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Abstract 

To assess the behaviour of a ship in a seaway, this thesis presents the development of 

an integrated mathematical model describing a six-degree-of-freedom motion of a 

ship in a wave. This integrated mathematical model is developed with its 

fundamental base on both traditional seakeeping and manoeuvring theories and thus 

obtaining of hydrodynamic data sets as well as formulation of force component are 

needed in a theoretical manner. 

To obtain the hydrodynamic data sets, theoretical formulations and numerical 

implementations are carried out for a ship travelling in a wave. The theoretical 

formulation of three-dimensional potential flow leads boundary integral equations 

over mean wetted body surface with three-dimensional translating pulsating Green 

function. For numerical implementation Constant Panel Method and Higher-Order 

Panel Method are introduced as distribution technique of source singularities over the 

idealised body surface and compared for the estimation of hydrodynamic data set of 

Wigley and Todd Series 60. Mean second-order wave forces are formulated based on 

the solution of first-order problem and obtained by direct pressure integration over 

mean wetted body surface. The effects of forward speed and wave heading on the 

drift force and added resistance are investigated and compare with experimental data. 

An integrated mathematical model for manoeuvring motion is further developed with 

functional form of memory effect represented by convolution integrals of impulse 

response function to describe arbitrary ship motion in a seaway. For validation of 

developed numerical tool, benchmark tests have been performed for the prediction of 

large amplitude ship motion in following seas. Standard manoeuvring tests, turning 

circle and zig-zag manoeuvres, are presented to demonstrate the wave effects on the 

manoeuvring performance. The capability of numerical tool has been extended to the 

prediction of highly non-linear behaviours of parametric rolling phenomenon in 

longitudinal wave with reasonable accuracy. 



Acknowledgements 

I would like to express my sincere gratitude to Professor Dracos Vassalos, Director 

of Ship Stability Research Centre, for his supervision to make this research possible 

and for his kind help with regard to obtaining financial support through the 

Scholarship of Strathclyde University and the Overseas Research Student award. 

I would like to appreciate support and advice from Dr. B. S. Lee and Professor K. P. 

Rhee during the long course of study. 

I wish to express my sincere thanks to the colleagues of the Ship Stability Research 

Centre and the staffs of Department and for their assistances and friendship. 

I am deeply indebted to my parents for their continuous encouragement and support 
throughout my entire life. I would like to appreciate my wife Hwa Young for love, 

and my daughter Seungwon for making this work sweet by just being part of my life. 

11 



Table of Contents 

Abstract ........................................................................................................................ 
i 

Acknowledgements ii 

Table of Contents ................ 
i 

List of Figures ............................................................................................................ 
A 

List of Tables ................. 
iii 

Nomenclature .......................................................................................................... xiv 

Chapter 1. Introduction ................................................................................... 
1 

1.1 Preamble ........................................................................................................ 
1 

1.2 Seakeeping ..................................................................................................... 
4 

1.3 Manoeuvring .................................................................................................. 
8 

1.4 Structure of the Thesis ................................................................................. 
12 

1.5 Concluding Remarks .................................................................................... 
15 

Chapter 2. Aims of the Thesis ........................................................................ 
16 

Chapter 3. Critical Review ............................................................................. 
17 

3.1 Preamble ...................................................................................................... 
17 

3.2 Seakeeping Theory ...................................................................................... 
18 

3.3 Manoeuvring Theory ................................................................................... 
47 

3.4 Concluding Remarks .................................................................................... 
64 

Chapter 4. Approach Adopted ...................................................................... 
65 

4.1 Background .................................................................................................. 
65 

4.2 Development of Seakeeping Theory ............................................................ 
67 

4.3 Development of Integrated Manoeuvring Model 
........................................ 

69 

Chapter 5. Formulation of Three-Dimensional Potential Flow .................. 70 

5.1 Preamble ...................................................................................................... 
70 

5.2 Coordinate systems ...................................................................................... 
71 

111 



5.3 Boundary Value Problem 
............................................................................. 

73 

5.4 Simplification of Non-linear Problem ......................................................... 
79 

5.5 Boundary Integral Method ........................................................................... 
90 

5.6 Green Function ............................................................................................ 
94 

5.7 Concluding Remarks .................................................................................. 
118 

Chapter 6. Numerical Implementation of Green Function Method........ 119 

6.1 Preamble .................................................................................................... 
119 

6.2 Discretisation of Body Surface .................................................................. 
120 

6.3 Discretisation of Boundary Integral Equation ........................................... 
126 

6.4 Integration over Source Elements .............................................................. 
131 

6.5 Concluding Remarks .................................................................................. 
134 

Chapter 7. Hydrodynamic Forces and Ship Motions ................................ 135 

7.1 Preamble .................................................................................................... 
135 

7.2 First-Order Wave Forces ........................................................................... 
137 

7.3 Equations of Motion .................................................................................. 
145 

7.4 Mean Second-Order Wave Forces ............................................................. 
147 

7.5 Numerical Calculation of First-Order Force .............................................. 
155 

7.6 Numerical Calculation of Second-Order Force ......................................... 
215 

7.7 Concluding Remarks .................................................................................. 
230 

Chapter 8. A Manoeuvring Mathematical Model in Waves ..................... 233 

8.1 Preamble .................................................................................................... 
233 

8.2 Mathematical Model .................................................................................. 
235 

8.3 Comparison of Conventional Theories ...................................................... 
244 

8.4 Impulse Response Function Representation .............................................. 
250 

8.5 External Forces .......................................................................................... 
253 

8.6 Validation of Numerical Model ................................................................. 
263 

8.7 Numerical Application of Standard Manoeuvring Tests ........................... 
273 

8.8 Concluding Remarks .................................................................................. 
296 

Chapter 9. Benchmark Study on Parametric Rolling ............................... 
297 

9.1 Preamble .................................................................................................... 
297 

9.2 Physics of Parametric Roll ......................................................................... 
298 

Iv 



9.3 Benchmark Study of Numerical Model 
..................................................... 

300 

9.4 Concluding Remarks 
.................................................................................. 

314 

Chapter 10. Discussion ................................................................................... 316 

10.1 Preamble .................................................................................................. 
316 

10.2 Development of Numerical Tools for Seakeeping Performance ............. 317 

10.3 Formulation of Manoeuvring Mathematical Model ................................ 
322 

10.4 Prediction of Parametric Rolling ............................................................. 
325 

10.5 Contribution to the Field .......................................................................... 
326 

10.6 Recommendations for Further Research .................................................. 
328 

10.7 Concluding Remarks ................................................................................ 
329 

Chapter 11. Conclusions ................................................................................ 
330 

References ............................................................................................................... 
331 

Appendix A. Formulation of Green Function ............................................... 342 

A. l Formulation of Green Function ................................................................ 
342 

A. 2 Calculation of Singularity 
......................................................................... 

346 

A. 3 Derivatives of Green Function .................................................................. 
349 

A. 4 Green Function at Zero Forward Speed .................................................... 
356 

A. 5 Green Function at Zero Frequency 
........................................................... 

359 

A. 6 Calculation of Exponential Integral .......................................................... 
363 

A. 7 Calculation of Green Function near Free Surface ..................................... 
364 

Appendix B. Hydrodynamic Data for Wigley Hull ...................................... 368 

Appendix C. Calculation of Manoeuvring Coefficients ................................ 381 

C. 1 Empirical Formulae of Manoeuvring Coefficients ................................... 
381 

C. 2 Propeller and rudder force 
......................................................................... 

389 

C. 3 Filon's Method .......................................................................................... 391 

V 



List of Figures 

Figure 1.1 Structure of the thesis ............................................................................... 
14 

Figure 3.1 Order of parameters valid for various theories (Kashiwagi et al., 1994). 21 

Figure 3.2 Added mass and damping coefficients in heave and pitch of a 
mathematical ship model at Froude number 0.1 and 0.2 (Kashiwagi et al., 1994) ... 22 

Figure 3.3 Wave system of steady flow generated by a source-sink pair (Noblesse 
and Yang, 2004) ......................................................................................................... 

26 

Figure 3.4 Added mass and damping coefficients in heave and pitch, half-immersed 
prolate spheroid at Froude number 0.0 and 0.2 (Kashiwagi et al., 1994) .................. 

29 

Figure 3.5 Coupled added mass and damping coefficients in heave and pitch, half- 
immersed prolate spheroid at Froude number 0.0 and 0.2 (Kashiwagi et al., 1994). 30 

Figure 3.6 Predicted wave exciting forces in heave and pitch for (a) Series 60 hull 
and (b) the NPL mono-hull form (Du et al., 2000) .................................................... 

31 

Figure 3.7 Ship hull and free surface discretisation (Ohkusu, 1996) ........................ 34 

Figure 3.8 Non-dimensional hydrodynamic coefficients for Todd Series 60 at Froude 
number 0.2 (Sclavounos, 1996) 

................................................................................. 
36 

Figure 3.9 Non-dimensional coupled hydrodynamic coefficients for Todd Series 60 
at Froude number 0.2 (Sclavounos, 1996) ................................................................. 

37 

Figure 3.10 Added resistance of container ship (Ohkusu, 1996) 
............................... 

41 

Figure 3.11 Added mass and damping coefficients for a Lewis hull in heave and 
pitch at Froude numbers 0.1 and 0.2 for three grid densities (Kring, 1998) .............. 

43 

Figure 3.12 Turing circle manoeuvre of Mariner ship (Bailey et al., 2002) .............. 
58 

Figure 3.13 Definitions of drifting distance and drifting direction in turning test 
(Ueno et al., 2003) ..................................................................................................... 

59 

Figure 3.14 Trajectory and time history of ship motion in 35° turning test in wave of 
0.4 wavelength ratio in full load condition (Ueno et al., 2003) ................................. 

60 

Figure 5.1 Coordinate systems ................................................................................... 
71 

Figure 5.2 Definition of body motions in six degrees of freedom 
............................. 

72 

Figure 5.3 Boundaries in the fluid domain 
................................................................ 

75 

Figure 5.4 Integration paths in the complex plane ..................................................... 
96 

Figure 5.5 Integration path of the first term Io, A 
in the integral 1 ......................... 

100 

Figure 5.6 Integration path of the second term I,, B in the integral I .................... 103 

vi 



Figure 5.7 Real part of a translating source potential travelling at forward speed U= 
1.8,1.9 and 2.0 [m/s] 

............................................................................................... 
109 

Figure 5.8 Real part of a translating source potential travelling at forward speed U= 
3.0,4.0 and 6.0 [m/s] ............................................................................................... 

110 

Figure 5.9 Real and imaginary parts of a pulsating source potential oscillating at 
frequency co = 2.0,2.5 and 3.0 [Hz] 

........................................................................ 
112 

Figure 5.10 Real and imaginary parts of a pulsating source potential oscillating at 
frequency w=3.5,4.0 and 5.0 [Hz] 

........................................................................ 
113 

Figure 5.11 Real and imaginary parts of a translating pulsating source potential 
oscillating at i=0.2 ................................................................................................. 

114 

Figure 5.12 Real and imaginary parts of a translating pulsating source potential 
oscillating at r=0.4 ................................................................................................. 

115 

Figure 5.13 Real and imaginary parts of a translating pulsating source potential 
oscillating at i=0.24 (near critical frequency T< 1/4) ........................................... 

116 

Figure 5.14 Real and imaginary parts of a translating pulsating source potential 
oscillating at i=0.26 (near critical frequency i> 1/4) ........................................... 117 

Figure 6.1 A plane quadrilateral panel lying in the local coordinate system o- ýr7ý" 

................................................................................................................................. 
122 

Figure 6.2 Bi-quadratic element and its parameter plane ........................................ 
124 

Figure 6.3 Distribution of control points using weight function ............................. 
125 

Figure 7.1 Comparisons of panel representations of Wigley hull form 
................... 

159 

Figure 7.2 Non-dimensional added mass and damping coefficients in heave and pitch 
modes for various discretisation models of Wigley hull form travelling at Froude 

number 0.2 ............................................................................................................... 
161 

Figure 7.3 Non-dimensional coupled added mass and damping coefficients in heave 
and pitch modes for various discretisation models of Wigley hull form travelling at 
Froude number 0.2 ................................................................................................... 

162 

Figure 7.4 Non-dimensional added mass and damping coefficients in sway and yaw 
modes for various discretisation models of Wigley hull form travelling at Froude 
number 0.2 ............................................................................................................... 

163 

Figure 7.5 Non-dimensional coupled added mass and damping coefficients in sway 
and yaw modes for various discretisation models of Wigley hull form travelling at 
Froude number 0.2 ................................................................................................... 

164 

Figure 7.6 Non-dimensional added mass and damping coefficients in roll mode for 
various discretisation models of Wigley hull form travelling at Froude number 0.2 

................................................................................................................................. 
165 

Figure 7.7 Panel representation of hull surface of Wigley hull form 
...................... 

167 

Figure 7.8 Non-dimensional added mass and damping coefficients in heave and pitch 
modes for Wigley hull travelling at Froude number 0.2 .......................................... 169 

vii 



Figure 7.9 Non-dimensional coupled added mass and damping coefficients in heave 
and pitch modes for Wigley hull travelling at Froude number 0.2 .......................... 170 

Figure 7.10 Non-dimensional added mass and damping coefficients in sway and yaw 
modes for Wigley hull travelling at Froude number 0.2 .......................................... 

172 

Figure 7.11 Non-dimensional coupled added mass and damping coefficients in sway 
and yaw modes for Wigley hull travelling at Froude number 0.2 

........................... 
173 

Figure 7.12 Non-dimensional added mass and damping coefficients in roll mode for 
Wigley hull travelling at Froude number 0.2 ........................................................... 

173 

Figure 7.13 Non-dimensional coupled added mass and damping coefficients in sway- 
roll and roll-yaw modes for Wigley hull travelling at Froude number 0.2 .............. 

174 

Figure 7.14 Non-dimensional heave and pitch wave exciting force and moment for 
Wigley hull travelling at Froude number 0.2 in head sea (0=180°) 

........................ 
175 

Figure 7.15 Non-dimensional heave and pitch motion responses for Wigley hull 

travelling at Froude number 0.2 in head sea (ß=180°) ............................................ 
176 

Figure 7.16 Panel representation of Todd Series 60 hull form ................................ 
178 

Figure 7.17 Non-dimensional added mass and damping coefficients in heave and 
pitch modes for Todd Series 60 at zero speed ......................................................... 

181 

Figure 7.18 Non-dimensional added mass and damping coefficients in sway and yaw 
modes for Todd Series 60 at zero speed .................................................................. 

182 

Figure 7.19 Non-dimensional added mass and damping coefficients in roll mode for 
Todd Series 60 at zero speed ................................................................................... 

183 

Figure 7.20 Non-dimensional coupled added mass and damping coefficients in 
heave-pitch and sway-yaw modes for Todd Series 60 at zero speed ....................... 

184 

Figure 7.21 Non-dimensional coupled added mass and damping coefficients in sway- 
roll and roll-yaw modes for Todd Series 60 at zero speed ...................................... 

185 

Figure 7.22 Non-dimensional heave and pitch wave exciting force and moment for 
Todd Series 60 at zero speed in head sea (ß=180°) ................................................. 

187 

Figure 7.23 Non-dimensional roll wave exciting moment for Todd Series 60 at zero 
speed in beam sea (ß=90°) and bow sea (ß=120°) .................................................. 

187 

Figure 7.24 Non-dimensional wave exciting forces and moments for Todd Series 60 

at zero speed in quartering sea (ß=30°) ................................................................... 
188 

Figure 7.25 Non-dimensional wave exciting forces and moments for Todd Series 60 

at zero speed in bow sea (ß=120°) 
........................................................................... 

189 

Figure 7.26 Non-dimensional wave exciting forces and moments for Todd Series 60 

at zero speed in various heading angles ................................................................... 
190 

Figure 7.27 Non-dimensional heave and pitch motion responses for Todd Series 60 at 
zero speed in head sea (l=180°) 

.............................................................................. 
192 

Figure 7.28 Non-dimensional roll motion response for Todd Series 60 at zero speed 
in beam sea (ß=90°) and bow sea (ß=120°) ............................................................ 

192 

viii 



Figure 7.29 Non-dimensional motion responses for Todd Series 60 at zero speed in 

quartering sea (ß=30°) 
............................................................................................. 

193 

Figure 7.30 Non-dimensional motion responses for Todd Series 60 at zero speed in 
bow sea (0=120°) ..................................................................................................... 

194 

Figure 7.31 Non-dimensional motion responses for Todd Series 60 at zero speed in 
various heading angles ................................... .......................................................... 

195 

Figure 7.32 Non-dimensional added mass and damping coefficients in heave and 
pitch modes for Todd Series 60 travelling at Froude number 0.2 ........................... 

198 

Figure 7.33 Non-dimensional coupled added mass and damping coefficients in heave 
and pitch modes for Todd Series 60 travelling at Froude number 0.2 ..................... 

199 

Figure 7.34 Non-dimensional added mass and damping coefficients in sway and yaw 
modes for Todd Series 60 travelling at Froude number 0.2 

.................................... 
200 

Figure 7.35 Non-dimensional coupled added mass and damping coefficients in sway 
and yaw modes for Todd Series 60 travelling at Froude number 0.2 ...................... 

201 

Figure 7.36 Non-dimensional added mass and damping coefficients in roll mode for 
Todd Series 60 travelling at Froude number 0.2 ..................................................... 

202 

Figure 7.37 Non-dimensional coupled added mass and damping coefficients in sway 
and roll modes for Todd Series 60 travelling at Froude number 0.2 ....................... 203 

Figure 7.38 Non-dimensional coupled added mass and damping coefficients in roll 
and yaw modes for Todd Series 60 travelling at Froude number 0.2 ...................... 

204 

Figure 7.39 Non-dimensional heave and pitch wave exciting force and moment for 
Todd Series 60 travelling at Froude number 0.2 in head sea (ß=180°) ................... 

206 

Figure 7.40 Non-dimensional roll wave exciting moment for Todd Series 60 
travelling at Froude number 0.2 in beam sea (ß=90°) and bow sea (ß=120°)......... 206 

Figure 7.41 Non-dimensional wave exciting forces and moments for Todd Series 60 
travelling at Froude number 0.2 in quartering sea (0=30°) ..................................... 

207 

Figure 7.42 Non-dimensional wave exciting forces and moments for Todd Series 60 
travelling at Froude number 0.2 in bow sea (ß=120°) ............................................. 

208 

Figure 7.43 Non-dimensional wave exciting forces and moments for Todd Series 60 
travelling at Froude number 0.2 in various heading angles ..................................... 209 

Figure 7.44 Non-dimensional heave and pitch motion responses for Todd Series 60 
travelling at Froude number 0.2 in head sea (ß=180°) ............................................ 

211 

Figure 7.45 Non-dimensional roll motion response for Todd Series 60 travelling at 
Froude number 0.2 in beam sea (0=90°) and bow sea (ß=120°) 

............................. 
211 

Figure 7.46 Non-dimensional motion responses for Todd Series 60 travelling at 
Froude number 0.2 in quartering sea (ß=30°) 

......................................................... 212 

Figure 7.47 Non-dimensional motion responses for Todd Series 60 travelling at 
Froude number 0.2 in bow sea (ß=120°) 

................................................................. 
213 

ix 



Figure 7.48 Non-dimensional motion responses for Todd Series 60 travelling at 
Froude number 0.2in various heading angles .......................................................... 

214 

Figure 7.49 Panel representation of barge hull form 
............................................... 

217 

Figure 7.50 Non-dimensional second-order surge and sway forces for barge at zero 
speed in head sea (0=180°) and beam sea (ß=90°) .................................................. 

219 

Figure 7.51 Non-dimensional second-order sway force and yaw moment for barge at 
zero speed in bow sea (ß=135°) ............................................................................... 

219 

Figure 7.52 Non-dimensional components of second-order surge and sway forces for 
barge at zero speed in head sea (ß=180°) and beam sea (ß=90°) 

............................ 
220 

Figure 7.53 Non-dimensional components of second-order sway force and yaw 
moment for barge at zero speed in bow sea (ß=135°) ............................................. 

220 

Figure 7.54 Non-dimensional second-order surge force for Wigley hull travelling at 
Froude number 0.2 and 0.3 in head sea ................................................................... 

222 

Figure 7.55 Non-dimensional components of second-order surge force for Wigley 
hull travelling at Froude number 0.2 and 0.3 in head sea ........................................ 

222 

Figure 7.56 Non-dimensional second-order heave force and pitch moment for Wigley 
hull travelling at various Froude numbers in head sea ............................................ 

223 

Figure 7.57 Non-dimensional second-order surge force in various heading angles and 
force components in head sea for Todd Series 60 at zero speed ............................. 

225 

Figure 7.58 Non-dimensional second-order sway force and yaw moment for Todd 
Series 60 at zero speed in various heading angles ................................................... 

226 

Figure 7.59 Non-dimensional second-order heave force and pitch moment for Todd 
Series 60 at zero speed in various heading angles ................................................... 

226 

Figure 7.60 Non-dimensional second-order surge force in various heading angles and 
force components in head sea for Todd Series 60 travelling at Froude number 0.2 228 

Figure 7.61 Non-dimensional second-order sway force and yaw moment for Todd 
Series 60 travelling at Froude number 0.2 in various heading angles ..................... 

229 

Figure 7.62 Non-dimensional second-order heave force and pitch moment for Todd 
Series 60 travelling at Froude number 0.2 in various heading angles ..................... 229 

Figure 8.1 Space-fixed and body-fixed coordinate systems .................................... 
236 

Figure 8.2 A body moving in a space-fixed coordinate system ............................... 
237 

Figure 8.3 Conventional coordinate systems in seakeeping theory ......................... 
244 

Figure 8.4 Conventional coordinate systems in manoeuvring theory ..................... 
244 

Figure 8.5 Relationship of body-fixed coordinate systems used in seakeeping theory 
and present mathematical model .............................................................................. 

247 

Figure 8.6 Panel representation of ITTC Ship A-1 hull form 
.................................. 

263 

Figure 8.7 Comparison of experiment and numerical method for ITTC Ship A-1 

model in H/ ?, =1 /25, a, /L=1.5, Fn=0.2, yid=0° ........................................................ 
269 

X 



Figure 8.8 Comparison of experiment and numerical method for ITTC Ship A-1 
model in H/ A =1/25, A /L=1.5, Fn=0.2,1Vd=-45° 

.................................................... 270 

Figure 8.9 Comparison of experiment and numerical method for ITTC Ship A-1 
model in H/ A =1/25, a, /L=1.5, Fn=0.3, yea=-30° .................................................... 271 

Figure 8.10 Comparison of experiment and numerical method for ITTC Ship A-1 
model in H/ A =1/25, A /L=1.5, Fn=0.4, Yd=-30° .................................................... 

272 

Figure 8.11 Non-dimensional impulse response functions in surge and sway modes 
for Todd Series 60 at Froude number 0.2 ................................................................ 276 

Figure 8.12 Non-dimensional impulse response functions in heave and roll modes for 
Todd Series 60 at Froude number 0.2 ...................................................................... 277 

Figure 8.13 Non-dimensional impulse response functions in pitch and yaw modes for 
Todd Series 60 at Froude number 0.2 

...................................................................... 
278 

Figure 8.14 Comparisons of trajectories and motions of 35° starboard turning circle 
manoeuvre for various wavelengths (=1.0m, ß=0°, 180°) .................................... 281 

Figure 8.15 Comparisons of trajectories and motions of 35° starboard turning circle 
manoeuvre for various wavelengths (co=1. Om, ß=90°, 270°) .................................. 282 

Figure 8.16 Effects of second-order force on trajectory of 35° starboard turning circle 
manoeuvre (a/L=1.0, ýo=1. Om) ................................................................................ 

283 

Figure 8.17 Effects of wavelength and wave direction on trajectory of 35° starboard 
turning circle manoeuvre (AJL=0.5,0.75,1.0,1.5, (o=1.0m) .................................. 

284 

Figure 8.18 Effects of wave amplitude on trajectory of 35° starboard turning circle 
manoeuvre (? /L=1.0, o=0.5,0.75,1.0,1.25m) 

....................................................... 
285 

Figure 8.19 Comparisons of advance, transfer and tactical diameter of 35° starboard 
turning circle manoeuvre &=1. Om) 

........................................................................ 
286 

Figure 8.20 Comparisons of measurements of 35° starboard turning circle manoeuvre 

................................................................................................................................. 287 

Figure 8.21 Comparisons of motions of 20°/20° zig-zag manoeuvre for various 
wavelengths (o=1.0m, ß=0°, 180°) ......................................................................... 290 

Figure 8.22 Comparisons of motions of 20°/20° zig-zag manoeuvre for various 
wavelengths (co=1. Om, ß=90°, 270°) ....................................................................... 291 

Figure 8.23 Effects of wavelength and wave direction on yaw angle of 20°/20° zig- 
zag manoeuvre (AJL=0.75,1.0,1.25,1.5, ýo=1.0m) 

................................................ 292 

Figure 8.24 Effects of wave amplitude on yaw angle of 20°/20° zig-zag manoeuvre 
(AJL=1.0, t=0.5,0.75,1.0,1.25m) 

.......................................................................... 293 

Figure 8.25 Comparisons of overshoot angles and width of 20°/20° zig-zag 
manoeuvre (a/L=1.0, co=1.0m) 

................................................................................ 294 

Figure 8.26 Comparisons of measurements of 20°/20° zig-zag manoeuvre ........... 295 

Figure 9.1 GZ curves in still water with different loading conditions ..................... 301 

Figure 9.2 GZ curves in standard wave with different loading conditions .............. 302 

xi 



Figure 9.3 Variation of wetted body surface between crest and trough of a standard 
wave ()JL=1.0, Hw/X=1/25) 

.................................................................................... 
302 

Figure 9.4 Free roll decay tests at zero forward speed (GM = 1.38,1.00m)........... 303 

Figure 9.5 Comparison of mean roll amplitude in regular waves ........................... 306 

Figure 9.6 Time series of roll angle in T02 and T03 (GM=1.38m, P=180', Fn=0.08) 

................................................................................................................................. 
307 

Figure 9.7 Time series of roll angle in T04 and T05 (GM=1.38m, P=180', Fn=0.12) 

................................................................................................................................. 
307 

Figure 9.8 Time series of roll angle in T09 and T10 (GM=1.38m, P=160', Fn=0.12) 

................................................................................................................................. 
308 

Figure 9.9 Time series of roll angle in T13 and T14 (GM=1.00m, P=O', Fn=0.08) 308 

Figure 9.10 Time series of roll angle in T15 and T16 (GM=1.00m, P=O', Fn=0.04) 

................................................................................................................................. 
309 

Figure 9.11 Time series of roll angle in T20 and T21 (GM=1.00m, P=180', Fn=0.08, 
0.12) ......................................................................................................................... 

309 

Figure 9.12 Comparison of mean roll amplitude in group and irregular waves ...... 311 

Figure 9.13 Time series of mean roll amplitude in T06, T07, T08 and T11 
(GM=1.38m) ............................................................................................................ 

312 

Figure 9.14 Time series of mean roll amplitude in T17, T18, T19 and T22 
(GM=1.00m) ............................................................................................................ 

313 

X11 



List of Tables 

Table 5.1 Comparisons of Green function and Rankine source methods .................. 
90 

Table 6.1 Comparisons of Constant Panel Method and Higher-Order Panel Method 

................................................................................................................................. 
123 

Table 7.1 Comparison of discretised models of Wigley ship .................................. 
158 

Table 7.2 Principal dimensions of Wigley model .................................................... 
166 

Table 7.3 Principal dimensions of Todd Series 60 ship .......................................... 
177 

Table 7.4 Comparison of discretised model of Todd Series 60 ship ....................... 
179 

Table 7.5 Principal dimensions of barge model ...................................................... 
216 

Table 7.6 Comparison of calculation time between CPM and HOPM .................... 232 

Table 8.1 Principal dimensions of ITTC Ship A-I in full scale and 1/60 model scale 

................................................................................................................................. 
264 

Table 8.2 Test conditions of ITTC Ship A-I model ................................................ 
266 

Table 8.3 Principal particulars of hull, propeller and rudder of Todd Series 60 
..... 

274 

Table 8.4 Test conditions of turning circle manoeuvre test ..................................... 
279 

Table 8.5 Test conditions of zig-zag manoeuvre test .............................................. 288 

Table 9.1 Loading conditions of ITTC Ship A-I 
..................................................... 

300 

Table 9.2 Benchmark test matrix for regular waves ................................................ 
306 

Table 9.3 Benchmark test matrix for group and irregular waves ............................ 
311 

X111 



Nomenclature 

B Characteristic breadth of a body 

CB Block coefficient of the body 

C. Coefficient of waterplane area 

FN Froude number 

g Acceleration of gravity 

GML Metacentric height in longitudinal direction 

GMT Metacentric height in transverse direction 

i, j, k Unit vector in x, y, z directions respectively 

I In, , I. Mass moment of inertia 

Imo, , Iyx ,..., I. Product of mass moment of inertia 

KG Vertical position of centre of gravity form keel line 

ko Wave number (= 2; r /A) 

k, kf, 
, 
kn Radius of gyration 

L Characteristic length of a body 

LCB Longitudinal distance of the centre of buoyancy from midship 

m Mass of a body 

n Unit normal vector 

r Position vector of a body surface 

T Characteristic draught of a body 

U, Uo Mean forward speed of a body 

(xc, Yo, zc) Centre of gravity 

(xB, YB, ZB) Centre of buoyancy 

(XF, yF, 0) Centre of floatation 

ß Angle between incident wave and ship's heading 

(ß =180° for head sea and 8= 0° for following sea) 

xiv 



A Wavelength of incident wave 

p Density of the fluid 

coo Frequency of incident wave 

to , W, Encounter frequency 

1; 0 Amplitude of incident wave 

V Differential operator or displacement of a body 

VZ Laplace' operator 

[Seakeeping] 

Ajk Added mass in j -th direction due to k-th mode of motion 

BJk Damping coefficient in j-th direction due to k-th mode of motion 

Cjk Hydrostatic restoring coefficient in j-th direction due to k-th mode of 

motion 

E, (") Exponential integral 

F(') F(2) First- and second-order hydrodynamic force in j-th direction 

FLEX Wave exciting force in j-th direction 

FFK 
, 
F. ° Froude-Krylov and diffraction force in j-th direction 

FHS Hydrostatic restoring force in j-th direction 

FAR Radiation force in j-th direction 

F('), M(') First-order external force and moment vector 

F(2 , M(2 Second-order external force and moment vector 
G(p, q) Green function 

H(p, q) Wave function in Green function 

Hýý Influence coefficient matrix 

LF Intersection line between the body surface and the free surface 

Mi Component of m-terms in the j-th mode 

M1 Weight function of a higher-order panel 

xv 



MY Inertia coefficient of a body 

MJc2 First-order hydrodynamic moment in j-th direction 

nj Component of normal vector in the j-th mode 

Ni Shape function of a higher-order panel 

SB SB Mean and exact wetted body surface 

Sý Waterplane integral 

S. Control boundary surface at far-field 

W Velocity field of steady flow 

x0 Position vector defined in 0- XOYoZ,, 

x Position vector defined in o- xyz 

x' Position vector defined in A- x'y'z' 

a Local oscillatory vector 

S=(,, 2,, ) Unsteady translational displacement vector 

c Perturbation parameter 

0 Velocity potential of the fluid domain 

0,0 Velocity potential of steady and unsteady flow 

0 Steady perturbation potential 

00907 Incident wave and diffraction potential 

OJ Radiation potential in j-th mode of motion 

r Non-dimensional frequency 

or Source strength 

12 Unsteady rotational displacement vector 

ýj Motion response in j-th mode 

ýj Complex amplitude of motion in j-th mode 

Free surface elevation due to unsteady and steady flow 

First-order relative wave elevation 

xvi 



[Manoeuvring] 

A(oo) Infinity value of added mass 

B(co) Infinity value of damping coefficient 

Fw Wave force 

F�S , FFK Hydrostatic and Froude-Krylov force 

Fort-, FAdd Diffraction force and added resistance 

Ff, , FM Hull force due to memory effect and manoeuvring force 

F,,, FR Propeller and rudder force 

h(r) Impulse response function 

'A Moment of inertia matrix 

K, M, N External moment in roll, pitch and yaw respectively 

N, N 1,, 1, N,, N, 1,1,... Manoeuvring derivatives in yaw 

u, v, w Velocity in surge, sway and heave respectively 

Ii, v, fV Acceleration in surge, sway and heave respectively 

p, q, r Angular velocity in roll, pitch and yaw respectively 

p, q, r Angular acceleration in roll, pitch and yaw respectively 

T, , T2 Transformation matrix 

v Translation velocity 
X, Y, Z External force in surge, sway and heave respectively 

Yv , yp , Y. Impulse response function in sway 

Yv Yvivi 
, 
Yr , 

YrIr 
,... 

Manoeuvring derivative in sway 

Yv (CO) ,..., 
Y, (CO) Frequency dependent hull force derivative in sway 

8 Rudder angle 

co , cb Angular velocity and acceleration vector 

XVII 



Chapter 1. Introduction 

1.1 Preamble 

Any ship is built with specific purpose of carrying men and/or cargo and mission to 

accomplish upon the sea environments and consequently it should possess some 

basic characteristics for successful operations. It should be able to advance with 

sufficient speed, be strong enough to withstand the rigours of heavy weather and 

wave impact, and manoeuvre at open sea as well as restricted waters. Many of these 

features can be understood in the basis of ship dynamics, on which the main interests 

lie in the behaviour of a floating ship in the sea. 

Although it is possible to produce a floating ship only with a basic knowledge of 

hydrostatics in calm water, ships rarely sail in such a favourable environment. There 

exist waves, which are the main source of ship motion in a seaway and affect the 

performance of a ship considerably. Furthermore the motion of a ship in a seaway, 

whether caused by waves or by its own manoeuvres, can affect its stability and more 

generally its safety. Since the beginning of shipbuilding history, different types of 

ships have faced dangerous situations in the rough weather of seas, often resulted in 

tragic consequences; therefore, the success of ship design depends ultimately on its 

performance in a seaway. Unfortunately, however, the prediction of ship behaviour 

in an actual seaway is such a complex problem that the naval architects are usually 
forced to select the ship particulars and hull form on the basis of calm water 

performance without much consideration of the sea and weather conditions 

prevailing over the route on which the ship is to operate. 

In order to understand general behaviour of floating structures, diverse fields of 

technology is required with knowledge not only of fluid mechanics but also of solid 
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mechanics, control theory, as well as statistics. Here our attention shall be solely 

devoted to the hydrodynamic aspect, emphasizing those unique to this field as 

opposed to the other engineering disciplines where fluid mechanics is applicable. For 

the research of ship behaviour in a seaway, there are still various kinds of 

applications of hydrodynamics to naval architecture, which involve many separate or 

common topics and range over a broad level of sophistication. 

For example, propellers, rudders, anti-rolling fins, yacht keels, and sails can be 

treated and understood together since they are fundamentally related to hydrofoils or 

lifting surfaces. Similarly, the motions of unsteady ship, buoy, or platform in waves 

and the manoeuvring of ship or submarine in non-straight paths can be analysed, to 

some extent, from the same basic equations of motion. In fact, however, separation 

and lifting effects of fluid generally play very important role in the manoeuvring 

problem, while the ship motions due to waves are not significantly affected by 

viscosity or vorticity. The degree of sophistication varies from empirical design to 

theoretical research. Faced with the choice between empirical design information and 

theoretical approach, compromise might be required to provide the necessary 

background for an intelligent evaluation and application of a given problem. 

As a one possible approach, theoretical investigation of the problem to determine the 

motions of a ship consists of describing the simple expressions of external 

disturbances in the seaway and determining the ship motions for such environments. 

The benefits offered by theoretical studies are as follow: 

0 General information regarding the relevant characteristics of the ship behaviour 

in a seaway. 

"A prediction of the motion in any presumed seaway. 

" An insight into the acceptable values of motions, accelerations, and so on. 

" Assessment of the average performance quality. 

" Basic ideas regarding stabilisation to reduce motion and actuation to control it. 

" Guidelines for model tests and full-scale trials. 
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In the theoretical approach the motion of the fluid around the ship is generally 

defined at each point in time and space by a kinematic description of the velocity 

vector of the fluid particles. This unknown velocity is related to the forces acting on 

the body by means of Newton's equations, which yields a system of ordinary 
differential equations. The resultant system of governing equations is the Navier- 

Stokes equations, supplemented by the continuity equation expressing conservation 

of fluid mass. In principle, one can solve these equations, subject to boundary 

conditions on the boundary surfaces of the fluid. If this procedure could actually be 

carried out, it would be possible to calculate desired answers for arbitrary values of 

the Reynolds number and Froude number. In practice, however, it has not been 

possible to solve the Navier-Stokes equations exactly, except for a few cases 

involving very simple geometries that at first glance have no relation to the shape of 

marine vehicle. 
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1.2 Seakeeping 

In recent years, greater attention has been paid to the seakeeping performance of a 

ship due to a number of factors: increasing interest on the high-speed passenger 

vessels, demand for passenger comfort on board, greater pressure from regulatory 

organisations and the broader public for safer vessels, great advancement in 

computer capacity, and developments in prediction and analysis technology. The 

birth of modern seakeeping analysis was in the mid-20th century as demonstrated by 

the landmark researches of Ursell (1949). Combined with the availability of high 

performance computer in the late 20th century, refinements of analysis methods and 

mathematical techniques have been continued and made routine seakeeping analysis 

possible in the early design stage. 

Seakeeping analysis has taken a very poor second place in preliminary hydrodynamic 

design for the majority of merchant vessels since it is much more difficult problem 

compared with that of calm water resistance when higher accuracy is required. This 

might be particularly true if the seakeeping performance is addressed relatively late 

in the design spiral by means of expensive model tests. Furthermore, seakeeping 

characteristics of a vessel depends on so many interrelating factors that it is virtually 

impossible to predict the change of performance, which is caused by the variations of 

design factors, without detailed analysis. This is because the evaluation depends not 

only on the design factors but also on the wave conditions and the criteria against 

which the vessel is being assessed. Thanks to, however, the great improvement of 

analysis tools, which are ideal for preliminary design, a large number of design 

candidates may be easily and quickly examined and compared. 

Ships sailing in a sea experience a variety of forces, which result in structural loading 

and motion responses, due to the various weather and wave environments. In order 

for ships to be designed to fulfil their designated function such as transportation of 

passenger and cargoes safely and economically in the ocean, it is of great importance 

to evaluate their performance at the early stage of design. The relative importance on 
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the various aspects of ship performance in a seaway varies from design to design, 

depending on the required operation. The following general issues should be 

investigated to evaluate seakeeping performance in a seaway when designing 

seaworthy ships: 

0 Speed loss and reduction in a seaway: `involuntary' speed loss due to added 

resistance in waves and ̀ voluntary' speed reduction to avoid excessive motions, 
loads, etc. 

0 Structural design of the ship with respect to wave loads in seaways. 

0 Motion response: excessive motions are undesirable since they may impair 

stability and cause discomfort to the crew and passenger, and damage to the 

cargo. 

" Safety and stability, e. g. capsizing, large roll motions and accelerations, 

slamming, wave impact on superstructures or deck cargo. 

0 Shipping and spraying of green water, causing equipment breakdown and 
degradation of liability. 

" Operational limits due to external disturbances, e. g. severe weather condition 

Most issues involved with seakeeping performance can be further specified in terms 

of motion responses in a seaway since ship motions influence unfavourably the 

seaworthiness of a vessel. Excessive ship motion may occasionally lead to the 

following consequences: 

" Decreasing the forward speed of the vessel resulting from the increase in the 

resistance of the water. 

" Flooding of the deck, due to burying the sides or ends of the vessel under the 

surface of a wave 

9 Capsizing of the ship as a result of excessive inclination in rolling 

0 Damage to the hull or to individual structures on the vessel resulting from the 

additional forces associated with the motions 

0 Disturbing the operation of the ship and shifting of poorly secured or non- 

cohesive cargo as a result of the inclination of the vessel. 
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" Seasickness, i. e. motion sickness resulting from the pitching and rolling of a ship 

in a seaway 

" Other extreme motions e. g. parametric rolling and motions due to high speed 

These various problems encountered with respect to ship motion in a seaway might 
be investigated in four different ways: 

" Directly, as with full-scale trials after launch. 

" Experimentally, by means of model tests in controlled environments. 

" Analytically, i. e. on a theoretical basis. 

" Empirically, through statistical observations. 

Many naval architects working in assessment of seakeeping quality have developed 

methods to predict the behaviour of ship to varying degrees of success over the past 

century by theoretical and experimental means. For the purpose of predicting the 

seakeeping quality of a ship, the first idealisation should be done by representation of 

the natural seaway as superposition of many regular harmonic waves. Physical 

modelling of a given problem is then followed by establishment of mathematical 

model so that accessible solution can be acquired. The motion of a vessel in ship 

hydrodynamics can be expressed by means of equations of motion based on the law 

of conservation of linear and angular momentum. Numerical computation or 

experimental measurement, where the ship reactions and external forces are obtained, 
is carried out in these harmonic waves. This procedure assumes that the reaction of 

one wave on the ship is not changed by the simultaneous occurrence of another wave. 
One consequence of the assumed independence of the individual wave reactions is 

that all reactions of the ship are proportional to wave height. This is called 
linearisation with respect to wave height and is valid for small wave heights for 

almost all ship reactions. This procedure is often applied also for seaways with large 

waves. However, in these cases it can only give rough estimates requiring proper 

corrections. 
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One of the major difficulties in the theoretical approach is the non-linearities. There 

are non-linearities associated with the fluid in the form of viscosity and the velocity 

squared terms in the pressure equations. The free surface causes non-linear behaviour 

due to the nature of the free surface boundary conditions and the non-linear 
behaviour of incident waves. Finally the body geometry causes often causes non- 

linear hydrostatic restoring forces and non-linear behaviour at the intersection lines 

between body and free surface. The computations become considerably more 

expensive if this simplification is not made. Non-linear computations are usually 

necessary for the treatment of extreme motions e. g. capsizing and broaching 

phenomenon in the following seas. The only good news is that because of forward 

speed ships tend to be long and slender with smooth variations along their length. 

This geometric feature of typical ships is the basis of many approximations that have 

allowed a significant amount progress until a recent date. 
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1.3 Manoeuvring 

Regarding the progression history of ship hydrodynamics, high performances of 

resistance and propulsion system are mainly interested in the early days, whilst little 

attention had been paid to assessment of the manoeuvring performance. After the Oil 

Shock in the 1970's ship-owners started to build ULCC (Ultra Large Crude Oil 

Carrier) and extreme situations due to unexpected poor manoeuvrability have often 

happened. A primary reason has been the lack of manoeuvring performance 

standards for the ship designer to design to, and/or regulatory authorities to enforce. 

Consequently some types of ships have been built with very poor manoeuvring 

qualities that have resulted in marine casualties and pollution. Designers have relied 

on the ship handling abilities of human operators to compensate for any deficiencies 

in inherent manoeuvring qualities of the hull. After the oil spill accident of Exxon 

Valdez in 1990, regulating of ship manoeuvrability has been enforced in order to 

avoid marine casualties by a ship with poor manoeuvring qualities and protect the sea 

from pollution and the manoeuvring requirement has become a standard part of the 

contract between yard and ship-owner. 

As a movement to secure and enforce minimum requirements of manoeuvring 

qualities, the resolution A. 751(18), Interim Standards for Ship Manoeuvrability, was 

first adapted in the Assembly of International Maritime Organization (IMO) in 1993 

(IMO Interim Standards). Subsequent discussions on the amendment of the Interim 

Standards have finally led to the adoption of resolution MSC. 137(76), Standards for 

Ship Manoeuvrability, in the Maritime Safety Committee in 2002 (IMO Standards). 

Governments are invited to encourage those responsible for the design, construction, 

repair and operation of ships to apply the IMO Standards to ships constructed on or 

after I st January 2004. 

The implementation of manoeuvring standards will ensure that ships are designed to 

a uniform standard, so that an undue burden is not imposed on ship handlers in trying 

to compensate for deficiencies in inherent ship manoeuvrability. IMO regulations 
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specify minimum requirements for all ships, but ship-owners may introduce 

additional or more severe requirements for certain types of ships, e. g. tugs, ferries, 

exploration ships. Selected quality measures of ship manoeuvrability, which are 

addressed by the IMO Standards, can be described by the following main 

characteristics: 

0 Inherent dynamic stability: A ship is dynamically stable on a straight course if it, 

after a small disturbance, soon will settle on a new straight course without any 

corrective rudder. The resultant deviation from the original heading will depend 

on the degree of inherent stability and on the magnitude and duration of the 

disturbance. 

" Course-keeping ability: The course-keeping quality is a measure of the ability of 

the steered ship to maintain a straight path in a predetermined course direction 

without excessive oscillations of rudder or heading. In most cases, reasonable 

course control is still possible where there exists an inherent dynamic instability 

of limited magnitude. 

0 Initial turning/course-changing ability: The initial turning ability is defined by 

the change-of-heading response to a moderate helm, in terms of heading 

deviation per unit distance sailed (the P number) or in terms of the distance 

covered before realizing a certain heading deviation (such as the "time to second 

execute" demonstrated when entering the zig-zag manoeuvre). 

0 Yaw checking ability: The yaw checking ability of the ship is a measure of the 

response to counter-rudder applied in a certain state of turning, such as the 

heading overshoot reached before the yawing tendency has been cancelled by the 

counter-rudder in a standard zig-zag manoeuvre. 

" Turning ability: Turning ability is the measure of the ability to turn the ship 

using hard-over rudder. The result being a minimum "advance at 90° change of 
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heading" and "tactical diameter" defined by the "transfer at 180° change of 
heading". Analysis of the final turning diameter is of additional interest. 

0 Stopping ability: Stopping ability is measured by the "track reach" and "time to 

dead in water" realized in a stop engine-full astern manoeuvre performed after a 

steady approach at full test speed. Lateral deviations are also of interest, but they 

are very sensitive to initial conditions and wind disturbances. 

Deriving from this background, a great deal of research studies have been carried out 

to evaluate the manoeuvring performance of a ship by means of theoretical or 

experimental methods. This conventional manoeuvring theory, however, often 

presumes calm water environments due to the complex influence of ocean waves on 

the manoeuvring performance. With the increased number of high speed marine 

vehicles recently, the effect of ocean wave on the behaviour of a ship has become 

more important. Furthermore the operations of ships in close proximity to one 

another and in restricted waters could be good examples where the influence of wave 

is put forward. 

To investigate how the behaviour of the ship is influenced by the existence of ocean 

wave, a new mathematical model describing the manoeuvring motion of ocean-going 

ship needs to be developed. This manoeuvring mathematical model should be 

capable of describing general six-degree-of-freedom motion in a seaway as well as 

conventional motions of manoeuvring and seakeeping in specific situations. 

Therefore new mathematical model needs to incorporate with the elements of 

traditional seakeeping and manoeuvring, in which integration of conventional 

methods is required to implement standard manoeuvring tests in a wave. Because 

both manoeuvring and seakeeping theories concern time-dependent ship motions, the 

main difficulty in both fields is to determine the fluid forces on the hull due to the 

ship motion. Although they have many other similarities between each other, they 

also possess many differences, which must be considered in the formulation of 

integrated model, as follow: 
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0 Contrary to seakeeping, manoeuvring is often investigated in restricted water, e. g. 

shallow and usually calm channels. 

0 Linear relations between velocities and forces are reasonably accepted for many 

applications in seakeeping; most recent manoeuvring models have non-linear 

formulation. 

0 Seakeeping is mostly investigated in the frequency domain and partly in the time 

domain; manoeuvring calculations usually performed in the time domain 

simulations. 

9 For coordinate system, in seakeeping equations of motion are written in an 

inertial coordinate system; in manoeuvring simulations a body-fixed coordinate 

system is used. 

" For fluids forces, viscosity is usually assumed to be of minor importance in 

seakeeping computations; the free surface is often neglected in manoeuvring 

simulations. Ideally, both free surface and viscous effects should be considered 

for both seakeeping and manoeuvring. 

Since the motion of a ship in a seaway is arbitrary, the formulation of the fluid 

actions exerted on the ship is very complicated by the so-called memory effect of the 

fluid motion and therefore representation of fluid force using convolution terms is 

essential. Employment of the frequency dependent hydrodynamic coefficients also 

allows the combination between seakeeping and manoeuvring motions on the basis 

of comparison between two theories. 

Because the main intention of the present study is to develop a six-degree-of- 

freedom mathematical model with frequency dependent coefficients, incorporating 

memory effects in waves, so the major emphases are lied on the formulation and 

validation of a mathematical model which would allow a meaningful integration of 

conventional manoeuvring and seakeeping theories in the prediction of extreme ship 

motions. 



1.4 Structure of the Thesis 

This thesis is structured in eleven chapters. A brief outline of the contents of each 

chapter is given as follow: 

0 Chapter 1, Introduction, provides the background to the research described in 

this thesis. 

0 Chapter 2, Aims of the Thesis, states the overall aim and specific objectives that 

constitute the focus of the research presented in this thesis. 

0 Chapter 3, Critical Review, presents the previous researches in understanding the 

behaviour of a ship in waves and relevant theoretical and experimental studies 

carried out. It paves the way for introducing the key elements of approach 

adopted in Chapter 4. 

" Chapter 4, Approach Adopted, outlines the elements of approach adopted as 

fundamental idea that details the development of following chapters. 

" Chapter 5, Formulation of Three-Dimensional Potential Flow, describes the 

theoretical formulation of three-dimensional potential flow, which forms the 

basis of the Boundary Value Problem and leads to the simplified radiation and 
diffraction problems using linearisation of boundary conditions. 

" Chapter 6, Numerical Implementation of Green Function Method, details the 

methodology to get the solution of discretised integral equations over mean 

wetted body surface using different source distribution techniques. 

" Chapter 7, Hydrodynamic Forces and Ship Motions, demonstrates the 

applicability of the developed methods focusing on the hydrodynamic 

coefficients, wave forces and motion responses. 
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" Chapter 8, A Manoeuvring Mathematical Model in Waves, describes the 

development of integrated mathematical model for general manoeuvring 

simulation of a vessel in waves and demonstrates the effects of waves on the 

manoeuvring motion in a seaway. 

" Chapter 9, Benchmark Study on Parametric Rolling, presents extensive range of 

investigation of parametric roll phenomenon and comparison with experiment 

data to show the capability of numerical model for high amplitude roll motion. 

" Chapter 10, Discussion, contains an account of the contribution of the thesis to 

the research field, critically discusses the outcome of the study in terms of the 

objectives stated in Chapter 2, draws the difficulties encountered during the 

research and, based upon the discussion, provides recommendations for future 

research. 

" Chapter 11, Conclusions, summarises the main conclusions of the research 

presented in the thesis. 

The details about the numerical models and techniques are given in Appendices 

along with the references used in the literature review and other chapters. The logical 

sequence and interrelations among the chapters of the thesis are illustrated in Figure 

1.1. 

The research to be presented in the thesis is founded on the hypothesis that the 

inherent problem of wave load exerted on a ship in a seaway makes it difficult to 

assess the ship motion performance using the individual method initially originated 

from traditional seakeeping and manoeuvring theories. In this respect, this thesis 

develops a mathematical model and simulation tool that analyse and predict the ship 

motion performance considering the wave effects. Its applicability is demonstrated 

by performing a number of case studies, in which various wave conditions are 

specified. 
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1.5 Concluding Remarks 

In this introductory chapter the considerations that led to the undertaking of this 

research have been put forward. The main problem identified, which will be 

examined in detail in the following chapters, is the lack of technology developed to 

deal with the problem of a ship manoeuvring motion solely in a wave. In this respect, 

this thesis will focus on aspects relevant to development of mathematical model and 

numerical tool for the six-degree-of-freedom motion simulation of a vessel in a 

seaway. 
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Chapter 2. Aims of the Thesis 

The main aim of this thesis is to develop an integrated six-degree-of-freedom 

mathematical model for the manoeuvring motion of a ship in a seaway. In the first 

place it is to develop and validate numerical tools to calculate hydrodynamic 

coefficients and forces based on recent seakeeping theory. Next is to formulate the 

equations of motion to describe ship behaviour using hydrodynamic coefficients 

calculated in the seakeeping theory. The specific objectives can be outlined as 

follows: 

" To carry out critical reviews of theoretical researches on the seakeeping and 

manoeuvring performance assessment. 

" To develop and validate numerical tools, which can calculate hydrodynamic 

coefficients and wave forces with three-dimensional Green function approach in 

frequency domain. 

" To expand wave forces up to second-order in order to investigate drift effects. 

" To formulate a fully six-degree-of-freedom mathematical model describing 

general ship behaviour in random seaway. 

" To take into account the memory effects of fluid force exerted on the hull surface. 

" To validate the integrated model by comparison with manoeuvring model 

experiment in various wave conditions 

0 To investigate the effects of wave on standard manoeuvring tests. 

0 To demonstrate the capability of integrated mathematical model for highly non- 

linear motion like parametric rolling. 
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Chapter 3. Critical Review 

3.1 Preamble 

The main objective of this chapter is to review the theoretical and experimental 

researches on the seakeeping and manoeuvring performance of a ship in a wave and 

efforts to develop numerical tools to provide the basis for the simulation of 

manoeuvring motion in a seaway. 

The beginning of Chapter 3 attempts critical reviews on the existing theoretical 

methods to predict the behaviour of ship in a seaway. The in-depth consideration of 

each method regarding general seakeeping problem concludes with the identification 

of their capabilities and appropriateness of the approach adopted. Relevant numerical 

techniques and methods will be critically reviewed regarding specific research issues 

in the following sections. 

