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Abstract

Many embedded applications increasingly employ computer vision systems to perform

visual inspection tasks. Vision systems allow a computer to see and interpret its en-

vironment to automate procedures using image processing algorithms. An emerging

challenge for modern vision systems is to meet the processing demands of larger image

resolutions and higher video frame rates. Field Programmable Gate Arrays (FPGAs)

are commonly selected to accelerate embedded vision algorithms as they are widely

available, cost-effective, reprogrammable, and energy efficient. They also offer paral-

lel processing capabilities that accelerate algorithms and tasks to achieve low latency

processing and high data throughput.

Line detection in digital images is essential for many embedded applications, such

as lane detection in Advanced Driver Assistance Systems (ADAS) or powerline and

railroad inspection using Unmanned Aerial Vehicles (UAVs). The Line Hough Trans-

form (LHT) is a well-known technique for accurately detecting lines in digital images.

The LHT achieves line detection by mapping edge pixels to a discrete array known

as the Hough Parameter Space (HPS). Peaks form in the HPS that correspond to

lines in the original image. Although the LHT is very robust to noise and can de-

tect partially occluded lines, it is also highly computational and demands significant

memory resources to store the HPS. Previous studies describe software optimisations

to reduce the complexity of the LHT and present FPGA architectures that accelerate

its computation. In many FPGA implementations, the memory consumption of the

HPS is significant, making the LHT unsuitable for memory-constrained FPGA designs.

Large image resolutions, such as 1920× 1080 pixels, exacerbate this issue, demanding

considerable memory resources to store the HPS.
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Abstract

This thesis examines the memory consumption of the LHT algorithm in FPGAs and

presents a novel research platform for LHT architectures named the Hough Evaluation

Platform (HEP). The HEP can be used to design custom LHT architectures and vali-

date them on the physical target device. This powerful validation technique improves

the testing of hardware architectures beyond software simulations. The HEP can also

accurately calculate the time taken for an LHT architecture to process a digital image.

Furthermore, this thesis presents two novel techniques to reduce the memory require-

ments of the LHT, which are named the Symmetric LHT and the Angular Regions LHT

(ARLHT). The FPGA architectures presented for each technique target Full High Defi-

nition (FHD) video, i.e. a resolution of 1920×1080 pixels at 60 frames per second (fps).

The Symmetric LHT uses architectural optimisations to reduce the memory consump-

tion of the HPS in FPGA devices. The proposed design employs memory bit-packing

schemes to reduce on-chip memory resources by approximately 33% without affecting

the accuracy of line detection. The ARLHT decreases the memory consumption of the

LHT by using a lossy compression scheme to store the HPS. This scheme compresses

the HPS by dividing the input image into angular regions before applying the LHT.

The ARLHT architecture requires approximately 53% fewer memory resources than

the standard LHT.
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Chapter 1

Introduction

1.1 Research Background

Vision is an important part of human perception and plays an essential role in our

daily lives. Therefore, it is unsurprising that computer vision systems have emerged to

carry out visual inspection tasks [1]. Typical computer vision systems consist of many

components each applying their own algorithms and decision making processes. These

systems are the foundation of all visual inspection applications and allow a computer

to see and interpret its environment.

A significant challenge for the design of modern vision systems is to accommodate

ever-increasing image resolutions and video frame rates. For example, the Full High

Definition (FHD) video standard, which has an image resolution of 1920× 1080 pixels

and displays 60 frames per second (fps), has a throughput of over 124 million pixels

per second. To meet these demands, improved processing performance and algorithm

optimisation is essential. This issue is exacerbated when considering applications that

have real-time constraints and are computationally complex. These tasks require spe-

cialised hardware such as an Application-Specific Integrated Circuit (ASIC), Graphics

Processing Unit (GPU), or a Field Programmable Gate Array (FPGA). Due to their

availability, reprogrammable architecture, cost, and low power consumption, FPGAs

are commonly selected for embedded vision applications [2].
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Chapter 1. Introduction

Line extraction in digital images is essential for many embedded vision tasks. It is

a difficult problem to achieve in the spatial image domain, as it is necessary to globally

determine collinearity between image feature points. However, it is possible to reduce

the complexity of line detection by converting the entire image of spatially positioned

feature points, to an associated parameter space. This procedure is formally known as

the Line Hough Transform (LHT) [3]. The LHT is robust to extraction under conditions

where a line is partially occluded or deformed. Furthermore, it is tolerant of noise, and

unlike the Trace Transform [4], of which the LHT is a variation, it is also capable of

extracting multiple lines in a single pass of a digital image.

The LHT is a useful tool in many application areas. It is commonly used by lane

departure warning systems for safely guiding vehicles [5] and is a popular choice for

processing digital images that are captured from Unmanned Aerial Vehicles (UAVs).

Recent applications that involve UAVs include power line detection [6] and railroad

surveillance [7]. The LHT is also used in wireless communication systems. In particular,

there have been investigations of using the LHT to classify modulation schemes in

Optical Wireless Communications (OWCs) [8]. The LHT has also been used to assist

in the detection of Linear Frequency-Modulated Continuous Waveforms (LFMCWs) in

low Signal-to-Noise Ratio (SNR) environments [9].

Although the LHT reduces the complexity of extracting lines from a digital image,

there are several disadvantages of using the algorithm. The LHT is computationally

demanding, which may result in slow processing times. There is also a high resource

cost associated with maintaining the Hough Parameter Space (HPS) in memory, as it

represents all possible parameter combinations for detected features in a digital image,

leading to high storage requirements. There have been several different adaptations of

the LHT that improve processing time, accuracy, and resource cost of the algorithm

[10–12]. Many studies have implemented the LHT on an FPGA to improve process-

ing performance [13–15]. A significant aspect that is often overlooked is the memory

consumption of the HPS. The resources required often saturate dedicated FPGA mem-

ories, which becomes even more of an issue when using larger image resolutions as the

memory consumption of the HPS increases.
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Semiconductor companies, such as Advanced Micro Devices (AMD) [16] and In-

tel [17], offer FPGA devices in different sizes, which they usually classify as small,

mid-range, or high [18,19]. At the time of writing, small FPGAs typically have up

to a few thousand logic elements, mid-range FPGAs consist of tens of thousands of

logic elements, and large FPGAs can contain hundreds of thousands of logic elements.

Researchers and developers in previously published literature commonly implement the

LHT on mid-range and large FPGA devices as they offer a suitable amount of on-chip

memory resources to store the HPS [20–22]. However, using large and mid-range FPGA

devices for embedded vision algorithms, such as the LHT, can be financially expensive,

especially if the FPGA device is used for mass manufacture. Implementing algorithms

on small FPGAs can improve the overall cost of the final solution, which is a crucial

factor for budget-constrained projects and high-volume production.

There are very few studies that optimise or reduce the memory requirements of

the LHT [12,23]. Furthermore, there has yet to be an investigation into the use of

compression and architectural design to optimise the memory efficiency of the LHT

for implementation on small FPGA devices. FPGAs have limited memory capabilities

and require innovative techniques to decrease the memory requirements of the HPS

and reduce the financial cost of the final solution. Due to its widespread adoption and

robust extraction of lines, optimising the memory efficiency of the LHT on an FPGA

is a challenging research problem that requires fundamental research to solve.

1.2 Research Aims and Objectives

The work in this thesis aims to reduce the memory requirements of the LHT for FPGAs

by developing new algorithms and architectures that improve memory consumption.

In particular, the proposed designs use architectural and algorithmic optimisations

to reduce the memory requirements of the HPS. The research goals of this work are

separated into three main objectives, which are listed below.

1. The first objective is to develop an evaluation platform for LHT architectures,

which will be used to validate hardware designs and compute their processing
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time. An LHT architecture should also be developed to test the functionality of

the evaluation platform. Later, when developing memory-efficient LHT architec-

tures, the evaluation platform can be used for design validation.

2. Objective two is to design a memory-efficient LHT that uses novel architectural

optimisations to reduce memory consumption in FPGA devices.

3. The final objective is to optimise the memory consumption of the HPS by mod-

ifying the LHT algorithm, which may affect the accuracy and robustness of line

extraction.

1.3 Original Contributions

The research undertaken in this thesis has resulted in several original contributions to

knowledge. These contributions are summarised as follows.

1. Previously reported LHT architecture designs often use software simulations for

architecture validation and do not provide any testing criteria. In Chapter

4, a novel evaluation platform for designing and validating LHT architectures

is presented. The system targets the AMD Zynq Multi-Processor System on

Chip (MPSoC) device [24] and uses the Python Productivity for ZYNQ (PYNQ)

framework [25] to support the visualisation and control of an FPGA design. The

evaluation platform supports testing of an LHT architecture on the physical target

device, which improves validation of a hardware architecture beyond that of soft-

ware simulations. The platform can also accurately measure the time taken for an

LHT architecture to process an image. It is also integrated into MathWorks HDL

Coder workflows for rapid architecture development and system deployment [26].

The evaluation platform was first published in [27]. To the author’s knowledge,

this evaluation platform is the first reported design that combines MathWorks

and PYNQ development tools and therefore represents an additional milestone

in System on Chip (SoC) systems development.

4



Chapter 1. Introduction

2. Chapter 5 presents a novel technique to reduce arithmetic and memory resources

to compute the LHT using AMD FPGAs. A symmetric Hough kernel and bit-

packed accumulator memory is proposed that are optimised to reduce resource

computation and decrease on-chip memory allocation. This technique is known

as the Symmetric LHT, as the algorithm exploits symmetry in the spatial image

domain. It produces similar line detection results as the LHT described in [3]

and is the first technique to leverage spatial domain symmetry and bit-packing

techniques to improve the memory consumption of the HPS.

3. An FPGA architecture of the Symmetric LHT is also described in Chapter 5. The

architecture is designed for an image consisting of 1920×1080 pixels and is devel-

oped and validated using the novel evaluation platform presented in Chapter 4.

The Symmetric LHT reduces the arithmetic resource requirements and decreases

on-chip memory consumption in comparison to previously published work. The

Symmetric LHT architecture design employs a memory bit-packing scheme, which

does not affect the accuracy of line detection. Unlike previously published works,

the Symmetric LHT architecture can target small FPGAs across various image

resolutions, achieving a low-cost, embedded solution for applications requiring

dedicated line detection in digital images.

4. A lossy compression scheme for reducing the memory requirements of the LHT is

presented in Chapter 6 of this thesis. The memory-efficient algorithm is named

the Angular Regions LHT (ARLHT). It was recognised that the work presented

in [23], wherein the HPS was reduced in size by partitioning the input image

into subregions, could be further improved in terms of memory utilisation. As

such, the ARLHT improves the compression of the HPS by dividing the input

image into angular regions. The ARLHT is the first algorithm designed for FPGA

implementation that exploits compression to reduce the memory requirements of

the HPS.

5. An FPGA architecture of the ARLHT algorithm is presented in Chapter 6,

wherein the architecture is carefully designed to prevent unnecessary allocation of
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FPGA resources. The architecture design is developed using the novel evaluation

platform described earlier, and the FPGA resource requirements are analysed.

For a 1920 × 1080 pixel image, the ARLHT architecture consumes fewer FPGA

arithmetic and memory resources than the LHT presented in [3] and other previ-

ously published implementations of the LHT. As such, the ARLHT architecture

can process FHD video on small, low-cost FPGA devices.

1.4 Publications and Awards

Various publications were created during the author’s studies, which are listed below.

The publications directly related to this research are (a) and (b). The publications

(c)-(e) are related to the author’s studies on the Zynq Radio Frequency System on

Chip (RFSoC), Zynq MPSoC, and Zynq SoC. These studies are relevant to the work

in this thesis as they use similar design methodologies and devices.

(a) [27] D. Northcote, L. H. Crockett, P. Murray and R. W. Stewart, “A PYNQ evaluation

platform for FPGA architectures of the Line Hough Transform”, in IEEE 63rd Interna-

tional Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USA,

Sep 2020, pp. 133-137.

Electronic Access: Conference Paper | Video Presentation | Slides

(b) [28] D. Northcote, L. H. Crockett and P. Murray, “FPGA implementation of a memory-

efficient Hough parameter space for the detection of lines”, in IEEE 50th International

Symposium on Circuits and Systems (ISCAS), Florence, Italy, May 2018, pp. 1-5.

Electronic Access: Conference Paper | Video Presentation | Slides | Poster | Award

(c) [29] J. Goldsmith, C. Ramsay, D. Northcote, K. W. Barlee, L. H. Crockett and R. W.

Stewart, “Control and Visualisation of a Software Defined Radio System on the Xilinx

RFSoC Platform Using the PYNQ Framework”, IEEE Access, vol 8, pp. 129012-129031,

Jul 2020.

Electronic Access: Journal Paper

(d) [30] L. H. Crockett, D. Northcote, C. Ramsay, F. D. Robinson and R. W. Stewart,

Exploring Zynq MPSoC: With PYNQ and Machine Learning Applications, Strathclyde

Academic Media, Apr 2019.

Electronic Access: Textbook Download
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(e) [31] L. H. Crockett, R. A. Elliot, M. A. Enderwitz and D. Northcote, The Zynq Book

Tutorials for Zybo and Zedboard, Strathclyde Academic Media, Aug 2015.

Electronic Access: Textbook Download

The author’s research in (b) received international recognition upon being awarded the

best student paper at the IEEE ISCAS conference.

1.5 Thesis Structure

The remainder of this thesis is laid out as follows. In Chapter 2, a brief review of

FPGA and SoC technology is provided and relevant design and development tools are

introduced. Subsequently, FPGA and SoC vision architectures associated with the work

in this thesis are described. This includes an overview of hardware accelerated image

processing, local image filtering operations, edge detection, and binary morphological

processing. Relevant FPGA architectures are presented throughout when appropriate.

Chapter 3 describes the LHT algorithm and discusses vote accumulation and line

reconstruction. A literature review on the LHT is provided, which primarily explores

software design and optimisations, multiplierless FPGA architectures, resource-efficient

FPGA architectures, and various candidate applications that could benefit from using

an embedded LHT design.

In Chapter 4, the Hough Evaluation Platform (HEP) that enables the design and

validation of LHT architectures is presented. In particular, the system specification,

system design, visualisation features, and rapid integration capabilities are explored.

FPGA resource analysis and testing of the HEP using an LHT architecture (described

in Appendix B) is provided.

The Symmetric LHT is presented in Chapter 5. Important concepts regarding

the design of the Symmetric LHT are described, including spatial domain symmetry,

parallel pixel processing, and memory bit-packing. The architecture of the Symmetric

LHT is then presented, which includes its pixel packing system, symmetric Hough

kernel, accumulation controller, and bit-packed accumulator. FPGA implementation

results and processing time analysis as computed by the HEP are reported.
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Chapter 6 presents the ARLHT algorithm and describes the memory compressed

HPS, the adopted voting scheme, and the associated line extraction technique. A

simple example of the ARLHT operating on an image is presented, where line recon-

struction is applied to demonstrate results. The ARLHT architecture design is then

described, which includes its preprocessing and segmentation architecture, resource-

efficient Hough kernel, accumulation arrays, and line extraction design. The resource

consumption of the FPGA architecture is reported and the HEP is used to evaluate its

processing time.

Finally, conclusions and future research opportunities are discussed in Chapter 7.
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Chapter 2

Embedded Vision Systems

2.1 Introduction

A computer that forms part of a more extensive system is known as an embedded

system and is usually configured to execute a specific task [32]. For example, a fac-

tory manufacturing line may contain an embedded vision system that is configured

to inspect product defects. Many embedded systems use FPGAs to accelerate algo-

rithms and tasks by exploiting their parallel processing capabilities. FPGAs can be

reprogrammed after deployment, making them particularly suitable for flexible vision

applications. With the advent of heterogeneous processing devices, such as the AMD

Zynq MPSoC which combines an FPGA with a multi-element processing system, em-

bedded systems are becoming increasingly adaptable. The Zynq MPSoC is capable of

achieving flexible vision applications through dynamic hardware reconfiguration with

multiprocessor capabilities.

This chapter initially discusses and compares GPUs, ASICs, and FPGAs as candi-

date technologies for implementing flexible vision applications. An overview of FPGA

technology and its specialised resources is then presented. The Zynq MPSoC is also

described, and the principles of data movement between its constituent processing el-

ements are discussed. The PYNQ framework is also introduced, and its advantages

towards Zynq-based development and architecture validation are highlighted. Finally,

embedded vision systems using FPGA and Zynq MPSoC technologies are explored.
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Relevant image processing algorithms and their FPGA architectures are also described.

These include local filtering, edge detection, and binary morphology. Each of these tech-

niques and algorithms support the FPGA architectures of the LHT described later in

Chapters 5 and 6.

2.2 Embedded Hardware Platforms

GPUs, ASICs, and FPGAs are the most popular hardware platforms for implementing

embedded vision systems due to their high computational performance. Each platform

has strengths and weaknesses depending on application requirements. A summary of

each platform and its capabilities relating to embedded vision applications is as follows:

1. GPU — Modern GPUs are well-suited for vision tasks that require high par-

allelism and data throughput, such as feature extraction using Convolutional

Neural Networks (CNNs) [33], which are a type of deep learning algorithm.

GPUs are programmed using languages such as Compute Unified Device Ar-

chitecture (CUDA) [34] or Open Computer Language (OpenCL) [35]. These

open-source languages provide a high level of design abstraction, making it eas-

ier to develop vision applications on GPUs than FPGAs and ASICs. However,

studies report that GPUs are less energy-efficient and have higher latency than

ASICs and FPGAs when performing specific vision tasks [2,36]. While GPUs are

a popular choice for embedded vision tasks, their energy efficiency and latency

depend on many factors, such as the available memory bandwidth, the image

resolution, and the deployed algorithm.

2. ASIC — Applications that require high performance, low power consumption,

low latency, and high-volume manufacturing are suited for ASICs. These custom-

designed integrated circuits can accelerate video pipelines that perform a specific

visual task, such as region of interest extraction in a production image sensor [37].

However, ASICs are expensive to manufacture and design, and development tools

can cost over $1,000,000 for 28 nm technology [38]. GPUs and FPGAs do not

typically incur these expenses, as many open-source development languages and
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free-to-use design tools are available. It is necessary to redesign and manufacture

an ASIC if the target application updates or changes, as they are not repro-

grammable unlike FPGAs and GPUs.

3. FPGAs — Vision applications that require high performance and flexibility can

leverage FPGAs, as they provide parallel processing capabilities and the option to

reprogram a hardware design in response to application updates or changes. Due

to their reprogrammable facilities, FPGAs are useful for rapid prototyping and

developing digital circuits and systems. While FPGAs are generally more energy

efficient than GPUs, they are less energy efficient than ASICs. Additionally,

high-end FPGAs can be very expensive compared to GPUs and ASICs.

The choice of an embedded hardware platform depends on the specific requirements

of the target application. The work in this thesis focuses on prototyping efficient LHT

architecture designs, for which FPGAs are the candidate solution. FPGAs offer high

computational performance and low latency processing, which is advantageous for the

candidate applications presented in Section 3.4. These applications include lane de-

tection for vehicles, modulation format recognition in optical wireless communications,

and product defect inspection on manufacturing lines.

2.3 Overview of FPGA Technology

An FPGA is an integrated circuit populated by low-level logic elements and intercon-

nects that are user-programmable after manufacture. Due to their reprogrammable

capabilities, FPGAs are suited for rapid prototyping, iterative research and develop-

ment, and embedded applications that exploit reconfigurable hardware. FPGAs are

generally low-cost, widely available, and have highly effective parallel processing capa-

bilities that suit Digital Signal Processing (DSP) algorithm implementation.

This section reviews the fundamentals of FPGA technology to gain an appreciation

for FPGA system design and development. In particular, descriptions and illustrations

are based on the AMD Kintex UltraScale+ device family [39], as this contains the

target FPGA logic fabric in this thesis and it is used in the programmable logic portion
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of the Zynq MPSoC device (discussed further in Section 2.4). Additionally, the FPGA

development process and design tools are also described. An overview of the Kintex

UltraScale+ FPGA architecture is shown in Figure 2.1.
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Figure 2.1: An overview of the AMD Kintex UltraScale+ FPGA architecture.

2.3.1 The Logic Fabric

FPGAs consist of many Configurable Logic Blocks (CLBs) [40] that are placed in a two-

dimensional array. As illustrated in Figure 2.2, each CLB contains one slice that is host

to several logic elements for implementing user-defined circuits. For Kintex UltraScale+

devices, a slice contains 8 × 6-input Lookup Tables (LUTs), Flip-Flops (FFs), and other

logic to support signal routing. Vertically neighbouring CLBs can be chained together

using carry-logic, which includes multiplexers and logic chain connections. Connecting

many CLBs together allows larger logic circuits to be implemented. A switch matrix

is also positioned adjacent to each CLB to enable communication with other FPGA

resources.
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Figure 2.2: An illustration of a CLB and switch matrix. The logic elements contained inside
a slice are also shown.

The CLBs and switch matrices within an FPGA are collectively referred to as the

logic fabric. The logic fabric can be routed and configured to implement arithmetic

and memory circuits. Common mathematical functions such as addition, multiplica-

tion, and division can be constructed using several CLBs. There is also a well-known

technique named Distributed Arithmetic (DA) that can efficiently implement sum-of-

product operations using LUTs rather than multipliers [41]. The logic fabric can also

be used to create small local memories known as Distributed Memory (DM). DM cir-

cuits exploit the storage facilities of LUTs and FFs, allowing FPGA designs to include

Random Access Memory (RAM) and Read Only Memory (ROM) capabilities.

Modern FPGA devices also include specialised arithmetic and storage resources,

which are implemented using dedicated silicon. In particular, the Kintex UltraScale+

family includes DSP48E2 slices and Block RAMs (BRAMs) for processing and storing

data, respectively. These specialised resources are low-power, compact, and operate

at high clock frequencies. They are arranged in columns throughout the FPGA logic

fabric, allowing for simple routing to neighbouring components and logic elements.

The remainder of this section describes the architecture and features offered by each

specialised resource in detail.
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2.3.2 The DSP48E2 Slice

The FPGA logic fabric can implement DA circuits using LUTs rather than multipliers.

The demand for LUTs increase as arithmetic wordlengths grow longer. As illustrated in

Figure 2.1 on page 12, the DSP48E2 slice [42] is a hard silicon component arranged in

columns throughout the FPGA logic fabric. It was introduced to reduce the demand on

FPGA fabric resources and improve arithmetic processing speed. DSP48E2 slices are

suitable for implementing Finite Impulse Response (FIR) filters [43] and Fast-Fourier

Transform (FFT) [44] architectures. A simplified architecture of the DSP48E2 slice is

shown in Figure 2.3.
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Figure 2.3: Simplified architecture of the DSP48E2 slice.

The DSP48E2 slice is capable of addition, subtraction, multiplication and bitwise

logic manipulation. On close examination of Figure 2.3, one DSP48E2 slice can achieve

the following fixed-point arithmetic operations:

� 30 bit × 27 bit pre-addition / subtraction,

� 27 bit × 18 bit multiplication,

� 48 bit × 45 bit addition / subtraction / bitwise logic operation.
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Where longer wordlengths are required, it is possible to cascade two or more DSP48E2

slices together without using the FPGA logic fabric. For example, four DSP48E2 slices

can be combined to create a 54 bit × 36 bit multiplication. The trade-off between arith-

metic wordlengths and application performance must be carefully considered. Selecting

unnecessarily long wordlengths can result in the inefficient allocation of DSP48E2 slices,

subsequently increasing FPGA resource and power consumption. Similarly, selecting

short wordlengths impacts the representable fixed-point range and quantisation effects,

which affects arithmetic accuracy and precision.

DSP48E2 slice utilisation is considered for the FPGA architectures presented in

Chapters 5 and 6. In each of these architectures, the primary aim when using DSP48E2

slices is to select suitable wordlengths to minimise the total allocation, while ensuring

that accuracy and precision is acceptable for the given application.

2.3.3 Block RAM Tiles

RAMs, ROMs, and First In First Out (FIFO) buffers can be created using dedicated

FPGA memories such as BRAM tiles [45]. In comparison to DM circuits, BRAMs are

low-latency and can store up to 36 Kb of information per tile. They are arranged in

columns throughout the FPGA logic fabric to provide neighbouring elements, such as

DSP48E2 slices, with memory capabilities. As illustrated in Figure 2.4, it is possible to

separate a 36 Kb BRAM into two individual 18 Kb BRAMs. Kintex UltraScale+ FP-

GAs use two BRAM primitives named RAMB36E2 and RAMB18E2. These primitives

correspond to 36 Kb and 18 Kb BRAMs, respectively. Note that FPGA primitives are

elementary components embedded in an FPGA and are configurable by the user [46].
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Figure 2.4: 36 Kb BRAM with dual-port interface (left), two 18 Kb BRAMs formed by sepa-
rating a 36 Kb BRAM in half (right).
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36 Kb and 18 Kb BRAMs can be configured to operate in True Dual-Ports (TDPs)

mode and Simple Dual-Ports (SDPs) mode. Figure 2.5 presents a simplified diagram

for TDP mode (left) and SDP mode (right) when using a RAMB36E2 primitive. In

TDP mode, the BRAM primitive contains a dual-port interface, where each port can

simultaneously read and write to memory. The data input ports are limited to 36 bits for

RAMB36E2 primitives and 18 bits for RAMB18E2 primitives. There are also additional

interfaces for each mode that allow two or more vertically neighbouring BRAMs to

cascade and form large memory arrays.
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Figure 2.5: Simplified architecture of the RAMB36E2 primitive configured to operate in TDP
mode (left), and SDP mode (right). Some ports have been removed or combined to simplify
the diagram.

SDP mode is an alternative BRAM configuration. Each port of the BRAM’s dual-

port interface is combined in this configuration, allowing RAMB36E2 primitives to

achieve data widths up to 72 bits, and RAMB18E2 primitives to achieve data widths

up to 36 bits. It is only possible to perform one read and write operation in this

configuration, as only one data input interface and one data output interface exist.
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Memory resources can be efficiently allocated by configuring a BRAM’s memory

scheme. This technique is commonly referred to as ‘reshaping’ and is useful for adjusting

the number of available addresses with respect to wordlength [45]. For example, a 36 Kb

BRAM can be configured to store 1024 addresses × 36 bits, 2048 addresses × 18 bits,

or other memory schemes as presented in Table 2.1.

Table 2.1: 36 Kb BRAM memory schemes.

No. Addresses 512 (SDP Only) 1024 2048 4096 8192 16384 32768
Wordlength (bits) 72 (SDP Only) 36 18 9 4 2 1

Similarly, 18 Kb BRAMs can be reshaped to optimise memory allocation as detailed

in Table 2.2. Since 18 Kb BRAMs are smaller, there are fewer memory schemes available

in comparison to 36 Kb BRAMs.

Table 2.2: 18 Kb BRAM memory schemes.

No. Addresses 512 (SDP Only) 1024 2048 4096 8192 16384
Wordlength (bits) 36 (SDP Only) 18 9 4 2 1

A BRAM’s storage capacity, interface, and available memory schemes are significant

properties that impact the design of an FPGA architecture and total on-chip memory

consumption. These BRAM properties are important, as the FPGA architectures that

are derived in Chapters 5 and 6 leverage BRAM tiles for storing the HPS.

2.3.4 Architecture Evaluation

Researchers and developers use an FPGA architecture’s maximum achievable clock

speed and total resource consumption to evaluate its operating performance in terms

of processing speed and resource efficiency. FPGA architectures are typically com-

pared against one another using these factors to determine the most effective design,

i.e. the architecture that achieves the highest clock speed and/or lowest resource con-

sumption. The remainder of this section describes an FPGA architecture’s clock speed

and resource consumption. These factors are used in Chapters 4, 5, and 6 to compare

different FPGA architectures of the LHT.
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Clock Speed

An FPGA architecture’s maximum achievable clock frequency primarily depends on

its underlying circuit design. One factor limiting the maximum clock frequency of an

architecture design is its critical path, which is the combinatorial path between two

clocked registers that exhibits the longest signal propagation delay. This path limits

the maximum achievable clock frequency of the architecture design. Researchers and

developers often evaluate an FPGA architecture using a target clock frequency, as

computing its maximum achievable clock frequency is a time-consuming process.

Resource Consumption

Researchers commonly evaluate FPGA architectures for their resource consumption,

which depends on several factors, such as the design complexity and the underlying

algorithm. The resource consumption of an architecture is an important design con-

sideration as it determines the size of the FPGA used, which influences the financial

cost of the system. Architecture designs that use a considerable amount of resources

require larger FPGAs, which are more expensive. Researchers often compare FPGA

architectures for their consumption of LUTs, FFs, DSP slices, and BRAMs. Using

fewer resources allows architecture designs to target small, low-cost FPGA devices.

2.4 Overview of the Zynq MPSoC

SoC devices typically comprise microprocessors, memories, peripheral interfaces and

many other processing components within the same chip. SoC devices have been in-

creasingly used for embedded vision applications as they feature low power consump-

tion and small physical size. Recently, FPGAs have been integrated into SoC devices

to leverage their parallel processing capabilities in embedded applications. An example

of this is the Zynq MPSoC, which combines a hard silicon Processing System (PS) with

FPGA Programmable Logic (PL), fabricated on the same chip [47]. The FPGA logic

fabric can accelerate computational algorithms and tasks, while the PS executes an

operating system and maintains application control.
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This section provides an overview of the AMD Zynq MPSoC and introduces the

Python on Zynq Framework, commonly referred to as PYNQ, which is a software

framework for Zynq MPSoC devices [25]. The Zynq MPSoC is the target platform for

the FPGA architectures detailed in Chapters 4, 5, and 6.

2.4.1 The Zynq MPSoC Architecture

The Zynq MPSoC is an evolution of the Zynq-7000 SoC [48]. In comparison to the Zynq

SoC, the Zynq MPSoC contains a significantly improved PS and Kintex UltraScale+

FPGA logic fabric [47]. The PS is composed of an Arm Cortex-A53 Application Pro-

cessor Unit (APU) [49] and an Arm Cortex-R5 Real-Time Processor Unit (RPU) [50].

The majority of Zynq MPSoC devices feature a Mali-400 GPU [51] and a subset of

these devices host a Video Codec Unit (VCU) [52] in the PL. An overview of the Zynq

MPSoC architecture is illustrated in Figure 2.6.
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Figure 2.6: An overview of the Zynq MPSoC device architecture.
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The FPGA and microprocessors each have unique capabilities and features for ap-

plying algorithms and tasks. However, the work contained in this thesis only requires

the APU, FPGA, and Double Data Rate (DDR) memory controller components of the

Zynq MPSoC. Therefore, discussion will be limited to these components only.

2.4.2 The Advanced eXtensible Interface

The Arm Advanced Microcontroller Bus Architecture (AMBA) open standard [53] is

primarily used to transfer data throughout the entire Zynq MPSoC. This standard de-

scribes the Advanced eXtensible Interface 4 (AXI4) protocol, which provides processing

elements with high-bandwidth, low latency communication to other system compo-

nents. At the time of writing there are three AXI4 protocols; each are summarised as

follows:

� AXI4 [54] — A memory-mapped protocol that transfers data using single beat

or burst transactions. Single beat transfers only send one element of data per

transaction. Burst transfers send multiple elements of data using one transaction.

This protocol is suitable for transferring large quantities of data with up to 256

data beats per burst transfer.

� AXI4-Lite [54] — AXI4-Lite is similar to AXI4, however, only single beat transfers

are possible (due to reduced handshaking signals). This protocol is suitable for

low-bandwidth communication with hardware control and status registers.

� AXI4-Stream [55] — This protocol is used for point-to-point streaming and is

capable of data transfers of infinite size. The AXI4-Stream protocol is suitable

for signal processing in vision and radio applications.

To achieve maximum performance, AXI4 should be used as it can achieve burst

transfers consisting of multiple data beats. If low-bandwidth communication is re-

quired, FPGA resource consumption can be reduced by using the AXI4-Lite protocol

instead. Lastly, if it is necessary to use point-to-point streaming, then the AXI4-Stream

protocol will be required. A simple example of how these interfaces may be used is de-

tailed in Section 2.4.4.
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2.4.3 The PS and PL Interface

The primary attraction of Zynq MPSoC devices for embedded applications is their

combination of dedicated silicon processors in the PS, and FPGA logic fabric in the PL.

The Zynq MPSoC enables developers to leverage hardware and software co-processing

on a single chip. To support communication between the Zynq MPSoC’s PS and PL,

a set of interfaces are available that allow data to be effectively moved between these

processing resources. In this section, a subset of PS-PL interfaces will be described and

their naming conventions explained.

The range of interfaces available between the Zynq MPSoC’s PS and PL leverage

the AMBA open standard for communicating between processing resources, mainly the

AXI4 protocol. The work in this thesis only requires two of these interfaces, which are

named the high-performance slave port and the high-performance master port. These

interfaces are used for different purposes as will be explained shortly. Firstly, each

interface adopts a naming convention, as follows:

� High-performance slave — S AXI HP[0:3] FPD.

� High-performance master — M AXI HPM[0:1] FPD.

Each port name contains the acronym AXI, which represents the port’s commu-

nication protocol. The port names also contain the acronym FPD, which stands for

Full-Power Domain. The Zynq MPSoC contains several power domains, which are

groups of processing elements that share similar power supply characteristics. The

power domains are independent of one another and can be switched off to save power.

Including the associated power domain in the port name is useful for the system de-

signer and allows them to target a particular power domain.

The primary reason for using a high-performance slave port is to allow the Zynq

MPSoC’s PL control AXI data transactions to the PS. Alternatively, the Zynq MPSoC’s

PS should use the high-performance master port to control AXI data transactions to

the PL. Each port is capable of high-performance data transfers, meaning they should

be used to transfer large bursts of data. These interfaces will be discussed again in

Chapter 4, as they are required to transfer data between the PL and PS.
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For completeness, several diagrams throughout this thesis will contain other Zynq

MPSoC PS-PL interface names that have not been described here. For further infor-

mation on the remaining PS-PL interfaces, the reader is directed to [30].

2.4.4 Data Movement and Communication

FPGA hardware accelerators can be used by the APU to improve the computation time

of algorithms and tasks. The information required to create a hardware accelerator

is commonly packaged into an Intellectual Property (IP) core, which can be designed

using the methods and tools outlined in Section 2.5. Hardware accelerators are typically

controlled by the APU using an AXI4-Lite interface. When transferring large quantities

of data between the FPGA logic fabric and the APU, the full AXI4 memory-mapped

protocol is required to reduce the overhead of transfers using burst mode. An example

of a typical vision system on the Zynq MPSoC that exploits hardware acceleration is

illustrated in Figure 2.7.
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Figure 2.7: An example of a vision system with an HDMI interface and hardware accelerator
implemented on the Zynq MPSoC device. The hardware accelerator can communicate with the
external memory system and use it to buffer data and store run-time information.
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As presented in Figure 2.7, a hardware accelerator is implemented in the FPGA

logic fabric and is controlled by the APU using an AXI4-Lite interface. This particular

system receives High-Definition Multimedia Interface (HDMI) data using the AXI4-

Stream protocol, and is capable of achieving burst data transfers to the DDR memory

using the AXI4 memory-mapped interface. Note the use of the high-performance master

port and high-performance slave port between the PS and PL of the Zynq MPSoC.

Moving data between the PS and PL enables the development of applications that

can exploit a heterogeneous processing environment. The work in this thesis does not

explore the possibilities of using a heterogeneous environment to improve application

performance. However, from a research and development perspective, a heterogeneous

environment provides new possibilities for the evaluation of data and hardware valida-

tion of FPGA architectures. For example, the APU can be used to manipulate and

evaluate data received from the FPGA, which can simplify the analysis of results or the

creation of stimulus for custom FPGA designs. This concept is explored in Chapter 4.

2.5 Design Tools and Development Board

There are various development tools for creating applications that target the Zynq

MPSoC. The work in this thesis uses MathWorks HDL Coder [26], the Vivado Design

Suite [56], and the PYNQ software framework. Figure 2.8 contains a simple workflow

diagram demonstrating how to use these tools to develop a Zynq MPSoC application.

MathWorks HDL Coder is used to develop FPGA architectures and generate IP cores.

The Vivado Design Suite is essential for IP core integration. The PYNQ framework

supports embedded software development and FPGA architecture validation, which is

discussed further in Chapter 4. This section introduces these design tools and details

the target platform used throughout this thesis, the ZCU104 development board.

IP core

FPGA Architecture Design

MathWorks
HDL Coder

The Vivado
Design Suite

PYNQ
Framework

Bitstream

IP Core Integration Software Development

Figure 2.8: A basic workflow diagram illustrating the relationship between the Zynq MPSoC
development tools used in this work.
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2.5.1 MathWorks HDL Coder

FPGA architectures can be designed using a Hardware Description Language (HDL)

such as Very High Speed Integrated Circuit HDL (VHDL) or Verilog. These languages

provide fine grained control over FPGA architecture design and enable the developer

to efficiently target FPGA resources. However, developing systems using HDL can be

time consuming. There are many design tools that speed up architecture development

time by providing a higher level of design abstraction. One of these tools is MathWorks

HDL Coder. This tool operates in the MathWorks Simulink environment [57]. Simulink

enables the simulation of architectures before targeting an FPGA device.

MathWorks HDL Coder is able to generate Verilog and VHDL code from a library of

HDL Simulink blocks, which represent a high level of design abstraction from the target

FPGA resources. For example, there are no DSP48E2 blocks in the HDL Coder library.

Instead, the designer is expected to use the default product, adder, and relational blocks

provided in the HDL Coder blockset to achieve the same functionality. A subset of the

available HDL compatible blocks are shown to the left of Figure 2.9, while the product

block and configuration properties are given on the right.

Figure 2.9: A subset of the MathWorks HDL Coder blockset (left). The product block and
associated parameters are shown (right).
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Adopting HDL Coder for FPGA architecture design and embedded system integra-

tion provides a number of advantages. The output HDL code can be entirely inspected

by the user after generation. The designer may choose to develop their architecture us-

ing floating-point precision, and then later convert the design to fixed-point data types

using the same functional blocks. Software validation through simulation performs well

as most Simulink blocks are optimised for simulation purposes. Many HDL-compatible

blocks support frame-based processing that can operate on a vector of samples per

clock cycle, which improves performance and parallelism. These capabilities are excel-

lent reasons for selecting HDL Coder as a primary architecture design tool. However,

it is worth keeping in mind that low-level architecture control is minimal, which may

decrease architecture efficiency.

HDL Coder can be used to generate HDL for an FPGA architecture design, which

can then be converted into an IP core. The IP core is then rapidly integrated into an

already existing FPGA system. This development workflow is known as an HDL Coder

reference design. Reference designs are suitable for rapidly developing FPGA systems

and enable repeatability between design iterations. An original contribution of this

thesis uses an HDL Coder reference design to evaluate and compare LHT architectures.

This concept is described further in Chapter 4.

2.5.2 Intellectual Property (IP) Cores

An IP core is a package containing information on how to construct an ASIC or FPGA

circuit that performs a specific task. The information may be HDL code or a recipe

using IP cores in other repositories. The circuit layout inside the IP core is the in-

tellectual property of an individual or group that owns the legal rights to the design.

The IP core can be licensed to other parties to use the circuit in their ASIC or FPGA

designs. The Vivado Design Suite has an IP catalogue containing many free-to-use and

license-based IP cores.

IP cores are customised using HDL generics during system integration. Figure 2.10

contains an example of an AXI Direct Memory Access (DMA) IP core [58] and its

associated configuration properties from the Vivado IP catalogue. The work in this
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thesis uses IP cores as a mechanism for creating and integrating Zynq MPSoC designs.

As later shown in Chapter 4, an IP core is generated using MathWorks HDL Coder for

integration into a Zynq MPSoC system to enable rapid prototyping.

Figure 2.10: An AXI DMA IP core and its associated configuration properties. This image
was generated from Vivado’s IP catalogue.

2.5.3 The Vivado Design Suite

AMD provides a dedicated suite of tools for developing embedded systems for its FPGAs

and Zynq-based devices. These tools include an IP core packager, Software Develop-

ment Kit (SDK), the System Generator block-based design tool [59], the Vivado High

Level Synthesis (HLS) tool [60], an HDL development environment and simulator, and

IP Integrator.

The IP Integrator tool will be of particular importance for the work in this thesis as

it is useful for combining IP cores from different sources into a single monolithic system.

An example of interconnecting two IP cores using IP Integrator is shown in Figure 2.11.

Notice that the AXI DMA is connected to the LHT architecture using a communication

interface, which is AXI4-Stream in this example. The IP Integrator tool also allows

users to configure physical FPGA design constraints such as input/output pins and

operating standards. Particular design requirements such as FPGA resource selection,

resource placement, clock constraints, and signal routing can also be specified. Many

design constraints can be applied using the IP Integrator graphical interface, or by

using a Xilinx Design Constraints (XDC) file to automate the process.
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Communication Interface

IP Core (AXI DMA) IP Core (LHT Architecture)

Figure 2.11: An example of interconnecting two IP cores using the IP Integrator tool. The
communication interface shown in the diagram uses the AXI4-Stream protocol.

The entire Vivado design suite is integrated with a scripting language known as

Tool Command Language (Tcl). Tcl is useful for executing automated scripts, interac-

tively performing design tasks, and querying properties of the associated project. XDC

files also use Tcl semantics to simplify the process of implementing design constraints.

A particularly useful aspect of Tcl is its ability to automatically generate entire IP

Integrator projects and generate output products such as FPGA bitstreams for pro-

gramming the hardware design onto the chip. In Chapter 4, Tcl scripting is used to

automate an IP Integrator project for rapid development of LHT architectures.

2.5.4 PYNQ: The Python Productivity for Zynq Framework

PYNQ is a software framework for Zynq-based embedded systems. The framework

uses Python-based programming to simplify the development of applications for SoC

platforms, such as the Zynq MPSoC. The PYNQ software stack is composed of four

different layers as presented in Figure 2.12. The stack contains a hardware layer con-

sisting of user-defined FPGA bitstreams, an operating system layer that uses a Linux

kernel, a Python programming layer to simplify software design, and an applications

layer for user interactivity and application development.

The FPGA bitstream layer is a user-defined hardware system design, which is nor-

mally referred to as an overlay. Overlays are typically developed for specific types of

applications and often provide general facilities that allow them to be reused across

similar tasks. These types of hardware designs promote reuse and sharing and often

contain many different hardware accelerators per bitstream.
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Figure 2.12: The layers in the software stack of the PYNQ framework.

The primary motivation for using PYNQ is to simplify the analysis and evaluation

of custom FPGA architectures presented in Chapters 5 and 6. The use of PYNQ as an

evaluation tool for FPGA architectures of the LHT is described further in Chapter 4.

The remainder of this section will detail the use of the Python programming language

and Jupyter (a data science application) in PYNQ.

Python

In summary, Python [61] is a high-level programming language that uses an interpreter

instead of compiling instructions into machine code. PYNQ uses Python to speed-up

development time and improve code readability (in comparison to compiled languages

such as C or C++). Overlays can be developed and associated with custom Python

drivers that control the system operation. Drivers abstract the complexity of the un-

derlying hardware accelerators using simple Python code, which can be used by those

unfamiliar with hardware design.

Jupyter

Jupyter [62] is an open-source data science project with the primary goal of creating

‘reproducible science’. The Jupyter project enables researchers to present and validate

their findings by sharing an interactive document known as a Jupyter Notebook. Cre-

ating, viewing, and interacting with a Jupyter Notebook can be achieved using a web

browser. Figure 2.13 presents an example of a Jupyter Notebook.
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Figure 2.13: An example of a Jupyter Notebook containing rich markdown text cells, exe-
cutable Python code cells, and output plots for visualisation.
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Jupyter Notebooks consist of many different graphical interfaces including interac-

tive plotting, markdown text and Python code cells. PYNQ uses Jupyter Notebooks

to enable users to interact with an overlay design. Inspecting and manipulating data

transferred between the FPGA and APU is possible and is known as introspection. The

Jupyter environment allows FPGA developers to confirm the functionality of custom

hardware architectures using introspection and also share their results with others.

The RFSoC PYNQ Project

The author of this thesis helped pioneer the AMD RFSoC PYNQ project that also uses

Jupyter. The AMD RFSoC [63] is a very similar device to the Zynq MPSoC. However,

it is targeted towards radio and instrumentation applications and incorporates high-

speed samplers in a single chip. The purpose of the RFSoC PYNQ project was to

demonstrate the visualisation and control capabilities of PYNQ for system introspection

in a radio communications context. Figure 2.14 presents an example of a visualisation

and control interface that displays radio data and allows the user to interact with the

RFSoC platform through Jupyter.

Python widgets
for interactive control

Interactive plots for
displaying radio data

Figure 2.14: An example of a radio introspection application for RFSoC PYNQ.

