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Abstract

This thesis investigates the mean travelling distance of molecules between successive

collisions, which is referred to as the mean free path, and how this parameter can extend

the applicability of the isothermal Navier–Stokes–Fourier equations (the Navier–Stokes

equations) for micro scale gas flows. Since gas molecules in micro-scale geometries are

likely to experience a significant number of wall collisions as opposed to the normally

considered inter-gas molecular collisions, the geometrical dependence of the mean free

path is of special concern for this thesis. A theoretical description for the geometry-

dependent mean free path is derived, referred to as the effective mean free path, in the

vicinity of planar and non-planar surfaces. This theoretical effective mean free path is

measured and validated using the deterministic particle-based method of molecular dy-

namics. Comparisons of the theoretical and measured effective mean free path profiles

show good agreement for the case of specular wall reflections; as opposed to diffu-

sive reflections or reflections caused by explicit walls. The largest discrepancy between

theoretical and measured mean free paths is shown to be for non-planar geometries.

The effective mean free path descriptions are applied to the Navier–Stokes equations

by relating the mean free path to viscosity and thereby obtaining a non-linear stress-

to-strain-rate relationship. The effective mean free path is also used in the applied

velocity boundary conditions of first- and second-order. The present models are solved

for the planar-wall test-cases of Couette flow and Poiseuille flow. Their solutions for

both of these cases are found to converge with the conventional Navier–Stokes solu-

tions for small Knudsen numbers. For Couette flow it is found that the present model

produces non-linear velocity profiles that compare well with direct simulation Monte

Carlo data up to a Knudsen number of about one. For Poiseuille flow it is found that

the present model does not capture the same velocity profile as the validation data

from the BGK method for Knudsen numbers above 0.5. However, the present model

using a second-order velocity boundary condition has roughly the same cross-sectional

average velocity, which causes the mass flow rates to be similar. The mass flow rates are

compared with experimental measurements and results of the BGK method. It is shown

that the present model using a second-order velocity boundary condition captures the

mass flow minimum at a Knudsen number of about one, and approaches a bounded

value for larger Knudsen numbers consistent with the experimental validation data.
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ṽt normalised average velocity across the channel width, [—]

x, y, z Cartasian coordinates, [m]

Z rate of molecules crossing a plane per unit area, [1/(m2 s)]

α thermal diffusivity, [m2/s]

β constant of proportionality (used with Z), [—]

Γ sound damping coefficient, [m2/s]

γ specific heat ratio, [—]

δ inverse rarefaction parameter, [—]

δsp average molecular spacing, [—]

η inverse power law coefficient, [—]

θ zenith angle of molecular travelling direction, [rad]

κ bulk viscosity, [kg/(m s)]

κIPL inverse power law coefficient, [—]

λ unconfined and conventional molecular mean free path, [m]

µ dynamic viscosity, [kg/(m s)]

υ variable-hard-sphere constant, [—]

ρ gas density, [kg/m3]

Π viscous sheer stress tensor, [kg/(m s2)]

σT thermal accommodation coefficient, [—]

σv tangential momentum accommodation coefficient, [—]

τcol molecular collsion frequency, [1/s]

τ viscous stress vector, [—]

Ωµ collision integral for viscosity, [—]

ω variable-hard-sphere constant, [—]

xii



Superscripts

Xt transpose operator

Subscripts

Xeff an “effective quantity” that is geometry-dependent

Xw a quantity determined at the wall or surface

Xwall a quantity belonging to a wall or surface

Xi a quantity belonging to a molecule with i-index

Xj a quantity belonging to a molecule with j-index

Xn the normal-component of a vector quantity

Xt the tangential-component of a vector quantity

Xx the x-component of a vector quantity

Xy the y-component of a vector quantity

Molecular models

HS hard-sphere molecular model

IPL inverse-power-law molecular model

LJ Lennard-Jones molecular model

MM Maxwellian molecular model

SS soft-sphere molecular model

VHS variable-hard-sphere molecular model

xiii



Not everything that counts can be counted,

and not everything that can be counted counts.

Albert Einstein
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Chapter 1

Modelling micro gas flows

The study of this thesis is aimed at the smaller end of a length scale conceivable to

man. To bring some perspective to this length scale, some of the larger known objects

will be mentioned before a few of the relevant ones. At the larger end astronomical

lengths are good examples such as the width of our galaxy, the Milky Way, which is

about 9×1020m, the diameter of the sun being about 1.4×109m, the diameter of earth

at approximately 1.3 × 107m. At the smaller side of this length scale are the diameter

of a light hydrogen nucleus (only consisting of a proton) being about 1.6 × 10−15m,

the fixed sphere representation of a hydrogen molecule of about 2.2 × 10−10m and the

approximate length of the average travelling distance for helium molecules between

successive collisions of 1.7× 10−7m. The length unit micrometer (µm) is 10−6m and is

a central length unit in this work due to the fact that most phenomena studied in this

thesis are in the micro length scale ranging from 1µm to 1mm. The word micro is also

used in the definition of microscopic-parameters, which refers to atomistic-quantities

(such as the molecular velocities). The microscopic-parameters can be averaged over

certain volumes or masses in order to assess macroscopic-parameters (such as mass-

averaged velocity or temperature) which are commonly used in the solution methods

of the fluid dynamics based on the continuum description.

While manufacturing techniques such as DRIE (deep reacting ion etching) are con-

tinually improved in our modern society ever smaller devices have been brought into

production. The significant advance in pushing the limits of the production skills of

miniaturisation has partly been due to curiosity but it may have found its drive from

new doors being opened to potential markets within important fields such as industrial

and medical applications. Today there are numerous kinds of micro-scaled devices op-

erating and being in the early stages of development, which help us to measure and

actuate at this characteristic length scale. Some of the small devices that have been

produced so far are motors, valves, gears, cantilevers, diaphragms and tweezers of a

dimension of less than 100 µm which can function by electrostatic, magnetic, elec-

tromagnetic, pneumatic and thermal actuators. Many of these devices can be used
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in sensors of micro-flow measurements for pressure, temperature, mass-flow, velocity,

sound, chemical composition and as actuators for linear and angular motion [17] for

example. Many of these devices are commonly referred to as micro-electro-mechanical-

systems (MEMS), which solve quite simple tasks as well as series of operations at the

micro-scale. An interesting and common micro environment where an alternative gas

modelling technique is of particular concern is for hard disk drives where the reading

head is situated about 65 nanometer (nm) above the disk, for which the load capacity

would be erroneously predicted by using conventional macroscopic methods [29]. Other

engineering based modelling areas are micro-motors where the gap between rotor and

the stator is about 3µm [29], micro-channel cooling of IC chips [38] and micro-reactors

for chemical synthesis [38].

With a better understanding of the surface effects experienced by gas flows in a micro

scale environment, here referred to as micro gas flows, we are not only likely to improve

our micro-scale manufacturing techniques but we might also be able to understand

mysteries in nature such as the way mosquitoes manage to hear sounds using brush-like

micro-scale antennae [26]. In the medical field, a better understanding of micro gas flows

can bring forward techniques to provide more efficient delivery of inhaled medications

and to understand the effects of inhaled pollutants better [19]. There are similar effects

present for both micro gas flows and aerospace-flows. For the latter flows these effects

occur because of the dilute gas situation even though the length-scale of aerospace-

flows often are of normal dimensions. Therefore, perhaps a better understanding of

the nature of micro gas flows will help to improve modelling capabilities in micro gas

flows as well as gas flows related to aerospace research. It is, for instance, argued in

the article by Flieseler [16] that orbital travel in the lower atmosphere could be made

possible using solar sails, for which a correct understanding of the molecular surface

interactions would be of major concern. Other similarities between micro-scale flows

and macro-scale flows could be the description of granular flows, which avalanches could

be characterised as according to Reese et al. [51].

Mohamed Gad-el-Hak [17] has listed the supporting funding for this field in the years

1997, 2002 and 2004 amounting to $432 million, $2.2 billion and $3.5 billion respectively,

showing a marked increase. This vast and increasing investment reflects the interest

and desire for better understanding of these flows which will hopefully lead to cheaper

production of more efficient micro-devices becoming more common in our everyday life

in the future.

The constitutive and conventional thermal modelling technique for flows at the macro-

scopic length-scale consists of the Navier–Stokes–Fourier equations, whereas the Navier–

Stokes equations constitute the conventional isothermal fluid modelling technique. With

improved manufacturing capabilities of micro structures it can be shown that our con-

ventional fluid modelling techniques for macro-scale flows applied with conventional

3



boundary conditions fail to predict the behaviour of micro gas flows. This is because

micro gas flows differ from macro gas flows due to certain rarefaction, compressibility

and surface effects [38]. At small gas-flow-scales the continuum description may break

down. Slip flow, thermal creep, rarefaction, viscous dissipation, compressibility, inter-

molecular forces, and other unconventional effects may have to be taken into account,

preferably using only the first principles such as conservation of mass, Newtons second

law, and conservation of energy [18]. The degree of rarefaction is essentially quantified

by the Knudsen number, Kn (Kandlikar et al. [28]). The compressibility effects are

caused by viscous forces induced by the high strain rates [17]. It is shown by experi-

mental investigators such as Turner et al. [63], Jang et al. [27] and Yohung and Chan

[70] that isothermal micro gas flows have significant compressible characteristics. This

contradicts the criteria for isothermal normal scale flows which at the most has density

variations of 5% below a Mach number of 0.3, but above this value the density varia-

tions become significant. It is shown by Yuhong and Chan that for a pressure-driven

flow in-between a two planar-wall geometry the modelled rarefaction effects counteract

the modelled compressibility effects causing the non-linear axial pressure profile tend to

a more linear shape [70]. For micro gas flows the surface-effects also become important

and must be taken into account as a result of the scale difference between the relatively

large ratio of the confining boundary surface area to the volume of the confined gas. The

surface-effects considerably influence a flow in the near-wall region, referred to as the

Knudsen layer, which, because of the small scale of the system, represent a substantial

portion of the gas volume. These effects are transmitted by the gas molecules’ interac-

tions with surfaces. The structure of the Knudsen layer in the gas and the conditions

on fundamental modelling techniques have been investigated by Trilling [62].

A better understanding of micro gas flows can be obtained by inspecting the molecules

and the behaviour of these molecules which averaged properties fully describes the

flow. From a qualitative modelling viewpoint the interactions of the molecules should

ideally be simulated using smooth potential-functions. These are dependant on the

molecular separation distances being repulsive at short range and attractive at long

range. The molecular collision frequency and the closely connected average travelling

distance of molecules between intermolecular collisions — the mean free path, λ —

are often discussed as important descriptive properties of a gas. However, they are

somewhat fictional and simplified representations of the actual molecular behaviour

since molecules do not experience collisions at one instant and therefore they do not have

a corresponding travelling distance between these collisions. Instead they are affected

by each other’s presence everywhere in the gas. It is therefore necessary to determine

the criteria for when a gas molecular collision has occurred. In a modelling aspect

such criteria could be the switch between positive and negative potential between the

molecules as they approach each other or directly the separation distance itself. The

width of the Knudsen layer, within which the surface-effects considerably affect the
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flow, is usually appreciated using the quantity mean free path and is considered by

many investigators to be one to two mean free paths wide.

To indicate the degree of rarefaction, or the state of non-equilibrium of gas flows, the

key parameter, the Knudsen number,

Kn =
λ

L
, (1.1)

is used. In Eqn (1.1) L is the typical length-scale of the flow. This length-scale is usually

adequately determined by:

L =
Θ∣∣∣∂Θ
∂y

∣∣∣
, (1.2)

where Θ is a macroscopic flow parameter (usually density, ρ) and (y) is a spatial

coordinate. For micro channel flows confined by planar parallel walls the separation

distance of the walls is often chosen as the typical length-scale for simplicity instead of

L.

Some effects similar to those occurring for micro gas flows are apparent in macro-scale

cases as well, if the gas is dilute enough. This can be seen from Eqn (1.1): a dilute gas

has a low density and therefore a large mean free path yielding in turn a large Kn.

The relatively large Kn value for micro gas flows is however due to small dimensional

length-scales, which causes the rarefaction effects to become apparent. For micro gas

flows, the state of non-equilibrium is mainly located in the Knudsen layer. Here non-

equilibrium is introduced to the flow by gas molecules interacting with the solid wall

which re-emits molecules with a Maxwellian velocity distribution [32]. The criterion

for a gas to be in equilibrium is to have a Maxwellian velocity distribution. However,

when the gas has a bulk movement different from the wall there will be a difference

in the velocity distributions of the re-emitted molecules and the incoming molecules

causing the non-equilibrium. For macro gas flows the width of the Knudsen layer is

relatively thin compared to the bulk of the flow which means that the Knudsen layer

has a negligible effect on the flow in general. However, for micro gas flows the width

of the Knudsen layer is comparable to the length-scale of the flow which means that

surface-induced rarefaction effects impacts on a considerable large part of the domain

of the flow [34] and must therefore be taken into account for a proper flow description.

Experiments, such as those performed by Arkilic et al. [3] and Colin [10], have shown

that the conventional Navier–Stokes fluid flow model (presented in section 2.4.2) cannot

capture the correct mass flow rates of a pressure-driven flow in micro-channels unless

certain velocity-slip boundary conditions are imposed at the walls. The conventional

no-slip boundary condition commonly used in conjunction with the Navier–Stokes equa-

tions is valid only for cases where the gas is in a state of near-equilibrium or can properly

be represented by a continuum description. This gas state is considered to occur for
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Kn ≤ 0.001 and is referred to as continuum flow, as illustrated in Figure 1.1. Micro

gas flows of larger Kn require boundary conditions that allow a certain amount of

velocity-slip [17]. The lower threshold value for applying the slip boundary condition is

generally Kn = 0.001, which therefore is referred to as the lower limit of the slip-flow

regime. For gas flows at larger Kn, further modelling modifications are needed because

the linear constitutive relationships of Navier–Stokes equations becomes invalid. This

threshold is at about Kn = 0.1, which is known as the lower limit of the transition

regime. The name “transition regime” is appropriate in the sense that the gas-flow is

not well described by either a continuum description or by the free-molecular flow de-

scription occurring at about Kn ≥ 10. The transition regime, which this work mostly

focuses on is generally recognised as a problematic area to describe and predict.
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Slip-flow regime

Transition regime
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Kn = 0.0001 0.001 0.01 0.1 1 10 100

Figure 1.1: Knudsen number regime classification from Schaff [52], Gad-el-Hak

[17].

.

The modelling techniques available for rarefied flows are illustrated in Figure 1.2, and

their interconnections. Fluid flows can either be modelled as they really are, i.e. a col-

lection of molecules, or as a continuum, being indefinitely divisible. Molecular models

can either be deterministic, consisting of the technique of molecular dynamics (MD), or

statistical, originating from the Liouville equation. The Liouville equation can be used

for deriving the Boltzmann equation, being a fundamental description of kinetic theory

for gases. The Liouville equation is also a fundamental building block for the conven-

tional continuum methods and for the popular modelling method of direct simulation

Monte Carlo (DSMC).

1.1 Boltzmann equation

The Boltzmann equation is derived from the Liouville equation, which is a fundamen-

tal statistical mechanics equation for gases. The Liouville equation is based on the

phase-space function which consists of the combination of three coordinates describing

location in physical-space and three coordinates describing velocity-space, resulting in

a six-dimensional space. From the phase-space function the probability of finding a

molecule with a particular position and velocity at any given time can be defined based
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Figure 1.2: Molecular and continuum gas flow models [17].

on the conservation of the 6N phase-space distribution function over the N molecules

in the system. The Liouville equation does not consider the changes of the phase-space

distribution due to molecular collisions as opposed to the Boltzmann equation [6].

Although it would be ideal to achieve the exact dynamics of N particles, this is not

possible since in practical calculations this requires a number of variables in the order of

6N [8, 62]. This is why Boltzmann and Maxwell derived the Boltzmann equation which

is only dependent on the one particle distribution function, obtained by integrating

the Liouville equation and using the assumption of the studied gas being dilute and

considered to be in a state of molecular chaos [6]. With molecular chaos it is assumed

that the phase-space of two colliding molecules is the same as the product of the

corresponding phase-spaces for both molecules. In contrast to the Liouville equation

the Boltzmann equation is dependent on a non-linear collision integral that describes

the net effect of populating and depopulating collisions on the distribution function

[17].

The five conservation equations of mass, momentum and energy can be obtained from

the Boltzmann equation by multiplying the distribution function with molecular mass,

momentum and kinetic energy respectively and then integrating over all velocity space.

Although the Boltzmann equation remains valid for all Kn and it produces much richer

detail of the gas state than the Navier–Stokes–Fourier equations it is relatively expen-

sive in terms of computational capacity [20]. Sharipov [55] stated that the Boltzmann

equation is particularly recommended for modelling low Mach flows and flows with sim-

ple geometrical configurations. The solutions of the Boltzmann equation to arbitrary

geometries are difficult to find, mostly due to the non-linearity of the collision inte-

gral. Simplified models of the collision integral have therefore been proposed in order

to facilitate analytical solutions. An example of such a model is the Bhatnagar, Gross

and Krook (BGK) model, which is used as a validation reference for the Couette flow

velocity profiles in chapter 5.
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1.2 Continuum methods

The continuum models consisting of the Euler, Navier–Stokes–Fourier and Burnett

equations are non-linear partial differential equations describing the conservation of the

macroscopic flow parameters mass, momentum and energy in every small sub-volume of

a flow. These equations can be obtained through a Chapman–Enskog expansion of the

Boltzmann equation using Kn as a smallness parameter. This expansion yields a first-,

second- and third-order of accuracy with respect to Kn for the Euler, Navier–Stokes–

Fourier and Burnett equations respectively. Alternatively the Euler and Navier–Stokes–

Fourier equations can be derived directly, although for the Navier–Stokes–Fourier equa-

tions some empiricism is necessary to close the resulting indeterminate set of equations

[17]. The Euler equation is a form of the Navier–Stokes–Fourier momentum equation,

as shown in section 2.4.2, which is obtained in case the viscous forces terms are ex-

cluded. The Euler equations do not have viscous stress terms and comprises therefore

a simple and appropriate solution method for equilibrium flows at Kn ≈ 0, as noted by

Xue et al. [69]. When solving non-equilibrium flows viscous stresses are common which

makes the Euler equations inappropriate for these flows. The Navier–Stokes–Fourier

equations become invalid at about Kn = 0.1 due to rarefaction effects, which for exam-

ple is verified by a calculation of a Couette flow by Zheng et al. [71]. It is also stated by

Zheng et al. that none of the continuum methods produce good results for the Couette

flow case at Kn > 0.1. The Burnett equations have non-linear stress to strain rate and

temperature to heat flux relationships, which makes these equations potentially more

appropriate to model micro gas flows. As noted by Dongari [13], the Navier–Stokes

equations generally perform better than the Burnett equations for Kn < 0.01. It is

reported by Lockerby and Reese [31] that the Burnett equations are only stable up to

Kn = 1. Since this thesis is mainly dedicated to extending the validity of the isothermal

Navier–Stokes–Fourier, equations section 2.4.2 offers a more thorough presentation of

this method.

The continuum methods are dependent on certain boundary conditions for the macro-

scopic parameters. One of the main interest of micro gas flows is what type of boundary

conditions shall be applied in order to account for molecular gas/surface interactions

correctly. There are generally first- and second-order sets of velocity and temperature

boundary conditions, with regard to their accuracy in Kn [17]. Since it is still of great

interest to find appropriate boundary conditions for micro gas flows there have also

been attempts of slightly more heuristic types, such as the 1.5 order slip boundary con-

dition by Mitsuya [43], and a hyperbolic-tangential function-based boundary condition

by Xue and Fan [68]. A physical and chemical approach to describe the velocity-slip

is presented by Myong et al. [45] where the molecules of the gas can be adsorbed for

some time, by a wall having a long-range force which releases the molecules after some

time lag. A temperature boundary condition has also been derived based on Langmuir’s
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theory. This temperature boundary condition has been investigated by Myong et al.

[44] where results showed a decreased heat transfer for increased Kn.

Modelling of surface-effects in the near-wall area of micro gas flows should ideally be

performed using kinetic theory. However, an approximate extension to the Navier–

Stokes–Fourier equations would be less demanding in terms of computational capacity,

and the simplicity and practicality of the Navier–Stokes–Fourier equations make it de-

sirable to solve flow cases using this model for as high Kn flows as possible. It was

suggested by Stops [60] and Guo et al. [22] that the validity of the Navier–Stokes equa-

tions may be extended to larger Kn by a modification to the conventional expression

for the molecular mean free path. This modification would incorporate gas molecular

interactions with solid boundaries, in addition to the inter-molecular-gas collisions in

the mean free path expression. This yields a geometry-dependent mean free path, which

in this thesis is referred to as the effective mean free path. Using similar reasoning as

Stops and Guo et al. this thesis presents an effective mean free path in chapter 3, which

is then compared to measurements of the effective mean free path using molecular dy-

namics, in chapter 4. The effective mean free path expression is used for solving the

Navier–Stokes equations in chapter 5 for isothermal cases for the discontinuous veloc-

ity boundary conditions of first- and second-order accuracy. Here the focus is on the

predictions of Couette and Poiseuille planar wall cases, where the velocity flow profiles

and the Poiseuille mass flow rate are studied.

1.3 DSMC method

The DSMC method is a statistical computational molecular approach for solving rar-

efied gas problems. The DSMC method treats the molecular collisions probabilistically

and the molecular motions deterministically. In this method a simulated DSMC particle

represents many real molecules, which causes a lower computational demand than if all

molecules where to be simulated. Another computational advantage with the DSMC

method is that the molecular motions are uncoupled with the intermolecular collisions

over small time intervals. The DSMC method is, like the Boltzmann equation, valid

for all Kn but becomes computationally expensive for Kn < 0.1, which fortunately is

the upper limit of the Navier–Stokes equations with an applied slip boundary condi-

tion. Since the non-linear collision term of the Boltzmann equation is difficult to solve

for flows in the transition regime the best approach for this regime is now the DSMC

method [17]. Sharipov has listed situations for which the DSMC method is particu-

larly recommended: high Mach flows, small (compact) region of gas-flows, complicated

geometrical configurations and flows with dissociation, recombinations, ionisation etc.

The Boltzmann equation, being based on kinetic theory and derived through physical

and probabilistic reasoning has assumptions that are very close to those of the DSMC
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method. Two of these common assumptions are that the studied gas is dilute and in a

state of molecular chaos.

