can capture to a certain extent 

sub-asymptotic behavior of any extreme value distribution that is asymptotically 

Gumbel and this parametric function agree with a wide range of known special cases 

(Naess et al., 2013). We also should cut from consideration the very tail of the data, 

where uncertainty is too high according to the following criterion; Naess suggest a 

practical procedure to neglect data points, where the relative confidence band width 

is greater than some constant  , whose value is dependent on the accuracy of the 

data tail and it could typically in the interval (0.5,1]. It is expressed in the form as 

follows. 

ˆ1.96 ( ) /

( )

k

k

s x M

x



                                            (7.30) 

 

Instead of obtaining the parameters directly from the loglog-plot, the 

Levenberg-Marquardt least squares optimization method can be employed to 

optimize the fit on the log level with respect to all four parameters ka , kb , kc , 

kq and the optimal estimation of the four parameters are obtained by minimizing the 

mean square error function.  
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2

1

( , , , ) ln ( ) ln ( ) k

L
c

k k k k j k j k k j k

j

F a b c q w x q a x b
=

= − + −               (7.31) 

where jx , 1,...,j L=  are the levels where the ACER functions have been 

empirically estimated. jw  denotes a weight factor and 

[ln ( ) ln ( )]j j jw C x C x + − −= − ,  =1 or 2, combined with the Levenberg-Marquardt 

least squares optimization method (Gill et al., 1981). The summation has to stop at 

the high level jx  at which ( )jC x−
 becomes negative.  

 

Naess and Gaidai (2009) developed a more direct and transparent method for the 

optimization problem using Levenberg-Marquardt method. It is assumed that kb  

and kc  are fixed, then the optimal values of a and log q can be estimated by the 

closed form weighted linear regression formulas, which is shown as follows. 

1*

2

1

( )( )

( , )

( )
k

L

j j j

j

k k L

j j

j

w m m y y

a b c

w m m

=

=

− −

= −

−




                              (7.32) 

* *( , ) exp( ( , ) )
k kk k k kq b c y a b c m= +                                  (7.33) 

where ( ) kc

j j km x b= − , ln ( )j k jy x= , 
1

1

L

j j

j

L

j

j

w x

m

w

=

=

=




 and 

1

1

L

j j

j

L

j

j

w y

y

w

=

=

=




. 

 

Then the function * *( ( , ), , , ( , ))k k k k k k k kF a b c b c q b c  involves two parameters and it can 

employ the Levenberg-Marquardt to evaluate the optimal value 
*

kb  and 
*

kc  and 

then the corresponding 
*

ka  and 
*

kq  can be estimated.  
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Now the deep tail extreme value can be predicted by the ACER function with the 

fitted parametric curve. Then it is significant to estimate the confidence interval of 

the deep tail extreme value. Naess and Gaidai (2009) proposed a method to evaluate 

the confidence interval of the extreme value predicted using the parametric ACER 

function. The empirical confidence band is reanchored to the optimally fitted curve 

by centering the individual confidence intervals CI ( )jx  for the point estimates of 

the ACER function on the fitted curve, as shown in Eq. (7.34). Naess et al. (2013) 

proposed that the corresponding parametric curves can be fitted to the given set of 

points ( ,CI ( ))j jx x+
 and ( ,CI ( ))j jx x−

 of the re-anchored confidence band. The 

same fitting procedure for ACER function can be used here.  

ˆ ( )
CI ( ) ( ) ,

k j

j k j

s x
x x

M
  =   1,2,...,j L=                           (7.34) 

 

7.3 Improved Method for Long Term Extreme Analysis by Contour 

Line Method with Hybrid Method 

As the advantage of the average conditional exceedance rates (ACER) method for 

the extreme value prediction problem, it is less restrictive and more flexible than the 

ones based on asymptotic theory. Here, the assessment for long term extreme 

analysis of mooring lines can be done by the ACER method with the contour line 

method which discussed in Chapter 6. The detail for the proposed method is shown 

in Figure 7.2. Firstly, the contour line (surface) is constructed based on the joint 

distributions of environmental parameters. Then, the critical sea state is identified 

from the selected sea states along the contour line. Long term extreme analysis is 

performed by using of ACER method.  
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Figure 7. 2 Flowchart of improved method for long term extreme analysis 

7.4 Numerical Case 

The case used in Chapter 6 is used here. The model of FPSO mooring system is shown 

in Figure 4.8. The mooring lines are multi components (chain-wire-chain) and the 

properties of mooring lines are given in Table 4.1. The most loaded lines, Line 1 and 

Line 2, are considered here.  

The ACER method can take the ( 1)k − -step memory approximation into account. 

The different memory step approximations are calculated in Figure 7.3. It can be 

seen that when k=3 the ACER function has convergerged. Figure 7.4 presents the 

prediction of extreme line tension for Line1 corresponding to the probability level of 

10-6. The blue dot dash line gives the 95% CI. 

Hybrid method 

 

Hindcast data 

 

Joint distribution of 

environmental parameters 

Contour Line (surface) 

 

ACER method 

 

Wave frequency motion of 

Line in frequency domain 

 

Low frequency motion of 

vessel in time domain 

 

FPSO/Mooring 

line Analysis 

 

Long term extreme analysis 
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Figure 7.3 ACER function convergence for Line1 

 

 
Figure 7.4 ACER extrapolation toward probability level of 10-6 for Line1(blue dot 

dash - 95% CI, green dash - empirical 95% CI, red line - extreme line tension)    
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Figure 7.5 presents the different steps memory approximations and it can be seen that 

the ACER function has convergerged when k is 3. The prediction of extreme line 

tension for Line2 corresponding to the probability level of 10-6, with blue dot dash 

line indicating the 95% CI, is presented in Figure 7.6.  