Then some important issues to develop the mathematical formulation of 

manoeuvring motion in a wave will be addressed and reviewed in the following 

section. The empirical methods employed in the conventional manoeuvring theory as 

well as relatively recent theoretical method to consider the wave effects on ship 

motions will be discussed. 
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3.2 Seakeeping Theory 

For many years great attention has been paid to the seakeeping characteristics of a 

vessel due to a number of factors: fast development of high-speed passenger vessels, 
increasing demand for passenger comfort, great pressure from regulatory bodies and 

the broader public request for safety measures, deployment of highly sophisticated 

systems on smaller naval vessels, staggering advancement in desktop computer 

capacity, and development in prediction and analysis tools. Because of the presence 

of the inherent hydrodynamic and geometrical non-linearities of a ship as well as 

complicated sea environments, the demands for more sophisticated technologies in 

the seakeeping analysis, have never stopped in both industry and research fields. In 

what follows, developments of the theoretical approaches for seakeeping analysis 

and corresponding research issues are described according to the kinds of calculation 

methods with the potential flow assumption. 

Strip method, which is originally based on two-dimensional linear potential flow in 

the frequency domain, has been used for engineering purposes, because they are very 

fast and efficient in terms of computational efforts. However, in recent years, 

attentions tend to be focused on three-dimensional effects and non-linearities in 

irregular waves and thus three-dimensional Green function methods in the frequency 

and time domains have been widely applied to both the zero and forward speed 

problems in connection with the panel method, which discretise the body surface into 

a finite number of elements. Meanwhile, to overcome the limitations in the time- 

domain Green function method dealing with only the linearised free-surface 

condition, Rankine panel method has been developed since the late 1980's. Details of 

each approach to predict ship motion in a seaway are reviewed in the following 

sections. 
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3.2.1 Two-dimensional method 

The slenderness of a ship's geometrical shape (i. e. its dominant length compared 

with breadth and draught, and gradual changes of cross-section along the 

longitudinal direction) has motivated the simplification of three-dimensional effect of 

the flow. For small ö/ 8x(U / o)), one would find that the change of flow velocity in 

the transverse direction is much greater than that in longitudinal direction and 

consequently the flow field in any cross-section might be approximated by the two- 

dimensional flow in that strip. This has led to so-called `slender body theory' or 

`strip theory', which simplify the complicated three-dimensional problem by the 

integration of individual two-dimensional strips along the ship length. 

In order to obtain good results from strip method applied for the free floating bodies 

in waves, it is essential to have accurate method to solve the two-dimensional 

problem, which is mathematically defined as mixed boundary value problem. The 

two most popular methods to solve this problem are Frank Close-Fit method (Frank, 

1967) and multi-pole method (Ursel], 1949). The multi-pole method was first 

developed by Ursell (1949). He employed source and symmetric multi-pole 

expansions to solve the heave motion of a half immersed circular cylinder in deep 

water. Conformal mapping is performed for the transformation of sections with non- 

circular shape to semi-circle and Lewis-form is often used as the most common 

mapping function (Lewis, 1929). Frank (1967) used the source distribution technique 

to solve two-dimensional problem by dividing the ship section into a series of 

straight-line segments, which is referred to as the Frank Close-Fit method. The main 

advantage of Frank's method is that a more accurate description of any ship section 

can be achieved than Lewis form. It can accurately handle rapid change of hull shape 

such as bulbous bow and stern sections, but it is troubled by irregular frequency. 

These results of two-dimensional computations have laid groundwork for the 

development of strip theory. 
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The first strip theory for ship motions in regular waves was developed by Grim 

(1953) to solve the problem for two-parameter Lewis form cylinders by conformal 

mapping onto a circle by using a variation of the Ursell method. Korvin-Kroukovsky 

and Jacobs (1957) calculated the heave and pitch motions of a vessel in head seas. 

They assumed that the hydrodynamics associated with the ship could be represented 

by a series of two-dimensional strips. The two-dimensional boundary value problem 

to obtain the hydrodynamic coefficients and excitations was then solved for each 

strip. Although interaction effects between the different strips along the ship's length 

are not accounted for, their pioneering work has led to wide application of strip 

theory in ship motion calculation. 

Ogilvie and Tuck (1969) performed a mathematically rigorous analysis using slender 

body theory and developed `Rational Strip Theory'. Their analysis revealed 

additional contribution of the forward speed to the cross coupling coefficients 

involving integrals of the square of potential over the free surface. The complete 

forms of Ogilvie and Tuck coefficients are superior in mathematical viewpoint, but 

their practical value is open to debate. In spite of the work of Ogilvie and Tuck 

(1969), certain aspects of the strip theory remain unsatisfactory from the rational 

standpoint. The principal questions concern the validity of the solution at low 

frequency and the emergence of forward speed effects only as higher order 

corrections. From the underlying assumptions, it is clear that the strip theory is 

invalid at low frequency of encounter. 

The strip theory developed by Salvesen et al. (1970) is not as rigorous as the Ogilvie 

and Tuck's approach, but their study has become generally accepted by the designers 

related to marine hydrodynamics since it has been most widely used with respect to 

seakeeping calculations for traditional ships. They adopted the slender body 

assumption with a symmetric perturbation expansion to make consistent 

simplification for the three-dimensional boundary problems. The predictions of 

heave-pitch motions, vertical wave loads in various heading angles and sway-roll 

motions in beam seas were found to give good agreement with model tests for high 

frequencies and moderate Froude number. 
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High-Speed Strip Theory (2), (3), (4) 

Unified Theory (1), (2) 
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Figure 3.1 Order of parameters valid for various theories (Kashiwagi et al., 1994) 

The limit of application to the low frequencies has in principle been overcome by the 

`Unified Theory'. The Unified theories of Newman (1978) and Newman & 

Sclavounos (1980) take into account wave interaction between cross section along 

the hull. At low frequencies, the unified theory approaches the ordinary slender body 

theory and yields terms that involve longitudinal interferences between sections, 

while these interferences disappear at high frequencies and the results become 

identical to the strip theory. From a rational point of view, unified theory represents 

an improved slender body theory. 

By applying modifications to the slender body theory, several researchers proposed a 

new approach to solve the ship motion problem. The order of parameters (forward 

speed and wave frequency) valid for various slender body theories and their 

applicable regions are compared in Figure 3.1. The review of these slender body 

theories was also presented with discussions on their accuracy and comparisons with 

experimental data. 

Figure 3.2 shows the comparisons of added mass and damping coefficients predicted 

by unified theory and effects of forward speed on the hydrodynamic coefficients are 

well noticed. The model used in the experiment was a mathematical hull form 

(L /B= 8) and its cross sections can be expressed with Lewis form (Kashiwagi et al., 

1994). 
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Figure 3.2 Added mass and damping coefficients in heave and pitch of a 

mathematical ship model at Froude number 0.1 and 0.2 (Kashiwagi et al., 1994) 

For non-slender ships the application of the different slender body theories and strip 

theories are questionable in the prediction of their seakeeping abilities. These vessels 

require the solution of the full three-dimensional problem. In addition to its obvious 

value in the determination of seakeeping qualities of non-slender ships, the 

development of three-dimensional theory is also essential to the validation of the 

different slender body approximations. 
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3.2.2 Three-dimensional method 

The development of the three-dimensional method to solve the motion of a ship in 

waves was highly motivated by the offshore engineering in the early 1970's since the 

large platform structures operate in zero or low speed ranges and require accurate 

determination of the diffraction forces. This resulted in the development of so-called 

three-dimensional singularity distribution method through the distribution of 

pulsating singularities in terms of sources or dipoles with known frequency, 

satisfying the linear free surface boundary condition. The body boundary condition is 

then used to determine the unknown strengths of the singularities. Imposing the body 

boundary condition led to a Fredholm integral equation of the second kind, and thus 

this method was called `Boundary Integral Method'. Examples of these methods 

were established by Faltinsen & Michelson (1974) and Garrison (1978) although 

they are limited to the zero forward speed. 

By the early 1970's the Neumann-Kelvin approach for a ship travelling at a steady 

forward speed was starting to be used (Brard, 1972). In the Neumann-Kelvin 

problem the kinematic condition and the constant pressure condition on the free 

surface condition are linearised, while the kinematic condition on the body boundary 

condition is satisfied exactly over the mean position of body surface. The traditional 

approach to solving the Neumann-Kelvin problem is also to use boundary integral 

method in which the solution is formulated in terms of integrals of fundamental 

singularities over the surface surrounding the fluid domain. However, by combining 

the fundamental singularities with other analytic functions, it is possible to develop 

`Green functions' that satisfy all the boundary conditions of the problem except on 

the body surface. Consequently the governing integral equation need only be solved 

on the body surface. 

Meanwhile Hess and Smith (1967) pioneered ̀Boundary Element Method' for flows 

without a free surface. Using a source distribution technique, body surface is 

discretised into a finite number of flat quadrilaterals in which the source strength is 
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assumed to be constant. Satisfying the body boundary condition at the centre of each 

quadrilateral (also called node, control, or collocation point) resulted in a system of 

linear equations for the unknown source strengths. The velocity and pressure at each 

quadrilateral can be determined by solving the source strengths. The flat 

quadrilaterals often called panels and now the term `panel method' has come to mean 

any solution technique in which the body surface or other surfaces of the domain 

have been discretised. 

3.2.2.1 Green function 

For the zero forward speed case, the three-dimensional panel method using the free 

surface Green function has been established as a reliable and efficient numerical tool 

for routine use. However, for the nonzero forward speed case, the corresponding free 

surface Green function in the frequency domain involves a number of numerical 

difficulties which hinder the Green function from being practicable in panel methods. 

In fact, numerous studies have been done on the free-surface Green function at 

forward speed and generic tools to predict the unsteady motion of a ship with proper 

considerations of forward speed and encounter frequency due to existence of wave 

have been developed in the past three decades. 

As a pioneering work to solve the three-dimensional hydrodynamic problem in 

frequency domain for a ship advancing with forward speed in a seaway, Chang 

(1977) first applied the Green function of the pulsating-translating source given by 

Wehausen and Laiton (1960) to solve the hydrodynamic problem considering the 

forward speed. The numerical method in the evaluation of the Green function 

includes the direct computation of double integrals expressing three-dimensional 

flow induced by the translating pulsating source. However, it is very time-consuming 

since the oscillatory behaviour of the integrand may require smaller time step in the 

numerical integration. 
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Attempts to establish alternative and more efficient formulations of the complicated 
Green function have been made by several researchers. A main focus of the approach 
is to reformulate the double integral in terms of a single integral involving the 

exponential integral. Bessho (1977) derived the Green function expressed by a 

genuine single integral in the sense that its integrands are all elementary functions 

while the integration must be done along a path in the complex plane. Inglis and 

Price (1981) replaced the double integral term belonging to the principal value 
formulation in the Green function by single integral involving the exponential 
integral. The principal value integral was evaluated along a ray in the complex plane 

so that the oscillatory behaviour of the integrand vanished. Guevel and Bougis 

(1982) also used the modified exponential integral to reduce the double integral and 

this formulation involves the time dependent terms. Wu and Eatock Taylor (1987) 

derived an alternative form of Green function, which leads to a single integral, 

involving complex exponential integral which is well behaved throughout the range 

of integration. Exploiting the increasing computer resources in the early 1990's, 

some practical applications of the three-dimensional Green functions have been 

carried out by Hoff (1990), Chan (1990), Iwashita & Ohkusu (1992), Ba & Guilbaud 

(1995), Chen (1999), Boin et al. (2003), and Nobless & Yang (2004). Three different 

numerical schemes can be divided in terms of the calculation methods of Green 

function. 

Iwashita and Ohkusu (1992) employed the `steepest descent method' used in Bessho 

(1977) and performed the integration in complex plane. This is accomplished by 

deforming the integration path, in order to maintain a constant imaginary part of the 

integrand (suppressing any oscillation of the integrands) and a decreasing real part. 
Main part of their study is to find numerically a path on which the integrands do not 

oscillate and rapidly approach zero. Once this steepest descent path is found, 

integration is straightforward, and the accuracy of results is controlled without 
difficulty. 

25 



Usual Green Function 

Simple Green Function 

Figure 3.3 Wave system of steady flow generated by a source-sink pair (Noblesse 

and Yang, 2004) 

The method of Guevel and Bougis (1982) was further developed by Ba & Guilbaud 

(1995) and Boin et al. (2003) to match computer calculations and to calculate the 

unsteady lifting effects in a vortex-lattice method in the frequency domain. This 

approach proves advantageous because of a simple integral in the Fourier plane 

instead of a double one in the complex plane in the steepest descent method. The 

lifting effects lead to integrations of the second derivatives of the Green function, 

which have not been previously performed, although the use of the complex integral 

function is expensive in computation time. 

The Green function derived by Chen (1999) and Noblesse and Yang (2004) is 

expressed as a sum of local-flow components defined by four elementary Rankine 

sources and three wave components, which represent distinct wave systems 

generated by a pulsating source advancing at constant speed. This new Green 

function satisfies the radiation condition and the linearised free surface boundary 

condition in the far-field but only approximately in the near-field. This feature can be 

advantageous in taking account of near-field effects in the free-surface boundary 

condition due to the steady disturbance of a ship. Thus, the Green function is 

considerably simpler than the free-surface Green function which has been used in the 
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literatures on wave diffraction-radiation with forward speed. Using their 

decomposition method, Chen and Noblesse (1998) proposed the `Super Green 

functions'. These formulations appear to be quite efficient, especially considering 

computation time, but they are in part simpler and in part more complicated. Chen 

and Wu (2001) studied the numerical difficulties in computing the Green function. 

For purposes of comparison between Green functions developed in many literatures, 

the steady flow generated by a point source and a point sink advancing at constant 

speed U in calm water is considered in Figure 3.3. The source and the sink are 

slightly submerged below the free surface. The point source and sink are located at 

(0.5,0, - 0.02)L and (-0.5,0, -0.02)L, respectively. The non-dimensional strength 

q= Q/(UL)2 of the source-sink pair is taken equal to 0.001 and the Froude number is 

chosen equal to 0.3. The velocity potentials evaluated using the usual Green function 

and the simple one of Noblesse and Yang (2004) of the flow generated by the source- 

sink pair at the free surface plane is illustrated in the upper and lower halves of 

Figure 3.3. The differences between two formulations vanish in the far-field and are 

relatively moderate in the near-field. 

3.2.2.2 Panel method 

Since the slender body theory reviewed in the previous section is based on the 

concept of idealising the hull by strips, major disadvantage of this method is its 

inability to treat the three-dimensional effects adequately. Removal of the limitations 

of slender body theory and consideration of three-dimensional description of body 

surface enable the interaction effects between various parts of the hull and fluid 

actions to be suitably treated. The discretisation of hull surface using finite numbers 

of quadrilateral panels, as proposed by Hess and Smith (1967), can be alternatively 

applied to the problems of ship motions. Since the Green function approach can also 

provide a reasonable approximation for many practical purposes, the panel method in 

connection with the singularity distribution over the discretised elements has been 

widely used to predict the steady and unsteady motions of a ship in waves. This 
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approach for fully three-dimensional formulation for the unsteady problem in the 

frequency domain was initiated by Chang (1977). Since the problem of unsteady 

motion can be treated in both frequency and time domains, separate reviews are to 

follow. 

The formulation of the ship motion problem follows linear potential theory practise, 

which separates the steady and unsteady motion problem and solves them 

individually. However, the interactions of steady and unsteady motions have 

influence on the body boundary condition for the unsteady motion problem. 

Therefore two formulations are possible; in the first formulation, the steady motion 

problem is solved and used to form the body boundary condition for the unsteady 

motion problem. In the second, the perturbation of the flow caused by the steady 

motion is neglected and the unsteady problem is solved directly. Inglis and Price 

(1982a, 1982b) have presented calculations of both formulations. The calculation 

results of hydrodynamic coefficient, wave loading and motion response for Series 60 

with Froude number 0.2 and 0.3 are presented and compared extensively with 

experimental data including a discussion of the distribution of the coefficients along 

the length of the hull. 

Since early 1980's vigorous efforts were made by many researchers to develop 

rational mathematical method for predicting wave-induced motion and wave force 

acting on a ship. These efforts are strongly connected with the efficient and fast 

evaluation of the free surface Green function adopted in three-dimensional panel 

method. Typical studies can be found in Guevel & Bougis (1982), Wu & Eatock 

Taylor (1989), and Iwashita & Ohkusu (1992) with individual formulation of Green 

function presented. The solution of boundary integral equation was obtained using 

Constant Panel Method, which assumes the unknown strength of singularity 

distributed on each panel to be constant. 

In order to solve the linear hydrodynamic problem of a ship advancing with a 
forward speed, Ann et al. (1995) employed a Higher-Order Panel Method to solve 

the integral equation adopting free surface Green function. The hull surface is 
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discretised with four-point cubic elements, while nine-point quadrilateral elements 

are used for the distribution of singularity over the idealised hull surface. Linear 

hydrodynamic data are obtained and compared with the experimental data for Series 

60 travelling in regular waves. 
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Figure 3.4 Added mass and damping coefficients in heave and pitch, half-immersed 

prolate spheroid at Froude number 0.0 and 0.2 (Kashiwagi et al., 1994) 

Du et al. (2000) carried out an extensive theoretical validation of numerical 

technique on the speed and frequency dependent solutions associated with 

seakeeping characteristics of surface piercing vessels travelling in waves. Two 

alternate theoretical models of Green function in the formulation and numerical 

scheme are employed and the three-dimensional linear seakeeping problem is 

addressed in the frequency domain. Each formulation was applied to calculate the 

hydrodynamic data of Series 60 and high speed mono-hull forms at various Froude 

numbers. The effects of speed and frequency dependence are discussed and a 

preliminary study into their influences on the occurrence of irregular frequencies in 

the numerical schemes is presented. 
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Figure 3.5 Coupled added mass and damping coefficients in heave and pitch, half- 

immersed prolate spheroid at Froude number 0.0 and 0.2 (Kashiwagi et al., 1994) 

Maury et al. (2003) presented a numerical and experimental study of the radiation 
flow about ships advancing in waves. They used panel methods using two different 

expressions of the free surface Green function: the single-integral expression of 

Bessho (1977) and conventional expression with exponential integral used in Guevel 

and Bougis (1982). The former form of Green function is calculated with steepest 
descent method and a Simpson adaptive method is applied to evaluate the latter. It is 

shown that waterline integral term has strong damping effect on the irregular 

frequencies by showing the increases in amplitudes of irregular frequencies without 

waterline integrals. Predicted results were compared to test results for Series 60 

models of different block coefficients. 

Added mass and damping coefficients of a half-immersed prolate spheroid 
(LIB = 5) predicted by three-dimensional Green function method are illustrated in 

Figure 3.4 and Figure 3.5. It is easily noticed that the inclusion of the waterline 
integral term in the integral equation and the consideration of steady flow 

disturbance play an important role in the unsteady flow field. Their effects on the 
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hydrodynamic coefficients increase dramatically in the region when r<0.25. More 

detailed review on the critical frequency r will be discussed later. A comparison of 

heave and pitch exciting forces for the Series 60 and NPL mono-hull travelling in 

head waves is shown in Figure 3.6. In these figures, agreement between two different 

formulation of Green function (methods A and B) is extremely close for all of the 

speeds and frequencies and the effect of forward speed on the wave exciting forces is 

clearly visible. 
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Figure 3.6 Predicted wave exciting forces in heave and pitch for (a) Series 60 hull 

and (b) the NPL mono-hull form (Du et al., 2000) 
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3.2.3 Rankine panel method 

In the methods employing the Green function of the translating pulsating source in 

the frequency domain, the unknown singularities are distributed on the hull surface 

only since the Green function is satisfying the Laplace equation, the linearised free 

surface condition and radiation condition. Through a number of studies done up to 

date, it has been shown that the free surface Green function can be computed very 

accurately over the whole calculation domain. However, some numerical difficulties 

seem to still exist in solving the integral equations for the source strength or the 

velocity potential itself on the wetted surface of a ship. In particular, there must be a 

precise numerical cancellation between the singularities from the line-integral term 

along the waterline and from the surface-integral term in close proximity to the free 

surface, but probably this numerical cancellation is not achieved to the level of 

satisfactory accuracy. 

For purpose of avoiding the mathematical complexity inherent in the Green function, 

much simpler Green function can be introduced, which is called Rankine source. If 

the Green function of the Rankine source is used, the singularities must be 

distributed on both hull and free surface since the Rankine source does not satisfy the 

linearised free surface condition. This permits the enforcement of a wide range of 

linear, higher-order or fully non-linear free surface conditions irrespective of the time 

dependence of the underlying flow. There are several variations in this method 

depending on the way of satisfying the radiation condition at infinity and the time- 

marching schemes for the free surface condition and the equations of ship motions as 

described in the review by Sclavounos (1996). 

The basis for the development of three-dimensional boundary equation methods 

using the Rankine source singularity was given by Gadd (1976) and Dawson (1977), 

who presented a three-dimensional panel method for the steady ship resistance 

problem. In their methods, the hull and free surface around the vessel were 

discretised using flat quadrilateral panels. On each panel a Rankine source 

32 



singularity was assumed with an unknown constant strength. Using Green's integral 

formulation the flow problem was formulated and the unknown singularity strength 

distribution could be solved following the appropriate body boundary conditions. 

The full free surface modelling method uses the standard double-body linearization 

technique, originally formulated by Gadd (1976), where the flow past a double-body 

model in an infinite fluid is calculated prior to performing the full free-surface 

calculation. This approach was improved by Dawson (1977) by imposing the 

condition that wave disturbances can only advect in the downstream direction and 

hence provides a realistic and unique solution to the free-surface wave problem. 

Application of the Rankine panel method to the complete three-dimensional steady 

and time harmonic potential flow past ships advancing with a forward speed was 

quite successfully introduced by Nakos and Sclavounos (1990) in frequency domain. 

King et al. (1988) performed seakeeping calculations with forward speed by using 

the Rankine panel method in the time domain. Since Rankine panel method is 

versatile in that it can deal with different kinds of free surface conditions that may 

include non-linear terms, Rankine panel method has been applied so many 

hydrodynamic research field, e. g. linear or non-linear interactions between ship and 

wave, high speed vessel and added resistance in waves, in both frequency and time 

domains. The current state-of-the-art of research activities in the field of Rankine 

panel method have been reviewed completely in Beck and Reed (2001) and the 

Report of the Seakeeping Committee of the 24th ITTC (2005). 

The standard discretisation of hull and free surface used in Rankine panel method is 

illustrated in Figure 3.7, where the border of numerical beach is also shown. 

Corresponding boundary conditions are then enforced to each panel with the 

consideration of radiation condition in the far field. The discretisation of free surface 

is further characterised by two parameters, the panel aspect ratio a and the grid 

Froude number Fti , 

a=h` and Fh =U (3.1) 
h,, ghr 
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Figure 3.7 Ship hull and free surface discretisation (Ohkusu, 1996) 

where hX and by are the panel dimensions in longitudinal and transverse directions 

respectively. A certain stability criteria that restrict the choice of the corresponding 

parameters should be met to ensure the convergence of numerical scheme. 

3.2.4 Time domain approach 

An alternative approach to solve hydrodynamic problem in frequency domain is 

performing the calculations in the time domain. For the linear problem, the results of 

frequency and time domains are related by the Fourier transform. The time domain 

calculation requires the evaluation of convolution integrals over all previous time 

steps and this, therefore, takes both computational time and memory. For the zero 

speed case, the frequency domain approach requires less computational efforts than 

the time domain one due to the convolution integrals, although the evaluation of free 

surface Green function in both domains requires approximately the same 

computational time. However, in the case of forward speed, the time domain 

approach may offer possible advantages, since the Green function applied in the time 

domain retains its relative simple form regardless of the forward speed compared to 

the Green function in frequency domain. In the frequency domain, the forward speed 

Green function is much more complex, requiring greatly increased computer time. 
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The application of the time domain approach to the three-dimensional body case 

selecting the free stream as the basis flow for linearisation was presented by Liapis 

and Beck (1985) for the radiation problem using the impulsive input. The extension 

of the radiation problem to diffraction problem was developed by King (1987) who 

used an impulsive wave to obtain the appropriate incident wave boundary condition, 

considering the body waves as the input to the linear system directly in the time 

domain. King et al. (1988) employed a non-impulsive input to obtain hydrodynamics 

coefficients for zero and forward speed cases, but the wave elevation cannot be 

computed by this approach. Bingham et al. (1993) used a transient free surface Green 

function to solve the linearised ship motion problem for a ship travelling with steady 

forward speed through quasi-random incident waves. A technique for extending the 

impulse response function by asymptotic continuation was presented to reduce the 

required length of the computations. 

The time-domain approach is advantageous to study non-linear problems even in the 

framework of the free surface Green function method. The levels of approximations 

technique in treating non-linear characteristics might be various and the simplest one 

could be that the Froude-Krylov and restoring forces are computed exactly while 

retaining the radiation and diffraction forces as linear. This approximation can 

account for dominant non-linearities in large-amplitude motions of a ship without 

increasing the computation time as compared to the linear formulation (Sen, 2002). 

The so-called `body-exact' formulation for the radiation and diffraction problems is 

the next higher level of approximation for non-linearities. In this formulation, the 

transient free-surface Green function is used and the body boundary condition is 

satisfied on the instantaneous exact wetted surface of the hull while retaining the 

linearised free-surface boundary condition. Therefore, the computation time in the 

body-exact formulation is dramatically increased as compared with the linear 

problem. Since this body-exact problem becomes a time variant system, the solutions 

of frequency and time domains are not simply related by Fourier Transforms any 

more and the hydrodynamic forces acting on a vessel undergoing sinusoidal motion 

are not sinusoidal either. Numerical application of body exact formulation for the 
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large amplitude motion of a surface piercing body was presented by Lin and Yue 

(1990). Their calculation results include linear and large motion coefficients and 
diffraction forces with and without forward speed and the non-linear effects 

associated with the changing wetted hull are illustrated. 

An attempt to develop robust numerical codes in both frequency and time domains 

has been made since 1980's and the results of both domains were compared with 

experimental measurements for verification and validation of the codes; WAMIT and 
SWAN1 developed in frequency domain and LAMP and SWAN2 in time domain. 

The underlying numerical approach employed in both SWAN codes is a three- 

dimensional Rankine panel method for potential flows and more details of each 

numerical code are well explained in the review of Beck et al. (1997). Figure 3.8 and 
Figure 3.9 show the comparisons of hydrodynamic coefficients predicted by SWAN1 

(frequency domain) and SWAN2 (time domain) with the experimental data. The 

agreement between SWAN's and experiments is generally good, confirming the 

consistency of the SWAN predictions and their performance relative to experiments. 
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Figure 3.9 Non-dimensional coupled hydrodynamic coefficients for Todd Series 60 

at Froude number 0.2 (Sclavounos, 1996) 

Similarly, Vassalos et al. (2000) developed computer programs to predict the 

hydrodynamic loads and responses of high speed craft in the frequency and time 

domain approaches adopting the free surface Green's functions. Based on a 

comparative study between the two approaches they suggested the suitability of each 

approach concerning accuracy of predictions and general applicability to solving 

high-speed related problems. 
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3.2.5 Research issues 

3.2.5.1 Drift force and added resistance 

The hydrodynamic forces acting on a body exposed to the action of the surrounding 

fluid can be separated into oscillatory and non-oscillatory components. The 

oscillatory force component cause motions which are proportional to the wave 

amplitude and the problem regarding these forces and motions are referred to as the 

first-order theory. The non-oscillatory force component arises from various non- 

linear effects of the fluid action and is of at least second-order with respect to the 

wave amplitude. The first-order component shows a zero mean value over a period, 

while the second-order term is expressed time-averaged constant value in the regular 

waves or slow-varying random waves. This second-order component is often referred 

to as the well-known steady drift force and historically drift forces have been of 

much more interest due to their importance in the design of offshore structures and 

their moorings. 

There are two ways of obtaining the steady second-order drift force. The first one is 

so-called near-field method using direct pressure integration over the wetted body 

surface. This method has advantage that the local values of the force can be obtained, 

which may lead to a better physical insight into the phenomenon. Alternatively the 

horizontal component of drift force can be obtained from momentum relation of the 

control volume in the far-field. This far-field method has mathematical and 

numerical advantages, since the integrals are evaluated at a vertical control surface 

far away from the body. 

Watanabe (1938) and Havelock (1942) first confirmed the existence of drift force in 

the analysis of the interaction between wave system and ship motion and laid the 

basis for a mathematical formulation. Maruo (1960) first derived complete 

expressions for the horizontal surge and sway drift forces acting on a ship at zero 

speed and Newman (1967) further extended Maruo's expressions to include the yaw 
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drift moment using the slender body assumptions. Both Maruo (1960) and Newman 

(1967) used the far-field momentum approach and the expressions of drift forces are 

given in terms of Kochin functions. 

Faltinsen and Michelsen (1974) modified Newman's formulation in connection with 

the three-dimensional pulsating source distribution technique and extended the 

formulation to the case of zero forward speed at finite water depth. The results of 

computations compared with the experimental data for the mean horizontal force on 

a box shaped floating body showed good agreement but no drift moments result were 

produced. 

Lin & Reed (1976) presented the most complete derivation of the far-field expression 

for the mean second-order forces on a ship advancing in oblique waves. In their 

results the second-order steady forces are expressed in terms of Kochin functions but 

they were not able to express the second-order steady moment in a form suitable for 

numerical calculations. 

Although the far-field method requires less computational effort in the evaluation of 

mean second-order forces in the horizontal plane, it possesses difficulties in 

predicting those in the vertical plane. Pinkster & van Oortmersen (1977) computed 

the mean second-order wave force on a stationary free floating barge in regular 

waves using the complete near-field method. The drift force was calculated by means 

of direct pressure integration on the hull surface as derived from first-order potential, 

which is obtained using the three-dimensional singularity distribution technique. The 

theoretical results appear to show good agreement with experimental data. 

In the case of forward speed problem Faltinsen et al. (1980) employed the two- 

dimensional pulsating source technique associated with the near-field method to 

calculate the added resistance of a ship in oblique waves. Their results agreed well 

with the measured data for three Series 60 ships and a container ship in head waves 

but under-estimated that of the container ship in bow oblique waves. 
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Most studies on the drift force during 1980's were concentrated to the theories based 

on the frequency domain rather than time domain. This restricts the theories to the 

linear equations and harmonic functions, which are not realistic, since sea wave are 

not harmonic, especially not in the vicinity of a ship. Thus Prins and Hermans (1994) 

studied the non-linear equations in the time domain in order to obtain a realistic 

prediction of the drift force acting on a sphere floating with forward speed. Due to 

the increasing burdens arising from computational capacities required, they solved, 

however, linear equations of motion in the time domain. 

The longitudinal drift force acting on a ship advancing in waves can be applicable to 

the prediction of the added resistance, which is important for the overall fuel 

economy of the ship in a seaway. Added resistance in waves is regarded as the mean 

increase in resistance force resulting from radiation of energy away from a ship 

operating in a seaway. A dominant component of added resistance is an additional 

force to the wave-making resistance due to the disturbance caused by the interactions 

between ship and fluid domain. Thus, in linear theory, added resistance is the steady 

second-order force resulting from radiation of energy contained in the first-order 

radiation and diffraction waves. 

Strom-Tejsen et al. (1973) provided basic principles that summarise the early work in 

added resistance and drew general conclusions concerning the nature of added 

resistance; 1) The added resistance is proportional to the square of the wave height. 

2) The added resistance in a seaway is independent of calm water resistance. 3) The 

added resistance would depend on the motions and their phase relationship to the 

wave field. Using various hull forms, e. g. destroyer, high speed and five Series 60 

parent hulls with different block coefficients, model experiments to determine added 

resistance in regular and irregular waves are carried out. The measurement data were 

compared with theoretical methods, most of which relate added resistance to a phase 

lag between incident waves and ship motions. 

Lin and Reed (1976) adopted the method of momentum conservation theory to 

obtain second-order steady sway force using stationary phase method. Kashiwagi 
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(1992) further extends the momentum approach of Lin and Reed (1976) to include 

the mean second-order yaw moment, avoiding the repeated use of the stationary 

phase method. These formulations involve far-field representation of the wave field 

and are analogous to the measurement and prediction of steady wave resistance in 

calm water. Such approaches to added resistance prediction were necessary in the 

days when strip theory were the only means of predicting ship motions. 

Figure 3.10 shows the comparison of added resistance evaluated by the far-field 

method and measurement data in a towing tank test with the hull form of a container 

ship in regular head waves. In the numerical calculations, the peak value is due to the 

peak of heave and pitch motions, which were calculated by the strip theory. 

Agreements of the prediction and measurement are fairly good, but some 
discrepancy is observed in the low wavelength region. 
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Figure 3.10 Added resistance of container ship (Ohkusu, 1996) 

With the advent of three-dimensional methods for the prediction of seakeeping 

performance, it has become feasible to predict added resistance by means of direct 

pressure integration over a hull surface. Hermans and Huijsmans (1987) formulated 

the expression for mean drift force applying Taylor series expansion to the pressure 

in the mean position of the hull surface. The final expression is identical to that of 

Pinkster (1977) and is further decomposed into four contributions to the total mean 
drift force. The second-order drift force is expressed with respect to the first-order 
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terms like wave elevation, velocity field, motion and force, and second-order 

potential terms yield no contribution to the drift force. 

A brief review on the theory of added resistance and its historic development are 

given by Ohkusu (1996) and recent state-of-the-art researches are available in the 

reports of the Loads and Responses Committee of the 22nd ITTC (1999) and 23rd 

ITTC (2002) and the report of the Seakeeping Committee of the 24th ITTC (2005). 

3.2.5.2 Critical frequency at r =1/4 

One of primary difficulties arising in the three-dimensional panel method adopting 

free surface Green function is the existence of critical frequency at r= vU /g =1 / 4, 

where w denotes the encounter frequency, U the forward speed of a ship, and g the 

acceleration of gravity. The wave propagation due to a translating pulsating source 

shows that there is a mechanism to propagate wave energy from the ship at the 

critical frequency. Above the critical frequency r> 1/4, there are two components in 

the wave system that both travel downstream with respect to the corresponding 

reference frame. Below the critical frequency r <I/ 4, three components travel 

downstream, while one component propagates upstream that travels faster than ship. 

At the critical point r =1/4, there exist two components that act as standing waves 

with the same speed and direction of the ship and another two more waves that travel 

downstream allowing energy to radiate away. For many years it has been speculated 

that at the critical point the wave energy was trapped near the ship and that the 

motions would blow up due to the unbounded energy. 

The motion generated by a body of nonzero volume, oscillating or exposed to an 

incoming wave, may be found by using a distribution of sources located at the body 

surface. Since a single source is unbounded at r= 1/4, it was long believed that the 

solution of the linear seakeeping problem in the vicinity of this critical frequency is 

singular. Grue and Palm (1985) found, however, that the motion and physical forces 

are bounded as r -> 1/4 for a submerged two-dimensional circular cylinder. Liu and 
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Yue (1993) showed that the motion at r= 1/ 4 is bounded for a submerged two- 

dimensional body of arbitrary form, provided that the body has a nonzero cross 

sectional area or the body intersecting the free surface has a finite waterplane area. 

Then the solution of Grue and Palm (1985) was extended to a floating two- 

dimensional bodies and three-dimensional submerged bodies. 
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Figure 3.11 Added mass and damping coefficients for a Lewis hull in heave and 

pitch at Froude numbers 0.1 and 0.2 for three grid densities (Kring, 1998) 

In order to demonstrate that a bounded and physically relevant solution exists at the 

critical point, Kring (1998) used a Rankine panel method in the time domain for the 

linear seakeeping problem of realistic ship. After addressing the issues of numerical 

stability and domain sensitivity, numerical convergence was demonstrated with 

different grid densities and Froude numbers. Difficulties in obtaining the 
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convergence for both long wavelengths, requiring a large domain size, and short 

wavelengths, requiring a fine grid resolution, were explained. The spatial 

convergence of heave and pitch added mass and damping coefficients are illustrated 

in Figure 3.11. While there are two well defined peaks in the damping coefficients for 

both heave and pitch, neither of these occurs exactly at r =I/ 4 since there is no 

reason to expect the maximum value at the critical frequency. The sharp peak in 

pitch added mass does not represent an unbounded solution but converged to a 

specific and finite value. 

Using free surface Green function of radiation-diffraction problem in the frequency 

domain, Chen et al. (2000) demonstrated similar finite peak values in the added mass 

and damping coefficients at i= 1/4 for both a submerged sphere and a Wigley hull 

form. Although the hydrodynamic coefficients vary sharply for r crossing the 

critical point, it was confirmed that the values are not singular but does have a finite 

value at r =I/ 4. 

3.2.5.3 Validation of seakeeping numerical method 

Numerical schemes based on the seakeeping potential theory often play an 

increasingly important role in predicting hydrodynamic performance of ships in the 

waves. There are, however, significant differences between the hydrodynamic 

coefficients at forward speed from theoretical predictions, for example these 

disagreements can be observed even in the simple mathematical model of Wigley 

hull form. Also these discrepancies often occur when non-linearities or viscous 

effects play a role. Furthermore, in the case of regular wave transfer functions, there 

exists sometimes a considerable disagreement between predictions and experiments, 

that is, the estimated value of the predictions does not agree with the measurement by 

an amount that is apparently greater than acceptable experimental scatter. It is 

obvious that these experimental scatter and bias between estimations and 

measurements will hold for the resultant motions as well. 
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Since the first interest of present study lies in the establishment of accurate numerical 

method to obtain hydrodynamic data set, e. g. hydrodynamic added mass, damping 

coefficients, wave force as well as motion response, it is required to assess how to 

prove validity of the outcomes of adopted numerical schemes. Such an attempt has 

been made first in the 19th ITTC (1990) and recently the Loads and Responses 

Committee of 23rd ITTC (2002) adopted a Procedure on the validation of seakeeping 

theories. Its purpose is to provide a preliminary guideline on the validation of two- or 

three-dimensional seakeeping computer codes for calculating the potential 

coefficients, wave-induced loads and motions of floating structures and displacement 

ships in regular waves in the frequency domain. 

ITTC Recommended Procedures 7.5-02-07-02.4 for Validation of Seakeeping 

Computer Codes in the Frequency Domain 

A clear distinction has been made between the verification and the validation of a 

seakeeping computer code: 

" Verification of a computer code means to check that the code is actually a 

correct presentation of the mathematical model that forms the basis for it. It 

establishes that the code written echoes the intended operations and procedures 

necessary to fulfil or complete the required intended tasks. It means the code in 

itself is correct. 

0 Validation is the demonstration that the mathematical model of the verified 

computer code is an adequate representation of the physical reality. It establishes 

the applicability and integrity of the code developed. 

Thus, validation is a much broader activity, which includes verification and 

comparison with benchmark experimental results. The validation process should 

provide estimates of suitable metrics that are indicative of the processes involved and 

45 



lead to estimates that are compatible with other means of measuring the selected 

metrics. 

Most of the validation process provided in the literatures involves comparisons of 

linear frequency domain quantities like added mass, damping coefficients and motion 

responses with experimentally measured data. Any seakeeping code should pass the 

preliminary examination of these hydrodynamic data set obtained in the numerical 

calculations. Any mistakes in the numerical scheme result in an improper design 

which is critical in the ship operation and might last the lifetime of the ship. 

Meanwhile the model-scale experiments, which are often required for the validation 

process, are time-consuming and very expensive. When full-scale data is required, 

the costs can be increased even further. Therefore, great deal of care should be taken 

in the development of both numerical and experimental approaches for the successful 

validation work. 

To obtain even better results during the implementation of validation, Ohkusu (1998) 

argued that advanced theory and method in the subject of hydrodynamics must be 

tested on `hydrodynamic' experiment rather than the ship motion experiment or the 

global force experiment. He claimed that integrated quantities, such as global wave 

loads and response amplitude operators, do not identify the deficiencies in a 

theoretical formulation and that they combine many factors that can hide errors in 

both the experiments and theory. Hydrodynamic experiment was detailed as an 

experiment to understand the basic hydrodynamics of the ship-wave interaction, e. g. 

measurement of the hydrodynamic pressure distributed on the hull surface or 

measurement of local wave field around the ship. However, requirements of the 

experiments will be much more complicated and cost longer time as well as very 

sophisticated equipments. 
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3.3 Manoeuvring Theory 

The recent increase of interests on the marine safety and casualty resulted in the 

adoption of regulation on ship manoeuvrability towards performance-based standards 

As for the Standards for Ship Manoeuvrability adopted by the IMO, the following 

three points may be very important issues for the mandatory application of the 

Standards; 1) prediction of manoeuvring performance at the initial design stage, 2) 

correction of loading condition to the manoeuvrability in the sea trial and 3) 

correction of environmental disturbances, e. g. wind, wave and current, to the 

manoeuvrability also in the sea trial. 

Although the Manoeuvring Standards require sea trial to be carried out in calm 

environment, that is to say, in deep unrestricted water, below Beaufort wind scale 5 

and sea state 4, and under uniform current, the external forces due to environmental 

disturbances are inevitable at actual sea. In these conditions, it is very difficult to 

understand real inherent ship manoeuvrability by the external disturbances, 

accordingly it is demanded to develop the correction method for the environmental 

disturbances as in the aforementioned third issue. However, researches of wave 

effects on manoeuvring performance are not as numerous as those on wind and 

current effects on manoeuvring motion and trajectory. In order to estimate the effect 

of external forces on manoeuvring motion correctly, researches for studying wave 

effect on manoeuvring motion as well as traditional manoeuvring issues will be 

investigated. 

3.3.1 Memory effect 

The conventional representation of fluid forces acting on the ship travelling in a 

seaway was generally determined by the small parasitic motion from a prescribed 

steady motion and was often expressed as resultant forces with respect to the centre 

of gravity. It is commonly assumed that the fluid forces at any instant can be 
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determined by the perturbation of the steady reference motion at that instant. It is the 

basis of subsequent assumption of `quasi-steady' flow, on which so-called `slow 

motion' derivative is defined. Therefore it has been demonstrated that a frequency 

dependence of the hydrodynamic forces is not very important in the conventional 

calm water manoeuvres and simplified mathematical model based on Taylor series 

expansion is justified. With the concept of linear theory and Taylor expansion, 

Abkowitz (1964) expressed the fluid forces in the equations of motion with the linear 

constant coefficients, which are proportional to the motions, e. g. displacement, 

velocity and acceleration. 

Although the slow motion derivatives with constant values are used widely in the 

stability analysis and control theory, it is often criticised that they does not give 

accurate prediction of ship motion and their use in linear theory is valid only when 

the amplitude of parasitic motion is small. When the manoeuvring motion of a ship 
in a seaway is of interest, the influence of the frequency on forces becomes 

significant. Moreover the previous motions could play an important role partly in 

determining the current exciting forces exerted in the confused fluid since the 

manoeuvring motion of a ship in a seaway has an arbitrary form, which is not 

prescribed. It has been shown that the fluid forces are dependent on the motion 

history of a ship in a seaway and it is often referred as `memory effect' of a fluid 

action, which is mainly associated with the wave on a free surface due to the 

unsteady motion of a ship and vortex shedding from the oscillating ship. 

In a pioneering study, Cummins (1962) discussed the this memory effect on the ship 
hydrodynamics and showed that the hydrodynamic forces arising from transient ship 

motion can be represented by means of convolution integral over the entire time 

history of the motion. The principles introduced by the author have led to important 

developments, both theoretically and experimentally. 

In the series of theoretical and experimental investigations, Bishop et al. (1973a) 

examined the functional representation of fluid forces in terms of memory effect and 
demonstrated making allowance for memory effect without loss of linearity. In the 
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successive studies Bishop et al. (1973b, 1973c) further applied the theory to 

oscillatory ship model testing with the Planar Motion Mechanism (PMM), and the 

analysis of directional stability and control, where only gentle manoeuvres can be 

described analytically under the conventional assumptions of quasi-steady flow. The 

fluid forces used in the equations of motion consist of two parts; one is due to the 

instantaneous state of motion and the other is due to the past history of the motion. 

Perez y Perez (1974) expressed the motions of a ship in waves as linear responses to 

arbitrary exciting forces by means of convolution integral, where frequency 

independent non-linearities are considered to be part of the arbitrary forces. This 

method is used in the numerical simulation of sway, roll and yaw motions 

incorporated with the non-linearities associated with rudder-induced force. 

Fujino (1975) also derived the equations of manoeuvring motion by use of impulse 

response function from frequency dependent hydrodynamic coefficients, which are 

referred to as `stability derivatives', instead of constant manoeuvring coefficients. 

Also the equations of motion were derived by taking `casualty' into consideration. 

From this investigation of impulse response function, it has been clarified that usual 

manoeuvring motion of a ship depends remarkably on the characteristics in the very 

low range of frequency. 

Scragg (1977,1979) made a comparison of the error in the manoeuvring predictions 
between linearised equations of motion with and without memory effects. After 

incorporating certain improvements into the impulse-response technique for the 

determination of hydrodynamic coefficients, experiments were conducted to measure 

a complete set of the coefficients. It was concluded that the impulse technique 

requires substantially fewer experiments than the regular-motion technique to obtain 

same results and regular-motion technique is incapable of evaluating the stability 
derivatives at very low frequencies. It was also determined that the significant errors 

occurred only during the initial phase of the manoeuvring, and that memory effects 

could be safely ignored for most deepwater manoeuvring problems. 
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Guo (1981) developed a non-linear theory of ship manoeuvring, based upon the 

hydrodynamics of arbitrary small motions superimposed upon a constant forward 

speed. The primary aim of the analysis was to establish the form of the second-order 

terms in the equations for manoeuvring by allowing only surging, swaying and 

yawing. The various potentials were found as solutions of integral equations 

constructed using time-dependent Green function and they exhibit, therefore, 

memory effects. Then the complete rigid body equations of motion were adjoined, 

resulting in a set of integro-differential equations. Numerical calculations for the 

determination of the kernel functions and coefficients were carried out in both time 

and frequency domain. Calculation results of the numerical model against the 

experimental data for Series 60 ship showed generally satisfactory agreement. 

However, viscous and lifting surface effects caused by the manoeuvring motions 

were not considered. 

Loeser (1982) presented the usefulness of impulse response procedure as an 

experimental tool to determine the stability derivatives. The impulse response 

procedure was developed into a fast, versatile and accurate procedure for evaluating 

the linear hydrodynamic properties of a ship hull. The accuracy of the procedure was 

improved by least-square analysis of multiple impulses and the frequency range was 

extended to the zero frequency limit, where comparison was made with the similar 

results from regular motion tests. The effects of shallow water on ship manoeuvring 

were also demonstrated with different hull forms, Froude numbers and water depths 

and numerical computation of ship manoeuvres in shallow water was illustrated 

using the experimentally determined motion derivatives. 

Bailey et al. (1998) proposed a practical hybrid approach, which fuses experimental 

manoeuvring data at low frequencies with theoretical seakeeping data at higher 

frequencies through identification of the relationship between seakeeping and 

manoeuvring hydrodynamic terms. The resulting frequency domain data can then be 

used to calculate an impulse response function, which includes the frequency 

dependence as well as some of the low frequency viscous characteristics. The 

frequency domain theoretical seakeeping data, calculated with reference to a set of 
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equilibrium axes, are first transformed to the body fixed axes used in manoeuvring. 

The quantitative differences between the theoretical and experimental damping data 

are then assumed to be due to viscous contributions at low frequencies. Addition of a 

simple ramp to the theoretical damping data, the zero frequency value chosen to 

bring the theoretical data into agreement with experimental values and the upper 
frequency taken to be the point at which the frequency domain data becomes a 

constant, has been demonstrated to show closer agreement between theoretically 

determined terms and experimental values over an extended frequency range. 

Lee (2000) derived linear integro-differential sway-yaw equations with rudder 

deflection in regular waves and calculated the maneuvering motion of Todd Series 

60 model. Also the indirect method using Fourier transformation was adopted to 

obtain the impulse responses of radiation and wave exciting forces. The differences 

between the integro-differential equation and the ordinary differential equation were 
discussed by comparing the response of a typical manoeuvre like the 10°-10° zig-zag 

test. The calculation was, however, restricted to a model which has good directional 

stability and ordinary hull form, and the effect of varying encounter angle during 

non-linear manoeuvring motion, such as turning manoeuvre in waves, was neglected. 

Ballard et al. (2003) presented a time domain mathematical model for the prediction 

of heave and pitch motions in regular waves. In the linear model, the fluid forces 

acting on a vessel were expressed in terms of convolution integrals, thus accounting 
for fluid memory effects. The required impulse response functions were obtained 
from transform of frequency domain data evaluated using a three-dimensional 

potential analysis. Non-linear incident wave (Froude-Krylov excitation) and restoring 
force contributions were included in the mathematical model referenced to a body- 

fixed axis system. Predictions obtained this partly non-linear model were compared 

to both linear predictions and experimental results for two merchant ship hull forms. 
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3.3.2 Coordinates system 

The motion of a ship at sea, or a body moving in a fluid, is allowed to move in all the 

six-degree-of-freedom, i. e. translation along three orthogonal axes and rotating about 

each of three axes. It is, therefore, necessary to choose an axis system to reference 

these motions with which the equations of motion are formulated, and the choice 

should be one which is most convenient for the development of the motion analysis 

(Abkowitz, 1964). 

The traditional approach to the dynamics of manoeuvring, in which a ship is assumed 

to be rigid, involves the use of `body-fixed axis' system. Abkowitz (1964) derived 

the equations of motion for a rigid body with six-degree-of-freedom to body axis and 

discussed their applications to ship dynamics. For the location of origin in the axis 

system, two cases were presented. One was the centre of gravity and the other was 

some arbitrary point within the body. Bishop and Parkinson (1969) demonstrated the 

effect of origin position on the oscillatory coefficients in the equations of motion 

since the centre of gravity of a real ship does not always coincide with that of 

prototype model in the experiment. 

An `equilibrium axis' system translates in a constant speed and often referred to as 

inertial coordinate system. The motions are defined by reference to equilibrium axis, 

which does not perform the unsteady motion. When used in the ship dynamics, the 

origin is normally taken to lie at a known longitudinal position on the centreline of 

the ship, e. g. midship. Formulations of wave force and ship motion in the axis 

systems of same orientation can simplify description of given problem and make 

equilibrium axis system obvious choice of the development of seakeeping theory (see, 

for example, see Beck et al., 1989). 

Although the possession of two distinct approaches of describing ship motion 
introduces no difficulties of a fundamental nature, both techniques have some 

advantages and disadvantages. Moreover it is sometimes necessary to adapt 
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numerical or experimental results obtained using one of the two types of axes for use 

with the other. Bishop and Price (1981) compared the formulation of each axis 

system and developed their relationship. By formulating the dynamics of a ship 

undergoing a particular motion, firstly with reference to a body-fixed axis system and 

secondly with equilibrium axis system, the transformations between two axes 

systems are examined to adapt hydrodynamic data. 

Hamamoto and Kim (1993) proposed a new coordinate system, referred to as 

`Horizontal Body Axes' for describing the manoeuvring motion of a ship in waves. 

They used this new coordinate system to find equations of motion in a reasonable 

combination and use the formulas with respect to the hydrodynamic forces, which 

had been developed in the field of manoeuvrability, stability and seakeeping. Froude- 

Krylov forces and hydrodynamic forces are evaluated with respect to new coordinate 

system. Although theoretical comparisons were given between the new axis system 

and the existing systems, it did not present the effect of the new axis system in the 

numerical simulations. 

Hamamoto and Kim (1993) carried out the time domain simulations for turning and 

zig-zag trial of a ship in waves. They aimed to find equations of motion in a 

reasonable combination of the manoeuvring motions in horizontal plane, rolling 

motion in lateral plane and seakeeping motion in vertical plane using aforementioned 

new coordinate system. 
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3.3.3 Combined model 

Ship manoeuvrability can be significantly affected by the immediate environment 

such as wind, waves and current. Environment forces can cause reduced course- 

keeping stability or complete loss of the ability to maintain a desired course. They 

can also cause increased resistance to the forward motion of a ship, with consequent 

demand for additional power to achieve a given speed. Therefore it is important to 

simulate the behaviour of a ship manoeuvring in rough weather including the effect 

of wind, current and waves for the prediction of the ship's handling ability and for 

correcting trials for environmental conditions. Also in many other situations the 

effects of the environment conditions should be included for the assessment of 

manoeuvring performance, e. g. investigation of operability criteria, simulator studies 

and training in rough weather. 

Traditional manoeuvring theory, however, has been developed on the strong basis of 

calm water environment with some exceptional considerations of wind and current 

(Martin, 1980), and it is unable to explain many aspects arising from the interactions 

between encountered wave and ship hull during manoeuvring motion in a seaway. 

Therefore motion of a ship in extreme seas, and in particular, dangerous situations 

that it is likely to face have been among the major subjects of ship hydrodynamic 

field. The dynamic characteristics of phenomena and complex mathematical notions 

concerning the simulation of such motions attracted a large number of researchers 

and a great amount of experience and knowledge has been gained through 

experimental and theoretical studies. Many simulation models and experimental 

methods at the early studies are, however, limited in their applicability by constraints 

or assumptions concerning, for example, wave direction, small wave amplitude, 
limited degrees of freedom or harmonic motion. To overcome such restrictions 
imposed on the early studies, numerical models have been developed to incorporate 

conventional manoeuvring and seakeeping theories (de Kat & Paulling, 1989; Zafer 

& Vassalos, 2003). While particular attention was paid to the ship behaviour and its 

simulation in the prescribed following and quartering seas from the viewpoint of 
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operation and safety of a vessel, similar attempts have been made to describe more 

generalised manoeuvring motions in regular waves and random seas. 