The DSMC method is used in this thesis to validate the extended Navier–Stokes equa-

tions in section 5.1.

1.4 Molecular dynamics

In molecular dynamics every single molecule’s position and velocity is modelled and is

initialised from the start of a simulation. The molecular movements are determined by

using Newton’s law relating the present intermolecular forces to the molecular masses

and accelerations. Molecular dynamics is therefore a deterministic model having only

one possible simulation outcome. To obtain macroscopic flow quantities such as density,

velocity, pressure and temperature from molecular dynamics an averaging over the

molecular parameters is required. This vast amount of averaging can be understood

considering that all changes in a flow spread out in the gas domain through molecular

collisions, which for a neon gas molecule in a gas at standard temperature and pressure

occurs on average about every 2.6× 10−10s (as is shown in section 4.2). So, if a certain

resolution of a desired macroscopic parameter is to be evaluated an averaging is needed

that covers a sufficient number of molecules sampled over a sufficient amount of time.

An example of the vast amount of sampling can be made by analysing the molecular

dynamics method when used to sample the mean free path in chapter 4. Here the mean

free path is recorded for three different noble gases, for various cases, using between

6300 and 170 000 molecules. The sampling of the molecular mean free paths is typically

made over a time range of about 3ns. Since every molecule has its collision-free travelling

distance recorded every time step of about 1 × 10−14s this adds up to about 2 billion

samples for the case of about 6300 molecules. If the sampling time is short compared to

the averaged collision frequency time the result will be dominated by highly fluctuating

values. If however the averaging is done over a time-scale which is too long compared

to the time it takes for molecules to travel the average distance of the mean-free-path

then the time-transient changes of the flow will be missed: Kandlikar et al. [28]. To give

an idea of the appropriate sampling domain size it is reported by Karniadakis et al.

[29] that a sampling volume of 10 000 molecules results in 1% statistical fluctuations of

the macroscopic quantities, but this depends on whether there are transient changes in

the gas domain. If the flow is at a steady state it is possible to sample fewer molecules

but over a longer time period.

Molecular dynamics is commonly used to simulate liquids at the nano-scale. This is

due to the amount of simulated molecules being few enough at this scale, taking into

consideration that the typical simulation time is proportional to the square of the

number of simulated molecules. Molecular dynamics is also appropriate for simulating
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liquids since liquids require a correct description of a continuous intermolecular interac-

tion potential as opposed to gas flows which mostly experience collision-less travelling

paths. However, in this thesis the method of molecular dynamics is used to simulate

gas flows since a deterministic validation method is desired. This method is also used

because it is difficult to use discontinuous potential forces, such as the fixed diameter

hard-sphere model (presented in section 2.2.1), in direct numerical simulations where

molecules are moved in discrete time-steps. This would yield infinite forces of repulsion

when collisions occur at which point the molecular-diameters to cross over each other.

The method of molecular dynamics is therefore of great value to this research and is

used in chapter 4 to validate the theoretical effective mean free path expression derived

earlier in chapter 3.

1.5 Hybrid methods

There are also undergoing investigations of hybrid methods which are designed to

couple the fluid modelling techniques of the particle-based methods and the continuum

methods. This approach is promising for modelling rarefied micro gas flows since it

can both benefit from detailed description of the molecular behaviour in the near-wall

areas by the particle-based method and benefit from the computationally less expensive

continuum methods which are applied in the bulk regions of the flow. For micro gas

flows, investigators such as Schwartzentruber [54] have developed hybrid methods where

the Navier–Stokes equations and the DSMC method are coupled. A coupling has been

made between the Euler equations and the DSMC method by Wijesinghe et al. [67]. A

purely-particle based solver consisting of molecular dynamics and the DSMC method

has successfully been developed by Nedea et al. [46].
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Chapter 2

Micro gas flows: molecular and

continuum flow models

Modelling of microfluidics, comprising both gas and liquid flows at the micro-scale, is

a relatively young research field having its origins in the early 1980s. Micro gas flows

has certain non-equilibrium effects which are similar to the effects of dilute aerospace

gas flows, which mainly has its origin in the USSR in 1958 due to military purposes

[28]. These resemblances has caused much of the gas-flow theory to have been passed

on from the knowledge base of the aerospace gas flows to a knowledge base of micro

gas flows.

In the next section some key parameters are presented, which are often used to describe

and calculate micro gas flows.

2.1 Key molecular parameters

For rarefied micro gas flows the molecular diameter d, the mean molecular spacing

δsp and the mean free path λ are of special concern. The molecular diameter is a

somewhat fictional parameter which has several modelling representations that can be

used when considering interactions between molecules. The inter molecular interactions

are described most realistically using a molecular potential which is a function of the

molecular separation distances denoted here by r, which is the magnitude of the relative

position vector between the two molecules, r . A common assumption for dilute gases

is that molecules are sufficiently separated to only experience collisions involving two

molecules. These collisions are referred to as binary collisions.

In the following sections various models of molecular representations will be presented.

These molecular models consider that all occurring collisions conserve linear-momentum

and energy between the before and after states of collision occurrences [6]. Collisions
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that conserve linear momentum and energy are elastic-collisions, which require

miCi + mjCj = m∗

i C
∗

i + m∗

jC
∗

j = (mi + mj)Ccm, (2.1)

for the momentum and

miC
2
i + mjC

2
j = m∗

i C
∗2
i + m∗

jC
∗2
j , (2.2)

for the energy conservation. In Eqns (2.1) and (2.2) mi and mj are the masses and

Ci and Cj are the peculiar velocities of two colliding molecules with indexes i and

j respectively. The star notation (*) indicates the post-collision state and Ccm is the

velocity of the centre of mass of the pair of molecules.

An illustration of how the micro gas flow parameters — the molecular diameter, the

mean molecular spacing and the mean free path — can be inferred by Figure 2.1. The

parameter δsp is the average separation distance of the molecules in the gas, which can

be related to the distance between molecule 1 and 2 denoted by r12. If a gas were in

perfect equilibrium, all the molecules would be at equal distances from each other.

The average separation distance can be calculated from the molecular density, n, as

n = δ−3
sp . The parameter λ can be realised by using the illustration of Figure 2.1 where

a representative collision cylinder is drawn, indicating the collision course of molecule

i, having the peculiar velocity Ci, with the collision candidate molecule j with peculiar

velocity Cj . These molecules are separated by rij , and a collision occurs if the centres

of the molecules are separated by less than d. Similarly this can be formulated using

the collision area π(d/2)2, within which a collision occurs if the molecular centres are

both inside. The collision area is illustrated together with its extrusion in the direction

of the relative molecular velocity Crel = Ci −Cj . Therefore during time, t, molecule i

travels the distance t |Ci|, during which time this molecule is anticipated to experience

πd2 |Crel| tn collisions. The ratio of the travelling distance of molecule i, during time t,

to the anticipated number of collisions in this time determines the mean free path as

follows:

λ =
t |Ci|

πd2 |Crel| tn
=

t |Ci|
πd2
√

Ci · Ci − 2Ci · Cj + Cj · Cjtn
. (2.3)

If molecular collisions are considered to be uncorrelated, Ci · Cj = 0 and that the

magnitude of the peculiar velocities are randomly distributed yielding that on average

|Ci| is equal to |Cj | the following mean free path definition for hard spheres is obtained:

λ =
1√

2πd2n
. (2.4)

In the following sections the hard-sphere model (HS), the variable-hard-sphere model

(VHS) and two smooth-potential models (SP) are presented. The SP models are repre-
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Figure 2.1: Example of a molecule i, with peculiar velocity Ci, on a collision

course with molecule j, with peculiar velocity Cj. The separation between

molecule i and j is denoted by rij. The cross-sectional collision area is π(d/2)2,

having its axial centre at the position of molecule i, which is extended in the

direction Crel = Ci − Cj to illustrate collision candidates.

sented here by the inverse-power-law model and the Lennard-Jones model. The various

models for describing the mean free path are dependent on the gas to be sufficiently

dilute for the effects of multiple molecular collisions to be negligible. This requirement

is fulfilled if:
d

δsp
≪ 1, (2.5)

as described by Kandlikar et al. [28]. Trilling [62] also describes the characterisation of

dilute gases similar to Eqn 2.5 except for that δsp is replaced by λ.

2.2 Molecular interaction models

Here the various typical molecular representations are presented consisting of the hard-

sphere molecules, the variable-hard-sphere molecules, molecules represented by the

inverse-power-law model and by the Lennard-Jones model. Some of the molecular rep-

resentations are particularly suitable for certain fluid modelling methods which is why

an understanding of these molecular representations is particularly important.

2.2.1 The hard-sphere model

A popular and relatively simple method for describing the behaviour of molecules is

the fully elastic hard-sphere model (HS), Bird [6]. For a single-species gas the hard-

sphere potential (describing the intermolecular interactions) is infinite if the molecular

14



separation between two molecules, r, is smaller than the molecular diameter, d, and

zero if r is larger than d. From this representation the derivation of the molecular mean

free path of Eqn 2.4 can easily be realised.

It can be shown that Eqn (2.4) can be expressed using macroscopic parameters as:

λHS =
16

5
√

2π

µ

ρ
√

RT
, (2.6)

where µ is the dynamic viscosity, ρ is the mass-density, R is the specific gas constant and

T is the gas temperature [28]. By combining Eqn (2.4) and Eqn (2.6) the hard-sphere

diameter can be expressed as:

dHS =

√
5

16

ρ

nµ

√
RT

π
. (2.7)

The hard-sphere model thereby represents molecules as spheres having a fixed radius at

which distance they have an unyielding surface for interactions with other molecules.

If molecules with this representation collide with each other they will experience an

instantaneous fully elastic collision. The trajectory of a colliding hard-sphere molecule

is illustrated in Figure 2.2 indicated by the linear dashed path P → Q∗ → R. This

is an approximation to the more realistic case where intermolecular forces are present

for every molecular separation distance, which is normally represented by a smooth-

potential force. This molecular model is referred to as a soft-sphere model (SS) which

is presented in sections 2.2.3 and 2.2.4. From the soft-sphere description a fictitious

diameter of the molecules can be imagined, dSS. This diameter indicates an estimated

distance at which point molecules on average change directions and starts to move

away from each other in a manner that results in approximately the same trajectory of

movement in-between collisions as for the hard-sphere representation. The trace of a

colliding smooth-potential molecule is outlined by the curved solid path P → Q → R.

During a collision-state the trajectories of the two different molecular representations

differ. However the molecular representations yield similar post collision effects, i.e. the

molecular trajectories of the models converge at points P and R where the models

obtains the same molecular velocities since elastic collisions are considered. Since the

smooth-potential model is more complex than the hard sphere model the choice of a

molecular representation might become important depending on whether the details of

the molecular collisions or the free molecular flight is of special concern.

2.2.2 The variable-hard-sphere model

The variable-hard-sphere model is a version of the hard-sphere model derived by Bird [6]

to be used with the DSMC flow simulation method (described in section 1.3). The main
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R

P

Q∗Q
dSS

dHS

Figure 2.2: Illustration of a molecular trajectory during a molecular collision

for both a hard-sphere model (P → Q∗ → R) and for a smooth-potential

model (P → Q → R). Here dHS denotes the hard-sphere diameter and dSS

denotes a soft-sphere diameter.

idea of the variable-hard-sphere model is to consider that a molecule travelling with a

lower velocity to be more likely to experience a collision than a molecule travelling at a

higher velocity. This aspect is implemented through the variable-hard-sphere molecular

diameter by allowing it to vary with molecular peculiar velocity as follows:

dVHS = dref(Cref/C)υ, (2.8)

where a reference diameter dref and a reference molecular velocity Cref are used and υ

is a model constant. The mean free path from the variable-hard-sphere is expressed as:

λVHS =
µ√

2πRT

2(7 − 2ω)(5 − 2ω)

15
, (2.9)

where ω = 1/2 + υ is a constant that relates viscosity to temperature as µ ∝ Tω and υ

is a gas specific modelling parameter [6].

2.2.3 The inverse-power-law: Maxwell molecules

Another alternative to the hard-sphere molecular potential model is the inverse-power-

law which belongs to the family of soft-sphere models (Kandlikar et al. [28]). The

soft-sphere model has a smooth potential function of the form:

ΦIPL = κIPL/
(
(η − 1) rη−1

ij

)
, (2.10)

which acts on molecules i and j separated by a distance rij and κIPL and the exponent η

are constant model parameters. From Eqn (2.10) the acting force between the molecules

16



is calculated by:

FIPL = −∇ΦIPL =
κIPL

rη
ij

. (2.11)

The function FIPL is the acting force between two molecules and it is highly repulsive

for short ranges and asymptotically approaches an negligible repulsive force for large

rij.

An approximation to the hard-sphere model can be achieved by setting η = ∞ in Eqn

2.11 [28]. Similarly, the Maxwell molecular model is achieved by setting η = 5, which

makes the collision probability independent of molecular velocities and thereby also the

mean free path [6].

As early as 1879 Maxwell proposed the formulation for the mean free path for Maxwell

molecules1:

λMM =
µ

ρ

√
π

2RT
, (2.12)

which is about 2% lower than the mean free path value from the hard-sphere represen-

tation in Eqn (2.6) [28].

It can be assumed that molecules of an unbounded gas are equally likely to experience

collisions whichever travelling direction they move in or if the trajectories are linear or

curved. The latter is dependent on whether the molecules are affected by instantaneous

or long-range potential interactions. Considering these assumptions, Eqn (2.4) can be

related to Eqn (2.12), to obtain the diameter of a Maxwell molecule dependant on

viscosity:

dMM =

√
ρ

πnµ

√
RT

π
. (2.13)

2.2.4 Lennard-Jones: attractive and repulsive potential

A more realistic description of the molecular behaviour can be obtained using the

short-range repulsive and long-range attractive smooth and continuous Lennard-Jones

potential given by:

ΦLJ = 4ǫ

[(
σ

rij

)12

−
(

σ

rij

)6
]

. (2.14)

In Eqn (2.14), ǫ is related to the interaction strength of the molecules and σ corresponds

to the distance at which point the potential between the two molecules is zero [29]. The

interaction force between two Lennard-Jones molecules is

FLJ = −∇ΦLJ = 24ǫ

[
2

(
σ12

r13
ij

)
−
(

σ6

r7
ij

)]
. (2.15)

1The relation between λ and µ for Maxwellian molecules is derived in the section 2.4.1.
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Usually the Lennard-Jones parameters σ and ǫ are set to specific values corresponding

to certain molecules, which can be found in look-up tables, such as Maitland et al.

[39]. The Lennard-Jones potential is mostly used for describing the behaviour of liquid

flows meaning that alternative methods for finding these parameters might be needed

for micro gas flows.

The Lennard-Jones parameters σ and ǫ can be related to the macroscopic parameters

of temperature and viscosity according to Bird et al. [7]:

σ =

√
5

16

ρ

nµΩµ

√
RT

π
, (2.16)

where Ωµ is called the collision integral for viscosity affecting the molecular trajectories

caused by binary collisions. The collision integral is a slowly varying function of the

dimensionless temperature T ∗ = kBT/ǫ 2 In case the molecules of a gas are described

by a hard-sphere representation instead of a smooth-potential function then Ωµ equals

unity and σ equals the hard-sphere diameter, dHS.

2.2.5 Comparison of molecular models

The use of various potential models influences what is considered as the molecular

diameter, d and thereby also the length of the mean free path, λ. However, since the

mean molecular spacing, δsp, is determined from the molecular number density this

variable is not likely to be influenced by the choice of potential model.

In this section a comparison is made of the different potential models: the hard-sphere

model, the inverse-power-law model and the Lennard-Jones model. The inverse-power-

law is examined for both η = 5 (corresponding to Maxwell molecules) and η = 100

(which approaches the hard-sphere model). The molecular potential models are pre-

sented in Figure 2.3, where rij is normalised with σ for the Lennard-Jones model, and

parameters κIPL and ǫ are set to unity.

It is seen that the hard-sphere model has a discontinuous potential shift from infinity at

a separation distance of rij < d to zero at a separation distance of rij > d. The inverse-

power-law shows a smooth repulsive potential (for both η = 5 and η = 100) reaching

infinity as rij approaches zero and approaches asymptotically zero at the repulsive side

as rij reaches infinity. Finally, the more realistic molecular model of the Lennard-Jones

potential is shown being both short-range repulsive and long-range attractive becoming

infinitely repulsive as rij reaches zero, zero at σ = 1, and approaches asymptotically

zero at the attractive side as rij reaches infinity.

2The function Ωµ can be estimated by 1.16145
T∗0.15610 + 0.52487

exp(0.77320T∗ )
+ 2.16178

exp(2.43787T∗)
[7].
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Figure 2.3: Potential energy [J] between molecules i and j for the hard-sphere

model, inverse-power-law model (for both η = 5 and η = 100) and the Lennard-

Jones model. Here the modelling parameters κIPL and ǫ are set to unity.

2.3 Maxwellian velocity distribution: a condition for

equilibrium

A distribution function for molecular velocities in a gas at equilibrium was published in

1860 by Maxwell and has been fundamental to many of the fluid modelling techniques.

The Maxwellian velocity distribution is valid for isotropic gases where there are no

significant gradients of density, mass average velocity or temperature [7, 49].

From the Maxwellian velocity distribution, f(C), the molecular speed distribution,

f(C), can be obtained by considering the magnitude of the velocities in the distributions

having the form:

f(C) = 4π

(
1

2πRT

)3/2

C2 exp (−C2/2RT ), (2.17)

where C is the magnitude of C [65]. In Eqn (2.17) the likelihood for a molecule to have

a particular speed is described from which it is possible to calculate some important

quantities such as the most probable molecular speed Cpr, by

df(C)

dC
= 0, (2.18)

yielding

Cpr =
√

2RT. (2.19)
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The mean molecular speed, 〈C〉, is the mathematical average of the speed distribution:

〈C〉 =

∫
∞

0
Cf(C)dC =

√
8RT

π
. (2.20)

The root-mean-square speed, Crms, is the square-root of the averaged squared speed,

i.e.

Crms =

(∫
∞

0
C2f(C)dC

)1/2

=
√

3RT. (2.21)

The molecular speed distribution, f(C), of Eqn (2.17) for neon gas at 273.13K having

R = 412.2 [J/(kg K)] is illustrated in Figure 2.4 together with the corresponding typi-

cal speeds Cpr = 474.52m/s, 〈C〉 = 535.46m/s and Crms = 581.19m/s. It is shown in

section 4.5.2 that the Maxwellian velocity distribution can be used in numerical exper-

iments to set molecular velocities in a random manner corresponding to a particular

temperature.

The Maxwellian speed distribution is used in this thesis to theoretically couple the

mean free path with viscosity in section 2.4.1. It is also used to analyse the experimental

measurements of the mean free path in the close vicinity of a wall in section 4.5.2.

0
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0.002

0 200 400 600 800 1000 1200 1400

f
(C

)

molecular speed C [m/s]

Cpr 〈C〉 Crms

Figure 2.4: Maxwell’s molecular speed distribution f(C) from Eqn (2.17) to-

gether with the most probable speed, Cpr, the mean molecular speed, 〈C〉, and

the root-mean-square speed, Crms.

2.4 Navier–Stokes–Fourier models for micro gas flows

In this section the Navier–Stokes–Fourier equations are introduced. These equations are

dependent on the properties viscosity and heat conductivity. Since this thesis focuses

on the influence of molecular behaviour on isothermal cases the viscosity dependence

20



on the unconfined mean free path is presented in section 2.4.1. The Navier–Stokes–

Fourier equations are presented in section 2.4.2 and the used discontinuous boundary

conditions are presented in section 2.4.3.

2.4.1 Viscosity: molecular transport of momentum

Before presenting the Navier–Stokes–Fourier equations the important fluid property

viscosity needs to be clarified. Viscosity for fluids with low molecular weight can simply

be conceptualised and referred to as the substrate’s resistance to flow [7].

A gas in a state of non-equilibrium is considered to have a non-uniform distribution of

some macroscopic properties (flow velocity, temperature, composition, etc.). Because

these properties are defined by molecular properties and molecular interactions they

tend to diffuse due to random thermal molecular movements. Molecules can thereby

transfer macroscopic properties by travelling from a region of one state to a region of a

significantly different state. In this process, molecules travel in a random manner from

a region where they are on average in equilibrium, to regions where they are out of

equilibrium. The result of these molecular transport processes yields the appearance,

at the macroscopic level, the well-known non-equilibrium phenomena of mass diffusion,

momentum exchange and heat conduction [65]. However, due to this process differ-

ences tend to even out i.e. equilibrate over time if no outer influences are present. As

an example, viscosity is a macroscopic gas property affecting the rate of momentum

exchange.

In Newton’s law of viscosity it is stated that the shear force per unit area (here referred

to as the shear stress tensor, Π) is proportional to the velocity gradient of the fluid, as

follows:

Πxy = −µ
dvx

dy
, (2.22)

where vx is the x-component of the velocity of the flow, and y is the direction normal to

the velocity. In Eqn (2.22) the viscosity, µ, is a fluid property which can be empirically

determined. However, as shown in this section, viscosity can also be determined from

the elementary kinetic theory of gases.

A kinetic theory analysis of viscosity is considered in Figure 2.5 which shows a velocity

profile changing only in the y-direction. In this figure a molecule is illustrated leaving a

plane at (y−a) having the corresponding velocity to this plane and arriving at a plane

at y achieving the new velocity corresponding to this plane. This occurrence would

result in the following momentum exchange between the two planes at (y − a) and y:

Πxy = Zm vx|y−a − Zm vx|y , (2.23)
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Figure 2.5: Molecular transport of momentum from the plane at (y − a) to

the plane at y, where a is the vertical separation of the planes. Characteristic

figure from [7].

where Z is a first approximation of the average number of molecules crossing the plane

per unit area and per unit time from either side of this plane, represented by:

Z = βnC. (2.24)

The coefficient β is a constant of proportionality which is set to 1/4 by Bird et al. [7]

considering only molecules passing from in one direction of a plane and should therefore

instead be 1/2 taking into account all molecules passing the plane. This coefficient is

set to 0.499 ≈ 1/2 by Vincenti and Kruger [65] taking into account previous molecular

collisions in addition to other second-order effects.