As shown, the Jupyter environment was used for its plotting and control capabilities.

The RFSoC PYNQ project was very successful and published in IEEE Access [29].
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2.5.5 The ZCU104 Development Board

The ZCU104 development board [64] offered by AMD is the target platform for imple-

menting LHT architecture designs in this thesis. Figure 2.15 contains a photograph of

the ZCU104 development board with labels highlighting the Ethernet interface, power

connector, DDR memory, and the Zynq UltraScale+ MPSoC XCZ7UEV-2E device

hosted on the board.

XCZ7UEV-2E Device Ethernet Interface

DDR Memory

Power Connector

Figure 2.15: The ZCU104 development board that will be used throughout this thesis as the
target platform for implementing LHT architecture designs.

The ZCU104 development board is targeted towards computer vision and image

processing applications. The XCZ7UEV-2E device hosted on the development board

consists of a large FPGA, which contains the resources given in Table 2.3 for imple-

menting architecture designs.

Table 2.3: FPGA resources available on the XCZ7UEV-2E device.

Resource LUTs LUT RAM FFs BRAM DSP48E2

Quantity 230,400 101,760 460,800 312 1,728

The novel contributions and LHT architectures presented in Chapters 4, 5, and 6 of

this thesis target the ZCU104 development board. The LHT architectures are assessed

based on their total consumption of the FPGA resources presented in Table 2.3.
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2.6 FPGA & SoC Vision Architectures

Vision systems are often characterised by multiple stages, where each apply an oper-

ation or process to an image. In hardware systems, this is known as a vision pipeline

and it can be implemented using an FPGA to accelerate computation. Recent interest

in designing flexible vision pipelines has prompted the use of heterogeneous process-

ing devices, such as the Zynq MPSoC. Combining dedicated microprocessor units and

hardware accelerators is highly effective in achieving dynamic vision designs.

In this section, serial and parallel architectures for applying vision algorithms are

described. Furthermore, general pixel-streaming architectures and SoC vision systems

are discussed. Finally, spatial filters, edge detection, and binary morphological op-

erations are introduced and their FPGA architectures are presented. These image

processing operations and their associated hardware architectures are essential for the

work presented in this thesis.

2.6.1 Hardware Accelerated Image Processing

FPGA vision systems typically consist of one or more image processing operations ar-

ranged in series. An example is illustrated in Figure 2.16, which contains four stages:

preprocessing, segmentation, classification, and recognition. The purpose of preprocess-

ing is to highlight or suppress particular information in an image. Preprocessing could

involve image resizing, cropping, sharpening, smoothing, or noise reduction. The next

stage, segmentation, groups pixels together that share similar characteristics. Segmen-

tation has the effect of creating image regions, which can be achieved using operations

such as thresholding, region-based segmentation, or colour labelling. Classification in-

volves converting image regions into features, which can be described as important

primitives for characterising the contents of an image. Finally, the purpose of recog-

nition is to interpret image features and derive a description of an image. The image

description that is generated by the recognition stage is typically transferred to a con-

trol system that will subsequently execute a procedure or task. Alternatively, the image

description can be passed to the system user for analysis.
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Figure 2.16: An embedded vision system implemented on an FPGA.

Figure 2.16 also contains a soft processor, which is a processor that is implemented

on a programmable logic device such as an FPGA. Soft processors enable run-time

control of hardware accelerators and provide general purpose processing capabilities

that can enable floating point support in many FPGA systems. In AMD FPGA devices,

the MicroBlaze soft processor is typically implemented on the logic fabric and offers

flexible customisations for the intended application [65]. For example, the total memory

allocated for RAM, or the number of floating point units can be customised. However,

soft processors consume sizeable areas of the FPGA logic fabric and can only operate

at a clock speed that is supported by the native hardware. For example, the maximum

clock frequency of a MicroBlaze processor on a Kintex UltraScale+ FPGA is 650 MHz

[65]. This is slower than the maximum clock frequency offered by the APU in Zynq

MPSoC devices. For example, the APU in the XCZ7UEV-2E device can achieve a clock

frequency up to 1.5 GHz, offering better processing speed.

Zynq MPSoC devices offer flexible system architectures for vision applications. Con-

sider the vision system illustrated in Figure 2.17. There are three main points of interest

that have been labelled 1, 2, and 3. At point 1, the Zynq MPSoC’s PL is applying

the same vision pipeline that was given previously in Figure 2.16. However, the im-

age processing operations are interconnected via the AXI4 bus. Arranging the vision

pipeline using this topology exposes each hardware accelerator to the entire PS, which

includes the APU, RPU and other processing elements. Furthermore, each image pro-
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cessing operation can be executed in any order as they are no longer directly connected

to one another. At Point 2, the Zynq MPSoC’s APU executes an operating system

and offers peripheral driver support for Ethernet and USB communication (and many

other peripheral interfaces). Finally, at point 3, an Ethernet connection to a larger

network is shown. The Zynq MPSoC’s APU can host a custom web server to provide

an application interface to system users. An application may also leverage the PYNQ

software framework to enable Jupyter Notebook capabilities in a web browser.
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Figure 2.17: An embedded vision system implemented on the Zynq MPSoC device.

Many of the points discussed above can be implemented on a standard FPGA

device that uses a soft processor core. However, the primary advantage of using the

Zynq MPSoC is to leverage its high-performance, dedicated processor resources to carry

out tasks and routines. Instead, soft processors such as the MicroBlaze should be used

to support hardware subroutines and functions. Finally, if the PYNQ framework was

implemented on a MicroBlaze processor, the performance would be considerably poorer

in comparison to a similar implementation using the Zynq MPSoC’s dedicated APU.
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2.6.2 Stream Processing

Image and video data are often described as ‘streaming’ through the FPGA logic fabric.

Streaming refers to the continuous flow of data between one point and another. For

example, an image can be streamed row-by-row between FPGA logic elements (also

known as raster scan). As shown in Figure 2.18, this method presents each individual

pixel of an image to the input of an arithmetic circuit.
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Figure 2.18: Scanning an M ×N image (left), data stream of the original image (right).

Depending on the FPGA architecture, it is possible to stream an image column-by-

column, or as an arbitrary group of pixels that are arranged in blocks. However, most

FPGA vision systems stream image data by row.

2.6.3 Pixel Intensity

Digital images consist of an array of pixels. An imaging system acquires pixels through

a process known as sampling and quantisation, detailed further in [1]. Pixel intensity

is a common way of describing the brightness or darkness of a pixel. For instance, high

pixel intensity represents greater brightness, while low pixel intensity corresponds to

darker tones. Many image digitisation systems have a range of discrete pixel intensity

levels. For example, greyscale digital images typically use pixel intensities in the range

[0, 255]. The discrete pixel intensity levels are usually positive integers and spaced

equally apart.
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FPGA architecture designs usually leverage fixed-point data types to store pixel in-

tensity values. These architectures use fewer resources and exhibit lower latency than

their floating-point equivalents. However, due to quantisation and storage limitations,

the number of intensity levels a pixel can have is usually an integer power of 2. There-

fore, the range of pixel intensities is a finite number of levels, L, where L = 2k, and k

is the number of bits representing the pixel intensity. For example, we can use k = 8

bits for a greyscale image to obtain L = 256 intensity levels. It is worth mentioning

that colour images also share a similar pixel intensity scheme. However, each colour

component has its own intensity value. For instance, a colour image containing red,

green, and blue (RGB) components will have three values for each pixel in the image.

2.6.4 Image Representation

This thesis adopts the mathematical notation used by Gonzalez & Woods in [66] to

represent an image. In particular, an image is denoted by a two-dimensional function,

f(x, y), where the coordinates (x, y) are integers. An image of size M × N can be

expressed as the matrix in (2.1), where each matrix element is a pixel in the image.

f(x, y) =


f(1, 1) f(1, 2) · · · f(1, N)

f(2, 1) f(2, 2) · · · f(2, N)
...

...
...

f(M, 1) f(M, 2) · · · f(M,N)

 (2.1)

Alternatively, a digital image may be represented as a matrix I, which is expressed as

I =


i1,1 i1,2 · · · i1,N

i2,1 i2,2 · · · i2,N
...

...
...

iM,1 iM,2 · · · iM,N

 . (2.2)

The digital image representations given in (2.1) and (2.2) will be used throughout this

thesis to mathematically describe image processing operations.
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2.6.5 Local Filters

All of the pixels that belong to an image are collectively referred to as the spatial

domain. There are many techniques to manipulate the spatial domain. However,

local filtering is the most common. Local filtering modifies an image to accentuate

or suppress particular information [66]. This technique applies a function to a pixel

using a window or local neighbourhood of surrounding pixels. It is possible to achieve

image processing operations such as smoothing and sharpening with local filtering. An

example demonstrating the effect of these operations on a greyscale digital image is

given in Figure 2.19.

(a) A greyscale image of a radio tuner.

(b) A greyscale image of a radio tuner after ap-
plying a smoothing local filter.

(c) A greyscale image of a radio tuner after ap-
plying a sharpening local filter.

Figure 2.19: A greyscale image of a radio tuner (a) that can be smoothed (b) or sharpened (c)
using a local filter. Further information on local filter operations that can smooth or sharpen
digital images can be found in [66].
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In this section, only linear local filters are considered. The expression for filtering

an M ×N image, by an a m× n local filter, w, is

q(x, y) =
a∑

s=−a

b∑
t=−b

w(s, t)f(x+ s, y + t), (2.3)

where q is the output image, and a and b are positive integers. As illustrated in Figure

2.20, local filtering centres a window on a pixel in an image. The shape of the window

is usually square, where m = n and m is normally odd. The variables a and b are set

to a = (m− 1)/2 and b = (n− 1)/2 so that the neighbourhood response of the window

is symmetrical around a pixel in the image. However, it is possible to use different

window shapes depending on the required response. The window passes over all pixels

of the input image, where each new position creates an output value in accordance with

(2.3).

Input Image Output Image

Convolution
Operation

Filter Window

f(x ,y)

w(s , t)

q(x ,y)

Figure 2.20: A 3× 3 spatial filter window w(s, t) centred on a pixel in an image f(x, y).

Convolution is a common operation used to perform linear local filtering by applying

a window to an image. To simplify notation, the input image is denoted as a matrix

I, which is convolved with a filter window W , to produce the output image Q. This

operation is expressed as,

Q = W ∗ I. (2.4)
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Software implementations of local filtering are achieved by sliding the filter window

over each pixel of the input image and applying the filter function. Frame buffers are

required to store the input and output images during the local filter operation. In

contrast, hardware implementations stream the input image through the filter window

and avoid using external memories. This technique effectively reduces the complexity

of FPGA architecture design and improves the algorithm’s latency by avoiding the

overhead associated with external memory access.

Local filtering uses each pixel of the input image multiple times in different filter

windows. Therefore, caching pixels is essential to ensure that they can be later reused.

Additionally, both software and hardware approaches need to consider instances when

the filter window is centred on the border of an image. Without effective border man-

agement schemes, local filtering can cause artefacts to occur at image borders, which

may be undesirable and negatively impact later stages of a vision pipeline.

The remainder of this section describes existing hardware architectures that imple-

ment window caches and effective border management schemes for local filtering. The

architectures given can be used to support the implementation of fundamental image

processing algorithms, such as edge detection.

Window Caches

Window cache architectures require several image row buffers to temporarily store pixel

data [67]. Row buffers are useful as they are capable of storing an entire row of pixels

in a given image. For filter windows of size m×m, there must be m− 1 row buffers to

effectively cache pixels and allow them to be reused in multiple windows.

A 3 × 3 local filter architecture that uses row buffers is illustrated in Figure 2.21.

This architecture allows an entire image to stream through the filter window. At each

clock cycle, the filter window presents a new neighbourhood of pixels that are operated

on using the filter function. These pixels are presented to the filter function using taps

from the window’s shift registers. The expression given in (2.3) is applied in the filter

function to create a new output pixel value.
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Filter Window Taps

Filter Window Kernel (Function)

Row Buffer

Row Buffer

Row 0

Row 1

Row 2

Tap 0 Tap 1 Tap 2

Tap 0 Tap 1 Tap 2

Tap 0 Tap 1 Tap 2

— Shift Register Q

I

Figure 2.21: An architecture for implementing a spatial filter on an FPGA. This technique
arranges row buffers in parallel with the filter window.

Border Management

Effective border management is very important when applying local filters, as it is

otherwise possible to create undesirable artefacts at the borders of an image. For

example, if we consider an application that detects the number of lines in an image,

it is possible that preprocessing operations that use local filtering can unintentionally

create additional lines, resulting in errors. One method of mitigating the affects of

image borders while local filtering is to only produce output pixels where the filter

window fits directly inside the image. Consequently, this technique produces a smaller

output image than that of the input. A more effective technique is to initially increase

the size of the input image before local filtering. This technique is known as padding

and can be performed using a range of different schemes including nearest neighbour

extrapolation, constant extension, symmetric padding, and periodic extension [15].

Only nearest neighbour extrapolation will be described, as this technique is used in

the architectures for edge detection and binary morphology, which are required later in

Chapter 6. Figure 2.22 provides an example of a filter window that can apply a nearest

neighbour extrapolation border management scheme. As shown, the filter window has

been modified using a set of multiplexers, which redirect the flow of data based on the

current image position (or current pixel coordinates). This architecture is a modified

version of the work published in [15], in which various techniques are presented that

mitigate the effects of local filters at image borders.
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Figure 2.22: An architecture for nearest neighbour extrapolation border management in
FPGA implementations of local filters.

All of the border management schemes described in [15] use 5 × 5 filter windows.

The modified architecture presented in Figure 2.22 can apply 3×3 filter windows using

the nearest neighbour extrapolation border management scheme. This window size is

required to implement edge detection, which is described further in the next section.

2.6.6 Edge Detection

Edge detection is the process of extracting the boundaries of objects within a digital

image. This process involves computing the image gradient, which is defined as the

directional changes in pixel intensity across the spatial domain [66]. The image gradient

is calculated by obtaining the partial derivatives of an image, f(x, y), with respect to

its gradient in the x and y direction. These are known as the directional gradients, H

and V , which are defined as ∂f/∂x and ∂f/∂y, respectively. The image gradient, ∇f ,

is a vector of its partial derivatives, given as

∇f =

H
V

 =


∂f

∂x

∂f

∂y

 . (2.5)
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The gradient response of an image can be used to determine the border between two

or more image regions. Areas of an image that demonstrate strong gradient intensity

are known as edges. To obtain the edges of an image, it is necessary to first calculate

the directional gradients. These can be obtained using two linear spatial filters to derive

the horizontal and vertical partial derivatives, as given by Prewitt [68] and Sobel [69].

The Canny edge detection algorithm [70] is also very effective. However, its FPGA

architecture design is challenging as it is time-consuming to develop and requires a deep

understanding of FPGA design techniques. Sobel edge detection will be described, as

this is the only technique used to derive an edge image in this thesis.

The Sobel operator convolves two 3× 3 filters with an image to derive approxima-

tions for the directional gradients, H and V . If we denote the input image as a two

dimensional matrix, I, then the directional gradients are calculated as follows

H =


−1 0 1

−2 0 2

−1 0 1

 ∗ I V =


1 2 1

0 0 0

−1 −2 −1

 ∗ I (2.6)

Upon obtaining the directional gradients, it is possible to derive the magnitude of the

image gradient. The gradient magnitude, G, is calculated using

G =
√
H2 + V 2. (2.7)

Calculating (2.7) can be computationally demanding for FPGAs, as it is necessary

to apply a square root operation and two multiplications. Alternatively, an approxima-

tion of the gradient magnitude is often obtained by taking the absolute value of each

directional gradient and summing the results together [71]. This operation is expressed

mathematically as

G ≈ |H|+ |V |. (2.8)

The edge response can be acquired by segmenting the gradient magnitude using a

technique called thresholding, where each pixel is either labelled as the image back-

ground or an edge. Thresholding is applied globally to the spatial domain and has the
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effect of assigning output pixels as true or false (1 or 0) based on whether they are higher

or lower than a threshold value, T . The mathematical expression for thresholding the

gradient magnitude to produce an edge image, E, is given as

E =


1, G ≥ T

0, G < T

. (2.9)

Figure 2.23 presents an example of applying the Sobel operators to extract the edges

of the radio tuner image (Figure 2.19a). The example contains four images: the H and

V directional gradients, the gradient magnitude, and the edge image.

(a) TheH directional gradient of the radio tuner. (b) The V directional gradient of the radio tuner.

(c) The gradient magnitude of the radio tuner. (d) The edge response of the radio tuner image
using a threshold of T = 160.

Figure 2.23: The H directional gradient (a) and V directional gradient (b) are used in (2.7)
to obtain the gradient magnitude (c) of the radio tuner image. The corresponding edge image
(d) is obtained by thresholding the gradient magnitude.
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An efficient FPGA architecture that applies the Sobel operators to a greyscale image

can be created by decomposing each Sobel filter into two separable filters [67]. The

expressions used to derive H and V in (2.6), can be rewritten as

H =


1

2

1

 ∗ ([−1 0 1] ∗ I
)

V =


−1

0

1

 ∗ ([1 2 1] ∗ I
)
. (2.10)

Using two separable filters instead of a two dimensional filter reduces the total FPGA

resource consumption. The separable filter approach consumes six adders, while the

two dimensional filter method requires twelve adders. Furthermore, there is also a

reduction in the number of registers used by the filter window. Only three registers

are required in the separable filter approach, while a two dimensional filter consumes

nine registers. An FPGA architecture that uses separable filters to apply the Sobel

operators to a greyscale image is illustrated in Figure 2.24.

Window
Taps

Row Buffer

Row Buffer

Row 0

Row 1

Row 2

<< 1

0
1

MSB

Absolute Value

0
1

MSB

Absolute Value

<< 1

I

Gbit
shift

bit
shiftMSB — Most Significant Bit of a fixed-point number, which is the bit furthest to the left.

Figure 2.24: An FPGA architecture that applies the Sobel operators to a greyscale image.
The architecture design uses separable filters and an efficient gradient magnitude calculation
to minimise resource consumption [67].

As shown, the Sobel architecture uses the approximation technique presented in (2.8) to

reduce the complexity of calculating the gradient magnitude. Edge pixels are obtained

by thresholding the gradient image, which is achieved using a relational operator that

selects the output of a multiplexer in accordance with (2.9).
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2.6.7 Gradient Orientation

The gradient orientation describes the direction of the largest possible intensity increase

within a neighbourhood of pixels. Many algorithms leverage the gradient orientation to

obtain the approximate direction of edge pixels in an image. The gradient orientation,

α, can be derived using the directional gradients [66], as

α = tan−1
(
V

H

)
. (2.11)

The COordinate Rotation DIgital Computer (CORDIC) technique [72] can be used

to compute the gradient orientation in an FPGA architecture design. CORDIC is an

iterative algorithm with several variations that can efficiently compute trigonometric,

hyperbolic, and linear functions [73]. Trigonometric CORDIC, also known as Circular

CORDIC, is required as (2.11) uses the arctangent of the directional gradients to cal-

culate α. An unrolled architecture of Circular CORDIC operating in vectoring mode is

illustrated in Figure 2.25. This architecture can achieve one output per clock cycle, can

be pipelined to achieve high clock frequencies, and is suitable for the high throughput

processing typically required by video systems.

>> 0

>> 0

tan-1(20)

CORDIC Cell 0

>> 1

>> 1

tan-1(2-1)

CORDIC Cell 1

>> 2

>> 2

tan-1(2-2)

CORDIC Cell 2

>> K-1

>> K-1

tan-1(2-(K-1))

CORDIC Cell K-1

MSB MSB MSB MSB

z0

y0

x0

zK

yK

xK

Figure 2.25: FPGA architecture of unrolled CORDIC [74].

The reader is directed to Appendix A for the derivation of the circular CORDIC

equations and definition of the input and output variables, which are z0, y0, x0 and

zk, yk, xk, respectively. This unrolled CORDIC architecture will be used later in Chap-

ter 6 to derive the gradient magnitude and orientation of a greyscale image.
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2.6.8 Binary Morphology

Morphological image processing [66] is based on set theory. It is useful for the analysis

and manipulation of geometric structures within an image. Many image processing

techniques such as thinning, shape identification, and pruning can be achieved by ap-

plying one or more fundamental morphological operations to an image. Morphological

operations are achieved by combining an input binary image with a structuring element

using a set operator, such as an intersection or inclusion. A structuring element is a

shape that is deliberately chosen to emphasise or suppress information in an image.

Morphological operations can be easily applied to a binary image, as each pixel

can be designated as the image background or an object. The image background is

commonly represented as a binary 0, while an object is represented by a binary 1. The

input binary set, X, contains the coordinates of all object pixels in a binary image, I.

X can be expressed using set notation as

X = {(x, y) | I[x, y] = 1}. (2.12)

The structuring element, B, is a small set of pixel coordinates describing an object used

to probe a binary image. Similar to local filtering, the structuring element commonly

has odd dimensions so that it is symmetrical when centred on a pixel. Figure 2.26

contains an example of a binary set X and structuring element B. The binary set and

structuring element have been converted to a two-dimensional array, where the white

and shaded cells represent the object and background, respectively.

B

X

Centre of
structuring element

Figure 2.26: An example of a binary set X (left) and structuring element B (right).
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This section introduces four binary morphological operations: erosion, dilation,

opening, and closing. An example is given for each operation using the binary set and

structuring element given in Figure 2.26. This section also describes a corresponding

FPGA architecture for each operation. Note that the mathematical notation for mor-

phology adopted by this thesis is similar to that presented in Gonzalez & Woods [66].

Erosion and Dilation

Both erosion and dilation are fundamental morphological operations. They use a struc-

turing element, which interacts with an input binary set, to create a new set of data.

Erosion and dilation are often considered opposites, where applying erosion results in

fewer object pixels, and applying dilation results in more object pixels.

The erosion of a binary set X, by a structuring element B, is a set of all elements

in z such that B, translated by z, is a subset of X. Where z ∈ Z, defined by a set

of points (zi, zj), which replace the coordinates in B from (x, y) to (x + zi, y + zj). A

coordinate is produced in the output set when all elements of B are contained in X,

(B)z ⊆ X. The erosion of X by B is denoted as X 	B, and is expressed as

X 	B = {z | (B)z ⊆ X}. (2.13)

Dilation operates on the reflection of B about the origin, denoted as B̂. The dilation

of a binary set X, by a structuring element B, is a set of all elements in z such that B̂,

translated by z, intersects with X. A coordinate is produced in the output set when

the intersection does not result in an empty set, (B̂)z ∩X 6= ∅. The dilation of X by

B is denoted as X ⊕B, and can be expressed using

X ⊕B = {z | (B̂)z ∩X 6= ∅}. (2.14)

Figure 2.27 presents an example of the erosion and dilation of the binary set X by

the structuring element B. In the examples presented, X and B are the binary set and

structuring element given previously in Figure 2.26. Notice that there are fewer object

pixels after an erosion operation and more object pixels after a dilation operation.
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(a) The erosion of the binary set X by the struc-
turing element B.

(b) The dilation of the binary set X by the struc-
turing element B.

Figure 2.27: The examples above present the erosion (a) and dilation (b) of the binary set X
by the structuring element B. The dashed red outline shows the borders of the original object
pixels to help visualise the effects of erosion and dilation on the input binary set.

Erosion and dilation can be implemented as a local filter, where the filter window

is the size and shape of the structuring element [67]. The filter function applies a logic

operation to all taps in the filter window. These are an AND operation for erosion,

and an OR operation for dilation. Both operations can be implemented using a single

FPGA architecture as presented in Figure 2.28.

Row Buffer

Row Buffer

*

*
* Binary ‘0’ for Erosion or,
   Binary ‘1’ for Dilation.

Window Taps

I

Q

Figure 2.28: An FPGA architecture that applies dilation or erosion to an image using a 3× 3
structuring element.
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Opening and Closing

Two very common morphological operations are an opening and closing [66]. Opening

operations are created by cascading an erosion and dilation. In contrast, closing opera-

tions are created by cascading a dilation and erosion. Figure 2.29 presents an example

of the opening and closing of the binary set X by the structuring element B. Notice

that the opening operation suppresses narrow strips of pixels in the original binary set,

while the closing operation removes small holes.

(a) The opening of the binary set X by the struc-
turing element B.

(b) The closing of the binary set X by the struc-
turing element B.

Figure 2.29: The examples above present the opening (a) and closing (b) of the binary set X
by the structuring element B. The dashed red outline shows the borders of the original object
pixels to help visualise the effects of applying the operations on the input binary set.

Opening and closing operations can be described using set notation. The opening of

a binary set X, by a structuring element B, is denoted as X ◦B. The erosion operation

suppresses features that are smaller than the structuring element, while the dilation

attempts to recover the leftover features back to their original size. A binary opening

is useful for suppressing ‘salt and pepper’ noise and removing narrow strips of pixels

that connect two or more shapes together. The opening of X, by B, is defined as

X ◦B = (X 	B)⊕B. (2.15)

The closing of a binary set X, by a structuring element B, is denoted as X •B. The

dilation combines or enhances connections between shapes, while the erosion suppresses

holes that are smaller than the structuring element. A binary closing is useful for filling
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in gaps between shapes, and removing small holes in a binary set. The closing of X,

by B, is expressed using

X •B = (X ⊕B)⊕B. (2.16)

An FPGA architecture that applies a binary opening or closing can be created using

the architecture for erosion and dilation presented in Figure 2.28. To implement an

opening, the erosion architecture is applied first and the dilation architecture is applied

second [67]. The sequence of filters are simply reversed to implement a closing. Note

that each morphological operation must use a border management scheme as detailed

in Section 2.6.5. Border management is necessary to prevent artefacts occurring at the

image borders. The morphological architectures presented in this thesis use nearest

neighbour extrapolation border management. In Chapter 6, an FPGA architecture of

a morphological opening is used to suppress noise in a two-dimensional binary array.

2.7 Summary

This chapter initially reviewed candidate hardware platforms for implementing embed-

ded computer vision systems. It was found that FPGAs are suitable platforms for

accelerating image processing operations as they offer high computational performance

and low latency processing compared to other technologies. Kintex UltraScale+ logic

fabric and its specialised resources were then explored. The Zynq MPSoC was also

introduced, and its constituent components, the PS and PL, were summarised. The

AXI4 protocol and data movement between the PS and PL was described. Design

tools relevant to the work in this thesis were presented, including the Vivado Design

Suite, MathWorks HDL Coder, and the PYNQ software framework. Their advantages

towards system prototyping and development were discussed.

The second half of this chapter explored several image processing techniques and

their corresponding FPGA architectures, which are relevant to the work in this thesis.

Linear spatial filtering and the nearest neighbour extrapolation border management

scheme were initially described. The image gradient magnitude and orientation were

discussed, and edge detection using the Sobel operators was reviewed. Lastly, morpho-
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logical operations for binary images were introduced, and their FPGA implementations

were described. The above image processing techniques and corresponding FPGA ar-

chitectures are essential for the work undertaken in Chapters 4, 5, and 6. The next

chapter introduces the LHT for extracting lines in digital images and presents a liter-

ature review of previously published works and applications.
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The Hough Transform

3.1 Introduction

The Hough Transform (HT) is a robust technique for extracting objects in digital

images. Initially proposed for the extraction of lines [75], the HT can be adapted to

extract any analytical and arbitrary object that can be described mathematically [3,76].

The principles of applying the HT to an image are straightforward.

A mathematical function that accurately defines an object in the spatial image

domain is chosen to be the basis of the HT kernel. There are many functions (also

known as templates) for an object, where the performance of the HT can vary depending

on the selected function. An area in memory is preallocated to store a multidimensional

array, commonly referred to as the Hough Parameter Space (HPS). Each dimension of

the HPS relates to a parameter that is used to describe the object. Initially, the value

stored in each location of the HPS is set to zero.

A binary image that contains an object is created using edge detection (Section

2.6.6), or another form of image segmentation. Each edge pixel is processed using the

HT kernel to create parameters, as described by the object template. The parameters

are used to address a location in the HPS and increment that location by one. This

procedure is known as voting, where votes are effectively accumulated until the last edge

pixel is processed. The effect of voting produces peaks in the HPS, which correspond

to parameters of the object in the edge image.
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Due to the voting process, the HT is robust to edge images that contain partially

occluded objects. Generally, objects that are missing edges can still be extracted pro-

vided there are enough edges present to create a peak in the HPS. The HT is also an

effective tool for extracting objects from images containing noise. Edge pixels that are

not part of the object (i.e. noise) receive very few votes in the HPS and tend not to

interfere with the larger peaks.

The general HT process is illustrated in Figure 3.1. For practical implementation

purposes, the HPS is divided into discrete cells that are maintained in memory. When

parameters of edge pixels are derived using the HT kernel, they are rounded to the

nearest location in the HPS before applying a vote.

Hough Kernel
(Template Function)

Vote
Accumulation

Peak Detection
and ThresholdingReconstruction

Binary Edge
Image

Detected
Object / Features

Maximums

Votes

Hough Parameter
Space

Figure 3.1: The general HT process for extracting an object in a binary image.

The HT is usually named the Line Hough Transform (LHT) when configured to

detect lines in a digital image. The work in this thesis aims explicitly to implement

the LHT on FPGA and SoC devices and reduce the overall memory requirements of

the HPS. This chapter will describe the operation of the LHT and summarise relevant

literature consisting of optimisations, variations, and associated hardware architectures.

The algebraic notation adopted by Gonzalez & Woods [66] to describe the LHT is used

throughout this chapter. Also, to evaluate the memory consumption of the HPS, an

expression that calculates the number of memory bits necessary to store the HPS is

derived. This expression is required later when comparing the memory consumption of

LHT architectures presented in Chapters 5 and 6.
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3.2 Line Detection

Rosenfeld was the first to algebraically describe the LHT using the slope-intercept

representation of a straight line [77, 78]. The equation for a line yi = axi + b can be

used as a template, where (xi, yi) is a point in the spatial domain, a is the slope, and

b is the y-axis intercept. An infinite number of lines pass through the point (xi, yi),

where each line has its own parameters (a, b) that satisfy the relationship,

b = yi − axi. (3.1)

Lines are formed in the spatial domain by two or more pixels that share the same

parameters (a, b). Consider a second point (xj , yj) that lies on the same line as (xi, yi)

in the spatial domain. Both points can be used in (3.1) to produce values of b for all

values of a in the range [−∞,∞]. The slope and y-axis intercept of the line containing

both (xi, yi) and (xj , yj) can be determined by plotting the resulting parameters (a, b)

in an ab-plane. This operation is demonstrated in Figure 3.2 for points (xi, yi) and

(xj , yj), where the resulting parameters have intersected at point (a′, b′).

b'(xi,yi)

(xj,yj)

x

y

a'

b

a

Figure 3.2: The slope-intercept representation of a straight line is used to map points, (xi, yi)
and (xj , yj), in the spatial domain (left) to the ab-plane (right). The points are mapped using
(3.1) over a set of real values, a.

The point of intersection (a′, b′) is the slope and y-axis intercept of the line that

contains the points (xi, yi) and (xj , yj). The slope-intercept representation of a straight

line is suitable as a template when extracting lines that are horizontal or approximately

horizontal. Lines that are vertical or approximately vertical have large values of slope
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and y-axis intercept. For instance, a vertical line causes a to approach infinity. The

a-axis of the ab-plane will be very challenging to implement practically, as it would

require infinite memory. The solution to this problem is to represent a straight line

using an analytical function that relates collinear points to a set of stable parameters.

The normal representation of a straight line was proposed as a template by Duda

& Hart [3] where the magnitude of displacement ρ, and the orientation of displacement

θ, are used to describe the location of a straight line from a predefined origin in the

spatial domain. This relationship is expressed as

ρ(θ) = xi cos(θ) + yi sin(θ), (3.2)

where θ is a set of real values in the range [0, 360°), since (3.2) is periodic across

intervals of 360°, such that ρ(θ) = ρ(θ + 360°). Figure 3.3 demonstrates the mapping

of two points in the spatial domain, (xi, yi) and (xj , yj), to the ρθ-plane. As shown,

voting has the effect of creating sinusoids in the ρθ-plane, which intersect at (ρ′, θ′) and

(−ρ′, θ′ + 180°).

360°180°

(xi,yi)

(xj,yj)

�'

�'

(�' ,�')

�'
�'

(–�' ,�'+180°)

x

y �

�

Figure 3.3: The normal representation of a straight line is used to map points, (xi, yi) and
(xj , yj), in the spatial domain (left) to the ρθ-plane (right). The points are mapped using (3.2)
over a set of real values, θ.

The line containing the points (xi, yi) and (xj , yj) lies perpendicular to the location

described by (ρ′, θ′) or (−ρ′, θ′ + 180°) in the spatial domain. Notably, only one inter-

section is required to describe the line’s location in the spatial domain. The range of θ

can be reduced using the Glide Reflection, as described in Section 3.2.1. Reducing the

range of θ has the effect of halving the memory required to store the ρθ-plane.
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3.2.1 The Glide Reflection

A glide reflection (also known as a transflection) is the reflection and translation of

a two-dimensional object. The object is reflected across a line, and a translation is

applied parallel to the line of reflection. Upon inspecting the ρθ-plane in Figure 3.3, it

can be seen that each sinusoid is periodic across intervals of 360°. A ρθ-plane contains

redundancy if any point can be mapped to another using the glide reflection relation,

ρ(θ) = −ρ(θ + 180°). (3.3)

The range of θ can be reduced to [0, 180°) as shown in Figure 3.4. The work in

this thesis exploits the glide reflection to minimise the resource consumption required

for storing the ρθ-plane and increase computational performance. Further information

about redundancy in the ρθ-plane is given in [79].

180°

(xi,yi)

(xj,yj)

�'

�'

(�' ,�')

�'
�' �x

y �

Figure 3.4: Points (xi, yi) and (xj , yj) in the spatial domain (left) are mapped to the ρθ-plane
(right) using (3.2). The size of the ρθ-plane is halved using the glide reflection given in (3.3).

For the remainder of this thesis, the term HPS will refer exclusively to the ρθ-plane

and is denoted mathematically as A(ρ, θ). Additionally, the LHT described by Duda

& Hart [3] will be referred to as the standard LHT.

3.2.2 Memory Requirements

In this section, an expression is derived that calculates the HPS memory requirements

for a given image resolution. Memory is measured using bits, representing a technology-

independent unit for comparing memory consumption between embedded devices.
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As previously mentioned in Section 3.1, the HPS is normally divided into cells (also

known as bins) that accumulate votes. The HPS stores votes in discrete locations

quantised over Nρ and Nθ levels, where Nρ is the number of levels along the ρ-axis

and Nθ is the number of levels along the θ-axis. The ρ and θ axes each have their own

regular discrete step values, δρ and δθ, respectively. As previously defined by the glide

reflection (Section 3.2.1), the operational range of θ is between [0°, 180°). The range of

the ρ-axis is determined by the maximum displacement of a line. To find the range of

the ρ-axis, the image origin must first be decided. Consider an M × N image, where

the length of the image diagonal D is given by the expression

D =
√
M2 +N2. (3.4)

The location of the image origin impacts the total memory required by the HPS, as

it affects the total number of quantisation levels across the ρ-axis. Figure 3.5 presents

an example of the LHT when the image origin is at the top left corner of the image.
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Figure 3.5: The spatial image domain of M×N pixels, containing one edge pixel at the bottom
right corner, which has been enlarged for visualisation purposes (left). The corresponding HPS
containing votes that have been mapped using (3.2), presented in top-down view (right). The
image origin is located at the top left corner of the image.
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The example from Figure 3.5 applies the LHT to the edge image over a discrete

set of θ values in the range [0°, 180°). The resulting HPS exhibits an operational range

across the ρ-axis of [−M,D]. This range is computed by plotting the Hough parameters

of the edge pixel furthest away from the image origin. In comparison, when the image

origin is placed in the centre of the image, the range of the ρ-axis is [−D/2, D/2],

which is considerably smaller. Therefore, memory consumption of the HPS can be

optimised by positioning the image origin in its centre. A full example demonstrating

this configuration is given in Section 3.2.3, where the ρ-axis of the HPS operates across

regular discrete intervals, δρ, in the range [−D/2, D/2].

The third dimension of the HPS, ‘votes’, is limited by the number of pixels that

represent the longest possible line in the candidate image. Therefore, votes are in the

range [0, D]. The total memory bits required by the HPS for an M ×N image can now

be derived. Each cell in a HPS of size Nρ ×Nθ must be represented by dlog2(D)e bits.

Therefore, the total number of memory bits required to store the HPS is given as

b = NρNθdlog2(D)e. (3.5)

Chapters 4, 5, and 6 use (3.5) to compute memory consumption and enable comparisons

with LHT architecture designs.

3.2.3 Vote Accumulation

Figure 3.6 presents an edge image of 100 × 100 pixels and its associated HPS for

accumulating votes. As described in Section 3.2.2, the image origin is placed centrally

to optimise the memory required to store the HPS. The HPS is divided into 144× 180

accumulator cells, using δρ = 1 and δθ = 1°. As shown, the candidate image consists of

five edge pixels labelled 1 to 5. There is an edge pixel at each corner of the image, and

one approximately in the centre of the image. The five edge pixels have been processed

using (3.2) over a discrete set of θ values. The corresponding parameters (ρ, θ) for each

edge pixel have accumulated in the HPS to produce four sinusoids, and a unique case

where a horizontal line has formed due to the centre edge pixel.
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Figure 3.6: The spatial image domain of 100× 100 pixels, containing five edge pixels, which
have been enlarged for visualisation purposes (left). The corresponding HPS containing votes
that have been mapped using (3.2), presented in top-down view (right).

As shown in Figure 3.6, each edge pixel has been labelled 1 to 5 so that the cor-

responding sinusoid in the HPS can be identified easily. Each corner edge pixel has

been mapped to a sinusoid, while the centre pixel only produces a horizontal line. The

centre pixel coordinates are x = 0, and y = 0. Therefore, when substituting these

values into (3.2) across all values of θ, the corresponding magnitude of displacement

for each orientation will be zero, resulting in a horizontal line.

The HPS shown to the right of Figure 3.6 also contains labels A to F, which are not

to be confused with mathematical symbols and variables in this thesis that use an italic

font. These labels each indicate points of collinearity between the edge pixels in the

spatial domain. Notice that labels C and D indicate the points of greatest collinearity.

At point C, edge pixels 2, 3, and 4 are collinear. Point D shows the collinearity of edge

pixels 1, 3, and 5.

Edge images generally contain hundreds and thousands of edge pixels that all need

to be mapped to the HPS. Consider the 640×480 pixel image of a chessboard shown in

Figure 3.7a. Initially, the colour image is converted to greyscale as shown in Figure 3.7b.

Edge detection is then performed using Sobel operators (Figure 3.7c) and thresholding

to produce the edge image seen in Figure 3.7d.
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(a) Colour image of a chessboard. (b) Greyscale image of a chessboard.

(c) Gradient magnitude image of a chessboard
using Sobel operators.

(d) Edge image of a chessboard using Sobel op-
erators and thresholding (T = 100).

Figure 3.7: A colour image of a chess board (a) that has been converted to a greyscale image
(b). Sobel operators are applied to the greyscale image to produce the gradient magnitude
image (c) and thresholding is applied to produce an edge image (d).

The edge image shown in Figure 3.7d contains 24,944 edges. When there are 180

orientations of θ, each edge will vote in the HPS 180 times, resulting in a total of

4,489,920 votes. The corresponding HPS for the chessboard edge image can be seen in

Figure 3.8. It was generated by operating θ over the range [0°, 179°], and setting δθ = 1°

and δρ = 1. The HPS is presented using two different views; top-down and isometric.

The top-down view of the HPS, presented in Figure 3.8a, can be used to determine

areas of high collinearity. Collinear parameters can be identified from ribbon bow

shapes that are formed by accumulating sinusoids of different phases and amplitudes.

At the centre of each ribbon bow are a significant number of votes that accumulate to

form a local peak, or a global maximum, in the HPS.
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(a) Top-down view of the chessboard HPS. (b) Isometric view of the chessboard HPS.

Figure 3.8: The HPS for the chessboard edge image in Figure 3.7d. The HPS is shown from
the top-down (a) and isometric view (b).

Figure 3.8b presents an isometric view of the HPS, which is useful for inspecting the

distribution of peaks across the θ and ρ axes. For example, the number of votes accu-

mulated by a single peak can be easily determined. Two alternative ways of inspecting

the HPS are given in Figure 3.9.

The view of the θ-axis, shown in Figure 3.9a, helps establish the most common

orientations of lines in the candidate image. This view is useful if attempting to reduce

the HPS memory consumption or total algorithm computation. It can also help extract

the orientation of an entire object. For example, the θ-axis view of the HPS can be

used to determine the rotation of the chessboard from the horizontal midpoint of the

candidate edge image.

The plot in Figure 3.9b presents the ρ-axis of the HPS, which helps analyse the

distribution of edge pixels and collinear features in the candidate image. Notice that

most votes are in the centre of the plot. This distribution corresponds to a high density

of edge pixels residing around the origin of the candidate image. Processing speed and

memory allocation could be improved by cropping the input image before applying the

LHT. However, depending on application requirements, image cropping may impact

the accuracy of line detection.
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(a) θ-axis view of the chessboard HPS. (b) ρ-axis view of the chessboard HPS.

Figure 3.9: The HPS for the chessboard edge image in Figure 3.7d. The HPS is shown from
the θ-axis (a), and ρ-axis (b).

This section has presented vote accumulation in the HPS for the chessboard image.

Peak searching and line reconstruction of the chessboard image is demonstrated in the

next section.

3.2.4 Line Reconstruction

When voting is complete, the HPS is searched for parameters that have accumulated

peaks. If a peak has accumulated enough votes to be larger than a predefined threshold,

then the corresponding parameters are selected for reconstruction. These parameters

are passed into an inverted LHT kernel as given in (3.6) and (3.7), where θ ∈ [0°, 180°).

x =
ρ− y sin(θ)

cos(θ)
, θ 6= 90° (3.6)

y =
ρ− x cos(θ)

sin(θ)
, θ 6= 0° (3.7)

The inverse LHT kernel is applied by selecting (3.6) or (3.7) so that θ does not

produce an undefined result. For instance, if θ = 90°, then (3.7) would be selected as

(3.6) produces an undefined result. For an M × N image, equation (3.6) is applied

over a discrete range of y values in the range [−N/2, N/2). This operation produces

corresponding x values that can be used to determine the locations of linear elements

62



Chapter 3. The Hough Transform

in the original image. Similarly, (3.7) is applied over a discrete range of x values

in the range [−M/2,M/2) to produce corresponding y values. In this thesis, line

reconstruction will only be used to validate the location of lines in the original image.

The HPS of the chessboard image in Figure 3.8 will now undergo thresholding to

demonstrate line reconstruction. Note that the threshold value does not impact the

memory consumption of the HPS. The largest peak in the HPS has accumulated 333

votes. Therefore, an arbitrary threshold of 200 votes is selected to suppress unwanted

parameters, which is approximately 60% of the maximum peak. After thresholding,

the Hough parameters corresponding to the remaining peaks are extracted and used in

(3.6) and (3.7) to reconstruct lines. The reconstructed image is given in Figure 3.10a.

Notice that the reconstructed image in Figure 3.10a contains infinite lines, i.e. lines

that end at the borders of the image. To correct infinite lines, the reconstructed image

is combined with the original edge image using a logical AND operation, as in Figure

3.10b. This image contains collinear features of the chessboard without infinite lines

and chess pieces obfuscating the chessboard.

3.3 Literature Review

There are many optimisations described in the literature that improve the process-

ing time, line extraction accuracy, and resource allocation of the LHT. This section

presents a literature review of the LHT that is separated into three subsections: soft-

ware designs and optimisations, multiplierless architectures, and resource-efficient ar-

chitectures. Previously published literature that is relevant to the work described in

this thesis is highlighted.

3.3.1 Software Implementations

This section reviews software implementations of the LHT, which include the Gradi-

ent LHT, the Adaptive Hough Transform, the Fast Incremental Hough Transform 2,

the memory-compressed Hough Transform, random sampling and probabilistic Hough

Transforms, and the Kernel Hough Transform.
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(a) Reconstructed line image of the chessboard
created using (3.6) and (3.7).

(b) Reconstructed image combined with the orig-
inal edge image using a logical AND operation.

(c) Overlay of the reconstructed image and the
original colour image.

(d) Overlay of the reconstructed image and the
original greyscale image.

Figure 3.10: Infinite line reconstruction in (a), finite line reconstruction in (b), overlay of
the reconstructed image and colour image in (c), and overlay of the reconstructed image and
greyscale image in (d).

The Gradient LHT

The computation of the LHT was significantly reduced by O’Gorman & Clowes [10].