Rydill (1959) extended linear equations for the unsteered motion of a ship in calm 

water to the unsteered motion in regular waves, using the Froude hypothesis to 

evaluate the wave excitation. The unsteered motion in regular waves is then 

investigated as a first step in the treatment of the steered motion and with a view to 

applying the results to the motion of models in manoeuvring tank. Finally the 

unsteered and steered motions in irregular long-crested waves simulating fairly 

severe sea conditions were investigated to establish the order of the mean angular 

deviation from course indicated by the linear theory and to demonstrate the efficacy 

of the control system with a filter in reducing the high frequency components of the 

rudder movement. However, it was concluded that the linear treatment did not 

adequately demonstrate the traditional difficulty of steering in following seas. 

McCreight (1986) developed a six-degree-of-freedom time domain model for 

predicting the motions of ship manoeuvring in waves and wind, including wave 

induced motions. He combined the full non-linear calm water manoeuvring equations 

of motions with wave effects derived from the linear ship motion theory. Through 

the use of system identification techniques, added mass and damping data were 

approximated by the use of extended state space. 

de Kat and Paulling (1989) developed a numerical model to determine the large 

amplitude motion of a steered vessel subjected to severe wave condition, including 

that may lead to capsizing. The various force components that occur in the large 

amplitude equations of motion were examined; potential force are based on an 

extension of linear theory, with the exception that integration of the incident wave 

pressure giving the Froude-Krylov force is performed over the total instantaneous 

wetted body surface, and first-order memory effects are considered. Additional non- 
linear viscous forces due to relative motion between body and fluid are modelled 

empirically. Good agreement was found between predicted motions and 
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experimental results, both for capsizing and non-capsizing conditions in following 

and quartering seas. 

Ottosson and Bystrom (1991) developed a numerical tool which can analyse the time 

domain manoeuvring performance of merchant and naval ships in calm water and in 

waves. The theoretical method adopted combined the manoeuvring and seakeeping 

mathematical models, using the superposition principle and interaction effects such 

as the influence of wave-generated water particle velocities on the manoeuvring 

hydrodynamic forces, or influence of rudder-induced forces in ship motions in waves. 

Furthermore, the fact that the wave-induced forces were simulated in time domain 

provided solid ground for good representation of the couplings between sway-roll- 

yaw, including the non-linear effects. However, the hydrodynamic forces 

representing the manoeuvring motions, i. e. low frequency forces, were calculated 

conventionally as on calm water and did not include the effects generated by the 

change of the instantaneous shape of the immersed hull in the wave. 

Westlake et al. (2000) investigated the motion responses of displacement mono-hulls 

in oblique regular waves with hydrodynamic coefficients obtained from conformal 

mapping scheme. To overcome the weakness arising from conventional assumption 

of strip theory, the relative position of the body induced by the incident wave are 

considered and coupled equations of motion in five-degree-of-freedom are employed. 

Subsequently, the wave forces on actual underwater part of the hull are calculated 

together with the geometric, hydrostatic and hydrodynamic properties on the time 

stepping scheme. Comparisons with the results of traditional strip method confirmed 

significant improvements through the coupling mechanism and mapping procedures. 

Bailey et al. (1998,2002) established a "unified mathematical model" which is an 

attempt to merge seakeeping theory with manoeuvring models in the form of a time 

simulation. They demonstrated that linear manoeuvring and seakeeping 

performances can be investigated using a six-degree-of-freedom mathematical model, 

which combines the knowledge of impulse response functions form linear 

seakeeping theory with traditional manoeuvring equations of motion. In their 
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previous study, the traditional manoeuvring derivative Y, was approximated as 

follows (Bailey et al., 1998) 

Y, (0» _ -Bzb(w) - UAzz(w) (3.2) 

where B2, (w) and 42(&) are frequency dependent sway-yaw damping and sway 

added mass coefficient, respectively. Convolution integral was used to model the 

first-order linear manoeuvring derivatives and Froude-Krylov forces were calculated 

at the instantaneous water surface around the hull using quadrilateral panel elements 

and summing contributions of the fluid actions on each panel. The theory was 

validated against seakeeping theory on a straight course in waves and against a calm 

water manoeuvring model for a turning circle and zig-zag manoeuvres with a 

Mariner type ship. 

Figure 3.12 illustrates the predicted path of a turning circle manoeuvre in waves of 

varying wavelength and of 1. Om amplitude with the orientation of ship presented at 

intervals of 50 seconds and roll motion excluded. As the ship proceeds around the 

circle, the encounter frequency changes continuously and this influences the position 

of the ship in the wave and the instantaneous wetted surface. Compared with the 

calm water results, the path is more elliptical in shape and is of greater diameter at 

large wavelength (A/ L =1.0 ), while turning diameters become similar to calm water 

result and drifted distances to the wave propagation are also reduced at smaller 

wavelengths (A/ L=0.5,0.25 ). 

Artyszuk (2003) formulated the wave forces to be included in the ship manoeuvring 

mathematical model. A current state-of-the-art in this subject is thoroughly 

investigated in the aspects of data availability and validity and the impact of first- 

order wave force was briefly characterised. A strong effect of the second-order force 

was proved through a simulation of turning test in regular wave. 
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Figure 3.12 Turing circle manoeuvre of Mariner ship (Bailey et al., 2002) 

Ueno et al. (2001) proposed calculation method of steady horizontal wave drift force 

due to short waves acting on ships in manoeuvring motion. The effects of 

manoeuvring motion on steady drift force are taken into consideration by treating the 

action of non-uniform flow around a ship upon deformed wave field. Later, Ueno et 

al. (2003) carried out a free running model test using a VLCC model ship in regular 

waves with various wave conditions. In 35° turning test in waves, drifting speed, 

drifting direction, average yaw rate, oblique angle and ship speed ratio during turning 

motion were obtained. First and second overshoot angles of zig-zag test in waves 

were measured, and stopping distance and final state heading angle were also shown 

as functions of wavelength and initial ship heading to waves. All measurement data 

were compared with those obtained from calm water tests of full loading and ballast 

conditions. Effects of wavelength and initial heading angle to waves together with 

the effect of loading condition upon manoeuvring motion were discussed based on 

these measured data. An example of theoretical calculation for manoeuvring motion 

of the model ship in wave was provided for further discussion. 
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HD 

(X=-90deg) 

Figure 3.13 Definitions of drifting distance and drifting direction in turning test 

(Ueno et al., 2003) 

Figure 3.13 illustrates the definitions of drifting distance HD and drifting direction 

p,, used in Ueno's study. Drifting distance HD is defined as distance between 

successive ship positions in which wave encounter angle X is equal to -90°. Drifting 

direction is defined as offset angle from wave propagating direction to moving 

direction of positions of a ship in which wave encounter angle x is equal to -90°. 

Figure 3.14 shows an example of 35° turning test in wave of 0.4 wavelength ratio. 

Wave drift forces are calculated using Ueno's method. Although large differences of 

drifting distance and direction are observed in the trajectory of the turning test, time 

histories of yaw rate, ship speed, oblique angle and heading angle explain qualitative 

similarity to the measured data. This comparison implies that improvement is 

required for practical application of Ueno's method to predict wave drift forces 

correctly. 

Zafer and Vassalos (2003) presented the formulation of the proposed new set of 

motion equations and the associated terms in the equations together with a solution 

procedure. A fully non-linear coupled six-degree-of-freedom numerical model was 
developed with frequency dependent coefficients incorporating memory effects in 

waves with a new axis system that allows straightforward combination between 

seakeeping and manoeuvring models whilst accounting for extreme motions. 
Comparisons of a fishing vessel and container ship were made to investigate the 

advantage of new axis system and memory effect with respect to heading angle. 
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Figure 3.14 Trajectory and time history of ship motion in 35° turning test in wave of 
0.4 wavelength ratio in full load condition (Ueno et al., 2003) 

Fang et at. (2005) developed a simplified six-degree-of-freedom mathematical model 

encompassing calm water manoeuvring and traditional seakeeping theories to 

simulate the ship turning circle test in regular waves. Horizontal body axes system 

was employed to present equations of manoeuvring motion in waves. All 

corresponding hydrodynamic forces and coefficients for seakeeping were assumed to 

be time varying and calculated by strip theory. For simplification, the added mass 

and damping coefficients were calculated based on the variation of encounter 

frequency in the constant draft of calm water. The non-linear mathematical model 

was validated for simulating the turning circle of a containership in sea trial 

conditions. 
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3.3.4 Database method 

In order to provide the manoeuvring quality of a new ship design, traditionally model 

experiments have been widely used for the measurement of force acting on either 

captive or free running model test. Unfortunately manoeuvring model experiments 

are confined to some prejudices, i. e. these are expensive and highly time-consuming. 

Actually a large effort is required when the identification of a complete set of all 

linear and non-linear coefficients in the equations of motion is demanded, for 

example an input of simulator for various operations. 

One alternative to the expensive model tests is the application of computational 

method, which widely known as Computational Fluid Dynamics (CFD). Although 

CFD method has been rapidly improved during the last decade some improvements 

are still required due to some inevitable and relatively high cost processes, e. g. grid 

generation. The computational times and capacity needed to obtain certain 

convergence are not small. 

The manoeuvring derivatives can be obtained by aforementioned model tests or CFD. 

At the initial design stage, however, a quick application will be demanded to assess 

the ship manoeuvring performance. From these points of view, more economically 

efficient alternative is to use empirical regression formulas, which have been 

presented by several researchers for the linear and non-linear manoeuvring 
derivatives used in the sway and yaw equations of motion. This empirical prediction 

method are simply applicable for various types of ship and very useful in accounting 
for the effect of principal dimension and the changes of propeller and rudder 

specifications in manoeuvring predictions even at the early design stage. 

A brief review about database method for the prediction of manoeuvring derivatives 

is as follows. Wagner-Smitt (1970,1971) examined values of the velocity derivatives 

measured by means of a PMM tests. In a similar study, Norrbin (1971) analysed a 

number of experimental measurements of the velocity derivatives. Inoue et al. (1981) 
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carried out rotating arm tests, which covered a wide range of hull forms at various 

load conditions including trim and attempted a correlation of the velocity derivatives 

with hull form parameters. Clarke et al. (1983) presented empirical formulas for the 

linear acceleration and velocity dependent manoeuvring derivatives from a basis of 
hull geometry. Kijima et al. (1990) suggested the approximate formulas for 

estimating the hydrodynamic forces acting on ship in any loading conditions as 
follow, 

Y; =Irk+1.4CBB/L 

Y, -(m'+mx)=-1.5CBB/L 
NN =k 
N; =-0.54k+k2 

(3.3) 

where k= 2d/L . Kijima (1990) also suggested corresponding expressions in a 

trimmed condition with the non-dimensional trim parameter, r'(= r/ dm) 
, where r is 

trim quantity and dm is mean draught. 

Almost all of the papers mentioned so far used regression analysis of measurement 

data obtained from captive model experiments and employed global hull parameters 

for set of predictor variables, e. g. CB, L/d, B/d, etc. and combination of these. In 

the 1990's, it was realised that the shape of aft body has a significant influence on the 

overall manoeuvring performance and yaw stability, particularly for the container 

vessels whose aft hull forms were drastically changed from the propulsion 

consideration.. To express characteristics of aft hull shape Mori (1995) proposed 

prediction formulas with additional four parameters: ea and ep for fullness of aft run, 

6a aft sections fullness metric, and K form factor. 

Fujino (1996) and Kose et al. (1996) showed for a few, mainly full-bodied ships that 

new formulas using the parameter 6a improve the accuracy of estimations. Kijima et 

al. (2000) revised the original expressions of Kijima et al. (1990) and again presented 

62 



approximate formulas particularly for aiming the difference of stem hull shape. The 

formulas of whole linear and non-linear coefficients of sway and yaw equations are 

obtained from database involved with 15 kinds of ships and their 48 loading 

conditions. 

Meanwhile the linear manoeuvring derivatives have become important because of 

the demand of the course stability prediction in the IMO Standards. Because the 

linear derivatives are strongly affected by the stem hull form particularly for full 

ships, many researches have been concentrated for better expression of them. 
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3.4 Concluding Remarks 

The behaviour of ships in a seaway has been an important subject as the motions and 
loads have a strong impact on the safety, economics and operational performance of 

a vessel. With the rapid changes of ship hull forms and increase of service speed, the 

prediction of performance even in the early design stage becomes more important. 

Moreover, as the importance of safety and reliability increases the need for accurate 

prediction of motion behaviour in a seaway becomes essential in the development of 

theoretical method. Although the developments of fully non-linear hydrodynamic 

methods have been attempted in the past, their practical application is still a difficult 

task. Linear prediction tools in combination with non-linear effects benefit from the 

viewpoint of easy assessment techniques, like the seakeeping assessment in the 

frequency domain. 

Current, state-of-the-art time domain numerical approaches for manoeuvring 

simulation in a seaway now employ non-linear six-degree-of-freedom mathematical 

models incorporating memory effects by adopting the impulse response function 

representation. The hydrodynamic coefficients and wave-induced force in the 

manoeuvring model can be obtained from the hydrodynamic data set in the 

seakeeping calculations. New axis systems might be introduced for the 

transformation of the coefficients obtained and conventional manoeuvring 
derivatives still play an important role to account for the non-linear viscous effect, 

which is neglected in potential theory. 

Deriving from this background, it is now required to have a coupled non-linear six- 
degree-of-freedom model with frequency dependent coefficients, incorporating 

memory effects in random waves. To secure the reliability of the hydrodynamic data 

set, successful development of three-dimensional panel method should be put in the 

first place. The mathematical model would also be enhanced by providing 

straightforward combination of seakeeping and manoeuvring theories accounting for 

general motions. An outline of the approach will follow in the next Chapter. 
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Chapter 4. Approach Adopted 

4.1 Background 

There are two conventional theories on the performance assessment of a ship 

travelling with forward speed in a seaway: seakeeping and manoeuvring. Although 

they have many similarities in the point that both theories describe behaviour of a 

ship, they have been studied and developed separately in the conventional researches. 

Seakeeping theory is mainly focused on the assessment of operation of a ship at a 

specific speed and heading in a sinusoidal regular or irregular wave. To solve the 

responses and forces of a ship numerically to the wave disturbance, it is general to 

use potential theory with the assumption of inviscid and irrotational fluid flow 

around body surface. The fluid actions are expressed in terms of hydrodynamic 

added mass and damping coefficients and wave excitations depending on wave 

frequency or encounter frequency. 

Conventional manoeuvring theory is, however, associated with mainly horizontal 

plane motions of a ship, i. e. sway and yaw, which are restricted in calm water and its 

coupling effects on the vertical plane motions, i. e. heave and pitch, are often 

neglected. Because of this presumed basis, the manoeuvring derivatives are generally 

found using extrapolation from the data obtained in PMM tests. Moreover 

manoeuvring theory is restricted to an assessment of the stability of a vessel from a 

prescribed reference motion, i. e. turning circle or zig-zag manoeuvres, without taking 

into account the dynamic conditions of a ship and influences of random wave. 

To evaluate the response of a ship in a wave, an integrated mathematical model is 

developed in the theoretical manner. This integrated model has its fundamental base 
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on both manoeuvring and seakeeping theory and thus it is required to convert 

hydrodynamic data sets in the one theory to those in the other theory. In the present 

project hydrodynamic coefficients are calculated in the numerical tools based on 

seakeeping theory and they are converted to impulse response functions for 

integrated mathematical model. 

" Following above understanding, the approach to develop an integrated 

mathematical model contains three major steps. 

" Development of numerical tools based on seakeeping theory 

" Development of integrated mathematical model for a general six-degree-of- 
freedom motion in a wave 

" Validation of established mathematical model 
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4.2 Development of Seakeeping Theory 

As seen from aforementioned background, it is important to develop reliable 

numerical tools to ensure the hydrodynamic coefficients and wave forces. The 

method adopted in this chapter is based on the formulation of the seakeeping 

problem in frequency domain, in order to find fluid forces exerted on a ship in a 

regular wave. 

The theoretical formulation starts with the derivation of the governing equations for 

the boundary value problem of potential flow and it leads to linearised radiation and 

diffraction problems. Solutions of two problems are obtained by solving integral 

equations over the mean wetted hull surfaces with distribution of a three-dimensional 

Green function. 

The Green function representing a translating pulsating source singularity with 

forward speed is distributed in either quadrilateral panel of constant strength or high- 

order panel with variable strength and calculated over the discretised body surface, 

which represents the hull form. Since the original form of Green function contains 

double integrals, which are very complicated and time-consuming to calculate, they 

are changed to single integrals in terms of exponential integrals. Throughout this 

approach the speed and frequency dependent hydrodynamic coefficients, wave forces 

and motion response amplitudes can be calculated. 

For validation of the numerical code, Wigley hull and Todd Series 60 model with 

block coefficient 0.7, which have been widely used in a hydrodynamic field, are 

chosen and the calculation results of hydrodynamic added mass, damping 

coefficients, wave exciting forces and motion responses are compared with the ones 

from published numerical results and experimental measurements. 

Further investigation to calculate second-order forces is carried out. The "near-field" 

method is adopted to find mean second-order forces by direct pressure integration 
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over mean wetted hull surface. It is possible to express second-order forces with 

first-order velocity potential and its derivatives without solving the second-order 

potential problem. Numerical calculations of barge and Todd Series 60 ship are 

presented and investigations of the influences of ship heading on the wave drift 

forces are demonstrated. 

Although a ship motion in a wave can be assumed to be dependent on its frequency 

and heading angle, it is difficult to calculate these frequency dependent 

hydrodynamic forces, except for Froude-Krylov force term, in the time domain 

calculation. Therefore the mathematical model to be developed for general ship 

motion in a seaway has its background partly in the seakeeping theory to enable the 

use of frequency dependent hydrodynamic data sets. Once the hydrodynamic data 

sets, e. g. added mass and damping coefficients, first-order wave exciting force and 

mean second-order force are estimated successfully in the present approach, these 

will be vital input for the integrated mathematical model to be formulated in the next 

approach. 
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4.3 Development of Integrated Manoeuvring Model 

As a second step of approach, integrated mathematical model for the motion of a ship 
in a seaway is formulated. Since the coordinate systems in both manoeuvring and 

seakeeping theories are different, adequate coordinate system should be chosen and 

axis transform between two theories should be included. Space-fixed and upright 

body-fixed coordinates systems are utilised to express the motion of a ship. 

Added mass and damping coefficients are compared with manoeuvring derivatives, 

which are also frequency dependent, using axis transformation to space-fixed 

coordinates and their relationship is identified. External forces in the equations of 

motion are composed of hull, wave excitation, propeller and rudder forces. Hull 

forces are expressed in terms of convolution integrals with impulse response function 

representation, where it is possible to describe arbitrary motion and consider memory 

effects of fluid action. Kernel functions can be calculated by inverse Fourier 

Transform using either added mass or damping coefficients. 

Numerical implementation to solve the equations of motion is developed and time 

domain simulation using a fourth-order Runge-Kutta method is performed. Impulse 

response function calculated from either added mass or damping coefficients are 

compared. Proposed mathematical model is first validated by comparison with 

experiment data performed in various test environments. Standard manoeuvring test 

like turning circle and zig-zag manoeuvres are performed and investigation of wave 

effects is made by comparing with the results obtained by traditional calm water 

manoeuvring test. 

69 



Chapter 5. Formulation of Three-Dimensional Potential 

Flow 

5.1 Preamble 

To predict the behaviour of a ships sailing at sea, this chapter begins with the 

description of three-dimensional flow around a rigid body, which forms the basis for 

the computation of a boundary value problem. The formulation of the given problem 

will be developed for a ship travelling with or without forward speed. The flow field 

will be described as a well-known potential flow with the assumptions of ideal fluid, 

e. g. inviscid and irrotational fluid, and then the velocity field can be expressed in 

terms of the gradient of an unknown velocity potential, which satisfies Laplace's 

equation. Since the velocity potential should also satisfy the exact boundary 

conditions prescribed in the fluid domain, this leads to a non-linear problem, in 

which an analytical solution is hardly available. Therefore, a theoretical formulation 

of the boundary value problem will be carried out by means of a simplification 

method of the complex non-linear problem. To obtain the velocity potential, further 

development of boundary integral equation adopting three-dimensional free surface 
Green function method will be followed. 
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5.2 Coordinate systems 

In order to describe flow field and motions of a ship translating with a constant 
forward speed, it is required to define three different coordinate systems as shown in 

Figure 5.1. All these are right-handed orthogonal coordinate systems and either fixed 

to a relevant point or moving with constant speed. 

The space-fixed coordinate system 0- X0Y0Z0 is fixed to the earth with the origin at 

any location. The X0 axis is normally set in the initial direction of ship's forward 

speed. The ZO axis is vertically upward and the XOYY plane is usually coincident 

with the undisturbed free surface. This space-fixed coordinate system can be also 

used to define incident wave and express free surface boundary condition. 

The steady moving system o- xyz translates on the calm water level with the same 

constant velocity of the ship in the positive Xo direction, and is referred to as inertial 

coordinate system. The x axis coincides with Xa axis and the z axis points 

vertically upward again. The xy plane is also aligned with the calm water level. 

Therefore transformation from space-fixed coordinate system 0- X0YJZ0 to moving 

coordinate system o- xyz is given by linear relation as 

Zo 
Z' Z 

yý 
.v 

y0 0 
ý x' 

o Ao 

Figure 5.1 Coordinate systems 
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x =(x, Y, Z) = (Xo -Ut, Yo, Zo) (5.1) 

The body-fixed coordinate system A- x'y'z' is fixed with ship with the assumption 

that hull form of the ship has port/starboard symmetry plane and the x'z' plane is 

plane of that symmetry. The x'y' plane is coincident with the ship's calm waterplane 

with positive x' axis pointing to bow, y' axis to port and z' axis upward. The origin 

is therefore located in the intersection line of centre plane and calm waterplane and 

often chosen amidships. 

The motions of the ship are determined by the orientation of body-fixed coordinate 

system A- x'y'z' relative to the inertial coordinate system o- xyz . 
Consequently 

these motions are described in the inertial coordinate system o- xyz and have six 

degrees of freedom. The six components with complex amplitude 4j are referred as 

surge, sway and heave for translation and roll, pitch and yaw for rotation respectively 

as shown in Figure 5.2. 

Z 

(surge) 

44 (roll) 

Figure 5.2 Definition of body motions in six degrees of freedom 
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5.3 Boundary Value Problem 

5.3.1 Formulation of the boundary value problem 

This section deals with the flow of ideal fluid, that is, fluids which are inviscid and 
incompressible. The results with this assumption are therefore limited to flow fields 

in which viscous effects of the fluid are negligible and compressibility of the fluid is 

unimportant. The mathematical simplification, which results from neglecting viscous 

and compressible effects, is great and consequently the topic of ideal fluid is 

mathematically the best understood. And any phenomena which are predicted by the 

governing equations will be due to the inertia of the fluid. 

Since the fluid is assumed to be ideal, the equation of mass conservation can be 

expressed without density terms due to incompressible property. The equation of 

momentum conservation for an inviscid fluid is reduced to the Euler equation. That 

is, the governing equations of the velocity and pressure fields for an ideal fluid are 

Continuity equation: 

Vu=0 (5.2) 

Euler equation: 

at +(u V)u =-1 vp +r (5.3) 
P 

where u is velocity vector, p is density of the fluid, p is pressure and f is body 

force vector. 

If the flow of an ideal fluid around a body originates in an irrotational flow, such as 

uniform flow, for example, the flow will remain irrotational even near the body. That 
is, the vorticity of the fluid is zero everywhere in the fluid. Then, since the vorticity 
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is the curl of velocity vector, the condition of irrotationality will be satisfied 

identically by choosing velocity vector as follows 

u=0(P (5.4) 

The scalar function 0 is called the velocity potential, and the flow fields which are 

represented in the fonn of equation (5.4) are frequently referred to as potential flow. 

In order to find the equation which the velocity potential satisfies, the expression 

given in equation (5.4) is substituted into the continuity equation given in equation 

(5.2) to give 

Laplace's equation: 

V2P=0 (5.5) 

The main advantage of introducing the concept of velocity potential from irrotational 

flow is that the problem is reduced to a scalar problem rather than a vector field 

problem. Once the velocity potential is solved from the governing equation of motion, 

the velocity field can be determined by taking the gradient of the velocity potential. 

Thus by solving equation (5.5) and utilising equation (5.4), the velocity field can be 

established without directly using equation of motion given in equation (5.2). 

Solving Laplace's equation for the velocity potential determines the velocity field 

only and to obtain pressure distribution across the fluid domain direct use of 

momentum equation should be made. Instead of using Euler equation given in 

equation (5.3), its integrated form which is referred to as Bernoulli equation, will be 

used. So the pressure field can be determined from following equation 

Bernoulli equation: 

P-Pa=-P( at+2VO. VO+gz) (5.6) 

From foregoing, it is evident that a simpler form of the governing equations exists for 

potential flow. 
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5.3.2 Boundary conditions 

Since Laplace's equation has many solutions due to its elliptic type, appropriate 
boundary conditions should be prescribed in the fluid domain to obtain exact solution 

of a given problem. For a free floating body in an infinite extent of the fluid, the 

boundaries enclosing the fluid consist of the free surface, the sea bottom, the control 

surface at far field and the wetted hull surface, see Figure 5.3. On each of these 

boundaries, a proper condition should be imposed to ensure a unique solution of the 

Laplace's equation. 

S., 

n 
Sao 

Se n 

SSB n 

Figure 5.3 Boundaries in the fluid domain 

5.3.2.1 Free surface boundary condition 

Any point of the free surface can be defined by its elevation and time in the space- 

fixed coordinate system 0- XOYOZ0 as 

Zo = ,; (Xo, Yo; t) (5.7) 

The kinematic and dynamic conditions must be satisfied on the free surface defined 

in equation (5.7). The kinematic boundary condition requires that the normal 

velocities of the fluid particle and of the free surface are equal and tangential velocity 
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is zero. The dynamic boundary condition specifies the pressure on the free surface to 

be equal to the atmospheric pressure, which can be obtained from Bernoulli equation. 
Thus the kinematic and dynamic boundary conditions can be expressed as 

Kinematic boundary condition: 

D 
(ý' - ZO) =0 on Zo =; (5.8) 

Dynamic boundary condition: 

(p, +1VO. VO+gZa=O on Zo=ý (5.9) 

where the substantial derivative D/ Dt =ä/ ät +u"V is defined in the space-fixed 

coordinate system and the pressure in the Bernoulli equation has been taken as zero 

without loss of generality. 

Since equation (5.9) hols on the free surface for all time, its substantial derivative can 
be set equal to zero. This gives an alternative boundary condition for the velocity 

potential. 

<P,, +g<PZo +200"D<P, +2V(P"0(VO. VO)=0 on Zo=, ' (5.10) 

Since this free surface boundary condition is highly non-linear due to its quadratic 
form and the free surface is not known a priori, it is quite difficult to constitute a 

practical tool to calculate exact solution. Therefore a simplified free surface 

boundary condition should be formulated by means of linearization in order to cancel 

higher-order terms. 
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5.3.2.2 Body boundary condition 

Since the boundary enclosing ship's hull surface is already known, only kinematic 

boundary condition is required. On the submerged portion of the ship's hull surface 

SB , the normal velocity is equal to that of the adjacent fluid. This boundary condition 

implies that the fluid does not penetrate the body boundary and that there are no gaps 

between the fluid and the body boundary. The appropriate body boundary condition 

can be expressed as follows 

(us - u) "n =0 on S. (5.11) 

where u, is the local velocity of the ship's wetted surface. The unit normal vector n 

is defined to point into the fluid domain as shown in Figure 5.3. 

5.3.2.3 Sea bottom condition 

Since the fluid disturbances decay exponentially with water depth, the infinite depth 

sea bottom condition requires simply that the velocity potential and its derivatives 

vanish, 

alp 
--ao =0 at z-> -oo (5.12) 

anaz 

5.3.2.4 Radiation condition 

Although the boundary conditions on all the physical boundaries, i. e. the free surface, 

body surface and sea bottom, have been prescribed, it is not sufficient enough to 

ensure a unique solution to the problems imposed to the unbounded fluid domain. 

Using a fictitious boundary surface S,, which extends from sea bottom to the free 
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surface at infinity, so-called radiation condition can be described to represent a 

physical phenomenon of energy vanishment at infinity. 

For example, the fluid motion produced by an oscillating body without forward 

speed are outgoing waves in all horizontal directions and vanishes at infinity. The 

generated wave must be a progressing wave moving away from the source of 

disturbance at infinity. For the case of Kelvin waves due to a body with a steady 

forward speed in calm water, the wave disturbance is generated downstream only. 

For an unsteady flow due to an oscillatory motion of the body moving with constant 

speed in waves, the radiation condition is much complicated. This is because the 

propagation of surface waves generated by the interaction of the body motions and 

incident wave depends on two parameters, i. e. the forward speed and the frequency 

of oscillation. The steady waves (Kelvin waves) due to the forward motion interact 

with the unsteady waves generated by the diffraction of the incident waves and the 

radiated waves, the resultant waves can propagate upstream at certain condition. 

Although the nature of the unsteady flows is complicated, it is assumed that the 

potential 0 vanished at infinity excluding incident wave potential. 

a e''r at r-+ oo (5.13) 
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5.4 Simplification of Non-linear Problem 

In the foregoing section, we have formulated the boundary value problem to solve 

the velocity potential, which satisfies Laplace equations as well as prescribed 

boundary conditions like the free surface boundary condition, sea bottom boundary 

condition, body boundary condition and radiation condition. The boundary value 

problem is exact as long as the fluid domain is assumed to be ideal flow. It is quite 

difficult, however, to solve this problem exactly because the free surface boundary 

condition is highly non-linear and the elevation of free surface ý is not known a 

priori. Moreover the body boundary condition should be satisfied on the exact wetted 

surface of the oscillating body, which interacts with the free surface and there are 

unresolved question regarding the form of radiation condition. Therefore, in order to 

solve the non-linear problem, further simplification should be made through 

linearisation of the problem. 

When the amplitude of the incident wave is assumed to be small compared to the 

wavelength and the slope of the wave is smaller than unity, it is possible to linearise 

the given equations. The assumption of small amplitude can be accepted for the 

linearization purpose to simplify complicated problems. Once the small amplitude of 

incident wave is assumed, all of the motion response of the body, diffraction wave 

and radiation wave, which are created by the incident wave, can be considered to be 

of small amplitude as well. Then the linearisation in the given problem means simply 

that all second order terms in the foregoing boundary conditions are assumed to be 

sufficiently small enough to be neglected and principles of superposition can be 

applied. 

Through linearisation the flow field may be divided by steady and unsteady flow due 

to forward and oscillatory motions of a body. Steady flow field is mainly due to the 

forward motion of the body in calm water whereas unsteady flow field is caused by 

incident waves, diffraction waves and radiation waves by the presence and the 
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motion of the body in the steady field. Thus velocity potential P can be rewritten in 

the form 

P(xo, t) = CP(x + Ut, y, Z, t) = j(x) + (x, t) (5.14) 

where CD and denote steady and unsteady velocity potential respectively. Each 

velocity potential must satisfy the Laplace's equation 

V2 (x)=o (5.15) 
v2 (X, t) =o 

5.4.1 Free surface boundary condition 

The free surface boundary condition given in equation (5.10) can be rewritten with 

linearised expression as 

�+ goz. =0 on Z�= 0 (5.16) 

It should be noted that this condition is imposed on the mean position of the free 

surface, since the difference between the value of P or its derivatives on Zo = ,' and 

Zo =0 is a second order quantity. 

On the other hand, time derivative of potential in the inertial coordinate system can 

be redefined with Lorentz transformation as follow 

0, _a <P(xo -ul,. Yo, zo, 0 _( 
fir 

-U±1<P(x,. Y, z, r) (5.17) 

Transforming the linear free surface boundary condition in equation (5.16) gives 
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0 -2UOrt+U2(k+go, =0 on z=0 (5.18) 

For a steady flow, the velocity potential 0 due to the steady forward motion of the 

body is 

O(x) = -Ux +0 (x) (5.19) 

where is the steady perturbation potential. The velocity field of the steady flow 

W relative to the steady translating frame o- xyz is 

W(x)=0(P =V(-Ux+0) (5.20) 

Substituting equation (5.19) into (5.18) and using (TD, =0 yield linear free surface 

boundary condition for steady flow as 

UZE, +gý =0 on z=0 (5.21) 

The steady free surface elevation can be obtained from dynamic free surface 
boundary condition 

ý 
-U 

a Y+ IV 
"0o +gz=0 on z=l, " (5.22) 

ax 2 

Rearranging equation (5.22) and substituting = CD + Ux yield 

I U, ) 2g 
on z=ý 

_---(W2 -UZ) 
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For unsteady flow, the free surface boundary condition can be obtained by 

substituting equation (5.14) into (5.10) and retaining only first order terms as follows 

Ott+g(VO, +W. )+2V "V + -V . V(V .V) 

+vCD"v(vCD"v )+2v(h"v(v "v )=o 

on z=, " (5.24) 

The unsteady free surface elevation can be calculated by similar process of steady 

case 

VUz) +Oc"0(bl on z=ý (5.25) 

In order to solve the difference (ý - g') , Taylor series expansion about steady 

elevation z= is applied to equation (5.25) as follows 

g[ 
+v v ýz_ý -9 (ý -ý)(v vom. ) (5.26) 

Rearranging above gives 

ý'-ý'=((P, +0(P"vo)/(g+VO. V ) on z=ý (5.27) 

A similar process can be carried out to expand free surface boundary condition given 

in equation (5.24) from unsteady position ;" to steady position ý. Applying Taylor 

series expansion to equation (5.24) about z gives first order free surface 

boundary condition as follows 
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+2VCD "výD, +vCD "v(vCD "výD)+ 2v v(vpý"vC)+gv 

-( +vC"v(h) 2äZ{v "v(vo-"v )}+g _ 1(g+vcp"v _)=o 

on z=ý' (5.28) 

Once the solution of steady flow problem is obtained, it makes equation (5.28) a 

linear free surface boundary condition for unsteady flow problem. Thus the unsteady 

velocity potential CD is governed by equation (5.28), which is association with steady 

velocity potential d. Exact solution of equation (5.28) is, however, still very 

difficult to be evaluated because of its complexity, so further simplification should be 

made. One reasonable method applicable to reduce above expression is to assuming 

the amplitude of perturbation potential in steady flow to be small. Then all the terms 

related to the steady perturbation potential become higher-order, and thus can be 

neglected in the free surface boundary condition. Consequently the steady velocity 

vector W can be assumed as 

W=VCD=(-U, 0,0) (5.29) 

Then equation (5.28) reduces to 

-2U x, +U2orr+g = =0 on z=0 (5.30) 

or 

C ýr-U-1 
Z0+g`ýZ=0 

) on z=0 (5.31) 

where linear free surface boundary condition given in equation (5.31) is in the same 

form with equation (5.18). 

5.4.2 Body boundary condition 
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Now we have simplified the free surface boundary condition in order to solve the 

boundary value problem more practically. Nevertheless, there exists another 

difficulty in solving given problem since the body boundary condition given in 

equation (5.11) should be satisfied on the oscillating surface SB exactly. Therefore, 

further simplification of the given problem will be focused on the linearisation of the 

body boundary condition. 

For the steady flow the body boundary condition on the steady surface SB is known 

as 

W"n=0 on SB (5.32) 

Before considering the unsteady case, we might consider the local oscillatory vector 

a at the body surface S. 
, which is defined by the fluctuation of the body-fixed 

coordinate system A- x'y'z' relative to the inertial coordinate system o- xyz as 

a=x -x' 

=S+nxx' 
(5.33) 

where x' is the position vector of body surface SB relative to body-fixed coordinate 

system A- x'y'z' .8=(,, ' 2' 3) and 12 =(4, ý5, ý6) are the unsteady translational 

and rotational displacement vectors respectively. 

Consequently local velocity vector uS can be expressed time derivative of local 

oscillatory vector u5 as follows 

us =d on S. (5.34) 

Now the body boundary condition given in equation (5.11) can be rewritten as 
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cn =ä"n-W"n on SB (5.35) 

Foregoing equation (5.35) can be further expanded from exact surface SB to mean 

wetted surface SB , since the order of second term in the right hand side is 

W"n= 0(1) and its difference of value on each boundary surface is O(a) . 
Following Newman (1978), the two first order contributions to W"n come from the 

rotation of the body-fixed coordinate system, and from the gradient of the steady 

flow field. Expanding up to first order gives 

[W"n]s,, =[{W-flxW+(a"V)W}"n]se on SB, SB (5.36) 

Substituting equation (5.36) into equation (5.35) and invoking steady boundary 

condition in equation (5.32), it follows that 

<P. = [ä + SL xW- (a " V) W] "n on SB , SB (5.37) 

An alternative expression to equation (5.37) can be derived from equations (5.33) by 

using following vector identity 

(W"0)a=(W"V)ö+[(W"V)fl]xx'+S2x[(W"0)x'] (5.38) 

The first two terms in the right hand side of equation (5.38) are zero because both 8 

and 12 are independent of the spatial coordinate. Then equation (5.38) reduces to 

(W"V)a=lxW 

Thus equation (5.37) can be rewritten as follows 

0n =[U+(W"V)a-(a"V)W]"n on Sß, SB 

(5.39) 

(5.40) 
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The first two terms in the right hand side of equation (5.40) mean the rate of change 

of local oscillatory displacement a in a reference frame moving with the steady flow. 

Equation (5.40) can be further simplified by use of following vector identity 

Vx(axW)=(W"V)a-(a"V)W+a(V. W)-W(V a) (5.41) 

Since W and a have zero divergence, i. e. V"a=0 and V"W=0, the last two 

terms on the right hand side of equation (5.41) are identical to zero. Hence, equation 
(5.40) can be rewritten as 

0� = [ä +Vx (a x W)] .n on SB , SB (5.42) 

The boundary condition given in equation (5.42) is originally derived by Timman 

and Newman (1962). Obviously the boundary condition given in either equation 

(5.40) or equation (5.42) contains the effects from interactions between steady and 

unsteady flow and these effects make the problem very complex. Once again the 

assumption used in the case of free surface boundary condition can be applied for 

further simplification. If the steady perturbation potential is assumed to be small 

enough to be negligible, equation (5.29) for the steady velocity vector can be adopted. 

Then equation (5.40) can be expressed as 

=I -Uax Ja "n 

=[ä\-U(Stxi)]"n 

(5.43) 

where the second term (S2 x i) can be interpreted as an angle of attack due to pitch 

and yaw. 

5.4.3 Decomposition of velocity potential 
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In the foregoing section, total potential 0 has been separated into steady potential 

due to straight forward motion and unsteady potential d due to oscillatory 

motion. The steady potential was further divided by uniform stream part and 

perturbation potential. Under the assumption of small amplitude of incident waves, 

the relevant free surface and body boundary conditions of the boundary value 

problem were linearised in simplified forms. 

The unsteady potential can be also decomposed by linear components due to the 

incident wave, scattered disturbance of incident wave and six-degree-of-freedom 

motions of the ship. The wave disturbance is called as diffraction wave and the wave 

generated by the ship motion is called as radiation wave. Since the incident wave will 

be assumed to be sinusoidal and harmonic with small amplitude, the relevant 

diffraction and radiation waves can be also regarded to be regular harmonic wave. 

Thus the unsteady velocity potential can be decomposed as 

6_ 
d(X, t)= 

[co 

+ 07 +ý 
jýJ emr 

1=l 

(5.44) 

where 0o is the incident wave potential, 0, the diffraction potential and Oj the 

radiation potential in the j-th mode of ship motion with a complex amplitude we 

denotes encounter frequency between oscillating ship moving with forward speed U 

and the incident wave. 

The incident wave potential, which satisfies Laplace equation (5.15), free surface 

boundary condition (5.30) and sea bottom boundary condition (5.12) for infinite 

depth, can be expressed as 

ýo = 
igýo 

exp[koz - iko(xcos ß-y sin ß)) (5.45) 
wo 
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where 4; o : amplitude of incident wave 

wo : frequency of incident wave 

ko : wave number (= 2; r /A) 

ß: angle between incident wave and ship's heading 

(p = 1800 for head sea and 6= 0° for following sea) 

The encounter frequency can be calculated as 

COe=1(00-UkoCOS (5.46) 

where wave number ko is given by dispersion relation for infinite depth as follows 

2 

k_ o 
S 

(5.47) 

The diffraction wave generated by the disturbance of incident wave as if the ship is 

restrained to the body-fixed coordinate system A- x'y'z'. In the diffraction problem, 

therefore, there is no motion produced by the incident wave, i. e. ýj =0 and a=0. 

Then the body boundary condition given in equation (5.40) for the diffraction 

problem is reduced to 

a 
(0o+0, )_0 on Sg (5.48) 

In the case of radiation problem, the wave is generated by the motion of the ship in 

the i-th mode without considering incident wave. The behaviour of ship motion is 

same as forced oscillation in the calm water and thus the incident wave and 
diffraction potential does not exist, i. e. qo =0 and 0, =0. The body boundary 

condition given in equation (5.40) for the radiation problem can be reduced to 
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a0' 
= iwen1 + Ums on SB (5.49) 

an 

where nj are defined with normal and position vector of hull surface 

(n,, n2, n3)=n 

(n4, n5, nb)=rxn 
(5.50) 

and mj are so-called m-terms, which are related with forward speed, and following 

Ogilvie and Tuck (1969), 

(m,, m2, m3)=m=-(n"V)W (5.51) 
(m4, m5, m6)=Wxn+rxm=-(n"V)(rxW) 

The body boundary condition given in equation (5.49) is associated with steady 

velocity vector and if the steady perturbation potential is assumed to be small, the 

m-terms can be further simplified with slender body approximation as follow 

MI =m2 =m3=m4=0 

ms = n3 

m6 = -n2 

(5.52) 

The body boundary condition given in equation (5.49) associated with m-terms in 

equation (5.52) can be directly compared with equation (5.43) since the simplified 

forms of m-terms act like aforementioned angle of attack. 
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5.5 Boundary Integral Method 

5.5.1 Formulation of boundary integral method 

To solve the boundary value problem the concept of velocity potential has been 

introduced with relevant boundary conditions in the previous section. Although the 

corresponding boundary conditions were linearised for practical applications, 

analytic solution for the boundary value problem is still available only for some 

simple bodies under restricted conditions. Therefore several methods have been 

studied by many researchers to find the solution for more general bodies. 

To explain fully the rapid changes of hull shape and corresponding properties of flow 

field near stern region, three-dimensional approach has much more advantages than 

two-dimensional strip method. As discussed in the literature review in Chapter 3, 

there are mainly two three-dimensional methods in the frequency domain to solve the 

boundary value problem: Green function method and Rankine source method. 

Advantages and disadvantages of each method are compared in Table 5.1. 

Table 5.1 Comparisons of Green function and Rankine source methods 

Green function Rankine source 

Calculation of function difficult easy 

Distribution of singularity body surface body and free surface 

Size of system of equations 
(number of panels) small large 

Computational cost high low 

Radiation condition automatically satisfied difficult to satisfy 

Application to 
non-linear problem 

partly based on 
perturbation expansion 

fully for non-linear free 
surface condition 

F Occurrence of 
irregular frequency often rarely 

90 



In this study, three-dimensional Green function method, which is also called as 

boundary integral method, is used for the solution of a linearised boundary value 

problem for unsteady flow induced by forward and oscillatory motions of a ship. The 

formulation of the boundary integral method is based on Green's second identity to 

calculate a velocity potential using a Green function on the boundary of the fluid 

domain. This results in a surface integral equation with a complex kernel function, 

which represents the Green function. The Green function satisfies Laplace's equation 

and all the boundary conditions except the body boundary condition on the body 

surface. The boundary integral method has the advantage that the governing equation 

in a given domain is recast into the solution of an integral equation which applies 

only to the boundary of the domain and incorporates the boundary conditions directly. 

In order to satisfy the linearised free surface condition of the boundary value problem, 

the Green function may be defined by a source submerged below the free surface. 
This source is represented by a translating source for a steady motion and a 

translating pulsating source for an unsteady motion of the ship. For a stationary but 

oscillating body, the Green function is simply represented by a pulsating source. 

Let us consider a Green function G(p, q), which is defined by 

G(p, q) =1+ H(p, q) 
r 

(5.53) 

where p and q denote field and source points respectively in the fluid domain. I/ r 

is a source singularity and H(p, q) is a wave function. The Green function given in 

equation (5.53) is the modified singularity, which satisfies the free surface condition, 

sea bottom boundary condition and radiation condition at infinity. A variety of the 

Green functions for the linear boundary value problem is well described 

systematically by Wehausen and Laiton (1960). 

In order to solve the given boundary value problem, two types of boundary integral 

equations can be introduced. The first can be derived by applying Green's theorem to 
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the unknown velocity potential and source potential. Then the unknown velocity 

potential can be represented by distribution of source and dipole over the body 

surface. Alternatively the velocity potential can be expressed by a source distribution 

over the body surface. The former is often referred to as `direct method' since the 

velocity potential can be obtained directly from the integral equation, while the latter 

as `indirect method', where unknown source strength is first solved and then used to 

obtain velocity potential. Both of these formulations lead to Fredholm integral 

equations with Neumann boundary condition prescribing the normal velocity of the 

fluid on the body surface. 

One of the major disadvantages of these methods is the existence of irregular 

frequency where the solutions of integral equations either do not exist or are not 

unique. The linear systems for the unknown potential or source strength on the body 

surface become ill-conditioned and the discrete approximation of the given integral 

equations leads to unacceptable solutions. These difficulties are consequences of the 

fact that Green function satisfies the free surface boundary condition both inside and 

outside of the body and the irregular frequency coincides with the eigen-frequency of 

the non-physical wave motion inside of the body. 

The width of affected frequency band may be reduced by increasing the number of 

panels although in practice it is not acceptable because of a substantial increase in the 

computational effort. In order to remove irregular frequency phenomenon, Ohmatsu 

(1975) suggested the addition of a rigid lid in the interior free surface. Its presence 

eliminates the resonance associated with the interior Dirichlet eigen-problem and 

therefore removes the effects of irregular frequency. Lee et al. (1996) employed 

modified boundary integral equations for both source-dipole distribution and source 

distribution methods for the removal of irregular frequency effects. It should be 

noted that the irregular frequency is related to the selection of the specific boundary 

integral equation and does not reflect an irregularity in the solution of the original 

boundary value problem. 
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In the case of the steady and unsteady problem with forward speed, the boundary 

integral equations based on the source distribution technique using an appropriate 

Green function on the boundary of the fluid domain read as 

4co(P) = c(9)G(P, 9)ds +UC, 
f6(R)G(P, 

9)n1dy (5.54) 
g Jt ,Bz 

where 6 denotes the source strength, LF the intersection line between the body 

surface and the free surface and n, the x-component of normal vector on the body 

surface. 

In order to solve equation (5.54), the unknown source strength o should be solved 

and therefore normal derivative of O(p) with respect to the field point p, which is 

lied on the mean wetted body surface SB , will be taken as follows. 

4; raO(n) =2; rv(P)+ JkBcT(9)aG(p, 
q)ds 

+-4, 
Z6(9)OG(P, 9)ýdy 

(5.55) 

gF On 

It should be noted that when field point p coincides with source point q, the 

singular part of the normal derivative of Green function is taken by first term of right 
hand side of equation (5.55). 

To solve the velocity potential, the representation of integral equation (5.54) and 
(5.55) can be used by means of the source distribution over the known body surface. 

With the body boundary condition and Green function the unknown source strength 

a can be calculated indirectly in equation (5.55) and thus this method is often 

referred as indirect method. Indirect method to evaluate the velocity potential is 

sometimes more useful than direct method, which calculates the velocity potential 

directly. Once the source strength is provided, it could be used to evaluate higher- 

order derivatives of the velocity potential for further calculation. 
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5.6 Green Function 

5.6.1 Formulation of Green function 

To solve the integral equation formulated in the previous section, it is required to 

calculate Green function, which satisfies the Laplace's equation, the linearised free 

surface boundary condition, the sea bottom condition and radiation condition. In the 

linearised unsteady forward motion problem the flow disturbance can be represented 

by a translating pulsating source submerged below the undisturbed free surface. 

For a fully three-dimensional problem of a ship moving in a seaway, the Green 

function is defined as a function of the variables such as the locations of field point 

p(x, y, z) and source point q(ý, 77,,; ) , forward speed U and encounter frequency CO . 
For infinite water depth, Wehausen and Laitone (1960) suggested Green function in 

the form 

G(P, 9)=r-r+2g 
{, ' 

,b 
+r fl, +J" Jc, 

}f(0k)dkde 
(5.56) 

where 

r= (x - ý)Z + (y -, 1)Z + (z - ý)z (5.57) 

r, _ (x -)Z + (Y - ý1)z + (z + 1")2 (5.58) 

if z<0.25 

cos-'(1/4r) if z >- 0.25 
(5.59) 

Z=wU (5.60) 
g 

kexp[k{(z+, ')-i(x-4)cos9}]cos{k(y-z )sin0} 
f(©'k)= 

gk-(w+Ukcos©)' 
(5.61) 
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Since the double integrals of Green function given in equation (5.56) have many 

difficulties for numerical calculations, an alternative formulation of Green function is 

required to remove the double integrals. So, the denominator of f(O, k) can be 

decomposed as 

gk - (w + Uk cos 9)Z = -U2 cost 6(k - ko, )(k - ko, ) 

ko, 
_ 

1-2rcosO: Fi 4rcosO-1 ßv2 
k02 2r2 cost 0g 

when 0<_ 0: 5 y (5.62) 

gk-(o+Ukcosü)2 =-U2cos2O(k-k, )(k-kz) 

k, 1-2rcosO 1-4rcosO wz 
kZ 2r2 cost 09 

when y: 5 0: 5 (5.63) 

gk - (co + Uk cosO)2 = -U2 cos2 O(k - k, )(k - k4 ) 

k3 1-2rcosO 1-4rcosO wZ 
k, 2r2 cost 0g 

when 
-< ©<_ n (5.64) 

There are two singular points in the range of 0: 5 ©_< y and they lie in the opposite 

quadrant in the complex plane, which means complex conjugate as shown in Figure 

5.4 (a). The integration paths of the singular points in the range of y <_ 0: 5 ;r are 

shown in Figure 5.4 (b) and (c). 