It is possible to use the rough approximation that the distance, a, is equal to the

mean free path3 and that the velocity profile between the two planes is linear [65]. The

velocity for the plane at y can then be expressed as:

vx|y = vx|y−a + λ
dvx

dy
. (2.25)

By using Eqn (2.23) the following expression is achieved:

Πxy = −βnmCλ
dvx

dy
. (2.26)

3It can be realised by inspection of Figure 2.5 that a molecule has to travel strictly orthogonal to
the flow direction in order for a = λ. Bird et al. [7] postulated that a ≈ 2/3λ.
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Now, if the average thermal molecular velocity

C =

√
8RT

π
, (2.27)

from the Maxwellian velocity distribution is inserted into Eqn (2.26) with the value

β = 1/2 the relationship between the mean free path and viscosity is achieved by

comparison to Eqn (2.22) i.e.:

µ = λρ

√
2RT

π
, (2.28)

which can recognised from Eqn (2.12). It should be noted that this relationship requires

that the gas is unbounded and far away from any solid surfaces. It is investigated in

chapter 5 how a solid surface could influence Eqn (2.28) in a manner such that the

molecular travelling distance a is shortened by gas–wall molecular collisions as well as

gas–gas molecular collisions.

2.4.2 Navier–Stokes–Fourier equations

The continuum description of a gas is expressed by macroscopic quantities such as

mass, velocity, pressure and temperature which are defined locally at every point of

the gas. This section presents the traditional continuum model of the Navier–Stokes–

Fourier equations, which can be obtained using the macroscopic quantities in balanced

relations of continuity of mass and conservation of momentum and energy. If the gas

flow is assumed to be isothermal it can be described using only the mass and momentum

equations, which are then referred to as Navier-Stokes equations. The literature resource

used in this section is mainly obtained from Bird et al. [7].

The equation of mass balance, also referred to as the continuity equation, can be ex-

pressed by considering the change of mass of a small stationary volume element in the

following way:

∂ρ

∂t︸︷︷︸
= − (∇ · ρv)︸ ︷︷ ︸, (2.29)

rate of increase of

mass per unit

volume

net rate of mass

addition per unit

volume by convection

where v is the mass average velocity. If the gas flow is modelled as incompressible the
mass density remains a fixed quantity and Eqn (2.29) is reduced to:

(∇ · v) = 0. (2.30)
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The equation of momentum conservation can be expressed by considering the change

of momentum to a small stationary volume element due to acting processes in the

following way:

∂

∂t
[ρv]

︸ ︷︷ ︸
= − [∇ · ρvv]︸ ︷︷ ︸ −∇p − [∇ · Π]︸ ︷︷ ︸ +ρg︸︷︷︸, (2.31)

rate of increase

of momentum per

unit volume

rate of momentum

addition by

convection per

unit volume

rate of momentum addition

by molecular transport per

unit volume

external

force on

fluid per

unit volume

where p is the pressure and g is the gravitational force. The viscous stress tensor

is derived from Newton’s viscosity law [7] and can be expressed in the vector-tensor

notation as:

Π = −µ
{
∇v + (∇v)t}+

(
2

3
µ − κ

)
(∇ · v) I , (2.32)

where κ is the bulk viscosity4. Here I indicates the unit tensor with components Iab,

and (∇v)t is the transpose of the velocity gradient tensor. For incompressible cases

Eqn (2.32) is reduced to:

Π = −µ
(
∇v + (∇v)t

)
. (2.33)

There are two special cases of Eqn (2.31). The first is referred to as the Stokes flow

equation and is achieved if the acceleration terms are neglected, yielding:

0 = −∇p − [∇ ·Π] + ρg. (2.34)

The second case is achieved if the viscous forces i.e. [∇ · Π] = 0 are neglected, which

results in Euler’s equation of motion given by:

∂

∂t
ρv = − [∇ · ρvv ] . (2.35)

The energy conservation equation can be expressed by considering the rate of change

of kinetic and internal energy to a sub-volume of a gas. This is due to the result of heat

change and work acting on the system. The equation of energy can be expressed as:

4For monatomic gases κ equals zero.
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∂

∂t

(
1

2
ρv 2 + ρe

)

︸ ︷︷ ︸
= −∇ ·

(
1

2
ρv2 + ρe

)
v

︸ ︷︷ ︸
− (∇ · q)︸ ︷︷ ︸

rate of increase of

energy per unit

volume

rate of energy addition

per unit volume by

convective transport

rate of energy addition

per unit volume by heat

conduction

− (∇ · pv)︸ ︷︷ ︸ −∇ · [Π · v ]︸ ︷︷ ︸ +ρ (v · g)︸ ︷︷ ︸, (2.36)

rate of work done

on fluid per unit

volume by pres-

sure forces

rate of work done

on fluid per unit

volume by vis-

cous forces

rate of work done on

fluid per unit volume

by external forces

where e is the internal energy and q is the heat-flux vector.

It is possible to express Eqn (2.36) in terms of temperature by using Fourier’s law of

heat conduction:

q = −k∇T, (2.37)

where k is the thermal conductivity, and by using the relation between the internal

energy5 and temperature given by:

e = cvT, (2.38)

where cv is the specific heat at constant volume. Then the energy equation, without

external forces, is represented in terms of temperature as:

ρcv

(
∂T

∂t
+ v · ∇T

)
= −p∇ · v + ∇ · [k∇T ] + Π · ∇v . (2.39)

The four quantities p, ρ, v and T are thereby coupled by the three balanced equations

of mass, momentum and energy of Eqns (2.29), (2.31) and (2.36) respectively. For gases

a fourth relationship is fulfilled by the perfect gas law,

p = ρRT, (2.40)

which often is used for closure of the Navier–Stokes–Fourier equations.

5The internal energy is here assumed to be the same as the translational energy, which is the case
for monatomic gases.
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2.4.3 Discontinuous boundary conditions

The compressible Navier–Stokes–Fourier equations can adequately predict micro gas

flows up to about Kn = 0.001, using boundary conditions for tangential velocity and

temperature which are set equal to the corresponding values of the solid boundaries

(Barber et al. [5]). These boundary conditions are referred to as no-velocity-slip and

no-temperature-jump. However, for larger Kn the quasi equilibrium state of the gas

becomes invalid yielding that modelling modifications are needed at the boundaries.

The breakdown of the quasi equilibrium description and the significance of discontinu-

ous velocity boundary conditions are illustrated in Figure 2.6. Here the mean free path

and the mass average velocity for a rarefied Couette gas flow case is described, with the

average molecular behaviour. In this figure to the left: a gas of a highly equilibrium state

has a linear velocity profile and the gas at the boundaries has the same velocity as the

boundaries. The centre figure shows a more rarefied gas where the molecules leaving the

walls have on average a tangential velocity which is the same as the walls, in agreement

with gases in the near-equilibrium state. In between the walls, a change of molecular

velocities can only occur due to molecular collisions which are experienced after an

average molecular travelling distance of one mean free path. The colliding molecules

travelling to the left and to the right exchange momentum so that they end up with a

post-collisional tangential velocity equal to the average of the tangential pre-collision

velocities. A molecule that approaches a wall has therefore a tangential velocity which is

not equal to the corresponding velocity of the approached wall. This tangential velocity

difference is dependent on how many intermolecular collisions a molecule experiences

travelling between the two walls. In a rarefied gas, therefore, molecules approaching

a wall have, on average, a different velocity compared to the corresponding molecules

of a quasi equilibrium gas approaching a wall. In a continuum description this is per-

ceived as a discontinuity between the gas’s tangential velocity and the velocity of the

wall. It should be noted that in this representation it is assumed that the molecular

interactions with the walls accommodate full momentum exchange so that reflected

molecules on average leave a surface with the surface’s tangential velocity. It is shown

in the next section that many investigators assume that the momentum exchange in a

collision between a molecule and a wall is not complete, which increases the amount of

velocity-slip for rarefied flows even more.

The applicability of the Navier–Stokes–Fourier equations can be extended to about

Kn = 0.1 by allowing a certain amount of discontinuity of tangential velocity and of

temperature between the gas and nearby solid surfaces. These discontinuous boundary

conditions are referred to as velocity-slip, vslip, and temperature-jump, Tjump defined

as

vslip = vw − vwall and Tjump = Tw − Twall, (2.41)
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Figure 2.6: Illustration of the breakdown of the quasi equilibrium state and the

slip modelling technique. The left figure illustrates a Couette flow case for a

near-equilibrium gas where the gas is driven by the wall velocities, denoted by

vwall and −vwall. The centre figure shows the same case but for a rarefied gas,

where the dashed arrows indicate molecules travelling from the left-hand-wall

and the right-hand-wall. These velocities only change due to collisions (indi-

cated by circles), which on average occur after a molecule travels a distance of

λ. The right figure shows bins which have magnitudes equal to the average ve-

locities of the molecules travelling to the left and to the right. The magnitude

difference of the bins at the walls compared to the velocity of the walls can be

interpreted as the velocity-slip, here denoted by vslip.

respectively. A common method for obtaining the velocity-slip and temperature-jump

boundary conditions is to extrapolate the velocity or the temperature of the flow over

the Knudsen layer, which for micro gas flows occupies a considerably large domain of

the flow inherent of surface effects which the Navier–Stokes–Fourier equations cannot

capture. With the use of these boundary conditions the bulk of the gas-flow can still

be adequately predicted. The region 0.001 < Kn < 0.1, in which the Navier-Stokes

equations require discontinuous boundary conditions, is referred to as the slip-flow

regime. This regime is represented in Figure 1.1.

In the following sections the velocity-slip boundary condition by Maxwell [42] is pre-

sented as well as the corresponding temperature-jump by von Smoluchowski [66], both

having a first-order accuracy on Kn. The velocity-slip by Maxwell is shown to depend

on certain coefficients which describe the molecular reflections of molecules when col-

liding with solid boundaries. Also, the second-order velocity-slip and temperature-jump

boundary conditions are presented. The second-order velocity-slip is derived from an

expansion of the first-order velocity-slip expression using λ as a smallness parameter.
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First-order boundary conditions

Using kinetic theory, Maxwell showed the existence of velocity-slip [42]. The description

derived by Maxwell considers molecular reflections from solid surfaces, which are either

specular reflections, diffusive reflections or a mixture of the two (Figure 2.7). If the

reflections of the molecules are diffusive the molecules are adsorbed by the surface (due

to surface roughness of the wall, or due to a condensation–evaporation process) [28]

and their tangential momentum is, on average, lost relative to the wall as they are

re-emitted. For specular reflections, however, the molecular tangential momentum is

retained and the momentum in the normal direction is mirrored in the normal direction

of the wall. These different types of wall reflections are modelled using the tangential

momentum accommodation coefficient, σv, which is set to σv = 1 for purely diffusive

reflections and σv = 0 for purely specular reflections.

n

t

specular wall diffusive wall

Figure 2.7: Left, specular reflections experienced by the fraction (1−σv) of all

the molecules. Right, one incoming molecule has many alternative trajectories

due to diffusive reflections with the wall, which is experienced by the fraction

σv of all reflected molecules. The axes indicate the wall normal direction, n,

and the wall tangential direction, t.

The velocity-slip boundary condition originally proposed by Maxwell [42] has the fol-

lowing form:

v slip = −2 − σv

σv

λ

µ
τw +

3

4

Pr(γ − 1)

γρRT
(−qw), (2.42)

where τw is the viscous stress vectors tangential to the surface and qw is the heat-flux

vector determined at the wall, γ is the specific heat ratio and Pr is the Prandtl number

given by:

Pr =
cpµ

ρk
, (2.43)

where cp is the specific heat capacity at constant pressure. The viscous stress vector,

τw, relates to the viscous stress tensor, Π, through the expression τ = (n ·Π) ·(I−nn)

[33]. The second term in Eqn (2.42) gives rise to the thermal creep phenomenon which

causes a flow in the direction of increasing temperature gradient since q = −k∇T . For
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planar wall cases it is possible to rewrite Eqn (2.42) in terms of velocity and temperature

gradients in the following form:

v slip =
2 − σv

σv

λ
∂v

∂n

∣∣∣∣
w

+
3

4

µ

ρT

∂T

∂t

∣∣∣∣
w

. (2.44)

For isothermal non-planar cases Eqn (2.42) can be rewritten as

vslip =
2 − σv

σv

λ

(
∂vn

∂t
+

∂vt

∂n

)
, (2.45)

where vslip is the tangential component of the velocity slip, vn and vt are the normal

and tangential components of the gas velocity at the surface respectively (Barber et al.

[5] and Lockerby et al. [33]).

The temperature-jump boundary condition by von Smoluchowski [66] is:

Tjump =
2 − σT

σT

[
2(γ − 1)

(γ + 1)

]
1

ρR(2RT/π)1/2
(−qn)

∣∣∣∣
w

, (2.46)

where σT is the thermal accommodation coefficient and qn is the normal component

of the heat flux vector. Perfect energy exchange between a gas and a solid surface

corresponds to σT = 1 and no energy exchange to σT = 0. For planar wall cases it is

possible to rewrite Eqn (2.46) in terms of a temperature gradient as:

Tjump =
2 − σT

σT

[
2(γ − 1)

(γ + 1)

]
λ

Pr

∂T

∂n

∣∣∣∣
w

. (2.47)

The coefficients σv and σT can be calculated as:

σv =
τinc − τref

τinc − τw
and σT =

dEinc − dEref

dEinc − dEw
, (2.48)

respectively, where τ is the magnitude of the viscous stress vector tangential to the wall,

dE is an energy flux and the subscripts inc, ref and wall refer to incident, reflected and

solid wall conditions respectively.

As reported by Steckelmacher [59], it was recognised by Knudsen that the mode of

scattering of gas molecules from surfaces was fundamental to his analysis. Knudsen

postulated and found empirically that, under free molecular conditions, diffuse reflec-

tions was the most reasonable model to describe the gas–surface interactions. For engi-

neering purposes, therefore, σv is usually set to unity. In an experimental investigation

by Arkilic [2] it was found that argon, carbon dioxide and nitrogen all have σv values

around 0.8 under standard temperature and pressure conditions in a silicon channel,

which corresponds well to the expected MEMS conditions. It is found by Ewert et al.
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[15], from experimental studies of pressurised gas flows for Kn ranging from 0.03 to

0.3, that σv = 0.84.

Results of σv are obtained using molecular dynamics by Sun and Li [61] for planar

wall configurations at Kn ≈ 0.12, showing that σv decreases from about 0.6 to 0.35

with temperatures rising from 100K to 350K. These results vary significantly from the

normally used values of σv, but Sun and Li also show results where an approximate wall

roughness increasing from about 0.5nm to about 1.4nm (relevant to micro and nano

devices [61]) yields σv values starting at about 0.80 and increasing to about 0.84. The

thermal accommodation coefficient was also measured by Sun and Li: σT has a value of

about 0.35 for gases at 300K, when confined by walls with an approximate roughness

of 0.7nm. This value is found by other investigators to be between 0.31 and 0.97 for

various gases and surfaces, as listed by Karniadakis et al. [29].

Higher-order boundary conditions

It has been found that first-order slip/jump boundary conditions are not sufficient to

model mass-flow rates in pressure-driven flows beyond about Kn = 1. They fail to

predict the mass flow minimum phenomenon (see chapter 5). In order to achieve better

correspondence to mass-flow rates and in general obtain better results for high Kn

flow cases, a second-order velocity-slip boundary condition has been derived through an

expansion series of the first-order velocity-slip, using λ as a smallness parameter. With

this method better agreements can be acquired for mass-flow rates, at about Kn = 1,

recovering the mass flow minimum (as is shown in section 5.1.2). For higher Kn the

Navier–Stokes equations using the second-order boundary condition yields the non-

physical result of unbounded mass-flow values [57]. This might be due to the fact that

the Navier-Stokes equations are accurate to first-order in Kn, as mentioned in section

1.2, and might therefore only be applicable together with boundary conditions accurate

to the same or lesser order of Kn. Mitsuya [43] has presented a 1.5-order velocity-slip

model which is capable of capturing the mass-flow minimum which shows seemingly

reasonable mass-flow rate results even beyond Kn ≈ 1 compared to experiments such

as Ewart et al. [15].

It should be noted that many investigators of micro gas flows including Gad-el-Hak

[17], Karniadakis et al. [29] and Ewart et al. [15] argue that second-order velocity-slip

boundary conditions may need to be used when modelling gas flows with continuum

methods in the low Kn area of the transition regime. But since, the Navier–Stokes–

Fourier equations are accurate to first-order in Kn they should not be used themselves

in the transition regime. Instead, higher order continuum equations such as the Burnett

equations should be used, or pure molecular modelling [17].

A derivation of a higher-order velocity-slip boundary condition is done by Karniadakis

et al. [29] by calculating the velocities of the incoming and outgoing molecules in close
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proximity to a solid surface yielding the following expression:

vw − vwall =
2 − σv

σv

[
λ

(
∂v

∂n

)

w

+
λ

2

(
∂2v

∂n2

)

w

]
. (2.49)

The general second-order velocity-slip boundary condition has the following form:

v slip = D1λ

(
∂v

∂n

)

w

− D2λ
2

(
∂2v

∂n2

)

w

. (2.50)

By comparison of Eqn (2.49) and (2.50) it can be seen that the D1 and D2 slip coeffi-

cients are set to 1 and -0.5 respectively if diffusive reflections are considered. There are

numerous suggestions by different investigators concerning what values the coefficients

D1 and D2 should be set to, as shown in Table 2.1. Some values are derived purely

theoretically, whereas others have been obtained through comparisons with experimen-

tal results [15]. The commonly used values for D1, seen in Table 2.1, have about the

same range as for the σv-based ratio in the first-order slip expression, i.e. the two ex-

treme D1 values of 1.1466 and 1 corresponds to σv values of 0.93 and 1 respectively.

The D2 parameter varies in a wider range from -0.5 to 5π/12. In an investigation by

Hadjiconstantinou [23] based on work by Cercignani and Daneri [9] it was found that

the coefficients D1 = 1.1466 and D2 = 0.647 yield mass-flow rates that agree with

experimental investigations up to Kn ≈ 0.4. However, since the second term of Eqn

(2.50) has a quadratic dependence of λ the mass-flow rate becomes unbounded as Kn

increases beyond Kn = 0.4 if the length scale is kept fixed. Another approach has been

investigated by Shen et al. [57] using a 1.5-order velocity-slip definition which shows

the mass flow minimum, as well as a bounded mass flow rate for Kn > 0.4.

Table 2.1: Some proposed coefficients for second-order velocity-slip models [29].

Author and year D1 D2

Cercignani (1963) [9] 1.1466 0.9756
Hadjiconstantinou (2003) [23] 1.1466 0.647

Deissler (1964) [12] 1.0 9/8
Schamberg (1947) [53] 1.0 5π/12

Hsia and Domoto (1983) [25] 1.0 0.5
Maxwell (1979) [30] 1.0 0

Karniadakis et al. (2005) [29] 1.0 -0.5

A second-order temperature-jump boundary condition is derived by Karniadakis et al.

[29] using kinetic theory of gases, yielding the following expression:

Tjump =
2 − σT

σT

[
2γ

(γ + 1)

]
1

Pr

[
λ

∂T

∂n

∣∣∣∣
w

+
λ2

2

∂2T

∂n2

∣∣∣∣
w

]
. (2.51)

31



It is expected that this second-order temperature-jump boundary condition should be

used at relatively high Kn when the first-order temperature-jump boundary condition

becomes invalid. However, it should be noted that since the D2 coefficient of the second-

order velocity-slip boundary condition in Eqn (2.49) has a different sign compared to

what most investigators use, the second-order temperature-jump of Eqn (2.51) might

experience a similar inconsistency.
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Chapter 3

Geometry dependent effective

mean free path: a new approach

Surface effects considerably influence gas flows in the Knudsen layer which, in the case

of micro-scale systems, comprise a substantial volume of the total gas flow domain. The

width of the Knudsen layer is usually assumed to have a thickness of the order of the

mean free path Bird [6]. The non-equilibrium effects in the Knudsen layer are intro-

duced by gas molecules interacting with solid surfaces [32] and the gas molecules will

equilibrate their momentum with the surrounding environment by gas intermolecular

collisions. The state of non-equilibrium caused by a wall should therefore be spatially

extended in proportion to the probability of a collision-less trace of a molecule travel-

ling a certain distance from a wall. Therefore, by studying the shape of the effective

mean free path profile a more precise indication of the Knudsen layer extent should be

obtained.

From a fluid dynamic and continuum viewpoint the conventional fluid properties of vis-

cosity and thermal conductivity are implicitly defined by the characteristic travelling

time between collisions of the gas molecules, as suggested by Stops [60]. However, if the

length of the mean free path of the free gas molecules is comparable to the character-

istic length scale of the finite system there will be a considerable number of molecules

colliding with the walls as well as with other free molecules, causing a shortening of

the mean free path. This causes the mean free path to become geometry dependent,

here referred to as being effective with respect to the wall distance. In chapter 5 it is

therefore investigated how the effective mean free path affects the transport parame-

ter viscosity and in turn how this effects the Navier-Stokes equations. Similar research

has been performed by Guo et al. [22] who adopted Stops effective mean free path

formulation into the solution method of the Navier-Stokes equations.

In this chapter physical reasoning is used to derive an enhanced extension for the con-

ventional mean free path definition incorporating the effect of gas molecular collisions
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with solid walls as well as intermolecular gas collisions. First the theoretical effective

mean free path model derived by Stops is presented in section 3.1. This model is based

on similar fundamental principles as the new model in section 3.2, but it differs in

the way that it is calculated when applied to a particular geometry. In chapter 4 the

theoretical models for the effective mean free path are compared to simulation results

using numerical experiments based on molecular dynamics.

3.1 Stops’ effective mean free path model

The idea of using transport parameters that are influenced by an effective mean free

path can be traced back to Stops [60]. Stops theory is based on the probability density

pd(Dtr) =
1

λ
exp

(
−Dtr

λ

)
, (3.1)

describing the distribution of the molecular free path dependant on the molecular travel-

ling distance Dtr. The conventional (unconfined) mean free path, when no solid bound-

aries are present, can then be obtained by integrating pd(Dtr) with respect to the

travelling distance, Dtr, from zero to infinity.

The effective mean free path expression developed by Stops, λeff(S), is achieved by

using solid-angle analysis and by shortening the upper integrational limit of Dtr from

infinity to the distance of the confining wall. The integration of p(Dtr) then yields

λeff(S) = λJ(S)(n, λ,H) for gas molecules confined between planar walls, where H is the

wall spacing and

J(S)(n, λ,H) =
1

2

[
2 +

(n

λ
− 1
)

exp
(
−n

λ

)
−
(n

λ

)2
Ei
(n

λ

)

+

(
H − n

λ
− 1

)
exp

(
H − n

λ

)
−
(

H − n

λ

)2

Ei

(
H − n

λ

)]
, (3.2)

where the function Ei is the exponential integral function defined as:

Ei(z) =

∫
∞

1
t−1 exp (−zt) dt. (3.3)

Eqn (3.2) has been used by Guo et al. [22] for solving some micro-gas-flow cases with

good results.