The authors approximated the gradient orientation of edge pixels to reduce the number

of votes applied to the HPS. This technique is named the Gradient LHT and can reduce

the number of arithmetic operations. The gradient orientation, α, is calculated using

(2.11) for each edge pixel. The gradient orientation image of the chessboard is shown

on the left of Figure 3.11, and a magnified region can be seen on the right. Notice that

collinear features are constructed of pixels that share the same gradient orientation.
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Figure 3.11: The gradient orientation image of the chessboard (left), and a magnified region
(right). The intensity of each pixel corresponds to its gradient orientation value.

The parameters (ρ, α) for each edge pixel are used to apply a single vote in the HPS.

To improve the sensitivity of line detection, the number of votes can be increased by

distributing votes evenly around α such that [λ/2−α : α : λ/2+α], where λ determines

the number of additional votes applied to the HPS per edge pixel. The effects of varying

λ can be seen in the HPS produced using the Gradient LHT. Figure 3.12 presents the

HPS of the chessboard when λ = [0, 44, 88, 134], δθ = 1° and δρ = 1.

Figure 3.12a presents the HPS when there is one vote per edge pixel. This voting

scheme reduces the sensitivity of line detection as compared to the standard LHT, due

to edge pixels that are not entirely collinear. These edge pixels cause peaks to form in

neighbouring bins within the HPS rather than the primary bin of the associated line.

To improve the sensitivity of line detection, the number of votes applied to the HPS

per edge pixel can be increased as in (b), (c), and (d) in Figure 3.12.

Setting λ = 0 will not cause significant accuracy issues when extracting peaks in

the HPS. However, there may be a substantial drop in line detection compared to

using a larger value of λ. One vote per edge pixel may be a suitable voting scheme

for applications that do not require significant line detection accuracy. However, if

line detection accuracy is important for an application, it can be traded off with the

computational requirements of the Gradient LHT by increasing λ. O’Gorman & Clowes

[10] mention that setting λ = 20 is suitable for most applications. The Gradient LHT

is of particular importance to the work presented in Chapter 6 of this thesis.
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(a) The chessboard HPS when λ = 0. (b) The chessboard HPS when λ = 44.

(c) The chessboard HPS when λ = 88. (d) The chessboard HPS when λ = 134.

Figure 3.12: Four HPS results for the chessboard edge image in Figure 3.7d, using the Gradient
LHT. The HPS when λ = 0 (a), λ = 44 (b), λ = 88 (c), and λ = 134 (d).

The Adaptive Hough Transform

Illingworth & Kittler introduce the Adaptive Hough Transform (AHT) in [12]. The

AHT uses a coarse-to-fine approach of extracting lines from an image. The HPS is

initially coarsely quantised with large discretisation steps. The candidate image is then

processed by (3.2) and votes are accumulated in the HPS. Peaks that have accumulated

a significant number of votes are considered to be regions of high collinearity. The
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peaks then undergo a second round of processing using a finely quantised HPS. The

process is repeated until a predefined target resolution is achieved, which is sufficient

to accurately extract linear features. The AHT algorithm can be used to reduce the

storage requirements of the HPS, as the same memory is used to implement the coarse

and fine accumulators. Furthermore, computation may be reduced in comparison to

the original LHT, depending on the number of iterations performed.

The AHT is a multi-pass algorithm that scans the input image several times before

producing an output result. These type of algorithms are highly suited to software im-

plementations, as general purpose processors can easily buffer arrays of memory. FPGA

architectures can also buffer images in external memory or on-chip memory. However,

these architectures require sophisticated memory control. A significant disadvantage of

using an FPGA architecture of the AHT, in comparison to the LHT, is the amount of

time required to scan the input image multiple times. This process causes significant

delay when computing the output HPS.

The Fast Incremental Hough Transform 2

The Fast Incremental Hough Transform 2 (FIHT2) algorithm proposed by Koshimizu et

al. [80], is able to detect lines in digital images without using trigonometry or performing

multiplications. FIHT2 employs incremental equations that use the value of ρ(θn) from

a previous calculation to generate the value of ρ(θn+1). The starting point for deriving

the FIHT2 algorithm is

ρ(θn) =


x cos(θn) + y sin(θn) +

εx sin(θn)

2
, if (0 ≤ n < Nθ/2),

x cos(θn) + y sin(θn) +
εy cos(θn)

2
, if (Nθ/2 ≤ n < Nθ),

(3.8)

where ε = π/Nθ and n = 1, 2, . . . , Nθ − 1. The authors use the first derivative of (3.8)

with respect to the variable θn to produce ρ′(θn). The FIHT2 incremental equations

for a pixel defined by coordinates (x, y) are given as

ρ(θn+1) = ρ(θn) + ερ′(θn), for (0 ≤ n < Nθ/2),

ρ′(θn+1) = ρ′(θn)− ερ(θn+1), for (Nθ/2 ≤ n < Nθ).
(3.9)
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Each incremental equation can be conveniently initialised using θ0 = 0°, which

corresponds to ρ(0°) = x and ρ′(0°) = y. The authors also demonstrate that care-

ful selection of ε can greatly reduce computation. If ε is set to 2−m, where m is a

natural number, the multiplication operations in (3.9) can be replaced by simple shift

operations. The new FIHT2 incremental equations become,

ρ(θn+1) = ρ(θn) + 2−mρ′(θn), for (0 ≤ n < Nθ/2),

ρ′(θn+1) = ρ′(θn)− 2−mρ(θn+1), for (Nθ/2 ≤ n < Nθ).
(3.10)

For example, if ε = 1/128, then the number of discretisation levels across the θ-axis

becomes Nθ = 100. The incremental equations in (3.10) demonstrate that only shift

and add operations are required to compute the Hough parameters. Although this

technique removes multiplication operations and trigonometry, the design is restricted

to particular values of both Nθ and discrete step δθ.

Memory-Compressed LHT

Ser & Siu [23] describe a technique that uses lossy compression of the HPS to reduce

memory requirements. Initially, the candidate edge image is partitioned into many

equal-sized sub-images. This action has the effect of reducing the size of the HPS along

the ρ-axis. The gradient orientation is used to reduce the number of votes accumulated

in the HPS per edge pixel, where λ = 0. Each sub-image accumulates votes in the same

HPS, which may cause peaks to merge together. However, the HPS is now reduced

in size by a factor of
√
Kρ, where Kρ is the total number of equal-sized sub-images

that must be a power of 4. Figure 3.13 presents the memory-compressed HPS and the

chessboard edge image, which has been partitioned into four equal-sized sub-images.

Another memory array, known as a Region Bitmap (RBM), is introduced to main-

tain a record of the Hough parameters (ρ, α) for all edge pixels in the image. There

is one RBM for each sub-image of the original edge image. The RBM can be used to

identify peaks in the HPS that correspond to each sub-image and attempt to separate

these peaks for line reconstruction. The RBM for each sub-image is an array of size

Nθ ×Nρ/
√
Kρ, where each location in the array uses 1 bit to record (ρ, α).
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sub-image 0

sub-image 2

sub-image 1

sub-image 3

(a) Edge image of the chessboard using Sobel op-
erators and thresholding (T = 100). The number
of sub-images is Kρ = 4.

(b) Memory-compressed HPS of the chessboard
edge image, which is halved in size across the ρ-
axis in comparison to Figure 3.8a.

Figure 3.13: The sub-images of the chessboard edge image in (a), are used to vote in the
memory-compressed HPS in (b).

Figure 3.14 illustrates four RBM memory arrays for each chessboard sub-image.

After voting is complete, the peaks in the HPS are extracted and the RBMs for each

sub-image are analysed. Peaks that have not merged in the HPS can be easily identified

as they have only been recorded by one RBM. Merged peaks are more complicated and

require a dedicated peak separation algorithm. The authors of [23] describe a technique

to separate merged peaks in the HPS. A local filter with a 5×5 window is used to identify

clusters of bits in each RBM around the identified peak. The RBM that contains the

highest cluster of bits is awarded the votes in the HPS for the corresponding peak.

A significant problem with the memory-compressed HT approach is the detection of

spurious lines. Errors occur when the candidate edge image contains high levels of noise.

The noise is recorded on the RBM, which can prevent the peak separation algorithm

from operating correctly. However, the algorithm is very successful when the candidate

image contains low levels of noise and lines. This thesis presents an original contribution

to knowledge, which is a modified version of the memory-compressed LHT described

above. The new memory compression technique is modified for FPGA implementation

and named the Angular Regions LHT (ARLHT). The ARLHT algorithm and FPGA

architecture is described in Chapter 6 of this thesis. The performance of the ARLHT

and its limitations are also discussed.

69



Chapter 3. The Hough Transform

(a) The RBM for sub-image 0 of the chessboard. (b) The RBM for sub-image 1 of the chessboard.

(c) The RBM for sub-image 2 of the chessboard. (d) The RBM for sub-image 3 of the chessboard.

Figure 3.14: Four RBM memory arrays for each sub-image of the chessboard edge image.

Random Sampling and Probabilistic Methods

There are techniques that use random sampling to improve the performance of the LHT.

Kiryati et al. [81] describe a Probabilistic Hough Transform (PHT) for the extraction

of lines, which uses randomly selected edges to reduce processing time. The PHT

operates on a limited number of randomly sampled edge pixels from the input image.

The number of edge pixels processed by the PHT is known as the poll size. The

authors provide experimental data where several candidate edge images are processed

using the PHT. Results demonstrate that random sampling has the effect of reducing

computation with few false detections, provided that the poll size is large enough.
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The PHT was extended by Matas et al. in [82] where a Progressive Probabilis-

tic Hough Transform (PPHT) is described. The authors explain that the PHT is

only effective if the length of the line is already established, which in turn determines

the necessary poll size. This information is not typically known in many line detec-

tion applications. Therefore, the authors describe a different mechanism to determine

the effective poll size during algorithm operation. The PPHT algorithm dynamically

controls the detection of a line by considering the total number of votes cast during

operation and the highest peaks in the HPS. This technique is advantageous as the

algorithm can be interrupted during operation and still provide useful results. Further-

more, the algorithm can be constrained to detect a specific length of line before halting

execution. At the time of writing, the PPHT is a supported algorithm in the Open

Computer Vision (OpenCV) library [83], demonstrating its overall acceptance by the

image processing community.

The Kernel Hough Transform

Fernandes & Oliveira [11] present the Kernel Hough Transform (KHT), which addresses

the computational complexity of the LHT by carefully selecting clusters of collinear

pixels for voting. Each cluster is convolved with an elliptical-Gaussian kernel and the

result is used to apply votes in the HPS using a custom voting procedure. The authors

performed several experiments where they applied the KHT to a set of candidate test

images using an AMD Athlon 64 3700+ (2.21 GHz) computer with 2 GB of RAM. The

proposed algorithm was reported to achieve up to 200 frames per second (fps) for images

containing 512× 512 pixels.

3.3.2 FPGA Architectures and Development Tools

FPGAs are often selected to accelerate the LHT, as they offer high computational per-

formance and low latency processing by exploiting their parallel processing capabilities.

This section reviews several FPGA architectures of the LHT from previously published

works. These architectures include multiplierless and resource-efficient designs, which

are of significant relevance to the novel architectures presented in Chapters 5 and 6.
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Multiplierless Architectures

Tagzout et al. [84] implemented the FIHT2 algorithm on a XC4008EPC84 FPGA. The

FIHT2 algorithm is particularly suited for implementation on this FPGA as it does

not require any specialised DSP resources. The authors found that a quantisation error

caused by approximations of sin(θ) and cos(θ) leads to erroneous results after several

iterations. The authors describe how to continuously correct the error by tolerating

a limited amount of error in the incremental equations. When the error grows larger

than the tolerance, the error is removed by recalculating (3.2).

CORDIC is an efficient technique for implementing trigonometric functions and

performing simple math operations in an FPGA. Karabernou & Terranti [85] com-

bine the Gradient LHT and CORDIC to minimise FPGA resource consumption on a

XC4010EPC84 device. A functional block diagram of this system is presented in Figure

3.15. The authors use Circular CORDIC configured in vectoring mode to compute the

gradient orientation, and Circular CORDIC configured in rotation mode to compute

(3.2). Linear CORDIC is also used during the line reconstruction process to compute

the inverted LHT equations in (3.6) and (3.7).
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Figure 3.15: Overview of an FPGA architecture of the LHT that primarily uses CORDIC [85].

Lee & Evagelos [86] describe the Hybrid-Log Hough Transform, an innovative ap-

proach to implementing the LHT on a Virtex-4 device without using multipliers. Their

architecture performs linear multiplications in the log domain as simple addition oper-

ations. An example of the hybrid-log Hough kernel that computes (3.2) can be seen in

Figure 3.16. The architecture boasts excellent resource consumption and timing perfor-

mance. However, the authors allude to accuracy issues when using this technique, and

these can be seen in their experimental results when compared to the HPS produced

using (3.2).
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Figure 3.16: An illustration of the Hybrid-Log Hough kernel for computing the Hough pa-
rameters.

Lu et al. [13] designed an unrolled LHT architecture that uses shift and add oper-

ations to compute the Hough parameters. The advantage of this architecture is that

it does not use any multiplication resources. However, its design has significant limi-

tations, such as its high latency and fixed value of δθ, which is 0.8952°. Although not

mentioned by the authors, their LHT algorithm is very similar to the FIHT2 algorithm.

An illustration of the unrolled LHT architecture is presented in Figure 3.17. Notice

that it contains iterative cells to compute the Hough parameters, which is similar to

the CORDIC algorithm given in Appendix A.

�an

>>6

>>6

>>6

>>6

>>6

>>6

Cell 0 Cell 1

RAM_b(1)

+1

RAM_a(1)

+1

RAM_b(0)

+1

RAM_a(0)

+1

RAM_a(2)

+1

RAM_b(2)

+1

Cell n-1

RAM_a(n)

+1

RAM_b(n)

+1

-�bn

�a0

-�b0

�a1

-�b1

�a2

-�b2

Figure 3.17: An unrolled LHT architecture that uses shift and add operations to compute the
Hough parameters. The variables ρa and ρb are used to denote signal paths in the architecture
design. See the corresponding publication in [13] for more information.
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Resource-Efficient Architectures

The LHT equation in (3.2) requires two multipliers and one adder to compute ρ for one

angle in θ. If computing the LHT across 180 values of θ in the range [0°, 180°), then 360

multiplications and 180 additions would be required. Zhou et al. [14] developed an effi-

cient parallel LHT architecture that requires two multiplications and two additions to

compute two angles in θ. This reduction in complexity is possible by partitioning θ into

two ranges [0, 90) and [90, 180). The LHT for each range of θ can be computed at the

same time by recognising that x cos(θ) = −x cos(180°−θ) and y sin(θ) = y sin(180°−θ).

An FPGA architecture of the Hough kernel that uses this technique to simultaneously

compute ρ(θ) and ρ(180°− θ) is illustrated in Figure 3.18.
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Figure 3.18: A Hough kernel that can compute ρ(θ) and ρ(180° − θ) using two multipliers
and two adders. This architecture assumes θ0 = 0°, θNθ/2 = 90°, and Nθ is an even number.
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Additionally, the authors recognised that x cos(0°) = x, x cos(90°) = 0, y sin(0°) = 0,

and y sin(90°) = y, which further reduces multiplication requirements. Overall, their

resource-efficient LHT architecture is able to process a 512× 512 pixel image using 178

DSP48E1 slices and 90 BRAMs in an AMD Virtex-6 device.

In similar work, Zhou et al. [20] described a Gradient LHT architecture that con-

sumes 13 DSP48E1 slices in a Virtex-7 device. The voting range, λ, is set to 8, sig-

nificantly reducing the number of multiplications required by the architecture. The

authors also exploit the raster scan streaming of image data to pre-compute y sin(θ)

for the next image row and store the values in registers. This technique significantly

reduces resource allocation, allowing y sin(θ) to be computed using a single DSP48E1

slice. The authors do not assign a name to their architecture. Therefore, the architec-

ture will be referred to as the Look-Ahead Kernel for the remainder of this thesis. An

illustration of the Look-Ahead Kernel is shown in Figure 3.19.
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Figure 3.19: An FPGA architecture of the Look-Ahead Kernel, which calculates y sin(θ) after
each image row and stores the results in Nθ registers. Control logic has been removed from this
design to simplify the illustration.

75



Chapter 3. The Hough Transform

Lastly, Zhou et al. [87] combine the architectures presented in [14] and [20] to

create an efficient parallel LHT design that consumes 90 DSP48E1 slices in a Virtex-6

device. A significant contribution of this thesis, presented in Chapter 5, improves upon

this work by reducing DSP slice requirements by 50% and optimising the memory

consumption of the HPS.

Elhossini & Moussa [88] present two FPGA architecture designs that implement

the LHT and the Circle Hough Transform (CHT), which detects circles in a digital

image. The authors claim that their architectures are memory efficient and do not use

external memory. The memory efficient design is achieved by simply increasing the

discretisation step of θ, such that δθ = 11.25°. The authors do not describe any other

algorithmic or architectural techniques to reduce memory consumption.

Chen et al. [89] describe a novel technique of implementing the HPS in external

memory, which reduces on-chip memory requirements. The input edge image is first

divided into several sub-images, and run-length encoding is performed to reduce pro-

cessing requirements. Each encoded sub-image is then read into the LHT architecture,

which uses the FIHT2 algorithm to compute the Hough parameters. The parameters

are then used to vote in a local accumulator. Once voting is complete, the local accu-

mulator is transferred to external memory so that votes are accumulated into the HPS.

This architecture is an excellent example of using external memory to store the HPS.

However, there are several disadvantages to deploying this architecture. The speed and

bandwidth of the external memory limit the execution time of the architecture. The

architecture is non-deterministic in terms of processing time, causing video frames to

be processed on a best-effort basis. If the architecture is modified for higher resolutions,

the memory bandwidth will also need to increase, which may not be possible due to

technical limitations.

Bailey [21] describes a novel technique to reconstruct lines from an HPS stored in

on-chip FPGA memory. After voting, the accumulator memory is scanned for peaks

and reset during the vertical blanking period of a video stream. If a peak is found,

an additional memory bit in the accumulator is used as a ‘peak flag’ to indicate the

presence of a peak. As the next video frame is streamed into the LHT design, the
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pixel coordinates are converted to Hough parameters that index the accumulator, sub-

sequently reading the peak flag from memory. If the peak flag is set, then the current

pixel of the output frame contains a reconstructed line. A significant disadvantage of

using this architecture is that each bin of the accumulator consumes an additional bit

of memory. Additionally, the author acknowledges that it cannot detect lines near the

corners of an image, which is caused by on-chip memory limitations.

An investigation into the use of Vivado HLS as a development tool for LHT archi-

tectures is described by Solod et al. [90]. The authors designed a software model of the

LHT using the C++ programming language and then used Vivado HLS to generate

an LHT architecture design. The target image resolution was 1920 × 1080 pixels and

the LHT architecture only consumed 77.5 BRAM tiles. The HPS was configured for

Nρ = 2048 and Nθ = 41. The authors deliberately reduced the size of the HPS to use

fewer on-chip memory resources.

3.3.3 Discussion

Many of the software implementations of the LHT discussed in Section 3.3.1 reduce

the algorithm’s computational complexity. For example, the Gradient LHT, FIHT2,

PHT, PPHT, and KHT reduce the number of votes applied to the HPS, decreasing

the number of arithmetic operations. However, very few LHT algorithms optimise the

memory requirements of the HPS. The AHT is one example that optimises memory

to implement line detection in early CPUs, which lacked the memory capabilities to

process large image resolutions. However, the AHT requires random memory access,

which is challenging to implement on an FPGA unless the candidate image is accessible

using on-chip memory. Alternatively, the authors in [23] describe a memory-efficient

LHT that applies votes to a compressed HPS. This work uses lossy compression of

the HPS to reduce memory requirements. This thesis presents the ARLHT, which is

a novel memory-efficient algorithm described in Chapter 6 and based on a modified

version of the memory-compressed LHT. The ARLHT algorithm improves the memory

allocation of the HPS and reduces the overall FPGA resource consumption compared

to previously published LHT architecture designs.
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Several FPGA implementations of the LHT in previously published works (see Sec-

tion 3.3.2) deliberately reduce the size of the HPS or shorten the wordlength required

to store votes in memory correctly. For instance, the authors in [89] and [21] use these

design techniques to reduce the memory consumption of the HPS. These techniques

constrain the operation of the LHT as the architecture in [21] cannot detect lines near

the corners of an image, and the architecture presented in [89] may detect spurious

lines. Other FPGA architectures of the LHT, such as the designs given in [13] and [88],

restrict the discretisation step of the HPS along the θ-axis. This design technique may

improve the resource efficiency of the LHT implementation. However, the architecture

will only be suitable for bespoke applications as the accuracy of line detection is lim-

ited to specific angles. Zhou et al. [87] describe a parallel implementation of the LHT,

which will be named the parallel LHT for the remainder of this thesis. The parallel

LHT does not constrain the HPS to improve FPGA memory consumption and does

not introduce any of the limitations discussed above. Furthermore, it is scaleable and

parameterisable where the architecture can process any image resolution, and several

design parameters can be customised, including δθ, δρ, Nθ, and Nρ. An implementation

of the parallel LHT architecture is used later in Chapter 4 to test the HEP.

The parallel LHT architecture can be optimised to improve memory consumption

and reduce multiplication requirements in FPGA devices. This optimisation is de-

scribed in Chapter 5 of this thesis, where a novel memory bit-packing scheme is em-

ployed to reduce BRAM tile requirements and spatial domain symmetry is exploited

to decrease the allocation of DSP slices. Note that these optimisations do not affect

the accuracy of the LHT or introduce any significant limitations of the algorithm.

3.3.4 Key Findings

In summary, the list below presents the key findings of this literature review on software

algorithms and FPGA architectures of the LHT.

� There are few investigations into the memory requirements of the HPS. Many

reported software algorithms of the LHT ignore this issue and only consider im-

proving its computational performance.
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� It is possible to improve the memory consumption of the HPS algorithmically.

For example, the memory-compressed LHT described in [23] can reduce memory

requirements by 50%. Alternatively, the authors of the AHT in [12] have demon-

strated memory savings that are 3000 times more efficient than the standard LHT.

Notably, the memory efficiency of the memory-compressed LHT can be improved

and is suitable for FPGA implementation, which is a novel contribution of this

thesis and is detailed later in Chapter 6.

� Many reported FPGA architectures of the LHT require significant memory re-

sources to store the HPS. For instance, the LHT architecture reported in [20]

requires 180 36 Kb BRAM tiles for an image resolution of 333× 333 pixels, which

consumes 58% of the available BRAMs on the XCZ7UEV device. Researchers of-

ten constrain the size of the HPS, which introduces algorithm limitations. These

limitations include LHT architectures that cannot detect lines near the corners

of an image and may also detect spurious lines.

� There are currently no LHT architecture designs that exploit bit-packing schemes

to reduce the memory requirements of the HPS. Additionally, there are no re-

ported architectures that use spatial domain symmetry to reduce the compu-

tational complexity of the LHT algorithm. Chapter 5 presents a novel FPGA

architecture that uses optimisations to implement the LHT efficiently.

� Each of the authors in this review do not describe how they validated the correct

operation of their LHT architecture. In Chapter 4, a novel evaluation platform

is presented that validates LHT architectures on the physical target device.

The key findings identified in this literature review were used to motivate the original

research presented throughout this thesis.

3.4 Embedded Applications

The LHT is an essential tool for many embedded systems, including UAVs, industrial

inspection solutions, and wireless communication technologies. This section explores
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many of these embedded systems and several candidate applications that can leverage

an FPGA to accelerate the LHT. The key requirements of the LHT for each applica-

tion are discussed in Section 3.4.5, which motivates the original research presented in

Chapters 4, 5, and 6 of this thesis.

3.4.1 Advanced Driver Assistance Systems

Vehicles require vision systems that can robustly detect lane markings to determine

whether the vehicle has drifted out of its lane. Consider the illustration shown in

Figure 3.20, which presents an aerial view of a vehicle equipped with a video camera

to monitor the lane markings on each side of the vehicle.

Camera Camera
Field of View

Figure 3.20: An illustration of a vehicle equipped with a video camera to monitor the lane
markings on each side of the vehicle.

The vehicle’s motion as it travels along the road can make lane detection challenging,

as the lane markings will change position from one video frame to the next. Also, lane

markings often contain gaps and are commonly obfuscated by objects such as other

vehicles or pedestrians. A valuable feature of the LHT is that it can determine the

exact position of a line in an image irrespective of its orientation or location. This

capability of the LHT allows it to detect lines that change position between consecutive

video frames. Additionally, the LHT is robust to partially occluded lines, allowing it

to detect lines that have been partly obfuscated from the camera’s view.
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Figure 3.21a contains a digital image of road markings that will be processed using

the LHT. Detected lines are reconstructed using (3.6) and (3.7) and are overlaid on

top of the image as shown in Figure 3.21b for inspection. Notice that the LHT has

detected the lane markings even though they contain significant gaps.

(a) A digital image of road markings. (b) Detected lines overlaid on top of the image.

Figure 3.21: A digital image of road markings to be processed using the LHT (a). The
detected lines are reconstructed and overlaid on top of the image (b).

MathWorks have published an example in [91], which uses the LHT to detect road

markings and determine whether a vehicle has departed its lane. The example operates

by first extracting road markings from a video frame and comparing these to the road

markings in the subsequent frame. The system labels the lanes at each side of the

vehicle and issues warnings when the vehicle crosses over the lane’s boundaries. This

system cannot target an FPGA, as it is not compatible with MathWorks HDL Coder.

Lane departure warning systems can be implemented using a combination of a

Deep Neural Network (DNN) and the LHT to extract road markings. Chao et al. [5]

describe a multi-lane detection system for Advanced Driver Assistance Systems (ADAS)

applications. This system uses a trained DNN to detect binary lane pixels from input

video frames. The LHT is applied to the resulting image and acts as a post-processing

operation to determine a linear equation, which can be used to describe the detected

lanes mathematically.
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DNN based approaches for lane detection can be problematic for embedded systems

as they are highly computational and energy inefficient. Traditional techniques can

be less computationally demanding. Hajjouji et al. [22] developed a resource-efficient

FPGA architecture of the LHT that detects road markings for lane detection. The

authors recognise that lane markings are not horizontal or vertical when a camera is

located at the front of a vehicle. Due to perspective, the lane markings appear to

be diagonal to the camera, which allows the accumulator memory to be optimised by

reducing the range of θ to specific angles.

3.4.2 Unmanned Aerial Vehicles

UAVs are often programmed to have autonomous flight routines that an operator does

not control. This capability makes them very useful for automated inspection of agri-

culture, buildings, and structures. The illustration given in Figure 3.22 presents a

selection of candidate application areas for UAVs.

Wind
Turbines

Power Lines

Farming and Agriculture

Railroads

Buildings

UAV Inspection of Structures, Buildings, and Agriculture

Figure 3.22: An illustration of a UAV equipped with a digital video camera that can perform
automated tasks in several application areas, including power line analysis, crop line analysis,
wind turbine tracking, and railroad evaluation.
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UAVs can be used to assess the status of power lines, as described in [6]. The

authors report that their proposed system can accurately extract power lines using the

LHT from their dataset that was recorded on a UAV. Alternatively, UAVs can be used

to evaluate railroad infrastructure. For instance, the authors in [7] successfully detect

rail tracks in digital images taken from high-altitude drones. Their proposed system

uses the LHT to detect lines in digital images, which are then labelled using a custom

clustering algorithm. UAVs have also been used to inspect wind turbines. For example,

the work in [92] uses the LHT to detect primary components of the wind turbine to

support the UAV’s navigation system as it performs its inspection. Lastly, UAVs can

inspect structures such as buildings and bridges for cracks [93]. Figure 3.23 presents a

simple example of using the LHT to detect straight cracks on a wall.

(a) A digital image of a building crack. (b) Detected lines overlaid on top of the image.

Figure 3.23: A digital image of a building crack to be processed using the LHT (a). The
detected lines are reconstructed and overlaid on top of the image (b).

The farming and agriculture industries also use UAVs to inspect fields and monitor

crops. In [94], the authors describe an algorithm that can detect crop lines of a mango

tree plantation from digital images taken by a drone. The LHT is used to identify crop

lines in digital images of the plantation, which helps to address problems associated

with fertilising and planting mango trees. Another interesting application of UAVs is

given in [95], where the authors describe a technique to monitor weed growth amongst

crops. In this application, the LHT is used to identify rows of crops, which are then

combined with a CNN to detect weeds.
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3.4.3 Industrial Inspection

The LHT is often required for industrial inspection applications to extract a Region of

Interest (ROI), or to identify product defects such as cracks. An illustration depicting

an industrial vision system is given in Figure 3.24.

Camera

Conveyor Belt

Figure 3.24: An illustration of an industrial vision system to inspect products. This particular
diagram depicts a camera directed at a conveyor belt of food products.

Quality control is an important process during the manufacture of a product, as it

identifies issues that are unacceptable for the consumer. However, quality control is time

consuming and can be a limiting factor on the total factory yield. Industrial inspection

systems often use cameras, as depicted in Figure 3.24, to accelerate quality control and

detect product defects quickly. FPGAs can play an important role in interfacing to

high performance cameras that operate using high resolutions and frame rates. The

cameras are usually directed towards a product manufacturing line or conveyor belt

and photograph or record the product as it moves past the camera. Digital images of

the product must be processed quickly to identify defects, so that the product can be

removed from the manufacturing line if needed.

The LHT has been used for industrial inspection systems. The authors in [96]

describe an algorithm that uses the LHT to detect cracks in biscuits on a manufacturing

line. This quality control process is important to ensure consumer satisfaction and to

identify manufacturing issues quickly. Figure 3.25a contains an example of a biscuit

that contains a crack. The LHT is used to detect lines in the image, which are then

reconstructed for inspection. As shown in Figure 3.25b, the LHT has successfully

detected a crack in the biscuit as indicated by the line drawn over the crack.
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(a) A digital image of a cracked biscuit. (b) Detected line overlaid on top of the image of
a cracked biscuit.

Figure 3.25: A digital image of a cracked biscuit to be processed by the LHT (a). The
detected line is reconstructed and overlaid on top of the biscuit image (b). Note that the line
thickness has been increased in size for inspection purposes.

Wang et al. [97] also describe a defect inspection system that is used for evaluating

plastic bottles. This system requires the LHT to extract an ROI from a digital image

taken on a manufacturing line. The ROI contains the plastic bottle object, which is

then input into a CNN that has been trained to identify bottle defects. The LHT in

this scenario is primarily used as a preprocessing step, before the ROI is used in the

CNN. The authors highlight that ROI extraction is important, as it reduces the time

taken to process the digital image using the CNN.

3.4.4 Wireless Communications

The LHT is emerging as a valuable tool in wireless communication systems. Two major

applications involve classifying modulation schemes and detecting chirps in spectrogram

plots. For example, Modulation Format Recognition (MFR) is a process in OWCs that

identifies the modulation format adopted by a transmission system. An OWC receiver

will typically perform MFR before demodulating a visible light signal to extract data.

Figure 3.26 presents an example of applying the LHT to two digital modulation schemes,

which are Quadrature Phase Shift Keying (QPSK) and a type of Quadrature Amplitude

Modulation (QAM) with 16 symbols, known as 16-QAM. In each example, the HPS is

plotted for inspection.
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(a) Constellation of a QPSK modulation scheme. (b) Constellation of a 16-QAM scheme.

(c) HPS of the QPSK constellation. (d) HPS of the QAM-16 constellation.

Figure 3.26: The LHT is applied to an image of a QPSK constellation (a) and 16-QAM
constellation (b), resulting in an HPS for each example given in (c) and (d), respectively.

MFR can be a challenging task when there is a significant level of channel noise

that obfuscates the line of sight between the transmitter and receiver. Mohamed et

al. [8] describe the use of the LHT to assist in applying MFR for OWC receivers. Their

novel MFR scheme plots modulated OWC signals on a constellation diagram. The

constellation is then edge detected and processed using the LHT to compute collinearity

between received symbols. The output HPS is of particular importance as this initially

trains a DNN to recognise the modulation scheme employed by the OWC signal. After

training, the DNN processes the HPS of modulated OWC signals.
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Another application of the LHT in wireless communications is to identify chirps in

spectrogram plots. LFMCWs are commonly used in radar systems to determine the

distance and velocity of objects approaching the radar antenna. LFMCWs increase in

frequency over time, which is characteristic of a chirp signal. In spectrogram plots,

LFMCWs appear as a steep line, which can be detected using the LHT. The authors in

[9] describe an FPGA based system that can detect LFMCWs in low SNR environments.

Their system deploys the LHT to detect collinear features in spectrogram plots, which

are then used to characterise and describe LFMCWs in the environment.

3.4.5 Discussion of Requirements

This section explores the technical requirements of the embedded applications described

in previous sections, such as the system latency and the configuration of the Hough pa-

rameters. These requirements motivate the design choices for the FPGA architectures

of the LHT presented in Chapters 5 and 6 of this thesis.

Operational Latency

Vehicles and UAVs often require low-latency processing to perform safety-critical tasks.

For example, a vehicle’s vision system uses the LHT to determine if the vehicle has

drifted out of its lane. This task must be completed within a guaranteed time to allow

the driver to intervene. UAVs also have strict line detection requirements depending on

the underlying application. For instance, a UAV can use the LHT to detect the main

parts of a wind turbine to support its navigation system. The UAV may unintentionally

strike the wind turbine if its navigation system does not receive the correct information

from the vision system at the expected time.

Industrial inspection systems also require low-latency processing to operate effi-

ciently. For instance, manufacturing vision systems detect lines in digital images of

products to effectively inspect defects and quickly remove offending products from the

manufacturing line. Reducing the latency of the quality inspection system can improve

production output and increase the speed of the conveyor belt moving products between

manufacturing stages.
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In wireless communications, MFR systems must be able to quickly determine the

modulation format of an OWC signal to optimise the efficiency of the data commu-

nications link. FPGA platforms can achieve low latency line detection in the above

applications by accelerating the LHT algorithm.

Deterministic Processing

Embedded applications often require deterministic line detection, which refers to detect-

ing lines in a digital image within a predictable or known amount of time. Many appli-

cations require deterministic processing, such as lane detection and industrial product

inspection. The authors in [89] report a resource-efficient FPGA architecture of the

LHT by storing the HPS in external memory. This technique can be problematic if

other resources or hardware accelerators require external memory, as they will each

compete for access. This architecture is non-deterministic because it applies the LHT

on a best-effort basis. The FPGA architectures of the LHT in this thesis will use ded-

icated on-chip memories to store the HPS to accommodate applications that require

deterministic line detection.

Angles of Operation

The authors in [22, 90] describe FPGA implementations of the LHT where they have

reduced the operational range of θ to optimise on-chip memory consumption. While

this design choice is an appropriate solution to reduce the memory requirements of

the HPS, it restricts the LHT architecture for use in specific bespoke applications that

can only detect lines over a reduced range of orientations. The FPGA architectures of

the LHT in this thesis aim to target all applications while reducing the total on-chip

memory consumption of the HPS. These LHT architectures are suitable for applications

that require line detection across orientations of θ in the range [0°, 180°).

Video Processing Standard

Several embedded applications will likely use a video camera or photo capture device

that employs a media standard. The LHT architectures in this thesis aim to achieve the
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FHD standard, which has an image resolution of 1920×1080 pixels and displays 60 fps.

As presented in Chapter 4, an LHT architecture that achieves the FHD standard is

expensive in terms of on-chip FPGA memory consumption. Memory can be optimised

using bit-packing and memory compression techniques, as described in Chapters 5 and

6 of this thesis, respectively.

3.4.6 Key Findings

Many of the embedded applications described in Section 3.4 require an FPGA imple-

mentation of the LHT to achieve low operational latency and deterministic processing.

Large FPGA devices (consisting of hundreds of thousands of logic elements) offer the

necessary on-chip memory resources to store the HPS [19]. However, large FPGAs are

financially expensive and have physically large package sizes that consume a significant

amount of area on a Printed Circuit Board (PCB) and increase the overall weight of

the final solution. The advantages of optimising the memory efficiency of the LHT on

FPGA devices for embedded applications are listed as follows.

1. Package Area — Reducing the memory consumption of the HPS can increase

the number of small FPGA devices that the LHT can target. For instance, a

large Kintex UltraScale+ device named XCKU5P, has over 400 BRAM tiles for

storing the HPS [19]. The dimensions of the package available for this device

is 23 × 23 mm. However, a small FPGA, such as the Artix UltraScale+ device

named the AU15P, can be purchased using a package that has dimensions of 11.5

× 9.5 mm [18]. The AU15P only contains 144 BRAMs, meaning it is unable to

store the HPS of a parallel LHT for image resolutions such as 1280× 720 pixels,

when δθ = 1◦ and Nθ = 180 (see Section 4.4.1 for parallel LHT implementation

results). It is necessary to optimise the memory allocation of the HPS to target

small FPGAs with fewer BRAM tiles and improve the package area on a PCB.

This factor affects applications where the PCB area is a critical design parameter,

such as motherboards for a UAV or road vehicle.
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2. Device Cost — Large FPGA devices containing significant amounts of BRAM

tiles (250 or higher) are financially expensive. Reducing the size of the FPGA

required by an application can improve the overall project cost, as small FPGAs

are cheaper to purchase. Overall, this factor significantly affects the project cost

during mass production, where tens of thousands of FPGA units are purchased

and assembled with other components on a manufacturing line. The size of the

selected FPGA significantly affects the manufacturing costs for mass-produced

technologies, including UAVs, vehicles, production line apparatus, and wireless

communication equipment.

3. Energy Efficiency — Many embedded applications that use a battery source as

their primary power supply will require energy-efficient solutions. For example,

vehicles and UAVs each operate on batteries (although the former is likely to use

a petrol or diesel engine). Portable spectrum monitoring solutions that require

the LHT to detect chirps in spectrograms will also use batteries. FPGAs offer

an energy-efficient solution to accelerating the LHT. It is necessary to optimise

LHT architecture designs to use the least amount of logic elements possible on

an FPGA, as this keeps energy consumption low. In particular, reducing BRAM

tile and DSP slice consumption can decrease energy requirements.

4. Reprogrammable — An FPGA can be reprogrammed after it has been deployed

in a product such as a vehicle or UAV. Suppose an essential algorithm, such as

the LHT, consumes a sizeable area of the FPGA logic fabric. In that case, it

can be challenging for developers to update the logic fabric with new hardware

accelerators that feature new content. Optimising the resource efficiency of the

LHT architecture design can be a valuable way of freeing FPGA logic fabric

resources for other operations and tasks.

The key findings of this application review for the LHT listed above motivate the

original research in Chapters 5 and 6 of this thesis.
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3.5 Conclusion

The beginning of this chapter introduced the LHT by describing its inception using the

slope-intercept representation of a straight line as a candidate template. The normal

representation of a straight line was described as a robust template that could detect

all lines in a digital image regardless of orientation. The Glide Reflection was then

discussed, demonstrating that the HPS contained redundancy that could be removed to

optimise memory allocation. The memory requirements of the HPS were then explored

in detail, and it was found that placing the image origin in the centre of the image

considerably reduces the size of the HPS, further decreasing memory requirements. An

expression that computes the total memory consumption of the HPS (in bits) was also

derived. An example of the LHT was then presented, and the corresponding HPS was

investigated. Line reconstruction was also explored briefly.

A review of previously published literature relevant to the work in this thesis was

presented. Several software implementations of the LHT were investigated, including

the Gradient LHT and the memory-compressed Hough Transform, which are relevant

to the work presented in Chapter 6. Several FPGA implementations of the LHT were

explored, including multiplierless and resource-efficient architecture designs. Finally,

several candidate applications that can leverage an FPGA architecture of the LHT were

explored, including lane departure warning systems for vehicles and UAV inspection

of powerlines and railroads. It was found that the device cost, package area, energy

efficiency, and reprogrammable capabilities of FPGA solutions are important factors for

embedded applications and motivate the design of a memory-efficient LHT architecture

for FPGA implementation in Chapters 5 and 6.

The next chapter details a novel evaluation platform for designing and validating

FPGA architectures of the LHT. An LHT architecture design will be introduced and

analysed for timing performance and FPGA resource consumption. In particular, the

memory requirements of the HPS will be investigated.
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The Hough Evaluation Platform

4.1 Introduction

Special development environments and design tools are typically required to perform

FPGA architecture validation and analysis. These environments enable rapid FPGA

prototyping and iterative development of architecture designs. MathWorks HDL Coder

reference designs enable rapid FPGA prototyping, while the PYNQ framework allows

users to deploy and execute Jupyter Notebooks directly on their Zynq MPSoC plat-

forms. Both environments offer reproducible embedded systems and repeatable results.

For this reason, it is useful to combine these tools to improve the analysis of FPGA

architectures and enhance the dissemination of research findings.

The primary contribution of this chapter is a novel evaluation platform for FPGA

architectures of the LHT, named the Hough Evaluation Platform (HEP), which was

first published in [27]. An FPGA evaluation platform enables researchers and devel-

opers to rapidly prototype and evaluate FPGA-based applications as the evaluation

platform readily provides constraints, interconnects, interfaces, and a variety of other

preconfigured components. In particular, the novel HEP enables the rapid development

of LHT architectures with MathWorks HDL Coder and supports the hardware testing

and validation on the physical target device using the PYNQ framework. Upon apply-

ing an image to a custom LHT architecture, the HEP can be used to accurately measure

the processing time and acquire the output HPS for visualisation and analysis. To the
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author’s knowledge, this is the first FPGA development and evaluation environment

that combines PYNQ and MathWorks HDL Coder. The HEP is used later in Chapters

5 and 6 for the development and validation of novel LHT architecture designs.

4.2 Evaluation Platform Design

In this section, the novel evaluation platform for rapidly designing and deploying LHT

architectures on Zynq MPSoC devices is described. The underlying architecture of the

HEP will be detailed, and its primary features will be explored. These features include

unique plotting and inspection capabilities for the HPS and accurate processing time

measurements. A system overview of the HEP can be seen in Figure 4.1.
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Figure 4.1: System overview of the HEP that targets the Zynq MPSoC. The PL accelerates
the user’s custom LHT architecture, while the PS plots and evaluates the resulting HPS.
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The HEP is implemented entirely on the Zynq MPSoC device. The PL consists of

the Hough Inspection Unit (HIU), which contains a measurement module named the

Hough Performance Analyser (HPA). The PS is host to the PYNQ software framework.

The HIU and PYNQ framework can access shared off-chip memory and communicate

using the AXI bus. Figure 4.1 contains several points of interest, numbered 1 to 7,

which outline the operation of the HEP. These points are described below.

1. The user selects a candidate test image and loads it into external memory. De-

pending on architecture requirements, the user may pre-process the image in

software to extract edges.

2. The candidate test image is retrieved from external memory by the input AXI

DMA in the HIU. While the image is transferred from external memory into the

PL, the HPA begins measuring the architecture’s processing time.

3. Image processing operations are applied to the candidate test image by the Design

Under Test (DUT). The DUT contains the user’s custom LHT architecture, which

may contain edge detection stages or a custom image processing pipeline.

4. When DUT processing is complete, the result is sent to the output AXI DMA to

be written into external memory. The output of the DUT contains the resulting

HPS of the candidate test image.

5. While the output of the DUT is transferred to the AXI DMA, the HPA monitors

the DUT for a signal that indicates it has successfully completed its operation.

6. Once the output DMA transfers the HPS into external memory, it can then be

accessed by the PYNQ framework and analysis software.

7. Existing Python libraries that are available through the PYNQ framework, such

as Plotly [98] and NumPy [99], are used to evaluate and plot the HPS. The

user may save hardware test results and perform further experiments to compare

LHT architectures and corresponding Hough parameters. The HPS can be easily

plotted and inspected.
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To reduce the complexity of operation, the HEP was designed to be completely

autonomous and accessible using a simple browser based interface. The remainder of

this section will detail the design of the HEP and present the hardware architectures

of the HIU and HPA. The HEP’s analysis capabilities and software design will also be

presented.

4.2.1 The Hough Inspection Unit

The purpose of the HIU is to interface the user’s custom LHT architecture to the Zynq

MPSoC’s PS, via the external memory. Additionally, the HIU should also measure

the processing time of the user’s architecture using the HPA module. The HIU is

implemented entirely in the Zynq MPSoC’s PL and contains an AXI DMA, the HPA,

and the user’s custom architecture. A detailed diagram illustrating the HIU is presented

in Figure 4.2. Note that the AXI4-Lite interfaces are connected to the same AXI bus.