 

 

 

Figure 7.5 ACER function convergence for Line2 
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Figure 7.6 ACER extrapolation toward probability level of 10-6 for Line2 (blue dot 

dash - 95% CI, green dash - empirical 95% CI, red line - extreme line tension) 

 

The improved method for assessing long term extreme response are verified by a full 

long term analysis using all sea states method from previous work. The results of the 

comparison between the two methods are listed in Table 7.2. The prediction of Line 

1 and Line 2 tension with ACER method are 3257 kN and 3355 kN, corresponding to 

probability level of 10-6. The errors are 1.15% and 0.18% respectively by comparing 

them with the results from all sea states method. The numerical case demonstrate the 

proposed method can be good at prediction of the long term extreme responses of 

mooring lines. 

 

Table 7.2 Long term extreme responses by all sea states method and ACER method 

 

Exceedance Probability 10-6 
Line 1 Tension 

(kN) 

Line 2 Tension 

(kN) 

ACER 3257 3355 

All Sea States 3295 3361 

Error (%) 1.15 0.18 
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7.5 Conclusions 

The improved method which employs the average conditional exceedance rates 

(ACER) method for the extreme value prediction problem was demonstrated in this 

chapter. The ACER method has the capability to accurately capture the effect of 

statistical dependence in the data and it could incorporate to a certain extent also the 

sub-asymptotic part of the data into the extreme value prediction. With the 

assumption of the tail behaving very closely like an exponential function, this 

method enables extrapolation up to the probability level of 10-6. The estimated long 

term extreme responses of mooring line were compared with the fully long term 

extreme analysis with all sea states. The results of numerical case demonstrated the 

feasibility of the ACER method for extreme response of mooring line. 
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8 Effect of Hydrodynamic Drag Coefficient on Long Term 

Extreme Response 

8.1 Introduction 

For a specified body shape, the drag coefficients depend on the following factors: 

Reynolds number, Keulegan-Carpenter number and roughness number. For mooring 

lines in deep water it is crucial to apply proper drag coefficients for calculating line 

damping contributions. The drag coefficient depends on the three factors in the 

free-surface zone with both waves and current actions. In steady current flow, the KC 

number is not of relevance and the drag coefficient depends on the Reynolds number 

and the roughness number. Ideally, the coefficient dependence on Re, KC and 

roughness number should be implemented by choosing coefficients from tables and 

curves when performing a coupled analysis. However, present state of the art within 

coupled analyses usually does not make use of this option (DNV-RP-F205, 2010) 

and it is difficult to introduce simple recommendations on which drag coefficients to 

be used.  

 

The mooring line damping is very important for the estimation of the maximum 

offset of FPSO and corresponding maximum line tension. Morrison equation using 

the drag coefficient is employed to evaluate the hydrodynamic force on the mooring 

lines. The variation of drag coefficient will alter the level of damping, which is 

important to extreme response of the vessel low frequency motion and the associated 

line tension. It is useful to study the effect of drag coefficient on the long term 

extreme response.  

 



 160 

The general approach for investigating the effect of uncertainty on long term extreme 

value estimation is proposed. The perturbation method, which aexpanded to 2nd order 

and 4th order, is proposed for the study. The asymptotic approximation of the 

probability integral is utilized and validation the the effect of the uncertainty. Then, 

the proposed approach is applied to investigate the effect of drag coefficient on the 

long term extreme response.  

8.2 Effect of Uncertainty on Long Term Extreme Value Estimation 

Uncertainty parameters or randomness have effect on extreme response estimation of 

structures, which should take in into account. The uncertainty parameters are 

described by random variables 1 2( , ,..., )nu u u=u  with a joint probability density 

function ( )f u  or parameters such as mean values, standard deviation, etc. Then the 

extreme response can be evaluated using the form as follows. 

F ( ) F ( ) ( )X Xx x f d=  u u u                                         (8.1) 

 

It is impractical to employ the direct numerical integration for this probability 

integral. Monte Carlo simulation can provide the accurate results for the extreme 

response considering the effect of uncertainty. The samples iu  (i=1,2,..,N) of u  

can be sampled according to its underlying distribution. Then the estimated extreme 

value is given as 

1

1
F ( ) F ( )

N

X X i

i

x x
N =

  u                                           (8.2) 

However, this method is crude that it requires a large number of simulations. An 

improved method, importance sampling, is by choosing a distribution ( )g u  to 

simulate more samples, which give more contribution to the evaluation of the 

probability integral.  
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F ( ) ( )
F ( ) ( )

( )

X

X

x f
x g d

g
= 

u u
u u

u
                                   (8.3) 

1

F ( ) ( )1
F ( )

( )

N
X i i

X

i i

x f
x

N g=

 
u u

u
                                     (8.4) 

8.2.1 Perturbation Method  

The perturbation method is based on expanding the F ( )X x u  into a Taylor series 

about the mean u  of u . The second-order Taylor expansion yields 

2
F ( )

F ( ) F ( ) F ( )( ) ( )
2

X

X X X

x
x x x


= + − + −

u
u u u u u u u                  (8.5) 

 

Then submit it into Eq.(8.1), we can obtain that 

2

F ( ) F ( ) ( )

1
F ( ) F ( )( ) F ( )( ) ( )

2

1
F ( ) F ( ) Var( )

2

X X

X X X

X X

x x f d

x x x f d

x x

=

 
 = + − + − 

 

= +





u u u

u u u u u u u u u

u u u

        (8.6) 

where Var( )u  is the variance of u  under the probability distribution ( )f u .  

 

The second-derivative F ( )X x u  can be evaluated numerically by use of employing a 

central difference scheme.  

2

F ( ) F ( ) 2F ( )
F ( )

( )

X X X

X

x x x
x

+  + − −
 =



u u u u u
u

u
                      (8.7) 

 

The perturbation method is computational least expensive method and it works well 

only for limited cases and for relatively small levels of uncertainties (Koyluoglu, 

1995).  
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We can see that the 2nd-order expansion of F ( )X x u  just includes the variance of u . 