In the next section a model similar to λeff(S) is derived but without the dependence on

the Ei-function, which may therefore be easier to implement and more computationally

efficient for micro gas flow calculations.
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3.2 A new effective mean free path model

This new effective mean free path description is based on the integrated density function

pd(Dtr) defined in Eqn (3.1) but without setting a specific integration limit for Dtr.

The resulting probability function is expressed by:

P (Dtr) =

∫
pd(Dtr)dDtr = Q − exp

(
−Dtr

λ

)
. (3.4)

This function describes the probability for a molecule to travel a distance Dtr with-

out experiencing a collision. The integration constant, Q, is set to unity so that the

probability ranges from zero to one.

3.2.1 Planar wall case

First, the new λeff model is derived for a single planar-wall configuration, shown in

Figure 3.1, where the molecule is only allowed to travel in the negative n-direction and

its trajectory distance to the wall is D−

tr. The variable θ− denotes the equally probable

zenith angle travelling directions, which is related to D−

tr using D−

tr = (n)/ cos(θ−). For

this description, it is assumed that the molecule has just experienced an intermolecular

collision at its current wall normal position nB. The corresponding effective mean free

path expression depending on the molecule’s distance to the left-hand wall, λ−

eff, is

obtained by averaging λP (D−

tr) with respect to θ− in the range [0, π/2]. This is done

by using the following mean integral theorem,

λ−

eff = λ
2

π

∫ π/2

0

[
1 − exp

(
D−

tr

λ

)]
dθ−. (3.5)

A more realistic description accounts for the possibility of a molecule to travel in both

negative and positive n-directions, represented in the two-planar-wall configuration in

Figure 3.2. Here the notation D+
tr is used for the molecular travelling distance in the

positive n-direction, and θ+ for the corresponding zenith angle, which are related using

D+
tr = (H − n) / cos(θ+). Thereby it is possible to calculate λ+

eff in a corresponding

manner to λ−

eff.

The effective mean free path is then the average of λ−

eff and λ+
eff as follows:

λeff =
1

2

(
λ−

eff + λ+
eff

)
. (3.6)

In case there is only one planar wall present Eqn (3.6) should be modified so that

the λ−

eff or λ+
eff is replaced with unity. The averaging of Eqn (3.6) is performed here
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(n, 0)(0, 0)

(0.∞)

n

D−

tr

θ−

Figure 3.1: A molecule at a distance n from a planar wall. Possible trajectories

for a molecule travelling in the negative n-direction described in cylindrical

coordinates (n, n tan θ−).

H − n

D−

tr

θ+

n

D+
tr

θ−

Figure 3.2: A molecule confined between two planar walls with spacing H.

The minus and plus superscripts denote quantities corresponding to molecules

travelling towards the left- and right-hand wall respectively. The molecule has

an equal probability of travelling in any zenith angle direction θ− or θ+, or to

travel in either the positive or the negative n-direction.

using Simpson’s numerical integration involving 14 subintervals1, resulting in λeff =

1The difference in mass flow results, calculated in section 5.1.2, for 14 and 16 integration intervals
is 1.54% for Kn = 1, indicating that further increase of the number of integration intervals will only
marginally affect the results.
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λJ(n, λ,H) where,

J(n, λ,H) = 1 − 1

82

[
exp

(
−n

λ

)
+ 4

7∑

i=1

exp

(
− n

λ cos [ (2 i − 1) π/28]

)

+ 2

6∑

i=1

exp

(
− n

λ cos [π i/14]

)

+ exp

(
−H − n

λ

)
+ 4

7∑

i=1

exp

(
− H − n

λ cos [ (2 i − 1) π/28]

)

+2

6∑

i=1

exp

(
− H − n

λ cos [π i/14]

)]
. (3.7)

In the remainder of this thesis we will focus on the n-dependence of J , as λ and H are

determined through the rarefaction parameter Kn, which will be given separately.

The J-functions from Stops model, Eqn (3.2), and from the new theory, Eqn (3.7), are

compared in Figure 3.3 for four Kn: 0.04, 0.25, 1, 20 represented in a half channel. It

can be seen that both models show similar results for all Kn-cases, with the largest

difference at Kn = 1 where the new model has a slightly higher profile in most of the

bulk of the channel cross-section. It should be noted that the half channel results of

the Kn = 0.04 cases show very similar results to the case where one of the walls are

modelled, due to the relatively large H compared to λ. By inspection of the Kn = 0.04

case, both models fulfil the physically intuitive requirements of

J(n = H/2) ≈ 1 and J(n = H) ≈ 1

2
. (3.8)

The former requirement, for molecules far away from the walls, is based on that the

effective mean free path should approach its conventional unconfined value. The latter

requirement for molecules at the wall can be realised by considering the average of the

equal probabilities of a molecule travelling in the direction towards the confining wall

(not yielding any travelling length contribution) and the probability of it travelling

into the bulk of the flow (yielding a contribution of the length λ). For Kn = 0.25,

the channel is four unconfined mean free paths wide and since the effective mean free

path almost achieves the conventional unconfined value at n/H = 0.5 the Knudsen-

layer can be estimated to be approximately two unconfined mean free paths wide. This

estimation is in reasonable agreement with the estimation of Bird [6], noting that the

Knudsen layer is in the order of one mean free path wide, and also in agreement with

the estimation of one and a half as noted by Hadjiconstantinou [24].

For higher Kn, the entire J(n) profile is lowered due to that the Knudsen layers of the

left- and right-hand walls are overlapping, which can be explained by that molecules

have a considerable likely-hood of colliding with either wall at any position of the.
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Figure 3.3: Comparison of different λeff models in a half-channel for different

Knudsen numbers, where λeff = λJ(n).

The basic physical requirement of decreasing J(n) with increasing Kn can be seen by

inspection of the considerably lower profile of the KnD case compared to the other

cases. There is a third requirement, reported by Dongari et al. [14], which needs to be

fulfilled by the new model: the profile should approach a value similar to the channel

height H i.e.

λeff |Kn→∞
≈ H. (3.9)

This requirement can be seen fulfilled for the KnD case, where λeff/λ ≈ 0.05, by using

the λ = KnH relation as follows:

λeff

λ
= 0.05 ⇒ λeff = 0.05 × 20 × H = H. (3.10)

The Kn = 0.25 and Kn = 1 cases represent intermediate states between the Kn =

0.04 and Kn = 20 cases, where the profile near the wall is lower than the near-wall

requirement in Eqn (3.8). This is because a molecule close to one of the walls has a

significant probability of travelling directly to the other side of the channel and collide

with that wall, which results in a contribution of less than one mean free path for this

travelling direction.
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3.2.2 Spherical obstacle case

Using the same theory as for the planar-wall case, the effective mean free path model

may also be applied to the case of molecules in the close vicinity of a sphere (illustrated

in Figure 3.4). In this case the molecule, at a distance rd from the sphere centre, is as

rd

Dtr

Dtr,u

dsp
θθu

Figure 3.4: A molecule at a radial distance rd from the centre of a spherical

obstacle with diameter dsp. The largest molecular travelling distance, Dtr, for

a molecule traveling in the zenith angle θ. The largest zenith angle direction

θu that a molecule can travel in and still intersecting the sphere, yielding the

largest molecular travelling distance Dtr,u. Lines drawn are in a central cross

section of the figure.

previously described equally probable to travel in any azimuthal angle, θ. There is an

upper travelling distance limit, Dtr,u, associated with a critical limit for θ declared as

θu, above which the molecule passes the sphere and travels into the bulk. This angle

can be calculated by using the geometry of a formed right-angled triangle, as shown in

Figure 3.4, having its right angle at the point connecting the imagined radius of the

sphere and Dtr,u, which is tangential to the sphere. By inspection of this triangle the

following relation is applied:

D2
tr,u +

(
dsp

2

)2

= r2
d. (3.11)

By using the relation Dtr,u = rd cos(θu), the value of θu is obtained as:

θu = arccos

[
1

rd

√
r2
d −

(
dsp

2

)]
(3.12)

The distance Dtr can be determined in terms of rd and θ by using the cosine law:

(
dsp

2

)2

= D2
tr + r2

d − 2rdDtr cos(θ), (3.13)
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which yields:

Dtr(rd, θ) = rd cos(θ) −

√

r2
d cos2(θ) +

(
dsp

2

)2

− r2
d. (3.14)

The average distance from the molecule to the sphere’s surface, with respect to the

angle θ, is achieved by the following integral mean value theorem:

〈Dtr〉 =
1

θu

∫ θu

0
Dtr(rd, θ)dθ. (3.15)

The mean free path for the molecules travelling in the direction of the sphere is achieved

by,

λeff,sp =
λ

θu

∫ θu

0
1 − exp

(
Dtr(rd, θ)

λ

)
dθ, (3.16)

in a similar manner to the one-wall case.

The complete effective mean free path expression is obtained by considering all possible

molecular travelling directions (both towards the sphere and in directions that does

not have an intersection with the sphere). This is achieved in a similar manner to the

effective mean free path expression for a planar wall, in which case a probability of one

half is used corresponding to the likelihood of a molecule travelling towards the planar

wall instead of the bulk. Instead, here the solid angle theory is used to determine

the likelihood of the molecule travelling in a direction of the sphere as opposed to

travelling into the bulk expressed as sin2 (θu/2) and
[
1 − sin2 (θu/2)

]
respectively. From

this weighting the complete expression of the effective mean free path can be written

as:

λeff = λ

[
1 − sin2

(
θu

2

)]
+ λeff,sp sin2

(
θu

2

)
. (3.17)

In Figure 3.5 three parameters involved in the calculation of λeff are plotted against

rd/λ, where dsp = 0.2λ. In the top figure 〈Dtr〉 is plotted from Eqn (3.15), together

with a dashed linear line for comparison. It can be seen that 〈Dtr〉 increases at a faster

rate than the linear line for small rd due to the fact that at this distance there is a large

difference between Dtr(rd, θ = θu) and Dtr(rd, θ = 0). For large rd it is seen that the

〈Dtr〉 profile becomes linear as Dtr(rd, θ = θu) ≈ Dtr(rd, θ = 0). In the middle figure

the angle θu is plotted showing the fulfilment of the intuitive requirement of having

a value of π/2 at the wall and approaching zero as rd increases. In the bottom figure

the resulting λeff of Eqn (3.17) is plotted. It can be seen that the λeff profile to a large

extent has the same shape as an inverted shape of θu which suggests a dominating

influence of this parameter.
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Figure 3.5: Three parameters involved in the calculation of λeff as a function

of rd/λ, where dsp = 0.2λ. Top: travelling distance, Dtr of Eqn (3.14), when

averaged over the angles zero to θu, together with a dashed linear line for

comparison. Middle: the angle θu. Bottom: the resulting λeff of Eqn (3.17).

3.2.3 Spherical cavity case

Now the effective mean free path of a molecule in a spherical cavity is studied. As

illustrated in Figure 3.6, (n) is the wall normal distance for a molecule inside the cavity

with a diameter dcav. Here, Dtr is the molecule’s distance to the wall if the molecule at

(n) has a travelling trajectory of θ. Also shown is the molecule’s radial distance from

the cavity’s centre, Ccav, represented by rd.

To calculate the effective mean free path, the wall distance of the molecule has first to

be calculated using the cosine law:

(
dcav

2

)2

= D2
tr + r2

d − 2rdDtr cos(ϕ), (3.18)
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where the angle ϕ = π − θ is used. The molecular travelling distance to the wall Dtr,

dependent on rd and ϕ, can then be expressed as:

Dtr(rd, ϕ) = rd cos(ϕ) +

√

r2
d cos2(ϕ) +

(
dcav

2

)2

− r2
d. (3.19)

In terms of (n) and θ, this can be expressed as:

Dtr(n, θ) =

[
dcav

2
− n

]
cos(θ) +

√(
dcav

2
− n

)2

[cos2(θ) − 1]2 +

(
dcav

2

)2

. (3.20)

As before, the average of this is achieved using Eqn (3.15) but here it is averaged in

the range of θ from zero to π. The λeff expression is then obtained:

λeff =
λ

π

∫ π

0

[
1 − exp

(
−Dtr

λ

)]
dθ. (3.21)

dcav

n

θ
Dtr

n rd Ccav

Dtr
dcav
2

θ ϕ

Figure 3.6: Left, a three-dimensional representation of a molecule in a spherical

cavity of diameter dcav at a wall normal distance of n. The molecule has the

distance Dtr to the wall at a travelling direction of θ. Right, a two-dimensional

view of the cavity illustrating the cavity’s centre, Ccav, the molecule’s radial

distance, rd, and the spherical cavity’s radius dcav/2. The angle ϕ = π − θ is

used in the cosine law for calculating the effective mean free path.

The normalised results of the average molecular distance to the sphere’s wall 〈Dtr〉 and

the resulting effective mean free path of Eqn (3.21) are shown in Figure 3.7. The effective

mean free paths are shown for the two cavity diameters of dcav = λ and dcav = 10λ

corresponding to Kn of 1 and 0.1 respectively, these being based on a length scales

equal to the cavity diameters.
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Figure 3.7: Top: the normalised average wall distance 〈Dtr〉. Bottom: the nor-

malised effective mean free path for dcav = 10λ and dcav = λ.

It should be noted that the average molecular distance to the sphere’s wall shown in

the top of Figure 3.7 is the same for all dcav. The average wall distance show reasonable

results, achieving a value of half the diameter in the centre of the cavity and a lower

value of about 0.32 at the wall. The results of the effective mean free path are shown in

the bottom sub-figure. Here the characteristic result for the case dcav = 10λ is seemingly

similar to the results of the two-planar-wall results, showing clearly that the near-wall

value is close to half of the unconfined mean free path value and that the unconfined

value is almost achieved in the centre of the cavity. For the dcav = λ case the expected

result of a lower flatter profile are observed. For this case the resulting low profile has a

similar shape to 〈Dtr〉, because intermolecular collisions are relatively few causing the

mean free path to be the same as the average wall distance.

3.3 Discussion

In this chapter a new theoretical expression for a geometry-dependent and effective

mean free path is derived. This effective mean free path is dependant on the free path

probability distribution of a molecule travelling a certain distance without experiencing
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a collision. By integrating this probability distribution, with respect to an unconfined

space, from zero to infinity, the conventional unconfined value is obtained. Since this

thesis is focused on micro gas flows in close vicinities to walls this method has been

enhanced by integrating this probability function from zero to the distance of a confining

wall instead. This upper limit is interpreted such that a molecule will experience a

collision by hitting the wall which terminates its free path. By averaging this function

for all possible travelling directions the effective mean free path is obtained. This new

method has been applied to both planar- and non-planar-wall cases.

The developed effective mean free path for planar cases consists of both one- and

two-wall confining geometries. For the one-planar-wall case at large wall distances the

method fulfils the basic requirement of asymptotically approaching the unconfined mean

free path value. In the near-wall region the requirement that the effective mean free path

should reach half the value of the unconfined mean free path is obtained. The effective

mean free path for the two-planar-wall case fulfils an other requirement showing similar

results as for the one-wall case where the two walls are far apart. When the two walls are

at a distance of about four unconfined mean free paths from each other it is observed

that there is a significant overlapping effect from the two walls causing the effective

mean free path in the middle of the channel not to tend to the unconfined value. Where

the walls are at a distance of one twentieth of the unconfined mean free path from each

other the effective mean free path obtains a flat profile having roughly the value of the

channel separation distance, which fulfils a third requirement noted by Dongari et al.

[14].

For the non-planar-wall cases both a spherical obstacle case and a spherical cavity case

are considered. The new effective mean free path results for the spherical obstacle case

is studied for a sphere with a diameter of 0.2λ. The results show that the effective

mean free path, for this case, has a profile which is largely dependent on the upper

travelling trajectory angle, which a molecule can travel in, in order to tangentially

collide with the sphere. The effective mean free path profile, for this case, is shown to

have a sharper increase in the near-wall region compared to the one-planar-wall case

because compared to the one wall case the sphere does not “block” travelling directions

for a molecule travelling in an opposite direction to the wall normal. The effective mean

free path results of the spherical cavity case fulfils the requirement of nearly achieving

the unconfined mean free path value in the centre of the cavity, if the diameter of the

sphere is large enough. When the sphere diameter is small in comparison to the mean

free path it is observed that the effective mean free path reaches a profile similar to the

mean distance to the walls, which is reasonable since intermolecular gas collisions are

less likely.

In the next chapter the new and Stops’ λeff models are compared to some numerical

experiments performed using the method of molecular dynamics.
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Chapter 4

Validation using

molecular dynamics

To simulate the mean free paths of noble gases, the open source software OpenFOAM

(Open Field Operation and Manipulation) [1] is used with the molecular dynamics

routines implemented by Macpherson et al. [37, 35]. The molecular dynamics method is

often used to simulate liquids at the nano-scale because liquid molecules are believed to

experience constant molecular interactions, which are considered to be correctly taken

into account using this method. The argument for simulating domains at the nano-scale

is simply that at such a small scale the liquid is comprised of a manageable number

of molecules. The molecular dynamics method is chosen here for simulating gases at

standard temperature and pressure (STP). This model is attractive for the purpose of

estimating the mean free path because it is the only deterministic approach available

and it allows for realistic molecular behaviour, i.e. molecular attractions, repulsions,

movements and scatterings. It is, however, possible to simulate larger domains for

gases than for liquids. This is due to the fact that the density of gases is much lower

than the density of liquids and due to that the density of a gas is linearly proportional

to the number density of molecules in that gas yielding considerably larger separation

distances between gas molecules than for liquid molecules. Thereby fewer gas molecules

than liquid molecules are modelled in the same volume domain.

There is however a difficulty in simulating the boundary walls explicitly, consisting of

molecules in an arranged structure. This is because walls are about as dense as liquids

and therefore require a large number of molecules to be represented. Explicit walls

therefore need to be very thin (just a few molecular layers) in order for the simulation

not to be too computationally expensive. Due to the expensive simulations of explicit

walls it is quite common to simulate walls implicitly, in which cases they are replaced by

a surface which reflects molecules specularly, diffusively or in a combination of the both.

In this chapter the default molecular dynamics solver is enhanced by implementing
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features allowing it to measure the unconfined mean free path and the effective mean

free path affected by both implicit and explicit walls.

To begin with, the theoretical unconfined mean free path values are evaluated for

a hard-sphere gas and Maxwellian gas using Eqn (2.6) and (2.12) respectively. The

mean free path for Maxwellian molecules is used for normalisation purposes in this

thesis. In such cases, where the subscript of the mean free path is omitted it should

be interpreted as being for a Maxwellian gas. The theoretical mean free path values of

the two representations are calculated for helium, neon and argon gas at STP. Noble

gases are considered because they are composed of monatomic molecules which only

have translational motion, and therefore no molecular vibrational or rotational energies

are present. This makes the noble gases easier to interpret theoretically and to model

using molecular dynamics. Table 4.1 lists the gas parameters used for calculating the

theoretical mean free paths. Here the specific gas constant has been calculated using

R = Ru/M , where Ru is the universal gas constant of 8.3145 [J/(mol K)]. It should

be noted that the mean free path of the hard-sphere model is greater by a factor of

16/5π ≈ 1.02 then that of Maxwellian molecules [28]. The molecular masses of the

gases helium, neon and argon can be calculated by M/NAv, where NAv is Avogadro’s

constant equal to 6.0221367 × 1023 molecules per mol.

Table 4.1: Gas data of standard temperature and pressure [47].

Gas: He Ne Ar

µ × 106 [kg/(m s)] 18.2 29.7 20.8
ρ [kg/m3] 0.178 0.900 1.784
M [kg/kmol] 4.00 20.18 39.95
R [J/(kg K)] 2077.3 412.2 208.1
λMM × 107 [m] 1.696 1.233 0.613
λHS × 107 [m] 1.728 1.256 0.624

4.1 Intermolecular potentials in the molecular dynamics

simulation and the determination of a collision

In the molecular dynamics simulation the Lennard-Jones molecular interaction poten-

tial, ΦLJ, presented in Eqn (2.14), is used. It is here chosen to set σ equal to the

hard-sphere diameter of a monatomic gas in order to relate the molecular dynamics

measurement of the mean free path to the theoretically derived mean free path. The

σ parameter is determined using the relationship to viscosity, in Eqn (2.16) by setting

the collision integral for viscosity Ωµ = 1. With σ it is possible to calculate the theo-

retical hard-sphere value of the mean free path, using microscopic parameters, by Eqn
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(2.6). This gives the same values as in Table 4.1, i.e. 1.728×10−7m, 1.256×10−7m and

0.624 × 10−7m for helium, neon and argon respectively.

An experiment has been performed by Well et al. [64] where the sound damping is

related to the Lennard-Jones parameters using an experiment of neutron scattering of

liquid neon. In this thesis the parameter ǫ is chosen so that the ratio of the reduced

sound damping factor, Γ ∗, to the sound damping factor,

Γ ∗

Γ
=

1

σ

√
M/ǫ, (4.1)

presented by Well et al. [64], retains the same values as for the commonly applied

Lennard-Jones parameters for liquids (denoted by a prime symbol). The sound damping

coefficient is defined as

Γ = [µ/ρ + (γ − 1)α] /2, (4.2)

where γ is the specific heat ratio and α = k(ρcp)
−1 is the thermal diffusivity.

Since the molecular mass is independent of the choice of Lennard-Jones parameters ǫ is

obtained from the relation ǫ = σ′2ǫ′/σ2, under the assumption that this law is appropri-

ate to scale liquid to gas properties in the same way as between liquid properties. The

relation of Eqn 4.1 is adopted in research by Guarini et al. [21] investigating molecular

scattering angles.

The σ and ǫ values are presented in Table 4.2 for the monatomic gases helium, neon

and argon. The commonly used Lennard-Jones parameters for liquids, used for scaling,

are denoted by a prime symbol.1

Table 4.2: Lennard-Jones parameter data. Prime notation indicates commonly

used data, where data for helium is from [6] and data for neon and argon is

from [7]. The prime notated parameters are used here for scaling ǫ.

