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Abstract 

Prognostics and Health Management (PHM) approaches are gaining popularity within 

recent years due to the growing need for enhancements in ship automation and 

intelligence. Although PHM technologies have been widely investigated and achieved 

a certain level of maturity in industries such as aerospace, manufacturing, and railway, 

it is an undeniable fact that the shipping sector is still in its infancy in this regard and 

further research is required on the matter. For this reason, the main aim of this thesis 

is to enable Smart Maintenance within the shipping sector. Accordingly, this thesis 

presents a Maintenance Analytics (MA) framework for marine systems. This 

framework is primarily constituted by three modules: 1) data pre-processing, which 

ensures the data quality and integrity required in the subsequent modules, 2) 

diagnostic analytics, which determines the current state of marine systems, and 3) 

predictive analytics, which aims to predict the Remaining Useful Life (RUL), thus 

establishing the future health state of marine systems. In total, eight novelties have 

been ascertained to contribute towards the analysis and formalisation of Machine 

Learning and Deep Learning approaches to ensure the applicability of Artificial 

Intelligence within the shipping sector, thus facilitating implementation of better 

maintenance strategies. To analyse the performance of such a novel MA framework, 

a total of eight case studies of distinct marine systems are introduced. Results 

demonstrate the importance of exploring, analysing, and formalising novel holistic MA 

frameworks to assist with decision-making processes related to maintenance strategies 
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to guarantee the robustness and flexibility of O&M activities whilst facilitating both 

reliability and availability of marine systems, thus reducing downtime and operational 

cost and enhancing ship/company profitability. Through the implementation of the 

eight distinct case studies, the developed MA has demonstrated its high accuracy in 

detecting and identifying faults for determining the diagnosis and in predicting the 

RUL for the prognosis of marine machinery. For instance, the fault detection phase 

and fault identification phase of the diagnostic analytics module have achieved an 

average accuracy of 92.5% and 95%, respectively. 

 

Keywords: prognostics and health management; maintenance analytics; diagnostic 

analytics; predictive analytics; remaining useful life; marine systems; shipping 

industry; artificial intelligence. 
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Chapter 1  

Introduction 

 

1.1. Chapter Overview 

This chapter introduces the background information for the formation of the thesis in 

tandem with the presentation of the research direction and the thesis layout. 

 

1.2. Maritime Industry and Digitalisation 

The maritime industry has often been referred to as a sector slow to change unless 

regulations require the adoption of new technologies or there is a clear short-term 

financial benefit. Legacy issues, skills gaps, and market instability are major factors 

that have made most businesses resistant to moving towards digital transformation. 

According to a study performed by Gkerekos et al. (2019), which surveyed various 

maritime stakeholders (e.g., technology providers, industry, funding bodies, and 

academics) as part of the IN 4.0 project, there was unanimous agreement that the UK 

maritime industry needs modernisation to remain competitive in a sector that occupies 

a central position in the growth of many countries’ economies. One of the main barriers 

identified in adopting technologies such as Internet of Things (IoT), cloud computing, 

blockchain, and Artificial Intelligence (AI) was the lack of knowledge and 

understanding around them, thus being unaware of the potential benefits that such 

technologies could contribute to the profitability of an organisation. Such a barrier 
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could lead the shipping sector into a competitive degradation in technology and 

innovation when compared with other industrial sectors, including aerospace, 

manufacturing, and railway, all of which have proven their willingness to lead by 

example. 

 

However, an unfortunate and unprecedented situation changed the perspective of the 

maritime industry and digitalisation, leading to organisations to decide to helm their 

business strategies and progress technologically. Despite the undoubtedly devastating 

impact that COVID-19 is having in most areas, a new paradigm is revolutionising the 

maritime industry. According to Thetius-Inmarsat (2021), COVID-19 has accelerated 

the process of adopting digital processes due to the increase in the average daily data 

consumption per vessel. This indicates a significant increase in IT infrastructure 

investment. 

 

Such a fact facilitated an inflection point with regards to the perception of 

digitalisation within the shipping sector. According to the Lloyd’s List 2021 Shipping 

Outlook Forum, Big data & AI has been considered as the most significant technology, 

aside from low/zero-carbon R&D, that will drive the change in shipping over the next 

five years (see Fig. 1.1). Moreover, according to the same survey, digitalisation has 

been considered as the best investment opportunity for shipping in 2021 (see Fig. 1.2) 

(Lloyd’s List, 2021). 
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Fig. 1.1. Most significant technologies (aside from low/zero-carbon R&D) that will drive 

change in the shipping industry over the next five years (adapted from Lloyd’s List, 2021). 

 

 

Fig. 1.2. Best investment opportunity for shipping in 2021 (adapted from Lloyd’s List, 2021). 

 

Unfortunately, this same headway could not be observed in a reduction of accidents 

(e.g., marine casualties and incidents). Although the first lockdown resulted in a 
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significant reduction in reportable accidents from March through to May of 2020, due 

to the decrease in maritime activity, the total number of reportable accidents for the 

year returned to normal levels (a total of 1,217 marine casualties and incidents were 

reported) due to a spike in reports of leisure craft accidents over the period June-

September according to the 2020 Marine Accident Investigation Branch report. If such 

accidents are further analysed by considering their nature, it can be perceived that 

machinery is one the most frequent type of accidents. As per example, if UK merchant 

vessels (>= 100gt) are considered, it can be perceived that machinery is the second 

most frequent nature of accident, representing a 24% of the total (see Fig. 1.3) (MAIB, 

2020). 

 

If such accidents are also analysed by their respective costs, as introduced by the 

consortium composed of London Economics and NLA International in the Consultancy 

Research into the UK Maritime Technology Sector study, the total cost of maritime 

accidents between January 2012 and September 2019 was estimated to be ₤7.2 billion, 

₤5.1 billion of which could have been prevented by considering automated mooring 

systems, autonomous vessels, on-board technology, and automated cargo handling. 

Technology that could avert the 72% of the total cost of maritime accidents over the 

analysed period (London Economics et al., 2021). 
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Fig. 1.3. Merchant vessels in accidents by nature of accident when considering UK merchant 

vessels (>=100gt) throughout 2020 (adapted from MAIB, 2020). 

 

For this reason, there is an undeniable need to continue investing in technology within 

the maritime sector. The increasing level of information gathering and the 

improvement of communication technologies on ships by utilising sensors and AI can 

enable better coordination between ships and thus enhance the decision-making 

processes. An aspect that is fundamental in a sector in which 75-96% of accidents are 

attributed to human action due to fatigue or bad judgement (AGCS, 2018). 

 

Accordingly, it is expected that there will be an increase in research related to the 

four main groups that define the smart shipping industry (smart port, autonomous 
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vessels, on-board technologies, and professional service technologies). Smart ports have 

already been an extensive research area that relies on automation, big data, AI 

software systems, and alternative energy. The port of Valencia is an example in which 

a method was employed to dynamically track the port’s lighting system (Wang et al., 

2021b). By contrast, while significant advancements have since been perceived, 

autonomous ships are not yet as well established as smart port technologies. 

Technology development as well as both the administrative and safety requirements 

that are needed for testing are examples of challenges that hinder the advancements 

of this smart technology. In spite of this, IMO level 3/4 autonomous ships are expected 

to be completed in the next 5 or more years (London Economics et al., 2021). 

Furthermore, numerous efforts by academia have been performed in the analysis of 

such technologies. An example of which is the project AUTOSHIP, which aims at 

speeding-up the transition towards a next generation of autonomous ships in the EU 

(AUTOSHIP, 2022). Examples of construction projects of autonomous ships are the 

Yara Birkeland and the Autonomous Spaceport Drone Ship (ASDS); projects that rely 

on Industry 4.0 technologies (Ichimura et al., 2022). Another critical area for enabling 

smart shipping is on-board technologies. These technologies assist in safe navigation, 

ship performance, maintenance, connectivity, and alternative propulsion through the 

implementation of AI and vessel optimisation systems. Examples of commercial 

technologies are Danaos Web Enterprise Suite (Danaos, 2022), Cassandra (DeepSea, 

2022), Laros (Prisma Electronics, 2022), METIS ship connect (METIS, 2022), Mimic 

intelligent condition monitoring solution (James Fisher and Sons plc, 2022), and 
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Foresight Marine (European Space Agency, 2022). To the best of the author’s 

knowledge, there is no real trend in the direction of technology development. However, 

certain efforts have been perceived in academia and some SMEs. Professional service 

technologies define the last group that characterises the smart shipping industry. 

Because of the emergence of new technologies and applications, a high demand for 

qualified operations and personnel has been perceived, which is expected to expand 

further in upcoming years.  

 

Therefore, manufacturing and deployment of autonomous vessels; smart shipping 

sensor development and sensor integration services; smart shipping command and 

control systems and expertise; smart shipping data and intelligence services; smart 

shipping cyber security and risk management; and training in the adoption and 

utilisation of smart shipping technologies are considered the smart shipping 

technologies that the UK will opt for as a way of strengthening its position in market 

intelligence within the maritime industry in subsequent years (London Economics et 

al., 2021). By applying these technologies, it is expected that the UK shipping 

technology sector will be worth ₤13 billion per year by 2030, a sector that is currently 

a ₤4 billion industry (Department for International Trade, 2019). 

 

Of all possible smart technologies being analysed in this respect, special attention will 

be given to smart maintenance in this study, as further research in ship operations 
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related to repairing and maintenance are needed. Although potential applications of 

AI within the sipping sector have been identified to perform a more efficient and 

economical maintenance (Department for Transport, 2019), which can also present a 

positive impact on both the safety and security of the personnel, there is not yet a 

clear technological solution for such a matter. Also, there is a lack of analysis and 

formalisation of AI methodologies for enabling smart maintenance within the shipping 

industry in academia, as, for instance, a limited number of studies related to fault 

detection, fault identification, and remaining useful life were identified (please see 

Chapter 2. Literature Review) Furthermore, according to the Inmarsat/Lloyd’s List 

Digitalisation Uncovered Report, the reduction of operational cost and the creation of 

operational efficiencies have been considered as the most critical drivers for adopting 

digital solutions (Lloyd’s List, 2021). 

 

In addition, if Scopus database is used as a means to identify academic studies in 

relation to smart maintenance within the shipping sector, only 18 publications have 

been encountered, whereas in other analogous sectors such as railway, aerospace, and 

manufacturing a total of 204, 323, and 1,012 publications have been identified 

respectively. These results have been obtained by retrieving the results of the following 

query: (“Smart maintenance” AND “sector (e.g., shipping, railway, aerospace, 

and manufacturing”). 
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Thus, there is not only an unclear technological solution for addressing the challenges 

pertaining to ship operation regarding repair and maintenance, but there is also a lack 

of analysis and formalisation of such concepts. For all these reasons, the exploration 

of smart maintenance within the shipping industry is the primary motivation for 

conducting this research. 

 

1.3. Research Direction 

Despite the current challenges the shipping industry is currently facing, there is a 

great potential to explore emerging and innovative technologies to assist the O&M 

activities situation. In this regard, further research in smart maintenance within the 

maritime sector needs to be performed for a more secure, sustainable, and cost-

effective O&M implementation. To contribute towards the analysis and formalisation 

of methodologies that assist in the establishment of Smart Maintenance strategies 

within the shipping sector, a main direction of research is proposed. Accordingly, both 

the main research question and the aim and objectives are presented within this 

section as an introductory part of the plan presented throughout the following 

paragraphs. 

 

1.3.1. Research Question 

The research question that aims to be answered throughout this thesis is expressed 

hereunder. 
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How can a novel Maintenance Analytics (MA) framework be enabled to enhance and 

advance O&M activities in the maritime sector? 

 

1.3.2. Aim and Objectives 

By answering the research question, the main aim is achieved. This is the formalisation 

and analysis of data-driven methodologies for the diagnosis and prognosis of marine 

systems through the development of a holistic maintenance framework comprised of 

novel components that relate to the data pre-processing, and both diagnostic and 

predictive analytics phases in order to employ Smart Maintenance within the shipping 

sector. 

 

Accordingly, the objectives are established. These are as follows: 

1. The identification of the current gaps within the shipping sector with regards 

to data pre-processing, and both diagnostic and predictive analytics through 

the application of a critical literature review. 

2. The development of a maintenance analytics framework fuelled by Machine 

Learning and Deep Learning (DL) algorithms to generate the novelties 

ascertained based on the gaps identified. Contributions to the analysis and 
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formalisation of data pre-processing, diagnostic analytics, and predictive 

analytics are expected. 

3. The assessment of the performance of the developed methodology and the 

demonstration of its effectiveness with regards to the generation of the 

novelties based on the gaps identified through the implementation of a total 

of 8 case studies. 

4. The introduction of future research guidelines to continue contributing to the 

establishment of Smart Maintenance in the shipping industry based on the 

discussion of the obtained results. 

 

The interconnections between the four main objectives and the potential actions 

needed to achieve such objectives are summarised and graphically represented in Fig. 

1.4. The first objective aims to identify the main gaps related to the implementation 

of data-driven methodologies for the diagnosis and prognosis of marine systems. This 

step is of paramount importance in order to determine potential opportunities and 

novelties that can be addressed within the sector. To identify them, an AS-IS analysis 

and a critical literature review are expected to be conducted. By determining these 

gaps and opportunities, the novelties can be ascertained. The generation of such 

novelties are expected to be achieved in objective two, which aims to develop a holistic 

MA framework through the application of novel AI, ML, and DL approaches. This 

framework is comprised of novel components related to data pre-processing, and both 

diagnostic and predictive analytics. The developed holistic MA framework needs to 
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comply with certain quality criteria. Therefore, the third objective is also expected to 

be conducted, which aims to assess the performance and demonstrate the effectiveness 

of the MA framework through the implementation of 8 case studies. To finalise, based 

on the discussion of the results, future research guidelines to continue contributing 

towards the employment of Smart Maintenance in the shipping industry are expected 

to be established. This refers to the fourth and final objective. 

  

 

Fig. 1.4. Interconnections between objectives and approaches/actions to be taken. 

 

1.4. Thesis Layout 

This thesis has been structured in a total of 8 chapters. Brief descriptions of such 

chapters are presented hereunder. 
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Chapter 1. Introduction 

This chapter refers to the introduction section and aims to provide the information 

that relates to the situation that the maritime industry is currently experiencing with 

regards to digitalisation. Through the provision of such information, a better 

understanding of the importance of the research presented in this thesis is expected. 

 

Chapter 2. Literature Review 

Chapter 2 aims to introduce the path from reactive to smart maintenance based on 

the literature review performed in order to provide a better understanding of the 

current practices within the sector and what to expect next. Additionally, chapter 2 

includes the critical review performed to adequately identify the gaps presented in 

relation to the implementation of data-driven methodologies for enabling Smart 

Maintenance within the shipping industry. The structure of this literature review 

chapter is aligned with the definition of MA. 

 

Chapter 3. Methodology: Part I. Introduced Novelties and Overview of the 

Developed Holistic MA Framework 

Chapter 3 aims to introduce the novelties to be generated in this research and the 

overview of the Maintenance Analytics (MA) framework. 
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Chapter 4. Methodology: Part II. The Data Pre-processing Module 

Chapter 4 provides a comprehensive description of the individual components that 

comprise the data pre-processing module. 

 

Chapter 5. Methodology: Part III. The Diagnostic and Predictive Analytics 

Modules 

Chapter 5 provides a comprehensive description of the individual components that 

comprise the diagnostic and predictive analytics modules. 

 

Chapter 6. Case Studies and Results: Part I. The Data Pre-processing 

Module 

Chapter 6 introduces case studies performed and a discussion of the main results to 

both validate and highlight the individual components of the data pre-processing 

module. 

 

Chapter 7. Case Studies and Results: Part II. The Diagnostic and 

Predictive Analytics Modules 

Chapter 7 presents cases studies performed and the discussion of the main results to 

validate and highlight the individual components of the diagnostic and predictive 
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analytics modules. Accordingly, the effectiveness of the MA framework and its 

anticipated functionality are expected to be demonstrated. 

 

Chapter 8. Discussion and Conclusions 

Chapter 8 introduces an in-depth summary based on the key learning outcomes and 

conclusions achieved throughout the development of the research. Accordingly, an 

analysis of the objectives’ accomplishments, the shortcomings identified while 

developing and implementing the framework, and the future work guidelines to 

consider for continuing this line of research are presented. 

 

1.5. Chapter Summary 

A snapshot of the digitalisation being experienced within the maritime sector is 

presented in this chapter. Furthermore, the research question, and the aim and 

objectives are also established. The chapter is finalised by presenting the research 

output and the thesis layout.
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Chapter 2  

Literature Review 

 

2.1. Chapter Overview 

This chapter aims to introduce the critical literature review performed to identify the 

current gaps present within the sector so that the novel contributions of this PhD can 

be established. The structure of the literature review chapter aims to provide the path 

from reactive to smart maintenance to provide a better understanding of the current 

practices within the sector and what to expect next. Accordingly, the current 

maintenance practices within the shipping industry, and both the definition and 

applicability of Smart Maintenance are established.  

 

Also, this chapter aims to introduce the critical literature review performed to identify 

the current gaps presented within the sector so that a novel contribution can be 

established. As perceived in Fig. 2.1., the structure of this literature review deepens 

the maintenance analytics concept and how this has been implemented within the 

shipping sector. To provide a clear and intuitive structure, the sections of this chapter 

are aligned with both the research direction and the definition of maintenance 

analytics. As defined in this chapter, a MA framework is usually constituted by four 

main modules: 1) descriptive, 2) diagnostic, 3) predictive, and 4) prescriptive. 

Specifically, the research will be mainly focus in both diagnostic and predictive 
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analytics, as the main aim is to enhance the current practices in relation to the 

determination of the current and future health of marine systems through the 

application of data-driven methodologies. Accordingly, both descriptive and 

prescriptive modules will not be further analysed throughout the thesis. As data-driven 

methodologies will be considered, special attention will be also given to the data pre-

processing step to ensure data integrity and quality. For each of these phases, the 

most relevant papers identified are discussed to understand the current trends, and 

the determine their disadvantages and limitations that are yet to be addressed. By 

analysing such disadvantages and limitations, the main gaps are expected to be 

identified so that they can be addressed with the generation of novel innovative 

solutions. A graphical representation of the areas of investigation addressed in this 

literature review is presented in Fig. 2.1. 
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Fig. 2.1. Areas of investigation addressed in the literature review. 

 

2.2. From Reactive to Smart Maintenance 

2.2.1. Implementation of Maintenance Strategies within the Shipping 

Industry 

The current maintenance routines on ships follow either a Reactive Maintenance (RM) 

or a Preventive Maintenance (PvM) approach (Han et al., 2021). 
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2.2.1.1. Reactive Maintenance (RM) 

RM applies a run-to-failure approach. Accordingly, either repairing or replacing 

actions are performed when a failure in machinery occurs. This means that the 

machinery operate until a failure is presented so that the useful life of the asset can 

be exploited. The main advantage of such an approach is its simplicity in both 

planning and scheduling the maintenance actions, as well as both the personnel and 

spare parts required. However, not only devastating economic and security 

consequences can be expected due to the possible caused damage, but also the sub-

optimal management of both personnel and assets, as these need to be available at 

any time, thus being inefficient and not cost-effective. Furthermore, the failure 

occurred can cascade in other systems and the selection of maintenance actions may 

be complex and inaccurate, as no information of the failure originated is available. For 

these preceding reasons, RM is usually only recommended for non-critical auxiliary 

systems and when the risk of failure is low (Cheliotis, 2020; Oikonomou, 2021). 

 

2.2.1.2. Preventive Maintenance (PvM) 

In tandem with RM, PvM is another widely used routine within the shipping industry. 

This routine aims to apply the maintenance actions at predetermined intervals. Such 

a strategy is also usually applied when a certain criterion is met (a threshold level is 

achieved, for instance). By applying this routine, the probability of failure of 

machinery is expected to be reduced. Therefore, in comparison with RM, PvM aims 
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to perform the maintenance actions before the machinery enters into a failure state 

(Jaramillo Jimenez et al. 2020). 

 

Although the approach is considered as structured and organised, as well as aims the 

minimisation of failures while applying a more efficient asset management, PvM 

maintenance can either over-maintain or under-maintain the considered machinery, 

can increase operational costs, and relies heavily on empirical knowledge (Cheliotis, 

2020). Moreover, failures can still occur, as it has been identified that approximately 

a total of 77% of failures within marine systems occur in a stochastic manner (DNV 

GL, 2014). Other failures can also be introduced due to a bad decision or judgement 

of the personnel that performs the maintenance activities. 

 

2.2.2. Cutting-Edge Technologies: Perspectives on Smart 

Maintenance 

The infancy character that the shipping industry presents when considering emerging 

technologies and maintenance strategies facilitates the enablement of opportunities 

due to the need of exploring new concepts of maintenance based on Smart 

Maintenance, which aims to modernise the current maintenance activities. By 

considering the evolution of the shipping sector, PdM seems to be the next step. The 

increase in the utilisation of data within the sector also provides higher opportunities 

in relation to PdM to anticipate forthcoming failures in maritime machinery, as due 
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to the prosperity of Condition-Based Maintenance (CBM), the volume of data 

accessible to implement instant data-driven decision-making strategies for enhancing 

operations and maintenance activities is growing expeditiously. Accordingly, analysis 

can empower both the development and implementation of new PdM solutions. 

 

CBM is a maintenance strategy based on the condition monitoring of assets in order 

to reduce the number of failures associated with machinery (Lazakis et al., 2016; 

Lazakis et al., 2018b; Raptodimos and Lazakis, 2018; Raptodimos and Lazakis, 2019), 

as the condition of the asset is considered to be one of the main drivers utilised for 

the determination whether a maintenance action is required or not (Jaramillo Jimenez 

et al. 2020). Accordingly, a large number of sensors are installed alongside the most 

critical components and around the environment where these assets are operating in 

order to implement Condition Monitoring (CM) effectively by utilising Industrial 

Internet of Things (IIoT). By monitoring the machinery, it is possible to detect at an 

early stage any possible failure that may occur, thus averting either the development 

of loss of functionality or any potential breakdown through the application of any 

required maintenance action in the instant that any abnormal behaviour has been 

detected. CM has proven to increase safety and reduce risk. Furthermore, CM could 

also increase the efficiency, reliability, profitability, and performance of the vessel, 

thus also facilitating the emissions reduction during its operational lifetime (Cheliotis 

et al., 2019, Lazakis et al., 2018a). In addition, if data collected by the monitoring 

systems is further analysed, conclusions with regards to the diagnosis and prognosis 
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of the asset can be performed in order to obtain a more proactive maintenance 

approach, thus enabling the implementation of predictive maintenance (PdM). 

Despite of all the advantages of CBM described above, this approach is highly costly, 

making its implementation only considered for critical assets only. It is probably due 

to this level of expenditure that only 2% of classed ships present a condition 

monitoring scheme (Jaramillo Jimenez et al. 2020). 

 

PdM implements data analysis techniques to both identify and predict possible defects 

in machinery so that maintenance activities can be planned optimally prior to the 

occurrence of the failure. Multiple advantages have been identified from the 

implementation of PdM. Examples of such are the increased component operational 

life and availability, the pre-emptive corrective actions on non-critical items 

allowability, the decrease in equipment downtime and unexpected breakdown, and the 

reduction in unnecessary maintenance costs. However, its disadvantages cannot be 

diminished, as, for instance, initial costs of deployment can be expensive, additional 

skills and training are required for analysing the monitored data, and proper 

infrastructure is needed in order to apply a functional predictive strategy 

(Raptodimos, 2018b). 

 

Various configurations of PdM have been proposed for the development of a holistic 

framework. For instance, Karim et al. (2016) and Jasiulewicz-Kaczmarek and Gola 
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(2019) introduced the concept of Maintenance Analytics (MA). MA is constituted by 

four interconnected time-line phases (maintenance descriptive analytics, maintenance 

diagnostic analytics, maintenance predictive analytics, and maintenance prescriptive 

analytics). MA aims to promote maintenance actions by enhancing the understanding 

of both data and information. Maintenance Descriptive Analytics is the first phase 

and aims to summarise the data collected from various maintenance sources. By 

summarising these data, measures and visualisation can be provided. The subsequent 

phase is Maintenance Diagnostic Analytics, which combines the outcome of the 

preceding phase with reliability data. This phase is comprised of three distinct 

sections: 1) fault detection, 2) fault isolation, and 3) fault identification. Fault 

detection aims to detect faults and malfunctions. Fault isolation implements root cause 

analysis. Fault identification provides the description of the fault type and its nature. 

By combining these phases, the current health of the marine machinery can be 

determined. By contrast, Maintenance Predictive Analytics aims to determine the 

future health of the machinery. Accordingly, the Remaining Useful Life (RUL) is 

predicted. RUL is predicted by considering current marine machine conditions 

concurrently with past operation profiles. Finally, the highest level of maturity is 

presented in the Maintenance Prescriptive Analytics phase, which transforms the 

outcomes obtained in the preceding phases into actions to optimise, among other 

aspects, Operations & Maintenance (O&M) management, personnel management, and 

asset management (see Fig. 2.2). 
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Fig. 2.2. Maintenance analytics summary. 

 

An analogous concept widely investigated in aerospace and manufacturing is 

Prognostics and Health Management (PHM). According to Zhang et al. 2022, a viable 

PHM is constituted by four distinct modules: 1) Health Condition Monitoring (HCM), 

2) Fault Diagnosis (FD), 3) Health Prognosis (HP), and 4) Maintenance Decision 

Making (MDM). The relationship between modules can be perceived in Fig. 2.3. HCM 

aims to monitor in real-time the analysed systems while obtaining ship condition 

parameters and performing condition assessment and anomaly detection. Accordingly, 

HCM can be divided into three distinct sections: 1) data acquisition, 2) data 

processing, and 3) condition monitoring. Data acquisition involves the process of 

collecting data on-board of navigation, system condition perception, and 

environmental data. This process is achieved through the application of intelligent 

and modern sensing technology. This allows the collection of vast amounts of ship 

data. Subsequently, to ensure the data’s accuracy and integrity of the data collection 

to extract and deduce valuable and meaningful quality data for health management, 

data processing needs to be performed. The last section of HCM relates to condition 
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monitoring. This section applies a system of early warning, alarm, and anomaly 

detection according to online data. Accordingly, based on the abnormal issues detected 

by HCM, FD aims the identification of the failure modes and their causes so that a 

relationship between the monitoring data and the fault condition can be established. 

By considering the analysis performed in both HCM and FD modules, HP establishes 

the degradation model to complete the life prediction, and thus estimate the future 

behaviour of the system to realise the failure risk assessment and modify the control 

strategy accordingly. HP is usually comprised of Health Indicator (HI) construction, 

Health Stages (HS) division, and RUL prediction. HI is defined as either a statistical 

or quantitative indicator that is utilised to determine the health condition of the 

system. An adequate construction of HI facilitates a clear degradation and monotonic 

trend reflection throughout the indicator, aspect that is critical to effectively predict 

the RUL of the system. As usually the degradation trend is constituted by different 

changes in accordance with distinct fault severities throughout the life cycle, the health 

condition of the system can be categorised into different stages. Then, distinct RUL 

prediction methods are applied for each degradation category. According to the results 

obtained in the phases HCM, FD, and HP, MDM is implemented. MDM aims to 

describe the O&M vision of how the assets may need to be maintained throughout 

their respective lifespan. If PHM is compared with MA, it can be perceived that PHM 

is a more end-to-end approach, as not only considers the data analysis to establish 

decisions according to the current and future health of the identified system, but also 

aims to encompass the process of data acquisition and condition monitoring. By 
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contrast, as perceived in Fig. 2.2, MA focuses on the implementation of data analysis 

methodologies to drive conclusions that will lead the optimisation of the elements 

involved in ensuring the adequate functioning of the system. However, its challenges 

cannot be diminished, such as the increase of IT infrastructure, and cyber security 

issues. 

 

 

Fig. 2.3. Relationship and summary diagram of the modules that constitutes PHM. 

 

2.2.3. Applicability of Smart Maintenance in the Shipping Sector 

The modernisation of the current O&M activities industry through the application of 

Smart Maintenance is critical to address several challenges that the shipping industry 

is currently experiencing. Examples of which are ship breakdowns, marine systems 

sub-optimal performance, and ship-generated emissions (MAIB, 2019). Although it 
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can be perceived an increase in the performance of data acquisition through ship 

monitoring systems, the maritime sector is still based on Planned Maintenance System 

(PMS) guidelines (Jimenez et al., 2020). 

 

After performing market research, it could be identified that several solutions aim to 

address the ship operational efficiency aspect by employing both data acquisition 

systems and analytics. Danaos Web Enterprise Suite, Cassandra, Laros, Metis ship 

connect, and Mimic intelligent condition monitoring solution are some of the major 

solutions currently identified. All of them presented interesting features, such as 

maintenance support, automated reporting, data acquisition as a service, and 

hardware provision (Sensor-as-a-Service). However, none of them can be considered a 

Smart Maintenance solution, as there is a lack of a comprehensive analysis of diagnosis 

and prognosis of the ship systems, element that is critical when considering these types 

of solutions. Table 2.1 presents a more comprehensive description of the features and 

gaps identified based on 1) the utilisation of real-time sensor data, 2) the 

implementation of data analytics, 3) the application of integrated frameworks, and 4) 

the consideration of artificial for diagnosis and prognosis. This benchmarking has been 

performed based on public information, as the author did not have access to the 

analysed systems. 
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Table 2.1. Summary of the results obtained from the benchmarking implementation. 

Solution Main features Gaps 

Danaos Web Enterprise Suite 

(https://www.danaos.gr/) 

Systems and 

machinery 

definition, 

maintenance 

support, crew 

management, KPI’s 

definition, 

maintenance 

planning, reporting 

and dashboards, 

and spare parts 

management. 

AI is not implemented to 

provide diagnostic and 

predictive analytics. In an 

analogous manner, there 

is no evidence that data 

pre-processing is 

employed. 

Cassandra 

(https://www.deepsea.ai/cassandra/) 

Utilisation of IoT, 

data collection, 

data pre-processing, 

data analytics, 

integration 

framework, 

diagnostics, systems 

and machinery 

definition, and 

reporting and 

dashboards. 

There is no indication 

that novel data-driven 

methodologies are 

implemented for the 

application of data pre-

processing steps, such as 

data imputation and 

identification of 

operational states. 

Analogously, it seems the 

software does not perform 

predictive analytics for 

the prediction of the 

RUL. 

Laros (https://www.laros.gr/) Automated 

reporting, 

regulatory 

compliance, hull 

and propeller 

monitoring, main 

engine condition 

monitoring, voyage 

parameter 

monitoring and 

optimization. 

To the best of the 

author’s knowledge, there 

is no evidence that Laros 

applies innovative 

solutions for the data pre-

processing of data 

collected from sensors 

that are coupled to 

marine systems. 

METIS Ship Connect 

(https://www.metis.tech/metis-ship-

connect/)  

Data acquisition as 

a service. 

The main purpose of this 

tool is to provide the data 

acquisition process as a 

service. Thus, 

maintenance analytics is 

not employed. 

https://www.metis.tech/metis-ship-connect/
https://www.metis.tech/metis-ship-connect/
https://www.metis.tech/metis-ship-connect/
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Mimic Intelligent Condition Monitoring 

Solution (https://www.james-

fisher.com/services/inspection-and-

monitoring/) 

Vibration 

monitoring, 

performance 

monitoring, fluid 

monitoring, asset 

efficiency, fleet 

manager, 

turbocharger 

monitoring. 

There is no evidence that 

prognosis is performed by 

this solution. This also 

applies to the data pre-

processing step. 

 

When considering the applicability of maintenance practices within the shipping 

sector, it is of paramount importance the consideration of guidelines and regulatory 

bodies that set the minimum requirements and create the basic structure for the 

application of maintenance (Cheliotis et al., 2020). The main rules and applications 

for the application of CBM and predictive maintenance are summarised in Table 2.2. 

 

Table 2.2. Guidelines and services provided by regulatory bodies 

Regulatory body Guidelines / Services 

Lloyd’s Register Condition monitoring of marine machinery 

RINA RINACube Applications 

DNV-GL DNVGL-SE-0439 Certification of condition monitoring 

DNVGL-CG-0052 Survey arrangement for machinery condition 

monitoring 

DNVGL-CG-0508 Smart vessel 

American Bureau of 

Shipping (ABS) 

ABS 0224: Guidance Notes on Equipment Condition Monitoring 

Techniques 

Bureau Veritas NR674 R00: Condition monitoring systems 

Nippon Kaiji Kyokai CBM Guidelines (Edition 2.0) 

IACS Z27 Condition Monitoring and Condition Based Maintenance 

 

Based on the conclusions obtained from the benchmarking and the analysis of the 

shipping sector with regards to the implementation of smart technologies and their 

https://webstore.lr.org/condition-monitoring-of-marine-machinery
https://www.rina.org/en/services/rinacube
https://rules.dnv.com/docs/pdf/DNV/se/2016-06/dnvgl-se-0439.pdf
https://rules.dnv.com/docs/pdf/DNV/CG/2015-12/DNVGL-CG-0052.pdf
https://rules.dnv.com/docs/pdf/DNV/CG/2015-12/DNVGL-CG-0052.pdf
https://rules.dnv.com/docs/pdf/DNV/CG/2020-11/DNVGL-CG-0508.pdf
https://infostore.saiglobal.com/en-us/Standards/ABS-0224-2016-2349_SAIG_ABS_ABS_5869/
https://infostore.saiglobal.com/en-us/Standards/ABS-0224-2016-2349_SAIG_ABS_ABS_5869/
https://erules.veristar.com/dy/data/bv/pdf/674-NR_2021-01.pdf
https://www.classnk.com/hp/en/index.html
https://www.turkloydu.org/pdf-files/iacs-karar-ve-csr-degisimleri/iacs-es-gereklilikleri/UR_Z27_New_TR_EN.pdf
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implementation to enhance O&M activities, a SWOT analysis was performed. As 

strengths, it can be observed a significant transition from reactive to proactive 

approaches, as it has been identified that reactive strategies are unfeasible for critical 

equipment. Moreover, as PMS is mandatory according to the International Maritime 

Organisation (IMO), maintenance activities processes (planification, performance, and 

documentations) are standardised, thus complying with Classification Societies and 

manufacturers requirements. However, there are significant weaknesses that cannot 

be diminished. For instance, as until recently maintenance has not been considered of 

paramount importance within the maritime industry, there is a lack of implementation 

of CBM, thus precluding the application of more sophisticated and novel technologies. 

Furthermore, the shipowners may not have in-house competences or resources to 

implement such systems and they usually present a lack of interest and understanding 

of predictive maintenance methodologies within the maritime domain. If the personnel 

are also considered, it can be perceived they are usually overburdened with day-to-

day operation routines, and thus their willingness to cooperate to ensure data quality 

and standards is minimal. Such identified weaknesses facilitate the practically 

inexistence of emerging and innovative technologies to assist O&M activities. 

Fortunately, the shipping industry is experiencing a digital transformation to maintain 

its competitiveness, transformation that has been accelerated due to the challenges 

presented by COVID-19. This opportunity enables an interest increase in the 

development and operations of autonomous ships, the development of digital twins, 

the utilisation of innovative inspection techniques (e.g., remotely operated vehicles), 
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the applicability of Internet of Ships (IoS), and the modernisation of modern maritime 

communications. Aspect that intrinsically enable the utilisation of real-time data to 

develop real-time intelligent systems. Nevertheless, although a certain advancement 

can be perceived, the maritime industry is still considered a conservative market with 

regards to analogous industrial sectors. Threat that may negatively impact the 

regularisation of innovative systems. Additionally, insurance claims due to the biased 

prediction of innovative systems that lead to potential incidents are yet to be further 

analysed. Cybersecurity is also a preeminent element that is starting to be considered 

one of the major concerns of stakeholders due to an increase in technology utilisation. 

If the personnel are again considered, it can be perceived that there is a lack of trained 

personnel within the shipping sector, implying a greater complexity in emerging 

technologies implementation. A summary of this SWOT analysis is presented in Fig. 

2.4. A more comprehensive descriptive of such a SWOT is introduced in Appendix A. 

SWOT Analysis of Maintenance Activities. 
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Fig. 2.4. Summary of the SWOT analysis of maintenance activities. 

 

2.3. Implementation of Maintenance Analytics within the 

Shipping Industry 

 

2.3.1. Data Pre-processing 

Recent studies have highlighted the importance of utilising sensors, thus applying 

advanced monitoring techniques to provide both an enhancement of the vessel 

efficiency, and intrinsically reducing fuel oil consumption (Gkerekos et al., 2019b), but 

also reduce the number of failures associated with machinery. Condition Monitoring 
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(CM) has also proven to increase safety and reduce risk and, if adequately 

implemented, increment the efficiency, reliability, profitability, and performance of 

the vessel during its operational lifetime (Cheliotis et al., 2019; Lazakis et al., 2018a). 

 

Sensors are installed alongside the most critical components and around the 

environment where these assets are operating to implement CM effectively by utilising 

IIoT. By employing IIoT, real-time data collection can be performed with the 

utilisation of smart sensors, reliable communications, and seamless integration to 

enable predictive maintenance through the provision of relevant information 

(Aheleroff et al., 2022). Therefore, diagnostic and predictive analytics can be 

performed to evaluate both the current and future state of marine machinery, and 

thus assist the decision-making processes to optimise, among other aspects, O&M 

activities, personnel management, and spare parts stocks. 

 

Although the undeniable benefits that IIoT presents towards the enablement of 

advanced monitoring task that facilitate the performance of diagnosis and prognosis, 

several challenges need to be addressed. These include unreliable outcomes caused by 

certain anomalies and missing values that are originated by device/sensor failure, 

network collapse, and human error (Balakrishnan and Sangaiah, 2018; Izonin et al., 

2019; Noor et al, 2014). Accordingly, data pre-processing needs to be performed. The 

quality of a data analysis is usually related with the quality of the data utilised. Thus, 
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an adequate data pre-processing performance is required to ensure the practical 

modelling in the real world (Dalheim and Steen, 2020). However, despite its 

importance, only two papers that presented a holistic data pre-processing framework 

for marine systems were identified. Dalheim and Steen (2020) presented a data pre-

processing step comprised of a total of five phases: 1) feature selection, 2) time vector 

jumps and synchronisation, 3) outlier detection, 4) data validation, and 5) data 

extraction. Feature selection aims to identify the main parameters required for the 

adequate performance of the data analysis. The phase time vector jumps, and 

synchronisation is then implemented. Time vector jumps are defined as outliers in the 

first order differenced series of the time vector. Synchronisation is performed to ensure 

that all the selected signals are mapped to a joint time reference. The third step refers 

to outlier detection, which aims to detect the anomalous instances presented in the 

data. The authors divide this phase according to the characteristics of the outliers. 

The first group analyses obvious outliers, which can easily be detected through the 

implementation of physical constraints (e.g., set minimum and maximum thresholds). 

The second group of analysis refers to repeated values, which is only applied when 

continuous variables are considered. Repeated values usually refer to measurement 

that have been either rounded off to a few numbers of digits or pre-filtered. Drop-outs 

are the third type of outliers analysed, which usually appear as zero, a certain sensor 

dependent value, or NaN values. The fourth and last group of outliers analysed are 

the spikes, which are perceived as sudden changes, thus deviating from the rest of 

analogous points in a certain context. Once identified, the outliers are replaced 
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through the implementation of a simple linear interpolation, for instance. After this 

phase, the quality of the data needs to be evaluated. Accordingly, the fourth phase, 

data validation, is applied. To finalise, based on the type of analysis that needs to be 

performed, it is possible that data extraction is required. For instance, when analysing 

marine systems data, a general requirement is to sample the data under operational 

steady conditions.  

 

The second study in relation to the development of a data pre-processing framework 

for marine systems was implemented by Masmoudi et al. (2021). The authors 

conducted a comparative study to analyse the effect of commonly utilised data 

cleaning, normalisation, and reduction techniques when performing ML predictions. 

Mean imputation, Expectation-Maximisation (EM) algorithm, min-max 

normalisation, and Principal Component Analysis (PCA) are just examples of 

analysed techniques in the study. 

 

Some other studies that presented novel data-driven methodologies also introduced 

some analysis of data pre-processing methodologies. For instance, Cheliotis et al. 

2020b implemented the Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) algorithm to remove both outliers and transient states of operation. 

Michałowska et al. (2021) implemented resampling techniques, such as Lebesgue 
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sampling, to emulate an even sample rate and align data from distinct sensors. Data 

imputation was also applied by considering the last observation available.  

 

Ellefsen et al. (2020) gave special attention to feature selection. Approaches such as 

Pearson correlation analysis and Human Domain Knowledge (HDK) were introduced. 

Analogous studies were performed in such a matter by Ellefsen et al. (2019) and Cheng 

et al. (2019). Ellefsen et al. (2019) studied the implication of feature selection in the 

model accuracy by analysing three distinct approaches: 1) all input features are 

considered for training the model, 2) HDK, and 3) Sensitivity Analysis (SA). 

 

Cheng et al. (2019) also analysed correlation analysis and SA-based feature selection 

techniques. Moreover, Cheng et al. (2019) introduced moving average as part of data 

smoothing to reduce noise. Although the authors mentioned that both outlier 

detection and data imputation were performed, there is no clear indication of the 

methodologies they performed. An analogous practise can be perceived in Makridis et 

al. (2020), in which both Forward Fill and Backward Fill were implemented as data 

imputation techniques, although no discussion about the selection of such models for 

performing data imputation was presented. That said, the data pre-processing 

performed by Makridis et al. (2020) is probably the most complete of the studies 

identified that implement data-driven methodologies for the performance of predictive 

maintenance of marine systems. The authors implemented outlier detection by 
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considering the Mean + 3 Standard Deviation (SD) approach. Rolling mean was also 

implemented as data smoothing for either reducing or eliminating short-term votality 

in data. To finalise, scaling and normalisation techniques were applied, and Principal 

Component Analysis (PCA) was performed as part of feature extraction.  

 

Other studies introduced at some extent information in relation to the pre-processing 

steps performed prior to the implementation of the novel method, although their 

contribution in such a matter is not significant. For instance, Tan et al. (2021) only 

introduced data normalisation, as the data they utilised to validate the proposed 

methodology was already pre-processed and presented in analogous studies. Tan et al. 

(2020) presented in a similar manner the preceding aspect. However, special attention 

to feature selection was also given. 

 

Table 2.3 summarises the pre-processing steps analysed in the identified studies with 

regards to the implementation of data-driven methodologies for the implementation 

of predictive maintenance of marine systems. As perceived, data normalisation is the 

most implemented step due to the characteristics of the features analysed, which 

present distinct range of values, so that all of them can influence the model in an 

equal manner. Moreover, some deep learning methodologies require the features to 

present a certain range of values. Although feature selection is not mentioned in most 

of the analysed studies, it is used in all cases at some extent. The least analysed steps 
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but critical to ensure data quality are both data imputation and the identification of 

operational conditions. Although certain efforts have been performed in the 

implementation of data imputation techniques, the selection and implementation of 

such techniques have been neither justified nor analysed. In addition, in most of the 

cases data imputation have not been implemented due to the lack of real-world studies, 

as most of the case studies performed to validate the novel methodologies are based 

on simulated data or data that have been already pre-processed in a preceding study. 

However, if real-world conditions are considered, it can be highlighted the criticality 

of adequately implementing data imputation, as preceding analysis have identified 

that datasets collected from marine machinery systems usually contain from 4.4% to 

26% missing values (Cheliotis et al., 2019). With regards to the identification of 

operational states, only one study was identified, even though usually the data 

collection process takes place over an extended period and, therefore, non-operational 

states, such as transient and idle states, are also recorded, which need to be adequately 

identified and discarded (Cheliotis et al., 2020b). 

 

For these preceding reasons, the remaining paragraphs of this data pre-processing 

section aims to identify the current practices and potential gaps identified with regards 

to data imputation and the identification of operational states. 
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Table 2.3. Summary of the implemented data pre-processing steps in identified studies 

related to the application of data-driven methodologies for the implementation of predictive 

maintenance of marine systems. The data pre-processing steps have been structured as 

follows: (1) Feature Selection, (2) Data Smoothing, (3) Outlier detection, (4) Normalisation, 

(5) Resampling, (6) Data Imputation, (7) Feature Extraction, and (8) Value correction. 

Reference (1) (2) (3) (4) (5) (6) (7) (8) 

Cheliotis et al. (2022) 
  

• 
    

• 

Cheng et al. (2019) • • • • 
 

• 
  

Ellefsen et al. (2019) • 
  

• 
    

Ellefsen et al. (2019)b 
   

• 
    

Ellefsen et al. (2020) • 
  

• 
    

Han et al. (2021) 
   

• 
    

Han et al. (2021)b 
   

• 
    

Makridis et al. (2020) 
 

• • • 
 

• • • 

Michałowska et al. (2021) 
  

• 
 

• • 
 

• 

Tan et al. (2020) • 
  

• 
    

Tan et al. (2021) 
   

• 
    

Tang et al. (2020) • 
  

• 
  

• 
 

Raptodimos and Lazakis 

(2019) 

      •         

 

2.3.1.1. Data Imputation 

Data imputation is considered a crucial step in sensor data pre-processing due to the 

need of dealing with incomplete data (Liu et al., 2020b; Bashir and Wei, 2018). 

 

For instance, Azimi et al. (2019) determined that the implementation of modern 

techniques is of paramount importance when dealing with missing values, as 

traditional methods, such as mean imputation and deletion methods, may lead to bias 

in the estimated due to their lack of accuracy, and thus leading to a decrease of data 

quality. By contrast, the implementation of modern techniques, such as Multiple 
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Imputation (MI), leads to accurate results and considers statistical uncertainty by 

adding an error term in the regression equations and, therefore, increasing the quality 

of the source sensor data with incomplete values (Hegde et al., 2019). 

 

Nevertheless, the study of data imputation methods within the shipping sector is still 

inconsistent, although there is a significant increase in the development of novel data-

driven methodologies for enabling smart maintenance. In total, only one study that 

proposed a novel data imputation framework for dealing with missing values of sensor 

data collected from marine machinery was identified. Such a study relates to Cheliotis 

et al. (2019), which developed a hybrid imputation method combining k-NN and 

Multiple Imputation by Chained Equations (MICE) algorithms with first-principle 

knowledge. The proposed hybrid framework was compared with k-NN and MICE 

algorithms by estimating the Absolute Percent Error (APE), the Mean Absolute 

Percentage Error (MAPE), and the standard deviation of the error metrics. 

Accordingly, the three distinct methods were applied to time-series data collected from 

a total of 8 sensors coupled to the turbocharger and to the main engine of a chemical 

tanker. Results demonstrated that the proposed hybrid imputation model 

outperformed k-NN and MICE methods. Despite these results, there are several 

limitations that cannot be diminished. For example, the two algorithms that constitute 

the hybrid framework (k-NN and MICE) are multivariate imputation methods, and 

thus, if the predictors are not highly correlated with the response, the imputation may 

not be accurate. Also, it is possible that there are not available predictors for a specific 
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feature. With regards to the k-NN algorithm, the number of neighbours, k, needs to 

be estimated, which may lead to either underfitting or overfitting if k is not optimally 

selected. Accordingly, further studies in this respect need to be performed, as the 

current sensor data collected from marine machinery present a significant number of 

missing values, which may lead to under-utilisation of data that can yield biased 

results.  

 

Such a scenario is completely different in other industrial sectors or application 

domains, in which more efforts have been made to both formalise and analyse data 

imputation techniques. For instance, Pratama et al. (2016) presented a review study 

of conventional imputation methods (ignoring, deletion, and mean/mode imputation) 

and of more modern imputation procedures (hot and cold deck imputation, and 

multiple imputation that included autoregressive models, genetic algorithm 

optimisation-based methods, Support Vector Machines (SVMs), interpolation, 

maximum likelihood, fuzzy-rough set, and similarity measurements imputation 

methods). The study concluded that genetic algorithms, fuzzy c-means, and 

autoregressive methods were considered the best in terms of flexibility among the 

other imputation methods that were analysed. 

 

Kim et al. (2022) presented a method for estimating missing values in ship principal 

data. Specifically, a regression model-based computation combined with the correction 
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using domain-knowledge was employed. A case study on principal data from 6278 

container ships was conducted to highlight the proposed methodology. Results 

demonstrated that the proposed method presented an enhancement performance of 

15.6% with regards to preceding methods. 

 

Chong et al. (2016) presented a comparative study of five imputation methods (linear 

regression, weighted k-NN, SVM, mean imputation, and replacing incomplete values 

with zero). Time-series data collected from sensors installed in a floor of a community 

centre were utilised to evaluate the imputation performance of each analysed method. 

In addition, to study how the performance of the analysed techniques was affected by 

the ratio of missing values within the sample, four distinct datasets with different 

percentage of incomplete values were evaluated (5%, 10%, 15%, and 20%) by 

estimating the Normalized Root Mean Square Difference (NRMSD). Linear regression, 

k-NN, and SVM provided more accurate results than mean imputation or replacing 

incomplete values with zero. Moreover, it was also concluded that linear regression led 

better accuracy when a linear relationship between the outcome and the predictors 

was presented. Accordingly, the study suggested implementing SVM when the 

relationship between features was not linear. 

 

Noor et al. (2014) introduced two data imputation methods (linear interpolation and 

mean imputation) to evaluate their imputation accuracy by assessing five randomly 
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simulated missing data patterns divided into three degrees of complexity (small 

percentage of incomplete values (5%), medium percentages of incomplete values (15% 

and 25%), and large percentage of incomplete values (40%)). To evaluate their 

performance three distinct metrics were considered: Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE), and coefficient of determination (R
2
). Results 

indicated that linear interpolation presents more accurate results, as mean imputation 

may distort the distribution of the feature and, therefore, the relationship between 

variables may result in a degradation of the performance. 

 

Balakrishnan and Sangaiah (2018) presented an automated framework based on the 

Context and Linear Mean (MCL) method to impute missing values. To assess its 

performance, a temperature sensor was utilised. Results presented a minor 

performance enhancement when implementing the MCL model. 

 

Azimi et al. (2019) proposed a MI approach by considering data variability, and thus 

considering context information, as the methods implemented were selected based on 

the characteristics of the data and the auxiliary information type. Accordingly, short-

term historical data was utilised, as it is strongly correlated with the missing values 

when both the individual condition and the context situation are constant. 

Autoregressive models were considered to deal with short-term data. Both context 

data and lifestyle were also utilised. To evaluate the performance of the proposed 
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approach a case study was performed where 20 pregnant women were remotely 

monitored for seven months. Furthermore, a comparative study was conducted, in 

which four existing data imputation techniques (k-NN, Autoregressive, Maximum 

Likelihood Estimation (MLE) (Logistic), and SVM) were also analysed. RMSE and 

C-Index were the indices estimated to evaluate each of the models. Results 

demonstrated that the proposed methodology led to less accurate results than both 

autoregressive and k-NN models when the incomplete window was small. By contrast, 

it obtained the best results when the incomplete window was large. In addition, it was 

also concluded that the bias of the estimates was minimised when a high correlation 

existed between context and incomplete values. 

 

Priya Stella Mary and Arockiam (2017) presented a methodology that assumed that 

data collected from sensors presented a high spatial and temporal correlation. 

Accordingly, sensors that were close geographically presented a strong relationship 

during a certain amount of time. The proposed methodology estimated n proximate 

sensors by using geographical coordinates through the Haversine formula. Then, the 

linear relationship between selected sensor data and the sensor data that requires 

imputation was estimated. If a strong correlation was identified, the incomplete values 

were imputed by utilising the correlated sensor occurrences at the corresponding time. 

The performance of this methodology was evaluated through the performance of a 

comparative study, in which a total of four distinct widely utilised imputation methods 

were considered (mean imputation, median imputation, mode imputation, and MICE). 
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The RMSE was estimated to quantify their accuracy. Results indicated that the 

proposed model led to higher accuracy only when the relationship between the sensors 

was strong. Fekade et al. (2018) introduced an analogous approach by presenting a 

probabilistic method to impute missing values from IoT devices by utilising data from 

similar sensors. The k-means clustering algorithm was considered to divide the sensors 

into distinct clusters. Once such clusters were formed, a Probabilistic Matrix 

Factorization (PMF) was implemented inside each partition to impute missing values. 

The proposed methodology was compared with two existing algorithms (Support 

Vector Machines (SVM) with linear and Radial Basis Function (RBF) kernels, and 

Deep Neural Networks (DNNs) with two and three hidden layers) by estimating 

RMSE. The proposed methodology was more efficient than SVM and DNN in terms 

of accuracy, as the existing methods were designed for classification purposes. 

Moreover, it was also perceived that the proposed method yields better results when 

the number of clusters was higher, as clusters with smaller groups would facilitate 

lesser differences between sensor measurements that belonged to the same group. 

 

Bashir and Wei (2018) developed a new algorithm by considering a combination 

between Vector Autoregression (VAR) and Prediction Error Minimization (PEM) 

with an Expectation-Maximization (EM) algorithm. Such an algorithm was recognised 

as Vector Autoregressive Imputation Method (VAR-IM). 10% and 20% Missing 

Completely at Random (MCAR) data were created to assess the performance of VAR-

IM alongside five other existing methods (listwise deletion, linear regression 
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imputation, Multivariate Auto-Regressive State Space (MARSS) model, and EM 

algorithm). In all cases, the implementation of VAR-IM led to the best results. 

However, it was perceived as a limitation that VAR-IM did not present more accurate 

results than any other analysed imputation techniques when the percentage of missing 

values was relatively small (approximately 5%). 

 

Izonin et al. (2019) introduced another novel method based on the use of the Ito 

decomposition and the AdaBoost algorithm. MAPE, RSME, MAE, and Symmetric 

Mean Absolute Percentage Error (SMPAE) indicators were estimated to assess the 

performance of the established approach. The developed regressor yielded more 

accurate results than other analysed algorithms, such as SVR and Stochastic Gradient 

Descent (SGD) regressor. Nevertheless, a decrease in the imputation performance of 

the novel technique was perceived when either the data presented anomalies, or the 

sample size was not adequately large to train the model. 

 

Liu et al. (2020b) established a univariate imputation method based on Seasonal and 

Trend decomposition using Loess (STL) to recover large gaps of missing data. The 

method tried to predict the missing values by implementing pattern discovery, thus 

decomposing the time series into trend, seasonal, and remainder components. Thus, 

the repeated patterns could be learned from the time series so that the imputation 

could be performed by combining the estimated components of each gap. As STL 
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decomposition required a complete dataset, the prior implementation of linear 

interpolation was required. The introduced approach, named Itr-MS-STLDecImp, 

outperformed the other analysed methods when dealing with large gaps, although its 

accuracy decreased when the time series did not present trend and seasonality. 

 

Bokde et al. (2018) presented imputePSF, another univariate data imputation method 

that presented an adjustment of the Pattern Sequence based Forecasting (PSF) 

algorithm. Firstly, k-means algorithm was performed to cluster the time series into 

different partitions, and then the resulting clusters were utilised as data input for the 

PSF model. Such an approach led to more accurate results than the other analysed 

imputation methods, such as bayesian Principal Component Analysis (bPCA). Despite 

this fact, imputePSF was not recommended when the time series presented either 

noisy trends, or non-cyclical patterns. 

 

Hegde et al. (2019) introduced a comparison of Probabilistic Principal Component 

Analysis (PPCA) and MICE. Accordingly, 116 dental variables, in which incomplete 

values were generated at random, were considered. PCA was utilised for 

dimensionality reduction so that a lower dimensional space of the dataset could be 

established. Such a property was accordingly utilised to impute the missing values, as 

these values were recovered from the compressed information distribution estimated 

by the PCA. Then, EM algorithm was applied to calculate the MLE of an incomplete 
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dataset in an iterative manner. By contrast, MICE imputed the missing values 

multiple times by using regression models, and thus contemplating the statistical 

uncertainty in the imputations. For this study, logistic regression was utilised for 

nominal categorical variables (2 levels), polytomous logistic regression for nominal 

categorical variables (>2 levels), and Predictive Mean Matching (PMM) for 

continuous variables. RMSE was estimated to assess the performances of both PPCA 

and MICE, which determined that PPCA led to more efficient results in comparison 

with MICE. 

 

Hadeed et al. (2020) introduced an evaluation process to assess existing imputation 

methods. Such methods were sectioned into two groups: univariate imputation 

techniques (mean, median, Last Observation Carried Forward (LOCF), Kalman 

Filter, random, and Markov), and multivariate time series (PMM, and row mean 

method). The performance of the analysed methods was evaluated through the 

estimation of a total of five error metrics: 1) absolute bias, 2) percentage absolute 

error in means, 3) coefficient of determination, 4) RMSE, and 5) MAE. Accordingly, 

a total of 20 household with complete 24-h monitoring data for PM2.5 were considered. 

The results suggested the Markov technique as the most promising approach. Kalman 

filter also performed exceptionally well in data with strong trends. However, 

multivariate imputation techniques presented a lower performance due to the 

significant differences between households. 
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Chivers et al. (2020) established a two-step approach combining a binary classification 

step in tandem to regression analysis. Binary classification was considered to identify 

the unbalance samples of rain and no-rain, whereas regression analysis was 

implemented so that the magnitude of rain samples could be quantified. This analysis 

encompassed both the utilisation and comparison of commonly machine learning 

techniques, which included gradient boosting, bagged decision trees, neural networks, 

and SVM. Accordingly, a case study of a network of weather stations and a network 

of rain gauges in the UK was applied. The results concluded that the introduced 

technique outperformed a surface fitting technique for the recovery of missing 

precipitation data at 30-min resolution. 