If it is expanded to higher order series, the more information about the distribution 

will been given. The following 4th-order expansion is derived. The 4th-order 

expansion includes the skewness and kurtosis of u . 

2 3 (4) 4

3 (4) 4

F ( ) F ( ) ( )

1 1 1
F ( ) F ( )( ) F ( )( ) F ( )( ) F ( )( ) ( )

2 6 24

1 1 1
F ( ) F ( ) Var( ) F ( )E[( ) ] F ( )E[( ) ]

2 6 24

X X

X X X X X

X X X X

x x f d

x x x x x f d

x x x x

=

 
  = + − + − + − + − 

 

 = + + − + −





u u u

u u u u u u u u u u u u u u u

u u u u u u u u u

                                                                (8.8) 

8.2.2 Asymptotic Approximation 

The asymptotic approximation is a method based on Laplace’s method for the 

asymptotic approximation of probability integral. The asymptotic evaluation is based 

on the assertion that the greatest contribution to an integral derives from the locations 

where the integrand is a maximum point.  

 

Let T( ) ln[F ( ) ( )]X x f=u u u . The Eq.(8.1) can be evaluated by this asymptotic 

approximation method, introduced in Appendix F, as a multivariate case where u  is 

a n -dimensional vector. 

F ( ) exp[T( )]X x d=  u u                                                 (8.9) 

 

Then expanding T( )u  around its maximum point *
u by Taylor expansion series and 

considering that the derivatives are zero at *
u , we can obtain that 

* * * *1
T( ) T( ) ( ) ( )( )

2

T H − − −u u u u u u u                            (8.10) 
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where *( )H u  is the Hessian matrix of V( ) T( )= −u u  that evaluated at the 

maximum point *
u . The Hessian matrix is a square matrix of second-order partial 

derivate of V( )u .  

 

The asymptotic approximation result for the probability integral can be obtained as 

follows. 

/2
* *

*

(2 )
F ( ) F ( ) ( )

det[ ( )]

n

X Xx x f
H


 u u

u
                              (8.11) 

where det[ ]  denotes the matrix determinant. This approximation is asymptotically 

correct as   tends towards infinitude and here   is the minimum eigenvalue of 

the Hessian matrix 
*( )H u .  

 

In the case where there are multiple local maximum points, it can be evaluated by 

summing the asymptotic contribution from each maximum point *

iu .  

/2
* *

*
1

(2 )
F ( ) F ( ) ( )

det[ ( )]

nm

X X i i

i
i

x x f
H



=

 u u
u

                           (8.12) 

8.3 Effect of Drag Coefficient on Long Term Extreme Response 

The mooring line’s drag coefficient is very important to the damping and the ensuing 

maximum line tension. Furthermore, there are no specific selecting rules for it 

because the mooring line’s drag coefficient is not easily determined by test. It is 

significant to ascertain the effect of the drag coefficients on the long term extreme 

response. Firstly, the effect of uncertainty on the extreme response can be evaluated 

by the pertrbation method. The 2nd-order expansion and 4th-order expansion will be 

used to estimate the extreme response, which formulas are listed below. Here random 
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variable u  indicates the drag coefficient. 

 

1
F ( ) F ( ) F ( ) Var( )

2
X X Xx x u x u u= +                                   (8.13) 

 

3 (4) 41 1 1
F ( ) F ( ) F ( ) Var( ) F ( )E[( ) ] F ( )E[( ) ]

2 6 24
X X X X Xx x u x u u x u u u x u u u = + + − + −  

(8.14) 

The second-derivative, 3rd-derivative and 4th-derivative derived from the above 

formulas can be evaluated numerically by use of a central difference scheme.  

2
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F ( )

( )

X X X

X

x u u x u u x u
x u

u

+  + − −
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3
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X X X X

X

x u u x u u x u u x u u
x u

u

+  − +  + − − − 
 =


 

(4)

2

F ( ) F ( ) 2F ( )
F ( )

( )

X X X

X

x u u x u u x u
x u

u

  +  + − −
=


 

 

The extreme response can be evaluated using the asymptotic approximation method 

discussed as above. 

* *

*

2
F ( ) F ( ) ( )

V ( )
X Xx x u f u

u





                                 (8.15) 

 

Searching for the maxima point *u  of T( )u  is equivalent to finding the minimum 

point *u  of V( )u , which it can be evaluated using Newton’s method. 

*
* *

1 *

V ( )

V ( )

k
k k

k

u
u u

u
+


= −


                                            (8.16) 

Where:  
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* *
*

* *
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X

x u f u
u

x u f u

   
 = − + 

  
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* * * 2 * * * 2
*

* 2 * 2

F ( ) F ( ) [F ( )] ( ) ( ) [ ( )]
V ( )

[F ( )] [ ( )]

X X X

X

x u x u x u f u f u f u
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x u f u

  −  − 
 = − + 

  
   (8.18) 

And the corresponding derivatives can be evaluated by employing the central 

difference method. 

* *

*
F ( ) F ( )

F ( )
2

X X

X

x u u x u u
x u

u

+  − −
 =


                          (8.19) 
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X X X

X

x u u x u u x u
x u

u

+  + − −
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
                (8.20) 

 

Figure 8.1 Flowchart of asymptotic approximation method 

8.4 Numerical Case 

To ascertain the effect of the drag coefficients on the long term extreme response, the 

model of FPSO mooring system shown in Figure 4.8 is used here. It assumes that the 

drag coefficients obey the normal distribution which has a mean value and 

coefficient of variance (COV). The previously proposed ACER method is used to 
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predict the extreme response of mooring line tension. 