Gas: He Ne Ar

σ′ × 1010 [m] 2.576 2.720 3.405
ǫ′ × 1022 [J] 1.4083 6.4891 17.2857

σ × 1010 [m] 2.2024 2.5836 3.6614
ǫ × 1022 [J] 1.9266 7.1924 14.9496

The potential, Φ, of the Lennard-Jones model is shown in Figure 4.1 for helium, neon

and argon together with their corresponding forces. Here it is possible to distinguish

1The sensitivity of ǫ on the mean free path is tested in this thesis for neon gas, where it is found
that by reducing ǫ by one half resulted in an ǫ value of 3.5979× 1022J decreases the mean free path by
about 0.16%, so the solution is considered to be relatively insensitive to this parameter.
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the effect of the first and second terms in the Lennard-Jones potential. The former is

repulsive short-ranged, dominating to the left in the figures, and the latter is attractive

and long-ranged, dominant to the right. It is seen that argon gas has the highest ǫ value

with the deepest potential well, and it therefore also has the strongest interaction force.

It is seen that σ corresponds to the molecular separation distance where the molecular

potential switches between positive and negative.
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Figure 4.1: Top: the potential energy [J]. Bottom: potential force [N]. Potential

energy and potential force between molecules i and j for helium, neon and

argon.

In order to be able to compare the conventional definitions of the mean free path given

by Eqns (2.6) and (2.12) with molecular dynamics the definition of a collision needs

to be defined. Since molecular dynamics already uses a “closeness parameter” given by

σ, which is described as being similar to the molecular diameter by authors such as

Karniadakis et al. [29], a collision is here considered to occur if two molecules are closer

to each other than this distance.

In the implementation of the mean free path recording in molecular dynamics the

travelled distance of a molecule since it last experienced a collision, i.e. the free path,

is continuously assigned to the current position of the molecule. The mean free path

value is expected to be recovered when this distance is averaged over all molecules, in

the space of the cell of the geometry, and over a certain time interval. This simula-

tion method is different from the intuitive method of directly measuring a molecule’s

travelled distance between two successive collisions, which can only be recorded when

a collision occurs. For this approach the measurement of the mean free path the free

path needs to be assigned to a specific point, which is difficult to determine because
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Table 4.3: Theoretically based molecular data for helium, neon and argon:

the most probable molecular speed (Eqn 4.3) , Cpr, the average time period

between collisions (Eqn 4.4) , τcol, and the corresponding average number of

collisions per molecule during the simulated time of 3 nano seconds, Ncol.

Gas: He Ne Ar

Cpr [m/s] 1065.28 474.52 337.19
τcol × 1010 [s] 2.22 2.60 1.82
Ncol 13.5 16.5 11.6

it is unclear where, between the two successive collisions, the free path should be as-

signed. An advantage of the former method, used in this thesis, is that data recording

of the collision-less molecular travelling distance can be programmed to be a molecular

attribute, together with the usual attributes such as the molecular position and the

molecular velocity, and is thereby easy to implement and handle.

For the recording of the mean free path the length of the simulation time period has to

be determined. In this thesis this simulation time is chosen based on the time it takes

for the mean free path recording, starting at zero, to stagnate at a constant value. The

stagnation is shown to occur for all tested cases after roughly 1.5 nano seconds. The

simulation time for the recording of the mean free path has therefore to be longer than

this time and is most often chosen to be twice as long, i.e. 3 nanoseconds, as is shown

in subsection 4.5.1.

It is also interesting to determine how many collisions on average a molecule experiences

during these simulations. Using the theoretical mean free path value, λ, this can be

estimated by calculating the average collision time period given by:

τcol =
λ

Cpr
, (4.3)

where

Cpr =
√

2RT, (4.4)

is the most probable molecular speed in the Maxwellian velocity distribution. For the

given gas conditions the speeds listed in Table 4.3 are obtained.

4.2 Geometry and periodic boundaries

The first aim is to validate the measurement of the mean free path by recovering the

conventional value of the unconfined mean free path of helium, neon and argon gas

(unaffected by any solid boundaries). In this attempt it is chosen to simulate a cube-
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shaped geometry with periodic boundaries. Periodic boundaries transfer any molecule

that passes into them to a perpendicular position on the opposite boundary of the cube,

keeping all of the molecule’s attributes, except its position.

An important issue in this validation is choosing an appropriate edge length of the

simulated cube geometry. Ideally a large cube should be modelled but since the com-

putational cost of molecular dynamics is severe for a gas at STP conditions at the

micro-scale2 it is important to find the smallest volume of a cube that still presents

reasonable results. In order to study whether the volume of the studied gas has an

effect on the mean free path, it is chosen here to simulate three cases of various size of

the cube domain for neon gas. These cases are labelled after their side lengths defined

by their relation to the theoretical unconfined mean free path value of neon, λNe. The

three cases are:

lA = 0.5λNe, lB = λNe and lC = 1.5λNe. (4.5)

The helium and argon gases are simulated using the side length of lB = 1.0λNe =

1.23310−7 m. This case corresponds to side- lengths of 0.73λHe and 2.01λAr for helium

and argon respectively, where λHe and λAr are the theoretical unconfined mean free

paths of helium and argon.

A mesh is applied to the lA, lB and lC cases consisting of 63, 123 and 163 cells re-

spectively. The numbers of cells are chosen so that there are more than 10 simulated

molecules on average per cell, and so that the cells are relatively small as this will

decrease the computational time cost [35]. It should also be noted that no dependence

of the grid has been observed to influence the results of the recorded mean free path,

although this has not been investigated separately. The geometry domain is illustrated

in Figure 4.2.

4.3 Implemented attributes for recording the free path

In this section the proceedure of implementing the required feature of recording the

mean free path in the default molecular dynamics solver is presented.

Due to the periodic boundary conditions it is not convenient to directly record the

travelled distance of the molecule as a difference between the current position of the

molecule and the position of its last collision, as illustrated in Figure 4.2, i.e. the

distances P1 → P2 is not the same as P1 → P3 → P4 → P5 → P6 → P2. Instead the

2The typical computational cost of molecular dynamics scales as the square of the number of simu-
lated molecules, but this molecular dynamics simulation has a computational cost with a linear depen-
dency on the number of simulated molecules [37, 35].
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P5
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Figure 4.2: An example of the simulated cube geometry with periodic boundary

conditions on all faces. The cube consists of either 63, 123 or 163 cells for the

lA, lB and lC cases, respectively. The edge length of the cube, l, is illustrated.

An example is shown of how a molecule travels from point P1 to P2 through

the periodic boundaries (by dashed arrows), in the order P1 → P3 → P4 →
P5 → P6 → P2. This travelled distance is different from the spatial difference

illustrated by the solid double-headed arrow between P1 and P2.

molecular travelling distance is obtained by:

Dtr = SpC(tC − tLC), (4.6)

where the quantities to the right in Eqn. (4.6) are molecular attributes implemented

to the default molecular dynamics solver. The attribute tLC is the time of the last

occurring collision, tC is the current simulated time and SpC is the current speed of

the molecule. The attributes SpC and tC are easily accessible to the default solver

but in order to make the free path measurement the additional molecular attributes

tLC and Col are required in the code. The attribute tLC is statically set to the current

simulation time when a collision occurs. The attribute Col is implemented to keep track

of whether a molecule is currently undergoing a collision in which case it is activated

(set to one), which happens if the molecule is closer to any other molecule than the

distance of σ. The attribute Col is deactivated (set to zero) if the molecule is at a

distance greater than σ to any other molecule and if it is currently activated.

It should be noted that the present recording of the mean free path does not affect the
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original way the molecular dynamics solver predicts the dynamics of the gas.

4.4 Set-up of the molecular dynamics simulation

The gas molecules are initially spatially distributed in the domain in a single cubic crys-

tal arrangement and given a random velocity from the Maxwellian velocity distribution

[35]: √
M

2πRT
exp

(
−C2M/2RT

)
, (4.7)

in the velocity directions Cx, Cy and Cz of C corresponding to the set gas temperature

of 273.15K and M .

The newly defined molecular dynamics attributes (tC and Col) used for recording the

collision-less travelling distance are set to zero, which is why the results of the mean

free path are zero at the start of the simulation as is shown in section 4.5.1.

Filling a cube of edge length l should theoretically require a number of molecules, at

STP, given by:

Nt =
ρl3NAv

M
. (4.8)

The value for M and ρ are listed in Table 4.1. The number of molecules Nt in the volume

l3 is displayed in Table 4.4, together with the actual number of simulated molecules. It

should be noted that the number of molecules in a gas is roughly independent of the

type of gas.

Table 4.4: The number of simulated molecules Ns and the theoretically calcu-

lated number of molecules, Nt from Eqn (4.8), required to fill the cubes of edge

lengths lA, lB and lC , given by Eqn (4.5). Also displayed is the ratio Nt/Ns

of molecules. The number of computer processors used for the various simula-

tions and the corresponding real time in hours is shown for the simulation to

finish at 3 nanoseconds.

Gas: Ne He Ar
case: lA lB lC lB lB
size: (l/λNe): 0.5 1.0 1.5 1.0 1.0

Nt, theoretical 6293 50345 169914 50197 50412
Ns, simulated 6292 50364 169922 50249 50439
Nt/Ns 1.0002 0.9996 1.0000 0.9990 0.9995

No. processors 1 4 8 4 4

prob. time (hours)a 14 19 27 ≈ 19 ≈ 19

aThe machines used for these simulation were Dual Core AMD Opteron(tm) Processor 270, 2 GHz,
4GB RAM.

52



The theoretical number of molecules from Eqn (4.8) is better obtained by the larger

simulated case size of lC than the two smaller cases. This is expected because in smaller

cube volumes, the number of molecules in the initial crystal lattice is sensitive to the

location of where the sides of the lattice lies, which causes the cube volumes to be more

difficult to fill to a more precise and accurate amount. For larger cube sizes there is a

sufficient number of molecules in the bulk of the lattice to cause a smaller effect of the

number of molecules affected at the borders. It should be noted that the theoretical

predictions of the mean free paths of Eqn (2.6) and (2.12) for λ is inversely proportional

to ρ and therefore also to n = Nt/l
3. This means that the divergence from unity of

Nt/Ns in Table 4.4 can be directly related to an expected deviation of the simulated

mean free path from the theoretical value.

The default time step value of the molecular dynamics simulation is 10−14s, but in this

thesis a time step value of 0.5×10−14s is used instead to obtain more precise molecular

movements and interactions. An additional reason for not using the default time step

value is that this value causes the molecules of the simulation to come closer to each

other than what the default molecular minimum closeness parameter allows 3, which

causes the simulation to terminate. Using half of the default time step value means

that the molecules do not come closer to each other than what the minimum closeness

parameter allows.

4.5 Simulation results

In Figure 4.3 the various mean free path measurements using molecular dynamics

are schematically illustrated. The unconfined distribution function of the free path is

measured for the helium, neon and argon gases. Next the mean free path is measured

for neon gas the measurement uses three different volumes of gas packages, under the

same STP gas conditions. The three gas volumes are investigated in order to evaluate

whether the size of the volume affects the averaged values of the mean free paths.

Two sets of measurements of the unconfined mean free paths are made for helium

neon and argon. One of the simulation sets is performed considering the affect of all

collisions, i.e. whatever number of molecules taking part in a collision, referred to as

multiple-part collisions. The other set of measurements concerns the mean free paths

recorded only between binary collisions. This corresponds to the theory on which the

conventional definitions of the mean free paths in Eqn (2.6) and (2.12) are based.

This yields a validation of the dilute gas assumption stated in Eqn (2.5). The effective

mean free path is there after measured as a wall is introduced at one side of the cube.

The wall is simulated as specular or diffusive or a combination of both in section

3The default molecular minimum closeness parameter is 1 × 10−10m for neon and 1.5 × 10−10m for
argon. For helium the minimum molecular closeness parameter was not defined which is why this value
was set to be the same as for neon.
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4.5.2, and in addition a more realistic explicit wall is investigated consisting of tethered

molecules. Also, the mean free path between two planar walls is measured, where the

walls are simulated as either specular or diffusive. Finally, the effective mean free path

is measured in the near-wall vicinities of non-planar geometries consisting of a spherical

obstacle case and a spherical cavity case, which have either a specular or a diffusive

surface.
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Figure 4.3: Schematic representation of the mean free path measurements us-

ing molecular dynamics. The following abbreviations are used, bin. = binary

collisions, mult.p. = multiple part collisions, spec. = specular reflections and

diff. = diffusive reflections.

4.5.1 Unconfined mean free path

Before the mean free path of the unbounded helium, neon and argon gases are mea-

sured, the theoretical free path distribution function of Eqn (3.1) is compared with

measurement of the free paths in molecular dynamics. In Figure 4.4 the theoretical

free path distribution by Stops [60] and the measured free path distribution are com-

pared. For helium, neon and argon, the longest free paths recorded are 2.4458×10−6m,

1.5804 × 10−6m and 6.8072 × 10−7m respectively, out of a sampling of approximately

5 million free paths. The average of these free paths, i.e. the corresponding mean free

paths, are 1.6692×10−7m, 1.215×10−7m and 6.0990×10−8m respectively, being 1.58%

1.46% and 0.51% less than the theoretical values of the mean free path for Maxwellian

molecules. It is seen that the simulated free path distribution profiles are in close agree-

ment to the theoretical distribution profiles and differ mostly for short free paths where

the largest error is for argon being approximately 11% higher for the simulation than

for the theoretical free path distribution. The reason for the larger number of simulated

short-range free paths might be because the simulation only accounts for collisions to

occur point-wise. This is justifiable in the sense that a molecule will always have a

non-zero free path except for in the instant it is experiencing the collision. An alterna-

tive modelling approach would be to keep the free path of the colliding molecules zero

throughout the duration of the collision and re-initiate the free path recording once
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the molecules are separated by a distance of σ. Although this is expected to have only

a small effect on the measured mean free path results because the ratios of σ/λ are

1.2986×10−3, 2.0953×10−3 and 5.9729×10−3 for helium, neon and argon respectively.

The fact that argon has such a large σ/λ ratio would explain why the deviation of the

short ranged free paths is largest for this molecule type case.
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p
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Figure 4.4: MD and theoretical comparison of free path distribution in uncon-

fined helium, neon and argon gases. In the MD simulation the lB domain size

is used, recording about 5 million free paths after a settling problem time of 3

nanoseconds.

As the free path distribution acquired by molecular dynamics is reasonably close to the

theoretical free path distribution, it is now of interest to investigate the convergence

of the mean free path with respect to the problem time. First, an investigation is

performed allowing for multiple molecules taking part in collisions. This is assumed

to correspond to the behaviour of a real gas, as opposed to the condition of binary

collisions on which the theoretical mean free path formulations are based.

Figure 4.5 shows the recorded mean free paths for the lA, lB and lC cases for neon. By

comparing these cases it can be seen that the cases with more molecules have smoother

lines of convergence to steady-state. This is because a case with a larger number of

molecules will cause the cell averaging to be done over a larger number of free paths in

the same unit of time.

Since the convergence values of the mean free path results are seen to be independent

of the geometry size in Figure 4.5, measurements are only made with respect to the

common geometry domain size of lB . The results of the lB = λNe case for neon gas,

the lB = 0.73λHe case for helium and the lB = 2.01λAr case for argon are shown in
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Figure 4.6. The cases are considered to have stabilised at a constant level after about

1.5 nanoseconds. An average of the lB results is therefore calculated in the time inter-

wall between 1.5 and 3 nanoseconds. The results of the mean free paths for helium,

neon and argon are 1.6720 × 10−7m, 1.2110 × 10−7m and 6.1700 × 10−7m respectively.

The error percentages are 1.42% 1.79% 0.65% lower than the corresponding theoretical

values for Maxwellian molecules for helium, neon and argon respectively. The reason

for the differences in the error percentages between the free path investigation and the

mean free path investigation is not known. However, the sampling of approximately 5

million free paths took less than the 1.5 nanoseconds used for the sampling of the mean

free path investigation. This shorter sampling time could have caused the average of

the free paths to be biased. In order to achieve a better sampling it might therefore be

beneficial if the sampling of the 5 million free paths is distributed more sparsely over

the longer time range of 1.5 nanoseconds.

It is considered that the lB case of argon shows best agreement with the theoretical

mean free path. This may be because this gas has the shortest mean free path of

the gases, and the bounding box is therefore relatively large compared to the other

cases. Correspondingly the simulation of helium, having the longest mean free path

of the studied gases is the simulation that deviates the most from its theoretically

estimated value. Alternatively the difference could depend on the scaling ǫσ2 = σ′2ǫ′

which was used to obtain the ǫ values shown in Table 4.2. As the applied σ values seem

to yield a correct magnitude of the mean free path value for all the gases the down-

scaling of the ǫ values for helium and neon cause a stronger attractive force between

the molecules and therefore a shorter mean free path. The ǫ value for the argon gas

is slightly scaled down causing the molecules to be less attracted to each other and

thereby might cause a relatively longer mean free path. Since the simulated results

shown in Figure 4.6 are slightly lower compared to the theoretically derived mean free

path values an investigation is made of the mean free path based on binary collisions,

which would be expected to predict a longer mean free path due to fewer occurring

collisions.

The unbounded mean free path only taking binary-collisions into account is recorded by

neglecting a molecule’s collision in cases where more than two molecules are taking part.

In the simulation this is performed by not recording a collision if a molecule is within

the collision distance of another molecule with the Col parameter set to one. In this

investigation only the lB cases for helium, neon and argon are simulated. The results

are again compared with the theoretical mean free path values. This yields average

values of 1.6684 × 10−7m, 1.2139 × 10−7m and 6.1875 × 10−8m for helium, neon and

argon respectively, from the sampling time range in between 1.5 and 3 nanoseconds. It

should be noted that in the comparison of the mean free paths between the simulations

using multiple part collisions and the simulations using binary collisions that it is for
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Figure 4.5: Convergence to steady value of the lA = 0.5λNe, lB = λNe and

lC = 1.5λNe cases for neon gas, when multiple part collisions are taken into

account, plotted against problem time. The conventional values of the mean

free paths assuming Maxwell molecules and hard-spheres are illustrated by the

constant dashed lines at the values listed in Table 4.1.

argon gas simulations that the mean free path is proportionally the largest for the

simulation involving binary collisions compared to the simulation involving multiple

part collisions. This is reasonable since multiple part collisions are also occuring more

often for argon due to the molecules larger diameter, which shortens the mean free path

more severely.

The mean free path results of the simulation involving binary collisions are consid-

ered to be close enough to the corresponding results involving multiple part collisions,

making it reasonable to conclude that the dilute gas approximation of Eqn (2.5) is

seemingly fulfilled. However, this conclusion might not be valid for investigations of

other parameters than the mean free path. The number of multiple-part molecular col-

lisions and binary collisions in the simulations of helium, neon and argon are listed in

Table 4.5 together with the ratio of the two. The number of multiple-part collisions is

considerable in comparison to the binary collisions for all the studied gases. The reason

for the mean free paths for helium, neon and argon not being very different for the

cases where binary collisions are considered compared to the results where multiple

part collisions are considered is not certain. However, it could be argued that the mod-

elling of molecules experiencing binary collisions often causes a termination of the free

path of an extra “external” incoming molecule anyway. This is assumed to frequently
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Figure 4.6: Convergence to steady value of the lB = λNe case for neon gas,

the lB = 0.73λHe case for helium and the lB = 2.01λAr case for argon when

multiple part collisions are taken into account, plotted against problem time.

The conventional values of the mean free paths assuming Maxwell molecules

and hard-spheres are illustrated by the constant dashed lines at the values

listed in Table 4.1.

Table 4.5: The number of binary collisions and multiple-part collisions and the

ratio of the multiple-part collisions for the gases helium, neon and argon. The

sampling time range is between 1.5 and 3 nanoseconds of the problem time.

Gas: He Ne Ar

multiple-part collisions 47022 29897 71030
binary collisions 251836 203410 212773
ratio 0.8427 0.8719 0.7497

occur as the external molecule experiences a collision with one of the initially colliding

molecules as soon as the latter two are separated by a distance greater than σ.

The reason for the difference between the measured mean free path values and the the-

oretical values could be due to the assertion of the selected Lennard-Jones parameters.

Also it would be of particular interest to investigate the influence of applying non-unity

values to the collision integral for viscosity used in determining σ.
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Figure 4.7: Convergence to steady value of the lB cases for helium, neon and ar-

gon gases when only binary molecular collisions are taken into account, plotted

against problem time. The conventional values of the mean free paths assum-

ing Maxwell molecules and hard-spheres are illustrated by the constant dashed

lines at the fixed values listed in Table 4.1.

4.5.2 Confined mean free path

Here the surface effects on the mean free path of neon are investigated in order to show

whether gas molecular collisions with solid walls yield similar shortenings of the mean

free path as predicted by the new theoretical model in chapter 3. These simulations are

performed in a box shaped domain. The simulated geometry has side lengths of 0.75λNe

in the x- and z-directions and 2λNe in the n-direction. The domain uses two pairs of

periodic boundaries, in the x- and z-directions (Figure 4.8) and, with reference to the

wall normal coordinate, n, two parallel planar reflective surfaces are placed at n = 0

and n = H. The reflective surfaces are first chosen to be specular, i.e. the molecular

tangential velocity is maintained and the molecular normal velocity just changes sign

when a molecule is reflected. By using reflective surfaces an investigation of the mean

free path profile affected by both a single planar wall and two planar walls is performed.

The length of the molecular free paths since the molecules last experienced collision

is again determined using Eqn (4.6). The reflective surfaces are used in two different

ways. Firstly, and more intuitively, one of them is used to act as an actual wall by

setting tLC = tC , similar to how inter-gas molecular collisions are calculated. Secondly

a reflective surface is used to simulate the effects of the bulk flow. This is done by
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Figure 4.8: An example of the simulated molecular dynamics geometry, ex-

tending between two reflective surfaces at n = 0 and n = H. The width and

breadth of the geometry is 0.75λNe. Periodic boundary conditions are applied

in the x- and z-directions. The mesh shown consists of 12× 12× 60 cells in the

x-, z- and n-directions respectively. For the two-planar-wall case, shown here,

the cells are graded in the n -direction so that the cell widths at n = 0 and at

n = H are one quarter of the cell widths at n = H/2.

setting all reflected molecules to have experienced a collision-less travel of one mean

free path which is done by setting tLC = λNe/SpC − tC , where λNe is the conventional

mean free path for neon gas unaffected by solid boundaries.