 

A summary of the analysed references mentioned within this section is expressed in 

Appendix B Table B.1, so that a brief description of the methodology implemented 

together with its utilisation and its limitations can be easily identified. As represented, 

various univariate and multivariate imputation methods have been either analysed or 

developed to lead to more accurate estimates of missing values. Therefore, it was 

highlighted the need of actively analysing this pre-processing step, as if missing values 

are not addressed appropriately, the resulting data analysis may be unreliable and 

inaccurate, thus yielding bias in succeeding steps, and, therefore, leading to poor 

models being implemented to assist decision-making processes. 
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If the studies analysed are divided by sector, it can be observed that fewer studies 

were introduced in the shipping industry in comparison to other sectors, such as 

environmental and healthcare sectors, for which a total of 4 and 5 studies have been 

analysed respectively. This indicates a lack of analysis and formalisation of data 

imputation frameworks within the sipping industry, although data-driven decision-

making processes are increasingly popular within the sector. One of the current 

practices that is being implemented in the shipping sector for such a matter is the 

deletion of those instances in the dataset that contain missing values. Hence, those 

analysis that apply the deleting approach to deal with missing values may be biased, 

as most of the instances may be deleted for those datasets that contain many 

parameters, and thus result in a small dataset that led to poor data-driven models 

that assist decision-making processes. 

 

Furthermore, in the preceding paragraphs it has also been observed that data 

imputation techniques usually are divided into two main groups: univariate and 

multivariate imputation techniques. Univariate approaches impute values of a 

parameter by only analysing its instances. By contrast, multivariate methods impute 

values of a parameter through the consideration of predictors, which are parameters 

that correlate with the response. The number of studies that contributed to the 

analysis of multivariate imputation techniques are nearly equal to the ones that 
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considered univariate imputation techniques, as of the total of 32 machine learning 

and time series forecasting models analysed, 53% referred to univariate imputation 

techniques and 47% to the multivariate imputation methods. However, only one third 

of the presented univariate imputation methods were considered as novel imputation 

algorithms. Therefore, most of the univariate imputation techniques considered were 

conventional imputation approaches, such as mean imputation or LOCF models. 

Although such conventional methods were easy to interpret and implement, they 

presented some major limitations that could not be diminished. Examples of which 

were the distortion of the parameter and the disruption of the relationship between 

the predictors and the response variable when implementing mean imputation and the 

statistical deficiencies of the LOCF model (Lachin, 2016). 

 

As indicated in the preceding paragraphs, none of the studies so far considered the 

option of imputing incomplete values in real time to assist instant data-driven 

decision-making strategies. Furthermore, the applications of such algorithms were very 

specific, as they did not analyse whether the proposed methodology could work when 

dealing with different types of datasets or not. Although several studies have been 

performed to provide a formal approach for data imputation, only one approach has 

been suggested in the shipping industry to the best of the author’s knowledge. 
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2.3.1.2. Identification of Operational States 

Raw data collected from marine machinery usually contain non-operational states that 

adversely alter the results outlined when implementing data-driven tasks to determine 

the current and future health of marine machinery. Although the marine engines 

typically run under steady-state conditions, fluctuations may occur due to, for 

instance, environmental conditions or variations in the operating status (Theotokatos 

et al., 2020). Therefore, if such states are not adequately addressed, a decrease in both 

computational efficiency and model effectiveness can be perceived. However, despite 

its preeminent importance and the efforts made to enhance the current practices in 

relation to O&M activities within the sipping sector, the analysis of this pre-processing 

step is minimal, thus indicating that this step is not yet widely formalised. 

 

Of a total of 6 identified publications that consider the steady states’ identifications 

as a pre-processing phase, only 2 of them implemented data-driven models. Perera and 

Mo (2016) implemented Gaussian Mixture Models (GMMs) with an EM and PCA to 

both classify and analyse frequent operating regions of marine engines. Dalheim and 

Steen (2020b) introduced a new computationally efficient method to identify those 

parts of the time series that refer to steady states by assuming that the underlying 

system behaviour could be modelled by a deterministic linear trend model. 

 



 

Chapter 2 53 Christian Velasco-Gallego 

Although the results of such methodologies demonstrated promising results, the case 

studies that were implemented to analyse their performance only considered different 

engine loads, although there are states other than engine operating regions, such as 

idle states. Moreover, GMM with EM require the selection of its hyperparameters 

prior to the selection of the different states. Such a matter may be unfeasible when 

deploying this pre-processing step in real time, as new operating regions may arise. 

Accordingly, the hyperparameters that determine the number of clusters need to be 

updated, thus yielding an increase of the computational time. Furthermore, various 

studies are still considering non-data-driven models to address this matter (e.g., 

manually identifying the steps through the implementation of HDK), which is more 

time consuming due to the need for human resources; thus, increasing the probability 

for human error. For instance, Ellefsen et al. (2020) manually divided the engine loads 

into five distinct operating conditions to perform multi-regime normalisation. 

Nevertheless, the need for automating such a process was also indicated in this study, 

as new operating conditions may be encountered in real-life systems. 

 

2.3.2. Diagnostic Analytics 

As introduced precedingly and defined by Karim et al. (2016) and Jasiulewicz-

Kaczmarek and Gola (2019), Diagnostic analytics is the second phase of a four 

interconnected time-line process, conceptualised as Maintenance Analytics (MA), and 

aims to determine the current health of marine systems. Accordingly, a total of three 
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phases are considered: 1) fault detection, 2) fault isolation, and 3) fault identification. 

Fault detection aims to encounter faults and malfunctions, whereas fault isolation 

implements root cause analysis and fault identification describes the fault type and its 

nature. Due to the identified potential enhancement that can be established within 

the shipping sector, fault detection and fault identification are comprehensively 

analysed in the subsequent paragraphs. 

 

2.3.2.1. Fault Detection 

Fault detection has evolved from anomaly detection, which aims to detect data 

patterns that deviate significantly from normal operation behaviour. Its 

implementation has been identified as being of paramount importance due to its 

extensive application domains (Erhan et al., 2021), in such areas as manufacturing 

(Ducharlet et al., 2020; Alaoui-Belghiti et al., 2019; Morariou et al. 2020), railway 

(Oliveira et al., 2019; Xue et al., 2019; Shi et al., 2019), and aerospace (Roy et al., 

2018; Li et al., 2019; Imbassahy et al., 2020). 

 

However, when the shipping sector is considered, only 7 studies related to data-driven 

methodologies for the application of anomaly detection of marine systems have been 

identified. Aslam et al. (2020) provided a comprehensive survey of the Internet of 

Ships (IoS) paradigm as well as its key elements and its main characteristics. The 

paper introduced a review of automatic fault detection methodologies in the shipping 
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industry and provided evidence of the need of applying automatic and intelligent 

method to both detect and report faults.  

 

Lazakis et al. (2018) proposed a methodology for the monitoring and detection of 

operating anomalies in ship machinery based on a one-class SVM (OCSVM). The 

model was trained by using data that corresponded to the normal behaviour of a diesel 

generator under varying operating conditions. Abnormal data was simulated in the 

form of a sensitivity analysis. The proposed approach was effective for identifying 

anomalies. However, it does not consider the characteristics of time-series data, and 

the normal operating conditions may be considered anomalous if the training set does 

not contain similar conditions. The following may also need to be considered: it may 

lead to poor performance if the sample contains noise, and it is inconvenient if the 

time series is large. 

 

Brandsæter et al. (2017) presented a cluster-based anomaly detection methodology. 

This was based on an original methodology that was divided into two main steps: 

signal reconstruction, through the implementation of Auto Associative Kernel 

Regression (AAKR), and residual analysis, by performing Sequential Probability Ratio 

Test (SPRT). The methodology was then modified to include two new steps: cluster 

analysis, through the utilisation of the k-means algorithm, and the selection of a set 

of closest points per cluster, which would replace the original dataset as training set 
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to reduce the computational cost. The proposed approach was assessed by analysing 

sensor signals on a marine diesel engine. Fault data were simulated to be implemented 

as the test set, as no fault data were available. The technique demonstrated to be 

successful in detecting anomalies and the computation time was reduced in relation 

to the original methodology. However, the reconstruction method does not consider 

the characteristics of time series data, such as its successiveness, and there is no 

evidence that this methodology can be used to estimate anomalies in real time, as, for 

instance, there is no indication on how to estimate the clusters and the dimensions of 

the hyperrectangles, which refers to different clusters, dynamically. The proposed 

methodology is expanded in Brandsæter et al. (2019), which introduced a 

comprehensive description of the generalisations and modifications performed in the 

original methodology. As mentioned, cluster analysis was applied to replace the 

original dataset with rectangular boxes that referred to different clusters. In addition, 

the distance measure was altered to treat the variables differently based on the 

credibility of the signal and to distinguish between explanatory and response signals. 

Credibility estimation was also performed. 

 

Cheng et al. (2019b) implemented a denoising filter based on Field Programmable 

Gate Array (FPGA) to apply fault feature extraction in gearbox vibration signals that 

contain strong noise. Specifically, a 50-stage low-pass filter design was implemented 

and proved to denoise gear fault vibration signal to diagnose the gearbox fault. This 

is an interesting approach that can be used as an effective pre-processing step when 
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applying vibration signal diagnosis as a denoise step that can be implemented in real 

time. However, its application is specific to vibration analysis, and thus cannot be 

considered as a holistic anomaly detection framework. 

 

Ellefsen et al. (2019) reviewed four well-established deep learning techniques applied 

in PHM systems: Deep Belief Network (DBN), Auto-Encoder (AE), LSTM, and 

Convolutional Neural Network (CNN). Also, some of the benefits and challenges to 

be faced in relation to PHM based on DL were introduced. In relation to the benefits, 

the authors suggested that the provision of high-speed broadband connections to ships 

at sea would enable online PHM systems based on DL, which could facilitate autoships 

without onboard maintenance personnel and achieve zero-downtime performance. 

Hence, it was thought that when PHM systems based on DL were introduced, they 

could contribute to reduce errors occurring due to personnel, as systems were less 

dependent on prior knowledge and human influence. However, there is still a lack of 

confidence and trust in “black-box” systems within the maritime industry and a lack 

of run-to-failure data of components and subcomponents. In addition, due to the 

implementation of real-time PHM systems, such systems would have to provide 

automatic pre-processing and dimensionality reduction schemes due to continuous 

flows of data. This may induce cyberattacks, and thus threaten safe maritime 

operations. 
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Ellefsen et al. (2020) also proposed a fault-type independent spectral anomaly 

detection algorithm for marine diesel engine degradation in autonomous ferries. The 

VAE was utilised as DNN, and thus trained on pre-processed normal operation data, 

the engine loads of which were merged into one context by applying a multi-regime 

normalization technique. Then, the trained VAE was used to estimate the velocity 

and the acceleration of the anomaly score at each time step in three fault types with 

different natures of degradation. Both the velocity and the acceleration were estimated 

dynamically to detect faults automatically when the estimations exceeded the 

threshold limits. The proposed methodology achieved an accuracy of 97.66% when the 

acceleration was used as the fault detector, proving that the algorithm could be used 

to detect degradations of different natures. However, the proposed methodology 

cannot be applied automatically in real time, as the engine loads were divided into 

distinct operating conditions manually. In addition, a hybrid power lab was utilised 

to collect the data sets, and thus the authors do not refer to some of the challenges 

that researchers need to deal with when using real data, such as the lack of 

synchronisation between sensors, the appearance of missing values, and the emergence 

of anomalous data in the training set. Analogously, an unsupervised reconstruction-

based fault detection algorithm was also presented in Ellefsen et al. (2019), as 

supervised classifiers are highly complex to be implemented within the maritime 

industry due to the lack of fault labels. Hence, VAE was selected as a reconstruction 

model, which was implemented in two data sets of real-operational data from a marine 

diesel engine. The reconstruction error was used as an anomaly score function, which 
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may have led to inaccuracies due to the characteristics of sensor data of marine 

machinery. Thus, due to the different engine operational loads, feature selection was 

applied, and thus three scenarios were presented: all input features were included in 

the reconstruction, feature selection was implemented based on human knowledge, 

and feature selection was performed by applying SA. Findings demonstrated that the 

most accurate result was achieved when SA was being applied as feature selection, as 

irrelevant and redundant input features were not considered in the training process. 

The presented framework presents analogous advantages and disadvantages of the 

algorithm presented in Ellefsen et al. (2020), which suggests that the algorithm 

presented in Ellefsen et al. (2020) was adjusted to include some of the enhancements 

that were not contemplated in Ellefsen et al. (2019b), such as the consideration of 

several types of faults and the necessity to merge the different engine loads into one 

context. 

 

Karatuğ and Arslanoğlu (2022) aimed to propose a condition-based maintenance 

model for ship machinery. Specifically, the study introduced an Artificial Neural 

Network (ANN) to determine the engine performance. The case study was based on 

the analysis of a 489-day dataset. The fault diagnosis system consisted of a total of 

six elements (measured real data, performance model output, constraint information, 

user interface, FMEA approach, and fault prediction). 
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Cheliotis et al. (2020b) combined Expected Behaviour (EB) models with the 

Exponential Weighted Moving Average (EWMA) for fault detection. Four different 

regression models were assessed: Ordinary Least Squares (OLS) single linear 

regression, multiple linear ridge regression, OLS single polynomial regression, and 

multiple polynomial ridge regression. Multiple polynomial ridge regression was 

identified as the most accurate to detect faults manifesting in both the main engine 

cylinder exhaust gas temperature and the main engine scavenging air pressure. As the 

collected data represented fault-free operating conditions, a total of four different fault 

cases were simulated in the form of a sensitivity analysis. The estimated residuals were 

analysed in an EWMA control chart that contained upper and lower control limits to 

detect faults. It was concluded that the proposed approach could successfully detect 

imminent faults by analysing the residuals from the recorded and expected 

occurrences. Data preparation was of paramount importance in this study due to the 

characteristics of the raw data and the models that were implemented. DBSCAN 

algorithm was applied effectively to remove outliers and transient states of operation, 

and thus induce its applicability when dealing with these types of data. However, 

there is no evidence that this framework can be implemented in real time. Also, 

although the authors were sceptical about "black-box" models, there is no doubt 

whatsoever about its accurate performance to detect anomalous data. A 

comprehensive comparative study including both type of models could be implemented 

to support the utilisation of “black-box” models, and thus reverse the conception of 

these approaches within the maritime industry. 
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A summary of the analysed references precedingly described within this section is 

shown in Appendix B Table B.2, in which a brief description of the methodologies is 

characterised together with the representation of their respective advantages and 

limitations. Although all the methodologies demonstrated their accuracy in the case 

studies implemented, there is no evidence that they can be applied in real time for 

diverse faults and marine machinery. In addition, most of the analysed frameworks do 

not consider the characteristics of time-series data, albeit the features considered in 

the case studies are indexed by time. Consequently, methodologies that apply 

distance-based approaches may yield inaccurate results, as anomalous data points in 

time-series data may be considered as normal data points since its numerical value is 

within normal operational thresholds. 

 

Moreover, due to the importance and extensive research performed in this area, both 

a bibliometric analysis and a taxonomy of anomaly detection papers have also been 

performed. Results indicated that DL is the type of methodology that is being more 

widely applied. Autoencoders and LSTM networks are examples of the most common 

models implemented in the analysed studies. Clustering algorithms, such as k-means 

and GMM, were also widely applied within this context. A comprehensive description 

of the main results of both the bibliometric analysis and taxonomy are presented in 

Appendix C. Bibliometric and Taxonomy results of anomaly detection studies. 
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2.3.2.2. Fault Identification 

Fault identification, which can be also referred to as fault classification, is the last 

stage of the diagnostic analytics phase. The main aim of fault identification is to 

provide a description of any considered fault type and its nature. Despite the 

importance of this phase and its criticality to define the maintenance strategy, it is 

still an unexplored area due to the lack of fault data within the maritime industry. 

Specifically, only a total of six studies that address the fault classification task for 

marine systems have been identified. 

 

Wang et al. (2020) presented a fault diagnosis framework constituted by an 

unsupervised and supervised phase. The unsupervised phase was introduced through 

the application of the k-means algorithm, the main aim of which was to cluster data 

based on different operating conditions. The supervised phase implemented Back 

Propagation (BP) neural network to identify the running state of the system. PCA 

was also applied to optimise the fault diagnosis scheme. To validate the performance 

of the framework, a case study on a marine diesel engine was performed, as it is 

considered a critical system. This is because the working environment of diesel engines 

have been identified as decayed, thus presenting a high failure rate. Furthermore, due 

to its complexity, the implementation of maintenance is usually complicated and, 

therefore, its implementation requires a substantial amount of time. Hence, if 

maintenance is executed inadequately, serious accidents may occur, thus facilitating a 
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negative economical and environmental impact, and endangering the lives of seafarers. 

The data considered for the case study was running under five common working 

conditions (normal, carbon deposition of the injector nozzle, air leakage of the exhaust 

valve, wear of the high-pressure oil pump and damage of the piston ring). Also, a total 

of eight parameters were considered, such as mean effective pressure, scavenging 

pressure, and rotation speed. The established fault diagnosis scheme demonstrated 

high accuracy under both working and high-pressure oil pump wear exhaust valve 

leakage conditions, although the diagnostics of both the nozzle carbon deposition and 

piston ring damage conditions required an enhancement. 

 

Cai et al. (2017) introduced another fault diagnosis framework for marine diesel 

engines. The first step was the structuring of the diesel engine system into subsystems 

to reduce the complexity of the analysis. Accordingly, the 1) fuel, 2) lubrication, 3) 

intake and exhaust, and 4) cooling systems were identified. Then, a classification 

model based on SVM was established to perform operating state monitoring and fault 

diagnosis. To finalise, the association rule mining algorithm was considered to analyse 

the relationships among the fault characteristics at distinct levels. A historical fault 

database was implemented for such a purpose. Results demonstrated that by 

performing a hierarchical analysis the fault diagnosis phase was simplified and an 

increase in the classification accuracy was perceived. For instance, an accuracy of 96% 

was obtained when the diesel engine fuel system fault dataset was considered. Such a 
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dataset presented a total of 75 groups of prediction data in 5 working conditions with 

15 groups of prediction data of each working state. 

 

Hou et al. (2020) also proposed a fault diagnosis framework for marine diesel engine. 

Specifically, the fuel oil supply system of the engine was considered. Analogous to Cai 

et al. 2017, the classification performance of the SVM model was analysed. Moreover, 

PCA was applied prior to the training of the model to reduce computational 

complexity. To optimise the performance of the SVM, a three-dimensional Arnold 

mapping introduced into the Particle Swarm Optimisation (PSO) algorithm was 

considered. Accordingly, an enhancement in the generalisation capability was 

expected. As a case study, a total of ten faults presented in the fuel oil supply system 

were considered. A comparative study between the established methodology and the 

multi-layer perceptron (MLP) with BP algorithm added momentum factor and 

adaptive learning, and Radial Basis Function Network (RBFN) was also introduced. 

An outperformance of the established approach when considering the Correct 

Diagnosis Ratio (CDR) was perceived, obtaining an average of 93.9%. However, 

regarding the execution time, it could be perceived a significant difference, as the 

proposed approach presented an execution time of 78.27 seconds, whereas the RBFN 

and MLP methods presented an execution time of 0.98 and 0.53 seconds respectively. 
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Senemmar and Zhang (2021) developed a new deep learning-based framework for fault 

detection, classification, and location identification simultaneously in shipboard power 

systems. A total of three distinct methodologies were introduced: 1) deep neural 

network, 2) gated recurrent unit, and 3) LSTM. To implement the case study fault 

data from an 8-bus shipboard power system were simulated. A 99% accuracy was 

obtained, determining the GRU-based model as the most effective DL model. The 

DNN model was the one that presented less accurate results. To consider potential 

real-world scenarios, the impact of load variation and noisy inputs of the model 

performance was analysed. It was perceived that the decrease in the performance of 

the framework when such elements were introduced were minimal, thus determining 

the robustness of the proposed approach. 

 

Tan et al. (2020) investigated the performance of the following one-class classifiers: 

One Class Support Vector Machine (OCSVM), Support Vector Data Description 

(SVDD), Global k-Nearest Neighbors (GKNN), Local Outlier Factor (LOF), Isolation 

Forest (IF), and Angle-Based Outlier Detection (ABOD). To that end, a real-data 

validated numerical simulator developed for a Frigate characterised by a combined 

diesel-electric and gas propulsion plant was utilised for a case study implementation. 

Based on the outlined results, the authors sorted the performance of the six analysed 

algorithms as follows: ABOD > OCSVM ≈ SVDD > GKNN > IF ≈ LOF. Tan et al. 

(2021) presented an analogous comparative study, although the topic of study in this 

case was multi-label classification for simultaneous fault diagnosis. The comparative 
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study consisted of analysing a total of five models: 1) Binary Relevance (BR), 2) 

Classifier Chains (CC), 3) multi-label k-nearest neighbour (MLKNN), 4) Binary 

Relevance k-nearest neighbour (BRKNN), and 5) multi-label twin support vector 

machine (MLTSVM). Analogous to Tan et al. (2020), a dataset generated from a real 

data simulator of a Frigate was considered for the performance of the case study. 

Based on the outlined results, the authors sorted the performance of the five analysed 

algorithms as follows: BR > CC > BRKNN > MLKNN > MLTSVM. 

 

Of all the methodologies implemented, four of the six identified studies presented an 

analysis of a version of SVM. The remaining two studies referred to DL approaches, 

in which the application of either deep neural networks or recurrent neural networks 

have been considered at some extent. However, although analogous industries have 

exploited the potential of powerful methods of image processing and time series 

imaging for fault detection and diagnostics (Zio, 2022), there is no evidence that such 

practices have been analysed and formalised within the shipping sector. 

 

For instance, Fahim et al. (2021) proposed a self-attentive weight-sharing capsule 

network (WSCN) to perform both fault detection and classification in the transmission 

line domain. Prior to the implementation of WSCN, the authors encoded the time-

series signal into an image by implementing the Gramian Angular Field (GAF) 

algorithm. The authors highlighted that transforming the time-series signal into an 
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image is significant in revealing certain fault features and patterns that cannot be 

extracted from the original time-series signal. A Western-System-Coordinating-

Council WSCC 9-bus and 3-machine test model modified with the series capacitor was 

analysed to determine the robustness of the self-attention WSCN. 

 

Fahim et al. (2021b) introduced a unified unsupervised learning framework for short 

circuit fault analysis of a power transmission line. Analogous to Fahim et al. (2021), 

GAF was applied to transform the time-series oscillographs into images. A stacked 

denoising-autoencoder was integrated and modelled to guarantee the robustness of the 

framework against noise. Field data was considered for a case study with three types 

of fault classification results. Fahim et al. (2021c), Fahim et al. (2020), and Fahim et 

al. (2020b) also implemented GAF for image representation of sampled signals. Such 

images would then be considered as inputs of the proposed model. 

 

Yao et al. (2020) proposed a framework for fault diagnosis with Full-scope Simulator 

based on the State Information Imaging (FDFSSII). FSFSSII aimed to construct a 

series of grey images that presented the operating transient (both normal and fault 

condition) according to the real time monitoring data. The image feature was 

extracted by implementing Kernel Principal Component Analysis (KPCA). Then, 

such image features were classified by the designed classifiers. Specifically, a total of 

five typical classifiers were considered: 1) SVM, 2) k-NN, 3) Linear Discriminant 
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Analysis (LDA), 4) Decision Tree Analysis (DTA), and 5) logistic regression. A case 

study based on the nuclear plant-wide fault diagnosis system was presented. 

 

Kiangala and Wang (2020) developed a classification model based on time-series 

imaging and CNN. The image representation was obtained by implementing GAF. 

PCA was also performed to apply feature extraction, and thus reduce the dimensions 

of the dataset considered into two channels. A case study based on data collected from 

the conveyor system of a small manufacturing was presented. 

 

Of all the studies identified about time series imaging applied to fault classification, 

only two distinct approaches could be perceived: 1) GAF, and 2) FSFSSII. Specifically, 

all studies except one, which implemented the FSFSSII approach, considered GAF for 

encoding the signals into images. Thus, there is a need for exploring new methods for 

image representation from time series, as time series imaging has demonstrated their 

ability of discovering fault features and patterns that cannot be obtained from the 

original version of the time series. A summary of the analysed references precedingly 

described within this section are shown in Appendix B Tables B.3 and B.4. 

 

2.3.3. Predictive Analytics 

Predictive analytics aims to implement prognostic-based maintenance, which is a 

novel approach that aims to predict the RUL of machinery based on historical and 
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on-going degradation trends. This is achieved by predicting likely fault cases through 

the condition monitoring of marine machinery (Lei et al., 2018). This approach is 

usually triggered by the preceding phase, which is diagnostic analytics. Once a fault 

has been detected, isolated, and identified, fault prognosis is implemented by 

estimating the Remaining Useful Life (RUL) of the asset, and thus predicting the 

progression of the identified fault. 

 

RUL can be defined as the length of time that an asset is likely to operate prior to 

the requirement of either repair or replacement (Tang et al., 2020). Estimation 

methods for RUL are largely divided into four categories: 1) physical model-based 

approach, 2) statistical model-based approach, 3) AI-based approach, and 4) hybrid 

approaches (Zeng et al., 2021). Physics model-based approaches describe degradation 

processes through the consideration of mathematical models and the bases of the 

failure mechanisms. Statistical model-based approaches, a.k.a. empirical model-based 

approaches, implement statistical models based on observed evidence, generally 

representing the RUL prediction as a conditional Probability Density Function (PDF). 

AI-based approaches, meanwhile, implement artificial intelligence to learn the 

machinery degradation patterns from available observations. The fourth and final 

category refers to hybrid approaches, which integrate different methodologies to 

address the limitations of the preceding categories (Lei et al., 2018). 
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In recent years, RUL approaches have been widely developed and implemented in 

various sectors. For instance, Zhang et al. (2021) proposed a systematic method for 

degradation modelling and remaining useful life prediction based on uncertain process 

for degradation recovery phenomenon. Accordingly, uncertain process was initially 

adopted for modelling degradation and accounting for epistemic uncertainty. 

Subsequently, a novel similarity based-uncertain weighted least squares estimation 

method was applied to update the model parameters with real-time monitoring data. 

A denoising method was then also utilised to deal with noises caused by recovery 

phenomenon while RUL was calculated by uncertain simulation. A case study on real 

lithium-ion battery degradation dataset was performed. Li et al. (2021) presented a 

wiener-based RUL prediction method utilising improved Kalman filtering and an 

adaptive modification algorithm. An experimental bearing dataset was introduced to 

validate the methodology. Xiao et al. (2021) proposed a new RUL prediction method 

where noise was intentionally added into a LSTM network. Correlation analysis was 

also conducted to construct new degradation features as the input of the network. The 

C-MAPSS aero-engine lifetime dataset was utilised to validate the effectiveness of the 

proposed methodology. Ellefsen et al. (2019c) investigated the effect of unsupervised 

pre-training in RUL predictions utilising a semi-supervised setup. A Genetic 

Algorithm (GA) approach was presented to tune the number of diverse hyper-

parameters in deep architectures. The proposed approach was verified in a similar way 

by using on the C-MAPSS dataset. Berghout et al. (2020) presented a new Denoising 

Online Sequential Extreme Learning Machine (DOS-ELM) with Double Dynamic 
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Forgetting Factors (DDFF) and Updated Selection Strategy (USS). The proposed 

methodology was also tested on the C-MAPS dataset. Xiang et al. (2020) presented a 

new type of LSTM with weight amplification. Monitoring data of a gear life cycle test 

was introduced to assess the effectiveness of the proposed methodology. All studies 

highlighted the importance of accurate degradation modelling to identify the 

underlying component degradation processes, and thus avert any possible failure, as 

components usually presents a degradation pattern before the total failure occurs. 

 

Similarly, the application of deep learning methodologies in this context has also been 

widely considered (Yao et al., 2021). Kang et al. (2021) implemented a multilayer 

perceptron neural network (MLP). Djedidi et al. (2021) utilised auto-regressive neural 

(NAR) network to model the trend of the drift. Shi et al. (2020) presented an 

estimation method of RUL for drop system based on both the principal component 

analysis and the Bayesian inference methods. Yao et al. (2021) proposed an improved 

one-dimensional convolution neural network (1D-CNN) and a Simple Recurrent Unit 

(SRU) network. Zeng et al. (2021) applied a Deep Attention Residual Neural Network 

(DARNN). Cao et al. (2021) introduced a new deep learning framework, a.k.a. 

temporal convolutional network with residual self-attention mechanism (TCN-RSA). 

Ramadhan and Hassan (2021) integrated a Laplacian score, random search 

optimisation, and LSTM. Agrawal et al. (2021) implemented LSTM and Gated 

Recurrent Unit (GRU) models and compared the obtained results with a proposed 

genetically trained neural network. Tan and Teo (2021b) proposed a Multi-variable 
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Time Series (MTS) focused approach to prognostics that implements a lightweight 

Convolutional Neural Network (CNN) with attention mechanism. 

 

In the shipping industry, however, the study of such approaches has not been 

extensively discussed due to the challenges the industry needs to address in relation 

to incomplete, unreliable, and missing data, and the lack of faulty data. Despite these 

challenges, some efforts have been made for the RUL prediction task. For instance, 

Han et al. (2021) presented a data-driven model for fault prognostics of a marine diesel 

engine. Accordingly, data augmentation was utilised to increase the generalisation of 

the network. This was defined with two LSTM layers, two feed-forward neural 

network (FNN) layers, one dropout layer, and a fully connected output layer. The 

prediction performance was verified through the utilisation of data sampled form a 

hybrid power lab. Run-to-failure data of two independent fault-types were collected 

from a total of two profiles. Tang et al. (2020) analysed various computational 

techniques for both the monitoring and estimation of RUL of individual energy assets. 

Relevance Vector Machine (RVM) was implemented for the prediction of RUL, while 

a k-NN was proposed for the prognostics of state of charge of back-up lead-acid 

batteries. Gribbestad et al. (2021) predicted the RUL of air compressors by exploring 

three different DL techniques (FNN, LSTM, and CNN) for predicting RUL as well as 

transfer learning. 
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Therefore, as perceived precedingly, due to several challenges within the shipping 

industry (e.g., lack of fault data, computation and communication complexities, and 

inaccurate, incomplete, and unreliable data (Aslam et al., 2020)), there is a lack of 

analysis and formalisation of approaches that address the RUL prediction task. 

Methods, such as Long-Short Term Memory (LSTM) neural networks (Gribbestad et 

al., 2021), and Relevance Vector Machine (RVM) (Tang et al., 2020) have been 

analysed. However, to the best of the author’s knowledge, time series imaging has not 

yet been considered for such a task, despite time series imaging demonstrated 

promising results when applying forecasting (Li et al., 2020b). Analogously, results in 

Makridis et al. (2020) demonstrated that ensemble models can be more stable than 

individual models. Efforts have also not been made to simulate degradation data 

despite the lack of degradation data perceived. 

 

2.4. Identified Gaps 

As described throughout the literature review chapter, the utilisation of data-driven 

models for the development of a holistic diagnostic and predictive analytics framework 

is still unexplored. In fact, to the best of the author’s knowledge, there is no evidence 

that such a framework has been proposed in the existing literature. Nevertheless, there 

are select studies which incorporate fault detection in their research that have 

analysed, to a limited extent, some of the phases introduced in these analytics. 

However, most of these studies did not address the challenges of using real data or did 
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not analyse the potential of deploying novel technologies in real time. Furthermore, 

the application of DL approaches has not yet been widely formalised and analysed, as 

only two studies were identified that addressed such an aspect. 

 

A comparable experience is also presented when considering the fault identification 

task, as only six studies could be identified. Of all these studies, four of them 

implemented a version of SVM. The remaining two studies introduced either deep 

neural networks or recurrent neural networks, which are considered DL methodologies. 

This indicates once again the lack of exploration of more sophisticated approaches 

that have yielded promising results in analogous studies. The consideration of time 

series imaging, the analysis of ensemble methods, the need of simulating degradation 

features for validation purposes due to the lack of fault data, and the need of 

introducing novel data pre-processing techniques for enhancing data quality are just 

a few examples. A more comprehensive description of the gaps identified and addressed 

in the subsequent thesis chapters is summarised in Table 2.4.
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Table 2.4. Summary of identified gaps divided by MA phase. 

Phase Gaps Opportunities 

Overall MA 

framework 

• There is no evidence in the academic literature that a holistic 

framework constituted by diagnostic analytics (fault detection and 

identification) and predictive analytics (remaining useful life prediction) 

has been formalised. 

• Introduce new frameworks to enhance the 

current maintenance strategies. Investigate 

the potential that novel data-driven 

methodologies may have when implementing 

diagnostic and predictive analytics. 

Data pre-

processing 

• Data imputation techniques have not been extensively analysed, 

although it has been determined that current datasets present between 

4.4% and 26% missing values. Only one study has been identified that 

introduced a novel hybrid framework for performing data imputation. 

• Although the identification of operational states is a fundamental pre-

processing step due to the existence of non-operational states within 

marine systems’ datasets, this step is still unexplored. Some analyses 

have been performed, in which GMM with EM have been introduced, 

for instance. However, the studies did not assess their performance when 

the dataset included other states instead of engine operating regions. 

Moreover, GMM with EM requires the selection of hyperparameters 

prior to the detection of the different states. This aspect hinders the 

automation of this step, which is of preeminent importance when the 

framework needs to be deployed in real time. 

• Implement comparative studies of widely 

utilised data imputation methods. 

• Explore time series imaging for the 

identification of operational states. 

• Introduce DL methodologies within the 

shipping sector. 

• Create new hybrid data imputation 

frameworks to assess their potential in 

enhancing the imputation performance. 
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Diagnostic 

analytics 

• None of the studies have analysed the potential of a real-time 

deployment. Also, although the features analysed are in the form of 

time series, most of the analysed frameworks did not consider temporal 

dependencies. DL methodologies that perform fault detection are still 

unexplored within the shipping industry, as only VAEs have been 

introduced. 

• Fault identification has not been extensively analysed due to the lack 

of fault data within the sector. Only SVM have been extensively 

analysed. Although two main DL methodologies have been explored, it 

is still an unexplored area. For instance, the potential of time series 

imaging and DL for image classification has not been discussed. 

• Analyse DL methods for the detection of 

faults. 

• Introduce time series imaging approaches and 

image classifiers for the implementation of 

fault identification. 

Predictive 

Analytics 

• Challenges such as the lack of fault data and inaccurate, incomplete, 

and unreliable data precluded the formalisation and analysis of 

prognostic-based elements. Regarding the RUL prediction, only four 

studies have been identified. Certain potential enhancements have not 

been considered for this matter, such as the simulation of degradation 

features for both training and validation purposes, the analysis of DL 

methodologies, the consideration of time series imaging approaches, and 

the application of ensemble methods. 

• Explore ways for simulating degradation 

patterns due to the lack of fault data. 

• Introduce DL methods for performing the RUL 

prediction task. 

• Study the potential of ensemble modelling for 

enhancing the prediction performance. 
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2.5. Chapter Summary 

This chapter presented a comprehensive literature and critical review that facilitated 

the determination of the current novel approaches introduced for the data pre-

processing, diagnostic analytics (fault detection and identification), and predictive 

analytics for the analysis of marine systems sensor data. Such a determination enabled 

the identification of the current research gaps observed in the sector so that these can 

be addressed accordingly in the forthcoming chapters of this thesis. 
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Chapter 3  

Methodology: Part I. Introduced 

Novelties and Overview of the Developed 

Holistic MA Framework 

 

3.1. Chapter Overview 

The proposed novelties and an overall description of the MA framework are presented 

in this chapter. The novelties are presented in section 3.2. Novelties, and have been 

defined based on the main gaps identified in section 2.4. Identified Gaps. In addition, 

section 3.3. Overview of the Developed Frameworks is introduced. This section aims 

to provide the structure of the Holistic MA Framework and its main modules and 

describe each of them in a general manner. Each of its modules and their respective 

novelties are then described in more detail in Chapter 4. Methodology: Part II. The 

Data Pre-processing Module, and Chapter 5. Methodology: Part III. The Diagnostic 

and Predictive Analytics Modules. 

 

3.2. Novelties 

Having identified the distinct gaps that currently need to be addressed within the 

shipping sector with regards to the application of innovative maintenance strategies, 

the novelties are determined and specified in Fig 3.1. In total, eight novelties have 
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been ascertained, which are categorised into a total of four groups. The first group 

refers to novelty 1 and aims to develop a holistic MA framework for the diagnosis and 

prognosis of marine systems through the application of data-driven methodologies. To 

the best of the author’s knowledge, there is no evidence that such a framework has 

been introduced within the sector. 

 

The second group of novelties refers to the individual components of the data pre-

processing module. A total of four are introduced in this group (3 referring to the data 

imputation task, and 1 relating to the operational states’ identification). The first 

study refers to a comparative study of widely used Machine Learning (ML) and time 

series forecasting algorithms. If this comparative methodology is integrated into a 

more holistic approach whereby the steady state identification process is analysed in 

more detail, the second approach is proposed. Due to the lack of analysis of DL 

methodologies, a third approach is considered, in which a variational autoencoder is 

analysed. With regards to the operational states’ identification task, a new approach 

has been formalised. This new approach also deals with an additional novel element: 

the analysis of time series imaging approaches through the implementation of the first-

order Markov chain for image generation. 

 

The third group refers to the diagnostic analytics, and thus a total of two individual 

components are introduced: 1) fault detection, and 2) fault identification. For the fault 
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detection component, a novel DL model has been introduced in tandem with image 

thresholding for the detection of anomalies. With regards to the second component, a 

methodology for the identification of anomalies of marine systems is presented. Such 

a methodology aims to analyse the implementation of time series imaging together 

with DL models for the application of image classification tasks. 

 

The fourth and final group relates to the predictive analytics module, in which a RUL 

prediction component is introduced. This component also deals with the lack of both 

fault data availability and analysis and formalisation of DL methodologies within the 

sector. 

 

 

 Fig. 3.1. Summary of the novelties introduced in this thesis. 
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The determined novelties can be summarised as follows: 

• Development of a holistic MA framework for the diagnosis and prognosis of 

marine systems. 

• Development of four individual components for the analysis and formalisation 

of the data imputation and the operational states’ identification tasks as part 

of the data pre-processing module. 

• Development of a diagnostic analytics module comprised of fault detection and 

fault identification components through the introduction of state-of-the-art 

data-driven methodologies. 

• Development of a predictive analytics module based on the prediction of the 

RUL task. 

 

3.3. Overview of the Developed Frameworks 

Based on the determined novelties, the contributions are introduced. The main 

contribution of this thesis, which relates to novelty 1, is the proposal of an overall MA 

architecture for the diagnosis and prognosis of marine systems. This architecture is 

graphically represented in Fig. 3.2. As observed, it is constituted by a total of three 

main stages: 1) data pre-processing, a.k.a data preparation, 2) diagnostic analytics, 

and 3) predictive analytics. 
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A total of four distinct frameworks have been introduced in the first stage of the MA 

framework. These frameworks aim to introduce novel techniques for dealing with two 

critical data pre-processing tasks: data imputation and steady states’ identification. 

The first framework developed under the data imputation section relates to novelty 2 

and aims to introduce a comparative methodology of data imputation approaches in 

order to determine the most appropriate approach based on the characteristics of both 

the missing values and the dataset (please see a comprehensive description of this 

framework in 4.2. Comparative Methodology of Univariate and Multivariate Data 

Imputation Techniques). The second framework, which is related to novelty 3, aims 

to combine distinct data imputation techniques to enhance the overall imputation 

performance (please see a comprehensive description of this contribution in 4.3. Hybrid 

Data Imputation Framework). The third and last framework of the data imputation 

section relates to novelty 4. This framework contributes to the formalisation of data 

imputation techniques through the application of DL in the shipping sector (please 

see a comprehensive description of this contribution in 4.4. Analysis of LSTM-based 

Variational Autoencoders for Regression for Data Imputation). With regards to the 

identification of operational states, a framework comprised of time series imaging and 

connected component analysis is introduced. This framework relates to novelty 5 and 

is comprehensively described in 4.5. A Novel Framework for the Identification of 

Steady States. 
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Two additional contributions are introduced for implementing the diagnostic analytics 

module. The first contribution aims to develop a fault detection approach, and thus a 

framework based on deep learning methodologies and image thresholding is 

introduced. This contribution relates to novelty 6 and is comprehensively described in 

5.3.1. Fault Detection. The second framework relates to novelty 7 and aims to 

implement fault identification by combining time series imaging, deep learning, and 

image classifiers (please see a comprehensive description in 5.3.2. Fault Identification). 

The last contribution aims to implement predictive analytics and relates to novelty 8. 

Accordingly, a RUL prediction framework is presented (please see a comprehensive 

description in 5.4.1. Remaining Useful Life (RUL) Prediction Framework). The data 

considered for the implementation of each of these modules refer to sensors coupled to 

distinct marine systems (S1, S2, …, Si). 
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Fig. 3.2. Graphical representation of the MA framework architecture. 

 

For a better understanding of the flow of data please refer to Fig. 3.2. As it can be 

perceived, the unique source of data is a raw database with sensor data. Thus, the 

data analysed is time series data, which is recorded over time intervals and has been 

collected from sensors coupled to marine machinery/systems. Due to the criticality of 

the machinery and/or systems analysed (e.g., main engine, and diesel generators), the 

data is usually collected in between 1 and 10-minute frequency basis (high-frequency 

data). In addition, this data usually present quality issues that need to be addressed, 

such as outliers, missing values, and lack of synchronisation between sensors. The 

required transformations, imputations, and quality checks are performed within the 

data pre-processing phase. However, due to the novelties introduced in this thesis, 

special attention is given to two data pre-processing tasks: data imputation, and 

operational states’ identification. The pre-processed data are presented as input in the 
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fault detection phase. In such a phase, an initial classification is performed between 

normal and abnormal sequences. Appropriately, any sequence with faults should be 

labelled as abnormal sequences, whereas the normal sequences should be labelled as 

normal sequences by the algorithm. Only those sequences that have been considered 

as abnormal are presented as input in the following step, fault identification. In this 

subsequent step, a better description of the nature of the fault is expected, and thus 

a more comprehensive classification of the distinct faults (e.g., fuel leakage or air in 

fuel system). The sequences which are considered to be following a degradation pattern 

are set as critical and are presented as input in the last phase of the MA framework, 

RUL prediction. The final output of the MA is the predicted RUL that can be utilised 

for determining when the system will fail so that any preventive action can take place. 

 

The subsequent two chapters aim to describe each of the introduced contributions for 

addressing the identified gaps and apply the determined novelties. 

 

3.4. Chapter Summary 

This chapter presented the novelties that are expected to be generated through the 

development and implementation of a MA framework. This proposed framework has 

been comprehensively described in this chapter to provide a better understanding of 

the novel data-driven methodologies that are presented in this thesis. 
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Chapter 4  

Methodology: Part II. The Data Pre-

processing Module 

 

4.1. Chapter Overview 

The subsequent paragraphs of this section are structured to comprehensively described 

the four novelties introduced in the data pre-processing module. Thus, section 4.2. 

Comparative Methodology of Univariate and Multivariate Imputation Techniques 

presents the methodology considered for the development of a comparative 

methodology for data imputation. Section 4.3. Hybrid Data Imputation Framework 

introduces a novel hybrid imputation framework constituted by 1) operational states’ 

identification phase, 2) univariate imputation and 3) multivariate imputation. Section 

4.4. Analysis of LSTM-VAE-based Regressor Analysis introduces a DL methodology 

for data imputation. Specifically, the model VAE-regressor with LSTM is analysed. 

Finally, section 4.5. A Novel Framework for the Identification of Steady States 

presents a novel operational states’ identification framework comprised of a first-order 

Markov chain with connected component analysis. 
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4.2. Comparative Methodology of Univariate and 

Multivariate Imputation Techniques1 

A methodology that provides a comparative study of a total of 20 widely used ML 

and time series forecasting algorithms is introduced in this section to determine the 

most appropriate data imputation framework based on the characteristics of both 

dataset and missingness. 

 

The selection of the models has been performed based on widely known time series 

forecasting models (Hyndman and Athanasopoulos (2020), Kotu and Deshpande 

(2019)) and ML models (Kuhn and Johnson (2016)) so that their imputation 

performance can be analysed. 

 

The comparative methodology introduced in this section is graphically represented in 

Fig. 4.1. Short-term data collected from sensors installed on critical marine machine 

systems are stored in a database for further processing. As raw sensor data is being 

considered, certain steps need to be applied prior to the imputation of missing values. 

The first one refers to data preparation. This needs to be implemented so that the 

data presents the quality required for fitting the distinct analysed models. To evaluate 

each of the imputation models, missing values are generated. This refers to step 2. 

 
1 The data imputation framework presented in this section has been already converted to a journal paper, 

and has been published in the Ocean Engineering journal (Velasco-Gallego and Lazakis, 2020). 
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Time-series cross-validation technique is applied in step 3. Steps 4 and 5 refer to the 

implementation of both univariate and multivariate imputation techniques, 

respectively. The section that applies univariate imputation techniques include mean 

imputation, time series decomposition techniques, exponential smoothing methods, 

and ARIMA models. By contrast, the section that introduces multivariate imputation 

techniques encompasses linear regression (Partial Least Squares regression, LASSO 

regression, Ridge regression, and ElasticNet regression), k-NN, support vector 

machines for regression (with linear and RBF kernel), neural networks (with 1, 2, and 

3 hidden layers), Vector Autoregressions (VARs), decision tree regressors, and 

ensemble methods (Bagged trees (with SVR and k-NN regressors), random forests, 

and AdaBoost). Multivariate imputation is only implemented for those parameters 

that present predictors. The models considered in this framework have been 

implemented through the utilisation of the Python libraries Scikit-Learn and 

Statsmodel. The last step of this comparative methodology refers to the evaluation 

process, in which the seven metrics utilised are defined. These seven metrics refer to 

the Mean Squared Error (MSE), Mean Squared Logarithmic Error (MSLE), the Root 

Mean Square Error (RMSE), the Mean Absolute Percentage Error (MAPE), the 

Median Absolute Error (MedAE), and the Max Error. 

 



 

Chapter 4 89 Christian Velasco-Gallego 

 

Fig. 4.1. Graphical representation of the comparative methodology of univariate and 

multivariate imputation techniques. 

 

4.2.1. Data Preparation 

Due to the characteristics of the data, context, and model, for this part of the 

methodology a total of three phases are implemented in the data preparation step. 

These are 1) machinery transient states identification, 2) data transformation, and 3) 

correlation analysis. 
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Machinery Transient States Identification 

Datasets may contain non-operational states, such as manoeuvring and transient 

states of machinery, that need to be adequately identified and discarded. Such states 

have been identified manually through the consideration of the Original Equipment 

Manufacturers (OEMs) of the systems being analysed. 

 

Data Transformation 

The transformations proposed by Box and Cox are applied to remove distributional 

skewness (Eq. 1). 

 

x′= {
xλ-1

λ
if λ ≠0

log(x) if λ=0

, (Eq. 1) 

 

where λ is a parameter that is determined empirically by training the data and 

applying Maximum Likelihood Estimation (MLE). Based on the value of λ various 

widely used transformations can be identified from this family of transformations, such 

as the square transformation (λ = 2), the square root transformation (λ = 0.5), and 

the inverse transformation (λ = -1). This transformation is only valid to transform 

values greater than 0. 
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Additionally, the data is also standardised to ensure that all the predictors contribute 

equally to the model. Hence, all features are centred by subtracting the mean from all 

values and scaled by dividing the features by their respective standard deviations (Eq. 

2). 

 

z = 
x'- x̅'

s'
 (Eq. 2) 

 

As a result of the standardisation, the standardised features present a mean of zero 

and a standard deviation of one. 

 

Correlation Analysis 

The Pearson’s correlation coefficient is determined in order to identify the relationship 

between two variables. Considering two features, x and y, the Pearson’s correlation 

coefficient results from the standardisation of each feature and subsequently estimates 

the mean after multiplying them (Eq. 3): 

 

ρ = 
1

n - 1
∑

xi - x̅

sx

yi - y̅

sy

n

i=1

 (Eq. 3) 
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If Eq. 3 is rewritten by considering the covariance term, which is defined as the mean 

of the product of the deviations, Eq. 4 is obtained. 

 

ρ =
Cov (x, y)

sxsy
 (Eq. 4) 

 

Pearson’s correlation coefficient always lies between -1 and +1. The strength of the 

relationship is identified through the magnitude obtained. If the resulting coefficient 

is either -1 or 1 it indicates that the features are perfectly correlated. Conversely, if 

Pearson’s correlation coefficient is 0 it means that a linear relationship does not exist 

between them. 

 

Pearson’s correlation coefficient presents some limitations, such as its sensitiveness to 

outliers and its inability to capture non-linear relationships. For this reason, the 

Spearman’s rank coefficient is also estimated. This coefficient is based on the rank of 

the data. Its robustness to outliers and its ability to capture certain non-linear 

relationships are its main advantages in comparison with the Pearson’s correlation 

coefficient. 
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4.2.2. Missing Values Generation 

To adequately compare the distinct analysed models, missing values need to be 

generated. Accordingly, missing values are generated completely at random. The ratio 

of missingness is set to 0.3, as this ratio encompasses the range of missing values (4.4-

26%) identified in analogous datasets (Cheliotis et al., 2019). 

 

4.2.3. Time Series Cross-validation 

Certain models present hyperparameters that need to be selected. Such 

hyperparameters are critical due to their control in the complexity of the model. 

Moreover, they cannot be estimated from the sample and an inadequate selection of 

these may lead to either under-fitting or over-fitting of the applied models. 

Accordingly, certain techniques need to be selected to optimally select these 

hyperparameters. 

 

In this study time series cross-validation is implemented. This is a cross-validation 

technique that defines the training set by only considering the instances that precede 

the instances that constitute the test set (Fig. 4.2). Therefore, when imputing the 

missing values, the evolution of the feature through time is examined, which enables 

the imputation of the missing values in real-time. 
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Fig. 4.2. Time series cross-validation. 

 

4.2.4. Univariate Imputation 

Mean Imputation 

The mean imputation technique is a simple forecasting method. This technique 

imputes missing values by estimating the mean of the sample: 

 

ŷt = y̅ = 
1

t - 1
∑ yi,

t - 1

i = 1

 (Eq. 5) 
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where ŷt  is the predicted value at the current time t, y̅ is the mean, and yi is the sensor 

measurement at time i. 

 

Seasonal and Trend Decomposition using Loess Method 

The Seasonal and Trend decomposition using Loess (STL) method aims to decompose 

the original time series into three distinct components that capture trend, seasonal, 

and residual patterns. The trend component captures the evolution of the series 

through time. The seasonal component detects fluctuation patters that are repeated 

along time due to seasonal factors. Those irregularities that do not correspond to 

either the trend or seasonal components are reflected in the residual component. 

 

By determining these three components, the missing values can be imputed by 

considering an additive decomposition and by forecasting the time series components 

(Eq. 6). 

 

ŷ𝑡 = Ŝ𝑡 + T̂𝑡 + R̂𝑡, (Eq. 6) 

 

where Ŝt is the forecasted seasonal component, T̂t is the forecasted trend component, 

and R̂t is the forecasted residual component. The forecast of the seasonal component 

is performed based on the assumption that the seasonal component is unchanging, or 

slightly changing, and thus its value at time t can be predicted by implementing a 

seasonal naïve method. Conversely, the seasonally adjusted component, defined as the 
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addition of forecasted trend and residual components, is estimated by applying a non-

seasonal forecasting method, such as the simple exponential smoothing method. This 

method is presented in the subsequent section. 

 

Exponential Smoothing methods 

The simple exponential smoothing method is usually utilised when the time series does 

not present either trend or seasonality in a distinct manner. This results from the fact 

that the estimation of the predicted values is based on the weighted averages method. 

Thus, the most recent observations present the greatest values whilst observations 

addressed further back decrease exponentially in weight (Eq. 7). 

 

ŷt = ∑ α (1 - α)i yt - i+ (1 - α)t l0

t - 1

i = 0

 (Eq. 7) 

 

where α is the smoothing parameter, the value of which falls between 0 and 1 

(inclusive), and l0 is the least recent observation. Thus, less recent observations present 

a weight close to 0, and thus do not significantly influence the predicted values, 

whereas more recent observations have a weight near 1, which indicates that they 

have a major impact in the imputation of the missing values. Accordingly, the 

smoothing parameter, α, and the least recent observation, l0, need to be estimated by 

implementing cross-validation. 
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Holt’s linear trend method is an extension of the simple exponential smoothing 

technique in which the trend of the time series is also considered to impute the missing 

values. The component form of this method is expressed hereunder. 

 

Forecast equation ŷ
t
 = lt + bt (Eq. 8.1) 

Level equation lt =  αy
t
 + (1 - α)(lt - 1 + bt - 1) (Eq. 8.2) 

Trend equation bt = β*(lt - lt - 1) + (1 - β*)bt - 1, (Eq. 8.3) 

 

where lt and bt are the estimates of the series and of the trend of the series at time t 

respectively, and α and β are the smoothing parameters for the level and for the trend, 

which fall between 0 and 1 (inclusive). 

 

Similarly, the seasonal component can also be captured by exponential smoothing 

methods, specifically through the Holt Winder’s additive method, in which and 

additional seasonal equation is considered in the component form. 

 

Forecast equation ŷ
t
 = lt + bt+ st - m (Eq. 9.1) 

Level equation lt =  α(y
t
- st - m) + (1 - α)(lt - 1 + bt - 1) (Eq. 9.2) 

Trend equation bt = β*(lt - lt - 1) + (1 - β*)bt - 1 (Eq. 9.3) 

Seasonal equation st = γ(y
t
- lt - 1- bt - 1) + (1 - γ)st -  m, (Eq. 9.4) 
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Autoregressive Integrated Moving Average (ARIMA) Models 

To adequately implement ARIMA models, the time series is required to be stationary. 

This is presented when both trend and seasonal components are not clearly identified. 

both Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and Augmented Dickey-Fuller 

(ADF) unit root tests are considered for determining if the analysed time series is 

stationary. Accordingly, a time series is recognised as stationary only if both tests 

reject the hypothesis that the time series is non-stationary. 

 

If the time series is identified as non-stationary then differencing is implemented (Eq. 

10). 

 

yt
'  = yt - yt - 1 (Eq. 10) 

 

The first model analysed in this classification is the autoregressive models. These 

models in tandem with moving average models form the ARIMA models. When 

implementing autoregressive models, the missing value to be imputed is predicted by 

applying linear combination of prior occurrences (Eq. 11). 

 

y't = c + ϕ
1
y't - 1 + ϕ

2
y't - 2 + … + ϕ

p
y't - p + εt, (Eq. 11) 
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where εt is white noise. Analogously, the linear combination of prior predicted errors, 

known as moving average models, may also be performed to impute missing values. 

The expression of a moving average model of order q is described hereunder. 

 

yt = c + εt + θ1εt - 1 + θ2yt - 2 + … + θqεt - q. (Eq. 12) 

 

By combining differencing with autoregression and a moving average model, the non-

seasonal ARIMA model is constituted (Eq. 13). 

 

y't = c + ϕ1
y't - 1+ ϕ2y't - 2+…+ϕ

p
y't - p+θ1εt - 1+θ2yt - 2+…+ θqεt - q + εt. (Eq. 13) 

 

The orders of the discussed models are determined by minimising the Bayesian 

information criterion. 

 

4.2.5. Multivariate Imputation 

Linear Regression 

The linear relationship between a response feature (dependent variable) and one or 

more explanatory features (independent variables) is modelled through the 

implementation of linear regression methodologies. Thus, the missing values of the 

dependent variable can be imputed based on the independent variables’ instances. 
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Simple linear regression is considered when only one independent variable or predictor 

is available. This technique imputes the response variable from the predictor based on 

the estimation of the regression line that best models the relationship between these 

two features: 

 

ŷ = β̂
0
+ β̂

1
x, (Eq. 14) 

 

where ŷ is the predicted response, β̂
0
 is the intercept, β̂

1
 is the slope or regression 

coefficient, and x is the explanatory variable. 

 

The best adjusted regression line is obtained through the implementation of the 

Ordinary Least Squares (OLS) regression method. OLS estimates the regression line 

that minimises the sum of squared residual values, being a residual value the difference 

between the observed and the predicted value (ei = yi - ŷi). 

 

A generalisation of the simple linear regression model is the multiple lineal regression 

model, where the response variable is related to k explanatory variables (x1, x2, …, xk): 
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y = β
0
 + β

1
x1 + … +  β

k
xk + e. (Eq. 15) 

 

The predictors considered in the multiple linear regression may be strongly correlated, 

which implies both high variability and instability of the solution provided by the 

OLS. In such cases, the Partial Least Squares (PLS) is suggested. PLS seeks linear 

combinations between predictors, also named components, which are selected to not 

only summarise the variation of the predictors at maximum but also ensure that the 

estimated components present maximum correlation with the response. Hence, PLS is 

applied prior to linear regression model creation when the independent variables are 

highly correlated to obtain the components that will be utilised as predictors. To 

estimate the optimal number of components to be retained cross-validation is applied. 

