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Abstract

In this thesis, we develop a number of approaches to investigate coagulation and

fragmentation processes.

We initially use visibility graphs as a tool to analyse the results of kinetic Monte

Carlo (kMC) simulations of submonolayer deposition in a one dimensional point

island model. We introduce an e�cient algorithm for the computation of the vis-

ibility graph resulting from a kMC simulation and show that from the properties

of the visibility graph one can determine the critical island size, thus demonstrat-

ing that the visibility graph approach, which combines island size and spatial

distribution data, can provide insights into island nucleation and growth mecha-

nisms.

We then consider the dynamics of point islands during submonolayer deposition,

in which the fragmentation of subcritical size islands is allowed. To understand

asymptotics of solutions, we use methods of centre manifold theory, and for glob-

alisation, we employ results from the theories of compartmental systems and of

asymptotically autonomous dynamical systems. We also compare our results with

those obtained by making the quasi-steady state assumption.

Finally, we demonstrate the versatility of the coagulation-fragmentation frame-

work by considering the asymptotics of the average Erdős number. We also

compare our results with those obtained by using a Gillespie type algorithm.
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Chapter 1

Introduction

The topic of this thesis is coagulation and fragmentation processes. Coagula-

tion is synonymous with aggregation, coalescence, and agglomeration in Roget’s

Thesaurus, and each of these words has a variety of definitions. However, when

we refer to coagulation in this thesis, we mean the creation of larger clusters (of

adatoms or monomers) through collisions of smaller clusters. We call a cluster of

size one a monomer. As it is rare that multiple collisions happen simultaneously,

we will assume that coagulation occurs only through one binary collision at a

time. Figure 1.1 shows an example of a coagulation process between two clusters

of sizes 5 and 15 to create a cluster of size 20.

Figure 1.1: A coagulation process for a 5 � mer and a 15 � mer to create a
20�mer.
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Chapter 1. Introduction

When referring to the process of fragmentation in this thesis, we mean the split-

ting of clusters into smaller clusters. Figure 1.2 shows an example of a fragmen-

tation process where an unstable cluster of size 18 fragments into 3 clusters of

sizes 3, 6 and 9.

Figure 1.2: A multiple fragmentation process for an 18 � mer into a 3 � mer,
6�mer and 9�mer.

The processes of coagulation and fragmentation have been observed in a variety

of di↵erent settings in the natural world. Examples of such settings include:

• Aerosols, i.e. suspensions of small solid or liquid particles in air, which

have played an important role in the global dynamics of the Earth’s at-

mosphere. The creation of the ozone hole, where particles act as catalysts

of ozone depletion, shows the importance of understanding aerosols [8].

Additionally, in large cities where pollution levels are high, understanding

the coagulation and fragmentation of soot particles is an intense area of

research. Flame aerosol reactors, i.e. gas-gas combustion synthesis, are

considered to be a potentially cheap solution to the pollution problem and

as a result research has intensified in recent years [80].

• The formation of stars and galaxies, in which dust particles coagu-

late, is a common occurrence in many settings in astrophysics. Coagulation

occurs in the formation of protoplanetary disks, which are rotating disks
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Chapter 1. Introduction

of dense gas and particles surrounding a recently formed star in the early

stages of planet formation [104]. Models for the formation of protoplane-

tary disks have been considered in [15] which describe the evolution of a

system of masses developing by completely inelastic collisions and sponta-

neous fragmentations.

• Biological systems where groups form, such as in fish schooling and in the

time-evolution of phytoplankton, i.e. microscopic marine algae. Such sys-

tems have been analysed in [75] where school size statistics of fish have been

considered in the context of fish schools breaking up and uniting with other

schools and in [9] where a model of phytoplankton dynamics is introduced.

• Chemical systems, such as in polymers. Polymer chains can break due

to high shear, chemical attack or radiation-induced chain scission; an un-

derstanding of these processes is of importance industrially [13, 102].

• Formation of clouds and precipitation. An understanding of the at-

mosphere is important as clouds help to regulate the energy that reaches

the Earth by scattering solar radiation and absorbing Earth’s infrared en-

ergy. Additionally, clouds are required for precipitation to occur and to

distribute water. Such systems have been discussed in [81, 86] where a

model is introduced for the coagulation of cloud droplets.

Coagulation and fragmentation processes have also been used in the development

of technologies such asMolecular Beam Epitaxy (MBE), a process for growing

thin films. Applications of MBE include optical coatings, corrosion protection,

fabrication of semiconductor devices and the self-assembly of nanostructures [10,

54,67].

The early stage of MBE, i.e. atomic surface coverage of less than one monolayer,

3



Chapter 1. Introduction

where monomers or clusters are deposited onto a surface, di↵use and form large-

scale structures, is called submonolayer deposition (SD).

1.1 What is Submonolayer Deposition?

We begin by outlining some fundamental concepts in the area of SD.

Although it is possible to view images of processes like MBE using devices such

as a scanning tunnelling microscope (an instrument for imaging surfaces at the

atomic level), these processes are often slow and the process can be examined at

fixed times rather than in real time [93]. Thus, we are interested in mathematical

modelling of MBE in order to consider the time-evolution of the process and,

ultimately, to observe how the statistics of our simulations compare with the

experimental observations and to allow us to observe the process as time evolves.

A mathematical model has the potential of reducing the cost of experiments,

which can be significant.

To describe SD, we introduce the following concepts. Any cluster of two or

more monomers will be known as an island. An island is a stable island if no

monomers or clusters can dissociate from the island. If the number of monomers

contained in the smallest stable island is i + 1 then the critical island size is

defined to be i. Coverage, ✓, is the percentage of the substrate that is occupied

by monomers or islands.

Using our concepts, we can now outline a simple description of SD for a lattice-gas

model [41]: monomers are deposited randomly with flux ↵ (in units of monomers

per site per unit time) onto an initially empty two dimensional substrate, e.g. a

lattice of sites L2. Monomers undergo isotropic di↵usion, hopping with Arrhenius

rate; Dr = ve�Ed/(kbT ), where

4



Chapter 1. Introduction

• v is the vibration frequency for hopping,

• kb ⇡ 1.3807⇥ 10�23 joules per Kelvin is Boltzmann’s constant,

• T is the substrate temperature,

• Ed is the activation barrier for di↵usion,

per direction to adjacent empty sites. Islands nucleate upon the formation of an

island of at least i+ 1 monomers.

Realistic models of SD may include additional processes such as desorption (i.e.

evaporation of monomers from the substrate at high temperatures, island dis-

sociation by release of monomers), island mobility, non-constant critical island

sizes where i is dependent on temperature (in general i increases as temperature

increases), direct impingement (i.e. the dynamics of monomers deposited on top

of clusters), and the action of electric fields.

In our work we assume constant temperature, immobile islands, and irreversible

aggregation. In addition, in our simulations we assume that monomers hop be-

tween the nearest neighbour sites at a constant hopping rate D, and the lattice

is equally spaced. Surprisingly, under these assumptions the dynamics of the

system, in our simulations are only dependent on:

• i 2 N,

• R := D

↵
, where ↵, D > 0,

• ✓ = ↵t, where t is time.

In terms of coverage, we can divide the process, in our simulations, into the

following four regimes [7, 76, 94]:

5



Chapter 1. Introduction

1. Low regime - the average island size is typically small, and the density of

monomers far outweighs the density of islands. The density of monomers

in the system increases linearly, the likelihood of nucleation is small.

2. Intermediate regime - the density of islands approximately reaches the

density of monomers. The density of monomers decreases proportionately

to the increase in the island density due to the large number of nucleations

of new islands.

3. Aggregation regime - the island density increases slowly, and the monomer

density decreases rapidly. The monomers are now much more likely to be

captured by existing islands than help nucleate new islands.

4. Coalescence regime - the islands become large and begin to coalesce

with other islands. The joining of islands ultimately causes the creation of

a single island that spans the entire lattice. Eventually an additional layer

of growth will occur.

1.2 Kinetic Monte Carlo Simulations

Stanis law Ulam is often credited with the invention of Monte Carlo (MC) meth-

ods, due to remarks he made in 1946 to von Neumann about the card game

solitaire [33]. The story is as follows: Ulam was playing Canfield solitaire. He

asked what the chances were that a shu✏ed deck laid out with 52 cards will come

out successfully. First, Ulam tried to solve the problem using combinatorics; this

led to little success due to the large number of computations required. As an

alternative, Ulam asked if a more sensible approach would be to lay out a hun-

dred games and count the number of successful outcomes. The story describes

the essence of MC methods. Broadly speaking, MC methods are algorithms that

6



Chapter 1. Introduction

perform a large number of repeated random sampling of a process to obtain its

statistics.

At this point it is worth mentioning what we mean by “random”. The question of

whether or not true randomness exists is still very much open [26]. Many people

are of the opinion that true randomness cannot exist, not even at the quantum

scale [48]. However, we may consider a number to be statistically random if

the number does not contain any recognisable patterns [50], e.g. at the time of

writing the digits of ⇡ exhibit statistical randomness. So, for clarity, throughout

this thesis when referring to a random number we will be referring to a number

generated by a pseudo-random number generator, an algorithm that produces a

string of numbers that are not truly random but are statistically random (see e.g.

the algorithm in [99]). Pseudo-random numbers are used in computer simulations,

in finance, statistics and many other areas of mathematical modelling, and are

generally widely accepted.

There are many competing definitions of MC simulations, see e.g. [18, 84]. That

being said, generally one identifies random variables that describe a real world

system, then runs the resulting model numerous times on a computer. Once the

run is completed, the data generated from the simulations can be analysed [84].

In processes that include coagulation, fragmentation and deposition, kinetic Monte

Carlo (kMC) simulations are driven by di↵usion and deposition steps [20, 52]:

• in the deposition step, clusters are randomly deposited onto an n dimen-

sional, 1  n  3 lattice Ln at a deposition rate of ↵(t) monolayers per unit

time.

• In the di↵usion step, a cluster is selected at random and moves a random

length in a random direction on the lattice.

7



Chapter 1. Introduction

Additionally, a fundamental concept that has emerged from experimental data is

the formation of stable islands above a certain critical size (the critical island size

i) [6]. In many kMC simulations the property of a critical island size is added to

the model. Depending on the system we are trying to model, we may also include

processes such as evaporation, direct impingement and the action of electric fields

that may bias di↵usion. Finally, we can consider the shape of islands which can

be extended (dendritic, spherical) or point islands:

• In extended island models1, islands grow by capturing monomers that

di↵use to their edges.

• In point island models, each island occupies only a single site.

kMC simulations have been invaluable in generating numerical data for coag-

ulation, fragmentation and deposition processes, which is expensive to obtain

from experiments, as they have provided numerical data for both island size

distributions (ISDs) and capture zone distributions (CZDs):

• the island size is the number of monomers at a particular site on the lattice

(in the point island model).

• The capture zone associated with an island is the lattice region surround-

ing the island that consists of all points closer to the island than to any

other island [71].

Obviously, the ultimate comparison is with experiments. However, although nu-

merical data from kMC simulations of coagulation-fragmentation systems has

1Note, in models with impingement, islands grow both vertically and laterally so an island
of size j will not occupy j sites on the lattice.
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Chapter 1. Introduction

been compared to experimental data [20], these comparisons have been con-

ducted by visual inspection and a more rigorous approach such as the two sam-

ple Kolmogorov-Smirnov test is needed to quantify how these kMC simulations

compare with experimental data. Therefore, it is generally accepted that kMC

simulations of coagulation-fragmentation systems are only a reasonable first ap-

proximation to the experimental situation [69].

Although it is true that kMC simulations of coagulation-fragmentation systems

have provided useful numerical data, it is important to note kMC simulations are

restricted by the memory and processors of computers, e.g. the time complexity

of our simulations grows exponentially as i increases, therefore, at the time of

writing, simulating i � 4 on a quad core desktop computer is not possible.

1.3 Modelling Methodology

Early attempts to create mathematical models of coagulation and fragmentation

began in the early 1960s (see e.g. [94]) with the aim of developing a theory that

would explain the ISDs, i.e. the scaling of the monomer and island densities. A

theory that describes the ISD accurately is considered an important challenge in

the overall objective of developing a general theory of SD.

Although rate equations have been shown to produce the average behaviour of

islands, i.e. the island densities, they have failed to produce ISDs accurately as

they depend only on time and cluster sizes and neglect the clusters’ local envi-

ronments. The rate equations employ a mean field assumption that the sur-

roundings of islands are independent of their shapes and sizes [16]. The failure

of rate equations to produce ISDs accurately has prompted the use of alterna-

tive frameworks that could potentially predict the experimental results. We will
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Chapter 1. Introduction

discuss such frameworks in Section 1.3.2 – 1.3.2.1.

1.3.1 Rate Equations

A rate equation for a particular chemical species X is a di↵erential equation,

or an integro-di↵erential equation, which represents the rate of change in the

concentration of X to the rate of the reactions it participates in. Using the law

of mass kinetics (i.e. the principle that the rate of a reaction is proportional

to the concentrations of the reacting substances) on reaction systems produces

systems of ordinary di↵erential equations (ODEs) for the various species, see, for

example, [36, 57].

As a large proportion of this thesis contributes to rate equations, in this section

we will introduce a general framework to describe the time-evolution of cluster

sizes [22, 27, 97, 101] via rate equations.

1.3.1.1 Smoluchowski’s Coagulation Equations

We begin by considering the pure coagulation reaction originally introduced as a

model for colloid formation [90,91]. Considering the reaction process from Figure

1.1:

x�mer + y �mer
a(x,y)
! (x+ y)�mer, x, y 2 R+,

where a(x, y) = a(y, x) is the coagulation coe�cient, i.e. the rate of the coagula-

tion reaction among an x�mer and a y �mer. When the system only contains

clusters of discrete size, the clusters are denoted by j, k, . . . instead of x, y, . . . . As

we will only consider the discrete equations, we adopt this notation throughout

this thesis (see e.g. [27, 61,95,102] for the continuous equations).

10



Chapter 1. Introduction

j �mer + k �mer
a(j,k)
! (j + k)�mer, j, k � 1.

If we denote by Cj(t) := Cj the concentration of j � mers at time t, and use

primes for di↵erentiation with respect to t, the laws of mass kinetics give us the

following infinite system of ODEs:

C 0
j
=

1

2

j�1X

k=1

a(k, j � k)CkCj�k � Cj

1X

k=1

a(j, k)Ck, j � 1. (1.1)

The first term on the right-hand side of (1.1) represents the creation of clusters

of size j by coagulation of clusters of sizes k and j � k. The factor of 1/2

is included to avoid double-counting since the first sum includes every possible

way of constructing the clusters of size j twice. The second term represents the

depletion of clusters of size j due to their coagulation with other clusters.

If we further assume clusters grow through collisions between monomers and

clusters and let J0(t) represent a source term, i.e. an external supply of monomers

into the system [30, 96], then the simplest case where J0(t) = ↵ leads to models

that have been widely studied in the literature and in many real world situations

[11, 56].

Under the above assumptions, a realistic system of rate equations where the

critical island size i = 1 can be obtained, by setting a(1, 1) = 2Da1 and, a(j, 1) =

Daj, j > 1 [21, 82]:

C 0
1 = ↵� 2Da1C

2
1 �DC1

1X

k=2

akCk,

C 0
j
= DC1(aj�1Cj�1 � ajCj), j > 1,

(1.2)

where aj represents the capture rate of monomers from clusters of size j, and D

is a di↵usion rate.

11
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We will return to system (1.2) in Section 3.1 when we consider the work of

Blackman and Wilding.

The simplest case of system (1.2) occurs when we let all clusters be point islands

i.e. clusters have no spatial extent. Additionally, assuming all the coagulation

constants can be taken to be equal, we can set Daj = 1 i.e. by scaling the time

variable. The assumption of point islands and Daj = 1 is a good approximation

to Brownian coagulation and linear chain polymerisation [16,36]. Hence, we have

the following infinite system of ODEs:

C 0
1 = ↵� 2C2

1 � C1

1X

k=2

Ck,

C 0
j
= C1Cj�1 � C1Cj, j > 1.

(1.3)

We will return to system (1.3) in Section 3.1.1 when we consider the work of da

Costa, van Roessel and Wattis.

1.3.1.2 Fragmentation Equations

We now deal with a fragmentation system. This time, we consider the reaction

process from Figure 1.2:

j �mer
bj
! k1 �mer + k2 �mer + . . .,

where bj is the rate of fragmentation of j �mer.

An assumption that is often made for fragmentation, that we will adopt through-

out this thesis, and is valid in many cases (see e.g. [102]), is that fragmentation

is binary, i.e. each fragmentation produces only two clusters. Additionally, we

assume that one of the clusters is always a monomer [28]:

12
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(j + 1)�mer
�j
! j �mer +monomer, j � 1.

Using the same notation as in (1.1), the laws of mass kinetics give us the following

infinite system of ODEs:

C 0
1 = 2�2C2 +

iX

k=3

�kCk,

C 0
j
= ��jCj + �j+1Cj+1, j > 1,

where (for the Cj equation) the first term represents the rate at which clusters

of size j fragment into clusters of size j � 1 and the second term represents the

rate at which clusters of size j grow by fragmentation of clusters of size j + 1.

1.3.1.3 Fragmentation of Subcritical Islands

There are a number of ways we can model clusters of size 1 < j  i. In Section

3.1.2, we consider the work of Costin, Grinfeld, O’Neill and Park where it is as-

sumed clusters of size 1 < j  i simply do not arise [31]. Alternatively, the other

physically relevant possibility is clusters of size 1 < j  i fragment (at some rate

independent of the cluster size, which is consistent with the point-island assump-

tion). To model the process of clusters fragmenting below a given critical size, we

combine our reactions for coagulation and fragmentation, however, only allowing

fragmentation of islands below a certain critical size. Under these assumptions

we can assume that the following reactions occur:

j �mer +monomer
1
�
�

(j + 1)�mer, 1  j < i,

j �mer +monomer
1
! (j + 1)�mer, j � i.

In other words, we allow clusters of size less than i + 1 to fragment at a rate

13
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� > 0.

If we set J0(t) = ↵ to be an external supply of monomers into the system, using

the same notation as in (1.1), the laws of mass kinetics give us the following

infinite system of ODEs:

C 0
1 = ↵� 2C2

1 + 2�C2 � C1

1X

k=2

Ck + �
iX

k=3

Ck,

C 0
j
= C1Cj�1 � C1Cj � �Cj + �Cj+1, 1 < j < i,

C 0
j
= C1Cj�1 � C1Cj � �Cj, j = i,

C 0
j
= C1Cj�1 � C1Cj, j > i.

We will discuss fragmentation of subcritical islands in more detail in Sections 3.1,

3.1.2 and Chapter 5.

1.3.1.4 Existence and Uniqueness of Solutions

In this section we will discuss the existence and uniqueness of solutions to discrete

coagulation-fragmentation systems. However, in the majority of cases, equivalent

rigorous relations between the existence and uniqueness of solutions in both the

discrete and continuous equations can be established, see e.g. [28].

If we consider the system of ODEs from (1.1), then it is reasonable to impose the

restriction that solutions of (1.1) must have a finite mass, which implies that, for

t � 0, a solution of (1.1) must be an element of the Banach space X1 ⇢ `1, where

X1 :=

⇢
C = (Cj) 2 RN such that kCk1 :=

1X

n=1

n|Cn| < 1

�
.

For di↵erent coagulation-fragmentation equations it may be necessary to consider
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Chapter 1. Introduction

other Banach spaces, namely

Xa :=

⇢
C = (Cj) 2 RN such that kCka :=

1X

n=1

na
|Cn| < 1

�
, a � 0. (1.4)

Note, some of these spaces (1.4) have physical interpretations, such as X0 since

the corresponding norm is proportional to the total number of clusters. Due to

the physical meaning of coagulation-fragmentation equations, we only consider

non-negative solutions:

X+
↵
:=

⇢
C 2 X↵ such that Cj � 0, for all j

�
.

When proving existence of discrete coagulation-fragmentation equations the

most useful approach has been to consider an approximation to the infinite sys-

tems of ODEs by making a finite n dimensional truncation, where one can prove

that solutions of the truncated system of ODEs approach a function which can

subsequently be proven to be a solution of the infinite dimensional system of

ODEs (see [12] for a rigorous argument of this process). It is worth noting that

the method of a finite n dimensional truncation cannot be used to prove existence

in all circumstances, e.g. when the rate coe�cients decay rapidly, the method

will fail [28].

Alternatively, for both the discrete and continuous coagulation-fragmentation

equations, a di↵erent approach using fixed-point theorems or operator semigroup

theory has been successful in proving existence, see e.g. [1, 14, 61,89].

As with the case of existence, uniqueness of discrete coagulation-fragmentation

equations has been proved under certain assumptions about the rate coe�cients.

The approach assumes the existence of two distinct solutions, say C1 and C2,

and then proves that some moment of the function |X| := |C1 � C2| satisfies a
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di↵erential inequality which implies X = 0, (see e.g. [28] for further details).