 

Figure 8.2 and 8.3 present the up-crossing rate or ACER function for the line tension 

with different mean values of drag coefficient and then predicted the extreme values 

at the probability level of 10-6. The estimated extreme responses are 3637kN, 

3247kN and 3775kN with respect to the mean value of drag coefficient 2.2, 2.4 and 

2.6, respectively. An increase in the line drag coefficient will increase the mean offset 

as well as typically the dynamic tension, but reduce low frequency dynamic offset. 

From the results, we can see that the line tension will depend on the contributions of 

these two components.  

 

Figure 8.2 Upcrossing rate by ACER method (k=3) for different mean values 
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Figure 8.3 Prediction of extreme response by ACER method (k=3) for different mean 

values 

 

To study the variation of drag coefficient impact on the extreme response of mooring 

line, the perturbation method is firstly employed here. The mean value of drag 

coefficient is 2.4. For the case of COV equals 0.02, shown in Figure 8.4, the extreme 

responses of mooring line tension, corresponding to probability level of 10-6, are 

3499kN for 2nd-order expansion and 3525kN for 4th-order expansion. The difference 

between the extreme responses based on different expansions for low coefficient of 

variance is small. Figure 8.5 presents the case of COV equal to 0.04. The extreme 

responses, corresponding to a probability level of 10-6, are 3601kN for 2nd-order 

expansion and 3707kN for 4th-order expansion. It can be seen that the predicted 

extreme responses by different expansion method will different for high coefficient 

of variance. It means that the accuracy of 2nd -order expansion may be not enough for 

predicting the response. Compared with 2nd-order expansion, the 4th-order expansion 

can have more information about distribution that not only includes the variance but 

also includes the skewness and kurtosis of distribution. 
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Figure 8.4 Extreme response by perturbation method for COV=0.02 

 

Figure 8.5 Extreme response by perturbation method for COV=0.04 
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Figure 8.6 Extreme response by asymptotic approximation method for COV=0.02 

 

Figure 8.7 Extreme response by asymptotic approximation method for COV=0.04 

The asymptotic approximation assessment which based on the Laplace’s method 
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applies to the assessment of the effect of the variation of drag coefficient on the 

extreme response of mooring line. Newton’s method is employed to find the point 

which has the greatest contribution to the integral. The predictions of extreme 

responses by the asymptotic approximation method for different coefficient of 

variation cases are presented in Figure 8.6 and 8.7. The results are compared with the 

results from the perturbation method. It can be seen that the asymptotic 

approximation method has a good match with the results when expanded to 4th- 

order. 

 

8.5 Conclusion 

The drag coefficient of a mooring line depends on several parameters, Reynolds 

number, Keulegan-Carpenter number and roughness number. The variation of drag 

coefficient will alter the level of damping, which is important for the extreme 

response of the vessel low frequency motion and the associated line tension. In this 

chapter the perturbation method and asymptotic approximation method are employed 

to study the effect of drag coefficient on the extreme response of a mooring line. The 

perturbation method expanded to 4th-order has a better prediction than to 2nd-order, 

especially for the case with high coefficient of variance. The method of asymptotic 

approximation of the probability integral has as good accuracy as the perturbation 

method expanded to 4th-order. The case with different mean values of drag 

coefficient was evaluated. It demonstrated that an increase in the line drag coefficient 

will increase the mean offset as well as typically the dynamic tension, but reduce low 

frequency dynamic offset. The line tension will depend on the contributions of these 

two components. 
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9 Summary and Further Work 

This research work mainly focused on the development of a computationally 

efficient method for the dynamic analysis and probabilistic analysis of moored FPSO 

system and the identification of the effect of the hydrodynamic drag coefficient on 

the damping contribution to the low frequency FPSO motion and the maximum 

mooring line tension, based upon a probabilistic approach. This chapter will 

summarize this work and discuss the main contributions. Then further work is 

recommended. 

9.1 Summary and Conclusion 

The mooring line damping, especially from hydrodynamic drag forces, is of vital 

importance to FPSO’s low frequency motion in deep water and its associated 

maximum mooring line tension and the maximum offset. Morison’s equation with a 

drag coefficient is often employed to calculate the hydrodynamic drag loads of 

mooring lines. The drag coefficient is not easily determined, particularly for the chain 

with complex shape. The variation of hydrodynamic drag coefficient would alter the 

level of line damping. That means the drag coefficient is important to the damping 

and the ensuing extreme offset and maximum line tension. Therefore, it was 

worthwhile to investigate the effects of the hydrodynamic drag coefficients on the 

damping contribution to the extreme low frequency FPSO motion and the maximum 

mooring line tension. 

 

As the exploitation of oil and gas continues in deep water, the global dynamic 

response of a floating production system needs to be predicted with coupled analysis 
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methods to ensure accuracy and reliability. Fully coupled time-domain analysis, 

whereby the dynamic motions of the FPSO/mooring/riser are simulated together at 

every time step, is prohibitively time consuming. Under the assumption that the 

FPSO’s wave frequency motion/loading is unaffected by the mooring/riser due to its 

much greater mass, the fully coupled analysis can be simplified to some extent. 

However, such an approach, simulated in the time domain, will still be very 

expensive. Some methods use a linear damping coefficient to represent this 

damping’s effect, that estimated in prior may not be accurately due to the line 

damping depending on several factors such as wave frequency response and offset 

position. An efficient methodology for the dynamic analysis of a moored FPSO 

system should be appreciated with a view to balancing accuracy and efficiency.  

 

Firstly, the numerical procedures for dynamic analysis of mooring lines in time 

domain and frequency domain were developed. The mooring lines were modeled 

based on the lumped mass method where the mooring lines were divided into a series 

of lumped mass node and massless elastic segments. All the forces on the segments 

including the tension, inertia force and drag force etc. were concentrated onto the 

nodes. The equations for dynamic analysis of mooring lines in the time and 

frequency domain were derived separately. The cases of single component and 

multi-component mooring lines under different excitations were studied and 

validated by comparison with the results from commercial software, Orcaflex. The 

results demonstrated that they could predict the dynamic response of mooring lines 

in time and frequency domain quite well. 