 

Collinearity between predictors can also be treated with biased models, as the entire 

MSE can be reduced when a trade-off between the bias and the variance is applied 

due to the fact that the variance can be reduced by increasing the bias slightly. These 

biased regression models can be created by adding a penalty, which regularises the 

parameter estimates, to the sum of the squared error. Ridge regression considers the 

addition of a second-order penalty on the parameter estimates (Eq. 16). 

 

SSEL2
 = ∑(yi - ŷi)

2
 + λ∑ β

j
2,

P

j=1

n

i=1

 (Eq. 16) 
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where λ is the penalty parameter. The greater this value is the more the method 

shrinks the estimates towards 0. An alternative to ridge regression is the Least 

Absolute Shrinkage and Selection Operator (LASSO) model, in which the absolute 

value of each parameter is added to regularise the parameter estimates (Eq. 17). 

 

SSEL1
 = ∑(yi - ŷi)

2
 + λ∑|β

j
| .

P

j=1

n

i=1

 (Eq. 17) 

 

By applying this type of regularisation, some parameters may be set to 0, and thus 

these are not considered in the penalised regression model. Hence, LASSO regression 

method is not utilised to improve the model accuracy only, but also to implement 

feature selection. 

 

Additionally, an extended version of Ridge and LASSO regression methods that 

combine the two penalties is the ElasticNet regression method, the SSE of which is 

expressed hereunder. 

 

SSEEnet = ∑(yi - ŷi)
2
 + λ1∑ β

j
2

P

j=1

 + λ2∑|β
j
| .

P

j=1

n

i=1

 (Eq. 18) 
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The main advantage of this model is that the regularisation is enabled effectively by 

adding ridge penalty and the feature selection is applied by applying the LASSO 

penalty in a quality manner. As the entire penalised regression models considered in 

this study present hyperparameters, cross-validation is applied to achieve their 

optimal values. 

 

k-Nearest Neighbors (k-NN) 

k-Nearest Neighbors (k-NNs) imputes the missing values by considering k-closest 

records from the training set. Thus, the value of the response is obtained by estimating 

the mean of the k-nearest neighbors, which are selected by determining the Euclidean 

distance between the samples (Eq. 19). 

 

dEuclidean = (∑(x1i - x2i)
2

P

i=1

)

1
2

, (Eq. 19) 

 

where x1 and x2 are the analysed instances. The utilisation of the distance metric in 

this method can disrupt the prediction of the response if any predictor value is missing, 

as then the distance cannot be estimated. Hence, to address this problem, either the 

instances that contain missing values are excluded from the analysis or a univariate 

imputation method, such as mean imputation, is implemented prior to the k-NNs 

model to impute the missing values. However, to assess the accuracy of the model, it 
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is considered the predictors in the analysed sample do not contain missing values. 

Additionally, another aspect to be addressed in the k-NNs method is the number of 

neighbours to be considered, which, to avoid over-fitting, is estimated by the square 

root of the total number of occurrences of the sample. 

 

An enhancement of this method is the weighted k-NNs, in which a weight is added to 

the selected neighbours to regularise their contribution into the response prediction. 

Thus, those neighbours that are closer present more weight, and thus contribute more 

to the response prediction, whereas those that present a greater distance contribute 

less. 

 

Support Vector Machine (SVM) 

The Support Vector Machine (SVM) for regression the model is formed by only those 

data points the residuals of which present an absolute difference greater than a given 

threshold, denoted as ϵ. The coefficients of the SVM regression model minimise 

 

C∑Lϵ(yi - ŷi) + ∑ β
j
2,

P

j=1

n

i=1

  

 

where Lϵ(·) is the ϵ-insensitive function, and C is the cost parameter, which penalises 

large residuals. The prediction function of the SVM can be written as 
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f (u)  = β
0
+ ∑ αi

n

i=1

K(x i, u), (Eq. 20) 

 

where K(·) is the kernel function. Among the kernel functions that encompass non-

linear functions of the predictors, the Radial Basis Function (RBF) is considered in 

this study (Eq. 21). 

 

K(x i, u) = exp(-σ ‖ x i - u ‖2) (Eq. 21) 

 

In addition, the linear kernel is also considered (Eq. 22). 

 

K(x i, u) = x i
'u (Eq. 22) 

 

This technique also presents hyperparameters, which are the cost parameter C and 

the threshold ϵ. Additionally, the RBF also presents the σ parameter, the optimal 

value of which also needs to be estimated. Thus, cross-validation is also applied in this 

case to achieve their optimal values. 
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Neural Networks (NNs) 

Neural Networks (NNs) are another example of non-linear regression methods, inspired 

by biological neural networks, in which the response is modelled by hidden units. 

These hidden units are defined as an intermediary set of unobserved variables 

constituted by either linear or non-linear combinations of the predictors, the outcomes 

of which are combined again to either be utilised as inputs for the subsequent hidden 

layer or to predict the response. 

 

To estimate the optimal parameters that constitute the combinations applied along 

the NN, the weight decay penalisation method is utilised to regularise the model by 

adding a penalty for large regression coefficients. Hence, by applying this 

regularisation over-fitting is moderated. 

 

Vector Autoregressive (VAR) models 

As ARIMA models, the VAR models are limited to be accurate only by those features 

that present to be stationary. This is due to the fact that the VAR models are a 

generalisation of the univariate autoregressive models, in which not only a linear 

combination of prior occurrences of the analysed feature is considered but also bi-

directional relationships between features are also included, as the overall features are 

considered as endogenous. Hence, the VAR models are able to predict a vector of time 
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series iteratively by generating predictions for each feature included in the model, as 

it is expressed in (Eq. 23) for a VAR model of order 1 and dimension 2. 

 

ŷ1,  t = ĉ1 + ϕ̂
11, 1

ŷ1, t - 1+ ϕ̂
12, 1

ŷ2, t - 1 (Eq. 23.1) 

ŷ2,  t = ĉ2+ ϕ̂
21, 1

ŷ1, t - 1+ ϕ̂
22, 1

ŷ2, t - 1 (Eq. 23.2) 

 

The order of the model is determined by minimising the Bayesian information 

criterion. 

Decision trees regressors 

The basis of the prediction of decision tree regressors is established by partitioning 

the feature space into subspaces in an iterative manner. The tree begins with the root 

node. This is constituted with the first partition that splits the data into disjoint sets, 

which in turn are divided into smaller partitions. Subsequent children nodes are then 

split until the optimal number of partitions is achieved. 

 

For regression, from the overall sample, this methodology begins by partitioning the 

data into two groups, of which the sums of the squared errors are minimised (Eq. 24). 

 

SSE = ∑(yi - y̅1)
2
+ ∑ (yi - y̅2)

2

i ∈ S2i ∈ s1

, (Eq. 24) 
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where y̅1  and y̅2 are the mean of the groups of data S1 and S2 respectively. Iteratively, 

the subsequent groups of data are split until the optimal number of partitions are 

achieved. To avoid over-fitting, a complexity parameter can be included to penalise 

the error rate by utilising the tree size (Eq. 25). 

 

SSEcp
 = SSE + cpnterminal nodes, (Eq. 25) 

 

where cp is the complexity parameter. 

 

Ensemble methods 

The utilisation of single regression trees is likely to present sub-optimal predictive 

performance due to their limitations, such as their instability. For this reason, 

ensemble methods are suggested, as they tend to present better performance. 

 

An example of which is the bootstrap aggregation trees, also referred as bagged trees, 

in which bootstrapping is implemented in tandem with a regression model. Hence, this 

ensemble method generates m samples, obtained by implementing bootstrapping from 

the original data. Then, an unpruned tree model is trained on each resulting sample, 

the predictions of which are averaged to obtain the resulting bagged model’s 

prediction. 
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Random forest is another example of ensemble method that adds randomness into the 

learning process to reduce correlation among predictors. Analogous to bagged trees, 

the method generates m samples, obtained by implementing bootstrapping from the 

original data. However, the tree model on each sample is trained by applying random 

split selection, in which the tree is modelled by utilising a random subset of the top k 

predictors at each split in the tree. The resulting random forest model’s prediction is 

obtained by estimating the average of the samples’ predictions. 

 

Additionally, boosting methods are another class of ensemble methods, the origin of 

which initially was to solve classification problems. The basis of these types of methods 

is the recursive modelling of compositions, in which each subsequent model learns by 

utilising the error information identified in the previous one. The adaptive boosting 

technique, also referred as AdaBoost, is an example of a boosting method, which 

implements weight adjustment procedures based on the errors of the current 

predictions. Hence, in each iteration, larger weights are assigned to more complicated 

predictions so that the succeeding tree can target them in more detail. 

 

4.2.6. Evaluation 

Seven metrics are considered to evaluate the performance of the imputation 

techniques. 
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Execution Time 

The execution time is obtained by applying the difference between the function end 

time and the function start time. 

 

Mean Squared Error (MSE) 

MSE is obtained by estimating the mean of the sum of the squared errors, as defined 

in (Eq. 26). 

 

MSE = 
1

n
∑(yi - ŷi)

2
n

i=1

 

 

(Eq. 26) 

where n corresponds to the number of samples, and yi and ŷi refers to the i-th 

occurrence of the observed and the predicted values, respectively. MSE is probably 

the most generally utilised loss function for regression, as if 
1

n
  is discarded from the 

equation, the Least Square Errors function (L2) is obtained. As the errors are squared, 

this metric penalises larger errors, which makes MSE sensitive to outliers. 

 

Mean Squared Logarithmic Error (MSLE) 

MSLE refers to the expected value of the squared logarithmic error (Eq. 27). 

MSLE = 
1

n
∑(ln (1+yi)  - ln ( 1 + ŷi))

2
n

i=1

 
(Eq. 27) 
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where ln(x) refers to the natural logarithm of x. MSLE penalises under-predicted 

estimates more than over-predicted ones, and thus asymmetry is introduced in the 

error curve. 

 

Root Mean Square Error (RMSE) 

RMSE is a type of scale-dependent error, which indicates that the estimated errors 

are on the same scale as the observations, and its value is obtained by estimating the 

squared root of MSE (Eq. 28). 

 

RMSE = √
1

n
∑(yi - ŷi)

2
n

i = 1

 (Eq. 28) 

 

Mean Absolute Percentage Error (MAPE) 

Another type of error is the percentage error, which is given by (Eq. 29). 

 

pi = |
yi - ŷi

yi

| (Eq. 29) 

 

The Mean Absolute Percentage Error (MAPE), defined as the mean of the sum of the 

percentage errors (Eq. 30), is a widely used percentage error metric, which is also 
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computed for model evaluation, as it is unit-free. Conversely, one of its drawbacks is 

that its value is undefined if the observed value is 0. 

 

MAPE= 
1

n
∑pi

n

i=1

 (Eq. 30) 

 

Median Absolute Error (MedAE) 

MedAE is computed by estimating the median of all absolute differences between the 

observed and the predicted occurrences (Eq. 31). 

 

MedAE= median(|y1 - ŷ1, …, |y
n
 - ŷn|) (Eq. 31) 

 

Contrary to the other metrics introduced in this section, MedAE is robust to outliers 

due to the consideration of the median performance, which makes this regression 

metric particularly interesting. 

 

Max Error 

The maximum residual error is also computed to capture the worst-case error. 

Max Error=max (|yi - ŷi|) (Eq. 32) 
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4.3. Hybrid Data Imputation Framework2 

Once analysed some widely used ML and time series forecasting methods for data 

imputation in the preceding section, a hybrid data imputation framework is suggested, 

which brings together a number of features based on the gaps identified in the 

literature review section. These are related to the unavailability or incompleteness of 

the predictors' dataset, which are addressed through the implementation of the first-

order Markov chain as a univariate imputation technique. Also, the lack of analysis 

and formalisation of a data imputation framework in the maritime industry is tackled 

by presenting a novel data imputation approach that can be introduced in a holistic 

predictive framework. Furthermore, parts of the comparative methodology presented 

in the preceding section are implemented as a multivariate imputation method to 

provide a general data imputation approach. A graphical representation of this 

framework is expressed in Fig. 4.3. The main contributions of this hybrid methodology 

are introduced hereunder. 

• The development of a hybrid framework that combines the following phases: 

1) operational states’ identification, 2) univariate imputation, and 3) 

multivariate imputation. To the best of the author’s knowledge there is no 

evidence that such a hybrid approach has been proposed within the shipping 

 
2 The data imputation framework presented in this section has been already converted to a journal paper, 

and has been published in the Ship and Offshore Structures journal (Velasco-Gallego and Lazakis, 

2021). 
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industry to address the challenges related to the identification of operational 

states and the imputation of missing values. 

• The analysis and formalisation of the k-means algorithm for the identification 

of operational states. As presented in section 2.3.1.2. Identification of 

Operational States, there is no evidence to the best of the author’s knowledge 

that this algorithm has been formalised within the shipping industry for the 

identification of steady states. 

• The consideration of the first-order Markov chain model for the imputation of 

missing values. As presented in section 2.3.1.1. Data Imputation, there is no 

evidence to the best of the author’s knowledge that this algorithm has been 

formalised within the shipping industry for the imputation of missing values 

when, for instance, there are not predictors available and univariate 

imputation needs to be performed. 

• The consideration of a multivariate imputation approach, which is comprised 

of a comparative methodology in order to determine the most appropriate 

imputation approach based on the characteristics of both the dataset and 

missingness. 
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Fig. 4.3. Graphical representation of the hybrid data imputation framework. 

 

4.3.1. Steady states’ identification 

When analysing sensor data collected from marine machinery, operational steady 

states are usually encountered. Such states are initiated after an abrupt change and 

persist over a certain period of time before another adjustment occurs. These abrupt 
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changes refer to either weather conditions or to small adjustments that are applied 

due to the contractual agreements between the charterer and the shipowner in relation 

to the vessel speed and the fuel oil consumption per day. 

 

Clustering is a widely used technique implemented to identify substantial groups of 

data. The records of each group are analogous to one another but differ significantly 

with the ones clustered in the other groups. Hence, clustering can be applied to divide 

the time series automatically into the different steady states perceived in the sample. 

Then, when a missing value is detected, the current cluster is selected to be used as a 

feature to implement the first-order Markov chain. Among all the clustering 

techniques, the k-means clustering is utilised in this study due to its simplicity and 

scalability. One of the major limitations of this algorithm is the selection of the optimal 

number of clusters. Consequently, both the Silhouette (Starczewski and Krzyżak, 

2015) and Davies-Boulding indices are applied to select the most appropriate number 

of clusters. 

 

k-means Algorithm Implementation 

k-means clustering splits the time series into k clusters by minimising the within-

cluster sum of squares, which is the sum of the squared distances of each instance to 

the mean of its selected cluster. To implement k-means, it is necessary to determine 

the number of clusters, k, and the initial cluster centres. As the optimal number of 
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clusters is unknown, the algorithm is implemented for a range of a number of clusters, 

and, subsequently, different validity indices are applied to estimate the most 

appropriate one. The initial cluster centres are assigned randomly. 

 

Once the number of clusters and the cluster centres are both determined, the following 

iterative process is performed: 

 

i. Clusters’ assignment: each instance is assigned to the nearest cluster. 

ii. New clusters computation: the new clusters are computed based on the 

instance assignments. 

 

This iterative process is implemented until the algorithm is converged. Then, each of 

the instances are assigned to a final cluster. 

 

One of the major limitations of this algorithm is the selection of the optimal number 

of clusters. For this reason, k-means is implemented for different k values to select the 

most appropriate one through the utilisation of two validity indices, which are the 

Silhouette and the Davies-Bouldin indices. 
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Silhouette Index Estimation 

Time series data of marine machinery parameters, such as the main engine power and 

the main engine rotational speed, may present steady states that are initiated after 

an abrupt change and persist over a certain period of time before another adjustment 

occurs. These abrupt changes refer to either weather conditions or to small 

adjustments that are applied due to the contractual agreements between the charterer 

and the shipowner in relation to the vessel speed and the fuel oil consumption per 

day. 

 

The Silhouette index is implemented to validate the consistency within the estimated 

clusters, as it estimates the similarity between the instance and the cluster to which 

the instance was assigned in relation to the remaining clusters. This index is expressed 

in Eq. 33, where a is the mean intra-cluster distance and b is the mean nearest-cluster 

distance for each sample. 

 

𝑆 =  
𝑏 − 𝑎

max (𝑎, 𝑏)
 (Eq. 33) 

 

S always lies between -1 and +1. If the Silhouette value is closed to -1 it indicates 

that the sample is misclustered, whereas a value of +1 specifies that the sample is 

well-clustered. However, values near 0 may imply overlapping clusters. 
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Davies-Bouldin Index Estimation 

Analogously, the Davies-Bouldin index is another index that is implemented to 

validate the consistency within the estimated clusters. This index is defined as the 

average similarity between clusters, the similarity being a measure that analyses the 

distance between clusters with their respective sizes. Thus, the similarity can be 

expressed as 

 

Rij= 
si + sj

dij
 (Eq. 34) 

 

where s is the average distance between each record and the centroid of its respective 

cluster, and dij is the distance between the cluster centroids. Then, the Davies-Bouldin 

index can be defined as 

 

𝐷𝐵 = 
1

𝑘
∑max

𝑖≠𝑗
𝑅𝑖𝑗

𝑘

𝑖=1

 
(Eq. 35) 

 

The minimum value of DB is 0. Values near 0 indicate better clustering. 

 

Maximum Silhouette Index Identification 

As indicated, one of the major limitations of k-means clustering technique is the 

selection of the optimal number of clusters. For this reason, a range of a number of 
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clusters is implemented for each parameter being analysed. Subsequently, both 

Silhouette and Davies-Bouldin indices are estimated once the clusters have been 

identified for each number of clusters. As a Silhouette value of 1 indicates that the 

partitions are well-clustered, the number of clusters that obtains the maximum 

Silhouette value is selected, as it corresponds to the most appropriate number of 

clusters for each parameter. 

 

Minimum Davies-Bouldin Index Identification 

Similarly, as a Davies-Bouldin value of 0 indicates that the partitions are well-

clustered, the number of clusters that obtains the minimum Davies-Bouldin value is 

selected. To consider the selected clusters as the feature to implement the first-order 

Markov chain, the number of clusters identified as the most appropriate may obtain 

both the maximum Silhouette value and the minimum Davies-Boudlin value of the 

entire number of clusters analysed. Otherwise, the clusters are rejected and the entire 

time series is used as the feature to implement the subsequent step, which is the 

univariate imputation technique through the implementation of the first-order Markov 

chain. 

 

4.3.2. Univariate Imputation. First-order Markov Chain 

Once the steady states are identified, the univariate imputation is performed. 

Univariate techniques impute values of a feature by only considering the feature being 
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analysed. By contrast, multivariate methods impute values of a feature by considering 

other features that are correlated with the feature being analysed. Thus, to apply any 

multivariate method, the completeness of the predictors’ dataset needs to be 

guaranteed. For this reason, the univariate imputation step is implemented prior to 

the multivariate imputation step to impute the missing values that the predictors of 

a feature may contain. 

 

For that purpose, first-order Markov chain model, which considers that each 

subsequent state hinges only on the preceding state, is applied in this inquiry to assess 

its effectiveness when imputing missing values of sensor data of marine systems. The 

procedure is presented hereunder. 

 

Select Current Steady State Data to Fit the Model 

Before implementing the first-order Markov chain, it is necessary to establish the data 

that fits the model. To impute the missing values, the model is generated every time 

that an instance of the feature being analysed presents a missing value. Thus, it is 

possible to determine the current steady state of the time series based on the clusters 

identified in the previous step. Hence, the preceding instances of the current steady 

state are considered to fit the model if the steady states’ identification process is 

converged. Otherwise, the clusters are rejected, and the entire preceding instances of 

the time series are considered. 
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States’ Determination 

A collection of occurrences, xt, indexed by time, are considered to identify, and impute 

missing values. It is determined that the occurrence at time t just hinges on the 

previous value and not on all values at times before t. Such a conception is known as 

discrete time stochastic process, and more precisely Markov process. 

 

Thus, the time series values need to be clustered in a finite number of states so that 

the first-order Markov chain transition matrix can be estimated. To determine these 

states, the next approach is followed: 

 

i. The standard deviation, s, and the mean, X̅, are estimated. 

ii. The maximum and the minimum values of the time series are determined. 

iii. On the basis of the mean value, X̅, k standard deviations, s, are added or 

subtracted until the maximum and the minimum values are achieved. 

 

𝑆𝑇 = 𝑋̅  ± 𝑘𝑠 (Eq. 36) 

 

Transition Matrix Estimation 

A discrete time stochastic process, (Xn)n∈N, which takes values in a finite set S, is 

considered to have the Markov property if the probability distribution of Xn+1 at time 
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n+1 only hinges on the previous state Xn at time n, and not on all the past values of 

Xk for k ≤ n - 1. Thus, 

 

ℙ(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖𝑛, 𝑋𝑛−1 = 𝑖𝑛−1, … , 𝑍0 = 𝑖0)

=  ℙ(𝑍𝑛+1 = 𝑗|𝑍𝑛 = 𝑖𝑛)

= 𝑝(𝑖, 𝑗) 

(Eq. 37) 

 

where i0, i1, …, in,j ∈ S. The probability p(i,j) indicates the probability that the 

previous state i is followed by the current state j. All the possible transition 

probabilities of a process can be collected in a rxr matrix, where each (i,j) entry Pij is 

p(i,j), 

 

𝑷 = (Pij)1≤i, j≤r
= 

(

 
 

p1,1 p1,2
⋯ p1,r

p2,1 p2,2
⋯ p2,r

⋮
pr,1

⋮
pr,2

⋱
⋯

⋮
pr,r)

 
 

 (Eq. 38) 

 

and that satisfies 

 

0 ≤ Pij ≤1,         1≤ i,j ≤ r,  

∑Pij = 1

r

j=1

,       1 ≤ i ≤ r. 
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Cumulative Transition Matrix Calculation 

The cumulative probability transition matrix needs to be encountered by using Eq. 

39 so that the data imputation process can be applied. 

 

Pir= ∑Pij

r

j=1

 
(Eq. 39) 

 

Missing Value Imputation 

The following procedure is applied to impute missing values: 

i. The preceding state is considered as the initial state. 

ii. By using a uniform random number generator, a random value, ξ, which varies 

between 0 and 1, is established. 

iii. The ξ value achieved is compared with the elements of the current state row 

of the cumulative probability transition matrix. Thus, if ξ is higher than the 

cumulative probability of the preceding state but lesser than or equal to the 

cumulative probability of the successive state the new state is adopted. 

iv. Finally, the missing values are imputed by using Eq. 40. 

V= Vmin+ ξ(Vmax- Vmin) (Eq. 40) 

  

4.3.3. Multivariate Imputation 

After the first-order Markov chain model is generated for every instance of each 

predictor that contains a missing value to impute, the predictors’ dataset is completed. 
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Thus, the multivariate imputation step can be applied to impute the missing values 

of that feature. To that end, a comparative study is performed to assess the accuracy 

of a total of 16 machine learning and time series forecasting models. These models 

include: linear regression (Partial Least Squares regression, LASSO regression, Ridge 

regression, and ElasticNet regression), k-Nearest Neighbors, Support Vector Machines 

for Regression (with linear and RBF kernel), Neural Networks (with 1, 2, and 3 hidden 

layers), Vector Autoregressions (VAR), Decision Tree Regressors, and ensemble 

methods (Bagged Trees (with SVR and k-NN regressors), Random Forests, and 

AdaBoost). The accuracy of each model is assessed by estimating the Root Mean 

Square Error (RMSE). The model that presents the minimum RMSE value after the 

validation process implemented by applying the k-fold cross-validation technique is 

selected to train the model and, finally, impute the missing values. 

 

k-fold Cross-validation Step 

To estimate which model is the most appropriate to impute the missing values of a 

feature, k-fold cross-validation algorithm is utilised as a resampling technique to 

estimate the models’ performances. The algorithm for implementing this technique is 

described hereunder. 

 

i. The dataset is divided into k sets of approximately equal size in a random 

manner. 
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ii. One k set is identified as the test set, and thus it is not considered to train the 

model. 

iii. The remaining sets are utilised to train the model. 

iv. n missing values are generated at random in the test set and, subsequently, 

are imputed by applying the trained model. 

v. A metric is estimated to assess the model performance. 

vi. k set is reassigned with a set that has not been considered as a test set yet. 

vii. The steps 3, 4, and 5 are implemented again. 

viii. This process is repeated until all the sets has been considered as test sets. 

ix. The estimated metrics for each repetition are combined to obtain the overall 

performance assessment of the model. 

 

Estimation of the Mean of the RMSE Estimated in Each Iteration of the 

Cross-validation Step 

To assess the model performance, the Root Mean Square Error (RMSE) is estimated 

according to section 4.2.6. Evaluation. As the RMSE is estimated for each iteration 

performed in the validation process, they are combined by estimating the mean to 

obtain the overall performance assessment of the model. 
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Selection of the Model That Presents the Minimum RMSE 

The k-fold cross-validation technique is applied for each model considered in the study. 

Thus, it is possible to identify which model is the most appropriate to impute the 

missing values by selecting the model that presents the minimum RMSE. 

 

Training of the Selected Model 

The model identified as the most appropriate one is trained to impute the missing 

values. In total, there are 16 machine learning and time series forecasting models that 

are candidates to be trained. A comprehensive description of each of these models is 

presented in section 4.3.3. Multivariate Imputation. 

 

Missing Values Imputation 

Finally, the missing values of the feature are imputed, and the entire dataset is 

completed. The process is iterative, and thus the imputation is performed a certain 

number of cycles. To assess the final imputation, the RMSE is again estimated. 
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4.4. Analysis of LSTM-based Variational Autoencoders for 

Regression for Data Imputation3 

To promote and enhance the application of data imputation within the shipping 

industry with regards to DL methodologies, this section of the thesis methodology 

chapter suggests a novel framework for the analysis of variational autoencoders for 

regression modified by adding Long Short-Term Memory (LSTM) layers in both the 

encoder and decoder to consider the characteristics of time series data. 

 

The proposed methodology is graphically represented in Fig. 4.4. The first phase refers 

to data pre-processing. Subsequently, the LSTM-VAE-based regressor analysed is 

introduced. To assess the imputation performance of such an approach, several 

contexts and metrics are considered. Finally, to evaluate if the analysed methodology 

can enhance other imputation techniques implemented within the shipping industry, 

a comparative study is introduced. The main contribution of this method is presented 

hereunder. 

• Analysis of LSTM-VAE-based regressor for data imputation of marine systems 

sensor data. 

• Development and implementation of a Data Assessment Imputation 

Framework (DAIF) for the evaluation of data imputation techniques. 

 
3 The data imputation framework presented in this section has been already converted to a journal paper, 

and has been published in the Journal of Ship Research (Velasco-Gallego and Lazakis, 2022c). 
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• Introduction of a comparative study to analyse other widely utilised data 

imputation techniques within the shipping sector. 

 

 

Fig. 4.4. Graphical representation of framework developed for the analysis of LSTM-based 

VAE regressor for data imputation. 

 

4.4.1. Data Pre-processing 

To avoid data pre-processing interfere significantly with the imputation performance, 

only critical data pre-processing steps are applied. 

 

Non-operational states need to be adequately identified and discarded. Gaussian 

Mixture Models (GMMs) with Expectation-Maximization (EM) algorithm are 

analysed for such a purpose in this study. This probabilistic model considers that data 
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are generated from a mixture of a finite number of Gaussian distributions with 

unknown parameters. EM is utilised for fitting the models and Bayesian information 

Criterion to evaluate the possible number of clusters. This step is performed through 

the application of the scikit-learn Python library (Pedregosa et al., 2011). 

Normalization is also applied so that the parameters lie between 0 and 1 values. 

 

With regards to exploratory data analysis, correlation analysis is performed by 

estimating the Pearson’s correlation coefficient to identify linear relationships between 

features. Data are split into training (80% of the entire dataset), validation (20% of 

the training dataset), and test (20% of the entire dataset) sets to avoid model over-

fitting. These values are considered as the standard ratios when training ML and DL 

methodologies. 

 

4.4.2. LSTM-VAE-based Regressor Analysis 

Variational autoencoders for regression are analysed in this study for performing the 

imputation task. This type of DL is an autoencoder that learns the parameters of a 

probability distribution. This which enables the model to be generative. The model is 

comprised of an encoder and a decoder. The encoder aims to learn both how to reduce 

the input dimensions and compress the inputs into an encoded representation. This 

compressed state, a.k.a latent space representation, presents the lowest possible 

dimensions of the inputs. By contrast, the decoder aims to learn how to reconstruct 
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the data contained in the latent space representation to reproduce the inputs as 

analogously as possible. The variational autoencoder is achieve by encoding the input 

as a distribution over the latent space. Thus, the autoencoder is regularised during 

the training process. 

 

The methodology proposed by Zhao et al. (2019) is modified to enable the model to 

impute time-series data. Such methodology is constituted by an encoder with 2 

intermediate layers of dimension (128, 32) with tanh as activation function. The 

resulting output is independently connected to two layers, the dimension of which is 

8, to determine both the mean and the standard deviation of the latent representation. 

The regressor, which shared the intermediate layers of the encoder, is utilised to 

determine the mean and standard deviation for the predicted feature. Finally, the 

model is also constituted by the decoder. By utilising the latent representation as the 

input, the reconstruction is accomplished. Therefore, the architecture proposed 

considers a feedforward artificial neural network. Specifically, a multilayer perceptron, 

which does not deal with temporal dependencies, and thus does not consider the 

characteristics of time series data. Accordingly, the variational autoencoder based 

regression model is adapted to learn temporal dynamic behaviour through the 

implementation of LSTM, which is a type of recurrent neural network introduced by 

Hochreiter and Schmidhuber (1997). Fig. 4.5 presents a diagram of the VAE-based 

regression model highlighting the modification of both the encoder and decoder by 

adding LSTM layers. Specifically, the encoder is formed by 2 layers (128, 64) and tanh 
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activation function. Analogously, the decoder is constituted by 2 layers (64, 128) and 

tanh activation function. The ratio of validation set has been set to 0.20. Adam 

optimizer has been applied to compile such a model. Subsequently, the model has been 

trained, setting the number of epochs to 100 and the batch size to 32. The prior 

hyperparameters have been defined based on prior experience and heuristic evaluation. 

This step is performed through the implementation of the Python libraries Tensorflow 

and Keras. 

 

 

Fig. 4.5. Diagram of the VAE-based regression model modified to include LSTM layers in 

both encoder and decoder. 
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4.4.3. Evaluation 

The procedure introduced for evaluating the imputation performance of the model is 

described hereunder. 

• All the sequences of the target value obtained from the original dataset are 

considered as the input. The remaining features are considered as explanatory 

variables. 

• n samples with different missing ratios (r1, r2, …, rm) are generated. Each 

sequence contains values missing completely at random. 

• The missing values are initially either masked or imputed to fit the VAE-

regression model. 

• The missing values are imputed by implementing the VAE-regression model. 

 

Additionally, six metrics are estimated to determine the imputation performance of 

the imputation approach (RMSE, MSE, MedAE, MAE, Max. Error, and coefficient of 

determination (R2)). 

 

4.4.4. Comparative Study 

A total of three models are considered for implementing a comparative study. This 

part of the methodology is utilised to validate the proposed method mainly introduced 

in section 4.4.2. LSTM-VAE-based Regressor Analysis. These models referred to 

imputation methodologies that have been considered precedingly by both academia 
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and industry. Thus, this section not only aims to validate the introduced methodology, 

but also analyse the performance of some of the most widely used imputation 

techniques within the shipping industry. 

 

The first method considered is the mean imputation. This imputation method is 

usually implemented as it is easy to interpret, easy to apply, and the execution time 

is low. The second method is employed by Makridis et al. (2020) and consists of 

applying Forward Fill and, subsequently, Backward Fill algorithms. The last model 

analysed is the k-NN. k-NN has been precedingly analysed by Cheliotis et al (2019). 

 

4.5. A Novel Framework for the Identification of Steady 

States4 

The novel methodology is graphically represented in Fig. 4.6. The first step refers to 

the pre-processing of the input time series data, in which the overall time series is 

sectioned into sequences by applying the sliding window algorithm. Subsequently, each 

sequence is transformed into an image by estimating the transition matrix obtained 

from the implementation of the first-order Markov Chain. To adequately determine 

the different regions identified in each of the images, connected component analysis is 

 
4 The operational states’ identification framework presented in this section has been already converted 

to a journal paper, and has been published in the Applied Ocean Research journal (Velasco-Gallego and 

Lazakis, 2022e). 
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conducted and, consequently, post-processing is performed on the outcoming images 

to transform them into sequences. As the states are labelled per sequence, results from 

the preceding phase need to be also pooled to achieve the input time series with the 

resulting labels that specify the different steady states identified. The main 

contributions of this section are summarised as follows: 

• Development of a time series approach for the identification of operational 

steady states of marine machinery. 

• Application of the first-order Markov chain to encode time series data into 

images. 

• Consideration of connected component analysis to identify steady and 

unsteady states. 
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Fig. 4.6. Novel framework for the identification of steady states. 
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4.5.1. Data Pre-processing 

Data imputation is performed due to the missing values that are usually encountered. 

Moreover, data denoising is also performed to assess if the identification of steady 

states is enhanced. Exponentially Weighted Moving Average (EWMA) is applied 

accordingly. Finally, the time series is divided into sequences through the application 

of the sliding window algorithm. 

 

4.5.2. Image Generation 

To adequately identify the different steady states all along the analysed data set, the 

input time series is transformed into an image by implementing the first-order Markov 

chain. The image generated refers to the transition matrix, which is estimated as 

represented in section 4.3.2. Univariate Imputation. First-order Markov chain. 

 

4.5.3. Connected Component Analysis 

By considering the transition matrix estimated in the preceding step as a collection of 

discrete cells, a.k.a., pixels, the transformation from time series to image is achieved. 

Thus, each pixel is associated with a pixel value, which lies between 0 and 1 (inclusive) 

and refers to the probabilities formerly estimated. 
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In turn, to facilitate the implementation of connected component analysis, the image 

outlined is converted to a binary one with only two possible intensity values. Such a 

conversion is performed according to (Eq. 41), in which the binary image is obtained 

by classifying the different pixel values into either 0, if the probability associated with 

the pixel is equal to 0, or 1, otherwise. Thus, those pixels that present information 

about a transition between states can be efficiently identified. 

 

Pij= {
0, if Pij=0

1, otherwise
 (Eq. 41) 

 

By applying this conversion, the distinct transition clusters presented within the image 

can be labelled. Accordingly, pixel connectivity is analysed, which characterises the 

relationship between pixels. To consider that two neighbouring cells are connected, 

they must present the same pixel value. For this inquiry such a connectivity is 

formulated by applying the 4-neighbours adjacency criterion (see Fig. 4.7). Thus, the 

notation of neighbourhood for such a case is expressed hereunder. 

 

N4(p)={(x+1, y). (x-1, y), (x, y+1), (x, y-1)} (Eq. 42) 
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Fig. 4.7. Graphical representation of the 4-connected neighbourhood. 

 

All possible neighbouring pixel connectivity is evaluated to determine the distinct sets 

of connected pixels, a.k.a. connected components. Therefore, the last step of this phase, 

named connected components labelling, is achieved, in which the different connected 

components are clustered to identify the different states, and in turn determine those 

that only refers to steady states. A graphical representation of such a phase is 

expressed in Fig. 4.8. 

 

 

Fig. 4.8. Connected component analysis phase representation. 
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4.5.4. Data Post-processing 

As the results outlined in the preceding section are structured in the form of images, 

the pixel values of which pertaining to the labels obtained from the connected 

component analysis, inverse transformation needs to be applied to convert such images 

into distinct time series sequences. Thus, each sequence instance is associated with a 

temporal label, as different timestamps can be contained in more than one resulting 

sequence. Thus, such sequences need to be pooled to obtain a unique label per instance 

of the input time series. To that end, the following approach is applied: if all the 

temporal labels for a particular instance present the same value, that instance is part 

of a steady state. Otherwise, if the temporal labels associated with a specific instance 

differ in regard to their respective values, it is assumed that the instance could not be 

related to a particular state, and thus such an instance cannot be considered for further 

analysis. A graphical representation of such a process is described in Fig. 4.9. 

 

Fig. 4.9. Graphical representation of the post-processing phase. 
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4.6. Chapter Summary 

This chapter presented the novel methodological components of the data pre-

processing module. Two main phases have been analysed due to their lack of analysis 

and formalisation, and its criticality to ensure data quality. These are the data 

imputation and the operational steady states’ identification phases. To address the 

challenge of data imputation, a total of three distinct methodologies have been 

proposed. The first one, refers to a comparative methodology of both univariate and 

multivariate and imputation techniques. The second method introduced is a novel 

hybrid imputation framework constituted by a total of three main stages: 1) 

operational states’ identification through the implementation of the k-means 

algorithm, 2) univariate imputation by applying the first-order Markov chain, and 3) 

multivariate imputation through the integration of the multivariate comparative 

analysis performed in the preceding method. To finalise the data imputation study, a 

DL method was also analysed, which was identified as LSTM-based VAE for 

regression. With regards to the operational steady states’ identification task, a time 

series imaging approach by implementing the first-order Markov chain in tandem with 

connected component analysis was proposed. 
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Chapter 5  

Methodology: Part III. The Diagnostic 

and Predictive Analytics Modules 

 

5.1. Chapter Overview 

The novel methodologies introduced in both diagnostic and predictive analytics 

module of the maintenance analytics framework are presented in this chapter. 

 

5.2. Diagnostic and Predictive Analytics Module Overview 

The diagnostic analytics module aims to determine the current health state of the 

marine systems. Accordingly, two main stages are introduced: fault detection, and 

fault identification. In addition, the predictive analytics module is introduced. This 

module aims to determine the future health state of the marine systems. Accordingly, 

the Remaining Useful Life (RUL) prediction framework is introduced. The overview 

of these modules is graphically represented in Fig. 5.1. Each of the stages of the 

modules are further expanded in the subsequent sections of this chapter. 
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Fig. 5.1. Overview of the diagnostic and predictive analytics modules. 

 

5.3. Diagnostic Analytics 

5.3.1. Fault Detection5 

The proposed methodology is graphically represented in Fig. 5.2. The first step refers 

to time series denoising, which is applied through the implementation of LSTM-based 

VAE NN. Accordingly, the NRMSE between the input time series and the generated 

time series is determined. By estimating such a coefficient for each generated time 

series, the NRMSE matrix is obtained. Therefore, if image thresholding is applied by 

considering multi-level Otsu’s thresholding method, the anomalousness of each 

instance of all the analysed sequences can be determined, thus labelling the behaviour 

 
5 The fault detection framework presented in this section has been already converted to a journal paper, 

and has been published in the Expert Systems with Applications journal (Velasco-Gallego and Lazakis, 

2022d). 
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identified at each time step. The training process of such an approach are performed 

offline, whereas the remaining steps are performed online. The two processes are 

described next in more detail. The main contributions of this section are summarised 

hereunder. 

• The introduction of a LSTM-based VAE as part of the fault detection 

methodology. 

• The utilisation of image thresholding techniques for the detection of anomalies 

through the estimation of the NRMSE matrix and the application of multi-

level Otsu’s thresholding. 
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Fig. 5.2. Graphical representation of the fault detection framework. 
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5.3.1.1. Time Series Denoising 

VAE, developed by Kingma and Welling (2013), is a generative algorithm capable of 

modelling the distribution of the data. This is a modification of an autoencoder that 

learns the parameters of a probability distribution. The model is constituted by a 

probabilistic encoder, which aims to learn both how to reduce the input dimensions 

and compress the inputs into an encoded representation. This compressed state, a.k.a. 

latent space representation, presents the lowest possible dimensions of the inputs. 

Subsequently, the decoder is utilised to learn how to reconstruct the data contained 

in the latent space representation to reproduce the inputs as analogously as possible. 

The architecture of such a model is described in Fig. 5.3. 

 

 

Fig. 5.3. VAE architecture. 
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The loss function being minimised is constituted by the reconstruction loss, which 

aims to ensure the efficient performance of the encoder-decoder arrangement, and the 

regularisation loss. The latter is determined by estimating the Kullback-Leiber 

divergence between the approximate posterior and prior latent variable z. 

 

To consider the temporal dependences of sensor data of marine systems, the VAE 

approach is combined with LSTM in both the encoder and the decoder. LSTM is a 

type of Recurrent Neural Network (RNN) introduced by Hochreiter and Schmidhuber 

(1997) that learns long-term dependencies. As described in Fig. 5.4, the core 

component of such a network is the memory cell, which consists of a cell state vector 

and gating units, the latter regulating the information flow into and out of the 

memory, to maintain its state over time. Specifically, a total of three non-linear gating 

units are introduced, which regulate and protect the cell states. By introducing these 

gating units, information can easily flow throughout the entire chain, thus eliminating 

the gradient vanish problem whilst learning the long-term dependencies. 
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Fig. 5.4. LSTM cell architecture. 

 

This step is performed through the implementation of the Python libraries Tensorflow 

(Abadi et al., 2016) and Keras (Chollet et al., 2015). 

 

5.3.1.2. Fault Detection 

By performing the preceding step, that is time series denoising, it is assumed that 

anomalous sequences will not be able to be properly reconstructed, and thus the 

resulting sequence will not be analogous to the observed one. Accordingly, the 

Normalised Root Mean Square Error (NRMSE) is estimated as presented in Eq. 43. 
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NRMSE = 
RMSE

y̅
, (Eq. 43) 

 

where RMSE is the Root Mean Square Error y̅ and is the mean of the observed values 

presented in the subsequence. The NRMSE has been utilised instead of the RMSE to 

facilitate the comparison of other parameters that present distinct scales. The RMSE 

metric has been estimated as defined in 4.2.6. Evaluation. 

 

Therefore, if such a value is estimated for every subsequence, a NRMSE matrix is 

achieved. Thus, as anomalous pixels will present distinct intensities over operational 

values, they can be adequately detected by applying image thresholding. This is a 

phase that segments the image into significantly distinct and non-overlapping 

homogenous regions. For this inquiry, such a segmentation is performed by analysing 

the pixels’ intensity and by considering a threshold-based technique. Specifically, the 

multi-level Otsu’s method is applied. Such a method performs image thresholding by 

proposing a criterion for maximising the between-class variance of pixel intensity. If 

the NRMSE matrix is considered as a 2D greyscale intensity function, it can be 

established that such an image contains a total of N pixels with grey levels from 1 to 

L. The pixels’ number with grey level i is denoted as fi. Thus, the probability of grey 

level i in an image can be defined as expressed in Eq. 44. 
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pi = 
fi
N

 (Eq. 44) 

 

By considering a total of M-1 thresholds, {t1, t2, …, tM-1}, which segments the initial 

image into M classes: C1 for [1, …, t1], C2 for [t1+1, …, t2], …, Ci for [ti-1+1,…, ti], …, 

and CM for [tM-1+1, …, L], the optimal thresholds {t1
*,t2

*,…,tM-1
*} are selected by 

maximising the between-class variance, σB
2, as described hereunder. 

 

{t1
*,t2

*,…,tM-1
*}=arg max  {σB

2 (t1, t2, …,tM-1)} ,    1≤t1<…<tM-1<L   

 

where 

 

σB
2= ∑ωk

M

k=1

 (μ
k
- μ

T
)
2
 (Eq. 45) 

 

with 

 

ωk = ∑ pi

i∈Ck

, (Eq. 46) 
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μ
k
= ∑

ipi

ω(k)
i∈Ck

. (Eq. 47) 

 

The ωk in Eq. 49 relates to the zeroth-order cumulative moment of the kth class Ck, 

and the numerator in Eq. (50) refers to the first-order cumulative moment of the kth 

class Ck; that is, 

 

μ(k)= ∑ ipi

i∈Ck

. (Eq. 48) 

 

To adequately select the optimal number of classes, GMM with an EM algorithm is 

implemented. 

 

5.3.2. Fault Identification6 

The proposed methodology is graphically represented in Fig. 5.5. The first phase refers 

to the encoding of time series sequences into images through the application of the 

first-order Markov chain model. Subsequently, to perform the fault classification task, 

the second phase is implemented, in which image classification is applied by applying 

the deep learning architectures ResNet50V2 and CNN. The contribution of this phase 

can be summarised as follows: 

 
6 The fault identification framework presented in this section has been already converted to a journal 

paper, and has been published in the Ocean Engineering journal (Velasco-Gallego and Lazakis, 2022b). 
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• The introduction of an image classification approach for performing fault 

classification. 

• The analysis of the first-order Markov chain model as a time series image 

technique. 

• The analysis of CNN and ResNet50V2 as image classifiers. 

 

 

Fig. 5.5. Graphical representation of the proposed methodology. 

 

5.3.2.1. Time Series Imaging 

The time series are encoded into images through the estimation of the transition 

matrix of the first-order Markov chain as defined in 4.5.2. Image Generation. 
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5.3.2.2. Image Classification with ResNet50V2 and CNNs 

The first method considered as image classifier is the ResNet50V2. ResNet50V2 is a 

type of deep residual network proposed by He et al. (2016b). Deep residual networks, 

a.k.a. ResNets (He et al., 2016), consists of many stacked “Residual Units”, which can 

be expressed in a general form as presented in Eq. 54: 

 

y l = h(x l) + ℱ(x l, Wl), 

x l+1 = f(y l), 
(Eq. 49) 

 

where x l and x l+1 are input and output of the l-th unit, and ℱ is a residual function. 

h(x l)= x l is an identity mapping and f is a ReLU (Nair and Hinton, 2010) function. 

The essence of ResNets is to learn the additive residual function ℱ respecting h(x l) by 

attaching an identify skip connection or “shortcut”. ResNet50V2 is an enhancement of 

ResNet50 in which a new residual unit has been introduced to both facilitate an easier 

training and enhance generalisation. 

 

Due to the lack of fault data within the sipping industry, the ResNet50V2 network 

has been pretrained by utilising the popular dataset ImageNet, which presents more 

than 1000-class single labels (Russakovsky et al., 2014). 
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The second analysed method is the CNN, which is a type of feedforward Artificial 

Neural Networks (ANNs) that is constituted by a feature extraction step and either a 

classification or a regression task. As the main objective of this study is to develop an 

approach for fault classification, only the classification task is considered in this 

context. 

 

The first stage, feature extraction, is comprised of both convolutional layers and 

pooling layers. The convolutional layer is usually also referred to as the main block of 

CNN models. This consists of a set of filters, which are learnt throughout the training 

process, that convolve with the image and generate a feature map. Specifically, the 

filter slides over the entire image so that the dot product between each element of 

both the filter and the input can be estimated at every spatial position. To reduce the 

dimension of the resulting feature map, a pooling layer is usually introduced after the 

application of a convolutional layer. Although a loss of information can be perceived 

by applying such layers, they assist in averting overfitting and reducing the 

computational cost. The pooling task is performed by sectioning the input into non-

overlapping rectangular subregions so that information from each subregion can be 

extracted. For this inquiry the max pooling layer is implemented. 

 

The second stage refers to the classification task, implemented through the utilisation 

of fully connected layers. Such layers apply high-level logical operations by considering 
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features from preceding layers. The output of the final layer is a n dimensional vector, 

n being the total number of classes being considered. 

 

This step is performed by implementing of Python libraries Tensorflow (Abadi et al., 

2016) and Keras (Chollet et al., 2015). 

 

5.4. Predictive Analytics 

5.4.1. Remaining Useful Life (RUL) Prediction Framework7 

A graphical representation of the proposed RUL methodology is presented in Fig 5.9. 

Due to the lack of degradation data, the first stage refers to the data augmentation 

phase. This module is comprised of a total of two phases. The first phase aims to 

generate synthetic operational data from the observed time series. Thus, the number 

of sequences to be used for the training of the different DL models is increased. The 

second step aims to transform the simulated operational data into degradation 

sequences through the implementation of an exponential model with Brownian motion. 

The second step consists of estimating the condition indicator of each of the simulated 

sequences through the implementation of the piecewise linear algorithm. Step three 

performs the training of the three proposed models: Markov-CNN, 1D-CNN, and 

LSTM. As each of the models will provide different predictions, these need to be 

 
7 The RUL prediction framework presented in this section has been already converted to a journal paper, 

and has been submitted in the Engineering Applications of Artificial Intelligence journal (Velasco-

Gallego and Lazakis, 2022a). 
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integrated somehow. Accordingly, the fourth and final step is implemented, which 

considers the weighted average ensemble approach to obtain the final RUL prediction. 

The above steps will be described in more detail in the following paragraphs. A 

summary of the main contributions of this section is presented hereunder. 

• The addition of a degradation simulation module prior to the RUL prediction 

approach to perform data augmentation, and thus deal with the lack of fault 

data of marine machinery systems. This comprises a simulation module with 

both first-order Markov Chain model and an exponential model with Brownian 

motion approach. 

• The application of an ensemble method as a RUL prediction approach. A total 

of three distinct DL architectures are considered: Markov-CNN, 1D-CNN, and 

LSTM. 

• The analysis of time series imaging for the prediction of RUL. A novel method 

is considered to transform the analysed time series into an image through the 

implementation of the first-order Markov chain. Once all the sequences of the 

time series have been transformed into images by applying such a method, a 

CNN is introduced to perform the RUL prediction task. 
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Fig. 5.6. Graphical representation of the predictive analytics module. 

 

5.4.1.1. Data Augmentation 

This is comprised mainly of two parts. The first part aims to generate synthetic time 

series by considering sensor data collected from marine machinery. The model 

implemented in this inquiry is the first-order Markov chain, as it has been presented 

in 4.3.2. Univariate imputation. First-order Markov Chain. However, the methodology 

has been slightly modified to generate synthetic sequences instead of imputing missing 

values. 
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The second part of this approach refers to the simulation of the degradation patterns. 

Accordingly, an exponential model with Brownian motion is considered due to their 

effective universality in machinery to reflect the characteristics of accelerated fault 

degradation in engineering (Li et al., 2021). 

 

5.4.1.2. Condition Indicator Estimation through the Implementation 

of the Piecewise Linear Algorithm 

The piecewise linear labelling approach is implemented to obtain the condition 

indicator based on the simulated degradation pattern, as this approach has been 

accepted as the most effective method for such a task (Gribbestad et al. (2021)). 

Therefore, the condition indicator is initially constant, as no symptoms of degradation 

are experienced until either a certain level is achieved, or a fault has arisen. On that 

occasion, the condition indicator decreases until the machinery is no longer operating 

due to a failure occurrence, thus achieving the minimum value possible of such an 

indicator, which is 0. In this study it is considered that the condition indicator is the 

normalised RUL. 
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5.4.1.3. Time Series Imaging through the Implementation of the 

First-order Markov Chain Model 

As expressed, precedingly, this study also analysis the first-order Markov chain model 

by estimating the transition matrix for image representation. This part of the 

methodology is performed as defined in section 4.5.2. Image Generation. 

 

5.4.1.4. Remaining Useful Life (RUL) Prediction 

Markov-Convolutional Neural Network (CNN) 

The architecture of the Markov-CNN was previously introduced in section 5.3.2.2. 

Image classification with ResNet50V2 and CNNs. However, such an architecture has 

been modified to perform a regression task instead of a classification one. Accordingly, 

the last Fully Connected Layer (FCL) has been modified to present as output a unique 

numeric value, which refers to the current RUL prediction. A graphical representation 

of the Markov-CNN architecture for regression is presented in Fig. 5.10. 

 

Fig. 5.7. Graphical representation of the Markov-CNN architecture for regression. 
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1D-Convolutional Neural Network (CNN) 

Analogous to the preceding architecture, a 1D-CNN model is presented in this 

subsection. However, unlike Markov-CNN, the input of this model is a sequence of the 

original time series of sequence length n (n x 1 (a 1D architecture is considered for 

this context) x 1 (a univariate approach is considered for this inquiry)). A graphical 

representation of this type of architecture is described in Fig. 5.11. Although some 

indications of the hyperparameters utilised can be perceived in this figure, a more 

detailed explanation is provided in the subsequent section. 

 

Fig. 5.8. Graphical representation of the 1D-CNN architecture. 
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Long Short-Term Memory (LSTM) 

LSTM has provided promising results for predicting RUL of marine machinery, as 

stated by Han et al. (2021). Therefore, a continuous analysis of such a deep learning 

model is worth considering. As precedingly stated, LSTM is a type of RNN introduced 

by Hochreiter and Schmidhuber (1997) that learns long-term dependencies. The 

memory cell is its core component, which consists of a cell state vector and gating 

units, the latter regulating the information flow into and out of the memory so that 

its state can be maintained over time. 

 

5.4.1.5. Weighted Average Ensemble 

To integrate the resulting predictions obtained through the implementation of each 

model established in this inquiry, a simple pooling approach is considered by applying 

a weighted arithmetic mean. The estimation of such weights is performed through the 

application of the grid search optimisation algorithm, which considers a set of 

combinations that satisfies Eq. 50. The pooling operation has been performed 

according to Eq. 51. 

 

w1+ w2+…+ wn = 1 (Eq. 50) 

 

pfinal= ∑wipi

n

i=1

, 
(Eq. 51) 
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where wi is the selected weight for the approach i, and pi is the RUL prediction of that 

same approach. For this inquiry, n, which refers to the number of considered 

approaches, is three, thus only considering the ones presented in the preceding sections 

(Markov-CNN, 1D-CNN, LSTM). 

 

5.5. Chapter Summary 

This chapter presented the novel methodological components of the diagnostic 

analytics module. This module is comprised of fault detection and fault identification. 

For the fault detection task, a LSTM-based VAE in tandem with multi-Otsu’s 

thresholding was introduced. With regards to the fault identification task, both time 

series imaging and image classification models were analysed. Specifically, ResNet50V2 

and CNN were considered due to its capability of extracting deep features. 

 

With regards to the predictive analytics module, a RUL prediction framework was 

presented, which was comprised of an ensemble model constituted by a total of three 

models: Markov-CNN, 1D-CNN, and LSTM. 

  



 

Chapter 6 163 Christian Velasco-Gallego 

Chapter 6  

Case Studies and Results: Part I. The 

Data Pre-processing Module 

 

6.1. Chapter Overview 

Having formalised the novel maintenance analytics framework for marine systems 

based on the challenges and gaps identified within the maritime sector, a series of case 

studies are introduced to validate its performance. In total, 4 case studies are 

introduced in this chapter, each of one referring to one of the novelties presented in 

the data pre-processing module. It is worth highlighting that to assess the 

generalisation capabilities of the introduced modules and methodologies, each case 

study is unique and considers different time series sequences, even though some case 

studies may refer to the same system. 

 

6.2. Case Study 1. Comparative Methodology for Data 

Imputation8 

This case study aims to validate the methodology introduced in section 4.2. 

Comparative Methodology of Univariate and Multivariate Imputation Techniques. For 

 
8 The data imputation framework presented in this section has been already converted to a journal paper, 

and has been published in the Ocean Engineering journal (Velasco-Gallego and Lazakis, 2020). 
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this case study, a DMD-MAN B&W 6S50MC-C main propulsion engine of a cargo 

vessel is considered This is a camshaft controlled two-stroke engine, which utilises 

super long stroke to bore ratio, constituted by a total of 6 cylinders with 50 centimetres 

diameter pistons. In total, seven parameters are analysed: 1) rotational speed, 2) 

power, 3) fuel flow rate of the main engine, 4) inlet pressure of the lubrication oil 

system, 5) inlet pressure of the jacket cooling water system, 6) turbine lubricating oil 

inlet pressure of the turbocharger, and 7) scavenging air pressure of the scavenging 

air receiver (please see Table 6.1 for a more comprehensive description). 

 

Table 6.1. Main engine system monitored parameters. 

 Parameter Units 

Main Engine Rotational Speed r/min 

 Power kW 

 Fuel Flow Rate t/hr 

Lubrication Oil System Inlet Pressure bar 

Jacket Cooling Water System Inlet Pressure bar 

Turbocharger Turbine Lubricating Oil Inlet Pressure bar 

Scavenge Air Receiver Scavenging Air Pressure bar 

   

 

A total of 2,000 instances that refer to steady operational states of machinery are 

analysed. These instances, which have been recorded in a 1-minute frequency basis, 

are graphically represented in Figs. 6.1 – 6.7. As perceived in Fig. 6.1, a total of four 

major operational steady states are identified when the main engine rotational speed 

is considered. The first, and largest, steady operational state initiates at the first 

instant and persists over half of the recorded time. The values of this state are 
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stabilised around 105.0 r/min. Then, a slight adjustment is perceived, thus the 

rotational speed decreasing to approximately 102.5 r/min. After roughly 300 minutes, 

a sudden abrupt change facilitates the increment of the revolutions, and the maximum 

value perceived throughout the time series is achieved. This value is greater than 110.0 

r/min. This state remains for various minutes. Subsequently, a decrease of the 

rotational speed is presented in three slight phases. This is when the minimum state 

is recorded, the values of which are lesser than 100.0 r/min. Such a state is initiated 

at 1,500 minutes and remains constant until the end of the series. The abrupt changes 

between steady operational states refer to small adjustments that are applied due to 

the contractual agreements between the charterer and the shipowner in relation to the 

vessel speed and the fuel oil consumption per day. 