1.3.1.5 Asymptotic Behaviour of Solutions

Armed with existence and uniqueness results we can now consider qualitative

results about solutions of coagulation-fragmentation equations. Explicit solu-

tions of coagulation-fragmentation equations are important to understand the

behaviour of cluster sizes. However, finding explicit solutions using elementary

analytical methods is not always possible.

In cases where the coagulation-fragmentation equations are invariant under cer-

tain transformations we can reduce the number of independent variables, allowing

useful simplifications to find exact solutions [45]. Such solutions are known as

similarity solutions (sometimes referred to as scaling solutions or self-similar

solutions).

The crucial property of this scaling approach is that when time is large most

variables can be combined using a single variable (a “typical size”) which grows

or shrinks with time [62]. For example, in [37,64,65,97] it is shown that solutions

with a variety of di↵erent initial conditions will approach the same similarity

solution as time tends to infinity. However, similarity solutions have only been

found in a limited number of cases. For a discussion of similarity solutions for

the continuous equations see [37].

In the case of pure discrete coagulation models (see e.g. (1.1)) for homogeneous

kernels i.e. aj,k = j�p(j/k), where � 2 R, a similarity solution is expected to

exist in the form

Cj =
1

r(t)⌧
�

✓
j

r(t)

◆
,
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where ⌧ > 0,

r(t) =

P1
k=1 kCkP1
k=1 Ck

.

r(t) represents the average cluster size and � is a scaling of the distance of a

cluster of size j to the average r(t), and is invariant over time in the asymptotic

limit, see [32, 62] for further details. � is often referred to as a scaling function.

Note, the average size r(t) is the only size scale, therefore behaviour relative to

size cannot show any other size scale.

When considering discrete coagulation-fragmentation models, similarity solutions

do not exist in all cases. Indeed, in cases where the growth of the coagulation

kernel for large sizes is su�ciently fast, “a cluster of infinite size” will form in

finite time, this phenomenon is usually referred to as gelation [28]. Additionally,

in systems that contain both coagulation and fragmentation, similarity solutions

do not always exist, as we may find equilibrium solutions or solutions that tend

to infinity, such as in the constant mass Becker-Döring equations:

C 0
1 = R0(t)�

1X

k=1

Rj,

C 0
j
= Rj�1 �Rj, j > 1,

(1.5)

where R0(t) = 0 and Rj = �C1Cj � Cj+1 (see [96] for further details).

However, systems that contain both coagulation and fragmentation can produce

similarity solutions in certain circumstances as discussed in [96], where similarity

solutions are found for the Becker-Döring equations with a time-dependent input

of monomers i.e. R0(t) = ↵tw, w > �1 in (1.5). The most important case

for the work presented in this thesis, is when w = 0 for the case of irreversible

coagulation, where a similarity solution is found:

Cj = Ct��(⌘), t ! 1,
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where �(0) = 1, and ⌘ = j/tb, with b > 0.

We will return to this similarity solution in Sections 3.1.2 and 5.5.

Thought this thesis we will use the following definition by Wasow [98, pp. 30-32]

on asymptotic power series:

Definition 1.3.1. [The asymptoticity condition] Let f(t) be defined in a point-set

S of the complex t�plane having t = 1 as an accumulation point. As t ! 1,

the power series
P

m

r=0 ar(t)t
�r represents f(t) asymptotically in S if

tm

f(t)�

mX

r=0

ar(t)t
�r

�
! 0

for all m � 0.

1.3.2 Alternative Frameworks

As previously discussed the failure of rate equations to produce ISDs accurately

has prompted the use of alternative frameworks that could potentially predict

the experimental results. What follows is by no means an exhaustive systematic

review, but broadly introduces a number of alternative frameworks:

in 1996 Blackman and Mulheran [71] suggested modelling nucleation and coag-

ulation of clusters in various dimensions via the CZD (see Section 1.2). Subse-

quently, in the same year, for a one dimensional point island model when i = 1,

Blackman and Mulheran [19] proposed the Blackman-Mulheran theory, a frag-

mentation process to analyse the gap size distribution (GSD), i.e. the one

dimension CZD. In the model, an island is the start/end of a gap and nucleation

of new islands (during deposition) causes the fragmentation of a gap (see [19] for

further details).
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In 2007, Pimpinelli and Einstein proposed the GeneralisedWigner Surmise (GWS)

[78] as an extension of the Blackman-Mulheran theory to accurately describe the

CZD in any dimension and for any critical island size. However, the GWS is

widely discredited, even by Pimpinelli and Einstein themselves [46], and the ex-

tension of the Blackman-Mulheran theory to higher dimensions and critical island

sizes remains an open problem.

In 2000, Mulheran and Robbie used the concept of the CZD to make a joint

probability distribution (JPD) for cluster sizes and capture zone areas to

reconstruct the rate equations that govern their evolution (see [73] for further

details). This approach has been explored further by Bartelt and Evans [39, 40].

In 2007, Seba introduced a one dimensional model to describe the spacing distri-

bution between parked cars in an infinitely long street to ensure the parking of as

many cars as possible. Seba described the spacing distribution approximately by

the distributional fixed point equation (DFPE) (see [87] for further details).

Subsequently, Mulheran et al. [72] and Krcelic et al. [58] have adapted the DFPE

model proposed by Seba for parked cars to the case of nucleation and growth on

a one dimensional lattice, by interpreting the distance between neighbouring cars

as the gap between any two neighbouring clusters (see [72] for further details).

1.3.2.1 The Visibility Graph

In Sections 1.3.1 – 1.3.2 we discussed previous work on SD models. All previous

work has focused on the islands’ size statistics (see Section 1.3.1 for details)

and the spatial distribution of islands (see Section 1.3.2 for details). However,

one would like to combine the information contained in the spatial distribution

of islands and in their size statistics. A suitable tool is o↵ered by Visibility

Graphs (VGs), introduced by Lacasa et al. [60], originally to bring the tools of

19



Chapter 1. Introduction

graph theory to bear on time-series analysis. Subsequently, VGs have been used

to analyse exchange rate series [100] and to make solar cycle predictions [103],

among other things.

Briefly, in a VG we connect each point P with coordinates (location, size) (the

top of our grey bars in Figure 1.3) to all other points that “are visible” from P

and analyse the resulting graph.

Figure 1.3: An example of a VG where the blue lines and dots represent the edges
and vertices in the network respectively.

We will introduce the graph theory required for such a construction in Section

2.2 and will discuss applications of VGs in SD in Chapter 4.

1.4 Overview of Thesis

This thesis consists of seven chapters. Below we give a summary of each of the

subsequent chapters.
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In Chapter 2, we discuss techniques in graph theory, centre manifold theory and

the quasi-steady state assumption that we will use in subsequent chapters, e.g.

the adjacency matrix for Chapter 4 and the centre manifold for determining the

asymptotic behaviour of solutions for Chapter 5.

In Chapter 3, we discuss several established contributions to this area of SD for

future reference.

In Chapter 4, we use visibility graphs as a tool to analyse the results of kinetic

Monte Carlo (kMC) simulations of submonolayer deposition in a one dimensional

point island model. We introduce an e�cient algorithm for the computation of

the visibility graph resulting from a kMC simulation and show that from the

properties of the visibility graph one can determine the critical island size, thus

demonstrating that the visibility graph approach, which implicitly combines size

and spatial data, can provide insights into island nucleation and growth processes.

In Chapter 5, we consider the dynamics of point islands during submonolayer

deposition, in which the fragmentation of subcritical size islands is allowed. To

understand asymptotics of solutions, we use methods of centre manifold theory,

and for globalisation, we employ results from the theories of compartmental sys-

tems and of asymptotically autonomous dynamical systems. We also compare

our results with those obtained by making the quasi-steady state assumption.

In Chapter 6, we consider the asymptotics of the average Erdős number using

a rate equations approach. We also compare our results with those obtained by

using a Gillespie type algorithm.

In Chapter 7, a summary of the conclusions is presented along with future direc-

tions.
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Chapter 2

Summary of Methods

2.1 Introduction

In this chapter, we will discuss several methods that have been crucial in our

analysis of the VG in relation to SD (see Chapter 4) and our investigation of the

ISD for the fragmentation of subcritical islands (see Chapter 5).

In Section 2.2 we begin by introducing some notation and definitions from graph

theory. Subsequently, we will discuss methods for analysing graphs which we will

use in Chapter 4.

In Section 2.3 we will discuss centre manifold theory, one of the cornerstones of the

theory of dynamical systems. An important application of centre manifold theory

is the ability to rigorously simplify a dynamical system to reduce the dimension

of the system, at the very least, near equilibria. In Section 3.1.1 we will discuss

the work of da Costa, van Roessel and Wattis that uses centre manifold theory to

determine the asymptotic behaviour of solutions to a system of ODEs, modelling

coagulation with Becker-Döring type interactions and a time-independent input
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of monomers. In addition, in Chapter 5 we use centre manifold theory to find the

asymptotic behaviour of solutions to a system of ODEs modelling point islands

during submonolayer deposition, in which the fragmentation of subcritical islands

is allowed.

After discussing centre manifold theory, in Section 2.4 we will discuss the quasi-

steady-state assumption (QSSA), sometimes referred to as the pseudo-steady-

state hypothesis. The basic principle underlying the QSSA reduction heuristics

is the elimination of certain variables by setting their rates of change equal to

zero and then utilising the resulting algebraic equations. We introduce the QSSA

to investigate whether the asymptotics of solutions obtained in Section 5.5 based

on the centre manifold analysis of Section 5.4 can be recovered more easily by

combining centre manifold reasoning with the QSSA.

2.2 Graph Theory

A graph is an ordered pair G = (V,E) used to model pairwise relations between

objects where,

• V is the vertex set whose elements are the vertices, or nodes of the graph.

• E is the edge set whose elements are the edges of the graph.

Developments in computing since the 1970s has led to more research in the area

of graphs and their applications. Graph theory has been shown to have appli-

cations in disciplines including biology, statistical physics, medicine, cognitive

science, particle physics, economics, finance and sociology [85]. In this section we

introduce the graph theory required to analyse the VG (see Section 1.3.2.1) in

relation to SD (see Chapter 4 for the analysis).

23



Chapter 2. Summary of Methods

We begin by introducing some notation and definitions [38], as illustrated in

Figure 2.1 and the accompanying list:

Figure 2.1: An illustration of a graph G = (V,E), where V and E represent the
vertices and edges respectively.

1. An undirected graph is a graph where all edges are bidirectional.

2. A simple graph is an undirected graph, contains no duplicate edges and

no self loops.

3. An undirected graph is connected if there is a path between every pair of

vertices.

4. The vertex degree is the number of edges incident to a given vertex.

5. An unweighted graph is a graph where no edges have any associated costs

or weights.

One of the simplest ways to analyse a graph is to consider the probability distri-

bution of the vertex degree, the vertex degree distribution. If we let n be the

number of vertices in our graph and m(k) be the number of vertices in our graph

having vertex degree k, we can define q(k) := m(k)/n [38].
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Clearly the vertex degree distribution only captures a small amount of informa-

tion from the graph. However, the information contained in the vertex degree

distribution still leads to some insight into the underlying system, e.g. in ran-

dom graphs, where each vertex is connected with probability p, the vertex degree

distribution follows a binomial distribution. Comparably, in social media graphs,

we see that the vast majority of vertices have a relatively small degree while

a small number of vertices have a very large degree so the degree distribution

approximately following a power law [85].

Alternatively, we may consider matrix representations of graphs to enable tech-

niques from linear algebra to be applied to graphs. There are many matrix

representations of graphs. One of the simplest is the adjacency matrix [38]:

Definition 2.2.1. Let G = (V,E) be an unweighted simple graph where V =

{v1, v2, v3, . . . , vn}. For 1  i, j  n we define

aij =

8
><

>:

1, if there exists an edge from vertex vj to vertex vi,

0, otherwise.

The n⇥ n matrix A = (aij) is the adjacency matrix of G.

If A is symmetric, then all the eigenvalues are real and there is an orthogonal basis

v1, . . . , vn of the space Rn consisting of eigenvectors of A. Note, the adjacency

matrix of an undirected graph is always symmetric.

We can now consider some characteristics of the eigenvalues of the adjacency

matrix in relation to VGs. As, by definition, all VGs are undirected connected

graphs (see Section 1.3.2.1), all eigenvalues are real and the Perron-Frobenius

Theorem implies that the largest eigenvalue �max of the corresponding adjacency

matrix has multiplicity 1. Additionally, �max can be connected to the average
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vertex degree

max{d̄,
p

dmax}  �max  dmax

where d̄ is the average vertex degree and dmax is the maximum vertex degree [66].

The spectral gap, i.e. the gap between the largest and second largest eigenvalue,

is an important parameter in many areas of mathematics. We may expect the

spectral gap of the adjacency matrix to be related to the connectivity of the

graph, i.e. the minimum number of elements (vertices or edges) that need to

be removed to separate the remaining vertices into isolated subgraphs. Indeed,

fundamental results due to Alon-Milman and Jerrum-Sinclair relate the spectral

gap to connectivity properties of graphs (see e.g. [4, 5, 53] for further details).

There are many other ways to characterise a graph; these include criteria based

on the spectrum of matrices defined from graphs, communicability and centrality

indices [66]. In Chapter 4, we only analyse the vertex degree distribution, the

spectrum and spectral gap in the adjacency matrix as these are su�cient to

di↵erentiate between VGs corresponding to di↵erent critical island sizes i in SD.

2.3 Centre Manifold Theory

In this section, using the machinery in the book by Carr [25], we will introduce

centre manifold theory for finite dimensional systems to enable us to analyse the

stability of non-hyperbolic fixed points. Further applications of centre manifold

theory can be found in [25].

We begin by considering a linear system for X(t) := X 2 RN ,

X 0 = AX, X(0) = X0 2 RN , A 2 RN⇥N , (2.1)
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where, throughout this section, we use primes for the di↵erentiation with respect

to time t.

The solution of (2.1) is X(t) = eAtX0, where we define

eAt :=
1X

k=0

=
tk

k!
Ak = I + tA+

t2A2

2!
+ . . . .

When A has N distinct eigenvalues �i and corresponding normalised eigenvec-

tors vi, the general solution of (2.1) is X(t) =
P

N

i=1 e
�itvivTi X0. Hence, we can

decompose the space RN into a direct sum of the stable subspace Es, the unstable

subspace Eu and the centre subspace Es:

Es = Sp{vj : Re(�j) < 0},

Eu = Sp{vj : Re(�j) > 0},

Ec = Sp{vj : Re(�j) = 0}.

We next consider a general non-linear system of ODEs,

X 0 = f(X), X(0) = X0 2 RN , X 2 RN , (2.2)

where we let �(t,X0) be the solution of (2.2) and U be some neighbourhood of a

fixed point X̄. We first need some definitions.

Definition 2.3.1. A set S ⇢ RN is a local invariant manifold for (2.2) if

�(t,X0) 2 S for all |t| < T , where T > 0.

Definition 2.3.2. Let U be a topological space. The local stable manifold W s

loc

and local unstable manifold W u

loc
of the fixed point X̄ for (2.2) are defined as
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follows:

W s

loc
(X̄) = {X 2 U : �(t,X) ! X̄ as t ! 1,�(t,X) 2 U for all t � 0},

W u

loc
(X̄) = {X 2 U : �(t,X) ! X̄ as t ! �1,�(t,X) 2 U for all t 0}.

(2.3)

Definition 2.3.3. A fixed point is said to be hyperbolic if its linearisation has

no eigenvalues with zero real parts.

The Stable Manifold Theorem connects the local stable and unstable manifolds of

a hyperbolic rest point X̄ of the non-linear system (2.2) with stable and unstable

subspaces of the origin of the corresponding linearised system:

Theorem 2.3.4. (Stable Manifold Theorem) Let (2.2) have a hyperbolic fixed

point X̄. Then W s

loc
and W u

loc
exist and are of the same dimension as Es and Eu

of the linearised equations and are tangential to the linearised manifolds of X̄.

What Theorem 2.3.4 says is that, in a neighbourhood U of a hyperbolic fixed

point X̄ of (2.2), the non-linear system (2.2) is topologically equivalent to its

linearisation. Hence, for a hyperbolic fixed point, if we understand the linear

system then we know the stability properties of the non-linear system close to

equilibrium.

To be able to consider stability properties of non-hyperbolic fixed points, and

to be able to construct, a centre manifold, we consider system (2.2) in a special

form. Suppose (2.2) has a fixed point at X̄ = 0 and that its variables X can be

decomposed into two parts, x 2 Rn and y 2 Rm, where n+m = N . Hence, (2.2)

has the form

x0 = Ax+ f(x, y), y0 = By + g(x, y), (x, y) 2 Rn
⇥ Rm, (2.4)
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where A 2 Rn⇥n and B 2 Rm⇥m, all the eigenvalues of A have zero real parts

while all the eigenvalues of B have negative real parts. The functions f and

g are su�ciently smooth, f(0, 0) = 0, g(0, 0) = 0, Jf(0, 0) and Jg(0, 0) = 0.

(Thoughout this section, Jf is the Jacobian matrix of f).

If f = g = 0 then (2.4) has two local invariant manifolds, namely x = 0 and

y = 0. The local invariant manifold x = 0 is a local stable manifold of (2.4),

since if we restrict initial data to x = 0, all solutions tend to zero. The invariant

manifold y = 0 is called a centre manifold of (2.4). In general

Definition 2.3.5. A local centre manifold is a local invariant manifold y =

h(x), such that h(0) = 0 and h is tangent to Ec at the origin i.e. Jh(0) = 0

We now give the results of centre manifold theory to enable us to analyse stability

of non-hyperbolic fixed points, these results are proved in [25]:

Theorem 2.3.6. Let f(·) and g(·) in (2.4) be Cr i.e. r times continuously

di↵erentiable in all its variables, then there exists a local centre manifold y =

h(x), ||x|| < �, where h 2 Cr�1 and the flow on the centre manifold is given by

x0 = Ax+ f(x, h(x)), x 2 Rn. (2.5)

Theorem 2.3.7. If the fixed point x̄ = 0 of (2.5) is:

• stable/asymptotically stable/unstable, then the fixed point (x̄, ȳ) = 0 of (2.4)

is stable/asymptotically stable/unstable.

• stable. Let (x, y) be a solution of (2.4) with (x(0), y(0)) su�ciently small.

Then there exists a solution of (2.5), u(t) := u, such that as t ! 1,

x = u+O(e��t),

y = h(u) +O(e��t),
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where � > 0 is a constant.

To use Theorems 2.3.6 – 2.3.7, we need to have enough information about the

centre manifold y = h(x) in order to determine the local dynamics of (2.5). If we

substitute y = h(x) into the second equation in (2.4) we obtain

Jh(x)[Ax+ f(x, h(x))]� Bh(x)� g(x, h(x)) = 0. (2.6)

Equation (2.6) together with Definition 2.3.5 is the system that must be solved

to obtain the centre manifold; in general this cannot be done. However, Theorem

2.3.8 shows the centre manifold can be approximated to any degree of accuracy:

Theorem 2.3.8. Let u be a C1 mapping of a neighbourhood of the origin from

Rn to Rm such that u(0) = 0 and Ju(0) = 0. Suppose as ||x|| ! 0, Ju(x)[Ax +

f(x, u(x))]�Bu(x)�g(x, u(x)) = O(||x||q), where q > 1, then as x ! 0, ||u(x)�

h(x)|| = O(||x||q).

Example 2.3.9. Consider the system

x0 = xy + ax3 + bxy2,

y0 = �y + cx2 + dx2y.
(2.7)

The linearised problem has eigenvalues 0 and �1 hence (2.7) has a non-hyperbolic

fixed point z̄ := (x̄, ȳ) = 0.

By Theorem 2.3.6, we know the system has a one dimensional centre manifold

y = h(x). From definition 2.3.5 of the centre manifold we know h must pass

through the origin and be tangent to Ec at the origin; in one dimension that

condition is equivalent to h(0) = h0(0) = 0.

If u(x) = O(x2) then 0 = u(x) � cx2 + O(x4). Hence, if u(x) = O(x2) then
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u(x) = cx2 + O(x4). So, by Theorem 2.3.8 h(x) = cx2 + O(x4), and by Theorem

2.3.7, the equation which determines the stability of the fixed point z̄ = 0 is the

scalar equation

u0 = uh(u) + au3 + buh2(u) = (a+ c)u3 +O(u5).

Hence, the fixed point z̄ = 0 is:

• asymptotically stable if a+ c < 0

• unstable if a+ c > 0.

We could continue this process to determine the properties when a + c = 0 by

finding a better approximation to the centre manifold.

2.4 Quasi-Steady State Assumption

In this section, we introduce the QSSA for finite dimensional systems of ODEs.

In Section 5.6 we compare the results obtained by making a QSSA with those

obtained by a much more laborious, but rigorous, centre manifold technique.

In reaction processes it is often observed, that at some “relevant” time the rate

of change of certain reactants is “negligible” compared to the rate of change

of other reactants. In such situations it makes sense to set the rate of change

of slowly varying reactants to zero, i.e. to make the assumption that they are

in a “quasi-steady state” [83]. The QSSA is a largely heuristic technique for

reducing the dimension of ODEs that govern the system; the QSSA is often used

in the engineering community (see [44, 77, 88]). The best studied example to

understand the validity of the QSSA is the famous Michaelis-Menten model for
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enzyme kinetics analysed by Segel and Slemrod [88].