Meanwhile the integrand f (0, k) can be further rewritten as 
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Figure 5.4 Integration paths in the complex plane 

.f 
(O, k) =1 

k01 
- 

k02 

gi 4z cos O -1 k- ko, k- k02 

x exp [k{ (z + ý) - i(x - ý) cos O}]cos {k(y - ri) sin O} 

when 0<-0: 5 y (5.65) 

1 k, k2 

g 1-4rcos8 k-k, k-k2 

xexp[k{(z+i(x-4)cosO)]cos{k(y-i -? 7) sin 0) 

when y<- 0<- (5.66) 

I k3 k4 

g 1-4zcosO k-k3 k-k4 

xexp[k{(zi(x-4)cos©)cos{k(y-z )sin6} 

when < 0: 5; r (5.67) 

If we change the expression of cosine terms in f (©, k) using the relationship 

cos z=2 {e'z + e-'' } (5.68) 

Equations (5.65) to (5.67) can be rewritten as 
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f (O, k) =1 
ko, 

- 
k02 

2gi 4rcosO-1 k-k,,, k-k02 

xexpk[(z++i{-(x-4)cos©+(y-77)sinO}} 

+1 
koi k0, 

2gi 4rcos6-1 k-k�, k-k02 

xexpk[(z+d')+i{-(x- )cos©-(y-' )sin0)] 

when 0: 5 0: 5, v (5.69) 

f (O, k) =1 
k1 

_ 
k2 

2g 1-4rcos9 k-k, k-k2 

xexpk[(z+ý; )+i{-(x-ý)cos0+(y-' )sin0}] 

1 k, k2 
2gi 1-4rcos6 k-k, k-k2 

xexpk[(z+4')+i{-(x-4)cosO-(y-i7)sin0)] 

when y: 5 0: 5 (5.70) 

.f 
(B, k) =1 

k3 
_ 

k4 
2g 1-4zcos© k-k3 k-k, 

xexpk[(z+0 +i{-(x-ý)cosO+(y-ii)sinO}] 
1 k3 k4 

2g 1-4rcosO 

(k 

k -k3 k-k4 

xexpk[(z +,; )+i{-(x -4)cosO - (y - n)sin©}] 

when 2< 05 Yr (5.71) 

If we replace the terms in exponential function with new variables 

zl =(z+; )-i[(x-4)cos4-(y-rj)sin4] 
X2 =(z+ý')-i[(x- )cos©+(y-rq)sin©] 

(5.72) 

then Green function becomes 

97 



G(P, q)=1_1 
rr 

+1 ýr d6 f b 
exp(kX, ) koi 

_ 
k02 

dk 
7r i 4rcosO-1 k-ko, k-k0Z 

+1 d6 f exp(k 2) koi 
- 

k02 
dk 

IT r 4rcosO-1 k-ko, k-kot 

+1 de f exp(kX, ) k, 
_ 

k2 
dk 

1-4rcos9 k-k, k-k2 

+1 de f exp(kX2) k, 
- 

k2 
dk 

9 1-4rcos6 k-k, k-k2 

+1 dO f f exp(kX, ) k3 
_ 

k4 
dk 

l, ;r 1-4rcos9 k-k, k-k4 

+1 ý dO exp(kX2) k3 
_ 

k4 
dk 

ic '2 1- 4rcosO k- k3 k-k, (5.73 

or 

G(p, q) =111+ (lot + 102 ) 
r r, (5.74) 

+(I +'I2)-(I21 +122)+1133 +134)-(143 +Iý, ) 

where 

lo; =I dB f exp(k. 2'; ) koi 
_ 

k02 )dk 

Ir 
fi 

4rcoso-1 k-ko, k-k02 

I=1' dB f exp(kX j) k1 dk 
(5.75) 

1 4rcos9 k-k, 

X, =(z+i[(x-4)cosO-(y-i7)sin©] 
x2 =(z+ý)-i[(x-ý)cos0+(y-q)sin©] 

x3 = Z1 (5.76) 
x4 = x2 
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Direct evaluations of the Green function given in equations (5.73) or (5.74) are still 

cumbersome and time-consuming for numerical calculation because of the infinite 

double integrals with singularities in the integrand. Especially the location of 

singularity in the integrand is a complicated function of 0, which requires more 

detailed integration step length. To overcome this difficulty in the numerical 

integration, complex exponential integral with contour integral in the complex 

domain can be introduced. Complex exponential integral defined as 

E, (Z) =reu du for larg(Z)I < 7r 
u 

5.6.2 First terms in the integrals lo, and 02 

(5.77) 

The components of Green function lo, and I02 in equations (5.74) and (5.75) have 

two singular points in the denominator as 

'01 -'01 A- 
'0113 

1E dO f exp(k Z, ) kos k02 
dk 

;rt 4rcosO-1 k-ka, k-k02 
(5.78) 

'02 
-'02 A- 

lot 
e 

1 lde f exp(kX2) kos k02 
dk 

Tr r 4rcosO -1 k- ko, k- k02 

To avoid these singularities and express the integrals in equation (5.78) in terms of 

exponential integral, change of variables can be introduced in the complex plane as 

u=-x, (k-k) 

Then corresponding integration intervals can be changed as 

(5.79) 
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IM(u) 

koýXý 

a 

0a 

IA, + All + All, =0 

-Xý(oo - ko, 

_X cc 
"" Re(u) 

(a)Im(X, )? 0, OSa+ß<2 

Im(u) -X. (00 - k01) 

-X00 kaiXi ' 

Im(u) A, + All + All, =0 

kotz, 
Zi 

00 
-X, (ý-kR)(uff 

ko, 

(b)Im(XI)2: 0,2 <a+ß<ir 

Im(u) 
." -Xýao 

-XI ( -k0 ) 

x, 6 00 Re(u) °° Re(u) 
kof 

koiXi 
a 

k, 

A, + A� A, + All + All, = -2, ri 

(c) Im(, Z, ) < 0, a >_ ,ß (d) Im(, r, ) < 0, a <, O 

Figure 5.5 Integration path of the first term 'OIA in the integral Io. 

k=0 -> u=ka, x, 
k= oo -+ u= -X1(oo - kos ) (5.80) 

If the new variable in equation (5.79) is applied to the first term I of lo, , the 

integrand is changed as 

I1 dB exp(k. Z', ) kol 
A OIA 

ni 4-rcos©-1 k-ko, 
(5.81) 

-I 
('" ko, exp(kol., '1) dO [X, (-ko, ) e_u dtv 

/7 ýb i 4rcos0-1 oizi u 

The integration path should be chosen carefully considering the locations of integral 

ranges in the complex plane, which is described in Figure 5.5. If we take the contour 

integral of A, + A� + A,,,, integrals A,, and A,,, will become zero and exponential 
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integral function respectively. By applying Cauchy's integral theorem, integration 

value depends on whether or not the singular point is inside of the contour because 

singular point lies at u=0. 

x, c-ko, ) e` e` u, x, e" 
A, +A�+A,,, = -du+ -du+ du 

£lxl 

u x, (--ko, ) uu 
(5.82) 

= 
£x, (-o-ko, ) e-" 

-du - E1(k(, 
i. ii) o, x, u 

To describe the locations of variables in the complex plane, we need to introduce 

modified argument of ko, and x, as 

a=arctan {IIm(ko, )/Re(ko, )l}, 0<_a< 
2 (5.83) 

ý3=arctan{IIm(x, )/Re(x, )I}, 05f3< 

When Im(x, ) ?0 and 0: 5 a+ß<, the integration path will follow Figure 5.5 (a) 

and the contour integration becomes A, + All + All, =0 because this path does not 

contain any singular point. Similarly when Im(, X, ) >_ 0 and <_ a+ /ß < 7r described 

in Figure 5.5 (b), the contour integration also becomes A, + All + All, = 0. Therefore, 

when Im(x, ) >_ 0, the integral A, can be expressed as 

Xi (w-km) eu 

- du = EI (ko, x, ) when Im(x, ) >_ 0 (5.84) 
oi Au 

When Im(x, ) <0 and a >_ ß described in Figure 5.5 (c), the contour integration 

becomes A, + All + All, = 0. Thus integration Al can be expressed as 

x, (m kö, )e`du=E, (ko�xl) when Im(X, )<0, a>_ß (5.85) 
o1zi u 
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When Im(x, ) <0 and a<8 described in Figure 5.5 (d), since the integration path 

contains singular point, the contour integration becomes Al + All + All, = -2, ri. Thus 

integration A, can be expressed as 

Xi (, o-k01) e-u 

-du = E, (ka, x, ) - 2ni when Im(x, ) < 0, a<ß (5.86) 
oýXý u 

Similar method can be applied to the integral '02A and finally following results for 

the first terms '014 and I01e are obtained. 

1=Ir 
kol exp(ko, x1)Ep(ko, X1) dO oýý - .bi 4rcos0-1 

(5.87) 
, 02 

1r kos exp(koIz2)Ep(ko, %2) d© A jr .bi 4rcos0-1 

where 

El (koiz) - 27ri when Im(X1) < 0, a<ß 
E, (ko, x; ) _ (5.88) JE, (ko, x; ) otherwise 

Although the results in equation (5.88) are obtained only for Re(ko1) > 0, equation 

(5.88) is still valid regardless the sign of Re(k(,, ) because the contour integral does 

not include any singular point for Re(k,,, ) <_ 0. 

5.6.3 Second terms in the integrals lo, and 102 

The process to express second terms in log and '0' in terms of exponential integral is 

similar to the first term cases. Again to avoid the singularities and to express the 

second terms in equation (5.78) in terms of exponential integral, changes of variable 

and corresponding integration intervals are needed in the complex plane as follow 
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Im(u) JB, + B� + B,,, = 22ri 

kQX1 k02 

Re(u) 

-Xý (co - kos) j 

(a)Im(X1)>0, a<Q 

Im(u) j B, + B� + B,,, =0 

Aa 

0 °O Re(u) kozXi 
e 
-X, 00 

-X1(co - koz) 

(b)Im(X, )>0, a,; ý, g 

Im(u) Im(u) -X, 00 
k02 

-X, (°o - k°z) ' -X, (°p -k02) 

000 

za 

Cr, 
00 Re(u) °° Re(u) 

k02X, 
B, + B� + Buy =0X, 

k02X, 
B, + B, + Bur =0 

(c)Im(X, )_ 0,05a+ß<2d (d)Im(X, )S0, n 
25a+, 3<; r 

Figure 5.6 Integration path of the second term lo, B in the integral log 

u =-, Z, (k - k02) (5.89) 

k=0 -+ u=k02 1 
k= oo -> u= -x1(c - k02) (5.90) 

The second integral Io, B can be changed as 

I1 dB exp(kX1) k02 dk 
B-1 k-k 01B =i 4zcos o, (5.91) 

k(, z eXP(k, )2A) dB r -eu du 
nbi 4rcos0-1 2XI 11 

When Im(x, ) >0 and a<ß, the integration path will follow Figure 5.6 (a). The 

contour integration becomes B, + B, 1 + B,,, = 2, ri because the path contains singular 

point. 
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xi (o0-k02) e-u 

-du=EI(k02 1)+2, ri when Im(X, )>0, a<ß (5.92) 
02X1 u 

When Im(x, ) >0 and a >_ /3 , the integration path will be Figure 5.6 (b) and the 

contour integration becomes B, + B� + B,,, = 0. 

xI ('o-k02) e-" 

ZI 
du = E, (kO2Zl) when Im(x, ) > 0, a >_ ß (5.93) 

O2 u 

When Im(x, ) 50 described in Figure 5.6 (c) and (d), both of the contour integrations 

become B, + B� + B,,, = 0. 

Xf L (W-42) e=-" du = El (kazxº) when Im(x. ) <_ 0 (5.94) 

Similar method can be applied to the formulation of 102, , and following results for 

the second terms Ia, B and I,,, are obtained 

I=1 
k02 exp(ko2Xl)Eg(ko2z, ) 

d© 
oje i 4rcosO-1 

Ioz e--1f 
k02 exp(ko2X2)E, (ko2X2) 

dO 9i 4rcos0-1 

where 

(5.95) 

Ek 
E' (kD2x') + 2; ri when Im(xj) > 0, a<5.96 

q( ozX; )= tE1(k02z, 
) otherwise 

() 
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5.6.4 Final expression for Green function 

Substituting equations (5.87) and (5.95) into (5.78) gives final expressions for loj 

terms, which are formulated with single integrals. 

1°' 
1 k,,, exp(koi., '1) Er(koi;, 'i)d© 
7c i 4rcos0-1 
1 k02 exp(k°2x, ) E9(k02; r, )dB 
;ri 4z cos0 -1 

102 
1 ýkolexp(k01z2)E k dO 

i 4rcosO-1 P 
(01xZ) 

-1 
k02exp(kO2 2)EQ(kozrz)dO 

Ir i 4rcosO-1 

(5.97) 

(5.98) 

Corresponding exponential integrals are expressed as 

EI (ko, x; )-27ri 
(k01 x; ) = EP lEi(koix) 

when Im(xj) < 0, a< 

otherwise 
(5.99) 

El (k02ir; )+2, ri 
Eq(k02Xj)- 1E1(ko2zj) 

when Im(xj) > 0, a <, 6 

otherwise (5.100) 

where a and 8 denote modified arguments of k0, and Xj respectively as follow 

a= arctan { Im(ko, ) / Re(ko, )I} , 0<_ a 2 (5.101) 

, 
8=arctan{IIm(x, )/Re(z, )I}, 0<_ýß< 2 

In order to remove the singularities in the integrands of Green function, similar but 

much simpler method, which is applied for 1,,, terms, can be applied for 1,; terms in 
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equation (5.76). Further details of the method are described in Appendix A. 

Consequently the expressions for I terms can be written as 

I=k, exp(k, x, ) E(k)d8 
;r 1- 4rcos B r' ýxý 

112 -1k, 
exp(k1. 'z) E., (k, X2 )dO 

1-4rcose 

_1r 
k2 exp(k2x, ) 121 

1- 4zcosB 
Ere (k2Xl )d9 

, 22 =If lk exp(k2X2 Er2 (k2Z2)dO -4rcosO 

133 
- 

ki eX4z 
cos) 

Era (k3x3 )dO 

134 - 
klexý(k3X ©Er3(k3.1! 

a)dO t cos 

143 -1 
k4 exp(k4. Z'3) Er4(k4Z3)dO 

Ir 

F1. 

1-4rcose 

144 
-IF 

k4 exp(k4,2'4) Er4(k4x4)dO 
7c 1-4rcos6 

Corresponding exponential integrals are defined as 

E,. 
�, 

(kixj) = 
E1 (k, 1) 

JE, 

(kixj)-2711 

/. EI(k; x; )+2ýi Erm(kixj) 

1E1(kzi) 

when Im(, r1) >_ 0 

when Im(xj) <0 

for m =1,3,4 

when Im(Xj) >_ 0 

when Im(, ri) <0 

for m=2 

(5.102) 

(5.103) 

(5.104) 

(5.105) 

(5.106) 

(5.107) 

(5.108) 

(5.109) 

(5.110) 

(5.111) 

The integration intervals in the integrals 1� through 144 can be changed from 

[7r / 2,, r] to [0, z/ 2] using the transformation O'= , 'r -0, and then these integrals 

can be rewritten as (0' is exchanged to 0 again) 

106 



133 
1; k3 exp(k3x3) 

E, 
r3 

(k3x3 )d9 (5.112) 
7r 1+4rcosO 

I3a -1 
k3 exp(k3, ýa) Er3(k3X4)do (5.113) 

Ir 1+4rcos8 

I43 _I 
k4 exp(k4, '3 Er4(k4Z3)dO (5.114) 

2 1+4zcos0 

n 

144 =I 
k4 exp(kaza Era(k4%4)dO (5.115) 

rr 1+4rcosO 

where 

k3 
_ 

J1+2rcosOsJiTCOSOl>a)2 
(5.116) 

k, 2r2 cost 0g 

X, =(z+l')+i[(x- )cos0+(y-q)sin01=, 2z 

X4 = (z +, ') + i[(x - ý) cos 0- (y - r7) sin 0] = x, 
(5.117) 

Final forms of Green function in the current section are identical with the one 

presented in Wu and Eatock Taylor (1989). Further details of the Green function 

used in the present study such as, derivatives of Green function and integration 

technique for the singularities in the integration intervals are described in Appendix 

A. Special formulations of Green functions at zero speed and zero frequency are also 

presented in Appendix A. 
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5.6.5 Numerical calculation 

The Green function given in equation (5.74) which is associated with the expressions 

of IO j and I; ij is a function of the positions of field and source points, forward speed, 

forward speed and oscillating frequency. Especially, the characteristics of Green 

function are dependent upon the interactions between steady and unsteady motions of 

the translating pulsating source. The steady motion is generated by the constant 

forward speed of the translating source (Kelvin source) while unsteady motion is 

mainly due to the oscillation of the pulsating source. 

In order to illustrate the effects of the forward speed and oscillating frequency, the 

Green function due to a translating pulsating source with unit strength has been 

calculated with various combinations of forward speed and oscillating frequency. 

The unit strength source is located at the position (0,0, -1) and travelling in the 

positive x-axis with a constant speed. Field points are located on the free surface 
discretised with grid points, which is equally spaced in the x-y plane. The calculation 

results are illustrated with a three-dimensional view of real and imaginary parts of 

the potential calculated. The calculation values on the grid points in positive y 
direction are only displayed since the potential value is symmetric with respect to the 

x-z plane. The numerical calculation starts with two special cases of steady 

translating source with zero frequency and pulsating source with zero speed, and then 

extends to general case of translating pulsating source. 

The potential values on the free surface due to the unit strength source translating at 

zero frequency are demonstrated in Figure 5.7 and Figure 5.8. Since the imaginary 

part of the potential has very small value, only real part has been presented. When 

forward speed is smaller than 2.0 [m/s], local disturbances are dominant and wave- 
like pattern starts to appear at U=2.0 [m/s] as shown in Figure 5.7. For larger 

forward speed, it is clearly seen that these pattern are developed according to the 

forward speed as illustrated in Figure 5.8. 
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-80 

40 

20 0 
(a) U=1.8 [m/s] and (o = 0.0 [Hz] 

-80 

40 

20 0 

(b) U 19[n/s]and(0=0.0[1Iz] 

-80 

40 

20 0 

(c) U=2.0[m/sIand (o=0.0111z] 

Figure 5.7 Real part of a translating source potential travelling at forward speed U 

1.8,1.9 and 2.0 [m/s] 
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(a) U=3.0 [nVs] and co = 0.0 [Hz] 

-80 

40 

20 
(b) U=4.0 [ni/s] and (o = 0.0 [Hz] 

-80 

40 

20 
(c) U=6.0 1 ims] and co = 0.0 [Hz] 

Figure 5.8 Real part of a translating source potential travelling at forward speed U= 

3.0,4.0 and 6.0 1 m's] 
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The patterns of potential values due to the unit strength source oscillating at zero 
forward speed are demonstrated in Figure 5.9 and Figure 5.10, where both real and 
imaginary parts of the potential are illustrated. It can be seen that potential values at 

any frequency have symmetric patterns in the radial direction. As the frequency 

increases, the sinusoidal patterns start to spread outward from the source. There is no 

significant change in the overall patterns on free surface except that the amplitude of 

potential value starts to decrease as the oscillating frequency becomes higher. 

In order to illustrate the interaction effects of the forward speed and oscillating 
frequency, the Green function due to a translating pulsating source with unit strength 
has been illustrated in Figure 5.11 through Figure 5.14. The oscillating frequency and 
forward speed are correlated in the non-dimensional parameter r=WU/g. Figure 

5.11 shows the real and imaginary parts of the potential for t=0.2 and various 
forward speeds. For a smaller forward speed unsteady pattern in radial direction is 
dominant while the effects of steady pattern become dominant for larger forward 

speed. For r=0.4, the unsteady pattern does not appear in the upstream region and 
the patterns of steady and unsteady parts of Green function are mixed in the 
downstream region as shown in Figure 5.12. 

The interaction effects between oscillating frequency and forward speed changes 

significantly near the critical frequency r =I/ 4 as demonstrated in Figure 5.13 

through Figure 5.14. It can be seen that the disturbance on the free surface changes 
dramatically with a small adjustment of critical frequency. For r< 1/4, there exist 
the wave-like trains propagating both upstream and downstream as shown in Figure 
5.13, since the group velocity of trains due to the unsteady motion is greater than the 
forward speed of the steady motion. When either forward speed or oscillating 
frequency approaches zero, the behaviour of wave-like train tends to be that of 
translating source or pulsating source respectively. For r> 1/4, wave-like train can 
neither travel nor be fully developed upstream, all wave-like trains propagate 
downstream only. As the forward speed is further increased, the effects of forward 

speed become more dominant than that of oscillating frequency as shown in Figure 

5.14. 
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(a) (0 = 2.0 [Hz] and U-0.0 [m/s] 
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[Real part] [Imaginary part] 

(b) (0 = 2.5 [Hz] and U=0.0 [m/s] 

20 -20 

20 20 

[Real part] [Imaginary part] 

(c) co = 3.0 [Hz] and U=0.0 [m/s] 

Figure 5.9 Real and imaginary parts of a pulsating source potential oscillating at 

frequency m=2.0,2.5 and 3.0 [Hz] 
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(a) (U = 3.5 [Hz] and U-0.0 [m/s] 
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[Real part] [Imaginary part] 

(b) co = 4.0 [Hz] and U=0.0 [m/s] 

-20 -70 

20 20 

[Real part] [Imaginary part] 

(c) cw = 5.0 [Hz] and U=0.0 [m/s] 

Figure 5.10 Real and imaginary parts of a pulsating source potential oscillating at 

frequency mmm = 3.5,4.0 and 5.0 [Hi] 
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(a) T=0.2 : co = 1.962 [Hz] and U=1.0 [m/s] 
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(b) i=0.2 :w=0.981 [Hz] and U-2.0 [m/s] 

SU 40 

40 40 

40 0 

[Real part] [Imaginary part] 

(c) T=0.2 : (o = 0.654 [Hz] and U=3.0 [m/s] 

Figure 5.11 Real and imaginary parts of a translating pulsating source potential 

oscillating at i=0.2 
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(a) T=0.4 : co = 3.924 [Hz] and U=1.0 [m/s] 
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(b) i=0.4 : co = 1.962 [Hz] and U=2.0 [m/s] 

-40 -40 
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[Real part] [Imaginary part] 

(c) i=0.4 : (o 1.308 [Hz] and U=3.0 [m/s] 

Figure 5.12 Real and imaginary parts of a translating pulsating source potential 

oscillating at i=0.4 
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(a) T=0.24 : (o = 2.354 [Hz] and U=1.0 [m/s] 
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(b) t=0.24 : (0 = 1.177 [Hz] and U=2.0 [m/s] 
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Real part] I Imaginary part] 

(c) i=0.24 : (o = 0.785 [Hz] and U=3.0 [m/s] 

Figure 5.13 Real and imaginary parts of a translating pulsating source potential 

oscillating at T=0.24 (near critical frequency r< 1/4) 
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(a) i=0.26 : co = 2.551 [Hz] and U=1.0 [m/s] 

-40 

-40 

40 

40 

40 

40 

[Real part] [Imaginary part] 

(b) i=0.26 : co = 1.275 [Hz] and U=2.0 [m/s] 
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(c) r=0.26 : co = 0.850 [Hz] and U=3.0 [m/s] 

Figure 5.14 Real and imaginary parts of a translating pulsating source potential 

oscillating at T=0.26 (near critical frequency T> 1/4) 
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5.7 Concluding Remarks 

The theoretical formulation of the boundary value problems for the steady and 

unsteady motions has been developed. Because of the strong non-linearities of free 

surface and body boundary conditions, which make the problems very difficult to 

obtain analytic solution, simplifications through linearisation of the given boundary 

conditions problem have been performed to remove the difficulties imposed on these 

problems. Under the assumption of small amplitude motions, the velocity potential of 

unsteady flow field is further decomposed into diffraction and radiation potential 

problem. 

The development of boundary integral method is followed to solve the linearised 

problems of steady and unsteady motions. To obtain to solution of the boundary 

integral equation, singularities representing a translating pulsating source potential 

are distributed over mean wetted body surface and Green function which satisfies the 

linearised free surface boundary condition has been introduced. Green function has 

been formulated with a set of single integrals, which is expressed in terms of 

standard complex integrals. The patterns of disturbances on the free surface 

generated by a single source advancing under the free surface have been analysed to 

investigate the interaction effects of forward speed and encounter frequency near the 

critical frequency r =1 / 4. 

118 



Chapter 6. Numerical Implementation of Green Function 

Method 

6.1 Preamble 

To predict the hydrodynamic force and the resulting motion of a floating body in the 

free surface, interactions between the body and surrounding fluid can be analysed in 

the basis of the velocity potential of the flow field. Thus the formulation of the 

corresponding boundary value problem has been presented in the previous chapter 
for the steady and unsteady motions of a body advancing in waves. This chapter is to 

be devoted to an implementation of the boundary value problem to obtain a practical 

solution of the given problem. 

As shown in Chapter 5, the boundary integral equation has been formed as a surface 

integral over the mean wetted body surface and a line integral along the intersection 

between undisturbed free surface and body surface. Since the solution of boundary 

integral equation can be obtained by using free surface Green function method, 

distributions of the singularities over mean wetted hull surface require further 

idealisations of the body surface. According to the types of unknown source 

strengths, two different methods for the discretisation of the body surface will be 

presented. The application of the integral equation to each of the discretisation 

methods leads to a system of simultaneous linear equation whose solution can be 

obtained by standard numerical techniques. Details on the evaluation of Green 

function will be described to reduce the computational time and calculation of source 

term in Green function is also presented. 
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6.2 Discretisation of Body Surface 

An approach adopted to solve the integral equation consists of discretising the 

integral equation into a set of linear algebraic equations. This is accomplished in the 

discretisation of the mean wetted body surface on which the body boundary 

condition is satisfied. The body surface is approximated by a finite but large number 

of surface elements, whose characteristic dimensions are small compared with those 

of the body. Over each surface element, the source strength a can be assumed to be 

either constant or of higher-order. This reduces the problem of determining the 

continuous source strength a to that of determining a finite number of c r. 

In the conventional panel method, i. e. so-called Constant Panel Method, the source 

strength is normally taken to be constant. Since the source strength is constant over 

each element in the Constant Panel Method, the source distribution is discontinuous 

and the source strength jumps stepwise at the boundary of two elements. In order to 

accurately model the variation of the source strength or over the body surface, it is 

necessary to use relatively large number of elements for constant source strength a. 

The secret of a good approximation to the body surface lies in the choice of the 

surface elements. The simplest representation of flat is quadrilateral or triangular 

elements. Others are also possible using polynomial or spline functions. These types 

of representations are normally referred to as the higher-order boundary element 

method, in which the geometry of the surface element and the distribution of source 

strength are approximated by interpolation of the values at nodes that defined this 

element. The shape function for hull geometry and the interpolation function for 

source strength are usually taken to be polynomials in terms of the nodal coordinates. 

The order of the polynomial determines the order of the element. Since the shape 

functions are coupled with the complicated Green function, the evaluation of the 

influence coefficients becomes complicated. 
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6.2.1 Quadrilateral panels 

The flat panel representation was first used by Hess and Smith (1967) for the 

numerical solution of the potential flow around arbitrary three-dimensional bodies 

where the body surface was represented by quadrilateral elements. The surface of the 

wetted body is defined by means of the original four grid points, which do not in 

general lie in a plane and are grouped to form a quadrilateral element. 

Let us denote four original grid points as x, 9 x2 9 x3 and x4 in the anticlockwise 

sense as seen from the interior of fluid domain. The numbering order of these four 

points is considered to determine the direction of normal vector on the boundary 

surfaces. The inward normal vector N, which is positive when pointing into the fluid 

domain, is found form the cross product of the two diagonal vectors in the form 

N=(X3-Xi)x(X4-x2) ý6.1) 

and the unit normal vector n of the quadrilateral element can be found as 

INI 
(6.2) 

The control point of the quadrilateral panel xm whose coordinates are the average of 

the coordinates of the four grid points such that 

Xm = (XI + X2 + X3 + X4) 4 

In order to facilitate the mathematical manipulation on panel integration, we have to 

use a local coordinate system o- ýq4" whose origin is temporarily defined at the 

average point xn, as shown in Figure 6.1. The z-axis is parallel to the unit normal 

vector n. 
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Figure 6.1 A plane quadrilateral panel lying in the local coordinate system o- ýrp; 

The quality of representation for the body surface depends largely on the distribution 

of the elements over the surface. Since the control points are taken at the element 

centroids and constant source strength over each element is assumed, the aspect ratio 

of the quadrilateral should be as close to unity as possible to ensure that the mid- 

point rule is valid in the evaluation of the influence coefficient. The elements should 

be concentrated in regions where the body geometry changes rapidly or where the 

flow properties, particularly the velocities, are expected to vary rapidly. It should be 

remarked that if several small elements are in the vicinity of a large one, the 

influence of the large element would swamp the effect of small neighbours. 

Therefore the size of the elements should change gradually between regions of 

concentration and the regions where the distribution is sparse. Hess and Smith (1967) 

suggested that the characteristic dimensions of element should be no more that 50 per 

cent greater that those of adjacent elements. 

The accuracy of computation will increase as the number of elements increase, since 

smaller elements can model the curved shape better and a finer distribution of source 

will approximated the pressure gradient more accurately. Furthermore, the 

characteristic dimension of an element is also affected by the wavelength. For 

example, more elements are required for shorter waves than longer waves. 
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6.2.2 higher-order panels 

When solving the integral equation by numerical method, it is required to discretise 

the boundary surface into surface elements where actual calculation is carried out. 

Constant Panel Method adopted the assumption that the variables are always constant 

on each panel and geometry is represented by flat a quadrilateral panel. Because of 

the simplicity of Constant Panel Method, it has been widely used and given good 

results. 

In Higher-Order Panel Method the variables and geometry are described by means of 

a shape function. Therefore numerical algorithm becomes relatively complicated 

when compared with Constant Panel Method. It is possible to realise the curved 

surface of general body shape with smaller number of elements. Since the changes of 

variables are continuous, it is easy to calculate the gradient value of variables. The 

general properties of Constant Panel Method and Higher-Order Panel Method are 

shown in Table 6.1. 

Currently many researchers are using the higher-order boundary element method, 

which allows higher-order variations of not only the variables but also the geometry. 
From the accuracy point of view, the higher the order of elements becomes, the more 

accurate the obtained solution will be. In practice, however, compromising the order 

of approximation is necessary. Consequently, `bi-quadratic elements' are taken to 

describe the geometry as shown in Figure 6.2. 

Table 6.1 Comparisons of Constant Panel Method and Higher-Order Panel Method 

Constant Panel Method Higher-Order Panel Method 

Geometry Flat quadrilateral Curved surface 

Change of variable Discontinuous Continuous 

Algorithm Simple Complex 
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Figure 6.2 Bi-quadratic element and its parameter plane 

Any point on each element can be described with a shape function Ni, which is also 

called as a basis function. The number of node required is either eight or nine using 

slightly different shape function and can be chosen by preference since there is no 

big difference in the result. In this research nine-point shape function has been used 

to describe control points on each element as follows 

Using shape function Ni, the point on the element can be expressed as follows 

9 

x=EN; (u, v)x; 

where 

N, =4 u(u -1)v(v -1) 

Nz=-I(U'-1)v(v-1) 
2 

N3 =4 u(u + l)v(v -1) 

N4 _-2u(u-1)(v' -1) 

N5 =(l 2 -1)(v2 -1) 

N6 =-2u(u+1)(v' -I) 

N, = 
411(11 

-1)v(v+l) 

N8 =-2(u' -1)v(v+1) 

N9 = 
4u(u+1)v(v+1) 
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In equations (6.3) and (6.4) u and v are components of local coordinate system, 

which change between -1 and 1. Using the shape function any point in the element 

can be transformed to the local coordinate system as shown in Figure 6.2. 

The control points of each element normally coincide with the nodes used in 

describing the body surface and thus nine control points are required in one element, 

which could be duplicated in another element. The utilisation of nodes as control 

points makes the discretisation of integral equation very complicated. In this research, 

therefore, six points weight function M; was introduced for the distribution of source 

strength on each element in order to simplify the discretisation of integral equation 

and to reduce the number of control points, which has a direct relation with the total 

calculation time. For the present study six control points have been used in each 

element and the distribution of control points using weight function is described in 

Figure 6.3. 
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Figure 6.3 Distribution of control points using weight function 

Then the source strength and velocity potential can be expressed with the weight 

function as follow 

a(p) _ ýA1; (ti, v)c; (6.5) 
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6 

0(P) = EMj(u, v)Oj (6.6) 
i=l 

where 

M- 
u(u-u2)(y-v2) 

Al - 
u(u-u2)(v-vl) 

4 
ul (ul - u2)(v1 - v2) u1 (u1 - U2 )(v2 

- vl ) 

M2 = 

(u 
- u, )(u 

- u2)(v - v2) 
M5 

- 

(u 
- u1)(u - u2)(v - v, ) 

(6.7) 

ulu2(v, -v2) u, u, (v, 
- v, ) 

M- u(u-u, )(v-v2) 
3 Al - 

u(u-U, )(v-v, ) 
6 

u2(u2 - u, )(vl 
- v2) u, (u2 

- ul)(v2 - VI) 

6.3 Discretisation of Boundary Integral Equation 

As discussed in section 5.5, the linear boundary value problem to obtain the velocity 

potential can be reduced to the solution of an integral equation over the wetted 

surface of the body. It is, however, impossible to obtain an analytical solution of this 

integral equation not only because the surface is arbitrary but also the kernel function 

of the integral equation is very complicated. Therefore, a numerical calculation has 

to be adopted as an approximation of the given conditions. Due to the nature of the 

governing integral equation, the most obvious choice of numerical approximation 

includes discretisation of the wetted body surface into a finite number of surface 

elements. Within each of the elements, a local approximation of the unknown 

function, which is the source strength or, is assumed. The application of the integral 

equation to each of the surface elements leads to a system of simultaneous linear 

algebraic equations whose solution can be easily obtained b standard matrix solvers. 

In constructing the system of linear algebraic equations, various criteria can be used 

to approximate the variation of the source strength a within the element. The 

variation could be constant, linear, piecewise linear, quadratic, cubic or higher-order 

polynomial. There are several ways of discretising the boundary integral equation. 

The conventional and most convenient is the so-called Constant Panel Method, in 

which the boundary is approximated by flat quadrilateral panels and the variables are 
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assumed to be constant on each panel. The Higher-Order Panel Method is more 

accurate, in which the geometry is represented by flat panels just as in the Constant 

Panel Method, but variables are approximated using higher-order interpolations. 

o(p)= 
4; r 

6(9)G(P, 9)ds(9) + 
4z 

ých Q(9)G(P, 9)n, dy(9) (6.8) 
S 

ao(P) 
_ a(P)o(P)+ 

1 J. 
- c(9) 

aG(P, 9) ds(q) 
an(P) 4ý ý an(P) 

(6.9) z 

+ 
4nS 

cJ Q(9) 
aän(P)) 

ndy(q) 

where the normal derivatives 
aO(p) 

and 
aG(p, q) 

are with respect to the point p an(p) an(p) 

on the body surface due to the kinematic body boundary condition. a(p) equals to 

1/2 in the Constant Panel Method. Equation (6.9) is valid for the points on the body 

surface only due to the kinematic body boundary condition. 

6.3.1 Constant Panel Method 

In the Constant Panel Method, the change of source strength is assumed to be 

constant on each element of the body surface. Constant source strength 

approximation is utilised so that the unknown strength o can be taken out of the 

integral. The continuous formulation of the solution indicates that the integral 

equations are to be satisfied at all points on the mean wetted body surface. In order to 

obtain a discretised numerical solution, it is necessary to relax this requirement and 

apply the body boundary condition at only N control points. On each element, a 

control point is selected and a normal velocity boundary condition is to be satisfied. 

In selecting the control point, two cases might be considered and the difference was 

compared by Hess and Smith (1967). One control point is the centroid of the element 

and the other is the null point at which there is no self induced tangential velocity. 
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The difference between the null point and the centroid is not significant and it is not 

necessary as a more correct refinement, to use the null point instead of the centroid, 

which is located on the body surface. Then the discretised boundary integral equation 

by means of simple point collocation can be written as 

N 

aY' = 
1c; 

+IH;; 6; an ;2 j_l 
i =1,2,..., N (6.10) 

where 

aG(Pr, 9; ) H;; = 
1I 

dsj41r Jj 
as, 

+ an(pi) 
U2 aG(p;, 9; ) 

nd 
47g . idL, an(pi) ' y; (6.11) 

In) 

_ 
aq5(p, ) 

; an(pi) 

ai =Q(pi) 

(6.12) 

(6.13) 

In equations (6.10) and (6.11), N is the total number of elements on the wetted body 

surface, LlSj is the j-th surface element and ALS is j-th line segment in the 

intersection line LF . The calculation of the free surface line integral is required for 

those surface elements adjacent to the free surface. In the waterline integral term the 

source strength is assumed to be same with adjacent panel. The calculation of 

waterline integral might cause troublesome difficulties because of oscillating 

behaviour of Green function when the source point is located in the free surface. 

Further issues, related to the evaluation of Green function near free surface and 

treatment of waterline integral, are given in Appendix A. When i=j, that is, the 

field point p; coincides with the source point qj, the integration of the singular part 

of the Green function in equation (6.11) is excluded in the influence coefficient H; j , 

which is taken over by the term 1/2. 

Applying the body boundary conditions to the left hand side of equation (6.10) at 

each discretised element p; leads to a system of linear algebraic equation in terms of 

128 



the unknown source strength Q1 . Since the influence coefficient H; j is diagonally 

dominated matrix due to the self-induced panel, so the algebraic equation can be 

solved by standard matrix inversion solver like Gaussian elimination method. Once 

the distribution of source strength density over the wetted body surface is known, the 

velocity potential can be readily found from equation (6.8) in the following form, 

N 

_Eo Gj, i=1,2,..., N (6.14) 
J=l 

where 

7al., G(P,, 9, )n dye (6.15) G, - 4; r 
ff G(P,, 9, )ds, + 

U' 

S 

q5r = O(pi) (6.16) 

6.3.2 Higher-Order Panel Method 

a(p) is expressed as follows 

a(P) =1f 
aF(P, 9) ds(9) (6.17) 

4, r `A an(9) 

F(p, q) =1+1 (6.18) 
rr 

Substituting equations (6.17) and (6.18) into equation (6.9) gives 

ao(P) 
_1 

[O. 
P) 

aF(p, q) + Q(9) 
aG(P, 9) 

c! s -ý an(p) 4; r '" an(9) an(p) 
(6.19) 

+ 
U' JLh o(9)OG(P, 

ý1)n, 
cty 

4; rg än(p) 
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Then the discretised boundary integral equation by means of Higher-Order Panel 

Method can be expressed as 

Nn NE 6 

C; Q; j2,..., 
ND (6.20) 

e=I j_I 

where 

_1 rr aF'(P,, 9) dse (6.21) C, 
e_14ý 

fiese 
an(q) 

H, (P, ) =I 
Ir M 

äG(p,, 9) dsr + 
Uz 

All 
äG(P,, 9) 

n, dye (6.22) 
4; r 

JA ' an(p, ) 4; g 
JAI, 

an(P, ) 

ND is total number of control points, which represents the size of system of 

equation and NE is total number of elements used. ND =6x NE because 6 control 

points have been used as described in equations (6.5) and (6.6). 

Once discretised boundary integral equation is obtained, remaining procedure is very 

similar to that of the Constant Panel Method. The solution of linear algebraic 

equation (6.20) gives the source strength of each control point and the unknown 

velocity potential can be evaluated as follows 

NE 6 

0; _ EEGj(P; )a =1,2,..., ND (6.23) 
e=I j=I 

where 

A1, G(P,, q)n, dy. (6.24) G, (P, ) =I JJ. ýý, 
M, G(p,, q)ds, + 

U' 
g 
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6.4 Integration over Source Elements 

Once mean wetted body surface has been discretised into panel elements, it is 

necessary to evaluate the influence matrix for each panel element. The influence of j- 

th panel on i-th field point can be obtained as follow 

G(P, 9) = 
11 

-+ H(P, 9) 
r r, 

(6.25) 

The first term is source singularity, the second term is image source, which is the 

image of the source singularity over the free surface, and the last term is wave 

function. It should be noted that the normal derivatives of the Green function in 

above equation are obtained by 

aG = n, aG + n2 ac + n3 aG ---- an ax aY az 
(6.26) 

where n, , n2 and n3 are respectively the x, y and z-components of the unit normal 

vector at field point p. 

6.4.1 Source term 

To calculate source term over a given discretised quadrilateral panel, it is convenient 

to use method of Hess and Smith (1967). The influence of j-th panel on i-th field 

point can be obtained by transform all points to local coordinates system o- ýq; 

using a transformation matrix as shown in Figure 6.1. 

The centroid of panel (xm, tim, Zm) can be used as the origin of local coordinate 

system for convenience and the positive z-axis (upward in Figure 6.1) is in direction 

of the unit normal vector. The coordinate of the vertices of the quadrilateral panel 
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become (ýk, gk, 0) where k=1,2,3,4. Then the integration of a source term over a 

quadrilateral panel and its derivatives could be calculated as follows 

cp= ff, 
1 ds (6.27) 

where r= (x - ý)z +(Y-17Y +z' 

Hess and Smith (1967) have showed that the exact calculation and derivatives of the 

integral in equation (6.27) were obtained by analytic method as follow 

4 

(p 1: (RkQk+ IZI Jk )- IZI AO (6.28) 
k=1 

4 

ýPx =Z SkQk (6.29) 
k=1 

4 

CkQk (6.30) 
k=1 

4 

cp2 =sgn(z) Y, Jk -A© (6.31) 
k-I 

where Rk =(x-ýk)Sk -(Y-ilk)Ck 

Qk = In 
rk +Yk+l +dk 

rk +rk+l -dk 

Jk = sgn(Rk) tan 
z Skzý 

-tan-' 
z Sk 

Rk rk+l Rk rk 

Ck = 
ýk+ý ýk 

Sk _'%k+`l 
'%k (6.32) 

kk 

dk = (ýk+1 
-ýk)' +(7k+1 71k)2 

/k = (x 
_k 

)2 + (y _ Ilk )2 + z2 

Still = (Sk 
- x)Ck + (17k - v)Sk 
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Sk2) = (ýk+l 
- X)Ck + (ik+l Y)Sk 

2; r when Rk's are all positive 
dB = 0 otherwise 

It should be noted that the variables used in equations (6.28) through (6.32) with the 

subscript k=5 are identical to those with k =1 . It may be verified from these 

equations that there is no difficulty in calculating the effects of "self-induced 

element", which has the control point (field point) at its own element. Qk becomes 

singular if the field point is on the side of the quadrilateral. This can be avoided since 

field point is located at the centroid of the element. For z=0, all Jk 's vanish and 

c2 08. 

Hess and Smith (1967) also gave an approximated solution by means of a multiple 

expansion when the field point is sufficiently far from the source element. No more 

approximation is, however, required due to the rapid improvement of computer 

technology in recent years and therefore exact solution given in equations (6.28) 

through (6.32) will be used in this research. 

Hess and Smith (1967) suggested that exact solution or multiple expansion be used 

under a criteria. If a ratio roIt<4.0, where ro is the distance between the field point 

and the centroid of the quadrilateral and t is the maximum dimension of the 

quadrilateral, the exact solution can be used for the integration of source term. If 

ro It > 4, a point-source formula can be applied as follow 

rp -I As (6.33) 
r 

pip - -r- 3r° 
As (6.34) 

r 
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where As is the area of the quadrilateral. The expression given in equations (6.33) 

and (6.34) are valid asymptotically and very useful since there is no transformation 

to the local coordinate system. 

The integration of image source term 1/r in equation (6.25) can be handled in the 

same way as those if the source term 11r 
. 

The potential and its derivates are 

calculated on the image panels above the undisturbed free surface and no difficulty is 

encountered during the calculations. It should be noted that the source and image 

source term on the free surface cancel each other when the field point or source point 

are located in the undisturbed free surface. There is, therefore, no contribution to the 

Green function in the free surface line integral in equations (6.8) and (6.9). 

6.5 Concluding Remarks 

The solution of the boundary value problem presented in Chapter 5 can be obtained 

by solving the boundary integral equation, which is known as Green function method. 

For the implementation of the Green function method, the discretisation of the 

boundary integral equation and has been introduced to obtain numerical solution of 

the unsteady motion problem. Corresponding body surface is also required to be 

discretised in the so-called panel method and two discretisation methods have been 

presented: Constant Panel Method and Higher-Order Panel Method; in the former, 

the unknown source strength is assumed to be constant in the flat quadrilateral panel. 

In the latter higher-order polynomials are used in the descriptions of the surface 

elements and source strengths in each element are no longer to be assumed as 

constant. Then the integral equations in each method have been approximated by a 

set of linear algebraic equations with unknown variables of the source strengths and 

numerical applications for the mathematical and realistic hull shapes will be 

demonstrated in the following Chapter. 
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Chapter 7. Hydrodynamic Forces and Ship Motions 

7.1 Preamble 

In order to solve ship motion in waves, the problem of dynamic equilibrium of forces 

and moments in an elastic ship body should be solved in the first place. Since the 

main focus of the present study is not structural or vibrational problems of a ship in 

waves, the ship body is assumed to be rigid all the time. The rigid body assumption 

is then used to predict the resulting motions of the body in waves. 

The external forces and moments acting on the body surface can be formulated from 

the potential theory with the assumption of inviscid, incompressible and irrotational 

fluid flow as discussed in the Chapter 5. The forces and moments are further 

obtained from the integration of the pressure field, which can be calculated from 

Bernoulli's equation in terms of the velocity potential and its derivatives. 

The motion of a ship is solved by the equations of motion formulated with the 

external forces and moments through the potential theory. In spite of the assumptions 

used to formulate the potential theory such as inviscid flow field, the problem should 

be reduced by the linearisation to obtain practical solution. In the process of 

linearisation perturbation expansion was adopted to allow linear superposition 

principles, where the complex ship responses in irregular waves can be considered as 

a sum of those in a regular wave. Consequently the motion problem is reduced to the 

study of linear harmonic oscillation in a regular sinusoidal wave. Since the steady 

flow has an effect on the unsteady flow field, the assumption of small amplitude is 

also included as discussed in the Chapter 5. 
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The hydrodynamic forces and moments can be separated into two components, i. e. 

oscillatory and non-oscillatory. The oscillatory component is proportional to the 

wave amplitude and first-order of the hydrodynamic forces and moments. The first- 

order hydrodynamic forces and moments produce the first-order motion of a ship. 

The non-oscillatory component is of second-order with respect to the wave amplitude 

and is expressed by non-zero time average value while first-order component 

exhibits zero mean value over a period. 

By separating the hydrodynamic forces and moments up to second-order terms, the 

first-order and second-order hydrodynamic forces and moment acting on a ship with 

or without forward speed will be formulated in this chapter. On the basis of 

foregoing principles, numerical calculation is then carried out to predict the 

hydrodynamic forces and moments acting on a barge, Wigley and Todd Series 60 

ship. Calculation results of each model are presented either with or without forward 

speed and the effects of heading and forward speed on the first- and second-order 

hydrodynamic forces and moments are investigated through the comparisons with 

experimental data. 
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7.2 First-Order Wave Forces 

The forces and moments acting on a ship in a seaway can be evaluated with the 

pressure field of the fluid. The fluid pressure p acting on the instantaneous wetted 

body surface SB is given by Bernoulli's equation as follows 

p=-p (, +V(p"V(p-Uz+gz on SB (7.1) 

Since the exact body surface SB is displaced and rotated with respect to the mean 

wetted body surface SB , the fluid pressure p on SB can be expanded by means of 

Taylor series as follow 

PIS. = p+ op+O(c')IsR on Se, SB (7.2) 

The total velocity potential can be separated as steady and unsteady terms, i. e. 
0=+d, as discussed in the Chapter 5. Substituting equation (7.1) into (7.2) and 

neglecting second-order terms gives 

p=- 
1 

w. W_U')-p(gz+ga"k)-p( 
, +w. v&) 2P( 

on S8,8 (7.3) 

The first term on the right hand side of equation (7.3) is the steady pressure on the 

body due to the steady flow and the second term is hydrostatic pressure. The last 

term comes from the action of incident wave and becomes the first-order 

hydrodynamic pressure acting on the oscillating body. It is evident that the 

interaction between steady and unsteady flow appears in the first-order 

hydrodynamic pressure. 
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The hydrodynamic forces and moments are obtained by integrating the pressure 

given in equation (7.3) over a mean wetted body surface SB as follow 

pn3ds 
sg 

=1p 
jj (W "W -UZ)n. ds+ pg j 

zn. ds (7.4) 
2 Sß 

+p fLq (ga"k)njds+p jf +W"V(b)njds Sp 

The first term on the right hand side of equation (7.4) is associated with wave- 

making drag and dynamic lift. The second term is the buoyancy, which is cancelled 

by the weight of the body. The remaining terms are first-order hydrostatic restoring 

and hydrodynamic force respectively. First two terms are time independent and thus 

will be neglected in the calculation of unsteady force. Therefore the first-order 

hydrodynamic force can be expressed as follows 

F"= pj Aga k)njds +pf (cp, +WO )i: jds J rSA (7.5) 

The fist order hydrodynamic force can be divided linearly in the similar way that the 

unsteady velocity potential was decomposed into incident wave, diffraction and 

radiation potential as 

'=FEHS+FEX+FAR (7.6) 

where F"S =pfj (ga " k)n. ds (7.7) 
s 

F EX =p JJs (iwe +W 0)(O0 + 07)e "'''nds (7.8) 

6 

(iWe + \Y " V)Oke", ýn, ds (7.9) F; R = Pý ff 
k=I 

Equations (7.7), (7.8) and (7.9) are the expressions for the hydrostatic restoring force, 

wave exciting force and radiation force in the j-th direction respectively. 
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The second term in equation (7.9), which is proportional to the steady velocity field 

W, can be transformed by means of a Stoke's theorem (Ogilvie and Tuck, 1969) as 
follows 

JLA (\V - V)Oknjds = -U JJ okmjds (7.10) 

which is more amenable to evaluate since the steady and unsteady terms are 

uncoupled by adopting small amplitude assumption. 

7.2.1 Hydrostatic forces 

The hydrostatic forces are defined as the fluid forces to restore the body to its static 

equilibrium state when the body is displaced freely form the rest position. According 

to Newman (1977) the surface integral in equation (7.7) can be transformed to the 

volume integral by using Gauss's theorem and finally expressed as follows 

FHS =0 
F2HS =0 
F'3HS = (PSS - mg) - PgS 3- PgS01 4+ PSSiA 

HS Fa = (PSVYB - PSYG) - Pgsoiý3 
-[Pg*(S'02/V +zß) - mgz]4 (7.11) 

+PgsI A+ (Pg'IOLXn - mgx(, )56 

F'sHS = -(PS xe - n: gx) + PgS, 0ý3 + PgS11ýa 

-[P9V (S, 
0 

/+ z8) - mgZG IF5 + (PgV1'e + 11190"96 

F, "s =0 6 

where (xc, YG, zc) and (xß, yB, zß) denote the centre of buoyancy and gravity 

respectively. S;; is defined as 
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S, ij = JJxy'dxdy (7.12) 
z-0 

where the integral is over the plane z=0, interior to the ship hull. When i=j=0, 

the integral becomes the area of waterplane. 

Because the hydrostatic forces are always related with gravitational forces, these two 

components are combined as a net hydrostatic forces in equation (7.11). The 

horizontal components of the hydrostatic force and the vertical component of the 

moment are identically zero. Equation (7.11) consists of terms of zero and first-order 

hydrostatic forces and moments with the body motion ýk. 

If the body is in equilibrium state the zero order term should vanish. For the 

equilibrium of the vertical force, the mass of the body must equal to the displacement, 

i. e. m= p*. With this equality, equilibrium of the zero order moments in equation 

(7.11) requires that centre of gravity and centre of buoyancy must lie in the same 

vertical line such that XG = xB and yc = ya . 

Furthermore, when a floating body is subject to horizontal moment, the centre of 

floatation (xF, yF, O) can be related to the properties in equation (7.12), where S, 
o 

and So, are first moments of the waterplane area about y and x axis respectively. 

Most ship has a longitudinal plane of symmetry of both hull shape and thus integrals 

So, and S� simply become zero. 

(xF, YF, O) =(S, o/SOO, S0I/SOO, O) 

=(S, 0/Soo, 0,0) 
(7.13) 

In order to simplify the notation, individual components of hydrostatic force in 

equation (7.11) can be written in a more general matrix notation as 
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6 

FHS = -JA_], Cj, kýk (7.14) 
k =l 

where Cjk is the hydrostatic restoring coefficient such that 

C�=pgSOO 
C35 =C53 =-pgS0 "XF 

(7.15) 
C44 = Pg " GM r 
C55 = PSS " GM L 

The terms in C44 and C55 are the vertical distances between the metacentre and 

centre of gravity. These differences are well known as metacentric heights in 

transverse and longitudinal directions respectively. 

7.2.2 Wave exciting forces 

The wave exciting forces acting on the body in the unsteady problem can be obtained 
by the direct integration of the pressure associated with incident wave and diffraction 

potential as given in equation (7.8) and can be further decomposed as follows 

FjEX = FFFK + FF' (7.16) 

where FRF" =p 
if (iwe + ýV " V)qS0e'°'"'n, ds (7.17) 

,H 

FD =p$ ('me +W" V)O7e ̀, 'n1ds (7.18) 
4 

FFK is called Froude-Krylov force resulting from the presence of the vessel in an 

undisturbed flow. The integrand of the Froude-Krylov force involves the incident 

potential only, and thus it corresponds to the force experienced by the ship, which the 

incident waves pass through as if the hull is transparent to the waves. The accuracy 
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of the incident wave force increases as the wavelength relative to the ship's 

characteristic length becomes longer. Therefore one would anticipate that Froude- 

Krylov force is relatively more significant in the long wave regime or a thin body in 

head waves where little wave scattering occurs. It is easy to calculate equation (7.17) 

since the expression for incident wave potential is already given in Chapter 5 and it 

can be further simplified with the result (irwe +W" V)O0 = iwoOo as follows 

F. 
ýFK = pk L0 JJ Ooe1° 'njds 

sB 
(7.19) 

Fi' is called diffraction force due to the scattered wave of incident wave in the 

presence of the ship. Diffraction potential can be solved such that the combination 

with incident wave potential and it is possible to calculate diffraction force 

mathematically without solving diffraction potential directly. Since diffraction and 

radiation potentials satisfies all the boundary conditions except for body boundary 

conditions, by applying Green's theorem to these potentials, we have 

II «. a' -0 
a0')ds=0 

L' an ' all (7.20) 

Together with the boundary condition given in equation (5.48), the diffraction force 

can be rewritten as follows 

FJ' =P 
ff 

an e" , ds (7.21) 07 

This process is referred as Haskind relations using Green's theorem and body 

boundary condition to relate diffraction potential to incident wave and radiation 

potential at zero forward speed. Newman (1962) has derived more generalised 

Haskind relations for a body with a constant forward speed, where radiation potential 

has to be determined within reverse flow radiation problem, taking an opposite sign 

into account for the constant forward speed. 

142 



7.2.3 Radiation forces 

The radiation forces result from the radiation of waves away from the ship, which is 

forced to oscillate in calm water. Expression given in equation (7.9) can be 

represented as hydrodynamic force in the j-th direction due to the k-th mode of 

motion as follows 

F'; k =pkflA (jiVe +W" V)Oke", 'njds (7.22) 

The radiation force is often expressed with two coefficients which are proportional to 

the acceleration and velocity of the body as follow 

FW = Ajkýk + Bjkýk 

-a 
Ajk +'CoeBjký 

ke 
mir 

(7.23) 

The real quantities Ajk and Bjk are referred as added mass and damping coefficients 

in the j-th direction due to the k-th mode of motion respectively. These names are 

chosen because of their physical contribution in the equations of motion. Added mass 

which is in phase with the acceleration acts as apparent mass, adding to the mass of 

the ship. Similarly damping coefficient is in phase with the velocity and obtained 

from imaginary part of radiation force. It should be noted that both added mass and 

damping coefficients are functions of forward speed and encounter frequency. 

For convenience the expression for added mass and damping coefficients can be 

rewritten as 

Tik =p if (iai. +W" V)Okn, ds (7.24) 

Substituting equation (7.10) into (7.24) gives 
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Tk =Pf f (iwenj -Ums )Okds (7.25) 
5A 

where m-terms are defined in equations (5.51) and (5.52). 