There after an investigation is performed where one of the walls is chosen to be dif-

fusive, emitting reflected molecules with a Maxwellian velocity distribution. Finally a

molecular dynamics simulation is performed where the wall is modelled explicitly and

made up of actual neon molecules that are tethered to a fixed lattice, with a density

of 1000kg/m3. For simplicity, the wall molecules are simulated as molecules without

any intermolecular interaction between themselves. They are tethered with a very stiff

spring constant to prevent movement into the sampling region of interest. A sampling

of reflected molecular speeds from the diffusive and explicit walls is presented in Figure

4.9, alongside the Maxwellian speed distribution. The molecular dynamics results of

diffusely reflected speeds consists of 141 522 samples presented as a histogram with a

bin-width of 10m/s. The sampling of the molecular speeds using explicit walls is made

using two different thickness’s of the walls. The thinner explicit wall case is not la-

belled with a subscript and uses 135 776 molecules in total out of which 79 288 are wall

molecules in a wall of width 0.0025λ. The thicker explicit wall case is labelled thick as

a subscript and uses 150 016 molecules in total out of which 94 328 are wall molecules
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in a wall of width 0.003λ. The speed of the molecules are recorded at a distance of

5×10−10m away in the normal direction from the wall consisting of tethered molecules

so the wall’s potential influence on the gas molecules should be reduced compared to

the wall potential affect on the molecules at the wall. This sampling consists of 54 565

and 88 898 reflected molecules for the thinner and for the thicker explicit wall cases

respectively and is presented in Figure 4.9. The distribution of the reflected molecular

speeds is presented using bin-widths of 10m/s for the diffusive wall and 20m/s for the

explicit walls.
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Figure 4.9: Maxwell’s molecular speed distribution f(C) from Eqn (2.17) to-

gether with the most probable speed, Cpr, the mean molecular speed, 〈C〉, and

the root-mean-square speed, Crms.

It is seen in Figure 4.9 that the simulation manages to reflect molecules diffusely with

the Maxwellian speed distribution well. However, the molecular speed distribution ob-

tained from molecules that are reflected off explicit walls is shifted to a higher speed

compared to the case of diffusely reflected molecules. The molecular speeds where

recorded at a wall distance of 5× 10−10m for which the wall potential was assumed to

be negligible, which seem reasonable by inspection of Figure 4.1. However, the super-

imposed potential from all the wall molecules probably causes the gas molecule to be

in a region of considerable influence of the wall potential. The recorded speeds of these

reflected molecules should therefore probably be made at an even larger wall distance.

The deviation of the effective mean free path profile is not assumed to depend on the

molecular speeds of the reflected molecules since the measured speed distribution has

the same shape as the Maxwellian. It is assumed that the speed distribution for explicit

walls should be shifted to the same location as the Maxwellian in case the molecular

speeds are recorded at an appropriate distance from the wall. It is also seen in Figure

4.9 that there is no visual difference between the molecular speed distributions between
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the thinner and thicker explicit wall cases.

Results of mean free path affected by one wall

The results of the mean free path affected by one planar wall are here presented for

neon gas. The geometry is similar to the geometry illustrated in Figure 4.8 having the

same side lengths of 0.75λNe in the x- and z-directions and 2λNe in the n-direction.

The grading of the mesh is configured so that the near-wall cell widths at n = 0 are

one quarter of the width of the largest cells located at n = H. This configuration

uses 12 cells in the x- and z- directions and 40 cells in the n-direction. Since slightly

different grids have been tested and there has not been any observed dependence of

using different grid structures, the grid is purely chosen in order to yield good detail

in near-wall regions where the mean free path tends to change more than in the bulk-

ward cells. The gas is simulated by 56 672 molecules for implicit walls and by 56 488

and 55 688 gas molecules for explicit walls of the thinner and thicker walls respectively.

The number of simulated molecules should be compared to the theoretical estimate of

the number of molecules in this volume of gas:

Nt =
ρ (0.75 × λNe)

2 (2 × λNe) NAv

M
, (4.9)

which yields a value of 56 638. This value is assumed to be sufficiently close to the

simulated number of molecules in order for the results not to biased. The sampling

of the effective mean free path profile, in terms of the problem time, is made over 2

nanoseconds taken after 4 nano seconds settlement.

The simulation result of the mean free path profiles are compared to the new theoretical

model of λeff = λJ , where J is given by the one wall case of Eqn (3.7), i.e.

λeff

λNe
=1 − 1

82

[
exp

(
− n

λNe

)
+ 4

7∑

i=1

exp

(
− n

cos ( (2 i − 1) π/28) λNe

)

+2

6∑

i=1

exp

(
− n

cos (π/14 ) λNe

)]
, (4.10)

where n is the wall-normal distance in accordance to Figure 4.8. The results are also

compared with the corresponding model by Stops [60] expressed in Eqn (3.2) i.e.

λeff(S)

λNe
=

1

2

[
2 +

(
n

λNe
− 1

)
exp

(
− n

λNe

)
−
(

n

λNe

)2

Ei

(
n

λNe

)]
, (4.11)

for a one-wall case. A two-term exponential Gauss–Newton curve-fit is applied to the

molecular dynamics results (except for the thicker explicit wall case) for which the
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general form is:

λeff(CF )

λNe
= 1 − 1

2

[
A1 exp

(−A2n

λNe

)
+A3 exp

(−A4n

λNe

)]
, (4.12)

which has the parameters listed in Table 4.6.

Table 4.6: Curve-fit data parameters. The explicit wall data is for the thinner

wall case.

reflection A1 A2 A3 A4

specular 0.466763 5.38570 0.53324 0.96319
diffusive 0.45487 23.48058 0.99366 2.22688
σv = 0.8 0.45735 20.69306 0.93510 2.03169
explicit wall 1.43102 0.71099 0.00540 20.9878
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Figure 4.10: Comparison between effective mean free path profiles by molec-

ular dynamics using a specular wall and by theoretical models from physical

reasoning.

It can be seen in Figure 4.10 that the theoretical λeff models achieve the same near-wall

values and bulk values as the molecular dynamics simulation for the specular wall case.

However, the λeff results from the simulation is slightly higher than the theoretical

results at approximately n = 0.5/λNe. It can be seen in Figure 4.11 that the λeff profile

for a diffusive wall achieves a near-wall value of about 0.3λ, which is lower than for
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Figure 4.11: Comparison between effective mean free path profiles by molecular

dynamics using a diffusive wall, a wall with σv = 0.8 and two widths of explicit

walls and by the new theoretical model from physical reasoning.

the cases with specular walls (which have a near-wall value of 0.5λ). The λeff profile

using a diffusive wall achieves values close to λ at approximately n/λNe = 1, which

should be compared to the case using specular reflections achieving similar values at

approximately n/λNe = 1.6.

It is interesting to compare these results with the results using explicit walls as also

shown in Figure 4.11 which clearly show a much lower λeff profile, with near-wall values

of about 0.28λ and 0.14λ for the thinner and thicker explicit walls respectively. The

λeff profiles of these cases also have much more constant gradient of increase in the

n-direction and much flatter profiles than the corresponding profiles for the implicit

walls. The mean free path profile by the thinner and thicker explicit wall cases achieves

values of about 0.83λ and 0.80λ respectively at n/λNe = 2.

Since there is a significant difference between the two λeff profiles for the two explicit

wall cases it is assumed that the thicker wall has a more realistic wall influence on

the gas molecules considering that the walls are just a few molecular layers thick.

However, due to that explicit walls are costly to simulate it was chosen here not to

perform an investigation with even thicker walls. Figure 4.9 shows that the molecules

are on average reflected off both the thinner and the thicker explicit walls at a higher

speed than for specular and diffusive walls, which makes the result of the explicit

walls counter-intuitive considering the lower mean free path profile and the fact that
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faster molecules are less likely to experience collisions compared to slow molecules, as

discussed in section 2.2.2 for the variable-hard-sphere molecular representation. Due to

these aspects other wall models than the explicit walls might be needed. Quite different

results may be obtained in case wall molecules are modelled having different σ and ǫ

values than for the presently used ones gas molecules. The wall molecules were chosen

here to be modelled using the same type of molecules as the gas (but at a density of 1000

kg/m3). The values for σ and ǫ could be chosen to correspond to molecules of more

normal substrate material of micro-gas-flow channels such as silicon which is often

used in MEMS. Examples of an other wall model is the Weeks–Chandler–Andersen

wall potential which cuts off the attractive long-range force from the Lennard-Jones

potential of the wall molecules (Markvoort et al. [40]). This might cause the speeds

of the wall reflected molecules to have a more similar speed distribution compared to

the Maxwellian distribution at the chosen wall distance of 5 × 10−10m. An other wall

modelling technique is presented by Spijker et al. [58] where averaged contributions of

explicit walls are used to obtain a boundary condition yielding reasonable macroscopic

gas quantities such as temperature, pressure and heat flux. By using this technique a

wall potential could be simulated implicitly based on averaged data from an explicit

wall yielding that the computational process would be more efficient.

Results of mean free path affected by two walls

In this section the reflective surface at n = H is modelled as a specular wall similar

to the wall at n = 0 in the previous section, instead of representing the bulk. The

simulated geometry has side lengths in the x- and z-directions of 0.75λNe and in the

n-direction five different side lengths are studied, which in terms of H/λNe are 5, 2, 1,

0.5 and 0.05 units corresponding to Kn of 0.2, 0.5, 1, 2, 20 respectively.

These simulation results are presented together with the new theoretical model for a

gas in a two-wall confinement represented by λeff = λJ , where J is given by Eqn (3.7).

An additional comparison is made with Stops [60] effective mean free path model mod-

ified to consider two walls as suggested by Guo [22], i.e. Eqn (3.2). The molecular

dynamics curve-fit to the data for the one-wall case presented by Eqn (4.12), is refor-

mulated in an attempt to predict the λeff profile for two walls as follows:

λeff(CF )

λNe
= 1 − 1

2

[
A1 exp

(−A2n

λNe

)
+ A3 exp

(−A4n

λNe

)

+A1 exp

(−A2(H − n)

λNe

)
+ A3 exp

(−A4(H − n)

λNe

)]
, (4.13)

using the values A1, A2, A3 and A4 in Table 4.6 for specular reflections. This heuristic

model is referred to as the empirical model in this thesis.
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The results of the measured effective mean free path profiles for two specular walls is

shown in Figure 4.12 together with both the new and Stops’ theoretical models and

the empirical model by Eqn (4.13). The cases are shown for Kn = 0.2, 0.5, 1.0, 2.0,

2.0 (dependent on the lengths of the cases extending in the n-direction). It is seen

that in general the empirical model gives the best description of the molecular data

for all Kn cases. The four different effective mean free path representations all show

similar results in the near-wall regions, except for the Kn = 2 case. However, the bulk

values differ more significantly. For the Kn = 0.5 case the empirical model matches

the simulated data adequately in the near-wall region but towards the bulk it matches

the theoretical models better. The difference between the theoretical and simulated

effective mean free path models is greatest for the Kn = 2 case, where the empirical

model represents the simulated values the best in the bulk but the theoretical models

are better in the near-wall region.

The difficulty of reproducing an effective mean free path profile similar to the molecular

dynamics data might reflect the difficulty of modelling fluid behaviour in the transition

regime. The biggest discrepancy for the mean free path profile is for the Kn = 2 case,

which is roughly in the middle of the transition regime.
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Figure 4.12: Cross-channel effective mean free path profiles affected by two

specular walls achieved by molecular dynamics, theoretical models and empir-

ical model from the one-wall molecular dynamics results.

The results of the mean free path profiles for two diffusive walls are shown in Figure

4.13. It is possible to recognise the general trend from the one-wall results previously
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presented. All the Kn cases show lower near-wall values than for the specular reflection

cases. Also the profiles have a sharper gradient leading to higher mean free path bulk

values.
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Figure 4.13: Cross-channel effective mean free path profiles for two diffusive

walls achieved by molecular dynamics using diffusive walls, theoretical models

and empirical model from the one-wall molecular dynamics results.

It is not possible to use an empirical model based on the data for one diffusive wall to

model a two wall effective mean free path in the same manner as for an empirical model

based on data from specular reflections. This is due to that the curve-fit parameters

cause a negative values in the near-wall regions through the term 1− (A1+A3) in Eqn

(4.12). Instead a different averaging could be used between λ−

eff and λ+
eff. For example,

the generalised power mean:

λeff = 1 − 1

2

(
(1 − λ−

eff)s + (1 − λ+
eff)s

)1/s
(4.14)

could be applied, where s is a modelling parameter. Here (1 − λ−

eff) and (1 − λ+
eff) are

the collision probabilities for the molecule travelling towards either of the two walls.

This expression favours the influence of whichever of λ−

eff or λ+
eff is the closest to the

wall. The generalised power mean has been applied to the molecular dynamics data

in Figure 4.13 using the diffusive curve-fit parameters from Table 4.6. The modelling

parameter s is set to 2, by trial and error. It is seen that the curve-fit model manages

to reproduce the effective mean free path results of the Kn = 2, Kn = 1, Kn = 0.5

and Kn = 0.2 cases as well.
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In order to obtain a model for diffusive reflections which can be applied to the solution

method of the Navier–Stokes equations the effective mean free path is also measured

for molecules travelling only in the wall-normal direction. In Figure 4.14 these results

are shown using specular and diffusive walls. Also shown is the λeff profile from the

curve-fit function:

λeff

λ
= 1 −

[
A1 exp

(−A2n

λNe

)
+ A3 exp

(−A4n

λNe

)]
, (4.15)

using the coefficients A1 = 0.30318, A2 = 9.38115, A3 = 0.69682 and A4 = 1.11005,

for the diffusive wall and the coefficients shown in Table 4.6 for the specular wall. It is

seen in Figure 4.14 that the specular and diffusive wall cases yield much more similar

λeff profiles than for the cases where the free paths of the molecules were averaged for

molecules travelling in any direction. The largest difference between the two profiles

is at about λeff = 0.75λ where the profile of the specular wall case is about 5% larger

than the profile for the diffusive wall case.

It should be noted that Stops’ [60] derivation of λeff is based on the collision probability

of a molecule only travelling in a direction to wards a planar wall similar to this latter

λeff measurement.
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Figure 4.14: One-wall effective mean free path profiles by molecular dynamics

and molecular dynamic curve-fit, considering an average of molecules travelling

only in the wall-normal direction
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Results of mean free path around a spherical obstacle

The variation of the mean free path of neon gas, at standard temperature and pressure,

around a spherical obstacle is also studied using molecular dynamics. The unstructured

simulated mesh domain is shown in Figure 4.15, for a solid sphere of diameter dsp =

0.2λNe, consistent with the corresponding theoretical case presented in section 3.2.2.

The spherical obstacle is placed inside a cubic domain of side length l = λNe, with

a numerical mesh of 24 × 24 × 24 cells, which is quite coarse 4. Ideally the sphere

should be placed in a gas domain which is as large as possible, but since it is costly to

simulate a large numbers of molecules it is here chosen to restrict the domain to this

size. The sphere is modelled as both fully specular and fully diffusive in two different

investigations. The molecules reflected from the sphere’s surface acquire a termination

of their free paths, which are accounted for in the simulation by setting tLC = tC .

The boundaries of the cube are modelled as fully specular reflective surfaces. These

reflecting surfaces are used here instead of periodic boundary conditions, as was used

for the measurement of the unbounded mean free path. The reason for using the specular

surfaces is that the periodic boundary conditions would mirror the effects of a sphere

being located in the centres of fictitious neighbouring cells in an infinite pattern. Since

it is desired to model a bulk gas of infinite extension in the surrounding of the spherical

obstacle the specular reflective surfaces with the ability to set all reflected molecules’

free paths equal to the mean free path where considered to be the best boundary

condition available. The molecules reflected of the specular reflective surfaces have

their free paths set to the unconfined value by setting their time of the last collision:

tLC = λNe/SpC − tC .

Simulation results are compared to the corresponding theoretical results presented in

section 3.2.2. The mean free path values of the cells, in the domain surrounding the

sphere, are averaged within 15 spherical sampling bins. The thickness of the bins are

graded with an expansion ratio which makes the bin furthest away from the sphere

three times the width of the closest one. Within every bin the cell values of both the

cells distances from the sphere and the mean free path values are averaged. The results

are presented in Figure 4.16.

In Figure 4.16 it is seen that the mean free path profiles from the simulation are

quite similar to each other independent of whether the sphere’s surface is modelled as

specular or diffusive, with the mean free path values for the specular sphere slightly

higher at a distance of rd/λ ≈ 0.15. The molecular dynamics results compare well with

the theoretical mean free path profile in the near-wall area. At a distance of about

0.2rd/λ the two measured profiles are about 5% lower than the theoretical values. This

difference remains at the end of the measuring domain at 0.5rd/λ.

4Attempts were made using finer meshes in the close vicinity of the sphere resulting in a smoother
sphere surface. However the use of these meshes caused tracking errors of the molecules near the surface,
which are explained by Macpherson and Reese [36].
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dsp

rd

l

Figure 4.15: A domain containing a spherical obstacle, simulated in molecular

dynamics. Left: the cubic bounding domain with the spherical obstacle centre,

the cutting plane is more clearly illustrated in the right-hand figure. Right:

cutting plane seen from above, illustrating the grid-lines in the left half of the

plane and the spherical sampling bins in the right half of the plane.
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Figure 4.16: mean free path profile in the vicinity of a spherical obstacle

achieved by molecular dynamics, compared with the present theoretical model.

70



Results of mean free path in a spherical cavity

The mean free path inside a spherical cavity is now investigated for a cavity having

either a fully specular or a fully diffusive surface. In this case a background mesh

of 16 × 16 × 16 cells is used out of which the unstructured mesh of the cavity is

created. The spherical cavity domain is represented in Figure 4.17. The free paths

of the molecules reflected off the spherical cavity’s surface are terminated by setting

the time of last collision to tLC = tC . Since there is no bulk to be artificially modelled

no other manipulation of this attribute is needed.

In addition to measuring the effective mean free path the average radial distance from

any point of the domain to the surface, 〈Dtr〉/dcav, is also measured by modelling the

gas without any intermolecular interactions and by only recording terminations of the

molecular free paths due to wall collisions.

dcav

rd

Figure 4.17: A spherical cavity domain simulated by molecular dynamics. Left:

the cavity open by a wedge-shaped cut revealing the internal mesh. Right:

a cross-sectional plane showing 22 spherical sampling bins of exponentially

decreasing width for increasing radial distance as well as the grid used.
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In Figure 4.18 results are presented of the measured average wall distance and the mean

free path measurements inside the spherical cavity with specular surface. The mean free

path is measured using the three different cavity diameters of dcav = 0.5λ, dcav = λ and

dcav = 1.5λ corresponding to Kn of 2, 1 and 2/3 respectively, where the diameter is

used as the characteristic length scale. It is seen that the average distance is correctly

achieved in the middle of the cavity but is about 6% too low in the near-wall region.

The mean free path results all show similar profiles compared to the corresponding

theoretical ones. In the middle of the cavity, ranging from about 〈Dtr〉/dcav = 0.5 to

about 〈Dtr〉/dcav = 0.3, the mean free path profiles from molecular dynamics show good

agreements with the theoretical model, while at the near-wall regions of these cases the

molecular dynamics results have about 5% lower values compared to the theoretical

results.
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Figure 4.18: Top: average wall distance measured by simulation and corre-

sponding profile from theory. Bottom: mean free path profiles obtained by

molecular dynamics and by theoretical model from physical reasoning. The

cases shown are dcav = 0.5λ, dcav = λ and dcav = 1.5λ.
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In Figure 4.19 the molecular dynamics results of the mean free paths measured inside

a cavity with either fully specular or fully diffusive surface are shown together with the

corresponding theoretical results. Here the same characteristic shape of the diffusive

wall results can be recognised from the one-planar-wall results, where the near-wall

values are lower than the corresponding theoretical case and give a steeper near-wall

gradient. For the larger dcav = 1.5λ case it can also be recognised that the bulk values of

the effective mean free path profile, for the cavity case with diffusive surface, is higher

than both the corresponding results of the cavity case, with a specular surface, and the

theoretical model. This is also consistent with the results of the one-planar-wall case.
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Figure 4.19: Mean free path profiles obtained from molecular dynamics with

either fully specular or fully diffusive cavity surface, theoretical model achieved

by from physical reasoning. The cases shown are dcav = 0.5λ, dcav = λ and

dcav = 1.5λ.

4.6 Discussion

In this chapter molecular dynamics has been used to record the molecular travelling

distances between collisions from helium, neon and argon gases at standard temper-

ature and pressure conditions. Then results have been compared with corresponding

conventional theoretical results of Maxwellian and hard sphere molecular representa-

tions. It was shown that the values of the theoretical unconfined mean free paths were

recovered for the investigated gases. It was found that neon had the largest discrepancy

of the measured mean free path values which was about 1.8% lower than the theoretical

value. It was also shown that the simulations of the conventional unconfined mean free

path fulfil the binary collision assumption.

Planar specular and diffusive reflective walls were introduced to the molecular dynam-
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ics solver, and the mean free paths were recorded at various wall distances in order to

compare with the physically derived model. It was found that the theoretical models

and the molecular dynamics simulations with specular walls showed similar results for

single wall geometries, for the two-parallel-planar-wall cases up to Knudsen numbers of

about 0.2. The mean free path profile results achieved by diffusive walls differ signifi-

cantly from the specular results, and do not compare as well to the theoretical model.

Also, explicit molecular walls were simulated (with two different widths), replacing the

reflecting surfaces. For these cases the effective mean free path results differed even more

from the theoretical profiles than the effective mean free path results obtained using

the specular or the diffusive walls. Finally, the effective mean free path profiles were

investigated in the vicinity of the non-planar-wall geometries of a spherical obstacle

and within a spherical cavity for both specular and diffusive reflections. In these cases

the measured effective mean free path profiles showed similar characteristic shapes as

the theoretical results, but differed in the bulk region for the spherical obstacle case

and in the near wall region for the cavity case.

Since the present theoretical model is not derived to take molecular potentials into

account causing long-range influences between the gas molecules or taking into account

different molecular reflection characteristics, further investigation in this area could im-

prove the models further. The effective mean free path derived in this thesis is used to

obtain an effective viscosity which is applied with the Navier–Stokes equation in chap-

ter 5. This assumes that the transfer of momentum between gas molecules is linearly

proportional to a molecule’s probability of colliding with an other gas molecule or a

wall. Other interesting areas to investigate further are the different types of Knudsen

layers such as the momentum Knudsen layer or the thermal Knudsen layer, which are

believed to differ from each other dependent on the layers ability to transfer momentum

or heat respectively. Since noble gases need some three or four collisions to equilibrate

their energy with surrounding molecules [51] it is assumed that the molecular collision

probability should not scale linearly with the heat transfer in the same manner as was

assumed for the momentum transfer.