In general, conditions that determine the errors associated with making a QSSA,

and how to identify a small parameter associated with making a QSSA do not

exist. Furthermore, even for the Michaelis-Menten model the validity of the

QSSA is still under investigation. However, it is generally accepted that the

validity of the QSSA relies on the existence of some “slow and fast variables” in

the model [44].

To introduce the QSSA formally we begin by considering a system of ODEs for

x(t) := x 2 Rn

+,

x0 = g(x, p), p 2 Rm

+ , x(0) := x0, (2.8)

where g : Rn+m

+ ! Rn and we use primes for the di↵erentiation with respect to

time t.

In order to define the QSSA, we assume there is a distinction between the “fast

variables” xf
2 Rn�k

+ and the “slow variables” xs
2 Rk

+, where k < n.

The variables are defined as linear combinations of the original variables x:

2

4x
s

xf

3

5 = Tx,

where T 2 Rn
⇥ Rn.

The introduction of the fast and slow variables means system (2.8) can be ex-

pressed as

x0s = gs(xs, xf , p), xs(0) := xs

0,

x0f = gf (xs, xf , p), xf (0) := xf

0 .
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The application of the QSSA is based on the hypothesis that the fast variables

instantaneously adapt to changes in the slow variables, i.e. x0f = 0. Mathemati-

cally the QSSA is valid if after a transition the systems dynamics are restricted

to a manifold of lower dimension, (see [44] for further details):

x0s = f s(xs, xf , p), xs(0) := xs

0,

xf =  (xs, p).

A key step in the above process is explicitly solving 0 = gf (xs, xf , p) using a

finite number of operations of addition, subtraction, multiplication, division, and

radicals, it is worth noting that there are many systems for which an explicit

reduction does not exist [77].

Prior to the 1960s there did not appear to be a way of formulating the underlying

assumptions in the QSSA mathematically, or even an a priori reason for the

QSSA. However, after many ad hoc arguments, justifications for the QSSA have

begun to be formulated, such as for a singular perturbation [43] and by using a

Computational Singular Perturbation [44].

Below we give an example of the QSSA, when we know the fast variable(s):

Example 2.4.1. We assume that the following reactions occur:

A
k1
! I

k2
! B,

where k2 � k1 and I is the fast variable.
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The laws of mass kinetics give us the following finite system of ODEs:

A0 = �k1A,

I 0 = k1A� k2I,

B0 = k2I.

(2.9)

where A(0) = A0, I(0) = 0 and B(0) = 0.

We can easily explicitly solve system (2.9):

A =A0e
�k1t,

I =A0
k1

k2 � k1
(e�k1t � e�k2t),

B =A0[1� e�k1t �
k1

k2 � k1
(e�k1t � e�k2t)].

Alternatively, as I is a fast variable, we can make a QSSA:

A0
1 = �k1A1,

0 = k1A1 � k2I1,

B0
1 = k2I1.

(2.10)

where A1(0) = A0 and B1(0) = 0.

Solving system (2.10)

A1 =A0e
�k1t,

I1 =
k1
k2

A0e
�k1t,

B1 =A0 � A0e
�k1t

We see, as k2 � k1, the QSSA (2.10) gives a good approximation to (2.9), after
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an initial transition.
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Chapter 3

Previous Work

Analysis of the Island Size Distribution via Rate

Equations

In this section we will discuss several papers that have played a key role in the

motivation and investigation of the ISD and have led to the development of ideas

presented in this thesis.

In Section 3.1 we will discuss the work of Blackman and Wilding [21] where

a successful scaling analysis of rate equations that enables the asymptotics of

clusters is proposed.

In Sections 3.1.1 and 3.1.2 we will discuss the work of da Costa, van Roessel

and Wattis [30] and Costin, Grinfeld, O’Neill and Park [31], where the case of

a constant capture rate is considered. In contrast to the work of Blackman and

Wilding the authors were able to establish the asymptotic behaviour of clusters

in a mathematically rigorous manner but only in the limited case when Daj = 1

in (3.1).
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3.1 The Work of Blackman and Wilding

In the case of pure coagulation, if we assume clusters grow by capturing a single

monomer, then (as discussed in Section 1.3.1.1) a realistic system of rate equations

with critical island size i = 1, constant deposition rate ↵ and di↵usion rate D is

given by:

C 0
1 = ↵� 2Da1C

2
1 �DC1

1X

k=2

akCk,

C 0
j
= DC1(aj�1Cj�1 � ajCj), j > 1.

(3.1)

Blackman and Wilding [21] made the assumption that the capture rates aj are

dependent on j, where aj has a power law dependence of the form

aj = jp, p < 1. (3.2)

Blackman and Wilding [21] proposed that the asymptotic growth of monomers

was governed by a power law:

C1 ⇠ t�w, t ! 1, (3.3)

where the exponent w is to be determined and we use ⇠ to mean satisfies the

Definition 1.3.1.

Additionally, assuming a unique similarity solution (see Section 1.3.1.5) exists in

the form

Cj =
1

j⌧
�

✓
j

tz

◆
, (3.4)

37



Chapter 3. Previous Work

it was shown in [21] that when 0  p < 1/2,

z = 2(3� 2p)�1,

⌧ =
1

2
+ p,

w = (3� 2p)�1.

Hence, as we will consider the case of a constant capture rate in Section 3.1.1, it

is worth taking note of the result for a constant capture rate, i.e. when p = 0:

Proposition 3.1.1. The asymptotics of C1 and Cj from (3.1) when aj = 1 and

assuming a unique similarity solution exists in the form (3.4) are governed by

C1 ⇠ t�
1
3 , t ! 1,

Cj =
1

j
1
2

�

✓
j

t
2
3

◆
.

In the same paper Blackman and Wilding [21] considered the e↵ects of fragmen-

tation of subcritical islands (see Section 1.3.1.3), where clusters below a given

critical size i+ 1 are allowed to dissociate.

Assuming the same scaling analysis as in the pure coagulation case namely (3.2)-

(3.4) Blackman and Wilding proposed, that:

z = (i+ 1)[(i+ 2)� (i+ 1)p]�1,

⌧ =
i

i+ 1
+ p,

w = [(i+ 2)� (i+ 1)p]�1.

Hence, as we will consider fragmentation of subcritical islands with a constant

capture rate in Sections 3.1.2 and Chapter 5, it is worth taking note of the result
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for a constant capture rate, i.e. when p = 0:

Proposition 3.1.2. The asymptotics of C1 and Cj in the case of fragmentation

of subcritical islands when aj = 1 and assuming a unique similarity solution exists

in the form (3.4) are governed by:

C1 ⇠ t�
1

i+2 , t ! 1,

Cj =
1

j
i

i+1

�

✓
j

t
i+1
i+2

◆
.

It is worth noting that subsequently to the work by Blackman and Wilding [21],

Bartelt and Evans [16] have shown rate equations will fail to reproduce the ISD

from kMC simulations if the wrong capture rates are chosen.

3.1.1 The Work of da Costa, van Roessel and Wattis

The simplest case of system (3.1) occurs when we let all clusters be point islands

and assume all coagulation constants can be taken to be equal (see Section 1.3.1.1

for further details). Hence, setting Daj = 1 for all j in (3.1):

C 0
1 = ↵� 2C2

1 � C1

1X

k=2

Ck,

C 0
j
= C1Cj�1 � C1Cj, j > 1.

(3.5)

In [30] da Costa, van Roessel and Wattis began by introducing a new variable,

the zeroth-moment, i.e. the total number of clusters,

T =
1X

k=1

Ck,

where it is assumed T (0) < 1.
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In terms of T , equations (3.5) can be expressed as

T 0 = ↵� C1T,

C 0
1 = ↵� C2

1 � C1T,

C 0
j
= C1Cj�1 � C1Cj, j � 2.

(3.6)

The advantage of system (3.6) over system (3.5) is the first two equations in (3.6)

only involve the variables T and C1 so they can be decoupled from the rest.

In [30], Poincaré compactification and centre manifold methods were then used

to prove

Theorem 3.1.1. The asymptotics of T and C1 from (3.6) are given by

T ⇠ (3↵2t)
1
3 , t ! 1,

C1 ⇠

✓
↵

3t

◆ 1
3

, t ! 1.

Finally, da Costa, van Roessel and Wattis [30] used a scaling analysis on the final

equation from (3.6) (by a change of variable: t to

⌧ =

Z
r

0

C1(s) ds

and letting Cj(t) := c̃j(⌧)) to linearise the final equation from (3.6)

c̃j
0 = c̃j�1 � c̃j, j > 1. (3.7)

Hence, da Costa, van Roessel and Wattis showed, using variation of parameters,

that the linear system (3.7) can be solved to give
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Theorem 3.1.2. The asymptotics of Cj from (3.6), when t ! 1, are given by

Cj ⇠

✓
↵

3t

◆ 1
3

, j � 1.

To formulate the similarity solution da Costa, van Roessel and Wattis first com-

puted the asymptotics of the average cluster size hji using the information in

Theorem 3.1.2:

hji =

P1
j=1 jCjP1
j=1 Cj

⇠

✓
↵

3

◆ 1
3

t
2
3 , t ! 1.

Next, they defined the function � by

�(⌘) =

8
>><

>>:

(1� ⌘)�
1
2 , ⌘ < 1,

0, otherwise.

Finally, they defined the similarity variable ⌘ by

⌘ =
2

3

j

hji
.

Then they had that the solutions of (3.5) converge to a (discontinuous) similarity

profile:

Theorem 3.1.3.

Cj = hji�
1
2�

�
⌘), t ! 1.

Note, the rigorous results presented by da Costa, van Roessel and Wattis e.g.

Theorem 3.1.2 are in agreement with Proposition 3.1.1 of [21].
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3.1.2 The Work of Costin, Grinfeld, O’Neill and Park

As discussed in Section 1.3.1.3, there are a number of ways we can model clusters

of size 1 < j  i. In [31], Costin, Grinfeld, O’Neill and Park assumed clusters

of size 1 < j  i do not arise. Under such an assumption we can assume the

following reactions occur:

j �mer +monomer
1
! (j + 1)�mer, j � i.

If we set J0(t) = ↵ to be an external supply of monomers into the system, using

the same notation as in (1.1), the laws of mass kinetics give us the following

infinite system of ODEs:

C 0
1 = ↵� (i+ 1)C i+1

1 � C1

1X

k=i+1

Ck,

C 0
i+1 = C i+1

1 � C1Ci+1,

C 0
j
= C1Cj�1 � C1Cj, j > i+ 1.

(3.8)

Similarly to the work of da Costa, van Roessel and Wattis [30] (see Section

3.1.1), Costin, Grinfeld, O’Neill and Park employed a compactness argument

to rigorously show (by introducing a new variable, X :=
P1

k=i+1 Ck) that the

analysis of the asymtotics of solutions can be reduced to the study of a two

dimensional system of ODEs:

C 0
1 = ↵� (i+ 1)C i+1

1 � C1X,

X 0 = C i+1
1 .

(3.9)

It was shown in [31] that
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Theorem 3.1.4. The asymptotics of C1 and X from (3.9) are given by

C1 ⇠

✓
↵

(i+ 2)t

◆ 1
i+2

, t ! 1,

X ⇠ [(i+ 2)↵i+1t]
1

i+2 , t ! 1.

Finally, using the same scaling analysis used by da Costa, van Roessel and Wattis

[30] (see Section 3.1.1) on the final equation from (3.8), Costin, Grinfeld, O’Neill

and Park showed:

Theorem 3.1.5. The asymptotics of Cj from (3.8), when t ! 1, are given by

Cj ⇠

✓
↵

(i+ 2)t

◆ i
i+2

, j > i.

To formulate the similarity solution Costin, Grinfeld, O’Neill and Park first com-

puted the asymptotics of the average cluster size hji using the information in

Theorem 3.1.5:

hji =

P1
j=1 jCjP1
j=1 Cj

⇠

✓
↵

(i+ 2)t

◆ i+1
i+2

, t ! 1.

Next, they defined the function � by

�(⌘) =

8
>><

>>:

(1� ⌘)�
i

i+1 , ⌘ < 1,

0, otherwise.

Finally, they defined the similarity variable ⌘ by

⌘ =
(i+ 1)

i+ 2

j

hji
.
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Then they had that the solutions of (3.5) converge to a (discontinuous) similarity

profile:

Theorem 3.1.6.

Cj = hji�
1
2�

�
⌘), t ! 1.

Note, the rigorous results presented by Costin, Grinfeld, O’Neill and Park e.g.

Theorem 3.1.5 are in agreement with Proposition 3.1.2 of [21].

As discussed in Section 1.3.1.3, when considering the fragmentation of subcritical

islands, the other physically relevant possibility is clusters of size 1 < j  i frag-

ment (at a rate independent of the cluster size), we will investigate this possibility

in Section 5.
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Chapter 4

Characterising Submonolayer

Deposition via Visibility Graphs

This section is an expanded version of our publication, characterising submono-

layer deposition via visibility graphs [2].

4.1 Introduction

In Section 1.3 we discussed previous models of SD and noted that all previ-

ous work has focused on the island size statistics (see Section 3 and Chapter 5

for details) and the spatial distribution of islands (see Section 1.3.2 for details).

However, as noted in Section 1.3.2.1, one would like to combine the information

contained in the spatial distribution of islands and in their size statistics. VGs

are a suitable tool for this.

Below, we will be considering point islands, i.e. islands whose extent and internal

structure have been neglected. We consider a one dimensional model. Both of
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these choices have been made for simplicity as the goal of this chapter is a “proof

of concept” to demonstrate the ability of VGs to extract mechanism information

from kMC simulations. That said, point islands are often used in SD models

as they approximate SD accurately when the islands are “well separated” [72].

In Section 4.4 and Chapter 7 we will discuss generalisations of our method to

extended islands and to higher dimensional settings.

Thus, we consider the situation where monomers are randomly deposited onto

an initially empty one dimensional lattice L at a deposition rate of ↵ monolayers

per unit time (t). The monomers di↵use at a rate D and islands nucleate when

i+1 monomers coincide at a lattice site. We assume no monomers can evaporate

from the lattice and direct impingement does not occur so the coverage ✓ can be

defined as ✓ = 100↵t%. ✓ is chosen large enough for us to be in the aggregation

regime (where scale-invariance is found), i.e. where the monomers are much more

likely to be incorporated into existing islands than nucleate into new islands. The

appropriate value of ✓ where the aggregation regime starts is dependent on i and

the ratio R = D/↵.

4.2 The Visibility Graph Algorithm

First, we would like to describe an e�cient algorithm for the computation of a

VG (thoughtout this section Claim 4.2.1. will act as our definition of a VG):

Claim 4.2.1. Given n points in the plane, S = {P1, P2, . . . , Pn}, where Pj =

(xj, yj), j 2 {1, . . . , n}. Let Pa, Pb 2 S (assuming without loss of generality that

xa < xb); then Pa and Pb are visible from each other if all points Pc 2 S such

that xa < xc < xb, satisfy

yc < yb +
yb � ya
xb � xa

(xc � xb).
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Proof. The equation of the line connecting the points Pa and Pb is

y � ya =
yb � ya
xb � xa

(x� xa),

or equivalently

y � yb =
yb � ya
xb � xa

(x� xb).

Hence, Pb will be visible from Pa if all points Pc 2 S satisfy the following condition

yc < ya +
yb � ya
xb � xa

(xc � xa),

or equivalently

yc < yb +
yb � ya
xb � xa

(xc � xb).

To construct the VG we need to consider all two-point subsets of S (as we must

ask if each node is connected to all nodes to the right), which gives us an algorithm

with time complexity of

C =
nX

k=1

k(n� k) =
1

6
(n� 1)n(n+ 1) =

1

6
n3 +O(n2), n = |S|.

As our kMC simulations produce up to 105 nucleated sites per kMC simulation,

this algorithm is impractical as one VG takes nearly two hours to produce on a

quad core desktop PC. Hence, we aim to find an algorithm that is faster than

the näıve one. We collect the results needed for the construction of such an

algorithm in the following claims. Throughout, we let Pa, Pb, Pc 2 S be such that

xa < xb < xc.

Claim 4.2.2. Let A = (ajk) where j, k  n be the adjacency matrix of the VG.

Then ajj = 0, aj,j+1 = 1 when j < n, ajk = akj.
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Proof. Our graph is a simple graph, i.e. it is an undirected graph with neither

multiple edges nor loops, and each vertex is connected to its nearest neighbours.

See Figure 4.3.

Claim 4.2.3. Let Pa and Pb be connected and ya < yb. Then all points Pc such

that xc > xb and yc < yb are not visible from Pa.

Proof. See Figure 4.1.

Figure 4.1: An illustration of Claim 4.2.3.

Claim 4.2.4. Let Pa be connected to Pb and Pb be connected to Pc. Then the

slopes of the line segments connecting Pa to Pb and Pb to Pc are given by

m1 =
yb � ya
xb � xa

and m2 =
yc � yb
xc � xb

, respectively.

Thus

1. if m2 > m1, Pc is visible from Pa,

2. if m2  m1, Pc is not visible from Pa.
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Proof. If the slope of the line connecting Pb and Pc is larger than the gradient of

the line connecting Pa and Pb, then Pb will be visible from Pa.See Figure 4.2.

Figure 4.2: An illustration of Claim 4.2.4.

We define the exchange matrix as

J2 =

2

4 0 1

1 0

3

5

Claim 4.2.5. Let Pa be connected to Pb (where no point occurs between Pa and

Pb) and define P̃c := (xc, 0). Then Pc is visible from Pa if and only if

t2 =
�1 · �2

�3 · �1
, 2 [0, 1],

where �1 = Pb�Pa, �2 = [J2(Pc�Pa)]�(1,�1), and �3 = J2(Pc� P̃c).See Figure

4.3.

Proof. In parametric form, the ray and the line segment become:

X1(t) = Pa + (Pb � Pa)t1, t1 2 [0,1),

X2(t) = Pc + (P̃c � Pc)t2, t2 2 [0, 1].
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We consider when the line segment and the ray cross, equating X1 = X2 and

considering the (x, y) component separately:

xa + (xb � xa)t1 = xc,

ya + (yb � ya)t1 = yc � yct2.

Hence, the line and the ray cross if, by solving this system for (t1, t2) we obtain

t1 > 0 and t2 2 [0, 1], which is true by the assumption that xb > xa and xc > xa,

and

t2 =
(yc � ya)(xb � xa)� (yb � ya)(xc � xa)

yc(xb � xa)
=

�1 · �2

�3 · �1
2 [0, 1].

Figure 4.3: An illustration of Claim 4.2.5.

4.2.1 The New Visibility Graph Algorithm

We can now use Claims 4.2.2 – 4.2.5 to construct the adjacency matrix of the

VG. We consider an arbitrary point Pj 2 S and the vector of elements to the
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right of the main diagonal in the j-th row of the adjacency matrix of the VG

[aj,j+1, aj,j+2, . . . , aj,n]. Letting 2  k  n� j, we have:

• aj,j+1 = 1, by Claim 4.2.2.

• If aj,j+k�1 = 1 and yj+i < yj+k�1 where k  i  n � j, for all k, then

aj,j+i = 0 by Claim 4.2.3.

• If aj,j+k�1 = 1 then aj,j+k = 1 if m2 > m1 and aj,j+k = 0 otherwise by

Claim 4.2.4.

• If aj,j+k�1 = 0, then aj,j+k = 1 if t2 2 [0, 1] and aj,j+k = 0 otherwise by

Claim 4.2.5.

We continue this process for all Pj 2 S and then use the final property from

Claim 4.2.2 to complete our adjacency matrix.

Our new algorithm is around 15 times faster than the original (when the number

of nodes in our system is approximately 50000) and hence, typically reduces

computation time for the construction of one VG from nearly two hours to eight

minutes on a quad core desktop PC.

4.3 Characterising the Visibility Graph

Thus, we start with a kMC simulation of SD in one space dimension. Once the

kMC simulation is complete, we mark the location and the size (“height”) of each

nucleated island and construct the resulting VG.

Our kMC simulations were performed on lattices with L = 106 sites, R = 106 up

to coverage of ✓ = 200% for di↵erent critical island sizes i. (For i = 0 we set the
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spontaneous nucleation probability, i.e. the chance a monomer becomes fixed to

the lattice, to p = 10�6). We choose these conditions to guarantee that we are in

the aggregation regime, where variations in L, R, p and ✓ do not e↵ect the island

size and gap size distributions [72], and throughout the remainder of this chapter

we refer to these conditions as our ‘standard conditions’.

There are many ways to characterise a graph; these include criteria based on ver-

tex degree, spectrum of the adjacency and other matrices defined from the graph,

communicability and centrality indices [66]. Below, we only analyse the vertex

degree distribution, the spectrum and the spectral gap in the adjacency matrix as

these are su�cient to di↵erentiate between VGs corresponding to di↵erent critical

island sizes i.