Then added mass and damping coefficients can be evaluated from 

T1ýk =a 
Alk 

-ia) 
Bk (7.26) 

AIk - 
Re(Tjk) 

and Bak = -'M(Tik) (7.27) 
WL2 

For a body with one longitudinal plane of symmetry, these two coefficients have a 

properties such that 

Alk = Bak =O for j =1,3,5 and k=2,4,6 
Alk=Bak=0 forj=2,4,6andk=1,3,5 

(7.28) 

For zero speed case, m-terms nil vanish with forward speed and the coefficients 

satisfies the symmetry relationship as 

Alk = Ak, 
and Bak = B, for U=0 (7.29) 
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7.3 Equations of Motion 

If the ship has an axis of symmetric in xz-plane, y component of centre of gravity is 

equal to zero. Then the general form of the basic linearised equations of motion in 

six-degree-of-freedom is, 

6 

ýMjk 
k= Fj 

k=1 
j =1,2,..., 6 (7.30) 

In the left hand side of equation (7.30), ýk are six components of ship motion 

(k =& e'°'°') and M are the body inertia coefficients for the force induced by k jk j-th 1Y 

k-th mode of motion, which can be expressed following matrix form. 

m 0 0 0 mzG -mYG 
0 m 0 -rZG 0 mxG 

- Mjk 
- 

0 0 m myG -mxG 0 
(7.31) 0 -mzG myG Irr -IV%, -1 a 

mzG 0 -n'XG -I vr 
I,,, -1 M. 

-myG mxG 0 

where m is mass of the ship. I, , I,,,, and I. are moment of inertia about x, y and z 

axes respectively and remaining terms are products of inertia. When the ship has one 

longitudinal plane of symmetry, YG =0 and I,,, =1,,, =1, _ = I.,, = 0. 

Fi is total fluid force acting on the body in the j-th direction given in equation (7.6) 

and consists of hydrostatic and hydrodynamic components described in the foregoing 

section. Substituting equations (7.14), (7.16) and (7.23) into (7.30) and taking up to 

the first-order of the force give the six-degree-of-freedom equations of motion in the 

frequency domain in the form 
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6 

1 [_w (MJk +Aik)+i()eBik +Cjk] k =Fjf j =1,2,..., 6 (7.32) 
k=l 

The linearisation of the given problem with one longitudinal plane of symmetry 

separates the motions into two groups. One is the linear coupled surge-heave-pitch 

motion in the vertical plane and the other is sway-roll-yaw motion in the horizontal 

plane. The motions in one plane are coupled with each other, but are entirely 

independent from those in the other plane. 

Once the radiation and diffraction potentials are solved, corresponding added mass 

and damping coefficients can be obtained and wave exciting force can be evaluated 

from direct integration of the fluid pressure over the hull surface using known 

incident wave potential. Then motion response amplitude is readily obtained by a 

standard matrix solver. 
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7.4 Mean Second-Order Wave Forces 

7.4.1 Background of second-order forces 

The oscillatory forces exerted on a ship floating in a regular wave are proportion to 

the wave amplitude and generate sinusoidal motion response of the ship as discussed 

in the foregoing section. These first-order forces have a zero mean value over a 

period while second-order components with respect to wave amplitude show non- 

zero average and are time-independent constant. These second-order forces are 

generally too small compared to the first-order forces but they cannot be ignored in 

certain circumstance. The second-order forces are responsible for low frequency 

horizontal motions in a slow or zero speed. 

The mean second-order forces are often known as drift forces in the horizontal plane 

of motion. Longitudinal component of drift forces acting on a ship advancing in a 

wave can be applied to the prediction of added resistance. The lateral components of 

drift forces can be applied to the modelling of steering and control devices and 

vertical components are important to a submerged body travelling near free surface. 

Since the second-order steady forces are dependent on the first-order velocity 

potential, theoretical method to calculate the second-order forces are involved with 

the solution of first-order potential theory. In the modelling process of second-order 

forces, two different approaches have been studied by many researches. One is far 

field method and the other is near field method. Both methods are developed under 

same assumptions and techniques adopted in the conventional potential theory. 

In the far field method, the change of momentum of the fluid is considered within a 

control surface surrounding the body and the boundary surface is normally taken to 

be a cylindrical surface of a large radius extending vertically from the free surface to 

the sea bottom. Using the rate of change of the linear or angular momentum within 

the fluid domain, the forces and moments acting on the body can be related to the 
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fluid flow characteristics in other boundary surface. When the control surface is 

taken to infinity, the horizontal components of the mean second-order forces and 

moments can be easily evaluated from the asymptotic form of the velocity potential. 

The far field method is a very significant simplification in practical problems. 

Although simple procedure in the far field method is available, this method is less 

attractive when vertical component is in question since supplementary integrals over 

the free surface and sea bottom should be followed. Then near field method can be 

adopted by using direct integration of the fluid pressure over mean wetted body 

surface. Because the direct integration of the fluid pressure requires detailed 

characteristics of the flow field on the body surface, this method provides a great 

deal of physical insight into the mechanism of second-order forces and moments. 

The advantage of the near field method is that six components of the mean second- 

order forces and moments can be obtained. On the other hand, this approach is more 

complex to programme and demands more computational time than near field 

method. 

In the following section the calculation method for the second-order forces based on 

the near field method will be derived. Due to the direct integration of fluid pressure, 

the final expressions will be valid for all six-degree-of-freedom and zero speed case 

can be obtained by removing speed dependent terms 

7.4.2 Expansion of second-order forces 

Consider a ship travelling with constant forward speed U in a regular sinusoidal 

wave where general assumptions of potential theory are applicable. The fluid domain 

is represented by a velocity potential which can be decomposed into steady and 

unsteady part as follows 

P(x, t) = di(x) + d(x, t) (7.33) 
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The steady potential 0, which is caused by a steady translating motion of a ship in 

calm water, is further divided by a uniform stream and steady perturbation potential 

. The unsteady potential 0 consists of incident wave, diffraction and radiation 

potential and the motion response of the ship is assumed to be harmonic with a 

encounter frequency o)e as discussed in Chapter 5. 

The process to obtain second-order hydrodynamic forces and moments are very 

similar to the first-order case. Fluid pressure on the instantaneous wetted body 

surface SB is given from Bernoulli equation and can be expanded to second-order in 

the form 

p=-p[gz+ 
I(W"W-Ü2)+ 

, +W"vd+2vd"vd] 

on S. (7.34) 

To calculate hydrodynamic forces acting on the body surface it is required to 

integrate the pressure directly over the instantaneous wetted body surface as 

F= -ff pndS 

J p(r x n)dS M= -f SB 
(7.35) 

The unit normal vector n, position vector r and their product rxn in equation 

(7.35) should be evaluated instantaneously since the exact wetted surface SB is 

varying with time. Therefore these vectors can be expanded from the exact wetted 

surface SB to the mean wetted surface S. by means of perturbation expansions 

r=r(0'+cr")+e2r(2 +""" 

n= n(o) + cn'l) + c2 (2) + ... 

(7.36) 

(7.37) 

rxn=(rxn)'"'+E(rxn)"'+&2(rxn)'2 +""" (7.38) 
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where r(° = r, rW = W" + S2(') xr, r(2 = [II]r (7.39) 

n(O) =n n(I) = St") x n, n(2) = [II]n (7.40) 

(rxn)(°) =rxn, (rxn)"' =Sý"xn+S2(') x (rxn), 

(rxn)(Z)=(ö ) +fl(I)xr)x(fl(') xn)+rx[II]n+[II]rxn (7.41) 

The vectors S= (ý,, ý2, ý3) and S2 =(4,5,6) are unsteady displacement of 

translation and rotation vector respectively. The matrix [II] are defined as follows 

(1)2 (1)2 

s+6 
[H]=-2 -2ý41 )ý51 

c' ) -24 
j6 

00 
41)Z6))z 0 

-2ý5I)"61) ý41)? +ý5 02 

(7.42) 

The fluid pressure given by equation (7.34) can be expanded from the instantaneous 

wetted surface SB to the mean wetted surface S8 by means of Taylor series 

expansion. Then the integration on S. can be divided into two parts: the mean 

wetted surface SB of the body in its equilibrium state and the time varying part ASB 

between z=0 and z= c(; (') - a(" " k) . Consequently equation (7.35) can be 

expanded as in the form 

F=-(ff +ff 
)(p+a. 

Vp+... )ndS 
(7.43) 

M--(JJs�+ff 
, s� 

)(p-i-a. 
Vp+... )rxnclS 

The expressions for hydrodynamic forces can be obtained as follow 

F=Fro'+EFW+s2F(2 +... (7.44) 

F'0'=pgVk+2pfl (W-(I')ndS (7.45) 
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Fý'ý-p[ JjB ý'ý+W"Vtpr"+guy""k)ndS 

+2 ff-� [a(') " 0(W " W)]ndS 

+251 (W. W112)Stc'> 
(7.46) 

xndS 

+2ILF. (W "W -UZ);: "ndl' 

F(2 _P J. 
[ pbl(2) V Vdi21ndS 

+ Jr [U(W) V 
, 
cýº + ac" . V(W "V ('))]ndS 

JsA 

+ 1$ ( (1) +W"V 1(+ ga(') , k)flw x ndS Je 

+. [a(2) " V(W W)]ndS + (W. W-Ü2 )[II]ndS 
2 Jf 2f 

is 

(7.47) 

+I ff [a(" " V(W W)112(') x ndS 

+1 (W. W);: '2ndl' 
2 LI aZ 

+2 
141, 

(W "W- U2); 
1(1)11(1) x ndl' -2 g4, c-(022ndl' 

g[ (2 S00 + ý42)SOI 
- S2 

S10 + 
61, 

( 
41'`10 

+4 ')S(, 
1 

)]k] 

where S;; is the properties of waterplane at z=0 already defined in the foregoing 

section. The first-order relative wave elevation ý"; " and the steady wave elevation 

are defined as follows, 

3y 4+Xý, 
(7.48) 

ý'=-ýg(W"W-U') (7.49) 

The third term in equation (7.46) can be calculated as follows, 

g tJ, 
N 

(u"' k)ndS = -g(5; "S(X) +5äýýsUI -5; ýýý5ýýý)k (7.50) 
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In order to account for the slope of the wetted surface at the free surface, the line 

segment dl' along the free surface line integral is written as 

dl'=dl/(n; +n2)I/2 (7.51) 

Similarly the expressions for hydrodynamic moments can also be obtained as follow 

M=M(O)+sM(') +e2M(2 +""" (7.52) 

M(° = pgV-(Yoi - x8j) +2pJ fs, (W .W-i2 )r x ndS (7.53) 

MOº=p[Jj ( (' + W"vd ) +ga(') "k)rxndS 
e 

+1 ff [a(')"V(W"W)]rxndS 
(7.54) 

+2 ffiB(W"W-Ü2 )FwdS 

+27i,. (W"W-Ü2);: "rxndl'J 

M(2) =, o 11p[ ýZº+20 (I) .0 "º+W"off(') ]rxndS 

+ J1 
[aý'º V "º + a") " V(W "Vi )]r x ndS 

, 
+ ff <bcý) +W"o+ k)r° dS ( 

A 

2 JJSB [aý2ý V(W " W)]r x ndS 

+1 Jf (w"w-Ü2)r(2)dS 2 SH 

+2 fl, 
" 
[a(') " 0(\V " W)]F(')dS 

C4F (')'rxndl'+ 1C 
(W. W)y; "'rxndl' 

2 21" Oz 

(w. w-Ü2);; ')r(, )du'J +2YýF 

+ (other second order terms with i and j components 
(7.55) 

due to hydrostatic variation) 
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Similarly to equation (7.50), the third term in equation (7.54) becomes 

gB (a(" " k)r x ndS = s 

- S? 
I, 

+S31jS01 +ý4(S0, + 
N)- 5` 1I -H 61) (7.56) 

1(I) - 3SIO - 41)`SI1 
+ (1)(S20+ ZB)-H 61) 

0 

If we assume the first-order waves and motions are purely sinusoidal in time, then 

the time average of all the first-order terms becomes zero. The second-order potential 

and motions are also sinusoidal, so their mean values over one period are also zero. 

Finally the mean-second-order force and moment can be expressed as follows, 

(F 4/b °)Zndl' )+ 
(ipff(V1). 

Vm)ndS\ 
\ l/ 2 lu 

V i, (1»ndS) + (S2''' 
x F"» 

+(-pgýäl)ýbt)Siok) + 
(_U ff- (&I) ,V ))ndS y (7.57) 

ýM(2)) = 
(_-ciJ 

rx ndl' +1 (pfj (0ý'n .V &D)r x ndS 2 ýF r! 2 

+(p ff_', (aW. V Z('))rxndS) +(S(') xF(') +IV)xNi'"> 

("S S)+ ýIIýýnIS +(S -S) (7.58) 23 
S02 

10 36 10 56 02 20 

-pg -((I)S - 11º5 +Inýlu(S , -S2 ) 3 00 5 10 46 0_ 0 

0 
V 

+(-pc jJ (a°' "V r")rxndS} 
SA / vi 

where the bracket () denotes time average over one period. The first-order forces 

and moments can be simply obtained from the expression used in equation (7.30) as 
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Mý'ý = M; kk (7.59) 

where M., k are defined in equation (7.31). 

The component of mean second-order hydrodynamic forces and moments in 

equations (7.57) and (7.58) consist of the product of first-order quantities. These 

force components can be described as follows; 

(I) relative wave elevation, 
(II) quadratic term of velocity, 
(III) product of first-order motion and gradient of first-order pressure field, 

(IV) cross product of first-order motion and force, 

(V) product of first-order motion, 
(VI) forward speed related term. 

These first-order terms are easily obtained by solving first-order velocity potential 

problem and related equations of motion and demonstration of first- and second- 

order problems will be presented in the next sections. 
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7.5 Numerical Calculation of First-Order Force 

In order to provide a validation of the method adopted in this study, an extensive 

series of comparisons with published data, which include both experimental and 

theoretical data, should be carried out. For this purpose numerical calculation has 

been performed to predict hydrodynamic coefficients, wave loads and motion 

responses to the wave. The calculation was applied to Wigley model and Todd Series 

60 and the results were compared with other numerical results as well as 

experimental data where available. 

All calculation results and experiment data presented in this thesis including 

hydrodynamic coefficients, wave exciting forces and response amplitude operator are 

non-dimensionalised with following forms; 

" Encounter frequency 

wo =we L/g 

" Added mass coefficient 

A', = A#/pV 

AÜ = Aý/pVL 

AI =A,. /pVLZ 

9 Damping coefficient 

B=B, ý/pV g/L 

B, J' 
/ pVL g/L 

B, 
i =B 

/pVLZ g/L 

(7.60) 

when i =1,2,3 and j =1,2,3 

when i =1,2,3 and j=4,5,6 

or i=4,5,6 and j =1,2,3 

when i =1,2,3 and j=4,5,6 (7.61) 

when i =1,2,3 and j=1,2,3 

when i =1,2,3 and j=4,5,6 

or i=4,5,6 and j=1,2,3 

when i =1,2,3 and j=4,5,6 (7.62) 
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" Wave exciting force 

IF, 'I = IF; ' I/pg0(ýo / L) when j =1,2,3 

IFJ I= Ff /pgV,; 
o when j=4,5,6 (7.63) 

" Response amplitude operator 
IcyI=Iýj I1410 when j =1,2,3 

Iý; I= Jý 
j 
I/kol'o when j=4,5,6 (7.64) 

where ýo is incident wave amplitude. 

7.5.1 Convergence test of the numerical tools 

In order to secure the practical validation of the numerical tools, it is important to 

check the reliability through studying convergence of results obtained in terms of the 

description of hull geometry. Favourable agreement in the comparison between 

numerical predictions and experimental measurements is not significant if the 

numerical predictions are dependent appreciably upon the characteristics of surface 

elements used for representing the ship's hull. Therefore the validation with 

numerical method cannot be convinced unless the reliability and accuracy of the 

method are established independently of hull discretisation. 

Since the numerical tools are developed to represent a physical problem, it would be 

ideal if the obtained numerical results converge to some particular value and the 

solution becomes independent of the discretisation of the hull surface. Unfortunately, 

it is not always possible to achieve the convergence of a solution as it usually 

requires a large number of elements with careful distribution over the hull surface, 

and correspondingly a large computational effort is required to obtain a solution. 

Generally the actual size of an element becomes small when a large number of 

elements are used. If some error in the solution is acceptable then, for efficiency, 

fewer and bigger elements may be used to obtain a solution. 
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Describing hull geometry using surface elements usually involves the choice of some 

characteristics of elements, i. e. size and distribution. Since these characteristics are 

dependent on each other, it is better to control them with geometrical property like 

aspect ratio, which is defined as the ratio of the longitudinal to girthwise side length 

of a panel, and the number of panels used in the discretisation. It is quite difficult to 

define general rule to governing these factors because of the varying hull form and 

dependence between the characteristics of elements. 

Using a point source at the centre of each element in the constant panel method 

might cause more inaccuracy as the panel aspect ratio increases. The longitudinal 

length of a panel must also remain much smaller than the rate of flow change along 

the ship length especially in the bow and stern area where the flow changes rapidly. 
The size of a panel is also influenced by the wavelength since elaborate distribution 

of elements is required for the short waves or high frequency region. The best 

representation of hull surface could be a compromise between accurate modelling of 
hull geometry and the computational effort required. 

Based on the aforementioned characteristics of elements extensive numerical 

calculations especially for the unsteady hydrodynamic problems have been 

performed for a given hull form. Wigley hull form has been selected with respect to 

various numbers of panels in a different aspect ratio for the hull discretisation. The 

main reason to use Wigley hull form to validate numerical results is that its hull form 

is defined mathematically and therefore the geometrical errors in the discretisation 

can be decreased. The representation of the hull surface can be performed with any 
desired numbers of panels and easily applicable for numerical work. The definition 

of Wigley hull form used in convergence tests is given in equation (7.65). 

y= 
21- 

2x 
2 

1+0.2 2x 
2 

B/2 TLL 

2[1_(Z)B][ 2a 
(7.65) 

+T 1- 
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The hull surface is discretised equally in the longitudinal direction and then each 

section is divided into the same number of equal-length segments. The total number 

of panels was controlled by changing the number of panels in longitudinal and 

transverse directions. Seven Wigley hull models discretised with different numbers 

of panels and aspect ratios are chosen and presented in Table 7.1 and Figure 7.1. Nx 

and Ny are number of element in the longitudinal direction and half-section 

respectively. The aspect ratio is calculated in the midship section only and resultant 

value changes between 1.0 and 3.1. 

The hydrodynamic coefficients were calculated by Constant Panel Method with 

three-dimensional Green function for a Wigley hull form travelling at a Froude 

number 0.2. The calculation was carried out in a wide range of frequencies in a head 

sea and calculation time for 24 wave frequencies in head sea each is given in Table 

7.1. The specifications of computer used in the comparisons are Intel® Core'" 2 Duo 

T7250 2.0GHz CPU and 4.0GB DDR2 Memory. It is noted that the calculation time 

is proportional to the square of panel number since most of computational efforts are 

spent for the evaluation of Green function in the influence matrix given in equation 

(6.11). 

Table 7.1 Comparison of discretised models of Wigley ship 

Model Nx Ny Total Aspect ratio CPM time[min] 

Model A 20 4 160 2.0 3 

Model B 20 6 240 3.1 6 

Model C 40 4 320 1.0 13 

Model D 40 6 480 1.5 27 

Model E 40 8 640 2.0 47 

Model F 60 6 720 1.0 63 

Model G 60 8 960 1.4 97 
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Figure 7.1 Comparisons of panel representations of Wigley hull form 
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(a) Model A: 160 panels (b) Model B: 240 panels 

(c) Model E: 640 panels (d) Model G: 960 panels 



Several important hydrodynamic coefficients are focused on this investigation like 

heave and pitch in the vertical modes, which are presented in Figure 7.2 and Figure 

7.3 and sway, yaw and roll in the horizontal modes presented in Figure 7.4 through 

Figure 7.6. The hydrodynamic coefficients and encounter frequency was non- 

dimensionalised by equations (7.60) to (7.62). For the majority of hydrodynamic 

coefficients in vertical mode, the influence of total number of panels on the predicted 

value is small. Especially convergence of added mass coefficients was achieved at 

any frequency regions, while that of damping coefficients show a little discrepancy 

in the moderate frequency region (we 4.4 to 7.6). 

Predictions of hydrodynamic coefficients in horizontal mode appear to be more 
dependent on the hull discretisation than those in vertical mode. Again there is 

almost no influence of number of panels on the added mass coefficients AZ2 and A66 

although small discrepancy is shown on the cross coupling term A26 and Abo in the 

low and high frequency regions. Variations in values of damping coefficients B22 

and BB are shown in the high frequency regions and those of cross coupling terms 

B62 and B26 become clear for frequencies greater than 3.0. The results of roll- 

dependent coefficients A;. and B,, exhibit similar tendency to other coefficients and 

can be grouped according to the sectional number of panels. 

The result of Model B shows difference from other results and oscillation in value 
due to relatively small number of panels and large aspect ratio. Model A, which used 

fewer panels and smaller aspect ratio, shows better result than Model B. This 

suggests that the aspect ratio is very important characteristics in the discretisation 

strategy. When the increase of total number of panels is considered, better 

predictions might be achieved by decreasing the aspect ratio not simply increasing 

sectional number of panels. 
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Figure 7.2 Non-dimensional added mass and damping coefficients in heave and pitch 

modes for various discretisation models of Wigley hull form travelling at Froude 

number 0.2 
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Figure 7.3 Non-dimensional coupled added mass and damping coefficients in heave 

and pitch modes for various discretisation models of Wigley hull form travelling at 

Froude number 0.2 
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Figure 7.4 Non-dimensional added mass and damping coefficients in sway and yaw 

modes for various discretisation models of Wigley hull form travelling at Froude 

number 0.2 
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Figure 7.5 Non-dimensional coupled added mass and damping coefficients in sway 

and yaw modes for various discretisation models of Wigley hull form travelling at 

Froude number 0.2 
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7.5.2 Wigley 

Wigley hull form, which was already used for the convergence test in the previous 

section, was selected again and calculations were carried out for validation study of 

numerical tools. A series of numerical computations has been performed to obtain 

the hydrodynamic coefficients, wave exciting forces and moments and motion 

responses of the unsteady potential problem adopting CPM and HOPM. Numerical 

results of various Froude numbers, i. e. 0.2,0.3 and 0.4 were compared with those of 

two-dimensional numerical method in frequency domain as well as experiment data. 

The experimental data are available for hydrodynamic coefficients in vertical mode, 
i. e. heave and pitch, and also wave exciting forces and motion responses in head sea. 

The definition of Wigley hull form, which was presented in the report of Journee 

(1992), is given in equation (7.65). The principal dimensions of Wigley hull were 

expanded to actual ship size as shown in Table 7.2. The Wigley hull form was 
discretised with 40 sections in longitudinal direction and 6 segments in each half- 

section, so the total number of panels is 480 (Model D in Table 7.1) for numerical 

calculation of CPM. Generally HOPM requires smaller number of panels than CPM 

and total 160 panels (Model C in Table 7.1) was selected. The three-dimensional 

view of panel discretisation is presented in Figure 7.7, where the aspect ratio of 

midship section is maintained as 1.5 for CPM and 1.0 for HOPM respectively. 

Table 7.2 Principal dimensions of Wigley model 

L 120.0 [m] LIB 10.0 

B 12.0 [m] BIT 1.6 

T 7.5 [m] ky, 30.0 [m] 

0 6055.9 [m3] GMT 1.0 [m] 

CB 0.5607 GML 123.52 [m] 

166 



(a) Model D: 480 panels for CPM 

(b) Model C: 320 panels for HOPM 

Figure 7.7 Panel representation of hull surface of Wigley hull form 
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The calculations of linear unsteady problem for Wigley hull form are carried out by 

each of three-dimensional Green function methods adopted in this study, i. e. CPM 

and HOPM. The results of computations were compared with those of two- 

dimensional strip method based on Rankine source distribution method (Jasionowski, 

2001). For experimental data, Journee (1992) has published extensive test data on 

hydrodynamic coefficients for heave and pitch, wave loads and vertical motions of 

four different Wigley hull forms with a forward speed of Froude number 0.2,0.3 and 

0.4. The calculation results and comparisons are demonstrated for the Froude number 

0.2 in head sea and further results of Froude number 0.3 and 0.4 are presented in 

Appendix B. 

" Hydrodynamic coefficient 
The hydrodynamic added mass and damping coefficients for Wigley hull travelling 

with the forward speed of Froude number 0.2 are presented in Figure 7.8 through 

Figure 7.9. Heave added mass coefficients of three-dimensional methods presented 

in Figure 7.8 show good agreement with measured data while there is discrepancy 

with strip method in low frequency region. Pitch added mass coefficients of present 

study are in fairly good accordance with other results. Pitch added mass approaches 

infinity at zero encounter frequency because AJk = Re(T, k) / we in equations (7.25) 

and (7.27) together with forward speed effects, i. e. Ums * 0. For heave damping 

coefficients, similar trend to the case of heave added mass is observed. Coupled 

added mass coefficients of three-dimensional methods presented in Figure 7.9 (a) are 

in good agreement with experimental data and the change of formulation of Green 

function at critical value of r =1/4 is well reflected in low frequency region, where 

the encounter frequency is below tree =1/(4. FN) =1.25. Pitch damping coefficients 

in strip theory becomes infinity near zero frequency because it is modified with 

forward speed correction as follows bs5 =f b33 (X)x2dz + U2 / co " b33 . Coupled heave 

and pitch damping coefficients predicted in three-dimensional theory are fairly in 

good accordance with measured data as shown in Figure 7.9 (b). Generally the 

agreement between three-dimensional methods is very good for vertical mode of 

motion. 
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Figure 7.8 Non-dimensional added mass and damping coefficients in heave and pitch 

modes for Wigley hull travelling at Froude number 0.2 
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Figure 7.9 Non-dimensional coupled added mass and damping coefficients in heave 

and pitch modes for Wigley hull travelling at Froude number 0.2 
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The hydrodynamic coefficients in horizontal mode of motion, i. e. sway, roll and yaw, 

are presented in Figure 7.10 through Figure 7.13, where no measurement from 

experiment is available. Sway and roll added mass coefficients of present method 

shown in Figure 7.10 and Figure 7.12 respectively, show similar trend to those of 

strip theory although there are large differences in low frequency region. Trend of 

sway and roll damping coefficients of both numerical theories are very close except 

those in high frequency region. Results of yaw added mass and damping coefficients 

are a little different from each other over whole frequency regions. Coupled sway- 

yaw added mass and damping coefficients in Figure 7.11 were illustrated to show 

symmetry relationship although irregular phenomena of damping coefficients exist in 

the high frequency region. Generally the trend of coupled hydrodynamic coefficients 

in sway and roll modes shown in Figure 7.13 (a) is very close to that of pure roll 

hydrodynamic coefficients and so is the roll and yaw modes in Figure 7.13 (b) 

similar to the sway and yaw modes. 
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Figure 7.10 Non-dimensional added mass and damping coefficients in sway and yaw 

modes for Wigley hull travelling at Froude number 0.2 
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Figure 7.11 Non-dimensional coupled added mass and damping coefficients in sway 

and yaw modes for Wigley hull travelling at Froude number 0.2 
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Figure 7.12 Non-dimensional added mass and damping coefficients in roll mode for 

Wigley hull travelling at Froude number 0.2 
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Figure 7.13 Non-dimensional coupled added mass and damping coefficients in sway- 

roll and roll-yaw modes for Wigley hull travelling at Froude number 0.2 
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" Wave load and motion response 

Calculations results of wave exciting forces and moments acting on the Wigley hull 

form travelling at the speed of Froude number 0.2 and motion responses in heave and 

pitch modes are presented in Figure 7.14 and Figure 7.15 respectively. Non- 

dimensional amplitudes of predicted values are compared with the measured data 

from experiment, which was carried out in head sea (ß =180° ). Heave force and 

pitch moment in Figure 7.14 agree very well with the experiment data, while pitch 

moment of strip method is over-estimated. Heave and pitch motion responses in 

Figure 7.15 also have good accordance with the measured data, although pitch 

motion response is under-estimated due to the over-estimation of pitch moment. The 

agreement of wave exciting forces and motion responses between three-dimensional 

methods are very good in head sea case. 
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Figure 7.14 Non-dimensional heave and pitch wave exciting force and moment for 

Wigley hull travelling at Froude number 0.2 in head sea (ß=180°) 
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Figure 7.15 Non-dimensional heave and pitch motion responses for Wigley hull 

travelling at Froude number 0.2 in head sea (ß=180°) 
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7.5.3 Todd Series 60 

In order to validate presented calculation method for actual hull form of a ship, Todd 

Series 60 with block coefficient C. = 0.7 was chosen (Todd, 1953). This model has 

been widely used in the hydrodynamic research field for both experimental and 

numerical calculation and therefore it might be suitable for general comparison. The 

calculation was carried out at zero speed and Froude number 0.2 in various heading 

angles, where extensive numerical and experiment data are available for comparison. 

The principal dimensions of Todd Series 60 for numerical calculations of CPM and 

HOPM were given in Table 7.3. 

Table 7.3 Principal dimensions of Todd Series 60 ship 

L 140 [m] LIB 7.0 

B 20 [m] BIT 2.5 

T 8 [m] i. 6.178x 108 [kg. m'] 

0 15680 [m3] 1» 1.969x1010 [kg"m'] 

CB 0.700 la 1.969x1010 [kg"m'] 

C. 0.785 GMT 1.0 [m] 

LCB 0.7 Fwd [m] GML 150.27 [m] 

For numerical calculation hull form of Todd Series 60 was discretised with a 

different number of panels. The total number of panels can be obtained by 

multiplying the each number of panels used in longitudinal and transverse direction. 

Typical numbers of panels used in the CPM are 39 in longitudinal direction and 6 in 

each half-section, so total 468 quadrilateral panels were used as shown in Figure 7.16. 

For the calculation of HOPM, 20 sections in longitudinal direction and 8 segments in 

each half-section and therefore total 320 panels are used as presented in Table 7.4. 

During the discretisation of hull surface, it is recommended to keep the aspect ratio 
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of CPM close to unity and maximum length of panel to be much smaller than 

minimum wavelength. HOPM has relatively less restrictions in the aspect ratio and 

size of panels, however, computational efficiency can be poor due to the complicated 

influence coefficient matrix. 

(a) Series 60 : 480 panels for CPM 

(b) Series 60 : 320 panels for HOPM 

Figure 7.16 Panel representation of Todd Series 60 hull form 
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Table 7.4 Comparison of discretised model of Todd Series 60 ship 

Method Nx Ny Total Aspect ratio 

CPM 40 6 480 1.2 

HOPM 20 8 320 3.3 

For comparison with other theoretical results, both two-dimensional strip method and 

three-dimensional Green function approach were chosen. Jasionowski (2001) 

developed PROTEUS based on strip theory, which uses Rankine source distribution 

method. Inglis & Price (1982a, 1982b) carried out several theoretical calculations, 

which range from two-dimensional strip theory to a three-dimensional method 

including the influence of steady motion effects in the boundary value problem as 

well as simplified three-dimensional method. Every theoretical approach mentioned 

is based on linear potential theory in frequency domain. 

Comprehensive experiment for Todd Series 60 with block coefficient (', t = 0.7 was 

performed by many researches. Gerritsma and Beukelman (1964,1966) carried out 

experiment on heave and pitch hydrodynamic data and van Leeuwen (1964) 

performed extensive measurement on the lateral added mass and damping 

coefficients. Vugts (1971) performed experiment involving both vertical and 

horizontal motion of a model. All experimental data presented in this study are non- 

dimensionalised in aforementioned forms for comparison with other numerical 

results. 
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7.5.3.1 Zero speed case 

" Zero speed hydrodynamic coefficient 

The hydrodynamic added mass and damping coefficients for Todd Series 60 at zero 

speed are presented in Figure 7.17 through Figure 7.21. These hydrodynamic 

coefficients are calculated from various numerical method adopted in this study (i. e. 
CPM and HOPM) and compared with those from traditional two-dimensional strip 

theory and experiments. 

Added mass and damping coefficients in heave and pitch modes show good 

agreements with the experimental data as can be seen from Figure 7.17. The 

predicted yaw added mass coefficient show fairly good agreement with the measured 

data and there is only a little discrepancy as shown in Figure 7.18. The sway 

damping coefficients agrees fairly well in low frequency region and shows same 

pattern of variation with the experimental data. The agreement between calculated 

and measured roll damping coefficient are worse as shown in Figure 7.19. Poor 

prediction of roll damping coefficient is already expected due to the non-linear 

effects in roll motion and negligence of viscosity when developing potential theory. 

For the calculation results of CPM and HOPM there are also little differences in the 

values over the whole frequency range except that the predicted values show little 

discrepancies in the high frequency region. 
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Figure 7.17 Non-dimensional added mass and damping coefficients in heave and 

pitch modes for Todd Series 60 at zero speed 
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Figure 7.18 Non-dimensional added mass and damping coefficients in sway and yaw 

modes for Todd Series 60 at zero speed 
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Figure 7.19 Non-dimensional added mass and damping coefficients in roll mode for 

Todd Series 60 at zero speed 

The coupled added mass and damping coefficients are presented in Figure 7.20 and 

Figure 7.21. It is evident that the agreement of coupled coefficients with Timman- 

Newman's symmetry relationship is acceptable for the zero speed. Theoretically the 

calculated value of coupled coefficients must be equal so that A, = A, and B, = Bj,. 

The errors, however, due to the numerical approximations and discretisation of hull 

surface is inevitable and some discrepancies would be expected in the calculation of 

coupled coefficients. Increasing the total number of panels with appropriate aspect 

ratio will reduce errors in the predictions of coupled coefficients. Coupled heave- 

pitch added mass and damping coefficients in Figure 7.20 (a) shows good agreement 

with the experimental results although there are somewhat discrepancies in low 

frequency region. The qualitative tendency of calculated coupled sway-yaw added 

mass coefficient in Figure 7.20 (b) is very similar to the measured data although 

differences of values are observed between CPM and HOPM. There are no 

experimental data available for roll-dependent hydrodynamic coefficients and 

general agreement between different numerical theories seems to be good as shown 

in Figure 7.21. 
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Figure 7.20 Non-dimensional coupled added mass and damping coefficients in 

heave-pitch and sway-yaw modes for Todd Series 60 at zero speed 
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Figure 7.21 Non-dimensional coupled added mass and damping coefficients in sway- 

roll and roll-yaw modes for Todd Series 60 at zero speed 
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" Zero speed wave load 

Wave exciting forces and moments acting on the hull surface are presented in Figure 

7.22 through Figure 7.26. Non-dimensional amplitudes in four typical heading angles, 

i. e. head sea (ß =180° ), beam sea (ß = 90'), quartering sea (ß = 30°) and bow sea 

(, 3 =120° ), were presented for comparisons with numerical and experimental data 

respectively. Most of the hydrodynamic forces and moments predicted in both 

vertical and horizontal modes are in good agreement with the measured data, except 

the deviations of roll exciting moments. 

Figure 7.26 illustrates the wave exciting forces and moments acting on the Todd 

Series 60 hull for various wave headings. Due to the asymmetry of Todd Series 60 

hull form, surge, pitch and yaw exciting moments in beam sea (ß = 900) are not 

equal to zero and smaller than other components. All the amplitudes of wave exciting 

forces and moments in a low frequency region, however, show the properties of fore 

and aft body symmetry, for example, predicted values in wave heading ß= 30° are 

the same as those in the ß =150° . This implies that the fore and aft body asymmetry 

of hull form in the long wave regime is not significant. It is certain that the horizontal 

components of wave exciting forces and moments in head sea are identical to zero 

due to the symmetry condition in the longitudinal plane. Wave exciting forces and 

moments in high frequency region show oscillating behaviour, typically in horizontal 

mode as observed in Figure 7.23 and Figure 7.24, with the magnitude decreased as 

frequency becomes larger and these irregularities are mainly caused by oscillation of 

Froude Krylov force term in high frequency region. 
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Figure 7.22 Non-dimensional heave and pitch wave exciting force and moment for 

Todd Series 60 at zero speed in head sea (ß=l 80°) 
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Figure 7.23 Non-dimensional roll wave exciting moment for Todd Series 60 at zero 

speed in beam sea (ß=90°) and bow sea (ß=120°) 
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Figure 7.24 Non-dimensional wave exciting forces and moments for Todd Series 60 

at zero speed in quartering sea (0=30°) 
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Figure 7.25 Non-dimensional wave exciting forces and moments for Todd Series 60 

at zero speed in bow sea (ß=120°) 
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Figure 7.26 Non-dimensional wave exciting forces and moments for Todd Series 60 

at zero speed in various heading angles 
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" Zero speed motion response 
After the calculations of hydrodynamic coefficients and wave exciting forces solving 

the equations of motion is straightforward. The non-dimensional amplitudes of 

predicted motion responses for the Todd Series 60 at zero speed are presented in 

Figure 7.27 through Figure 7.31. Generally the differences in predicted values 

between CPM and HOPM are hardly distinguishable over the whole frequency range 

and even with results of strip method. All the motions become constant as encounter 

frequency approaches zero simply because added mass and damping coefficients are 

multiplied by very low encounter frequency terms and thus their contributions are 

cancelled in low frequency regions. Decrease of motion responses in high frequency 

regions can be explained in a similar manner. 

Roll motion responses shown in Figure 7.28 have resonant phenomena because of 

the neglect of viscous effect for roll damping. It is noted that the roll motion curve of 

strip method is slightly shifted near resonant frequency, where peak motion occurs at 

co, ' =1.70 for strip method and a =1.76 for three-dimensional method, because 

estimation of roll added mass shows constant differences between two- and three- 

dimensional methods in overall frequency range as shown in Figure 7.19. Sway and 

yaw motion responses show discontinuities near roll resonant frequency since the 

sway, roll and yaw motions are coupled in the equations of motion. 

The motion responses for Todd Series 60 hull at zero speed for various heading 

angles are illustrated in Figure 7.31. Sway and yaw motion responses in beam sea 

have larger value than those in other wave headings. Motion responses whose angle 

of attack have same differences from 6= 90°, have similar values as if there is fore 

and aft body symmetry. Heave and pitch motions response are equal to zero in head 

and following seas due to the horizontal plane of symmetry. 
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Figure 7.27 Non-dimensional heave and pitch motion responses for Todd Series 60 at 

zero speed in head sea (ß=180°) 
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Figure 7.28 Non-dimensional roll motion response for Todd Series 60 at zero speed 

in beam sea (0=90°) and bow sea (0=120°) 
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Figure 7.29 Non-dimensional motion responses for Todd Series 60 at zero speed in 

quartering sea (ß=30°) 
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Figure 7.30 Non-dimensional motion responses for Todd Series 60 at zero speed in 

bow sea (ß=120°) 
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Figure 7.31 Non-dimensional motion responses for Todd Series 60 at zero speed in 

various heading angles 
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7.5.3.2 Forward speed case 

40 Forward speed hydrodynamic coefficient 

The hydrodynamic added mass and damping coefficients for Todd Series 60 

travelling with forward speed of FN = 0.2 are presented in Figure 7.32 through 

Figure 7.38. CPM and HOPM are again used for the numerical calculations of 

hydrodynamic coefficients adopting three-dimensional Green function method. For 

comparisons with other numerical predictions followings are used in each figure; 

two-dimensional strip method (Jasionowski, 2001) and three-dimensional Green 

function methods with translating pulsating source and simplified m-terms (Inglis 

and Price, 1982a). Experimental data was used for vertical mode hydrodynamic 

coefficients like heave and pitch (Gerritsma & Beukelman, 1964). For horizontal 

mode hydrodynamic coefficients experiment data measured for the model without a 

rudder and with a rudder fixed at zero angle of deflection (van Leeuwen, 1964). 

Figure 7.32 illustrates heave added mass and damping coefficients. All the 

theoretical results are in good agreement with experiment data. Both three- 

dimensional methods show similar tendency in all frequency range and especially 

exhibit an oscillation in moderate frequency region. In low frequency region the 

agreement of heave damping coefficients between two-dimensional and three- 

dimensional methods is very poor. 

Pitch added mass and damping coefficients are illustrated in Figure 7.32. In the case 

of pitch added mass good agreement can be found between theoretical and 

experimental data. There is significant discrepancy between different methods in the 

case of pitch damping coefficients especially in low frequency region. Three- 

dimensional methods show peak value near critical point r =1/4 and it is obviously 

observed in the case of damping coefficients rather than added mass coefficients. 

Cross-coupled heave and pitch added mass and damping coefficients are illustrated 

in Figure 7.33. Again results of two-dimensional method approach infinity in low 
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frequency region in the case of coupled heave and pitch added mass coefficients. 

Three-dimensional methods exhibit clear discontinuity near critical point r =1 /4 

and oscillation in moderate frequency region. 

Sway and yaw added mass and damping coefficients are illustrated in Figure 7.34. 

There is generally good agreement between different theoretical and experiment 

results except for yaw damping coefficients which all theoretical methods under- 

estimated. Smooth oscillations observed in vertical mode hydrodynamic coefficients 

are again observed in horizontal mode. Those phenomena are observed in relatively 

higher frequency region than the case of vertical mode. Cross-coupled sway and yaw 

added mass and damping coefficients are illustrated in Figure 7.35. There are good 

qualitative agreement between three-dimensional methods and experiment data 

although relatively rough oscillations are observed in moderate and high frequency 

regions. 
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Figure 7.32 Non-dimensional added mass and damping coefficients in heave and 

pitch modes for Todd Series 60 travelling at Froude number 0.2 
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Figure 7.33 Non-dimensional coupled added mass and damping coefficients in heave 

and pitch modes for Todd Series 60 travelling at Froude number 0.2 
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Figure 7.35 Non-dimensional coupled added mass and damping coefficients in sway 

and yaw modes for Todd Series 60 travelling at Froude number 0.2 
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Roll added mass and damping coefficients are shown in Figure 7.36. For roll 

damping coefficient, experiment data by Vugts (1971) were compared, whereas there 

is no experiment data available for roll added mass coefficients. Roll added mass 

coefficients of two-dimensional strip method are over-estimated in whole frequency 

range. Roll damping coefficients from any numerical method are under-estimated in 

low and moderate frequency regions due to the negligence of non-linear effect and 

viscosity of fluid domain. Other roll-dependent coupled added mass and damping 

coefficients are presented in Figure 7.37 and Figure 7.38. Measured data of coupled 

damping coefficient in sway and roll modes show similar trend to the roll damping 

coefficient. 
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Figure 7.37 Non-dimensional coupled added mass and damping coefficients in sway 

and roll modes for Todd Series 60 travelling at Froude number 0.2 
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Figure 7.38 Non-dimensional coupled added mass and damping coefficients in roll 

and yaw modes for Todd Series 60 travelling at Froude number 0.2 
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" Forward speed wave load 

Wave exciting forces and moments acting on the hull surface of Todd Series 60 

travelling at Froude number 0.2 are presented in Figure 7.39 through Figure 7.43. 

Non-dimensional amplitudes of heave force and pitch moment in head sea 

(ß =1800) were presented for comparisons with various numerical and experimental 

data as shown in Figure 7.39. A good agreement of heave exciting forces between 

the numerical methods and measured data is observed in the moderate frequency 

region while the results of pitch exciting moments show discrepancies in the same 

frequency region. Predicted sway force and yaw moment in bow sea show good 

agreement between two- and three-dimensional methods, while the results of heave 

force and pitch moment have differences as shown in Figure 7.42. 

Figure 7.43 illustrates wave exciting forces and moments acting on the hull of Todd 

Series 60 travelling at Froude number 0.2 for various wave heading angles. As in the 

zero forward speed case the sway and heave exciting forces have larger values in 

beam seas than other heading angles. 
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Figure 7.39 Non-dimensional heave and pitch wave exciting force and moment for 

Todd Series 60 travelling at Froude number 0.2 in head sea (ß=180°) 

FEX4 1 IFexä I 

0.2 F 
HCPM, 

3 0.0 0.1 

FF 

rH 
PM ßý 20.0 HOPM, OPM -90.0 

Strip Method, 0=90.0 Strip Method, ß=120.0 

0.15 

0.06 

0.1 

0.04 

0.05 
0.02 

OI. C .. O. 

0123401234 
L/X 
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travelling at Froude number 0.2 in beam sea (ß=90°) and bow sea (ß=120°) 

206 



IFEX3r I IFEX5' I 

20 CPM, 0=30.0 2.5 CPM, ß=30.0 
---- HOPM, 0=30.0 HOPM, P=30.0 

Strip Method, ß=300 Strip Method, 0=30.0 

15 
2 

1.5 

10 

5 \ 
\ 0.5 

"0 1234 "0 1234 
L/X L/X 

(a) Vertical mode 

IF IFexe 

3 CPM, 3=30.0 1 CPM, 0=30.0 
HOPM, 0=30.0 HOPM, P=30.0 
Strip Method, 0=30.0 Strip Method, ß=30.0 

2.5 
0.8 

2 
0.6 

1.5 

0.4 

0.2 
0.5 

00 234 00 
1234 

L/X L/X 

(b) Horizontal mode 

Figure 7.41 Non-dimensional wave exciting forces and moments for Todd Series 60 

travelling at Froude number 0.2 in quartering sea (ß=30°) 
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Figure 7.42 Non-dimensional wave exciting forces and moments for Todd Series 60 

travelling at Froude number 0.2 in bow sea (ß=1200) 
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Figure 7.43 Non-dimensional wave exciting forces and moments for Todd Series 60 

travelling at Froude number 0.2 in various heading angles 
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" Forward speed motion response 
The non-dimensional amplitudes of predicted motion responses for the Todd Series 

60 travelling at Froude number 0.2 are presented in Figure 7.44 through Figure 7.48. 

In head sea heave motion responses predicted show a little difference with the 

measured value as shown in Figure 7.44 and all the three-dimensional methods over- 

estimated the amplitude of heave motion response while that of two-dimensional 

strip method was under-estimated. Since these values are located in the resonant 

frequency, more measurements are required to investigate detailed relationship. 

Generally the agreement of values from two- and three-dimensional methods is not 

so good. 

The non-dimensional amplitudes of motion responses for the Todd Series 60 

travelling at Froude number 0.2 in various heading angles are presented in Figure 

7.48. Some trends observed in the zero speed case can be found again for the forward 

speed case. For example, amplitude of sway motion response in beam sea is greater 

than that of other heading angles although heave motion response is not larger any 

more than that of bow and head seas near the resonant encounter frequency. 
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Figure 7.44 Non-dimensional heave and pitch motion responses for Todd Series 60 

travelling at Froude number 0.2 in head sea (ß=180°) 
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Figure 7.45 Non-dimensional roll motion response for Todd Series 60 travelling at 

Froude number 0.2 in beam sea (0=900) and bow sea (ß=120°) 

211 



43'1 

2 CPM, 0=30.0 2 CPM, 0=30.0 
HOPM, P=30.0 HOPM, P=30.0 
Stn p Method, 0=30.0 Stnp Method, ß=30.0 

1.5 1.5 

1k 1 

0.5 F- \ 0.5 

or - ý- 0r 0123401234 
L/X. L/X 

(a) Vertical mode 

1- CPM, P=30.0 1 CPM, 0=30.0 
HOPMStrip, ß=Method, 30.0 

ß-30.0 
HOPM, 0=30.0 

- Strip Method, ß=300 

0.8 0.8 

0.6 0.6 

0.2 0.2 

00 
01234023 

L/a. L/X 

(b) Horizontal mode 

Figure 7.46 Non-dimensional motion responses for Todd Series 60 travelling at 

Froude number 0.2 in quartering sea (ß=300) 

212 



2- CPM, 0=120.0 2 
HOPM, V-120.0 
Stnp Method, 0=120.0 

1.5 j 1.5 

Iýý 
1 

0.5 

0 

1S2 1 

1 

0.8 

0.6 

0.4 

0.2 

0 

CPM, ß=120.0 
HOPM, 0=120.0 
Stnp Method, ß=120.0 

yl 

0.5 

0- 

2340 
L/X 

(a) Vertical mode 

1461 
CPM, 0=120.0 1 
HOPM, ß=120.0 
Strip Method, 0=120.0 

0.8 

0.6 

0.4 

1 

L/X 

CPM, ß=120.0 
HOPM, (3=120.0 
Strip Method, 0=120 0 

0123401234 
L/?. L/l 

(b) Horizontal mode 

Figure 7.47 Non-dimensional motion responses for Todd Series 60 travelling at 

Froude number 0.2 in bow sea (ß=120°) 
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Figure 7.48 Non-dimensional motion responses for Todd Series 60 travelling at 

Froude number 0.2in various heading angles 
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7.6 Numerical Calculation of Second-Order Force 

In the previous section three-dimensional approaches to predict hydrodynamic 

coefficients, first-order forces and moments and motion responses have been 

validated by comparisons with results from other numerical method and experiments. 

The near-field expressions, which are given by equations (7.57) and (7.58) for the 

mean second-order hydrodynamic forces and moments, involve the solutions of the 

first-order unsteady velocity potential problem, i. e. radiation and diffraction 

problems and motion responses in the equations of motion. To evaluate these two 

equations, furthermore, it is required to calculate the potential values as well as their 

derivatives over mean wetted body surface. In the present study the near-field 

method with the results of the three-dimensional CPM and HOPM was applied to 

carry out numerical calculations. 

The present three-dimensional near-field method was first validated by comparing 

predictions with available experimental results of the zero speed mean sway force 

and yaw moment for an barge in beam, bow quartering and head seas. For forward 

speed cases numerical calculations for added resistances of Wigley hull form at 

various Froude numbers were carried out to compare with experimental data. The 

influence of forward speed and heading angle on the mean second-order forces and 

moments are demonstrated with Todd Series 60 ship at zero speed and Froude 

number 0.2. 

All calculation results and experiment data of mean second-order hydrodynamic 

forces and moments presented in this section are non-dimensionalised with following 

forms; 

0 Mean second-order force 

F(z)' _ 
(F(2))/pgaöB2 IL when j =1,2,3 

F'+31 _ (Mý2 )/ pgaö BL when j =1,2,3 (7.66) 
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7.6.1 Barge 

The barge used in the calculation has a rectangular hull and it is possible to model 

exactly with flat panels. The hull form of barge is discretised with a total 672 flat 

quadrilateral panels whose aspect ratio in bottom plane was kept as unity as shown in 

Figure 7.49. The principal dimensions of barge in the calculation is illustrated in 

Table 7.5 

Numerical calculations for the second-order hydrodynamic forces and moments 

acting on the stationary barge were carried out in three different heading angles, i. e. 

beam (ß = 90° ), bow (ß =135°) and head seas (ß =180°) respectively. The 

calculation results were compared with the numerical and experimental data 

performed by Pinkster and van Oortmerssen (1977). 

Figure 7.50 illustrates surge drift force in head sea and sway drift force in beam sea 

respectively. The agreement of surge drift force between numerical result and 

measured data looks very good. There exists, however, discrepancy in the case of 

sway drift force, which is under-estimated for present method and measurement data 

are scattered due to difficulties of measurement in high frequency region. 

Table 7.5 Principal dimensions of barge model 

L 150 [m] LIB 3.0 

B 50 [m] BIT 5.0 

T 10 [m] k. 20.0 [m] 

0 73750 [m'] ky 39.0 [m] 

CB 0.9833 ka 39.0 [m] 

C. 1.0 GMT 16.243 [m] 

LCB 0.0 [m] GML 185.735 [m] 
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Figure 7.49 Panel representation of barge hull form 

Second-order sway force and yaw moment in bow sea are presented in Figure 7.51. 

The agreement of sway drift force between theoretical prediction and measurement is 

very good. The sway force and yaw moment show peak values near the non- 

dimensional frequency, we = 2.0, which coincides with frequency of roll resonance. 

As mentioned in the beginning of this section, the second-order forces and moments 

are strongly coupled with first-order motion responses. It is, therefore, thought that 

the discrepancy in yaw moment is caused by the neglect of viscous effect in the 

prediction of first-order roll motion. 

The components of second-order hydrodynamic forces on the stationary barge are 

illustrated in Figure 7.52 and Figure 7.53. Full description of each force component 

is provided in section 7.4.2. Component I represents the force due to relative wave 

elevation and is seen as a dominant component in the total force. The sign of 

component I is generally coincides with the direction of wave propagation and this 

implies that the force on the facing side of incoming wave is larger than that on the 

shadow side of the hull. It is also noticed that the value of component I is reduced by 
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remaining components I in the whole frequency range. The component II represents 

the pressure field due to the product of first-order velocity on the mean wetted body 

surface. The component II tends to act on the opposite direction to the incoming 

wave because the first-order velocity field is larger again on the facing side than that 

on the shadow side. 

The component III and IV correct the first-order pressure field and the first-order 

forces respectively on the mean wetted body surface to those on the instantaneous 

wetted body surface due to oscillatory motions. The contributions of components III 

and IV become largest when there is considerable amount of oscillation since they 

depend strongly on oscillatory motions of the rigid body, and therefore they can be 

neglected in the high frequency region. Their overall contributions on total second- 

order forces are small when compared to the components I and II. The component V 

becomes zeros for surge, sway and yaw directions and so is component VI for zero 

speed. Most components of sway and yaw directions shows slight irregularities due 

to resonance of roll motion and the existence of irregular frequency phenomenon in 

higher frequency regions. 

218 



F(2), F(2), 
12 

0,5 ----- HOPM, Fn 0O, ß-180.0 2.5 - -- HOPM, Fn-O 0, ß=900 
-- -- Computed, Pinkster(1977), ß-I80 0 -- --- Computed, Pjnkster(1977), ß-900 ' 

C Measured, Pinkster(1977), ß-180.0 Q Measured, Pmkste 1977), 0-%0 

0 0. ý\ 0 

-0.5 -2.5 

-5 

-1.5 -7.5 

20 123456 100 
123456 

w 
e we 
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Figure 7.51 Non-dimensional second-order sway force and yaw moment for barge at 

zero speed in bow sea (ß=135°) 
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Figure 7.52 Non-dimensional components of second-order surge and sway forces for 
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Figure 7.53 Non-dimensional components of second-order sway force and yaw 

moment for barge at zero speed in bow sea (ß=135°) 
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7.6.2 Wigley 

Wigley hull form used in the validation study of first-order potential problem was 

chosen for the calculation of second-order hydrodynamic forces and moments. The 

principal dimensions and panel representation of Wigley hull were shown in Table 

7.2 and Figure 7.7 respectively. 