 

 

Fig. 6.1. Time series plot of the main engine rotational speed. 
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A similar evolution as the main engine rotational speed is perceived when the main 

engine power, the main engine fuel flow rate, and the scavenging air pressure of the 

scavenge air receiver system are considered (Figs. 6.2 – 6.4). 

 

 

Fig. 6.2. Time series plot of the main engine power. 

 

 

Fig. 6.3. Time series plot of the main engine fuel flow rate. 
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Fig. 6.4. Time series plot of the scavenging air pressure of the scavenge air receiver system. 

 

With regards to the lubrication oil inlet pressure, only two main steady states are 

perceived. The first one initiates at the fist instant and persists for more than 1,250 

minutes. In this first state the values are stabilised between 2.39 and 2.40 bar. Then, 

a slight adjustment facilitates a decrease of the inlet pressure to approximately 2.35 

bar (Fig. 6.5). 

 

 

Fig. 6.5. Time series plot of lubrication oil inlet pressure. 
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By contrast, both the inlet pressures of both the jacket water cooling and the 

turbocharger lubrication oil systems present only a unique state (Fig. 6.6 and Fig. 

6.7). In the case of the jacket water cooling system inlet pressure the values fluctuate 

between 3.50 and 3.65 bar. However, the values of the turbocharger lubrication oil 

inlet pressure remain between 1.8 and 2.6 bar (Fig. 6.7). 

 

 

Fig. 6.6. Time series plot of the jacket water cooling system inlet pressure. 

 

Fig. 6.7. Time series plot of the turbine lubrication oil inlet pressure of the turbocharger. 
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Table 6.2. Descriptive statistics of the monitored features. 

  

Main Engine   
Lubrication 

Oil 
  

Jacket 

Cooling 

Water 

  Turbocharger   

Scav. 

Air 

Receiver. 

  

Speed 

(rev./min) 

Power 

(kW) 

Fuel 

Flow 

Rate 

(tn/hr) 

  
Inlet Press. 

(bar) 
  

Inlet 

Press. 

(bar) 

  
T LO Inlet 

Press. (bar) 
  

Scav. 

Air 

Press. 

(bar) 

Mean 102.95 4421.09 0.88  2.38  3.56  2.20  1.04 

Std. 2.98 438.71 0.08  0.02  0.02  0.16  0.18 

Min. 98.32 3676.14 0.71  2.33  3.49  1.80  0.73 

25% 98.94 3878.76 0.80  2.34  3.54  2.10  0.83 

50% 104.37 4601.76 0.90  2.39  3.56  2.20  1.12 

75% 104.47 4697.83 0.93  2.39  3.57  2.30  1.16 

Max. 110.96 5528.74 1.11   2.41   3.65   2.60   1.48 

 

The descriptive statistics are also presented in Table 6.2. As these statistics indicate, 

all the features excluding the inlet pressure of the jacket cooling water system and the 

turbine lubrication oil inlet pressure of the turbocharger, which present nearly a 

symmetric distribution, are slightly or highly skewed. Accordingly, the Box-Cox 

transformation needs to be applied to all the identified skewed features so that their 

skewness can be removed. Standardisation is also implemented to avoid unequal 

contribution of the features when considering the multivariate imputation techniques. 

 

To analyse the relationship between features, the Pearson’s and Spearman’s rank 

correlation coefficients are estimated. The absolute values of the obtained results are 

contained in two different matrices (Pearson’s correlation coefficient matrix and 

Spearman’s rank correlation coefficient matrix) and represented by displaying 

heatmap plots (Fig. 6.8 and Fig. 6.9). 
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Fig. 6.8. Heatmap plot of Pearson’s correlation coefficient matrix. 

 

Fig. 6.9. Heatmap plot of Spearman’s rank correlation coefficient matrix. 
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The rotational speed of the marine engine is highly correlated with the engine power. 

Additionally, it is also correlated with the fuel flow rate and the scavenge air pressure, 

as these parameters influence the engine combustion. Thus, the power of the marine 

engine presents a strong relationship with the engine rotational speed, the fuel flow 

rate, and the scavenge air pressure. The fuel flow rate and the scavenge air pressure 

are not only correlated with the rotational speed and the engine power but also 

between themselves, as they present a relationship derived from the conditions needed 

along the combustion process. The inlet pressure of the jacket cooling water system is 

not correlated with any presented feature, as it does not have any contact with any 

other analysed system. Similarly, the turbine lubrication oil inlet pressure of the 

turbocharger and the inlet pressure of the lubrication oil system neither influence nor 

are influenced by any analysed feature. 

 

After performing the cross-reference between data-driven correlation analysis and 

engineering knowledge, the resulting correlation matrix is presented in Table 6.3. Only 

those features that have at least one relationship with another feature are presented 

in this table. 

 

The main imputation results when considering the main engine power are graphically 

represented in Fig. 6.10. This graphical representation is obtained from presenting a 

scatterplot between the observed and the imputed instances for each analysed method. 
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Table 6.3. Correlation matrix of the monitored features. 

 
Main Engine   

Scav. Air 

Receiver 

 

Rotational Speed 

(rev/min) 

Power 

(kW) 

Fuel Flow Rate 

(tn/hr) 
  

Scav. Air Press. 

(bar) 

Rotational Speed 

(rev/min) 
 ● ●  ● 

Power (kW) ●  ●  ● 

Fuel Flow Rate 

(tn/hr) 
● ●   ● 

Scav. Air Press. 

(bar) 
● ● ●   

 

   

(a) Mean Imputation (b) STL Decomposition (c) Holt Winters’ Seasonal 

   

(d) ARIMA (e) PLS Regression (f) Ridge Regression 
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(g) LASSO Regression (h) ElasticNet Regression (i) k-NN 

   

(j) SVR with Linear Kernel (k) SVR with RBF Kernel (l) NNs with 1 hidden layer 

   

(m) NNs with 2 hidden layers (n) NNs with 3 hidden layers (o) VAR 
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(p) DTRs (q) BT (SVR) (r) BT (k-NN) 

   

(s) Random Forests (t) AdaBoost  

 

Fig. 6.10. Comparison between observed values of the main engine power parameter and 

imputed values through the implementation of the machine learning and time series 

forecasting models. 

 

As perceived in Fig. 6.10 and Tables 6.4 - 6.10, VAR is the most accurate multivariate 

imputation technique and that ARIMA outperforms the other univariate imputation 
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methods. A comprehensive description of all analysed data imputation techniques is 

presented in the subsequent paragraphs. 

 

The first univariate imputation method analysed is the mean imputation, considered 

a naïve method that imputes incomplete values with the mean of the current analysed 

sample. Mean imputation yielded one of the worst results of the entire modelled 

techniques, leading to the most biased estimates when imputing missing values 

identified in the main engine fuel flow rate (with a MAPE of 9.17% and MedAE of 

0.066 tn/hr, see Table 6.6), and the scavenging air pressure of the scavenge air receiver 

(with a MAPE of 19.97% and MedAE of 0.18 bar, see Table 6.10). This lack of 

accuracy is due to the distortion of the parameter distribution, as expressed in Fig. 

6.10 (a), where the incomplete values are imputed with nearly the same value, which 

corresponds with the mean of the current sample being analysed, and thus obtaining 

bias estimates. Therefore, by disrupting the distribution of the variable the 

relationship between variables is also affected, and thus reducing correlation estimates 

towards zero. Furthermore, if the nature of the incomplete values is determined by 

either missing at random (MAR) or not missing at random (NMAR) and the mean 

imputation is utilised, the mean estimate may be biased. Despite the disadvantages 

presented, this univariate imputation technique is usually applied due to its easiness 

in both interpretation and implementation. 
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The STL technique is the second univariate imputation technique analysed. This 

technique outperformed the remaining models when imputing the missing values for 

the inlet pressure parameter of the lubrication oil system. The technique achieved an 

execution time of 0.02 seconds and a RMSE of 0.002 bar (please see Table 6.7). STL 

is robust to outliers, the trend smoothness can be adjusted, and any type of seasonality 

can be considered and regulated over time. In addition, the execution time is low. 

However, certain disadvantages cannot be diminished. For instance, it can only be 

implemented if the time series presents trend and seasonality. In addition, the seasonal 

period needs to be estimated. This fact may lead to bias estimates if this period is not 

optimally selected. 

 

The third univariate imputation technique refers to the Holt-Winters’ seasonal 

method. This method leads to the one of the most accurate results in the main engine 

rotational speed parameter (with a MAPE of 0.13% and a MedAE of 0.08 r/min, see 

Table 6.4). Accordingly, as perceived in Fig. 6.10 (c), nearly all predicted estimates 

are similar to the observed occurrences. Exponential smoothing methods are easy to 

interpret and apply. Moreover, recent observations are considered more significant 

than earlier observations. Also, different exponential smoothing methods can be 

applied based on the characteristics of the data (e.g., simple exponential smoothing 

can be implemented when the time series does not present trend and seasonality, 

whereas Holt’s linear trend method is more appropriate if a trend can be identified). 

Despite these advantages, these methods present two main drawbacks. The first one 
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refers to the adequate selection of the exponential smoothing method based on the 

characteristics of the data. The second one relates to the optimal selection of the 

smoothing parameter. 

 

The fourth and last univariate imputation method refers to ARIMA models. ARIMA 

models outperformed the remaining techniques in all the imputation studies (see Table 

6.4 – Table 6.10). For instance, a MedAE of 0.076 r/min and a Max Error of 2.4 r/min 

were obtained when imputing the missing values of the main engine rotational speed 

parameter. Accordingly, it can be stated that one of its main advantages is its high 

accuracy for imputing missing values in short-term time series data. Also, these models 

can be applied to any type of time series. As limitation, it should be highlighted that 

ARIMA models only capture linear relationships. Furthermore, they require a larger 

number of instances in comparison to the other univariate imputation techniques. 

Also, the orders of the differencing, the autoregression, and the moving average model 

need to be optimally selected. With regards to the execution time, ARIMA models 

present more computational cost than any other univariate imputation method 

analysed.  

 

The next group of analysis refer to the multivariate imputation techniques. 

Accordingly, the inlet pressure parameter of the lubrication oil system, the inlet 

pressure parameter of the jacket cooling water system, and the turbine lubricating oil 
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inlet pressure parameter of the turbocharger are excluded from the analysis, as such 

parameters do not present any predictor. With regards to the analysed imputation 

techniques, the first group considered relates to the linear regression methods, which 

consist of PLS and penalised methods (Ridge regression, LASSO regression, and 

ElasticNet regression), are considered. In all cases, the results are analogous, being 

nearly equal in the case of the main engine fuel flow rate (with a MSE of 0.005 

(tn/hr)2, see Table 6.6). In the case of the main engine rotational speed, the Ridge 

regression is the linear regression technique that yields better results (with a RMSE 

of 1.92 r/min and a MedAE of 1.72 r/min, see Table 6.4), whereas in the case of the 

main engine power the PLS is the linear regression method with the best performance 

(with a RMSE of 272.63 kW and a MedAE of 182.38 r/min, see Table 6.5). As 

presented in Fig. 6.10 (e) – Fig. 6.10 (h), the predicted values are more dispersed in 

comparison to the ones estimated by the univariate imputation techniques. This 

indicates that the univariate imputation techniques lead to the best results. The lack 

of accuracy presented by these linear methods can be perceived more significantly in 

the outermost values, those farthest from the line, whereby the lesser values to be 

predicted in the fourth steady state (see Fig. 6.1) present the most extreme values; 

greater than 6,000 kW. Whereas the observed values present a value lower than 4,000 

kW. Such an accuracy can be presented due to either the presence or distinct states 

or the lack of data for a specific operational state. Furthermore, linear regression 

methods only capture linear relationships between the response and the predictors, 

and they are sensitive to outliers. Nevertheless, these methods are easy to interpret, 
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and both their complexity and execution time are low with regards to other 

multivariate imputation methods. 

 

Even though all the analysed relationships between the responses and the predictors 

are linear, non-linear regression methods are also analysed. The first refers to the k-

NN. The main challenge perceived when analysing this method was the optimal 

selection of the number of neighbours. Furthermore, its performance may be degraded 

when considering large samples, the dataset present high dimensionality, and/or when 

either noisy instances or outliers are presented. However, analogous to the linear 

regression methods, its execution time is low. As presented in Tables 6.4 – 6.10 and 

Fig. 6.10 (i), the imputation of this method yields better results than linear regression 

models. Although the Euclidean distance is considered in this study, various distance 

criteria can be utilised when implementing k-NN. 

 

SVR is another of the multivariate imputation methods analysed. Specifically, two 

distinct kernel functions are employed: 1) linear and 2) RBF. The SVR with linear 

kernel function model results in tandem with the mean imputation results lead to the 

worst imputation results. Nevertheless, the predicted values present less dispersion 

and are more analogous to the observed values when the SVR with RBF kernel is 

considered (see Fig 6.10 (k)). Thus, the possibility to employ distinct kernel functions 

makes SVR adaptable. Furthermore, both linear and non-linear relationships can be 



 

Chapter 6 180 Christian Velasco-Gallego 

considered. SVR is also robust to outliers, although a lack of accuracy may be 

presented if the dataset presents noisy data. Also, both the kernel function and the 

tuning parameters need to be optimally selected. Additionally, SVR is not convenient 

when the analysed sample is large, it is difficult to interpret, and its computational 

cost is high. 

 

NNs with one, two, and three hidden layers are also applied in this study. The three 

models yield similar results. However, the execution time increases exponentially when 

additional hidden layers are introduced. Also, from observations of Figs. 6.10 (l) – 

6.10 (n), the predicted values do not correspond with the observed instances. The 

main reason of such an observation may be the amount of data required to train DL 

models. In this study short-term data is considered, whereas DL models required large 

amounts of data to achieve accurate imputations. Also, the architectures of the NNs 

are complex to define, they are susceptible to over-fitting, and their performances are 

unexplained. However, they capture both linear and non-linear relationships. 

 

Analogous to the results obtained from the analysis of univariate imputation 

techniques, the most accurate results of the multivariate imputation group are 

obtained when the VAR models are considered. Their results are analogous to ARIMA 

models (see Tables 6.4 – 6.10), as VAR models are a generalisation of the 

autoregressive models. Thus, as presented in Fig. 6.10 (o), the predicted values are 
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remarkably analogous to the observed instances. VAR models are easy to implement 

and presents high accuracy when short-term data is considered. However, stationarity 

is required. Also, the computational cost of VAR models is higher than other analysed 

models. 

 

The last group of multivariate imputation methods analysed relates to decision tree 

regressors and ensemble methods. All these methods present analogous results (please 

see in Fig. 6.10 (p) – Fig. 6.10 (t)). Decision tree regressors present better imputation 

results than the ensemble methods, although this difference is not significant. 

Additionally, when Tables 6.4 – 6.10 are considered, it can be observed that both 

decision tree regressors and ensemble methods present results similar to other non-

linear regression methods analysed (SVR with RBF kernel and k-NN). Decision tree 

regressors are easy to interpret, present low execution time, and are unlikely to over-

fit. However, they are likely to present sub-optimal imputation performance when 

dealing with continuous data. Also, they are also likely to be unstable, as only one 

tree is modelled and. Thus, small adjustments in the training data may alter the 

partitions completely. To solve such a drawback, ensemble methods are considered.  

 

A summary of both advantages and disadvantages identified for each imputation 

method are summarised in Table 6.11. As stated, precedingly, univariate imputation 

methods yield better results than multivariate imputation methods. A major reason 
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for such a fact may be that large amounts of data are required to train the model 

every time a missing value is imputed. Moreover, multivariate imputation methods 

cannot be performed if the analysed parameter does not present predictors or the 

instances to be utilised include predictors with missing values. Also, their 

computational cost is high, and thus they are not appropriate when the imputation is 

implemented in real-time. Also, multicollinearity among independent variables has not 

been analysed and treated accordingly, which may have led to a decrease in the 

imputation accuracy. 
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Table 6.4. Imputation results of the main engine rotational speed parameter. 

  

Execution 

Time (s) 

MSE 

((r/min)
2
) 

MSLE 

(log((r/min)
2
)) 

RMSE 

(r/min) 
MAPE (%) 

MedAE 

(r/min) 
Max. Error (r/min) 

Mean imputation 0.0002 11.49 0.00011 2.39 2.355 1.920 6.652 

STL decomposition 0.0234 0.066 0.00001 0.118 0.115 0.077 2.643 

Holt Winters 0.1384 0.071 0.00001 0.129 0.126 0.081 2.581 

ARIMA 2.8614 0.063 0.00001 0.118 0.116 0.076 2.404 

PLS regression 0.0059 9.162 0.00084 1.989 1.952 1.731 9.746 

Ridge regression 0.0037 8.342 0.00076 1.920 1.882 1.718 9.455 

LASSO regression 0.0964 8.875 0.00081 1.976 1.939 1.854 9.604 

ElasticNet regression 0.0879 8.935 0.00082 1.981 1.944 1.855 9.570 

k-Nearest Neighbors 0.0025 4.666 0.00041 1.198 1.151 0.236 8.520 

SVR (linear kernel) 0.0401 10.215 0.00094 2.164 2.129 1.852 8.515 

SVR (RBF Kernel) 0.0268 4.799 0.00043 1.226 1.178 0.185 6.960 

NN (1 hidden layer) 53.3214 6.274 0.00057 1.636 1.593 1.193 7.107 

NN (2 hidden layers) 55.5707 5.913 0.00054 1.553 1.509 0.934 6.887 

NN (3 hidden layers) 57.6319 6.004 0.00054 1.562 1.518 0.737 6.826 

Vector autoregression 2.9989 0.085 0.00001 0.144 0.140 0.084 2.557 

Decision tree regressor 0.0040 5.292 0.00047 1.143 1.095 0.140 9.170 

Bagged tree (SVR) 0.1115 4.770 0.00042 1.221 1.173 0.201 7.033 

Bagged tree (k-NN) 0.0208 4.494 0.00040 1.147 1.099 0.162 8.367 

Random forest 0.2710 4.621 0.00041 1.129 1.081 0.179 8.425 

AdaBoost 0.0259 4.020 0.00036 1.125 1.084 0.330 9.203 
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Table 6.5. Imputation results of the main engine power parameter. 

  

Execution 

Time (s) 
MSE (kW

2
) 

MSLE 

(log(kW
2
)) 

RMSE (kW) 
MAPE 

(%) 

MedAE 

(kW) 
Max. Error (kW) 

Mean imputation 0.0002 282912.4 0.0155 423.433 10.541 419.265 938.840 

STL decomposition 0.0237 1808.440 0.0001 29.691 0.688 23.877 330.164 

Holt Winters 0.1862 1867.622 0.0001 30.660 0.716 24.158 329.228 

ARIMA 1.5618 1520.140 0.0001 27.123 0.631 21.868 303.016 

PLS regression 0.0066 165252.430 0.0084 272.632 6.609 182.381 2109.975 

Ridge regression 0.0040 165309.421 0.0085 273.729 6.637 183.178 2069.081 

LASSO regression 0.0849 176189.410 0.0092 297.426 7.256 233.327 1986.912 

ElasticNet regression 0.0693 178432.169 0.0093 299.607 7.311 242.007 1986.023 

k-Nearest Neighbors 0.0029 78476.090 0.0039 189.779 4.394 111.675 1061.520 

SVR (linear kernel) 0.0439 418935.348 0.0195 370.683 9.193 183.248 2469.608 

SVR (RBF Kernel) 0.0446 70917.784 0.0035 176.527 4.052 89.021 919.772 

NN (1 hidden layer) 63.6674 128537.8 0.0070 271.869 6.556 226.968 1436.062 

NN (2 hidden layers) 63.8124 112474.7 0.0059 250.320 5.988 161.291 1224.988 

NN (3 hidden layers) 64.0917 115563.2 0.0061 250.641 5.993 141.166 1172.232 

Vector autoregression 3.0802 2562.996 0.0001 36.648 0.858 27.429 290.651 

Decision tree regressor 0.0033 77802.296 0.0037 171.422 3.885 72.340 1339.880 

Bagged tree (SVR) 0.1985 71858.359 0.0035 178.552 4.107 89.405 925.058 

Bagged tree (k-NN) 0.0210 68086.261 0.0033 167.098 3.819 96.821 1041.015 

Random forest 0.2512 61853.362 0.0030 161.962 3.688 88.909 994.745 

AdaBoost 0.0217 60843.155 0.0030 160.461 3.692 97.181 940.996 
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Table 6.6. Imputation results of the main engine fuel flow rate parameter. 

  

Execution 

Time (s) 

MSE 

((tn/hr)
2
) 

MSLE 

(log((tn/hr)
2
)) 

RMSE 

(tn/hr) 

MAPE 

(%) 

MedAE 

(tn/hr) 
Max. Error (tn/hr) 

Mean imputation 0.0002 0.009 0.0025 0.075 9.169 0.066 0.191 

STL decomposition 0.0234 0.001 0.0002 0.021 2.487 0.017 0.118 

Holt Winters 0.1988 0.001 0.0002 0.020 2.358 0.015 0.132 

ARIMA 3.8901 0.001 0.0002 0.020 2.355 0.015 0.132 

PLS regression 0.0067 0.005 0.0014 0.052 6.239 0.037 0.330 

Ridge regression 0.0040 0.005 0.0014 0.052 6.188 0.037 0.330 

LASSO regression 0.0877 0.005 0.0015 0.055 6.561 0.042 0.329 

ElasticNet regression 0.0753 0.005 0.0015 0.055 6.589 0.042 0.328 

k-Nearest Neighbors 0.0028 0.003 0.0009 0.041 4.690 0.030 0.208 

SVR (linear kernel) 0.0432 0.010 0.0026 0.060 7.175 0.034 0.463 

SVR (RBF Kernel) 0.0501 0.003 0.0008 0.038 4.379 0.027 0.194 

NN (1 hidden layer) 41.4862 0.004 0.0011 0.047 5.610 0.036 0.213 

NN (2 hidden layers) 42.4137 0.004 0.0011 0.047 5.534 0.034 0.197 

NN (3 hidden layers) 43.2885 0.004 0.0011 0.047 5.561 0.034 0.191 

Vector autoregression 3.4904 0.001 0.0004 0.028 3.300 0.022 0.142 

Decision tree regressor 0.0035 0.004 0.0011 0.043 4.971 0.030 0.280 

Bagged tree (SVR) 0.2094 0.003 0.0008 0.038 4.458 0.028 0.194 

Bagged tree (k-NN) 0.0208 0.003 0.0008 0.037 4.266 0.027 0.219 

Random forest 0.2638 0.003 0.0008 0.038 4.401 0.028 0.227 

AdaBoost 0.0299 0.003 0.0008 0.039 4.579 0.028 0.192 
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Table 6.7. Imputation results of the inlet pressure parameter of the lubrication oil system. 

  

Execution 

Time (s) 
MSE (bar

2
) 

MSLE 

(log(bar
2
)) 

RMSE (bar) MAPE (%) 
MedAE 

(bar) 
Max. Error (bar) 

Mean imputation 0.0002 0.00095 0.000084 0.021 0.911 0.008 0.061 

STL decomposition 0.0236 0.00002 0.000001 0.002 0.103 0.001 0.013 

Holt Winters 0.2137 0.00001 0.000001 0.003 0.110 0.002 0.014 

ARIMA 5.3972 0.00002 0.000001 0.002 0.104 0.001 0.013 
 

Table 6.8. Imputation results of the inlet pressure parameter of the jacket cooling water system. 

  
Execution Time (s) MSE (bar

2
) MSLE (log(bar

2
)) RMSE (bar) MAPE (%) 

MedAE 

(bar) 
Max. Error (bar) 

Mean imputation 0.0002 0.0005 0.00002 0.017 0.481 0.017 0.066 

STL decomposition 0.0239 0.0006 0.00003 0.019 0.537 0.016 0.080 

Holt Winters 0.1656 0.0005 0.00002 0.017 0.491 0.014 0.070 

ARIMA 4.3112 0.0004 0.00002 0.017 0.468 0.014 0.066 

 

Table 6.9. Imputation results of the turbine lubricating oil inlet pressure parameter of the turbocharger. 

  
Execution Time (s) MSE (bar

2
) MSLE (log(bar

2
)) RMSE (bar) MAPE (%) 

MedAE 

(bar) 

Max. Error 

(bar) 

Mean imputation 0.0002 0.026 0.0026 0.135 6.231 0.111 0.412 

STL decomposition 0.0231 0.030 0.0029 0.142 6.506 0.126 0.498 

Holt Winters 0.1847 0.028 0.0027 0.139 6.360 0.131 0.438 

ARIMA 3.5027 0.026 0.0025 0.134 6.168 0.114 0.412 
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Table 6.10. Imputation results of the scavenging air pressure of the scavenge air receiver. 

  

Execution Time 

(s) 
MSE (bar

2
) MSLE (log(bar

2
)) RMSE (bar) MAPE (%) 

MedAE 

(bar) 
Max. Error (bar) 

Mean imputation 0.0002 0.047 0.0121 0.17 19.97 0.18 0.41 

STL decomposition 0.0232 0.001 0.0001 0.01 1.53 0.01 0.18 

Holt Winters 0.2338 0.001 0.0002 0.02 1.55 0.01 0.19 

ARIMA 1.6972 0.001 0.0002 0.01 1.50 0.01 0.18 

PLS regression 0.0068 0.037 0.0085 0.13 13.88 0.08 0.88 

Ridge regression 0.0047 0.036 0.0085 0.13 13.88 0.08 0.86 

LASSO regression 0.0775 0.037 0.0086 0.13 14.19 0.08 0.87 

ElasticNet regression 0.0803 0.037 0.0088 0.13 14.44 0.09 0.86 

k-Nearest Neighbors 0.0028 0.018 0.0042 0.09 9.62 0.06 0.47 

SVR (linear kernel) 0.0418 0.068 0.0149 0.15 17.10 0.08 1.02 

SVR (RBF Kernel) 0.0501 0.015 0.0035 0.09 8.66 0.05 0.35 

NN (1 hidden layer) 72.371 0.027 0.0067 0.12 13.47 0.09 0.65 

NN (2 hidden layers) 74.0086 0.023 0.0057 0.11 12.29 0.08 0.54 

NN (3 hidden layers) 75.7735 0.022 0.0054 0.11 11.91 0.07 0.50 

Vector autoregression 3.3160 0.001 0.0002 0.02 1.91 0.01 0.19 

Decision tree regressor 0.0035 0.016 0.0036 0.08 7.92 0.04 0.54 

Bagged tree (SVR) 0.2176 0.015 0.0036 0.09 8.78 0.05 0.35 

Bagged tree (k-NN) 0.0205 0.015 0.0035 0.08 8.36 0.05 0.43 

Random forest 0.2711 0.014 0.0031 0.08 7.88 0.05 0.42 

AdaBoost 0.0217 0.014 0.0034 0.08 8.64 0.06 0.41 
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Table 6.11. Advantages and disadvantages of the implemented imputation techniques. 

Technique Advantages Disadvantages 

Mean 

imputation 

• Easy to interpret and 

implement. 

• The execution time is low. 

• Distortion of the parameter 

distribution. 

• Disruption of the relationship 

between features. 

• Bias of the mean estimates 

when the nature of the 

incomplete values are either 

MAR or NMAR. 

STL 

decomposition 

• Robust to outliers. 

• Trend smoothness can be 

regulated. 

• Execution time is low. 

• Easy to interpret. 

• Any seasonality type can be 

considered, and the seasonal 

component can be adjusted over 

time. 

• Possibility to be applied only 

when the time series presents 

trend and seasonality. 

• The definition of the seasonal 

period is required. 

Exponential 

smoothing 

methods 

• Easy to interpret and 

implement. 

• Recent observations are 

considered more significant than 

earlier observations. 

• Various exponential smoothing 

methods can be applied based 

on the characteristics of the 

time series. 

• The type of exponential 

smoothing method to be utilised 

needs to be identified. 

• Different parameters need to be 

optimally selected. 

Autoregressive 

integrated 

moving 

average 

(ARIMA) 

models 

 

 

 

 

 

 

 

 

 

 

 

 

• Present higher accuracy when 

imputing incomplete values in 

short-term data. 

• Applicable to nearly all types of 

time series. 

• Only captures linear 

relationships. 

• Need more data than other 

univariate imputation methods 

analysed. 

• Differencing is required if the 

data is not stationary. Then, 

the order of differencing needs 

to be specified. 

• The orders of the autoregression 

and the moving average model 

need to be optimally selected. 

• The computational cost is high 

in comparison with the other 

univariate imputation methods 

analysed, and thus its execution 

time is also large. 
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Linear 

regression 

methods (PLS 

regression and 

penalised 

models 

(LASSO, 

Ridge, and 

ElasticNet 

regression) 

• Easy to interpret. 

• Low execution time. 

• Regularisation models avoid 

over-fitting. 

• Great performance when 

dealing with a linear 

relationship. 

• Sensitive to outliers. 

• Only captures linear 

relationships between the 

response and the predictors. 

• Risk when extrapolating. 

• Large amount of data required 

every time an incomplete value 

needs to be imputed. 

• Penalised parameters (penalised 

models) and the number of 

components to be utilised (PLS) 

need to be optimally selected. 

k-Nearest 

Neighbors 

• Different distance criteria can 

be implemented. 

• Easy to interpret. 

• Weights can be added to the 

estimated distances hinging on 

the closeness of the records. 

• Performance degradation when 

the sample considered is large or 

dimensions are high. 

• Feature scaling is needed. 

• Sensitive to outliers and noisy 

data. 

• The number of neighbours 

required to impute the 

incomplete value needs to be 

optimally selected. 

SVR (with 

linear and 

RBF kernels) 

• Captures both linear and non-

linear relationships. 

• Easily adaptable. 

• Robust to outliers. 

• Various kernel functions can be 

utilised. 

• Poor performance when the 

sample contains noise. 

• Inconvenient when the sample 

is large. 

• Both the kernel function and 

the tuning parameters need to 

be optimally selected. 

• Feature scaling is required. 

• Difficult to interpret. 

• High computational cost. 

Neural 

Networks 

(NN) (with 1, 

2, and 3 

hidden layers) 

• Capture both linear and non-

linear relationships. 

• Requires large amounts of data 

to train the model. 

• Complexity in the network 

structure definition. 

• Susceptible to over-fitting. 

• High computational cost. 

• Unexplained performance. 

Vector 

autoregressive 

(VAR) models 

• Easy to interpret. 

• High accuracy when dealing 

with short-term data. 

• All parameters included in the 

model are considered 

endogenous. 

• All incomplete values of an 

instance can be imputed by 

implementing the model once. 

• Can only be utilised if data is 

stationary. 

• High computational cost. 

• The order of the model needs to 

be optimally selected. 
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Decision tree 

regressors 

• Apply feature selection 

intrinsically. 

• Require less data pre-

processing. 

• Easy to interpret. 

• Handle incomplete values. 

• Low execution time. 

• Unlikely to over-fit. 

• Likely to present sub-optimal 

imputation performance when 

continuous data is considered. 

• Imputations are not accurate if 

instances with incomplete 

values are not similar to 

instances utilised for training 

the model. 

• Instability. 

Ensemble 

methods 

(Bagged trees 

(with k-NN 

and SVR 

regressors), 

Random 

forets, and 

AdaBoost) 

• Apply feature selection 

intrinsically. 

• Require less data pre-

processing. 

• Handle incomplete values. 

• Unlikely to over-fit. 

• Complex to interpret. 

• Higher computational cost than 

decision tree regressors. 

• Likely to present sub-optimal 

imputation performance when 

continuous data is considered. 

• Imputations are not accurate if 

instances with incomplete 

values are not similar to 

instances utilised for training 

the model. 

 

6.3. Case Study 2. Hybrid Imputation Framework9 

Case study 2 aims to validate the methodology introduced in section 4.3. Hybrid Data 

Imputation Framework. Accordingly, a DMD-MAN B&W 6S50MC-C main propulsion 

engine of a cargo vessel is analysed. A total of four parameters are considered for this 

case study: 1) main engine rotational speed, 2) main engine power, 3) main engine 

fuel flow rate, and 4) scavenging air pressure of the scavenge air receiver. 

 

Prior to the performance of data imputation, non-operational states are identified and 

discarded. Standardisation is also applied. After data pre-processing, a total of roughly 

 
9 The data imputation framework presented in this section has been already converted to a journal paper, 

and has been published in the Ship and Offshore Structures journal (Velasco-Gallego and Lazakis, 

2021a). 
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2,160 instances are considered for analysis. Such instances have been collected in a 

one-minute frequency basis. 

 

The evolution of the main engine rotational speed time series is visualised in Fig. 6.11. 

In total, four steady states are identified. The first one initiates at the first instant 

and persist around 103 r/min over 1,250 minutes. Suddenly, an abrupt change occurs 

and the rotational speed increases to over 112 r/min. Such a state remains 

approximately 130 minutes. Then, a slight adjustment occurs where the rotational 

speed decreases to roughly 108 r/min. This state lasts for around 215 minutes. Finally, 

a last change is observed. The rotational speed decreases until it accomplishes the 

values perceived in the first state. These adjustments refer to arrangements applied 

due to the contractual agreements between the charterer and the shipowner that define 

the fuel oil consumption and the vessel speed per day. 

 

 

Fig. 6.11. Time series plot of the main engine rotational speed. 
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The remaining parameters (main engine power, the main engine fuel flow rate and the 

scavenging air pressure of the scavenge air receiver system) present an analogous 

evolution (please see Figs. 6.12-6.14). 

 

Fig. 6.12. Time series plot of the main engine power. 

 

 

Fig. 6.13. Time series plot of the main engine fuel flow rate. 
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Fig. 6.14. Time series plot of the scavenging air pressure. 

 

As observed in Table 6.12, all four parameters present a strong linear relationship. 

Accordingly, the Pearson’s correlation coefficient matrix values lie between 0.95 and 

1.00. 

 

Table 6.12. Pearson’s correlation coefficient matrix. 

 ME rotational speed 

(rev/min) 

ME power 

(kW) 

ME fuel flow rate 

(tn/hr) 

Scav. air 

pressure (bar) 

ME rotational speed 

(rev/min) 

 0.99 0.95 0.99 

ME power (kW) 0.99  0.96 1.00 

ME fuel flow rate 

(tn/hr) 

0.95 0.96  0.96 

Scav. air pressure 

(bar) 

0.99 1.00 0.96  

 

As the selected time series do not present missing values, these are generated to 

evaluate the imputation performance of the introduced framework. Specifically, as 

large gaps of missing values are analysed, a total of 5 large gaps of missing values are 
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generated at random in each time series. The dimensions of such gaps are selected at 

random by selecting these dimensions between two thresholds. Based on the number 

of instances perceived in the time series, the minimum and maximum number of 

missing values possible in each gap are set to 50 and 100. 

 

Additionally, a comparative study is performed for validation purposes. Accordingly, 

the Multivariate Imputation by Chained Equations (MICE), which is one of the most 

widely implemented imputation techniques, is also implemented. Such an imputation 

technique has been precedingly implemented in the shipping domain (Cheliotis et al., 

2019). 

 

The first imputations are performed in the main engine rotational speed parameter 

(please see Fig. 6.15). All the large gaps are in the first state, except for last large gap, 

which is situated in the last state. As observed, the introduced methodology 

outperforms the MICE approach in terms of imputation performance. In this case, the 

MLP regressor is identified as the most adequate imputation model. It can be observed 

that the imputation performance decreases when the predictors present missing values 

in the same instances that need to be imputed. Such an aspect expresses the 

importance of preventing possible sensor failures to guarantee the quality of the data 

to avoid biased estimates. 
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For this specific example, a percentage of improvement of 77% is obtained. Such a 

fact demonstrates the efficient imputation performance of the first-order Markov chain 

model as a univariate imputation method against the mean imputation, which is 

employed in the MICE method. It is also observed that mean imputation disrupts the 

relationships between variables.  

 

Fig. 6.15. Large gaps imputation of the main engine rotational speed. 

 

Likewise, analogous patterns are observed in the remaining parameters. In the case of 

the main engine power parameter, it can be observed that two consecutive gaps are 

located between the end of the second and the start of the third sate (please see Fig. 

6.16). No significant differences between the performance of the approaches are 

perceived in these instances. Conversely, their performance differs when the first and 

third gaps are considered. A major reason for such a fact is the unavailability of some 

predictors. Consequently, the introduced framework leads to an improvement 

percentage of 56%. 

Time (minutes) 
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Fig. 6.16. Large gaps imputation of the main engine power. 

 

An analogous pattern is again observed when the main engine fuel flow rate parameter 

is considered (please see Fig. 6.17 and Fig. 6.18). As presented in Table 4.13, the 

percentage of improvement for these two cases are 21% and 73% respectively. 

 

 

Fig. 6.17. Large gaps imputation of the main engine fuel flow rate. 
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Fig. 6.18. Large gaps imputation of the scavenging air pressure of the scavenge air receiver. 

 

Table 6.13. Large gaps of missing values imputation results. 

 RMSE  

 Proposed framework MICE Percentage of improvement 

ME rotational speed (rev/min) 0.17 0.75 77% 

ME power (kW) 29.48 67.41 56% 

ME fuel flow rate (tn/hr) 0.03 0.04 21% 

Scav. air pressure (bar) 0.02 0.06 73% 

 

6.4. Case Study 3. Analysis of LSTM-based VAE Regressor 

for Data Imputation10 

Having explored the methodology being analysed as a data imputation technique in 

section 4.4. Analysis of LSTM-based Variational Autoencoders for Regression for 

Data Imputation, a case study is introduced to assess its imputation performance. 

Specifically, a total of 14 parameters (see Table 6.14) collected from a diesel generator 

 
10 The data imputation framework presented in this section has been already converted to a journal 

paper, and has been published in the Journal of Ship Research (Velasco-Gallego and Lazakis, 2022c). 

Time (minutes) 
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of a tanker ship are considered. P1 is considered the target variable, whereas the 

remaining parameters are considered predictors. 

 

Table 6.14. Parameters of the diesel generator considered for the case study. 

Id Parameter 

P1 Power 

P2 Exhaust gas outlet temperature of cylinder 6 

P3 Exhaust gas outlet temperature of cylinder 5 

P4 Exhaust gas outlet temperature of cylinder 4 

P5 Exhaust gas outlet temperature of cylinder 3 

P6 Exhaust gas outlet temperature of cylinder 2 

P7 Exhaust gas outlet temperature of cylinder 1 

P8 Winding temperature T phase 

P9 Winding temperature S phase 

P10 Winding temperature R phase 

P11 Turbocharger exhaust gas outlet temperature 

P12 Cooling air temperature 

P13 Lube oil inlet temperature  

P14 Cylinder exhaust gas outlet temperature (average) 

 

A total of 66,207 instances are considered for analysis. Such instances have been 

collected in a 1-minute frequency (Fig. 6.19). The introduced time series presents 

several non-operational states that need to be excluded from the analysis. Moreover, 

the adjustments introduced due to either contractual agreements between the 

charterer and the shipowner or weather conditions need to be also identified and treat 

accordingly. To perform this identification process, GMMs with EM is applied. The 

minimum and maximum of mixture components being analysed are 1 and 10, 
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respectively. Also, four distinct types of covariance are also evaluated (full, tied, 

diagonal, and spherical). As presented in Fig. 6.20, the spherical covariance type, and 

a total of 2 components have been selected as the best hyperparameters to train the 

model. In total, more than 49% of the dataset has been identified as non-operational 

instances, and thus these are discarded. Accordingly, only 33,745 are analysed in the 

subsequent steps.  

 

 

Fig. 6.19. Time series plot of the diesel generator power. 

 

The descriptive statistics of the analysed instances are presented in Table 6.15. 

Additionally, the histograms and the Pearson’s correlation coefficients are introduced 

in Fig. 6.21 and Table 6.16, respectively. All parameters present a strong correlation 

with the P1, except for the parameter P13. 
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Fig. 6.20. Parameters’ selection of the GMMs. 
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Fig. 6.21. Histograms of the monitored features (P1-P14). 
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The validation of the imputation performance is performed by considering five 

scenarios. Each of these scenarios refer to one of the five ratios of missing values 

analysed (0.05, 0.15, 0.25, 0.5, 0.8). Accordingly, three distinct contexts of missing 

values are assessed (small, medium, and large). The results of the comparative study 

are presented in Tables 6.16-6.19. As presented in the methodology section, a total of 

four models are analysed: 1) LSTM VAE-based regressor, 2) mean imputation, 3) 

application of Forward Fill and Backward Fill, and 4) k-NN. To avoid over-fitting, 

the number of neighbours selected for the k-NN imputer is set to the square root of 

the number of instances. 

 

LSTM VAE-based regressor outperforms the remaining imputers. Nevertheless, 

analogous imputation performances are observed between the LSTM VAE-based 

regressors and the remaining parameters when the dataset contain small number of 

missing values. For instance, the RMSE of the LSTM VAE-based regressor and 

Forward Fill and Backward Fill (FF-BF) algorithms are 8.91 kW and 9.1 kW, 

respectively, when the missing ratio of 0.05 is considered. Conversely, the RMSE of 

the LSTM VAE-based regressor and FF-BF are 12.20 kW and 22.00 kW, respectively, 

when a large rate is considered (missing ratio of 0.8). Such a fact demonstrates the 

robustness of LSTM VAE-based regressor, whereas FF-BF only performs well when 

small ratios of missing values are considered. With regards to the k-NN imputer, it 

can be observed that this imputer also performs well when medium ratios of missing 

values are considered, thus being more robust that the FF-BF approach. Nevertheless, 
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several limitations of such an approach are worth highlighting. An example of this is 

the degradation performance when the sample contains large gaps of missing values 

and when both dimensions and number of instances are high. Also, the number of 

neighbours need to be optimally selected. 

 

The worst results are achieved when the mean imputation is applied. This is when the 

maximum RMSE is perceived (when the missing ratio is 0.8 the RMSE is estimated 

to be 108.07 kW). The variability of the data and the different operational states 

identified within the dataset may be the cause of such results. As results did not vary 

significantly when applying this methodology, this has not been included in the 

analysis described in Fig. 6.22. Nevertheless, an example to observe the distortion of 

the parameter is expressed in Fig. 6.23. The study of performing mean imputation in 

each operational state can be implemented instead of estimating the mean for the 

entire dataset, thus determining if the bias and the limitations of such an approach 

still occur. 
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Table 6.15. Descriptive statistics of the monitored features. 

 P1 P2 P3 P4 P5 P6 P7 

Count 33745 33745 33745 33745 33745 33745 33745 

Mean 296.93 370.61 349.95 386.52 382.16 384.43 354.64 

Std. 81.09 20.95 18.31 22.79 22.43 18.91 19.12 

Min. 150.19 222.7 213.5 226.5 219.9 251.9 209.4 

25% 236.97 355.6 338.9 371.6 368.2 372.1 341.6 

50% 270.94 369.3 350.8 386 383.1 383.1 354.9 

75% 356.14 385.8 362.2 404.1 397.5 399.5 371.6 

Max. 555.93 438.7 421.1 453.1 448.1 448.5 411.7 
 

 P8 P9 P10 P11 P12 P13 P14 

Count 33745 33745 33745 33745 33745 33745 33745 

Mean 51.30 52.89 51.06 444.82 44.59 62.00 371.39 

Std. 4.612 4.79 4.67 28.64 2.72 0.84 19.36 

Min. 30.2 33.2 30.7 213.7 29.9 45.6 223.9 

25% 48.1 49.5 47.8 429.1 42.6 61.7 359.66 

50% 50.3 51.9 50 443.5 44.5 62.1 371.06 

75% 54.3 55.9 54.2 469.1 46.7 62.5 388.16 

Max. 67.7 68.8 69.6 510.1 52.6 65.2 434.55 
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Table 6.16. Pearson’s correlation coefficient (absolute values). 

Parameter Coefficient 

P2 0.88 

P3 0.82 

P4 0.87 

P5 0.80 

P6 0.84 

P7 0.81 

P8 0.86 

P9 0.87 

P10 0.86 

P11 0.88 

P12 0.77 

P13 0.51 

P14 0.89 

 

When the imputation performance is assessed in a general manner, it can be perceived 

that the performance decreases when the missing ratio increases. A major cause of 

such a fact may be the reduction of the observed instances that are utilised for training 

purposes. Accordingly, this indicates the importance of preventing errors that may 

lead to corrupted or incomplete data. Additionally, should an imputation method need 

to be applied due to the impossibility of preventing these errors, a comprehensive 

analysis needs to be performed to avoid adding bias estimates that may lead to an 

inaccurate model that could ultimately be utilised for decision-making strategies. 
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Despite the undeniable performance of the LSTM VAE-based regressor, there are 

certain limitations that cannot be diminished. For example, the imputation 

performance of this type of methods relies on the amount of data available. In addition, 

the computation cost is higher than other analysed methodologies that presented 

similar imputation results in specific contexts. Also, these models present a lack of 

transparency and flexibility. The risk of obtaining over-fitting models is also a concern. 

All these preceding limitations may develop a lack of trust towards these models 

within the sector if these are not adequately addressed.  
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Table 6.17. Imputation results of the LSTM-VAE-based regressor. 

Missing ratio RMSE (kW) MSE (kW2) Max. Error (kW) MedAE (kW) MAE (kW) R2 

0.05 8.91 79.47 41.48 5.33 6.69 0.99 

0.15 9.80 96.12 196.66 4.72 6.48 0.98 

0.25 10.10 102.13 144.23 4.98 6.86 0.99 

0.5 10.74 115.39 153.57 5.06 7.23 0.98 

0.8 12.20 148.88 196.06 7.29 8.87 0.98 

 

 

Table 6.18. Imputation results of the k-NN imputer. 

Missing ratio RMSE (kW) MSE (kW2) Max. Error (kW) MedAE (kW) MAE (kW) R2 

0.05 14.68 215.51 69.41 7.97 10.92 0.97 

0.15 15.26 232.89 70.68 8.51 11.44 0.97 

0.25 15.89 252.56 151.11 8.64 11.6 0.96 

0.5 16.22 262.96 149.24 8.88 11.97 0.96 

0.8 18.31 335.37 150.91 10.87 13.72 0.95 
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Table 6.19. Imputation results of the application of Forward Fill and, subsequently, Backward Fill algorithms. 

Missing ratio RMSE (kW) MSE (kW2) Max. Error (kW) MedAE (kW) MAE (kW) R2 

0.05 9.1 82.9 42.61 4.68 6.53 0.99 

0.15 10.89 118.69 107.46 4.99 7.28 0.98 

0.25 12.2 148.72 107.46 5.27 7.91 0.98 

0.5 16.89 285.18 221.99 6.24 9.58 0.96 

0.8 22.00 484.29 262.13 8.52 13.59 0.94 

 

 

Table 6.20. Imputation results of the mean imputation technique. 

Missing ratio RMSE (kW) MSE (kW2) Max. Error (kW) MedAE (kW) MAE (kW) R2 

0.05 107.87 11635.41 180.1 113.53 100.16 0 

0.15 107.68 11595.06 181.68 113.63 99.95 0 

0.25 107.89 11641.99 181.68 113.44 100.39 0 

0.5 108.47 11764.97 189.86 113.75 101.14 0 

0.8 108.07 11679.65 189.42 112.89 100.66 0 
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0.80 

   

 

Fig. 6.22. Comparison between observed values and imputed values of the diesel generator 

power (the line refers to the observed values, whereas the scatter points refer to the imputed 

values). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.23. Comparison between observed values and imputed values of the diesel generator 

power when the mean imputation is applied, and the missing ratio is 0.15 (the line refers to 

the observed values, whereas the scatter points refer to the imputed values). 
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6.5. Case Study 4. Novel Framework for the Identification 

of Steady States11 

Having explored the methodology being analysed to identify the different steady states 

widely observed when dealing with critical marine machinery in section 4.5. A Novel 

Framework for the Identification of Steady States, a case study is presented to assess 

its performance. As such, the power parameter collected from a total of three diesel 

generators (DG1, DG2, DG3) of a tanker ship is considered. 

 

This parameter includes more than 65,000 instances and has been collected in a 1-

minute frequency (please see Figs. 6.24-6.26). The descriptive statistics are presented 

in Table 6.21. 

 

 

Fig. 6.24. DG1 power parameter time series plot. 

 
11 The operational states’ identification framework presented in this section has been already converted 

to a journal paper, and has been published in the Applied Ocean Research journal (Velasco-Gallego and 

Lazakis, 2022e). 
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Fig. 6.25. DG2 power parameter time series plot. 

 

 

Fig. 6.26. DG3 power parameter time series plot. 

 

Table 6.21. Descriptive statistics of the monitored parameters. 

  DG1 Power (kW) DG2 Power (kW) DG3 Power (kW) 

Count 66207 65947 65943 

Mean 151.67 151.41 227.24 

Std. 159.15 157.56 176.99 

Min. 0.00 0.00 0.00 

25% 0.00 0.00 0.00 

50% 177.95 183.95 261.22 

75% 273.30 277.85 373.93 

Max. 555.93 546.76 597.86 
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The time series present distinct typologies of states that need to be identified and 

address accordingly. Examples of these are idle, transient, and operation states of 

machinery. Accordingly, this time series can be considered for validating the 

introduced methodology. 

 

Prior to applying the steady states’ identification stage, data pre-processing needs to 

be implemented. The sliding window algorithm and the EWMA are implemented in 

this phase. After heuristic evaluation, the configuration of the sliding window 

algorithm is set to present a time step of 1 and a sequence length of 60. 

 

Once performed the data pre-processing phase, the steady state identification stages 

(image generation, connected component analysis, and data post-processing) are 

performed. The results obtained after the application of such stages are expressed in 

Figs. 6.27-6.29. Table 6.22 describes the different instances that are further described 

in this section. 
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Fig. 6.27. Steady states’ identification for the DG1 power parameter. 

 

Fig. 6.28. Steady states’ identification for the DG2 power parameter. 

 

Fig. 6.29. Steady states’ identification for the DG3 power parameter. 
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Table 6.22. Sequence selection for visual analysis. 

 

Starting sequence 

instance 

Ending sequence 

instance 

Total of instances 

in sequence 

DG1 sequence 46,000 47,400 1,400 
DG2 sequence 35,400 37,750 2,350 

DG3 sequence 24,000 26,500 2,500 

 

As presented in Fig. 6.30, the introduced methodology identified the states presented 

in the DG1 sequence effectively. The first state initiates and persists over half of the 

recorded time. This is when the values are stabilised between 200 and 300 kW. Then, 

an abrupt change is perceived to enable the transition between states. This transition 

is identified and labelled accordingly. The second state remains for approximately 200 

minutes until another transition occurs. Such a transition is also identified accordingly. 

The values of the third state are stabilised around the 300 kW. The last state is 

achieved when an abrupt adjustment is again originated. This last adjustment is also 

identified accordingly. 

 

Similarly, the same approach and results are employed and obtained in the remaining 

sequences (please see Fig. 6.31 and Fig. 6.32). Nevertheless, in these sequences there 

are several instances, the typology of which is unclear. This instances usually occur 

when the transition between states is originated. Thus, these instances can be easily 

discarded from further analysis through the application of filters. 
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Fig. 6.30. Steady states’ identification for DG1 power parameter sequence based on the 

results obtained from the proposed methodology. 

 

Fig. 6.31. Steady states’ identification for DG2 power parameter sequence based on the 

results obtained from the proposed methodology. 

 

Fig. 6.32. Steady states’ identification for DG3 power parameter sequence based on the 

results obtained from the proposed methodology. 
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To compare the performance of the proposed methodology a comparative study is 

applied. Accordingly, both k-means and GMMs with EMM are employed. These 

methods have been precedingly utilised in similar studies within the shipping domain. 

k-means has been successfully applied in section 6.3. Case Study 2. Hybrid Imputation 

Framework when dealing with short-term time series data collected from a main 

marine engine. To adequately select the optimal number of clusters, both the 

Silhouette and Davies-Boulding indices are estimated. The outlined results from the 

application of k-means are expressed in Figs. 6.34-6.36. 

 

   

Fig. 6.33. Estimation of the Silhouette and Davies-Boulding indices for DG1, DG2, and DG3 

power parameter, respectively. 
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Fig. 6.34. Steady states’ identification for DG1 power parameter sequence based on the 

results obtained from the k-means application. 

 

Fig. 6.35. Steady states’ identification for DG2 power parameter sequence based on the 

results obtained from the k-means application. 

 

Fig. 6.36. Steady states’ identification for DG3 power parameter sequence based on the 

results obtained from the k-means application. 
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The number of clusters selected in all scenarios is two, as presented in Fig. 6.33. One 

of the identified states relates to the idle states, whereas the other cluster refers to the 

remaining group. Thus, as indicated in Fig. 4.34, the distinct operational states are 

not adequately distinguished, whereas the idle states are clearly identified. Conversely, 

in the remaining sequences (please see Figs. 6.34-6.36) none of the states can be 

adequately differentiated. Also, a differentiation in the labelling can be also observed 

between the proposed methodology and the current approach, and thus the distinct 

steady states cannot be automatically detected. Consequently, expert knowledge is 

then required to label the identified clusters as defined originally (steady, and not 

steady). Thus, the application of k-means is not feasible when dealing with long-term 

time series data. Nevertheless, several adjustments in the approach can be made to 

enhance its performance. For example, the sliding window algorithm can be considered 

to only consider short-term time series data. The performance of multiple iterations 

in each of the groups of data identified may be another potential possibility to be 

worth investigating. 

 

Analogous results are presented when considering the GMMs with EM approach 

(please see as Figs. 6.37-6.40). A total of two hyperparameters need to be selected in 

this respect: 1) type of covariance, and 2) number of components. With regards to the 

type of covariance, four types are analysed in accordance with Pedregosa et al. (2011): 

1) full, 2) tied, 3) diagonal, and 4) spherical. A range between 1 and 10 (inclusive) of 

mixture models are considered for the selection of the number of components. As 
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stated in Fig. 6.37, the number of components are set to three in all cases. The type 

of covariance is set to spherical. Thus, the distinct operational states are more 

effectively selected than the k-means (please see Figs. 6.38-6.40). Nevertheless, 

analogous to k-means, the steady states are not adequately labelled. Furthermore, the 

transition between states is not properly defined either. 

 

   

Fig. 6.37. Selection of the number of components for DG1, DG2, and DG3 power parameter, 

respectively. 

 

Fig. 6.38. Steady states’ identification for DG1 power parameter sequence based on the 

results obtained from the GMMs with EM algorithm application. 
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Fig. 6.39. Steady states’ identification for DG2 power parameter sequence based on the 

results obtained from the GMMs with EM algorithm application. 

 

Fig. 6.40. Steady states’ identification for DG3 power parameter sequence based on the 

results obtained from the GMMs with EM algorithm application. 

 

Accordingly, the introduced methodology outperforms the other analysed approaches 

for automatically identifying and differentiating the steady states. Thus, by excluding 

from the analysis non-operational profiles, an increase in both the system performance 

and computational efficiency are expected, thus promoting an enhancement in the 

decision-making strategies. 
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6.6. Chapter Summary 

This chapter has introduced a summary of four case studies performed to validate 

each of the methodologies presented in the data pre-processing module. Based on the 

results obtained, it can be perceived the effectiveness of applying novel data-driven 

methodologies to ensure data quality. Specifically, the developed data-driven 

methodologies for data imputation have demonstrated its capability of imputing 

missing values to avoid biased results and under-utilisation of data. With regards to 

the proposed method for the identification of operational states, it can be perceived 

that the model can differentiate in an adequate manner operational states, and both 

transient and idle states. Thus, the computational cost is decreased while the efficient 

and effective performance of the model is ensured through the consideration of only 

operational states in the analysis. 
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Chapter 7  

Case Studies and Results: Part II. The 

Diagnostic and Predictive Analytics 

Modules 

 

7.1. Chapter Overview 

A total of 3 case studies are introduced in this chapter, each of one referring to one of 

the novelties presented in the diagnostic and predictive analytics module. An 

additional case study is introduce to validate the performance of the holistic MA 

framework. It is worth highlighting that to assess the generalisation capabilities of the 

introduced modules and methodologies, each case study is unique and considers to 

different time series sequences, even though some case studies may refer to the same 

system. 
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7.2. Case Study 5. Fault Detection as Part of the 

Diagnostic Analytics Module12 

Case study 5 aims to validate the methodology introduced in section 5.3.1. Fault 

Detection. Specifically, a Diesel GenSet of a tanker ship used for auxiliary needs is 

considered. This is a four-stroke in-line engine, comprised of a total of 6 cylinders.  

 

The following parameters are analysed in this study: the diesel generator power, the 

exhaust gas outlet temperature of each cylinder, the winding temperature (phases T, 

S, and R), the turbocharger exhaust gas outlet temperature, the cooling air 

temperature, the lubricating oil inlet temperature, and the cooling fresh water in 

pressure are analysed. 

 

More than 66,000 instances are analysed for each parameter. Each of these instances 

has been collected in a 1-minute frequency basis (please see Fig. 7.1). The descriptive 

statistics are presented in Table 7.1. 