4.3.1 Vertex Degree Distribution

We begin our characterisation of the VG by considering the vertex degree distri-

bution. Let n be the number of vertices in our VG and m(k) be the number of

vertices in our VG with k connectivity. For simplicity, we define q(k) := m(k)/n.

The vertex degree distributions of 10 VGs generated from kMC simulations (un-

der our standard conditions) are shown in Figure 4.4.
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Figure 4.4: The vertex degree distributions of 10 VGs generated from kMC sim-
ulations on lattices with L = 106 sites, with R = 106 and up to coverage of
✓ = 200% for i = 0, 1, 2 and 3 and in the i = 0 case we let p = 10�6, where each
colour corresponds to a di↵erent simulations.
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The histograms in Figure 4.4 show consistent behaviour for each i. Note, the

increase in noise as i increases is due to the number of vertices n decreasing as

i increases. Given that we have consistent behaviour for each i, we consider the

above process again, this time averaging the vertex degree distributions produced

from 50 kMC simulations.

Figure 4.5: The vertex degree distributions of VGs generated from kMC simula-
tions on lattices with L = 106 sites, with R = 106 and up to coverage of ✓ = 200%
when i = 0, 1, 2 and 3 and in the i = 0 case we let p = 10�6, averaging results
over 50 runs.

From Figure 4.5, we see that graphs corresponding to di↵erent values of i di↵er in

the statistics of vertices having degree k, particularly for 3  k  8. To investigate

this finding further, we consider this specific region, as shown in Figure 4.6. To

emphasise the di↵erences, we connect the points with straight lines.
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Figure 4.6: The vertex degree distributions of VGs generated from kMC simula-
tions on lattices with L = 106 sites, with R = 106 and up to coverage of ✓ = 200%
when i = 0, 1, 2 and 3 and in the i = 0 case we let p = 10�6, averaging results
over 50 runs, for 3  k  8.

As expected, for every i considered, the degree distributions are monotonically

decreasing, however, there are noticeable di↵erences, particularly for q(3) for

di↵erent i. Changes in R (when R = 107), L (when L = 107) and ✓ (when

✓ = 100%) have a negligible e↵ect on the degree distributions, see Figure 4.7; this

is consistent with the work on gap size, island size and spatial distributions [72].
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Figure 4.7: The vertex degree distributions of VGs generated from kMC simula-
tions under our standard conditions where: L = 107 sites, R = 107, and up to
coverage of ✓ = 100% (from top to bottom respectively), when i = 0, 1, 2 and 3,
averaging results over 50 runs, for 3  k  8.

To test the q(3) as predictor of i, we generate a VG from a kMC simulation

where 1  i  3 is chosen randomly and then compute q(3) to predict i. Our

kMC simulations were performed on lattices with L = 106, 107 or 108 sites, R =

106, 107, 108 or 109, ✓ = 100% or 200% (these conditions guarantee that we are
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in the aggregation regime; we will refer to them as “operational conditions”) and

i was randomly chosen between 0 and 3, averaging results over 50 runs. We

performed this process 100 times. We found that i was correctly predicted in

92% of cases. In addition, in all cases the predicted i was within 1 of the true

value of i. See Figure 4.8 for the maximum and minimum values achieved for

each i.

Figure 4.8: The maximum and minimum values achieved generated from kMC
simulations under our standard conditions.

4.3.2 Spectrum of the Adjacency Matrix

As discussed in Section 2.2, as the vertex degree distribution only captures a small

amount of information from the graph, next we consider the adjacency matrix

of the VG. We consider the first five eigenvalues of the adjacency matrix of our

VGs generated from kMC simulations under our standard conditions. As with

the vertex degree distribution, we find consistent behaviour for each i. As our
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network is connected, the largest eigenvalue, �max, has multiplicity 1 and

max{d̄,
p

dmax}  �max  dmax

where d̄ is the average degree and dmax is the maximum degree [66]. We average

the eigenvalues over 50 runs, as shown in Figure 4.9.

Figure 4.9: The eigenvalues of VGs generated from kMC simulations on lattices
with L = 106 sites, with R = 106 and up to coverage of ✓ = 200% when i = 0, 1, 2
and 3 and in the i = 0 case we let p = 10�6, averaging results over 50 runs for
the adjacency matrix.

As the i = 0 case is practically indistinguishable from the i = 1 case, to separate

these two we consider the gap between the largest eigenvalue and the second

largest eigenvalue of the adjacency matrix, i.e. the spectral gap, which has been

shown to be related to the connectivity of the graph [66]; these results are shown

in Figure 4.10.
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Figure 4.10: The gap between the first and second eigenvalue of the adjacency
matrix from VGs generated from kMC simulations when i = 0, 1, 2 and 3, R =
16⇥ 106, L = 106, ✓ = 200% and in the i = 0 we let p = 10�6, averaging results
over 50 runs.

Once again, we find that changes in R, L and ✓ have a negligible e↵ect on the

eigenvalues and the gaps between the eigenvalues.

As in the case of using q(3) to distinguish between nucleation mechanisms, we

generate a VG from a kMC simulation under our operational conditions averaging

results over 50 runs. In order to identify the value of i from the adjacency matrix,

we use the largest eigenvalue to separate the case of i = 2, 3 from the rest, and

then the spectral gap to di↵erentiate between i = 0 and i = 1. We performed

this process 50 times. We found that i was correctly predicted in all cases. Note,

in contrast to Figure 4.6, the excellent separation of the i = 2 and i = 3 case.

4.4 Conclusions

We have shown that the analysis of some of the properties of the VG generated

from a kMC simulation allow us to determine the underlying nucleation mech-

anism. Both the degree distribution (q(3)) and the spectrum of the adjacency
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matrix reliably allow us to identify the value of i used in the kMC simulation.

We have also created an e�cient algorithm for processing the kMC position/size

data. Therefore, we have created an e↵ective characterisation process that can be

applied to experimental data for SD in one dimension, such as island nucleation

and growth on a stepped substrate [79].

The VG method has the potential to deal with more complicated mechanisms

include evaporation, mobile islands, the action of electric fields and any level of

coverage within the scaling regime as discussed above. The generalisation of our

work to extended islands is also straightforward as we can create the vectors P ,

used in the construction of VG, by using the position of the centre of mass of an

island and its mass as coordinates. We leave these versions of SD to future work.

It is true that at this stage there is no a priori reason why information about

the critical island size i should be contained in q(3) or in the spectrum of the

adjacency matrix, as demonstrated here. For that reason, the VG framework used

here falls in the domain of “equation-free” approaches (for a general philosophy

of this see [55]), as do the applications in complex (in particular, biological and

financial) systems of topological data analysis [24] and Minkowski functionals [17].

Such an exploratory stage is necessary to verify, as we do here, that the tool is

up to the task.

An important question is how to extend this methodology to two and three space

dimensions. In [59] a method is proposed to extend one dimensional VGs to

higher dimensions which enables the construction of VGs of large-scale spatially-

extended surfaces. The method uses one dimensional VGs along di↵erent straight

lines in the multidimensional lattice to construct a single VG (only dependent on

the number of lines one considers).

Of course, other ways of correctly identifying i from data, such as from the
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scaled distribution of island sizes, already exist, and it is not clear whether a VG

o↵ers any immediate advantages in terms of robustness against noise or clarity

of interpretation when the growth rules evolve over time. Nevertheless, we have

successfully demonstrated that the VG approach usefully combines spatial and

size data in a physically meaningful way, relating SD to network theory, thereby

opening up new approaches to understanding more complex SD processes and

their classification.
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Chapter 5

Point Island Dynamics Under

Fixed Rate Deposition

This section is an expanded version of our publication, point island dynamics

under fixed rate deposition [3].

5.1 Introduction

In Section 3, we described how ODE models of SD have been the subject of rig-

orous mathematical analysis with the aim of determining the ISD. As mentioned

in Section 3.1.1, studies of this type of rate equations have been initiated by da

Costa, van Roessel and Wattis; see also [29] and Section 3.1.2, all of which are

relevant to the present work.

As in Section 3.1.2, here we assume that there exists a critical island size i such

that islands of size j � i+ 1 are immobile and can only grow by attachment of a

single monomer.
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As discussed in Section 1.3.1.3, there are a number of possibilities of how to

model clusters of size 1 < j  i. The possibility considered in Section 3.1.2, is

that clusters of size 1 < j  i simply do not exist. There is one other physically

relevant possibility, i.e. that clusters of every size 1 < j  i are allowed to

fragment (at some rate independent of the cluster size, which is consistent with

the point-island assumption). This possibility has been considered formally, see

Section 3.1 and [70]. In this chapter we consider this mechanism using centre

manifold techniques and globalising the results.

In Section 3.1.1 and 3.1.2, it was possible by a change of variables to decouple

the infinite system of ODEs in a way that reduced its analysis to an analysis of a

two dimensional system. In our case, the reduction is to i+1 equations, and the

remarkable property of these equations is that the complexity of the calculations

is independent of i. Additionally, we show that making the QSSA results in the

same leading term behaviour as the centre manifold computation and emphasise

the di↵erences between the two approaches.

5.2 Governing Equations

As in Section 1.3.1.3, we consider a system containing clusters of any number

j � 1 or monomers, where subcritcal islands are allowed to fragment. We make

the additional assumption that the fragmentation rate, � > 0, is independent of

the cluster size. Hence, we assume that the following reactions occur

j �mer +monomer
1
�
�

(j + 1)�mer, 1  j < i,

j �mer +monomer
1
! (j + 1)�mer, j � i.

If we set ↵̂ to be the deposition rate, denote by Cj(t) := Cj the concentration of
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j �mers at time t and use primes for di↵erentiation with respect to t, the laws

of mass kinetics give us the following infinite system of ODEs:

C 0
1 = ↵̂� 2C2

1 + 2�C2 � C1

1X

k=2

Ck + �
iX

k=3

Ck,

C 0
j
= C1Cj�1 � C1Cj � �Cj + �Cj+1, 1 < j < i,

C 0
j
= C1Cj�1 � C1Cj � �Cj, j = i,

C 0
j
= C1Cj�1 � C1Cj, j > i.

(5.1)

It makes sense to scale the variables and the deposition rate to remove � from the

equations. Thus scaling t ! T := �t, retaining primes for di↵erentiation with

respect to the new time scale, setting Cj(t) = �cj(T ) and ↵ = ↵̂/�2, we obtain

the system

c01 = ↵� 2c21 + 2c2 � c1

1X

k=2

ck +
iX

k=3

ck,

c0
j
= c1cj�1 � c1cj � cj + cj+1, 1 < j < i,

c0
j
= c1cj�1 � c1cj � cj, j = i,

c0
j
= c1cj�1 � c1cj, j > i.

(5.2)

5.3 Globalisation

In this section we consider the global dynamics of cj, 1  j  i, satisfying (5.2)

and of v = ↵�c1
P1

k=2 ck, and establish that all solutions of these equations with

non-negative initial data approach the origin. This will show that the flow on the

centre manifold, as given by Theorem 5.4.1, describes the asymptotics of every

non-negative solution of this system of equations.

For that purpose, it is more convenient to rewrite equations (5.2) formally as
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follows:

c01 = ↵� 2c21 + 2c2 � c1

iX

k=2

ck +
iX

k=3

ck � c1y,

c0
j
= c1cj�1 � c1cj � cj + cj+1, 1 < j < i,

c0
i
= c1ci�1 � c1ci � ci,

y0 = c1ci,

(5.3)

where we have put y(t) =
P1

k=i+1 ck.

First of all, we have

Theorem 5.3.1. If
P1

k=1 ck(0) < 1, a solution of (5.2) for j � 1 is also a

solution of (5.3).

Proof. The argument of the proof is similar to that of [30, Theorem 2.1]. We

indicate the main steps.

Let (cj)1j=1 be a solution of (5.2). To show that this is also a solution of (5.3) we

must prove that
P1

k=i+1 ck converges to y for all T . We change time from T to

⇢ =

Z
T

0

c1(s) ds.

This change of variable (also used in [30, Theorem 2.1]) makes the cj equations

of (5.2) linear in cj for j > i. Keeping primes for di↵erentiation with respect to

the new time variable ⇢ and letting cj(T ) =: c̃j(⇢), y(T ) =: ỹ(⇢), these equations

become

c̃j
0 = c̃j�1 � c̃j, j > i, and ỹ0 = c̃i. (5.4)

This system of ODEs for c̃j, j > i, can now be solved in terms of c̃i recursively
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by variation of parameters starting at j = i+ 1, to give

c̃j(⇢) = e�⇢
jX

k=i+1

⇢j�k

(j � k)!
c̃k(0) +

1

(j � (i+ 1))!

Z
⇢

0

c̃i(⇢� s)sj�(i+1)e�sds. (5.5)

Introducing the generating function

F (⇢, z) :=
1X

n=i+1

c̃n(⇢)z
n,

we can use (5.5) to rewrite F as F (⇢, z) := G(⇢, z) +H(⇢, z), where

G(⇢, z) = e�⇢
1X

n=i+1

nX

k=i+1

⇢n�kzn

(n� k)!
c̃k(0),

and

H(⇢, z) =
1X

n=i+1

zn

(n� (i+ 1))!

Z
⇢

0

c̃i(⇢� s)sn�(i+1)e�sds.

We now consider these two expressions separately. For G we obtain

G(⇢, z) = e�⇢
1X

n=i+1

n�(i+1)X

k=0

⇢n�k�(i+1)zn

(n� k � (i+ 1))!
c̃k+i+1(0)

=e�⇢
1X

k=0

1X

m=0

⇢mzm+k+i+1

m!
c̃k+i+1(0)

=e�⇢
1X

k=0

✓ 1X

m=0

(⇢z)m

m!

◆
zk+2c̃k+i+1(0)

=e�⇢(1�z)
1X

k=i+1

zkc̃k(0).

Since
P1

k=1 ck(0) < 1 by assumption, the above series converges when |z|  1,
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and we have

G(⇢, z) = e�⇢(1�z)(F (0, z)� c̃i(0)z) for |z|  1.

For H, by interchanging the order of summation and integration, we have that

H(⇢, z) = zi+1

Z
⇢

0

c̃i(⇢� s)

✓ 1X

n=i+1

(sz)n�(i+1)

(n� (i+ 1)!

◆
e�sds

= zi+1

Z
⇢

0

c̃i(⇢� s)esze�sds

= zi
Z

⇢

0

c̃i(s)e
�(⇢�s)(1�z)ds.

The expression for F at z = 1 now becomes

F (⇢, 1) = F (0, 1)� c̃i(0) +

Z
⇢

0

c̃i(s)ds. (5.6)

Hence, by di↵erentiating with respect to ⇢, we see that F (⇢, 1) given by (5.6)

satisfies the same di↵erential equation as ỹ in (5.4) which proves that F (⇢, 1) = ỹ.

Thus, in the T variables
P1

k=i+1 ck converges to y.

As a result of Theorem 5.3.1, we can use finite dimensional techniques to discuss

the dynamics of cj(T ), 1  j  i.

We begin our analysis of long-time dynamics of (5.3) by considering the system

without outflows through higher clusters, i.e. we let y ⌘ 0 in system (5.3).
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c01 = ↵� 2c21 + 2c2 � c1

iX

k=2

ck +
iX

k=3

ck,

c0
j
= c1cj�1 � c1cj � cj + cj+1, 1 < j < i,

c0
i
= c1ci�1 � c1ci � ci,

(5.7)

which can be expressed as the following system of reactions:

monomer + i�mer ! ; ! monomer,

j �mer +monomer � (j + 1)�mer, j < i.

We begin by defining a compartmental system in the sense of Jacquez and Simon

[51]. Let the flows into the compartment from outside the system, or inflows, be

represented by Ii � 0; the outflows to the environment and therefore out of the

system by g0i; the transfers from compartment i to compartment j by gji and the

transfers from j to i by gij. All the ghk’s are � 0. If the general equations for such

a system can be obtained by writing the instantaneous mass balance equation:

q0
i
=

X

k 6=j

�gji + gij + Ii � g0i, (5.8)

then the system is a compartmental system.

Let us show that the system (5.7) is a compartmental system. Let Ij represent

the inflows from outside the system into cj, F0j represent the outflow from cj to

outside of the system, Fkj represent the transfer from cj to ck and Fjk represent the

transfer from ck to cj, when 1  j, k  i. Below is an illustration for visualisation
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purposes:

????yIj

Fjk

������! cj
Fkj

������!
????yF0j

Let I1 = ↵ and let Ij = 0 for all 2  j  i. Now put

Fj1 = c1cj�1, j = 2, . . . , i;

F12 = 2c2 and F1j = cj j = 3, . . . , i.

For k = j � 1, 2  k  i � 1 put Fkj = cj, Fjk = c1ck and for k = j + 1,

2  j  i� 1, put Fkj = cj. Finally, let F0k = 0 if k 6= 1, i and F0i = F01 = c1ci,

the only outflows from the system. In other words,

Ij =
h
↵ 0 . . . 0

i
,

Fjk =

2

6666666666664

0 2c2 c3 c4 c5 . . . ci

c21 0 c3

c1c2 c1c3 0 c4

c1c3 c1c4 0 c5
...

. . . . . . . . .

c1ci�1 c1ci 0 ci

3

7777777777775

,

F0j =
h
c1ci 0 . . . 0

i
.
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Then clearly for each j = 1, . . . i we can write

c0
j
=

iX

k 6=j

�Fkj + Fjk + Ij � F0j, (5.9)

where all the F ’s and I’s are positive, which shows that (5.7) is a compartmental

system in the sense of [51].

Also note that
@Fjk

@cm
� 0 for all 1  j, k,m  i, j 6= k. (5.10)

Hence, we can use the Theorem of Maeda, Kodama and Ohta [63], (see also part

(i) of Theorem 9 of [51]):

Theorem 5.3.2 ( [63]). Given a compartmental system (5.9) with time-independent

inputs Ij that satisfies the monotonicity condition (5.10), every non-negative so-

lution of the system is bounded if and only if the system has a positive rest point.

We will make use of the following lemma:

Lemma 5.3.3. The system (5.7), with non-negative initial data, admits a positive

unique rest point

(c1, c2, . . . , ci) = (↵
1

i+1 ,↵
2

i+1 , . . . ,↵
i

i+1 ).

Proof. Letting, c0
j
= 0 when 1  j  i in the system (5.7):

0 = ↵� 2c21 + 2c2 � c1

iX

k=2

ck +
iX

k=3

ck,

0 = c1cj�1 � c1cj � cj + cj+1, 1 < j < i,

0 = c1cj�1 � cj, j = i.

(5.11)
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Expressing the equations for cj, 1 < j  i, from (5.11) in the following form

cj = c1cj�1, j = i,

cj = c1cj�1 � c1cj + cj+1, 1 < j < i,

and substituting the ci equation into the equation for ci�1

ci�1 = c1ci�2.

Continuing this recurrence

ci = c1ci�1,

cj = c1cj�1, 1 < j < i.
(5.12)

Hence, from (5.12)

cj = cj1, 1 < j  i. (5.13)

Substituting the expressions for cj from (5.13) into the first equation from (5.11)

and considering only non-negative initial data

0 = ↵� 2c21 + 2c21 � c1

iX

k=2

ck1 +
iX

k=3

ck1,

0 = ↵�

i+1X

k=3

ck1 +
iX

k=3

ck1,

c1 = ↵
1

i+1 .

(5.14)

Hence, combining the results from (5.13)-(5.14) we find, with non-negative initial

data, the only rest point is

(c1, c2, . . . , ci) = (↵
1

i+1 ,↵
2

i+1 , . . . ,↵
i

i+1 ), (5.15)

71



Chapter 5. Point Island Dynamics Under Fixed Rate Deposition

which is positive as ↵ > 0.

Since Lemma 5.3.3 shows (5.7) admits a unique positive equilibrium we conclude

using Theorem 5.3.2 that all non-negative solutions of (5.7) are bounded.

Now we consider the first i equations of the system (5.3). Since the system (5.3)

preserves non-negativity and y is a positive function, by comparison with solutions

of (5.7) it follows that the (c1, . . . , ci) components of non-negative solutions of

(5.3) are bounded for any positive initial condition.

In this section we will make use of the Theorem of Thieme [92, Theorem 4.2] on

asymptotically autonomous dynamical systems.

Let � be an asymptotically autonomous continuous semiflow on the metric space

X and ⇥ its continuous limit-semiflow and e 2 X such that ⇥(t, e) = e for all

t � 0.

Theorem 5.3.4. Let the equilibria of ⇥ be an isolated compact ⇥-invariant sub-

sets of X and the point (s, x), s � t0, x 2 X, have a pre-compact �-orbit. Then

the following alternative holds:

• �(t, s, x) ! e, t ! 1 for some ⇥-equilibrium e.

• The ! � �-limit set of (s, x) contains finitely many ⇥-equilibria which are

chained to each other in a cyclic way.

Now consider the dynamics of the last component of (5.3), y. As it is monotone-

increasing it can either converge to some limit l < 1 or it can go to infinity.

