University of Strathclyde

Strathclyde Institute of Pharmacy and Biomedical Science

The role of IL-4Ra signaling during Toxoplasma gondii

infection

by

Thabang Mokgethi

A thesis submitted in fulfillment of the requirements for

the degree of Doctor of Philosophy

2010

This thesis is the result of the author's original research. It has been composed by the author and has not been previously submitted for examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis.

Signed:

Date:

ACKNOWLEDGEMENTS

First I would like to thank Professor Frank Brombacher and Professor James Alexander for offering me the opportunity to do a PhD here. To my primary supervisor Professor James Alexander, thank you for the constant support and guidance throughout the past few years. It has been a great learning curve. I would also like to thank my second supervisor Dr Craig Roberts for his support throughout my time here, I have acquired a lot of knowledge and skills under your supervision. Dr Fiona Henriques, thank you for your support and contribution to my work. I would also like to thank Dr Fiona Roberts for her contribution with the histology. I am very thankful for the technical assistance from the staff at the BPU, Gordon, Carol, Allan, George, thank you so much. Mrs Adrienne McGachy, thank you for always being your wonderful self and keeping my morale up. I cannot thank you enough for always being available to help with those Tcell assays! I would also like to thank my lab mates, past and present, who I have learnt a lot from and have been a pleasure to work with: Leigh, Emma, Fiona, Caroline, Sara, Karen, Selina, Chesney and everyone else in the lab. I would also like to thank Roderick Williams for giving advice and some much needed words of wisdom. Lastly, this would not have been possible without the support of my family. My mom and dad, SiPhuti and Daddy, your unconditional love and unwavering support are what kept me going. Ga ke gola ke batla go tshwana le lona. Ke leboga Modimo ka go ntlhopela lona. Thank you to the rest of my family and friends, my sister, uncles and aunts for being there for me. Masego thanks for always being there to listen. I'm blessed to have you all in my life. SiPhuti le Daddy, this is for you, for being my absolute rock stars. Ke a leboga.

ABSTRACT

A type-1 cytokine response is critical for protective immunity against *Toxoplasma* gondii infection. Nevertheless, a persistent overproduction of type-1 cytokines can be detrimental to the host and cause fatal immunopathology. The extent to which type-2 cytokines can modulate the disease exacerbating versus protective responses remains largely unresolved. Previous studies have shown that IL-4 and IL-4R α deficient BALB/c mice are highly susceptible to T. gondii infection. IL-4 can modulate type-1 inflammatory responses by counter-regulating the effects of IFN- γ on CD4⁺ T cells and/or macrophages. In order to analyze the protective mechanism(s) and functional target(s) of IL-4 during T. gondii infection the outcomes of T. gondii infection in macrophage/neutrophil specific IL-4R $\alpha^{-/-}$ BALB/c (LysM^{cre}IL-4R $\alpha^{-/lox}$) mice, CD4⁺ T cell specific IL-4R $\alpha^{-/-}$ (Lck^{cre}IL-4R $\alpha^{-/lox}$) mice, CD4⁺CD8⁺T cell specific IL-4R $\alpha^{-/-}$ (NLck^{cre}IL-4R $\alpha^{-/lox}$) mice and their wild type (IL-4R $\alpha^{-/lox}$) littermates as well as global IL-4R $\alpha^{-/-}$ mice were compared. Overall female mice were more susceptible to infection compared with male mice as measured by mortality and this was associated with delayed parasite specific type-1 cytokine responses. T. gondii infection in Lys $M^{cre}IL-4R\alpha^{-/lox}$ mice resulted in an augmented type-1 cytokine response and excessive lung pathology which caused increased mortality which was similar to global IL-4R $\alpha^{-/-}$ mice and more severe than IL-4R α intact (WT) mice. On the other hand Lck^{cre}IL-4R α ^{-/lox} were relatively resistant to infection and had a similar phenotype to WT mice, whilst NLck^{cre}IL-4R $\alpha^{-/lox}$ mice exhibited increased susceptibility during the chronic phase of infection. Splenocytes from NLck^{cre}IL-4R $\alpha^{-/lox}$ mice but not Lck^{cre}IL-4R $\alpha^{-/lox}$ had impaired parasite-specific IFN- γ production. *T. gondii* was demonstrated to induce various elements of alternative macrophage activation independently of IL-4R α while RT-PCR analysis revealed that markers of alternative macrophage activation YM1, Arginase1 and FIZZ1 may contribute to disease protective and/or exacerbative processes during infection. Collectively, these findings illustrate the multifaceted innate and adaptive IL-4/IL-13-mediated responses employed to influence *T. gondii* infection.