 

Next, this work attempted to develop a computationally efficient method using a 

combined time and frequency domain analysis methodology. The time domain 

simulation with a large time step was performed for low frequency motion of the 

FPSO, whilst the wave frequency responses of the mooring lines at a given mean 
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offset position was conducted separately in the frequency domain. The damping 

contributions from mooring lines was evaluated and added to the calculation of low 

frequency motions of FPSO. Comparison of the tension/motion results as well as the 

computational efficiency was made of the proposed method and the dynamically 

coupled time-domain analysis, . 

 

Then, the methodologies for the long term extreme analysis were validated and an 

improved method for the long term extreme analysis was proposed. The all sea state 

method for the long term extreme analysis was performed by use of a Kriging 

metamodel. The Monte Carlo simulation was applied for the long term probability 

integral based on the Kriging metamodel. The improved method based on the 

environmental contour method and accurate distribution tail extrapolation method 

was proposed. The contour line method assumes that the short term variability could 

be accounted for separately, i.e. decoupling the environmental problem and the 

response problem. This method evaluates the extreme response based on limited sea 

states along a well-defined environmental contour line with a given return period. 

Then the short term variability is considered by selecting a high fractile. The 

distribution of the response is evaluated by the average conditional exceedance rates 

(ACER) method. The ACER method, which can accurately capture the effect of 

statistical dependence for the extreme value prediction problem, is less restrictive and 

more flexible than the one based on asymptotic theory. 

 

Finally, the effects of the hydrodynamic coefficient on the damping contribution to 

the low frequency FPSO motion and the maximum mooring line tension were 

investigated based upon a probabilistic approach. The probabilistic analyses for the 

extreme response considering the uncertainty influence of drag coefficient were 

performed by the perturbation method and the asymptotic approximation method. 

The conditional long term distributions of responses were estimated by contour line 
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method and ACER method. The perturbation method expanded to 4th-order had been 

derived. The asymptotic evaluation is based on the assertion that the greatest 

contribution to an integral derives from the locations where the integrand is a 

maximum point.  

 

9.2 Contributions and Major Findings 

In summary, on the basis of the work carried out during this research, the main 

contributions and major findings can be drawn as follows: 

 

1) The modified Euler method is adopted for the dynamic analysis of mooring lines 

in time domain. This method is straightforward and simple. An improved frame 

invariant stochastic linearization method was employed to linearize the nonlinear 

hydrodynamic drag term for the frequency domain dynamic analysis, assuming 

that dynamic deflections around the static equilibrium position are small. The 

code has been expanded and integrated by LR for the mooring analysis software. 

 

2) A hybrid time and frequency domain method is developed. The wave frequency 

response of the FPSO/mooring/riser at a given mean offset position is conducted 

in the frequency domain, whilst the low frequency motion of the FPSO is 

computed in the time domain. In this method, the dynamic analyses for FPSO 

and mooring lines can be separated and the coupling effect still can be taken into 

account. The time domain simulation for the low frequency FPSO motion can 

employ large time steps due to separating the wave frequency motion and 

dynamic analysis of mooring lines. The frequency domain analysis is based upon 

a specific linearization approach where the damping to the low frequency FPSO 

motion from the wave frequency response of the mooring/riser can be accounted 

for in the form of top tension from frequency domain analysis. This method 
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effectively improves the efficiency. The contribution to this approach is the wave 

frequency motion and low frequency motion is solved separately and the 

mooring line is taken into account during the wave frequency motion and its 

damping as input for low frequency motion.  

 

3) Improved long term extreme analysis strategy based on the contour line method 

with the ACER method is proposed. The environmental contour line with a 

given return period is constructed by employing the inverse FORM method 

(IFORM). The critical sea state is compared and selected from limited sea states 

along the contour line. Then the extreme response is evaluated based on the 

critical sea state. The contour line method decouples the environmental problem 

and the response problem by assuming that the short term variability could be 

accounted for separately. The distribution of the response is evaluated by the 

average conditional exceedance rates (ACER) method. The ACER method, 

which can accurately capture the effect of statistical dependence for the extreme 

value prediction problem, is less restrictive and more flexible than the one based 

on asymptotic theory. Then the short term variability is taken into account by 

selecting a high fractile response. The contribution to this approach is combing 

the ACER method and contour line approach with hybrid response model first 

time.  

 

4) Apply a Kriging metamodel of the mooring system for long term extreme 

analysis. The all sea state method for the long term extreme analysis is 

performed by use of a Kriging metamodel. The Kriging metamodel is a 

metamodeling technique which uses statistical techniques to describe the 

functional relationship between a vector of inputs or variables and the 

corresponding vector of outputs or responses. It is used to represent the mapping 

between the sea states characteristics and short distribution parameters. The 
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results indicate that long term extreme analysis with Kriging metamodel avoids 

the short term extreme analysis over all sea states and this method can improve 

the efficiency of the long term extreme analysis because it only involves the sea 

states selected by applying the sampling approach of design of experiment 

method. Exceedance probability of line tension and FPSO offset are also 

estimated from the samples that obtained by Monte Carlo simulation using 

inverse transform sampling. The uncertainty in the extreme estimates can be 

assessed by the bootstrap approach. The contribution to this approach is to apply 

the Kriging model for the assessment of long term extreme response.  

 

5) The effects of the drag coefficient on the long term extreme response of FPSO 

offset and line tensions has been investigated by the perturbation method and by 

an asymptotic approximation method. The maximum point is estimated by 

Newton’s method and in the perturbation method with expansion to 4th-order has 

a better prediction than expansion to 2nd-order, especially for the case with high 

coefficient of variance. The asymptotic approximation method which, uses 

asymptotic approximation of the probability integral, has as good an accuracy as 

the perturbation method with expansion to 4th-order. The case with different 

mean values of drag coefficient was evaluated. It demonstrated that an increase 

in the line drag coefficient will increase the mean offset as well as typically 

increasing the dynamic tension, but it will reduce low frequency dynamic offset. 