Let us show that the first possibility cannot occur. For, if it did, we could the

Theorem 5.3.4 combined with the fact that all non-negative solutions of (5.3)
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are bounded and the uniqueness of the positive equilibrium, to conclude that the

!-limit set of every orbit of (5.3) would be the same as that of the system

c01 = ↵� 2c21 + 2c2 � c1

iX

k=2

ck +
iX

k=3

ck � c1l,

c0
j
= c1cj�1 � c1cj � cj + cj+1, 1 < j < i,

c0
i
= c1ci�1 � c1ci � ci.

(5.16)

But if y ! l as T ! 1, we must have that either c1 ! 0 or ci ! 0. If we

suppose, for example, that ci ! 0, we see from the c0
i
equation of (5.16) that

either c1 or ci�1 must go to zero. Continuing in this way, we see that all cj must

go to zero as T ! 1, but the origin is not a rest point of the first i equations of

(5.16). Hence, we conclude that y ! 1.

Furthermore, since the positive orthant of Ri+1 is invariant under the flow of

(5.3), this must mean that c1 ! 0 as T ! 1.

Now, from the equations for ci, ci�1, . . . , c2 it follows consecutively that for all

2  k  i, ck ! 0 as T ! 1, again using the same result of Thieme [92] for

asymptotically autonomous dynamical systems. Applying these results to the c1

equation in (5.3) we finally conclude that c1y ! ↵ as T ! 1. If we now set

v := ↵� c1

1X

k=2

ck, (5.17)

this is equivalent to saying that v ! 0 as T ! 1.

We collect these results as a theorem:

Theorem 5.3.5. As T ! 1, for all non-negative initial data, ck ! 0, 1  k  i,

and v ! 0.
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To understand the dynamics of cj as T ! 1 for all j � 1, we first use centre

manifold techniques to understand the rate of approach of cj to zero, 1  i as

T ! 1.

5.4 Centre Manifold Analysis

We next compactify the ODEs from (5.2) by setting z =
P1

k=2 ck and v = ↵�c1z.

Hence, the equation for c1 becomes

c01 = v � 2c21 + 2c2 +
iX

k=3

ck.

Di↵erentiating v with respect to T we find that,

v0 = �c1z
0
� c01z =

=� c1

1X

k=2

c0
k
� c01z =

=� c31 + c1c2 � ↵z + 2zc21 � 2zc2 + c1z
2
� z

iX

k=3

ck =

=�
1

c1


c41 � c21c2 + ↵2

� ↵c1z � ↵2 + 2↵c1z � c21z
2
� 2↵c21 + 2↵c21

� 2c31z + 2↵c2 � 2↵c2 + 2c1c2z + ↵
iX

k=3

ck � ↵
iX

k=3

ck + c1z
iX

k=3

ck

�

=�
1

c1


c41 � c21c2 + ↵v � v2 � 2↵c21+

+ 2c21v + 2↵c2 � 2c2v + ↵
iX

k=3

ck � v
iX

k=3

ck

�
.
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Hence, we can now consider the following system:

c01 = v � 2c21 + 2c2 +
iX

k=3

ck,

c0
j
= c1cj�1 � c1cj � cj + cj+1, 1 < j < i,

c0
j
= c1cj�1 � c1cj � cj, j = i,

v0 =�
1

c1


c41 � c21c2 + ↵v � v2 � 2↵c21

+ 2c21v + 2↵c2 � 2c2v + ↵
iX

k=3

ck � v
iX

k=3

ck

�
.

(5.18)

We now change time from T to ⌧ :

⌧ =

Z
T

0

1

c1(s)
ds. (5.19)

This change of variable (also used in [30, p. 377] and [29, (3.3)]) is needed to

desingularise the v equation when c1 = 0. Note that by the result of Theorem

5.3.5, ⌧ ! 1 as T ! 1.

Letting dots represent the di↵erentiation with respect to ⌧ and defining cj(⌧) :=
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cj, (5.18) becomes:

ċ1 =c1

✓
v � 2c21 + 2c2 +

iX

k=3

ck

◆
,

ċj =c1(c1cj�1 � c1cj � cj + cj+1), 1 < j < i,

ċj =c1(c1cj�1 � c1cj � cj), j = i,

v̇ =�


c41 � c21c2 + ↵v � v2 � 2↵c21

+ 2c21v + 2↵c2 � 2c2v + ↵
iX

k=3

ck � v
iX

k=3

ck

�
.

(5.20)

Note that 0 2 Ri+1 is a rest point of the system of equations (5.20), the rest point

(0, . . . , 0,↵) is generated by compactification and is an artefact of the change of

variables. The object of interest is to establish stability properties of the rest

point 0 and the way in which it is approached.

At this stage it is useful to make another change of variables. We set

w = v + 2c2 +
iX

k=3

ck. (5.21)

Hence in the (c1, c2, . . . , ci, w) variables (5.20) becomes:

ċ1 = c1(w � 2c21),

ċj = c1(c1cj�1 � c1cj � cj + cj+1), 1 < j < i,

ċj = c1(c1cj�1 � c1cj � cj), j = i,

(5.22)
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and

ẇ = v̇ + 2ċ2 +
iX

k=3

ċk. (5.23)

Substituting the equations from (5.22) into (5.23), we have

ẇ = v̇ + 2c1(c
2
1 � c1c2 � c2 + c3) + (c21c2 � c1c3 � c21ci)

= v̇ + 2c31 � 2c1c2 � c21ci � c21c2 + c1c3.

Using the equation of v̇ from (5.20), this becomes

ẇ =� c41 � ↵v + v2 + 2↵c21 � 2c21v � 2↵c2 + 2c2v � ↵
iX

k=3

ck

+ v
iX

k=3

ck + 2c31 � 2c1c2 � c21ci + c1c3.

Solving for v from (5.21), we obtain

ẇ =� 2c2w � w
iX

k=3

ck + 2c21

iX

k=3

ck � ↵w + w2
� 2c21w + c1c3

� c21ci � 2c1c2 + 2c31 � c41 + 4c21c2 + 2↵c21.

Thus, using the above computation for ẇ, we have the equations

ċ1 = c1(w � 2c21),

ċj = c1(c1cj�1 � c1cj � cj + cj+1), 1 < j < i,

ċj = c1(c1cj�1 � c1cj � cj), j = i

(5.24)
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and

ẇ =� 2c2w � w
iX

k=3

ck + 2c21

iX

k=3

ck � ↵w + w2
� 2c21w + c1c3

� c21ci � 2c1c2 + 2c31 � c41 + 4c21c2 + 2↵c21.

(5.25)

Now we appeal to centre manifold theory [25] (see Section 2.3). In the language

of that theory, for the equations (5.24), (5.25), the variables cj, 1  j  i are

“centre” variables while w is a “stable” variable.Therefore, according to centre

manifold theory, in a neighbourhood of the origin in Ri+1, equations (5.24), (5.25)

admit an i dimensional centre manifold, w = h(c1, c2, . . . , ci). Furthermore,

from Theorem 5.3.5 it follows that the centre manifold attracts all solutions in a

neighbourhood of the origin in Ri+1.

On this centre manifold, the flow is given by

ċ1 = c1(h(c1, c2, . . . , ci)� 2c21),

ċj = c1(c1cj�1 � c1cj � cj + cj+1), 1 < j < i,

ċi = c1(c1ci�1 � c1ci � ci).

(5.26)

Remarkably, we can reparameterise time by going back to the T variable to obtain

on the centre manifold w = h(c1, c2, . . . , ci) the equations

c01 = h(c1, c2, . . . , ci)� 2c21,

c0
j
= c1cj�1 � c1cj � cj + cj+1, 1 < j < i,

c0
i
= c1ci�1 � c1ci � ci.

(5.27)

Since according to centre manifold theory the asymptotic expansion of h(c1, c2, . . . , ci)

contains only quadratic terms and above in cj, j � 1, the i ⇥ i Jacobian matrix
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J(0) of equations (5.27) around the origin in Ri+1 has the following structure:

J(0) =

2

4 0 0

0 A

3

5 ,

with the first row being made of zeros and the (i�1)⇥(i�1) bi-diagonal matrix A

having �1 on the main diagonal and 1 in the (j, j+1) positions, 2  j  i�1. It is

easily seen that all eigenvalues of A are negative. Such structure of the Jacobian

matrix means that, for the equations of the flow on the centre manifold w =

h(c1, c2, . . . , ci), cj, 2  j  i are “stable” variables and c1 is a “centre” variable,

so that inside the i dimensional centre manifold there is another, one dimensional

centre manifold parameterised by c1, i.e a curve with components cj = gj(c1),

1 < j  i. We will write gw(c1) = h(c1, g2(c1), . . . , gi(c1)). Furthermore, we also

know by centre manifold theory that as c1 ! 0,

gj(c1) ⇠
1X

k=2

�j,kc
k

1, (5.28)

We also have

gw(c1) ⇠
1X

k=2

�w,kc
k

1. (5.29)

Hence (see [25]) the flow on the one dimensional centre manifold is given by

c01 = gw(c1)� 2c21, (5.30)

and as the rest point at the origin of the one dimensional ODE (5.30) is asymptoti-

cally stable by Theorem 5.3.5, the one dimensional centre manifold (g2(c1), . . . , gi(c1))

attracts nearby solutions, so all solutions approach the origin along this curve

(apart possibly from sets of zero i+ 1 dimensional Lebesgue measure).

We have
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Theorem 5.4.1. c1 asymptotically satisfies the di↵erential equation

c01 =
1

↵
(�ci+3

1 + ci+4
1 � c2i+3

1 ) +O

✓
c2i+4
1

↵2

◆
, t ! 1.

Proof. As we are interested in the asymptotics of (5.28)-(5.29) we can di↵erentiate

term by term. Hence, di↵erentiating (5.28)-(5.29) and from the definition of c01

from (5.27)

w0 = g0
w
(c1) ⇠ c01

1X

k=2

k�w,kc
k�1
1

=
1X

k=2

k�w,kc
k�1
1 (w � 2c21)

=
1X

k=2

k�w,kc
k�1
1

✓ 1X

k=2

�w,kc
k

1 � 2c21

◆
.

(5.31)

c0
j
= g0

j
(c1) ⇠ c01

1X

k=2

k�j,kc
k�1
1

=
1X

k=2

k�j,kc
k�1
1 (w � 2c21)

=
1X

k=2

k�j,kc
k�1
1

✓ 1X

k=2

�w,kc
k

1 � 2c21

◆
,

(5.32)

when 1 < j  i.

Alternately we can find w0 from the equation (5.25) by changing time from ⌧ to
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T from (5.19) then

w0 = g0
w
(c1) ⇠

1

c1


gw(c1)(�2g2(c1)�

iX

k=3

gk(c1)�

� ↵ + gw(c1)� 2c21)+

+ 2c21

iX

k=3

gk(c1) + c1g3(c1)� c21gi(c1)�

� 2c1g2(c1) + 2c31 � c41 + 4c21g2(c1) + 2↵c21

�
.

We have

g0
w
(c1) ⇠

1

c1

 1X

k=2

�w,kc
k

1

✓
� 2g2(c1)�

iX

k=3

gk(c1)�

� ↵ +
1X

k=2

�w,kgk(c1)� 2c21

◆

+ 2c21

iX

k=3

gk(c1) + c1g3(c1)� c21gi(c1)�

� 2c1g2(c1) + 2c31 � c41 + 4c21g2(c1) + 2↵c21

�

and then using (5.28), we obtain

g0
w
(c1) ⇠

1

c1

✓ 1X

k=2


�w,kc

k

1

✓ 1X

m=2

(�2�2,m �

iX

n=3

�n,m + �w,m)c
m

1 � 2c21 � ↵

◆

+ (�3,k � 2�2,k)c
k+1
1 + (4�2,k + 2

iX

n=3

�n,k � �i,k)c
k+2
1

�

+ 2↵c21 � c41 + 2c31

◆
.

(5.33)

In addition, we can find c0
j
, 1 < j  i by substituting equations (5.28) into
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equations (5.27):

g0
j
(c1) ⇠ �c1

1X

k=2

�j,kc
k

1 �

1X

k=2

�j,kc
k

1 +

8
>>>>>>>>>>><

>>>>>>>>>>>:

c21 +
P1

k=2 �3,kc
k

1, j = 2,

c1
P1

k=2 �j�1,kck1+

+
P1

k=2 �j+1,kck1, 2 < j < i,

c1
P1

k=2 �j�1,kck1, j = i.

(5.34)

We are now in a position to be able to find the coe�cients.

From (5.33) with (5.31) we obtain

0 ⌘

1X

k=2


�w,kc

k

1

✓ 1X

m=2

(�2�2,m �

iX

n=3

�n,m+

+ �w,m(1� k))cm1 + 2c21(k � 1)� ↵

◆

+ (�3,k � 2�2,k)c
k+1
1 + (4�2,k + 2

iX

n=3

�n,k � �i,k)c
k+2
1

�

+ 2↵c21 � c41 + 2c31.

(5.35)

In addition, from (5.34) and (5.32) there are three cases:

Case 1: j = 2

0 ⌘ c31 +
1X

k=2

✓
�2,k(2k � 1)ck+2

1 +

+ (�3,k � �2,k)c
k+1
1 � k�2,kc

k

1

1X

n=2

�w,nc
n

1

◆
.

(5.36)
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Case 2: 2 < j < i

0 ⌘

1X

k=2

✓
(�u�1,k + �u,k(2k � 1))ck+2

1

+ (�u+1,k � �u,k)c
k+1
1 � k�u,kc

k

1

1X

n=2

�w,nc
n

1

◆
.

(5.37)

Case 3: j = i

0 ⌘

1X

k=2

✓
(�i�1,k + �i,k(2k � 1))ck+2

1 �

� �i,kc
k+1
1 � k�i,kc

k

1

1X

n=2

�w,nc
n

1

◆
.

(5.38)

Hence, we can now calculate �j,k and �w,k, from (5.35)-(5.38) as expressed in the

following propositions.

Proposition 5.4.1.

�j,2 = 0, 2 < j  i,

�2,2 = 1, �w,2 = 2, �w,3 = 0.
(5.39)

Proof. From (5.38)

��i,2c
3
1 +O(c41) ⌘ 0 =) �i,2 = 0. (5.40)

From (5.37) when 2 < j < i.

(�j+1,2 � �j,2)c
3
1 +O(c41) ⌘ 0 =) �j,2 = 0, from (5.40). (5.41)
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(5.36) leads to

(1 + �3,2 � �2,2)c
3
1 +O(c41) ⌘ 0 =) �2,2 = 1, from (5.41). (5.42)

From (5.35) we obtain

(�↵�w,2 + 2↵)c21 +O(c31) ⌘ 0 =) �w,2 = 2,

O(c21) + (�↵�w,3 + �3,2 � 2�2,2 + 2)c31 +O(c41) ⌘ 0

=) �w,3 = 0, from (5.40)-(5.42).

Proposition 5.4.2. For 1 < j  i we have the following recurrences:

�i,k =�i�1,k�1 + (2k � 1)�i,k�1 �

kX

n=2

n�i,n�1�w,k�n+1, k > 1.

�j,k =�j�1,k�1 + (2k � 1)�j,k�1 + �j+1,k �

kX

n=2

n�j,n�1�w,k�n+1, k > 1.

�2,k =(2k � 1)�2,k�1 + �3,k �
kX

n=2

n�2,n�1�w,k�n+1, k > 1.

�w,3 =
1� (�3,2 � 2�2,2)

↵
.

�w,4 =
1

↵


�3,3 � 2�2,3 + 4�2,3 + 2

iX

n=3

�n,2 � �i,2 + 2�w,2+

+
3X

m=2

�w,m�1

✓
� 2�2,4�m �

iX

n=3

�n,4�m + �w,4�m

◆
� 1

�
.

�w,k =
1

↵


�3,k�1 � 2�2,k�1 + 4�2,k�2 + 2

iX

n=3

�n,k�2 � �i,k�2 + 2�w,k�2+

+
k�1X

m=2

�w,m�1

✓
� 2�2,k�m �

iX

n=3

�n,k�m + �w,k�m

◆�
, k > 4.
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Hence, we have that:

Proposition 5.4.3.

cj = gj(c1) = cj1 � ci+1
1 + ci+j

1 +O

✓
ci+j+2
1

↵

◆
, 1 < j < i,

cj = gj(c1) = cj1 � cj+1
1 + c2j1 � c2j+1

1 +O

✓
c2j+2
1

↵

◆
, j = i,

w = gw(c1) = 2c21 �
1

↵
ci+3
1 +

1

↵
ci+4
1 �

1

↵
c2i+3
1 +O

✓
c2i+4
1

↵2

◆
.

(5.43)

Thus, from Proposition 5.4.3 and (5.30) we have that

c01 =
1

↵
(�ci+3

1 + ci+4
1 � c2i+3

1 ) +O

✓
c2i+4
1

↵2

◆
.

Note that beyond terms of O(ci+j

1 ) the interplay among gj(c1), 1 < j  i, and

gw(c1) becomes complex and that the later coe�cients of these functions depend

on ↵. Computations using the MAPLE code in the Appendix indicate that the

radius of convergence of the expansions is 0 for all ↵ > 0.

5.5 Asymptotics of Solutions

Armed with Theorem 5.4.1 which holds for any non-negative solution of (5.2) by

the globalisation results of Section 5.3, we can discuss asymptotics of solutions

of (5.1) using the methods of [29,30], which were also used in [31]. As proofs are

similar to those used in the above papers, we indicate only the main ideas. Further

terms in the expansions in this section can be computed using the machinery

of [29], we illustrate this for the computation of c1; in all other cases we only
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determine the leading terms, denoting higher order terms by “h.o.t”. Going back

to our original variables Cj(t) to exhibit the complicated dependence of the results

on �, from Theorem 5.4.1 we have the following statement:

Theorem 5.5.1. The asymptotics of C1 are given by

C1 ⇠

✓
↵̂�i�1

(i+ 2)t

◆ 1
i+2

+
1

i+ 1

✓
↵̂�

i�5
2

(i+ 2)t

◆ 2
i+2

+ h.o.t.. (5.44)

Proof. Following the method of [29] we begin by considering the approximation

to the centre manifold gw(c1), (5.43), given by taking the first two non-zero terms.

gw(c1) ⇠ 2c21 �
1

↵
ci+3
1 +O(ci+4

1 ).

The flow governing the asymptotics of c1(t) from (5.30) is

c1
0 = �

1

↵
c1

i+3 +O(c1
i+4),

which, as the equation is separable, leads us to

d

dT

✓
↵

(i+ 2)c1i+2

◆
= 1 +O(c1

2). (5.45)

Using that c1 ! 0 as T ! 1, this implies that 1 + O(c12) ! 1 as T ! 1

.Hence, for all ✏ > 0, there exists a ⇣ > T0 such that, for all T > ⇣, the following

inequalities hold

1� ✏ 
d

dT

✓
↵

(i+ 2)c1i+2

◆
 1 + ✏. (5.46)

Integrating (5.46) between ⇣ and T

(1� ✏)(T � ⇣) 
↵

(i+ 2)c1i+2
�

↵

(i+ 2)c1
i+2
⇣

 (1 + ✏)(T � ⇣), (5.47)

where c1⇣ = c1(⇣). Dividing (5.47) by T and taking lim infT!1 and lim sup
T!1
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leads us to

1� ✏  lim inf
T!1

↵

(i+ 2)Tc1i+2
 lim sup

T!1

↵

(i+ 2)Tc1i+2
 1 + ✏,

which, as ✏ is arbitrary implies that lim infT!1
i+2
↵
Tc1i+2 = 1, and thus

c1
i+2(T ) =

↵

i+ 2

1

T
(1 + o(1)). (5.48)

We now consider a better approximation to gw(c1) by taking the first three non-

zero terms

gw(c1) = 2c21 �
1

↵
ci+3
1 +

1

↵
ci+4
1 +O(c2i+3

1 ).

The flow governing the asymptotics of c1 is now given by

c1
0 = �

1

↵
c1

i+3 +
1

↵
c1

i+4 +O(c1
2i+3). (5.49)

Writing this di↵erential equation in a separable form

↵c01
�c1i+3 + c1i+4

= 1 +O(c1
i+2).

Using partial fractions, we have

↵

�si+3 + si+4
= �

↵

si+3
�

↵

si+2
� ↵

 i+1X

k=1

1

sk
�

1

1� s

�
.

For convenience we set

 i(s) :=

Z
�↵

 i+1X

k=1

1

sk
�

1

1� s

�
ds.
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Hence, (5.49) can be written as

d

dT

✓
↵

(i+ 2)c1i+2
+

↵

(i+ 1)c1i+1
+  i(c1)

◆
= 1 + c1

i+2O(1). (5.50)

We now aim to estimate 1 + c1i+2O(1). We use the fact that c1 ! 0 as T ! 1,

and the information from (5.48). There exist constants K⇤
� K⇤ such that

1 + c1i+3O(1) can be bounded by

1 +K⇤c1
i+2

 1 + c1
i+2O(1)  1 +K⇤c1

i+2.