 

 

 

 

 
12 The fault detection framework presented in this section has been already converted to a journal paper, 

and has been published in the Expert Systems with Applications journal (Velasco-Gallego and Lazakis, 

2022d). 
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Table 7.1. Descriptive statistics of the monitored parameters. 

Id Parameter Name Mean Std. Min. 25% 50% 75% Max. 

0 Power (kW) 151.67 159.15 0 0 177.9 273.2 555.9 
1 CYL6 EXH GAS OUT TEMP (°C) 222.68 153.00 48.1 64.3 329.7 370 438.7 
2 CYL5 EXH GAS OUT TEMP (°C) 209.99 144.67 47.6 58.4 309.8 351.3 421.1 
3 CYL4 EXH GAS OUT TEMP (°C) 231.52 160.16 48.5 65.7 336.8 386.5 453.1 
4 CYL3 EXH GAS OUT TEMP (°C) 230.16 157.23 48.7 67 330.7 383.8 448.1 
5 CYL2 EXH GAS OUT TEMP (°C) 231.68 158.10 48.5 67.3 344.9 383.3 448.5 
6 CYL1 EXH GAS OUT TEMP (°C) 215.61 143.68 47.1 67.5 312.1 355.4 411.7 
7 WINDING TEMP T PHASE (°C) 44.88 8.34 26.6 39.5 45.8 50.5 67.7 
8 WINDING TEMP S PHASE (°C) 46.11 8.80 26.7 40.6 47.3 51.9 68.8 
9 WINDING TEMP R PHASE (°C) 44.53 8.55 25.5 39.3 45.4 50.2 69.6 
10 TC EXH GAS OUT TEMP (°C) 263.94 190.23 31.6 49.4 384.7 444.2 510.1 
11 COOLING AIR TEMP (°C) 39.36 6.46 25.5 35.2 40.6 44.7 52.6 
12 LO INLET TEMP (°C) 57.30 6.62 31.8 51.4 61.3 62.1 68.4 
13 CFW IN PRESS (bar) 2.91 1.20 0 1.7 3.8 4.1 4.5 

 

As observed in preceding case studies, time series sensor data of marine machinery 

presents various states that need to be identified and addressed accordingly. For this 

reason, the methodology presented in section 4.5. A Novel Framework for the 

Identification of Steady States is implemented. After heuristic evaluation, the 

transition matrix is estimated to present a total of 25 states. The outcome of this 

phases when analysing the diesel generator power parameter is presented in Fig. 7.2. 

In total, 81 operational sequences have been identified. Each of these sequences have 

been further analysed to either accept or reject them for the training, validation, and 

test stages. Also, as part of the pre-processing step, data normalisation is applied so 

that each value lies between -1 and 1. 
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Fig. 7.1. Time series plot of the fourteen monitored parameters. 

 

 

Fig. 7.2. Steady states’ identification for the diesel generator power parameter. 
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Once the data is pre-processed, the LSTM-based VAE is implemented as part of the 

time series reconstruction stage. To select the distinct hyperparameters the grid search 

algorithm in conjunction with the k-fold cross-validation are applied. The 

hyperparameters to be selected relate to the following: 1) the number of layers in both 

encoder and decoder and their respective units, 2) the number of latent dimensions, 

and 3) the length of the sequences. The search space is defined in Table 7.2. 

 

Based on the result obtained from the hyperparameters optimisation stage, the 

architecture of the LSTM-based VAE is defined. The LSTM of both the encoder and 

decoder of the VAE-LSTM is formed by 1 layer (129 units) and tanh activation 

function. The number of latent dimensions is set to 6 and the sequence length to 3. 

Furthermore, the ratio of the validation set has been set to 0.20. Adam optimizer has 

been applied to compile such a model. As part of the training process, the number of 

epochs is set to 100 and the batch size to 5. 

 

Table 7.2. Range of values analysed for hyperparameter optimisation. 

Hyperparemeter Range 

Number of layers in both encoder and decoder (1, 2) 

Number of units per layer (2, 256) 

Number of latent dimensions (1, 24) 

Length of sequences (3, 180) 

 

As all the analysed sequences contain normal instances, anomalies need to be 

generated. Accordingly, noise is injected by considering distinct Gaussian distributions 
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of diverse mean levels, as analogous performed by Zhao et al. (2019). In this study, 

parameter 4 is considered to simulate the anomalous scenario. 

 

The average execution time of RADIS is 0.68 seconds per instance (0.05 seconds per 

parameter). The hardware utilised consists of an Intel(R) Core (TM) i7-4790 CPU @ 

3.60GHz 3.60 GHz and Windows 10. A total 75 simulations are applied for each test 

sequence to guarantee the generalisation capabilities. For the training process, a total 

of 65 sequences identified in the steady states’ identification phase are considered, a 

total 20% of them being considered for validation purposes. The average NRMSE with 

a Confidence Interval (CI) of 95% obtained for each parameter is presented in Fig. 

7.3. Furthermore, to complement such results and enhance visibility, the NRMSE 

obtained at each instance of the sequence for parameters 0 (power), 4 (exhaust gas 

outlet temperature of cylinder 3), which has been altered to simulate anomalies, and 

9 (winding temperature at R phase), are also graphically represented in Fig. 7.4. 
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Fig. 7.3. Average NRMSE with CI 95% of the analysed parameters with injected anomalies 

in parameter 4. 

 

 

Fig. 7.4. NRMSE with CI 95% of parameters 0, 4, and 9 divided by instance with injected 

anomalies in parameter 4. 

 

As stated in such figures, the injection of random noise to generate anomalies in 

parameter 4 caused an increment in the reconstruction error. Accordingly, the 

estimated NRMSE value for such a parameter is higher than the remaining analysed 
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features. Conversely, if the original parameter 4 is considered, it can be observed that 

the reconstruction error is analogous to the remaining parameters (please see Figs. 

7.5-7.46). 

 

 

Fig. 7.5. Average NRMSE with CI 95% of the analysed parameters. 

 

 

Fig. 7.6. NRMSE with CI 95% of parameters 0, 4, and 9 divided by instance. 
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After the time series reconstruction stage, the image generation and thresholding 

phase is implemented. The image generation is obtained by scaling the NRMSE values 

into the most common pixel format, the range of which lies between 0 and 255. Pixels 

with higher intensity are expected to refer to those parameters that present any 

anomalous behaviour, whereas those parameters with non-anomalous behaviours are 

expected to constitute the pixels with the lowest intensity of the image (see Fig. 7.7). 

 

Consequently, image thresholding can be applied to not only automatically detect 

such anomalous values but also rank them depending on their level of anomalousness. 

Hence, possible relationships between parameters may be suggested for further 

analysis based on the resulting thresholding. 

 

 

Fig. 7.7. Image generated for instance 0 and simulation 0. 

 

Image thresholding is applied through the introduction of multi-level Otsu’s method. 

The adequate number of classes is selected by employing the method GMMs with an 

EM algorithm. Accordingly, the Bayesian Information Criterion (BIC) is estimated. 

The initial study considers the range of components to lie between 1 and 10. 

Nevertheless, it has been perceived that this image thresholding method is unfeasible 
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for many classes. Accordingly, a bi-level thresholding task is performed instead. 

Therefore, C1 refers to anomalous instances, while C2 refers to normal instances. The 

selection of the number of classes for each sequence is applied by implementing the 

same approach. This process is applied to perform image thresholding in the resulting 

images at each specific instance of the sequence and for each simulation performed. 

After thresholding al the resulting images, the results are summarised. The average 

accuracy for this specific case study is 92.5% 

 

7.3. Case Study 6. Fault Identification as Part of the 

Diagnostic Analytics Module13 

This case study is presented to validate the methodology introduced in section 5.3.2. 

Fault Identification. For this study, a Diesel GenSet of a tanker ship is considered. 

This is a four-stroke in-line engine comprised of a total of 6 cylinders. The power 

parameter is the feature subject of study.  

 

In total, more than 66,000 instances are considered, which have been collected in a 1-

minute frequency basis (please see Fig. 7.8). The descriptive statistics are also 

presented in Table 7.3. 

 
13 The fault identification framework presented in this section has been already converted to a journal 

paper, and has been published in the Ocean Engineering journal (Velasco-Gallego and Lazakis, 2022b). 
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Fig. 7.8. Time series plot of the cooling air temperature monitored parameter. 

 

Table 7.3. Descriptive statistics of the monitored parameter. 

 Mean Std. Min. 25% 50% 75% Max. 

Power (kW) 151.67 159.15 0.0 0.0 177.95 273.30 555.93 

 

As data pre-processing, steady states’ identification and data normalisation are 

performed. Also, the sliding window algorithm is implemented. After heuristic 

evaluation, the window size parameter is set to 250. 

 

Anomalies have ben simulated due to the lack of fault data and complete degradation 

data. Therefore, to validate the proposed methodology, a total of six data patterns 

that do not refer to normal steady operational conditions have been simulated based 

on the detection of such patterns in analysed marine systems datasets. These are 

identified as point anomalies: 1) only one point anomaly is presented in the sequence, 
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2) two-point anomalies are identified in the sequence, 3) multiple point anomalies (>2) 

can be observed in the sequence, 4) collective anomalies, 5) degradation sequences, 

and 6) transitional occurrences between operational states. 

 

Point anomalies refer to those instances that differ from others with regards to their 

attributes (Ramchandran and Sangaiah, 2018). An abrupt change in a steady 

operational state is an example of a point anomaly. This type of anomalies has been 

determined by obtaining the anomalous ratio and the instance in which the point 

anomaly is presented. The anomalous ratio establishes the intensity of the 

abnormality, and it is determined by selecting a random value from a pre-defined 

range. 

 

By contrast, collective anomalies comprise a combination of anomalous instances. High 

variability in the exhaust gas outlet temperature parameter of one of the cylinders in 

a steady operational state context is just an example. Collective anomalies are 

simulated by injecting noise. This noise is generated by considering distinct Gaussian 

distributions of various mean levels, as analogous performed in Zhao et al. (2019c).  

 

With regards to degradation patterns, an exponential model with Brownian motion is 

considered to simulate these due to its effective universality in machinery when 
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reflecting the characteristics of accelerated fault degradation in engineering (Li et al., 

2021). 

 

The last scenario refers to transitional occurrences between operational states that 

occur due to, for instance, environmental situations or variations in the operating 

condition (Theotokatos et al., 2020). This scenario is generated by dividing the entire 

sequence into distinct sub-sequences. 

 

To complement the preceding explanation with regards to the distinct patterns 

simulated, a graphical representation of them can be perceived in Fig. 7.9. Fig. 7.10 

presents the sequence of a diesel generator power parameter that has been altered to 

simulate such patterns. 

 

Fig. 7.9. Original sequence that has been altered to simulate the distinct abnormal 

operational sequences. 



 

Chapter 7 236 Christian Velasco-Gallego 

  

  

  

Fig. 7.10. Simulated sequence with (a) a point anomaly, (b) two-point anomalies, (c) 

multiple point anomalies, (d) collective anomalies, (e) degradation, and (f) transition 

occurrences between steady operational states. 

After the data pre-processing and simulation stages, the time series are encoded into 

images so that the image classifier can be implemented. Accordingly, the transition 

matrix is estimated by considering the first-order Markov chain model. After heuristic 

evaluation, the number of states is set to 50, as values greater than 50 do not present 

an increase in accuracy, while the computational cost increases significantly. Also, the 

risk of over-fitting increases. 

 

Figs. 7.11 and 7.12 graphically represents the images obtained after implementing the 

image generation stage. Even though the images represented in such figures contain a 

dimension of 10x10 for a better visual interpretation and description, the input images 

for this study present a resolution of 50x50, as it was stated in the preceding 
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paragraphs. An image generated from a normal operation sequence is represented in 

Fig. 7.11. A clear diagonal can be perceived in such an image. This suggest that when 

an operational state is considered their instances do not vary in a significant manner. 

Accordingly, the next state of an instance usually adopts the state of the preceding 

instance or one around it. Consequently, the diagonal is created. For example, if the 

current instance refers to state 2, it is highly probable that the next instance will 

relate to state 2 or a near state (e.g., 1 or 3). An analogous representation of this can 

be perceived in Fig. 7.12 (a). This image refers to a sequence that presents a point 

anomaly. Accordingly, the diagonal is shorter than when a normal operational image 

is considered, as the states are defined based on a different range of values. This does 

not apply when considering multiple point anomalies, as the relationship between 

states is distorted, thus disrupting the diagonal observed in normal images. Such a 

fact can be analogously perceived when collective anomalies and degradation images 

are being considered, as the large number of abnormalities alters the steady context. 

Nevertheless, if the transition occurrences between operational state context is 

considered it can be observed that the evolution is slightly different. For such an 

instance, two distinct diagonals can be perceived, each of them relating to each 

operational state. Isolated pixels are also represented, which relate to the transition 

between operational states. As indicated, each class present unique characteristics. 

Thus, by applying image classifiers it is expected that the trained model can learn 

such characteristics, and thus identify the distinct defined categories. 
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Fig. 7.11. Example of a normal sequence encoded into an image. 

   

   

Fig. 7.12. Example of images generated that contain (a) a point anomaly, (b) two-point 

anomalies, (c) multiple point anomalies, (d) collective anomalies, (e) degradation, and (f) 

transition occurrences between steady operational states. 
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To validate the proposed methodology, a comparative study is applied. The first model 

considered is the 1D-CNN, as versions of such a model has presented promising results 

when dealing with time series data in analogous tasks, such as when predicting the 

RUL (Yao et al., 2021). 

 

Additionally, to evaluate the performance of the first-order Markov chain model as 

time series imaging method, the proposed methodology (Markov-ResNet50V2) and 

the CNN model (Markov-CNN) are modified to present the GAF as the time series 

imaging method (GAF-ResNet50V2, and GAF-CNN). To encode time series into 

images by implementing GAF, the pyts package is utilised (Wang and Oates, 2015). 

 

Based on comprehensive reviews of classification metrics, such as the one performed 

by Grandini et al. (2020), and to adequately assess the models included in the 

comparative study, a total of six metrics has been selected: 1) accuracy, 2) balanced 

accuracy, 3) Micro F1, 4) Macro F1, 5) Mattheus Correlation Coefficient (MCC), and 

6) Cohen’s Kappa. 

 

Prior to the definition of such metrics, the confusion matrix needs to be defined, as 

some of the metrics are computed based on such a concept. This matrix can be defined 
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as a cross table that describes the number of occurrences between two rates 

(true/actual classification and predicted classification). A diagram representing a 

confusion matrix for multi-class classification is presented in Fig. 7.13. 

 

 

Fig. 7.13. Confusion matrix for multi-class classification with n classes. The estimation of 

True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) is 

presented when considering a class k (0 ≤ k ≤ n). 

 

Based on this concept, the first metric, accuracy, is defined. This is probably the most 

popular metric when addressing the multi-class classification task that considers all 

the elements of the confusion matrix (True Positive (TP), True Negative (TN), False 

Positive (FP), and False Negative (FN)) as expressed in Eq. 52. 
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Accuracy = 
TP+TN

TP+TN+FP+FN
 (Eq. 52) 

 

The balanced accuracy is another widely used metric, the estimation of which is also 

related with the confusion matrix. This metric can be defined as an average of Recalls, 

as, firstly, an evaluation of the Recall for each class is performed and, subsequently, 

the obtained values are averaged to determine the balanced accuracy score. The Recall 

is the fraction of True Positive elements divided by the total number of the actual 

positives (see Eq. 53). 

 

Recall = 
TP

TP+FN
 (Eq. 53) 

 

The Micro F1-Score is computed by estimating Micro-Precision (Eq. 54) and Micro-

Recall (Eq. 55). The Micro-averaging is presented in this case to avert differences 

between classes. As the Micro-Average Precision and Recall refer to the same values, 

the Micro-Average F1-Score is equal to both Micro-Average Precision and Recall, as 

the harmonic mean of two equal values is just the value (see Eq. 56). 

 

Micro Average Precision = 
∑ TPk

K
k=1

Grand Total
 (Eq. 54) 
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Micro Average Recall= 
∑ TPk

K
k=1

Grand Total
 (Eq. 55) 

 

Micro F1= 
∑ TPk

K
k=1

Grand Total
 (Eq. 56) 

 

Analogously, the Macro F1-Score is determined by estimating the Macro-Precision 

(Eq. 57) and Macro-Recall (Eq. 58). The Macro F1-Score is then estimated by 

determining the harmonic mean of Macro-Precision and Macro-Recall (see Eq. 59). 

 

Macro Average Precision= 
∑ Precisionk

K
k=1

K
 (Eq. 57) 

 

Macro Average Recall= 
∑ Recallk

K
k=1

K
 (Eq. 58) 

 

Macro F1= 2* (
Macro Average Precision*Macro Average Recall

Macro Average Precision-1+Macro Average Recall-1
) (Eq. 59) 

 

The MCC is defined in terms of a confusion matrix C for K classes, as expressed 

hereunder. 

MCC= 
c ×s- ∑ pk × tk

K
k

√(s2- ∑ pk
2K

k )(s2- ∑ tk
2K

k )

, (Eq. 60) 
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where, 

 c = ∑ Ckk
K
k  is the total number of elements correctly predicted, 

 s = ∑ ∑ Cij
K
j

K
i  is the total number of elements, 

 pk = ∑ Cki
K
i  is the number of times that class k was predicted, 

 tk = ∑ Cik
K
i  is the number of times that class k truly occurred. 

 

Finally, the last metric considered is the Cohen’s Kappa, which is similar to MCC 

when a muti-class classification task is being considered. Cohen’s Kappa metric (K) 

can be described as follows: 

 

K= 
c ×s- ∑ pk × tk

K
k

s2- ∑ pk × tk
K
k

 (Eq. 61) 

 

The first image classifiers analysed are the ResNet50v2 and CNN networks. The 

architecture of the CNN has been set by applying heuristic evaluation and the 

consideration of architectures implemented in analogous studies (Alumtairi et al., 

2021; Yao et al., 2021). Accordingly, the CNN architecture is comprised of two 

convolutional layers with 192 filters and kernel size of 3x3. The pooling operation 

presents a 2x2 dimension. Once the feature extraction phase is finalised, a total of 

three fully connected layers with 64, 128, and 192 hidden units are defined. To ensure 
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the adequate performance of the comparative study, the same parameters have been 

considered for the 1D-CNN architecture. Also, the time series imaging approach GAF 

is also analysed. Accordingly, two additional models are evaluated: GAF-ResNet50v2, 

and GAF-CNN. 

 

The Table 7.4 presents the results after implementing the classification task ordered 

based on the resulting accuracy score. Markov-CNN outperforms the remaining 

models. For instance, Markov-CNN presents a performance enhancement of a 2% 

when considering the second most accurate model, and a 23% when the least accurate 

model is considered. Although a 2% of performance enhancement with regards to the 

second most accurate model, 1D-CNN, may not be significant, Markov-CNN is a 

turning point in the consideration of time series imaging approaches for performing 

fault classification tasks. Markov-ResNet50V2, present nearly identical results as 1D-

CNN. After analysing the third most accurate model, a significant drop can be 

observed in the accuracy performance, leading to a decrease of the accuracy score of 

more than 10%. This suggests that the proposed time series imaging approach 

outperforms GAF. 
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Table 7.4. Classification metrics results for performance evaluation of the multi-fault 

classification task. 

Model Accuracy 
Balanced 

Accuracy 

Micro 

F1 

Macro 

F1 

MC

C 

Cohen's 

Kappa 

Markov-CNN 0.95 0.95 0.95 0.94 0.94 0.94 

1D-CNN 0.93 0.94 0.93 0.93 0.92 0.92 

Markov-

ResNet50V2 0.93 0.93 0.93 0.93 0.91 0.91 

GAF-CNN 0.83 0.84 0.83 0.83 0.81 0.81 

GAF-

ResNet50V2 0.72 0.72 0.72 0.71 0.67 0.67 

 

7.4. Case Study 7. Predictive Analytics Module14 

This case study aims to validate the methodology presented in section 5.4. Remaining 

Useful Life (RUL) Prediction Framework. The turbocharger of a diesel GenSet of a 

tanker ship used for auxiliary needs is analysed. More than 66,000 instances collected 

in a 1-minute frequency basis are considered (please see Fig. 7.14). The descriptive 

statistics are presented in Table 7.5. 

 

Fig. 7.14. Time series plot of the turbocharger exhaust gas outlet temperature monitored 

parameter. 

 
14 The RUL prediction framework presented in this section has been already converted to a journal 

paper, and has been submitted in the Engineering Applications of Artificial Intelligence journal 

(Velasco-Gallego and Lazakis, 2022a). 
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Table 7.5. Descriptive statistics of the monitored parameter. 

 

Mean Std. Min. 25% 50% 75% Max. 

TC EXH GAS OUT TEMP (°C) 263.94 190.23 31.6 49.4 384.7 444.2 510.1 

 

As data pre-processing, steady states’ identification and data normalisation are 

performed. Also, the sliding window algorithm is implemented. After heuristic 

evaluation, the window size parameter is set to 60. 

 

Subsequently, the degradation data simulation step is applied. Accordingly, synthetic 

data are generated through the implementation of the first-order Markov chain model. 

Examples of original and synthetic subsequences are presented in Fig. 7.15 and Table 

7.6. It can be perceived that simulated data present similar characteristics to the 

original one. For instance, in all cases the mean value lies between 430.33 and 433.43 

°C. Also, the standard deviation lies between 2.40 and 3.24. Therefore, this approach 

can be utilised to generate analogous operational scenarios to the original ones. Thus, 

more data can be utilised for training the models, and thus enhance their accuracy. 

 

Due to the lack of degradation patterns, the phase that considers an exponential model 

with Brownian motion for degradation simulation is also applied. In total, 100 

synthetic data are generated based on the observed operational sequences. For each 
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synthetic time series, a total of additional 100 degradations are simulated. Examples 

of these are graphically represented in Fig. 7.16. Fig. 7.16 (a) describes a simulated 

sequence without degradation pattern, as such a time series presents a steady trend. 

Fig. 7.16 (b-f) presents examples distinct generated degradation patterns. 

 

Once the degradation patterns are obtained, both the condition indicators and the 

time series images can be estimated. After heuristic evaluation the resolution of the 

image is set to 25x25. With regards to the architectures, the Markov-CNN architecture 

is comprised of two convolutional layers, in which a total of 192 of size 3x3 has been 

considered. A max pooling layer has been introduced after the implementation of each 

convolutional layer. The pooling operation considered in this inquiry presents a 2x2 

dimension. In relation to the regression stage, a total of three fully connected layers 

with 64, 128, 192 hidden units has been examined. The same configuration is set for 

the 1D-CNN.  
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Chapter 7 249 Christian Velasco-Gallego 

 

Fig. 7.15. (a) Example of an original subsequence plot (b-f) Example of a synthetic sequence 

plot. 

 

Table 7.6. Descriptive statistics of an observed subsequence and its respective simulated 

subsequences. 

 Count Mean Std. Min. 0.25 0.5 0.75 Max. 

Observed 851 433.43 2.76 425.90 431.40 433.40 435.20 441.00 

Simulation 1 554 430.66 2.62 425.90 428.61 430.17 432.45 438.86 

Simulation 2 709 430.59 2.59 425.94 428.79 430.06 432.24 438.83 

Simulation 3 366 430.99 3.24 425.90 428.49 430.47 433.42 438.91 

Simulation 4 321 430.33 2.40 425.93 428.56 430.05 431.99 438.90 

Simulation 5 607 431.10 2.60 425.92 428.96 430.87 433.00 438.84 
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Fig. 7.16. (a) Example of a synthetic sequence (b-f) Example of a degradation simulation. 

 

With regards to the LSTM, the architecture is defined based on heuristic evaluation 

and configuration analysis of analogous studies (e.g., Han et al. (2021)). Accordingly, 

the LSTM presents a total of 3 layers (64, 128, 192) and tanh activation function. In 

all three cases, the ratio of the validation set has been set to 0.20 and Adam optimiser 

has been applied to compile such models. For the training process, a total of 100 

epochs and a batch size of 5 is considered. 

 

After the training of all three models, the weights selection for the ensemble model is 

applied. Accordingly, the grid search optimisation algorithm is considered. Results of 

which determines that the weights selection is the following: wMarkov-CNN = 0.3, 

w1D-CNN = 0.5, and wLSTM = 0.2. Thus, it can be observed that the performance of the 

models can be sorted as follows: LSTM < Markov-CNN < 1D-CNN, thus being 1D-

CNN. Nevertheless, it can be perceived that for certain scenarios either LSTM or 

Markov-CNN outperforms 1D-CNN (please see Fig. 7.17).  
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Fig. 7.17. RUL prediction for the turbocharger exhaust gas outlet temperature. 

 

In Fig. 7.17 it can be perceived that Markov-CNN yields the most accurate predictions. 

Although all three models can predict adequately the RUL in operational conditions. 

However, it can be perceived that the estimated RUL in the degradation stage differs 

significantly. For instance, the LSTM model cannot identify the degradation 

occurrence in its first stage, although a higher precision is obtained when the failure 

is about to occur. A similar pattern is observed if the 1D-CNN is considered. With 

regards to Markov-CNN, this model presents more consistency than the preceding two 

models in both the early and medium stages. Nevertheless, the accuracy is reduced if 

the last stage of the degradation is considered. Furthermore, a downward spike at the 

beginning of the degradation stage is observed, thus indicating that the Markov-CNN 

may be unable to adequately capture the transition between the normal and 
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degradation phases. Accordingly, by considering an ensemble model, the RUL 

prediction is enhanced, and the resulting approach is more robust, as the limitation of 

each individual model can be minimised. 

 

Analogous results have been determined in the remaining predictions (please see Table 

7.7). Table 7.7 presents a total of 50 distinct RUL predictions performed during the 

test stage. Both the RMSE and the Maintenance Score are estimated to assess the 

performance of the models, these metrics being the most appropriate ones when 

evaluating the implementation of a data-driven model that aims to perform the RUL 

prediction task (Han et al., 2021). Overall, the integration of the three analysed models 

into an ensemble approach provides more robust results, as the utilisation of ensembles 

enhances the RUL prediction over any other analysed model in this study by reducing 

the variance of the prediction errors. The contrary can be observed when only the 

Markov-CNN architecture is considered, as, although this model outperformed the 

other models in some of the RUL predictions, their low level of accuracy in other 

predictions (e.g., predictions of RUL 22 and 44) cannot be diminished. Therefore, 

while time series imaging presents promising results, more efforts need to be made for 

considering this type of approach as a potential model for the prediction of RUL. 
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Table 7.7. RMSE and Maintenance Score between each simulated RUL and their respective predictions for the different analysed models. 

  RMSE (Minutes)  Maintenance Score 

Simulated RUL   Markov-CNN  LSTM 1D-CNN Ensembled   Markov-CNN LSTM 1D-CNN Score Ensembled 

RUL 1  16.15 27.23 19.12 15.54  1.26E+03 2.39E+04 4.55E+03 1.18E+03 

RUL 2  69.27 59.40 59.28 46.08  8.18E+12 2.58E+09 3.16E+13 2.36E+08 

RUL 3  55.43 60.12 36.17 36.12  1.42E+10 1.94E+15 1.87E+10 2.43E+09 

RUL 4  36.23 28.49 18.74 18.76  1.05E+06 2.17E+05 5.23E+03 2.64E+03 

RUL 5  18.29 32.61 26.42 18.91  2.10E+03 1.88E+04 3.51E+04 9.60E+02 

RUL 6  99.20 80.18 92.55 72.88  6.62E+30 5.27E+10 3.38E+29 9.25E+17 

RUL 7  35.08 57.38 66.50 45.93  2.94E+06 2.43E+08 7.63E+10 1.06E+07 

RUL 8  46.45 17.02 23.88 23.81  2.34E+09 2.06E+04 5.34E+05 5.44E+05 

RUL 9  48.35 34.52 28.41 20.18  4.30E+06 7.56E+06 6.67E+05 7.96E+03 

RUL 10  28.01 23.63 15.65 15.24  5.30E+04 4.56E+04 7.17E+02 7.78E+02 

RUL 11  72.80 11.39 10.81 22.02  1.04E+14 7.46E+03 3.17E+07 3.37E+05 

RUL 12  79.34 69.21 74.35 56.76  4.92E+08 4.49E+10 7.29E+10 1.76E+07 

RUL 13  65.94 63.20 62.14 53.30  2.44E+10 8.09E+07 2.84E+11 3.08E+08 

RUL 14  58.97 90.67 78.13 70.43  7.49E+05 1.61E+07 1.23E+07 2.64E+06 

RUL 15  43.99 26.69 19.16 22.61  1.36E+10 6.38E+09 2.90E+06 1.55E+07 

RUL 16  120.62 65.07 59.10 52.73  2.40E+21 1.97E+08 5.06E+10 4.10E+09 

RUL 17  84.05 62.16 41.07 41.17  6.45E+20 1.17E+22 8.77E+14 7.50E+14 

RUL 18  31.34 66.15 68.44 49.07  1.12E+05 4.90E+07 7.85E+07 3.53E+05 

RUL 19  76.81 44.16 38.65 38.48  4.52E+17 1.05E+06 9.32E+06 5.21E+07 

RUL 20  58.54 28.88 18.39 24.10  1.40E+09 2.81E+07 2.68E+05 1.38E+05 

RUL 21  73.15 48.94 27.07 32.04  6.99E+13 2.19E+10 2.76E+06 7.31E+07 

RUL 22  131.04 89.02 71.86 67.57  7.30E+36 3.13E+11 9.49E+15 4.18E+14 

RUL 23  64.87 51.57 30.24 31.15  1.24E+13 3.92E+15 3.20E+08 6.88E+06 

RUL 24  71.71 26.50 44.64 41.53  3.14E+07 1.13E+06 9.83E+07 8.16E+06 

RUL 25  156.30 79.65 76.31 83.85  1.79E+20 6.25E+15 1.49E+14 3.93E+14 

RUL 26  109.60 37.79 63.53 54.65  9.89E+24 4.18E+07 9.90E+24 2.11E+15 
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RUL 27  102.35 35.81 43.31 43.94  3.13E+13 3.38E+04 3.14E+09 8.13E+06 

RUL 28  94.95 64.74 59.50 53.68  5.77E+27 3.64E+10 1.05E+13 7.74E+08 

RUL 29  75.36 78.44 60.37 52.96  1.82E+16 8.76E+18 2.54E+13 9.94E+11 

RUL 30  39.49 39.32 36.12 26.85  1.23E+05 2.23E+05 5.43E+05 4.03E+03 

RUL 31  129.75 89.98 84.93 89.19  6.65E+16 1.99E+22 2.00E+14 3.58E+13 

RUL 32  81.39 51.95 54.31 50.01  5.20E+12 9.04E+08 4.74E+10 2.20E+08 

RUL 33  32.88 15.86 13.83 15.56  1.03E+05 9.79E+04 6.19E+03 6.27E+03 

RUL 34  78.56 96.20 63.54 52.26  9.90E+16 2.79E+17 4.97E+14 3.78E+09 

RUL 35  88.13 89.21 78.84 67.30  6.85E+18 6.99E+16 9.59E+16 3.24E+15 

RUL 36  39.51 15.00 18.70 18.12  2.97E+07 5.47E+02 7.46E+03 2.44E+03 

RUL 37  109.22 14.38 36.43 46.00  1.55E+17 2.62E+06 1.56E+10 3.22E+10 

RUL 38  119.33 67.27 63.29 55.37  2.55E+22 4.70E+07 5.12E+09 6.89E+07 

RUL 39  52.86 46.59 49.54 42.04  4.82E+10 5.53E+10 4.42E+10 3.45E+10 

RUL 40  20.84 40.09 31.35 21.17  4.05E+03 1.29E+06 1.03E+06 3.46E+03 

RUL 41  85.49 47.19 44.02 45.50  5.78E+13 1.15E+11 1.91E+09 1.22E+08 

RUL 42  71.49 52.62 42.91 34.25  3.01E+08 1.01E+11 5.33E+09 2.49E+06 

RUL 43  45.26 66.44 69.69 47.70  2.82E+12 3.72E+09 1.03E+10 2.57E+06 

RUL 44  165.47 59.22 44.69 57.56  2.22E+32 5.03E+11 2.51E+08 3.31E+10 

RUL 45  96.15 18.41 16.59 34.81  7.64E+12 2.54E+04 6.50E+04 1.92E+06 

RUL 46  55.77 42.21 47.14 39.38  3.21E+09 1.01E+07 3.17E+09 1.83E+06 

RUL 47  147.58 41.53 34.44 57.97  7.96E+19 1.11E+16 6.42E+12 1.31E+14 

RUL 48  35.09 73.51 75.83 51.03  1.30E+07 1.08E+10 2.97E+10 1.57E+06 

RUL 49  69.37 70.49 61.31 48.43  1.82E+13 2.45E+18 2.39E+13 4.38E+08 

RUL 50   69.83 61.07 52.88 46.47   3.61E+12 2.61E+11 1.83E+11 6.30E+08 

M edian   70.66 51.76 44.67 45.71   4.41E+12 5.74E+08 5.23E+09 3.48E+07 
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7.5. Case 8. MA framework 

To finalise the validation process, a case study is presented in this section in order to 

analyse the overall performance of the proposed MA framework. Accordingly, the main 

engine of a bulk carrier is considered. Specifically, the exhaust gas outlet temperature 

parameter of one of the cylinders is introduced in this study due to its criticality in 

adequately monitoring the functioning of the cylinder. The analysis of other 

parameters can be consulted in Appendix D. Main Results of Case Study 8. MA 

framework. 

 

More than 2,000 instances are analysed for such a parameter. Such instances have 

been collected in a 10-minute frequency. A graphical representation is presented in 

Fig. 7.18. The descriptive statistics are also presented in Table 7.8. 

 

 

Fig. 7.18. Graphical representation of the cylinder 1 exhaust gas outlet temperature 

parameter. 
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Table 7.8. Descriptive statistics of the monitored parameter. 

 Mean Std. Min. 25% 50% 75% Max. 

Cyl. 1 Exh. Gas Out. Temp 331.31 4.06 322 328 331 333 346 

 

As part of the data pre-processing phase, the identification of operational states step 

has been implemented. In total, only one operational state has been identified, as 

perceived in Fig. 7.19. Unlike the case study presented in section 6.5. Case Study 4. 

Novel Framework for the Identification of Steady States, in which distinct operational 

profiles could be perceived, the case presented in this section only presents on 

operational profile. Thus, it is considered that that the results of the algorithm 

implemented for the identification of operational states are satisfactory, and therefore 

the number of operational profiled considered in this case study is 1. 

 

 

Fig. 7.19. Identification of the operational states for the monitored parameter. 
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Due to the characteristics of this dataset, the methodology presented for the 

performance of data imputation has not been required. However, due to the lack of 

fault data, both collective anomalies and degradation patterns are simulated for 

validation purposes and as part of the data augmentation step. Some examples are 

presented in Figs. 7.21 – 7.22. Examples of normal sequences are also introduced in 

Fig. 7.20. 
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Fig. 7.20. Example of normal sequences. 

 

 



 

Chapter 7 260 Christian Velasco-Gallego 

 

 

 

Fig. 7.21. Example of collective anomalies. 
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Fig. 7.22. Example of degradation patterns. 
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As perceived in the preceding figures, the sequences that contain collective anomalies 

and degradation patterns can be easily distinguished from the normal sequences. When 

the system is running under a normal steady state, the variability between instances 

is minimal. However, when the system starts to present an abnormal behaviour, such 

variability starts to be significant, and thus a collective anomalous context can be 

perceived. Lastly, when the systems are running under a failure state, an exponential 

growth in the sensor readings of the monitored parameter is presented until the system 

fails. 

 

In order to be able to detect the preceding scenarios and avoid the system to present 

a failure state, and therefore avert the respective consequences of achieving such a 

state, the diagnosis module is implemented. The first part of this module consists of 

applying the fault detection phase, and thus being able to detect any anomalous 

sequence (please refer to section 5.3.1. Fault Detection for a comprehensive 

explanation of such a step). For hyperparameter tuning, please refer to section 7.2. 

Case Study 5. Fault Detection as Part of the Diagnostic Analytics Module. As a result, 

a LSTM-based VAE architecture with two layers in both encoder and decoder with 

units (128, 64) and (64, 128) is considered. The latent dimensions are set to 10 and 

the sequence length to 18, thus each input sequence presents information of the last 3 

hours. The results of this phase are graphically represented in Figs. 7.23-7.28. 
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Fig. 7.23. Histogram of the reconstructed errors of the normal sequences (test set). 

 

Fig. 7.24. Histogram of the reconstructed errors of the sequences with collective anomalies. 
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Fig. 7.25. Histogram of the reconstructed errors of the sequences with degradation patterns. 

 

Figs 7.23-7.25 refer to the histograms of the reconstruction error of the analysed 

sequences. As it can be observed, the reconstruction errors of the sequences that 

contain collective anomalies and degradation patterns are much greater than the 

normal sequences. Accordingly, in this case the anomalous sequences can be easily 

detected by applying a regular threshold, thus being able to detect all anomalous 

sequences adequately. Figs 7.26-7.28 present examples of reconstructed sequences in 

which it can be similarly observed the reconstruction trend for each type of analysed 

sequence. 
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Fig. 7.26. Example of normal reconstructed sequences (test set). 
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Fig. 7.27. Example of reconstructed sequences with collective anomalies. 
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Fig. 7.28. Example of reconstructed sequences with degradation patterns. 
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Those sequences that have been detected as anomalous in the fault detection phase 

are presented as input in the fault identification phase to identify the characteristics 

of such abnormal patterns. In this case, the fault identification phase can be defined 

as a binary classification, as only two distinct abnormal patterns are being considered 

(collective anomalies and degradation patterns). As concluded in section 7.3. Case 

Study 6. Fault Identification as Part of the Diagnostic Analytics Module, the 

architecture Markov-CNN was the one that presented the most promising results. 

Accordingly, such an architecture is once again implemented for this case study. Thus, 

the first step to be implemented is related to the encoding of time series sequences 

into images. To proceed with such an encoding the first-order Markov chain is 

introduced, as comprehensively described in section 5.3.2. Fault Identification. 

Examples of encoded images are presented in Figs. 7.30-7.31. An example of time 

series imaging of a normal sequence is also presented in Fig. 7.29 for comparative 

purposes. 

 

Fig. 7.29. Image of a normal sequence. 
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Fig. 7.30. Images with collective anomalies. 
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Fig. 7.31. Images with degradation patterns. 

 

As observed if Fig. 7.29, the transition is usually performed between neighbour states 

when normal sequences are considered. Thus, if the current instance relates to state 

2, it is highly probable that the subsequent instance will lie between states 1 and 3, 

thus being unlikely to be associated with state 8, for instance. For this reason, a 

diagonal of high intensity pixels is usually defined in images that represent normal 
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sequences. By contrast, there is no trend identified when images represent collective 

anomalies, as it can be perceived in Fig. 7.30. Distinct pixels with different intensity 

values are presented randomly along the dimensions of the image. However, when 

images with degradation patterns are analysed (see Fig. 7.31), an analogous trend as 

the one presented in Fig. 7.29 can be observed. Such a fact is once related with the 

transition between neighbour states. When the current instance refers to a high 

degradation state (e.g., state 8) it is highly unlikely that the subsequent instance will 

refer to an initial indication of degradation (e.g., state 1). Thus, the subsequent 

instance will lie between states 7-9. That said, although an analogous trend can be 

observed between the image with operational instance and the images with 

degradation patterns, several differences can be perceived. For instance, the diagonal 

of high intensity pixels is not as well defined with degradation patterns are considered 

due to the high variability presented. Furthermore, the highest level of intensity can 

be perceived in the last pixels of the diagonal of high intensity pixels. 

 

By considering such differences, a CNN architecture is proposed to extract the deep 

features that can be utilised to determine the nature of the anomalies analysed. The 

hyperparameter tuning has been implemented as stated in section 7.3. Case Study 6. 

Fault Identification as Part of the Diagnostic Analytics Module. Accordingly, the 

considered CNN architecture is comprised of two convolutional layers with 192 filters 

and kernel size of 3x3. The pooling operation presents a 2x2 dimension. After the 



 

Chapter 7 272 Christian Velasco-Gallego 

feature extraction stage, a total of three fully connected layers with 64, 128, and 192 

hidden units are defined. The dimensions of the images are set to 10x10. 

 

As stated in the preceding paragraph, the two categories analysed in this case study 

can be easily distinguished. This aspect facilitated the achievement of the maximum 

accuracy score in this process, thus classifying all the images adequately. However, it 

has been perceived in section 7.3. Case Study 6. Fault Identification as Part of the 

Diagnostic Analytics Module that such an accuracy can decrease significantly when 

either considering a multi-class classification task or the classes cannot be 

distinguished as smoothly. Furthermore, further tests need to be performed with real-

world scenarios to assess the full potential of such an approach. 

 

To finalise this case study, the last module of the MA framework, 5.4.1. Remaining 

Useful Life (RUL) Prediction Framework, is analysed. After the implementation of 

the fault identification phase, those sequences that refer to degradation patterns that 

can indicate the evolution of the failure state are considered for the estimation of the 

RUL of the system. Fig. 7.32 presents some examples of RUL predictions. 
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Fig. 7.32. Examples of condition indicator prediction. 
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As it can be perceived in Fig. 4.70 and Table B.2.2, there is no clear analysed model 

that outperforms the remaining ones. Accordingly, the consideration of an ensemble 

approach is usually the one recommended, as it is more robust and present more 

accuracy in the overall results than any individual model. However, such a fact is not 

usually certain in certain scenarios, as it can be perceived in Appendix D. Main Results 

of Case Study 8. MA framework. Moreover, it can also be perceived that the results 

obtained are less precise than the ones obtained in the preceding tasks. Such a fact 

can be related to the RUL uncertainty and/or the simulated data utilised for training 

purposes. Challenges that will be considered as part of future work and that will be 

further described in the subsequent chapter of this thesis  

 

7.6. Chapter Summary 

This chapter has introduced a summary of four case studies performed to validate 

each of the methodologies presented in the diagnostic and predictive analytics module. 

Results obtained have demonstrated that the application of data-driven methodologies 

for the implementation of both diagnostic and predictive analytics can effectively 

determine the current and future health of marine systems, thus facilitating the 

implementation of such methodologies to assist with decision-making strategies with 

regards to O&M activities. By ensuring the robustness and flexibility of O&M 

activities, the reliability and availability of marine systems can be guaranteed as well 



 

Chapter 7 275 Christian Velasco-Gallego 

as the reduction of the downtime and operational cost whilst enhancing ship/company 

profitability. 

 



 

Chapter 8 276 Christian Velasco-Gallego 

 

Chapter 8  

Discussion and Conclusions 

 

8.1. Chapter Overview 

This is the last chapter of the present thesis, which provides a discussion of the results 

outlined and the validation of the novelties established. Accordingly, the fulfilment of 

the aim and objectives, the generated novelty, the reflection, the recommendation for 

future work, and the assumptions and challenges are comprehensively presented 

throughout this chapter. 

 

8.2. Generated Novelties 

A total of eight novelties have been generated as a result of the development of a 

novel MA framework. The architecture of such a MA framework has been defined 

according to both the critical literature review performed and the gaps identified. The 

development of an overall MA framework within the shipping industry was presented 

as the main generated novelty, as there is no evidence in the academic literature that 

a holistic framework constituted by diagnostic analytics (fault detection and 

identification) and predictive analytics (remaining useful life prediction) has been 

formalised, even though it has been demonstrated that the use of such frameworks 

can lead to a better planning and utilisation of available resources.  
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Furthermore, it has been identified that current datasets of marine systems present a 

significant number of missing values. If such values are not treated, the results derived 

from data analysis may be unreliable and inaccurate, thus leading to bias in further 

steps. Such a fact cannot only facilitate the obtention of poor models that are used in 

decision-making processes, but also encourage the under-utilisation of data. 

Accordingly, several efforts have been performed to enhance the current practices that 

are being implemented within the shipping industry, which essentially rely on the 

listwise deletion approach. Accordingly, a total of three contributions have been 

introduced in this thesis to promote better practices. The first contribution refers to 

the development of a comparative methodology that examined a total of twenty widely 

implemented machine learning and time series forecasting algorithms. This 

comparative study was aimed at the analysis of potential data imputation approaches 

that can be successfully implemented in smart maintenance within the shipping 

industry context, and thus consider the unique characteristics of such a domain. Based 

on this study, a hybrid data imputation was also presented in order to deal with one 

of the most challenging data pre-processing steps that needs to be considered when 

utilising marine systems’ sensor data, which is the identification of steady operational 

states. To this end, the k-means algorithm was proposed, as it is one of the most 

widely used clustering techniques and it has been utilised in analogous studies. 

Furthermore, due to the need of univariate imputation techniques caused by, for 

instance, the lack of predictors, the first-order Markov chain was also analysed. The 
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final contribution in relation to data imputation relies on the analysis of deep learning 

methodologies, as to the best of the author’s knowledge there is no evidence that such 

methodologies have been implemented for such a purpose within the shipping industry. 

Accordingly, a VAE-regressor with LSTM was analysed. By examining such 

approaches, an increase in the accuracy of the data imputation task is expected, thus 

leading to unbiased models that fuel the decision-making processes. 

 

As stated previously, the identification of steady operational states is of paramount 

importance, as raw data usually contains non-operational states that adversely alter 

the results outlined when performing data-driven tasks. Thus, if such states are not 

adequately addressed, a decrease in both computational efficiency and model 

effectiveness can be perceived. Although some studies have been performed, in which, 

for instance, GMM with EM have been introduced, the studies did not assess their 

performance when the raw data included other states other than engine operating 

regions. Moreover, the development of techniques that automate this process is of 

preeminent importance due to the current transition from historical analysis to real-

time analysis caused by the recent advancements in autonomous shipping. 

Consequently, a framework to identify operational steady states of marine systems 

was proposed. Such a framework was comprised of a time series imaging approach 

based on the first-order Markov chain model and connected component analysis. By 

exploring new automated data-driven approaches, such as the one formalised in this 
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thesis, an enhancement in ship and systems availability, operability, and profitability 

is expected by supporting more sophisticated instant decision-making strategies. 

 

As part of this need to formalise intelligent systems within the shipping industry for 

enabling smart maintenance, two more novelties have been introduced in relation to 

diagnostic analytics. Such a need stems from the lack of time series analysis and deep 

learning methodologies for determining the current health of marine systems. 

Accordingly, an approach comprised of a Deep Long Short-Term Memory-based 

Variational Autoencoder in tandem with multi-level Otsu’s thresholding was 

introduced for the application of the fault detection phase. Moreover, a time series 

imaging approach for fault classification of marine systems was developed as part of 

the fault identification phase. Such an approach was comprised of image generation 

through the implementation of the first-order Markov chain and an image 

classification task, for which a total of two models have been analysed: ResNet50V2 

and Convolutional Neural Networks. By optimising the determination of the current 

health of marine systems, an increase in data accessibility to enable innovative data-

driven strategies is expected by demonstrating how these approaches can enhance 

current practices in relation to O&M activities, thus providing more cost-effective 

processes whilst ensuring safety and security. 
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The final generated novelty refers to the predictive analytics module. To this end, a 

degradation data simulation module was developed in tandem with an ensemble model 

comprised of three distinct deep learning architectures: Markov-Convolutional Neural 

Network, 1D-CNN, and LSTM. Consequently, the challenges that the sector is 

currently experiencing with regards to the lack of fault data and the lack of analysis 

and formalisation of deep learning technologies for the implementation of RUL could 

be addressed. By investing research efforts in more sophisticated prognostic-based 

maintenance methods, a minimisation of the risk while maximising the usefulness of a 

system is expected. 

 

8.3. Original Contribution to the Industry 

From the AS-IS analysis conducted in section 2.2. From Reactive to Smart 

Maintenance, it could be perceived that there is not yet a clear technological solution 

within the shipping sector related to Maintenance Analytics and Prognostics and 

Health Management to enable Smart Maintenance to the best of the author’s 

knowledge. However, there are already powerful tools in the market that are expected 

to revolutionise the sector that address at some extent some of the issues encountered 

in day-to-day practices. Examples of these are Danaos Web Enterprise Suite, 

Cassandra, Laros, METIS Ship Connect, and Mimic Intelligent Condition Monitoring. 

For this reason, the author of this thesis is developing an open-source web service to 

integrate the developed holistic MA framework. By implementing this type of actions, 
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it is expected that Smart Maintenance can be democratised within the shipping sector 

so that the industry can benefit from the research conducted and enhance the current 

practices. 

 

8.4. Assumptions and Challenges 

Due to the validation requirements for adequately assessing the proposed 

methodology, a number of assumptions were made, and various challenges were 

identified. Both the assumptions made and the challenges identified are presented in 

bullet points hereunder. 

 

Assumptions 

• The predictors utilised for validating the multivariate imputation techniques 

do not present corrupted values. 

• The raw data utilised in the case studies refer to normal conditions. Such an 

assumption was required when training semi-supervised models, such as the 

one presented in the fault detection section (2.3.2.1. Fault Detection). 

• As the first-order Markov chain was utilised to encode time series into images, 

it is assumed that the time series analysed present the Markov property. 

• Due to the lack of fault data, it was assumed that certain faults of marine 

systems are presented in the form of collective anomalies and degradation 

patterns. Specifically, it is considered that the degradation pattern can be 



 

Chapter 8 282 Christian Velasco-Gallego 

described as a stochastic process by considering an exponential model with 

Brownian motion. 

 

Challenges 

• The main challenge presented in this thesis was the data required for validating 

the proposed methodology. Due to the sensitivity and confidentiality of the 

information, the author could not obtain fault data, and thus certain 

simulations needed to be performed as stated precedingly. 

• Analogously, certain information with regards to the available data was not 

provided (e.g., full description of the system, maintenance logs, and operational 

profiles), thus hindering the process of analysis. Also, only main engine and 

diesel generators data could be obtained. 

• Due to the large amounts of data needed for training deep learning models, 

the execution time of some of the analyses was extremely large. Due to such a 

fact, some of the analyses were unfeasible for the available computational 

power and needed to be limited. 

 

8.5. Recommendation for Future Work 

Due to the number of tasks that constitute the MA framework and their respective 

singularity, the directions for future work are sectioned by sub-modules. Moreover, 
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general future work directions are also presented in bullet points based on some of the 

limitations encountered as indicated hereunder. 

 

Overall MA Framework 

• Develop an open-source web service to democratise the novel methodology, so 

that other researchers and personnel from either academia or industry can 

benefit from the functionalities of the MA framework without requiring a full 

understanding of each of the techniques and approaches performed. A beta 

version of the code developed in Python will be available in an online 

repository. 

• Add more functionalities to the existing MA framework. The introduction of 

a decision support system, the utilisation of computer vision techniques for 

structural and health monitoring of ships, and the employment of AR/VR 

approaches for supporting training and inspection activities are examples of 

areas of investigations that the author is already analysing for future research 

development. 

• Deploy the MA framework in real time as Software as a Service (SaaS). 

Although most of the methodologies have been developed to be deployed in 

real time, further validations and enhancements need to be performed in this 

sense. The consideration of providing the existing MA framework as an open-

source software is being considered by the author. 
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• Implement Explainable Artificial Intelligence (EAI) for enhancing 

transparency and eliminating bias. Specifically, the SHAP framework is 

expected to be analysed. 

• Perform more validation with other available datasets and parameters that 

reflect real-world scenarios. 

 

Data Pre-processing 

Data Imputation 

• Perform a comprehensive analysis of other deep learning models to assess their 

imputation performance in order to assist the lack of analysis and formalisation 

of deep learning methodologies in relation to the application of data 

imputation. 

• Analyse the implication of corrupted data in the imputation performance of 

the analysed models. In performing multivariate imputation, it has been 

assumed that the predictors do not contain corrupted values. However, it has 

been perceived that raw data usually contain anomalies, and thus its 

implication in the imputation performance needs to be adequately addressed. 

• Apply other data pre-processing steps that have not been implemented to 

evaluate if the imputation performance increases (e.g., feature selection, 

feature extraction, and time-series denoising).  
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• Assess the impact of collinearity between independent variables when marine 

systems are being considered. Such a collinearity can facilitate a decrease in 

the imputation performance, and thus needs to be adequately addressed. 

Accordingly, the implementation of more comprehensive correlation analyses 

and the estimation of relevant metrics, such as Variance Inflation Factor 

(VIF), need to be adequately analysed. 

• Consider the analysis of distinct feature extraction techniques, such as 

Principal Component Analysis (PCA) and Partial Least Squares (PLS), and 

analyse their potential implications in the imputation performance. 

 

Identification of Steady States 

• Consider optimisation techniques for the selection of the different states of the 

transition matrix. Whilst the selection of such states through the 

implementation of heuristic evaluation has been satisfactory, the author 

considers that the identification task can be enhanced by optimally selecting 

such states. 

• Evaluate the implication of different pre-processing steps prior to the 

implementation of the proposed methodology. For instance, it has been 

perceived that outliers, repeated values, and noise can have a negative impact 

in the adequate identification of the states, and thus these need to be 

adequately addressed in advance. 
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• Consider the performance of multiple iterations and the addition of ensemble 

methods to enhance the outcome of the proposed methodology. 

• Apply additional metrics in the validation process. Due to the difficulties in 

utilising metrics for unsupervised approaches, further research needs to be 

performed to complement the visual analysis performed in this thesis with 

more tangible results. 

• Consider more complex pooling methodologies to analyse if the performance 

effectiveness of the proposed methodology increases. 

 

Diagnostic analytics 

Fault Detection 

• Analyse optimisation techniques to adequately select both the architecture of 

the deep neural network and the different hyperparameters of the applied 

models. The implemented grid search algorithm presented a significant 

computational cost for the analysis implemented, as only one potential area of 

a search space has been introduced. Therefore, further search spaces need to 

be considered to adequately perform the optimisation task. Moreover, as part 

of the future of this research, evolutionary algorithms are expected to be also 

analysed to evaluate if the computational cost is reduced while the level of 

accuracy is either maintained or enhanced. 
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• Consider further anomaly contexts. For this inquiry, the addition of gaussian 

noise has been considered to alter the analysed sequences. However, the 

analysis of other contexts is of preeminent importance, such as degradations 

and contextual anomalies, which may be distinguished while performing 

diagnostic analytics. 

• Analyse other time series similarity methods, including such measurements as 

transform-based similarity and time domain similarity, prior to the 

implementation of image thresholding. Moreover, the extraction of statistical 

features may need to be considered as complementary to image thresholding 

as part of the fault diagnosis step. 

• Implement ensemble methods for anomaly detection, as it is expected that, by 

combining several anomaly detection techniques, the performance of this task 

will be enhanced. 

• Consider other performance metrics to assess unsupervised learning. Although 

assumptions have been made to perform a semi-supervised learning task, the 

results obtained show that the scenarios usually considered within the 

maritime industry are unsupervised. Accordingly, there is a need to study such 

metrics to ensure the efficient and effective performance of the proposed 

framework and enhance it. 

• Explore weather and performance characteristics of the vessel to assess the 

possible enhancement of the proposed framework while providing support to 

ship owners, operators, and managers at a strategic level. 
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Fault Identification 

• The first-order Markov chain was implemented in this thesis as a time series 

imaging approach. As such, a univariate approach was presented. Further 

validations to perform multivariate analysis is required. In this sense, some 

initial validations have been performed by the author as a part of a 

multivariate analysis by stacking all the individual transition matrices (one for 

each parameter) to present them as the input of the different image 

classification models being analysed. The author expects to present such results 

in subsequent studies. Moreover, the consideration of other multivariate 

approaches, such as multivariate Markov chains, are being studied. 

• Study other time series imaging approaches and classification models. In this 

thesis, a comparative study has been performed in which a total of two time 

series imaging approaches and four classification models have been assessed. 

However, due to an increased interest in PHM within the shipping industry 

and other comparable sectors, such as manufacturing and aerospace, numerous 

state-of-the-art methods are being introduced that need to be considered to 

continue advancing the enhancement of fault classification tasks within the 

shipping industry. Moreover, other elements that both complement the models 

developed and enhance transparency and performance also need to be 

considered. Examples of these are the implementation of explainable artificial 
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intelligence or the consideration of evolutionary algorithms for applying 

hyperparameters optimisation. 

 

Predictive Analytics 

RUL Prediction 

• Explore and implement other time series imaging methods, such as recurrence 

plots or Gramian Angular Fields (GAFs). 

• Analyse optimisation techniques to adequately select the hyperparameters of 

the deep neural networks. 

• Apply more sophisticated ensemble methods. 

• Validate the proposed methodology by considering a multivariate approach, 

as, due to the lack of fault data, only a univariate approach has been considered 

instead. 

• Consider other forms of simulating both time series and degradation data. In 

this approach, an exponential model with Brownian motion to simulate 

degradation data has been considered. However, the degradation of the 

machinery may not follow this pattern in some cases. 

• Validate the proposed methodology by considering real-world data. More 

efforts need to be performed by both academia and industry to collaborate in 

sharing data for research purposes. By understanding data confidentiality and 

the sensitive information that can be extracted from them, it is essential to 
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provide a secure research environment to ensure that the proposed 

methodologies currently being tested with simulated data can be accurate and 

feasible for the industry and the real-world challenges that need to be 

addressed. 