The line tension will depend on the contributions of these two components. The 

contribution to this part is apply the two methods, perturbation and asymptotic 

approximation for investigating the effect of the drag coefficient on the mooring 

long term extreme response. The perturbation expanded to the 4-th order was 

proposed. 

 

9.3 Recommendations for Future Work 
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The present work was concerned with the efficient dynamic analysis and 

probabilistic analysis for a moored FPSO system with emphasis on the effect of drag 

coefficients. There are still some other issues required to be identified and deserved 

further investigation in the future. 

1) Improved model for hybrid analysis method: In this work, the hybrid time and 

frequency domain analysis model was mainly developed to study the maximum 

FPSO offset and line tension and the effect of the line damping. The model for 

the vessel focused on the surge motion. Therefore, the other motion such as yaw, 

roll and pitch should be included for general application. The developed model 

also needs to be validated against full time history simulation and model tests. In 

addition, the model for the riser should be included. 

2) During the extreme analysis, more environmental parameters may be taken into 

account in order to simulate real environmental conditions: It is a challenge to fit 

the joint probabilistic distributions to more variables. The random storm method 

with hybrid time and frequency analysis may provide an alternative strategy. In 

the random storm method, the hindcast time series of environmental variables 

can be broken into independent storms by selecting an appropriate threshold 

value and any number of environmental variables can be added without 

additional difficulty. 

3) Application of the proposed long term extreme analysis strategy in this work for 

response-based design analysis of floating structure: Response-based methods 

aim to design a structure to withstand combinations of critical N-year return 

period responses, rather than responses in a combination of N-year 

environmental conditions (Standing et al., 2002). The case study demonstrated 

that response-based analysis method could reduce maximum design excursions 

and line tensions by about 20% compared with the traditional deterministic 
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approach. This approach is capable of quantifying the probability of exceeding 

design loads and therefore risks. Having obtained the long term response 

statistics by this improved method, the response based design method will 

estimate the environmental design conditions that produce the response with a 

certain return period, typically 100 years, and evaluate the safety and load 

factors required to ensure some target level of reliability.  

4) Predicting the fatigue life is another critical problem for design and analysis of 

mooring lines: To ensure the safety of the mooring system, it is necessary to 

evaluate the fatigue life of mooring lines. The fatigue life estimation will include 

the full range of load conditions expected in a structure’s life which is an 

extremely time-consuming process. The hybrid time and frequency domain 

method can be used to perform the simulations and then the fatigue life can be 

calculated based on the assumption of Palmgren-Miner law with the T-N curve. 

In addition, the effect of drag coefficient on fatigue life prediction can be studied 

considering the variation of drag coefficient and the importance of drag 

coefficient selection. 

5) Reliability analysis for moored FPSO system: The uncertainties from the 

environment loads and response model would have a great influence on the 

extreme response and fatigue life prediction. Reliability analysis could take these 

uncertain factors into account. Based on the estimated probabilistic distribution 

of extreme response and fatigue life, the limit state function can be constructed. 

The first order reliability method (FORM) could be employed for the reliability 

analysis. The effect of these uncertain factors on the reliability index can be 

conducted by sensitivity analysis. The asymptotic approximation method also 

can be applied to the reliability analysis. 
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Appendix A Static Analysis for Multi-component Mooring 

lines by Catenary Equation  

The static analysis of single component mooring line can be done by catenary 

equation method. This method neglects the environmental force and elasticity of 

mooring line. It can be used for the quasi-static analysis, especially in shallow water. 

The detail derivation can be found in the literature (Barltrop, 1998). The catenary 

geometry in Cartesian coordinate can be expressed as follows. 
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where HT
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 = , TH is the horizontal tension in mooring line. w is the submerged 

weight per unit length. The configuration also can be expressed by formula with 

length of mooring line. 
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The multi-component mooring lines are often employed. The catenary equations for 

the multi-component mooring lines (chain-wire-chain) are derived as follows. 

 

The typical configuration of multi-component mooring lines (chain-wire-chain) is 

shown in Figure A.1. The touch down point and two points connecting wire with the 
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chains are indicated by node1, node 2 and node 3, respectively. Li (i=1,2,3) is the 

partially or fully suspended length of the i-th component. wi (i=1,2,3) is the 

submerged weight per unit length of the i-th component, H is the water depth 

between fairlead and seabed. T is the tension at the fairlead, TH and Tv is the 

horizontal and vertical component of tension. The line 2 and line 3 are extended to be 

tangent to the horizontal line. The extension lengths are 2L  and 3L . The local 

coordinates, o2-x2-z2 and o3-x3-z3 are established at the points of tangency, 

respectively. Then the parameters of line 2 and line 3 can be estimated by previous 

catenary equations. 

 

Figure A.1 Static analysis of multi-component mooring line 

 

The vertical projection length of the i-th component, Zi (i=1,2,3), can be calculated 

by the following equations. 

21
1 1

1

1 ( ) 1
L

Z 


 
= + − 

 
                                         (A.4) 

2 22 2 2
2 2 2

2 2

1 ( ) 1 1 ( ) 1
L L L

Z  
 

   +
= + − − + −   

      

                    (A.5) 
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3 3 3

3 3

1 ( ) 1 1 ( ) 1
L L L

Z  
 

   +
= + − − + −   

      

                    (A.6) 

where 
1

1

HT

w
 = ; 

2

2

HT

w
 = ; 

3

3

HT

w
 = . 