Hence,

1 +K⇤c1
i+2


d

dT

✓
↵

(i+ 2)c1i+2
+

+
↵

(i+ 1)c1i+1
+  i(c1)

◆
 1 +K⇤c1

i+2, 8T > ⇣.

(5.51)

Integrating (5.51) between ⇣ and T > ⇣, we obtain

T � ⇣ +K⇤

Z
T

⇣

c1
i+2(s)ds 


↵

(i+ 2)c1i+2
+

↵

(i+ 1)c1i+1
+  i(c1)�

✓
↵

(i+ 2)c1
i+2
⇣

+
↵

(i+ 1)c1
i+1
⇣

+  i(c1⇣)

◆
(5.52)

and

T � ⇣ +K⇤
Z

T

⇣

c1
i+2(s)ds �

�
↵

(i+ 2)c1i+2
+

↵

(i+ 1)c1i+1
+  i(c1)�

✓
↵

(i+ 2)c1
i+2
⇣

+
↵

(i+ 1)c1
i+1
⇣

+  i(c1⇣)

◆
.

(5.53)
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We now use (5.48) to estimate the integral of ci+2
1 : let ✏ > 0 be a fixed arbitrary

number and redefine ⇣ such that (i+2)
↵

Tci+2
1 2 [1� ✏, 1 + ✏], for all T > ⇣. Thus

↵

i+ 2
(1� ✏)(log T � log ⇣) 

Z
T

⇣

ci+2
1 (s)ds 

↵

i+ 2
(1 + ✏)(log T � log ⇣).

Noting that limT!1
 i(c1)

T
= 0 we can now estimate (5.52)-(5.53) for large values

of T . Dividing (5.52) by T and taking infinite as lim inf as T ! 1, we have

lim
T!1

inf

✓
↵

(i+ 2)Tc1i+2
+

↵

(i+ 1)Tc1i+1

◆

� lim
T!1

inf
1

T

✓
T � ⇣ +

K⇤↵

i+ 2
(1� ✏)(log T � log ⇣)�  i(c1)

◆

= 1 + lim
T!1

✓
K⇤↵

i+ 2
(1� ✏)

log T

T
�

1

T

✓
⇣ +

K⇤↵

i+ 2
(1� ✏) log ⇣

◆
�
 i(c1)

T

◆

= 1.

(5.54)

Similarly, dividing (5.53) by T and taking taking lim sup as T ! 1, gives us

lim
T!1

sup

✓
↵

(i+ 2)Tc1i+2
+

↵

(i+ 1)Tc1i+1

◆

 1 + lim
T!1

✓
K⇤↵

i+ 2
(1 + ✏)

log T

T
�

1

T

✓
T +

K⇤↵

i+ 2
(1 + ✏) log ⇣

◆
�
 i(c1)

T

◆

= 1.

(5.55)

Thus, (5.54)-(5.55) imply there exists a function Fi such that Fi(T ) = O(1) for

large T , and

✓
↵

(i+ 2)Tc1i+2
+

↵

(i+ 1)Tc1i+1

◆
1

T
⇠ 1 +

log T

T
Fi(T ). (5.56)
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Setting, B := 1
i+2 and A := 1

i+1 , we have

↵B + ↵Ac1 ⇠ Tc1
i+2

✓
1 +

log ⌧

⌧
Fi(⌧)

◆
. (5.57)

Since, ✓
1 +

log T

T
Fi(T )

◆�1

= 1�
log T

T
Fi(T ) +O

✓✓
log T

T

◆2◆
.

We can express (5.57) as

c1
1
B =

✓
↵B

T

◆✓
1 +

A

B
c1

◆✓
1�

log T

T
Fi(T ) + h.o.t

◆
. (5.58)

From (5.48) we have that

c1 ⇠

✓
↵B

T

◆B

,

hence, (5.58) becomes

c1
1
B =

✓
↵B

T

◆✓
1 +

A

B

✓
↵B

T

◆B◆✓
1�

log T

T
Fi(T ) + h.o.t

◆
. (5.59)

Using the binomial expansion we can express (5.59) as

c1 ⇠

✓
↵B

T

◆B✓
1 + A

✓
↵B

T

◆B

� B
log T

T
Fn(T ) + h.o.t

◆
. (5.60)

Hence, from the definition of A and B, (5.60) can be expressed as

c1 ⇠

✓
↵

(i+ 2)T

◆ 1
i+2

+
1

i+ 1

✓
↵

(i+ 2)T

◆ 2
i+2

+ h.o.t. (5.61)

Going back to our time variable t we obtain the required result.

Note that if we set � = 1 in the equation above, from Theorem 5.5.1, we obtain

the same result as in [31], to leading order. Already at the level of C1(t) one sees

that the influence of the fragmentation rate � is not intuitive. Once we know the
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asymptotics of C1(t) from Theorem 5.5.1, the asymptotics of Cj(t) when 1  j  i

follow from Proposition 5.43.

Lemma 5.5.2. The asymptotics of Cj when 1  j  i are given by

Cj ⇠

✓
↵̂�

ij�3j+2
j

(i+ 2)t

◆ j
i+2

+ h.o.t, 1 < j  i.

Hence, we are now in a position to express the asymptotics of Cj(t) when j > i

by solving linear nonhomogeneous ODEs using the same change of variable as in

the proof of Theorem 5.3.1.

Lemma 5.5.3. The asymptotics of Cj when j > i are given by

Cj ⇠

✓
↵̂�

i2�3i+2
i

(i+ 2)t

◆ i
i+2

+ h.o.t, j > i.

From this information we have the equivalent of [30, Theorem 5.1] and, to which

it is more directly comparable, [31, Theorem 6], concerning similarity solutions

of (5.1). These references should be consulted for the required computations. To

formulate the theorem, we first compute the asymptotics of the average cluster

size j using the information in Theorem 5.5.1 and Lemmas 5.5.2–5.5.3:

hji =

P1
j=1 jCjP1
j=1 Cj

⇠

✓
↵̂�i�1

i+ 2

◆ 1
i+2

t
i+1
i+2 + h.o.t.

Next, we define the function � by

�(⌘) =

8
>><

>>:

(1� ⌘)�
i

i+1 , ⌘ < 1,

0, otherwise.
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Finally, we define the similarity variable ⌘ by

⌘ =
(i+ 1)�� i+1

i+2

i+ 2

j

hji
.

Then we have that the solutions of (5.1) converge to a (discontinuous) similarity

profile:

Theorem 5.5.4.

Cj = hji�
1

i+1�
�
⌘), t ! 1.

The profile obtained in this theorem can be further analysed by the methods

of [31, Section 6].

5.6 Quasi-Steady State Assumption

In this section we will to investigate whether the asymptotics of solutions ob-

tained in Section 5.5, based on the centre manifold analysis of Section 5.4, can

be recovered more easily by combining centre manifold reasoning with a tech-

nique that is often used in the engineering community: the quasi-steady state

approximation (QSSA; see [44, 77, 88]). As in the famous example from enzyme

kinetics due to Segel and Slemrod [88], we show that QSSA correctly captures the

leading term asymptotics, though, of course, there will be di↵erences in higher

order terms.
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We restart with equations

ĉ01 = ↵� 2ĉ21 + 2ĉ2 � ĉ1

1X

k=2

ĉk +
iX

k=3

ĉk,

ĉ0
j
= ĉ1ĉj�1 � ĉ1ĉj � ĉj + ĉj+1, 1 < j < i,

ĉ0
j
= ĉ1ĉj�1 � ĉ1ĉj � ĉj, j = i,

ĉ0
j
= ĉ1ĉj�1 � ĉ1ĉj, j > i,

(5.62)

but now we immediately make the QSSA assumption that ĉ0
j
= 0 for 1 < j  i.

We solve the i algebraic equations for ĉj, 1 < j  i, in terms of ĉ1. This clearly

can be done consecutively, by starting with the ĉi equation and solving it in terms

of ĉ1 and ĉi�1, substituting the expression we get for ĉi into the ĉi�1 equation and

continuing in this way, till ĉ2 has been solved in terms of ĉ1, after which we

back-substitute.

For connivance, we will use Gauss’s continued fraction notation throughout this

section:

b0 +
a1

b1 +
a2

b2 +
a3

. . . +
an

bn

:= b0 +Kn

k=1

ak
bk

Lemma 5.6.1. If ĉ0
j
= 0 for 1 < j  i in (5.62) then

ĉj ⇠ ĉj1 +
1X

k=1

�ĉki+1
1 + ĉki+j

1 , 1 < j  i. (5.63)
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Proof. We have

ĉ01 = ↵� 2ĉ21 + 2ĉ2 � ĉ1

1X

k=2

ĉk +
iX

k=3

ĉk,

0 = ĉ1ĉj�1 � ĉ1ĉj � ĉj + ĉj+1, 1 < j < i,

0 = ĉ1ĉj�1 � ĉ1ĉj � ĉj, j = i,

ĉ0
j
= ĉ1ĉj�1 � ĉ1ĉj, j > i,

(5.64)

Solving the right-hand side of the ĉi equation from (5.64) for ĉi in terms of ĉ1 and

ĉi�1,

ĉi =
ĉ1ĉi�1

ĉ1 + 1
. (5.65)

Substituting ĉi from (5.65) into the rhs of the ĉi�1 equation from (5.64) and

solving for ĉi�1 in terms of ĉ1 and ĉi�2.

ĉi�1 =
ĉ1ĉi�2

ĉ1 + 1� ĉ1
ĉ1+1

. (5.66)

Continuing this process until we reach the ĉ2 equation we find, using Gauss’s

continued fraction notation,

ĉ2 =
ĉ21

Ki�1
u=1

ĉ1+1
�ĉ1

. (5.67)

Hence by induction,

ĉ2 =
ĉ21

Ki�1
u=1

ĉ1+1
�ĉ1

=

P
i�1
k=1 ĉ

k+1
1P

i

k=1 ĉ
k�1
1

. (5.68)

Substituting the expression ĉ2 from (5.68) into the equation for ĉ3 from (5.64)
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when i > 3,

ĉ3 =

P
i�1
k=1 ĉ

k+1
1P

i

k=1 ĉ
k�1
1

(1 + ĉ1)� ĉ21

=

P
i�1
k=1 ĉ

k+1
1 (1 + ĉ1)�

P
i

k=1 ĉ
k+1
1P

i

k=1 ĉ
k�1
1

=

P
i�2
k=1 ĉ

k+2
1P

i

k=1 ĉ
k�1
1

.

(5.69)

Similarly, substituting the expression ĉ2 from (5.68) into the equation for ĉ3 from

(5.64) when i = 3

ĉ3 =

P
i�1
k=1 ĉ

k+2
1

(1 + ĉ1)
P

i

k=1 ĉ
k�1
1

=
ĉ31P

i

k=1 ĉ
k�1
1

=

P
i�2
k=1 ĉ

k+2
1P

i

k=1 ĉ
k�1
1

.

(5.70)

Continuing this process by substituting the expression ĉ3 from (5.69) into the

equation for ĉ4 from (5.64) when i > 4,

ĉ4 =

P
i�2
k=1 ĉ

k+2
1P

i

k=1 ĉ
k�1
1

(1 + ĉ1)�

P
i�1
k=1 ĉ

k+2
1P

i

k=1 ĉ
k�1
1

=

P
i�3
k=1 ĉ

k+3
1P

i

k=1 ĉ
k�1
1

.

(5.71)

Similarly, when i = 4

ĉ4 =

P
i�3
k=1 ĉ

k+3
1P

i

k=1 ĉ
k�1
1

. (5.72)

Continuing by substituting the expressions into the equations we find the general
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form

ĉj =

P
i�j+1
k=1 ĉk+j�1

1P
i

k=1 ĉ
k�1
1

, 1 < j  i. (5.73)

Expanding equation (5.73) into a Maclaurin series gives

ĉj = ĉj1 +
1X

k=1

�ĉki+1
1 + ĉki+j

1 , 1 < j  i. (5.74)

Lemma 5.6.2. The QSSA leads to an approximation of the centre manifold

gw(c1) as

gw(ĉ1) ⇠ 2ĉ21 +
1

↵

1X

k=1

�ĉki+3
1 + ĉki+4

1

which is consistent with the centre manifold computation from Theorem 5.4.1 for

the first four non-zero terms.

Proof. From the recurrences from Proposition 5.4.2

�i,1 = 0, �j,1 = 0,

�w,3 =
1� (�3,2 � 2�2,2)

↵
,

�w,4 =
1

↵


�3,3 � 2�2,3 + 4�2,3 + 2

iX

n=3

�n,2 � �i,2 + 2�w,2+

+
3X

m=2

�w,m�1

✓
� 2�2,4�m �

iX

n=3

�n,4�m + �w,4�m

◆
� 1

�
,

�w,k =
1

↵


�3,k�1 � 2�2,k�1 + 4�2,k�2 + 2

iX

n=3

�n,k�2 � �i,k�2 + 2�w,k�2+

+
k�1X

m=2

�w,m�1

✓
� 2�2,k�m �

iX

n=3

�n,k�m + �w,k�m

◆�
, k > 4,
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and using the result from (5.74) as the approximation to the centre manifolds

gj(c1):

gw(ĉ1) ⇠ 2ĉ21 +
1

↵

1X

k=1

�ĉki+3
1 + ĉki+4

1 ,

which, compared to (5.43), agrees for the first four non-zero terms.

Theorem 5.6.3. The QSSA leads to an approximation of the flow governing the

asymptotics of c1 as

ĉ01 ⇠
1

↵

1X

k=1

�ĉki+3
1 + ĉki+4

1 = �
ĉi+3
1

↵
P

i

k=1 ĉ
k�1
1

.

Proof. We can see this directly from (5.30) using Lemma (5.6.3).

Note that the power series in the expression for c01 has a radius of convergence of

infinity if |c1|  1. This is in contradiction to the power series from (5.43) which

has radius of convergence of 0.

5.7 Conclusions

In this chapter we complemented the analysis of Section 3.1.2 by considering a

more realistic dynamics of nucleating point islands with critical island size i by

allowing subcritical islands of size 2  j  i � 1 to form and fragment. The

mathematics of this new system of equations is more challenging than the funda-

mentally two dimensional system considered in Section 3.1.2 and we had to use

both centre manifold techniques and a sophisticated globalisation argument using

ideas from theories of compartmental systems and of asymptotically autonomous
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dynamical systems; the globalisation methods used in this chapter are, in our

opinion, more elegant than the “brute-force” asymptotics in Section 3.1.2. Fur-

thermore, it appears that computations can be significantly simplified by making

a sweeping assumption that all the clusters of size 1 < j  i are at a quasi-steady

state.

Our asymptotic results in Section 5.5 are consistent with the leading term asymp-

totics for c1(t) of [70] (see our Theorem 5.5.1) and for cj(t) (1  j  i) of Section

3.1), as well as with the conjecture in [70] about the behaviour of cj(t), j > i (see

Theorem 5.5.1). In addition, our results are consistent with the work in Section

3.1.1 as � = 0 is equivalent to letting i = 1.
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Chapter 6

The Dynamics of Erdős Numbers

6.1 Introduction

Paul Erdős (1913–1996) was a prolific mathematician who co-authored more than

five hundred academic papers. During his lifetime, many began to wonder how

their academic publications were connected to those of Erdős. This curiosity gave

rise to the concept of an Erdős number which is defined by the Erdős Number

Project [47] as follows: “Erdős’s Erdős number is 0. Erdős’s co-authors have

Erdős number 1. People other than Erdős who have written a joint paper with

someone with Erdős number 1 but not with Erdős, have Erdős number 2, and so

on. If there is no chain of co-authorships connecting someone with Erdős, then

that person’s Erdős number is said to be infinite (undefined)”.

Below we shall assume that a person’s Erdős number can only change if that

person collaborates with a person whose Erdős number is lower by two at least;

in other words, it cannot change if the Erdős number of a collaborator changes

independently. We shall also assume that all collaborations are binary; the case of

multiple co-authors is of independent interest. We start by assuming that every
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collaborator is (intellectually speaking) immortal, and then, in Section 6.4, deal

with the case when exiting the system is possible.

Let us specify, in the case of immortality, all the interactions that a collaborator

can enter into. We denote the number of people with the Erdős number k 2 N0 at

time ⌧ by ek(⌧) and the number of people with an undefined Erdős number at ⌧ by

u(⌧). We will assume that the rate of arrival of new contributors with undefined

Erdős number is a constant which we denote by ↵̂ > 0. In addition, we denote

the rate at which two people with assigned Erdős numbers’ collaborate by � � 0,

and the rate at which people without an assigned Erdős number collaborate by

� � 0. Clearly, the interesting case is when � + � > 0.

Hence, the full list of possible collaborations and their outcomes in terms of Erdős

numbers is

;
↵̂
! u,

ek + em
�

! ek + em, k  m  k + 1,

ek + em
�

! ek + ek+1, m > k + 1,

ek + u
�

! ek + ek+1,

u+ u
�

! u+ u,

(6.1)

where m, k 2 N0.

It is clear that (6.1) contains reactions that do not result in a net change of Erdős

numbers:

ek + ek
�

! ek + ek,

ek + ek+1
�

! ek + ek+1,

u+ u
�

! u+ u.

(6.2)
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The reactions in (6.2) are often referred to as futile cycles or alternatively,

substrate cycles. The e↵ects futile cycles have on reaction systems are often

unclear and, consequently, the e↵ects of futile cycles on biological systems have

been considered; for futile cycles in fatty acid and glucose growth see e.g. [23,74].

We can model the reactions in (6.1) as a system of rate equations by assuming

that the futile cycles of (6.2) simply do not exist. Alternatively, we can model

the reaction system (6.1) by considering a Gillespie type algorithm (GTA) which

is described in detail later (see Section 6.3). The benefit of considering a GTA is

all the futile cycles from (6.2) can be included in the process. For previous work

using GTAs see, e.g, [34, 35].

6.2 Governing Equations

Assuming the futile cycles as in (6.2) do not occur, the laws of mass kinetics give

us the following infinite system of ODEs for the remaining reactions in (6.1):

ė1 = �


e0

1X

n=2

en

�
+ �e0u,

ėk = �


ek�1

1X

n=k+1

en � ek

k�2X

n=0

en

�
+ �ek�1u, k = 2, 3, 4, . . . ,

u̇ = ↵̂� �u
1X

n=0

en.

We assume that e0 = 1; dots denote di↵erentiation with respect to ⌧ .

It makes sense to scale the variables and the deposition rate ↵̂ in order to simplify

the equations by combining � and �. Thus, setting t := c1⌧ for a constant c1 to be

chosen below, using primes for di↵erentiation with respect to the new time scale

t, setting ek(⌧) = Ek(t) and u(⌧) = U(t), and choosing c1 = �+�, ↵ = ↵̂/(�+�),
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and p := �/(� + �) 2 [0, 1], we obtain the system

E0 = 1,

E 0
1 = p


E0

1X

n=2

En

�
+ (1� p)E0U,

E 0
k
= p


Ek�1

1X

n=k+1

En � Ek

k�2X

n=0

En

�
+ (1� p)Ek�1U, k = 2, 3, 4, . . . ,

U 0 = ↵� (1� p)U
1X

n=0

En.

(6.3)

Note, for reasons discussed in Section 1.3.1.4, we impose the restriction that

solutions of (6.3) must have a finite mass, which implies that, for t � 0, a solution

of (6.3) must be an element of the Banach space X1 ⇢ `1, where

X1 :=

⇢
E = (Ej) 2 RN such that kEk1 :=

1X

n=1

n|En| < 1

�
.

As we are primarily interested in the average Erdős number we set

T :=
1X

n=0

En, M :=
1X

n=0

nEn, and A := M/T. (6.4)

To find the asymptotics for the average Erdős number A, we first find the asymp-

totics for the number of people with an undefined Erdős number U and the

asymptotics for the total number T of collaborators with an assigned Erdős num-

ber. Once this is done, we discuss the asymptotic behaviour of M .

We set T (0) =: T0, U(0) =: U0 and M(0) =: M0.

We begin by reducing the infinite system of ODEs (6.3) to a two dimensional

system of ODEs in T and U by adding all equations for k = 0, 1, 2, . . . to obtain
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formally

1X

n=0

E 0
n
= (1� p)U

1X

n=0

En,

U 0 = ↵� (1� p)U
1X

n=0

En.

Hence using the definitions of T from (6.4)

T 0 = (1� p)UT,

U 0 = ↵� (1� p)UT.
(6.5)

First of all, we have

Theorem 6.2.1. If
P1

k=0 Ek(0) < 1, a solution of (6.3) for k � 0 is also a

solution of (6.5).

Proof. The argument of the proof is the same as in Theorem 5.3.1.

As a result of Theorem 6.2.1, we can use finite dimensional techniques to discuss

the dynamics of T and U . We have

Lemma 6.2.1. As t ! 1, the asymptotics of U and T of (6.5) satisfies

T =

8
><

>:

↵t+O(1), p 2 [0, 1),

T0, p = 1,

U =

8
><

>:

1
(1�p)t +O

�
1
t2

�
, p 2 [0, 1),

↵t+ U0, p = 1.