Although not specifically shown in Figure 4.2, each component in the HIU shares the

same clock and reset signals to reduce design complexity.
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Figure 4.2: Detailed diagram of the HIU, consisting of an AXI DMA, the HPA, AXI4-Stream
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The interfaces used between each component in the HIU are AXI4, AXI4-Stream,

and AXI4-Lite. The AXI DMA uses AXI4 to transfer fixed bursts of data between

the PL and external memory. AXI4-Lite is used by the AXI DMA, the HPA, and the

user’s custom LHT architecture to communicate with control and status registers. For

point-to-point data streaming, the AXI4-Stream interface enables a direct flow of data

between the AXI DMA and the custom LHT architecture. There are two IP Cores in

the HIU that are provided by AMD and distributed through the Vivado Design Suite’s

IP Catalogue. These are the AXI DMA and AXI4-Stream Broadcaster cores. Each of

these are briefly described below.

AXI DMA

Hardware accelerators in the Zynq MPSoC’s PL are able to communicate with off-chip

memory using the AXI DMA IP Core provided by AMD. As illustrated in Figure 4.2,

there are two data movers inside the AXI DMA IP Core. The Read DMA allows

data to be fetched from external memory and transferred into the PL. Similarly, the

Write DMA allows data to be transferred from the PL and written to external memory.

Each read and write operation uses the AXI4 interface to communicate with the Zynq

MPSoC’s DDR controller, previously shown in Figure 4.1. The PL communicates with

the Read and Write DMAs using the AXI4-Stream interface.

AXI4-Stream Broadcaster

The AXI4-Stream Broadcaster IP Core provides a simple way of duplicating an AXI4-

Stream Slave interface into two or more AXI4-Stream Master interfaces. This func-

tionality is often required when connecting an AXI4-Stream interface to more than one

IP Core in an FPGA system. The HIU requires an AXI4-Stream Broadcaster IP Core

to duplicate the AXI4-Stream interface from the read DMA. One of the AXI4-Stream

interfaces is routed to the user’s custom LHT architecture, and the other interface is

routed to the HPA for performance analysis. Another AXI4-Stream Broadcaster is

required at the output of the user’s custom LHT architecture to duplicate the resulting

AXI4-Stream interface and route it to the Write DMA and HPA.
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4.2.2 The Hough Performance Analyser

The purpose of the HPA is to measure the processing time of the user’s custom LHT

architecture on the physical target device. In previously published works (see Section

3.3), architecture processing time is measured using theoretical analysis, simulations, or

a combination of both approaches. Furthermore, many authors only state the process-

ing speed of their proposed architectures and do not specify how these measurements

are performed. The HPA assesses the processing time of custom LHT architectures

while they operate on the physical target device. Measuring the processing time of an

architecture in this way is more effective than theoretical calculations and simulation

results. This section describes the architecture of the HPA.

Design Specification

The majority of the HPA’s functionality is implemented in the PL of the Zynq MPSoC

device. Therefore, the HPA can leverage the deterministic performance and parallel

processing capabilities of an FPGA to measure the processing time of the user’s custom

architecture. The design specification of the HPA is listed below, where architecture

constraints and limitations are introduced to simplify design and implementation. The

HPA should be able to achieve the following.

1. Communicate with the AXI4-Stream Slave interface of the read DMA and the

AXI4-Stream Master interface of the user’s custom architecture.

2. Monitor the AXI4-Stream Slave interface of the read DMA for valid data.

3. Measure the architecture processing time up to a maximum of 5 seconds or more.

4. Achieve processing time accuracy equivalent to the period of the system clock

that drives the user’s custom architecture.

5. Monitor the output AXI4-Stream Master interface of the user’s custom architec-

ture for the end of processing signal (TLAST).

6. Report the processing time measurement using an AXI4-Lite register. The HPA

should also be resettable using the AXI4-Lite interface.
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Specifications 1, 2, 5, and 6 describe how the HPA should integrate into the HIU and

communicate with neighbouring IP Cores. Specifications 3 and 4 introduce accuracy

and measurement limitations to constrain FPGA resource consumption. The limitation

introduced in Specification 3 was necessary to ensure an upper limit is set and prevent

unnecessary allocation of FPGA resources. If the user requires more time, they will be

able to modify the HPA design manually. Specification 4 is necessary to calculate the

architecture processing time accurately. The custom architecture will be operating at a

user-specified clock speed, which can be configured during embedded system integration

described in Section 4.3. Since the system clock can be changed by the user between

development builds, the HPA will need to be flexible to accommodate Specification 4.

The processing time accuracy is set to the period of the system clock, as this is the

minimum time step during architecture operation.

Architecture Development

The HPA architecture does not contain many components and can be readily created

using an HDL counter, an AXI4-Lite interface, and two AXI4-Stream interfaces. An

illustration of the HPA architecture design is presented in Figure 4.3. Notice that the

configuration of the HDL counter is annotated on the diagram.
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Figure 4.3: FPGA architecture of the HPA. The system contains two AXI4-Stream interfaces,
three AXI4-Lite registers, control circuitry, an HDL counter, and a relational operator.
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Two AXI4-Stream interfaces are shown on the left of Figure 4.3. The AXI4-Stream

interface from the read DMA is used to transfer the test image to the HPA. The

TVALID signal of this interface is required to determine the first valid data transfer of

the input image. Similarly, the AXI4-Stream interface from the user’s custom archi-

tecture is responsible for transferring the HPS to the HPA. The TLAST and TVALID

signals are used to identify the last data transfer of this interface.

Three AXI4-Lite registers are shown to the right of Figure 4.3. The first register

stores the HDL counter output and the second register can apply a reset signal to the

HDL counter. The reset signal is asserted by writing to the register from software.

The third register, named ‘saturate’, is used to detect when the counter has reached

its maximum value. The saturate register informs the user that the HPA is unable to

measure the processing time of the LHT architecture as the counter has saturated.

The HPA contains simple control circuitry that determines the first valid data

transfer of the input image and the last data transfer of the corresponding HPS. The

HDL counter calculates the number of clock cycles that have passed since the first valid

data transfer was detected. When the last data transfer of the HPS is detected, the

HDL counter stops accumulating. The user can calculate the processing time from

software by reading the clock cycles register and dividing its value by the system clock

frequency (see Section 4.2.3 for an example). The HDL counter uses a 32 bit wordlength

and saturates when it reaches its final value. This counter is suitable for measuring

5 seconds of processing time for system clock frequencies less than, or equal to, 858 MHz.

4.2.3 Visualisation and Analysis

After the user’s architecture has processed the test image, the Jupyter Lab environment

can be used to visualise and inspect results. Jupyter can leverage existing plotting and

analysis libraries, such as Matplotlib [100] and Plotly, to visualise the HPS. In this

work, the Plotly library is used as it is simple to configure and very well supported with

documentation. Jupyter is also used to calculate the processing time of the architecture

using the clock cycles register in the HPA (shown to the right of Figure 4.3). This

section details the HPS inspection and measurement capabilities of the HEP.
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HPS Inspection

Jupyter Lab and Plotly can be used to visualise and interact with the HPS after it

is retrieved from the user’s LHT architecture. There are many plotting Application

Programming Interfaces (APIs) that can be selected from the Plotly Graphics Objects

library [98], which is typically written as plotly.graph_objs, or abbreviated as go.

Figure 4.4, presents the HPS of the chessboard edge image (previously shown in Figure

3.7d on page 60) when plotted using the go.surface and go.heatmap APIs.

(a) HPS plotted using the go.surface API from
the Plotly Graphics Objects library.

(b) HPS plotted using the go.heatmap API from
the Plotly Graphics Objects library.

Figure 4.4: HPS visualisation using go.surface (a) and go.heatmap (b) interactive plotting
APIs. The user can interact with the plots by zooming, panning, and hovering their mouse
cursor over the plot to reveal cell data.

Each plot of the HPS is easily inspected in a web browser and can be saved and

compared to results from other experiments. This testing environment is useful to

ensure correct operation of the user’s LHT architecture on hardware. The output

HPS can be compared to a software model operating in the Zynq MPSoC’s PS, which

increases the effectiveness of the system for architecture validation. The user has the

freedom to also use different plotting tools that are supported by Python, such as

Matplotlib, Bokeh [101], Seaborn [102], and Ggplot [103]. Alternatively, the resulting

HPS can be offloaded to MATLAB so that it may be inspected using MATLAB plotting

tools [104].
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Processing Time Calculation

The HPA module described in Section 4.2.2 allows the user to accurately measure the

processing time of their custom LHT architecture. The HPA module uses a single 32 bit

counter to maintain a running total of the number of clock-cycles that have passed since

the architecture began operating. When the architecture has completed its operation,

the clock-cycles AXI4-Lite register in the HPA module stores the total number of clock-

cycles required by the architecture to process an image. The processing time can be

easily calculated by multiplying the number of clock-cycles by the system clock period.

For example, a 640× 480 pixel edge image is transferred into an LHT architecture

that uses a system clock frequency of 150 MHz. The total number of clock-cycles

reported by the clock-cycles register is 451,201. The total processing time is calculated

as given in (4.1), and rounded to two decimal places.

Processing Time =
Clock Cycles

System Clock Frequency

=
451, 201

150 MHz

= 3.01 ms

(4.1)

4.3 Embedded System Integration

This section aims to provide insight into the development of the HEP using Math-

Works and the Vivado Design Suite. Several areas of the HEP’s design using HDL

Coder will be investigated. These include implementing the HDL Coder plug-in files,

creating the IP Integrator block design, and developing automated device programming

code. Additionally, embedded PYNQ software is also required to control and interface

with the HEP for visualisation and analysis purposes. The available properties, meth-

ods, and classes of the HEP software drivers and APIs will be explored. Finally, a

typical embedded system integration workflow using the HEP will be described and

demonstrated.
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4.3.1 The HDL Coder Reference Design

This section describes the integration of the HEP reference design with MATLAB and

Simulink. The HEP reference design in this thesis follows the same design principles

as outlined in the MathWorks documentation, which allows users to create their own

custom HDL Coder reference designs [105]. The implementation of associated plug-

in files, custom callback functions, and the general HEP workflow is detailed. Code

snippets are investigated in this section when required. Note that the complete source

code for the HEP can be found electronically in [106]. The versions of software packages

used in this work are also important, as syntax and functionality may differ between

releases. The software packages used in this work are MATLAB R2020a, the Vivado

Design Suite 2020.1, and PYNQ v2.7 for the ZCU104 development board.

Reference Design Requirements

HDL Coder requires information about the underlying architecture and target platform

to rapidly generate embedded system designs for the HEP. The following plug-in files

are required to implement the HEP and are available electronically in [106].

� board design.tcl — Contains the IP Integrator design that should be built during

embedded system integration. HDL Coder does not parse this file for information.

Instead, the file is passed to IP Integrator to build the required board design. The

contents of board design.tcl is described further in Section 4.3.2.

� plugin board.m — Provides information about the target FPGA/SoC device, pro-

gramming options, and the supported tool for bitstream generation. Additionally,

information about FPGA pin constraints can be provided if required.

� plugin rd.m — Provides HDL Coder with details of the underlying architecture

design implemented in the board design.tcl file. Details include system clocks and

resets, the target IP Integrator board design file, AXI4 interface connections, IP

Core repository locations, and custom callback functions to be executed during

the HDL workflow.
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� hdlcoder board customization.m — When HDL Coder is launched, all MATLAB

paths are searched for files that are named hdlcoder board customization.m. This

file provides HDL Coder with locations for active board registration files such as

plugin board.m.

� hdlcoder ref design customization.m — When HDL Coder is launched, all MAT-

LAB paths are searched for this file, as it provides HDL Coder with locations for

active reference designs, such as plugin rd.m.

Reference Design Plug-In Files

HDL Coder reference designs require board registration plug-in files to store informa-

tion about the target platform. The development board used throughout this thesis

is the ZCU104, which is host to the XCZU7EV-2E device. The board plug-in file,

plugin board.m, is configured to inform HDL Coder about the target development plat-

form, as shown in Listing 4.1. The data presented is used to inform Vivado of the

target device, so that it can prepare the implementation environment accordingly.

Listing 4.1: plugin board.m — ZCU104 board plug-in registration file (lines 4-11).

4 % Construct board object

5 hB = hdlcoder.Board;

6 hB.BoardName = 'ZCU104 Development Board ';

7

8 % FPGA device information

9 hB.FPGAVendor = 'Xilinx ';

10 hB.FPGAFamily = 'Zynq UltraScale+';

11 hB.FPGADevice = 'xczu7ev -ffvc1156 -2-e';

A particularly interesting file is plugin rd.m as it contains information about the

IP Integrator block design, clock and reset signals, and associated AXI4 interfaces.

The reference design complexity can be reduced by limiting the user to AXI4-Stream

interfaces at the input and output of their custom LHT architecture. Furthermore,

AXI4-Stream interfaces are already used by the AXI DMA and HPA, further motivating

this decision.
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The AXI4-Stream interfaces should be constrained to 32 bit wordlengths, which

will provide enough bits to interface 8 bit Red, Green, and Blue components. Finally,

the AXI4-Stream interface should be connected to the AXI4-Stream Broadcaster IP

Cores at the slave and master side of the user’s architecture. This functionality is

implemented in Listing 4.2.

Listing 4.2: plugin rd.m — Add AXI4-Stream interfaces to the reference design (lines 53-61).

53 % add AXI -Stream interfaces

54 hRD.addAXI4StreamInterface( ...

55 'MasterChannelNumber ', 1, ...

56 'SlaveChannelNumber ', 1, ...

57 'MasterChannelConnection ', 'axis_broadcaster_s2mm/S_AXIS ', ...

58 'SlaveChannelConnection ', 'axis_broadcaster_mm2s/M00_AXIS ', ...

59 'MasterChannelDataWidth ', 32, ...

60 'SlaveChannelDataWidth ', 32, ...

61 'InterfaceID ', 'AXI4 -Stream ');

In a similar way, the AXI4-Lite interface on the user’s IP Core can be integrated into

the system using plugin rd.m. This functionality is demonstrated in Listing 4.3. Notice

that the AXI4-Lite interface will be added to the master address space of the Zynq’s

PS and the base address is static i.e. 0xA0030000. The interface is also connected

to an AXI interconnect IP Core named ps8 0 axi periph, which is used to collate and

manage AXI communications between the PS, and IP Cores in the PL.

Listing 4.3: plugin rd.m — Add AXI4-Lite interface to the reference design (lines 47-51).

47 % add AXI4 and AXI4 -Lite slave interfaces

48 hRD.addAXI4SlaveInterface( ...

49 'InterfaceConnection ', 'ps8_0_axi_periph/M03_AXI ', ...

50 'BaseAddress ', '0xA0030000 ', ...

51 'MasterAddressSpace ', 'zynq_ultra_ps_e/Data');

The clock and reset signals are connected to the user’s IP Core. This functionality is

presented in Listing 4.4. The clock is sourced from a built-in Vivado IP Core named the

clock wizard. The clock wizard is able to generate user specified clock frequencies that

are passed from HDL Coder into the IP Integrator design. The default frequency of

the clock wizard is 150 MHz, but it can be configured by the user to several frequencies

between 10 MHz and 250 MHz.
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Listing 4.4: plugin rd.m — Add clock and reset signals to the reference design (lines 37-45).

37 % add clock interface

38 hRD.addClockInterface( ...

39 'ClockConnection ', 'clk_wiz/clk_out1 ', ...

40 'ResetConnection ', 'proc_sys_reset_clk_wiz/peripheral_aresetn ' ,...

41 'DefaultFrequencyMHz ', 150 ,...

42 'MinFrequencyMHz ', 10 ,...

43 'MaxFrequencyMHz ', 250 ,...

44 'ClockModuleInstance ', 'clk_wiz ' ,...

45 'ClockNumber ', 1);

Lastly, the reference design will give the user the opportunity to enter the Internet

Protocol (IP) address of the ZCU104 development board. The IP address will allow a

custom programming routine to transfer the generated bitstream and driver software

files to the file system on the ZCU104 platform. This functionality is implemented as

shown in Listing 4.5.

Listing 4.5: plugin rd.m — Add IP address parameter to reference design (lines 12-16).

12 % Add optional custom parameter for setting the ip address of the board.

13 hRD.addParameter( ...

14 'ParameterID ', 'IPAddress ', ...

15 'DisplayName ', 'IP Address of ZCU104 ', ...

16 'DefaultValue ', '192.168.2.99 ');

Custom Programming Callback Function

During a typical HDL Coder workflow, the target FPGA device is programmed with

the generated bitstream. Since the PYNQ framework controls bitstream programming,

the programming step is modified to pass the bitstream and relevant drivers to PYNQ

instead. This functionality is implemented in a custom programming callback function.

The programming callback should create a new folder in the Jupyter workspace to store

the driver software files and the bitstream. Secure Shell (SSH) is required to access

PYNQ remotely. PuTTY is a software program that provides SSH functionality for

Windows operating systems [107]. There are two commands provided by PuTTY that

are useful for issuing SSH requests and transferring files from the local computer to the

remote platform. These commands and their usage are listed as follows:
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� plink [options] [user@]host [command]

� pscp [options] source [source...] [user@]host:target

The plink command allows the local computer to create a new folder in the target

platform’s file system. Once the folder is created, the pscp command is used to transfer

the bitstream and driver files to the newly created folder. Putty is particularly useful, as

the user’s name and password can be passed into the plink and pscp commands as an

optional parameter. The user does not need to interact with the custom programming

process and the design files are seamlessly transferred between the local computer and

remote platform.

Listing 4.6 presents lines 22 to 33 of the custom programming callback function. To

begin, the IP address of the ZCU104 development platform is obtained from an internal

HDL Coder object, known as the infoStruct. Then, the current date and time is used

to create a unique character string. The unique string and IP address are then passed

into an SSH command, which is issued to the ZCU104 platform using plink. The SSH

command creates a new folder named after the unique character string that was formed

from the date and time. The new folder is created in the Jupyter workspace and is

accessible to the user.

Listing 4.6: callback CustomProgrammingMethod.m — Obtain the IP address from the

infoStruct object, obtain the date and time, and create a new folder in Jupyter using SSH and

PuTTY (lines 22-33).

22 status = false;

23

24 % Set IP Address and open default browser

25 ipAddress = infoStruct.ParameterStruct.IPAddress;

26 web(['http ://', ipAddress , ':9090/ lab'])

27

28 % Set date and time and correct format for folder directory

29 dt = datetime;

30 dt.Format = 'ddMMyy_ssmmHH ';

31

32 % Make Jupyter working directory

33 plinkCmd = "plink -ssh xilinx@" + string(ipAddress) + " -pw xilinx ";
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A similar procedure is used to transfer the generated bitstream and driver software

files into the newly created folder in the Jupyter workspace. This procedure is presented

in Listing 4.7. Initially, the address location of the generated bitstream file is obtained.

The pscp command is then used to transfer the bitstream into the remote Jupyter

folder. This operation is repeated for the hardware hand-off file, which is a file generated

by Vivado describing the contents of the IP Integrator block design. Similarly, the driver

directory is also located, which contains the driver software files for operating the HEP

(discussed further in Section 4.3.3). The contents of the directory are then parsed and

the stored files are transferred to the remote folder using the pscp command.

Listing 4.7: callback CustomProgrammingMethod.m — Transfer the generated bitstream and

driver software files into the remote Juypter folder (lines 35-61).

35 system(plinkCmd + mkdirCmd );

36

37 % Transfer bitstream file

38 bitstreamDir = fullfile(pwd , infoStruct.ToolProjectFolder , ...

39 'vivado_prj.runs','impl_1 ','zcu104_hep_wrapper.bit');

40 pscpBitCmd = "pscp -pw xilinx " + bitstreamDir + " xilinx@" + ipAddress ...

41 +":/ home/xilinx/jupyter_notebooks/hep /"+ string(dt)+"/ zcu104_hep.bit";

42 system(pscpBitCmd );

43

44 % Transfer hardware handoff file

45 hwhDir = fullfile(pwd , infoStruct.ToolProjectFolder , 'vivado_prj.srcs', ...

46 'sources_1 ', 'bd', 'zcu104_hep ', 'hw_handoff ', 'zcu104_hep.hwh');

47 pscpHwhCmd = "pscp -pw xilinx """ + hwhDir + """ xilinx@" + ipAddress ...

48 + ":/ home/xilinx/jupyter_notebooks/hep/" + string(dt);

49 system(pscpHwhCmd );

50

51 % Transfer driver files and notebook

52 driverDir = replace(mfilename('fullpath '), ...

53 'callback_CustomProgrammingMethod ', 'drivers\');

54 dirContents = dir(driverDir );

55 for idx = 1: length(dirContents)

56 file = dirContents(idx);

57 pscpDriverCmd = "pscp -pw xilinx """+ driverDir+file.name + ...

58 """ xilinx@ "+ ipAddress +":/ home/xilinx/jupyter_notebooks/hep/" ...

59 +string(dt);

60 if contains(file.name , '.py') || contains(file.name , '.ipynb') || ...

61 contains(file.name , '.jpg')
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4.3.2 The IP Integrator Block Design

To support rapid prototyping, the HDL Coder reference design workflow creates an IP

Integrator block design during hardware system integration. The block design is sourced

from a pre-defined script using Tcl. Upon building the block design, the user’s custom

LHT architecture is inserted into the system at pre-determined locations specified in

the HDL Coder reference design plug-in files. The block design file for the HEP can

be found electronically in [106] for inspection. The same block design can be presented

graphically, as shown in Figure 4.5. The clock, reset, and interrupt signals have been

removed to simplify the diagram. Six points of interest have also been highlighted.
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AXI Direct Memory Access
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Figure 4.5: The IP Integrator block design for the HEP HDL Coder reference design.

At point 1 in Figure 4.5, the Zynq UltraScale+ MPSoC IP Core interfaces with

the FPGA design using two AXI ports; these ports are named S AXI HP2 FPD and

M AXI HPM0 FPD. The AXI master port supports AXI4-Lite single-beat communi-

cation between the FPGA design and the software operating in the PS. The AXI slave

port is useful for transferring fixed-bursts of image data between off-chip memory and

the AXI DMA. Each AXI port contains an AXI Interconnect or an AXI SmartCon-

nect in their data path. These interconnect cores are provided by AMD and support

communication between an AXI port and two or more AXI4 interfaces.
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Point 2 and 3 in Figure 4.5 are the AXI Interrupt Controller and AXI DMA IP

Cores, respectively. The interrupt controller is part of the PYNQ hardware design

methodology and is required to handle interrupt assertions from the PL to the PS [108].

Although not shown in Figure 4.5, the DMA uses two interrupts to communicate events

to software operating in the PS. These interrupts are connected between the AXI

DMA and AXI Interrupt Controller. In particular, the interrupts communicate the

successful completion of read and write transactions between the PL and PS, or report

the occurrence of a system error. Formally, interrupts that communicate between the

PL and the PS are known as Shared Peripheral Interrupts (SPIs).

Upon receiving image data, the AXI DMA transfers the data to the user’s custom

architecture. To facilitate processing time measurements, the AXI4-Stream is dupli-

cated using AXI4-Stream Broadcaster IP Cores, as shown at point 4. The duplicated

stream is sent to the HPA module, presented at point 5. The HPA can then measure

the number of clock-cycles required to process the candidate test image and retrieve

results. At point 6, the user’s custom architecture will be inserted during embedded

system integration using the HDL Coder workflow. Notice that the custom architecture

consists of three AXI4 interfaces. These are the primary slave and master AXI4-Stream

interfaces for communicating with the AXI DMA, and an AXI4-Lite slave interface con-

nected to the M AXI HPM0 FPD port, via the AXI Interconnect.

4.3.3 Control and Analysis Software

The HEP requires software drivers to operate correctly. Python classes have been

created for the PYNQ overlay and the HPA IP core. These are the HoughEvaluation

and HoughPerformance classes, respectively. Each class inherits all the methods and

properties from classes in the core PYNQ library [109]. A Unified Modeling Language

(UML) diagram of the HEP software drivers is given in Figure 4.6. Several PYNQ

library files are used by the HEP. The main files are overlay.py and dma.py, which

contain the Overlay and DMA classes, respectively. The HEP also contains custom

Python classes stored in two files: hep.py and hpa.py.
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hpa.HoughPerformance

reset 

clock_cycles †
overflow †

pynq.overlay.DefaultIP

hpa.py
hpa *

† Property is read-only
* Object contained inside class

pynq / overlay.py

pynq.overlay.Overlay

hep.HoughEvaluation
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drho †

dtheta †
time †

imread ( )
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sobel_edge ( )
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plot_surface ( )
plot_heatmap ( )

display ( )
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pynq / overlay.py

PYNQ
Libraries

Hough
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Platform

pynq.lib.dma.DMA

pynq / lib / dma.py

axi_dma *

Figure 4.6: A UML diagram representing the properties, methods, and classes of the HEP
software drivers and APIs.

As described in the PYNQ documentation, when the Overlay class is initialised,

it searches known library files for a special property named bindto. This property

will contain a vendor, library, name, and version (VLNV) string that is used to bind

a Python driver to an IP core with a matching VLNV in the IP Integrator design.

This process is used to bind the custom HoughPerformance class to the HPA IP core.

The remainder of this section will describe the custom Python classes for the HEP.

Complete source code listings can be found electronically in [106].
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The HoughEvaluation Class

The HoughEvaluation class is stored in hep.py and inherits from the PYNQ Overlay

class [110], which maintains track of the bitstream’s state and the contents of the FPGA.

The Overlay class is able to expose IP cores to the user and bind software drivers to

IP cores as required. The class is also able to program the FPGA with a bitstream.

The HoughEvaluation class is configured to store information about the HEP. The

user must initialise the class by specifying the acceptable width and height of the LHT

architecture, and the system clock frequency. Optionally, the user may also specify the

value of δρ and δθ, which are named drho and dtheta in the code, respectively. There are

several methods that have been added to the HoughEvaluation class to allow users to

easily perform common tasks and processes. Methods include colour conversion, Sobel

edge detection, Plotly surface and heatmap plots, and an LHT method that executes

the user’s custom LHT architecture.

Also included in the HoughEvaluation class are the axi dma and hpa objects that

interact with the underlying hardware design. The axi dma is an object of type DMA,

which controls the AXI DMA IP core in the FPGA logic fabric. The driver is provided

in the core PYNQ library in the dma.py source file [111]. The HEP uses already existing

methods in the DMA class to interact with the AXI DMA and control the transfer of

data between the Zynq’s PS and PL. Notably, the DMA class inherits properties and

methods from PYNQ’s DefaultIP class [112]. The DefaultIP class is very useful for

creating new IP core drivers as it provides AXI4-Lite register read and write methods.

The HoughPerformance Class

The HoughPerformance class also inherits the DefaultIP class to simplify its design.

Recall previously in Section 4.2.2 that the HPA IP core contains three AXI4-Lite reg-

isters. These are the reset, clock cycles, and overflow registers. As presented in Figure

4.6, the HoughPerformance class contains three corresponding properties. Both the

clock cycles and overflow registers are read-only. The clock cycles property can be read

to obtain the number of clock cycles required to complete architecture operation. The

reset property can be controlled by the user to reset the HPA after operation.
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4.3.4 HEP System Integration Workflow

A flow diagram illustrating the HEP system design workflow is shown in Figure 4.7.

There are five main stages: planning, HDL Coder design, Vivado integration, PYNQ

integration, and system redesign. The workflow begins at the specification stage and

ends after application execution and testing.

Specification
Design

Model
Design &

Simulation

System
Integration

Bitstream
Generation

IP Integrator
Project

Creation

HDL Code
Generation

Software
Design

Application
Execution &

Testing

Start

Finish

HDL Coder
Design and

Development

PYNQ
Application
Integration
and Design

Redesign

Planning

Vivado
Design Suite
Integration

Figure 4.7: A diagram depicting the HEP embedded system design workflow.

The properties of the LHT architecture are defined in the specification stage. The

architecture is then modelled and simulated using HDL Coder. When the architecture is

ready, HDL code is generated and an IP Integrator block design is created. The FPGA

bitstream is generated and the PYNQ framework is initialised with the hardware design.

The user can add their own software and test their LHT application. If the LHT system

fails to meet expectations, the architecture can be redesigned. Both Vivado and HDL

Coder are essential, as their combined capabilities allow designers to rapidly generate

FPGA systems for Zynq MPSoC devices. PYNQ enables the visualisation and analysis

capabilities previously described in Section 4.2.3. The remainder of this section presents

a typical workflow using the HEP, which begins with a Simulink template model for

architecture design and simulation.
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The HEP Simulink Template

To simplify system integration, the user is provided with a Simulink template model

to create their custom LHT architecture. The template model is preconfigured with

appropriate HDL properties that bind to the HEP reference design. The Simulink

template model is presented in Figure 4.8 and contains four subsystems.

Figure 4.8: The Simulink reference design template to simplify HEP integration.

The DUT subsystem (also known as the Design Under Test) will contain the user’s

custom LHT architecture design. The Read DMA subsystem simulates an AXI DMA

transfer from the PS to the PL. Similarly, the Write DMA subsystem simulates an

AXI DMA transfer from the PL to the PS. Lastly, the HPA subsystem measures the

architecture’s processing time.

The designer configures the DUT subsystem to their custom LHT architecture de-

sign. When complete, the model can be simulated to ensure correct operation before

system integration. The user can select their own custom images to be transferred

into the DUT using the Read DMA subsystem. The image is then transferred by the

Read DMA subsystem when the ps transfer input port receives a rising edge. After the

image is processed in the DUT, it is transferred to the Write DMA subsystem where

it is buffered for analysis. During the simulation, the HPA subsystem measures the

number of clock cycles required to complete the architecture operation.

113



Chapter 4. The Hough Evaluation Platform

The HDL Workflow Advisor

The plug-in files described in Section 4.3.1 are loaded into HDL Coder when it is

launched. The plug-in files integrate into HDL Coder’s Workflow Advisor software tool,

allowing the user to follow a series of steps to generate the HEP’s bitstream and program

the target platform. The HDL Workflow Advisor targets the DUT subsystem presented

in Figure 4.8. There are four primary steps that include setting the target platform,

preparing the model for HDL code generation, performing HDL code generation, and

carrying out embedded system integration. A screenshot of the HDL Coder Workflow

Advisor is presented in Figure 4.9.

Figure 4.9: A screenshot of the HDL Coder Workflow Advisor.

To perform embedded system integration, the user has the option to follow the

steps outlined in the HDL Workflow Advisor. This thesis will not explore each step of

this process, as these are covered extensively in the documentation provided by Math-

Works [113]. Instead, changes and customisations to the workflow that are required to

implement the HEP are described. These include setting the board IP address and sys-

tem clock frequency properties, configuring the DUT’s target interface for AXI4-Stream

communication, and implementing the custom programming callback step.
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Configuring Embedded System Properties

During Step 1.2 of the HDL Workflow Advisor, the user is prompted to enter the IP

address of the ZCU104 development platform. The IP address is required later in

Step 4.3 to upload the software driver files and bitstream to the Jupyter file system

using SSH. A screenshot of Step 1.2 is presented in Figure 4.10. This user prompt is

associated with the code given in Listing 4.5.

Figure 4.10: A screenshot of the HDL Workflow Advisor during Step 1.2. The board IP
address is set for SSH communication.

The system clock frequency, which is used to operate the custom LHT architecture,

is configured in Step 1.4 of the HDL Workflow Advisor. As shown in Figure 4.11, the

user is prompted to enter a clock frequency between 10 MHz and 250 MHz. This user

prompt corresponds to the code presented in Listing 4.4.

Figure 4.11: A screenshot of the HDL Workflow Advisor during Step 1.4. The system clock
frequency is configured.

The code presented in Listing 4.2 creates two new AXI4-Stream interfaces for the

HEP reference design. The resulting interfaces are then connected to the AXI4-Stream

Broadcasters in the IP Integrator design. This functionality is applied in Step 1.3

of the HDL Workflow Advisor, which is presented in Figure 4.12. The AXI4-Stream

signals are applied to their Simulink counterparts in the target platform interface table

(highlighted in red).

115



Chapter 4. The Hough Evaluation Platform

Figure 4.12: A screenshot of the HDL Workflow Advisor during Step 1.3. Setting the target
interfaces for HDL code generation.

Programming the Target Platform

The final stage of the HDL Workflow Advisor is programming the target platform.

Recall previously in Section 4.3.1 that a custom callback function was created that

uploads the software driver files and bitstream into the Jupyter file system. Running

Step 4.3 of the HDL Workflow Advisor performs this operation and also opens the

Jupyter workspace in a web browser. Figure 4.13 presents the Jupyter workspace after

custom programming. Notice the file system contains all of the required software,

bitstream, and the default HEP notebook.

Figure 4.13: A screenshot of the Jupyter environment that is accessed using a web browser.
The HEP software drivers, bitstream, and default notebook have been transferred into the file
system using SSH.
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4.4 Analysis and Evaluation

In this section, the HEP is evaluated for its FPGA resource consumption and timing

closure. Furthermore, a parallel LHT architecture was designed to test the HEP’s

system integration and analysis capabilities. The implementation of the parallel LHT

architecture is presented in Appendix B and is based on the work described in [87].

4.4.1 Implementation Results

The Vivado Design Suite was used to synthesise and implement the HEP to evaluate its

FPGA resource consumption and timing closure. The HEP was initially implemented

separately from the LHT architecture given in Appendix B. The target clock frequency

of the HEP was 250 MHz, and the allocated FPGA resources were reported as shown

in Table 4.1. The HEP consumes 5 BRAM tiles for the AXI DMA and very few logic

fabric resources i.e. FFs, LUTs, and LUT RAM.

Table 4.1: FPGA resource requirements for the HEP on the XCZ7UEV-2E device.

Resource Available Used Percentage (%)

LUTs 230,400 5,792 2.51
LUT RAM 101,760 1,035 1.02
FFs 460,800 8,944 1.94
BRAM 312 5 1.60
DSP48E2 1,728 0 0.00

The LHT architecture given in Appendix B was implemented on the ZCU104 plat-

form using the HEP. The architecture was designed to apply the LHT to an image of

1920 × 1080 pixels and the discrete step across the HPS axes was set to δρ = 1 and

δθ = 1°. The LHT architecture was able to achieve a maximum clock frequency of

200 MHz. The FPGA resource allocation was reported as shown in Table 4.2.

Table 4.2: FPGA resource requirements for the HEP and LHT on the XCZ7UEV-2E device.

Resource Available Used Percentage (%)

LUTs 230,400 22,553 9.79
LUT RAM 101,760 1,003 0.99
FFs 460,800 17,496 3.80
BRAM 312 275 88.14
DSP48E2 1,728 89 5.15
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The parallel Hough kernel uses 89 DSP48E2 slices to implement (3.2). The num-

ber of memory bits required to store the HPS for an image of 1920 × 1080 pixels is

4,790,640 bits, which is calculated using (3.5). If the HPS was mapped directly to

BRAM resources, without considering circuit limitations and throughput, the number

of BRAM tiles required would be 130. However, the FPGA resources allocated to the

accumulator memory is 270 BRAM tiles using the XCZ7UEV-2E device. Each accu-

mulator subsystem consumes one 36 Kb BRAM and one 18 Kb BRAM to store the

votes for one angle in θ. The BRAM resources to store the HPS for the parallel LHT

architecture are significantly overallocated.

The parallel LHT architecture was generated for several image resolutions to eval-

uate its memory consumption compared to the standard LHT. These architectures can

be investigated electronically in [106]. Table 4.3 presents the total memory bits to

store the HPS for the standard LHT and parallel LHT. The standard LHT memory

requirements were computed using (3.5). The parallel LHT memory consumption was

determined by the number of BRAM tiles required to implement the architecture on

the XCZ7UEV-2E device. Note that δρ = 1 and δθ = 1° for each implementation.

Table 4.3: The HPS memory consumption of the standard LHT and the parallel LHT.

Resolution
(Pixels)

Standard LHT Parallel LHT
Memory Over
Allocated(%)Total Bits

BRAM
Total Bits

18 Kb 36 Kb

320× 240 648,000 180 — 3,317,760 512.00
333× 333 764,640 180 — 3,317,760 433.90
512× 512 1,306,800 180 — 3,317,760 253.88
800× 600 1,800,000 180 — 3,317,760 184.32
1024× 768 2,534,400 — 180 6,672,384 263.27
1280× 720 2,910,600 — 180 6,672,384 229.24
1920× 1080 4,760,640 180 180 9,953,280 209.07

The parallel LHT is memory inefficient for small image resolutions. For example,

when applying the LHT to an image of 320 × 240 pixels, the parallel LHT allocates

3,317,760 bits of memory using 180 18 Kb BRAMs. However, the standard LHT requires

at least 648,000 bits to store the HPS. The parallel LHT inefficiently over allocates 512%

of the necessary memory resources, as shown in the final column of Table 4.3. The other

image resolutions also exhibit similarly inefficient allocations of BRAM tiles.
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4.4.2 Processing Time Results

The HEP can calculate the processing time of the parallel LHT architecture presented

in Appendix B. The processing time of this architecture for one 1920×1080 pixel image

is reported by the HEP as 12.35 ms. This processing time corresponds to a frame rate of

approximately 80.96 fps. This frame rate is suitable for applying the LHT to the FHD

video standard, which uses 1920 × 1080 pixels per video frame in progressive display

mode at 60 fps. The parallel LHT architecture was also hardware validated using the

HEP for other image resolutions. The processing time results are presented in Table

4.4 and are rounded to two decimal places.

Table 4.4: Processing time results of parallel LHT architectures that target various image
resolutions. The processing time column contains measurement results from the HEP.

Resolution
(Pixels)

Clock Frequency
(MHz)

Processing Time
(ms)

Frames Per
Second (fps)

320× 240 250.00 0.60 1,666.67
333× 333 250.00 0.79 1,265.82
512× 512 250.00 1.57 636.94
800× 600 250.00 2.64 378.79
1024× 768 225.00 4.52 221.24
1280× 720 225.00 5.27 189.75
1920× 1080 200.00 12.35 80.96

The fastest processing time is achieved by the smallest image resolution, which is

320 × 240 pixels. The parallel LHT architecture can process this image resolution in

0.60 ms, corresponding to 1,666.77 fps. This frame rate is very suitable for safety critical

tasks required by the embedded applications discussed previously in Section 3.4.

4.4.3 Architecture Validation and Testing

Software validation is performed by comparing the output HPS of the LHT architecture

with the results of an LHT software model designed in MATLAB. The source code for

this software model is presented in Appendix B and operates by applying the LHT

to a candidate test image to produce an output HPS. The resulting HPS from the

architecture design and the output HPS from the software model are directly compared.

When both models produce the same HPS across one or more candidate test images,
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the LHT architecture is ready for HDL code generation and system integration. The

author of this thesis recognises that robust tests are required to achieve application

specifications and constraints. However, the software validation approach described

above is suitable for research and development purposes.

The primary advantage of using the HEP is its ability to validate LHT architecture

designs on the physical target device. After bitstream generation, code automation is

performed where all necessary system files are transferred into the Jupyter environment

on the ZCU104 development board. From here, the user can perform hardware vali-

dation using the LHT architecture to process an input test image. The resulting HPS

can then be compared with the same software model used previously during software

validation or with a new software model in the Jupyter environment.

The parallel LHT architecture design was successfully validated on hardware using

two different test images. These images and their edge-detected representations are

given in Figure 4.14.

(a) Colour image of a window. (b) Colour image of a set of stairs.

(c) Edge image of the window. (d) Edge image of the set of stairs.

Figure 4.14: Two test images (a) and (b). Their corresponding edge images (c) and (d) using
Sobel edge detection with a threshold of 80 and 70, respectively.
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The parallel LHT architecture and software model of the LHT both return the HPS

of an input image. For each test image in Figure 4.14, the HPS returned by the simu-

lation and software model of the LHT were compared using element-wise comparison

techniques. This comparison involves simultaneously iterating through the elements of

both HPS arrays and applying the equality operator to determine if both arrays are

equal. Note that the equality operator is ‘==’ for most programming languages. The

resulting HPS for each image is given in Figure 4.15.

(a) Isometric view of the window HPS. (b) Isometric view of the stairs HPS.

(c) Top-down view of the window HPS. (d) Top-down view of the stairs HPS.

Figure 4.15: HPS results for the hardware validation of the parallel LHT architecture on the
XCZU7EV-2E device. The isometric view of the HPS for the window image (a), and the stairs
image (b). The top-down view of the HPS for the window image (c), and the stairs image (d).
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Finally, the parameters of lines are obtained from the HPS for each test image and

are reconstructed using (3.6) and (3.7). Figure 4.16 presents the line reconstruction

results for each input test image.

(a) Reconstructed line image of the input win-
dow edge image.

(b) Reconstructed line image of the input stairs
edge image.

(c) Overlay of the reconstructed image and the
original colour image of the window.

(d) Overlay of the reconstructed image and the
original colour image of the stairs.

Figure 4.16: Line reconstruction results for the test images input into the parallel LHT
architecture. The reconstructed line images of the window (a) and stairs (b). The reconstructed
lines overlaid on top of the original colour images of the window (c) and stairs (d).

Figure 4.16a and Figure 4.16b contain the reconstructed line images for the window

and stairs, respectively. The reconstructed line images are overlaid on top of the original

colour images for inspection in Figure 4.16c and Figure 4.16d. Notice that the lines

correspond with collinear features in the original test images.

The HEP was also used to validate the LHT architecture using the Jupyter envi-

ronment, as shown in Figure 4.17 for the window image and Figure 4.18 for the stairs

image. The resulting HPS for each test image was the same as that produced by the

LHT simulation and MATLAB software model. This comparison was performed using

the same procedure used to compare the HPS arrays produced by the simulation and

software model of the LHT.
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Figure 4.17: This screenshot presents the HEP Jupyter environment, where the LHT archi-
tecture is undergoing hardware validation using the window image.
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Figure 4.18: This screenshot presents the HEP Jupyter environment, where the LHT archi-
tecture is undergoing hardware validation using the stairs image.
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4.4.4 Comparison with FPGA-in-the-Loop Simulation

Upon reviewing previously published literature, it was found that the HEP is the first

open-source tool of its kind. The HEP combines PYNQ and MathWorks HDL Coder,

performs on-target validation of FPGA architectures, and accurately computes the

processing time of implemented designs. However, there is a verification technique for

FPGA architectures known as an FPGA-in-the-loop (FIL) simulation that is worth

comparing against to establish the significance of the HEP as a novel contribution.

An FIL simulation is an established technique for verifying the functionality of an

FPGA architecture design. The basic principles of an FIL simulation involve imple-

menting an architecture design on a target FPGA device that may interface with other

physical instruments or components. The FPGA architecture design also integrates

with a simulation model of a more extensive system operating on a host computer.

Researchers and developers generally use the simulation model to inject testing stim-

ulus into the FPGA architecture over an interface such as a Joint Test Access Group

(JTAG) connection or Ethernet. MathWorks has a commercial solution for performing

FIL simulations, which has extensive documentation in [114].

The HEP offers researchers and developers several advantages compared to an FIL

simulation environment. These advantages are listed as follows.

1. External Interfaces — Researchers and developers can generate and store test

data using the HEP’s Jupyter Lab environment, which executes on the Zynq

MPSoC’s PS. Compared to FIL simulations, this capability of the HEP is ad-

vantageous as it is not necessary to use an external interface to transfer data

between a host computer and the target device. This feature of the HEP allows

researchers and developers to readily deploy their FPGA architecture designs in

a testing scenario without connecting externally to a host computer.

2. Communication Overhead — During FIL simulations, the target device and host

computer often exchange test data using an external interface. This communi-

cation interface introduces latency and overhead, which may not reflect the true

behaviour of the FPGA architecture design when it operates outside of FIL sim-
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ulations. In contrast, the HEP does not have this issue, as it can transfer test

data to and from the Jupyter Lab environment at the intended execution speed

of the FPGA architecture.

3. Realistic Execution — FIL simulations provide a near hardware-accurate testing

environment. However, due to communication overhead, they cannot capture the

realistic behaviour of the FPGA architecture design in a deployed system. In

contrast, the HEP does not have communication overhead. This capability of

the HEP is essential to researchers and developers as the processing time of the

FPGA architecture can be computed accurately during execution.

The HEP offers significant advantages compared to FIL simulations and improves

FPGA architecture verification capabilities. However, FIL simulations are readily sup-

ported across several FPGA devices, while the HEP is currently supported on one

development board (the ZCU104). Adding HEP support for other development boards

requires engineering and development time. Furthermore, the HEP is only available for

the Zynq MPSoC and Zynq-7000, as these devices have PYNQ support.

4.4.5 Discussion of Results

The primary motivation of this thesis is to reduce the memory requirements of the

LHT for FPGA devices. To begin exploring the memory consumption of the HPS, a

suitable development environment, design and testing framework, and FPGA integra-

tion workflow are required. As demonstrated in this chapter, the HEP provides all of

these requirements and is very effective in rapidly producing LHT architecture designs.