At the node 2 and node 3,  

2 1 1 2 2VT w L w L= =                                              (A.7) 

3 1 1 2 2 3 3VT w L w L w L= + =                                         (A.8) 

 

Then, the extended length can be estimated as follows. 

1 1
2

2

w L
L

w
=                                                    (A.9) 

1 1 2 2
3

3

w L w L
L

w

+
=                                              (A.10) 

 

Submitting the Eq.(A.9)-Eq.(A.10) into the Eq.(A.4)-Eq.(A.6) 

21 1
1 1 1 ( ) 1

H

w L
Z

T


 
= + − 

 
                                      (A.11) 

2 21 1 2 2 1 1
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w L w L w L
Z

T T


 +
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 
                       (A.12) 
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w L w L w L w L w L
Z

T T


 + + +
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 
            (A.13) 

 

The vertical projection extended lengths are  

21 1
2 2 1 ( )

H

w L
Z

T
= +                                           (A.14) 

21 1 2 2
3 3 1 ( )

H

w L w L
Z

T


+
= +                                      (A.15) 

 

Similarly, we can obtain the horizontal projection extended length and the horizontal 
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projection length.  

21 1 1 1
2 2 ln 1 ( )
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                                (A.16) 
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21 1 2 2 1 1 2 2
2 2 2ln 1 ( )

H H

w L w L w L w L
X X

T T


 + +
= + + − 

 
                 (A.19) 
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The catenary geometry of the i-th component in the global coordinate can be 

expressed as follows. 
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(A.23) 

 

And tension in the mooring lines is  

2 2
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        (A.24) 

 

The static analysis for multi-components mooring line can be performed by given 

different offsets and Figure A.2 presents the results according to the properties and 

length of lines in section 2.5.2. The results are also compared with the results from 

Orcaflex’s as shown in Figure A.3. It can be seen that it can predict well the static 

response of multi-component mooring line. 

 

Figure A.2 Static analysis of multi-components mooring line 
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Figure A.3 Comparison of static analysis  
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Appendix B Transformation of Coordinates for 

Linearization 

The velocity in the global coordinate are transformed into local coordinate and two 

un-correlated components can be found by principle component analysis. This 

method can simplify the evaluation of expected values.  

The tangent to the lines in the global coordinate system, ),,( zyx eee=e , is selected a 

base vector for local coordinate. Then a local orthonormal coordinate system 

including e can be determined. By defining a vector ),,( yxz eee −=a  which is linearly 

independent of e. we can obtain another base vector normal to e: 

eeaa

eeaa
f

)(

)(

−

−
=                                                 (B.1) 

and the third base vector g is: 

feg =                                                      (B.2) 

The orthogonal transformation 

















=

zyx

zyx

zyx

eee

ggg

fff

T                                             (B.3) 

relates the element f-g-e coordinate system to the global x-y-z coordinate system. The 

covariance matrix in the element coordinate system is: 
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T

xyzfge TTRR =                                                (B.4) 

Since only the relative velocity components normal to the line is counted in the drag 

force. The above covariance matrix can be reduced into 2x2 by ignoring the 

components in the direction of e and the covariance matrix 









=

gggf

fgff

RR

RR
S                                                (B.5) 

Next we can find the principal values and principal directions of the covariance matrix. 

The principal values are: 
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where 
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Then choose an eigenvector which is also a unit vector such that: 
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The orthogonal transformation 






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
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−=
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0
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

V                                             (B.9) 

relates the f-g-e coordinate system to the principal directions of the relative velocity 

covariance matrix. The maximum velocity variance will be called the in-line direction, 

and the direction of minimum velocity variance will be called the transverse direction. 
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Thus the orthogonal transformation from the local principal coordinate system to the 

global coordinate system is: 

VTP =                                                     (B.10) 

The relative velocity n
V in principal coordinate system is: 

n n

xyz= PV V                                                   (B.11) 

The current velocity in principal coordinate system is: 

n

xyzc

n

c ,VV P=                                                  (B.12) 

And the resulting mean force in local principal coordinate can be transformed back 

into global coordinate: 
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Appendix C Fast integral method for Linearization 

The linearized drag force needs to evaluate nested infinite integrals. Here introduce a 

method to transform it into a finite integral. 

By making the following substitution:  

1

2
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
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 cV
= ; 

1

2


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
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1

rr=
+ cVV

              (C.1) 

The infinite integrals in Eq.(2.50) - Eq.(2.52) are transformed into the following finite 

integrals: 
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where  
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Following the manipulation, it can be shown that 

)sin(cos
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where 
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It should be noted that t appears only in trigonometric functions. In order to calculate 

the integrals in equations, a change of variable is made to improve the computational 

efficiency by eliminating the evaluation of trigonometric functions during the 
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numerical integration. By defined )
2

tan(
t

x = , we have 
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After the change of the variable, the trapezoidal rule is used to evaluate these integrals 

numerically. 
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Appendix D Confidence Interval  

A probabilistic model is represented by probability density distribution function 

which involves unknown parameter   that can be estimated from independently 

observed data or samples. ̂  is an estimate of parameter . The estimation criteria 

including unbiasedness, minimum variance and consistency are used to evaluate the 

quality of an estimate (Soong, 2004). The point estimation approach can estimate the 

unknown parameter based on the estimation criteria by method of moments or 

maximum likelihood estimation.  

 

Another approach for the parameter estimation problem is interval estimation which 

is a procedure by which bounds on the parameter value are obtained. Interval 

estimation provides more information about a population characteristic than does a 

point estimate that not only gives information on the numerical value of the 

parameter but also provides the level of confidence one can place on the possible 

numerical value of the parameter.  