 

8.6. Fulfilment of Aim and Objectives 

Throughout the application of a comprehensive critical literature review (please see 

Chapter 2. Literature Review), several gaps were identified within the maritime 

industry. An example of these is the lack of a holistic framework constituted by 

diagnostic analytics (fault detection and identification) and predictive analytics 

(remaining useful life prediction). Consequently, to continue promoting best practices 

and competitiveness within the shipping industry in terms of O&M activities 

management, asset optimisation, emissions management, and safety and security of 

the personnel, a novel MA framework has been presented in this thesis. The set of 

objectives defined in section 1.3.2. Aim and Objectives and how they were fulfilled are 

discussed hereunder. 

 

Objective 1: The identification of the current gaps within the shipping sector with 

regards to data pre-processing, and both diagnostic and predictive analytics through 

the application of a critical literature review. The outcomes provided from the 

achievement of this objective have been summarised in Chapter 2. Literature Review. 
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As outlined in said chapter, the structure of the outcome has been presented as defined 

in the MA concept. Accordingly, both the diagnostic analytics and predictive analytics 

concepts were analysed. Furthermore, as data-driven methodologies were being 

considered, special attention was also given to a data pre-processing step to ensure 

data integrity and quality. Specifically, the data imputation and the identification of 

operational states were comprehensively assessed due to their criticality and lack of 

analysis and formalisation within the context of smart maintenance in the shipping 

industry context (please see sections 2.3.1.1. Data Imputation and 2.3.1.2. 

Identification of Operational States for further information). With regards to the 

diagnostic analytics model, both fault detection and fault identification were analysed. 

A bibliometric analysis and a taxonomy of anomaly detection studies for fault 

detection were performed due to the significant number of novel approaches and 

publications identified. Please refer to sections 2.3.2.1. Fault Detection, 2.3.2.2 Fault 

Identification, and Appendix C. Bibliometric and Taxonomy results of anomaly 

detection studies for a more comprehensive explanation. To finalise the critical 

literature review, the analysis of RUL prediction studies was evaluated as part of the 

predictive analytics study (please see 2.3.3. Predictive Analytics). By exploring the 

preceding areas of investigation, the gaps in terms of the analysis and formalisation of 

smart maintenance within the shipping industry could be identified. Such gaps were 

summarised in section 2.4. Identified Gaps. 
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Objective 2: The development of a maintenance analytics framework fuelled by 

Machine Learning and Deep Learning (DL) algorithms to generate the novelties 

presented based on the gaps identified. Contributions to the analysis and formalisation 

of data pre-processing, diagnostic analytics, and predictive analytics are expected. By 

considering the identified gaps in section 2.4. Identified Gaps, a total of eight novelties 

were determined, which were not only related to one of the analysed modules (data 

pre-processing, diagnostic analytics, and predictive analytics), but also were associated 

with the development of a holistic MA framework for the diagnosis and prognosis of 

marine systems (please refer to section 3.2. Novelties for further information). 

Accordingly, an overall architecture of the proposed MA framework was introduced 

in section 3.3. Overview of the developed frameworks. As described precedingly, such 

a framework was comprised of three main modules: 1) data pre-processing, 2) 

diagnostic analytics, and 3) predictive analytics. As part of the data pre-processing 

module, a total of four contributions were presented: 1) the development of a 

comparative methodology for data imputation, 2) the development of a novel hybrid 

imputation framework constituted by operational states’ identification phase, 

univariate imputation, and multivariate imputation, 3) the analysis of a VAE-

regressor with LSTM for data imputation, and 4) the development of a novel 

operational states’ identification framework comprised of a first-order Markov chain 

model with connected component analysis. As part of the diagnostic analytics module, 

a total of two contributions were introduced: 1) the development of an anomaly 

detection intelligent system for fault diagnosis of marine systems, constituted by a 
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LSTM-based VAE in tandem with multi-level Otsu’s thresholding, and 2) the 

development of time series approaches for the identification of faults of marine 

systems. Lastly, as part of the predictive analytics module, one contribution was 

proposed: the development of a RUL prediction approach for fault prognosis of marine 

machinery, which aims to analyse the effectiveness of time series imaging and ensemble 

modelling for the prediction of RUL within the maritime industry while addressing 

the challenge of fault data unavailability. A detailed explanation of the developed MA 

framework is presented in Chapters 3: Part I. Introduction to the Maintenance 

Analytics Methodology, 4. Methodology: Part II. The Data Pre-processing Module, 

and 5. Methodology: Part III. The Diagnostic analytics and Predictive Analytics 

Modules. 

 

Objective 3: The implementation of a total of 8 case studies to assess the performance 

of the developed methodology and demonstrate its effectiveness to address the 

generation of the novelties based on the gaps identified. To validate the developed MA 

framework, a total of 8 case studies, one for each novelty, were implemented. The first 

case study aimed to validate the methodology introduced in section 4.2. Comparative 

Methodology of Univariate and Multivariate Imputation Techniques. The case study 

referred to a total of seven machinery system parameters obtained from sensors 

installed on a main engine of a cargo vessel. Case study 2 aimed to validate the 

methodology introduced in section 4.3. Hybrid Data Imputation Framework. The case 

study referred to a total of four parameters, obtained from sensors installed on the 
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main engine of a cargo vessel. Case study 3 aimed to validate the methodology 

introduced in section 4.4. Analysis of LSTM-based Variational Autoencoders for 

Regression for Data Imputation. The case study referred to marine machinery system 

parameters obtained from sensors installed on a diesel generator of a tanker ship. Case 

study 4 aimed to validate the methodology introduced in section 4.5. A Novel 

Framework for the Identification of Steady States. The case study referred to the 

analysis of three diesel generators of a tanker ship. Case study 5 aimed to validate the 

methodology introduced in section 5.3.1. Fault Detection. The case study referred to 

a total of fourteen parameters obtained from sensors installed on a diesel generator of 

a tanker ship. Case study 6 aimed to validate the methodology introduced in section 

5.3.2. Fault Identification. The case study referred to one feature that has been 

collected from sensors coupled to a diesel generator of a tanker ship. Case study 7 

aimed to validate the methodology introduced in section 5.4. Remaining Useful Life 

(RUL) Prediction Framework. The case study referred to the turbocharger of a diesel 

generator of a tanker ship. Case study 8 aimed to validate the overall methodology 

introduced in section 3.3. Overview of the developed frameworks. The case study 

referred to the main engine of a bulk carrier. The outcomes of these case studies were 

presented in Chapters 6. Case Studies and Results: Part I. Data Pre-processing 

Module and 7. Case Studies and Results: Part II. Diagnostic and predictive analytics 

Module. 
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Objective 4: The introduction of future research guidelines to continue contributing to 

the establishment of Smart Maintenance in the shipping industry based on the 

discussion of the obtained results. Such an objective is being achieved in the present 

chapter of the thesis by introducing the fulfilment of aim and objectives, generated 

novelty, recommendation for future work, and assumptions and challenges. 

 

8.7. Chapter Summary 

In this final chapter, the fulfilment of the main objectives defined in the first chapter 

of this thesis has been discussed. Subsequently, the novelties generated have been 

summarised and the reflections have been presented. To continue enhancing the 

current version of the developed MA framework, future research and recommendations 

have also been introduced. To finalise, the main assumptions and challenges have been 

described. The subsequent pages of this thesis refer to the bibliography and 

appendices. 
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Appendix A  

SWOT Analysis of Maintenance 

Activities 

 

A.1. Strengths 

• Maintenance transition through time from a reactive manner to a more 

proactive approach. 

• A planned maintenance system (PMS) is mandatory according to IMO, which 

allows shipowner and operator to plan, perform, and document vessel 

maintenance and intervals complying with Class and manufacturer 

requirements. 

• Test and maintenance are performed according to the guidelines of 

manufacturers, and Classification Societies (IACS, KR, ABS, DNVGL, LR, 

BV, and RINA), having the feedback of the shipping company (standards). 

 

A.2. Weaknesses 

• Lack of spare parts control and management. 

• Paper-based records and visual inspections. 

• Scheduled maintenance is often performed too early or too late. 
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• Infant mortality is sometimes introduced to components in mid-life due to 

invasive inspection or calendar maintenance. 

• CMMS do not perfectly match the particularities of each company. Thus, they 

prefer to create their own system. 

• Maintenance costs represent between 15% and 40% of production costs. 

• A lot of time is spent on unnecessary maintenance. 

• Downtime is extremely costly. 

• Expensive CAPEX and OPEX. 

• Training takes significant time and resources. 

• CBM technology and PMS are not being utilised by global fleet of vessels. 

• Most shipowners do not have the in-house competences or resources to 

implement an effective condition monitoring system. 

• Personnel overburdened with day-to-day operations routine. 

 

A.3. Opportunities 

• Industrial IoT technology. It is thought IIoT will increasingly make it easier 

to drive growth to the company. 

• Predictive maintenance and fault correction, which reduce downtime and 

wastage, leading to positive impact on environmental factors. Prognosis. 

• New upgrades in Decision Support Systems (DSS). 
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• Real-time information utilization, whose targets is to evaluate the state of 

degraded ship systems and machinery. 

• Utilization of Remotely Operated Vehicles (ROV) for inspection (image 

recorded and processing). 

• Information and management of critical components integration. Information 

Technology (IT) and Operation Technology (OP) 

• Forecasting for spare parts demand. 

• Maintenance analytics (ML, AI, etc. → New tools + technologies). 

• Development of appropriate software and new standards to ensure the systems 

are interconnected and the data can be handled. 

• Comprehensive database can be built if the data can be shared between all the 

stakeholders. 

• Use of mesh networks. 

• On-shore support for diagnostics, prognostics, and guidance in emergencies 

(remote maintenance). 

• Development of a robust system/framework for verification, certification, and 

assurance. 

• Development of standards methods for ensuring asset data is in form 

conductive to ML algorithms. 

• Mobile devices utilization and implementation of AR to provide a 3D view of 

equipment and respective information. 

• Dynamic and stochastic scheduling with integration of decision-making tools. 
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• Application of a balanced performance measurement system including 

financial, operational, and performance indicators. 

• Ordered list based on multi-criteria model to assess equipment criticality. 

• Implementation of a multi-criteria technique to classify spare parts. Spare 

parts management based on reliability knowledge. 

 

A.4. Threats 

• Lack of cooperation between stakeholders. There is a lack of trust due to 

information asymmetries. 

• Cost of installation, capital investment, and lack of trust in new technologies. 

• Data confidentiality and security. 

• Train the staff in new technologies (staff cooperation). 

• Massive amounts of data to process and unreliable data. 

• The implementation of new technologies requires a strong knowledge base 

about ship functions, systems, and components. 

• Investments in information technology without considering the actual 

conditions and maintenance strategies. 

• Insurance claims → conservative market. 

• Lack of adequately trained personnel, which implies greater complexity in new 

technologies implementation. 

• Failures uncertainty. The relative number of random failures is very high. 
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Appendix B  

Literature Review Summary Tables 

 

 

Table B.1. Literature review summary about data imputation techniques. 

Reference Methodology  Utilisation Limitations 

Pratama et al. 

2016 

Review study of conventional and 

modern imputation procedures. 

- -  

Chong et al. 

2016 

Comparative study of five imputation 

methods: 

• Linear regression. 

• Weighted k-NN. 

• SVM. 

• Mean imputation. 

• Replacing incomplete values with 0. 

Data imputation in time-series sensor 

data. 

• Linear regression is a multivariate 

imputation method, and thus its accuracy 

may decrease if the predictors are not highly 

correlated with the response. Furthermore, 

the imputation is only accurate if the 

mentioned correlation is linear. 

• Weighted k-NN is another example of a 

multivariate imputation method, and thus 

its accuracy hinges on the correlation 

between the predictors and the response. 

Moreover, the number of neighbours, k, 

needs to be estimated, and this may lead to 
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either under-fitting or over-fitting if k is not 

optimally selected. 

• SVM also hinges on the correlation between 

the predictors and the response, its 

performance may vary based on the kernel 

selection, and its computational cost is large. 

• Mean imputation distorts the distribution of 

the variable and the relationship between 

variables by reducing estimates of 

correlation towards zero. 

• Replacing incomplete values with 0 also 

distorts the distribution of the variable, 

which can result in large errors when the 

incomplete values to impute are far from 

zero. 

Noor et al. 

2014 

Two imputation methods were 

implemented: 

• Linear interpolation. 

• Mean imputation. 

Data imputation in annual hourly 

monitoring records. 

• Although linear interpolation was the 

method that presented the most accurate 

results, it presents some limitations, such as 

being inaccurate for non-linear functions. 

• Mean imputation disrupts the inherent 

structure of the data and degrades the 

performance of the statistical modelling, as 

it can lead to large errors in the matrix 

correlation. 

Balakirshnan 

and Sangaiah 

2018 

Automated framework to impute 

missing values by applying the context 

and linear mean (MCL) method 

Data imputation in temperature sensor 

data. 

Considering a missing value at time t, this 

method can only be used if the occurrences at 

time t - 1 and t + 1 are available. 
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Azimi et al. 

2019 

Multiple imputation approach, which 

utilises short-term data and context and 

lifestyle data. 

Data imputation in a seven-month 

monitored data. 

The proposed method leads to less accurate 

results when the incomplete data window is 

small. Moreover, the bias of the estimates may 

be large if the correlation between context and 

missing values is not high. 

Priya Stella 

Mary and 

Arockiam 2017 

Methodology based on the assumption 

that data collected from sensors 

presents a highly spatial and temporal 

correlation. 

Data imputation in 5-minute frequency 

records of air quality sensors data. 

The model is only accurate when the 

relationship between the sensors is strong. 

Fekade et al. 

2018 

Probabilistic method to impute missing 

values from IoT devices by utilising 

data from analogous sensors. k-means 

algorithm is applied to identify 

neighbours’ sensors. Then, Probabilistic 

Matrix Factorization (PMF) is utilised 

inside each partition to impute missing 

values. 

Data imputation in data collected from 

different sensors located in different 

rooms of a laboratory. 

As PMF is utilised, the complexity increases 

exponentially with increases in the matrix size. 

Over-fitting may also occur when the technique 

is trying to minimise an error that results in a 

loss of generality. In addition, imputations may 

not be possible to implement if there are not 

neighbour sensors available. 

Bashir and 

Wei 2018 

Method that utilises Vector 

Autoregressive model (VAR) by 

combining the Prediction Error 

Minimisation (PEM) with an EM 

algorithm. The overall method is named 

Vector Autoregressive Imputation 

Method (VAR-IM). 

Data imputation in a dataset including 

electrocardiogram signals of 290 

patients. 

VAR-IM requires the time series to be 

stationary. Moreover, its performance may not 

be more accurate than other data imputation 

methods analysed when the percentage of 

incomplete values in the dataset is low. 
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Izonin et al. 

2019 

Data imputation method based on the 

use of the Ito decomposition and the 

AdaBoost algorithm. 

Data imputation in real data recorded 

using a certified analyser. 

The proposed approach yields a lesser 

performance if the data presents anomalies, or 

the size of the sample is not adequately large to 

train the model. 

Liu et al. 2020 Univariate data imputation method 

that utilises STL decomposition, named 

Itr-MS-STLDecImp. 

Data imputation in real-world time 

series data collected from a Syngas 

compressor in a real manufacturing 

plant. 

It is only accurate when dealing with large gaps 

of data and when the time series presents trend 

and seasonality. 

Bokde et al. 

2018 

Method named imputePSF, which is an 

adjustment of the Pattern Sequence 

based Forecasting (PSF) algorithm. 

Data imputation in traffic speed time 

series from a loop detector, in time series 

of water flow rates generated from 

hydraulic simulations with EPANET, 

and nottem dataset that is a twenty-year 

time series of the monthly average air 

temperature at Nottingham Castle, 

England. 

It is only accurate when the time series presents 

periodic components, and thus it is not 

recommended when the time series presents 

either noisy trends or non-cyclical patterns. 

Hegde et al. 

2019 

Comparative study of: 

• Probabilistic principal component 

analysis (PPCA). 

• Multiple imputation using chained 

equations (MICE). 

Data imputation in 116 dental variables. Both techniques are multivariate imputation 

methods, and thus, if the predictors are not 

highly correlated with the response, the 

imputation may not be accurate. 

Hadeed et al. 

(2020) 

Comparative study of: 

• Univariate methods (Mean, 

Median, Last Observation Carried 

Forward, Kalman Filter, Random, 

Markov). 

Data imputation in 20 household with 

complete 24-hour monitoring data for 

PM2.5. 

• Univariate imputation techniques may fail 

to capture expected diurnal or temporal 

events. 
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• Multivariate methods (Predictive 

Mean Matching, Row Mean 

Method). 

• Multivariate imputation may present low 

performances if there are significant 

differences between households. 

Chivers et al. 

(2020) 

A two-step approach (a binary 

classification step in tandem with a 

regression analysis). 

Data imputation in data from a 

temperate oceanic climate at sub-hourly 

temporal resolution. 

The comparison between the implemented 

machine learning models demonstrated their 

different performances. Ensemble decision tree 

methods performed well in the classification 

step, whereas the neural networks performed 

well in the regression analysis. In no cases k-NN 

technique was implemented due to the complex 

and weakly correlated relationship between 

predictor features and target. Furthermore, the 

deep learning network of 20 hidden layers was 

not used either due to over-fitting. 

Cheliotis et al. 

2019 

Hybrid imputation method combining 

k-NN and MICE algorithms with first-

principle knowledge. 

Data imputation in 8 sensors coupled to 

the turbocharger and to the main engine 

of a chemical tanker. 

As mentioned previously along this table, both 

k-NN and MICE techniques are multivariate 

imputation methods, and thus, if the predictors 

are not highly correlated with the response, the 

imputation may not be accurate. Also, the 

number of neighbours, k, needs to be estimated, 

and this may lead to either under-fitting or over-

fitting if k is not optimally selected. 
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Table B.2. Advantages and limitations of the methodologies reviewed in the maritime industry context. 

Reference Methodology Advantages Limitations 

Brandsæter et 

al. (2017) and 

Brandsæter et 

al. (2019). 

Algorithm that implements AAKR as 

signal reconstruction and SPRT as 

residual analysis. The algorithm was 

altered and enhanced by adding three 

novel modifications: cluster-based 

memory vector selection method, 

modified distance measure between the 

query vector and the memory vector, and 

credibility estimation. 

• Robust and fast to implement. 

• It is effective for the case 

presented. 

• Only one type of fault is presented 

in the study. 

• There is no evidence that the 

framework can be implemented in 

real time. 

• The reconstruction method does not 

consider the characteristics of time 

series data. 

Lazakis et al. 

(2019). 

One-class Support Vector Machine. • It is effective for the case 

presented. 

• The methodology can be 

implemented to a diverse set of 

machinery. 

• There is no evidence that the 

framework can be used in real time. 

• It does not consider the 

characteristics of time-series data. 

• Inconvenient for large sets of data. 

Cheng X. et al. 

(2019b). 

FPGA. • It is effective to denoise vibration 

signals that contain strong noise. 

• It can be applied in real time. 

• Its application is specific, and thus 

cannot be considered as a generic 

anomaly detection framework. 

Ellefsen et al. 

(2019) b. 

VAE. • SA can be implemented as a 

feature selection to remove 

irrelevant and redundant input 

features. 

• Similar to Ellefsen et al. (2020), 

there is no evidence that the 

algorithm can be automatically 

implemented in real time. 
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• The algorithm achieved an 

average accuracy of 97.88% in 

the experiment presented, which 

indicates the accuracy of 

implementing VAE in this 

context. 

• The framework does not face the 

challenges of using real data. 

• ASF may lead to inaccuracies due to 

the different engine loads. 

• Only one fault type is considered. 

Ellefsen et al. 

(2020). 

VAE. • The algorithm can be used to 

detect degradations of different 

natures. 

• It is possible to derive the 

reconstruction of the data to 

analyse the underlying cause of 

the fault to apply isolation. 

• The framework cannot be applied 

automatically in real time. 

• The framework does not face the 

challenges of using real data. 

Cheliotis et al. 

(2020b). 

Combination between EB models and 

EWMA. 

• It is highly transferable and can 

be applied in a variety of 

different cases. 

• The framework demonstrated to 

be effective for detecting the 

faults that were simulated. 

 

• There is no evidence this framework 

can be applied in real time. 

• It does not consider the 

characteristics of time-series data. 

• Other machine learning and time 

series forecasting models may be 

more accurate than the models 

selected for this study. 
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Table B.3. Summary of fault identification of marine systems studies. 

Reference Methodology Case Study Main Results 

Wang et al. 

(2020) 

A supervised phase was introduced in the 

fault diagnosis framework for the 

identification of the running state of the 

system. This supervised phase 

implemented a Back Propagation Neural 

Network (BPNN) 

The proposed methodology was validated 

by considering a marine diesel engine. The 

data considered ran under five common 

working conditions: 1) normal, 2) carbon 

deposition of the injector nozzle, 3) air 

leakage of the exhaust valve, 4) wear of 

high-pressure oil pump, and 5) damage of 

the piston ring. Regarding the parameters, 

a total of eight were considered (e.g., mean 

effective pressure, scavenging pressure, and 

rotation speed) 

High accuracy was perceived in 

identifying both working and high-

pressure oil pump wear exhaust valve 

leakage conditions. However, it was 

considered that the diagnostics of both 

the nozzle carbon deposition and piston 

ring damage conditions required an 

enhancement 

Cai et al. (2017) A total of three steps were presented. The 

first step referred to the structuring of the 

system into subsystems to reduce 

complexity in the analysis. Subsequently, a 

classification model based on SVM was 

applied to perform the monitoring of 

The diesel engine system was considered. 

As subsystems, the 1) fuel, 2) lubrication, 

3) intake and exhaust, and 4) cooling 

subsystems were identified. A historical 

fault database was available for validation 

purposes. For instance, the fuel system 

An accuracy of 96% was obtained when 

the diesel engine fuel system fault 

dataset was considered 
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operating states and fault diagnosis. The 

third and final step referred to the 

application of the association rule mining 

algorithm to analyse the relationships 

among the fault characteristics at distinct 

levels 

fault dataset contained a total of 75 groups 

of prediction data in 5 working conditions 

with 15 groups of prediction data of each 

working state 

Hou et al. (2020) An optimisation of the SVM algorithm 

with a three-dimensional Arnold mapping 

introduced into the Particle Swarm 

Optimization algorithm was considered. 

The Principal Component Analysis (PCA) 

method was also implemented prior to the 

implementation of the model to reduce the 

computational complexity 

The fuel oil supply system of a marine 

diesel engine was considered. A total of ten 

faults were available for validation 

purposes 

A comparative study between the 

established methodology and the Multi-

Layer Perceptron (MLP) with BP 

algorithm added momentum factor and 

adaptive learning, and Radial Basis 

Function Network was performed. The 

established methodology outperformed 

the remaining methods in terms of 

Correct Diagnosis Ratio. However, in 

terms of execution time, it was perceived 

a significant difference between the 

established method, which achieved an 

execution time of 78.27 seconds, and the 

remaining analysed methods, which 

presented 0.98 and 0.53 seconds 

respectively 



 

Appendix B 343 Christian Velasco-Gallego 

Senemmar and 

Zhang (2021) 

Three methodologies were presented: 1) 

deep neural network, 2) Gated Recurrent 

Unit (GRU), and 3) Long Short-Term 

Memory (LSTM) 

Fault data from an 8-bus shipboard power 

system were simulated 

The GRU-based model was considered 

as the most effective DL model, as it 

achieved an accuracy of 99% 

Tan et al. (2020) A total of 6 one-class classifiers were 

investigated: 1) One Class Support Vector 

Machine (OCSVM), 2) Support Vector 

Data Description (SVDD), 3) Global k-

Nearest Neighbors (GKNN), 4) Local 

Outlier Factor (LOF), 5) Isolation Forest 

(IF), and 6) Angle-Based Outlier Detection 

(ABOD) 

A real-data validated numerical simulator 

developed for a Frigate characterized by a 

combined diesel-electric and gas propulsion 

plat was considered 

The performance of the six analysed 

methods were ranked as follows: ABOD 

> OCSVM ≈ SVDD > GKNN > IF ≈ 

LOF 

Tan et al. (2021) A total of five multi-class classifiers were 

considered for simultaneous fault diagnosis: 

1) Binary Relevance (BR), 2) Classifier 

Chains (CC), 3) Multi-Label k-Nearest 

Neighbor (MLKNN), 4) Binary Relevance 

k-Nearest Neighbor (BRKNN), 5) Multi-

Label Twin Support Vector Machine 

(MLTSVM) 

Analogous to Tan et al. (2020), a dataset 

generated from a data simulator of a 

Frigate was considered 

The performance of the five analysed 

methods were ranked as follows: BR > 

CC > BRKNN > MLKNN > MLTSVM 
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Table B.4. Summary of time series imaging approaches in fault identification task studies. 

Reference Methodology Time Series 

Imaging 

Approach 

Case Study Sector/Domain 

of Application 

Fahim et al. 

(2021a) 

Self-attentive weight-sharing capsule network GAF A Western-System-

Coordinating Council WSCC 

9-bus and 3-machine test 

model modified with the series 

capacitor was considered 

Transmission line 

domain 

Fahim et al. 

(2021b) 

Stacked denoising-autoencoder GAF Time-series oscillographs data Transmission line 

domain 

 

Fahim et al. 

(2020a) 

self-attention convolutional neural network GAF 228,690 data samples of both 

three-phase voltage and 

current signals 

Transmission line 

domain 

 

Fahim et al. 

(2020b) 

self-attention convolutional neural network GAF Input signals namely voltage, 

current and combined voltage 

and current signal, under 

various sampling frequencies 

Transmission line 

domain 

 

Yao et al. 

(2020) 

The image feature was extracted by implementing Kernel 

Principal Component Analysis (KPCA). Then, the 

Full-scope Simulator 

based on the State 

Nuclear plant Nuclear 
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resulting image features were classified by analysing five 

typical classifiers: 1) SVM, 2) k-NN, 3) Linear 

Discriminant Analysis, 4) Decision Tree Analysis, and 5) 

logistic regression 

Information Imaging 

(FSFSSII) 
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Appendix C  

Bibliometric and Taxonomy Results of 

Anomaly Detection Studies 

 

C.1. Bibliometric Analysis 

The implementation of anomaly detection methodologies can enhance operations and 

maintenance activities in numerous sectors, such as manufacturing, construction, 

energy, and maritime, by predicting, preventing, and detecting machine failures that 

may result in a loss of productivity, thus increasing both costs and unplanned 

downtime. It is unsurprising, therefore, that there are more than 41,000 results when 

searching papers about anomaly detection in Scopus database. Trends indicate that 

academic publications in relation to this concept are increasing expeditiously, which 

makes the application of regular literature reviews unfeasible. Accordingly, a 

bibliometric analysis is performed to extract knowledge to be considered for further 

development of anomaly detection techniques applied for maintenance analytics. 

Specifically, due to the complexity of obtaining fault data of marine systems, the 

application of either unsupervised or semi-supervised is the only further analysed at 

this stage. To that end, the following query was used to obtain a first estimation of 

papers to be included in the analysis: 
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(“anomaly detection” OR “outlier detection” OR  

“novelty detection” OR “fault diagnosis” OR 

“fault detection”) AND (“maintenance”) AND 

  (“unsupervised” OR “semi-supervised”) 

 

A total of 141 publications are identified from Scopus database. Only papers published 

from 2010 to 2020 are considered to limit the analysis to the most recent studies. Of 

all the categories of document types, only those types that refer to novel anomaly 

detection approaches are considered (conference papers, articles, conference reviews, 

reviews, and book chapters). Therefore, after applying this initial filter, 131 out of 141 

are analysed further. Prior to the data analysis step, pre-processing is performed to 

remove redundant articles that are either out of the scope or are duplicated (e.g., a 

study has been presented in an analogous manner in a conference paper and in an 

article). After completing this pre-processing step, a total of 90 out of 131 publications 

are objects of study. 

 

Table C.1. The 10 most cited articles in the anomaly detection for maintenance analytics 

practices field. 

Ranks References DOI TC Source 

1 

Langone et al. 

(2015) 

10.1016/j.engappai.2014.09.00

8 61 

Eng Appl Artif 

Intell 

2 Yang et al. (2011) 10.1016/j.eswa.2011.02.181 52 Expert Sys Appl 

3 

Thirukovalluru et 

al. (2016) 10.1109/ICPHM.2016.7542865 48 

IEEE Int Conf 

Progn Health 

Manag, ICPHM 
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4 

Helbing and Ritter 

(2018) 10.1016/j.rser.2018.09.012 40 

Renewable 

Sustainable 

Energy Rev 

5 Shang et al. (2018) 10.1109/TIE.2018.2811358 40 

IEEE Trans Ind 

Electron 

6 

Di Maio et al. 

(2012) 10.1016/j.eswa.2011.10.008 38 Expert Sys Appl 

7 

Amruthnath and 

Gupta (2018) 10.1109/IEA.2018.8387124 34 

Int Conf Ind 

Eng Appl, 

ICIEA 

8 

Harrou et al. 

(2019) 10.1016/j.solener.2018.12.045 26 Sol Energy 

9 Zhang et al. (2015) 10.1109/SMC.2015.19 25 

IEEE Int Conf 

Syst, Man, 

Cybern, SMC  

10 

Yuan and Liu 

(2013) 10.1016/j.ymssp.2013.03.008 25 

Mech Syst 

Signal Process 

 

Table C.1 describes the 10 most cited articles in the anomaly detection for 

maintenance analytics practices field. The results were analysed based on the Total 

Citations (TC) metric. Langone et al. (2015) demonstrated the applicability of 

implementing Least Squares Support Vector Machines (LS-SVMs) for fault diagnosis. 

Prior to the implementation of LS-SVMs, Kernel Spectral Clustering (KSC) was 

performed as an unsupervised approach on sensor data coming from a vertical seal 

and fill machine to identify both normal operating conditions and abnormal contexts. 

Subsequently, a Nonlinear Auto-Regressive (NAR) model was illustrated in the LS-

SVM framework. Results demonstrated the capability of the presented framework to 

identify degradations affecting the machine. Yang et al. (2011) presented a hybrid 

feature selection scheme for unsupervised learning in fault diagnosis. A bearing fault 

diagnosis application was utilised to highlight the robustness and the accuracy of the 

presented approach. Additionally, results were compared with widely implemented 
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feature selection algorithms, such as PCA-based feature selection and forward search 

feature selection. Thirukovalluru et al. (2016) examined traditional handcrafted 

features and compared them with features learned by Deep Neural Networks (DNNs) 

for implementing fault diagnosis. To perform this analysis a total of five datasets were 

analysed, which referred to air compressor monitoring, drill bit monitoring, steel plate 

monitoring, and two bearing fault monitoring data. Results demonstrated both good 

feature representation and accurate classification performance when utilising DNNs. 

Helbing and Ritter (2018) discussed recent applications of Artificial Neural Networks 

(ANNs) and DL approaches in the wind turbines sector. Results indicated the 

prevalence of unsupervised methodologies within this sector, although supervised 

methodologies demonstrated promising results, due to the challenges that need to be 

addressed in relation to quality and accessibility as well as labelling and class 

imbalance of operational data. Shang et al. (2018) developed a recursive slow feature 

analysis as a new process monitoring and fault diagnosis approach. A case study on a 

real crude heating furnace system was implemented to demonstrate the efficacy of the 

presented methodology. Di Maio et al. (2012) compared two unsupervised ensemble 

methods (fuzzy C-means and hierarchical trees). Predictions of multiple classifiers 

were combined to reduce variance of both results and bias. Data collected from several 

slurry pumps were utilised to determine the effectiveness of the developed model to 

identify the health status. Amruthnath and Gupta (2018) tested the accuracy, 

performance, and robustness of a total of 5 unsupervised learning algorithms (PCA 

T2 statistic, Hierarchical clustering, K-Means, Fuzzy C-Means clustering, and model-
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based clustering). Simple vibration data collected from an exhaust fan was utilised to 

analyse the implemented algorithms. Harrou et al. (2019) introduced a fault diagnosis 

approach for monitoring photovoltaic systems. An anomaly detection approach was 

developed by implementing a model based on the one-diode model to mimic the 

characteristics of the photovoltaic array and, subsequently, apply a OCSVM to 

residuals from the simulation model to detect faults. Real data from a 9.54 kWp grid-

connected plant was implemented as a case study to highlight the superior 

performance of the proposed approach in relation to other five binary clustering 

schemes analysed in the study. Zhang et al. (2016) analysed Deep Learning Network 

(DBN) to perform classification. Precisely, an ensemble of DBNs with Multi-Object 

Evolutionary Algorithm based on Decomposition (MOEA/D) is implemented to detect 

failure degradation. A turbofan engine degradation simulation dataset provided from 

NASA was utilised for analysis. Yuan and Liu (2013) introduced manifold 

regularization based semi-supervised learning to implement fault diagnosis. Two 

vibration signals of Buma pump and CWRU bearing datasets were utilised to test the 

proposed methodology. Results demonstrated the feasibility and efficiency of the 

approach. 

 

The analysis of the most cited articles demonstrated that there is no clear algorithm 

that outperforms all possible scenarios that can be considered in relation to the system 

and the type of fault being analysed. DL methodologies are gaining attention within 

recent years, thus indicating their applicability as anomaly detection approaches. 
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However, there are various challenges that are yet to be tackled in relation to these 

algorithms, an example of which is the lack of trust in "black-box" models by the 

industry. Although known for their undeniable lack of transparency, there is no doubt 

whatsoever about their extraordinarily accurate predictions. Therefore, the 

incorporation of explainable artificial intelligence models is of paramount importance 

to guarantee the enhancement of operations and maintenance activities while ensuring 

transparency, interpretability, and explainability. Another relevant challenge is the 

lack of available data, as industry is exceedingly reserved due to the sensitive 

information that can be extracted. Therefore, some data, such as fault data, are deeply 

laborious to obtain, significantly slowing the research process. Consequently, the 

cooperation between industry and academia is of preeminent importance to make data 

available, thus facilitating the implementation of DL methodologies, which require a 

large amount of data to train and optimally select their respective parameters. In 

addition, as Internet of Ships is in its infant phase, there is a lack of data quality due 

to unreliable outcomes caused by certain anomalies and missing values that are 

originating from device failure, network collapse, and human error (Balakrishnan and 

Sangaiah, 2018; Izonin et al., 2019; Noor et al., 2014). Accordingly, the adequate 

implementation of data pre-processing steps, such as data imputation, is essential to 

guarantee reliable data-driven models. Although data imputation is a compelling pre-

processing step that has gained popularity recently, there is a lack of formalisation 

and analysis, thus far, within the shipping industry. In accordance with this aspect, 
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the deployment of these novel models within the shipping industry is also yet to be 

adequately formalised. 

 

Aligned with the analysis performed in the preceding paragraphs, a co-occurrence 

analysis of keywords is also implemented. From Fig. C.1, some fundamental aspects 

already outlined in the preceding paragraphs are identified. Regarding the 

methodologies implemented, OCSVM, Decision Trees, Neural Networks, Auto 

Encoders, Feature Extraction, and clustering algorithms were the most applied within 

the studies. Specially, deep learning and support vector machines prevail among other 

unsupervised and semi-supervised algorithms. Bearings’ datasets, Structural Health 

Monitoring (SHM) data, industrial and manufacturing equipment sensor data are the 

major typologies of datasets in which state-of-the-art anomaly detection approaches 

have been modelled for fault diagnosis. To complement the graphical representation 

described in Fig. C.1, the 20 most frequent keywords are listed in Table C.2. 
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Fig. C.1. Co-occurrence of keywords. 

 

 

Table C.2. Most frequent keywords. 

Author's keywords   Keywords Plus 

Words Freq.  Words Freq. 

anomaly detection 23   fault detection 45 

fault detection 16   anomaly detection 33 

machine learning 14   learning systems 26 

predictive maintenance 13   machine learning 18 

unsupervised learning 12   predictive maintenance 15 

fault diagnosis 9   failure analysis 14 

condition-based maintenance 6   maintenance 14 

condition monitoring 5   unsupervised learning 14 

structural health monitoring 5   support vector machines 12 

damage detection 4   condition based maintenance 11 
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deep learning 4   condition monitoring 11 

semi-supervised learning 4   deep learning 11 

gaussian mixture model 3   learning algorithms 11 

isolation forest 3   supervised learning 11 

supervised learning 3   anomaly detection methods 8 

 

To finalise the bibliometric analysis, the frequencies of the algorithms presented 

throughout the years are examined based on the indicator Keyword Plus to determine 

past and present trends, and thus establish future perspectives in relation to the 

application of unsupervised and semi-supervised anomaly detection techniques for 

fault diagnosis. As identified in Fig C.2. and stated previously, the number of 

publications has increased significantly. Therefore, the number of algorithms 

implemented in papers published in 2010-2015 is not substantial. SVM and ANN are 

highlighted within this period. Some studies related to feature extraction were also 

identified, although this concept has been further investigated in the recent years. 

Deep learning is unquestionably the area that is gaining the most attention in recent 

years and the number of publications that consider such approaches are increasing 

expeditiously. Auto Encoders (AE), adversarial networks, and Convolutional Neural 

Networks (CNNs) are just some examples of deep learning models that have been 

analysed in academia to develop fault diagnosis frameworks. 



 

Appendix C 355 Christian Velasco-Gallego 

  

  

Fig. C.2. Frequencies of the most implemented algorithms throughout the years (2010-2020) 

based on the Keyword Plus indicator. 

 

C.2. Taxonomy of Anomaly Detection Studies 

To complement the bibliometric analysis about anomaly detection within the 

maintenance analytics context, and the critical literature review about unsupervised 

and semi-supervised anomaly detection techniques in the maritime industry, a 

taxonomoy of anomaly detection papers is presented in this section. Taxonomy 
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analysis has been widely implemented within the maritime industry to review diverse 

concepts. An example of which is the review presented in Zis et al. (2020), which 

performed a critical literature review on weather routing and voyage optimisation 

problems. The review included an analysis of the main methodologies implemented for 

weather routing and a taxonomy of research based on relevant academic papers. 

 

By prioritising recent and most cited publications, a total of 45 anomaly detection 

papers within the maintenance analytics context are classified according to the 

parameters listed hereunder. 

 

• Applied methodology. The methodology presented in the paper is briefly 

described. 

• Implementation of case studies. If a case study is performed to highlight 

the presented methodology, it is shortly characterised. 

• Type of data utilised. The characteristics of the data are indicated. 

• Nature of the faults. The faults utilised to evaluate the presented 

methodology are outlined. 

• Methodology deployed in real time. The possibility of deploying the 

presented methodology in real time is detailed. 

• Industrial sector. As anomaly detection is an interdisciplinary concept, the 

industrial sector in which the method is applied is specified. 
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Due to the dimensions of the resulting table, the detailed results of this taxonomy are 

represented in Table C.3. However, a summary based on the resulting taxonomy is 

expressed in the subsequent paragraphs. 

 

Firstly, if the applied methodologies aspect is considered, DL models lead the ranking, 

as they have been applied in more than 30 case studies. This reaffirms the conclusions 

outlined from the bibliometric analysis, in which it could be observed that the current 

and future trends regarding anomaly detection approaches were constituted by DL 

algorithms. Autoencoders and LSTM networks are examples of the most common 

models implemented in the analysed studies. Clustering algorithms, such as k-means 

and GMM, were also widely applied within this context. Regarding supervised 

classifiers, Isolation Forest (IF) was the most implemented algorithm due to its 

effectiveness to be applied in real time, as it requires less memory than other ML and 

DL algorithms. For this reason, in most of the cases, in which this model was applied 

in predictive frameworks, its deployment was in real time. However, as previously 

stated, this is a challenge that needs to be addressed when considering DL algorithms 

as anomaly detection techniques. Although most of the studies highlighted the 

outstanding accuracy of DL models to detect anomalies, many of them were not 

holistic, and thus their unfeasible application in real-world scenarios was promoted. 

This is because diverse studies utilised simulated data to assess the performance of 

the methodologies, as the collection of the data needed to adequately train and test 

the models is extremely complicated. Therefore, the challenges that need to be 
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addressed when dealing with real-world scenarios were not considered accordingly. All 

the following are indispensable examples to be further analysed due to the 

consequences that they can have in the performance of the DL methodologies when 

are applied in real-world scenarios: 

 

• The lack of fault data. 

• The need of explainable models due to the lack of transparency of DL 

algorithms. 

• The quality of the dataset in relation to corrupted values due to either sensors' 

failure or human error, outliers, and high noise when dealing with sensor data. 

• The implementation of data imputation due to the large number of missing 

values that datasets contain. 

• The lack of synchronisation between sensors. 

• The necessity of an integration framework due to the collection of data from 

various sources. 

 

In this sense, a more comprehensive description of all the prior and subsequent phases 

implemented to obtain the expected model performance need to be outlined in the 

studies presented. Therefore, it is required to promote transparency of the best 

practices being applied and provide a holistic predictive framework to be utilised by 

the industry. 
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If the industrial sector is considered, the manufacturing and industry is the one leading 

the list (see Fig. C.3). This is because this sector encompasses those studies that refer 

to machinery systems, such as gas turbines and robot arms, which require zero 

downtime during their operational state to guarantee the expected 

production/functioning; reducing the risks and costs associated with downtime and 

systems' failure. Correspondingly, sectors such as aircraft and space, railway, and wind 

turbines are also leading the list on account of this fact. 

 

 

Fig. C.3. Studies classified by industrial sector. 

 

Three articles were identified within the maritime sector, one of which referred to 

Structural Health Monitoring (SHM) and two of them were related to marine 

machinery, the latter being within the scope of the studies analysed in the critical 
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literature review about unsupervised and semi-supervised anomaly detection 

techniques within the maritime industry. However, these were not assessed as they 

were not retrieved from the query implemented. This consideration is of paramount 

importance, as it indicates a limitation to query-based analysis and the influence of 

the selection of keywords and abstract development to avoid biased results.  For 

example, Carrega et al. (2019) presented a generic title and abstract focusing on the 

technique implemented and, in failing to describe comprehensively the case study to 

highlight the proposed methodology, the article was subsequently omitted from the 

analysis when the query was applied. In essence, as the number of publications is 

increasing expeditiously and the implementation of regular literature reviews is 

becoming unfeasible, which yields the implementation of data-driven review 

approaches, the selection of keywords and refining of both the title and the abstract 

are critical to be in accordance with the desired scope and target audience. 
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Table C. 3. Taxonomy of anomaly detection studies. 

Reference Applied 

methodology 

Implementation of 

case studies 

Type of data 

utilised 

Nature of the 

faults 

Methodology 

deployed in 

real time 

Industrial 

sector 

Ahmed et al. 

(2019) 

Isolation Forest. Anomaly detection in 

DNS queries. 

Benign dataset of top 

rank primary domains 

from two enterprise 

networks. 

Simulation of 

malicious DNS 

queries. 

The methodology 

can be deployed 

in real time. 

Computer and 

technology. 

Alaoui-

Belghiti et al. 

(2019) 

Acoustic signals 

were compared with 

reference signals 

through the 

calculation of 

Sinkhorn distances. 

Industrial bench test. Noise of an industrial 

test. 

Two faulty 

mechanical parts 

were considered: the 

sound of a light and 

a cyclical low-

pitched sound. 

There is no 

evidence that the 

proposed 

methodology can 

be implemented 

in real time. 

Manufacturing 

and Industry. 

Borith (2020) Decision tree, k-NN, 

random forest, and 

linear SVM. 

Automobile part 

manufacturer. 

17 features and 86,400 

from an automobile 

part manufacturer. 

Dataset divided into 

active and non-

active states. 

The proposed 

methodology can 

be deployed in 

real time. 

Manufacturing 

and Industry. 

Bose et al. 

(2019) 

ADEPOS 

framework that 

applied ELM-B as 

the machine 

learning algorithm. 

Experiments on 

bearings. 

NASA bearing dataset. Faults in bearings. There is no 

evidence that the 

proposed 

methodology can 

Aircraft and 

Space. 
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be implemented 

in real time. 

Carrega et al. 

(2019) 

Multi-purpose 

algorithm for 

unsupervised or 

semi-supervised 

learning to detect 

optimal operating 

regions. 

Frigate. Sensor data collected 

on a frigate, 

characterised by a 

combined diesel, 

electric, and gas naval 

propulsion system. 

The decay and 

speed states were 

simulated. 

There is no 

evidence that the 

presented 

methodology can 

be deployed in 

real time. 

Maritime. 

Chen et al. 

(2020) 

Sliding-Window 

Convolutional 

Variational 

Autoencoder 

(SWCVAE). 

Industrial robot use-

case. 

Normal operation time 

series data. 

Only one anomaly 

scenario was 

presented in the 

case study. 

The proposed 

methodology is 

partially online, 

as the process of 

training model is 

offline. 

Manufacturing 

and Industry. 

Coraddu et 

al. (2019) 

Two anomaly 

detection methods 

based on Support 

Vector Machines 

(SVMs) and k-

Nearest Neighbour 

(k-NN). 

Hull condition of the 

Research Vessel The 

Princess Royal. 

Real time data 

collected when the 

vessel was in operation. 

Two different hull 

conditions of the 

Princess Royal were 

considered: clean 

and fouled. 

The proposed 

models can be 

adopted for real-

time applications 

directly onboard. 

Maritime. 

Cui et al. 

(2018) 

Nonlinear 

Autoregressive 

Neural Networks 

2MW wind turbine 

located in Sweden. 

Data collected from the 

wind turbine. 

Failure in the 

gearbox bearing. 

There is no 

evidence that the 

proposed 

methodology can 

WInd turbines. 
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with eXogenous 

iniputs (NARX). 

be deployed in 

real time. 

Doğru et al. 

(2020) 

Mask Region 

Convolutional 

Neural Networks 

(MASK R-CNN). 

Aircraft. Images of aircraft 

dents from different 

sources. 

Aircraft dents. There is no 

evidence that the 

proposed 

framework can be 

deployed in real 

time. 

Aircraft and 

Space. 

Ducharlet et 

al. (2020) 

SuMeRI approach, 

which applied 

successive 

specialised anomaly 

detection methods 

in an iterative way. 

One-Class SVM, 

Linear Regression, 

and Nerual 

Networks were 

considered for the 

case presented. 

Utilisation of two 

public datasets and a 

real case study 

dataset. 

The first dataset 

referred to Numenata 

Anomaly Benchmark 

and it measured the 

temperature on a 

machine. The second 

contained the HTTP 

requests in the KDD 

Cup 1999 dataset. The 

real case dataset 

referred to temperature 

measurements in a 

building that was 

equipped with an 

intelligent auto-

regulating system. 

System failures were 

presented in the 

first dataset. In the 

second dataset the 

data were labelled 

as either normal or 

an attack, in which 

the type of attack 

was also indicated. 

In the real case the 

dataset the data 

were unlabelled, 

although it was 

known that the 

dataset contained 

anomalies. 

There is no 

evidence that the 

proposed 

methodology can 

be implemented 

in real time. 

Manufacturing 

and Industry. 
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Farbiz et al. 

(2020) 

Cognitive analytics-

based framework. 

Industrial robot use-

case. 

Data obtained from 

robot controller data, 

energy data, and 

vibration sensor data. 

All data collected 

referred to normal 

operation data. 

Although the 

methodology 

indicates that it 

can be deployed 

in real time, 

further studies are 

required to assess 

the accuracy of 

the prediction of 

anomalies, as no 

fault data was 

utilised to 

evaluate the 

model in the case 

study. 

Manufacturing 

and Industry. 

Fernandes et 

al. (2019) 

Autoregressive 

Integrated Moving 

Average (ARIMA) 

models. 

CNC machines from a 

mechanical metallurgy 

factory. 

Data collected from 

two lathes and two 

vertical mills by 

installing sensors and 

interfacing with the 

machines’ firmware to 

consume the 

information provided 

by the inner sensors. 

All data referred to 

normal operation 

data, as CNC 

machines were very 

rarely inclined to 

fail due to a strict 

schedule of 

preventive 

maintenance. 

Although it is not 

specifically 

indicated in the 

paper, the 

proposed 

methodology can 

be deployed in 

real time with 

some 

adjustments. 

Manufacturing 

and Industry. 
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Hodžić et al. 

(2020) 

Principal 

Component 

Analysis (PCA) and 

binary classification 

decision tree 

algorithm were 

utilised as 

unsupervised 

anomaly detection 

methods. 

Supervised learning 

is not within the 

scope of this 

analysis 

Railway propulsion 

system. 

Data collected from the 

Real-Time Simulator 

(RTS) lab, which 

included sensors for 

measuring current, 

speed, voltage, 

reference power, and 

two different 

temperatures. 

Data collected were 

not labelled, and 

thus the nature of 

faults was unknown. 

Unsuperivsed 

anomaly detection 

was performed in 

tandem with domain 

experts analysis to 

label the data and 

train the supervised 

learning model. 

There is no 

evidence that the 

methodology can 

be deployed in 

real time, as 

domain experts 

needed to analyse 

the data and 

appropriately 

label it while 

performing the 

unsupervised 

learning method. 

Railway. 

Hsu et al. 

(2019) 

Density-based 

spatial clustering of 

applications with 

noise algorithm was 

used to classify 

abnormal-state 

wind turbine data 

from normal-state 

data. Subsequently, 

random forest and 

decision tree 

techniques were 

implemented to 

Wind turbines located 

in Taiwan. 

Sensor data. Control charts were 

used to detect four 

categories of wind 

turbine faults: 

rotary blades, 

gearboxes, 

generators, and 

hydraulic oil 

systems. 

There is no 

evidence that the 

proposed 

methodology can 

be deployed in 

real time. 

Wind turbines. 
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construct the 

predictive models 

for wind turbines 

anomalies. 

Imbassahy 

(2020) 

Generic Anomaly 

Detection 

Hybridization 

Algorithm 

(GADHA). 

Aircraft. Data collected from 

landing gear. 

Abnormal situations 

typically found in 

landing-gears 

operations. 

There is no 

evidence that the 

proposed 

framework can be 

deployed in real 

time. 

Aircraft and 

Space. 

Inagaki et al. 

(2021) 

Two methos were 

evaluated 

(autoencoder and 

Gaussian Mixture 

Model (GMM)). 

Press machine. Data collected from the 

press machine while 

operating. 

A sudden anomaly 

was identified in the 

test dataset. 

Consequently, the 

machine stopped. 

There is no 

evidence that the 

proposed 

methodology can 

be deployed in 

real time. 

Manufacturing 

and Industry. 

Kolokas et al. 

(2019) 

Isolation Forest 

(IF) and Elliptic 

Envelope (EE) 

Anode production. Data that included 

variables, such as 

temperatures, speeds, 

and flow rates collected 

from the cooler. 

1052 fault incidents 

were registered and 

utilised to assess the 

accuracy of the 

There is no 

evidence that the 

presented 

methodology can 

Manufacturing 

and Industry. 
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proposed 

methodology. 

be deployed in 

real time. 

Kolokas et al. 

(2020) 

Isolation Forest 

(IF) 

Data related to 

aluminium and plastic 

production. 

The data were divided 

into two general 

categories: the input 

data, which referred to 

analysed signals where 

anomalies were 

detected, and the 

target data, which 

referred to stop data. 

A total of 1870 

stops were 

identified, which 

could be either 

voluntary (e.g. 

maintenance 

activities) or 

involuntary (faults 

or breakdows). 

Some of these stops 

referred to machine 

breakdown, mold 

breakdown, lack of 

cooling, lack of raw 

material, and 

auxiliary equipment 

failure. 

It can be 

deployed in real 

time, although 

the model may 

need to be 

retrained due to 

the changing 

process 

conditions. 

Manufacturing 

and Industry. 

Kyriakou et 

al. 2019 

Artificial Neural 

Network (ANN) 

Detection of potholes. Sensor data were 

collected for 31 

parameters, such as 

speed, accelerations, 

and rotations. 

Roadway pothole 

anomalies at known 

locations were used 

to train the model. 

There is no 

evidence that the 

proposed 

methodology can 

be implemented 

in real time. 

Civil. 



 

Appendix C 368 Christian Velasco-Gallego 

Li et al. 

(2019) 

Deep Belief 

Network. 

Spacecraft storage 

batteries. 

Data originated from 

satellite X. 

Decreased in the 

voltage of the 

storage battery of 

satellite X in the 

discharge mode. 

The proposed 

methodology can 

be implemented 

in real time. 

Aircraft and 

Space. 

Li et al. 

(2020) 

Attn-based Bi-

LSTM 

Log-based anomaly 

detection. 

Log datasets ranging 

from distributed 

systems, 

supercomputers, 

operating systems, 

mobile systems, etc. 

Sequence order 

changes, which 

referred to 

sequential log 

anomalies, and time 

interval changes, 

which referred to 

performance issues. 

The proposed 

methodology can 

work in a nearly 

real-time mode. 

Computer and 

Technology. 

Liu and 

Gryllias 

(2020) 

Support Vector 

Data Description 

(SVDD) with 

Negatives Samples 

(NSVDD). 

Experiments on 

bearings. 

NASA Intellgient 

Maintenance Systems 

(IMS) dataset. 

Faults in bearings. There is no 

evidence that the 

proposed 

methodology can 

be implemented 

in real time. 

Aircraft and 

Space. 

Liu et al. 

(2018) 

Stacked 

AutoEncoders 

(SAEs) 

Gearbox fault 

diagnosis. 

Dataset based on 

vibration signals 

collected on a specially 

designed bench which 

consisted of a one 

phase input and three-

phase output motor, a 

gearbox, the shaft 

Multifault gearbox 

experimental 

dataset. 

There is no 

evidence that the 

proposed 

framework can be 

deployed in real 

time. 

Manufacturing 

and Industry. 
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supporting seats, a 

flexible coupling, and a 

magnetic powder 

brake. 

Liu et al. 

(2020c) 

Evaluation of 

regression methods 

(e.g. linear 

regression, lasso 

regression, and 

ridge regression) 

and neural networks 

(ANN, LSTM, and 

bi-LSTM). 

Vertical plant wall 

placed in an elderly 

home located in 

Sweden. 

CO2 concentration 

level and temperature 

variations in a green 

room lab data. 

Some point 

anomalies were 

identified due to 

noise. Two 

anomalous test sets 

were manually 

generated for point 

anomaly and 

contextual anomaly 

scenarios. 

The proposed 

methodology can 

be implemented 

in real time. 

Building. 

Lutz et al. 

(2020) 

Autoencoders. Wind turbines located 

in the same wind farm 

in the German North 

Sea. 

Operational and event 

data. 

Scada-events 

provided the 

information if the 

wind turbine was in 

downtime, although 

it did not specify 

why the downtime 

occurred. 

There is no 

evidence that the 

proposed 

framework can be 

deployed in real 

time. 

Wind turbines. 
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Madakyaru 

et al. (2019) 

Integrated 

statistical 

mechanism merging 

the benefits of 

Partial Least 

Squares (PLS), 

Adaptive Neural 

Network Fuzzy 

Inference Systems 

(ANFIS) modeling 

and the k-Nearest 

Neighbors (k-NN)-

based data mining 

scheme for 

nonlinear process 

monitoring. 

Laboratory scale 

bubble cap distillation 

column. 

Distillation data 

temperatures, feed, and 

coolant fluid 

temperatures. 

The model was 

tested by perturbing 

the column around 

its nominal 

operating condition. 

The feed flow was 

perturbed with the 

magnitude of ±50 

while keeping the 

reflux flow 

constantly at the 

nominal condition. 

Another anomaly 

was introduced by 

perturbing the 

reflux flow with the 

magnitude of ±40 

while keeping the 

flow rate constant. 

There is no 

evidence that the 

proposed 

methodology can 

be implemented 

in real time. 

Chemical. 

Makridis et 

al. (2020) 

XGBoost, LSTM, 

One Class SVM, 

and Permutation 

Entropy Check to 

perform regression. 

Vessels. Sensor data collected 

from various vessels. 

Data collected from 

defected ships. 

There is no 

evidence that the 

methodology can 

be implemented 

in real time. 

Maritime. 
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Martin-del-

Campo et al. 

(2019) 

Convolutional 

sparse coding with 

dictionary learning. 

Two case studies were 

presented. Case study 

1: controlled 

experiment with the 

data taken from the 

bearing data center at 

Case Western Reserve 

University. Case study 

2: data from a real-

world condition 

monitoring system. 

The data was collected 

from the monitoring 

system installed in 

wind turbines located 

in northern Sweden. 

The first case study 

considered data 

collected from a well-

known controlled 

experiment. This 

experiment consisted of 

a motor, a torque 

transducer, and a 

dynamometer. The 

second case study 

utilised data recorded 

from the high-speed 

shaft of a wind turbine. 

The first dataset 

presented faults 

seeded in the 

bearings. 

Analogously, the 

second dataset also 

presented a bearing 

failure. 

There is no 

evidence that the 

proposed 

methodology can 

be deployed in 

real time. 

Wind turbines. 

Miki and 

Demachi 

(2020) 

Long Short-Term 

Memory Neural 

Network. 

Experiments on 

bearings. 

Dataset published by 

the Bearing Data 

Center of Case 

Western Reserve 

University (CWRU). 

Failures such as ball 

failure, inner-ring 

failure, and outer-

ring failure of 

various defect sizes. 