TABLE OF CONTENTS

TITLE PAGE	I
COPYRIGHT	II
ACKNOWLEDGEMENTS	III
ABSTRACT	IV
TABLE OF CONTENTS	VI
LIST OF FIGURES.	XII
LIST OF TABLES	XVI
LIST OF ABBREVIATIONS	XVII

CHAPTER 1

GENERAL INTRODUCTION

1.	INTRODUCTION	1
	1.1. History and taxonomy of <i>Toxoplasma gondii</i>	2
	1.2. Lifecycle	2
	1.3. Pathogenesis	7
	1.4. Treatment and prevention strategies	9
	1.5. Immunology	11
	1.5.1. Immunity to <i>T. gondii</i> infection	.11
	1.5.2. Cell-mediated immune response.	12
	1.5.3. The role of cytokines during <i>T. gondii</i> infection	23
	1.5.3.1. Type-1 cytokines	23
	1.5.3.2. Type-2 cytokines	24

	1.5	3.3.Novel IFN-γ related pathways of <i>T. gondii</i> growth inhibition30
1	.6. Macr	ophage activation
	1.6.1.	Classical macrophage activation
	1.6.2.	Alternative macrophage activation
1	.7. Aims	and objectives42
CHA	APTER 2	44
MA	FERIAL	S AND METHODS
2. N	Aethods	
2	2.1. Mice.	
	2.1.1.	Genotyping45
	2.1.2.	<i>T. gondii</i> infections49
2	2.2. Prepa	ration of <i>Toxoplasma</i> lysate antigen (TLA)49
2	2.3. Splen	ocyte stimulation assays
2	2.4. Serun	n preparation for cytokine analysis
	2.4.1.	Measurement of NO by Griess method
	2.4.2.	Cytokine analysis by ELISA
	2.4.3.	Antibody ELISA
2	2.5. Histop	pathological analysis of mouse tissues
2	2.6. RNA	extractions
	2.6.1.	cDNA synthesis
	2.6.2.	Quantitative RT-PCR

2.6.3. Parasite quantification using qRT-PCR	63
2.7. Statistical analysis	63

CHA	PTER 3.	••••	•••••	•••••	• • • • •		64
THE	ROLE	OF	IL-4Rα	SIGNALING	IN	MACROPHAGES/NEUTRO	PHILS

DURING T. GONDII INFECTION

3.	Abstract	
	3.1. Introdu	ection
	3.2. Results	
	3.2.1.	Survival studies during <i>T. gondii</i> infection70
	3.2.2.	Histopathological analysis during acute <i>T.gondii</i> infection72
	3.2.3.	Serum cytokine levels in <i>T. gondii</i> infected mice76
	3.2.4.	Analyses of <i>T. gondii</i> -specific splenocyte cytokine production78
	3.2.5.	Analyses of cytokine mRNA transcript expression and parasite
	bu	rden
	3.3. Discuss	sion

CHAPTER 4		93		
Tł	THE ROLE OF IL-4R α SIGNALING THROUGH CD4+ T-CELLS DURING T.			
G(ONDII INFECTION			
4.	Abstract	94		
	4.1. Introduction	95		