Furthermore, this work is the first FPGA development and evaluation environment

that combines PYNQ and MathWorks HDL Coder. Note that the HEP could also be

used to develop and evaluate FPGA architectures for other image and signal processing

applications beyond that of LHT circuit designs. However, this capability of the HEP is

not the focus of the work presented in this thesis and would require further engineering

and development time depending on the target application and algorithm.

A significant outcome of this chapter is the design and testing framework that has
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emerged as a result of creating the HEP. For instance, LHT architectures are captured

using MathWorks HDL Coder blocks and are simulated to verify architecture operation.

Software simulations of an LHT architecture are useful as they can help identify design

errors before synthesis and implementation, which are particularly time-consuming. As

described in Section 4.4.3, architectures can be verified on the physical target device

by comparing hardware results with corresponding software models. This verification

technique improves the testing of hardware architectures beyond software simulations

and provides an effective technique for architecture validation.

The system integration workflow that is described in Section 4.3.4 is another im-

portant outcome of this work. When a new LHT architecture is in development, each

design variation undergoes a similar development framework, which is presented in Fig-

ure 4.7. Maintaining a robust development workflow reduces the risk associated with

design errors, which may result in incorrect research claims and results.

Finally, the implementation of the LHT on the XCZ7UEV-2E device has been

enabled by the HEP and its underlying development framework. There are many

significant findings in this work, which include FPGA resource consumption reports

and processing time analysis of the parallel LHT architecture described in Appendix

B. The primary issue identified with this LHT architecture design is the large memory

requirement of the accumulator array. The efficiency of the HPS needs to be improved

to decrease on-chip memory allocation. The remainder of this thesis investigates on-

chip memory consumption and FPGA resource allocation of the LHT.

4.5 Conclusion

A system overview and design specification of the HEP was described at the beginning of

this chapter. Subsequently, an architecture overview of the HIU and HPA was provided.

Several components of the HIU, including the AXI DMA, AXI4-Stream Broadcaster,

and the HPA were explored. The software components of the HEP were then described.

These components included the visualisation and analysis capablities of Jupyter Labs

using the Plotly Python library, and the processing time analysis of the user’s custom

LHT architecture design.
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After describing several features of the HEP, the MathWorks HDL Coder reference

design was presented. Several aspects of its design were investigated, including its plug-

in files and automated programming workflow. The IP Integrator block design was

then explored, alongside a UML diagram representing the properties, methods, and

classes of the HEP’s software drivers and APIs. Finally, the HEP system integration

workflow, template, and programming steps were described. Analysis and evaluation of

the HEP and a parallel LHT architecture were carried-out. Results concluded that the

HEP was able to achieve a target clock frequency of 250 MHz with very low resource

consumption. The LHT architecture achieved a maximum clock frequency of 200 MHz.

This architecture consumed 270 BRAM tiles and 89 DSP48E2 slices on the XCZ7UEV-

2E device when targeting an image resolution of 1920× 1080 pixels.

A notable output of this work is the open-sourcing of the HEP, which is now a

software tool that is freely available online [106] to download. At the time of writing,

the HEP is regularly downloaded by approximately five unique users per week. This

level of community engagement is high for a niche evaluation platform targeting the

LHT. The HEP will allow other researchers in the community to design and evaluate

their own LHT architectures. There are also three primary findings and outcomes from

the work undertaken in this chapter. These are listed as follows:

1. The HEP and its design was described and the LHT architecture development

framework was explored. For the remainder of this thesis, the HEP will be used

to rapidly design and evaluate the LHT architectures presented in Chapter 5 and

Chapter 6.

2. To ensure the LHT architectures are designed correctly in subsequent chapters,

their testing and hardware validation can be performed using the HEP. This

design and testing methodology will ensure that all architecture designs can be

compared fairly and with research integrity.

3. The FPGA resource consumption of the parallel LHT architecture in Appendix

B was significantly higher than that required by the standard LHT. In particu-

lar, BRAM resources were inefficiently allocated to the accumulator array, leaving
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several memory locations unused. In Chapter 5, a bit-packing scheme is employed

to reduce BRAM memory consumption without compromising on the LHT’s con-

figuration and design specification.
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Chapter 5

A Symmetric Hough Kernel and

Bit-Packed Accumulator

5.1 Introduction

Parallel LHT architectures require many specialised FPGA resources to implement the

Hough kernel and accumulator memory. A significant issue with LHT architecture

designs that process large image resolutions is their inefficient allocation of memory

resources to store the HPS. This inefficiency often leads to the overconsumption of on-

chip FPGA resources, such as BRAMs and LUT memories. Consequently, inadequate

accumulator designs require FPGA devices with significant memory resources.

This chapter presents a novel technique to reduce the resource consumption of the

accumulator memory in LHT architecture designs. This technique is named the Sym-

metric LHT, as it exploits symmetry in the spatial image domain to reduce computation

and decrease on-chip memory allocation. Furthermore, resource-sharing techniques are

employed to decrease the arithmetic resources allocated to the Hough kernel. It is

important to note that the Symmetric LHT algorithm and architecture can apply the

LHT to an image without affecting the accuracy of line extraction, i.e. it produces the

same results as the standard LHT in [3]. Finally, this chapter describes the Symmetric

LHT architecture design and presents its FPGA resource consumption and processing

time results as reported by the Vivado Design Suite and the HEP, respectively.
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5.2 The Symmetric LHT

This section describes the Symmetric LHT algorithm and evaluates its memory and

arithmetic resource consumption in AMD FPGA devices. The Symmetric LHT al-

gorithm contains five stages. Figure 5.1 presents an overview of each stage using a

functional block diagram.

Stage 1 Stage 2

Stage 3

Stage 4Stage 5

Input
Image

Sobel
Edge Detection

Fold Edge Image
Across the y-axis

Efficiently
Compute the

Hough Parameters

Apply Votes to
the Bit-Packed
Accumulator

Obtain Peaks in
the HPS for Line
Reconstruction

Line
Image

Edge
Image

Folded
Edge Image

Hough
Parameters

HPS

Figure 5.1: Functional block diagram of the Symmetric LHT, which presents five main stages
of the algorithm.

Initially, edge detection is applied to an input image at Stage 1 of the algorithm.

Stage 2 reduces the computational requirements of the LHT by folding the input edge

image across the y-axis. Stage 3 efficiently calculates the Hough parameters for two edge

pixels that are symmetrical across the y-axis using only one set of image coordinates.

In Stage 4, the Hough parameters vote and form peaks in the bit-packed accumulator

array. The final stage performs peak extraction in the HPS to obtain Hough parameters

corresponding to lines within the input image. The remainder of this section provides

further detail about each stage of the Symmetric LHT. The next section will briefly

describe FPGA resource sharing, as this is an important technique used to design the

Symmetric LHT architecture.
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5.2.1 Resource Sharing

FPGA architecture designs operate at a specified clock frequency, commonly denoted

as fclk. Architecture designs can operate at sample frequencies equal to fclk or at an

integer sub-multiple of fclk using clock-enable logic. Architectures that have more than

one sample rate are known as multirate systems. The Symmetric LHT uses a common

FPGA architecture design technique known as resource sharing, which exploits mul-

tirate systems to optimise resource consumption [115]. Resource sharing is performed

by time multiplexing signals into an FPGA resource that performs the same arith-

metic operation on each input signal. To explain this technique, consider the FPGA

architecture design in Figure 5.2, which multiplies two inputs by a constant value.

fclk/2Constant

Input 1

Input 2

Output 1

Output 2

sampling
frequency = fclk/2

Figure 5.2: An FPGA architecture that multiplies two input signals by a constant value.

The input signals use a sampling frequency that is half of the architecture’s clock

frequency, i.e. fclk/2. In this architecture, there are two separate multipliers that

each perform a multiplication operation for each input signal. It is possible to use one

multiplier in this design through resource-sharing techniques. Figure 5.3 presents a

resource-shared version of the above architecture.

fclk/2Constant

Input 1

Input 2

Output 1

Output 2

sampling
frequency = fclk/2

0

1

0

1

Phase

2

2

2

2

Sample
and
Hold

Down
Sample

Resource Shared

Figure 5.3: An FPGA architecture that exploits resource sharing to multiply two input signals
by a constant value using one multiplier.
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The sampling frequency of each input signal is half of the architecture’s operational

clock frequency. The multiplier in the design can operate at the higher sample fre-

quency, which is equal to the architecture’s clock frequency, fclk. The input signals are

time multiplexed into the multiplier using the phase signal to swap between each input.

It is only possible to use resource-sharing techniques when the sampling frequency of

the input signals are lower than the architecture’s clock frequency by an integer fac-

tor. The Symmetric LHT architecture design uses resource sharing to approximately

half the number of FPGA resources required to compute the Hough parameters. This

reduction in complexity is described in the following section.

FPGA resource sharing will be highlighted in architecture designs of the Symmetric

LHT for the remainder of this chapter. The colour convention presented in Figure 5.3

will be used to indicate different sample frequencies in a multirate architecture design.

The colours and their representative sample frequencies are listed below.

� Red/Pink — These colours represent the maximum sample frequency of the ar-

chitecture, which is fclk.

� Green — This colour is used to indicate a sample frequency of fclk/2.

� Orange — This colour indicates a rate change in the architecture design.

The Symmetric LHT architecture design does not require a sample frequency lower

than fclk/2. Therefore, only three colours are required.

5.2.2 Spatial Domain Symmetry

The standard LHT equation in (3.2) uses image coordinates to calculate a line’s mag-

nitude of displacement ρ from the image origin. It is possible to reduce the total

computation required to calculate ρ by exploiting the symmetry of coordinates in the

spatial domain. Consider the illustration in Figure 5.4, which contains two 10×10 edge

images. Each edge image is annotated with axis labels to clearly show their coordinate

systems. The edge image on the left contains the coordinate system used by the parallel

LHT architecture described in [87], while the right edge image contains the coordinate

system used by the Symmetric LHT.
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Figure 5.4: Coordinate system used by the parallel LHT architecture (left). Coordinate
system used by the Symmetric LHT architecture (right).

The coordinate system on the left of Figure 5.4 is used by most implementations

of the LHT. The coordinate system on the right of Figure 5.4 will be used by the

Symmetric LHT to reduce computation. This coordinate system contains symmetry

over the y-axis when positive and negative signs are ignored. Notice, that there are two

points in this coordinate system that are labelled A and B. The coordinates for each

point are (−5,−5) and (5,−5), respectively. The Hough parameters can be calculated

for each point by using their coordinates in (3.2). However, it is possible to calculate

the Hough parameters for each point using only one set of coordinates as

ρ(θ) = xi cos(θ) + yi sin(θ)

= −xi cos(180°− θ) + yi sin(180°− θ).
(5.1)

The relationship presented in (5.1) demonstrates that the Hough parameters for

points A and B can be calculated using one set of coordinates. This relationship is

true for all points of the input edge image that are symmetrical across the y-axis. The

width of the input image must be even and the coordinate system presented in the

right of Figure 5.4 must be adopted. The FPGA architecture of a symmetric Hough

kernel that exploits (5.1) will be able to calculate the Hough parameters for two points

of the input image at the same time. The accumulator architecture can leverage this

design to bit-pack votes and reduce memory consumption.
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An example that demonstrates the relationship in (5.1) will now be presented.

Consider points A and B that were shown previously in Figure 5.4. For this example, the

Hough parameters for each point will be calculated using (3.2). The Hough parameters

for point A and B will be denoted as ρA(θ) and ρB(θ), respectively. The discretisation

step of θ will be 22.5°. The Hough parameters for points A and B are presented in

Table 5.1 and are rounded to two decimal places.

Table 5.1: LHT results for two points A and B, when δθ = 22.5°.

θi 0° 22.5° 45° 67.5° 90° 112.5° 135° 157.5°

ρA(θi) -5.00 -6.53 -7.07 -6.53 -5.00 -2.71 0.00 2.71
ρB(θi) 5.00 2.71 0.00 -2.71 -5.00 -6.53 -7.07 -6.53

The results in Table 5.1 show that ρA(0°) = −ρB(0°), ρA(22.5°) = ρB(157.5°),

ρA(45°) = ρB(135°), ρA(67.5°) = ρB(112.5°), and ρA(90°) = ρB(90°). These results

indicate that the relationship given in (5.1) can be used to reduce the total computation

of the Hough kernel architecture in half. The Symmetric LHT algorithm described in

this thesis only functions when Nθ is even. It is also worth noting that spatial domain

symmetry of the x-axis was not considered during the development of the Symmetric

LHT algorithm. It was found that half of the input image would need to be buffered

using on-chip memory before x-axis symmetry could be exploited. This operation would

consume a considerable amount of memory resources.

The Symmetric LHT also uses the resource-saving techniques presented in [87] to

further reduce the number of multiplication operations. This thesis has already pre-

sented these techniques, including the efficient Hough kernel illustrated in Figure 3.18

and the Look Ahead Kernel shown in Figure 3.19. The Symmetric LHT uses signif-

icantly fewer multiplications than are required by the standard LHT defined in [3].

For example, when θ operates over the range [0°, 179°] and δθ = 1°, the standard LHT

requires 360 multiplications. Exploiting spatial domain symmetry reduces the number

of multiplications to 180. The efficient Hough kernel in [14] reduces multiplication re-

quirements to 90. Lastly, employing the Look Ahead Kernel in [20] reduces the number

of required multiplications to 46. The symmetric Hough kernel architecture design is

detailed further in Section 5.3.4.
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5.2.3 Parallel Pixel Processing

A common technique to reduce the system clock frequency of an FPGA system is to

process two or more samples every clock period. These types of FPGA designs are

commonly referred to as Super Sample Rate (SSR) architectures and are often used

in high sample rate radio applications, or computer vision systems that require large

image resolutions. The Symmetric LHT is able to leverage SSR architecture design

to reduce DSP48E2 slice and BRAM tile consumption. Consider the parallel pixel

streaming diagram presented in Figure 5.5.
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Figure 5.5: Scanning an M ×N image (left), parallel pixel stream of the image (right). Each
row of the image is streamed from the image centre to the image borders.

It was previously established in Section 5.2.2 that two symmetric edge pixels across

the y-axis can be processed at the same time. The diagram illustrated in Figure 5.5

demonstrates how a candidate image should be streamed through the Symmetric LHT

architecture so that symmetry across the y-axis can be exploited.

The diagram shows that the each row of the image is streamed from the image centre

to the image borders. This streaming configuration can be achieved by storing the first

half of an image row using a First In Last Out (FILO) buffer. As soon as half of the

image row is buffered, the last pixel that was pushed into the FILO is popped and can

stream alongside the second half of the image row. Note that popping a FILO refers

to removing the most recently added element from the FILO. Section 5.3.1 describes

the image conditioning and architecture design to create a symmetric pixel processing

stream using a FILO, and two FIFO buffers.
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5.2.4 The Bit-Packed Accumulator

A significant issue with the parallel LHT architecture is the inefficient allocation of

BRAM tiles to implement the accumulator array. The Symmetric LHT can reduce

BRAM requirements by bit-packing the HPS. Using the relationship given previously

in (5.1), it is possible to store the votes for the Hough parameters ρ(θ) and ρ(180°− θ)

in the same memory location. The voting space for each of these Hough parameters are

concatenated and stored in memory. Table 5.1 presents a platform agnostic memory

allocation table to demonstrate the bit-packed memory configuration.

Table 5.2: Platform agnostic memory allocation table for the bit-packed accumulator.

θ Index Memory Address
Stored Data (Bits)

2b− 1:b b− 1:0

θ0

0 No Data A(ρ0, θ0)
1 No Data A(ρ1, θ0)
...

...
...

Nρ − 1 No Data A(ρNρ−1, θ0)

θ1, θNθ−1

Nρ A(ρ0, θNθ−1) A(ρ0, θ1)
Nρ + 1 A(ρ1, θNθ−1) A(ρ1, θ1)

...
...

...
2Nρ − 1 A(ρNρ−1, θNθ−1) A(ρNρ−1, θ1)

...
...

...
...

θNθ/2−1, θNθ/2+1

(Nθ/2− 1)Nρ A(ρ0, θNθ/2+1) A(ρ0, θNθ/2−1)
(Nθ/2− 1)Nρ + 1 A(ρ1, θNθ/2+1) A(ρ1, θNθ/2−1)

...
...

...
(Nθ/2)Nρ − 1 A(ρNρ−1, θNθ/2+1) A(ρNρ−1, θNθ/2−1)

θNθ/2

(Nθ/2)Nρ No Data A(ρ0, θNθ/2)
(Nθ/2)Nρ + 1 No Data A(ρ1, θNθ/2)

...
...

...
(Nθ/2 + 1)Nρ − 1 No Data A(ρNρ−1, θNθ/2)

Column one presents the values of θ that are used in a given memory location.

Column two presents the memory index, which is used as an address to a memory

location. The stored data is presented in columns three and four. The stored data

is represented using bit indices, where b is the total number of bits required by each

location in the HPS to store votes. The data stored in a memory index are the votes

for a location in the HPS, denoted by a location in A(ρ, θ).
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As shown in Table 5.2, the Hough parameters are paired together using ρ(θ) and

ρ(180° − θ) as a storage pattern. The Hough parameters given by ρ(θ0) and ρ(θNθ/2)

are stored in their own memories. This design decision can be explained by considering

points A and B from Figure 5.4. The memory that stores votes for ρ(θ0) will need to

be accessed twice to apply votes because, ρA(θ0) = −ρB(θ0). The votes for ρ(θNθ/2)

are stored in their own memory since, ρA(θNθ/2) = ρB(θNθ/2).

So far the bit-packed accumulator has been described without considering its imple-

mentation using BRAM tiles. When mapping the bit-packed accumulator to BRAMs,

it is essential that three main design decisions are considered before implementation.

These are listed as follows.

1. The partitioning of the bit-packed accumulator — The bit-packed accumulator

will be partitioned over many BRAM tiles. The array should be separated so

that all votes can be applied for two symmetric edge pixels. The optimal way

to partition the array is across the θ-axis, such that θ1 and θNθ−1 are stored

together in memory, θ2 and θNθ−2 are stored together in memory, and this pattern

is repeated until all θ are appropriately allocated memory.

2. The BRAM configuration — A BRAM tile should be configured to use a 36 Kb

primitive (a full BRAM tile), or an 18 Kb primitive (a half BRAM tile). The

BRAM primitive should be selected based on address requirements to reduce

memory allocation. The BRAM should be configured to operate in SDP mode.

3. The selection of BRAM shapes — It may be effective to combine different BRAM

shapes to reduce memory allocation. For example, a memory array may require

2048 addresses × 24 bits. It is possible to implement this memory using two 36 Kb

BRAM tiles, which are configured to store 1024 addresses × 36 bits. However, it is

more effective to use one 36 Kb BRAM that is configured to store 2048 addresses

× 18 bits, and one 18 Kb BRAM that is configured to store 2048 addresses ×

9 bits. This configuration saves one 18 Kb BRAM.
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The following sections will present an example of mapping an accumulator array to

BRAM memory. The image resolution used in the example is 1920× 1080 pixels. The

HPS will be configured using the following parameters: δθ = 1°, δρ = 1, and θ will be

over the range [0, 179]. These parameters will configure the accumulator for Nρ = 2204,

Nθ = 180, and b = 12 bits.

Accumulator Mapping to BRAM Tiles

The bit-packed accumulator is mapped to BRAM by first partitioning it across the

θ-axis. The votes for θ0 and θ90 will each be stored in their own memories. Both mem-

ories must be able to store 2204 addresses × 12 bits, which can be achieved using one

36 Kb BRAM tile and one 18 Kb BRAM. The 36 Kb BRAM tile is configured to store

2048 addresses × 18 bits, and the 18 Kb BRAM is configured to store 1024 addresses ×

18 bits. The remaining votes for θ1, θ2...θ89 and θ179, θ178...θ91 are bit-packed into their

own memories. A BRAM allocation table is presented in Table 5.3 for each bit-packed

memory. The variable i for this particular example is in the range [1, 89].

Table 5.3: BRAM allocation table for a memory instance of the bit-packed accumulator when
Nρ = 2204, Nθ = 180, and b = 12 bits.

BRAM BRAM Stored Data (Bits)
Configuration Address [35:24] [23:12] [11:0]

36 Kb BRAM:
1024 addresses
× 36 bits

0 Zero Pad A(ρ0, θNθ−i) A(ρ0, θi)
1 Zero Pad A(ρ1, θNθ−i) A(ρ1, θi)
...

...
...

...
1023 Zero Pad A(ρ1023, θNθ−i) A(ρ1023, θi)

36 Kb BRAM:
1024 addresses
× 36 bits

0 Zero Pad A(ρ1024, θNθ−i) A(ρ1024, θi)
1 Zero Pad A(ρ1025, θNθ−i) A(ρ1025, θi)
...

...
...

...
1023 Zero Pad A(ρ2047, θNθ−i) A(ρ2047, θi)

18 Kb BRAM:
512 addresses
× 36 bits

0 Zero Pad A(ρ2048, θNθ−i) A(ρ2048, θi)
1 Zero Pad A(ρ2049, θNθ−i) A(ρ2049, θi)
...

...
...

...
155 Zero Pad A(ρ2203, θNθ−i) A(ρ2203, θi)
156 Zero Pad Zero Pad Zero Pad

...
...

...
...

511 Zero Pad Zero Pad Zero Pad
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It is useful to consider the total BRAM consumption at this stage and determine

whether further architecture or memory optimisations can be performed. The BRAM

allocation for the parallel LHT was previously reported in Table 4.2. For an image of

1920×1080 pixels, the parallel LHT architecture consumed 270 BRAMs, when δθ = 1°,

δρ = 1, and θ was across the range [0, 179]. An equivalent Symmetric LHT architecture

requires 3 BRAMs in total to store the votes for θ0 and θ90. There are also 89 bit-

packed memories that each require 2.5 BRAMs. Therefore, the total BRAM allocation

of the bit-packed accumulator is 225.5 BRAM tiles, which is a saving of 44.5 BRAM

tiles in comparison to the parallel LHT.

Careful Configuration of BRAM Tiles

Through careful selection of BRAM shapes, it is possible to further reduce the BRAM

consumption of the bit-packed accumulator. Consider the example described previously

on page 138, where a memory array of 2048 address × 24 bits was implemented using

1.5 BRAMs. The BRAM configuration for the bit-packed accumulator can be improved

using this optimisation technique, as demonstrated in the BRAM allocation table that

is presented in Table 5.4. As before, variable i is in the range [1, 89].

Table 5.4: An efficient BRAM allocation table for a memory instance of the bit-packed accu-
mulator when Nρ = 2204, Nθ = 180, and b = 12 bits.

BRAM BRAM Stored Data (Bits)
Configuration Address [35:27] [26:24] [23:12] [11:0]

36 Kb BRAM:
2048 addresses
× 18 bits

and

18 Kb BRAM:
2048 addresses
× 9 bits

0 — Zero Pad A(ρ0, θNθ−i) A(ρ0, θi)
1 — Zero Pad A(ρ1, θNθ−i) A(ρ1, θi)
2 — Zero Pad A(ρ2, θNθ−i) A(ρ2, θi)
3 — Zero Pad A(ρ3, θNθ−i) A(ρ3, θi)
...

...
...

...
...

2047 — Zero Pad A(ρ2047, θNθ−i) A(ρ2047, θi)

18 Kb BRAM:
512 addresses

×
36 bits

0 Zero Pad Zero Pad A(ρ2048, θNθ−i) A(ρ2048, θi)
1 Zero Pad Zero Pad A(ρ2049, θNθ−i) A(ρ2049, θi)
...

...
...

...
...

155 Zero Pad Zero Pad A(ρ2203, θNθ−i) A(ρ2203, θi)
156 Zero Pad Zero Pad Zero Pad Zero Pad

...
...

...
...

...
511 Zero Pad Zero Pad Zero Pad Zero Pad
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Each bit-packed memory now requires 2 BRAMs. Therefore, the total BRAM

consumption of the bit-packed accumulator is 181 BRAMs. In comparison to the

parallel LHT, the bit-packed accumulator reduces BRAM consumption by 89 BRAMs,

which is an approximate memory reduction of 33%.

5.2.5 The Voting Scheme

The votes from two symmetric edge pixels can be applied to the bit-packed accumu-

lator at the same time. Each bit-packed memory instance stores votes for the Hough

parameters in pairs using ρ(θ) and ρ(180° − θ) as a storage pattern. Therefore, when

a bit-packed memory location is accessed for accumulation purposes, the stored votes

are sliced and votes can be incremented. The new data is then concatenated together

and stored back into the original location in the accumulator memory.

The voting strategies for θ0 and θNθ/2 are different. For θ0, the accumulator memory

will need to be accessed twice to apply votes for each symmetric edge pixel. The

accumulator memory for θNθ/2 only needs to be accessed once and may be incremented

by two votes, rather than one vote, if each symmetric pixel contains an edge.

5.3 Symmetric LHT Architecture Design

This section describes an FPGA architecture of the Symmetric LHT, which is capable

of applying the LHT to an image of 1920 × 1080 pixels using δρ = 1 and δθ = 1°.

The operational range of θ is over [0°, 179°]. The architecture is capable of applying all

possible votes to the HPS. In other words, the HPS was not deliberately reduced in size

to optimise memory consumption, or decrease design complexity. The HEP reference

design described in Chapter 4 was also used to perform rapid prototyping, hardware

validation, and performance analysis of the architecture design.

The remainder of this section will describe the architecture of the Symmetric LHT,

which includes its pixel packing system, coordinate calculator, symmetric Hough kernel,

accumulator controller, and bit-packed accumulator memory. A system overview of the

Symmetric LHT architecture design is presented in Figure 5.6.
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Figure 5.6: System overview of the Symmetric LHT architecture design.

5.3.1 The Pixel Packing System

Image data is typically streamed through the FPGA logic fabric using a raster scan

format. However, the Symmetric LHT requires the parallel streaming format described

in Section 5.2.3 to operate on two symmetric edge pixels simultaneously. This parallel

pixel format streams each image row one after the other, starting from the two centre

pixels of a row and moving towards the row’s borders.

An FPGA architecture can be designed to change the raster streaming format of the

input image to the parallel pixel processing format required by the Symmetric LHT.

The architecture design requires a FILO buffer and two FIFO buffers, as illustrated in

the pixel packing architecture shown in Figure 5.7.
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Figure 5.7: The pixel packing architecture that converts from raster streaming format to the
parallel pixel streaming format described in Section 5.2.3.

When the edge image is interfaced to the architecture in Figure 5.7, the valid input

signal is used to increment a counter to track the x-coordinate of the current image

row. If the valid signal is asserted, it indicates the presence of a data payload on the

input edge signal. Two relational operators are used to determine whether edge data

is pushed into the FILO buffer, or popped from the FILO buffer. Edge data is pushed

into the FILO buffer when the first half of the row is streaming into the system. As

soon as the second half of the row starts, the FILO is popped.

Each half of the image row is pushed into separate FIFO buffers. Each FIFO pops

valid edge data out of the system at half of the input rate. This rate change is possible

because the edge data has undergone a serial to parallel conversion, which allows the

sample rate to be reduced by two. This sample rate conversion is important later in the

symmetric Hough kernel, which employs resource sharing to reduce the consumption

of DSP48E2 slices.

Notice that there are three outputs shown in the pixel packing architecture. Starting

from the top-right of Figure 5.7, edge B represents the pixels contained in the second

half of the input row. Edge A represents the pixels contained in the first half of the input

row. These naming conventions are similar to the symmetric pixel example presented

previously on the right of Figure 5.4. The valid signal is used to indicate the presence

of valid data for the edge A and edge B signals.
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5.3.2 Coordinate Calculator

The coordinate calculator maintains the x and y position of the current pixel while the

test image is streamed through the Symmetric LHT architecture. The coordinates (x, y)

of the current pixel are essential for computing the Hough parameters given by (3.2).

The FPGA architecture of the coordinate calculator is a simple design constructed of

two fixed-point counters, as shown in Figure 5.8.
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Figure 5.8: FPGA architecture for a simple coordinate calculator. This design uses two fixed-
point counters; one counter tracks the x position, and another counter tracks the y position.

The (x, y) values of the current pixel are maintained using one counter for the x

position, and another counter for the y position. As previously described in Section

5.2.3, the input image is folded in half across the x-axis. Therefore, the x-coordinate

counter only needs to operate across the range [1,M/2]. The y-coordinate counter

maintains the position for all rows of the input image. Therefore, this counter operates

across the range [−N/2, N/2− 1].

The x counter accumulates by one when the input valid signal is high. A relational

operator is used to check if the x counter is equal to M/2. The output of the relational

operator transitions from low to high when this condition is met, which increments the

y counter by one. This mode of operation continues until the x and y counters are

equal to M/2 and N/2 − 1, respectively. When this condition occurs, both counters

return to their initial values, ready for the next image.
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The coordinate calculator contains three output signals. The first is the x-coordinate

value, which is generated using the x counter. The two remaining outputs require

additional logic to implement the coordinate system that was previously described

in Section 5.2.3. The y-coordinate output is generated using the y counter, which

is combined with a multiplexer and an increment-by-one block. This configuration

ensures that the y-coordinate output is a non-zero integer, which is required by the

Symmetric LHT’s coordinate system. The ‘next y-coordinate’ output represents the

next y-coordinate value to occur after the current row is processed. This signal is used

later by the Look-Ahead Kernel in Section 5.3.4 to reduce FPGA resource consumption.

5.3.3 Phase Controller

The symmetric Hough kernel can leverage resource sharing techniques since the input

image has undergone a serial to parallel conversion as described in Section 5.3.1. To

support resource sharing, all input signals to the symmetric Hough kernel and bit-

packed accumulator must undergo a sample and hold operation, where the input signal

is held for two clock-cycles. Without this conversion, arithmetic and memory resources

are unable to reuse values correctly. Additionally, a new signal known as ‘phase’ is

generated using a zero insertion operation on the valid input signal. The phase signal

is used to support the arithmetic resource sharing design in Section 5.3.4. The diagram

in Figure 5.9 presents the phase controller’s architecture.
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Sample and Hold
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y
yn
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y
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Figure 5.9: A simple phase controller design for the Symmetric LHT. The phase controller
generates several signals for resource sharing operations in the symmetric Hough kernel.
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5.3.4 Symmetric Hough Kernel

A generalised architecture for the symmetric Hough kernel is presented in Figure 5.10.

This architecture implements (3.2), while using the relationship in (5.1) to reduce

FPGA arithmetic resource consumption.
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Figure 5.10: Generalised architecture for the symmetric Hough kernel.

The symmetric kernel architecture demonstrates that four values in ρ(θ) can be com-

puted using only one multiplier and two adders. The multipliers are used to compute

x cos(θ), where each value in cos(θ) is pre-calculated and stored in ROM. The phase

input allows the architecture to swap between different values of cos(θ) and y sin(θ)

during operation.
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It is possible to optimise the symmetric kernel architecture in Figure 5.10. Multiplier

resources can be reduced through careful selection of θ values. For example, if θ0 =

0° and θNθ/2 = 90°, then x cos(0°) = x and x cos(90°) = 0, which does not require

multipliers. Furthermore, if at least one value in θ is equal to 60°, then x cos(60°) = x/2,

which can be implemented using a simple bit-shift operation.

The symmetric kernel architecture must be appropriately constrained to prevent the

overallocation of FPGA resources. It is necessary to ensure that Nθ is an even number,

and the values in θ must also be evenly spaced using a regular discrete step across

the range [0°, 180°). The wordlength of the multipliers should be carefully selected to

prevent unnecessary allocation of DSP48E2 slices. The symmetric kernel architecture

in this thesis sets the wordlength of x to dlog2(M)e, and the wordlength of cos(θ) to

16 bits, where 14 bits are used for fractional representation. The adder’s accumulator

uses full precision, the output is rounded, and the output wordlength is set to dlog2(D)e,

where D is the length of the image diagonal given by (3.4).

The DSP48E2 slice consumption for the parallel LHT was previously reported in

Table 4.2. For an image of 1920× 1080 pixels, the parallel LHT architecture consumed

89 DSP48E2 slices, when δθ = 1°, δρ = 1, and θ was across the range [0, 179]. In

particular, 88 DSP48E2 slices were used to calculate x cos(θ), while 1 DSP48E2 slice

computes y sin(θ) for each image row. An equivalent Symmetric LHT architecture only

requires 45 DSP48E2 slices to implement the symmetric Hough kernel. The x cos(θ)

multiplication is implemented using 44 DSP48E2 slices, while y sin(θ) is calculated

using 1 DSP48E2 slice.

The Look-Ahead Hough Kernel

Notably, the symmetric Hough kernel presented in Figure 5.10 contains several input

signals named y sin(θi). These signals originate from the Look-Ahead Kernel, which

was described in [20] to reduce FPGA resource consumption. The Look-Ahead Kernel

calculates y sin(θ) for the next image row and stores the results in output registers.

This architecture was used to reduce DSP48E2 slice consumption for the symmetric

Hough kernel, and was previously illustrated in Figure 3.19 on page 75.
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The Look-Ahead Kernel uses a fixed-point counter and a LUT to cycle through

values of sin(θ). The sin(θi) values are multiplied with the y value for the next row,

denoted as yn. The multiplier output, yn sin(θi), is sent to a tapped register bank,

which is connected to a set of output registers. There are Nθ output registers that are

only enabled when the current row is ending, which allows new values of yn sin(θ) to be

loaded for the next row. When the first row of an image is about to be processed, the

output registers are reset to an initial value of −(N/2) sin(θ), allowing the architecture

to be easily primed for the next image.

5.3.5 Accumulator Controller

The accumulation array is an autonomous circuit that requires a controller to maintain

correct operation. The controller is implemented using a Finite State Machine (FSM)

designed as a Moore machine. Figure 5.11 presents an illustration of the top-level accu-

mulation architecture which includes an accumulator controller, accumulator memory,

and an angle correction and selection subsystem.
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Figure 5.11: FPGA architecture for the top-level accumulator design. The accumulation con-
troller implements an FSM that maintains the operation of the accumulation memory. Control
logic has been removed from this design to simplify the illustration.

148



Chapter 5. A Symmetric Hough Kernel and Bit-Packed Accumulator

The x and y inputs are used to create a Start of Frame (SoF) signal using relational

operators and a logical AND gate. The SoF signal is used to inform the accumulator

controller that a new image is currently streaming into the architecture. The input

signals to the FSM are the SoF signal, the TLAST signal from the read DMA, and two

constants, Nρ and Nθ. The FSM also contains three internal registers: the Current

State register, a ρ counter register denoted as ρcount, and a θ counter register denoted

as θcount. Both the ρcount and θcount registers are connected to the output of fixed point

counters, which accumulate during operation.

The FSM has four states of operation: IDLE, VOTE, READ, and CLEAR. The

FSM diagram, which contains the controller states and transitions, can be seen in

Figure 5.12. The default entry state that initialises the FSM is the IDLE state, which

is annotated on the diagram as ‘initialise’.
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SoF == True

Initialise

SoF == False

�count >N� –1

�count <N� –1
(�count >N� –1)

(�count >N�–1)
AND

Figure 5.12: FSM diagram for the accumulator controller. The FSM contains four states:
IDLE, VOTE, READ, and CLEAR. The default entry state is IDLE. If an undefined state
occurs, the FSM returns to the IDLE state.

149



Chapter 5. A Symmetric Hough Kernel and Bit-Packed Accumulator

In the IDLE state, the FSM waits for the SoF signal to assert. When this occurs,

the FSM transitions to the VOTE state, where votes are accumulated in memory until

the TLAST signal is asserted. The TLAST signal informs the controller that the last

pixel of the image has been processed. The FSM then transitions into the READ state,

where the contents of the accumulator memory are read by generating addresses using

the ρ and θ counters. When all addresses have been accessed, the FSM transitions to

the CLEAR state. The accumulator is reset by simply cycling through all ρ addresses

and zeroising each memory location. When the clear operation is complete, the FSM

returns to the IDLE state and waits for the next image.

The FSM contains five output signals: mode, clear, valid, ρaddress, and θaddress. The

‘mode’ output is used by the accumulator memory to switch voting on and off. The

‘clear’ signal is used to set the data stored in the current memory location to a value of

zero. The ‘valid’ output is used to inform the write DMA of valid HPS data. Finally,

the ρaddress and θaddress outputs are used to address accumulator memory locations and

index individual memories.

The outputs for each FSM state are shown in Table 5.5. The mode, clear, and valid

outputs are each set to either True or False, depending on the given state. The ρaddress

and θaddress outputs are always set to the value of the ρcount and θcount, respectively.

Table 5.5: Accumulator controller output values.

Output IDLE VOTE READ CLEAR

mode False True False False
valid False False True False
clear False False False True
ρaddress ρcount ρcount ρcount ρcount
θaddress θcount θcount θcount θcount

The value of the Current State register and the conditions required to influence the

next state can be seen in Table 5.6. As shown, when the Current State register is IDLE,

then the next possible state is VOTE. The next state is selected using the condition

column i.e. SoF == True. In this example, if the SoF input remains False, then the

condition is not met and the Current State register remains in the IDLE state.
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Table 5.6: Accumulator controller configuration for the Current State register.

FSM Register Value Next Value Condition

Current State

IDLE VOTE SoF == True
VOTE READ TLAST == True
READ CLEAR (ρcount ≥ Nρ − 1) and (θcount ≥ Nθ − 1)

CLEAR IDLE ρcount ≥ Nρ − 1

Note that Table 5.6 is another way of representing the FSM diagram given in Figure

5.12. This table is a useful and clear way of quickly identifying the conditions required

for registers to change value. Table 5.7 presents a similar table to represent the ρcount

and θcount registers. As shown, the ρcount and θcount registers are not modified in the

IDLE or VOTE states. In the READ state, the ρcount register is incremented by one

after each clock cycle until ρcount ≥ Nρ − 1. When this condition is met, the θcount

register is incremented by one and the ρcount register is set to 0. This process repeats

until both θcount ≥ Nθ − 1 and ρcount ≥ Nρ − 1. When this condition occurs, both

registers are set to zero and the Current State register transitions to the CLEAR state

as given in Table 5.6.

Table 5.7: Accumulator controller configuration for the ρcount and θcount registers. A ‘No
Condition’ entry in the condition column indicates that the transition between the current
value and the next value always occurs.

FSM Register State Value Next Value Condition

ρcount

IDLE 0 0 No Condition
VOTE 0 0 No Condition

READ

0 1 ρcount < Nρ − 1
1 2 ρcount < Nρ − 1
...

...
...

Nρ − 1 0 ρcount ≥ Nρ − 1

CLEAR

0 1 ρcount < Nρ − 1
1 2 ρcount < Nρ − 1
...

...
...

Nρ − 1 0 ρcount ≥ Nρ − 1

θcount

IDLE 0 0 No Condition
VOTE 0 0 No Condition

READ

0 1 ρcount ≥ Nρ − 1
1 2 ρcount ≥ Nρ − 1
...

...
...

Nθ − 1 0 ρcount ≥ Nρ − 1
CLEAR 0 0 No Condition
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The READ state allows the accumulator controller to cycle through all addresses of

ρ in the range [0, Nρ − 1]. The θcount register is incremented when ρcount ≥ Nρ − 1, as

this allows all θ values to be read from the accumulator memory (described in Section

5.3.6). The CLEAR state reuses the ρcount register to cycle through all addresses of

the accumulator memory and set the corresponding memory locations to zero. The

θcount register is not required as it is not necessary to index individual θ locations when

clearing the accumulator memory.

5.3.6 Accumulator Circuit Design

The contents of the accumulator memory subsystem will now be presented. Figure

5.13 provides a diagram of the accumulator memory subsystem, which contains three

unique memory blocks for storing and accumulating votes. The subsystems labelled ‘θ0

Accumulator’ and ‘θN/2 Accumulator’ store votes that belong to θ0 and θN/2, respec-

tively. The subsystem named ‘Bit-Packed Accumulator’ stores votes for θ1, θ2...θNθ/2−1

and θNθ−1, θNθ−2...θNθ/2+1. The phase input is only used by the ‘θ0 Accumulator’ to

perform a unary minus operation on the ρ(θ0) input.

Bit-Packed Accumulator Circuit Design

The architecture design for one instance of the bit-packed accumulator can be seen in

Figure 5.14. Note that BRAM port abbreviations and modes were previously covered

in Section 2.3.3. The BRAM is configured in SDP mode, which allows one read and

write transaction to occur per clock cycle. Votes are accumulated by first accessing a

location in memory using the ‘rdaddr’ port. After one clock cycle, the data stored at

the memory location will be presented at the ‘dout’ port. The data is sent through

the accumulation path, where it is appropriately sliced to increment each location in

the HPS by one vote if an edge pixel exists at the corresponding location in the input

image. After voting, the data is concatenated and sent to the BRAM’s ‘din’ port. The

‘wraddr’ port writes the data back into the original address location if the ‘wren’ port

on the BRAM is a logical ‘1’.
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Figure 5.13: Overview diagram of the accumulator memory subsystem. Notice that there are
Nθ/2− 1 bit-packed accumulator memories.

If read and write operations occur at the same address, then a BRAM operating

in SDP mode will present old data at the ‘dout’ port (instead of the new data to

be written). For this reason, votes can be dropped if two or more consecutive edge

pixels share the same address in memory. To correct this issue, there is additional

control logic below the BRAM shown in Figure 5.14. A relational operator monitors

the BRAM’s read and write address ports to check if they are equal. When the read

and write addresses are the same, a logical AND gate checks if the addresses correspond

to a voting edge pixel. If true, then the multiplexer on the right of Figure 5.14 will

loop data that was incremented in the previous clock cycle back into the accumulation

path. When the read and write address ports are no longer equal to one another, the

accumulated data is written back into its corresponding location in the accumulator

memory. Notice that the accumulation design uses the value of the associated edge

pixel to increment a location in memory by one.
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Figure 5.14: The bit-packed accumulator memory architecture design that performs voting
for two angles in θ. The BRAM selected is configured in SDP mode, which allows one read and
write transaction per clock cycle. The accumulation path is indicated by the dashed line.

The mode input allows the accumulator controller to switch voting operations on

and off. When mode is set to logical ‘1’, the multiplexers in Figure 5.14 are configured

to apply votes to the BRAM. When mode is set to logical ‘0’, the accumulator controller

can read all locations in the accumulator memory using the ρaddress input. The clear

input may also be used to erase the accumulator memory for the next image.

When the Hough parameters are calculated using the symmetric Hough kernel, their

range is between [−D/2, D/2]. The accumulator memory can only be indexed using

whole numbers. Therefore, it is necessary to shift the range of ρ(θ) such that it resides

in the range [0, D]. This operation is achieved on the left of Figure 5.14 using an adder,

where ρ(θi) +D/2 is performed (i is a variable in the range [1, 89]).
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θ0 and θNθ/2 Accumulators

Figure 5.15 presents a general circuit diagram for the θ0 and θNθ/2 accumulators. This

architecture can be used for both accumulators. The θ0 accumulator is unique because

it uses the phase input to perform a unary minus operation on the input address.
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Figure 5.15: A general circuit diagram for the θ0 and θNθ
/2 Accumulators. The accumulation

path is indicated by the dashed line.

The θ0 Accumulator only uses one adder to increment votes and applies a unary

minus operation to the input address if phase = 1. The reason for applying a unary

minus operation can be explained by considering the symmetric points A and B from

Figure 5.4, on page 134. Since ρA(θ0) = −ρB(θ0), then a unary minus can be used

to negate the value of the input address to the θ0 accumulator. In contrast, the θNθ/2

Accumulator does not require a unary minus operation since ρA(θNθ/2) = ρB(θNθ/2).
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5.4 Analysis and Evaluation

This section evaluates the Symmetric LHT architecture for its FPGA resource con-

sumption and timing performance. The implementation results are compared with

LHT architectures from previously published works to highlight the efficiency of the

Symmetric LHT design. Details on how to inspect the Symmetric LHT electronically

are provided in [106].

5.4.1 Implementation Results

The Vivado Design Suite was used to synthesise and implement the Symmetric LHT

architecture to evaluate its FPGA resource consumption and timing performance. The

Symmetric LHT is implemented alongside the HEP for visualisation of the HPS and

analysis of the architecture design. The maximum clock frequency of the Symmetric

LHT architecture was reported to be 205 MHz. The architecture design was configured

to apply the LHT to an image of 1920× 1080 pixels and the discrete step of the HPS

was set to δρ = 1 and δθ = 1°. The FPGA resource allocation of the Symmetric LHT

architecture was reported for the XCZU7EV-2E device as shown in Table 5.8.

Table 5.8: FPGA resource consumption for the Symmetric LHT architecture (without the
HEP), which is implemented on the XCZU7EV-2E device.