The results obtained in this chapter will prove useful for modelling micro gas flows

using the Navier–Stokes equations by incorporating a non-linear stress/strain-rate re-

lationship [4]. Knowledge of the effect of confining walls on the mean free path will also

be useful when applying boundary conditions to the Navier–Stokes equations, because

velocity-slip and temperature-jump are dependent on a near-wall value of the mean

free path. In the next chapter the simple isothermal test cases of the Couette and the

Poiseuille flows are presented using the present effective mean free path dependent pa-

rameter µeff in the Navier–Stokes equations, with first- and second-order velocity-slip

boundary conditions.
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Chapter 5

Extended Navier–Stokes

equations

In this chapter an extension to the Navier–Stokes equations is investigated. The exten-

sion consists of incorporating the influence of the effective mean free path to viscosity

and to the conventional velocity-slip boundary conditions.

Returning to the conventional derivation of the viscosity dependence on the mean

free path in Eqn (2.28), it was stated that the a parameter was describing the same

quantity as the unbounded λ. If the gas is confined however then the gas molecules do

not have an average travelling distance of λ before experiencing collisions any more. The

difference in the derivation of the mean free path and viscosity relation for cases of solid

boundary interference can be incorporated in Eqn. (2.25). Here the velocity changes

between characteristic layers of the flow. The layers are separated by the geometric

dependent quantity a′(n), where the wall normal coordinate, n, and the wall tangential

coordinate, t, are used instead of the coordinates y and x. The quantity a′(n) describes

the local distance from the wall normal distance, n, at which a molecule has the average

travelling distance a′ before experiencing collisions with either other gas molecules or

walls. Since this quantity describes the same as λeff it can be replaced by this quantity

in the following equation of velocity change between layers:

v t|n = v t|n−a′(n) + λeff
dv t

dn
. (5.1)

By again using Eqn (2.23), which expresses the sheer stress as momentum exchange

between layers, the following expression is achieved:

Πxn = −βnmCλeff
dv t

dn
. (5.2)

where C is the average thermal speed from the Maxwellian velocity distribution and

β has the value β = 1/2. The relationship between the effective mean free path and

the new effective viscosity is achieved by comparison to Newtons definition of the sheer
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stress tensor in Eqn (2.22) i.e.:

µeff = λeffρ

√
2RT

π
. (5.3)

In order to intuitively visualise how the mean free path affects the cross-sectional mo-

mentum transfer in a micro-channel Figure 2.5 is modified by including two confining

walls as is shown in Figure 5.1. Then the same derivation of the viscosity dependence

on the mean free path can be used as in section 2.4.1 with the exception that the

cross-sectional average spacing between collisions is no longer at a constant spacing

(a) (which was approximated to be equal to λ). The location of the planes where the

molecular collisions on average occur are instead replaced with a′(n) symbolising the

non-uniform spacing between these planes with respect to the wall normal distance n.
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Figure 5.1: Molecular transport of momentum from the plane at n−a′(n) to the

plane at n, where a′(n) is the vertical separation of the planes where collisions

on average occur and H is the wall separation.

Generally, kinetic derivations of the velocity slip such as the one performed by Cercig-

nani are based on a diffuse reflection approximation for the gas/surface interaction [8].

An example of such an approximation is to use a correction for the gas/surface inter-

action using the coefficient (2 − σ)/σ in Eq. (2.42). The surface not only modifies the

slip coefficients but also affects the mean free path locally. The first- and second-order

velocity-slip expressions that are applied are therefore based on Eqns (2.44) and (2.50),

respectively, and use a mean free path modified to incorporate the effect of a surface

through, λeff, i.e.

vw = −D′

1λeff

(
∂v

∂n

)

w

, (5.4)
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and

vw = −D′

2λeff

(
∂v

∂n

)

w

− D′

3λ
2
eff

(
∂2v

∂n2

)

w

. (5.5)

The conventional velocity-slip definitions represent surface effects through their slip

coefficients rather than through the mean free path model. The expressions in Eqns

(5.4) (5.5) have coefficients D′

1, D′

2 and D′

3 different from the conventional coefficients

D1 and D2. This is because λeff is expected to incorporate some surface effects, most

likely requiring a change in the slip coefficient values.

An investigation, based on DSMC results, has been performed by Pan et al. [48] of the

influence of the slip coefficients on the velocity-slip boundary conditions. They argued

that the slip coefficients should depend not only on macroscopic parameters but also

on the microscopic parameters such as molecular mass, diameter and number density.

In the investigation by Pan et al. it is found that a slip coefficient is a function of the

mean free path of molecules colliding with a wall. In the new slip boundary conditions,

however, the slip coefficients are fixed but the mean free path varies with the wall-

distance, which should have the same overall effect as the derived velocity-slip of Pan

et al.

Other authors such as Shen et al. [57] and Yuhong and Chan [57] have also proposed

methods that extend the validity of the Navier–Stokes equations to higher Kn by

incorporating geometry-dependent mean free paths to the continuum methods. Another

alternative approach, using a wall-function, is empirically derived by Lockerby et al.

[34], which is based on DSMC results. This wall-function scales the viscosity used in

the Navier-Stokes equations in a similar manner as for the new theory. This method

yields good results up to about Kn = 1 for the Poiseuille velocity profile.

In the next section Couette flow and Poiseuille flow cases are solved using both the

Navier-Stokes equations extended by using the effective mean free path, NSeff and

the conventional Navier-Stokes equations, NS. The effective mean free path methods

that are applied for solving the Navier–Stokes equations are here referred to as the

TMFP, EMSP and EMDIFF models. Here TMFP is the theoretically derived effective

mean free path obtained by λJ , where J is from Eqn (3.7) and EMSP and EMDIFF

are empirical models from the molecular dynamics simulation that use specular and

diffusive reflections respectively. The normalised effective mean free path, also referred

to as J , for the two latter models are obtained from the following expression:

λeff

λ
= 1−

[
A1 exp

(−A2n

λNe

)
+ A3 exp

(−A4n

λNe

)

+ A1 exp

(−A2(H − n)

λNe

)
+ A3 exp

(−A4(H − n)

λNe

)]
, (5.6)

where EMDIFF uses the coefficients A1 = 0.30318, A2 = 9.38115, A3 = 0.69682 and
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A4 = 1.11005, and EMSP uses the specular wall coefficients shown in Table 4.6. The

corresponding one wall-profiles are shown for the empirical models in Figure 4.14.

5.1 Case solving using extended Navier-Stokes equations

Isothermal, fully developed velocity profiles in planar Couette and Poiseuille flow cases

are calculated using the modified Stokes equation:

∂

∂n

[
µeff

∂vt

∂n

]
=

∂p

∂t
, (5.7)

where vt is the tangential component of the velocity v and the effective viscosity is

applied through the relationship to the effective mean free path, expressed in Eqn 5.3.

The velocity component vt is assumed to vary only in the direction normal to the wall,

the n-direction. This model is applied with the first-order velocity-slip of Eqn (5.4)

and with the second-order velocity-slip of Eqn (5.5). The Couette and Poiseuille flow

cases are solved for just the half of the channel (H/2 < n < H). For these velocity-slip

boundary conditions the near-wall values of λeff, are applied at n = H.

The slip coefficients used in this chapter are listed in Table 5.1. The coefficients for

the NSeff models are chosen by trial and error with consideration given to achieving

reasonable results for both the Couette and the Poiseuille cases.

Table 5.1: Coefficients for velocity-slip models used in this chapter. The coef-

ficients for the conventional Navier-Stokes equations (NS) are from Hadjicon-

stantinou [23].

Model D′

1 D′

2 D′

3 D1 D2

NSeff, second-order BC (TMFP) 0.05 0.75
NSeff, first-order BC (TMFP) 1.0
NSeff, second-order BC (EMSP) 0.05 0.60
NSeff, BC (EMSP) 1.0
NSeff, second-order BC (EMDIFF) 0.05 0.56
NSeff, first-order BC (EMDIFF) 1.0
NS, second-order BC 1.1466 0.647
NS, first-order BC 1.1466

It should be noted that the second order velocity slip model is derived from an expansion

of the first order model using λ as a smallness parameter. It is generally considered

that the second order term is a correction to the first order term and that the same

coefficients for D′

1 and D′

2 should therefore be used. However this yielded unreasonable

results which is why these coefficients instead where chosen by trial and error. Due to
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this incomplete theoretical derivation of the present applied boundary condition it is

not certain that the new model is generally applicable for all cases.

It is shown by experimental investigators, such as Turner et al. [63], that micro gas flows

have compressible characteristics even for flow velocities bellow Mach 0.3. However, the

normalised velocity profile in the channel cross section of the flow is calculated here by

assuming fully developed incompressible flow. Although it is not investigated here, the

density of the flow could also be solved by incorporating the ideal gas law to the solution

method knowing the pressure. This solution method is obtained from Kandlikar et al.

[28].

5.1.1 Couette flow

A schematic representation of Couette flow is given in Figure 5.2 illustrating the gas

movement caused by the difference of the wall velocities in the wall-tangential direction.

vwall−vwall

H

n

Figure 5.2: Schematic of Couette flow. The flow is driven by the left wall moving

with the velocity -vwall and the right wall moving with the velocity vwall. Also

shown is the channel wall separation, H, and the wall-normal coordinate n.

In Couette flow the pressure gradient of Eqn (5.7) is assumed to be negligible, yielding

the governing equation:
∂

∂n

(
µeff

∂vt

∂n

)
= 0. (5.8)

The solution to this equation using the first-order velocity-slip, is

vt

vwall
=

F (n − H/2) − F (n = H/2)

F (n = H) + D′

1λ − F (n = H/2)
, (5.9)

where vwall is the tangential component of the wall velocity and

F (n) =

∫
1

J(n − H/2)
dn. (5.10)

79



The NSeff solution using the second-order velocity-slip is:

vt

vwall
=

F (n − H/2) − F (n = H/2)

F (n = H) + D′

2λ − D′

3λ
2J ′(n = H) − F (n = H/2)

, (5.11)

where

J ′(n) =
dJ(n − H/2)

dn
. (5.12)

The conventional solution to Eqn (5.8), with constant viscosity and boundary conditions

applied using λ, is as follows:1

vt

vwall
=

n + H/2

H/2 + D1λ
. (5.13)

The NSeff solutions of Eqns (5.9) and (5.11) for the TMFP, EMSP and EMDIFF models

and the NS solution of Eqn (5.13) are compared in Figures 5.3, 5.4 and 5.5 respectively

for different Kn. The velocity profiles are compared to the conventional Navier-Stokes

(NS) for Kn = 0.01 and Kn = 0.1. Comparisons are made to the DSMC method by

Bird [6] and to the BGK results of Sharipov [56] for the cases Kn = 0.1, Kn=0.5 and

Kn=1. The results of the figures are jointly commented on below for the different Kn.

No significant difference in results can be distinguished between the first- and second-

order velocity-slip up to KnD = 1. In these figures n = H/2 is in the centre of the

channel.
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Figure 5.3: Half-channel Couette flow velocity profiles using the TMFP effec-

tive viscosity model (NSeff), with first- and second-order velocity-slip boundary

conditions (BC), where KnA = 0.01, KnB = 0.1, KnC = 0.5 and KnD = 1.

1The second-order velocity-slip solution does not exist, because there is no second-order gradient of
the velocity.
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Figure 5.4: Half-channel Couette flow velocity profiles using the EMSP effective

viscosity model (NSeff), with first- and second-order velocity-slip boundary

conditions (BC), where KnA = 0.01, KnB = 0.1, KnC = 0.5 and KnD = 1.
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Figure 5.5: Half-channel Couette flow velocity profiles using the EMDIFF effec-

tive viscosity model (NSeff), with first- and second-order velocity-slip boundary

conditions (BC), where KnA = 0.01, KnB = 0.1, KnC = 0.5 and KnD = 1.
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� It is seen that for KnA = 0.01 all of the solutions have sufficiently linear profiles

to match the conventional NS results well.� Even for the KnB = 0.1 case most of the profiles show similar results. All the

models have about the same amount of velocity-slip at the wall, where as the

NSeff -models have slightly more curved profiles and deviate the most at n ≈ 0.85

at which point these profiles are about 1% below the validation data.� For KnC = 0.5 all the NSeff models fit the validation data of DSMC very well.

For this case the validation data of the DSMC method is about 0.5% lower than

the BGK results in the near-wall area and the NS models are omitted since they

are not applicable at this Kn.� For KnD = 1 there is a significant difference between the NSeff first- and second-

order velocity-slip models, except for the EMDIFF model. The EMSP model

yields the best match with the DSMC results for the first-order velocity slip. It

is shown that the second-order velocity-slip has a velocity profile that is about

1% higher than the first-order velocity-slip in the near-wall area for the TMFP

model whereas the corresponding difference is about 2% for the EMDIFF model.

The DSMC and BGK methods both have results very similar to each other. The

results of the TMFP, EMSP and EMDIFF methods for the second-order velocity-

slip are about 4%, 2% and 1% higher than the DSMC results respectively in the

near-wall area.

It is considered that the EMSP model with first order velocity slip is the NSeff model

that compares best with the DSMC data for these cases.
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5.1.2 Poiseuille flow

A schematic representation of Poiseuille flow is given in Figure 5.6 illustrating the gas

movement caused by the pressure difference between the inlet and the outlet.

H

n

Pin

Pout

Figure 5.6: Schematic of the Poiseuille flow. The flow is driven by the pressure

difference between Pin and Pout at the two ends of the channel. For this case the

two confining walls are stationary. Also shown is the channel wall separation,

H, and the wall-normal coordinate n .

In the next two sections the velocity profiles and the mass-flow rates for isothermal, fully

developed Poiseuille flow cases are solved in planar-wall geometries for the NSeff and

NS models with first- and second-order velocity-slip boundary conditions.

Velocity profile results

In this case the solution to Eqn (5.7) using the NSeff model with first-order λeff-

dependent velocity-slip is as follows:

vt

v0
=

8

H2

[
G (H) + D′

1λ
H

2
− G(n − H/2)

]
, (5.14)

where

G(n − H/2) =

∫
n − H/2

J(n − H/2)
dn and v0 = −H2

8µ

dp

dt
. (5.15)

The NSeff solution with second-order λeff-dependent velocity slip is:

vt

v0
=

8

H2

[
G (H) + D′

2λ
H

2
+ D′

3λ
2

[
J(H) − H

2
J ′(H)

]
− G(n − H/2)

]
, (5.16)

where

J ′(n − H/2) =
dJ(n − H/2)

dn
. (5.17)
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The solution of the conventional NS equation, with constant viscosity and first-order

velocity slip using the unconfined λ, is:

vt

v0
= 1 − 4

(
n − H/2

H

)2

+ 4D1
λ

H
, (5.18)

and the NS solution with second-order velocity slip using the unconfined λ is:

vt

v0
= 1 − 4

(
n − H/2

H

)2

+ 4D1
λ

H
+ 8D2

(
λ

H

)2

. (5.19)

The half-channel velocity profiles of the NSeff and NS models for Poiseuille flow are

shown in Figures 5.7, 5.8 and 5.9. The results of the figures are jointly commented below

for the different values of Kn. No significant difference in results can be distinguished

between any of the models for the KnB = 0.1 case, indicating that they are likely to

asymptotically approach the results of the conventional NS models for lower Kn. There

is only a marginal difference between the TMFP, EMSP and EMDIFF models up to

Kn = 1. In these figures it is seen that the main difference between the NSeff models

is generally that they have similar shape to each other but different velocity-slip.
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Figure 5.7: Half-channel Poiseuille flow velocity profiles using the TMFP effec-

tive viscosity model (NSeff), with first- and second-order velocity-slip boundary

conditions (BC), where KnB = 0.1, KnC = 0.5 and KnD = 1.
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Figure 5.8: Half-channel Poiseuille flow velocity profiles using the EMSP effec-

tive viscosity model (NSeff), with first- and second-order velocity-slip boundary

conditions (BC), where KnB = 0.1, KnC = 0.5 and KnD = 1.
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Figure 5.9: Half-channel Poiseuille flow velocity profiles using the EMDIFF ef-

fective viscosity model (NSeff), with first- and second-order velocity-slip bound-

ary conditions (BC), where KnB = 0.1, KnC = 0.5 and KnD = 1.
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� For the KnB = 0.1 case all the presented models show similar results indicating

that a convergence of the models is likely for even smaller Kn. For the Poiseuille

case this is the only Kn that the conventional NS models are compared with since

Kn = 0.1 is generally considered as the upper validity limit of this method.� For the KnC = 0.5 case all the velocity profiles using different order of velocity

slip differ. It is seen that the NSeff model with second-order velocity-slip achieves

good results in the bulk area of the flow. Since the validation data of the BGK

method has a more curved velocity profile than the new models the NSeff model

using first-order velocity-slip matches the BGK data better in the near-wall area.� For the KnD = 1 case it is seen that the NSeff models have velocity profiles

which are considerably flatter than the BGK results. For the EMSP method

using second-order velocity-slip a reasonable cross-sectional average of the velocity

profile compared to the BGK method is captured. Both the TMFP and EMDIFF

models using second-order velocity-slip show similarly good results in the bulk

flow compared to the BGK method but their velocity profiles are both about 10%

too high in the near-wall area.

It can be concluded that for the Poiseuille velocity profiles the TMFP, EMSP and

EMDIFF models show an asymptotic approach to the NS results for flows approaching

the continuum regime. For Kn = 0.5 the velocity profiles of the models tested deviate

from the validation data although the second-order slip still acquires a seemingly correct

cross-sectional average of the velocity.

Mass flow rate results

The mass flow rates are studied in this section using the TMFP, EMSP and EMDIFF

models and compared with experimental results by Ewart et al. [15] and with the BGK

results by Sharipov [56] for degrees of rarefaction ranging from Kn ≈ 0.1 to Kn ≈ 90.

The experimental measurements by Ewart et al. are made for helium gas, driven by a

pressure difference which, for various cases, has the ratios of 3, 4 and 5 between the

inlet and the outlet of the channel. The experimental channel dimensions are: height

H = 9.38µm; width W = 492µm; and length L = 9.39mm. Since this channel is

relatively wide compared to its height, it is assumed that a comparison with our model

for just two planar walls is valid. However, according to Sharipov [56] there is still an

influence of the lateral walls, here separated by W ; the error due to this influence can

be taken into account by multiplying the predicted mass flow rate by 1 – 0.63H/W =

0.99.
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In order to compare our results with experiment, the velocity-dependent mass flow rate

is calculated using the following relation:

ṁ = ρ 〈vt〉ACS =
p 〈vt〉ACS

RT
, (5.20)

where ACS is the area of the cross section of the channel and

ṽt =
〈vt〉
v0

=
2

H

∫ H/2

0

vt

v0
dn (5.21)

is the normalised average velocity across the channel height. Here the mass flow rate

definition of Eqn (5.20) applies the averaged velocities of the four velocity expressions

of Eqns (5.18), (5.19), (5.14) and (5.16) and is normalised by the quantity

ṁ0 = −ACSH√
2RT

dp

dt
. (5.22)

The normalised expression is then obtained for the mass flow rate,

ṁ

ṁ0
=

v0

ṁ0

pACS

RT
ṽt =

√
π

8

H

λ
ṽt =

δ

4
ṽt(δ), (5.23)

where the inverse rarefaction parameter is

δ =

√
π

2

H

λ
. (5.24)

The results of the mass flow rates of the NSeff and NS equations using first- and second-

order velocity-slip are shown in Figures 5.10, 5.11 and 5.12, together with the BGK

results of Sharipov [56] and the experimental results of Ewart et al. [15], where height

of the error bars of the experimental data is set to 4.5% of the normalised mass flow

rate values.
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Figure 5.10: Mass flow results of the TMFP model in NSeff with first- and

second-order boundary conditions (BC). The results are compared with BGK

solutions by Sharipov [56] and experimental results of Ewart et al. [15].
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Figure 5.11: Mass flow results of the EMSP model in NSeff with first- and

second-order boundary conditions (BC). The results are compared with BGK

solutions by Sharipov [56] and experimental results of Ewart et al. [15].
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Figure 5.12: Mass flow results of the EMDIFF model in NSeff with first- and

second-order boundary conditions (BC). The results are compared with BGK

solutions by Sharipov [56] and experimental results of Ewart et al. [15].

The Figures 5.10, 5.11 and 5.12 show that all of the models are asymptotic to the

experimental data for low Kn (i.e. high δ), which fulfils the requirement that the in-

fluence of the effective viscosity and the effective mean free path should decay with

decreasing degree of rarefaction. It is only the NSeff and NS models with second-order

velocity-slip that capture the mass flow minimum, which occurs for the conventional

model at δ ≈ 2 and for the new model at δ ≈ 1. The validation data of the BGK-model

and the experimental data have a minimum at δ ≈ 1.2. The conventional Navier-Stokes

equations are solved by Colin et al. [50] with second-order velocity boundary conditions

applied with Hadjiconstantinou’s velocity-slip coefficients [23] showing good mass-flow

rate results for roughly Kn < 0.3. The NS model with second-order velocity-slip pre-

dicts a mass flow rate that is unbounded and therefore non-physical for low δ-values.

The NSeff models show a clear minimum at Kn ≈ 1.5. There after, the mass flow rate

of the TMFP model lies between the experimental data and the BGK results down to

δ ≈ 0.2. The corresponding mass flow rates for the EMSP and EMDIFF models are

slightly closer to the BGK results than the experimental results. The TMFP, EMSP

and EMDIFF models start to deviate from the validation data, by asymptoting to val-

ues of about 1.9, 1.8 and 1.9 respectively at about δ ≈ 0.05. The mass flow rate results

up to Kn = 1 can be realised by inspection of the velocity profiles for the KnD cases

of Figures 5.10, 5.11 and 5.12, where the velocity profiles of the TMFP and EMDIFF

models are relatively high in comparison to the EMSP model which is, on average,
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slightly below the BGK velocity profile. It should also be noted that the NSeff based

first-order velocity-slip models show very good results down to δ ≈ 4.