Numerical calculations were carried out for various forward speeds equivalent to 

Froude numbers 0.2 and 0.3 in head sea. It is mainly focused on the prediction of 

added resistance and second-order heave force and pitch moment in the vertical 

plane. Figure 7.54 illustrates added resistances at Froude numbers 0.2 and 0.3, which 

are predicted by CPM and HOPM and these results are compared with numerical 

results of strip theory and experiment data by Journee (1992). The discrepancy at 

Froude number 0.2 shows that the peak value of prediction is under-estimated 

compared to that of measurement and result of Froude number 0.3 shows very little 

difference with experiment data. It is noted that the frequency of maximum added 

resistance occurs near similar frequencies of maximum heave and pitch motions. 

Further analysis was made to investigate individual components of added resistance 

as shown in Figure 7.55. The major contribution to the added resistance is from 

component I and IV, i. e. forces due to relative wave elevation and cross product of 

first-order forces and motions respectively. The component I is generally dominant 

in added resistance as discussed in the case of barge. The component IV is related to 

the first-order motions, i. e. heave and pitch, and large motions in vertical plane near 

non-dimensional frequency w, ' = 3.5 produce bigger contribution of component IV 

while other horizontal motions are equal to zero in head sea. 
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Figure 7.54 Non-dimensional second-order surge force for Wigley hull travelling at 

Froude number 0.2 and 0.3 in head sea 
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Figure 7.55 Non-dimensional components of second-order surge force for Wigley 

hull travelling at Froude number 0.2 and 0.3 in head sea 
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Second-order heave force and pitch moment in the vertical plane are presented in 

Figure 7.56. The results of estimated values in different Froude numbers follow 

similar trend to each other and the peak values are proportional to the forward speed. 

The peak values occur at the same frequency range with the case of surge added 

resistance. 
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Figure 7.56 Non-dimensional second-order heave force and pitch moment for Wigley 

hull travelling at various Froude numbers in head sea 
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7.6.3 Todd Series 60 

The Todd Series 60 ship model used in the previous section is again adopted to cover 

the applicability of actual ship hull form for the calculation of mean second-order 

hydrodynamic forces and moments. Numerical results obtained by 3-D theory are 

used for comparison with zero and forward speed cases (Chan, 1990). 

The zero speed mean drift forces and moments acting on the Todd Series 60 ship in 

various heading angles are calculated with three-dimensional translating pulsating 

source method and the results are demonstrated in Figure 7.57 through Figure 7.59. 

Since the second-order forces and moments resulted from the interference between 

incident, radiation and diffraction waves, the change of ship heading might cause 
different wave system and consequently the second-order forces and moments are 
dependent on the angle of incoming wave. 

Figure 7.57 shows the surge drift forces in various heading angles and the 

components in head sea. The sign of surge drift force changes according to the 

direction of incoming wave, for example, the sign at ýß =120° is opposite to that at 

,8= 
600, and the maximum value occurs in ß =120° . The value in beam sea is not 

equal to zero because of asymmetry of fore- and aft-body. The ship experiences peak 

value of drift force at different wavelength in each heading angle since the dominant 

component has its large value in a different wavelength. It can be reminded that the 

component I has dominant contribution to total surge drift force in head sea as 

mentioned in the case of barge. 

Figure 7.58 illustrates horizontal sway drift force and yaw moment acting on the 

stationary Series 60 ship in various wave headings. It is seen that there is no 

noticeable force or moment in the long wave regime since the lateral force is only 

significant for short wavelength. The lateral drift force increases dramatically as the 

wavelength decreases to ship length, i. e. L /A =1.0 . 
The lateral drift force and yaw 

moment are equal to zero for head and following sea and the sway drift force 
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increases and approaches its maximum value as wave heading changes towards beam 

sea. The lateral drift forces at the same difference of angle from beam sea, for 

example, pairs of ß =150° and 30° are slightly different in magnitude while their 

corresponding yaw moments have opposite signs and unequal magnitudes. This 

provides better prediction on the lateral drift force and yaw moment with respect to 

heading angle than the symmetry properties given by Newman (1967) for an 

arbitrary slender ship, which is freely floating in regular waves. Newman's far field 

method yields zero lateral drift force in beam sea because of the slender body 

approximation, together with the fact that the ship will follow the orbital motion of 

the wave itself in beam sea. 

Second-order heave force and pitch moment are demonstrated in Figure 7.59 for 

completeness of six-degree-of-freedom. These force and moment in vertical plane 

are not significant because corresponding hydrostatic restoring force and moment are 

large enough to ignore second-order terms. The discontinuity occurred near non- 

dimensional wavelength, L /A = 0.5 is caused by resonance of roll motion. 
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Figure 7.57 Non-dimensional second-order surge force in various heading angles and 

force components in head sea for Todd Series 60 at zero speed 

225 



F(2) 2 FI21 6 

20 ---- HOPM. Fn OOj=150.0 0.4 
HOPM., Fn-0 O, ß-1200 
HOPM, Fn 0 O, ß=900 

- -- HOP! N, Fn=tO O, ß=300 

  3-D Theory, Chan(1990), 0=150.0 . 
0.3 

" 3-D Theory, Chen(1990), ß-120.0 
10 " 3-D Theory, Chen(I990), 0-90.0 

" 3-D Theory, Chan(1990), ß-300 
I 0.2 

0.1 
0 

0 

-10 
" 

-0.1 

-0.2 
-20 

-0.3 

-- --- HOPM, Fn-0 0, (-1500 
------- HOPM, Fn-00.0-1200 

HOPM, Fn-0 0,0-% 0 
HOPM, Fn-0 0,0=30 0 

" 3-D Theory, Chan(1990), ß-I 50.0 
3-D Theory, Chan(1990), ß-120.0 

" 3-D Theory, Chan(1990), ß-0O0 
" 3-D Theory, Chan(1990), ß-30.0 

AA 

""0 1234-, "0 1234 

L/l L/X 
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Figure 7.59 Non-dimensional second-order heave force and pitch moment for Todd 

Series 60 at zero speed in various heading angles 
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The mean second-order hydrodynamic forces and moments acting on the Todd Series 

60 ship travelling at forward speed of Froude number 0.2 in various heading angles 

are presented in Figure 7.60 through Figure 7.62. It has been shown in the previous 

section that the magnitudes of motion responses with forward speed are generally 

larger than those at zero speed. Therefore it is essential to analyse the behaviour of 

motion responses for understanding the mean second-order forces and moments of a 

body with forward speed. 

Figure 7.60 illustrates added resistances in various heading angles and the 

components of added resistance in head sea for Todd Series 60 ship with Froude 

number 0.2. It has been shown that the present methods under-predict the pitch 

damping near pitch resonance frequency where the pitch motion response is very 

sensitive to the pitch damping. Considering the large influence of the pitch motion 

response on the component I, which is a dominant component in added resistance, 

pitch motion response plays very important role in the estimation of added resistance. 

Comparison with experiment data for added resistance in head sea shows generally 

good agreement except slight shift in peak value. In the short wave regime away 

from the peak of added resistance, the magnitude of added resistance reduces rapidly 

and the sensitivity to pitch motion response becomes insignificant. 

Figure 7.61 illustrates mean sway force and yaw moment acting on the Todd Series 

60 ship travelling at Froude number 0.2 in various wave headings. Generally the 

sway forces have similar tendency to the zero speed case, while the magnitudes start 

increasing in a longer wavelength, LIA=0.5 , compared to the wavelength, 

L/A =1.0 of zero speed case. The changes of sign of mean yaw moment in bow seas 

are caused by the component III, which has complicated relation with the motion 

responses. The oscillation in the short wave regime might be caused by the 

irregularity frequency phenomenon of present three-dimensional method. Good 

agreement with other 3-D method is shown in long wave regime while discrepancy is 

observed in short wave regime. 
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Mean second-order heave force and roll moment are demonstrated in Figure 7.62 for 

completeness of six-degree-of-freedom. The magnitude of roll moment increases as 

wave heading angle changes from head sea towards beam sea while vanishes in 

quartering seas. 
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Figure 7.60 Non-dimensional second-order surge force in various heading angles and 

force components in head sea for Todd Series 60 travelling at Froude number 0.2 
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Figure 7.61 Non-dimensional second-order sway force and yaw moment for Todd 

Series 60 travelling at Froude number 0.2 in various heading angles 
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Figure 7.62 Non-dimensional second-order heave force and pitch moment for Todd 

Series 60 travelling at Froude number 0.2 in various heading angles 
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7.7 Concluding Remarks 

A theoretical formulation to solve three-dimensional unsteady potential problem has 

been presented. To solve the equations of motion, corresponding hydrodynamic 

added mass and damping coefficients as well as the forces and moments acting on a 

ship moving in waves were calculated. Numerical computations of hydrodynamic 

coefficients and wave loads acting on a Wigley and Todd Series 60 ship have been 

carried out using CPM and HOPM. 

In order to secure the reliability of numerical tools developed based on three- 

dimensional theory, convergence test was carried out with various types of 

discretisation of Wigley hull form travelling at Froude number 0.2 in head sea. The 

influence of total panel numbers on the hydrodynamic coefficient in vertical mode 

was identified to be smaller than those in horizontal mode. 

Validation study for Wigley hull was then extended to various forward speeds with 

comparisons with two-dimensional theory and experimental data. General agreement 

of present method with experimental data was good. There are some discrepancies 

with the two-dimensional theory for the coupled hydrodynamic coefficients in 

vertical mode near the critical point r =1/4 and corresponding coefficients in 

horizontal mode have showed similar differences. Based on the comparisons of the 

numerical and experimental results for the Series 60 ship at zero speed, it might be 

said that the present three-dimensional pulsating source distribution technique is 

good to predict the wave exciting loads and hydrodynamic coefficients except roll 

damping. The calculation results of coupled hydrodynamic coefficients at zero speed 

have shown good agreement with the Timman-Newman's symmetry relationship. 

The effects of forward speed and wave direction have been demonstrated by CPM 

and HOPM adopting the three-dimensional translating pulsating source technique for 

the Todd Series 60 ship travelling at Froude number 0.2 with various ship headings. 

The influences of forward speed and ship heading play an important role in defining 
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general behaviour of ship motion in waves. The predicted values of hydrodynamic 

coefficients were in good accordance with the measured data although the 

estimations of roll and pitch damping values have noticeable discrepancies with the 

experimental data. The under-estimated roll and pitch damping coefficients have also 

caused large motion response in each mode of motion. For the roll case neglect of 

viscous effects in the formulation of potential theory could be the reason and the 

overall results may be improved by considering the interaction of steady and 

unsteady flow fields in the calculations of body boundary condition and pressure 

fields, where simplified methods have been adopted in the present study. 

The calculation results are demonstrated by both CPM and HOPM, which are 

adopting three-dimensional translating pulsating source technique and the 

comparisons of both methods have shown good agreement in overall frequency 

ranges. It has been shown that the forward speed correction normally used in two- 

dimensional strip theory does not adequately characterise the actual speed effects 

observed in the low frequency regions near the critical point r =1 / 4. In order to 

simulate the physical phenomena and obtain reasonable predictions the speed term in 

the linearised free surface condition adopted in the present method is essential. In 

general the three-dimensional translating pulsating source modelling gives better 

predictions of hydrodynamic coefficients for the Series 60 ship moving at Froude 

number 0.2 than the two-dimensional strip theory except for the irregular frequency 

phenomena in the high frequency region. The irregular frequency phenomenon, as 

addressed in section 5.5, is caused by ill-conditioned linear systems of integral 

equations with discrete approximation of given hull surface. 

In order to check computational efficiency, the computational time of each method 

are compared. The calculations were performed with 320 panels over hull surface of 

Series 60, for two Froude numbers and 30 frequencies covering low and high 

frequencies. It is noted that the calculation time of HOPM is much higher than CPM 

since the calculations of Green function over many source points in each element 

cause dramatic increase of the computational efforts. In terms of calculation time and 

efficiency, CPM seems to be better than HOPM. 
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Table 7.6 Comparison of calculation time between CPM and HOPM 

Method Fn ='0.0 Fn=0.2' 

CPM 6 [min] 15 [min] 

HOPM 46 [min] 105 [min] 

* Intel® CoreTM 2 Duo T7250 2.0GHz CPU and 4.0GB DDR2 Memory 

In order to consider the mean second-order forces moments acting on a ship 

theoretical formulation of the second-order hydrodynamic wave loads has been 

presented based on the first-order theory. Numerical calculations for the mean 

second-order forces and moments on a barge, Wigley and Todd Series 60 ship were 

performed by the aforementioned three-dimensional source distribution technique. 

The forces and moments are calculated using the near-field method, where pressure 

field are solved by direct integration of first-order terms without solving the second- 

order potential problem. 

The present methods for sway and yaw drift force and moment acting on the barge at 

zero speed agree very well with Pinkster's experimental data. The theoretical 

prediction of added resistance for Wigley with various Froude numbers in head 

waves, calculated by CPM and HOPM, also agree well with each other although 

there are some differences with the measured data near the peak values of the added 

resistances. The effects of ship heading and forward speed on the mean second-order 

forces and moments for Todd Series 60 ship have been demonstrated. For zero speed 

the lateral drift force on the Todd Series 60 ship in beam sea has larger value than 

those in other wave directions. The maximum values of added resistance in head sea 

increase with respect to forward speed. It has been noted that the mean second-order 

hydrodynamic wave loads are more important in the short wave regime. 
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Chapter 8. A Manoeuvring Mathematical Model in Waves 

8.1 Preamble 

Although manoeuvring and seakeeping theory have many similarities in the point 

that both theories describe the motion of a ship, they have been studied in a different 

manner in the conventional researches. Manoeuvring theory is associated with 

mainly horizontal plane motion of a ship, i. e. sway and yaw, which is restricted in 

calm water and the motions in the vertical plane motions, i. e. heave and pitch, are 

often neglected. Because of this basic assumption, the hydrodynamic coefficients are 
found using extrapolation from the data obtained in PMM tests. Moreover 

manoeuvring theory is restricted to an assessment of the stability of a vessel from a 

prescribed reference motion, i. e. turning or zig-zag manoeuvre, without taking into 

account the dynamic conditions of a ship and influence of a random wave. 

Seakeeping theory, however, assesses the operation of a ship at a specific speed and 

heading in a sinusoidal regular or irregular wave. To solve theoretically the response 

of a ship to the wave disturbance, it is general to use potential theory with the 

assumption of inviscid and irrotational fluid flow around body surface. The fluid 

forces are expressed in terms of added mass and damping coefficients depending on 

wave frequency or encounter frequency. 

It has been noted that the object of this thesis is to develop an integrated 

mathematical model to describe general six-degree-of-freedom motion in a seaway. 

This integrated model should have its fundamental base on both manoeuvring and 

seakeeping theory and thus some skills are needed to convert values in the one theory 

to those in the other theory. The hydrodynamic coefficients, for example, calculated 

from potential theory will be converted to appropriate form for the integrated 
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mathematical model. Furthermore the axis systems in both theories are also different, 

which means adequate axis system should be chosen and axis transform between two 

theories should be considered. The manoeuvring equations of motion in a seaway are 

expressed mainly in terms of convolution integral, which was constant in the 

conventional theory. Each convolution integral term contains impulse response 

function, which is calculated by inverse Fourier Transform. External forces in the 

equations of motion are composed of hull force, wave excitation force and rudder 

force. 

For the validation of integrated formulation for six-degree-of-freedom manoeuvring 

equations of motion, a benchmark test covering various speed ranges and initial 

conditions in astern wave will be carried out and the numerical results will be 

compared with measurement data. Furthermore, typical manoeuvring simulations 
like turning circle and zig-zag manoeuvre tests are to be carried out. To identify the 

wave effects on the manoeuvring trajectory and motion, the numerical simulation 

with various conditions of incoming wave are going to be performed. The predicted 

results will be then compared with traditional calm water calculation and the effects 

of individual wave condition, which are wavelength, heading angle and wave 

amplitude, will be investigated separately. 
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8.2 Mathematical Model 

The aim of this section is to formulate six-degree-of-freedom equations of motion 

with impulse response function to describe general manoeuvring motion in a seaway. 

Then six-degree-of-freedom equations of motion adopting impulse response function 

which explains radiation forces will be formulated. For wave exciting force and other 

external forces traditional method used in MMG manoeuvring model will be still 

adopted. 

8.2.1 Coordinate Systems 

To describe the motion of a ship travelling in calm water or wave, it is convenient to 

refer the rigid body motion to both a fixed coordinate system and various types of 

moving coordinate systems with the body. Because the object of this study is to unify 

mathematical models in the conventional ship motion theory, it is required to define 

coordinate systems, which will be used in the unified theory and compare them with 

coordinate systems in the conventional theory. 

The space-fixed coordinate system O- XOYOZ0 and body-fixed coordinate system 

G- xyz are illustrated in Figure 8.1. The orientation of this space-fixed coordinate 

system is such that O- X0Yo plane coincides with the undisturbed free surface, the 

OX,, axis lies in the direction of initial ship heading and the OZ0 axis is vertically 

upward. Wave is defined in this coordinate system. 

The origin of body-fixed coordinate system G- xyz is located in the centre of 

gravity with positive x-axis pointing to bow, y-axis pointing port and z-axis pointing 

upward. This coordinate system is similar to the one used in seakeeping theory 

except the location of origin, which is located in the undisturbed free surface. The 
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dynamics of ship in waves will be presented in this upright body-fixed coordinate 

system. 

zo 

8.2.2 Dynamics of a rigid body 

x 

Consider a body-fixed coordinate system A- xyz rotating with an angular velocity 

CO - [ws, wy, c)Z ]T about a space-fixed coordinate system 0- XYZ. If the density of 

the body is pm , the mass of the body is defined that integral of mass element as 

m=ý pmdV =f dm (8.1) 

The mass will be assumed to be constant in time, i. e. 
ýt 

m=0. From the origin A 

of body-fixed coordinate system to the body's centre of gravity can be defined as 

rr= 
1 Jr, dm 
m 

The body's moment of inertia referred to A- xyz can be defined as 

(8.2) 
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Figure 8.1 Space-fixed and body-fixed coordinate systems 
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Figure 8.2 A body moving in a space-fixed coordinate system 

I -Ix, -Ixz 
Iq = -I,. ,,, -In (8.3) 

-I. -Iry I. 

where I,,,, In, and Ia are moment of inertia about x, y and z axes respectively 

and others are products of inertia defined as 

(y' + z2 )dm 

(z2 + x2 )dm 

_ (x2 + y2 )dm 

J)gdm 

In=try= jyzdm 

1= Iý _ zxdm 

(8.4) 

For later use vectorial expression of inertia matrix with angular velocity co can be 

expressed as 

IAW= 1r, x(coxr, )dm (8.5) 

When deriving the equations of motion it will be assumed that the body is rigid and 

the space fixed coordinate system is inertial. The first assumption eliminates the 

consideration of forces acting between individual elements of mass. 
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To calculate time derivative of an arbitrary vector b in both space-fixed and body- 

fixed coordinate system following expression is required 

Db=d b+coxb=b+o xb 
Dt dt 

(8.6) 

where 
Dt 

b and dt 
b are time derivative of vector b in the space-fixed and body- 

fixed coordinate system respectively. It can be noticed that angular velocity is equal 

in both coordinate systems as 

Dw=- 
co + (0 XW 0) (8.7) 

8.2.3 Conservation of momentum 

In dealing with ship motion it is required to develop the fundamentals of rigid body 

dynamics. According to the Newton's laws of motion, the force F and moment Mo 

acting on a rigid body having six-degree-of-freedom motion can be expressed with 

conservation of linear and angular momentum respectively as follow 

D L=F and 
D 

Ko=Mo 
Dt Dt 

(8.8) 

where linear momentum L and angular momentum KO with respect to the origin of 

space-fixed coordinate system is defined as follow 

L=v; dm 

Ko = ro; x v; dm 
(8.9) 
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The translation motion of a rigid body can be explained using conservation of linear 

momentum as described in equations (8.8) and (8.9). Position vector of volume 

element can be decomposed as illustrated in the Figure 8.2. 

rO = rA + r; (8.10) 

Then velocity vector can be expressed as 

DDD 
v'-Dtr°i-DtrA+Dtr' (8.11) 

Using relation in equation (8.6), each term in equation (8.11) can be expressed as 

D 
Dtrý -VA (8.12) 

Dr. 
= 

dr. 
+ooxrj=cwxr' . (8.13) 

Dt ' dt ' 

Hence 

VI=VA+toxr; (8.14) 

Applying equation (8.14) to equations (8.8) and (8.9) yields 

D 
-I(vA+coxr; )dm=F (8.15) 
Dt 

Once again applying the relation in equation (8.6) to (8.15) gives 

LvAdm+xvAdrn+xrdrn+iwx(oxrj)drn=F (8.16) 

Finally substituting equations (8.1) and (8.2) into equation (8.16) gives 
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m[vA+wxVA +wxrG+wx(wxrG)]=F (8.17) 

It should be noted that time derivative used in equation (8.17) is defined in the body- 

fixed coordinate system. If the origin A of the body-fixed coordinate system is 

chosen to coincide with the centre of gravity G, i. e. rG _ [0,0, Of 
, equation (8.17) is 

simplified as 

m[vG +WXVG]=F (8.18) 

A similar approach can be used to identify rotational motion of a rigid body. Angular 

momentum KA with respect to the origin of the body-fixed coordinate system can be 

defined as 

KA = 
J, r; x v; dm 

_ 
L(ro; 

-rA)x vidm 
(8.19) 

_ 
J, r01xv1dm- J1, rAxvdm 

Ko -rAxL 

Time derivative of equation (8.19) can be expressed as 

Dt 
KA 

Dt 
K° -9 (rA x L) 

(8.20) 

=DKo-DrAxL-r,, xDL Dt Dt Dt 

Applying equation (8.8) to equation (8.20) gives 

DKA=MO-vAxL-rAxF 

Dt 
="A -VAxL 

(8.21) 
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where MA is moment relative to the origin of the body-fixed coordinate system and 

the relationship between MA and Mo is defined as 

Mo=NZA+rAxF (8.22) 

Furthermore the second term in equation (8.21) can be rewritten using equation (8.9) 

as follows 

VAxL=VAxIv; dm 

= VA x 
j, (vA +cox r; )dm 

(8.23) 

=VAxLcoxr; dm 

=mvAx(wxrG) 

Similarly left-hand side of equation (8.21) can be rewritten as 

KA =Jr; x v; dm 

_ 
jrx(vA+Oxr. )dm ; (8.24) 

_ 
LrixvAdm+ J, r; x((o xr, )dm 

= mrG x VA + 'AWO 

where definition of moment of inertia in the (8.5) was used. Time derivative of 

equation (8.24) can be written as 

D 
KA =D (IA0 + mrc x vA) 

Dt Dt (8.25) 

=lAW+Co x(IA()+m(c0xrG)xVA +mrGx(vA+()xvA) 

Finally substituting equations (8.23) and (8.25) into equation (8.21) and use of 

general vector property, ax (b x c) = -(b x c) x a, gives 
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IAO)+a)x(IAw)+mrG x(iA +(o x VA) =MA (8.26) 

Again if the origin of the body-fixed coordinate system is chosen to be in the centre 

of gravity equation (8.26) is simplified as 

Iw+cox(Ico)=MG (8.27) 

where I represents moment of inertia matrix defined relative to the centre of gravity. 

It should be noted that general hull form is symmetric about xz plane so products of 

inertia Imo, = I, =0 and I, = Imo, =0. 

8.2.4 Equations of motion 

In the previous section conservation of linear and angular momentum has been used 

to obtain equations of motion relative to arbitrary origin of body-fixed coordinate 

system. To simplify the equations of motion the origin of the body-fixed coordinate 

system will be taken at the centre of gravity. In addition the axis is assumed to be 

principal axis of inertia in order to simplify the momentum equation. Then the 

equations of motion are finally expressed as 

m[v+wxv]=F 
I6+wx(Iw)=M 

(8.28) 

If we consider the translation velocity v= [u, v, w]', angular velocity co = [p, q, r]', 

and external force F= [X, Y, X ]T 
, and moment M= [K, M, NIT in the body-fixed 

coordinate system and substitute corresponding components to equation (8.28), 

following expressions for the equations of motion with origin at the centre of gravity 

are acquired. 
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m(ü+wq-vr)=X 

m(v+ur-wp)=Y 

m(iv+vp-uq) =Z 
Iý p+ (II - I), 

Y)qr - 
(i + Pq)Iu =K 

(8.29) 

Iyy 4+(j - Ia ) rp + (P2 - r2)j zx =M 
I. r+(In, -I )Pq+(rq-P)I 

,=N 

Coupled terms between horizontal and vertical planes in equation (8.29) can be 

neglected and finally equations of motion can be expressed as 

m(zi-vr)=X 

m (v + ur) =Y 

m(w-uq) =Z 
Imp_Irr-=K (8.30) 

I3, 
Yq = Al 

Iar -Ip=N 

The external force terms are decomposed with several components and further 

explained in the following section. 
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8.3 Comparison of Conventional Theories 

8.3.1 Coordinate systems 

Figure 8.3 illustrates space-fixed coordinate system 0- Xo)oZ0 and body-fixed 

coordinates system A- 4'K used in seakeeping theory. The origin lies on the 

undisturbed free surface as well as midship of the body, which gives symmetric hull 

form along A- «« plane. 

Zo 

0 

7 

Figure 8.3 Conventional coordinate systems in seakeeping theory 

Space-fixed coordinate system 0- XOYOZ0 and body-fixed coordinate system 

G- xyz used in the conventional manoeuvring theory are illustrated in Figure 8.4. 

Generally positive directions of Zo and z axes are set to point downward in these 

coordinate systems. 

0 Xo 

Yo x 

Y 
z 

Zo 

Figure 8.4 Conventional coordinate systems in manoeuvring theory 

To be compared with mathematical model of seakeeping theory this conventional 

coordinate representations need to be converted to upright coordinate systems as 
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illustrated in Figure 8.1. Even if both coordinate systems are chosen so that Zo and 

z axes point upward with right-handed rule, all the mathematical formulation in the 

foregoing coordinate systems are still valid except the change of signs in the forces 

and motion variables, which are explained by Bishop and Price (1981). 

8.3.2 Kinematics relationship 

Kinematics conditions for velocity and angular velocity components in conventional 

theories can be related by identifying the relationship of motion variables between 

two coordinate systems. Since it is difficult to compare motion variables directly, it is 

required to transform motion variables defined in the body-fixed coordinate system 

to those in the space-fixed coordinate system. The velocity and angular velocity 

components in body-fixed axis systems are related with transformation matrices 

T, (rl) and T, (q) as 

U=T, (i)u 

SL = T, (TI)CO = T, (q)T2 (i1)q 
(8.31) 

where ii = [O, 9, yi]T is Euler angles, U and SL are velocities and angular velocity 

vectors referenced to space-fixed coordinate system, and u and w are in body-fixed 

coordinate system respectively. Transformation matrices used in equation (8.31) are 

defined with Euler angle as follows, 

cosyrcos6 
(-sin iii cosý (sin yrsin0 

+cosyrsinOsinO +cosyrsinOcosý 

Cosyrcos0 -cosyrsin0 sinyrcos9 (8.32) 
+sinyrsinOsino +sinyrsin©coso 

-sing cos0sin0 cosOcosq 
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10 -sinO 
T2(i) =0 cos0 cos0sin0 

0 -sinq$ cosOcosq$ 

If the Euler angles are assumed to be small these matrices reduce to 

1 -w 010 -0 
T, (11) = yr 1 -O and T2(11) =010 (8.33) 

-0 010 -O 1 

First motions defined in body-fixed coordinate system will transformed to the space- 

fixed reference system. If the motion variables are assumed to be small quantities 

about equilibrium state with steady advancing speed U, within the limit of small 

perturbation the products of small quantities are neglected. Two velocity vectors 

u= [U + u, v, w]T and co = [p, q, r]T can be transformed using equation (8.31) and 

(8.33) as follow 

U+u p0 
U= v+ Uyr and il =q=e (8.34) 

w- UO r yi 

Velocity and angular velocity vectors of small quantity can be rewritten as 

up0 

Uo = v+UV and 120 =q=9 (8.35) 
-w-U6- r 

-Vi 

If yaw motion is assumed to be sinusoidal, yaw angle V can be expressed as 

yr = yro sin(wt) . Then yaw angle and acceleration are related using encounter 

frequency as follows 
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r= yr = o)eyro cos(wet) 

r=fý/=-a)Qiý'0Slll(CAet)=-C)eyi 
(8.36) 

Similarly pitch acceleration is expressed as 4= -weg . Consequently velocities in 

equation (8.35) can be rewritten as follow 

u 
Uo = v-(U/we)r 

w+(U1o )q 
and 120= q=9 

r yr 

(8.37) 

From equation (8.35) acceleration terms are found easily as 

P 
to v+ Ur and ho= q=B 

iv-Uq r yi 
(8.38) 

To compare motion variables and hydrodynamic forces represented in the 

conventional coordinate systems, further relationship between two coordinate 

systems is required. As illustrated in Figure 8.5, origin A of body-fixed coordinate 

system used in seakeeping theory lies on the undisturbed free surface and origin G 

of upright body-fixed coordinate system in manoeuvring theory is located in the 

centre of gravity, where longitudinal and vertical distances from A to G are defined 

as , and 'G respectively. 

A) 

G 

ý ýc 

Figure 8.5 Relationship of body-fixed coordinate systems used in seakeeping theory 

and present mathematical model 
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The motion vectors 4T = [ý,, ýZ, 43]T and 4R = [ý4, ý5 , ý6IT are defined as small 

translations and rotations referenced to A- ýr74' coordinate system. Applying 

equation (8.7) gives relationship of angular velocities can be expressed as follows 

SLo = 4R and Sýo = 4R (8.39) 

Similarly velocities in the seakeeping theory can be expressed as 

Up = 
4T + 4R x rAG (8.40) 

where rAG =[Z is position vector of centre of gravity in 

A- 4i7, " coordinate system. When the hull form is symmetric about ý plane, y- 

component of rAG is zero, i. e. 77 G=0. When the products of small quantities are 

ignored again, the relations of velocities and accelerations are finally as 

ý1 
- '; Gý51 - 

ýGS 

Uo =2+ ýGea + 
Geh and 

to 
=z+ ýGýa +G6 (8.41) 

e3 
-4 75 

ý3 
-Ge5 

Using equations (8.37) to (8.41), kinematics relations between the manoeuvring and 

seakeeping theories adopting same upright body-fixed coordinate system for motion 

variables are as 

Up 
= V-(U/ o )r = 

e2+ýGý4+ 
G6 

w+(U/we )q e3 -Ges 
(8.42) 

u ýi ýGý5 
Ua = v+ Ur = ;2 +ýG 4 +ZG 6 

w- U9 (3 - Gý5 
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P0 ýa 
120= q=9= es 

r e6 

Pa 

and 120 = cj =B =s 
r ýf 6 

By rearranging equation (8.42) it can be rewritten as follows 

u+ 4Gq 

2 = V-(U/COe)r-4GP- Gr 

3 w+(U/we)q+ Gq 

+4, A 

ý2 = +Ur-ZGP- Gr 

s w-Uq+ 44 

(8.43) 

(8.44) 

The relationship of forces and moments acting on the ship in manoeuvring and 

seakeeping theory can be identified in a similar manner. The forces and moments 

acting on the ship during manoeuvring and seakeeping motions referenced to upright 

body-fixed coordinate systems can be related using position vector rGA , which is 

defined from centre of gravity G to point A located at undisturbed free surface, 

X F, 

Y= Fz 

Z F, 
(8.45) 

K F4 F, F, - Z7GF2 

M= FS + rGA x FZ = Fs -+' 
ZGF, + 4F3 

N F6 F3 F6 - 
ZGF2 

It should be noted that aforementioned comparison was made on the basis of 

perturbation from equilibrium state, therefore the relationship between two motion 

theories are only valid within linear boundary. The identified relationship will be 

later used to transform hydrodynamic data set obtained in seakeeping theory to 

integrated mathematical model. 
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8.4 Impulse Response Function Representation 

The aim of this section is the formulation of forces and moments acting on a ship, 

which departs from a steady motion. It is generally assumed that the forces and 

moments are dependent on the small quantities of perturbation from equilibrium state 

at specific moment. This is the basis of formulating fluid forces acting on a ship 

using Taylor series expansion, which provides simple mathematical descriptions of 

fluid forces and moments and it allows the use of equations of motion with constant 

derivatives. 

Although this formulation is widely used in the studies of manoeuvring theory and 
directional stability, the weak point might arise because the motion at any instant can 
be determined partly by previous motion not only by just current motion. In other 

words the forces and moments acting on a ship depend on the history of motion and 

conventional manoeuvring theory is not applicable to represent its effect. Especially 

to describe the general motion of a ship in a wave it is required to consider this 

`memory effect' into equations of motion. In this section theoretical formulation to 

describe arbitrary motion which include memory effects. 

The use of a convolution integral to describe fluid actions acting on the vessel allows 

for the incorporation of fluid memory effects. The inclusion of such memory effects 

is important, as the flow conditions at a particular instant cannot uniquely determine 

the fluid forces and moments occurring at that instant. This problem was discussed 

by many researchers like Cummins (1962) and by Bishop et al. (1973a and 1973b). 

The latter developed a rigorous mathematical model to examine manoeuvring 

experiment data and to express fluid force in a systematic way. 

It was shown that any fluid force could be expressed in terms of Volterra convolution 

integral within the bounds of linear theory. In its most general form, for input v(t) 

and output f(t), the convolution integral takes the form 
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f (t) _L h(r)v(t - r)dr (8.46) 

where the impulse response function h(t) is such as 

h(r)=0 z<0 
h(r)v(t - r) =0r>t 

(8 47) 

The impulse response function used to describe the fluid actions are determined 

using Fourier transformations of the frequency domain hydrodynamic coefficients. It 

has been shown that the relationship between the impulse response function and the 

frequency domain transfer function is given by following equation, 

h(r)_? f B(w)cos(wr)dco 

2 
(8.48) 

-- 
f wA(w)sin(wz)drw 

7r 

This relationship enables to develop mathematical model of a ship motion using 

existing frequency dependent hydrodynamic coefficients data. Details to calculated 

equation (8.48) can be found in the Appendix C. 

The hydrodynamic coefficients data used in equation (8.48) often tend to approach a 

non-zero constant value asymptotically as the frequency increases to infinity. As a 

consequence, there arise difficulties in calculating impulse response function. Bailey 

(1999) showed the form of impulse response function to overcome these difficulties 

using asymptotic value of hydrodynamic coefficients. For example, the asymptotic 

value of added mass and damping coefficient are denoted by A(oo) and B(oo) 

respectively, and the impulse response can be expressed as 

h*(r) =? f B*(w)cos(wr)d v 
(8.49) 

_ -? wA'(co)sin(wr)dto 
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where 

A'(&) = A(w) - A(oo) 

B'(w) = B(t)) - B(oo) 

Now these integrals in equation (8.49) can be calculated easily because both 

coefficients tend to zero as frequency increase to infinity. Finally the hydrodynamic 

force is composed of the term with asymptotic value of hydrodynamic coefficients 

and convolution integral term representing memory effect. For convenience, 

superscript used to denote asymptotic value will be removed in the later expressions. 

f (t) =f h(r)v(t - r)dr 
(8.50) 

= -A(oo)v(t) + B(oo)v(t) +[ h`(r)v(t - r)dr 
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8.5 External Forces 

When a ship travels in a wave several external factors have an influence on the 

dynamic behaviour. Among these dynamic factors wave force, hull force, 

manoeuvring force, rudder and propeller force are taken into consideration in the 

external forces because they are most significant components for motion of a ship in 

a wave. The forces and moments acting on a body are divided as 

X =XW +XH +XM +XP +XR 

Y=Yw +Y� +YM + YR 

Z=ZW+Z�-mg 

K= KW + KH + K(q3) 
(8.51) 

M=MW+M� 

N=Nw+N�+NM+NR 

where subscript W denotes external forces due to existence of wave, which include 

hydrostatic restoring force, Froude-Krylov force, diffraction force and wave drift 

force of a incoming wave, H hull force due to memory effect, and M manoeuvring 

force component. P and R are propeller and rudder force respectively and K(c) is 

viscous roll damping moment. 

8.5.1 Hydrostatic and Froude-Krylov forces 

There exist several force components due to the existence of wave when a ship 

encounters a wave. Among these components, the most important parts could be 

divided as hydrostatic restoring force and hydrodynamic excitation (Froude-Krylov) 

force. In the time domain simulation of a ship in a wave, it is important to consider 

these two forces because the instantaneous underwater hull surface significantly 

differs from the mean wetted hull surface and they have an important effect on the 

motion of a ship. 
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The Froude-Krylov force is defined as the force that would result from the 

integration of the incident wave pressure over the wetted surface of the ship, where 

the pressure is imagined to be undisturbed by the presence of the ship. In seakeeping 

theory, this integration is carried out over the mean wetted hull surface, but in the 

present study, the integration is performed over the instantaneous wetted hull surface 

at each time step, taking into account the large motions of the ship and its exact 

intersection with the wave surface. 

The hydrostatic force F1s and Froude-Krylov force FFK at the point (X0, Y0, Zo) 

defined at the space-fixed coordinate system are expressed with static pressure pHs 

and dynamic pressure pFK as follow 

FHS + FFK = 
JS 

(PHS + PFK )nds (8.52) 

ate, pHs = -PgZ0 and PFK = -P at 
(8.53) 

where 0, is incident wave potential, which can be expressed with the sinusoidal 

wave elevation ; as 

g4'0 eu° sin[k(Xo cosy + Yo sin p) - wt] 
co (8.54) 

ý' _ 4'o cos[k(X0 cos p+ Yo sin g) - tot] 

The dynamic pressure is usually zero at the undisturbed water surface Z. =0 in the 

linear seakeeping theory, but it should be zero at the free surface Zo =ý. For this 

reason, it is required to stretch the coordinate system with ZO = ZO -f (ZO) . It can be 

assumed as f (Zo) = ýek(ZO which satisfies three conditions ff (-oo) =0 

and 
ýý 

a e'hz°. Then dynamic pressure can be expressed as 
0 
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PD = Pgýoe'z cos[k(X0 cosp + Y. sinp) - wt] (8.55) 

= Pgý', e, tz 

The dynamic pressure in equation (8.55) becomes zero at the free surface and 

decreases exponentially in the deep water. 

8.5.2 Diffraction force 

The diffraction force results from scattering action of incident wave on the moving 

body in a seaway. In the potential theory, wave exciting force, which is subdivided 

by Froude-Krylov and diffraction terms, can be obtained by solving diffraction 

problem together with radiation problem in frequency domain. While Froude-Krylov 

force can be evaluated from direct pressure integration over instantaneous wetted 

hull surface in the wave, it is very time consuming to solve diffraction problem in 

each time step and change of heading angle during ship motion should be considered 

in time domain. As practical manner to consider diffraction force together with the 

change of incoming wave direction, diffraction force evaluated in the frequency 

domain will be utilised and updated in the time domain calculation as function of 

wavelength A and incident wave angle p as follows 

FDiff = 4o . f(U(,, A, P) (8.56) 

8.5.3 Added resistance 

The added resistance, which is obtained from second-order wave force in seakeeping 

theory, could be considered in regular and irregular waves. Under regular waves, the 

forces are always assumed as time-independent constant values as discussed in the 

Chapter 7, while they could be treated as a linear superposition of regular 

components in irregular or random waves. 
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For practical purpose the second-order forces are considered in surge, sway and yaw 

modes only since their contribution to remaining modes of motions are not 

significant in magnitude. Since it is not possible to calculate exact drift force acting 

on the ship in each time step, some factors to decide current drift forces are 

considered. The second-order forces can be assumed as proportional to the square of 

incident wave amplitude, the total drift forces can be expressed as follows 

FAdd 
-`; 0 "f(p, 

A, FN) (8.57 

where p is incident wave angle and A is wavelength. 

Finally total wave force can be expressed as sum of the aforementioned forces as 

follows, 

Fw =FHS + FFK + FDi 
-F 

FAdd (8.58) 

8.5.4 Hull force - memory effect 

Hull force component is mainly due to the frequency dependent motion of a ship in a 

wave. In the conventional manoeuvring theory the effect of wave is not always 

considered. The motion of a ship in a wave, however, depends on the encounter 

frequency of incident wave and its effect should be considered in the formulation of 

hull force. Although the formulation of hull force will starts from conventional 

constant form, frequency dependent terms will be introduced and functional 

representation will be developed. 

If sway force is taken for example, sway radiation force FR in the seakeeping theory 

can be expressed with encounter frequency of wave w as follows 
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F2R = -"22 
(0»ý2 

- 
A24 (wg4 

-A26 
(0)6 

(8.59) 

-B22 
(to)e2 

- 
B24 «0 )ý4 

- 
B26 (a»ý6 

Similar expression for sway hull force can be taken 

YRad =Yv(w)v+YP(w)p+Y; (w)r+Y, (w)v+Yp(w)p+Y, (w)r (8.60) 

Using relationship given in equations (8.43), (8.44) and (8.45), the sway forces in 

equations (8.59) and (8.60) are compared directly and the relationship between 

frequency dependent hull force derivatives and hydrodynamic coefficients in 

seakeeping theory is identified as follows 

yv(Ü3) _ -A22(03) 

yv(0» _ -B22 (w) 
yp(CV) _ -{A24(ß) - '; G"22(Ü)} 

(8.61) 
yp ((A) _ -{B24 

(0) 
- 

ýG B22 (w) } 

yi(CD) = -{A26 
(Co) 

- 
ýG"22 (6) 

- 
(U / CU 

2 )B22 (0)} 

Yr(ev)=-{B26(w)- GB22(CO+UA22(w)} 

The frequency dependent sway hull force is now identified with hydrodynamic 

coefficients in the seakeeping theory. Additional consideration is, however, required 

in the formulation of hull force since the nature of manoeuvring motion is different 

from that of seakeeping motion. Ship heading is often fixed during seakeeping 

motion since main focus of seakeeping theory is laid on the calculation of motion 

amplitude in a given wave direction. On the other hand ship heading in the 

manoeuvring motion changes with the deflection of rudder and relative wave 

direction to the ship might affect the hull force since encounter frequency is function 

of heading angle. In order to consider these effects, impulse response function 

representation can be adopted as discussed in the foregoing section. 

Thus corresponding sway hull force, which is coupled with roll and yaw motion, can 

be expressed as 
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Y� = Yv(°o)v(t) + YP (°°)P(t) + Y: (°o)r(t) 

+Y�(oo)v(t) + Yp (°o) p(t) + Y. (°°)r(t) 

+ýy, (z)v(t-r)dr+ jyp(z)p(t-r)dr (8.62) 

+ y, (r)r(t - r)d r 

where oo denotes asymptotic value of frequency dependent hull force derivative as 

frequency goes to infinity. 

The impulse response functions in equation (8.62) can be obtained from following 

expressions 

Yv(z) _f Yv(w)cos(aor)dme 

2 faný(»)sin(ar)da 
7r 

yp(r) _f , 
(w)cos(or)dw 

=-2 wYP (w) sin(wz)dw 
z 

Y, (T) _ Y, (w)cos(wz)dw 

2 f co Y; (a)) sin(a r)d w 

(8.63) 

where y, (rr) , yp (r) and y, (r) denote impulse response functions corresponding to 

the motions defined in body-fixed coordinate system. 

Finally the frequency dependent hydrodynamic forces are expressed in functional 

form, such that they are applicable to arbitrary motion and dependent on the history 

of the motion. Other forces and moments can be formulated in a similar way and 

these will be substituted to equations of motion as a hull force including memory 

effect of fluid action. 
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8.5.5 Manoeuvring force 

In the traditional manoeuvring theory, the manoeuvring forces are expressed by 

higher-order Taylor series expansion and corresponding coefficients are acquired 

from experiment in calm water such as PMM and Rotating Arm test. Manoeuvring 

force component is due to mainly viscous effect of the flow and should be considered 

in the equations of motion because it has significant effects on horizontal plane 

motions and trajectories during manoeuvring motions even in calm water. 

When experiment data are available, they can be used directly in estimating 

manoeuvring coefficients. In most cases, however, they can be estimated from 

empirical formulae using principal dimensions of a ship. Empirical formulae might 

not give accurate results, but it is very practical to use especially at the early stage of 

design. The manoeuvring forces are considered for surge, sway and yaw motions and 

linear as well as non-linear coefficients are included. 

XAMN = XX, vr -XRES(u) 
Y�AN = Yvv + Yrr +Y IvIv IV +Y Jrjr IrI +Yvvr + Yvrr (8.64) 

NMAN = Nov + Nrr + NIvlv vI +Nrlrlr (rI +Nvvr + Nv�vrr 

There are several empirical formulae available for the estimation of manoeuvring 

coefficients in equation (8.64) and details are found in the Appendix C. 

8.5.6 Propeller force 

Since the hydrodynamic force produced by propeller acts only in surge direction, the 

mathematical model for thrust is expressed using thrust coefficients K,. as 

Xp= (1- t)T = (1- t)pn2DPK,. (Jp) (8.65) 
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where 

t : Thrust deduction factor 

T : Propeller thrust 

Dp : Propeller diameter 

n : Propeller revolution 

Jp = Ucos ß(1- wp) l(nDP) 

The effect of manoeuvring motion on thrust deduction factor t which represent 

interference between hull and propeller is known to be small. It can be assumed to be 

constant to some extent of motion, but pertinent correction should be made as the 

change of propeller force becomes notable. 

To calculate effective wake fraction wp, it is required to consider the change of wake 

due to the sway and yaw during a manoeuvring motion as well as straight forward 

motion of a ship. It is, however, difficult to find general expression equivalent to any 

motion states since the change of wake is also dependent on both the shape of hull 

surface and loading of propeller. Further details on the calculation of the propeller 

force are described in Appendix C. 

8.5.7 Rudder force 

The hydrodynamic action of rudder can be expressed with normal force acting on the 

rudder FN in the flow field which consist of the main flow accelerated by propeller 

in longitudinal direction and the side flow due to yaw motion in the rudder location. 

The mathematical model for terms on rudder forces are assumed as 

XR = -(1 - tR )F,, sin 8 

Y. =-(I+ ay )FN cos ,5 
NR = -(XR + aHXH )FN cos 5 

(8.66) 
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where 

tR : Reduction coefficient of rudder force 

aH Ratio of additional lateral force 

x� Distance between CG and the centre of additional lateral force 

XR : Distance between CG and the centre of lateral force 

FN : Normal force acting on rudder 

9 Rudder angle 

The normal force FN acting on rudder proposed by Kijima (1990) is explained in 

Appendix C. Approximate formulae for each coefficient given by Hasegawa (1980) 

can be expressed as follow 

1- tR = 0.28CB+0.55 

aH = 0.679 -1.51CB + 1.44CB 

XH =-(0.4+0.1Cß)Lpp 

(8.67) 

The main role of rudder action is to change or maintain the heading of ship and a 

good performance of rudder control can be secured from adequate design and use of 

automatic control system to perform rudder steering in any sea environments. So- 

called autopilot control for course-keeping is normally based on the measurements of 

heading angle and rate of heading change from equipments on board such as 

gyrocompass. It is common practice to use proportional, derivative and integral terms 

in the control law and standard proportional-differential (PD) type is employed in the 

present study as follows 

KP (y/ 
- yJd)+ KRV/ =6+ tr(S (8.68) 

where yrd is the desired heading angle, K, is proportional gain constant, KR is 

differential gain constant and t, is the time constant in rudder activation. Further 

effects of autopilot can be found in Fossen (1994). 
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8.5.8 Roll damping component 

In order to describe roll motion in various wave conditions, exact estimation of roll 

damping term is very important. Since the roll damping term considered in frequency 

dependent hull force has been estimated by potential theory, viscous effect of roll 

damping should be included in the numerical model. 

For the detailed expression of roll damping components, many different models can 

be used. When model test data is not available, simple linear damping term is often 

estimated from empirical method proposed by Himeno (1981) as follows, 

K(q) = (BF + BE + Bw + BL + BBK)q3 (8.69) 

Each damping component in equation (8.69) represents following contributions: BF 

= skin friction, BE = eddy making, Bw = wave making, BL = lift, and BBK = bilge 

keel. 

In order to represent highly non-linear behaviour of large amplitude roll motion 

exceeding linear boundary, non-linear expressions can be chosen as follow 

K(c) = b, q3 + b29101 : linear plus quadratic (8.70) 

K(q3) = b, q$ + b3O3 : linear plus cubic 

A quadratic term in equation (8.70) is physically based on the frictional contribution 

of the roll damping, but the expression of the absolute value of roll velocity may lead 

difficulty when roll motion is solved in an analytic manner. Generally speaking it is 

not possible to decide which non-linear model is better to obtain the solution of roll 

motion equation. 
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8.6 Validation of Numerical Model 

In order to validate the theories and numerical techniques developed in the previous 

sections, a comparative study will be performed to compare numerical calculations 

with experimental measurements. The experiment data to be used in the validation 

process was obtained from ITTC benchmark test, which was co-ordinated by the 

ITTC Specialist Committee on Prediction of Extreme Ship Motions and Capsizing 

(ITTC 2002), is originally conducted with an aim of benchmark testing of existing 

software tools and mathematical models on the intact and damage stability of two 

standard ships, and thus establishment of the state-of-the-art of numerical method 

and computer simulation program for assessing the dynamic stability in intact and 

damage conditions under various environmental and operating conditions. 

8.6.1 Specification of model: ITTC Ship A-1 

Among two model ships used for in the benchmark tests, the first model ship. a 

15,000 gross tonnes container ship (Ship A-1), has been selected for the comparison 

with the subsequent free running experiment with 1/60 scaled model. The panel 

discretisation of hull form including deck is illustrated in Figure 8.7. 

Figure 8.6 Panel representation of ITTC Ship A-1 hull form 
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The principal dimensions of full and 1/60 scaled model ships are given in the Table 

8.1 together with practical data of propeller and rudder. 

Table 8.1 Principal dimensions of ITTC Ship A-I in full scale and 1/60 model scale 

Item Full scale Model scale 

Length [m] L 150.0 2.5 

Breadth [m] B 27.2 0.453 

Depth [m] D 13.5 0.225 

Draught [m] T 8.5 0.142 

Block coefficient CH 0.667 0.667 

Wetted surface area [in`] S� 5065 1.407 

Pitch radius of gyration k, 
ti, 

/L 0.244 0.244 

Yaw radius of gyration k_, IL 0.244 0.244 

Longitudinal position of centre of gravity 
from midship [m] x( -1.01 -0.0168 

Vertical position of centre of gravity 
from keel [m] KG 11.48 0.1913 

Metacentric height [m] (; M, 0.15 0.0025 

Natural roll period [sec] TO 43.3 5.59 

Rudder area [m2] AR 28.11 0.00781 

Rudder aspect ratio A 1.69 1.69 

Time constant of steering gear [sec] t, 1.24 0.16 

Maximum rudder angle [deg] 10 10 

Max. rudder angular velocity [deg/s] 8max 7.5 58.1 

Propeller diameter [m] D,, 5.04 0.084 

Propeller pitch ratio P/D,, 0.7049 0.7049 
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8.6.2 Specifications of test conditions 

The overview of the benchmark test is presented focusing on the specifications of the 

environmental data and benchmark model runs. The specifications of environmental 

data in the guidelines of benchmark test include a variety of regular waves; 

wavelength to ship length ratio from 0.25 to 3.00 in step of 0.25 and wave height to 

wavelength ratio 1/25 (constant). The specifications of benchmark tests include 

initial motion studies; 

- calm water studies : 10°/10° zig-zag test and 351 turning circle manoeuvre at 

Fn=0.25. 

- zero and non-zero forward speed seakeeping cases: 6-DOF response amplitude 

operators (frequency domain techniques) for varying wavelengths and wave headings. 

In the validation study, the simulation will be focused on the intact stability studies 

of non-zero forward speed case with regular wave excitations, namely capsize 

simulation of intact Ship A-1 for the following environmental and ship conditions; 

" wave length to ship length ratio, A/L = 1.5, 

" wave height to length ratio H/X = 1/25, 

" GM = 0.15m (constant), 

" Case A: wave heading 0° (following seas), Fn = 0.2 (capsize) 

" Case B: wave heading 45° (stem quartering seas), Fn = 0.2 (non-capsize) 

" Case C: wave heading 30° (stem quartering seas), Fn = 0.3 (non-capsize) 

" Case B: wave heading 30° (stem quartering seas), Fn = 0.4 (capsize) 

The experiments were performed with self-propelled ship model and instead of open 

water test results, following formula was provided for propeller thrust coefficients; 

KT 
pn DP -0.0844JP - 0.4882Jp + 0.4539 (8.71) 
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The selected test conditions, summarised in Table 8.2, along with control parameters 

cover relatively low speed to very high speed for the vessel in order to increase the 

chance of occurrence of different type of dangerous situations. 

Table 8.2 Test conditions of ITTC Ship A-I model 

Item / Case A B C D 

Wave steepness H/; 1/25 1,25 1/25 1/25 

Wave length AIL 1.5 1.5 1.5 1.5 

Froude number, nominal 0.2 0.2 0.3 0.4 

Autopilot course [deg] 0 -45 -30 -30 

Proportional gain K1, 1.2 1.2 0.8 0.5 

Differential gain [sec] K,,, 6.84 6.84 4.56 
T 

2.85 

8.6.3 Comparisons of numerical calculations with experiments 

The experiments were conducted with free running and unrestrained ship model. 

which was steered on a specified course by auto-pilot in regular following and 

quartering seas. The angular velocities and angles were measured using an optical 

gyroscope, and were recorded on an onboard computer. Since the co-ordinate 

systems in the experiments are different from present study, appropriate conversions 

of measured data were performed. 