4.2. Result	S	98
4.2.1.	Survival studies during <i>T. gondii</i> infection	98
4.2.2.	Bodyweights of mice during <i>T. gondii</i> infection	100
4.2.3.	Histopathological analysis of tissues during acute T. gondii	
ir	fection	104
4.2.4.	Serum cytokine levels in <i>T. gondii</i> infected male and female	
m	ice	115
4.2.5.	Analysis of splenocyte recall responses	121
4.2.6.	Measurement of cytokine and parasite mRNA transcript	
ez	xpression	134
4.2.7.	Histopathological analysis of mouse tissues during chronic	ic T. gondii
in	fection	148
4.3. Discu	ission	153

Ał	bstract	166
5.	Introduction	167
	5.1. Results	170
	5.1.1. Survival of <i>T. gondii</i> infected male and female mice	170
	5.1.2. Bodyweights	172

	5.1.3.	Histopathological analysis	175
	5.1.4.	Serum cytokine level analyses during acute infection	
	5.1.5.	Splenocyte recall responses during acute T. gondii	
	iı	nfection	
	5.1.6.	Expression of cytokine and parasite mRNA transcripts	193
	5.1.7.	Histopathological analysis of tissues during chronic infection.	204
	5.1.8.	Systemic cytokine and antibody production during chronic	
	iı	nfection	216
	5.1.9.	Discussion	
IN	VIVO S	STUDIES TO DETERMINE THE ROLE OF <i>T. GO</i> NOF ALTERNATIVELY ACTIVATED MACROPHAGES	
<i>IN</i> IN	<i>VIVO</i> S	STUDIES TO DETERMINE THE ROLE OF T. GO	ONDII IN
<i>IN</i> IN	VIVO S DUCTION Abstract	STUDIES TO DETERMINE THE ROLE OF <i>T. GO</i> NOF ALTERNATIVELY ACTIVATED MACROPHAGES	DNDII IN 230
<i>IN</i> IN	VIVO S DUCTION Abstract 6.1. Introd	STUDIES TO DETERMINE THE ROLE OF <i>T. GO</i> NOF ALTERNATIVELY ACTIVATED MACROPHAGES	DNDII IN 230 231
<i>IN</i> IN	VIVO S DUCTION Abstract 6.1. Introd 6.2. Metho	STUDIES TO DETERMINE THE ROLE OF T. GO	230
<i>IN</i> IN	VIVO S DUCTION Abstract 6.1. Introd 6.2. Metho 6.2.1.	STUDIES TO DETERMINE THE ROLE OF T. GO NOFALTERNATIVELY ACTIVATED MACROPHAGES duction.	DNDII IN 230 231 235 235
<i>IN</i> IN	<i>VIVO</i> S DUCTION Abstract 6.1. Introd 6.2. Metho 6.2.1. 6.2.2.	STUDIES TO DETERMINE THE ROLE OF <i>T. GO</i> NOF ALTERNATIVELY ACTIVATED MACROPHAGES duction	DNDII IN 230 231 235 235 235
<i>IN</i> IN	VIVO S DUCTION Abstract 6.1. Introd 6.2. Metho 6.2.1. 6.2.2. 6.2.3.	STUDIES TO DETERMINE THE ROLE OF T. GO NOF ALTERNATIVELY ACTIVATED MACROPHAGES duction	DNDII IN 230 231 235 235 235 236