Resource Available Used Percentage (%)

LUTs 230,400 15,529 6.74
LUT RAM 101,760 66 0.06
FFs 460,800 10,065 2.18
BRAM 312 181 58.01
DSP48E2 1,728 45 2.60

The symmetric Hough kernel uses 45 DSP48E2 slices to implement (3.2). The

bit-packed accumulator memory requires 181 BRAM tiles to store the HPS. Each accu-

mulator subsystem uses two 36 Kb BRAM tiles to store votes for two angles in θ. The

exceptions to this are the accumulator subsystems used to store the first and centre

angles in θ, which require one 36 Kb BRAM and one 18 Kb BRAM to store votes. Note

that the parallel LHT architecture given in Appendix B uses 270 BRAMs to store the

HPS. The Symmetric LHT has decreased BRAM tile consumption by 32.96%.
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The parallel LHT detailed in [87] and the Symmetric LHT described in this chapter

were each implemented on the XCZU7EV-2E device for a range of image resolutions

commonly found in literature. These architectures were designed using the HEP and

the HPS was configured for δρ = 1, δθ = 1°, and Nθ = 180. Table 5.9 presents

the memory requirements for each set of architectures, which can also be investigated

in [106]. Additionally, all Symmetric LHT architectures require 45 DSP48E2 slices,

while the parallel LHT architectures use 89 DSP48E2 slices.

Table 5.9: The memory consumption of the parallel LHT and the Symmetric LHT for various
image resolutions.

Resolution
(Pixels)

Parallel LHT Symmetric LHT
Memory
Saved(%)

BRAM
Total Bits

BRAM
Total Bits

18 Kb 36 Kb 18 Kb 36 Kb

320× 240 180 — 3,317,760 91 — 1,677,312 49.44
333× 333 180 — 3,317,760 91 — 1,677,312 49.44
512× 512 180 — 3,317,760 2 89 3,317,760 0.00
800× 600 180 — 3,317,760 2 89 3,317,760 0.00
1024× 768 — 180 6,635,520 89 91 4,995,072 24.72
1280× 720 — 180 6,635,520 89 91 4,995,072 24.72
1920× 1080 180 180 9,953,280 180 91 6,672,384 32.96

The final column of Table 5.9 indicates the memory saved by the Symmetric LHT

compared to the parallel LHT. Notably, the two smallest image resolutions exhibit the

greatest memory savings. The parallel LHT inefficiently allocates 180 18 Kb BRAMs

for each angle in θ. The Symmetric LHT can efficiently bit-pack the votes for two

angles in θ in the same memory location, requiring 91 18 Kb BRAMs.

The Symmetric LHT does not exhibit memory savings for the image resolutions

512× 512 pixels and 640× 480 pixels. The bit-packed accumulator for each resolution

uses b = 10 bits and requires Nρ = 800 and Nρ = 1000, respectively. The BRAM

configuration for the bit-packed accumulator is 1024 addresses × 36 bits, which requires

one 36 Kb BRAM for storing the votes of two angles in θ. A parallel LHT architecture

for each image resolution uses an 18Kb BRAM configuration of 1024 addresses × 18 bits

for one angle in θ, which is equivalent in memory consumption to the Symmetric LHT.

Memory requirements cannot be reduced by the Symmetric LHT for these resolutions

as the available BRAM schemes cannot effectively store the bit-packed accumulator.
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The remaining two image resolutions are 1024 × 768 pixels and 1280 × 720 pixels.

The bit-packed accumulator for each of these resolutions stores the votes for two angles

in θ using one 36 Kb BRAM and one 18 Kb BRAM. An equivalent parallel LHT archi-

tecture requires one 36 Kb BRAM to store the votes for one angle in θ, which is less

memory-efficient. In Section 5.4.4, the memory requirements of the Symmetric LHT

are compared to previously published FPGA implementations of the LHT.

5.4.2 Processing Time Results

Previously in Section 4.2.3, the HEP accurately calculated the processing time of the

parallel LHT architecture. The processing time of the Symmetric LHT architecture for

a 1920× 1080 pixel image is reported by the HEP as 12.06 ms. The frame rate of this

Symmetric LHT architecture corresponds to approximately 82.95 fps, which is able to

process the FHD video standard.

The processing time analysis using the HEP can be performed for Symmetric LHT

architectures that target other image resolutions, as shown in Table 5.10. Notice that

most architectures achieve a target clock frequency of 250 MHz, while the resolutions

corresponding to 1024 × 768 pixels and 1280 × 720 pixels achieve a maximum clock

frequency of 235 MHz. Larger image resolutions require more BRAM to store the HPS,

which increases routing delays resulting in longer critical paths, limiting the maximum

achievable clock frequency of the architecture. Notice that the smallest resolution,

320×240 pixels, achieves the fastest frame processing time of 0.60 ms, which corresponds

to 1,666.67 fps. Each value in Table 5.10 is rounded to two decimal places.

Table 5.10: Processing time results of Symmetric LHT architectures that target various image
resolutions. The Processing Time column contains measurement results from the HEP.

Resolution
(Pixels)

Clock Frequency
(MHz)

Processing Time
(ms)

Frames Per
Second (fps)

320× 240 250.00 0.60 1,666.67
333× 333 250.00 0.79 1,265.82
512× 512 250.00 1.57 636.94
800× 600 250.00 2.64 378.79
1024× 768 235.00 4.33 230.95
1280× 720 235.00 5.05 198.02
1920× 1080 205.00 12.06 82.92
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5.4.3 Architecture Validation and Testing

The validation procedure for testing FPGA architectures of the LHT was previously

described in Section 4.4.3. The Symmetric LHT architecture design was successfully

hardware validated using edge images of the window and stairs, which are given in

Figure 4.14 on page 120. The HPS returned by the Symmetric LHT architecture for

each test image are presented in Figure 5.16.

(a) Isometric view of the window HPS. (b) Isometric view of the stairs HPS.

(c) Top-down view of the window HPS. (d) Top-down view of the stairs HPS.

Figure 5.16: HPS results for the hardware validation of the Symmetric LHT architecture on
the XCZU7EV-2E device. The isometric view of the HPS for the window image (a), and the
stairs image (b). The top-down view of the HPS for the window image (c), and the stairs image
(d).
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The parameters of the peaks detected in the HPS for each test image are used in

(3.6) and (3.7) to reconstruct lines. The line reconstruction results for the Symmetric

LHT are presented in Figure 5.17.

(a) Reconstructed line image of the input win-
dow edge image.

(b) Reconstructed line image of the input stairs
edge image.

(c) Overlay of the reconstructed image and the
original colour image of the window.

(d) Overlay of the reconstructed image and the
original colour image of the stairs.

Figure 5.17: Line reconstruction results for the test images input into the Symmetric LHT
architecture. The reconstructed line images of the window (a) and stairs (b). The reconstructed
lines overlaid on top of the original colour images of the window (c) and stairs (d).

These results indicate that the Symmetric LHT has the same line detection ca-

pabilities as the parallel LHT, while consuming fewer FPGA arithmetic and memory

resources. The line reconstruction images for the parallel LHT in Figure 4.16 and the

Symmetric LHT in Figure 5.17 both return the same images. This equivalence check

was performed by iterating through the elements of both images and using the equality

operator to determine if both images are equal. The Symmetric LHT was also vali-

dated on hardware using the Jupyter Lab environment. Screenshots of the validation

notebooks are provided in Appendix C.
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5.4.4 Comparison with Previously Published Work

This section compares the Symmetric LHT with previously published implementations

of the LHT, with architectures compared based on their memory consumption. The

Symmetric LHT architecture is set to have the same configuration as other LHT archi-

tectures where possible. For instance, if an LHT architecture uses an image resolution

of 800×600 pixels and δθ = 11.25°, then the Symmetric LHT is set to the same configu-

ration to enable the direct comparison of memory requirements. See [106] for practical

implementations of all custom Symmetric LHT architectures described in this section.

Zhou et al. [20] implemented a gradient-based parallel LHT that requires 6,635,520 bits

of memory for a 333 × 333 pixel image. For the same image resolution, the Symmet-

ric LHT uses 1,677,312 bits, saving 74.72% of memory. The same authors developed

a low-latency parallel LHT architecture in [14] that consumed 3,317,760 bits of dedi-

cated FPGA memory for an image of 512 × 512 pixels. The Symmetric LHT uses an

equivalent amount of memory when processing the same resolution.

Chen et al. [89] leveraged external memory in their LHT architecture to store the

HPS. Their work required 223,360 bits of on-chip memory and used off-chip memory

to store the HPS and edge image. Their architecture can only process 512× 512 pixel

images, and the speed and bandwidth of the external memory limit the execution time.

Notably, their LHT architecture design sets the number of bits for voting in the HPS to

b = 9. An equivalent Symmetric LHT architecture uses 1,677,312 bits. The Symmetric

LHT uses more on-chip memory than that published in [89]. However, it provides the

flexibility for parametrising the architecture for different resolutions with no external

memory limitations, which enables low-latency, deterministic processing capabilities.

Elhossini et al. [88] created a low-memory architecture that can extract lines and

circles from digital images using the LHT and CHT, respectively. Their parameter space

architecture can process images of 800×600 pixels and is coarsely discretised such that

δθ = 11.25°. The memory consumption of their implementation is 262,144 bits. The

Symmetric LHT was generated using the same configuration and consumed 165,888 bits

of memory to store the HPS, saving 36.72% of memory.

Bailey in [21] describes an LHT architecture that can process 1024×768 pixel images
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using a reduced size HPS, which is configured using Nρ = 1024 and b = 9. As a result,

Bailey acknowledges that this architecture cannot detect lines near the corners of an

image. It is worth noting that Bailey describes a novel technique for efficiently drawing

detected lines, which motivated these design decisions. For a resolution of 1024 × 768

pixels, Bailey’s architecture consumes 1,843,200 bits while an equivalent Symmetric

LHT architecture (without line drawing functionality) requires 1,677,312 bits of memory

to store the HPS, saving 9% of memory.

Lu et al. [13] designed an unrolled LHT architecture for an image of 1024 × 768

pixels, where the HPS was configured to use Nθ = 101 angles. Their architecture

requires 3,474,432 bits of dedicated FPGA memory. To compare memory consumption,

the Symmetric LHT architecture was generated using Nθ = 102 angles (as the number

of angles must be even). While offering a finer δθ, the Symmetric LHT consumes

2,838,528 bits, saving memory requirements by 18.30%.

Solod et al. [90] uses HLS to generate an LHT architecture for lane detection in

vehicles. Their LHT architecture can process an image of 1920 × 1080 pixels and

the HPS is configured using Nρ = 2048 and Nθ = 41. This configuration requires

1,695,744 bits of memory to store the HPS. An equivalent Symmetric LHT architecture

that configures the HPS using Nθ = 42 only consumes 1,216,512 bits, which saves

28.26% of memory and offers a finer δθ.

Table 5.11 presents a summary for each of the above architecture comparisons.

Included in this table is the DSP slice consumption and operational clock frequency of

each architecture design.

Table 5.11: Results of the Symmetric LHT and comparison with related works.

Resolution
(Pixels)

Related Works Symmetric LHT

Ref.
Memory DSP

Slices
Freq.

(MHz)
Memory DSP

Slices
Freq.

(MHz)(bits) (bits)

333× 333 [20] 6,635,520 13 260.06 1,677,312 45 250.00

512× 512
[87] 3,317,760 90 247.53 3,317,760 45 250.00
[89] 223,360 0 200.00 1,677,312 45 250.00

800× 600 [88] 262,144 — — 165,888 5 250.00

1024× 768
[21] 1,843,200 0 73.50 1,677,312 45 250.00
[13] 3,474,432 8 200.00 2,838,528 26 250.00

1920× 1080 [90] 1,695,744 — 100.00 1,216,512 11 250.00
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Notably, the Symmetric LHT architecture consumes more DSP slices than several

of the architectures. For example, the work presented in [20] and [21] use the Gradi-

ent LHT, which reduces the accuracy of line detection but consumes fewer DSP slices.

In comparison, the Symmetric LHT applies votes for all angles in θ, which requires

more DSP slices. The work in [89] and [13] uses fewer DSP slices than the Symmetric

LHT because these architectures use the FIHT2 algorithm (or a variation of the algo-

rithm). The FIHT2 algorithm does not require multiplications, but detection accuracy

is reduced as erroneous results can occur after a few iterations.

The operational clock frequency for each architecture in Table 5.11 is also reported.

For these particular implementations of the Symmetric LHT, the target clock frequency

was set to 250 MHz. This operational frequency is an improvement in comparison to

all other related works, except for the LHT implementation in [20].

5.4.5 Discussion of Results

Overall, the Symmetric LHT has reduced the memory requirements of the HPS com-

pared to the parallel LHT without modifying the underlying algorithm. The memory

bit-packing scheme employed by the Symmetric LHT effectively reduces BRAM tile

requirements for most image resolutions. The Symmetric LHT also exhibits better

memory consumption than the LHT architectures described in related works. It would

be interesting to explore the effect of combining the Symmetric LHT with the FIHT2

architecture or the technique described in [21] for efficiently drawing lines.

To exploit the bit-packing capabilities of the Symmetric LHT on an FPGA, there

must be 36 Kb BRAM primitives or a similar memory component available on the

target device. This type of memory is useful as it allows the designer to trade-off

the size of the BRAM’s wordlength with the number of addressable locations, which

is required to optimise the memory consumption of the bit-packed accumulator. The

Symmetric LHT is not only applicable to AMD FPGAs. The symmetric Hough kernel

and bit-packed accumulator can also be implemented on Intel FPGAs, which contain

memory tiles that can be reshaped to improve memory allocation [116]. Note that the

Symmetric LHT has only been tested using AMD FPGAs in this work.
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It is useful to compare the Symmetric LHT with the standard LHT to evaluate

the memory allocation of the HPS and determine if further optimisations should be

investigated. Table 5.12 presents this comparison, where the last column shows the

total memory allocation of the Symmetric LHT used to store the HPS.

Table 5.12: The memory consumption of the standard LHT and Symmetric LHT.

Resolution
(Pixels)

Standard LHT Symmetric LHT
Memory Over
Allocated(%)Total Bits

BRAM
Total Bits

18 Kb 36 Kb

320× 240 648,000 91 — 1,677,312 258.84
333× 333 764,640 91 — 1,677,312 219.36
512× 512 1,306,800 2 89 3,317,760 253.88
800× 600 1,800,000 2 89 3,317,760 184.32
1024× 768 2,534,400 89 91 4,995,072 197.09
1280× 720 2,910,600 89 91 4,995,072 171.62
1920× 1080 4,760,640 180 91 6,672,384 140.16

For an image of 1920 × 1080 pixels, the Symmetric LHT inefficiently allocates

140.16% of the necessary memory resources to storing the HPS. This overallocation

is significant as storing the HPS requires 58.01% of all BRAM tiles on the XCZU7EV-

2E device. The memory allocation for the HPS in FPGA devices can still be improved

to enable the implementation of the LHT on memory constrained FPGA systems.

The memory consumption for the parallel LHT, Symmetric LHT, and standard LHT

can be presented graphically using a bar chart, as in Figure 5.18. Notably, the memory

consumption of the Symmetric LHT is better than or equivalent to the parallel LHT

across several image resolutions. However, the Symmetric LHT still requires significant

memory resources in comparison to the standard LHT. Memory consumption could be

improved by modifying the LHT algorithm to reduce the memory allocation of the HPS.

Chapter 6 of this thesis presents a lossy compression scheme for reducing the memory

requirements of the HPS and improving overall memory consumption in comparison to

the standard LHT.
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Figure 5.18: A bar chart comparing the number of memory bits required by each LHT
algorithm across several image resolutions.

5.5 Conclusion

This chapter has detailed the Symmetric LHT, a memory-efficient FPGA architec-

ture of the LHT that exploits spatial domain symmetry and bit-packing schemes. At

the beginning of this chapter, an overview of the Symmetric LHT was presented. A

new symmetrical coordinate system that reduces the computation of the Hough pa-

rameters was introduced. The memory-efficient, bit-packed accumulator was described

using BRAM allocation tables. The Symmetric LHT architecture design was presented,

which included detailed diagrams and descriptions of the pixel packing system, coordi-

nate calculator, phase controller, symmetric Hough kernel, and bit-packed accumulator.

Finally, the Symmetric LHT was evaluated for its FPGA resource consumption and op-

erational clock frequency for several image resolutions. For an image of 1920 × 1080

pixels, the Symmetric LHT required 6,672,384 bits of memory (181 BRAMs). The Sym-

metric LHT saved 32.96% of memory in comparison to the parallel LHT architecture,

which required 9,953,280 bits of memory (270 BRAMs). Additionally, the Symmetric

LHT was found to be more memory-efficient than other FPGA architectures of the

LHT reported in previously published work.
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The Symmetric LHT can save memory resources and reduce computational require-

ments compared to the parallel LHT without affecting the accuracy of line detection.

However, the underlying algorithm will need to be modified to further improve the

memory consumption of the LHT in FPGA devices. There are four primary findings

and outcomes from the work undertaken in this chapter. These are listed as follows:

1. This chapter presented the Symmetric LHT, which is unique in its approach

to applying the LHT compared to previously published works, as it is the first

to exploit spatial domain symmetry and bit-packing techniques to reduce the

computational complexity and memory requirements of line detection.

2. Compared with the parallel LHT and other FPGA architectures of the LHT in

previously published literature, the Symmetric LHT has similar or fewer mem-

ory requirements for storing the HPS. For an image of 1920 × 1080 pixels, the

Symmetric LHT saves 32.96% of memory resources compared to the parallel LHT.

3. For an image of 1920×1080 pixels, the Symmetric LHT inefficiently over allocates

140.16% of the necessary memory resources to storing the HPS. This overallo-

cation can be improved by modifying the LHT algorithm to reduce the memory

allocation of the HPS. Chapter 6 presents a lossy compression technique to opti-

mise further the memory required to implement the LHT on FPGA devices.

4. The Symmetric LHT is suitable for small FPGA devices that contain 36 Kb

BRAM tiles and DSP slices. For example, a small FPGA containing these spe-

cialised resources can apply the Symmetric LHT (where δθ = 1◦ and Nθ = 180)

to an edge image of 1920 × 1080 pixels. However, the FPGA must contain 181

BRAM tiles and 45 DSP slices. In contrast, the parallel LHT requires 270 BRAM

tiles and 89 DSP slices for the same image resolution, which typically requires

a mid-range or large FPGA containing hundreds of thousands of logic elements.

Embedded applications that use small FPGAs can take advantage of cheaper

device costs, smaller packages, and lower energy consumption.
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Chapter 6

The Angular-Regions Line Hough

Transform

6.1 Introduction

A challenging problem with implementing the LHT on FPGAs is the inefficient allo-

cation of memory resources to store the HPS. Many FPGA devices are incapable of

implementing the LHT due to their limited on-chip memory. Few studies have investi-

gated the memory requirements of the HPS. Previous work presented in [23] follows a

divide-and-conquer approach by separating the candidate image into equal-sized sub-

images before applying the LHT. This operation reduces the size of the HPS across the

ρ-axis, which decreases memory requirements. This work can potentially be improved

in terms of memory efficiency by reducing the HPS along the θ-axis instead.

This chapter presents a novel algorithmic approach that compresses the HPS to re-

duce its memory requirements in FPGA devices. This algorithm is named the Angular-

Regions Line Hough Transform (ARLHT). The ARLHT decomposes the spatial image

domain into regions of line orientations, affecting the dimensionality of the HPS by

reducing its size across the θ-axis. The FPGA architecture of the ARLHT will be de-

scribed in this chapter, and an evaluation of its resource consumption and processing

time results will be given. Finally, this chapter compares the ARLHT architecture with

previously published work and details the limitations of the proposed algorithm.
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6.2 The ARLHT Algorithm

In this section, the ARLHT algorithm is detailed and its memory consumption in

AMD FPGA devices is calculated. A functional block diagram illustrating the ARLHT

algorithm is presented in Figure 6.1.

Calculate the
Edge Gradient 

Orientation

Calculate the
Edge Gradient 

Magnitude

Obtain the
Adjusted Orientation

Calculate the
Magnitude of
Displacement

Obtain the Binary
Edge Image

Vote in the
memory-efficient

HPS
Peak Detection

and
Separation

Binary
Morphological

Opening

Vote in the
ARLHT’s RBM
Memory Array

Decompressed HPS
Greyscale Image

Figure 6.1: Functional block diagram of the ARLHT algorithm.

The gradient orientation of the input edge image, α, is used by the ARLHT to

reduce the number of votes that are applied to the HPS. In this voting scheme, only

one vote is applied to the HPS per edge pixel. Upon calculating the gradient orientation

of an edge pixel, an adjusted orientation denoted as β is also derived. The magnitude of

displacement and the adjusted orientation are combined to form the Hough parameters

(ρ, β). These are used to apply votes in the HPS, where the θ-axis has been reduced

in size. Another memory array known as an RBM (Region Bitmap) is initialised to

maintain a record of the magnitude of (ρ, α) for each vote that is applied to the HPS.

The RBM is used later with a morphological opening to separate overlapping and

merged peaks in the HPS. The ARLHT follows the general method outlined in [23] to

compress the HPS. The remainder of this section will describe the ARLHT’s memory-

compressed HPS, voting scheme, peak separation algorithm, and line reconstruction in

more detail.
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6.2.1 The Memory-Compressed HPS

The HPS produced using the Gradient LHT generally consists of sparse peaks that

are distributed throughout the memory array. A motivating reason for compressing

the HPS is to decrease the sparsity of the array and reduce memory consumption.

The memory-compressed HPS that is used by the ARLHT algorithm is reduced in size

across the θ-axis. When comparing the memory-compressed HPS to that used by the

Gradient LHT, the size of the θ-axis is reduced by an integer factor, Kθ. The difference

between the HPS used by the Gradient LHT and the ARLHT can be visually inspected

in Figure 6.2. The HPS arrays were generated using the chessboard image presented

previously in Figure 3.7a.

(a) HPS used by the Gradient LHT. (b) Compressed HPS used by the ARLHT.

Figure 6.2: The HPS used by the Gradient LHT (a) contains peaks that are sparser than the
HPS used by the ARLHT (b).

The HPS used by the Gradient LHT consists of Nρ × Nθ addressable locations.

The memory-compressed HPS, used by the ARLHT, contains Nρ×Nθ/Kθ addressable

locations. It is only possible to apply votes to the memory-compressed HPS if their

value of orientation falls into the range [0, γ−δθ], where γ is the angular length given by

(θNθ−1 + δθ)/Kθ. Inapplicable votes that do not fall into the above range are adjusted

using their orientation value, so that they can be applied to the HPS correctly. This

new orientation value is referred to as the adjusted orientation, β.
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6.2.2 The Voting Scheme

The ARLHT algorithm follows a unique voting procedure. Initially, the memory-

efficient HPS is defined by using a value of Kθ to reduce the size of the θ-axis. Edge

pixels can apply votes to the HPS using their corresponding Hough parameters (ρ, β).

To obtain the adjusted orientation, β, the inapplicable gradient orientation value, α,

must be moved into the range [0, γ − δθ]. The adjusted orientation can be calculated

using,

β = α−
⌊
α

γ

⌋
γ. (6.1)

The memory-efficient HPS does not provide a unique location for every possible

line in the candidate image. Voting edge pixels from different angular regions of the

candidate image need to be identified and separated in the HPS. The RBM is a two

dimensional array of size Nρ×Nθ×1 bit, which is initialised to zero before voting begins.

It is responsible for recording the magnitude of displacement and gradient orientation

(ρ, α) of votes that have been applied to the memory-efficient HPS. Votes are recorded

by changing the corresponding location in the RBM to a binary ‘1’. Figure 6.3 presents

an example of an RBM that was produced by applying the ARLHT to the chessboard

image (previously shown in Figure 3.7a).

Figure 6.3: The RBM of the chessboard image using the ARLHT algorithm. Notice that only
one memory array is required to store the RBM for the ARLHT.
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6.2.3 Peak Separation and Detection

The memory-efficient HT presented in [23] uses an iterative peak separation and de-

tection algorithm. Iterative algorithms are very suitable for general purpose processors

as they can easily buffer image frames between algorithm iterations. In contrast, an

iterative FPGA architecture requires a complicated memory design to achieve the same

functionality. These architecture designs may also increase the output latency of the

algorithm, which increases the overall processing time. Since the ARLHT will be im-

plemented in an FPGA, another solution is required for peak separation and detection,

rather than using an iterative approach.

The ARLHT uses the RBM and memory-efficient HPS to achieve peak separation

and detection. The memory-efficient HPS is initially thresholded for peaks and the

corresponding Hough parameters are extracted. The RBM is used to identify and

cross-check the parameters of peaks that are extracted from the HPS, so that they

can be assigned the correct value of orientation. The edge image may contain noise

pixels whose Hough parameters are recorded on the RBM, which may produce spurious

results during peak separation. To suppress this noise, the RBM is locally filtered using

a morphological opening (previously described in Section 2.6.8). The result of applying

an opening to the RBM for the chessboard image is given in Figure 6.4a. Notice that

the noise has been suppressed in comparison to the original RBM shown in Figure

6.3. This method is a simple alternative to performing the peak separation algorithm

proposed in [23] and is suitable for FPGA implementation.

An example of the ARLHT’s peak separation and detection algorithm will now be

described. A peak is located in the memory-efficient HPS at the location (ρi, βi). If

the RBM contains a binary ‘1’ at the same location, then the corresponding Hough

parameters can be used to locate a line in the input edge image. However, the RBM

must also be searched across intervals of γ for the same value of βi, to determine

whether lines in other angular regions exist. If a binary ‘1’ exists in any of these

locations, then the corresponding Hough parameters should be used to locate a line in

the input edge image. This procedure can be used to decompress the memory-efficient

HPS for inspection purposes. The decompressed HPS is presented in Figure 6.4b.

171



Chapter 6. The Angular-Regions Line Hough Transform

(a) RBM with morphological opening. (b) The decompressed HPS for inspection.

Figure 6.4: The ARLHT RBM with morphological opening is presented in (a). The de-
compressed HPS of the chessboard is given in (b). The vote threshold used to generate the
decompressed HPS is 60% of the maximum vote.

The peak separation and detection stage has identified Hough parameters that

can be used during line reconstruction. While many of the identified parameters will

correspond to lines in the original edge image, it is possible that spurious lines may

form when the input edge image contains high levels of noise. The limitations of the

ARLHT algorithm are discussed further in Section 6.4.5.

6.2.4 Line Reconstruction

The Hough parameters that were extracted during the peak separation and detection

stage now undergo line reconstruction using (3.6) and (3.7). The infinite and finite

line images are presented in Figure 6.5a and Figure 6.5b, respectively. The infinite

line image is overlaid onto the original colour image of the chessboard in Figure 6.5c

and the greyscale image of the chessboard in Figure 6.5d. Notice that there are sig-

nificantly fewer lines detected using the ARLHT in comparison to the standard LHT

(given previously in Figure 3.10). Fewer lines are detected since the ARLHT uses the

Gradient LHT (λ = 0°), which reduces the sensitivity of line extraction since fewer

votes are applied to the HPS per edge pixel.
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(a) Reconstructed line image of the chessboard
created using (3.6) and (3.7).

(b) Reconstructed image combined with the orig-
inal edge image using a logical AND operation.

(c) Overlay of the reconstructed image and the
original colour image.

(d) Overlay of the reconstructed image and the
original greyscale image.

Figure 6.5: Line reconstruction results for the ARLHT algorithm.

6.2.5 Memory Requirements

The total number of memory bits required by the memory-compressed HPS and RBM

can be calculated for an M × N image using (6.2). Notice that each cell of the HPS

must be represented by dlog2(DKθ)e bits. This is required as the number of votes that

can be applied to a single location in the HPS has now increased by a factor of Kθ.

b =
NρNθdlog2(DKθ)e

Kθ
+NρNθ (6.2)

Later in Section 6.4.4, the memory requirements of the ARLHT are compared with

existing algorithms and FPGA implementations.
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6.3 The ARLHT Architecture Design

In this section, an FPGA architecture of the ARLHT algorithm is described. This

architecture design will be used to evaluate the ARLHT’s resource consumption and

timing closure when implemented on the XCZ7UEV-2E device. In this FPGA imple-

mentation, δρ = 1, δθ = 1°, and the number of angular regions is set to Kθ = 4. The

operational range of θ is over [0°, 179°]. The ARLHT architecture was designed using

the HEP workflow and reference design, which was described previously in Chapter 4.

Before the system integration stage occurs, the ARLHT architecture can be configured

to almost any image resolution. The architecture described in this section is configured

to process an image of 1920× 1080 pixels.

The remainder of this section will describe the architecture of the ARLHT, which

includes its Hough kernel, adjusted orientation processor, accumulator circuit design,

RBM circuit design, and peak separation and detection stage. A system overview of

the ARLHT architecture design is shown in Figure 6.6.
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Figure 6.6: System overview of the ARLHT architecture design.
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6.3.1 Preprocessing and Segmentation

The upper part of Figure 6.6 presents the ARLHT’s preprocessing and segmentation

architecture, which interfaces to the HEP’s read DMA. The candidate test image is

transferred into the ARLHT using the RGB colour format that is initially converted

to greyscale. The coordinate calculator maintains track of the image position and the

horizontal and vertical Sobel filters are applied to the greyscale image to obtain the

horizontal and vertical gradient images. The separable filter architecture presented in

Figure 2.24 is used to implement Sobel edge detection.

The gradient images are sent to a Circular CORDIC architecture that operates

in vectoring mode. This instance of CORDIC calculates the gradient magnitude and

orientation images similar to that presented in Section 2.6.7. Finally, the gradient

magnitude is segmented using a threshold operation to produce binary edge pixels. The

edge image and gradient orientation image are sent to the ARLHT’s core processing

architecture to obtain the memory-compressed HPS.

6.3.2 Hough Kernel and Adjusted Orientation

A Hough kernel architecture is required to compute the magnitude of displacement, ρ,

using the gradient orientation, α. It is not necessary to design a parallel Hough kernel

such as that given in Appendix B as only one set of Hough parameters is required

per edge pixel. The Hough kernel for the ARLHT is presented in Figure 6.7. Notice

that two LUTs are used to store the values of cos(θ) and sin(θ), reducing the overall

computation during runtime.
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Look-up Table
(ROM)

addr dout

Look-up Table
(ROM)

x
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�(�) + D/2�(�)

D/2

� cos(�)
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Figure 6.7: FPGA architecture of the ARLHT’s Hough kernel. The output ρ(α) value is
incremented by D/2 for memory addressing purposes.
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After obtaining the Hough parameters (ρ, α) it is necessary to calculate the adjusted

orientation, β. As mentioned previously, the adjusted orientation is used to apply votes

in the memory-efficient HPS. It is adjusted such that β is in the range [0, γ − δθ]. The

equation given in (6.1) can be used to calculate the adjusted orientation. However,

this equation requires a division operation, which is not particularly suited to FPGAs.

Division architectures consume significant resources and can limit timing performance

as they cannot be efficiently pipelined. For this reason, a new architecture is presented

in Figure 6.8, which is able to efficiently calculate the adjusted orientation.
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Figure 6.8: FPGA architecture for calculating the adjusted orientation when Kθ = 4. As
highlighted in the red box, there are Kθ − 1 adjustment stages in total (one initial adjustment
stage, and two regular adjustment stages).

The architecture in Figure 6.8 is able to calculate the adjusted orientation when

Kθ = 4. This architecture design comprises of an initial adjustment stage and two

regular adjustment stages. The initial adjustment stage uses a relational operator to

determine if the gradient orientation, α, is within the range [0, γ − δθ]. When true,

the value of α is passed directly into the regular adjustment stage. Alternatively,

θNθ−1 + δθ − γ is subtracted from α when it is not within range and sent to the regular

adjustment stage. The initial adjustment stage is required by all ARLHT architectures

when Kθ ≥ 2.

The regular adjustment stage is only required by ARLHT architectures when Kθ ≥

3. This stage increments the output of the previous stage by γ if its value is negative.

The regular adjustment stages are cascaded such that there are Kθ−2 instances, which

are used to iteratively adjust α into the range [0, γ − δθ].
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6.3.3 Accumulator Circuit Design

The ARLHT’s accumulator is used to store the memory-efficient HPS. Figure 6.9

presents the top-level accumulation architecture. As shown, the accumulator is con-

trolled by an FSM that has been designed as a Moore machine. There is also an

accumulator memory subsystem for storing the HPS.
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Figure 6.9: FPGA architecture for the ARLHT’s top-level accumulator design. The accu-
mulation controller implements an FSM to control the accumulator memory. Note that the
TLAST output is only valid when the clear output of the accumulator controller is high.

The HPS is stored in the accumulator memory using a contiguous memory scheme.

Accessing the array using the Hough parameters (ρi, θi) can be performed usingNρθi+ρi

to generate an address. This functionality is implemented using a gain and adder in the

middle of Figure 6.9. The accumulator memory subsystem is similar to that used by

the Symmetric LHT to accumulate votes. However, the ARLHT only uses one instance

of the accumulator memory. The architecture of the accumulator memory subsystem

is presented in Figure 6.10 for inspection. Notice the accumulator feedback path that

is highlighted by the dashed line.
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Figure 6.10: A circuit diagram of the ARLHT accumulator memory subsystem. The accu-
mulation path is indicated by the dashed line.

The BRAM in the accumulator memory is configured to operate in SDP mode,

which allows one read and write transaction to occur per clock cycle. To apply a vote,

the data stored at a memory location is accessed using the ‘rdaddr’ port. After one

clock cycle, the stored data is presented at the ‘dout’ port. The data is sent through

the accumulation path where it is incremented by one. After voting, the data is sent

to the BRAM’s ‘din’ port. If a logical ’1’ is applied to the ‘wren’ port on the BRAM,

then the data is written back into the original address location.

As described previously in Section 5.3.6, a read and write operation may occur at

the same address, causing the BRAM to present old data at the ‘dout’ port rather than

the new data to be written into memory. Votes can be unintentionally dropped if two

or more consecutive edge pixels share the same address in memory. For this reason, the

relational operator and the AND gate below the BRAM in Figure 6.10 check if the read

and write addresses are the same. When they are both equal, the multiplexer on the

right of Figure 6.10 loops data that was accessed in the previous clock cycle, back into

the accumulation path. The accumulated vote is written back into memory as soon as

the read and write addresses are no longer equal to one another.

178



Chapter 6. The Angular-Regions Line Hough Transform

The accumulator controller subsystem in Figure 6.9 contains the FSM to control the

voting, reading, and clearing operations that are required by the accumulator memory.

The input signals to the FSM are the SoF signal, the TLAST signal, and three con-

stants, Nρ, Nθ/Kθ, and Kθ. Additionally, there are four internal registers: the Current

State register, a ρ counter register denoted as ρcount, a θ counter register denoted as

θcount, and a Kθ counter register denoted as Kcount. All counter registers are connected

to the output of fixed point counters, which accumulate during the FSM’s operation.

The controller’s states and transitions can be seen in the FSM diagram presented in

Figure 6.11. Although not shown in the diagram, an undefined state will cause the

FSM to transition back to the IDLE state.

IDLE VOTE

CLEAR READ

(�count<N� /K�–1)

(�count<N�–1)
OR

TLAST == True

TLAST == False

SoF == True
Initialise

SoF == False

(�count >N� –1) (�count >N� /K�–1)AND

(Kcount<K�–2)
OR

AND (Kcount >K�–2)(�count<N� /K�–1)

(�count<N�–1)
OR

(�count >N� –1)

(�count >N� /K�–1)
AND

Figure 6.11: FSM diagram for the ARLHT’s accumulator controller.

The FSM contains four states of operation: IDLE, VOTE, READ, and CLEAR.

The reader is directed to Section 5.3.5 for a description of the IDLE, VOTE, and READ

states. The CLEAR state in this particular FSM is unique, as it will be used to clear

the accumulator memory for the next image and read out the existing HPS at the same

time. The remainder of this section describes the functionality of the FSM and the

design of the CLEAR state further.
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In the IDLE state, the FSM waits for the SoF signal to rise and then transitions

into the VOTE state. After voting, the FSM transitions into the READ state when the

TLAST input is set high. While in the READ state, the FSM will generate addresses

to read out the memory-efficient HPS from the accumulator memory. The FSM will

perform the read operation Kθ − 1 times before transitioning into the CLEAR state.

While in the CLEAR state, the FSM reads out the memory-efficient HPS one last time,

while clearing each memory location for the next image. Since the HPS is Kθ times

smaller than the RBM, then it is necessary to read the HPS from memory Kθ times.

The peak separation and detection stage will compare the HPS to the filtered RBM

across intervals of size γ.

The FSM contains five output signals: mode, clear, valid, ρaddress, and θaddress. The

outputs are configured as presented in Table 6.1 and depend on the given state. The

mode, clear, and valid outputs are each set to either False or True, depending on the

given state. The ρaddress and θaddress outputs are always set to the value of the ρcount

and θcount registers, respectively. Notice that the valid signal is high in the clear state,

which indicates that the HPS is being read from memory.

Table 6.1: Accumulator controller output values for the ARLHT.

Output IDLE VOTE READ CLEAR

mode False True False False
valid False False True True
clear False False False True
ρaddress ρcount ρcount ρcount ρcount
θaddress θcount θcount θcount θcount

The internal registers of the FSM will now be described. The first of these is the

Current State register, which holds the FSM state. The value of the Current State

register and the conditions required to influence the next state can be seen in Table

6.2. As shown, when the Current State register is IDLE, then the next possible state is

VOTE. The next state is selected based on the condition column i.e. SoF == True. In

this example, if the SoF remains False, then the condition is not met and the Current

State register remains in the IDLE state. Table 6.2 is a useful way of representing the

FSM diagram presented in Figure 6.11.
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Table 6.2: Accumulator controller Current State register for the ARLHT.

Register Value Next Value Condition

Current State

IDLE VOTE SoF == True
VOTE READ TLAST == True

READ CLEAR
(ρcount ≥ Nρ − 1) and

(θcount ≥ Nθ/Kθ − 1) and (Kcount ≥ Kθ − 2)
CLEAR IDLE (ρcount ≥ Nρ − 1) and (θcount ≥ Nθ/Kθ − 1)

The configuration of the remaining FSM registers can also be described in a similar

way to the Current State register. The register values for a given state and the required

conditions are presented in Table 6.3. Notice that the Kcount register is not required to

clear the accumulator memory.

Table 6.3: Accumulator controller ρcount, θcount, and Kcount registers for the ARLHT.

Register State Value Next
Value

Condition

ρcount

IDLE 0 0 No Condition
VOTE 0 0 No Condition

READ

0 1 ρcount < Nρ − 1
1 2 ρcount < Nρ − 1
...

...
...

Nρ − 1 0 ρcount ≥ Nρ − 1

CLEAR

0 1 ρcount < Nρ − 1
1 2 ρcount < Nρ − 1
...

...
...

Nρ − 1 0 ρcount ≥ Nρ − 1

θcount

IDLE 0 0 No Condition
VOTE 0 0 No Condition

READ

0 1 ρcount ≥ Nρ − 1
1 2 ρcount ≥ Nρ − 1
...

...
...

Nθ/Kθ−1 0 ρcount ≥ Nρ − 1

CLEAR

0 1 ρcount ≥ Nρ − 1
1 2 ρcount ≥ Nρ − 1
...

...
...

Nθ/Kθ−1 0 ρcount ≥ Nρ − 1

Kcount

IDLE 0 0 No Condition
VOTE 0 0 No Condition

READ

0 1 (ρcount ≥ Nρ − 1) and (θcount ≥ Nθ/Kθ − 1)
1 2 (ρcount ≥ Nρ − 1) and (θcount ≥ Nθ/Kθ − 1)
...

...
...

Kθ − 2 0 (ρcount ≥ Nρ − 1) and (θcount ≥ Nθ/Kθ − 1)
CLEAR 0 0 No Condition
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The ρcount and θcount registers operate in a similar manner to that described previ-

ously in Section 5.3.5 for the Symmetric LHT. The primary change made in the FSM

used by the ARLHT is the addition of the Kcount register. This register maintains a

record of the number of times the memory-efficient HPS has been read from memory.

In the read state, the Kcount register is incremented when the ρcount and θcount registers

are both at their maximum values.

6.3.4 RBM Circuit Design

Implementing the RBM on an FPGA is far simpler than the accumulator array. How-

ever, the RBM still requires many of the fundamental components that have been

identified so far including an RBM controller (FSM), an RBM memory, and an address

generator. An overview of the RBM circuit is presented in Figure 6.12.
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Figure 6.12: FPGA architecture for the ARLHT’s top-level RBM circuit design. The RBM
controller implements an FSM to control the RBM memory.

The RBM controller subsystem requires four input signals. These are the SoF

signal, the TLAST signal, and two constants, Nρ and Nθ. The FSM only requires three

states to control the RBM memory. These states are IDLE, VOTE, and CLEAR. The

IDLE state waits for a rising edge on the SoF input, which then transitions the FSM
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into the VOTE state. After RBM voting, the FSM transitions into the CLEAR state.

At this point, the FSM will read through the entire RBM memory and clear it for the

next image. While the memory is cleared, the RBM is sent to the peak separation and

detection stage. The FSM diagram is illustrated in Figure 6.13.
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Figure 6.13: FSM diagram for the ARLHT’s RBM controller.

There are three internal registers inside the FSM: the Current State register, a ρ

counter register denoted as ρcount, and a θ counter register denoted as θcount. All counter

registers are connected to the output of fixed point counters, which accumulate during

the FSM’s operation. The FSM contains four output signals that are named mode,

clear, ρaddress, and θaddress. The mode output determines whether the RBM memory is

configured to vote, or clear its memory contents. The clear output determines whether

locations in the RBM memory are set to zero. The ρaddress and θaddress outputs are

always set to the value of the ρcount and θcount registers, respectively. Table 6.4 presents

the output values of the FSM for a given state.

Table 6.4: RBM controller output values for the ARLHT.

Output IDLE VOTE CLEAR

mode False True False
clear False False True
ρaddress ρcount ρcount ρcount
θaddress θcount θcount θcount
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The Current State register, which holds the FSM state, will now be described. The

value of the Current State register and the conditions required to influence the next

state can be seen in Table 6.5. This table is synonymous to the FSM diagram presented

in Figure 6.13. For example, when the Current State register is IDLE and the SoF input

is high, then the next state is VOTE. However, if the SoF input remains low, then the

Current State register remains in the IDLE state.

Table 6.5: RBM controller Current State register for the ARLHT.

Register Value Next Value Condition

Current State
IDLE VOTE SoF == True
VOTE CLEAR TLAST == True

CLEAR IDLE (ρcount ≥ Nρ − 1) and (θcount ≥ Nθ − 1)

The remaining FSM registers that store the ρcount and θcount values can be described

using a similar method in Table 6.6.

Table 6.6: RBM controller ρcount and θcount registers.

Register State Value Next Value Condition

ρcount

IDLE 0 0 No Condition
VOTE 0 0 No Condition

CLEAR

0 1 ρcount < Nρ − 1
1 2 ρcount < Nρ − 1
...

...
...

Nρ − 1 0 ρcount ≥ Nρ − 1

θcount

IDLE 0 0 No Condition
VOTE 0 0 No Condition

CLEAR

0 1 ρcount ≥ Nρ − 1
1 2 ρcount ≥ Nρ − 1
...

...
...

Nθ − 1 0 ρcount ≥ Nρ − 1

The ρcount and θcount registers operate in a similar way to the internal counter

registers of the accumulator’s FSM. In the IDLE and VOTE states, the ρcount and

θcount registers are set to zero. In the CLEAR state, the ρcount is incremented by one

until it is equal to Nρ − 1. When this condition occurs, the ρcount register is set to

zero. Meanwhile, the θcount register increments by one. This process continues until

the θcount register reaches Nθ− 1. At this point, the ρcount and θcount registers are both

set to zero and the Current State register transitions to IDLE as defined in Table 6.5.
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Finally, the remaining section of the RBM circuit design to discuss is the RBM

memory. This memory architecture is less complex than the accumulator memory

subsystem. Figure 6.14 presents the architecture design for the RBM memory.

wraddr

din

wren
dout

BRAM (SDP Mode)

rdaddr

address

mode

write enable

RBM

Figure 6.14: The RBM memory subsystem architecture that performs RBM voting. The
BRAM selected is configured in SDP mode.

The mode input of the RBM memory is used to determine if a binary ‘0’ or ‘1’ will

be written to a memory location that has been accessed using the address port. Since

there is no accumulation of data occurring in the RBM memory subsystem, then it is

not necessary for the design to contain any other control logic components.