During the experiments with test conditions specified in Table 8.2, capsizing due to 

sub-harmonic roll, sub-harmonic roll without capsizing, harmonic roll and capsizing 

due to harmonic roll were observed respectively. Comparisons between experiment 

and numerical calculation are displayed for roll, pitch, yaw and rudder angles in 

Figure 8.7 through Figure 8.10. 
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The first run was performed in Froude number 0.2 and autopilot course 0 degree and 

the results are displayed in Figure 8.9. In the experiment the model experiences 

significantly large roll angle when wave crest passes amidships and eventually 

capsizes because restoring buoyancy is not enough to keep the model upright. The 

numerical model simulates satisfactorily pitch angle, which is important in 

calculating the instantaneous wetted body surface in the wave. The numerical model 

also reaches the capsizing limit after displaying parametric built-up of roll angle as 

shown in the test. The heading angle of numerical model has been kept relatively 

well by autopilot and then shows a sudden increase just before capsizing. The rudder 

angle of numerical model shows little fluctuation at the beginning of simulation since 

initial heading angle is set same with direction of wave. 

The results of second test are displayed in Figure 8.9, which was performed in 

Froude number 0.2 and autopilot course -45 degree. This time the model experiences 

same situation as first test that roll angle is built up significantly as heading angle 

approaches following sea, but the model does not capsize since enough restoring 

moment is recovered as heading angle returns to autopilot course by the action of 

rudder. Although the roll angle of experiment shows sub-harmonic oscillation with 

large roll amplitude, the numerical model shows sub-harmonic roll oscillation only 

with decreasing heading angle and also roll amplitude seems to be under-estimated. 

The yaw angle as well as rudder action of numerical model shows very good 

agreement with the experiment and so does the pitch angle. 

With the increased speed of Froude number 0.3 and autopilot course -30 degree, 

harmonic roll oscillation has been observed in the experiment with small roll 

amplitude compared to previous tests, and straight heading course has been kept 

eventually. The numerical model exhibits very satisfactory yaw and rudder angles by 

approaching the autopilot course gradually. Harmonic roll oscillation has been found 

in the numerical model, which has very similar amplitude to experiment. Since the 

heading angle has been kept very straight, the estimated roll angle shows more 

regular oscillation compared to the experiment. The pitch angle again displays good 

agreements with experiment. 
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When the forward speed is further increased to Froude number 0.4 with autopilot 

course -30 degree, very rapid built-up of roll amplitude has been observed in the 

experiment and consequently the model reaches capsizing angle in just 10 seconds. 

In the numerical result the roll angle also shows harmonic oscillation with reasonable 

accuracy and the resonant roll oscillation ends up capsizing in a very similar way to 

experiment. The numerical model estimates yaw and rudder angle relatively well and 

shows qualitatively good agreement with experiment. The pitch angle is slightly 

under-estimated in the numerical model. 

An overview of the benchmark tests has shown that there are good agreements in 

comparisons between experiments and numerical calculations. The numerical model 

could predict both sub-harmonic and harmonic roll oscillations in different wave 

conditions with reasonable accuracy except for second model test and the capsizing 
due to the parametric roll resonance is also quite well predicted in the numerical 

model. It should be noted that exact estimations of vertical motions like heave and 

pitch motions play important role for the calculation of instantaneous wave forces, 

which is directly related to the restoring moment of roll motion, and satisfactory 

agreements have been found in the numerical model. The horizontal motions of yaw 

angle, controlled by the rudder activation of autopilot in the numerical model, have 

showed good agreements with the experiments. 

Generally speaking, the validation study of benchmark test has proved that the 

mathematical model developed in previous sections can be used to predict the 

motions of a ship in various wave conditions with reasonable accuracy. Therefore, 

further numerical calculations are to be made in the following sections for standard 

manoeuvring tests in order to investigate the effects of wave actions on ship motions. 
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8.7 Numerical Application of Standard Manoeuvring Tests 

In this section a time simulation of a ship manoeuvring in a wave will be performed 

based on the theories and techniques developed in previous sections. To solve the 

equations of motion in time domain, a fourth-order Runge-Kutta method has been 

used where the velocities are calculated as a series of time steps with fixed increment. 

The displacement of each motion is then calculated by integrating corresponding 

motion velocities. The simulation starts with the ship in its calm water equilibrium 

conditions calculated from hydrostatic calculation and subsequent motion 

displacements are calculated with respect to the starting position. At every time step 

afterward, the calculations of convolution integrals are performed and the wave 

excitation forces are calculated considering with instantaneous wetted hull surface. 

Second-order wave forces are called from seakeeping analysis database and 

interpolated values are calculated according to the current wave amplitude and ship 

heading relative to wave direction. 

The numerical evaluation of the convolution integral is complicated because the time 

steps of the velocity and impulse response functions might be different. Hence the 

impulse response functions are represented using a series of discrete points and the 

velocity trace is linearly interpolated when it is necessary at a specific time. The 

convolution integrals are, therefore, evaluated using a simple trapezoidal summation 

method. The time step for the following manoeuvring simulations is set to 0.1 

seconds. 

There are some significant qualities for the evaluation of ship manoeuvring 

characteristics required to identified according to the IMO Standards for Ship 

Manoeuvrability (2002) and these are turning ability, initial turning ability yaw- 

checking and course-keeping abilities and stopping ability. Corresponding 

manoeuvring simulations suggested by the IMO Standards are turning circle and zig- 

zag tests, while remaining stopping test is beyond the interests raised in the present 

study. Definitions of standard manoeuvring procedure and associated terminology 
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are followed by the IMO Standards. There are several conventional test conditions to 

check the criteria suggested by the IMO Standards and calm water condition is one 

of basic conditions among them. Since there are no specific wave conditions 

mentioned in the IMO Standards, simulation results predicted with various wave 

conditions are compared with those in calm water condition. 

The Todd Series 60 ship with single-screw propeller is selected as calculation model 

for continuity. The principal particulars of hull, propeller and rudder for 

manoeuvring simulation are shown in Table 8.3. The hull form representing the Todd 

Series 60 ship is required up to the deck line for the calculation of wave forces with 

various wave amplitudes. 

Table 8.3 Principal particulars of hull, propeller and rudder of Todd Series 60 

Hull 

L 140 [m] CB 0.700 

B 20 [m] C. 0.785 

T 8 [m] GMT 0.1 [m] 

D 12 [m] GML 150.27 [m] 

Propeller Rudder 

Blade number 4 Height 6.04 [m] 

Diameter 5.6 [m] Aspect ratio 2.1 

Pitch ratio 1.1 Area 16.8 [m'] 

8.7.1 Impulse response function 

The impulse response functions used in the equations of motion are expressed as 

convolution integral with each coupled and uncoupled motion, e. g. in sway mode 

there are three impulse response functions like sway, sway-roll and sway-yaw. To 
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evaluate the impulse response functions corresponding hydrodynamic coefficients 

data estimated in the seakeeping methods are transformed to manoeuvring 

coefficients in the body-fixed coordinates system according to the relationship given 

in equation (8.61). Then subsequent relation given in equation (8.49) should be 

applied to avoid oscillation of impulse response function as r -* oo. 

The impulse response functions in horizontal and vertical modes are illustrated in 

Figure 8.11 through Figure 8.13. All calculation results of impulse response 

functions are non-dimensionalised in the following forms; 

" Non-dimensionalisation of impulse response functions 
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Generally the impulse response functions calculated from acceleration dependent 

coefficients (labelled as added mass) are in good agreements with those from 

velocity dependent coefficients (damping) for r>0.8 . The impulse response 

functions calculated from acceleration dependent coefficients approach zero at r=0 

due to the formulations given in equation (8.63), while those from velocity 

dependent coefficients have constant non-zero value at r=0. These differences 

cannot be removed, but be reduced if the upper limit of encounter frequency in 

equation (8.63) becomes large. Oscillations of impulse response functions almost 
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disappear for r> 10 and maximum time of impulse response functions used in the 

present study is r= 20 seconds. 
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Figure 8.11 Non-dimensional impulse response functions in surge and sway modes 

for Todd Series 60 at Froude number 0.2 

Since the frequency-dependent coefficients are estimated in the ideal fluid 

assumptions, corresponding impulse response functions dose not contain viscous 

effects, which is especially important at low frequencies. At high frequencies 

contribution of inertial force on the oscillating ship becomes significantly dominant 
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and the viscous contribution to the damping is very small (Newman, 1977). In order 

to consider viscous effect at low frequencies, Bailey (1999) used hybrid method by 

complementing low frequency experimental data with the theoretical manoeuvring 

coefficients data and thus all the necessary system characteristics can be contained in 

the impulse response functions. It is practical method to consider viscous effect, but 

it does not work when no experimental data is available. 
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Instead of experimental data manoeuvring empirical formulas, which are widely used 

in the calm water manoeuvring theory, are adopted in the present study to cover 

viscous effects at low frequencies. The advantage of employing empirical formulas is 

that they can be utilised even in early design stage. The consideration on viscous 

effect at low frequencies is limited to the horizontal mode of motions, e. g. sway and 

yaw, but the arguments might be applied to the any mode provided the necessary 

data are available. 
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8.7.2 Turning circle manoeuvre 

Turing ability is the measure of the capability to turn a ship using hard-over rudder 

and one of the significant qualities for the evaluation of ship manoeuvring 

characteristics addressed by the IMO Standards for ship manoeuvrability. A turning 

circle manoeuvring is generally performed to both starboard and port with maximum 

rudder angle, which is executed following a steady approach with zero yaw rate. The 

essential information to be obtained from this manoeuvring test is advance and 

transfer at 90° change of heading and tactical diameter at 180° change of heading. 

Since the major interest of present study is laid on the investigation of wave effects 

on the manoeuvring motion, comparisons with predictions made by 35° starboard 

turning circle manoeuvre in calm water condition as well as various wave conditions 

are to be carried out. For manoeuvring simulation in calm water condition, any effect 

from existence of wave is removed, i. e. Froude-Krylov, diffraction and added 

resistance. To investigate the effects of wave forces, several parameters of a wave are 

selected, e. g. amplitude, wavelength and incoming direction, and each parameter is 

changed with all remaining terms fixed. Since the initial wave direction is fixed 

during turning motion, a relative angle to instantaneous ship heading will vary in 

each time step. The test conditions used in the turning circle manoeuvring 

simulations are presented in Table 8.4. 

Table 8.4 Test conditions of turning circle manoeuvre test 

Maximum rudder angle ± 35° 

Incident wave amplitude (Co) 0.5,0.75,1.0,1.25 [m] 

Wavelength (A/L) 0.5,0.75,1.0,1.25,1.5,1.75,2.0 

Wave direction (ß) 0°, 90°, 180°, 270° 
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Figure 8.14 and Figure 8.15 illustrate the trajectories and motions in horizontal plane 

predicted from 35° starboard turning circle manoeuvring test with various 

wavelengths and fixed wave amplitude Co=1. Om. The X-Y trajectories are non- 

dimensionalised with ship length L. It can be seen that the ship continues turning as a 

result of rudder input, but the shape of turning path becomes ellipse and spiral 

compared with that of calm water. Consequently an average shift of the ship 

trajectory to the direction of incoming wave is observed and it is mainly by the wave 

force exerted on the ship. As wavelength becomes large at high frequencies, the 

effects of wave force are reduced and consequently turning path approaches that of 

calm water. 

Time histories of surge, sway, yaw velocities and roll and heading angles are also 

illustrated in each figure. These values are predicted with a wave of wavelength 

?, /L=1.0 and co=1. Om in each wave direction and compared with calm water 

simulation. The oscillation of velocity, which does not appear in calm water 

simulation, is mainly caused by the frequency dependent Froude-Krylov and 

diffraction forces in time domain simulation. The amplitude of oscillation is 

dependent on the instantaneous wave direction to the ship. 

It should be noted that the deviation of velocity from calm water calculation result is 

further affected by the second-order wave force, i. e. added resistance. When the 

heading of ship is changed during turning manoeuvre, amount of added resistance 

acting on the ship changes with respect to the instantaneous and relative ship heading 

to the incoming wave. If the instantaneous ship heading becomes around 180° during 

turning manoeuvre, for example, the effect of added resistance term becomes 

strongest than those in other headings and then surge velocity is decreased. When 

surge velocity is decreased by the action of wave, yaw rate is also reduced since yaw 

rate is coupled with surge velocity in the equations of motion. The reduction of surge 

velocity and yaw rate can cause large turning radius and shift of turning trajectory, 

which make the spiral shape of turning path. Sway velocity is also affected by the 

change of ship heading in a similar manner. 
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In order to examine the effect of added resistance on turning manoeuvring, numerical 

simulation results are compared as illustrated in Figure 8.16. It is observed that the 

trajectory is much affected with inclusion of added resistance term in the equations 

of motions. It is noted that the second-order wave forces are varied with respect to 

the wavelength and wave direction and therefore the distance of drifted trajectory has 

direct relationship with the wave parameters. 
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The effects of wavelength and ship heading relative to the incoming wave are 

illustrated in Figure 8.17. In each figure wave amplitude is fixed as co=1. Om with 

different wavelengths AJL=0.5,0.75,1.0,1.5 respectively. Turning manoeuvre 

trajectories, which are drifted to the direction of incoming wave, are easily identified 

and the effects of varying wavelength are also clearly observed, where contribution 

of smaller wavelength is dominant. 
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The effects of wave amplitude on the turning circle manoeuvre are presented in 

Figure 8.18. As mentioned above added resistance plays important role in the 

determining turning path and is generally known to be proportional to the square of 

wave amplitude. Drifted paths of turning manoeuvre vary according to different 

wave amplitudes since changes of surge and sway velocities and turning rates have 

direct relationship with the amplitude of incoming wave. 
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Calculation results of important operational parameters like predicted advance, 

transfer and tactical diameter are illustrated in Figure 8.19 for fixed wave amplitude 

ýo=1.0m, and comparisons are made with calm water case. It is noticed that measures 

of advance and transfer are opposite when the initial heading is in transverse 

direction, i. e. ß=90°, 270° and the variation becomes stronger with short wavelength 

as presented in the figure. 
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Figure 8.19 Comparisons of advance, transfer and tactical diameter of 35° starboard 

turning circle manoeuvre (co=1. Om) 

Further comparisons with are made with different wave amplitudes and presented in 

Figure 8.20. Generally speaking, the variations of measures of turning circle 

manoeuvres become distinct with shorter wavelength and higher wave amplitude in 

each wave direction. Although it is not possible to identify general relationship 

between these measures and wave conditions such as wavelength, amplitude and 

direction of incoming wave, it might be useful to see overall behaviour of the ship 

during turning manoeuvre in a wave. 
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8.7.3 Zig-zag manoeuvre 

The yaw checking ability of the ship is a measure of the response to counter-rudder 

applied in a certain state of running, such as the heading overshoot reached before 

yaw tendency has been cancelled by the counter-rudder in a standard zig-zag 

manoeuvring. A zig-zag manoeuvring should be initiated to both starboard and port 

and begins by applying a specified amount of rudder angle to an initially straight 

approach. The rudder angle is then alternately shifted to either side after a specified 

deviation from the ship's original heading is reached. Two kinds of zig-zag 

manoeuvring tests are recommended by the IMO Standards, the 100/100 and 200/20° 

zig-zag tests. The essential information to be obtained from these manoeuvring tests 

is the first and second overshoot angles, while overshoot width of path is of 

additional interest. 

The test conditions of zig-zag manoeuvring simulations carried out in waves are 

presented in Table 8.5. 

Table 8.5 Test conditions of zig-zag manoeuvre test 

Maximum rudder angle ± 20° 

Incident wave amplitude (co) 0.5,0.75,1.0,1.25 [m] 

Wavelength (? /L) 0.5,0.75,1.0,1.25,1.5,1.75,2.0 

Wave direction (ß) 0°, 90°, 180°, 270° 
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Figure 8.21 and Figure 8.22 illustrate the yaw angles and velocities in horizontal 

plane predicted from 20°/20° zig-zag test with various wave conditions and fixed 

amplitude ýo=1.0m. Although there is no differences in the time to reach second 

execute of rudder in the following sea 0=0° and head seas ß=180°, presented in 

Figure 8.21, clear differences are observed in the time to reach third execute of 

rudder. Compared with the calm water case, the time to reach third execute is 

increased with short wavelength in the following sea and vice versa in the head sea. 

One of the reasons could be the reduction of surge velocity in head sea due to the 

increase of added resistance. 

When the direction of incoming wave is transverse, ß=90° and 270°, more distinct 

tendency appears in the times to reach second and third execute. The differences in 

times to reach second and third execute is more influenced by the sway velocity and 

yaw rates rather than surge velocity. The overshoot angles are much more affected 

with transverse direction waves than longitudinal waves, especially for a/L=0.5, 

ß=270°, first overshoot angle is much bigger than calm water case while second 

overshoot angles reduces significantly. 
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More calculation results regarding the influence of wavelength and wave direction 

are illustrated in Figure 8.23. The wave coming from starboard side ß=90° during the 

zig-zag manoeuvre decreases the time to reach third execute compared to calm water 

case, while port side wave ß=270° produces opposite tendency. It is also observed 

that short wavelength has more effects on the zig-zag manoeuvre as predicted in the 

turning circle manoeuvre. 
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The effects of wave amplitude on the zig-zag manoeuvre are presented in Figure 8.24. 

Compared with calm water case, the effects of wave amplitude on the yaw angle of 

zig-zag manoeuvre are increased with higher amplitude. This tendency is more 

clearly observed in beam seas, ß=900,270°, where overshoot angles and time to 

reach third execute are significantly varied as wave amplitude becomes higher. 
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Predictions of operational parameters such as first and second overshoot angles and 

overshoot width of path with respect to various wave conditions are illustrated in 

Figure 8.25. The aforementioned relationship between these operational parameters 

angles and wavelength, heading angles and wave amplitudes are easily found. 
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Figure 8.25 Comparisons of overshoot angles and width of 20°/20° zig-zag 

manoeuvre (iL=1.0, co=1. Om) 

The predictions of these measures in Figure 8.26 seem to approach constant value of 

calm water case as the wavelength becomes longer and wave amplitude smaller, 

which means that the wave effects on the manoeuvring motion can be negligible in 

these waves. With waves of X/L=0.5, ß=90°, 270°, these measures are not available 

since the ship cannot overcome the wave force to perform given manoeuvring task. 
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8.8 Concluding Remarks 

Mathematical formulation of a six-degree-of-freedom manoeuvring simulation model 
has been presented on the fundamental bases of conventional seakeeping and 

manoeuvring models. Comparisons between two individual ship motion theories 

have been made for the formulation of mathematical model. To take account the 

memory effects of the fluid action on the ship motion, convolution integral has 

adopted by means of the impulse response function representation. The impulse 

response function is calculated from frequency dependent hydrodynamic coefficients 

obtained from traditional potential method. The wave forces like hydrostatic and 

Froude-Krylov forces are calculated using direct pressure integration over the 

instantaneous wetted body surface and the effects of second-order force are also 
included in the equations of motion. 

In order to validate the proposed mathematical model, benchmark test has been 

carried out for ITTC Ship A-I container vessel. Calculation results of numerical 

model with different test conditions have been compared with experiment data. 

Capsizing due to sub-harmonic as well as harmonic roll oscillations have been 

successfully predicted and acceptable agreements of roll angles have been obtained 

in non-capsizing cases. Pitch and yaw angles have been predicted quite well in the 

numerical results. 

In order to demonstrate the effect of wave force on the manoeuvring motion, 

numerical simulations of two standard manoeuvring tests, i. e. 35° turning circle and 
200/200 zig-zag tests, have been carried out in various wave conditions. Significant 

differences are observed in the trajectories and typical measurements of the 

simulations when the wavelength and initial heading angle of incident wave are 

changed. It has been shown that added resistance term plays important role on the 

manoeuvring motions in wave. It is noted that the contributions of wave force on the 

manoeuvring motion cannot be neglected and therefore should be considered to 

predict the manoeuvring qualities correctly in a seaway. 
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Chapter 9. Benchmark Study on Parametric Rolling 

9.1 Preamble 

In standard stability assessment, the term instability can be regarded as a condition 

that creates inability of the ship to deliver the required service although it may not 

lead to capsizing event. Furthermore instability condition may potentially threaten 

the safety of ships and acceptable operation. For instant, many container ships have 

lost some of their cargos during operation in dangerous condition and large motions 

arising from severe weather environment can affect the comfort of passenger. In the 

context of stability assessment, the avoidance of instable condition can be given as a 

criterion of related hazard which should be lowered to acceptable level. 

The study addressed herein aims to test different elements of modelling discussed in 

the previous chapter and therefore establish level of capability of the developed 

mathematical model for the predictions of ship motion in random seaway. In 

addressing this issue considerably detailed validation studies have been undertaken 

for the assessment of intact stability of ships with respect to hazardous event. 

Especially parametric roll phenomenon was chosen for this validation purpose and 

extensive range of numerical simulation is carried out to investigate the phenomenon 

as well as to verify the feasibility of numerical tool developed for the prediction of 

large motion. The stability of a ship depends on a number of factors and parameters 

and some of following factors will be considered in the assessment: environmental 

factor (e. g. wave and wind), operational factor (e. g. speed and loading condition), 

design parameter (e. g. hull shape and anti-rolling device), control or human effect 

(e. g. strategy of rudder control and choice of heading). 
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9.2 Physics of Parametric Roll 

It has been almost a half century since the phenomenon of parametric roll motion has 

first attracted attention of naval architects (Grim 1952, Paulling and Rosenberg 1959). 

Periodic changes of roll stability in waves, characterized by a decrease of stability 

when the ship is in the wave crest and an increase in the wave trough, are well 

known as the direct cause of parametric roll phenomenon. Despite the fact that the 

physical nature of parametric roll has been known for many years, several new 

elements are present in this case. In the past, the concern had been mostly for smaller 

ships in following seas. Now, the concern is for the vulnerability of large container 

carriers in head seas. The problem is particularly important given the long-standing 

heavy-weather maritime practice of sailing into head seas at reduced speed. It turns 

out that this is not necessarily the best practice for large container carriers. 

Since many Post-Panamax container carriers have suffered significant cargo loss and 

damage, the problem of parametric roll now returned as a main subject in ship 

hydrodynamic research fields. In October 1998 a Post-Panamax C 11 class container 

ship encountered extreme weather and sustained extensive loss and damage to deck 

stowed containers on a voyage in North Pacific (France et al., 2003). A following 

investigation has showed that A detailed investigation showed that a large roll 

motion with up to 35 degrees amplitude accompanied by significant pitch and yaw 

motion resulted from the periodic change of transverse stability in head seas. The 

large change of stability in head seas was found to be a direct result of the hull form; 

Geometry above waterline such as bow flare and stern overhang, typical shape in 

large container carrier, have a significant effect on the propensity for parametric roll 

in irregular seas. Also an accurate estimation of the roll damping is essential for the 

exact prediction of the occurrence and magnitude of parametric roll. 

Bulian et al. (2004) used a 1.5-DOF non-linear mathematical model and compared 

the stability boundaries derived from an analytic, numerical and experimental 

treatment of the rolling of a ship in regular and irregular head waves. The extended 
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degree-of-freedom comes from treating explicitly in the roll equation, the variation in 

the restoring lever as a function of roll and pitch angle, heave displacement and wave 

position. Two techniques were considered for the derivation of the stability 

boundaries in irregular waves with assumptions regarding the form of the one- 

degree-of-freedom uncoupled roll equation. Comparison with experiment revealed 

that stability boundaries could be predicted satisfactorily. However, the simple 

solution is not sufficient to capture the magnitude of rolling once exceeded the 

stability zone. 

Matusiak (2003) studied the influence of wave amplitude and additional roll damping 

created by bilge keels on the development of parametric roll of fast Ro-Pax vessel. 

Numerical simulation of 6-DOF motion was performed with a two-stage approach, 

where linear approximations and non-linear portions in the ship hydrodynamic model 

are decomposed, and the results of the numerical simulation were verified with a free 

running model test in head and following seas. It was shown that increased wave 

height leads to increased amplitude of parametric roll, while installation of the bilge 

keels decreases the amplitude and slows down development of parametric roll. Initial 

angle of heel speeds up development of parametric roll but has no influence on the 

maximum roll amplitude. Rise of yaw motion was observed along with the 

development of parametric roll. 

Irrespective of the adopted method, either in a theoretical or experimental approach, 

to predict the magnitude and exceedance of roll motion, one important issue is 

whether parametric roll can be regarded as a stationary stochastic process. Belenky et 

al. (2003) described a background for assessing the risk of parametric roll of a large 

containership in irregular head seas. Based on numerical simulations, their study 

considers ergodicity and distribution of heave pitch and roll during parametric 

resonance. It was found that roll motion is not ergodic and does not follow a normal 

distribution, whereas pitch and heave are both normal and ergodic. 
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9.3 Benchmark Study of Numerical Model 

Recently "International Benchmark Study on Numerical Simulation Methods fier the 

Prediction of Parametric Rolling of Ships in Waves" was organized by the FT 

Commission funded research project SAFEDOR (Design. Operation and Regulation 

for Safety). This study was designed to deal with a set of well defined conditions and 

ship responses for which the capabilities of the benchmarked numerical methods can 

be tested before dealing with the more complex problem of responses in realistic and 

random sea conditions. (for further details, see http: /'www. naval. ntua. gr/--sdl/sibs/) 

The performance of the numerical method for the selected loading and wave 

conditions was assessed in comparison to the relevant experimental data. The study 

comprises of the simulation of the behaviour of a containership in longitudinal waves, 

both head and following, and in two loading conditions. For these selected conditions 

the excitation of roll motion is expected as a result of parametric resonance. 

9.3.1 ITTC Ship A-1 

The model ship used in the benchmark test is ITTC Ship A-1 container vessel. In the 

experiment a bare hull without propeller and rudder was tested. The principal 

dimensions of full scale ship are given in Table 8.1 and the loading conditions used 

in the numerical calculations are given Table 9.1. The ship is considered moving in 

three-degree-of-freedom, those of heave-roll-pitch, in order to minimise an 

uncertainties related to the course-keeping effect on heading and speed. 

Table 9.1 Loading conditions of ITT'C' Ship A-I 

Item GMi kl, k� 

Loading #1 1.38 [m] 10.33 [m] 37.5 [nil 

Loading #2 1.00 [m] 10.33 [ml 39.2 (nil 
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9.3.2 Preliminary calculation 

As an initial calculation some hydrostatic calculations are performed including GZ 

curve in still water and regular wave. The GZ curves in still water are compared with 

linear case in each loading condition as illustrated in Figure 9.1. 
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Figure 9.1 GZ curves in still water with different loading conditions 

3 

In order to investigate change of roll stability in longitudinal wave, calculation of GZ 

curve with different position of wave crest is performed with a standard wave. The 

length of standard wave is equal to the ship length (a/L=l 
. 
0) and wave height is set 

as Hw/k=1/25. The position of wave crest changes along the longitudinal direction 

and the results are presented in Figure 9.2. 

It is observed that GZ value for the wave crest near midship is smaller than the value 

in calm water and GZ value for the wave trough near midship becomes larger than 

the value in calm water. The effect of location of a wave on GZ value can be 

obviously identified in Figure 9.3, when wave trough amidships produces wider and 

larger water plane area than wave crest amidships. Therefore GZ value in a wave 

should include the effect of wave crest position along the longitudinal direction. 
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Free roll decay tests at zero forward speed are performed and compared with 

experiment data as shown in Figure 9.4. Test with first loading condition (GM = 

1.38m) is performed with an initial roll angle of 14.6 degree. At first non-linear roll 

damping coefficients were estimated from experiment data, and then used in the 

following numerical simulations. The roll period of experiment data becomes slightly 

longer as roll angle decreases, and numerical prediction shows good agreement with 

experiment data in terms of roll period and amplitude. Roll decay test with second 

loading condition (GM = 1.00m) produces oscillation with longer roll period than 

first loading condition, which is easily expected. 
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Figure 9.4 Free roll decay tests at zero forward speed (GM = 1.38,1.00m) 

In order to assess behaviour of parametric rolling, especially in a random wave, 

statistical approach needs to be adopted. In reality the statistical characteristics of 

waves in a seaway change with time. However, by introducing a hypothesis of quasi- 
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stationarity and hence assuming that a stationary process can be employed within a 

certain time period, parametric rolling can be regarded as a stationary process within 

the quasi-stationary period. This assumption enables statistical analysis as long as the 

speed, heading and loading condition are not changed during the time range. The 

mean roll amplitude of parametric rolling can be obtained with sufficient realisation 

of the process as follows 

0.. 
ýýý'Vlt)2üt 

ý9.1ý 

9.3.3 Tests in regular wave 

There are three types of wave considered in the benchmark test; regular, group and 

irregular wave. As a first part of benchmark test, total 12 tests are executed with 

regular wave and detailed conditions are described in the test matrix shown in Table 

9.2; two loading conditions (GM = 1.38,1.00m), three Froude numbers (Fn = 0.04, 

0.08,0.12), three wave heading angle (head, bow quartering and following seas), 

three wave frequencies (Tw = 10.63,8.00,12.12s) and four wave heights (Hw = 3.6, 

5.0,5.7,6.0m) are considered by the combination of given parameters. 

In the numerical model as well as experiment test only three-degree-of-freedom 

motion, i. e. heave-roll-pitch, is considered to prevent any other effects on parametric 

rolling although present numerical method is capable of handling full six-degree-of- 

freedom motion in wave. In order to accelerate the roll motion quickly and thus 

reduce calculation time, an initial roll angle of I degree is given in each realisation. 

Mean roll amplitude of each test is evaluated and compared with experiment data as 

shown in Figure 9.5 and time series of roll angle in each test are given in Figure 9.6 

through Figure 9.11. The experiment result with regular wave can be grouped as 6 

pairs of dataset and especially first 5 pairs (T02-T03, T04-T05, T09-T10, T 13-T 14, 

T15-T16) have different wave height with all other test conditions unchanged. Mean 
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roll amplitudes of these 5 pairs show quite different behaviour with respect to wave 

height; mean roll amplitudes of T02-T03 and T09-T10 decrease with larger wave 

height, T04-T05 and T13-T14 show little difference of roll amplitude and T15-T16 

show dramatic development of parametric roll motion. It should be noted that 

different behaviour in the development of parametric roll is caused by highly non- 

linearity of ship motion and therefore realisation of these non-linear behaviour 

should be possible in the numerical method performed with any environment 

conditions. 

It seems that numerical calculations corresponding to 'decrease of roll amplitude 

with higher wave' are able to predict this behaviour and show qualitatively 

agreement with experiment data (T02-T03 and T09-T10). Numerical predictions 

corresponding to `consistent roll amplitude regardless wave height' show quite good 

agreement for head sea (T04-T05), but under-estimation for following sea (T13-T14). 

The behaviour of `increase of roll amplitude with higher wave' is again quite well 

predicted in the numerical calculations (T15-T16). The numerical results of last pair 

show good prediction for T20, but poor prediction for T21. Overall capability of 

numerical method to predict the development of parametric rolling seem to be good 

though at certain cases numerical result could not match with experiment data. 
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Table 9.2 Benchmark test matrix for regular waves 

GM [m] Test No. Heading 
[deg] Fn Height [m] Period [sec] 

10" 3.6 
180 0 08 10 63 . . T03 5.7 

T04 3.6 
180 0 12 10 63 1.38 . . T05 5.7 

T09 3.6 
160 0 12 10 63 

. . T10 5.7 

T13 3.6 
0 0 08 8 00 . . T14 6.0 

T15 3.6 
0 04 0 8 0 1.00 . . 0 

T16 6.0 

T20 0.08 5.0 
180 -- 12 12 

T21 0.12 5.0 ý . 

"Experiment "Numerical 
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Figure 9.5 Comparison of mean roll amplitude in regular waves 
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9.3.4 Tests in group and irregular waves 

As a second part of benchmark test, total 8 tests are executed with group and 
irregular waves; group wave consists of three wave harmonics with different wave 

height and period. Significant wave height and spectral peak period are given for 

irregular wave, for which JONSWAP spectrum with a peak enhancement factor 

r3.3, is used for the realisation of random wave. The detailed conditions of group 

and irregular waves are described in the test matrix shown in Table 9.3; two loading 

conditions (GM = 1.38,1.00m), three Froude numbers (Fn = 0.04,0.08,0.12) and 

three wave heading angle (head, bow quartering and following seas) are considered 

by the combination of given parameters. 

Other general conditions of numerical method are same as regular wave test. Since 

generation of wave is performed in a random manner, a number of simulations need 

to be performed to obtain meaningful data. Therefore each test is carried out 50 times 

and average of mean roll amplitude is evaluated and compared with experiment data 

as shown in Figure 9.12. Time series of mean roll amplitude instead of roll angle are 

given in Figure 9.13 through Figure 9.14, where all the repeated results are displayed. 

Although irregular wave is generated by random phase angle of each wave harmonic 

and applied to each numerical realisation, the development of roll motion from small 
disturbance seems to be consistent in terms of mean roll amplitude, which converges 
in every test. For head and bow quartering seas, quite good agreement is achieved in 

three cases (T07, T08, T22), however, numerical predictions are over-estimated in 

remaining two cases, where no parametric roll motion appears (T06, T11). For 

following sea, parametric roll motion does not occur either in experiment data or 

numerical calculations (T18, T19), while mean roll amplitude of numerical 

prediction is under-estimated (T17). 
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Table 9.3 Benchmark test matrix for group and irregular waves 

GM [m] Test No Heading Fn Height Period Wave 
[deg] [m] [sec] type 

2.4 10.63 
T06 180 0.12 2.4 9.66 Group 

2.4 11.55 
4.0 10.63 

T07 180 0.12 1.0 9.66 Group 
1.38 1.0 11.55 

T08 180 0.12 5.0 10.63 Irregular 

4.0 10.63 
T11 160 0.12 1.0 9.66 Group 

1.0 11.55 
2.4 8.00 

T17 0 0.04 2.4 7.11 Group 
2.4 8.89 
4.0 8.00 

T18 0 0.08 1.0 7.11 Group 
1.00 1.0 8.89 

T19 0 0.08 5.0 8.00 Irregular 

4.0 12.12 
T22 180 0.08 1.0 10.77 Group 

1.0 13.47 
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Figure 9.12 Comparison of mean roll amplitude in group and irregular waves 
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9.4 Concluding Remarks 

In order to assess and validate the ability of mathematical model developed for 

simulation of a ship motion in a wave, a further validation study was performed. For 

this purpose, a parametric rolling phenomenon was selected for the assessment of 

present numerical method and extensive range of numerical calculation has been 

performed to investigate the phenomenon itself and the capability of the numerical 

method to predict in a given wave condition. 

In order to investigate effect of loading condition on roll stability, GZ curves in calm 

water and standard wave were evaluated and compared to each other. It has been 

shown that GZ curves vary significantly depending on the longitudinal location of 

wave crest, and roll restoring moment, therefore, has been evaluated by direct 

pressure integration over instantaneous wetted hull surface as already explained in 

the previous chapter. Free roll decay test was carried out and comparison with 

experiment data shows good agreement in terms of frequency and amplitude of 

damped oscillation. 

Roll equation of motion has been adopted to allow non-linear effect on roll damping 

and restoring terms during high amplitude roll motion, hence development of 

parametric roll motion in head and following waves could be realised in a numerical 

manner. In the benchmark test, numerical calculation of developed mathematical 

model was made in regular, group and irregular waves together with a various 

combination of given parameters, i. e. loading condition and forward speed of ship, 

and direction, height and period of incoming wave. Then comparisons between 

current numerical method and experiment data were made by mean roll amplitude 

obtained from time history of roll angle. For group and irregular waves a number of 

numerical simulations were performed to obtain statistically reliable value of mean 

roll amplitude. 
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Experiment data in regular waves show highly non-linear behaviour of parametric 

rolling and these are grouped as follow; `decrease of roll amplitude with higher 

wave', `consistent of roll amplitude regardless wave height', and `increase of roll 

amplitude with higher wave'. It has been shown that numerical calculations are able 

to predict these non-linear behaviours either in quantitatively and qualitatively 

although there is slight discrepancy. Since parametric roll can be regarded as a highly 

non-linear phenomenon, more accurate and sophisticated model of roll damping and 

restoring terms in the equation of motion might be required to improve the 

qualitative as well as quantitative performance of numerical method. Overall 

capability of numerical method to predict parametric roll motion in group and 

irregular waves seems to be satisfactory through a number of simulations and 

acceptable prediction of no occurrence of parametric roll motion has been also 

achieved. 
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Chapter 10. Discussion 

10.1 Preamble 

Ships sailing in a wave environment experience a variety of disturbances, which 

make the problems to predict the motion behaviour difficult, and therefore dynamics 

of a ship has been of great interest in the past century. The unpredictable nature of 

the phenomena has attracted many studies which employed different approaches to 

investigate given problems. The dynamics of a ship in extreme seas might include 

strong non-linearities and transient effects which have not been fully explained in the 

conventional theories. The formulation of a mathematical model representing the true 

behaviour of a ship in a seaway is the most important task in developing a 

methodology for evaluating the qualities of ship performance and establishing a new 

rational criteria for safety and stability. 

The field of ship dynamics is traditionally split into seakeeping and manoeuvring; in 

the latter field the course achievement and directional stability in calm water 

condition are major interests while responses to the incident waves at constant speed 

and heading are investigated in the former. Because of the unique treatments that 

employed in two distinctive fields of hydrodynamics, the research subject for general 
behaviour of ship motion could be considered as an integration work to combine 

seakeeping and manoeuvring theories which were studied separately over many 

years. However, based on the critical reviews on the state-of-the-art techniques to 

evaluate the qualities of a ship motion in waves, it seems that the only way to model 

highly non-linear and transient behaviour of a ship is, at present, integrated six- 

degree-of-freedom mathematical model in time domain, which incorporates with the 

frequency dependent hydrodynamic data set obtained in the traditional seakeeping 

theory as well as propulsion and control force formulation in manoeuvring theory. 
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Deriving from this theoretical background, the mathematical formulation 

representing ship manoeuvring motions in a seaway are presented and extended to 

examine parametric rolling in head and following seas in this study. Since the 

mathematical model incorporates with the frequency dependent hydrodynamic 

coefficients and wave loads, first part of present study is devoted to the development 

of reliable numerical tools to obtain the hydrodynamic data set from the seakeeping 

theory in the frequency domain. Then a novel mathematical model in time domain is 

formulated in the strong basis of two traditional ship motion theories to describe the 

motion behaviour of a ship in waves. 

The achievements of the present study have been presented with the certain 

disadvantages or inadequacies discussed. Therefore, the aim of this study was to 

contribute to aforementioned efforts focusing on the some specific issues which are 
believed to be substantial to obtain a successful tool for the studies of ship motions in 

waves. 

10.2 Development of Numerical Tools for Seakeeping 

Performance 

A methodology to predict the behaviour of a ships sailing at sea has been introduced 

by means of potential theory for the steady and unsteady motion of surface piercing 
body in a seaway. The formulation of three-dimensional flow, which forms the basis 

for the solution of a boundary value problem, has been developed for a ship 

travelling with or without forward speed. In the implementation of the approach 

adopted, a numerical tool to solve the integral equations of unsteady motion problem 

with and without forward speed has been developed using two types of three- 

dimensional discretisation modelling. For the validation of the numerical tool, first- 

order hydrodynamic forces and motion responses as well as second-order wave 

forces have been calculated with mathematical and realistic hull forms at various 

wave conditions. 
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The theoretical formulation of the boundary value problems for the steady and 

unsteady motions include the non-linear free surface and body boundary conditions, 

which make the problems very difficult to obtain analytic or numerical solutions 

because of the strong non-linearities of the given boundary conditions and unknown 

free surface. Therefore simplifications of the problem have been introduced to reduce 

the difficulties imposed on these problems by means of perturbation expansion with 

assumption of small amplitude motion. The flow field is decomposed into steady and 

unsteady flows and free surface and body boundary conditions have been linearised 

on the mean wetted surface of a ship. The linearised free surface condition for the 

unsteady problem is decoupled from the steady potential on the assumption that the 

effect of the steady flow on the unsteady flow can be regarded to be higher order. 

Under the assumption of small amplitude motion, the unsteady motion problem can 

be decomposed into diffraction and radiation problems and consequently the 

linearised body boundary condition for the radiation problem contains so-called m- 

terms which account for steady flow due to the forward speed of a ship. 

The solution of the linearised unsteady motion problem is constructed by means of 

integral equation method. Distributions of the singularities representing translating 

pulsating source potential reduce the domain of the problem to the body surface, and 

subsequently Green function which satisfies the linearised free surface boundary 

condition is introduced. A set of single integrals is introduced in the formulation of 

Green function, which is expressed with standard complex integral, and it has been 

found to be practical in the numerical calculation. Meanwhile, a distinct feature of 

three-dimensional flow due to the interaction of forward speed and encounter 

frequency of oscillation leads to the critical point of the non-dimensional frequency 

r= wU /g =I/ 4 in the formulation of Green function. The wave patterns of free 

surface flows are strongly affected near critical frequency r =I/ 4, because of the 

dependence on the forward speed and frequency of oscillation. 

When both source and field points are located near free surface, the oscillatory 

behaviour of Green function makes it difficult to evaluate the integrands of wave 

function terms in Green function. Therefore special care has been taken in this 
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extreme case by using an adaptive numerical scheme to reduce the computational 

burden. It has been noted that the inclusion of the waterline integral term in the 

integral equation plays an important role in the unsteady flow field and has strong 
damping effect on occurrence of irregular frequency since the irregular frequency 

phenomenon could be more serious without waterline integral. However, difficulties 

in the evaluation of waterline integral can be caused by the oscillating behaviour of 
Green function because the source point is located in the free surface, and careful 

treatment is required to avoid singular behaviour of waterline integral. In the present 

study the source strength in the waterline integral term is matched with adjacent 

panel in numerical implementation. 

The boundary integral equation is not still amenable to be solved analytically, thus 
further idealisation of the body surface is required to distribute the source 

singularities over mean wetted body surface. The body surface is discretised with a 
finite number of panels and the strength of the source potential distributed on each 

panel can be assumed to be either constant or higher-order polynomials. Constant 

Panel Method has an advantage in its easy application to the integral equation with 

constant source strength on each panel, whilst the derivatives of velocity potential 

can be easily obtained in Higher-Order Panel Method in spite of its complex 

implementation due to variable source strength. 

It has been noted that one of the major obstacles of these methods is the existence of 
irregular frequency, where the solution of integral equation either does not exist or is 

not unique. The phenomenon is originated from non-physical flow interior of the 

body, so ill-conditioned systems of unknown source strength make it difficult to 

estimate correct hydrodynamic data set showing heavy fluctuations in high frequency 

range. In order to reduce irregular frequency phenomenon, the hull surface has been 

discretised carefully considering size as well as aspect ratio of panels, however 

further modification of integral equation and corresponding improvement of 

numerical tool are required to eliminate the phenomenon and acquire reliable 

hydrodynamic data set. 
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To secure the reliability of the hydrodynamic data set predicted, a numerical 

implementation and validation study have been carried out using mathematically 

defined Wigley hull form and realistic Todd Series 60 ship. Numerical 

implementations are carried out by means of CPM and HOPM and predicted results 

are extensively compared with the numerical results of two-dimensional strip method 

and the experimentally measured data available. The validation study starts with the 

convergence test to investigate the dependence of the numerical predictions on the 

characteristics of the surface elements used for representing the hull surface. Several 

modelling of Wigley hull form with different numbers of surface elements and aspect 

ratios are chosen to analyse the effect on the hydrodynamic coefficients. When the 

aspect ratio is closer to unity, convergence to a practical level is achieved with even 

less number of panels. In the discretisation strategy of the body surface, therefore, 

the aspect ratio is very important characteristics of the surface elements in addition to 

the total number of panels. 

Validation study is then extended to the numerical applications for Wigley hull form 

at various forward speeds and calculation results are compared with two-dimensional 

theory and experimental data. Generally agreement of present methods with 

experimental data was good and predicted result of hydrodynamic data set shows 

strong speed dependence. Near the critical point r =1/4, there are big discrepancies 

between present three-dimensional method with the strip theory for the coupled 

hydrodynamic coefficients because of change of physical flow pattern reflected in 

the formulation of Green function. 

Based on the comparisons between the predicted results and measurement data for 

the Todd Series 60 ship at zero speed, it is believed that the present three- 

dimensional Green function method is good enough to predict the wave exciting 

forces and hydrodynamic coefficients, although roll damping coefficient cannot be 

predicted correctly due to the inherent assumptions of inviscid potential flow. It is 

confirmed that Timman-Newman's symmetry relationship for the coupled 

hydrodynamic coefficients at zero speed is satisfied for all frequency range. 
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The influences of forward speed and ship heading play an important role in 

predicting the behaviour of ship motion in waves and their effects on the 

hydrodynamic data have been demonstrated by CPM and HOPM for the Todd Series 

60 ship travelling at various forward speeds and wave directions. The calculation 

results are demonstrated by both CPM and HOPM, which are adopting three- 

dimensional translating pulsating source technique and the comparisons of two 

discretisation methods have shown good agreement in overall frequency ranges. It 

has been noted that zero speed Green function together with forward speed 

correction used in two-dimensional strip theory does not adequately account for 

speed effects in the low frequency regions and therefore speed term in the linearised 

free surface condition adopted in the present method is essential to obtain reasonable 

predictions. It has also been shown that three-dimensional translating pulsating 

source technique adopted in the present study shows better predictions of 
hydrodynamic data for the forward speed case than the two-dimensional strip theory. 

In order to consider higher order wave effects acting on a ship in waves, the 

theoretical formulation of the second-order hydrodynamic wave loads has been 

presented based on the first-order solution. The pressure field are expressed using the 

so-called near-field method, where direct integration of first-order terms are 

performed over mean wetted body surface without solving the second-order potential 

problem. To validate the formulation and corresponding computer code, numerical 

calculations for the mean second-order wave forces acing on the barge, Wigley hull 

and Todd Series 60 ship are carried out and comparisons with the experimental data 

are demonstrated. The mean drift forces in sway and yaw directions predicted for a 
barge at zero speed show a good agreement with the measurement data. Numerical 

computations of added resistance, that is the second-order wave force with forward 

speed, are performed for a Wigley hull in head sea cases and the contribution of each 

component to total added resistance is analysed. It has been noted that the peak value 

of added resistance in head sea appears near the resonance frequency of heave and 

pitch motions. Also the mean second-order wave forces are evaluated using first- 

order solution, therefore correct estimations of the first-order quantities are essential 

in the predictions of the second-order wave forces adopted in the present study. The 
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effects of ship heading and forward speed on the mean second-order forces have 

been demonstrated for Todd Series 60 ship at various wave conditions. It has been 

remarked that the effects of mean second-order hydrodynamic wave loads become 

more significant in the short wave regime. 

10.3 Formulation of Manoeuvring Mathematical Model 

In order to evaluate successfully the characteristics of ship manoeuvring motions in a 

seaway, a novel mathematical model is required since the conventional manoeuvring 

model is not capable of describing the effects of wave actions thoroughly. Therefore, 

a six-degree-of-freedom manoeuvring mathematical model incorporating memory 

effects with frequency dependent hydrodynamic coefficients in a new axis system is 

formulated and suitable numerical method for solving the equations of motion is 

proposed. This development of new model allows straightforward combination of 

seakeeping and manoeuvring theories whilst accounting for the instantaneous wave 

effects on the ship motions. 

To take the so-called memory effects due to arbitrary forms of ship motions into 

consideration, impulse response function representation is adopted in the equations 

of motion such that the hydrodynamic forces are expressed in terms of convolution 

integral. Since the convolution integral in the time domain incorporates with 

frequency dependent hydrodynamic coefficients, the impulse response function used 

to describe the fluid force is determined using Fourier transformations of the 

hydrodynamic coefficients obtained in the seakeeping calculations demonstrated as a 

first part of present study. To account for viscous effects of damping coefficients in 

the low frequency regions, a hybrid method is introduced to the sway and yaw 

impulse response function by using the manoeuvring derivatives estimated from 

conventional manoeuvring theory. This hybrid method is very useful when any 

experimental data is available and therefore it can be directly applied to the initial 

stage of the design process. Since the impulse response function can be obtained 
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from either added mass or damping data alone, so comparisons of each numerical 

calculation are made. 

To implement the hydrodynamic data set obtained from seakeeping calculations, a 
transformation of the data set from the reference frame used in the seakeeping model 

to the one used in the newly developed mathematical model is required. For this 

purpose a new body-fixed coordinate system is proposed to describe the motion of a 

ship in waves, since the traditional seakeeping theory employs an upright body-fixed 

coordinate system, while a downward coordinate system is preferred in the 

manoeuvring theory. Kinematics relationships of velocity and acceleration variables 

between the two theories are examined and corresponding relations of the data set are 

also derived. The comparisons of the frequency dependent hydrodynamic 

coefficients have provided the basis for describing the hydrodynamic forces in terms 

of convolution integrals. 

Based on the aforementioned approaches, a set of equations of motion is finally 

proposed in the body-fixed coordinate system to investigate the manoeuvring motion 

of a ship in a seaway. The motion variables in each horizontal and vertical plane are 

coupled with other motions in the same plane, but the direct coupling between both 

planes is not included. The external forces and disturbances exerted on a ship during 

a manoeuvring motion in waves include wave, hull, manoeuvring, rudder and 

propeller forces. The wave excitation terms are very difficult to represent in a 
functional form, since generally the characteristics of the wave excitation change 

according to the heading angle with respect to the direction of incoming wave. The 

hydrostatic and Froude-Krylov forces are calculated using direct pressure integration 

over the instantaneous wetted body surface under the wave profile. In each time step 

the relative position and rotation of the body with respect to the exact wave profile 

are evaluated and it is possible to include non-linear effects of wave force and to 

consider correct restoring force even in large amplitude motions. It is very time 

consuming to calculate the wave diffraction force and added resistance exactly in 

each time step, so these forces are evaluated in a practical manner, where they are 

assumed to be function of wavelength, heading angle and forward speed. 
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The hull force, which is described as a motion dependent hydrodynamic force and is 

equivalent to the radiation force in the potential theory, is expressed in terms of 

convolution integrals to consider the memory effects due to the arbitrary forms of 

motion history. To explain the viscous effects of the flow experienced during 

manoeuvring motion, manoeuvring force is adopted in the equations of motion 

because it has significant effects on horizontal plane motions and trajectories during 

manoeuvring motions. The inclusion of manoeuvring force might be criticised since 

there is some overlapping aspects with the hull force expressed in terms of 

convolution integral. For the calculations of manoeuvring force together with the 

rudder and propeller force, empirical method, which is extensively used in the MMG 

model, is adopted. All of those forces are calculated using the highly efficient 

modular method in which each individual force is calculated and superimposed in the 

equations of motion. 

The time domain solutions of the equations of motion are obtained using a fourth- 

order Runge-Kutta method. In order to obtain the impulse response functions, a 

numerical scheme for Fourier transform was developed and the calculation results 

have shown that the impulse response functions converge to zero within 20 seconds 

which is satisfactory for practical application. A method for calculating the 

hydrostatic and Froude-Krylov wave excitation has been developed in the numerical 

tool which is capable of integrating the pressure directly over the instantaneous 

wetted surface under the wave profile. 

In order to validate the proposed mathematical model, numerical application for 

ITTC Ship A-1 container vessel has been performed with given test conditions in 

following seas. The numerical model could predict both sub-harmonic and harmonic 

roll oscillations in different wave conditions with reasonable accuracy and capsizing 

due to the parametric roll resonance is also quite well predicted. Additionally 

predictions of pitch angle, which has direct effect on the change of roll restoring 

moment, and yaw angle controlled by the rudder activation of autopilot show good 

agreement with measurement data. 
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In order to evaluate significant qualities of ship manoeuvring characteristics, two 

typical manoeuvring simulations of turning circle and zig-zag tests are performed at 

various conditions of wavelengths and initial heading angles. The simulation results 

are compared with the calm water calculation, thought further validation is not 

possible to be carried out because neither experimental data nor full scale trial is 

available. Wide range of simulation results of 35° starboard turning circle test have 

shown that shift of the ship trajectory to the direction of incoming wave is mainly 

caused by the second-order wave force, especially added resistance in surge direction, 

which results in large speed loss. Simulations of 20°/20° zig-zag tests with similar 

wave conditions to the turning circle manoeuvre have been carried out and 

significant differences of the times to reach third execute of rudder are observed in 

the cases of head and following seas. 

Prediction results of the operational measurements, such as advance, transfer and 

tactical diameter in turning circle test and first and second overshoot angles in zig- 

zag test are illustrated and comparisons with the calm water case have confirmed that 

the wave effects on the manoeuvring simulations cannot be ignored. Since the 

operational parameters predicted in the standard manoeuvring simulations are very 

important for the criteria in Standards for Ship Manoeuvrability, full-scale trials in a 

real seaway should be compensated for the genuine assessment of manoeuvrability in 

calm water by adopting the method presented in this thesis. 

10.4 Prediction of Parametric Rolling 

In order to assess and validate the capability of mathematical model to predict high 

amplitude ship motion in a wave, additional numerical application for parametric 

rolling phenomenon has been performed. It has been shown that the GZ curve 

depends on loading condition as well as longitudinal location of wave crest thus 

affecting roll stability significantly in a wave. A variety of operation parameters, e. g. 

speed and loading condition, have been combined with regular, group and irregular 
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waves and applied for the numerical prediction of parametric roll motion in head and 
following seas. Numerical simulation continues until parametric roll is fully 

developed and mean value of roll amplitude is evaluated for the comparison with 

experiment data. For group and irregular waves simulations are repeated to obtain 

average value. 