CHAPTER 7	
7. GENERAL DISCUSSION	247
REFERENCES	
APPENDIX	

FIGURES

1.	<i>T. gondii</i> lifecycle
2.	<i>T. gondii</i> gut immunology
3.	Schematic diagram of type-1/type-2 cytokine mediated immune responses
4.	Schematic diagram of the IL-4/IL-13 signaling pathway
5.	Classical and alternative macrophage activation pathways40
3.1	Survival curve of female Lys $M^{cre}IL-4R\alpha^{-/lox}$ and control mice
3.2	Histopathological analysis in female mice
3.2	B Lung histopathology photographs74
3.3	Serum cytokine in female mice, IFN- γ , IL-12, IL-1077
3.4	Splenocyte IFN- γ production in LysM ^{cre} IL-4R α ^{-/lox} and control mice
3.5	Splenocyte IL-10 production in Lys M^{cre} IL-4 $R\alpha^{-/lox}$ and control mice80
3.6	Lung IFN- γ , IL-12, NOS2 mRNA in LysM ^{cre} IL-4R α ^{-/lox} and control mice82
3.7	Alternative macrophage activation markers mRNA expression FIZZ1, YM1,
Ar	ginase1 in LysM ^{cre} IL-4R $\alpha^{-/lox}$ and control mice
3.8	Lung mRNA transcript expression IDO, LRG47 and Igtp GTPase in LysM ^{cre} IL-
4R	$\alpha^{-/lox}$ and control mice
3.9	Parasite burden in the lungs of Lys M^{cre} IL-4R $\alpha^{-/lox}$ and control mice
4.1	Survival curve for male and female Lck ^{cre} IL-4R $\alpha^{-/lox}$ mice with control mice

4.2 Bodyweights of male and female Lck ^{cre} IL-4R $\alpha^{-/lox}$ mice with control mice
4.1 Day 9 lung and liver histopathology of male Lck ^{cre} IL-4R $\alpha^{-/lox}$ mice and control
mice
4.1A Males day 9, photographs of lung pathology108
4.2 Females day 9 Lck ^{cre} IL-4R α ^{-/lox} mice and control mice, lung and liver
histopathology112
4.3 Females day 12 Lck ^{cre} IL-4R $\alpha^{-/lox}$ mice and control mice, lung and liver
histopathology114
4.4 Serum IFN-γ in male and female mice
4.5 Serum IL-12 in male and female mice
4.6 Serum IL-4 and IL-10 in male and female mice
4.7 Splenocyte NO in male and female mice
4.8 Splenocyte IFN-γ in male and female mice
4.9 Splenocyte IL-12 in male and female mice
4.10 Splenocyte IL-4 in male and female mice
4.11 Splenocyte IL-10 in male and female mice
4.12 Lung IFN-γ and IL-12 mRNA transcript expression
4.13 Lung NOS2 and Arginase1 mRNA transcript expression140
4.14 Lung YM1 and FIZZ1 mRNA transcript expression141
4.15 Lung LRG47 and Igtp GTPase transcript expression145
4.16 Lung IDO mRNA transcript expression146

4.17 Parasite mRNA transcript burden in the lung147
4.18 Day 35 lung histophathology in male Lck ^{cre} IL-4R $\alpha^{-/lox}$ and control mice150
4.18A,B Day 35 lung histopathology photographs151
4.19 Day 35 brain histopathology in male Lck ^{cre} IL-4R $\alpha^{-/lox}$ and control mice152
5.1 Survival curves for male and female NLck ^{cre} IL-4R $\alpha^{-/lox}$ and control mice171
5.2 Bodyweights for male and female NLck ^{cre} IL-4R $\alpha^{-/lox}$ and control mice174
5.3 Male day 9 lung and liver histopathology, NLck ^{cre} IL-4R $\alpha^{-/lox}$ and control mice
5.3A Male day 9 lung pathology photographs178
5.4 Female day 9 lung and liver histopathology, NLck ^{cre} IL-4R $\alpha^{-/lox}$ and control mice
5.5 Female day 12 lung and liver histopathology, NLck ^{cre} IL-4R $\alpha^{-/lox}$ and control
5.5 Female day 12 lung and liver histopathology, NLck ^{cre} IL-4R $\alpha^{-/lox}$ and control mice
mice
mice
mice
mice.1805.5D Female day 12 liver pathology photographs.1815.6 Serum IFN-γ and IL-12p40 male and female mice.1845.7 Splenocyte NO male and female mice.188
mice.1805.5D Female day 12 liver pathology photographs.1815.6 Serum IFN-γ and IL-12p40 male and female mice.1845.7 Splenocyte NO male and female mice.1885.8 Splenocyte IFN-γ male and female mice.189
mice
mice.180 $5.5D$ Female day 12 liver pathology photographs.181 5.6 Serum IFN- γ and IL-12p40 male and female mice.184 5.7 Splenocyte NO male and female mice.188 5.8 Splenocyte IFN- γ male and female mice.189 5.9 Splenocyte IL-12 male and female mice.190 5.10 Splenocyte IL-4 male and female mice.191