In Table 5.2 an approximate range of applicability is listed for the NS-based models and

the BGK-model, within the δ inspection range of 0.3–20. These applicability ranges are

estimated by the ability of the different models to reproduce mass flow rates similar

to the experimental data within approximately the double length reach of the stated

error bars.

Table 5.2: Applicability ranges of the tested models, determined by comparing

their ability to accurately predict the experimentally determined mass flow

rate as measured by Ewart et al. [15].

Model
Approximate range of applicability

In terms of δ In terms of Kn

NSeff, second-order BC (TMFP) 0.3—10 0.09—2.95

NSeff, first-order BC (TMFP) 4—10 0.09—0.22

NSeff, second-order BC (EMSP) 0.3—10 0.09—2.95

NSeff, first-order BC (EMSP) 4—10 0.09—0.22

NSeff, second-order BC (EMDIFF) 0.3—10 0.09—2.95

NSeff, first-order BC (EMDIFF) 4—10 0.09—0.22

NS, second-order BC a 3—10 0.09—0.30

NS, first-order BC 4—15 0.04—0.06

BGK 0.01—10 0.09—88.6

aIt should be noted that the investigators Colin et al. [11] and Maurer et al. [41] found that for special
cases the applicability range of NS with second-order boundary conditions reached up to Kn = 0.25
and Kn = 0.3 respectively.

5.2 Discussion

The new models based on the effective mean free path description from a theoretical

derivation as well from molecular dynamics results have been used to extend the ap-

plicability of the Navier-Stokes equations for the classical Couette and Poiseuille flow

cases. In order to simplify the cases, they are considered to be isothermal and to have

only one-dimensional flow solutions in planar-wall geometries, i.e. the variables only

change in the direction normal to the walls. Also the gas is assumed to be monatomic

in order for the molecular dynamics results of the effective mean free path to be appli-

cable. The new models are compared to BGK and DSMC results for Couette flow, and

the BGK and experimental mass-flow results for the Poiseuille flow case.

The Couette flow results show that the present extended Navier-Stokes equations have

a non-linear velocity profile similar to the validation data of the BGK and DSMC

methods. The new models are considered to capture similar velocity profiles to the
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validation data up to Kn ≈ 1. It is found that the highest Kn case that the conventional

Navier-Stokes equations are applicable to solve the Couette flow for is Kn = 0.1.

For Poiseuille flow, it is considered that the present extended Navier-Stokes results

agree with the conventional Navier-Stokes results for Kn = 0.1. For Kn up to unity it

is found that the velocity profiles of the extended Navier-Stokes equations using second-

order velocity-slip manage to capture the bulk velocity of the validation data, while in

the near-wall region the new model using first-order velocity-slip manages shows results

more similar to the validation data.

In solving the Poiseuille flow it is found that the extended Navier-Stokes equations can

only predict the mass-flow-minimum by using second-order boundary conditions which

also is the case for the conventional Navier-Stokes equations. However, the mass flow

rates predicted by the extended Navier-Stokes models approach a bounded value at

Kn ≈ 10, which is some 10% lower than the bounded mass flow rate results of the

validation data.

For the tested cases the results of the new extension of the Navier-Stokes equations

converge with the results of the conventional Navier-Stokes equations at low Kn. This

convergence is important for Kn . 0.1 since the conventional Navier-Stokes equations

are generally considered to be correct for in this region [17]. For larger Kn the extended

Navier-Stokes equations can be used to about Kn ≈ 3. However, at Kn = 1 they predict

velocity profiles with roughly the same average of the cross sectional velocity as the

corresponding BGK method results, but the new velocity profiles are flatter in shape.
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Chapter 6

Discussion and conclusions

In recent years vast improvements in manufacturing of micro-mechanical systems has

been made. It is however known that the conventional fluid modelling techniques con-

sisting of the Navier–Stokes–Fourier equations do not capture the correct flow descrip-

tion at these length scales [17]. Clear examples of cases where the conventional methods

fail are the torque exerted on a disk by the reading head in a hard disc drive [29] or

the occurrence of the mass-flow minimum which has been experimentally observed for

helium gas driven in Poiseuille flows, at a certain level of rarefaction [15]. A better un-

derstanding of the gas flow behaviour on the micro-scale (micro gas flows) would yield

a more profitable production of micro-mechanical systems. A better understanding of

micro gas flows would also yield better knowledge of biological effects on the micro

scale such as insects’ perception of sound [26] or the way medical or polluting sub-

stances affect the micro-channels of our lungs [19]. Due to many beneficial application

areas of better flow descriptions on the micro-scale, and also due to general thirst of

knowledge, investigators are now seeking new modelling techniques or extensions to the

Navier–Stokes–Fourier equations to obtain good flow descriptions at this length scale.

To describe micro gas flows it is convenient to use the key parameter, the Knudsen

number, Kn, which describes a gas state of rarefaction or equivalently its state of non-

equilibrium. The Kn parameter is the ratio of the average travelling distance of the gas

molecules between successive collisions, the mean free path, to the geometrical length

scale of the problem.

The main difficulty of describing gas flows on the micro-scale as opposed to describ-

ing them on the macro-scale is that the equilibrium description becomes invalid for

standard pressure and temperature gases in channels where the walls are separated

by roughly 10µm, which roughly corresponds to Kn ≈ 0.01 for neon gas at standard

temperature and pressure. It is generally considered that the Navier–Stokes–Fourier

equations can predict flows up to Kn ≈ 0.1 when applied with discontinuous velocity
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and temperature boundary conditions, referred to as velocity-slip and temperature-

jump respectively [17]. There are alternative methods such as the particle-based direct

simulation Monte Carlo method (DSMC) and various simplified solution methods of

the Boltzmann equation, such as the BGK method, which are appropriate for solving

rarefied gas flows for all degrees of rarefaction. However these methods are more expen-

sive in terms of computational effort. Many investigators therefore focus on deriving

combinations of more accurate but costly methods with the computationally cheaper

Navier–Stokes–Fourier equations resulting in hybrid methods. However, a valid exten-

sion to the purely continuum-based Navier–Stokes–Fourier equations for Kn > 0.1

cases is interesting because it would be cheap in terms of computational cost, and this

method converges with the conventional Navier–Stokes–Fourier equations for macro-

scale flows.

In this thesis an extension of the isothermal Navier–Stokes–Fourier equations, the

Navier–Stokes equations, is derived. This method is based on a description of how the

travelling distance of molecules between collisions, the free path, is terminated by the

gas molecules colliding with solid walls in addition to the inter-gas molecular collisions.

The average of these distances is here considered to be a geometry-dependent mean

free path referred to as the effective mean free path. An expression for the effective

mean free path is first theoretically derived and then validated using the deterministic

modelling approach of molecular dynamics.

The theoretically derived effective mean free path is based on a gas molecule’s proba-

bility of colliding with other gas molecules in addition to to solid walls. The effective

mean free path is described by an exponential probability function, which scales the

unconfined value of the conventional mean free path. The theoretically effective mean

free path model is investigated in the close vicinity of geometries with one planar wall,

two planar walls, a spherical obstacle and a spherically shaped cavity.

For the one-planar-wall case it is found that the effective mean free path fulfils intuitive

requirements of approaching a value of half the unconfined mean free path in the near-

wall region and approaching the unconfined value of the conventional mean free path

in the bulk of the gas. For the two-planar-wall case with the walls widely separated,

it is shown that the same requirements as for the effective mean free path for the one

wall are fulfilled. However, as the walls are situated close to each other compared to

the length measure of the unconfined mean free path it is observed that there is an

overlapping effect of the gas molecular collision probabilities caused by both the walls

which results in the effective mean free path profiles to be flatter and lower than for

the cases where the walls are widely separated. As the two planar walls are placed at a

distance from each other equal to one twentieth of the unconfined mean free path it is

observed that the effective mean free path converges to a flat profile at a value of about

the same as the distance between the walls, which fulfils a third requirement [14].
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For the spherical obstacle case the effective mean free path obtains half of the uncon-

fined mean free path value at the wall. The effective mean free path profile approaches

the unconfined value at a shorter wall distance compared to the corresponding one-

planar-wall case, as intuitively expected.

The spherical cavity case also shows results where the effective mean free path inside a

relatively large cavity approaches half the unconfined value at the wall and approaches

the unconfined value in the bulk of the cavity. The effective mean free path for a

relatively small cavity approaches the average distance to the walls from any position

of the gas. This is to be expected since the molecular travelling distances between

collisions are not as often terminated by inter-gas molecular collisions as they are for

gas molecular collisions with walls.

It is reasonable that the probability of the molecular travelling distance without expe-

riencing a collision is based on the exponential probability function. This is reasonable

because this function is commonly used in scenarios where there is an assumption of

constant probability of an occurrence per unit of the dependant variable. In this thesis

it is assumed that the molecules of an unconfined gas are equally probable to travel

in any direction, that the speed of the molecules does not depend on their direction of

travel and that as long as the molecular density of a gas is spatially uniform and the

minimum spacings between the molecules of the gas should be roughly the same. With

regard to these assumptions it is reasonable to believe that the molecules also have a

constant probability of experiencing a collision per unit of length of travel which is in

consistency with the constant probability per unit of a dependant variable, on which

the exponential function is based. In this thesis the exponential probability function

is applied even in near-wall regions, therefore a reasoning should be made concerning

the use of the exponential function in these situations. For a gas in a near-wall region

it is still assumed that the molecule is equally probable to travel in any direction and

that this direction is independent of the speed that the molecule is travelling in. It is

also assumed that molecules are equally probable to experience collisions in any part

of their travelling trajectories towards solid boundaries as for molecules travelling in

the direction of an unconfined gas. However, in case a molecule approaches a wall it

will clearly experience a collision. This is accounted for in the the probability function

since the upper limit of the probability function’s dependence on the travel distance

is set to the wall distance. The applicability of using the exponential probability func-

tion for estimating the near-wall effective mean-free-path is therefore considered to be

reasonable for cases where the assumptions stated above are valid.

A validation of the theoretical mean free path is performed using the method of molec-

ular dynamics. This method simulates the gas in a detailed manner by describing it as

a discrete number of molecules interacting by Lennard-Jones’ repulsive short-range and

attractive long-range forces. Since the molecules in this description do not experience
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collisions at instantaneous moments but instead interacts through continuous forces,

the defined criterion of a collision has to be implemented. In the molecular dynamics

simulations of this thesis a collision between molecules is considered to have occurred if

they are closer to each other than their equivalent hard-sphere diameter. This criterion

for molecular collisions is consistent with the theoretical description, which is essen-

tial for comparisons between these methods. The parameter used for determining the

magnitude of the potential between the molecules is also chosen so that consideration

is taken to the hard-sphere diameter so that the scattering of molecules occurs in a

similar manner as for more commonly used Lennard-Jones parameters. The mean free

path is then recorded by averaging the collision free path of every molecule within a

certain spatial domain during a certain time frame.

First a simulation is made, using molecular dynamics, of the distribution of the free

paths for the gases helium, neon and argon. These results are very similar to the corre-

sponding theoretical probability distribution except that the simulation shows a slightly

higher probability of shorter free paths. Then the average of the free paths, the mean

free path, is measured. It is found that the molecular dynamics simulation reproduces

the theoretical values of the mean free path for argon, neon and helium within an ap-

proximate accuracy of 1.4%, 1.8% and 0.7% respectively. Also an investigation is made

measuring the mean free path when only binary collisions are considered as opposed to

collisions involving more than two molecules. It is found that, even though roughly 80%

of the molecular collisions are binary, there is no observable difference in the measured

mean free path from the two-collision descriptions.

Then this molecular dynamics method is used to measure the effective mean free path

profiles in the vicinity of one planar wall and two planar wall configurations. The

walls are either modelled to yield only specular reflections, only diffusive reflections or

explicit reflections caused by simulating a wall consisting of tethered molecules. It is

found that the theoretical description corresponds reasonably well with the molecular

dynamics results for the specular wall reflections for the one planar wall case. The

molecular dynamics results for the mean free path profile between two planar specular

walls is similar to the corresponding theoretical results up to Kn ≈ 0.5. For higher

Kn the mean free path profiles differ in shape but keep the same order of magnitude.

The molecular dynamics simulation using diffusive walls produces a mean free profile

which is considerably lower in the near-wall area and has a more rapid increase to the

unconfined value compared to the case of specular wall reflections. For the effective

mean free path measured in the vicinity of explicit walls it is found that the whole

profile is much lower than both the results by specular or diffusive walls. It is also

found that the results of the mean free path profile strongly depend on the thickness

of the modelled wall, which is probably due to that the thicker wall has a significantly

different potential influence on the gas molecular behaviour.
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Finally the molecular dynamics simulation is used to measure the mean free path in the

near vicinity of the non-planar geometries of a spherical obstacle and a spherical cavity.

For the spherical obstacle it is found that the measured effective mean free path profiles

caused by both the specularly and the diffusive reflective surfaces are very similar to

each other. It is also found that the measured mean free path profiles are similar to the

theoretical profile in the near-wall area but is about 2% lower towards the bulk. For

the spherical-cavity case three different diameters of the cavity are simulated, which

are chosen to be comparable to the length of the unconfined mean free path. It is found

that all the measured mean free path profiles are similar to the theoretical profiles in

the bulk but are about 5% low in the near-wall areas.

One of the main assumptions concerning the applicability of using an exponential prob-

ability function for describing the effective mean free path profile in near wall regions

is that molecules should on average be expected to have the same speed independent

of their travelling trajectories. This assumption is assumed to be valid for all the im-

plicit walls. This requirement is however not likely to be fulfilled for cases using explicit

walls since the molecular velocities will be geometrically affected by the potential of the

wall. The speed distribution is therefore measured for molecules that are reflected of

an explicit wall in section 4.5.2. The results of the speed distribution showed that the

molecules where indeed faster in the near wall area compared to the Maxwellian speed

distribution. If this aspect would be the only affect on the near-wall effective mean

free path then it would be expected that the near wall value would be higher than the

corresponding results by the implicit walls, but it is in fact significantly lower. This

lower profile is probably caused by other factors than the molecular speed distribution.

A likely reason for the low effective mean free path profile to occur near the explicit

walls is due to that molecules are likely to get caught in the well of the Lennard-Jones

potential between the long-range attractive force and the short-range repulsive force.

The trapping of molecules in the near wall area would thereby cause a locally higher

molecular density which in turn would cause a shortening of the mean-free-path in this

region. A closer investigation is therefore of interest concerning to what extent this

potential force can influence the mean free path.

Both the effective mean free path results from the theoretical model and the effective

mean free path from the molecular dynamics measurements are applied for solving

the isothermal Navier–Stokes–Fourier equations. For this method the effective mean

free path is shown to relate to the viscosity through a linear relationship which in turn

yields a geometry-dependent viscosity. It is also argued that the effective mean free path

should be involved in the velocity-slip boundary conditions instead of the conventional

unconfined mean-free-path value.

By extending the Navier–Stokes equations with the effective mean free path definition,

the classical fluid flow problems of the Couette flow and Poiseuille flow are solved with
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a first- and second-order velocity-slip. In the solution of the extended Navier–Stokes

equations three different effective mean free path descriptions are used. The descriptions

are from the theoretical effective mean free path derivation and the measured effective

mean free path from molecular dynamics for both specular and diffusive wall reflections.

The effective mean free path descriptions affect the results of the extended Navier–

Stokes equations quite similarly for Kn < 0.5. The largest difference between the

theoretically derived description and the measured descriptions is for Kn ≥ 1, which

is shown in the mass flow rate results of the Poiseuille flow.

The velocity-profile results of the Couette flow shows that the extended Navier–Stokes

equations converge with the results of the conventional Navier–Stokes equations for

Kn = 0.01, which is a fundamental criterion. For larger Kn it is shown that the new

model manages to produce velocity profiles similar to both the DSMC method and the

BGK method up to Kn ≈ 1, where the second-order velocity-slip represents slightly

better results.

For the Poiseuille flow it is shown that the extended Navier–Stokes equations manage

to converge with the results of the conventional Navier–Stokes equations for Kn = 0.1.

For larger Kn it is shown that the velocity profiles of the new model are slightly

different from the validation data of the BGK method but manage to capture the same

magnitude of the cross-sectional velocity using the second-order velocity-slip, which

is important in order to reproduce similar mass flow rates. The mass flow rates of

the new model are compared to experimental results [15] and the BGK method [56].

The new model applied with second-order velocity-slip manages to capture the mass

flow minimum and shows good agreement with the experimental data up to Kn ≈ 3,

which is relatively close to the free molecular regime where a flow needs to be described

by individual molecules and not by a continuous medium. It is shown that the new

model, applied with first-order velocity-slip, does not produce good agreement with

the experimental mass flow rates above Kn ≈ 0.3.

There are three main interesting areas of future research based on the work of this

thesis. The first is to study the effective mean free path for other types of walls. Second

it would be interesting to implement the extended Navier–Stokes equations as a solution

method in the OpenFOAM [1] toolkit. And the third interesting area to investigate is

the influence of near-wall effects on the thermal heat transfer of gases.

The first field of investigation that is directly applicable to this material concerns further

investigation of the effects of different types of walls. It is reported by various inves-

tigators that the tangential momentum exchange between solid walls and molecules

reflected off the walls is neither fully diffusive nor fully spectral. Instead about 80% of

the molecules experience diffusive reflections and the rest experience specular reflec-

tions. It would therefore be interesting to investigate how well the isothermal extended
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Navier–Stokes equations would solve the Couette and Poiseuille flow cases with an effec-

tive mean free path description based on partly specular reflection and partly diffusive

reflections. It would also be of interest to measure the effective mean free path profile

for an explicit wall that is sufficiently thick for the effective mean free path profile not

to change shape using marginally more or less molecules in the wall. The results in this

thesis show that the effective mean free path profile is about 15% lower in the near wall

region for an explicit wall of an approximate thickness of 3.7 × 10−10m compared to a

wall with an approximate thickness of 3.1× 10−10m and about 4% lower at a wall dis-

tance of two conventional mean free paths. Since the wall molecules that are simulated

in this investigation are neon molecules with σ = 2.5836 the wall consists of a molecular

layer which is roughly one and one half molecular diameters thick. However a wall with

this thickness is not representative for actual walls and it is reasonable to believe that

a change of the wall potential, due to the wall thickness, will vary to a large extent

dependant on how many molecules there are in the wall. This change of wall potential

will most likely influence the profile of the effective mean free path in the near wall

region. It is assumed that a thicker explicit wall would yield a still lower effective mean

free path profile. It would be of interest to investigate the cases of the Couette flow and

the Poiseuille flow for the extended Navier–Stokes equations applied with an effective

mean free path empirically derived for such conditions. It would also be very interesting

to investigate the effective mean free path in the vicinity of an explicit wall which uses

purely short-range repulsive potentials such as the Weeks–Chandler–Andersen wall po-

tential. This potential cuts off the attractive long-range force from the Lennard-Jones

potential of the wall molecules [58].

The second aspect of future work is to develop extended Navier–Stokes equations,

which could be implemented in the OpenFOAM toolkit. This would be beneficial in

the sense that flow cases for arbitrary geometrical configurations could then be modelled

as opposed to the two-planar-wall test cases of the Couette and Poiseuille flows studied

here. For this model to be implemented the effective mean free path of every point of

the gas domain needs to be determined, however the form of the domain is shaped. One

method of doing this could be to use an already existing tool in OpenFOAM which

calculates the closest distance to the boundaries from any point of the gas domain. This

function would then be modified to find various wall distances for various directions,

being distributed with equal angular separation from the point of interest. The usage

of wall distances from these trajectories is in consistency with the point of view that

molecules are equally probable to travel in any direction which is used in this thesis.

The wall distances would then be inserted in the theoretically derived mean free path

probability function for a single travelling direction, and then averaged with respect to

all the effective mean free paths obtained from all directions. By this method it would

not matter in case the bounding domain is planar or spherical or any other shape

since the measured wall distance trajectories only considers the mean free paths from
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their trajectories independently. The main geometrical effect becomes apparent once

these values are averaged yielding the mean free paths for equally probable travelling

direction. The velocity slip boundary conditions would also have to be implemented

dependent on these effective mean free paths.

In case the effective mean free path is implemented in the OpenFOAM toolkit it would

need to take a transient relaxation factor into account. This would be consistent with

the effect captured by the molecular dynamics simulation where the free path is “re-

membered” by the molecules and is not instantaneously altered in case the geometry

is changed. For instance, if a flow over a wall is considered where the wall is suddenly

taken away, then the molecular dynamics simulation would show an effective mean free

path which is the same as just before the wall was removed. However, for the model

derived in this thesis the effective mean free path would obtain the unconfined mean

free path value as soon as the wall was taken away.

It should be noted that it would be more simple in case the average wall-distance could

be computed first and then inserted into the one directional effective mean free path

expression. The results of such an approach were tested for the effective mean free

path of the spherical obstacle and the spherical cavity cases. It was found that the two

approaches had very similar results for the spherical obstacle case. For the spherical

cavity case it was found that the two approaches where only similar in case the diameter

of the cavity was small relative to the unconfined mean free path. If the diameter of

the cavity was large relatively to the unconfined mean free path the effective mean free

path profile was close to the value of the unconfined λ at the surface. This discrepancy

is due to the difference between the two expressions:

〈1 − exp(−rd)〉 6= 1 − exp(〈−rd〉), (6.1)

where rd is the radial distance from the sphere or cavity centre and the angular brackets

are averaged quantities with respect to travelling directions of the molecules. Since these

equations gave similar effective mean free path results for the spherical obstacle case

and not for the cavity case it is assumed that the two expressions of Eqn. (6.1) are

more likely to be similar in most cases where there is no reciprocal wall present.

The third interesting area of future work is to investigate how the presence of a wall

influences the heat-transfer characteristics in near-wall areas. In this thesis only isother-

mal cases are considered where it is assumed that the average momentum transfer be-

tween molecules is proportional to the effective mean free path profile. An example of

this can be illustrated considering that molecules of the bulk of the gas receive momen-

tum from molecules that have had their previous collision on average one mean free

path away, and similarly, for a gas in the near-wall region, momentum is on average

received from a distance that is half of one mean free path away. This point of view
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is based on that molecules exchange full momentum at collisions. However the heat

transfer due to molecular collisions is probably not fully exchanged between molecular

collisions in the same extent as for the momentum exchange. This is strengthened by

that molecules need to experience some three or four molecular collisions in order to

equilibrate their energy with other molecules in the same vicinity, as reported by Reese

et al. [51]. It would therefore be interesting to investigate the influence of surface effects

on the heat-transfer characteristics of a gas.
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