Highly non-linear behaviour of parametric roll has been observed in the experiment 

data; `decrease of roll amplitude with higher wave', `consistent of roll amplitude 

regardless wave height', and `increase of roll amplitude with higher wave'. It has 

been shown that the ability of numerical method to predict these non-linear 

behaviours is satisfied either in quantitatively and qualitatively although there are 

over- and under-estimation of mean roll amplitude. Overall capability of numerical 

method to predict parametric roll motion seems to be satisfactory for group and 
irregular waves. 

10.5 Contribution to the Field 

The principal contribution of the research presented in the thesis is the development 

and implementation of a theoretical methodology for the analysis of ship motion 

problem in a seaway. In this respect, formulation of six-degree-of-freedom equations 

of motion, which is described by an integrated mathematical model in connection 

with the traditional seakeeping and manoeuvring theories, has been achieved and it 

has been further extended to the development of the corresponding numerical tools 

for the assessment of the ship motion performance in waves. The numerical 

applications showed that the integrated mathematical model could be the most robust 

way to simulate manoeuvring behaviour of a ship in waves as well as highly non- 

linear motion like parametric rolling. 

In order to obtain full hydrodynamic data set required in the integrated mathematical 

model, a theoretical formulation and development of an efficient numerical tool for 

the seakeeping problem have been carried out as a first part of present study. A three- 
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dimensional panel method with the free surface Green function has been adopted in 

the frequency domain, and first-order hydrodynamic terms as well as second-order 

hydrodynamic wave loads have been obtained using both CPM and HOPM. It has 

been confirmed that the numerical tool has been successfully developed through the 

validation process in which comparisons are made with other numerical predictions 

and experimental measurements. It is believed that the numerical methods can be 

applied to various hull types of marine vehicles and are ready for routine design 

applications. 

In overall, the research presented in the thesis produces an advanced ship motion 

simulation tool for the marine industry, suggesting the importance of wave effects on 

the ship manoeuvring tests required for the Standards of Ship Manoeuvrability. The 

development of theoretical formulation has demonstrated the potentials of the present 

study to derive accurate estimations of the manoeuvring qualities even in the real 

environmental disturbances. With the numerical applications to the simulation tests, 

the author would like to believe that this research constitutes a sound engineering 

basis for offering insights about the link between the design parameters and for 

attempting to lead to better design for ship safety. In this respect, the thesis has 

served the principal aims and objectives stated in Chapter 2. 
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10.6 Recommendations for Further Research 

The present study has demonstrated the formulation and implementation of the 

numerical model adopted for the six-degree-of-freedom motion simulation of a ship 

in waves. To obtain more accurate results, however, further improvements could be 

made by considering many aspects ignored in the assumptions of development 

procedure. The following are some recommendations for future research and 

development: 

0 Although adaptive numerical scheme has been applied to evaluate the integrals 

of Green function, more fast and efficient numerical techniques regardless of the 

oscillating phenomena near free surface are required to reduce total calculation 

time, since most of the computational efforts are consumed in the evaluation of 
Green function. 

0 In order to investigate the coupling effects of the steady flow on the unsteady 

motion, the slender body approximation of m-terms in the body boundary 

condition need to be compared with exact values by solving steady potential 

problem. 

0 The hydrodynamic coefficients appear to have oscillatory trends, so-called the 

irregular frequency, in the high frequency regions. Although rational approaches 

have been utilised in the discretisation of hull surface by increasing the total 

number of panels together with maintaining aspect ratio to be unity, removal of 

the irregular frequency is little affected. Since it seems to arise from interior flow 

of free surface, special method to remove irregular frequency and any numerical 

difficulty in a translating pulsating source technique are required by employing, 

for example, extended boundary integral equation. 

" The convolution integral accounting for the memory effect of arbitrary motion is 

constructed as a linear model of impulse response function. A further extension 
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to a non-linear formulation for the functional representation of memory effect is 

needed to describe large oscillatory motion in rough seas. 

" Further development of the integrated mathematical model would improve the 

overall accuracy of its predictions. Since present mathematical model considers 

coupling effect between vertical and horizontal plane motions indirectly in the 

external forces, direct coupling of different plane motions could be taken into 

account in the equations of motion to predict highly non-linear motion. 
Theoretical and experimental studies for non-linear behaviour in the horizontal 

plane motions due to viscosity effects should be incorporated with the numerical 

tools. The effects of control surface and propulsion parameters on the 

manoeuvring motion are very important. Therefore, use of more sophisticated 

autopilot and propulsion models could be attempted. 

10.7 Concluding Remarks 

In this chapter the major results of the thesis were discussed. Ship motion problems, 

which have been separated into two research fields of conventional seakeeping and 

manoeuvring, have been discussed to describe more generalised behaviour of a ship 

motion in a seaway and formulation of an integrated mathematical model has been 

carried out including full developments corresponding numerical tools for the 
predictions of manoeuvring performance and parametric rolling in waves. The 
mathematical model is encompassed with the technologies available in the traditional 

seakeeping and manoeuvring research area, while a novel method is also adopted to 
include key non-linear effects arising from large amplitude motion in heavy sea 
states. It is hoped that this thesis has contributed positively towards this extent. 
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Chapter 11. Conclusions 

Based on the research work presented in this thesis, it is believed that the aims of the 

work have been accomplished. In summary, the following concluding statements can 

be drawn. 

0A robust numerical tool for the predictions of first-order hydrodynamic data set 

has been developed based on the three-dimensional panel method with the 

translating pulsating Green function in the frequency domain. The tool was 

extended to obtain the second-order wave loads accounting for drift effect and 

added resistance in waves. A validation process showed that both CPM and 

HOPM are capable of estimating and thus providing reliable data set for the 

following integration of mathematical model. 

"A six-degree-of-freedom mathematical model has been formulated and 

corresponding time domain simulation technique has been developed to describe 

general manoeuvring behaviour of a ship in a seaway. The integrated 

mathematical model, allowing straightforward combination of seakeeping and 

manoeuvring models, incorporates the memory effect of random motion and 

considers wave force precisely over the instantaneous wetted hull surface. 
Drifted trajectory of turning circle test shows significance of wave effect, 

especially added resistance, on the manoeuvring motion. 

" The numerical tool of integrated mathematical model is further applied for 

prediction of parametric roll. Highly non-linear behaviours of parametric roll 

have been addressed and the numerical tool has proved the capabilities to predict 

parametric roll with reasonable accuracy and wave effects on the variation of 

ship stability in a seaway. 
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Appendix A. Formulation of Green Function 

A. 1 Formulation of Green Function 

A. 1.1 Integrals 1� and 1,2 

The method to express integrals 1� and 112 in terms of exponential integral is very 

similar to that used in Chapter 5, but is much simpler. 

1-If d8 exp(kX, ) k, 
dk 

z 1-4rcosO k-k, 
(A. 1) 

11f dBr eXP(kx2) k, 
dk 

12 ) ý° 1-4rcos9 k-k, 

Again change of variable given in equation (A. 2) will be used and integration 

intervals can be changed as equation (A. 3) since k, is real. 

u=-x1(k-k, ) (A. 2) 

k=0 -+ u=k�Z, 
(A. 3) 

k= oo u= -xioo 

Then 1� can be expressed as 

1-1k, exp(kj, ) d4 x, --du 
ºI - ýr 

I-4rcosO 
ßz1 u 
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Im(u)r A, + A� + A,,, =0 Im(u) 

k, x -x« 

X1 
0 ký °O Re(u) k 00 Re(u) 

-X100 k, X, A, + All + Arn = -2; ri 

(a) Im(X1) ?0 (b) ! m(X, ) <0 

Figure A. 1 Integration path of the integral I� 

Again we can take the contour integral of A, + All + A,,, and by applying Cauchy's 

integral theorem the contour integral can be expressed as 

x. e-" e , x, e-" 
_ A, + A, 

ý + A�, = 
rxý du + fx,. 

e du +u du 
(A. 5) 

= 
x, - 

-du-E1(k11) 
fal 

u 

Since Im(k, ) >0 and Re(x, ) < 0, the imaginary part of singular point is positive 

k =k, + is -ý u= -i& -+ Im(u) >0 (A. 6) 

When Im(, ) >_ 0, the integration path will follow Figure A. I (a) and the contour 

integration becomes A, + All + A,,, =0. Thus equation (A. 5) can be rewritten in 

terms of exponential integral as follows 

xý- e=u du =Ek when Im >0 fai 
u 

When Im(x, ) <0, the integration path will follow Figure A. 1 (b). Since this path 

contains singular point, the contour integration becomes A, + A� +, -I/, / = -2, i and 

equation (A. 5) can be rewritten as 
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fal e du = E, (k�X, ) - 2iri when Im(, Z, ) <0 (A. 8 

Finally following results for the integrals I� and I, Z are obtained 

I_I rk, exp(k, x, )E., (k, x, )do 
" Ir 1-4rcos9 

(A. 9) 
, 12 =1zk, 

exp(k1x2)E 1(k1 2)dO 
1-4rcos0 

where 

E'' (k'x') 
E, (k, x; ) when Im(x, ) >0 

(A. 10) E (k 22ri when Im <0 

Similar method can be applied for the formulations of integrals 133 1 134 1 I� and 1� 9 

and corresponding exponential integral given in equation (A. 10) can be used without 

any change. 

A. 1.2 Integrals '21 and 122 

The method to express integrals I21 and '2, in terms of exponential integral is very 

similar to previous section. 

1Z cd0r140 exp(k, ) 
A 1 k-k, 

'22 =1 dO f exp(kX, ) k, 
ilk 

(A. 11) 

IT 1-4rcos© k-k, 

Again change of variables given in equation (A. 12) will be used and integration 

intervals can be changed as equation (A. 13) since k, is real. 
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Im(u) FB, + B� + B,,, = 22ri 

k2 
1 

Im(u) 

0 kz 00 Re(u) 0kx Re(u) 

-400 kzXBI + Qu + Bu, =0 

(a)Lm(X1)ý: 0 (b)Im(X1)<0 

Figure A. 2 Integration path of the integral 1Z, 

u =-x, (k-kz) (A. 12) 

k=0 -3 u=k2x, (A. 13) 
k= co -ý u=-, ß, 00 

Then 12, can be expressed as 

1- 
1r k2 exp(k2, ý, ) d6 f xý- e` du (A. 14) 

Z' It 1-4rcos0 21 u 

Again we can take the contour integral of B, + B1, + B,,, and by applying Cauchy's 

integral theorem the contour integral can be expressed as 

x, - e" B, +B�+B,,, = -du+ý du+ -du : x, u z, ý u tr (A. 15) 
-u 

- 
z, e du-Ei(k, X1) C, 

1 U 

Since Im(k2) <0 and Re(x, ) < 0, the imaginary part of singular point is negative. 

k= k2 - ig -3 it = is% -+ lm(u) <0 (A. 16) 
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When Im(x, ) >_ 0, the integration path will follow Figure A. 2 (a). Since this path 

contains singular point, the contour integration becomes B, + B� + B,,, = 2, ri. 

xw e -u I 
-du = E, (k2X, ) + 27ri when Im(X, ) 0 (A. 17) 

2X1 u 

When Im(x, ) < 0, the integration path will follow Figure A. 2 (b) and the contour 

integration becomes B, + B� + B,,, =0. 

x, - e° du = Eý(kz) when Im(x, ) <0 (A. 18) . 2'ß ß 
c 

%I u 

Finally we get following results for the integrals 121 and '22 

I_I 
kz exp(kzx, )E. 2 (k2XI ) dO IN 

z 1-4rcosO 
I k2 exp(k2%2)E. z(k2%2 

(A. 19) 
,2 2= - 1- 4rcosO 

where 
1E, (k2X; )+22ri when Im(x. ) 

_0 E, z (kzr; ) = (A. 20) [E1(k2z) 
when Im(x1) <0 

A. 2 Calculation of Singularity 

There exists a singularity at the point 0=y and this could be avoided using the 

change of variables as 

u= 4rcosO-1 (A. 21) 
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with 

dB = -udu 
z 

2T 1-(1+ 21 
4r /1 

e=o -> 
e=y -)ý 

u= 4r-1 

u=0 

Then the integrals Io, and I02 can be expressed as 

Ios 
1 4z-' koi exp(ko X, ) 

-- 
r2 

Ep(koiXi)du 
2Tl 1-! u 

-1 
ar ' k02 exp(kO2X, ) 

z 
Eq (koi. 'i )du 

+u_ 2Ti 1- 
r) 

1 4r-' kol eXP(ko,. ý'z ) l0z =Fz En (kola 
2 
WU 

2ri 1- ) 

_1 
4z-' koz exp(kozl'z ) ) 

Eq( ko2, Z, )du 

2Zl I- (I+u2 )2 

where 

ko, (1_U2) -F iU 
2 k02 

2 (ý 

qu 
z) g 

xI =tz+ý)-tRx-ß)'4r2 -(y-77) 1-('är, ýýý 

17)ý +u 2 yl 
Z2 (Z 'RX 

4ur' + (Y 1-( 4r 

(A. 22) 

(A. 23) 

(A. 24) 

(A. 25) 

(A. 26) 

(A. 27) 

In a similar way the singularities in the integrals I� through I� can be avoided 

using the change of variables as 
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u= 1- 4rcosO (A. 28) 

with 

dB = 
udu 

z 
(A. 29) 

2T 1--uZ 4z 

B=y -* u=0 
(A. 30) . 30) 

2 -+ u =I 

Then the integrals can be expressed as 

k, exp(kX. )z 
Eri(kýX, )du (A. 31) 

2r 1-(1u ) 

, 12 
k, exp(k1 2)Z 

2r 
Eri(k1Z2)du (A. 32) 

1- ('-u2 
r 

IZ, -1f 
k2 exp(k2X1) Ere (k2%i )du (A. 33) 

21 1- (ý 
är2 

Y 

IZZ 
k2 exp(k2 7) Erz (k2X2 )du (A. 34) 

2r 
FI-ý 

uZ 1 
a: 

where 

k, l 2(1+u2)+u wz 
2g (A. 35) k2 (- 2(' 

) 
J 

4r 

Xi =(Z+`7ý-lý(X- 
)'4ur 

-(. Y-%) 1-('qr=)Z 

(A. 36) 
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A. 3 Derivatives of Green Function 

To evaluate the derivatives of Green function, differentiations of the exponential 

integral E, (Z) and variables Xj are required. 

dZ 
[exp(Z)E, (Z)] = exp(Z)E, (Z) -1 

and 

d-i 
cos 9 

d 
ay , 2', =isinO 

d_ 
z1 =1 

d 

dx xZ -icosO - 
d 

ýyx2 =-isrne 

d 
X2 =1 

(A. 37) 

(A. 38) 

Using equations (A. 37) and (A. 38), the corresponding derivatives of Green function 

can be easily derived. 
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A. 3.1 The x-derivative 

The x-derivative of Green function can be expressed as 

r 
Gx(P, 9)_-(x3 +(xY3 

)+(J 
+'O2)x 

(A. 39) 
WI I +'12 )x - ('21 +'22 )x + (133 + 134 )x - (143 + 144 ). 

v 

where 

(I) -1f 
ko, Z cosOexp(ko, x, ) E (ko, )dB 

oý X_- 4rcos0-1 P . 'ý 

+1 
k� cos9_ de 

r x, J4rcos9-1 

+1 
k0zz cosOexp(k0z, ý, ) Ek d9 

(A. 40) 

7r 4rcos0-1 Q( oziý) 

-1 
k02 cos8 dB 

x, 4rcos9-1 

1 k'12 cosOexp(ko, xz) (Ioz)x --Ir 4rc ssO-1 
E, (koI. Z'z)d© 

+1 
ko, cosO dO 

)r x2 4 cos e -1 (A. 41) 

+1 
k0zz cos0exp(k02X2) Ek dO 

4rc o ssO-1 9( ozXz) 

1 k0z cos9 de 
r Xz 4rcosO-1 

1Z ik, Z cosüexp(k, x, (I>>)X =-n 1-4zcos8 
)Erl(kºX, 

)d4 

+1 
ik, cosO d© 

(A. 42) 

ir 

r 

Z, 

I2 ik, 2 cosOexp(k, X, ) 

;T 11 
-z cosO 

f ik 4 
(A. 43) 

+l' 
cos d4 

'T xz 1- 4z cos0 
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1 ikzz cos 9 exp(kzx, ) (Izý)x ýt 1-4zcos8 
E. z(kzxl )d9 

(A. 44) 

+1 
ikz cose dO 

i 

r114rcosO 

('22)x 
1r ik22 cosOexp(k22) Er2(k2Z2)dO 

1- 4r cos O 
(A. 45) 

+1r 
ik2 cosO dO 

7r xz 1-4rcosO 

_ 
(133)x 1l ik32 cosOexp(k3%3) 

1+4zcos0 
Er3(k3x3)de 

(A. 46) 
1 ik3 cosO dB t31+4rcos8 

1; ik3 2 
(Isa) 

x 
cos8exp(k3za) 
1+4zcosB 

Er3(ksl'a)d8 

1r ik3cosO 
(A. 47) 

ý, d8 
xa 1+4rcosO 

(143) 

x=1 
ik42 cosOexp(k4%3) Er4(k4.1, '3)dO 

1+4rcos9 
(A. 48) 

-1X 
ik4cosO dO 

,ý X3 1+4rcosO 

1 it ik, Z cosOexp(k444) Er4 k4Z4)dO ('44)x 
1+4rcosO (A. 49) 

1 ý; ik4cosü 
- U(7 

7r 
ý`, 

ý4 1+4rcos9 

Definitions of the exponential integrals E,,, E9 and E,,,, and complex variables , ', 

are given in Chapter 5. 
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A. 3.2 The y-derivative 

The y-derivative of Green function can be expressed as 

Gy (p, 9) =- 
(Y 

317) + 
(Y 11) + (I + 102 )y 

r3 r3 of oz y (A. 50) 

+(Ill +I1z)y -(I21 +Iz2)y +(133 +I34),. 
-(143 +1 44 )y 

where 

(1 
1f ko, 2 sin0exp(ko, x, ) E kol)dB 

oý)y = 
7c 4rcos0-1 n(. ýi 

-1r 
ko, sin BdB 

x, 4rcosO-1 

kaZZ sin 8 exp(koZx, 
(A. 51) 

)E9(k0zx, 
)dB 

)c 4r cos0 -1 

+1 
k02 sin 8 

de 
x, 4rcos0-1 

U) 
1 ýr k012 sin O exp(k01 2) E (koº. ý2)d© 02 j' Ir .b 4rcosO -1 

+1 
ko, sine dO 

X2 4r cos 9 -1 (A. 52) 

+I1 
k022 sinBexp(k02Z2) E (k°ZxZ)d© 

4rcos0-1 9 

k02 sing dO 
X2 4rcos0-1 

(I")' 2ik12sin0exp(k, x, )En 
(k, x, )d© 

1-4rcose 
ik, sin0 

(A. 53) 
dB 1 r1-4rcosO 

ýr x, 

I? ik12 sin 0 exp(k, / 
\112)y 

iI "ý 1-4tCOS© 

)Erl(kýX, 
ýCý© 

(A. 54) 

+I_, 
ik, sin0 dB 

n 
Jy 

x2 1- 4rcosO 
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ýIzi)y = 
1' ikzz sin0exp(kzXi) Erz(kzXi)dO 

1- 4rcos9 (A. 55) 
1 ikz sing de r114rcosO 

I; ik22 sin O exp(k2, ý2 ) V22)y 
1-4zcosO 

Eý2(k2X2)d9 

1 
(A. 56) 

+_ 
ik2 sing dB 

2 X2 1-4rcosO 

I ik32 sin 6 exp(k3,1'3 ) 
U33)Y Er3(k3x3)de 

7i 1+4iCOSe 

(A. 57) 
ik3 sin8 dB 1 rx31+4rcosO 

(I34)y 
=-1r 

ik32 sin0exp(k3 4) Er3(k3%4)dO 
1+4zcos9 

+1 
ik3sinO dO 

(A. 58) 

X4 1+ 4r cos O 

(l43)y 
12 ik42 sin 9 exp(ka%3 ) 

- 1+4zcos0 
E'a(k4x3)d© 

7r Nf- 
1 ika sing 

(A. 59) 
de 

x3 [1-+- 4r cos 0 

1r ikaz sinGexp(k4%4) Er4(k4X4 dO (I44)y --ý 1+4rcosO 
) 

(A. 60) 

+1f 
ika sinO d© 

'r Xa 1+ 4r cos 0 

All parameters in above equations are given in the Chapter 5. 
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A. 3.3 The z-derivative 

The z-derivative of Green function can be expressed as 

GZ(P, 9') _ -(Z 
3+ (Z 3 

+(101 + Io2)z 
r r, (A. 61) 

WI 
I 

+'12 )Z -U 21 +'22 
)z + 

`133 
+1 

34 )z - (143 + 144 )z 

where 

(I) _1 
k012 exp(k01x, ) E (k )dB 

01 z; i 4rcosO-1 p o'x' 

1 k01 
dO 

;rn ix, 4z cos9 -1 (A. 62) 
1 k022 exP(k02 l) EQ (k021 )d 9 

J0 i 4rcos0 -1 

+1 
k02 dB 

7 ix, 4z cos 8 -1 

1 k012 exp(ko1 2) (jot)s -ri 4zcosO-1 
EP(koIXz)dB 

Ir V 

1 kol dO 
g iX2 4rcos0-1 

(A. 63) 
1 ("" k02 z exp(k02 2) Eq (k02X2 )dO 

ýb i 4rcos0 -1 

+1 
k02 

dO 
ýc "b ixe 4rcosO-l 

I' k1Z exp(k, x, ) 
4rcos 0 

E. ' (klx. )d© 
1- 

(A. 64) k' 
dO 

z x, 1-4rcosO 

I1k, 
2 exp(k, x2) Ek dO 

ii 4rcosO rl I/2 

(A. 65) 
12k, d© 
7r X2 Vl-4rcosO 
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1 k2'exp(kx, 2) (IZ' )Z =E 
;r 1- 4z cos 9 'z 

(k2x, )dB 
(A. 66) 

1 k2 
. 410 

X, 1- 4r cos O 

1 k22 exp(k2, ý2 ) (I22)Z -1- -4rcosO Er2(k2. ýz)dB 
(A. 67) kz 

. d9 
'T X2 , 

fl-4rcos9 

U33). 
- 

12 k32 eXp(k3X3) 
1+4zcosO 

Er3(k3x3)de 

(A. 68) 
If k3 dB 
n 

1 k32 exp(k3, 'a ) (Isa)Z - 1+4zcos8 
Er3(ksl'a)dB 

1k (A. 69) 
3 dB 

xa 1+ 4r cos 0 

U43). =1 
k42 exp(k4.1'3) Er4(k4x3)dO 

1+4zcosB 
(A. 70) 

-1 
k4 

dO 
X311 +4rcos9 

1 k42 exp(ka, 'a ) (jaa)Z 
1+4 

Era(karg)d6 
z cose (A. 71) 
ka 

d8 
X4 , 

fl + 4z cos 0 

All parameters in above equations are given in the Chapter S. 
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A. 4 Green Function at Zero Forward Speed 

At zero speed U=0, non-dimensional parameters become zero, i. e. r=0 and y=0, 

and the singularity of the integrand f (B, k) in the original form of Green function is 

reduced to one degree. 

f(B, k) = 
kexp[k{(zi(x-4)cos9}]cos{k(y-i )sinO) 

(A. 72) 
gk-w2 

The denominator of integrand f (B, k) has one singular point and f (4, k) can be 

rewritten as 

f (e, k)= 
1"k kk, 

exp[k{(z+ý)-i(x-ý)cos9}] 
(A. 73) 

x cos {k(y - i7) sine} 

k, = 
0) (A. 74) 

Using the relationship cos Z=Z {e'Z +eZ}, the expression for f (0, k) can be 

rewritten as 

f (B, k) =I- 
k' [exp(kv, ) + exp(kX2)] 2g k-k, 

when 0<-0<-; r (A. 75) 

+I [exp(kX, ) + exp(kX2 )] 

where 

, Z, = (z + ý) - i[(x - 4) cos 0- (y -17) sin 01 
(A. 76) 

- z+ i x- cos©+(y-q7) in© 

Then the expression for zero speed Green function becomes 
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G(p, q) =1-1 +-1 f dO f 
k' 

exp(kX, ) + exp(kX, ) dk 
r r, 7t k-k, 

(A. 77) 

+1cdBf 
k' 

exp(kx2) + exp(kX2) dk 
7r 

[k-kl 

or 

G(p, q) =1-1+I, + 12 (A. 78) 
r r, 

I, =1r de f 
k, 

exp(k%, ) + exp(kx, ) dk (A. 79) 
[k 

-k, 

I2 =r dO fkk, 
k exP(kx2) + exP(kX2) A (A. 80) 

7r 

[-, 

First term in the integral II can be reformulated with similar method used in the 

cases of I� and I12, and the second term can be solved analytically. 

fexp(k)dk =-1 (A. 81) 
xi 

Then final expressions for the integral 1j 's are obtained as follow 

Il=1, b k, eXP(k, x, )E., (k, x, )- de (A. 82) 
xº 

'2 =1 
r k, exP(k, x2)Er, (k1x2)- 1 do (A. 83) 

x2 

where corresponding exponential integral is identical to the one given in equation 
(A. 10). The Green function given in equation (A. 78), which is associated with 

expressions (A. 79) and (A. 80) represents oscillating source potential. 
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Derivatives of zero speed Green function can be expressed as follow 

The x-derivative: 

Gx(P, q)_-(x-) +(X 
L) 

3+(I1+Iz). r (A. 84) 
rr 

VA, =- 
f ik12cosOexp(k1x, )E, (k, x, )d9 

+1f icosok"Z'Z 
Ido (A. 85) 

7r x, 
('2)X --ý 

f ikj2cosOexp(k1 2)Erl (kIx2)dO 

(A. 86) 
+1 icos9k'x22 

1dO 

Z2 

The y-derivative: 

Gy(p, q)(Y-7%)+(Y-%)+(1' +IZ)y (A. 87) r3 r3 

(I, )y =f ik, Z sinO exp(k X, )E,, (k,, r, )dO 

(A. 88) 
-1fi sinO 

k'x' 
2I d9 

('2)y =- 
f ik, Zsin0exp(k, X2)E. i(k, X2)dO 

+1f isinOk'x22 
1d4 (A. 89) 

ir xz 

The z-derivative: 

G, (p, R)=-(Z 
r3+(z+ 

)+ 
(II +I2). 

r 
(A. 90) 

(I, )Z =ý, k, Z exp(k�%1)E , (k�Z, )d©- Iý k1Xý 
,1 

d© (A. 91) 
' Xi - 

('2)2 =1fk, zexp(k, X, )E, 1(k, %, )d0- 1 fk1%-1,0 (A. 92) 
Jr. jr. X, 
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A. 5 Green Function at Zero Frequency 

At zero frequency w=0, non-dimensional parameters become zero, i. e. r=0 and 

y=0, and the singularity of the integrand f (0, k) in the original form of Green 

function is reduced to one degree. 

f(B, k)- exp[k{(z+,; )-i(x-4)cos6}cos{k(y-ri)sin©) 
(A. 93) 

g-U2kcoste 

The denominator of integrand f (9, k) has one singular point and f (©, k) can be 

rewritten as 

(0, k)=- 
11 

exp[k{(z+ý')-i(x-4)cos©}] 
UZ cost Bk- k2 (A. 94) 

xcos{k(y - i) sin8} 

g k2 

- U2Cos' 9 
(A. 95) 

Using the relationship cos Z= 12 {e'Z + e-") , the expression for f (4, k) can be 

rewritten as 

f (O, k) =- 
2g 

"k 
k2k2 [exp(kx, ) + exp(kx, )] when 0: 5 ©5'r (A. 96) 

where x, and %2 are given in equation (A. 76). Then the expression for zero speed 

Green function becomes 

G(P, q) =1-I-Ir d©, 
k2 [exp(k Z, ) + exp(kX, )] ilk (A. 97) 

r r, ;r k-k, 
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Im(k) 

(a) o_ 0 <_ 2 

Re(k) 

Im(k) 

0 k2 Re(k) 

(b) 2 B<_; r 

Figure A. 3 Integration paths in the complex plane 

Although only one singular point exists in the integrand of equation (A. 97), the 

integration path can be divided into two regions as shown in Figure A. 3. Therefore 

the expression given in equation (A. 97) can be rewritten as 

G(p, q) = 
1-1 

+'21 +'22 +'23 +'24 (A. 98) 
r r, 

'21 =- 
7 f d01 

k 

Z exp(k%i) A (A. 99) 
k k z 

'22 =- 
1 r do 

k2 
exp(kx2) dk (A. 100) 

27 k- kz 

123 =- d0 
k2 

exp(kx, ) A (A. 101) 
k kZ 

'24 =- d©f 
k2 

exp(k%2) dk (A. 102) 
k 

2 

The remaining process is straightforward as shown in the foregoing sections. The 

integration intervals in 23 and IN can be changed from 2<©< 
it to 0< ©< 2 

using change of variable demonstrated in Chapter 5. Thus final expressions for the 

integral '2j 's are obtained as follow 
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x 

I21 _-if k2 exp(k2x, )E, z (kzx, )dO (A. 103) 

I22 1=-ý kz exp(kzXz )Erz (kz. 7. 'z )a'e (A. 104) 

1Z 
'23 = -' 

rkz exp(k2 3)Er4(kz r3)dO (A. 105) 

IN =-ý 
gkz eXP(kzxa )Era (kzxa )de (A. 106) 

where corresponding exponential integral E,; (k2%ß) and variable z3 's are already 

defined in Chapter 5. The Green function given in equation (A. 98), which is 

associated with expressions (A. 103) through (A. 106), represents Kelvin source 

translating source potential which is travelling with steady forward speed in calm 

water. 

Derivatives of zero frequency Green function can be expressed as follow 

The x-derivative: 

Gx(P, 9) =-(x 
r3) 

+ 
(x 

r3) 
(, 21 + 

, 
'22)r +(123 +'24)x (A. 107) 

(I21)X =i 
cicos0 k22exp(k2. ý, ', )Ei2(kz%, )- 

k2 
d4 (A. 108) 

('22)x = 
11icos0 k22exp(kz%z)Erz(kz%z)- 

kz 
dO (A. 109) 

x, 

1 
(Iz3)x = -ý 

f1 icose k22 exp(kz. ý's)Era(ka. l'3) - 
kz 

d© (A. 110) 
X, 

1 
(Iz4)x =-i cos8 k22 exp(k2 

4)Er4(kz%4) - 
k'' d© (A. 1 11) 

7r 

f1 

Xa 
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The y-derivative: 

Y G (p, q) =-(y-q)+(y-! 
)+(1 

+1 ) +(1 +1 3 21 22 y 23 24 3 (A. 112) 
r r, 

('21)y = - isin0 
[ic2 

exp(k2 1)Er2(k2Z1)- 
k2 

dO (A. 113) 
x, 

(I22) 
y= 

i sin B k22 exp(k2X2 )Er2 (k2X2) -k2 d© 
1 

(A. 114) 
Ir x2 

V23)y = - 
isine k22exp(k2%3)Er4(k2%3)- k2 

dO 
b (A. 115) 

" x3 

(I24)y = 
! risino[k22 

exp(k2x4)Er4(k2%4) - 
k2 

dO (A. 116) 
x4 

The z-derivative: 

GZ(P, R) _ 
(z 3- ;)+ (z 3ý) 

+(I21 +'22), +(I23 + z4), (A. 117) 
r r 

2 2 ('21)Z =- ý k2 exp(k2xi)Er2(k2xl)- de (A. 118) 

1 2 kz 
(I22)Z -- 

f[k2 
_ ) de eXp(kzxz)Erz(kzxz (A. 119) 

ý xz 

2 kz ('23)z =- 
f[k2 

eXp(kzx3 )Er4 (kzx3) - de (A. 120) 
Ir x3 

2 k2 
(I24)z =- 

r[k2 
1 

exp(kzx4)Er4(kzx4) - dO (A. 121) 
Ir xa 
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A. 6 Calculation of Exponential Integral 

To calculate the integrand of Green function efficient evaluation of the exponential 

integral is required. The exponential integral for complex number is given as follows 

E, (z) = fedu for arg(z)I <, r (A. 122) 

An approximate formula for the calculation of exponential integral has been 

proposed in Hess and Smith (1967). 

ezE, (z) =M+N+ c(z), e(z) <_ 7x 10-6 
D 

(A. 123) 

M, N and D used in the rational-fraction approximation of equation (A. 123) are 

given as 

M =-(1+m, z+m2z2 +m, z3 +m4Z4)lnz 

N= -y(O. 99999207 + n, z + n2Z2 + n3z3 + n4z4 + nszs) (A. 124) 

D=1+d, z + d2z2 + d3z3 + d4z4 + dszs + d6z6 

where 

m, = 0.23721365 

m2 = 0.02065430 

m3 = 0.000763297 

m4 = 9.7087007 x 10-6 

n, = -1.49545886 
nz = 0.041806426 

n3 = -0.03000591 
n4 =0.0019387339 

n5 = -0.00051801555 

and y=0.5772156649 is Euler constant. 

d, = -0.76273617 
cl, = 0.28388363 
13 _ -0.066786033 
d4 = 0.012982719 

(15 = -0.0008700861 
do = 0.0002989204 
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A. 7 Calculation of Green Function near Free Surface 

When either the source or field point is close to the free surface, some integrals of 

Green function show very large oscillating behaviour. The real and imaginary parts 

of integrands in Green function are illustrated in Figure A. 4 and Figure A. 5 for 

U=3.0, w=1.0 and 10.306. For both figures field points are located in (-20,0,0) and 

source points are in (0,0, -0.01) and (0,0, -0.01) respectively. Integrals lo, + lo, 

1, + 112 and 133 + 134 are represented as a smooth curves, while integrals of l,, + 1� 

and 143 + 144 in Figure A. 5 show extreme oscillations. It should be noted that these 

oscillations appears when the sum of z values of source and field points becomes 

very small. 
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Figure A. 4 Real and imaginary part of Green function for U=3.0, w=1.0 and r=0.306 

with field point (-20,0,0) and source point (0,0, -0.1) 
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Figure A. 5 Real and imaginary part of Green function for U=3.0, w=1.0 and r=0.306 

with field point (-20,0,0) and source point (0,0, -0.01) 

Since it is impossible to calculate Green function analytically, an appropriate 

numerical scheme should be adopted to integrate given integrand in the Green 

function. Furthermore it is very important to integrate the given curves exactly 

regardless oscillating behaviours. For example, only a small number of points are 
required in the integral 1� +'12 'while a large number of points are needed in 

'21 +'22 . Therefore a numerical integration scheme has been employed to use 

different number of points automatically according to the oscillation behaviour. 

Figure A. 6 illustrates the adaptive numerical integration used in the present study. 
Initially five points, which are equally spaced in the integration interval, are used to 

calculate the integral of a given function f(x). In the next step, four additional mid- 

points are selected and integrals in each sub-interval are compared with previous 

estimate. If the integration value is within pre-determined error bound, process will 
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stop in the corresponding interval and otherwise the process continues until the 

integral converges to a constant. For present study, Simpson's rule has been 

employed together with the adaptive method as follows 

I=j. f(x)dx = 34f(a)+4. 
f(c)+. f(b)] (A. 125) 

where h= 
b- a 

and c= 
a+ b 

22 

f(x) 

äb 
1st X 

2nd 

3rd 

ab 

Figure A. 6 Adaptive numerical scheme for the integration of Green function 

Although it is possible to calculate Green function exactly with adaptive numerical 
integration, there are difficulties in the numerical evaluation of line integral with 

non-zero forward speed in the boundary integral equation. Calculations of 

singularities along the intersection line between body and free surface do not cause 

any problem for the case of vertical panels at the waterline. However, evaluations of 
Green function and its derivatives do not converge for non-vertical panel near free 

surface as shown in Figure A. 7, where U=7.4, w=1.4, field point (-63.0,3.221, - 
0.366) and source point (-63.0,3.676,0.0). In the figure the real parts of derivatives 

of Green function become singular as the field point moves towards source point (z- 

component of field point approaches zero). In order to avoid these difficulties the 
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location of source point is moved slightly towards exterior free surface and 

consequently the singular behaviour near free surface is decreased significantly. It 

should be noted that the numerical treatment of line integral should be applied 

carefully, since the evaluation might be distorted. 
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Figure A. 7 Behaviour of Green function and its derivatives in the waterline integral 

with field point approaching free surface 
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Appendix B. Hydrodynamic Data for Wigley Hull 

Additional calculations results of hydrodynamic data, such as added mass, damping 

coefficients, exciting wave force and motion response, for a Wigley hull form used in 

Chapter 7 are demonstrated. The numerical calculations have been carried out for 

Froude number 0.3 and 0.4 in head seas and compared with the two-dimensional 

strip method as well as the experimental measurement data presented in Journee 

(1992). 
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Figure B. 1 Non-dimensional added mass and damping coefficients in heave and 

pitch modes for Wigley hull travelling at Froude number 0.3 
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and pitch modes for Wigley hull travelling at Froude number 0.3 
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Figure B. 9 Non-dimensional added mass and damping coefficients in heave and 
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Figure B. 11 Non-dimensional added mass and damping coefficients in sway and yaw 

modes for Wigley hull travelling at Froude number 0.4 
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and yaw modes for Wigley hull travelling at Froude number 0.4 
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Figure B. 13 Non-dimensional added mass and damping coefficients in roll mode for 

Wigley hull travelling at Froude number 0.4 
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Figure B. 14 Non-dimensional coupled added mass and damping coefficients in 

sway-roll and roll-yaw modes for Wigley hull travelling at Froude number 0.4 
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Appendix C. Calculation of Manoeuvring Coefficients 

C. 1 Empirical Formulae of Manoeuvring Coefficients 

There are several empirical formulae available for the estimation of manoeuvring 

coefficients in manoeuvring theory. Most of them applied regression method to 

estimate manoeuvring coefficients and two typical formulae will be introduced. 

C. 1.1 Regression model 

Clarke et al. (1983) used linear equations of motion with three degrees of freedom, in 

surge, sway and yaw. The hydrodynamic forces and moments are expressed as 

perturbations about a steady ahead speed Uo . Then the hydrodynamic forces and 

moments are assumed to be directly proportional to these perturbation quantities. The 
equations of motion used in this regression model were finally expressed as follow 

(X�-m)ii+X�dtd=0 
(Yý -m)v+Yvv+(Y, -mxG)r+(Y, -mU0)r+Y ö=0 (C. 1) 

(Nv-mxG)v+Nvv+(N, -I_)r+(NN-nLX�UO)r+Ný8=0 

In order to find empirical formulae for manoeuvring coefficients used in the equation 
(C. 1), multiple regression analysis was adopted. The experiment data used was 

acquired from both rotating arm and PMM test. 

-/T/L2 =I+ 0.16C8(ß/ T) - 5.1(13/ L)2 

-} ; lir(T/L)2 =0.67(B/L)-0.0033(ß/T)' (c"2) 
-N;, /; r(T/L)' =1. l(B/L)-0.041(ßIT) 

-N, ln(T/L)' =1/12+0.017Cq(ß/T)-0.33(B/L) 
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-Yv ln (T / L)Z =1 + O. 4OCB (B / T) 

-Y. /ir(T/L)Z =-1/2+2.2(B/L)-O. 080(ß/T) 
(C. 3) 

-N ,, l; r(T / L)2 =1/2+2.4(T / L) 

-N, /7r(T / L)Z =1/4+0.039(B / T) - 0.56(B / L) 

The rudder force in sway direction is calculated on the basis that the rudder acts like 

a low aspect ratio wing, so that 

Ys _A 
)(T)(aCL C --- LT LMu 

Na = -0.5Ys 

(C. 4) 

where c is water speed past the rudder, A the rudder area, and C, the lift coefficient. 

The yaw moment due to the rudder is approximated half the ship length aft of 

amidships. Although the lift curve slope of the rudder äCL /öS and the velocity ratio 

(c/u)2 are variables which are different for every ship, their product could be 

assumed constant, so that 

acs c 
as 

(u 
= 3.0 (C. 5) 

which is a typical value for single screw ships. 

If derivatives given in above equations are considered to be bare hull derivatives, 

then the following fin effects must be added to them: 

YYn� = -YYs Nt,, 
i. _ -1/ 2Y,:,,, 

=1/4Y, ý, 

where y is a flow straightening coefficient, taken to be y=0.3. 

(C. 6) 
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The non-dimensionalised quantities used in equations (C. 3) and (C. 4) are defined as 

y" 
yv 

1/2pL3 

Y" 
1/2pL2u 

y' 
yi 

1/2pL4 _ 
Y. 

1/2pL3u 

N" 
yv 
2pL4 I/ 

N" = 
N" 

- 1/2pL3u 

N' 
yý 

1/2pL5 
N` _ 

N,. 
1/2pL'u 

C. 1.2 MMG model 

Y. 
y 

1/2pL'u2 

N8 
N. 5 = 1/2pL3u` 

(C. 7) 

Kijima et al. (1990) used drift angle ß to express equations of motion as follows 

(m'+mx)(U 
ucosß-ßsing) +(m'+m, )r'sinß=X' 

-(m'+my)I 
ý1 

Üsinß+ßcosß +(m'+m, )r'cosß=Y' 

(1.: +J'. ) 
fir'+Ur' 

=N' ULL 

where 
I Mass of ship 

(C. 8) 

mý, my :x and y axis components of added mass of ship respectively 

III, JII : Moment of inertia and added moment of inertia around z axis 

L Ship length 

d: Draft 

U: Ship's speed 

The non-dimensionalised quantities used in the equation (C. 8) are defined as 
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m', mx, my =m, mx, my/2pL2d 

I,,, JZ. = I, J. /i PL4d 
X', Y' = X, Y/2 pLdU2 (C. 9) 

N'=N/ZpL2dU2 

r'=rL/U 

If we consider surge and sway velocity instead of ship's speed and drift angle 

u=Ucosß, ii=Ucosß - 
ßUsinß 

(C. 10) 
v= -U sin ß, -U sin ,6- 

ßU cos O 

Then rewritten forms of the dimensionalised equations of motion and hull forces and 

moments are found as 

(m'+mx) 
IpVd 

{t-(m'+m') 
2pEd 

yr=X 

(m'+my) 
1 

pL2d +(m'+mz) 
IpL2d 

ur=Y (C. 11) 
2[1 

(IR+J. ) 
I 

pL°d r=N 

The external forces in equation (C. 11) can be decomposed as 

X=XH+ÄP+XR 
Y= YH + YR (C. 12) 
N=N�+NR 

where the subscripts H, P and R represent hull, propeller and rudder components 

respectively. The hull forces X. , Y� and Nf, can be further decomposed in terms of 

manoeuvring coefficients as follow 
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XH =1 pLdU2(X, r'sinß+X;, ucos' 

YH = pLdUZ(YQ/3+Yr'+YaaßIßl +Yr, r'lr'l +YQp, ßzr'+Y,, 
rrßrrz) 

NH =2 pL2dU2(NQß+N; r'+NQßßIßI +Nr, r'Ir'l +NQQ, ß'r'+Ný�ßr'') 

For surge direction, Xß, was suggested by Hasegawa (1980) as follows 

XQr = 
(-1.66Cß 

+ 1.5) X my 

(C. 13) 

(C. 14) 

and Xüu is regarded to be related with resistance force. In order to obtain other 

manoeuvring coefficient data, various types of ships with general hull geometry are 

used in the captive model tests and following results are suggested. 

0 Even trimmed case: 

Yä =I ; rk + 1.4C8 B/L 

Y. -(m'+m') =-1.5C8 B/L 

YQQ = 2.5d (1-CR)/B+ 0.5 (C. 15) 

Yrt =0.343dCR/B-0.07 
Yp� =5.95d(1-CR)/B 
Yaß, =1.5dCR/B-0.65 

NQ =k 

N; =-0.54k+k2 
NCR = -0.96d (1- CB )/B + 0.066 

Nr, =0.5C�B/L-0.09 
(C. 16) 

NQrr 
- -(0.5d 

CJB 
- 

0.05) 

N' =-157.5(CBB/L)' -18.4((-'�ß/L)+1.6} 

where k= 2d/L 
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It should be noticed that the foregoing formulae were valid in the application for 

conventional ship's body, especially with the conventional stern shape. The model 

tests were carried out on different loading conditions, therefore more expressions 

regarding trim conditions are also available. In a trimmed condition, the 

corresponding expressions with parameter r'(= r/d. ), where r is trim quantity and 

dm is mean draught, are given as follow 

" Trimmed case: 

YQ(r) =YQ(0){1+(25CBB/L -2.25)(r/dm)} 
Y; (r)-(m'+mx)={Y; (0)-(m'+mx)} 

x{1+[571{d(1-CB)/B)2 -81d(1-CB)1 B+2.1](r/dm)} 
Y, ß(r) = Y/ß(0){1- (35.7CBB/L - 2.5)(r/dm)} (C. 17) 

Y, (r) =Yrr(0){l+(45CBB/L-8.1)(r/dm)} 
Yß�(r) =Yär, (0)[1+ {40d(1-CB)/B - 2}(r/dm)] 

Yßß, (r)=Y; ßr(0)[1+{11Od(1-CB)/B-9.7}(r/d�, )] 

NQ(r)=NQ(0){1-(r/dm)} 

N; (r)=Nß(0){1+(34CBB/L-3.4)(r/dm)} 

N ß(r) = NNß(0)[l+{58(1-Cb)/B-5}(r/d�, )] 
(C. 18) 

N;, (r)=N,, (0){1-(30CBB/L-2.6)(r/dm)} 

NQ�(r) = Na�(0)[1 + {48(CBB/L)2 -16CBB/L +1.31 x 10'(r/dm)] 

NNp, (r) = NNQ, (0){l + (3CBB/L -1)(r/dm)} 

The dimensionalised forms of manoeuvring coefficients are expressed as follow 

Xpr 
=x 6r12 pL3d 

Yý = Ya/z pLdU2 

Y; =Y/1pL2dU 

Yýp, =Yßß,, /- pL`dU 

Xuu 
= 

Xuu/- PLU 

Yäv =1ßß/1 PLdU' 

Yr; =Yrr/PL3d 

Yßrr yflrr/2 
P' ' 
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NQ = N, /- pL2dU2 

N; = N, /Z pL3d U 

Nßßß = NQar/2 PL3dU 

Nßß =Naß/2 pL2dU' 
Nrr = N, 11 

rr 
/? PL4d 

Na, = Narr /2 PL°d 

(C. 20) 

To explain the influence of the shape of aft body on the overall manoeuvring 

performance and yaw stability, particularly for the container vessels whose aft hull 

forms were drastically changed from the propulsion consideration, Mori (1995) 

proposed prediction formulas with additional four parameters such as eQ, e;,, a., K 

to express characteristics of aft hull shape. 

0 Fullness of aft run: 

ea=ý(1-Cý), ea=ea 4+ 8I Z (C. 21) 

" Aft sections fullness metric: 

6° Q (C. 22) 
1-C 

as 

" Form factor: 

K=I+1.5 - 0.33 (0.956Q + 0.40) (C. 23) 

a 
LIB 

where C,, 
a and Cpa denote the water plane area coefficient and prismatic coefficient 

for the aft half hull respectively. 

Kijima et al. (2000) modified the original expressions of Kijima et al. (1990) using 

the aft hull shape parameters and again presented approximate formulas particularly 

for aiming the difference of stern hull shape. The expressions of linear manoeuvring 

coefficients in even keel situation, where newly introduced parameters are combined 

with other hull parameters, are given as follow, 
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" Even trimmed case: 

Y; =- ; rk + I. 9257(CR B/L)ßa 

Y'- (m'+ m. ) = 
4irk+0.052ea 

-0.457 

Yßß = -1.199Cb6,, + 1.05 

Y;, = 0.225(dCb/B)e, -0.12 (C. 24) 

YY� = 7.1256d(1 - Ch)/B} 

YRß, =10.443[{d(1-Cb)/B}eQ]2 

-9.374{d(1-Ch)/B}eo +1.227 

NN = k[150.668{d(1- CB )/B " e, K}z 

-23.819{d(1- CB)/B " epK} + 1.802] 
N, ' = -0.54k + k2 - 0.0477eaK + 0.0368 

NNW, = 43.857{d(1- Cb )/B " e, K)2 

-3.671{d(1- Cb)/B " e, K} + 0.086 
(C. 25) 

N',. =0.15K-0.068 
NQ, = -0.4086Cb + 0.27 

NNQ, = -0.826{d(1- Cb)/B}ee - 0.026 

" Trimmed case: 
YR (z) = Y; (O) {1 + (26.059(dCb I B). Qa -2.425)(r/d. )) 

Y, (z)-(m'+mx)=Y; (0)-(m'+m')}x{1-0.307(z/d, 
�)} 

YýQ(z)=YQQ(0)[1-{71.404(dCb" )°a -6.533}(z/dm )] 
(C 26) Yrr (t) Y,, (0)[1 + (0.572(B /d )e' -14.231(r/d. 

)] 

Y/lrr (T) =l jrr 
(0) {1 

- 
(82.8kCb 

- 3.6)(r / dm) } 

Y; ßr 
(r) 

= 110ßr 
(0) 

{1 + (7.7471. 
be,, K - 3.508)(r / dm) } 

NQ(r) = NQ(0){1- 0.935(r/dm)} 
N; (r) = N; (0)[1 + {O. 917CbeR - 2.5625}(r/dm )] 

Nßß(r) = Naß(0) 

N�(r) = N;, (0){1 +0.173(r/dn, )} (C. 27) 

Ný�(r) = NN, 
r(0)[1- 

{1 
. 
98(e,, )2 -14.648e; + 27.311}(r/d, 

� 
)] 

NýQ, (r)=NNßr(0){1-0.39(r/d, 
�)} 
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C. 2 Propeller and rudder force 

Mathematical mode for the propeller thrust force can be written as 

Xp =Q- t)T = (1-t)pn'DPKT (C. 28) 

For the calculation of propeller thrust coefficient K,. and relating terms in equation 

(C. 28) Kijima et al. (1990) proposed following expressions 

KT=Jo+JIJP+J2JP (C. 29) 

and 

Jp =Ucosß(1-ww)/(nDP 

wp = wpo exp(-` . 
Oß2 (C. 30) 

X =ß-x4. 

where 
J, : Propeller advance ratio 

Jo , J, , J2 : Constants 

WP : Effective wake fraction at propeller location 

w0: Effective wake fraction at propeller location in straight forward 

motion 

/3P : Effective drift angle at propeller location 

xP : Non-dimensionalised location of propeller (= x,, /L -- -0.5) 

r' : Non-dimensionalised yaw angular velocity (= r. L/ U) 
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Mathematical model for rudder is given as 

XR =-(I-tR)FNsin8 

YR = -(1 + RH )FN cos ,5 (C. 31) 
NR = -(xR + QHXH )FN COS (S 

Following expressions are assumed for the normal force acting on rudder FN with 

normal force coefficients CN which is proposed by Kijima et al. (1990): 

FN =21 .2 pARCNUR sinaR 

and 

(C. 32) 

CN =6.13 1/(2.25+A) s=1.0-(1-wp)Ucos, 6 /nP 
UR = 

(1 
- WR )Z {1 +l' g(s)} WR = WRO ' WP / WPo 

g(s) = r7K{2 - (2 - K)s}s l(1- s)2 aR=15-y. /3R (C. 33) 

rJ=Dp/HR PR-ß-2XR"r' 

K =0.6(1-wp)/(1-WR) XR = -0.5 

where 

AR Rudder area 

HR : Rudder height 

A: Aspect ratio of rudder 

UR : Effective rudder inflow speed 

aR : Effective rudder inflow angle 

C: Coefficients for starboard and port rudder 

WR : Effective wake fraction at rudder location 

WRO Effective wake fraction at rudder location in straight forward motion 

y Flow straightening coefficient 

P: Propeller pitch 
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C. 3 Filon's Method 

An integral that occurs in the computation of impulse response function is one in 

which the integrand consists of a function, say M(x) or x" M(x), multiplied by a 

sine or cosine function of x. If one must consider high frequencies in the sine or 

cosine function, a very fine mesh is required when evaluating the integral by the 

usual numerical approximation such as Simpson's Rule. [See example of sway 

impulse response function in equation (C. 34). ] 

y (z) _f Yc(w)cos(wr)dw 

2 
(C. 34) 

-- 
fw (w)sin(tvr)dty 

7r 

To avoid this inconvenience Filon has suggested a procedure in cases where the 

function M(x) varies smoothly with x. It is assumed that the function M(x) is 

linear between two integration points, which is a reasonable assumption for small 

interval dx. To illustrate this method, we consider the following integral: 

I(r) _f M(x)cosrxdx 
N-1 r�'(a; 

+b; x)cosrxdx 
1=l 

N-1 

=ýIý 

The coefficients are given 

M(xý )xr+1 - M(xr+i )xr 
a; = 

xi+I - xi 

b= 
M(xr+i)-M(x, ) 

xr+I - Xi 

(C. 35) 

(C. 36) 
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and the incremental value of the integral is found analytically 

I+ =a `r 
sin rx; +, - sin rx; l+b, [cosrx1+i -z cos rx; 

LJr (C. 37) 

+b, 
[ x'+, sin rx, +, - x, sin rx, l 

rJ 

Suppose that the following integral must be determined F= I; 
_, + I. + I;,, . 

Combining terms for M(x1_1), M(x; ), etc., results in similar expressions for each 

these quantities, facilitating the numerical integration. 
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