Proof. We split the proof into two parts:
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Case 1: p = 1. The case of p = 1 is trivial as from (6.5) we have that T 0 = 0

and U 0 = ↵, which implies T = T0 and U = ↵t+ U0.

Case 2: p 2 [0, 1). Set

P = 1� p,

C0 = T0 + U0 > 0.
(6.6)

From (6.5) we have that (T + U)0 = ↵, which implies that

U = ↵t� T + C0. (6.7)

Substituting (6.7) into the first equation from (6.5) we have that

T 0 = P (↵t� T + C0)T.

As ↵ > 0 and p 2 [0, 1) we can now solve explicitly for T as functions of t using

MAPLE:

T =
T0

p
2↵PeP (↵t

2 +C0)t

T0
p
⇡Pe

�C2
0P

2↵ [erfi(⌫1(t) + ')� erfi(')] +
p
2↵P ,

where,

⌫1 =
P↵t
p
2↵P

, ' =
C0P
p
2↵P

, erfi(x) := �ierf(ix) =
2
p
⇡

Z
x

0

er
2
dr.

Substituting T into (6.7):

U = ↵t�
T0

p
2↵PeP (↵t

2 +C0)t

T0
p
⇡Pe

�C2
0P

2↵ [erfi(⌫1(t) + ')� erfi(')] +
p
2↵P

+ C0.
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As the exact expressions for T and U are cumbersome, we consider the asymp-

totics as t ! 1:

T = ↵t+ C0 +O

✓
1

t

◆
,

U =
1

Pt
�

C0

↵Pt2
+O

✓
1

t3

◆
.

Hence, in terms of p, using the definition of P from (6.6), as t ! 1,

T = ↵t+ C0 +O

✓
1

t

◆
,

U =
1

(1� p)t
�

C0

↵(1� p)t2
+O

✓
1

t3

◆
.

Note that the leading terms of the asymptotic expansions for both T and U do

not depend on the initial conditions.

As we will use the asymptotics of U and T from Lemma 6.2.1 in our calculation

of the asymptotics of A we compare our results with those obtained by numerical

integration of the ODEs from (6.5).

To be able to directly compare the numerical integration of the ODEs from (6.5)

with the results from Lemma 6.2.1, we linearise the equation for U from Lemma

6.2.1 when p 2 [0, 1) by multiplying U by (1 � p)t2 and taking the reciprocal of

both sides:

1

U(1� p)t2
=

1

t+O(1)
, as t ! 1. (6.8)
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From the Taylor series, of the right-hand side of (6.8), at infinity:

1

U(1� p)t2
=

1

t
+O

✓
1

t2

◆
as, t ! 1,

which implies that

1

U
= (1� p)t+O(1), as t ! 1.

We illustrate our numerical integration of (6.5) in Figure 6.1 where we let ↵ =

2, p = 0.5, T0 = 1 and U0 = 1.
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Figure 6.1: Numerical integration of system (6.5) where ↵ = 2, p = 0.5, T0 = 1
and U0 = 1.

It is clear the results from Figure 6.1 match the asymptotics of for T and U from

Lemma 6.2.1.

We are now in a position to consider the asymptotics of A.

For convenience, we begin by considering the p = 0 case.

Lemma 6.2.2. If p = 0, as t ! 1, the asymptotics of A, as defined in (6.4), of
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(6.3) satisfies

A = ln t+O(1),

independently of ↵.

Proof. We need to derive a di↵erential equation for M , as once the asymptotics

of M are found A falls out automatically as we know the asymptotics of T . We

multiply all the Ek equations in (6.3) by k and add all the equations:

1X

n=0

nE 0
n
=

1X

n=1

nEn�1U =

✓ 1X

n=0

nEn +
1X

n=0

En

◆
U,

which leads to

M 0 = (M + T )U. (6.9)

Now we proceed as follows: we use the asymptotics of T and U to obtain the

equation M satisfies for large times. We write M ⇠ M0+M1, where M1 = o(M0)

as t ! 1 and choose M0 so that the right hand-side of the equation is o(M 0
0) as

t ! 1.

From the asymptotics of U and T from Lemma 6.2.1, we have that:

M 0 =

✓
M + ↵t+O(1)

◆
1

t
+O

✓
1

t2

◆�

= ↵ +
M

t
+O

✓
1

t

◆
+O

✓
M

t2

◆
,

as t ! 1.

In terms of M0 and M1, we have

M 0
0 +M 0

1 = ↵ +
M0

t
+

M1

t
+O

✓
1

t

◆
+O

✓
M

t2

◆
, as t ! 1.
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The only choice that satisfies the asymptoticity condition is

M 0
0 ⇠ ↵ +

M0

t
, as t ! 1,

from which we obtain

M0 ⇠ ↵t ln t+ Ct, as t ! 1,

where C is a constant. Hence

M = ↵t ln t+O(t), as t ! 1,

Finally, from the definition of A from (6.4) and using the asymptotics of T from

Lemma 6.2.1 and the result for M :

A =
↵t ln(t)

↵t+O(1)
+

O(t)

↵t+O(1)
, as t ! 1.

From the Taylor series expansions of A at infinity we find that,

A = ln t+O(1), as t ! 1.

It is once again useful to compare the results from Lemma 6.2.2 with those indi-

cated by numerical integration of the ODEs from (6.5) and (6.9) to find A.

For comparison, linearise A from Lemma 6.2.2. Hence, we have that

eA = eln t+O(1), as t ! 1,
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which implies that

eA = O(t), as, t ! 1.

We illustrate our numerical integration in Figure 6.2 where we let ↵ = 2, p =

0, T0 = 1 and U0 = 1, M0 = 0.

Figure 6.2: Numerical integration of system (6.5) and (6.9) where ↵ = 2, p =
0, T0 = 1, U0 = 1 and M0 = 0 to find A.

It is clear that the results from Figure 6.2 indicate the same results as the asymp-

totics for A from Lemma 6.2.2.

We can now consider the asymptotics of A when p 2 (0, 1]. As in the p = 0 case,

we begin by considering the asymptotics of M . To that end, we again multiply

all the Ek equations of (6.3) by k to obtain

E 0
1 = p


E0

1X

n=2

En

�
+ (1� p)E0U,

kE 0
k
= pk


Ek�1

1X

n=k+1

En � Ek

k�2X

n=0

En

�
+ k(1� p)Ek�1U, k = 2, 3, 4, . . . .
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Adding all these equations and using the definitions of M and T from (6.4), we

have

M 0 = p + (1� p)(M + T )U,

where

 =
1X

m=0


(m+ 1)Em

1X

n=m+2

En

�
�

1X

m=2


mEm

m�2X

n=0

En

�
.

As it is not possible to express  in terms ofM , T and U we will derive di↵erential

inequalities satisfied by M . First of all, we have a compact representation for  

(note that  has to be negative as it encodes migration towards lower Erdős

numbers).

Claim 6.2.3. We have that

 = �

1X

m=0

Em

1X

n=0

nEn+m+1.

Proof. We write

 = E0(E2 + E3 + . . . )+

2((E1(E3 + E4 + . . . )� E2(E0))+

3((E2(E4 + E5 + . . . )� E3(E0 + E1))+

4((E3(E5 + E6 + . . . )� E4(E0 + E1 + E2))+

5((E4(E6 + E7 + . . . )� E5(E0 + E1 + E2 + E3)) + . . . .
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Rearranging, we have

 =� E0(E2 + 2E3 + 3E4 + . . . )+

� E1(E3 + 2E4 + 3E5 + . . . )+

� E2(E4 + 2E5 + 3E6 + . . . )+

� E3(E5 + 2E6 + 3E7 + . . . )+

� E4(E6 + 2E7 + 3E8 + . . . ) + . . . .

=�

1X

m=0

Em

1X

n=0

nEn+m+1

as required.

Consider

 = �

1X

m=0

Em

1X

n=0

nEn+m+1 < 0.

Lemma 6.2.2. We have the following inequalities:

  �M � 1 + T, (6.10)

and

 � �MT � T + T 2. (6.11)

Proof. For the first inequality, we just note that

  �E0(E2 +2E3 + . . .) = �E0(E0 +E1 +2E2 +3E3 + . . .� T ) = �M � 1+ T,

where we have used the fact that E0 = 1. The second inequality, (6.11), requires
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more work. Consider,

 = �E0(E2 + 2E3 + 3E4 + . . . )+

�E1(E3 + 2E4 + 3E5 + . . . )+

�E2(E4 + 2E5 + 3E6 + . . . )+

�E3(E5 + 2E6 + 3E7 + . . . )+

�E4(E6 + 2E7 + 3E8 + . . . )+

. . . .

Rearranging and using the definition of M and T :

 = �E0(1 +M) + E0T+

�E1(1 +M) + E1(E0 + E1 + 2E2 + 2E3 + 2E4 + . . . )+

�E2(1 +M) + E2(E0 + E1 + 2E2 + 3E3 + 3E4 + . . . )+

�E3(1 +M) + E3(E0 + E1 + 2E2 + 3E3 + 4E4 + 4E5 + . . . )+

�E4(1 +M) + E4(E0 + E1 + 2E2 + 3E3 + 4E4 + 5E5 + 5E6 + . . . )+

. . . .

Thus, only considering the first column and the definition of T :

 =� T (1 +M) + E0T+

+ E1(E0 + E1 + 2E2 + 2E3 + 2E4 + . . . )+

+ E2(E0 + E1 + 2E2 + 3E3 + 3E4 + . . . )+

+ E3(E0 + E1 + 2E2 + 3E3 + 4E4 + 4E5 + . . . )+

+ E4(E0 + E1 + 2E2 + 3E3 + 4E4 + 5E5 + 5E6 + . . . )+

. . . .
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Factorising a T from each line:

 = �MT � T + E0T+

+E1(T + E2 + E3 + E4 + . . . )+

+E2(T + E2 + 2E3 + 2E4 + . . . )+

+E3(T + E2 + 2E3 + 3E4 + 3E5 + . . . )+

+E4(T + E2 + 2E3 + 3E4 + 4E5 + 4E6 + . . . )+

. . . .

Hence,

 = �MT � T + T 2+

+E1(E2 + E3 + E4 + . . . )+

+E2(E2 + 2E3 + 2E4 + . . . )+

+E3(E2 + 2E3 + 3E4 + 3E5 + . . . )+

+E4(E2 + 2E3 + 3E4 + 4E5 + 4E6 + . . . )+

. . . ,

as required.

Given the result of Lemma 6.2.2, we can formulate the following result.

Lemma 6.2.3. If p 2 (0, 1), as t ! 1, the asymptotics of A, as defined in (6.4),

of (6.3) satisfies

A = 1 +O

✓
1

t

◆
.

Proof. Consider functions Ma and Mb that satisfy the following ODEs:

M 0
a
= p(T �Ma � 1) + (1� p)(Ma + T )U, (6.12)
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and

M 0
b
= p(T 2

�MbT � T ) + (1� p)(Mb + T )U. (6.13)

Then, for all time, M 0
a
 M 0

 M 0
b
. Hence, if we find that the asymptotics of Ma

and Mb are the same, we can conclude that we have found the asymptotics of M .

Let us consider Ma first, as t ! 1, we have

M 0
a
= p↵t� pMa +O(1) +O

✓
Ma

t

◆
.

The only choice that satisfies the asymptoticity condition is

M 0
a
⇠ p↵t� pMa, as t ! 1.

From this we conclude that

Ma = ↵t+O(1), as t ! 1.

Similarly, for Mb we have

M 0
b
= p↵2t2 � ↵ptMb +O(t) +O(Mb), as t ! 1,

and the only choice that satisfies the asymptoticity condition is

M 0
b
⇠ p↵2t2 � ↵ptMb, as t ! 1,

which again leads to

Mb = ↵t+O(1), as t ! 1.
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Thus, M = ↵t+O(1) as t ! 1. Given the asymptotics of T as given in Lemma

6.2.1, we obtain the required result.

Additionally, the case p = 1 is trivial, as in this case M = T0 � 1 + o(1/t), as

t ! 1, and T remains constant, so A = (T0 � 1)/T0 + o(1/t).

Combining our results we have

Theorem 6.2.4. As t ! 1, the asymptotics of A as defined in (6.4), of (6.3)

satisfies

A =

8
>>>>><

>>>>>:

ln t+O(1), p = 0,

1 +O
�
1
t

�
, p 2 (0, 1),

T0�1
T0

+ o
�
1
t

�
, p = 1.

In the interest of completeness, it is once again useful to compare the results from

Theorem 6.2.4 when p 2 (0, 1) with those indicated by numerical integration of

the ODEs from (6.5), (6.12) and (6.13) to find A.

We illustrate our numerical integration in Figure 6.3 where we let ↵ = 2, p =

0, T0 = 1 and U0 = 1, M0 = 0.
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Figure 6.3: Numerical integration of system (6.5) (6.12) and (6.13) where ↵ = 2,
p = 0.5, T0 = 1, U0 = 1 and M0 = 0 to find A.

It is clear the results from Figure 6.3 indicate the same results as the asymptotics

for A from Theorem 6.2.4.

6.3 Gillespie Type Algorithm

As we now have the asymptotics for A for system (6.1), from Theorem 6.2.4, in

this section we will describe a GTA, related to the stochastic particle system (6.1)

which includes all futile cycles. We will introduce the GTA using the methods

of [34, 35] and [49, Chapter 4]. As our algorithm is similar to those used in the

above papers and book, we indicate only the main ideas.

For comparison with Theorem 6.2.4 we use the scaling for ⌧, ↵̂, �, �, ek and u from

(6.4).

Suppose we know the number of people with each Erdős number at time t, our

aim is to describe how the number of people with each Erdős number evolves over
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time. We therefore think of a state vector, X(t) := Xt at t as

Xt = (E0, E1, . . . , En, . . . , U),

where we denote the maximum Erdős number at t by n(t) := nt and the elements

of the state vector Xt are positive integers that record the number of people

with each Erdős number at time t. The state vector Xt changes whenever a

collaboration (that is not futile) takes place. The e↵ect of the collaborations on

the state vector is captured by the stoichiometric vectors vj(t) = vjt at t:

vjt =

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

[0, . . . , 0], 0  j  nt,

[0, . . . , 0], j  2nt,

[0, 1,�1, . . . , 0], j = 2nt + 1,

. . .

[0, 0, 1, . . . ,�1, 0], j = (n2 + 3n� 2)/2,

[0, 1, 0, . . . ,�1, 0], j = nt(nt + 3)/2,

[0, . . . , 1, 0, · · ·� 1], ⌘1  j  ⌘2,

[0, . . . , 0], j = (nt + 1)(nt + 4)/2,

[0, . . . , 1], j = (nt + 3)(nt + 2)/2,

where ⌘1 = (nt + 1)(nt + 2)/2 and ⌘2 = (n2
t
+ 5nt + 2)/2.

The state vector at time t, Xt, changes when a collaboration (that is not futile)

occurs, we will work in terms of the probability of a collaboration taking place,

based on the current state of the system. The jth collaboration has an associated

stoichiometric vector, vj 2 R, whose kth component is the change in the number

people with the Erdős number Ek or U caused by the jth reaction. So one reaction

of type j has the e↵ect of updating the state vector from Xt to Xt + vj. The
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probability of this reaction taking place in the infinitesimal time interval [t, t +

dt) is assumed to take the form aj(Xt)dt, where aj(Xt) is called a propensity

function:

aj(Xt) =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1
2pEj(Ej � 1), 0  j  nt,

pEj�nt�1Ej�nt , nt + 1  j  2nt,

pE0E2, j = 2nt + 1,

. . .

pE1Ent j = (n2 + 3n� 2)/2,

pE0Ent , j = nt(nt + 3)/2,

pE0Ent , j = nt(nt + 3)/2,

(1� p)UEj�⌘1 , ⌘1  j  ⌘2,

1
2U(U � 1), j = (nt + 1)(nt + 4)/2,

↵, j = (nt + 3)(nt + 2)/2.

Hence, using the state vector, the stoichiometric vectors and the propensity func-

tions we can formulate the resulting GTA, where an initial state vector X0 is

given,

1. Set t = 0 and choose n0 and tf .

2. Set Q = (nt + 3)(nt + 2)/2.

3. Evaluate {aj(Xt)}Q and asum :=
P

Q

k=0 ak(Xt).

4. Pick two random numbers, R1 and R2 between U [(0, 1)].

5. Set s to be the smallest integer that satisfies
P

s

k=0 ak(Xt) > R1asum.

6. Set ⇠ = (ln(1/R2))/asum.

119



Chapter 6. The Dynamics of Erdős Numbers

7. Set Xt+⇠ = Xt + vst.

8. Update t to t+ ⇠.

9. Go back to step 2 or terminate if t � tf .

From our simulations it appears that the asymptotics of A for system (6.1) from

the GTA are consistent with the asymptotics of A from the rate equations from

(6.3). To illustrate the similarity we consider the cases when n0 = 20, ↵ = 2,

p = 0, E0(0) = 1, Ek(0) = 0 where 1  k  20 and U = 1 and n0 = 20, ↵ = 2,

p = 0.5, E0(0) = 1, Ek(0) = 0 where 1  k  20 and U = 1 as illustrated in

Figure 6.4 – 6.5.

Figure 6.4: An example of a GTA for the reaction system (6.1) where n0 = 20,
↵ = 2, p = 0, E0(0) = 1, Ek(0) = 100 where 1  k  20 and U = 100.
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Figure 6.5: An example of a GTA for the reaction system (6.1) when n0 = 20,
↵ = 2, p = 0.5, E0(0) = 1, Ek(0) = 100 where 1  k  20 and U = 100.

We find that changes in ↵, n0 and the initial conditions have a negligible e↵ect

on the underlying distributions. From Figures 6.4 – 6.5, we can formulate

Proposition 6.3.1. For the reaction system (6.1) the asymptotics of A from the

GTA are given by

A =

8
><

>:

ln t+O(1), p = 0,

1, p 2 (0, 1],

as t ! 1.

It is clear the results from Proposition 6.3.1 indicate the same results as the

asymptotics for A from Theorem 6.2.4; this result is not surprising as we as-

sume the collaborations occur instantaneously. We illustrate this with a simple

example:

Example 6.3.1. Let t = 0, the maximum Erdős number at t = 0 be n0 = 2 and

the state vector X0 = (E0, E1E2, U) = (1, 1, 1, 0).
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Let the probability density function (pdf) of the waiting time until the state vector

becomes XT = (1, 2, 0, 0) be f(T ).

In the case when no futile cycles occur the pdf is f(T ) = e�T .

In the case when futile cycles are allowed to occur

Z
T

0

f(t)dt =
1

3

1X

k=1

Pk(t  T )

✓
2

3

◆k�1

,

where Pk(t  T ) is the probability that exactly k reactions happen before T . Hence,

using the Erlang distribution

Pk(t  T ) =

Z
T

0

fk(t)dt =

Z
T

0

rk
tk�1

(k � 1)!
e�rtdt.

In our case r = 3, so by di↵erentiation with respect to T we get

f(T ) =
1

3

1X

k=1

3k
T k�1

(k � 1)!

✓
2

3

◆k�1

e�3T

=
1X

k=1

(2T )k�1

(k � 1)!
e�3T = e2T e�3T = e�T .

Hence, the system that contains futile cycles and the system that does not contain

the futile cycles produce the same pdf. So the futile cycles have no e↵ect.

As the futile cycles of (6.2) have no e↵ect we assume that the futile cycles simply

do not exist for the remainder of this chapter.
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6.4 Accounting for Mortality

We next consider the e↵ects of people being able to exit the system. The simplest

way to do that is to put E0 = 0, alas, and to denote the exit of people with the

Erdős number k from the system by the function D(Ek, t) and the exit of people

with an undefined Erdős number from the system byD(U, t). Neglecting temporal

e↵ects we assume that D(Ek, t) = D(Ek) and D(U, t) = D(U) and that the exit of

people is proportional to the population size, i.e. D(Ek) = �Ek and D(U) = �U

where � > 0.

We have

E 0
1 = ��E1,

E 0
k
= p


Ek�1

1X

n=k+1

En � Ek

k�2X

n=0

En

�

+ (1� p)Ek�1U � �Ek, k = 2, 3, 4 . . . ,

U 0 = ↵� (1� p)U
1X

n=0

En � �U.

(6.14)

As in Section 6.2 we can reduce system (6.14) to a system of ODEs for T and U :

T 0 = (1� p)UT � �T,

U 0 = ↵� (1� p)UT � �U,
(6.15)

where

Theorem 6.4.1. If
P1

k=0 Ek(0) < 1, a solution of (6.14) for k � 0 is also a

solution of (6.15).

Note that this is a predator-prey type system. We consider the stability of the

fixed points for system (6.15):
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Lemma 6.4.1. The fixed points of system (6.15) are:

(T, U) =

8
>>>>>>>><

>>>>>>>>:

�
0, ↵

�

�
, ↵ < �

2

1�p
which is a stable node,

�
0, ↵

�

�
, ↵ > �

2

1�p
which is a saddle,

�
↵(1�p)��2
�(1�p) , �

1�p

�
, ↵ < �

2

1�p
which is a saddle,

�
↵(1�p)��2
�(1�p) , �

1�p

�
, ↵ > �

2

1�p
which is a stable node.