5.14 Lung YM1 and FIZZ1 mRNA transcript expression	200
5.15 Lung IDO mRNA transcript expression	201
5.16 Lung LRG47 and Igtp GTPase mRNA expression	202
5.17 Parasite mRNA transcript burden in the lungs	203
5.18 Day 35 lung and liver histopathology in male mice	206
5.18A Day 35 male lung pathology photographs	207
5.19 Day 35 brain histopathology in male mice	208
5.20 Day 35 lung and liver histopathology in female mice	210
5.20C,D Day 35 female liver pathology photographs	211
5.21 Day 35 brain histopathology in female mice	213
5.21B Day 35 female brain pathology photographs	214
5.22 Serum IFNγ- and IL-12 day 35 male and female mice	218
5.23 <i>T. gondii</i> -specific IgG1 and IgG2a in male and female mice serum	219
6.1 BAL macrophage IL-12 and NOS2 mRNA transcript expression	239
6.2 BAL macrophage FIZZ1, YM1 and Arginase1 transcript expression	240
6.3 BAL macrophage parasite mRNA transcript burden	241

TABLES

1. Primer pairs and sequences for genotyping PCR	47
1.1 Genotyping PCR programme	48
2. Primer pairs and sequences for quantitative RT-PCR	.59
2.1 Quantitative RT-PCR programme	.62
4.1 Lung and liver histopathology scores for male mice 9 days post-infection with	ι Τ.
gondii1	06
4.2 Lung and liver histopathology scores for female mice 9 days post-infection with	ι <i>Τ</i> .
gondii1	11
4.3 Lung and liver histopathology scores for female mice 12 days post-infection with	1 <i>T</i> .
gondii1	13
5. Summary of IL-4-deficient mouse models and <i>T. gondii</i> infection2	:60

ABBREVIATIONS

Arg1	Arginase1
BAL	Broncheoalveolar lavage
BSA	Bovine Serum Albumin
CD	Cluster of Differentiation
cDNA	Complementary Deoxyribonucleic Acid
CNS	Central Nervous System
ConA	Concavalin A
DC	Dendritic cell
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme-linked immunosorbent assay
FIZZ1	Found in inflammatory zone-1
GAPDH	Glyceraldehydes-3-phosphate dehydrogenase
HP	High Power
IDO	Indoleamine 2,3-dioxygenase
IEL	Intraepithelial cells
IFN-	Interferon
Ig	Immunoglobulin
IL	Interleukin
IL-4R	Interleukin-4 Receptor
iNOS	inducible Nitric oxide synthase
I.P	Intraperitoneal

kDA	Kilo Daltons
КО	Knock-out
LP	Low Power
LPS	Lipopolysaccharide
МНС	Major Histocompatability Complex
MIF	Macrophage migration Inhibitory Factor
mRNA	Messenger Ribonucleic Acid
MyD88	Myeloid Differentiation Factor 88
MØ	Macrophage
NeMØ	Nematode elicited macrophages
NK	Natural Killer
NO	Nitric oxide
NOS2	Nitric oxide synthase-2
р	p-value
p.i	post infection
PMN	Polymorphonuclear leukocytes
PV	Parasitophorous Vacuole
PV cuffing	Perivascular cuffing
RELM-a	Resistin-like molecule- α
RNA	Ribonucleic acid
RNI	
KINI	Reactive nitrogen intermediates

SCID	Severe combined Immune Deficient
STAT	Signal transducer and activator of transcription
Tbp	TATA-box Binding protein
TE	Toxoplasmic encephalitis
TgCyst	Toxoplasma gondii Cyst matrix antigen
TGF	Tumour Growth Factor
Th	T helper
TLA	Toxoplasma Lysate Antigen
TLR	Toll-Like Receptor
TNF	Tumour Necrosis Factor
SEM	Standard Error of Mean