6.3.5 Peak Separation and Detection Circuit Design

Figure 6.15 presents the FPGA architecture for the peak separation and detection

stage. The binary morphological subsystems are each implemented using the design

given previously in Figure 2.28 on page 48. An erosion followed by a dilation applies

a morphological opening to the RBM. The HPS stream also requires row buffering

to delay match the system, as the RBM filters add latency to the design. After the

morphological opening, the RBM separates peaks in the HPS using a multiplexer.

Valid In

Data In Data Out

Binary Morphology
Erosion

Valid RBM

RBM
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Data In Data Out

Binary Morphology
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Row Buffer Row Buffer
TLAST

HPS

Valid

0
1

0 HPS
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Figure 6.15: Peak separation and detection architecture for the ARLHT.
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6.4 Analysis and Evaluation

This section presents the FPGA resource consumption and processing time results

of the ARLHT architecture. The FPGA resource requirements are compared with the

standard LHT and architectures from past works to highlight its resource efficiency. The

implementation of the ARLHT using the HEP can be accessed electronically in [106].

6.4.1 Implementation Results

The ARLHT’s core processing architecture that is presented in Figure 6.6 was imple-

mented alongside the HEP. Synthesis and implementation of the ARLHT architecture

was carried out using the Vivado Design Suite. The maximum clock frequency of the

ARLHT architecture was reported to be 200 MHz. The ARLHT design was configured

to process an image of 1920 × 1080 pixels and δθ = 1° and δρ = 1. The FPGA re-

source consumption of the ARLHT architecture (without the HEP), was reported for

the XCZU7EV-2E device, as shown in Table 6.7.

Table 6.7: FPGA resource consumption for the ARLHT architecture, which is implemented
on the XCZU7EV-2E device.

Resource Available Used Percentage (%)

LUTs 230,400 4,448 1.93
LUT RAM 101,760 3,027 2.97
FFs 460,800 4,503 0.98
BRAM 312 61 19.55
DSP48E2 1,728 0 0.00

The ARLHT does not use any DSP48E2 slices, as all multiplications are imple-

mented using the FPGA logic fabric. The memory-efficient accumulator requires 48

36 Kb BRAMs and one 18 Kb BRAM to store the compressed HPS, while the RBM

circuit consumes 12 36 Kb BRAMs and one 18 Kb BRAM. In total, the ARLHT re-

quires 2,248,704 bits to process a 1920 × 1080 pixel image, while the standard LHT

requires 4,760,640 bits to store the HPS in memory for the same image resolution.

Overall, the ARLHT saves 52.76% of memory compared to the standard LHT. Note

that the ARLHT only accumulates one vote per edge pixel, reducing the accuracy of

line detection in comparison to the standard LHT (see Section 3.3.1).
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The memory requirements of the ARLHT architecture can be directly compared

with the standard LHT across a range of image resolutions. The ARLHT architectures

were designed using the HEP, and the HPS was configured for δρ = 1, δθ = 1°, and

Nθ = 180. Table 6.8 presents the memory requirements for each architecture.

Table 6.8: The memory consumption of the standard LHT and the ARLHT architecture.

Resolution
(Pixels)

Standard LHT ARLHT Architecture
Memory
Saved(%)Total Bits

BRAM
Total Bits

18 Kb 36 Kb

320× 240 648,000 1 11 423,936 34.58
333× 333 764,640 1 13 497,664 34.92
512× 512 1,306,800 — 20 737,280 43.58
800× 600 1,800,000 1 27 1,013,760 43.68
1024× 768 2,534,400 2 35 1,327,104 47.64
1280× 720 2,910,600 2 40 1,511,424 48.07
1920× 1080 4,760,640 2 60 2,248,704 52.76

The memory saved by the ARLHT in comparison to the standard LHT is given

in the final column of Table 6.8. For all image resolutions, the ARLHT architecture

efficiently allocates less memory than that required by the standard LHT. However, the

memory efficiency of the HPS has limitations that must be addressed. These limitations

are discussed further in Section 6.4.5.

6.4.2 Processing Time Results

The ARLHT architecture can be evaluated for its processing time when operating on

images of different resolutions. The processing time of the ARLHT architecture for an

image of 1920×1080 pixels is reported by the HEP as 12.37 ms (rounded to two decimal

places). The corresponding frame rate of the ARLHT architecture is approximately

80.84 fps. This architecture design is able to process the FHD video standard.

Table 6.9 presents the processing time results of ARLHT architectures that are

configured to process various image resolutions. The maximum clock frequency of each

architecture is shown in column two of the table. The fastest frame processing time of

0.60 ms is achieved using the smallest resolution of 320× 240 pixels.
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Table 6.9: Processing time results of ARLHT architectures that target various image resolu-
tions. The processing time column contains measurement results from the HEP.

Resolution
(Pixels)

Clock Frequency
(MHz)

Processing Time
(ms)

Frames Per
Second (fps)

320× 240 250.00 0.60 1666.66
333× 333 250.00 0.79 1265.82
512× 512 250.00 1.58 632.91
800× 600 230.00 2.88 347.22
1024× 768 225.00 4.53 220.75
1280× 720 225.00 5.29 189.04
1920× 1080 200.00 12.37 80.84

Notably, the maximum achievable clock frequency of the ARLHT architecture for

image resolutions equal to or larger than 800× 600 pixels is lower than the Symmetric

LHT shown previously in Table 5.10. One possible cause of this decrease in clock fre-

quency could be attributed to the spread of BRAM tiles that are distributed throughout

a large area of the FPGA logic fabric. All BRAM tiles for the ARLHT are driven by the

same address and data signals, unlike the Symmetric LHT. Spreading FPGA resources

over large areas can increase routing delays between components, which leads to longer

critical paths and lower operational clock frequencies.

6.4.3 Architecture Validation and Testing

Previously, Section 4.4.3 demonstrated the hardware validation procedure for FPGA

architectures of the LHT using the HEP. The ARLHT architecture design described in

this chapter was successfully hardware validated using the edge images of the window

and stairs, given in Figure 4.14 on page 120. The HPS returned by the simulation and

software model of the ARLHT were the same as the HPS output from the ARLHT

architecture running on the target XCZU7EV-2E device. The HPS for each test image

is given in Figure 6.16. Note that the total number of votes applied to the HPS using

the ARLHT architecture will be significantly reduced in comparison to the standard

LHT. Votes are reduced because each edge pixel votes once in the HPS.
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(a) Isometric view of the window HPS. (b) Isometric view of the stairs HPS.

(c) Top-down view of the window HPS. (d) Top-down view of the stairs HPS.

Figure 6.16: HPS results for the hardware validation of the ARLHT architecture on the
XCZU7EV-2E device. The isometric view of the HPS for the window image (a), and the stairs
image (b). The top-down view of the HPS for the window image (c), and the stairs image (d).

The parameters of peaks detected in the HPS for each test image are used in (3.6)

and (3.7) to reconstruct lines. The ARLHT applies fewer votes to the HPS in compar-

ison to the standard LHT. Therefore, the number of detected lines will be lower (see

Section 3.3.1 for more information). The reconstructed line results are presented in

Figure 6.17 for inspection.
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(a) Reconstructed line image of the input win-
dow edge image.

(b) Reconstructed line image of the input stairs
edge image.

(c) Overlay of the reconstructed image and the
original colour image of the window.

(d) Overlay of the reconstructed image and the
original colour image of the stairs.

Figure 6.17: Line reconstruction results for the test images input into the ARLHT architec-
ture. The reconstructed line images of the window (a) and stairs (b). The reconstructed lines
overlaid on top of the original colour images of the window (c) and stairs (d).

The line reconstruction results demonstrate that the ARLHT has sufficient line

detection accuracy, while consuming significantly less memory than the parallel LHT,

Symmetric LHT, and standard LHT. The ARLHT was validated on physical target

hardware using the Jupyter Lab environment. The validation notebooks can be in-

spected in Appendix D.

6.4.4 Comparison with Related Works

This section compares the memory efficiency of the ARLHT architecture with previ-

ously published implementations of the LHT. The ARLHT architectures will be con-

figured to have the same, or similar, parameters and image resolution as other LHT

architecture designs. For example, suppose a previously published LHT architecture

can process an image resolution of 512× 512 pixels and uses δθ = 2°. The ARLHT will

also be configured to use these parameters to compare memory consumption directly.
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The implementation of the custom ARLHT architectures described in this section can

be obtained in [106].

The previously published LHT architectures have already been discussed in Sec-

tion 6.4.4. Therefore, it is unnecessary to explore each LHT architecture again in

detail. Instead, Table 6.10 compares the performance of each LHT architecture with

an equivalent ARLHT architecture. The table presents the DSP slice requirements and

memory consumption in terms of bits. The maximum achievable clock frequency of

each architecture is also presented.

Table 6.10: Results of the ARLHT and comparison with related works.

Resolution
(Pixels)

Related Works ARLHT Architecture

Ref.
Memory DSP

Slices
Freq.

(MHz)
Memory DSP

Slices
Freq.

(MHz)(bits) (bits)

333× 333 [20] 6,635,520 13 260.06 497,664 0 250.00

512× 512
[87] 3,317,760 90 247.53 737,280 0 250.00
[89] 223,360 0 200.00 442,368 0 250.00

800× 600 [88] 262,144 — — 92,160 0 250.00

1024× 768
[21] 1,843,200 0 73.50 645,120 0 250.00
[13] 3,474,432 8 200.00 774,144 0 250.00

1920× 1080 [90] 1,695,744 — 100.00 516,096 0 250.00

The ARLHT architecture consumes less on-chip memory than all of the LHT archi-

tectures given in Table 6.10 that use on-chip memory. Only the work presented in [89]

uses off-chip memory to store the HPS. The authors report that the memory bandwidth

required by their design is 1,172,880 bits for an image resolution of 512 × 512 pixels.

Although the ARLHT requires more on-chip memory than this LHT architecture de-

sign, it uses considerably less memory overall. In total, the ARLHT architecture uses

approximately 63.32% less memory and can be deployed on FPGA systems that are

not connected to external memories. Additionally, the ARLHT has the flexibility to

cater for more than one image resolution. Its execution time is not dependent on the

bandwidth and speed of the off-chip memory.

Notably, all implementations of the ARLHT achieved a target clock frequency of

250 MHz. It is worth mentioning that the maximum clock frequency of each architecture

was not evaluated, which indicates the potential for these architectures to achieve a

higher operational clock frequency. The target clock frequency is an improvement
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in comparison to all other LHT architectures presented in Table 6.10, except from the

implementation described in [20]. Additionally, the ARLHT does not use any DSP48E2

slices as it only requires one vote per edge pixel, which significantly decreases resource

requirements in comparison to the parallel LHT and Symmetric LHT. However, this

reduction in computational complexity reduces the accuracy of line detection, which

was described previously in Section 3.3.1.

The results in this section demonstrate that the ARLHT architecture is resource

efficient and can operate at a higher clock frequency than most related works. Al-

though the ARLHT has low memory requirements, the algorithm’s limitations should

be addressed. These limitations are discussed in the following section.

6.4.5 Limitations and Discussion of Results

The ARLHT is based on the work published by Ser and Siu in [23], who developed an

LHT algorithm for a memory-compressed HPS. Their algorithm was applied to an image

of 384× 256 pixels and used 374,220 bits of memory to store the HPS and RBM. Their

algorithm achieved a memory saving of 50% as compared to the standard LHT. The

ARLHT can process the same image resolution, and its memory requirements to store

the HPS can be computed using (6.2). In total, the ARLHT consumes 311,850 bits to

process the same image resolution, which is a memory saving of 16.67% in comparison

to the memory-compressed LHT described by Ser and Siu.

There are limitations of the ARLHT that affect its line detection accuracy in digital

images and its overall memory requirements to store the HPS. A significant feature of

the ARLHT is its ability to exploit the sparsity of peaks in the HPS to reduce its

overall memory consumption by an integer factor Kθ. When Kθ > 4 and Nθ = 180,

investigations found that extracting peaks from the HPS that correspond to lines in an

image is no longer successful. Therefore, the number of angular regions is limited to an

integer in the range 1 < Kθ ≤ 4. This limitation is not explored further in this thesis.

However, it is an ideal candidate for future work in this area as it could enable further

compression of the HPS and improve memory consumption.
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Finally, the memory consumption for the parallel LHT, Symmetric LHT, standard

LHT, and ARLHT can be illustrated graphically. Figure 6.18 contains a bar chart of

the memory bits for each LHT algorithm across various image resolutions. The ARLHT

achieves the lowest memory consumption compared to the other LHT algorithms.
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Figure 6.18: A bar chart comparing the number of memory bits required by the parallel LHT,
Symmetric LHT, standard LHT, and ARLHT across several image resolutions.

The primary reason for developing the ARLHT algorithm was to achieve sufficient

line detection accuracy while reducing the overall memory resources required to store

the HPS. The ARLHT reduced the total memory requirements substantially compared

to the parallel LHT, Symmetric LHT, and standard LHT. The ARLHT algorithm offers

the most effective memory-efficient solution for detecting lines in digital images.

6.5 Conclusion

This chapter has presented a novel algorithm and FPGA architecture for memory-

efficient line detection in digital images, named the ARLHT. Initially, an overview of

the ARLHT algorithm was described based on the memory-efficient LHT given in [23].

It was demonstrated that the memory requirements of the LHT could be reduced

by exploiting the sparsity of peaks within the HPS. Two separate, smaller memories
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were employed; a memory-compressed HPS across the θ-axis, and an RBM. It was

shown that these memories could be used in conjunction to significantly reduce memory

requirements compared to the standard LHT and related works. A crucial component to

the success of the ARLHT algorithm was the incorporation of a morphological opening

applied to the RBM after voting was complete. This operation enabled the RBM to

determine the true orientation of detected peaks in the memory-compressed HPS.

The FPGA implementation for the ARLHT was then described, which included

detailed diagrams of the Hough kernel and adjusted orientation architectures. Fur-

thermore, signal flow graphs of the memory-efficient accumulator and RBM circuit de-

signs were presented and their operation was discussed in detail. Finally, the ARLHT

architecture was evaluated for its FPGA resource consumption and maximum clock

frequency across several image resolutions. For an image of 1920 × 1080 pixels, the

ARLHT architecture consumed 2,248,704 bits of memory (61 BRAMs). The ARLHT

architecture saved 52.76% of memory in comparison to the standard LHT.

There are four primary findings and outcomes from the work undertaken in this

chapter, which are listed as follows:

1. The ARLHT is the first FPGA architecture that uses compression to reduce the

memory requirements of line detection in FPGAs. It was found that the sparsity

of peaks could be exploited in the HPS to significantly decrease memory consump-

tion compared to the standard LHT algorithm and parallel LHT architecture.

2. An FPGA architecture of the ARLHT was described that uses two separate mem-

ory circuits to store the HPS. These circuits substantially reduce the memory

requirements compared to the standard LHT. For an image of 1920 × 1080 pix-

els, the ARLHT architecture saves 52.76% of memory resources compared to the

standard LHT. Furthermore, when compared with FPGA architectures of the

LHT in past works, the ARLHT architecture requires significantly less memory

to store the HPS.

3. The ARLHT algorithm uses a lossy compression scheme to store the HPS. This

scheme was shown to have sufficient accuracy for up to four angular regions.
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4. Small FPGA devices that contain 36 Kb BRAM tiles can target the ARLHT

architecture. For instance, the ARLHT architecture can process an edge image of

1920×1080 pixels using only 61 BRAM tiles and does not require any DSP slices.

In contrast, the parallel LHT requires 270 BRAM tiles and 89 DSP slices for the

same image resolution. While the parallel LHT requires an expensive mid-range

or large FPGA, developers can benefit from cheaper FPGAs by using the ARLHT

instead. Additionally, small FPGAs are advantageous as they consume less PCB

area and have smaller packaging requirements.
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Conclusions

FPGAs are increasingly used to accelerate computer vision algorithms to meet the

processing demands of large image resolutions and high video frame rates. Line de-

tection in digital images is essential for many computer vision applications and can be

achieved using the well-known LHT algorithm. Although the LHT is very robust to

noise and can accurately detect lines in digital images, it is highly computational, and

the associated HPS demands significant memory resources.

This thesis has presented a unique evaluation platform for FPGA architectures of

the LHT and described two novel LHT algorithms and their memory-efficient FPGA

architectures. These architectures target FHD video standards and require substan-

tially fewer memory resources than previously published implementations of the LHT.

This chapter reviews the contents of this thesis and presents a summary of its key

results. Future work relating to this area of research is also discussed.

7.1 Resume

Chapter 2 described an overview of FPGA and Zynq MPSoC technologies and high-

lighted the advantages of using PYNQ towards architecture development and valida-

tion. Several image processing algorithms were detailed, including local filtering, edge

detection, and binary morphological processing, as they were relevant to the novel LHT

architectures described in this thesis.
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Chapter 3 explored the LHT algorithm and investigated many of its variations

described in previously published works. The key findings of the literature review

revealed that very few studies investigated the significant memory consumption of the

HPS. Applications of the LHT were also explored, which included lane detection for

vehicles, and powerline inspection using UAVs. These applications motivated the need

for low-latency processing to perform safety-critical tasks.

Chapter 4 described a novel evaluation platform known as the HEP, which enabled

the development and validation of LHT architectures. The design of the HEP was

presented and the LHT architecture development framework it enabled was explored.

A parallel LHT architecture was also described in Appendix B to test the capabilities

of the HEP. This architecture successfully demonstrated the features of the HEP, such

as its processing time analysis and rapid system integration capabilities.

Chapter 5 presented the Symmetric LHT, which is a novel architectural optimisation

of the LHT. The Symmetric LHT decreased the memory allocation of the HPS in FPGA

devices by exploiting a symmetrical coordinate system in the spatial image domain.

A bit-packed accumulator was used to store the votes for two angles in θ into the

same location in memory, reducing the overall memory requirements in FPGA devices

compared to the parallel LHT. The FPGA architecture of the Symmetric LHT was

described and its performance in terms of resource consumption and timing closure

was presented. The Symmetric LHT architecture was also compared to previously

published implementations of the LHT to highlight its memory efficiency.

Chapter 6 detailed the ARLHT, which is a new algorithmic modification of the LHT

based on the work presented in [23]. The operation of the ARLHT was described, where

the size of the HPS was decreased along the θ-axis. The ARLHT’s voting scheme was

also demonstrated using two memories (a compressed HPS and RBM) in conjunction

to significantly reduce memory utilisation compared to the standard LHT. A morpho-

logical opening operation was applied to the RBM, which was crucial to the success of

the ARLHT. An FPGA architecture of the ARLHT was presented and compared to

previously published LHT implementations in the literature to highlight its memory

efficiency. Additionally, the limitations of the ARLHT were also discussed.
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7.2 Discussion of Results

The literature review presented in Section 3.3 details variations of the LHT algorithm

and related FPGA implementations. Key findings from this review revealed that few

investigations improve the memory consumption of the HPS in FPGA devices. The

LHT is a widely adopted algorithm for detecting lines in digital images, and FPGAs

are a popular choice to accelerate the algorithm for embedded applications. Due to

these reasons, the memory-efficient FPGA implementation of the LHT is an interesting

problem that this thesis set out to address. This section presents a summary of the key

results of this thesis.

In Chapter 4, a novel evaluation platform for FPGA architectures of the LHT,

named the HEP, was presented. The HEP uses MathWorks HDL Coder, the PYNQ

software framework, and the Vivado Design Suite to provide a rapid development envi-

ronment that offers repeatable results. The processing time of an LHT architecture can

easily be measured using the HEP, and its visualisation and analysis tools can be used

to inspect the output HPS. To the author’s knowledge, this development environment is

the first to combine PYNQ and MathWorks HDL Coder. A significant achievement of

this work was the open-sourcing of the HEP, now a software tool that other researchers

can download freely online. The HEP allows LHT architecture designs to be compared

fairly and with research integrity. Additionally, the HEP was used to rapidly design and

evaluate the FPGA architectures of the parallel LHT, Symmetric LHT, and ARLHT,

demonstrating its hardware validation and design evaluation capabilities.

To test the operation and evaluate the capabilities of the HEP, a parallel LHT ar-

chitecture based on the work presented in [87] was developed (see Appendix B). This

parallel LHT design is functionally equivalent to the standard LHT and was designed

to process an image of 1920 × 1080 pixels. The parallel LHT architecture was imple-

mented and deployed on the XCZ7UEV-2E device using the HEP. The architecture was

successfully hardware validated on the physical target device using two candidate test

images. The architecture achieved a maximum clock frequency of 200 MHz and required

89 DSP48E2 slices and 270 BRAM tiles. The parallel LHT consumed 86.54% of all
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BRAM tiles on the XCZ7UEV-2E device, which is a considerable amount of memory.

Many embedded applications given in Section 3.4 could leverage a memory-efficient im-

plementation of the LHT for two primary reasons. Firstly, a financially cheaper FPGA

could be selected instead of the XCZ7UEV-2E device, which would decrease the overall

cost of the system. A financially inexpensive FPGA could also significantly reduce

the cost of embedded solutions that undergo mass manufacture. Secondly, the LHT

could be implemented in resource-constrained environments where optimising BRAM

tile consumption is a critical design parameter. A memory-efficient LHT would be able

to co-exist alongside other hardware accelerators on an FPGA simultaneously.

In Chapter 5, the Symmetric LHT is presented, which optimises the memory re-

quirements of the accumulator memory by exploiting spatial domain symmetry and

bit-packing techniques. The Symmetric LHT architecture was developed using the

HEP and deployed and validated on the target XCZ7UEV-2E device. The architec-

ture consumed 181 BRAM tiles to store the HPS for an image of 1920 × 1080 pixels.

This memory consumption is a significant improvement compared to the parallel LHT

architecture, as it uses 32.96% less memory. The Symmetric LHT architecture also

achieved a maximum clock frequency of 205 MHz. The HEP reported the time to pro-

cess one image using the Symmetric LHT architecture as 12.06 ms, which corresponds

to 82.92 fps. The Symmetric LHT processing time results and overall memory con-

sumption are better than the parallel LHT architecture. Additionally, the frame rate

is suitable for the FHD video standard.

The Symmetric LHT was also compared to previously published implementations

of the LHT and compared favourably in terms of memory consumption and processing

time. The memory requirements of the Symmetric LHT were also compared with that

of the standard LHT across various image resolutions. Although the Symmetric LHT

has lower memory requirements than the parallel LHT and other related works, the

memory efficiency of the bit-packed accumulator could be improved compared to the

standard LHT. For instance, the standard LHT uses 4,790,640 bits to store the HPS

for an image of 1920×1080 pixels. For the same image resolution, the Symmetric LHT

requires 6,672,384 bits for the accumulator memory, inefficiently allocating 140.16% of
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memory resources. The overall impact of using bit-packing techniques reduced the total

BRAM requirements of the HPS when compared to the parallel LHT and previously

published works. However, the Symmetric LHT still consumed a significant amount of

memory to store the HPS for various image resolutions, demanding FPGAs with large

quantities of BRAM tiles. It was concluded that the memory consumption of the HPS

could be improved further by exploring compression techniques.

In Chapter 6, the ARLHT and its FPGA architecture are described. The ARLHT

is an algorithmic modification of the standard LHT that aims to reduce the memory

requirements of the HPS. The HEP was used to develop the FPGA architecture of

the ARLHT, which was implemented and successfully hardware validated using two

candidate test images on the XCZ7UEV-2E device. For an image of 1920×1080 pixels,

the ARLHT architecture only required 61 BRAM tiles to store the HPS. Compared

to the memory consumption of the standard LHT for the same image resolution, the

ARLHT saves 52.76% of memory. The memory consumption of the ARLHT also com-

pares favourably to previously published implementations of the LHT. The ARLHT

architecture achieved a target clock frequency of 200 MHz and was reported by the

HEP to process an image in 12.37 ms. This processing time corresponds to 80.84 fps,

which is suitable for the FHD video standard.

At the time of writing, the XCZ7UEV-2E device costs approximately £3,618 to pur-

chase online at the DigiKey store (a supplier trading in the United Kingdom) [117]. The

ARLHT significantly impacts the total memory consumption of the HPS. Financially

inexpensive FPGAs with relatively few BRAM tiles, such as the XC7A50T device [118],

can apply the ARLHT to a digital image of 1920× 1080 pixels. The XC7A50T device

only contains 75 BRAM tiles and 120 DSP slices and currently costs £55.72 on the

DigiKey store [119]. This FPGA is significantly cheaper than the XCZ7UEV-2E device

(although the XC7A50T FPGA does not contain a PS). The XC7A50T FPGA cannot

apply the Symmetric LHT or parallel LHT to an image of 1920× 1080 pixels as it does

not contain sufficient BRAM resources to store the HPS.
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The results presented in this thesis have demonstrated the memory-efficient imple-

mentation of the LHT in FPGA devices. By reducing the memory requirements of

the HPS, the LHT can be implemented in memory-constrained FPGA systems. Many

embedded applications may benefit from low-memory LHT architectures, as smaller

FPGA devices with fewer BRAM tiles can be selected for the design of image process-

ing and computer vision systems.

7.3 Key Conclusions

The primary objective of this research was to determine whether it is possible to reduce

the memory consumption of the HPS so that the LHT can be implemented using small

FPGA devices. The key findings presented throughout this thesis have demonstrated

that it is possible to reduce the memory requirements of the HPS by using bit-packing

techniques and data compression. The Symmetric LHT used spatial domain symmetry

and bit-packing to reduce FPGA resource consumption, while the ARLHT exploited

the sparsity of peaks in the HPS to compress data and significantly decrease FPGA

memory requirements. Furthermore, FPGA architecture designs of these techniques

were developed using the novel HEP and were successfully validated on the physical

target hardware, confirming their functional operation.

The Symmetric LHT produces the same results as the parallel LHT when config-

ured to operate using the same set of parameters, i.e. δθ, δρ, Nθ, and Nρ. Developers

can leverage the memory efficiency and improved DSP slice consumption offered by

the Symmetric LHT in their embedded system designs. In particular, the Symmetric

LHT can replace implementations of the parallel LHT to improve FPGA resource con-

sumption and allow developers to select smaller FPGA devices. There are only two

issues that developers should be aware of when using the Symmetric LHT architecture.

Firstly, the input image must have an even number of rows and columns. Secondly,

there must be an even number of angles in θ as this allows resource-sharing techniques

to be used, which improves the DSP slice consumption of the architecture design.

The ARLHT offers significant improvements in memory consumption compared

to the standard LHT, parallel LHT, and Symmetric LHT. Developers should use the
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ARLHT to detect lines in digital images for memory-constrained FPGA systems. Al-

though the ARLHT consumes very few FPGA resources, the algorithm does have weak-

nesses that should be addressed. The ARLHT applies one vote to the HPS per edge

pixel, which is similar to the Gradient LHT when λ = 0. This voting scheme can reduce

the sensitivity of line detection compared to the standard LHT, which is caused by edge

pixels that are not entirely collinear in the spatial domain. Furthermore, the accuracy

of line detection can decrease when the number of angular regions used by the ARLHT

is greater than four. Note that the accuracy and capabilities of the ARLHT algorithm

have been analysed and evaluated in recent literature [120].

The original research in this thesis has demonstrated that engineers and developers

can leverage memory-efficient LHT architectures in their embedded vision applications.

These architectures can target small FPGAs, which have lower device costs, smaller

PCB areas, and improved energy efficiency compared to large FPGAs. Optimised

architecture designs also offer developers additional FPGA resources to target other

algorithms and tasks using the same bitstream.

7.4 Future Work

There are various avenues of future work for this research area that would be interesting

to explore. These are listed below:

� In Chapter 4, the HEP evaluates an LHT architecture by transferring image

data between the Zynq MPSoC’s PS and PL using an AXI DMA. It would be

useful to extend the HEP’s functionality so that the user can interface a video

camera to the input of their custom LHT architecture. Similarly, the output of

their architecture could be connected to a display interface such as HDMI. This

functionality would allow the user to stream video data through LHT architecture

designs.

� The Symmetric LHT architecture in Chapter 5 uses two separate memories to

store the votes for θ0 and θNθ/2. It would be interesting to explore whether the

votes for these angles could be bit-packed into the same memory locations. This
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optimisation would improve the BRAM tile allocation for most image resolutions,

further reducing memory requirements.

� In Chapter 5, the spatial domain symmetry exploited by the Symmetric LHT is

only performed across the y-axis. Although external memory may be required to

buffer the input image, the symmetry across the x-axis should also be investigated.

If x-axis symmetry could be achieved, the resulting FPGA architecture can be

used to efficiently apply the LHT to spectrogram plots, enabling the detection of

chirps for radar applications.

� If there are more than four angular regions, the ARLHT architecture in Chapter

6 is unable to reliably detect peaks in the HPS. To improve the ARLHT, a

new method of peak separation is required to suppress the spurious detection

of lines and further reduce memory consumption. Additionally, the ARLHT

should undergo further analysis such as that performed in [120] to determine its

performance in terms of line detection accuracy.

� Finally, it would be interesting to combine the ARLHT with work presented

in [23], wherein the ρ-axis of the HPS was reduced by partitioning the input

image into subregions. The resulting LHT algorithm would be very efficient

in terms of memory utilisation. However, the algorithm would exhibit similar

limitations as the ARLHT, described in Section 6.4.5. These limitations require

further investigation.
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Appendix A

CORDIC

COordinate Rotation DIgital Computer (CORDIC) is an iterative hardware architec-

ture initially developed by Volder [72] that uses shift and add operations to implement

trigonometric functions efficiently. Walther [73] extended the technique to implement

multiplication, division, hyperbolic functions, and logarithmic functions. Only the

trigonometric derivation, also known as Circular CORDIC, is required in this thesis for

calculating the gradient orientation of a greyscale image (see Section 2.6.7).

The Circular CORDIC algorithm operates on the principle of iteratively rotating an

input vector (x0, y0) by a set of angles θk to produce an output vector (xK , yK), where k

maintains track of the current iteration and K is the total number of iterations. Figure

A.1 presents an example that demonstrates three iterations of the CORDIC algorithm,

where a vector is rotated on the Cartesian plane.

Iteration k=0

(x0,y0)

(x1,y1)

x0

y0

-45°

y

x

y

x

(x1,y1)

(x2,y2)

-26.6°

y

x

Iteration k=1 Iteration k=2

(x2,y2)

(x3,y3)

14°

Figure A.1: An example of rotating a vector (x0, y0) three times on the Cartesian plane.
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Circular CORDIC is an effective technique to compute trigonometric functions such

as cos(θ) and sin(θ) on an FPGA device. The algorithm can also calculate the inverse

tangent and magnitude of an input vector. The following sections introduce the Circular

CORDIC algorithm and include discussions on the scaling factor, the cumulative angle,

and the region of convergence.

A.1 The Circular CORDIC Algorithm

The Circular CORDIC algorithm operates by iteratively rotating a vector on the Carte-

sian plane to converge on a result. A vector rotation on the Cartesian plane can be

mathematically expressed as

xk+1

yk+1

 =

cos(θk) − sin(θk)

sin(θk) cos(θk)

xk
yk

 . (A.1)

The relationship above can be rewritten by taking a factor of cos(θk) and substituting

in tan(θk) = sin(θk)/ cos(θk), which gives

xk+1

yk+1

 = cos(θk)

 1 − tan(θk)

tan(θk) 1

xk
yk

 . (A.2)

The remaining cos(θk) term in (A.2) can be dropped to simplify the implementation

of the CORDIC equations. Later in Section A.2, the cos(θk) term is reintroduced to

prevent errors. The relationship now becomes

xk+1

yk+1

 =

 1 − tan(θk)

tan(θk) 1

xk
yk

 . (A.3)

To simplify (A.3) for hardware implementation, only values of tan(θk) that are consec-

utive negative powers of two will be selected to rotate the vector (xk, yk). Restricting

the angle of rotation in this way allows the tan(θk) terms to be converted from multi-

plications, to simple bit-shifts to the right. Table A.1 presents the first four rotation

angles and their corresponding values of tan(θk).
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Table A.1: The rotation angles (degrees) for the first four iterations of the CORDIC algorithm.
The rotation angles are given to four decimal places.

Iteration Number (k) Rotation Angle (θk
◦) tan(θk) = 2−k

0 45.0000 1
1 26.5651 0.5
2 14.0362 0.25
3 7.1250 0.125

Figure A.2 presents an example of the first three CORDIC iterations using the

rotation angles given in Table A.1. The first iteration rotates the input vector by 45◦,

the second iteration rotates the vector by 26.5651◦, and the third iteration rotates the

vector by 14.0362◦. The rotation angle becomes smaller after each iteration, allowing

the CORDIC algorithm to converge on a solution.

(x0,y0)

(x1,y1)
-45°

y

x

(x2,y2)

-26.6°

Iteration k=0 Iteration k=1 Iteration k=2

(x0,y0)

(x1,y1)
-45°

x

(x2,y2)

-26.6°
(x3,y3)

14°

(x0,y0)

(x1,y1)
-45°

x

yy

Figure A.2: Plots of the first three CORDIC iterations using the rotation angles given in
Table A.1. The rotation angle is given to one decimal place and becomes smaller after each
iteration. The scaling factor (discussed in Section A.2) is ignored.

The rotation angles given in Table A.1 are all positive values. Negative rotation

angles are introduced by using a decision variable dk that allows the CORDIC algorithm

to rotate an input vector in a clockwise or anticlockwise direction. The value of dk is

+1 for an anticlockwise rotation and -1 for a clockwise rotation. The relationship in

(A.3) can now be rewritten as

xk+1

yk+1

 =

 1 −dk2−k

dk2
−k 1

xk
yk

 . (A.4)
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The decision variable dk changes the sign of the term 2−k to allow the CORDIC algo-

rithm to converge on a solution. The value of dk is set depending on the operational

mode of CORDIC, which is discussed further in Section A.5.

A.2 The Scaling Factor

A side-effect of dropping the cos(θ) term from the CORDIC equation in (A.3) is that

the input vector will increase in magnitude/length after each CORDIC iteration. This

problem is normally referred to as vector growth and can be demonstrated by plotting

the first three iterations of the CORDIC algorithm, as given in Figure A.3. Notice that

the input vector grows in magnitude after each iteration.

len
gt

h 
= 

1

length = 1.4142

length = 1.5811
length = 1.5811

length = 1.6298

y

x-26.6°

Iteration k=0 Iteration k=1 Iteration k=2

x
14°

-45°
x

yy

length = 1.4142

Figure A.3: These plots demonstrate vector growth after three CORDIC iterations. The
rotation angles are given to one decimal place and the vector length is given to four decimal
places.

Table A.2 presents the vector growth for the first four CORDIC iterations. Notice

that the vector growth tends towards one after each iteration due to the rotation angle

progressively decreasing in size. The vector growth after each iteration is given by

1/ cos(θk), where θk is the angle of rotation.
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Table A.2: The vector growth for the first four iterations of the CORDIC algorithm. The
rotation angles (degrees) and vector growth are given to four decimal places.

Iteration Number (k) Rotation Angle (θk
◦) Vector Growth

0 45.0000 1/ cos(45.0000◦) = 1.4142
1 26.5651 1/ cos(26.5651◦) = 1.1180
2 14.0362 1/ cos(14.0362◦) = 1.0308
3 7.1250 1/ cos(7.1250◦) = 1.0079

After applying K rotations on an input vector, the overall vector growth GK−1 is

a constant that can be calculated by computing the product of 1/ cos(θk) after each

consecutive rotation. This is mathematically expressed as

GK−1 =

K−1∏
k=0

1

cos(θk)
. (A.5)

Note that when K approaches infinity, the vector growth converges and is approx-

imately 1.6467. To compensate for vector growth, a scaling factor can be applied to

the input or output of the CORDIC processor. FPGA architectures usually apply the

scaling factor using a constant multiplication, which requires very few arithmetic re-

sources. The scaling factor is defined as the reciprocal of the overall vector growth,

which is given as 1/GK−1. Later in Section A.5, an example is presented of an FPGA

architecture that uses a constant multiplication to apply the scaling factor to the output

of a CORDIC processor.

A.3 The Circular CORDIC Equations

An additional register zk is usually introduced to maintain the cumulative angle be-

tween rotations. The rotation angle for a CORDIC iteration can be computed using

dk tan−1(2−k), where dk determines the direction of rotation. The rotation angle is sub-

tracted from zk when rotating anticlockwise and added to zk when rotating clockwise.

This operation is expressed mathematically as

zk+1 = zk − dk tan−1(2−k). (A.6)
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Linear equations can be also be used to represent (A.4) as follows.

xk+1 = xk − dk2−kyk

yk+1 = yk + dk2
−kxk

(A.7)

The scaling factor is not included in the above equations as the overall scaling factor

1/GK−1 is usually applied after all CORDIC iterations are completed.

A.4 Region of Convergence

Circular CORDIC has limitations on the range of angles that it will successfully con-

verge upon. The angle of rotation becomes smaller after each iteration, which causes

the cumulative angle to converge to an upper or lower limit. Figure A.4 demonstrates

the first six CORDIC rotations on the Cartesian plane.

y

x

Upper limit of
convergence

≈ 99.88°

45°

26.6°
14°

Lower limit of
convergence
≈ -99.88°

-45°

-26.6°
-14°

7.1°

3.6°

1.8°
Starting
Point

Figure A.4: A plot demonstrating the first six CORDIC rotations tending towards a limit in
the anticlockwise and clockwise directions.

The cumulative angle converges to a limit in the anticlockwise and clockwise direc-

tions, which can be computed using

∞∑
k=0

tan−1(2−k) ≈ 99.88°. (A.8)

209



Appendix A. CORDIC

CORDIC is unable to converge on angles that are larger than ±99.88°. This issue

can be addressed by adjusting the input vector (x0, y0) by ±90° and then correcting

the angle of rotation, zK , after the CORDIC operation is complete. These operations

are referred to as quadrant mapping and demapping and are only required when the

designer is aware that the angle of convergence is larger than 99.88°. An input vector

(x0, y0) can be rotated by multiples of 90° using a simple technique. An example is

presented in (A.9) that rotates a vector by 90° in the clockwise direction.

y0
x0

 =

 0 1

−1 0

−x0
y0

 =

cos(−90°) − sin(−90°)

sin(−90°) cos(−90°)

−x0
y0

 (A.9)

Similarly, a vector can be rotated by 90° in the anticlockwise direction as follows.

 y0

−x0

 =

0 −1

1 0

−x0
−y0

 =

cos(90°) − sin(90°)

sin(90°) cos(90°)

−x0
−y0

 (A.10)

For inspection purposes, the rotation examples in (A.9) and (A.10) can be illustrated

on a plot, as shown in Figure A.5. Notice that each input vector initially lies outside

the region of convergence for Circular CORDIC. Each vector is then rotated by 90°

into the region of convergence.

(-x0,y0)

(y0,x0)

y

x

Region of
Convergence

Rotate 90° in the
Clockwise
Direction

(-x0, -y0)

(y0, -x0)

y

x

Region of
Convergence

Rotate 90° in the
Anticlockwise

Direction

Figure A.5: Two plots demonstrating the rotation of a vector into the region of convergence
for Circular CORDIC. The left plot illustrates a vector rotation by 90° in the clockwise direction,
while the right plot shows a vector rotation by 90° in the anticlockwise direction.
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Quadrant mapping can be implemented on an FPGA by first establishing if the x0

and y0 inputs are positive or negative and subsequently rotating the vector as required.

For example, if x0 and y0 are negative, the input vector should be rotated 90° in the

anticlockwise direction. Similarly, if x0 is negative and y0 is positive, the input vector

should be rotated 90° in the clockwise direction.

A.5 Vectoring Mode

Circular CORDIC has two modes of operation known as rotation and vectoring mode.

The following discussion will be limited to vectoring mode as it is the only mode relevant

to the work in this thesis. To initialise the CORDIC processor for vectoring mode, the

direction of rotation dk should reduce yk towards zero after each iteration, as below.

dk = −sign(yk). (A.11)

The input vector (x0, y0) is given in Cartesian coordinates and the angle of rotation z0 is

set to zero. In this configuration, the CORDIC processor will perform pseudo-rotations

with the aim of rotating the input vector towards the x-axis, as shown in Figure A.6.

(x0,y0)

x

y

(x6,y6)
-7.1°

-45°

-26.6°
14°

Figure A.6: An example of Circular CORDIC operating in vectoring mode. The input vector
is rotated towards the x-axis.

The zk register stores the cumulative angle of rotation after each iteration. The total

angle of rotation zK can be found after all iterations have been performed. The final

value of xK is the magnitude of the input vector (since yk → 0), which will need
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to be scaled by 1/GK−1. The theoretical response of Circular CORDIC operating in

vectoring mode after K pseudo-rotations is expressed using the following equations.

xK = GK−1

√
x20 + y20

yK = 0

zK = z0 + tan−1
(
y0
x0

) (A.12)

Figure A.7 presents an architecture for a Circular CORDIC processor, which con-

tains optional quadrant mapping and demapping stages at the input and output of the

processor, respectively.

xA

yA

Quadrant
Mapper

(optional)

Circular CORDIC Processor
(Vectoring Mode)

xB

zB

x0

y0

z0

x1

y1

z1

x2

y2

z2

xK

yK

zK0
Quadrant
Demapper
(optional)

1/GK -1

k=0 k=1 k=2 k=K - 1

CORDIC Cells

Scaling Factor

Zero

Figure A.7: Hardware architecture of Circular CORDIC operating in vectoring mode.

The input to the quadrant mapper is a vector denoted as (xA, yA). The quadrant

mapper rotates the vector by ±90° if it is outside the region of convergence, creating

a new vector (x0, y0). The new vector is input into the CORDIC processor, which

contains K CORDIC pseudo-rotations. Notice that the cumulative angle of rotation

is also computed between each CORDIC pseudo-rotation. The input cumulative angle

register is labelled z0, while the output register is labelled zK . The quadrant demapper

is used to correct the angle zk as required, giving the final rotation angle zB. The

last stage of the architecture removes the scaling introduced by the CORDIC pseudo-

rotations by multiplying xK by 1/GK−1 to obtain xB.
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Each CORDIC pseudo-rotation block in Figure A.7 is constructed of an efficient

shift and add architecture design. The pseudo-rotation block implements the system of

linear equations for Circular CORDIC given in (A.6) and (A.7). Figure A.8 presents a

signal flow graph for this hardware architecture. Notice that the CORDIC cell archi-

tecture uses three additions, two bit-shift operations, and a LUT to store the value of

tan−1(2−k). The reason for applying the scaling factor after the CORDIC processor is

to reduce the complexity of the cell architecture.

>> k
>> k

tan-1(2 -k)

MSB
zk

yk

xk

zk+1

yk+1

xk+1

Figure A.8: A hardware architecture of a Circular CORDIC cell for vectoring mode operation.

A.6 Example: Circular CORDIC in Vectoring Mode

Circular CORDIC can be used to compute the magnitude and orientation of a vector.

For example, consider the vector (−4, 3). Initially, the quadrant mapping technique

described in Section A.4 is required to rotate the vector by 90° in the clockwise direction

so that it is within the region of convergence for Circular CORDIC. The vector is equal

to (3, 4) after quadrant mapping. The new vector is input into a Circular CORDIC

processor operating in vectoring mode. In this example, there are eight CORDIC

iterations, which are computed as shown in Table A.3. Notice that the input value of

z0 is zero, so that the value of z8 at the output of the CORDIC processor is equal to

the total angle of rotation.

The output angle z8 is quadrant corrected by rotating it in the anticlockwise direc-

tion. This operation is performed by adding 90° to z8, which gives 53.5330° + 90° =

143.5330°. Meanwhile, the scaling factor can be applied to x8 to reveal the true mag-

nitude of the input vector, i.e. 8.2335/GK−1 = 5.
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Table A.3: Example of Circular CORDIC operating in vectoring mode using eight iterations.
Each value is given to four decimal places.

k θk° xk yk zk°

0 45.0000 3.0000 4.0000 0.0000
1 26.5651 7.0000 1.0000 45.0000
2 14.0362 7.5000 -2.5000 71.5651
3 7.1250 8.1250 -0.6250 57.5288
4 3.5763 8.2031 0.3906 50.4038
5 1.7899 8.2275 -0.1221 53.9801
6 0.8952 8.2314 0.1350 52.1902
7 0.4476 8.2335 0.0064 53.0854
8 0.2238 8.2335 -0.0579 53.5330

A.7 Summary

This appendix has reviewed the Circular CORDIC algorithm. In particular, the scal-

ing factor, angle accumulator, region of convergence, and vectoring mode of Circular

CORDIC were discussed. A hardware architecture and simple example for Circular

CORDIC operating in vectoring mode was presented.
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Parallel LHT Implementation

This appendix details the design of a parallel LHT architecture for implementation on

an FPGA device. The architecture design is based on the work presented in [87] and was

developed using MathWorks HDL Coder and Simulink. Initially, this appendix sum-

marises Mathworks HDL Coder compatible blocks and fixed-point data types. Then,

the parallel LHT architecture is presented using Simulink diagrams. Lastly, an LHT

software model is presented, which is used for architecture validation.