Proof. The fixed points of the system are

✓
0,
↵

�

◆
and

✓
↵(1� p)� �2

�(1� p)
,

�

1� p

◆
.

The Jacobian matrix is

J =

2

4 (1� p)U � � (1� p)T

�(1� p)U �(1� p)T � �

3

5 .

At
�
0, ↵

�

�
the Jacobian matrix becomes

J =

2

4
↵(1�p)��2

�
0

�(1� p)↵
�

��

3

5 .

So the eigenvalues of J are �1 = ↵(1�p)��2
�

and �2 = ��. Hence, as � > 0, the

fixed point
�
0, ↵

�

�
is stable if ↵ < �

2

1�p
and unstable otherwise.

At
�
↵(1�p)��2
�(1�p) , �

1�p

�
the Jacobian matrix becomes

J =

2

4 0 ↵(1�p)��2
�

�� �
↵(1�p)

�

3

5 .

So the eigenvalues of J are �1 = �
↵(1�p)��2

�
and �2 = ��. Hence, as � > 0, the
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fixed point
�
↵(1�p)��2
�(1�p) , �

1�p

�
is stable if ↵ > �

2

1�p
and unstable otherwise.

As we are only interested in solutions where the total number of people in the

system is positive, i.e. T > 0 we let ↵ > �2/(1 � p) for the remainder of this

section.

The case of p = 1 is trivial, as A ⇠ 0 as t ! 1, so we assume p 2 [0, 1).

Following the same methods as in Section 2, we first find the asymptotics for the

number of people with an undefined Erdős number U and the asymptotics for

the total number of people T .

We have

Lemma 6.4.2. If p 2 [0, 1), � 6= 0 and ↵ �
�
2

1�p
, as t ! 1, the asymptotics of

U and T of (6.15) satisfy

T =
↵(1� p)� �2

�(1� p)
+ o

✓
1

t

◆
, U =

�

1� p
+ o

✓
1

t

◆
.

Proof. From (6.15), we have that (U + T )0 = ↵� �(U + T ), hence

U =
↵

�
+ e��t

✓
C0 �

↵

�

◆
� T. (6.16)

Substituting (6.16) into the first equation of (6.15) we have that

T 0 = (1� p)


↵

�
+ e��t

✓
C0 �

↵

�

◆
� T

�
T � �T.
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Which implies that, as t ! 1,

T 0 = (1� p)


↵

�
+ o

✓
1

t

◆
� T

�
T � �T.

The only choice that satisfies the asymptoticity condition is

T 0
⇠ �(1� p)T 2 + �T as t ! 1,

where

� =
(1� p)↵� �2

�
.

As � > 0, we can now solve asymptotically for T and hence for U as functions of

t. The required result follows.

We are now in a position to consider the asymptotics of A. We begin by consid-

ering the p = 0 case.

Lemma 6.4.3. If p = 0, � 6= 0 and ↵ �
�
2

1�p
, as t ! 1, the asymptotics of A of

(6.15) satisfies

A = �t+ o

✓
1

t

◆

independently of ↵.

Proof. Following the same method as in Lemma 6.2.2 we need to derive a di↵er-

ential equation for M . We have

M 0
⇠ (M + T )U � �M as t ! 1.

From the asymptotics of T and U from Lemma 6.4.2, we have that

M 0 =

✓
M +

↵� �2

�
+ o

✓
1

t

◆◆
� + o

✓
1

t

◆�
� �M = ↵� �2 + o

✓
1

t

◆
+ o

✓
M

t

◆
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as t ! 1.

The only choice that satisfies the asymptoticity condition is

M 0
⇠ ↵� �2 as t ! 1,

from which we obtain

M ⇠ (↵� �2)t as t ! 1,

and therefore, as p = 0 we have that

A = �t+ o

✓
1

t

◆
.

We can now consider the asymptotics of A when p 2 (0, 1). As it is not possible

to express M in terms of T and U , or derive di↵erential inequalities satisfied by

M , we consider a finite truncation of (6.14) where we assume that En = 0 when

n > 20:

Figure 6.6: Numerical integration for the truncated system to calculate A when
p = 0.5, ↵ = 10 and � = 1, 1.1, 2.
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In addition, we find that changes in ↵, p, n and the initial conditions have a

negligible e↵ect on the underlying distributions.

From Figure 6.6, we can formulate

Conjecture 6.4.1. If p 2 (0, 1), � 6= 0 and ↵ �
�
2

1�p
, as t ! 1, the asymptotics

of A of (6.15) satisfies

A ⇠ �t.

Additionally, it is worth noting the asymptotics of A from the GTA in the case

of mortal collaborators are consistent with the asymptotics of A from the rate

equations (6.14).

6.5 Conclusions

In this chapter we considered the asymptotics of the average Erdős number for

both mortal and immortal collaborators using a rate equations approach assuming

the futile cycles do not exist. To understand asymptotics of solutions, we used

results on asymptotic power series. Subsequently, we considered a GTA where the

futile cycles were included. Our asymptotic results of the average Erdős number

for both mortal and immortal collaborators are consistent with the GTA, which

may not be surprising as we assume the collaborations occur instantaneously.

An interesting question is how to extend this methodology to collaborations that

do not occur instantaneously. In such a case we may expect the futile cycles to

a↵ect the average Erdős number, a possibility we will discuss this possibility in

Section 7.
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A full mathematical theory that explains coagulation and fragmentation pro-

cesses in SD remains an open research question. Since the 1960s a considerable

amount of work has been done with the aim of providing a theory that would

explain the ISDs found both experimentally and in kMC simulations. A validated

modelling framework with predictive capabilities would enable the development

of new experiments and better control over industrial processes.

In Chapter 4, we have shown that the analysis of some of the properties of the

VG generated from a kMC simulation allow us to determine the underlying nu-

cleation mechanism. Both the degree distribution (q(3)) and the spectrum of the

adjacency matrix reliably allow us to identify the value of i used in the kMC

simulation. Therefore, we have created an e↵ective characterisation process that

can be applied to experimental data for SD in one dimension, such as island

nucleation and growth on a stepped substrate [79].

The VGmethod has the potential to deal with more complicated mechanisms,including

evaporation, mobile islands, the action of electric fields and any level of coverage

within the scaling regime as discussed above. The generalisation of our work to
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extended islands is also straightforward as we can create the vectors P , used in

the construction of VG, by using the position of the centre of mass of an island

and its mass as coordinates. We leave these versions of SD to future work.

An important question is how to extend this methodology to two and three space

dimensions. In [59] a method is proposed to extend one dimensional VGs to

higher dimensions which enables the construction of VGs of large-scale spatially-

extended surfaces. The method uses one dimensional VGs along di↵erent straight

lines in the multidimensional lattice to construct a single VG (only dependent

on the number of lines one considers). An extension to two space dimensions is

particularly important to industry.

In Chapter 5 we obtained the long term behaviour of clusters and monomers for

rate equations with a critical island size i by allowing subcritical islands of size

2  j  i� 1 to form and fragment, complementing the analysis of Section 3.1.2.

Additionally, we have proved the ISD converges to a (discontinuous) similarity

profile, which is discontinuous at (i+1)�
� i+1

i+2

i+2 . The data from kMC simulations show

no discontinuity exists for the ISD and hence the divergence discussed does not

exist in reality. However, the asymptotics are only as good as the asymptotic

sequence of functions used and so, the discontinuity can be smoothed if we use a

better family, which may be investigated as future work [30]. Additionally, our

asymptotic results in Section 5.5 are consistent with the leading term asymptotics

for c1(t) of [70] (see our Theorem 5.5.1) and for cj(t) (1  j  i of Section 3.1),

as well as with the conjecture in [70] about the behaviour of cj(t), j > i (see

Theorem 5.5.1). In addition, our results are consistent with the work in Section

3.1.1 as � = 0 is equivalent to letting i = 1.

In Chapter 5 we also showed that the asymptotics of solutions obtained in Section

5.5 based on the centre manifold analysis of Section 5.4 can be recovered more

easily by making a sweeping assumption that all the clusters of size 1 < j  i are
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at a quasi-steady state. To justify the QSSA rigorously, in this case, one would

need to write the system in terms of slow and fast variables and use the singular

perturbation methods [43].

In Chapter 6, we considered the asymptotics of the average Erdős number for both

mortal and immortal collaborators, using a rate equations approach assuming the

futile cycles do not exist. To understand asymptotics of solutions, we used results

on asymptotic power series. Later on in that chapter, we considered a GTA

where the futile cycles were included. Our asymptotic results of the average

Erdős number for both mortal and immortal collaborators are consistent with

the GTA, which may not be surprising as we assume the collaborations occur

instantaneously, as discussed in detail in Example 6.3.1.

This leads to an interesting question about how to extend this methodology to

collaborations that do not occur instantaneously. In such a case we may expect

the futile cycles to a↵ect the average Erdős number. The simplest way to consider

collaborations that do not occur instantly is to consider the system:

;
↵̂
! u,

ek + em
�

! ekem
b
! ek + em, k  m  k + 1,

ek + em
�

! ekem
b
! ek + ek+1, m > k + 1,

ek + u
�

! eku
b
! ek + ek+1,

u+ u
�

! uu
b
! u+ u,

where m, k 2 N0, and analyse the resulting GTA and rate equations. This ap-

proach has the potential to lead to useful insight into the e↵ects of futile cycles

on coagulation and fragmentation systems.

Additionally, there is work that is not in this thesis where we considered the

formation of fouling phytoplankton patches on Navy vessels. This is a serious
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practical problem as fouling allows vessels to be easily detected by radar and

hence, they have to be docked to wash o↵ unwanted materials. Our model for

fouling patches formation is as follows: we consider a Becker-Döring model with

deposition,

c01 = ↵̂ +D(�2c21 � c1

1X

k=2

ck) + �(c2 +
1X

k=2

ck),

c0
j
= D(c1cj�1 � c1cj) + �(cj+1 � cj), j > 1,

where ↵̂ > 0 is the deposition rate, cj(t) := cj is the density of phytoplankton

clusters of size j at time t, D > 0 is the coagulation rate and � > 0 is the

fragmentation rate.

Using the QSSA (see Section 2.4), we derived the following result:

cN ⇠

✓
�

D

◆ 1
2

(✓)
1
2 ,

where cN :=
P1

k=2 ck and ✓ = ↵̂t, in agreement with the work of Wattis [96].

Although the QSSA is a largely heuristic technique, it may be said that if the

monomer density c1 is decaying over time as t�z, then any processes that are

higher order in c1 must decay even faster, at the rate t�Nz, so the QSSA can be

justified in the long-time limit. That being said, both the paper byWattis [96] and

the QSSA method cannot be considered mathematically rigorous. As discussed

in Section 2.4, it is generally accepted that the validity of the QSSA relies on

the existence of some ‘slow and fast variables’, exploring this approach may be

of potential interest in the future.
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Computations of Theorem 5.4.1

In this Appendix we supply the MAPLE code implementing the computations

described in the proof of Theorem 5.4.1. We compute 15 terms in the expansion

of the one dimensional centre manifold with components given by (5.32) of a

system with i = 5.

n:=15:

First of all we set up the equations:

eqc1 := a-2*c1^2-c1*z+2*b*c2+b*c3+b*c4+b*c5:

eqc2 := c1^2-c1*c2-b*c2+b*c3:

eqc3 := c1*c2-c1*c3-b*c3+b*c4:

eqc4 := c1*c3-c1*c4-b*c4+b*c5:

eqc5 := c1*c4-c1*c5-b*c5:

eqz := c1^2-b*c2:

133



Chapter 7. Conclusions and Future Work

z := (a-v)/c1:

eqv := -eqc1*z-c1*eqz:

eqc1s := eqc1*c1:

eqc2s := eqc2*c1:

eqc3s := eqc3*c1:

eqc4s := eqc4*c1:

eqc5s := eqc5*c1:

eqvs := simplify(eqv*c1):

v := w-2*b*c2-b*c3-b*c4-b*c5:

eqws := simplify(eqvs+2*b*eqc2s+b*eqc3s+b*eqc4s+b*eqc5s):

eqws := expand(eqws):

Now we use the expansions (5.32) and (5.31) and remove all the higher order

terms that are not needed in the computation to save time:

c2 := sum(’g2||j*c1^j’,’j’=2..n):

c3 := sum(’g3||j*c1^j’,’j’=2..n):

c4:= sum(’g4||j*c1^j’,’j’=2..n):

c5 := sum(’g5||j*c1^j’,’j’=2..n):

w := sum(’gw||j*c1^j’,’j’=2..n):
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aw := collect(simplify(eqc1s*diff(w,c1)-eqws),c1):

ac2 := collect(simplify((w-2*c1^2)*diff(c2,c1)-eqc2),c1):

ac3 := collect(simplify((w-2*c1^2)*diff(c3,c1)-eqc3),c1):

ac4 := collect(simplify((w-2*c1^2)*diff(c4,c1)-eqc4),c1):

ac5 := collect(simplify((w-2*c1^2)*diff(c5,c1)-eqc5),c1):

aw:= convert(taylor(aw,c1=0,n+1),polynom):

ac2:= convert(taylor(ac2,c1=0,n+1),polynom):

ac3:= convert(taylor(ac3,c1=0,n+1),polynom):

ac4:= convert(taylor(ac4,c1=0,n+1),polynom):

ac5:= convert(taylor(ac5,c1=0,n+1),polynom):

Finally, we compute the coe�cients of the expansion in the order indicated in the

proof of Theorem 5.4.1.

for k from 2 to n do

gw||k:= solve(coeff(aw,c1,k),gw||k):

g5||k:= solve(coeff(ac5,c1,k),g5||k):

g4||k:= solve(coeff(ac4,c1,k),g4||k):

g3||k:= solve(coeff(ac3,c1,k),g3||k):

g2||k:= solve(coeff(ac2,c1,k),g2||k):

od:

Now we print out the asymptotic ODE equation for c1:

odec1 := w-2*c1^2;
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The result is

c01 ⇠ �
c81
↵�4

+
c91
↵�5

�
c131
↵�9

+
(30�2 + ↵)c141

↵2�10
�

80c151
↵�9

+O(c161 ).
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[47] J. Grossman, The Erdős number project. http://www.oakland.edu/enp/.

[48] B. Hayes, Randomness as a Resource, American Scientist, 89 (2001), 300–

304.

[49] D. Higham, An Introduction to Financial Option Valuation: Mathematics,

Stochastics and Computation, Cambridge University Press, London 2004.

[50] R. Isaac, The Pleasures of Probability, Springer, New York 2013.

141



Bibliography

[51] J. Jacquez and C. Simon, Qualitative theory of compartmental systems,

SIAM Review 35 (1993), 43–79.

[52] A. Jansen, An introduction to kinetic Monte Carlo Simulations of Surface

Reactions, Springer, Netherlands 2002.

[53] M. Jerrum and A. Sinclair, Approximating the permanent, SIAM J. Comput.

18 (1989), 1149–1178.

[54] C. Joshi, Y. Shim, T. Bigioni and J. Amar, Critical island size, scaling,

and ordering in colloidal nanoparticle self-assembly, Phys. Rev. E 90 (2014),

032406.

[55] I. Kevrekidis, C. Gear and G. Hummer, Equation-free: The computer-aided

analysis of complex multiscale systems, AICHE J. 50 (2004), 1346–1355.

[56] M. Körner, M. Einax and P. Maass, Island size distributions in submonolayer

growth: successful prediction by mean field theory with coverage dependent

capture numbers, Phys. Rev. B 82 (2010), 201401.

[57] M. Körner, M. Einax and P. Maass, Capture numbers and island size distri-

butions in models of submonolayer surface growth, Phys. Rev. B 86 (2012),

085403.

[58] H. Krcelic, M. Grinfeld and P. Mulheran, Distributional fixed-point equa-

tions for island nucleation in one dimension: The inverse problem, Phys.

Rev. E 98 2018, 052801.

[59] L. Lacasa and J. Iacovacci, Visibility graphs of random scalar fields and

spatial data, Phys. Rev. E 96 (2017), 012318.

[60] L. Lacasa, B. Luque, F. Ballesteros, J. Luque and J. Nuño, From time series

to complex networks: the visibility graph, Proc. Nat. Acad. Sci. 105 (2008),

4972–4975.

142



Bibliography

[61] W. Lamb, Existence and uniqueness results for the continuous coagulation

and fragmentation equation, Math. Meth. Appl. Sci. 27 (2004), 703–721.

[62] F. Leyvraz, Scaling theory and exactly solved models in the kinetics of irre-

versible aggregation, Phys. Rep. 383 (2003), 95–212.

[63] H. Maeda, S. Kodama and Y. Ohta, Asymptotic behavior of nonlinear com-

partmental systems: Nonoscillation and stability, IEEE Trans. Circ. Systems

25 (1978), 372–378.

[64] G. Menon and R. Pego, Approach to self-similarity in Smoluchowski’s coag-

ulation equations, Comm. Pure Appl. Math. 57 (2004), 1197–1232.

[65] G. Menon and R. Pego, Dynamical scaling in Smoluchowski’s coagulation

equations: uniform convergence, SIAM J. Math. Anal. 36 (2005), 1629–1651.

[66] P. van Mieghem, Graph Spectra for Complex Networks, CUP, Cambridge

2011.

[67] S. Miyamoto, O. Moutanabbir, E. Haller and K. Itoh, Spatial correlation

of self-assembled isotopically pure Ge/Si(001) nanoislands, Phy. Rev. B 79

(2009), 165415.

[68] P. Mulheran, The dynamics of island nucleation and growth-beyond mean

field theory, EPL 65 (2004), 379–385.

[69] P. Mulheran, Theory of cluster growth on surfaces, in Metallic Nanoparticles

(Handbook of Metal Physics vol 5), Amsterdam: Elsevier 2009, Cham 2015,

73–111.

[70] P. Mulheran and M. Basham, Kinetic phase diagram for island nucleation

and growth during homoepitaxy, Phys. Rev. B 77 (2008), 075427.

143



Bibliography

[71] P. Mulheran and J. Blackman, Capture zones and scaling in homogeneous

thin-film growth, Phys. Rev. B 53 (1996), 10261.

[72] P. Mulheran, K. O’Neill, M. Grinfeld and W. Lamb, Distributional fixed-

point equations for island nucleation in one dimension: A retrospective ap-

proach for capture-zone scaling, Phys. Rev. E 86 (2012), 051606.

[73] P. Mulheran and D. Robbie, Theory of the island and capture zone size

distributions in thin film growth, Europhys. Lett. 49 (2000), 617–623.

[74] M. Navas, S. Cerdán and J. Gancedo, Futile cycles in Saccharomyces cere-

visiae strains expressing the gluconeogenic enzymes during growth on glu-

cose, PNAS 90 (1993), 1290-1294.

[75] H. Niwa, School size statistics of fish, J. Theor. Biol. 195 (1998), 351–361.

[76] K. O’Neill, Island Nucleation and Growth during Submonolayer Deposition,

Ph. D. Thesis, University of Strathclyde, Glasgow, UK 2012.

[77] C. Pantea, A. Gupta, J. B. Rawlings and G. Craciun, The

QSSA in Chemical Kinetics: As Taught and as Practiced, Springer,

Berlin/Heidelberg/Berlin/Heidelberg 2014, 419–442.

[78] A. Pimpinelli and T. Einstein, Capture-zone scaling in island nucleation:

universal fluctuation behaviour, Phys. Rev. Lett 99 (2007), 226102.

[79] C. Pownall and P. Mulheran, Simulation and theory of island nucleation,

growth, and coalescence on stepped substrates, Phys. Rev. B 60 (1999),

9037.

[80] S. Pratsinis, Flame aerosol synthesis of ceramic powders, Prog. Energy Com-

bust. Sci. 24 (1998), 197–219.

144



Bibliography

[81] H. Pruppacher and J. Klett, Microphysics of Clouds and Precipitation, D.

Reidel Publishing Company, Dordrecht 1997.

[82] C. Ratsch and J. Venables, Nucleation theory and the early stages of thin

film growth, J. Vac. Sci. Technol. 21 (2003), 96–109.

[83] D. Ropers, V. Baldazzi and H. Jong, Reduction of a kinetic model of the

carbon starvation response in escherichia coli, IFAC Proc. 42 (2009), 27–32.

[84] R. Rubinstein, Simulation and The Monte Carlo Method, Wiley, New York

1981.

[85] T. Saaty and L. Varga, Decision Making with the Analytic Network Process,

Springer, New York 2013.

[86] W. Scott, Analytic studies of cloud droplet coalescence, I. J. Atmos. Sci. 25

(1968), 54–65.

[87] P. Seba, Parking in the city, Acta Physica Polonica A 112 (2007), 681–690.

[88] L. Segel and M. Slemrod, The quasi-steady state assumption: A case study

in perturbation, SIAM Review 31 (1989), 446–477.

[89] L. Smith, W. Lamb, M. Langer and A. McBride, Discrete fragmentation

with mass loss, J. Evol. Equ. 12 (2012), 181–201.
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