There is no 

evidence that the 

proposed 

framework can be 

deployed in real 

time. 

Nuclear. 

Morariu et al. 

(2020) 

Long Short-Term 

Memory (LSTM) 

Neural Networks 

(NNs). 

Pick and place 

operation (basic 

operation performed 

by industrial robots 

and used in assembly). 

Set of pick and place 

robot operations, 

measured at two 

different motion speed 

settings. 

Abnormal 

operations 

characterised by 

either higher energy 

consumption or 

The methodology 

can be 

implemented in 

real time. 

Manufacturing 

and Industry. 
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longer execution 

time. 

Mulongo et 

al. (2019) 

Support Vector 

Machines (SVMs), 

k-Nearest Neighbors 

(k-NN), Logistic 

Regression (LR), 

and MultiLayer 

Perceptron (MLP). 

Fuel consumption. TeleInfra dataset, 

which containsed 

different power types 

used by the operator 

obtained from a 

telecommunication 

base station. 

The dataset 

contained anomalies 

in the fuel 

consumed. 

There is no 

evidence that the 

proposed 

methodology can 

be deployed in 

real time. 

Energy. 

Munir et al. 

(2019) 

FuseAD, method 

that fused 

statistical and deep-

learning-based 

models for time-

series anomaly 

detection. 

Open-source time-

series anomaly 

detection benchmark 

and open-source 

streaming anomaly 

detection benchmark 

introduced by 

Numenta. 

Yahoo Webscope and 

NAB datasets. 

Anomaly labels were 

editorially or 

synthetically 

generated by the 

publisher and were 

provided with the 

dataset. 

There is no 

evidence that the 

proposed 

methodology can 

be implemented 

in real time. 

Computer and 

technology. 

Offiong et al. 

(2020) 

Long Short-Term 

Memory (LSTM). 

Solar-powered water 

taps. 

Dataset acquired from 

real solar-powered 

water taps. 

The dataset 

contained a large 

amount of missing 

values and incorrect 

values. It also 

presented high 

noise. Anomalies 

such as chipset 

There is no 

evidence that the 

proposed 

framework can be 

deployed in real 

time. 

Water science. 
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errors were also 

observed. 

Oliveira et al. 

(2019) 

Evaluation of 

Isolation Forest and 

Autoencoders 

Railway line. Real measurements 

collected from thermal, 

acoustic and impact 

sensors installed in a 

heavy haul railway 

line. 

Faults related to the 

system context, such 

as abnormalities 

manifested due to 

overheating or faults 

related to vibration 

and acousting 

emissions. 

The presented 

methodology was 

a comparative 

study to assess 

the evaluation of 

two specific 

approaches, and 

thus the 

deployment of 

these techniques 

in real time was 

not within the 

scope of the 

paper. 

Railway. 

Pereira and 

Silveira 

(2018) 

Variational 

recurrent 

autoencoder. The 

encoder and 

decoder were 

parametrised with 

Solar photovoltaic. Solar energy generation 

curves representing 

different patterns and 

behaviours, such as 

normal sequence used 

Faults and spike 

anomalies were 

annotated. 

The proposed 

methodology can 

be deployed in 

real time. 

Energy. 
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recurrent neural 

networks to take 

into account the 

temporal 

dependencies of 

time series data. 

as ground truth and a 

brief shading. 

Quatrini et 

al. (2020) 

Decision forests 

algorithm and 

decision jungle 

algorithm. 

Pharmaceutical plant. Dataset constituted of 

16 parameters that 

referred to either the 

process or the product. 

Incorrect trends of 

relevant parameters 

for some specific 

phases. 

There is no 

evidence that the 

proposed 

methodology can 

be implemented 

in real time. 

Manufacturing 

and Industry. 

Riazi et al. 

(2019) 

A total of eight 

models were 

trained: angle-based 

outlier detection, 

histogram-based 

outlier detection, 

isolation forest, k-

means, k-NN, Local 

Outlier Factor 

(LOF), OC-SVM, 

PCA. 

Belt-driven single 

degree of freedom 

robot arm. 

The arm was equipped 

with four sensors: two 

full-bridge strain gauge 

configurations and two 

encoders. Parameters 

such as cycle mode, 

motor shaft angle, and 

motor output torque 

were considered in the 

study. 

5 Typical failures 

for this system were 

identified and 

simulated. Examples 

of failures are: the 

belt was loosened to 

two different levels 

of either 120N or 

100N, an increase of 

the ambient 

temperature to 

40°C, and sand was 

scattered on the 

surface. 

There is no 

evidence that the 

proposed 

methodology can 

be implemented 

in real time. 

Manufacturing 

and Industry. 



 

Appendix C 375 Christian Velasco-Gallego 

Roy et al. 

(2018) 

Automated feature 

extraction method 

for on-line condition 

monitoring based 

on the stack of the 

traditional 

autoencoder and an 

On-line Sequential 

Extreme Learning 

Machine (OSELM) 

network. 

Experiments on 

bearings. 

NASA Intelligent 

Maintenance Systems 

(IMS) dataset. 

Faults in bearings. The proposed 

methodology can 

be deployed in 

real time. 

Aircraft and 

Space. 

Santolamazza 

et al. (2018) 

Artificial Neural 

Networks (ANNs). 

Compressed air 

generation system in 

an industrial plant. 

Data collected from 

system constituted by 

four air compressors. 

The inputs of the 

ANNs were the low  

pressure flow rate, the 

medium pressure flow 

rate, the external air 

temperature, and the 

state of single 

compressors. 

Several typologies of 

faults were assessed 

through the 

implementation of a 

control chart. 

The proposed 

methodology can 

be deployed in 

real time. 

Energy. 

Shi et al. 

(2019) 

Density Peak 

Clustering (DPC) 

algorithm. 

Railway vehicle. Operation data of 8 

doors in one carriage of 

North Extension of 

Guangzhou Metro Line 

3. 

Simulation was 

conducted with the 

abnormal making 

ratio 12.5\%. 

The proposed 

methodology can 

be applied in real 

time. 

Railway. 
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Sun et al. 

(2019) 

Isolation Forest. Oil field located in 

Natchez, Mississipi, 

US. 

Pressure and raw 

distributed 

temperature sensing 

data. 

Anomalies related to 

perturbations and 

controlled release 

events. 

The methodology 

can be deployed 

in real time. 

Environmental. 

Taheritanjani 

et al. (2019) 

In relation to 

unsupervised 

anomaly detection 

techniques, the 

following techniques 

were assessed: One-

Class SVM, One-

Class NN, Isolation 

Forest, Local 

Outlier Factor, 

Patch Based 

Autoencoder, and 

Small Part 

Autoencoder. 

Fasteners. 2019 images of 12 

different bolt types 

each with intact and 

damaged samples. 

A test set was 

utilised with 207 

pictures of damaged 

fasteners and 213 

intact fasteners. 

Different types of 

damages were 

assessed. 

There is no 

evidence that the 

presented 

methodology can 

be deployed in 

real time. 

Aircraft and 

Space. 
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Xiao et al. 

(2020) 

BC-CEEMDAN-

GRU. 

Characteristics were 

reconstructed by 

using Basic 

Characteristics 

based Complete 

Ensemble Empricial 

Mode 

Decomposition with 

Adaptive Noise 

(BC-CEEMDAN). 

The most sensitive 

features were 

selected by 

employing a linear 

combination of 

monotoniciy and 

correlation criteria. 

The selected 

features were the 

input of the Gated 

Recurrent Unit 

(GRU) neural 

network. 

Experiments on 

bearings. 

IEEE-PHM-2012-

Challenge and XJTU-

SY datasets. 

The datasets 

contained several 

faults. 

There is no 

evidence that the 

proposed 

methodology can 

be deployed in 

real time. 

Manufacturing 

and Industry. 
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Xu et al. 

(2019) 

Isolated forest. Rolling bearing 

equipment. 

Vibration signal data 

generated during 

actual production. 

Outer ring failure, 

inner ring failure 

and ball failure. 

There is no 

evidence that the 

methodology can 

be implemented 

in real time. 

Manufacturing 

and Industry. 

Xue et al. 

(2019) 

Combination of 

one-dimensional 

convolution with 

Generative 

Adversarial 

Networks (GAN). 

Railway switch. Normal and abnormal 

data collected from a 

railway switch. 

The nature of the 

faults were not 

deeply examined in 

the study. 

The proposed 

methodology can 

be applied in real 

time. 

Railway. 
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Appendix D  

Main Results of Case Study 8. MA 

Framework 

The subsequent sections of the present appendix relate to each of the components/sub-

systems, and their respective parameters, analysed (see a comprehensive description 

of the system considered in section 7.5. Case 8. MA framework). 

 

D.1. Main Engine Water Cooling System 

The parameter analysed refers to the cooling fresh water inlet pressure. A graphical 

representation of such a parameter is expressed in Fig. D.1.1. The descriptive statistics 

is also introduced in Table E.1.1. 
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Fig. D.1.1. Graphical representation of the Cooling Fresh Water (CFW) inlet pressure 

parameter. 

 

 

 

Table D.1. 1. Descriptive statistics of the monitored parameter. 

 Mean Std. Min. 25% 50% 75% Max. 

CFW inlet press. (bar) 3.33 0.06 3.11 3.3 3.34 3.37 3.47 

 

As part of the data pre-processing phase, the identification of operational states step 

has been implemented (see section 4.5. A Novel Framework for the Identification of 

Steady States for a comprehensive explanation of such a step). In total, only one 

operational state has been identified, as perceived in Fig. D.1.2. 

 

Fig. D.1. 2. Identification of the operational states for the monitored parameter. 

 

Subsequently, due to the lack of fault data, both collective anomalies and degradation 

patterns are simulated. Some examples are presented in Figs. E.1.4 – E.1.5. Examples 

of normal sequences are also introduced in Fig. D.1.3. 



 

Appendix D 381 Christian Velasco-Gallego 
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Fig. D.1.3. Example of normal sequences. 
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Fig. D.1.4. Example of sequences with collective anomalies. 
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Fig. D.1.5. Example of sequences with degradation patterns. 

 

As part of the MA framework, the subsequent module to be applied is the diagnostic 

analytics module. Accordingly, the fault detection step is implemented as stated in 

section 5.3.1. Fault Detection. As perceived in the histograms (Figs. E.1.6 – E.1.8), a 
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simple threshold is adequate in this case study to distinguish the normal sequences 

from the abnormal sequences. 

 

Fig. D.1.6. Histogram of the reconstructed errors of the normal sequences (test set). 

 

Fig. D.1.7. Histogram of the reconstructed errors of the sequences with collective anomalies. 
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Fig. D.1. 8. Histogram of the reconstructed errors of the sequences with degradation 

patterns. 

 

Examples of reconstructed sequences are also introduced in Figs. E.1.9 – E.1.11. 
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Fig. D.1.9. Example of normal reconstructed sequences (test set). 
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Fig. D.1.10. Example of reconstructed sequences with collective anomalies. 
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Fig. D.1.11. Example of reconstructed sequences with degradation patterns. 

 

Those sequences detected as anomalous are then classified into two categories: 

sequences with collective anomalies, and sequences with degradation patterns. 

Accordingly, as the implemented approach refers to a time series imaging approach 

(see section 5.3.2. Fault Identification), the anomalous sequences detected are 

transformed into images. Examples of these can be perceived in Figs. E.1.12 – E.1.13. 
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Fig. D.1.12. Images with collective anomalies. 
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Fig. D.1.13. Images with degradation patterns. 

 

As it can be perceived, the two categories can be easily distinguished. This aspect 

facilitated the achievement of the maximum accuracy score in this process, thus 

classifying all the images adequately. 

 

By adequately classifying such images, the sequences with degradation patterns are 

selected so that the RUL can be predicted. Examples of such a prediction are presented 

in Fig. D.1.14. The RMSE and Maintenance Score of the first 100 sequences are also 

presented in Table E.1.2. 
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Fig. D.1.14. Examples of condition indicator. 
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Table D.1.2. RMSE and Maintenance Score between each simulated RUL and their respective predictions for the different analysed models. 

    RMSE (Minutes)   Maintenance Score 

Sequences  Markov-CNN LSTM 1D-CNN Ensembled  Markov-CNN LSTM 1D-CNN Ensembled 

Sequence 1  34.03 37.74 36.39 37.37  1.54 1.89 1.86 1.87 

Sequence 2  23.77 16.96 19.37 17.01  1.22 0.81 1.00 0.81 

Sequence 3  24.31 22.02 25.11 22.04  1.28 1.13 1.22 1.12 

Sequence 4  39.95 29.48 32.27 29.54  2.45 1.83 1.86 1.82 

Sequence 5  21.90 19.25 18.95 19.01  1.18 0.93 0.92 0.92 

Sequence 6  55.15 32.82 32.82 32.49  3.83 2.10 1.75 2.05 

Sequence 7  45.28 36.81 38.03 36.81  2.09 1.54 1.58 1.51 

Sequence 8  53.36 34.79 37.39 34.91  3.27 1.68 1.78 1.67 

Sequence 9  66.19 69.35 69.25 69.24  2.97 3.57 3.49 3.55 

Sequence 10  17.94 14.90 17.50 14.89  1.10 0.88 0.76 0.85 

Sequence 11  40.20 44.57 45.94 44.59  2.01 2.00 2.07 1.99 

Sequence 12  29.44 23.54 27.93 23.70  1.90 1.35 1.42 1.33 

Sequence 13  14.62 18.38 17.92 18.02  1.01 1.06 0.91 1.03 

Sequence 14  25.89 21.17 21.35 20.92  1.37 1.02 1.00 0.99 

Sequence 15  40.93 34.91 34.81 34.70  2.44 1.99 2.05 1.97 

Sequence 16  21.17 19.38 18.37 19.04  1.40 1.19 1.08 1.16 

Sequence 17  30.97 35.80 38.92 35.94  1.54 1.57 1.75 1.56 

Sequence 18  43.39 43.28 45.16 43.31  2.27 2.25 2.39 2.26 

Sequence 19  44.04 28.65 32.21 28.88  2.03 1.25 1.42 1.25 

Sequence 20  42.87 56.09 65.98 56.95  2.06 2.82 3.16 2.85 

Sequence 21  29.68 28.23 32.87 28.46  1.40 1.41 1.71 1.43 

Sequence 22  44.67 41.65 45.80 41.95  2.22 1.89 2.19 1.90 

Sequence 23  20.03 15.46 17.31 15.42  1.17 0.80 0.72 0.76 
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Sequence 24  14.65 13.05 13.37 12.92  0.97 0.83 0.72 0.81 

Sequence 25  59.68 53.74 55.16 53.76  3.37 3.15 3.28 3.16 

Sequence 26  29.24 26.47 26.86 26.37  1.41 1.23 1.32 1.23 

Sequence 27  49.44 52.71 54.17 52.76  2.32 2.61 2.66 2.61 

Sequence 28  32.46 30.65 32.22 30.57  1.55 1.66 1.84 1.66 

Sequence 29  67.46 52.70 51.88 52.27  4.10 3.27 2.95 3.24 

Sequence 30  52.08 36.67 33.68 36.00  3.24 2.28 1.86 2.23 

Sequence 31  16.10 14.01 17.13 14.10  1.06 0.82 0.78 0.80 

Sequence 32  22.29 23.70 25.28 23.71  1.41 1.45 1.42 1.44 

Sequence 33  16.87 14.54 18.73 14.67  1.09 0.91 1.11 0.92 

Sequence 34  34.72 29.26 32.36 29.42  1.73 1.56 1.75 1.58 

Sequence 35  16.80 16.57 18.91 16.47  1.08 0.88 0.73 0.83 

Sequence 36  34.93 34.24 35.12 34.08  1.88 1.91 2.00 1.92 

Sequence 37  46.53 48.43 48.50 48.33  2.29 2.30 2.39 2.30 

Sequence 38  27.86 25.74 25.29 25.56  1.44 1.14 0.98 1.11 

Sequence 39  37.98 44.41 45.64 44.42  1.91 1.94 2.04 1.94 

Sequence 40  30.88 24.02 25.56 24.04  1.49 1.22 1.29 1.23 

Sequence 41  22.62 23.95 27.22 24.01  1.49 1.36 1.38 1.34 

Sequence 42  13.30 20.74 24.67 20.98  0.94 1.22 1.22 1.21 

Sequence 43  18.70 18.77 20.96 18.78  1.06 0.83 0.86 0.79 

Sequence 44  24.50 18.70 22.05 18.80  1.31 0.98 0.95 0.96 

Sequence 45  23.51 17.28 16.81 16.92  1.19 0.90 0.90 0.88 

Sequence 46  21.97 21.21 25.02 21.44  1.24 0.95 1.00 0.93 

Sequence 47  26.46 18.65 21.01 18.70  1.33 0.89 0.79 0.86 

Sequence 48  81.96 74.22 76.54 74.37  4.59 3.78 4.04 3.80 

Sequence 49  59.19 47.03 48.65 46.97  4.05 3.30 3.28 3.29 
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Sequence 50  55.49 60.68 56.26 60.18  3.33 3.59 3.37 3.56 

Sequence 51  18.82 25.98 25.58 25.64  1.03 1.18 1.19 1.16 

Sequence 52  67.88 57.01 56.58 56.86  3.86 3.23 3.21 3.23 

Sequence 53  42.65 29.45 36.45 30.00  1.93 1.25 1.44 1.25 

Sequence 54  23.45 31.34 31.64 31.07  1.52 2.08 1.82 2.05 

Sequence 55  20.96 19.93 20.72 19.74  1.19 0.98 0.92 0.96 

Sequence 56  30.30 28.12 30.85 28.22  1.81 1.65 1.63 1.65 

Sequence 57  23.09 22.06 22.59 21.80  1.22 1.19 1.24 1.18 

Sequence 58  30.01 25.03 26.55 24.89  1.95 1.53 1.45 1.49 

Sequence 59  25.84 25.84 29.43 25.95  1.36 1.14 1.34 1.13 

Sequence 60  24.50 21.79 25.27 21.94  1.19 0.98 1.09 0.96 

Sequence 61  17.02 15.11 18.37 15.20  1.06 1.00 1.10 1.00 

Sequence 62  51.30 39.00 36.29 38.53  3.29 2.44 2.16 2.40 

Sequence 63  32.63 25.78 27.35 25.63  1.95 1.28 1.38 1.25 

Sequence 64  45.99 25.06 23.84 24.74  2.21 1.17 1.07 1.16 

Sequence 65  71.72 54.51 55.93 54.53  4.36 3.23 3.21 3.21 

Sequence 66  22.78 22.45 22.80 22.36  1.26 0.92 0.94 0.90 

Sequence 67  20.97 30.23 30.94 30.03  1.05 1.69 1.72 1.69 

Sequence 68  30.03 19.99 21.45 20.03  1.50 0.89 0.97 0.89 

Sequence 69  50.16 44.95 45.17 44.88  2.53 2.20 2.32 2.21 

Sequence 70  32.60 19.94 23.38 20.12  1.52 0.89 0.85 0.87 

Sequence 71  23.66 17.64 19.82 17.72  1.28 0.83 0.78 0.80 

Sequence 72  17.43 16.54 17.61 16.38  1.05 0.76 0.81 0.73 

Sequence 73  27.00 20.29 23.19 20.35  1.73 1.03 0.93 0.99 

Sequence 74  19.95 15.42 17.38 15.36  1.02 0.77 0.78 0.75 

Sequence 75  38.38 30.76 32.12 30.79  1.86 1.35 1.40 1.34 



 

Appendix D 397 Christian Velasco-Gallego 

Sequence 76  24.03 16.86 17.02 16.54  1.57 1.01 0.85 0.97 

Sequence 77  30.63 31.35 32.06 31.24  1.98 2.02 1.85 2.00 

Sequence 78  34.75 32.05 33.87 32.07  1.59 1.56 1.71 1.56 

Sequence 79  36.37 30.52 35.16 30.78  2.03 1.84 2.18 1.87 

Sequence 80  37.40 40.19 41.73 40.15  2.22 2.82 2.78 2.82 

Sequence 81  23.98 26.68 28.11 26.60  1.28 1.36 1.34 1.33 

Sequence 82  39.22 43.54 45.12 43.51  1.96 2.50 2.59 2.51 

Sequence 83  53.29 59.96 52.57 59.13  3.23 3.59 3.01 3.52 

Sequence 84  43.58 41.00 40.91 40.75  3.01 2.68 2.48 2.65 

Sequence 85  25.49 21.13 20.47 20.81  1.49 1.43 1.16 1.39 

Sequence 86  22.23 18.68 20.16 18.65  1.19 0.80 0.83 0.77 

Sequence 87  54.67 47.32 46.68 47.13  3.65 3.01 2.86 2.99 

Sequence 88  13.44 15.57 16.80 15.46  0.95 1.01 0.91 0.99 

Sequence 89  30.25 25.86 27.21 25.82  1.52 1.09 1.11 1.06 

Sequence 90  36.72 25.70 25.62 25.60  1.84 1.30 1.35 1.31 

Sequence 91  62.26 57.30 58.05 57.18  3.34 3.11 3.13 3.12 

Sequence 92  18.83 15.18 15.55 14.97  1.07 0.81 0.70 0.78 

Sequence 93  19.58 12.54 14.51 12.46  1.09 0.66 0.59 0.63 

Sequence 94  18.34 14.39 19.62 14.52  1.02 0.72 0.95 0.71 

Sequence 95  18.79 15.73 20.17 15.91  1.13 0.75 0.78 0.72 

Sequence 96  51.92 34.59 36.54 34.60  2.99 1.91 1.95 1.91 

Sequence 97  46.95 35.49 35.93 35.36  2.61 2.04 2.19 2.06 

Sequence 98  35.75 30.53 30.63 30.37  1.86 1.54 1.63 1.54 

Sequence 99  32.65 29.22 31.22 29.28  1.58 1.16 1.12 1.13 

Sequence 100  50.06 33.35 40.64 33.80  3.24 2.11 2.46 2.13 

M edian   29.74 25.86 27.93 25.82   1.54 1.30 1.38 1.31 
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D.2. Main Engine Cylinder 1 

The parameter analysed refers to the exhaust gas outlet temperature. A graphical 

representation of such a parameter is expressed in Fig. D.2.1. The descriptive statistics 

is also introduced in Table E.2.1. 

 

 

Fig. D.2.1. Graphical representation of the exhaust gas outlet temperature parameter. 

 

Table D.2.1. Descriptive statistics of the monitored parameter. 

 Mean Std. Min. 25% 50% 75% Max. 

Cyl. 1 Exh. Gas Out. Temp 331.31 4.06 322 328 331 333 346 

 

As part of the data pre-processing phase, the identification of operational states step 

has been implemented (see section 4.5. A Novel Framework for the Identification of 

Steady States for a comprehensive explanation of such a step). In total, only one 

operational state has been identified, as perceived in Fig. D.2.2. 
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Fig. D.2.2. Identification of the operational states for the monitored parameter. 

 

Subsequently, due to the lack of fault data, both collective anomalies and degradation 

patterns are simulated. Some examples are presented in Figs. E.2.4 – E.2.5. Examples 

of normal sequences are also introduced in Fig. D.2.3. 
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Fig. D.2.3. Example of normal sequences. 
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Fig. D.2.4. Example of sequences with collective anomalies. 
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Fig. D.2.5. Example of sequences with degradation patterns. 

 

As part of the MA framework, the subsequent module to be applied is the diagnostic 

analytics module. Accordingly, the fault detection step is implemented as stated in 

section 5.3.1. Fault Detection. As perceived in the histograms (Figs. E.2.6 – E.2.8), a 

simple threshold is adequate in this case study to distinguish the normal sequences 

from the abnormal sequences. 

 

Fig. D.2.6. Histogram of the reconstructed errors of the normal sequences (test set). 
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Fig. D.2.7. Histogram of the reconstructed errors of the sequences with collective anomalies. 

 

Fig. D.2.8. Histogram of the reconstructed errors of the sequences with degradation patterns. 

 

Examples of reconstructed sequences are also introduced in Figs. E.2.9 – E.2.11. 
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Fig. D.2.9. Example of normal reconstructed sequences (test set). 
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Fig. D.2.10. Example of reconstructed sequences with collective anomalies. 
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Fig. D.2.11. Example of reconstructed sequences with degradation patterns. 

 

Those sequences detected as anomalous are then classified into two categories: 

sequences with collective anomalies, and sequences with degradation patterns. 

Accordingly, as the implemented approach refers to a time series imaging approach 

(see section 5.3.2. Fault Identification), the anomalous sequences detected are 

transformed into images. Examples of these can be perceived in Figs. E.2.12 – E.2.13. 
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Fig. D.2.12. Images with collective anomalies. 
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Fig. D.2.13. Images with degradation patterns. 

 

As it can be perceived, the two categories can be easily distinguished. This aspect 

facilitated the achievement of the maximum accuracy score in this process, thus 

classifying all the images adequately. 
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By adequately classifying such images, the sequences with degradation patterns are 

selected so that the RUL can be predicted. Examples of such a prediction are presented 

in Fig. D.2.14. The RMSE and Maintenance Score of the first 100 sequences are also 

presented in Table E.2.2. 
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Fig. D.2.14. Examples of condition indicator. 
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Table D.2.2. RMSE and Maintenance Score between each simulated RUL and their respective predictions for the different analysed models. 

    RMSE (Minutes)   Maintenance Score 

Sequences  Markov-CNN LSTM 1D-CNN Ensembled  Markov-CNN LSTM 1D-CNN Ensembled 

Sequence 1  20.58 15.51 17.65 16.94  1.37 0.75 0.98 0.93 

Sequence 2  26.30 19.36 22.73 21.89  1.50 0.82 1.20 1.13 

Sequence 3  53.17 50.04 53.55 52.69  2.77 2.68 2.73 2.72 

Sequence 4  29.95 24.38 28.50 27.45  1.74 1.00 1.24 1.19 

Sequence 5  35.40 40.85 40.15 39.79  1.73 2.14 2.13 2.12 

Sequence 6  33.19 22.71 27.10 26.06  1.80 0.94 1.38 1.29 

Sequence 7  56.05 50.54 52.24 51.60  3.64 2.77 3.04 2.98 

Sequence 8  53.03 38.72 40.64 40.16  2.55 1.82 1.96 1.92 

Sequence 9  50.55 34.32 33.59 33.43  3.06 1.94 1.90 1.90 

Sequence 10  41.66 19.94 24.75 23.60  2.01 0.89 1.13 1.08 

Sequence 11  50.23 59.25 56.78 57.14  3.31 4.11 3.90 3.94 

Sequence 12  32.89 23.46 26.68 25.83  1.74 1.01 1.20 1.16 

Sequence 13  26.61 12.61 13.81 13.33  1.38 0.59 0.67 0.65 

Sequence 14  22.70 14.23 15.40 14.95  1.15 0.65 0.71 0.69 

Sequence 15  16.55 20.04 24.54 23.30  1.20 1.16 1.60 1.51 

Sequence 16  23.99 32.49 34.62 33.81  1.48 1.66 1.86 1.78 

Sequence 17  48.50 30.00 31.35 30.84  2.24 1.44 1.50 1.47 

Sequence 18  55.45 49.83 49.57 49.50  2.70 2.31 2.27 2.27 

Sequence 19  19.54 15.77 18.46 17.68  1.31 0.82 0.91 0.89 

Sequence 20  54.29 35.55 40.65 39.43  3.21 1.80 2.26 2.16 

Sequence 21  70.71 53.93 52.49 52.39  4.92 3.47 3.38 3.40 

Sequence 22  72.13 52.35 52.91 52.62  4.44 3.14 3.15 3.15 

Sequence 23  23.57 14.40 17.62 16.75  1.22 0.65 0.83 0.79 
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Sequence 24  19.02 19.93 20.09 19.67  1.23 1.18 1.19 1.17 

Sequence 25  40.93 55.93 53.46 53.86  2.57 3.51 3.36 3.39 

Sequence 26  89.34 86.70 90.90 89.95  5.09 4.55 4.78 4.72 

Sequence 27  19.57 14.37 18.79 17.49  1.21 0.71 0.97 0.91 

Sequence 28  35.07 24.77 25.70 25.24  1.86 1.22 1.33 1.31 

Sequence 29  33.89 20.59 22.73 22.10  1.67 0.78 0.92 0.89 

Sequence 30  37.26 24.23 23.59 23.56  1.91 1.16 1.21 1.19 

Sequence 31  46.62 33.71 35.08 34.61  2.22 1.38 1.65 1.59 

Sequence 32  22.40 24.23 29.09 27.82  0.96 1.24 1.43 1.38 

Sequence 33  25.37 15.29 19.59 18.57  1.49 0.63 0.76 0.72 

Sequence 34  20.27 20.98 23.30 22.46  1.43 1.27 1.44 1.40 

Sequence 35  25.08 17.17 24.30 22.80  1.49 0.67 0.95 0.89 

Sequence 36  35.58 24.29 27.81 26.89  1.78 1.20 1.42 1.38 

Sequence 37  28.09 18.91 22.66 21.66  1.42 0.95 1.15 1.10 

Sequence 38  39.09 46.93 48.39 47.86  2.37 2.95 2.96 2.95 

Sequence 39  50.81 34.23 36.04 35.33  3.08 1.84 2.06 2.01 

Sequence 40  56.00 31.25 31.81 31.46  3.03 1.48 1.59 1.57 

Sequence 41  31.03 17.30 20.95 20.01  1.59 0.80 1.16 1.08 

Sequence 42  33.89 44.76 44.15 44.16  1.63 2.28 2.24 2.25 

Sequence 43  34.94 21.49 21.93 21.55  1.77 0.95 1.09 1.06 

Sequence 44  58.05 62.71 62.66 62.46  2.98 2.85 2.83 2.82 

Sequence 45  34.16 32.93 36.34 35.40  2.27 1.86 2.31 2.22 

Sequence 46  41.27 30.47 27.72 28.03  1.90 1.46 1.39 1.40 

Sequence 47  33.50 32.45 34.62 34.02  2.06 1.67 1.89 1.84 

Sequence 48  36.49 18.13 22.34 21.36  1.81 0.90 1.12 1.06 

Sequence 49  51.94 37.50 40.28 39.45  2.21 1.87 2.05 1.99 
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Sequence 50  19.96 17.91 17.22 16.98  1.31 0.95 0.91 0.92 

Sequence 51  30.63 17.68 19.92 19.30  1.64 0.77 1.04 0.99 

Sequence 52  28.13 20.05 21.00 20.55  1.56 0.96 1.04 1.02 

Sequence 53  24.70 18.85 20.84 20.04  1.62 0.93 1.17 1.12 

Sequence 54  21.98 20.30 22.69 22.04  1.17 0.83 0.94 0.91 

Sequence 55  45.50 57.09 57.20 57.03  2.19 2.72 2.76 2.74 

Sequence 56  73.08 37.15 37.57 36.96  4.33 1.83 1.98 1.94 

Sequence 57  62.51 32.65 34.73 34.10  3.68 1.66 1.82 1.78 

Sequence 58  33.76 26.24 24.84 24.99  1.59 1.32 1.23 1.25 

Sequence 59  70.83 65.65 64.20 64.35  4.40 4.22 4.16 4.18 

Sequence 60  22.12 15.73 15.12 15.11  1.38 0.82 0.87 0.86 

Sequence 61  34.00 17.96 19.36 18.95  1.77 0.89 1.06 1.02 

Sequence 62  22.56 15.04 16.77 16.24  1.39 0.70 0.81 0.79 

Sequence 63  24.13 16.54 19.15 18.33  1.26 0.76 0.91 0.86 

Sequence 64  66.90 32.97 40.41 38.68  3.77 1.66 2.15 2.05 

Sequence 65  24.50 56.74 52.33 52.88  1.67 4.10 3.66 3.75 

Sequence 66  34.08 25.38 29.45 28.54  1.80 0.99 1.35 1.27 

Sequence 67  46.20 47.31 45.09 45.24  3.07 3.11 2.97 2.99 

Sequence 68  19.29 15.01 18.95 17.98  1.32 0.87 1.16 1.10 

Sequence 69  44.08 34.15 39.29 37.98  3.02 2.19 2.56 2.48 

Sequence 70  39.51 42.59 43.15 42.90  2.50 2.67 2.68 2.67 

Sequence 71  75.65 72.34 71.78 71.82  4.25 3.89 3.75 3.78 

Sequence 72  29.65 17.92 21.55 20.74  1.63 0.76 1.03 0.98 

Sequence 73  21.19 14.65 17.82 16.99  1.13 0.68 0.85 0.80 

Sequence 74  52.22 56.46 56.39 56.20  2.86 2.89 2.84 2.84 

Sequence 75  43.35 25.03 29.78 28.52  2.44 1.35 1.66 1.59 
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Sequence 76  29.00 20.22 23.53 22.65  1.59 0.95 1.18 1.14 

Sequence 77  19.25 19.22 19.44 19.14  1.35 1.05 0.98 0.99 

Sequence 78  50.75 42.94 39.55 40.07  3.13 2.36 2.18 2.21 

Sequence 79  33.58 28.33 29.22 28.60  1.76 1.42 1.39 1.40 

Sequence 80  36.84 32.40 34.95 34.23  1.91 1.57 1.68 1.65 

Sequence 81  40.31 30.48 34.13 33.16  2.27 1.48 1.65 1.60 

Sequence 82  90.87 74.72 74.81 74.65  5.30 3.97 3.93 3.93 

Sequence 83  36.61 21.62 25.60 24.68  1.82 0.80 1.19 1.11 

Sequence 84  21.76 14.72 19.63 18.26  1.31 0.77 1.08 1.01 

Sequence 85  42.71 40.69 39.39 39.25  2.71 2.01 1.96 1.94 

Sequence 86  39.91 32.40 31.47 31.44  1.95 1.54 1.53 1.53 

Sequence 87  23.56 25.87 24.64 24.56  1.68 1.33 1.30 1.30 

Sequence 88  39.58 23.14 24.44 23.73  1.67 1.30 1.35 1.31 

Sequence 89  39.83 16.75 21.92 20.69  2.37 0.82 1.21 1.13 

Sequence 90  27.56 19.65 23.32 22.53  1.56 0.82 1.05 1.00 

Sequence 91  69.32 63.74 61.59 61.84  4.65 4.07 3.94 3.96 

Sequence 92  68.87 63.90 62.43 62.54  3.17 3.27 3.10 3.13 

Sequence 93  29.46 24.21 27.43 26.47  1.47 1.17 1.32 1.28 

Sequence 94  46.71 45.88 44.55 44.35  2.50 2.34 2.31 2.28 

Sequence 95  19.16 17.83 20.91 19.98  1.15 0.83 1.04 0.99 

Sequence 96  17.58 15.26 18.16 17.22  1.25 0.66 0.67 0.66 

Sequence 97  44.28 28.29 28.20 28.06  2.30 1.54 1.54 1.54 

Sequence 98  42.47 29.94 31.27 30.77  2.17 1.58 1.62 1.60 

Sequence 99  51.55 25.49 29.44 28.39  2.56 1.34 1.56 1.51 

Sequence 100  25.57 16.02 18.79 17.87  1.42 0.74 1.00 0.94 

M edian   34.08 25.03 27.81 27.45   1.80 1.27 1.39 1.38 
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D.3. Main Engine Cylinder 2 

The parameter analysed refers to the exhaust gas outlet temperature. A graphical 

representation of such a parameter is expressed in Fig. D.3.1. The descriptive statistics 

is also introduced in Table E.3.1. 

 

 

Fig. D.3.1. Graphical representation of the exhaust gas outlet temperature parameter. 

 

Table D.3.1. Descriptive statistics of the monitored parameter. 

 Mean Std. Min. 25% 50% 75% Max. 

Cyl. 2 Exh. Gas Out. Temp 321.23 4.01 311 318 321 324 332 

 

As part of the data pre-processing phase, the identification of operational states step 

has been implemented (see section 4.5. A Novel Framework for the Identification of 

Steady States for a comprehensive explanation of such a step). In total, only one 

operational state has been identified, as perceived in Fig. D.3.2. 
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Fig. D.3.2. Identification of the operational states for the monitored parameter. 

 

Subsequently, due to the lack of fault data, both collective anomalies and degradation 

patterns are simulated. Some examples are presented in Figs. E.3.4 – E.3.5. Examples 

of normal sequences are also introduced in Fig. D.3.3. 
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Fig. D.3.3. Example of normal sequences. 
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Fig. D.3.4. Example of sequences with collective anomalies. 
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Fig. D.3.5. Example of sequences with degradation patterns. 

 

As part of the MA framework, the subsequent module to be applied is the diagnostic 

analytics module. Accordingly, the fault detection step is implemented as stated in 

section 5.3.1. Fault Detection. As perceived in the histograms (Figs. E.3.6 – E.3.8), a 

simple threshold is adequate in this case study to distinguish the normal sequences 

from the abnormal sequences. 

 

Fig. D.3.6. Histogram of the reconstructed errors of the normal sequences (test set). 
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Fig. D.3.7. Histogram of the reconstructed errors of the sequences with collective anomalies. 

 

Fig. D.3.8. Histogram of the reconstructed errors of the sequences with degradation patterns. 

 

Examples of reconstructed sequences are also introduced in Figs. E.3.9 – E.3.11. 
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Fig. D.3.9. Example of normal reconstructed sequences (test set). 
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Fig. D.3.10. Example of reconstructed sequences with collective anomalies. 
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Fig. D.3.11. Example of reconstructed sequences with degradation patterns. 

 

Those sequences detected as anomalous are then classified into two categories: 

sequences with collective anomalies, and sequences with degradation patterns. 

Accordingly, as the implemented approach refers to a time series imaging approach 

(see section 5.3.2. Fault Identification), the anomalous sequences detected are 

transformed into images. Examples of these can be perceived in Figs. E.3.12 – E.3.13. 
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Fig. D.3.12. Images with collective anomalies. 
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Fig. D.3.13. Images with degradation patterns. 

 

As it can be perceived, the two categories can be easily distinguished. This aspect 

facilitated the achievement of the maximum accuracy score in this process, thus 

classifying all the images adequately. 
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By adequately classifying such images, the sequences with degradation patterns are 

selected so that the RUL can be predicted. Examples of such a prediction are presented 

in Fig. D.3.14. The RMSE and Maintenance Score of the first 100 sequences are also 

presented in Table E.3.2. 
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Fig. D.3.14. Examples of condition indicator. 
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Table D.3.2. RMSE and Maintenance Score between each simulated RUL and their respective predictions for the different analysed models 

    RMSE (Minutes)   Maintenance Score 

Sequences  Markov-CNN LSTM 1D-CNN Ensembled  Markov-CNN LSTM 1D-CNN Ensembled 

Sequence 1  46.86 43.99 48.29 43.99   2.85 2.70 2.97 2.70 

Sequence 2  45.28 20.27 20.62 20.27   2.21 1.04 1.00 1.04 

Sequence 3  20.84 10.61 11.16 10.61   1.16 0.62 0.60 0.62 

Sequence 4  34.67 21.18 23.72 21.18   1.77 0.93 0.98 0.93 

Sequence 5  53.06 51.98 56.36 51.98   3.10 2.78 2.96 2.78 

Sequence 6  16.78 17.99 17.53 17.99   1.14 1.00 0.88 1.00 

Sequence 7  31.21 42.63 37.17 42.63   2.07 2.82 2.39 2.82 

Sequence 8  68.70 64.18 62.26 64.18   4.47 4.21 4.12 4.21 

Sequence 9  77.72 68.20 66.17 68.20   3.77 3.85 3.34 3.85 

Sequence 10  34.94 50.34 46.74 50.34   2.29 2.91 2.55 2.91 

Sequence 11  37.33 22.65 26.66 22.65   2.04 1.03 1.18 1.03 

Sequence 12  23.24 19.13 20.52 19.13   1.24 0.92 0.92 0.92 

Sequence 13  22.65 20.94 23.04 20.94   1.28 0.98 0.93 0.98 

Sequence 14  23.43 19.23 20.76 19.23   1.44 1.11 1.11 1.11 

Sequence 15  42.77 48.20 48.23 48.20   2.67 2.91 2.95 2.91 

Sequence 16  24.72 24.43 23.99 24.43   1.45 1.55 1.46 1.55 

Sequence 17  24.26 27.89 28.07 27.89   1.50 1.53 1.36 1.53 

Sequence 18  25.36 16.35 19.63 16.35   1.41 0.88 0.95 0.88 

Sequence 19  38.18 24.27 28.28 24.27   2.37 1.28 1.37 1.28 

Sequence 20  27.83 17.10 20.33 17.10   1.50 0.91 1.07 0.91 

Sequence 21  32.50 46.19 43.80 46.19   1.35 2.31 2.20 2.31 

Sequence 22  33.74 46.00 39.91 46.00   2.20 2.91 2.49 2.91 

Sequence 23  25.60 19.01 21.01 19.01   1.49 1.12 1.12 1.12 
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Sequence 24  25.56 19.09 19.08 19.09   1.41 1.25 1.19 1.25 

Sequence 25  63.92 63.31 66.65 63.31   2.78 3.00 3.11 3.00 

Sequence 26  32.66 17.98 19.38 17.98   1.69 0.93 0.95 0.93 

Sequence 27  57.80 42.65 40.15 42.65   3.51 2.78 2.41 2.78 

Sequence 28  26.18 18.62 20.02 18.62   1.37 0.87 0.97 0.87 

Sequence 29  54.97 42.77 45.86 42.77   2.80 2.02 2.10 2.02 

Sequence 30  38.15 22.00 27.07 22.00   1.93 1.08 1.27 1.08 

Sequence 31  26.64 25.39 27.03 25.39   1.78 1.52 1.53 1.52 

Sequence 32  73.02 61.94 65.35 61.94   4.32 3.65 3.89 3.65 

Sequence 33  32.08 18.90 21.98 18.90   1.92 1.01 1.26 1.01 

Sequence 34  21.62 11.69 13.61 11.69   1.17 0.58 0.65 0.58 

Sequence 35  26.69 15.84 18.37 15.84   1.53 0.92 0.98 0.92 

Sequence 36  37.62 24.29 27.49 24.29   1.88 1.18 1.27 1.18 

Sequence 37  34.14 36.87 46.72 36.87   1.77 1.88 2.46 1.88 

Sequence 38  21.76 19.01 18.10 19.01   1.32 1.12 1.05 1.12 

Sequence 39  51.88 38.43 40.78 38.43   2.61 1.94 2.08 1.94 

Sequence 40  18.64 17.39 19.16 17.39   1.16 1.02 1.07 1.02 

Sequence 41  19.96 32.41 31.22 32.41   1.34 1.98 1.78 1.98 

Sequence 42  22.76 25.70 24.79 25.70   1.53 1.53 1.38 1.53 

Sequence 43  36.14 22.68 25.93 22.68   1.82 0.99 1.13 0.99 

Sequence 44  27.84 18.51 20.59 18.51   1.57 1.03 1.02 1.03 

Sequence 45  35.36 21.66 22.75 21.66   1.83 1.12 1.14 1.12 

Sequence 46  19.69 26.05 23.17 26.05   1.34 1.54 1.31 1.54 

Sequence 47  17.03 20.33 19.26 20.33   1.06 1.25 1.18 1.25 

Sequence 48  27.55 19.45 21.75 19.45   1.57 0.91 0.92 0.91 

Sequence 49  33.77 27.66 26.39 27.66   2.20 1.65 1.48 1.65 
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Sequence 50  28.59 26.84 30.10 26.84   1.24 1.44 1.59 1.44 

Sequence 51  22.30 15.77 15.80 15.77   1.41 0.89 0.95 0.89 

Sequence 52  27.01 18.48 17.82 18.48   1.33 0.89 0.84 0.89 

Sequence 53  58.55 45.10 46.04 45.10   2.84 2.18 2.24 2.18 

Sequence 54  41.48 31.28 32.01 31.28   2.16 1.46 1.52 1.46 

Sequence 55  29.27 25.20 23.96 25.20   1.81 1.33 1.23 1.33 

Sequence 56  22.67 21.36 22.58 21.36   1.41 1.26 1.29 1.26 

Sequence 57  57.46 48.74 52.08 48.74   2.74 2.11 2.30 2.11 

Sequence 58  48.85 38.88 41.10 38.88   3.09 2.48 2.49 2.48 

Sequence 59  28.72 22.59 21.49 22.59   1.73 1.31 1.17 1.31 

Sequence 60  57.21 50.45 57.75 50.45   2.76 2.58 2.92 2.58 

Sequence 61  48.39 53.55 54.29 53.55   2.89 2.93 3.05 2.93 

Sequence 62  35.38 25.47 28.03 25.47   1.94 1.23 1.47 1.23 

Sequence 63  22.67 34.24 30.94 34.24   1.57 2.12 1.83 2.12 

Sequence 64  19.60 18.49 17.50 18.49   1.29 1.10 0.94 1.10 

Sequence 65  22.43 19.89 22.02 19.89   1.42 1.17 1.19 1.17 

Sequence 66  28.81 33.82 37.56 33.82   1.90 1.94 2.01 1.94 

Sequence 67  45.29 14.45 17.30 14.45   2.08 0.76 0.90 0.76 

Sequence 68  22.14 18.07 18.42 18.07   1.36 1.05 1.01 1.05 

Sequence 69  48.37 62.20 62.59 62.20   2.06 3.24 3.24 3.24 

Sequence 70  43.78 32.02 39.04 32.02   2.09 1.43 1.64 1.43 

Sequence 71  18.49 10.62 12.09 10.62   1.12 0.57 0.59 0.57 

Sequence 72  20.39 15.77 16.43 15.77   1.31 0.91 0.93 0.91 

Sequence 73  44.31 42.57 42.05 42.57   2.27 2.02 2.05 2.02 

Sequence 74  18.70 24.55 23.67 24.55   1.31 1.65 1.52 1.65 

Sequence 75  25.73 18.15 21.47 18.15   1.50 0.87 0.89 0.87 
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Sequence 76  16.30 24.18 22.44 24.18   1.11 1.33 1.15 1.33 

Sequence 77  31.77 19.12 20.34 19.12   1.67 1.10 1.09 1.10 

Sequence 78  31.05 42.58 39.78 42.58   2.06 2.68 2.34 2.68 

Sequence 79  23.57 18.87 18.86 18.87   1.28 0.88 0.89 0.88 

Sequence 80  23.19 16.95 18.01 16.95   1.40 1.07 1.08 1.07 

Sequence 81  21.04 21.96 22.26 21.96   1.16 1.00 1.01 1.00 

Sequence 82  33.98 23.58 28.24 23.58   1.71 1.21 1.46 1.21 

Sequence 83  28.17 25.78 24.14 25.78   1.85 1.76 1.59 1.76 

Sequence 84  29.53 33.76 33.18 33.76   2.09 2.21 2.09 2.21 

Sequence 85  25.22 18.03 21.17 18.03   1.48 0.97 1.09 0.97 

Sequence 86  29.32 23.74 24.09 23.74   1.52 1.26 1.23 1.26 

Sequence 87  39.63 25.27 26.90 25.27   2.01 1.16 1.20 1.16 

Sequence 88  35.47 20.47 24.44 20.47   1.79 0.88 1.05 0.88 

Sequence 89  47.59 31.05 35.70 31.05   2.32 1.40 1.63 1.40 

Sequence 90  53.46 20.27 24.74 20.27   2.57 1.05 1.26 1.05 

Sequence 91  31.06 19.03 21.68 19.03   2.01 1.04 0.96 1.04 

Sequence 92  48.61 24.19 31.31 24.19   2.49 1.28 1.66 1.28 

Sequence 93  31.92 20.15 20.36 20.15   1.49 0.94 0.95 0.94 

Sequence 94  19.61 24.59 23.99 24.59   1.34 1.57 1.42 1.57 

Sequence 95  22.17 13.29 13.75 13.29   1.32 0.73 0.72 0.73 

Sequence 96  17.93 20.93 22.25 20.93   1.23 1.23 1.30 1.23 

Sequence 97  48.39 51.66 57.08 51.66   2.27 2.71 3.01 2.71 

Sequence 98  41.71 34.02 32.54 34.02   2.60 2.10 1.85 2.10 

Sequence 99  23.54 17.57 18.06 17.57   1.43 0.95 0.92 0.95 

Sequence 100  76.18 46.07 46.23 46.07   4.41 2.59 2.42 2.59 

M edian   31.03 23.74 24.45 23.74   1.73 1.26 1.28 1.26 
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D.4. Main Engine Cylinder 3 

The parameter analysed refers to the exhaust gas outlet temperature. A graphical 

representation of such a parameter is expressed in Fig. D.4.1. The descriptive statistics 

is also introduced in Table E.4.1. 

 

 

Fig. D.4.1. Graphical representation of the exhaust gas outlet temperature parameter. 

 

Table D.4.1. Descriptive statistics of the monitored parameter. 

 Mean Std. Min. 25% 50% 75% Max. 

Cyl. 3 Exh. Gas Out. Temp 318.5 4.27 306 315 319 322 331 

 

As part of the data pre-processing phase, the identification of operational states step 

has been implemented (see section 4.5. A Novel Framework for the Identification of 

Steady States for a comprehensive explanation of such a step). In total, only one 

operational state has been identified, as perceived in Fig. D.4.2. 
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Fig. D.4.2. Identification of the operational states for the monitored parameter. 

 

Subsequently, due to the lack of fault data, both collective anomalies and degradation 

patterns are simulated. Some examples are presented in Figs. E.4.4 – E.4.5. Examples 

of normal sequences are also introduced in Fig. D.4.3. 
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Fig. D.4.3. Example of normal sequences. 
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Fig. D.4.4. Example of sequences with collective anomalies. 
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Fig. D.4.5. Example of sequences with degradation patterns. 
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As part of the MA framework, the subsequent module to be applied is the diagnostic 

analytics module. Accordingly, the fault detection step is implemented as stated in 

section 5.3.1. Fault Detection. As perceived in the histograms (Figs. E.4.6 – E.4.8), a 

simple threshold is adequate in this case study to distinguish the normal sequences 

from the abnormal sequences. 

 

Fig. D.4.6. Histogram of the reconstructed errors of the normal sequences (test set). 

 

Fig. D.4.7 Histogram of the reconstructed errors of the sequences with collective anomalies. 
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Fig. D.4.8. Histogram of the reconstructed errors of the sequences with degradation patterns. 

 

Examples of reconstructed sequences are also introduced in Figs. E.4.9 – E.4.11. 
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Fig. D.4.9. Example of normal reconstructed sequences (test set). 
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Fig. D.4.10. Example of reconstructed sequences with collective anomalies. 
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Fig. D.4.11. Example of reconstructed sequences with degradation patterns. 
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Those sequences detected as anomalous are then classified into two categories: 

sequences with collective anomalies, and sequences with degradation patterns. 

Accordingly, as the implemented approach refers to a time series imaging approach 

(see section 5.3.2. Fault Identification), the anomalous sequences detected are 

transformed into images. Examples of these can be perceived in Figs. E.4.12 – E.4.13. 
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Fig. D.4.12. Images with collective anomalies. 

 

   

   

   

Fig. D.4.13. Images with degradation patterns. 

 

As it can be perceived, the two categories can be easily distinguished. This aspect 

facilitated the achievement of the maximum accuracy score in this process, thus 

classifying all the images adequately. 
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By adequately classifying such images, the sequences with degradation patterns are 

selected so that the RUL can be predicted. Examples of such a prediction are presented 

in Fig. D.4.14. The RMSE and Maintenance Score of the first 100 sequences are also 

presented in Table E.4.2. 
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Fig. D.4.14. Examples of condition indicator. 
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Table D.4.2. RMSE and Maintenance Score between each simulated RUL and their respective predictions for the different analysed models 

    RMSE (Minutes)   Maintenance Score 

Sequences  Markov-CNN LSTM 1D-CNN Ensembled  Markov-CNN LSTM 1D-CNN Ensembled 

Sequence 1  69.35 61.03 60.24 60.82   3.84 3.36 3.44 3.37 

Sequence 2  41.59 36.60 34.07 36.23   2.10 1.68 1.61 1.67 

Sequence 3  62.55 50.06 51.25 50.00   3.82 2.92 3.11 2.94 

Sequence 4  43.94 34.76 30.26 34.21   2.17 1.58 1.50 1.57 

Sequence 5  23.87 16.47 11.93 15.73   1.31 0.79 0.65 0.77 

Sequence 6  30.51 26.14 13.89 24.61   1.51 1.27 0.73 1.21 

Sequence 7  40.89 28.43 30.70 28.02   2.42 1.44 1.80 1.41 

Sequence 8  18.70 19.14 22.10 19.34   1.23 0.86 1.12 0.88 

Sequence 9  30.12 23.65 30.93 24.16   1.65 1.11 1.71 1.16 

Sequence 10  21.70 19.61 28.12 20.32   1.34 0.92 1.42 0.96 

Sequence 11  30.17 21.46 18.55 20.90   1.67 1.07 1.08 1.06 

Sequence 12  47.71 37.94 32.90 37.32   2.37 1.62 1.40 1.58 

Sequence 13  38.19 32.02 32.90 32.01   1.90 1.20 1.46 1.23 

Sequence 14  23.38 23.42 18.55 22.72   1.31 1.00 0.91 0.99 

Sequence 15  30.07 28.68 32.14 28.82   1.87 1.46 1.78 1.48 

Sequence 16  19.43 15.66 20.55 15.99   1.32 0.95 1.30 0.98 

Sequence 17  43.29 36.71 31.07 35.83   2.66 1.85 1.63 1.80 

Sequence 18  20.59 16.14 14.07 15.31   1.17 0.81 0.78 0.77 

Sequence 19  18.87 25.78 35.03 26.49   1.30 1.65 2.35 1.70 

Sequence 20  30.99 29.51 33.11 29.62   2.14 1.84 2.09 1.86 

Sequence 21  32.78 20.48 14.06 19.52   1.69 0.97 0.68 0.92 

Sequence 22  34.42 26.14 26.01 25.96   1.78 1.12 1.33 1.13 

Sequence 23  36.11 29.64 28.96 29.49   1.89 1.27 1.41 1.29 
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Sequence 24  45.88 32.18 42.71 33.05   2.68 1.86 2.56 1.92 

Sequence 25  25.06 18.49 21.33 18.62   1.50 0.86 1.16 0.88 

Sequence 26  37.81 26.34 31.61 26.67   2.43 1.54 1.89 1.58 

Sequence 27  25.95 14.61 16.64 14.65   1.52 0.73 0.99 0.75 

Sequence 28  67.11 44.50 54.91 45.18   3.93 2.31 3.13 2.38 

Sequence 29  74.92 66.98 59.20 65.99   3.90 3.44 2.76 3.36 

Sequence 30  43.49 27.38 17.98 26.31   2.20 1.30 0.93 1.26 

Sequence 31  54.15 61.00 60.87 60.93   3.15 3.58 3.65 3.59 

Sequence 32  20.67 13.46 14.75 13.45   1.26 0.62 0.85 0.64 

Sequence 33  25.13 14.50 18.60 14.69   1.48 0.66 1.01 0.69 

Sequence 34  36.24 39.29 38.09 38.60   2.14 2.11 2.29 2.11 

Sequence 35  29.15 20.23 25.33 20.56   1.91 1.13 1.54 1.17 

Sequence 36  19.80 23.61 23.88 23.22   1.09 1.34 1.39 1.33 

Sequence 37  25.15 16.87 22.11 17.21   1.62 0.97 1.29 1.00 

Sequence 38  55.64 35.48 35.41 35.37   3.54 1.97 2.06 1.97 

Sequence 39  64.86 47.78 54.42 48.07   3.81 2.37 2.93 2.41 

Sequence 40  17.56 14.47 20.32 14.94   1.24 0.80 1.23 0.85 

Sequence 41  63.09 38.20 53.64 39.29   3.94 2.03 3.14 2.14 

Sequence 42  20.32 14.61 15.99 14.60   1.23 0.79 0.96 0.80 

Sequence 43  34.43 23.47 22.62 23.23   1.84 1.12 1.21 1.12 

Sequence 44  33.46 23.31 20.39 22.90   1.78 1.02 1.05 1.02 

Sequence 45  27.41 19.93 21.93 20.06   1.59 0.85 1.11 0.87 

Sequence 46  31.83 23.36 28.90 23.79   1.72 0.97 1.34 1.00 

Sequence 47  64.76 80.09 80.83 80.09   3.75 4.42 4.50 4.43 

Sequence 48  24.60 17.35 20.33 17.57   1.49 0.67 1.00 0.70 

Sequence 49  30.47 24.93 19.62 24.30   1.69 1.09 1.03 1.08 
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Sequence 50  29.17 21.63 15.99 20.82   1.63 1.05 0.91 1.03 

Sequence 51  48.05 51.23 49.82 50.87   2.82 2.98 2.95 2.97 

Sequence 52  44.06 29.34 34.78 29.60   2.71 1.50 1.69 1.51 

Sequence 53  23.66 17.97 21.18 17.97   1.62 0.99 1.21 1.01 

Sequence 54  17.30 20.35 25.04 20.34   1.11 1.17 1.43 1.18 

Sequence 55  33.85 19.94 25.39 20.31   2.15 1.08 1.48 1.11 

Sequence 56  37.84 32.85 32.09 32.38   2.60 2.22 1.97 2.20 

Sequence 57  35.69 41.99 56.08 43.29   2.46 2.82 3.69 2.91 

Sequence 58  54.34 55.95 49.63 55.25   2.59 2.81 2.44 2.77 

Sequence 59  23.00 16.45 19.61 16.65   1.44 0.76 1.10 0.78 

Sequence 60  39.06 24.89 21.82 24.51   1.98 1.09 1.12 1.09 

Sequence 61  24.86 15.64 14.61 15.23   1.33 0.82 0.77 0.80 

Sequence 62  32.16 22.62 29.02 23.14   2.09 1.19 1.69 1.22 

Sequence 63  62.46 45.71 51.54 46.17   3.63 2.85 3.21 2.88 

Sequence 64  22.89 15.52 18.62 15.68   1.44 0.89 1.18 0.92 

Sequence 65  26.22 17.75 18.75 17.49   1.55 1.06 1.19 1.06 

Sequence 66  27.38 21.40 27.31 21.69   1.68 1.07 1.36 1.09 

Sequence 67  40.99 44.40 49.68 44.76   2.60 2.66 2.91 2.68 

Sequence 68  42.07 41.85 32.24 40.56   2.37 2.12 1.67 2.05 

Sequence 69  20.61 23.92 26.26 23.85   1.47 1.59 1.70 1.59 

Sequence 70  37.75 31.31 30.70 30.64   2.24 1.76 1.93 1.73 

Sequence 71  45.46 48.71 52.97 49.04   2.70 2.97 3.27 3.00 

Sequence 72  45.93 43.02 40.68 42.68   2.30 2.00 1.95 2.00 

Sequence 73  40.16 37.59 47.40 38.44   2.71 2.36 3.00 2.43 

Sequence 74  62.71 43.09 57.02 44.32   4.02 2.31 3.28 2.40 

Sequence 75  18.41 15.25 21.51 15.69   1.25 0.83 1.17 0.86 
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Sequence 76  22.35 23.01 21.21 22.72   1.25 1.27 1.19 1.26 

Sequence 77  34.75 27.33 29.30 27.45   1.80 1.14 1.39 1.16 

Sequence 78  17.65 16.89 21.26 17.21   1.21 1.06 1.40 1.09 

Sequence 79  29.72 28.68 23.76 27.92   1.37 1.42 1.19 1.38 

Sequence 80  19.81 14.72 16.29 14.73   1.32 0.81 1.02 0.83 

Sequence 81  61.94 63.38 55.84 62.58   3.09 3.23 2.77 3.18 

Sequence 82  32.54 23.80 23.98 23.72   1.73 0.98 1.18 0.99 

Sequence 83  25.22 18.67 23.43 19.03   1.50 0.80 1.19 0.84 

Sequence 84  27.36 20.38 17.36 19.85   1.49 1.03 0.96 1.02 

Sequence 85  51.47 42.02 33.88 41.14   2.54 1.97 1.64 1.92 

Sequence 86  52.69 42.23 43.61 42.27   3.02 1.90 2.06 1.90 

Sequence 87  20.09 12.89 19.99 13.51   1.38 0.67 1.07 0.71 

Sequence 88  35.14 27.94 27.63 27.52   2.08 1.57 1.57 1.56 

Sequence 89  64.22 58.30 61.14 58.43   4.34 3.68 3.84 3.69 

Sequence 90  22.90 21.99 20.91 21.80   1.02 1.13 1.10 1.13 

Sequence 91  36.77 28.75 31.74 28.91   2.33 1.55 1.79 1.56 

Sequence 92  25.19 24.47 27.46 24.01   1.30 1.32 1.69 1.29 

Sequence 93  50.65 36.81 39.76 36.93   3.12 1.90 2.12 1.91 

Sequence 94  76.65 76.09 76.03 75.81   3.73 3.72 3.42 3.66 

Sequence 95  21.08 19.54 19.25 19.36   1.25 0.87 1.04 0.88 

Sequence 96  27.69 40.89 33.58 40.05   1.39 1.83 1.59 1.81 

Sequence 97  20.10 12.59 15.87 12.70   1.29 0.76 1.00 0.78 

Sequence 98  31.64 26.74 15.71 25.33   1.70 1.29 0.79 1.24 

Sequence 99  23.78 16.01 17.52 16.01   1.37 0.69 0.97 0.71 

Sequence 100  20.38 13.60 16.45 13.65   1.21 0.73 0.93 0.74 

M edian   32.16 26.14 27.46 25.60   1.78 1.29 1.41 1.26 
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D.5. Main Engine Cylinder 4 

The parameter analysed refers to the exhaust gas outlet temperature. A graphical 

representation of such a parameter is expressed in Fig. D.5.1. The descriptive statistics 

is also introduced in Table E.5.1. 