The author of this thesis has made the best effort to prepare the Simulink diagrams

in this appendix for electronic viewing and printing on physical media for reading.

However, please note that some diagrams may only be readable using a high-resolution

Portable Document Format (PDF) of this thesis. Alternatively, all Simulink models

and diagrams can be accessed online in [106] for inspection and analysis.

B.1 MathWorks HDL Coder Blocks

MathWorks HDL Coder contains a wide variety of HDL-compatible blocks for devel-

oping FPGA architecture designs. The work in this thesis only uses a subset of these

blocks, as shown in Figure B.1. Each block has been allocated a colour to improve the

inspection of Simulink model designs that are presented later in this appendix. Also,

note that each block has a number, which is used below to refer to an individual block

and summarise its functionality.
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Z-1
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11. 12. 13.

14.
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Figure B.1: This diagram presents a subset of MathWorks HDL Coder blocks used to develop
the LHT architecture designs presented in this thesis.

1. constant — The constant block generates a signal that remains at a constant

value during architecture operation. The user can configure the constant block

to generate a scalar or vector signal.

2. delay — This block delays the input signal by a fixed number of clock cycles. The

user can specify the delay length in the block’s configuration window.

3. convert — The convert block is also referred to as a data type conversion. This

block converts the data type of an input signal to a user-specified data type.

4. terminator — The terminator is used at the output ports of blocks that are not

required in the architecture design. Its purpose is to cap an unused output port,

which keeps the Simulink design tidy.

5. add — This block can perform an add or subtract operation on scalar and vector

input signals.

6. product — The product block can multiply two input signals together. This block

can operate on scalar and vector inputs.

7. relational — The relational block implements a relational operator that can be

used on scalar and vector input signals. These operators include ==, ∼=, <,
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<=, >=, and >. See the MathWorks documentation for more information [113].

8. vector index (sel) — This block is also referred to as a selector, or sel. The

purpose of the selector is to index elements from an input vector.

9. and (logical) — The and block is an example of a logical block that can be found

in the HDL Coder block set. Other logical blocks include OR, NAND, NOR,

XOR, NXOR, and NOT, which are all common logic functions.

10. switch — The switch block has three inputs and one output. The first input

and third input are fed to the output based on the value of the second input.

The criteria for passing the first or third input is set by the user in the block’s

configuration window.

11. multiplexer — The multiplexer block is also known as a multiport switch. The

first input of this block is a control signal, which determines the input signal that

is sent to the output port.

12. lookup table — This block implements a one-dimensional function and is com-

monly abbreviated as LUT. The input to the LUT block is an address, which is

used to index a memory location and output the data stored at that location.

13. counter — Counter blocks are used to implement a free-running or count-limited

counter in the architecture design.

14. simple ram — The simple RAM block (also known as a simple dual port RAM)

implements a simultaneous read-and-write RAM. In this thesis, the simple RAM

block is used to instantiate a BRAM primitive in the FPGA design.

15. vector concat — This block concatenates two or more vectors together.

Many of the blocks described above will be used in architecture designs to manip-

ulate and process fixed-point data types. MathWorks HDL Coder has a fixed-point

data type notation that is documented in [121]. Simulink designs in this thesis also use

vector signals to simplify FPGA architecture development. Figure B.2 demonstrates

how fixed-point data types and vector signals are presented in Simulink.
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Figure B.2: A diagram illustrating the Simulink convention for displaying a fixed-point data
type and dimension of a signal.

The above convention for displaying the fixed-point data type and dimension of a

signal will be used in Simulink diagrams throughout the remainder of this appendix.

The parallel LHT architecture will now be presented in the following sections.

B.2 Architecture Overview

The parallel LHT architecture will be developed using the HEP (see Chapter 4). Figure

B.3 contains a diagram that presents an overview of the entire FPGA design, which

includes the LHT architecture and HEP infrastructure.
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Figure B.3: An overview diagram of the parallel LHT architecture and HEP infrastructure.

218



Appendix B. Parallel LHT Implementation

The parallel LHT design is separated into two main blocks, the Parallel LHT Kernel

and Parallel LHT Accumulator. The Simulink systems for each of these blocks will be

presented in this appendix. Note that discussion of the parallel LHT design will be kept

to a minimum, and only information relevant to the Simulink design will be discussed.

See [87] for more information on the parallel LHT architecture.

The HEP was used to develop the parallel LHT architecture design. The Simulink

template presented in Figure 4.8 was used as a starting point for this work. The contents

of the DUT block were modified to contain the subsystems presented in Figure B.4.

The wordlength of the TDATA signal at the input and output of the DUT must be

32 bits. Therefore, a convert block was used to appropriately modify the fixed-point

data type at the accumulator output.
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Figure B.4: A Simulink system presenting the contents of the DUT block, which contains the
parallel LHT kernel and accumulator. The convert block is used to ensure the TDATA signal
at the output of the DUT is 32 bits, which is compliant with the HEP design methodology.

The parallel LHT design is configured to process an image containing 1920× 1080

pixels, where δθ = 1°, δρ = 1, Nθ = 180, and Nρ = 2204. The input to the architecture

is an edge image that uses 1 bit to represent active edge pixels. The least significant

bit of the architecture’s 32 bit input will contain the edge pixel information.

B.3 Parallel LHT Kernel

Figure B.5 presents the Simulink system for the parallel lht kernel block. The diagram

contains two subsystem blocks named coordinate counters and parallel kernel. Addi-

tionally, there are two relational operators that detect the first pixel in an image. The

bitslice block at the top of the diagram extracts the edge pixels from the input signal.
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Figure B.5: The contents of the parallel lht kernel Simulink subsystem.

The purpose of the coordinate counters block is to determine the coordinates of the

current pixel, which can be used by the parallel kernel block to compute (3.2). The

coordinate counters subsystem is presented in Figure B.6. There are two counters that

compute the image coordinates and are configured with a step size of one. The range

of the x counter is [−960, 959] and the range of the y counter is [−540, 539]. Both

counters are count-limited and will return to their starting value after reaching their

upper limit. The relational operator in the diagram asserts when the output of the

x counter is equal to 959, which causes the y counter to increment by one.
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valid

boolean
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Figure B.6: The Simulink system for the coordinate counters block.

Figure B.7 presents the contents of the parallel kernel subsystem. Notice that there

are two subsystems named look ahead hough and rho computation. The add block is

required to change the range of ρ(θ) from [−D/2, D/2] to [0, D]. It is necessary to

change the range so that it can be used to index the accumulator memory, which only

accepts address values that are positive integers.
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Figure B.7: The parallel kernel Simulink subsystem.

The look ahead hough block implements the architecture design illustrated previ-

ously in Figure 3.19 on page 75. This architecture is also described extensively in [20].

Figure B.8 presents the Simulink model of the Look-Ahead Kernel. Various HDL Coder

blocks are used in this design, which pre-computes y sin(θ) for the next image row using

a single multiplier.
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Figure B.8: Simulink model of the Look-Ahead Kernel, which is detailed in [20]. The design
uses a single multiplier to pre-compute y sin(θ) for the next image row. A tapped-register is
employed to write values to an output register for use in the rho computation subsystem.

Lastly, Figure B.9 presents the Simulink diagram for the rho computation block,

which computes (3.2). This parallel LHT kernel uses the resource-efficient technique

presented in [87]. Many of the multiplications and additions are achieved using the

vector processing capabilities of HDL Coder and Simulink. Notably, there is one ad-

ditional optimisation implemented in this design that was not published in [87]. The

multiplication of x and cos(60°) is equal to x/2, which can be implemented using a

simple bit-shift to the right. This simple optimisation reduces the total DSP48E2 slice

requirements by one.
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Figure B.9: The contents of the rho computation subsystem, which implements (3.2) using
the technique described in [87].

B.4 Parallel LHT Accumulator

Figure B.10 presents the Simulink model of the parallel lht accumulator subsystem,

which contains a block called accumulator controller fsm and a subsystem named ac-

cumulator array. There are relational operators, logical blocks and a switch that control

the operation of the accumulator array.
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Figure B.10: The Simulink diagram of the parallel lht accumulator subsystem.

The accumulator controller fsm block implements a simple state machine to con-

trol the accumulator array subsystem. The FSM was designed using the MATLAB

programming language, as shown in Listing B.1. See the code comments in the listing

for further information on the operation of the FSM.
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Listing B.1: accumulator controller fsm.m

1 function [mode , read , clear , index , valid , debug_state] ...

2 = fsm(sof , eof , ntheta , nrho)

3 % FSM Controls the voting of the parallel.accumulator array

4

5 % Initialise states as fi objects

6 IDLE = fi(0, 0, 2, 0);

7 VOTE = fi(1, 0, 2, 0);

8 READ = fi(2, 0, 2, 0);

9 CLEAR = fi(3, 0, 2, 0);

10

11 % Declare persistent objects for current state and counters

12 persistent current_state;

13 persistent rho_counter;

14 persistent theta_counter;

15

16 % Initialise persistent object current_state

17 if isempty(current_state)

18 current_state = IDLE;

19 end

20

21 % Initialise persistent object rho_counter

22 if isempty(rho_counter)

23 rho_counter = fi(0, 0, 16, 0);

24 end

25

26 % Initialise persistent object theta_counter

27 if isempty(theta_counter)

28 theta_counter = fi(0, 0, 16, 0);

29 end

30

31 % Perform state transition and output assignment

32 switch current_state

33 case IDLE

34 % When IDLE , reset counters and no valid output

35 rho_counter = fi(0, 0, 16, 0);

36 theta_counter = fi(0, 0, 16, 0);

37 clear = false;

38 valid = false;

39 debug_state = current_state;

40 read = rho_counter;
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41 index = theta_counter;

42

43 % Transition from IDLE to VOTE is start of frame (sof) detected

44 % else , stay in IDLE

45 if sof

46 mode = true;

47 current_state = VOTE;

48 else

49 mode = false;

50 current_state = IDLE;

51 end

52

53 case VOTE

54 % When VOTE , keep counters at zero , keep mode True

55 rho_counter = fi(0, 0, 16, 0);

56 theta_counter = fi(0, 0, 16, 0);

57 mode = true;

58 clear = false;

59 valid = false;

60 debug_state = current_state;

61 read = rho_counter;

62 index = theta_counter;

63

64 % If end of frame (eof) detected , go to the READ state

65 % else , stay in the VOTE state

66 if eof

67 current_state = READ;

68 else

69 current_state = VOTE;

70 end

71

72 case READ

73 % To read out the HPS , cycle through the theta and rho counters.

74 % mode set to False and valid is True

75 mode = false;

76 clear = false;

77 read = rho_counter;

78 index = theta_counter;

79 valid = true;

80 debug_state = current_state;

81

Listing B.1 (Cont.): accumulator controller fsm.m
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82 % If theta_counter and rho_counter are at limits then transition

83 % to the CLEAR state

84 % else , stay in the READ state

85 if theta_counter >= ntheta && rho_counter >= nrho

86 rho_counter = fi(0, 0, 16, 0);

87 theta_counter = fi(0, 0, 16, 0);

88 current_state = CLEAR;

89 elseif rho_counter >= nrho

90 theta_counter = fi(theta_counter + 1, 0, 16, 0);

91 rho_counter = fi(0, 0, 16, 0);

92 current_state = READ;

93 else

94 rho_counter = fi(rho_counter + 1, 0, 16, 0);

95 current_state = READ;

96 end

97

98 case CLEAR

99 % Clear output is set to True in this state to clear the memory

100 mode = false;

101 clear = true;

102 valid = false;

103 read = rho_counter;

104 index = theta_counter;

105 debug_state = current_state;

106

107 % The rho_counter and theta_counter are reset after full clear

108 % Then transition to the IDLE state

109 if rho_counter >= nrho

110 rho_counter = fi(0, 0, 16, 0);

111 theta_counter = fi(0, 0, 16, 0);

112 current_state = IDLE;

113 else

114 rho_counter = fi(rho_counter + 1, 0, 16, 0);

115 theta_counter = fi(0, 0, 16, 0);

116 current_state = CLEAR;

117 end

118

119 otherwise

120 rho_counter = fi(0, 0, 16, 0);

121 theta_counter = fi(0, 0, 16, 0);

122 mode = false;

Listing B.1 (Cont.): accumulator controller fsm.m
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123 clear = false;

124 valid = false;

125 debug_state = current_state;

126 read = rho_counter;

127 index = theta_counter;

128 current_state = IDLE;

129 end

Listing B.1 (Cont.): accumulator controller fsm.m

Figure B.11 presents the contents of the accumulator array subsystem, which con-

tains two switches, a selector block, and a subsystem named angle accumulator. The

parallel LHT accumulator contains two modes of operation. One mode is used to ac-

cumulate and write votes to memory, while the second mode allows the memory to be

read and cleared. The accumulator array subsystem contains two switches that allow

the mode of operation to be easily changed during runtime. Also, the output of the

angle accumulator subsystem is a selector block, which facilitates angle indexing when

reading the HPS from memory.
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Figure B.11: The accumulator array Simulink design.

The symbol inside the angle accumulator subsystem above is used to represent a

subsystem that has independent instances for each element of an input vector. In this

case, the angle accumulator subsystem will have 180 instances, as the input address

signal is a vector that contains 180 elements. The contents of the angle accumulator

subsystem is presented in Figure B.12. Notice that there is a block named For Each

at the top-left corner of the Simulink system, which enables this functionality.

226



Appendix B. Parallel LHT Implementation

Z-1

delay_address

ufix12

Z-1

delay_wren

boolean

relational

boolean

and

boolean
Z-1

delay_control

boolean

add_vote

ufix12 one
ufix1

Z-1

delay_accumulator

ufix12

zero

ufix1
1

mode

boolean

2
address

ufix12

3
edge

boolean
1

hps

For Each

For Each

T

F

 > 0

data_switch

ufix12
T

F

control_switch

ufix12
wr_data

wr_addr

wr_en

rd_addr

rd_data

simple_block_ram

ufix12

Figure B.12: The contents of the angle accumulator Simulink subsystem.

The angle accumulator subsystem contains a simple block ram block, which im-

plements the accumulator memory for one angle in θ using BRAMs. The specific

architecture design of this accumulator is detailed further in [14].

B.5 Standard LHT Software Model

The parallel LHT architecture was simulated and compared to a software model of the

standard LHT in MATLAB. The source code for the software model of the standard

LHT is presented in Listing B.2.

Listing B.2: LineHoughTransform.m

1 function [hps] = LineHoughTransform(edge)

2 %LineHoughTransform Applies the Standard Line Hough Transform to binary

3 % images. The Standard Line Hough Transform (LHT) as defined by Duda &

4 % Hart [1], is applied to binary edge images using this function. The

5 % Hough Parameter Space (HPS) is produced by applying the analytical

6 % function for lines as described in [1]. The HPS is returned as a

7 % double precision array.

8 %

9 % [1] - R. O. Duda , P. E. Hart , "Use of the Hough transformation to

10 % detect lines and curves in pictures", Commun. ACM , vol. 15,

11 % no. 1, pp. 11-15, Jan. 1972.

12 %

13
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14 %Check arguments (no dRho as hardware model is dRho=1 for rounding)

15 switch nargin

16 case 0

17 error('Not enough input arguments.');

18 case 1

19 % Do Nothing

20 otherwise

21 error('Error occurred.');

22 end

23

24 %Get the dimensions of the input image.

25 [height , width] = size(edge);

26

27 %Get the maximum Rho

28 maxRho = ceil(sqrt(( height /2)^2+( width /2)^2));

29

30 %Get theta

31 theta = 1:1:180;

32

33 % Initialise quantised cos & sin

34 cosQ = double(fi(cos(deg2rad(theta -1)), 1, 16, 14));

35 sinQ = double(fi(sin(deg2rad(theta -1)), 1, 16, 14));

36

37 %Get HPS dimensions

38 [~, m] = size(theta);

39 n = maxRho *2;

40

41 %Initialise the Accumulator array (A)

42 A = zeros(n, m);

43

44 %Get HPS by iterating through the binary edge image and operating on

45 %feature points.

46 for y = 1: height

47 for x = 1:width

48

49 % Iterate over binary edge pixels

50 if edge(y,x) > 0

51

52 % Adjust Cartesian Positions

53 xTemp = x-width /2-1;

54 yTemp = y-height /2-1;

Listing B.2 (Cont.): LineHoughTransform.m
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55

56 % Get Hough Parameters

57 rho = round(xTemp*cosQ) + round(yTemp*sinQ) + maxRho + 1;

58

59 % Apply votes to HPS

60 for i = 1:m

61 A(rho(1,i), theta(1,i)) = A(rho(1,i), theta(1,i)) + 1;

62 end

63 end

64 end

65 end

66

67 %Assign the accumulator array to the HPS output array

68 hps = A;

69

70 end

Listing B.2 (Cont.): LineHoughTransform.m

B.6 Summary

This appendix initially introduced MathWorks HDL Coder blocks and fixed-point data

types. The Simulink design of a parallel LHT architecture was then explored for im-

plementation on an FPGA device. Several components of the LHT architecture were

presented including the coordinate counters, Look Ahead Kernel, parallel LHT kernel,

accumulator controller, and parallel accumulator memory. Lastly, a standard LHT

software model in MATLAB code was presented.
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Symmetric LHT Validation

Results

The Symmetric LHT architecture was validated by the HEP using the Jupyter envi-

ronment as shown in Figure C.1 and Figure C.2. The resulting HPS for each image was

the same as that produced by the Symmetric LHT simulation and MATLAB software

model.
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Figure C.1: This screenshot presents the HEP Jupyter environment, where the Symmetric
LHT architecture is undergoing hardware validation using the window image.
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Figure C.2: This screenshot presents the HEP Jupyter environment, where the Symmetric
LHT architecture is undergoing hardware validation using the stairs image.
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ARLHT Validation Results

The ARLHT architecture was validated by the HEP using the Jupyter environment as

shown in Figure D.1 and Figure D.2. The resulting HPS for each image was the same

as that produced by the ARLHT simulation and MATLAB software model.
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Figure D.1: This screenshot presents the HEP Jupyter environment, where the ARLHT
architecture is undergoing hardware validation using the window image.
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Figure D.2: This screenshot presents the HEP Jupyter environment, where the ARLHT
architecture is undergoing hardware validation using the stairs image.

235



References

[1] L. Zhou, L. Zhang, and N. Konz, “Computer Vision Techniques in Manufactur-

ing,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53,

no. 1, pp. 105–117, 2023.

[2] A. HajiRassouliha, A. J. Taberner, M. P. Nash, and P. M. Nielsen,

“Suitability of recent hardware accelerators (DSPs, FPGAs, and GPUs)

for computer vision and image processing algorithms,” Signal Processing:

Image Communication, vol. 68, pp. 101–119, 2018. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0923596518303606

[3] R. O. Duda and P. E. Hart, “Use of the Hough transform to detect lines and cures

in pictures,” Communications of the Association Computing Machinery, vol. 15,

no. 1, pp. 11–15, 1972.

[4] A. Kadyrov and M. Petrou, “The Trace transform and its applications,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 8, pp.

811–828, 2001.

[5] F. Chao, S. Yu-Pei, and J. Ya-Jie, “Multi-Lane Detection Based on Deep Convo-

lutional Neural Network,” IEEE Access, vol. 7, pp. 150 833–150 841, 2019.

[6] M. H. Nasseri, H. Moradi, S. Nasiri, and R. Hosseini, “Power Line Detection and

Tracking Using Hough Transform and Particle Filter,” in 2018 6th RSI Interna-

tional Conference on Robotics and Mechatronics (IcRoM), 2018, pp. 130–134.

[7] A. I. Purica, B. Pesquet-Popescu, and F. Dufaux, “A railroad detection algorithm

for infrastructure surveillance using enduring airborne systems,” in 2017 IEEE

236

https://www.sciencedirect.com/science/article/pii/S0923596518303606


References

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

March 2017, pp. 2187–2191.

[8] S. E.-D. N. Mohamed, R. M. Al-Makhlasawy, M. Abdelaziz, A. A. M. Khalaf,

M. I. Dessouky, and F. E. A. El-Samie, “Efficient utilization of Hough transform

and orthogonal-triangular decomposition for optical wireless modulation format

recognition,” Appl. Opt., vol. 61, no. 4, pp. 875–883, Feb 2022. [Online].

Available: http://opg.optica.org/ao/abstract.cfm?URI=ao-61-4-875

[9] K. K. Guner, T. O. Gulum, and B. Erkmen, “FPGA-Based Wigner–Hough Trans-

form System for Detection and Parameter Extraction of LPI Radar LFMCW

Signals,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp.

1–15, 2021.

[10] F. O’Gorman and M. B. Clowes, “Finding Picture Edges Through Collinearity of

Feature Points.” IEEE Transactions on Computers, vol. C-25, no. 4, pp. 449–456,

1976.

[11] L. A. F. Fernandes and M. M. Oliveira, “Real-time line detection through an

improved Hough transform voting scheme,” Pattern Recognition, vol. 41, no. 1,

pp. 299–314, 2008.

[12] J. Illingworth and J. Kittler, “The Adaptive Hough Transform,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 5, pp.

690–698, 1987.

[13] X. Lu, L. Song, S. Shen, K. He, S. Yu, and N. Ling, “Parallel Hough Transform-

based straight line detection and its FPGA implementation in embedded vision.”

Sensors (Basel, Switzerland), vol. 13, no. 7, pp. 9223–9247, 2013.

[14] X. Zhou, N. Tomagou, Y. Ito, and K. Nakano, “Efficient hough transform on

the FPGA using DSP slices and block RAMs,” Proceedings - IEEE 27th In-

ternational Parallel and Distributed Processing Symposium Workshops and PhD

Forum, IPDPSW 2013, pp. 771–778, 2013.

237

http://opg.optica.org/ao/abstract.cfm?URI=ao-61-4-875


References

[15] D. G. Bailey, “Image Border Management for FPGA Based Filters,” in 2011 Sixth

IEEE International Symposium on Electronic Design, Test and Application, Jan

2011, pp. 144–149.

[16] AMD, Inc., “AMD Homepage (Webpage),” July 2023. [Online]. Available:

https://www.amd.com/ (accessed Jul. 25, 2023)

[17] Intel, Inc., “Intel Homepage (Webpage),” July 2023. [Online]. Available:

https://www.intel.com/ (accessed Jul. 25, 2023)

[18] AMD, Inc., “Cost-Optimized Portfolio Product Selection Guide (XMP100),”

July 2023. [Online]. Available: https://docs.xilinx.com/v/u/en-US/

cost-optimized-product-selection-guide (accessed Jul. 25, 2023)

[19] Xilinx, Inc., “UltraScale+ FPGAs Product Tables and

Product Selection Guide,” July 2023. [Online]. Avail-

able: https://www.xilinx.com/content/dam/xilinx/support/documents/

selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf (accessed Jul.

25, 2023)

[20] X. Zhou, Y. Ito, and K. Nakano, “An efficient implementation of the gradient-

based Hough transform using DSP slices and block RAMs on the FPGA,” Pro-

ceedings of the International Parallel and Distributed Processing Symposium,

IPDPS, pp. 762–770, 2014.

[21] D. G. Bailey, “Streamed Hough Transform and Line Reconstruction on FPGA,”

International Conference Image and Vision Computing New Zealand, vol. 2017-

Decem, pp. 1–6, 2018.

[22] I. El Hajjouji, S. Mars, Z. Asrih, and A. El Mourabit, “A novel FPGA

implementation of Hough Transform for straight lane detection,” Engineering

Science and Technology, an International Journal, vol. 23, no. 2, pp. 274–280,

2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S2215098618314782

238

https://www.amd.com/
https://www.intel.com/
https://docs.xilinx.com/v/u/en-US/cost-optimized-product-selection-guide
https://docs.xilinx.com/v/u/en-US/cost-optimized-product-selection-guide
https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.sciencedirect.com/science/article/pii/S2215098618314782
https://www.sciencedirect.com/science/article/pii/S2215098618314782


References

[23] P.-K. Ser and W.-C. Siu, “Memory compression for straight line recognition using

the Hough transform,” Pattern Recognition Letters, vol. 16, no. 2, pp. 133 – 145,

1995.

[24] Xilinx Inc., “Zynq UltraScale+ MPSoC Product Selection Guide,”

April 2022. [Online]. Available: https://docs.xilinx.com/v/u/en-US/

zynq-ultrascale-plus-product-selection-guide (accessed Apr. 13, 2023)

[25] ——, “PYNQ - Python Productivity for Zynq.” [Online]. Available:

http://www.pynq.io/ (accessed Apr. 13, 2023)

[26] The MathWorks Inc., “Mathworks HDL Coder Product Page,” Natick,

Massachusetts, United States, April 2022. [Online]. Available: https:

//uk.mathworks.com/products/hdl-coder.html (accessed Apr. 13, 2023)

[27] D. Northcote, L. H. Crockett, P. Murray, and R. W. Stewart, “A PYNQ Evalu-

ation Platform for FPGA Architectures of the Line Hough Transform,” in 2020

IEEE 63rd International Midwest Symposium on Circuits and Systems (MWS-

CAS), 2020, pp. 133–137.

[28] D. Northcote, L. H. Crockett, and P. Murray, “FPGA Implementation of a

Memory-Efficient Hough Parameter Space for the Detection of Lines,” in 2018

IEEE International Symposium on Circuits and Systems (ISCAS), May 2018, pp.

1–5.

[29] J. Goldsmith, C. Ramsay, D. Northcote, K. W. Barlee, L. H. Crockett, and R. W.

Stewart, “Control and Visualisation of a Software Defined Radio System on the

Xilinx RFSoC Platform Using the PYNQ Framework,” IEEE Access, vol. 8, pp.

129 012–129 031, 2020.

[30] L. H. Crockett, D. Northcote, C. Ramsay, F. D. Robinson, and R. W. Stewert,

Exploring Zynq MPSoC: With PYNQ and Machine Learning Applications, 2019.

[31] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and D. Northcote, The Zynq Book

Tutorials for Zybo and Zedboard, 2015.

239

https://docs.xilinx.com/v/u/en-US/zynq-ultrascale-plus-product-selection-guide
https://docs.xilinx.com/v/u/en-US/zynq-ultrascale-plus-product-selection-guide
http://www.pynq.io/
https://uk.mathworks.com/products/hdl-coder.html
https://uk.mathworks.com/products/hdl-coder.html


References

[32] “IEEE Standard Glossary of Software Engineering Terminology,” IEEE Std

610.12-1990, pp. 1–84, 1990.

[33] D. DeTone, T. Malisiewicz, and A. Rabinovich, “SuperPoint: Self-Supervised

Interest Point Detection and Description,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018.

[34] S. Cook, CUDA Programming: A Developer’s Guide to Parallel Computing with

GPUs, 1st ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

2012.

[35] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Programming Standard

for Heterogeneous Computing Systems,” Computing in Science & Engineering,

vol. 12, no. 3, pp. 66–73, 2010.

[36] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and D. Marr,

“Accelerating Binarized Neural Networks: Comparison of FPGA, CPU, GPU,

and ASIC,” in 2016 International Conference on Field-Programmable Technology

(FPT), 2016, pp. 77–84.

[37] onsemi, “VITA 2000 2.3 Megapixel 92 FPS Global Shutter CMOS Image

Sensor,” December 2016. [Online]. Available: https://www.onsemi.com/

download/data-sheet/pdf/noiv1sn2000a-d.pdf (accessed Apr. 13, 2023)

[38] I. Lankshear, “The Economics of ASICs: At What Point Does

a Custom SoC Become Viable?” July 2019. [Online]. Available:

https://www.electronicdesign.com/technologies/embedded/article/21808278/

ensilica-the-economics-of-asics-at-what-point-does-a-custom-soc-become-viable

(accessed Jul. 24, 2023)

[39] Xilinx Inc., “UltraScale Architecture and Product Data Sheet: Overview, DS890

(v4.1.1),” February 2022. [Online]. Available: https://www.xilinx.com/content/

dam/xilinx/support/documents/data sheets/ds890-ultrascale-overview.pdf (ac-

cessed Apr. 13, 2023)

240

https://www.onsemi.com/download/data-sheet/pdf/noiv1sn2000a-d.pdf
https://www.onsemi.com/download/data-sheet/pdf/noiv1sn2000a-d.pdf
https://www.electronicdesign.com/technologies/embedded/article/21808278/ensilica-the-economics-of-asics-at-what-point-does-a-custom-soc-become-viable
https://www.electronicdesign.com/technologies/embedded/article/21808278/ensilica-the-economics-of-asics-at-what-point-does-a-custom-soc-become-viable
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds890-ultrascale-overview.pdf


References

[40] ——, “UltraScale Architecture Configurable Logic Block: User Guide, UG574,

(v1.5),” February 2017. [Online]. Available: https://docs.xilinx.com/v/u/en-US/

ug574-ultrascale-clb (accessed Apr. 13, 2023)

[41] S. White, “Applications of distributed arithmetic to digital signal processing: a

tutorial review,” IEEE ASSP Magazine, vol. 6, no. 3, pp. 4–19, 1989.

[42] Xilinx Inc., “UltraScale Architecture DSP Slice: User Guide, UG579,

(v1.11),” August 2021. [Online]. Available: https://docs.xilinx.com/v/u/en-US/

ug579-ultrascale-dsp (accessed Apr. 13, 2023)

[43] ——, “FIR Compiler: LogiCORE IP Product Guide, PG149, (v7.2),”

January 2021. [Online]. Available: https://docs.xilinx.com/v/u/en-US/

pg149-fir-compiler (accessed Apr. 13, 2023)

[44] ——, “Fast Fourier Transform: LogiCORE IP Product Guide, PG149, (v7.2),”

August 2021. [Online]. Available: https://docs.xilinx.com/v/u/en-US/pg109-xfft

(accessed Apr. 13, 2023)

[45] ——, “UltraScale Architecture Memory Resources: User Guide, UG573,

(v1.13),” September 2021. [Online]. Available: https://docs.xilinx.com/v/u/

en-US/ug573-ultrascale-memory-resources (accessed Apr. 13, 2023)

[46] ——, “UltraScale Architecture Libraries Guide,” December

2020. [Online]. Available: https://docs.xilinx.com/r/2020.2-English/

ug974-vivado-ultrascale-libraries/Introduction (accessed Jun. 23, 2023)

[47] ——, “Zynq UltraScale+ Device: Technical Reference Manual, UG1085,

(v2.2),” December 2020. [Online]. Available: https://docs.xilinx.com/v/u/

en-US/ug1085-zynq-ultrascale-trm (accessed Apr. 13, 2023)

[48] ——, “Zynq-7000 SoC Technical Reference Manual, UG585, (v1.13),” April 2021.

[Online]. Available: https://docs.xilinx.com/v/u/en-US/ug585-Zynq-7000-TRM

(accessed Apr. 13, 2023)

241

https://docs.xilinx.com/v/u/en-US/ug574-ultrascale-clb
https://docs.xilinx.com/v/u/en-US/ug574-ultrascale-clb
https://docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp
https://docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp
https://docs.xilinx.com/v/u/en-US/pg149-fir-compiler
https://docs.xilinx.com/v/u/en-US/pg149-fir-compiler
https://docs.xilinx.com/v/u/en-US/pg109-xfft
https://docs.xilinx.com/v/u/en-US/ug573-ultrascale-memory-resources
https://docs.xilinx.com/v/u/en-US/ug573-ultrascale-memory-resources
https://docs.xilinx.com/r/2020.2-English/ug974-vivado-ultrascale-libraries/Introduction
https://docs.xilinx.com/r/2020.2-English/ug974-vivado-ultrascale-libraries/Introduction
https://docs.xilinx.com/v/u/en-US/ug1085-zynq-ultrascale-trm
https://docs.xilinx.com/v/u/en-US/ug1085-zynq-ultrascale-trm
https://docs.xilinx.com/v/u/en-US/ug585-Zynq-7000-TRM


References

[49] Arm Ltd., “Cortex-A53 MPCore Processor Technical Reference Manual,

Issue G, Revision r0p4,” February 2016. [Online]. Available: https:

//developer.arm.com/documentation/ddi0500/j/ (accessed Apr. 13, 2023)

[50] ——, “Cortex-R5 Technical Reference Manual, Issue D, Revision r1p2,” Septem-

ber 2011. [Online]. Available: https://developer.arm.com/documentation/

ddi0460/c (accessed Apr. 13, 2023)

[51] ——, “Mali GPU Developer Tools Technical Overview, Issue A, Version 1.0,”

October 2009. [Online]. Available: https://developer.arm.com/documentation/

dui0501/a/ (accessed Apr. 13, 2023)

[52] Xilinx Inc., “H.264/H.265 Video Codec Unit, v1.2,” July 2021.

[Online]. Available: https://docs.xilinx.com/r/en-US/pg252-vcu/H.264/H.

265-Video-Codec-Unit-v1.2 (accessed Apr. 13, 2023)

[53] Arm Ltd., “AMBA 4 Overview,” April 2022. [Online]. Available: https://

developer.arm.com/architectures/system-architectures/amba/amba-4 (accessed

Apr. 13, 2023)

[54] ——, “AMBA AXI and ACE Protocol Specification, Issue E,” February

2013. [Online]. Available: https://developer.arm.com/documentation/ihi0022/

(accessed Apr. 13, 2023)

[55] ——, “AMBA 4 AXI4-Stream Protocol Specification, Issue A, Version 1.0,”

March 2010. [Online]. Available: https://developer.arm.com/documentation/

ihi0051 (accessed Apr. 13, 2023)

[56] Xilinx Inc., “Xilinx Vivado Design Suite Product Page,” April 2022. [Online].

Available: https://www.xilinx.com/products/design-tools/vivado.html (accessed

Apr. 13, 2023)

[57] The MathWorks Inc., “Mathwork Simulink Product Page,” Nat-

ick, Massachusetts, United States, April 2022. [Online]. Available:

https://uk.mathworks.com/products/simulink.html (accessed Apr. 13, 2023)

242

https://developer.arm.com/documentation/ddi0500/j/
https://developer.arm.com/documentation/ddi0500/j/
https://developer.arm.com/documentation/ddi0460/c
https://developer.arm.com/documentation/ddi0460/c
https://developer.arm.com/documentation/dui0501/a/
https://developer.arm.com/documentation/dui0501/a/
https://docs.xilinx.com/r/en-US/pg252-vcu/H.264/H.265-Video-Codec-Unit-v1.2
https://docs.xilinx.com/r/en-US/pg252-vcu/H.264/H.265-Video-Codec-Unit-v1.2
https://developer.arm.com/architectures/system-architectures/amba/amba-4
https://developer.arm.com/architectures/system-architectures/amba/amba-4
https://developer.arm.com/documentation/ihi0022/
https://developer.arm.com/documentation/ihi0051
https://developer.arm.com/documentation/ihi0051
https://www.xilinx.com/products/design-tools/vivado.html
https://uk.mathworks.com/products/simulink.html


References

[58] Xilinx Inc., “AXI DMA LogiCore IP Product Guide,” June 2019. [Online].

Available: https://docs.xilinx.com/v/u/en-US/pg021 axi dma (accessed Apr.

13, 2023)

[59] ——, “Model-Based DSP Design Using System Generator,” June 2020. [Online].

Available: https://www.xilinx.com/content/dam/xilinx/support/documents/

sw manuals/xilinx2020 1/ug948-vivado-sysgen-tutorial.pdf (accessed Apr. 13,

2023)

[60] ——, “Vivado Design Suite User Guide: High-Level Synthesis, UG902,

(v2020.1),” May 2021. [Online]. Available: https://docs.xilinx.com/v/u/en-US/

ug902-vivado-high-level-synthesis (accessed Apr. 13, 2023)

[61] P. S. Foundation, “Python 3.8.13 Documentation,” April 2022. [Online].

Available: https://docs.python.org/3.8/ (accessed Apr. 13, 2023)

[62] P. Jupyter, “The Jupyter Project Webpage,” April 2022. [Online]. Available:

https://jupyter.org/ (accessed Apr. 13, 2023)

[63] Xilinx Inc., “Zynq UltraScale+ RFSoC Product Selection Guide,” April

2022. [Online]. Available: https://www.xilinx.com/content/dam/xilinx/support/

documents/selection-guides/zynq-usp-rfsoc-product-selection-guide.pdf (ac-

cessed Apr. 13, 2023)

[64] Xilinx, Inc., “ZCU104 Evaluation Board,” 2023. [Online]. Available: https://

www.xilinx.com/products/boards-and-kits/zcu104.html (accessed Oct. 9, 2023)

[65] Xilinx Inc., “MicroBlaze Processor Reference Guide, UG984, (v2020.1),”

June 2020. [Online]. Available: https://docs.xilinx.com/v/u/2020.1-English/

ug984-vivado-microblaze-ref (accessed Apr. 13, 2023)

[66] R. C. Gonzalez and R. E. Woods, Digital image processing. Upper

Saddle River, N.J.: Prentice Hall, 2008. [Online]. Available: http:

//www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X

[67] D. G. Bailey, Design for Embedded Image Processing on FPGAs, 2011.

243

https://docs.xilinx.com/v/u/en-US/pg021_axi_dma
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_1/ug948-vivado-sysgen-tutorial.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_1/ug948-vivado-sysgen-tutorial.pdf
https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis
https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis
https://docs.python.org/3.8/
https://jupyter.org/
https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/zynq-usp-rfsoc-product-selection-guide.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/zynq-usp-rfsoc-product-selection-guide.pdf
https://www.xilinx.com/products/boards-and-kits/zcu104.html
https://www.xilinx.com/products/boards-and-kits/zcu104.html
https://docs.xilinx.com/v/u/2020.1-English/ug984-vivado-microblaze-ref
https://docs.xilinx.com/v/u/2020.1-English/ug984-vivado-microblaze-ref
http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X
http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X


References

[68] J. M. S. Prewitt, ”Object Enhancement and Extraction” Picture Processing and

Psychopictorics, 1970.

[69] I. Sobel, “An isotropic 3 by 3 image gradient operator,” Machine Vision for

three-demensional Sciences, vol. 1, no. 1, pp. 23–34, 1990.

[70] J. Canny, “A computational approach to edge detection.” IEEE transactions on

pattern analysis and machine intelligence, vol. 8, no. 6, pp. 679–698, 1986.

[71] I. Abdou and W. Pratt, “Quantitative design and evaluation of enhancemen-

t/thresholding edge detectors,” Proceedings of the IEEE, vol. 67, no. 5, pp. 753–

763, 1979.

[72] J. E. Volder, “The CORDIC Trigonometric Computing Technique,” IRE Trans-

actions on Electronic Computers, vol. EC-8, no. 3, pp. 330–334, Sep. 1959.

[73] J. Walther, “A Unified Algorithm for Elementary Functions,” Conference Pro-

ceedings, Spring Joint Computer Conference, pp. 379–385, May 1971.

[74] R. Andraka, “A Survey of CORDIC Algorithms for FPGA Based Computers,”

in Proceedings of the 1998 ACM/SIGDA Sixth International Symposium on

Field Programmable Gate Arrays, ser. FPGA ’98. New York, NY, USA:

Association for Computing Machinery, 1998, p. 191–200. [Online]. Available:

https://doi.org/10.1145/275107.275139

[75] P. V. C. Hough, “Machine analysis of bubble chamber pictures,” 2nd Interna-

tional Conference on High-Energy Accelerators and Instrumentation, vol. 73, pp.

554–558, 1959.

[76] D. Ballard, “Generalizing the Hough transform to detect arbitrary shapes,”

Pattern Recognition, vol. 13, no. 2, pp. 111 – 122, 1981. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/0031320381900091

[77] A. Rosenfeld, Picture Processing by Computer, 1969.

[78] P. E. Hart, “How the Hough transform was invented [DSP History],” IEEE Signal

Processing Magazine, vol. 26, no. 6, pp. 18–22, 2009.

244

https://doi.org/10.1145/275107.275139
http://www.sciencedirect.com/science/article/pii/0031320381900091


References

[79] J. Immerkær, “Some remarks on the straight line Hough transform,” Pattern

Recognition Letters, vol. 19, no. 12, pp. 1133 – 1135, 1998. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167865598000956

[80] H. Koshimizu and M. Numada, “FIHT2 AlGORITHM : A FAST INCREMEN-

TAL HOUGH TRANSFORM,” in IAPR Workshop on Machine Vision Applica-

tions, 1990, pp. 233–236.

[81] N. Kiryati and Y. Eldar, “A Probabilistic Hough Transform,” Pattern Recogni-

tion, vol. 24, no. 4, pp. 303–316, 1991.

[82] J. Matas, C. Galambos, and J. Kittler, “Robust Detection of Lines Using the

Progressive Probabilistic Hough Transform,” Computer Vision and Image Un-

derstanding, vol. 78, no. 1, pp. 119–137, 2000.

[83] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[84] S. Tagzout, K. Achour, and O. Djekoune, “Hough transform algorithm for FPGA

implementation,” Signal Processing, vol. 81, no. 6, pp. 1295–1301, 2001.

[85] S. M. Karabernou and F. Terranti, “Real-time FPGA implementation of Hough

Transform using gradient and CORDIC algorithm,” Image and Vision Comput-

ing, vol. 23, no. 11, pp. 1009–1017, 2005.

[86] P. Lee and A. Evagelos, “An implementation of a multiplierless Hough transform

on an FPGA platform using hybrid-log arithmetic,” Real-Time Image Processing

2008, vol. 6811, no. March, p. 68110G, 2008.

[87] X. Zhou, Y. Ito, and K. Nakano, “An Efficient Implementation of the Hough

Transform Using DSP Slices and Block RAMs on the FPGA,” in 2013 IEEE 7th

International Symposium on Embedded Multicore Socs, 2013, pp. 85–90.

[88] A. Elhossini and M. Moussa, “A memory efficient FPGA implementation of hough

transform for line and circle detection,” 2012 25th IEEE Canadian Conference

on Electrical and Computer Engineering: Vision for a Greener Future, CCECE

2012, pp. 1–5, 2012.

245

http://www.sciencedirect.com/science/article/pii/S0167865598000956


References

[89] Z. H. Chen, A. W. Su, and M. T. Sun, “Resource-efficient FPGA architecture

and implementation of hough transform,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 20, no. 8, pp. 1419–1428, 2012.

[90] P. Solod, N. Jindapetch, K. Sengchuai, A. Booranawong, P. Hoyingcharoen,

S. Chumpol, and M. Ikura, “Memory Optimization for Accelerating Hough Trans-

form on FPGA using High Level Synthesis,” in 2019 IEEE International Circuits

and Systems Symposium (ICSyS), 2019, pp. 1–4.

[91] The MathWorks Inc., “Lane Departure Warning System,” Natick, Massachusetts,

United States, 2023. [Online]. Available: https://uk.mathworks.com/help/

vision/ug/lane-departure-warning-system-1.html (accessed Apr. 13 2023)

[92] M. Stokkeland, K. Klausen, and T. A. Johansen, “Autonomous visual navigation

of Unmanned Aerial Vehicle for wind turbine inspection,” in 2015 International

Conference on Unmanned Aircraft Systems (ICUAS), 2015, pp. 998–1007.

[93] H. Yu, W. Yang, H. Zhang, and W. He, “A UAV-based crack inspection system for

concrete bridge monitoring,” in 2017 IEEE International Geoscience and Remote

Sensing Symposium (IGARSS), 2017, pp. 3305–3308.

[94] R. A. Arango Quiroz, F. Pereira Guidotti, and A. E. Bedoya, “A method for au-

tomatic identification of crop lines in drone images from a mango tree plantation

using segmentation over YCrCb color space and Hough transform,” in 2019 XXII

Symposium on Image, Signal Processing and Artificial Vision (STSIVA), 2019,

pp. 1–5.

[95] M. D. Bah, A. Hafiane, and R. Canals, “CRowNet: Deep Network for Crop Row

Detection in UAV Images,” IEEE Access, vol. 8, pp. 5189–5200, 2020.

[96] S. Nashat, A. Abdullah, and M. Abdullah, “Machine vision for crack inspection

of biscuits featuring pyramid detection scheme,” Journal of Food Engineering,

vol. 120, pp. 233 – 247, 2014.

246

https://uk.mathworks.com/help/vision/ug/lane-departure-warning-system-1.html
https://uk.mathworks.com/help/vision/ug/lane-departure-warning-system-1.html


References

[97] J. Wang, P. Fu, and R. X. Gao, “Machine vision intelligence for product

defect inspection based on deep learning and Hough transform,” Journal

of Manufacturing Systems, vol. 51, pp. 52–60, 2019. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0278612519300111

[98] P. T. Inc., “Collaborative data science,” Montreal, QC, 2023. [Online]. Available:

https://plot.ly (accessed Apr. 13, 2023)

[99] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,

D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,

M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del
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