 

Suppose that a random sample 1 2, ,..., nX X X  is drawn from a probability 

distribution with unknown parameter   which needs to be estimated. Further 

suppose that 1 2( , ,..., )nX X X =  and 1 2( , ,..., )nX X X =  are two statistics can 

be determined from the sample. The interval ( , )   denotes the 100(1 )%−  

confidence interval for   if   and   can be selected such that 

 1 2 1 2( , ,..., ) ( , ,..., ) 1n nP X X X X X X     = −                    (D.1) 

The   and   are the lower and upper confidence limits for  . The level of 
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confidence of the confidence interval indicates the probability that the confidence 

range captures this true population parameter. In applied practice, confidence 

intervals are typically stated at the 90%, 95% confidence level. 

 

If population X  is normally distributed, i.e. 2( , )X N   . For population 

standard deviation   is known, the confidence interval estimation of population 

mean   can be estimated as follows. 

/2CI X z
n



 =                                               (D.2) 

where /2z  is the corresponding quantile of the normal distribution for a probability 

of / 2  in each tail as shown in Figure D.1. The quantile values corresponding to 

confidence interval are presented in Table D.1. 

 

 
Figure D.1 100(1-α)% confidence limits for known standard deviation 

 

Table D.1 Quantile value corresponding to confidence interval 

 

Confidence interval 90% 95% 99% 

/2z  1.645 1.960 2.576 
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If the population standard deviation   is unknown, we can substitute the sample 

standard deviation S which would introduce extra uncertainty, since S varies from 

sample to sample. The student’s distribution is used instead of the normal distribution 

to estimate the confidence interval.  

1, /2CI n

S
X t

n




−=                                             (D.3) 

where 1, /2nt −  is the corresponding quantile of student’s distribution with n-1 degrees 

of freedom for a probability of / 2  in each tail as shown in Figure D.2.. 

 

Figure D.2 100(1-α)% confidence limits for unknown standard deviation 
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Appendix E Bootstrap Method 

The bootstrap method introduced by Efron (Efron and Tibshirani, 1993) is a 

statistical approach based on resampling from a distribution determined by the 

available sample of data. Assume that observations 1 2, ,..., nx x x  as realizations of 

independent random variables with distribution function F. For the unknown F, 

empirical distribution function is used instead of the F, where a established for X  

on the basis of the observed data by allocating a probability of 1/n to each of the 

observed data points. That is the nonparametric approach for the bootstrap estimates.  

 

The other approach is the parametric bootstrap for the known distribution function F 

with unknown parameter  . The parameters are estimated from the observed data. 

The bootstrap method can be applied for the uncertainty qualification and confidence 

interval estimation. Assumed that the initial sample of n extreme values is drawn 

from a distribution i.e. Gumbel. The true parameter values of the Gumbel distribution 

are replaced by the estimated values obtained from the initial sample. A large number 

of independent bootstrap samples of size n can be generated from the distribution. 

For each sample, a new Gumbel distribution would be fitted and the corresponding 

statistical characteristic value such as median, most probable maximum (MPM) or 

100(1-α)% fractile value can be identified. If the number of samples had been large 

enough, an accurate estimate of the confidence interval on the statistical 

characteristic value based on a sample of size n could be found. The mean and 

standard deviation of the statistical characteristic value can be calculated and then the 

coefficient of variance (COV) can be estimated. 
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Appendix F Laplace’s Method 

Laplace’s method is a technique for evaluating an integral of the form as given in 

Eq.(F.1), where ( )f x  is a twice-differentiable function and   is a very large 

number, and the integration range can be infinite. This method is based on that the 

significant contributions to the integral mainly come from in a neighborhood of 

maximum point *x  of ( )f x . 

( )
b

f x

a
e dx

                                                     (F.1) 

 

Firstly, we take the Taylor series expansion of ( )f x  around *x  up to quadratic 

order. 

* * * * * 21
( ) ( ) ( )( ) ( )( )

2
f x f x f x x x f x x x = + − + − +                   (F.2) 

 

*x  is the maximum point, which means it is a stationary point and concave down, i.e. 

*( ) 0f x =  and *( ) 0f x  . The Taylor series expansion of ( )f x  becomes: 

* * * 21
( ) ( ) ( ) ( )

2
f x f x f x x x − −                                  (F.3) 

 

Then substituting this approximation expansion of ( )f x  into the integral, we can 

obtain that 

* * 2
* ( ) ( )

( ) ( ) 2
b b f x x x

f x f x

a a
e dx e e dx


 

− −
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It can be seen that the integral becomes the form of Gaussian integral which can be 

evaluated. The larger the value of  , the more closely the integral aligns with a 

Gaussian integral. The general Gaussian integral is given as follows. 

2

2

( )

2 2

x

e dx



 
−

−

−
=                                           (F.5) 

 

Given that the exponential decays quite rapidly away from the stationary point *x , 

particularly for large value of  . The portions far away from the stationary point do 

not make significant contributions to the integral. Then the approximate prediction 

for the integral can be done by evaluating the Gaussian integral, shown as follows. 

*( ) ( )

*

2

( )

b
f x f x

a
e dx e

f x
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
                                    (F.6) 

 

The approximation is asymptotically correct as   tends towards infinite. The larger 

the value of  , the shaper the peak of the integrand at *x  and the more accurate the 

asymptotic approximation for the integral. 



 205 

List of Publication 

1. Aijun Wang, Shan Huang, Nigel Barltrop. Long Term Extreme Analysis of FPSO 

Mooring Systems Based on Kriging Metamodel. Proceedings of the 33rd 

International Conference on Ocean, Offshore and Arctic Engineering. 

OMAE2014-24609. 

2. Aijun Wang, Shan Huang, Nigel Barltrop. Dynamic Analysis of Mooring Lines in 

Time and Frequency Domain. ICMT 2014 International Conference on Maritime 

Technology. 

3. Aijun Wang, Shan Huang, Nigel Barltrop. Extreme Analysis of Mooring System 

Using Contour Line Method. ICMT 2014 International Conference on Maritime 

Technology. 

 

 