 

 

Fig. D.5.1. Graphical representation of the exhaust gas outlet temperature parameter. 

 

Table D.5.1. Descriptive statistics of the monitored parameter. 

 Mean Std. Min. 25% 50% 75% Max. 

Cyl. 4 Exh. Gas Out. Temp 317.12 4.10 307 314 317 320 328 

 

As part of the data pre-processing phase, the identification of operational states step 

has been implemented (see section 4.5. A Novel Framework for the Identification of 

Steady States for a comprehensive explanation of such a step). In total, only one 

operational state has been identified, as perceived in Fig. D.5.2. 
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Fig. D.5.2. Identification of the operational states for the monitored parameter. 

 

Subsequently, due to the lack of fault data, both collective anomalies and degradation 

patterns are simulated. Some examples are presented in Figs. E.5.4 – E.4.5. Examples 

of normal sequences are also introduced in Fig. D.5.3. 
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Fig. D.5.3. Example of normal sequences. 
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Fig. D.5.4. Example of sequences with collective anomalies. 
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Fig. D.5.5. Example of sequences with degradation patterns. 

 

As part of the MA framework, the subsequent module to be applied is the diagnostic 

analytics module. Accordingly, the fault detection step is implemented as stated in 

section 5.3.1. Fault Detection. As perceived in the histograms (Figs. E.5.6 – E.5.8), a 

simple threshold is adequate in this case study to distinguish the normal sequences 

from the abnormal sequences. 

 

Fig. D.5.6. Histogram of the reconstructed errors of the normal sequences (test set). 
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Fig. D.5.7. Histogram of the reconstructed errors of the sequences with collective anomalies. 

 

Fig. D.5.8. Histogram of the reconstructed errors of the sequences with degradation patterns. 

 

Examples of reconstructed sequences are also introduced in Figs. E.5.9 – E.5.11. 
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Fig. D.5.9. Example of normal reconstructed sequences (test set). 
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Fig. D.5.10. Example of reconstructed sequences with collective anomalies. 
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Fig. D.5.11. Example of reconstructed sequences with degradation patterns. 
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Those sequences detected as anomalous are then classified into two categories: 

sequences with collective anomalies, and sequences with degradation patterns. 

Accordingly, as the implemented approach refers to a time series imaging approach 

(see section 5.3.2. Fault Identification), the anomalous sequences detected are 

transformed into images. Examples of these can be perceived in Figs. E.5.12 – E.5.13. 
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Fig. D.5.12. Images with collective anomalies. 

 

   

   

   

Fig. D.5.13. Images with degradation patterns. 

 

As it can be perceived, the two categories can be easily distinguished. This aspect 

facilitated the achievement of the maximum accuracy score in this process, thus 

classifying all the images adequately. 
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By adequately classifying such images, the sequences with degradation patterns are 

selected so that the RUL can be predicted. Examples of such a prediction are presented 

in Fig. D.5.14. The RMSE and Maintenance Score of the first 100 sequences are also 

presented in Table E.5.2. 
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Fig. D.5.14. Examples of condition indicator. 
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Table D.5.2. RMSE and Maintenance Score between each simulated RUL and their respective predictions for the different analysed models. 

    RMSE (Minutes)   Maintenance Score 

Sequences  Markov-CNN LSTM 1D-CNN Ensembled  Markov-CNN LSTM 1D-CNN Ensembled 

Sequence 1  23.42 21.33 25.49 22.41   1.38 0.97 1.09 0.98 

Sequence 2  54.17 58.06 56.08 57.19   2.63 3.03 2.83 2.96 

Sequence 3  26.68 19.33 17.77 18.50   1.51 1.13 0.90 1.06 

Sequence 4  29.99 35.26 38.74 35.82   1.97 2.44 2.61 2.48 

Sequence 5  47.88 30.33 26.30 28.72   3.02 1.90 1.55 1.78 

Sequence 6  49.53 34.63 28.89 32.00   3.11 2.15 1.63 1.97 

Sequence 7  21.30 21.87 24.13 22.17   1.32 1.29 1.40 1.32 

Sequence 8  30.39 14.60 13.76 13.98   1.70 0.66 0.61 0.61 

Sequence 9  40.22 41.42 43.66 41.81   2.64 2.77 2.79 2.77 

Sequence 10  37.27 13.32 15.64 13.34   1.64 0.68 0.78 0.66 

Sequence 11  25.18 22.74 25.25 23.02   1.29 1.06 1.19 1.09 

Sequence 12  40.06 33.47 38.93 34.88   2.04 1.60 1.91 1.69 

Sequence 13  16.87 19.11 21.53 19.26   1.06 1.11 1.21 1.11 

Sequence 14  64.48 50.45 55.02 51.39   3.37 2.37 2.49 2.39 

Sequence 15  18.14 19.42 21.22 19.73   1.26 1.11 1.02 1.08 

Sequence 16  24.84 15.20 16.75 15.36   1.45 0.84 0.85 0.82 

Sequence 17  45.01 33.73 35.37 34.10   2.17 1.38 1.44 1.38 

Sequence 18  32.58 28.13 36.96 30.00   1.97 1.60 2.13 1.74 

Sequence 19  67.17 51.51 49.65 50.68   4.69 3.36 3.14 3.29 

Sequence 20  24.27 16.58 19.05 16.96   1.41 0.87 0.72 0.81 

Sequence 21  47.44 55.87 56.76 55.93   2.89 3.66 3.85 3.72 

Sequence 22  22.32 24.98 27.86 25.38   1.19 1.23 1.24 1.23 

Sequence 23  19.56 12.73 15.06 13.05   1.20 0.75 0.82 0.76 



 

Appendix D  469 Christian Velasco-Gallego 

Sequence 24  24.27 24.31 27.12 24.60   1.60 1.43 1.64 1.46 

Sequence 25  50.94 49.25 49.90 49.24   3.06 3.03 3.11 3.05 

Sequence 26  17.32 20.44 19.47 19.46   1.10 1.02 0.95 0.97 

Sequence 27  25.51 21.31 27.96 22.74   1.45 1.21 1.47 1.27 

Sequence 28  19.48 23.70 26.33 24.20   1.26 1.52 1.62 1.53 

Sequence 29  27.53 18.49 20.78 18.80   1.54 0.94 0.97 0.93 

Sequence 30  26.81 20.94 20.99 20.30   1.35 0.87 0.94 0.87 

Sequence 31  37.44 25.95 25.53 25.59   1.94 1.28 1.26 1.27 

Sequence 32  33.69 28.88 27.24 28.17   1.54 1.49 1.41 1.46 

Sequence 33  19.07 21.44 22.42 21.03   1.27 1.25 1.27 1.23 

Sequence 34  17.53 23.10 23.64 22.53   1.22 1.51 1.40 1.46 

Sequence 35  39.86 30.81 32.39 31.14   2.04 1.42 1.44 1.42 

Sequence 36  48.77 37.53 38.14 37.49   2.48 1.63 1.70 1.62 

Sequence 37  61.25 47.71 48.03 47.24   4.21 3.36 3.33 3.34 

Sequence 38  24.29 24.94 23.37 23.99   1.60 1.41 1.33 1.36 

Sequence 39  38.78 37.27 41.94 38.25   2.45 1.91 2.20 1.96 

Sequence 40  21.00 13.64 13.84 13.43   1.28 0.83 0.74 0.80 

Sequence 41  82.73 76.34 78.55 76.71   4.01 3.84 3.98 3.85 

Sequence 42  17.78 23.12 26.84 23.65   1.23 1.54 1.67 1.56 

Sequence 43  29.87 34.76 35.51 34.31   2.04 2.38 2.40 2.38 

Sequence 44  57.59 53.27 49.90 52.05   2.81 2.72 2.61 2.68 

Sequence 45  32.83 13.61 13.59 12.77   1.61 0.67 0.72 0.63 

Sequence 46  19.29 21.19 22.13 21.12   1.27 1.27 1.26 1.24 

Sequence 47  25.58 18.10 20.60 18.62   1.40 0.91 0.97 0.92 

Sequence 48  30.73 26.54 26.66 25.92   1.70 1.23 1.27 1.23 

Sequence 49  21.38 13.90 16.82 14.00   1.20 0.77 0.81 0.75 
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Sequence 50  38.55 36.12 33.36 34.39   1.99 2.12 1.87 2.03 

Sequence 51  22.17 20.33 23.94 21.22   1.38 0.88 0.83 0.86 

Sequence 52  24.95 21.41 21.47 20.83   1.31 1.12 1.12 1.09 

Sequence 53  25.02 27.69 27.00 26.99   1.65 1.77 1.65 1.72 

Sequence 54  23.15 28.85 31.76 29.29   1.50 1.55 1.70 1.57 

Sequence 55  36.97 36.30 40.07 36.83   2.24 2.08 2.22 2.09 

Sequence 56  22.69 14.50 15.38 14.58   1.29 0.72 0.68 0.70 

Sequence 57  37.45 32.36 36.26 33.14   2.23 2.20 2.40 2.26 

Sequence 58  39.13 25.96 27.19 26.11   2.07 1.23 1.24 1.21 

Sequence 59  55.81 45.11 49.50 46.06   3.57 2.50 2.75 2.54 

Sequence 60  33.30 18.13 17.65 17.70   1.74 0.86 0.80 0.83 

Sequence 61  28.09 18.77 23.68 19.71   1.78 0.96 1.00 0.95 

Sequence 62  57.37 53.13 52.83 52.97   2.79 2.49 2.52 2.48 

Sequence 63  42.60 27.64 27.68 26.57   2.62 1.51 1.49 1.46 

Sequence 64  51.95 60.87 60.18 60.49   2.63 2.87 2.71 2.82 

Sequence 65  34.21 23.74 28.59 24.67   2.18 1.45 1.73 1.52 

Sequence 66  46.16 30.51 33.47 30.95   2.87 1.92 2.06 1.94 

Sequence 67  24.96 21.56 27.10 22.92   1.43 1.10 1.29 1.13 

Sequence 68  40.35 36.71 39.51 36.84   2.37 2.15 2.19 2.15 

Sequence 69  56.89 50.92 50.99 50.67   2.88 2.66 2.53 2.61 

Sequence 70  56.85 61.65 65.20 62.25   2.91 3.52 3.78 3.57 

Sequence 71  39.53 36.56 40.29 37.49   1.95 1.58 1.70 1.59 

Sequence 72  64.87 44.57 43.25 43.58   4.22 2.83 2.69 2.78 

Sequence 73  41.09 53.70 54.30 53.59   2.41 3.05 3.01 3.03 

Sequence 74  50.74 46.97 46.89 46.29   2.23 2.57 2.48 2.53 

Sequence 75  65.60 38.69 42.99 39.54   3.96 1.94 2.06 1.93 
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Sequence 76  38.46 26.39 30.91 27.41   1.94 1.15 1.38 1.19 

Sequence 77  16.32 15.92 18.04 16.06   1.08 0.85 0.92 0.85 

Sequence 78  26.48 40.91 42.62 40.85   1.45 2.50 2.53 2.49 

Sequence 79  42.06 18.81 18.60 18.45   2.08 0.88 0.91 0.88 

Sequence 80  56.27 37.28 43.81 39.02   3.43 1.82 2.08 1.88 

Sequence 81  48.03 38.59 43.74 39.63   2.51 1.96 2.33 2.05 

Sequence 82  21.35 19.65 23.37 20.41   1.32 0.87 0.84 0.83 

Sequence 83  24.91 18.74 20.01 18.54   1.43 1.14 1.17 1.12 

Sequence 84  17.25 24.82 25.99 24.49   1.13 1.55 1.61 1.54 

Sequence 85  19.90 13.17 12.90 12.35   1.06 0.66 0.62 0.61 

Sequence 86  28.97 27.46 30.52 27.85   1.72 1.67 1.77 1.68 

Sequence 87  22.07 19.04 20.92 19.34   1.33 0.99 0.99 0.98 

Sequence 88  17.13 18.63 21.07 18.90   1.03 1.15 1.25 1.15 

Sequence 89  16.57 23.89 24.13 23.50   1.13 1.55 1.51 1.53 

Sequence 90  25.89 29.77 33.49 30.49   1.74 1.87 2.05 1.92 

Sequence 91  29.30 17.50 20.04 17.58   1.28 0.90 1.01 0.91 

Sequence 92  49.05 38.23 41.24 38.60   2.45 1.75 1.95 1.81 

Sequence 93  19.32 15.78 18.07 15.84   1.13 0.76 0.89 0.77 

Sequence 94  18.32 21.47 23.32 21.66   1.24 1.30 1.40 1.32 

Sequence 95  23.91 19.21 22.76 19.57   1.28 0.81 0.91 0.81 

Sequence 96  45.58 32.09 31.40 31.53   2.24 1.41 1.40 1.40 

Sequence 97  23.63 18.11 18.72 18.08   1.42 0.96 0.85 0.91 

Sequence 98  24.06 17.45 16.15 16.89   1.15 0.88 0.77 0.84 

Sequence 99  22.19 23.40 24.33 23.28   1.45 1.44 1.38 1.40 

Sequence 100  43.92 37.18 34.12 35.81   2.59 2.32 2.10 2.25 

M edian   29.12 25.61 27.12 25.59   1.70 1.44 1.44 1.42 
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D.6. Main Engine Cylinder 5 

The parameter analysed refers to the exhaust gas outlet temperature. A graphical 

representation of such a parameter is expressed in Fig. D.6.1. The descriptive statistics 

is also introduced in Table E.6.1. 

 

 

Fig. D.6.1. Graphical representation of the exhaust gas outlet temperature parameter 

 

Table D.6.1. Descriptive statistics of the monitored parameter. 

 Mean Std. Min. 25% 50% 75% Max. 

Cyl. 5 Exh. Gas Out. Temp 317.21 4.81 307 314 316 318 332 

 

As part of the data pre-processing phase, the identification of operational states step 

has been implemented (see section 4.5. A Novel Framework for the Identification of 

Steady States for a comprehensive explanation of such a step). In total, only one 

operational state has been identified, as perceived in Fig. D.6.2. 
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Fig. D.6.2. Identification of the operational states for the monitored parameter. 

 

Subsequently, due to the lack of fault data, both collective anomalies and degradation 

patterns are simulated. Some examples are presented in Figs. E.6.4 – E.4.5. Examples 

of normal sequences are also introduced in Fig. D.6.3. 
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Fig. D.6.3. Example of normal sequences. 
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Fig. D.6.4. Example of sequences with collective anomalies. 
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Fig. D.6.5. Example of sequences with degradation patterns. 
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As part of the MA framework, the subsequent module to be applied is the diagnostic 

analytics module. Accordingly, the fault detection step is implemented as stated in 

section 5.3.1. Fault Detection. As perceived in the histograms (Figs. E.6.6 – E.6.8), a 

simple threshold is adequate in this case study to distinguish the normal sequences 

from the abnormal sequences. 

 

Fig. D.6.6. Histogram of the reconstructed errors of the normal sequences (test set). 

 

Fig. D.6.7. Histogram of the reconstructed errors of the sequences with collective anomalies. 
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Fig. D.6.8. Histogram of the reconstructed errors of the sequences with degradation patterns. 

 

Examples of reconstructed sequences are also introduced in Figs. E.6.9 – E.6.11. 
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Fig. D.6.9. Example of normal reconstructed sequences (test set). 
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Fig. D.6.10. Example of reconstructed sequences with collective anomalies. 
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Fig. D.6.11. Example of reconstructed sequences with degradation patterns. 
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Those sequences detected as anomalous are then classified into two categories: 

sequences with collective anomalies, and sequences with degradation patterns. 

Accordingly, as the implemented approach refers to a time series imaging approach 

(see section 5.3.2. Fault Identification), the anomalous sequences detected are 

transformed into images. Examples of these can be perceived in Figs. E.6.12 – E.6.13. 

   

   

   

Fig. D.6.12. Images with collective anomalies. 
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Fig. D.6.13. Images with degradation patterns. 

 

As it can be perceived, the two categories can be easily distinguished. This aspect 

facilitated the achievement of the maximum accuracy score in this process, thus 

classifying all the images adequately. 
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By adequately classifying such images, the sequences with degradation patterns are 

selected so that the RUL can be predicted. Examples of such a prediction are presented 

in Fig. D.6.14. The RMSE and Maintenance Score of the first 100 sequences are also 

presented in Table E.6.2. 
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Fig. D.6.14. Examples of condition indicator. 
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Table D.6.2. RMSE and Maintenance Score between each simulated RUL and their respective predictions for the different analysed models. 

    RMSE (Minutes)   Maintenance Score 

Sequences  Markov-CNN LSTM 1D-CNN Ensembled  Markov-CNN LSTM 1D-CNN Ensembled 

Sequence 1  66.23 50.37 50.37 62.82   4.16 3.18 3.00 3.96 

Sequence 2  20.61 21.75 19.49 20.31   1.19 1.15 1.03 1.17 

Sequence 3  54.35 42.02 45.21 50.86   3.55 2.68 2.89 3.27 

Sequence 4  14.65 19.28 19.94 14.98   1.02 1.19 1.19 1.03 

Sequence 5  19.47 20.71 21.67 19.19   1.20 1.22 1.24 1.20 

Sequence 6  65.91 54.73 57.20 62.24   3.52 2.49 2.61 3.22 

Sequence 7  21.64 21.66 20.49 20.84   1.46 1.43 1.23 1.42 

Sequence 8  39.59 26.57 26.04 36.41   1.96 1.39 1.35 1.82 

Sequence 9  41.35 50.50 51.77 42.31   1.98 2.66 2.63 2.00 

Sequence 10  59.61 46.27 49.13 55.63   3.72 3.19 3.20 3.59 

Sequence 11  19.29 16.65 16.79 18.48   1.18 0.95 0.89 1.13 

Sequence 12  60.34 44.11 46.98 56.20   4.07 2.79 2.87 3.80 

Sequence 13  43.61 44.58 36.30 43.61   2.21 2.20 1.75 2.20 

Sequence 14  55.12 45.23 42.33 53.01   2.68 2.17 1.99 2.57 

Sequence 15  32.02 29.06 23.47 31.21   1.61 1.48 1.12 1.58 

Sequence 16  14.39 17.02 16.15 14.39   0.92 1.01 0.89 0.91 

Sequence 17  54.99 48.40 43.96 53.53   2.75 2.47 2.24 2.69 

Sequence 18  56.25 44.94 48.60 51.98   3.44 2.66 2.82 3.21 

Sequence 19  21.33 29.65 31.83 22.36   1.29 1.41 1.42 1.29 

Sequence 20  31.98 32.10 29.07 31.61   1.63 1.52 1.29 1.60 

Sequence 21  40.52 20.33 20.74 35.72   2.44 1.20 0.77 2.19 

Sequence 22  23.47 18.33 17.16 21.65   1.28 0.93 0.86 1.17 

Sequence 23  21.01 18.79 16.29 19.93   1.13 0.93 0.80 1.05 
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Sequence 24  43.49 30.40 30.17 40.34   2.12 1.59 1.53 2.00 

Sequence 25  36.77 21.13 20.10 32.89   2.23 1.23 1.09 2.03 

Sequence 26  19.40 15.18 17.13 18.15   1.19 0.91 1.05 1.13 

Sequence 27  18.53 13.81 13.79 17.26   1.19 0.86 0.77 1.10 

Sequence 28  59.13 38.68 42.26 54.37   3.74 2.56 2.68 3.50 

Sequence 29  22.15 13.27 11.86 19.89   1.21 0.71 0.58 1.10 

Sequence 30  35.79 21.72 19.68 32.84   1.71 1.09 1.02 1.59 

Sequence 31  21.66 23.20 24.27 21.39   1.18 1.13 1.11 1.17 

Sequence 32  28.82 20.12 16.79 26.87   1.44 1.01 0.77 1.34 

Sequence 33  56.92 52.67 60.60 55.71   3.69 3.46 4.03 3.64 

Sequence 34  44.10 21.83 18.70 39.39   2.14 1.10 0.87 1.92 

Sequence 35  19.97 19.07 19.96 19.48   1.28 1.13 1.10 1.25 

Sequence 36  27.46 26.82 20.05 26.93   1.29 1.29 0.91 1.27 

Sequence 37  33.05 21.53 18.62 30.08   1.56 1.19 0.99 1.48 

Sequence 38  30.12 26.50 30.25 29.24   1.55 1.22 1.14 1.48 

Sequence 39  70.34 55.63 57.06 67.13   4.17 3.52 3.46 4.04 

Sequence 40  28.78 26.15 23.50 27.07   1.41 1.29 0.99 1.37 

Sequence 41  17.63 18.70 19.50 17.12   1.10 1.04 0.98 1.08 

Sequence 42  31.15 47.30 51.68 32.53   1.46 2.28 2.56 1.59 

Sequence 43  32.19 29.77 32.58 30.87   2.02 1.94 1.97 1.99 

Sequence 44  51.06 54.23 53.70 51.23   3.27 3.39 3.03 3.29 

Sequence 45  18.11 18.05 18.77 17.36   1.18 0.97 0.88 1.12 

Sequence 46  68.67 37.34 41.26 60.80   3.83 2.46 2.73 3.54 

Sequence 47  22.53 17.49 15.28 20.58   1.01 0.90 0.82 0.92 

Sequence 48  28.80 26.15 23.44 28.06   1.53 1.30 1.09 1.48 

Sequence 49  26.56 34.50 30.12 27.36   1.40 1.57 1.35 1.43 
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Sequence 50  22.46 19.64 19.08 21.49   1.21 1.00 0.86 1.16 

Sequence 51  60.81 38.78 41.12 55.59   3.75 2.39 2.36 3.45 

Sequence 52  50.59 42.82 43.85 48.51   2.81 2.74 2.68 2.79 

Sequence 53  76.52 45.15 48.33 68.15   4.72 2.52 2.67 4.25 

Sequence 54  38.50 27.35 33.99 34.74   1.73 1.59 2.01 1.62 

Sequence 55  25.79 22.53 21.73 24.51   1.42 1.08 0.98 1.33 

Sequence 56  27.72 32.30 29.79 27.86   1.31 1.70 1.49 1.34 

Sequence 57  25.86 17.91 19.75 23.67   1.53 0.97 0.92 1.41 

Sequence 58  35.12 31.64 30.50 34.14   1.75 1.46 1.27 1.69 

Sequence 59  30.17 15.47 14.32 26.77   1.53 0.84 0.79 1.37 

Sequence 60  68.64 46.15 47.26 63.81   4.02 2.83 2.98 3.77 

Sequence 61  35.88 43.00 51.46 36.95   2.40 2.95 3.53 2.50 

Sequence 62  55.42 34.28 37.19 50.24   3.56 2.33 2.40 3.30 

Sequence 63  21.49 31.65 37.90 23.04   1.52 2.24 2.58 1.66 

Sequence 64  16.60 20.04 17.93 16.00   0.88 1.04 0.90 0.86 

Sequence 65  45.86 31.70 29.55 42.31   2.92 2.11 1.84 2.76 

Sequence 66  25.18 18.47 18.02 23.67   1.41 1.00 0.88 1.32 

Sequence 67  20.00 18.87 20.02 19.24   1.24 0.94 0.83 1.18 

Sequence 68  19.22 16.75 15.05 17.57   1.04 0.79 0.80 0.95 

Sequence 69  29.31 24.89 23.85 28.08   1.46 1.19 1.05 1.39 

Sequence 70  26.28 29.05 28.22 26.41   1.43 1.31 1.20 1.41 

Sequence 71  22.81 22.17 23.06 22.37   1.32 1.10 1.12 1.28 

Sequence 72  20.77 17.47 18.84 19.45   1.26 0.94 1.03 1.19 

Sequence 73  25.64 24.10 20.33 24.91   1.36 1.24 1.02 1.33 

Sequence 74  33.08 15.63 14.46 29.24   1.53 0.84 0.68 1.38 

Sequence 75  30.52 28.93 29.07 28.83   1.98 1.87 1.66 1.95 
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Sequence 76  45.16 43.81 38.39 44.70   2.21 1.99 1.68 2.16 

Sequence 77  23.54 24.06 23.01 21.87   1.15 1.15 1.09 1.02 

Sequence 78  17.77 18.40 22.65 17.40   1.18 1.01 1.17 1.14 

Sequence 79  26.22 18.27 17.94 24.42   1.41 0.98 0.76 1.32 

Sequence 80  37.60 30.58 27.54 36.04   1.82 1.39 1.19 1.74 

Sequence 81  59.90 43.38 47.20 55.79   3.83 2.84 2.93 3.62 

Sequence 82  23.48 17.51 19.97 22.03   1.32 0.93 0.81 1.24 

Sequence 83  23.29 28.95 31.07 24.08   1.20 1.37 1.37 1.22 

Sequence 84  25.76 26.50 23.39 25.29   1.39 1.28 1.11 1.37 

Sequence 85  50.78 38.10 39.37 48.06   2.82 2.29 2.16 2.71 

Sequence 86  22.48 22.71 23.74 21.94   1.11 1.12 1.19 1.08 

Sequence 87  25.50 22.53 26.35 24.19   1.39 1.42 1.42 1.39 

Sequence 88  15.09 18.78 21.12 15.20   1.05 1.13 1.13 1.06 

Sequence 89  45.00 30.17 37.45 41.62   2.12 1.43 1.60 1.97 

Sequence 90  35.10 34.02 28.76 34.62   1.78 1.56 1.28 1.73 

Sequence 91  20.41 17.47 17.29 19.05   1.12 0.90 0.75 1.04 

Sequence 92  47.13 40.44 37.48 45.70   2.25 1.78 1.60 2.16 

Sequence 93  52.60 58.74 63.04 51.81   3.16 3.65 3.81 3.24 

Sequence 94  56.73 44.74 42.42 53.27   3.01 2.07 2.00 2.73 

Sequence 95  51.56 39.37 40.34 48.57   3.65 2.70 2.64 3.45 

Sequence 96  17.23 13.52 14.65 15.63   1.05 0.78 0.78 0.96 

Sequence 97  32.58 19.20 17.60 29.63   1.62 0.98 0.80 1.49 

Sequence 98  56.05 33.68 35.07 50.56   2.92 1.75 1.85 2.61 

Sequence 99  19.48 19.43 22.85 19.16   1.25 1.03 1.04 1.20 

Sequence 100  37.12 29.23 26.08 35.19   1.78 1.38 1.21 1.69 

M edian   32.02 27.35 27.54 30.59   1.61 1.39 1.24 1.59 
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D.7. Main Engine Cylinder 6 

The parameter analysed refers to the exhaust gas outlet temperature. A graphical 

representation of such a parameter is expressed in Fig. D.7.1. The descriptive statistics 

is also introduced in Table E.7.1. 

 

 

Fig. D.7.1. Graphical representation of the exhaust gas outlet temperature parameter. 

 

Table D.7.1. Descriptive statistics of the monitored parameter. 

 Mean Std. Min. 25% 50% 75% Max. 

Cyl. 6 Exh. Gas Out. Temp 323.85 4.59 312 321 323 327 339 

 

As part of the data pre-processing phase, the identification of operational states step 

has been implemented (see section 4.5. A Novel Framework for the Identification of 

Steady States for a comprehensive explanation of such a step). In total, only one 

operational state has been identified, as perceived in Fig. D.7.2. 
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Fig. D.7.2. Identification of the operational states for the monitored parameter. 

 

Subsequently, due to the lack of fault data, both collective anomalies and degradation 

patterns are simulated. Some examples are presented in Figs. E.7.4 – E.4.5. Examples 

of normal sequences are also introduced in Fig. D.7.3. 
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Fig. D.7.3. Example of normal sequences. 
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Fig. D.7.4. Example of sequences with collective anomalies. 
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Fig. D.7.5. Example of sequences with degradation patterns. 
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As part of the MA framework, the subsequent module to be applied is the diagnostic 

analytics module. Accordingly, the fault detection step is implemented as stated in 

section 5.3.1. Fault Detection. As perceived in the histograms (Figs. E.7.6 – E.7.8), a 

simple threshold is adequate in this case study to distinguish the normal sequences 

from the abnormal sequences. 

 

Fig. D.7.6. Histogram of the reconstructed errors of the normal sequences (test set). 

 

Fig. D.7.7. Histogram of the reconstructed errors of the sequences with collective anomalies. 
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Fig. D.7.8. Histogram of the reconstructed errors of the sequences with degradation patterns. 

 

Examples of reconstructed sequences are also introduced in Figs. E.7.9 – E.7.11. 
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Fig. D.7.9. Example of normal reconstructed sequences (test set). 
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Fig. D.7.10. Example of reconstructed sequences with collective anomalies. 
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Fig. D.7.11. Example of reconstructed sequences with degradation patterns. 
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Those sequences detected as anomalous are then classified into two categories: 

sequences with collective anomalies, and sequences with degradation patterns. 

Accordingly, as the implemented approach refers to a time series imaging approach 

(see section 5.3.2. Fault Identification), the anomalous sequences detected are 

transformed into images. Examples of these can be perceived in Figs. E.7.12 – E.7.13. 
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Fig. D.7.12. Images with collective anomalies. 

 

   

   

   

Fig. D.7.13. Images with degradation patterns. 

 

As it can be perceived, the two categories can be easily distinguished. This aspect 

facilitated the achievement of the maximum accuracy score in this process, thus 

classifying all the images adequately. 
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By adequately classifying such images, the sequences with degradation patterns are 

selected so that the RUL can be predicted. Examples of such a prediction are presented 

in Fig. D.7.14. The RMSE and Maintenance Score of the first 100 sequences are also 

presented in Table E.7.2. 
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Fig. D.7.14. Examples of condition indicator. 
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Table D.7.2. RMSE and Maintenance Score between each simulated RUL and their respective predictions for the different analysed models. 

    RMSE (Minutes)   Maintenance Score 

Sequences  Markov-CNN LSTM 1D-CNN Ensembled  Markov-CNN LSTM 1D-CNN Ensembled 

Sequence 1  33.96 17.21 18.09 16.92   2.10 0.84 0.85 0.92 

Sequence 2  31.93 18.00 18.08 18.40   1.69 1.08 0.94 1.07 

Sequence 3  19.86 15.73 17.06 15.67   1.16 0.67 0.82 0.74 

Sequence 4  25.20 17.89 18.65 17.04   1.44 1.06 1.13 1.03 

Sequence 5  25.81 15.63 17.22 16.28   1.36 0.79 0.91 0.87 

Sequence 6  45.04 43.08 38.86 39.80   2.54 2.42 2.17 2.28 

Sequence 7  50.22 44.15 39.65 43.14   2.47 2.25 1.99 2.18 

Sequence 8  54.91 54.52 56.64 54.96   2.70 2.67 2.74 2.68 

Sequence 9  22.57 17.86 17.22 17.63   1.30 0.86 0.84 0.89 

Sequence 10  36.20 47.72 43.90 44.80   1.72 2.03 1.85 1.92 

Sequence 11  20.58 20.32 23.19 20.17   1.21 0.93 0.95 0.92 

Sequence 12  30.63 25.91 33.57 28.24   1.87 1.35 1.77 1.52 

Sequence 13  58.73 21.15 21.18 22.49   3.40 1.18 0.98 1.33 

Sequence 14  37.29 35.37 35.73 35.26   1.87 1.77 1.64 1.72 

Sequence 15  60.95 52.50 53.56 52.54   3.23 2.62 2.67 2.62 

Sequence 16  33.46 15.58 18.45 16.96   1.66 0.66 0.78 0.77 

Sequence 17  36.76 37.91 33.18 33.88   1.90 1.92 1.73 1.77 

Sequence 18  29.03 26.11 25.99 25.91   1.48 1.00 1.04 1.01 

Sequence 19  29.95 29.93 28.74 29.03   1.51 1.50 1.38 1.45 

Sequence 20  24.14 27.32 29.11 26.70   1.47 1.51 1.63 1.52 

Sequence 21  46.98 29.26 33.18 30.62   2.96 1.57 1.69 1.74 

Sequence 22  44.63 28.84 33.30 30.67   2.57 1.77 1.85 1.85 

Sequence 23  28.14 22.34 20.88 21.96   1.38 0.91 0.86 0.90 
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Sequence 24  17.10 11.69 12.72 11.86   1.09 0.44 0.58 0.52 

Sequence 25  29.14 19.22 15.73 18.25   1.45 0.80 0.67 0.78 

Sequence 26  50.22 31.76 35.94 34.17   3.06 1.91 1.83 2.00 

Sequence 27  61.54 40.00 43.04 41.34   3.58 2.06 2.26 2.14 

Sequence 28  22.47 16.11 16.48 15.96   1.26 0.72 0.70 0.73 

Sequence 29  47.57 24.03 30.26 26.74   2.67 1.20 1.60 1.44 

Sequence 30  22.45 21.25 27.78 22.59   1.27 1.14 1.45 1.24 

Sequence 31  23.41 16.56 14.65 15.81   1.32 0.82 0.62 0.79 

Sequence 32  41.01 45.64 50.46 44.92   2.30 2.67 2.93 2.69 

Sequence 33  61.27 43.55 47.32 45.99   3.50 2.45 2.54 2.56 

Sequence 34  34.35 19.11 24.09 21.61   1.61 0.63 0.86 0.76 

Sequence 35  22.47 28.90 30.47 27.77   1.15 1.55 1.60 1.49 

Sequence 36  20.02 14.08 17.28 15.24   1.25 0.46 0.65 0.58 

Sequence 37  53.78 42.08 43.25 42.49   3.47 2.37 2.46 2.45 

Sequence 38  59.13 50.97 55.75 52.12   3.24 2.60 2.97 2.67 

Sequence 39  21.21 15.48 15.39 15.22   1.21 0.70 0.72 0.71 

Sequence 40  40.77 51.81 54.16 50.75   2.13 2.65 2.90 2.64 

Sequence 41  19.70 12.77 13.68 12.94   1.21 0.48 0.59 0.54 

Sequence 42  56.15 52.86 50.52 52.28   2.69 2.50 2.37 2.45 

Sequence 43  36.00 20.47 22.70 21.77   1.74 0.85 0.95 0.94 

Sequence 44  39.11 17.97 18.54 19.48   1.80 0.88 0.86 0.95 

Sequence 45  28.96 21.74 20.68 21.37   1.93 1.26 1.24 1.29 

Sequence 46  24.98 20.44 24.96 21.75   1.38 0.84 0.96 0.91 

Sequence 47  32.51 32.92 29.78 31.55   1.59 1.59 1.41 1.52 

Sequence 48  23.72 14.27 14.52 13.69   1.24 0.68 0.70 0.66 

Sequence 49  42.21 30.18 34.37 31.76   2.32 1.11 1.35 1.29 
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Sequence 50  65.39 38.40 34.24 37.75   3.74 2.13 1.83 2.16 

Sequence 51  25.96 21.98 25.60 22.46   1.43 0.94 1.14 1.04 

Sequence 52  24.86 21.88 25.96 22.82   1.33 0.80 0.97 0.87 

Sequence 53  29.46 24.89 26.24 24.71   1.39 1.22 1.30 1.23 

Sequence 54  19.93 17.93 17.96 17.65   1.13 0.82 0.89 0.85 

Sequence 55  31.70 21.51 22.25 22.33   1.64 0.76 0.87 0.84 

Sequence 56  34.69 47.16 40.99 42.21   1.75 2.39 2.06 2.14 

Sequence 57  20.20 17.11 19.20 16.86   1.22 0.92 0.98 0.94 

Sequence 58  25.22 17.10 21.96 18.02   1.40 1.06 1.19 1.08 

Sequence 59  56.34 39.27 44.22 41.63   3.17 2.12 2.50 2.26 

Sequence 60  43.67 35.54 28.59 33.44   2.21 1.55 1.21 1.48 

Sequence 61  26.38 15.73 18.04 16.16   1.39 0.65 0.75 0.70 

Sequence 62  25.39 20.43 21.35 20.11   1.36 0.98 0.94 0.97 

Sequence 63  25.22 12.84 18.46 12.92   1.34 0.62 0.90 0.66 

Sequence 64  21.13 9.67 12.28 10.72   1.31 0.47 0.56 0.55 

Sequence 65  30.51 33.93 34.66 33.23   1.41 1.68 1.63 1.61 

Sequence 66  28.30 15.51 15.52 14.52   1.28 0.73 0.75 0.74 

Sequence 67  18.33 20.92 22.43 20.30   1.01 0.93 1.01 0.92 

Sequence 68  32.83 37.92 37.13 36.54   1.62 1.89 1.78 1.81 

Sequence 69  17.12 13.20 13.38 12.89   1.00 0.50 0.55 0.52 

Sequence 70  16.81 15.40 20.68 16.08   1.12 0.74 1.01 0.82 

Sequence 71  29.84 20.59 15.96 18.85   1.96 1.12 0.73 1.07 

Sequence 72  26.79 20.88 20.96 20.99   1.44 0.78 0.82 0.82 

Sequence 73  30.97 42.32 39.51 39.89   1.64 2.05 1.91 1.94 

Sequence 74  31.55 34.26 31.22 31.83   1.48 1.71 1.49 1.58 

Sequence 75  17.73 22.00 26.99 20.46   1.16 1.01 1.17 0.98 
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Sequence 76  37.64 33.53 32.94 33.19   1.80 1.40 1.41 1.41 

Sequence 77  77.34 68.75 75.98 70.57   4.12 3.22 3.66 3.25 

Sequence 78  18.14 29.56 24.23 25.60   1.05 1.15 0.97 1.04 

Sequence 79  23.66 23.36 21.16 22.08   1.27 0.95 0.88 0.90 

Sequence 80  65.43 34.05 35.38 35.77   3.79 1.55 1.72 1.81 

Sequence 81  43.88 18.89 22.16 20.34   2.45 0.87 1.05 0.99 

Sequence 82  24.84 14.92 18.27 15.88   1.38 0.78 0.77 0.82 

Sequence 83  26.43 27.78 28.49 26.12   1.53 1.51 1.53 1.42 

Sequence 84  33.92 29.98 30.69 30.17   1.72 1.16 1.17 1.18 

Sequence 85  35.52 31.29 25.14 29.02   1.66 1.56 1.22 1.45 

Sequence 86  30.72 36.53 29.34 32.88   1.60 1.57 1.24 1.45 

Sequence 87  33.58 28.78 26.64 28.08   1.69 1.20 1.10 1.22 

Sequence 88  38.07 27.69 22.93 26.58   1.80 1.18 0.98 1.17 

Sequence 89  25.76 21.28 29.69 22.79   1.71 1.24 1.71 1.39 

Sequence 90  34.98 28.79 26.45 28.19   1.81 1.08 1.09 1.13 

Sequence 91  21.43 34.46 24.79 29.47   1.06 1.68 1.18 1.43 

Sequence 92  23.53 39.59 38.53 36.25   1.02 2.13 1.96 1.93 

Sequence 93  64.13 44.14 34.13 41.84   3.99 2.63 2.02 2.53 

Sequence 94  80.98 84.23 86.15 83.99   4.25 4.41 4.55 4.39 

Sequence 95  51.04 29.68 32.00 29.46   2.71 1.43 1.62 1.58 

Sequence 96  17.91 11.33 12.93 11.50   1.09 0.47 0.56 0.52 

Sequence 97  36.99 19.71 22.34 21.37   1.84 1.01 1.21 1.14 

Sequence 98  85.09 67.81 71.78 68.85   4.83 3.16 3.42 3.18 

Sequence 99  26.29 25.78 25.98 24.67   1.25 1.34 1.37 1.29 

Sequence 100  39.21 15.93 17.49 16.42   2.11 0.78 0.79 0.88 

M edian   30.51 24.03 25.96 24.67   1.61 1.16 1.17 1.22 
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D.8. Turbocharger (TC) 

The parameter analysed refers to the exhaust gas outlet temperature. A graphical 

representation of such a parameter is expressed in Fig. D.8.1. The descriptive statistics 

is also introduced in Table E.8.1. 

 

 

Fig. D.8.1. Graphical representation of the exhaust gas outlet temperature parameter. 

 

Table D.8.1. Descriptive statistics of the monitored parameter. 

 Mean Std. Min. 25% 50% 75% Max. 

TC Exh. Gas Out. Temp 378.52 4.98 368 375 378 381 394 

 

As part of the data pre-processing phase, the identification of operational states step 

has been implemented (see section 4.5. A Novel Framework for the Identification of 

Steady States for a comprehensive explanation of such a step). In total, only one 

operational state has been identified, as perceived in Fig. D.8.2. 



 

Appendix D 509 Christian Velasco-Gallego 

 

Fig. D.8.2. Identification of the operational states for the monitored parameter. 

 

Subsequently, due to the lack of fault data, both collective anomalies and degradation 

patterns are simulated. Some examples are presented in Figs. E.8.4 – E.4.5. Examples 

of normal sequences are also introduced in Fig. D.8.3. 
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Fig. D.8.3. Example of normal sequences. 
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Fig. D.8.4. Example of sequences with collective anomalies. 
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Fig. D.8.5. Example of sequences with degradation patterns. 

 

As part of the MA framework, the subsequent module to be applied is the diagnostic 

analytics module. Accordingly, the fault detection step is implemented as stated in 

section 5.3.1. Fault Detection. As perceived in the histograms (Figs. E.8.6 – E.8.8), a 

simple threshold is adequate in this case study to distinguish the normal sequences 

from the abnormal sequences. 
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Fig. D.8.6. Histogram of the reconstructed errors of the normal sequences (test set). 

 

Fig. D.8.7. Histogram of the reconstructed errors of the sequences with collective anomalies. 
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Fig. D.8.8. Histogram of the reconstructed errors of the sequences with degradation patterns. 

 

Examples of reconstructed sequences are also introduced in Figs. E.8.9 – E.8.11. 
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Fig. D.8.9. Example of normal reconstructed sequences (test set). 
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Fig. D.8.10. Example of reconstructed sequences with collective anomalies. 
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Fig. D.8.11. Example of reconstructed sequences with degradation patterns. 

 

Those sequences detected as anomalous are then classified into two categories: 

sequences with collective anomalies, and sequences with degradation patterns. 

Accordingly, as the implemented approach refers to a time series imaging approach 

(see section 5.3.2. Fault Identification), the anomalous sequences detected are 

transformed into images. Examples of these can be perceived in Figs. E.8.12 – E.8.13. 
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Fig. D.8.12. Images with collective anomalies. 
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Fig. D.8.13. Images with degradation patterns. 

 

As it can be perceived, the two categories can be easily distinguished. This aspect 

facilitated the achievement of the maximum accuracy score in this process, thus 

classifying all the images adequately. 

 

By adequately classifying such images, the sequences with degradation patterns are 

selected so that the RUL can be predicted. Examples of such a prediction are presented 

in Fig. D.8.14. The RMSE and Maintenance Score of the first 100 sequences are also 

presented in Table E.8.2. 
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Fig. D.8.14. Examples of condition indicator. 
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Table D.8.2. RMSE and Maintenance Score between each simulated RUL and their respective predictions for the different analysed models 

    RMSE (Minutes)   Maintenance Score 

Sequences  Markov-CNN LSTM 1D-CNN Ensembled  Markov-CNN LSTM 1D-CNN Ensembled 

Sequence 1  49.83 30.47 32.69 33.38   3.02 1.63 1.62 1.88 

Sequence 2  38.57 34.79 41.40 35.08   1.93 1.52 1.62 1.59 

Sequence 3  33.19 31.27 30.44 30.62   2.23 2.08 1.76 2.11 

Sequence 4  22.26 25.22 20.59 23.92   1.57 1.54 0.97 1.54 

Sequence 5  30.86 23.64 26.44 23.92   1.80 1.28 1.33 1.36 

Sequence 6  31.40 22.18 23.06 23.08   2.00 1.35 0.91 1.48 

Sequence 7  31.97 19.78 19.34 21.90   1.62 0.97 0.87 1.10 

Sequence 8  25.23 22.11 21.19 22.33   1.55 1.25 1.07 1.30 

Sequence 9  39.06 24.75 24.77 27.11   2.02 1.30 1.17 1.44 

Sequence 10  29.17 15.06 16.62 17.60   1.61 0.78 0.70 0.93 

Sequence 11  25.66 13.29 12.81 15.14   1.44 0.76 0.65 0.89 

Sequence 12  29.60 24.55 20.88 24.44   1.78 1.54 1.06 1.57 

Sequence 13  24.19 25.21 26.69 23.70   1.46 1.31 1.40 1.29 

Sequence 14  98.75 87.34 94.43 89.28   5.68 4.71 5.15 4.89 

Sequence 15  66.93 59.78 60.86 59.87   3.20 2.95 2.90 2.93 

Sequence 16  43.37 33.27 38.54 35.17   2.20 1.53 1.52 1.66 

Sequence 17  29.09 27.52 28.58 26.85   1.46 1.21 1.33 1.24 

Sequence 18  66.21 32.66 38.49 38.02   4.02 1.98 2.12 2.37 

Sequence 19  54.55 44.79 49.21 46.05   3.52 2.87 2.84 2.99 

Sequence 20  37.80 25.54 22.90 27.83   1.98 1.25 0.98 1.39 

Sequence 21  25.09 24.49 24.69 23.54   1.74 1.43 1.16 1.48 

Sequence 22  26.54 19.46 17.76 20.51   1.57 1.15 0.93 1.23 

Sequence 23  48.62 43.09 37.00 42.80   3.22 2.67 2.20 2.77 
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Sequence 24  28.13 18.42 18.61 20.03   1.59 1.02 0.79 1.13 

Sequence 25  34.93 34.47 31.40 33.69   2.32 2.32 1.91 2.32 

Sequence 26  25.99 25.98 23.42 25.45   1.59 1.48 1.03 1.50 

Sequence 27  49.64 43.12 52.22 43.89   2.42 2.05 2.39 2.11 

Sequence 28  29.07 32.33 35.91 30.80   1.94 1.94 1.92 1.94 

Sequence 29  47.49 28.92 27.45 32.16   2.33 1.51 1.32 1.67 

Sequence 30  41.03 33.14 31.51 33.89   2.77 2.22 1.93 2.32 

Sequence 31  29.89 31.73 32.77 30.51   2.02 2.14 1.94 2.11 

Sequence 32  31.64 23.10 21.63 24.00   2.05 1.31 1.03 1.46 

Sequence 33  69.74 42.71 44.85 46.17   4.23 2.01 2.15 2.39 

Sequence 34  48.30 58.47 54.72 56.05   3.04 3.66 3.51 3.48 

Sequence 35  58.75 59.34 53.08 58.67   4.14 4.06 3.48 4.07 

Sequence 36  69.77 56.05 56.03 57.19   4.32 3.12 3.20 3.36 

Sequence 37  29.10 14.96 16.54 17.37   1.62 0.80 0.76 0.96 

Sequence 38  43.36 31.95 30.24 33.25   2.94 1.94 1.61 2.13 

Sequence 39  28.26 16.80 19.47 17.99   1.51 0.94 0.94 1.03 

Sequence 40  32.35 26.92 28.24 26.91   2.07 1.44 1.45 1.53 

Sequence 41  20.68 21.65 20.85 20.85   1.39 1.26 0.92 1.28 

Sequence 42  30.82 41.76 40.31 38.06   1.96 2.85 2.53 2.56 

Sequence 43  38.90 26.94 28.13 27.46   2.39 1.59 1.45 1.74 

Sequence 44  86.16 81.15 84.82 81.57   4.75 4.04 4.15 4.13 

Sequence 45  23.60 19.81 19.58 20.11   1.50 1.16 0.99 1.22 

Sequence 46  30.81 17.93 15.72 20.04   1.73 1.02 0.79 1.16 

Sequence 47  38.02 21.64 21.38 24.37   1.97 1.27 1.06 1.40 

Sequence 48  32.66 22.72 21.85 23.50   2.15 1.36 1.04 1.50 

Sequence 49  32.76 37.74 37.11 35.87   2.14 2.14 1.98 2.14 
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Sequence 50  44.82 25.65 26.33 27.95   2.91 1.36 1.35 1.62 

Sequence 51  26.34 18.73 25.45 19.39   1.41 0.85 1.19 0.95 

Sequence 52  51.25 53.73 55.20 51.23   2.61 2.97 2.99 2.76 

Sequence 53  20.14 17.78 21.16 16.92   1.18 0.89 1.02 0.92 

Sequence 54  36.88 23.21 24.33 25.69   1.92 1.12 1.08 1.28 

Sequence 55  23.38 23.04 21.92 22.74   1.48 1.37 1.08 1.39 

Sequence 56  19.16 17.92 18.65 17.39   1.19 1.05 1.02 1.04 

Sequence 57  47.75 63.74 66.30 60.28   3.32 4.62 4.66 4.35 

Sequence 58  25.96 14.52 15.50 16.55   1.56 0.82 0.69 0.96 

Sequence 59  18.15 31.32 27.88 28.06   1.31 2.13 1.73 1.94 

Sequence 60  24.63 12.29 12.30 13.97   1.28 0.63 0.57 0.71 

Sequence 61  58.32 35.59 36.06 39.80   2.86 1.72 1.82 1.93 

Sequence 62  27.66 29.22 33.20 28.14   1.45 1.54 1.71 1.51 

Sequence 63  45.88 31.51 30.40 34.04   2.36 1.58 1.56 1.72 

Sequence 64  36.06 48.21 50.91 44.31   2.17 2.94 2.70 2.78 

Sequence 65  59.57 30.23 31.28 33.99   3.71 1.92 1.69 2.27 

Sequence 66  40.08 45.67 47.14 44.13   2.65 3.14 2.99 3.03 

Sequence 67  40.02 51.07 51.96 47.91   2.61 3.18 3.23 3.04 

Sequence 68  24.38 28.20 29.68 26.66   1.55 1.65 1.53 1.62 

Sequence 69  28.37 25.13 25.89 25.07   1.83 1.46 1.23 1.53 

Sequence 70  35.40 22.46 22.82 24.75   1.90 1.13 1.06 1.27 

Sequence 71  31.50 45.78 46.48 42.42   2.19 3.24 3.11 3.02 

Sequence 72  41.81 32.18 31.63 30.56   2.75 1.68 1.60 1.79 

Sequence 73  58.31 58.65 54.68 58.21   3.56 3.70 3.16 3.65 

Sequence 74  30.26 19.24 16.55 21.17   1.73 1.10 0.76 1.23 

Sequence 75  30.62 25.23 24.57 25.88   1.81 1.42 1.24 1.50 
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Sequence 76  26.17 39.40 41.71 36.20   1.29 1.85 1.86 1.69 

Sequence 77  64.57 46.69 52.18 49.25   3.86 2.66 3.07 2.82 

Sequence 78  40.89 25.30 20.78 28.00   2.14 1.29 1.08 1.46 

Sequence 79  25.45 19.57 23.77 17.97   1.28 1.00 1.05 0.85 

Sequence 80  36.51 25.22 25.94 27.33   1.92 1.25 1.05 1.38 

Sequence 81  36.08 31.56 31.27 31.55   2.32 1.85 1.49 1.93 

Sequence 82  23.01 16.88 20.77 15.71   1.33 1.02 1.18 0.93 

Sequence 83  23.43 21.33 29.76 21.24   1.39 1.10 1.33 1.15 

Sequence 84  68.73 46.63 53.48 48.74   4.40 2.88 3.25 3.16 

Sequence 85  34.59 30.50 32.42 29.11   2.17 1.61 1.73 1.65 

Sequence 86  48.09 44.86 47.58 44.59   3.06 3.13 3.13 3.11 

Sequence 87  36.72 17.18 16.97 20.63   2.12 0.91 0.81 1.15 

Sequence 88  35.16 38.26 42.48 36.54   2.37 2.35 2.25 2.35 

Sequence 89  43.24 42.14 44.71 41.41   2.36 2.30 2.44 2.29 

Sequence 90  38.96 38.34 45.01 37.76   1.80 1.93 2.32 1.87 

Sequence 91  58.69 61.68 69.51 60.90   2.78 3.03 3.55 2.97 

Sequence 92  41.90 27.39 25.16 30.07   2.13 1.37 1.29 1.51 

Sequence 93  24.57 24.79 25.61 24.43   1.53 1.41 1.04 1.43 

Sequence 94  30.41 20.85 23.34 21.99   1.47 1.12 1.16 1.15 

Sequence 95  22.24 14.77 19.76 15.35   1.13 0.70 1.06 0.74 

Sequence 96  44.56 35.02 40.01 36.52   2.22 1.54 1.60 1.67 

Sequence 97  21.70 28.60 32.77 26.23   1.46 1.67 1.73 1.61 

Sequence 98  26.69 32.96 32.63 31.11   1.85 2.16 1.95 2.09 

Sequence 99  51.49 53.83 52.48 52.47   2.94 3.03 2.92 2.91 

Sequence 100  39.81 23.39 20.62 26.18   2.08 1.17 0.96 1.35 

M edian   36.08 29.22 30.40 30.02   2.05 1.53 1.48 1.59 



 

 

 

 

 


