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ABSTRACT 

Corrosion of metals under insulation is a serious concern for industries due to the fact 

that the insulation hides the metal from view which increases the likelihood of sudden 

failure. Carbon steel is one of the metal alloys frequently used in industries due to 

economic and technical reasons. However, it is quite susceptible to corrosion under 

insulation (CUI). The factors affecting corrosion of carbon steel under mineral wool 

insulation such as temperature, effectiveness of inhibitor, quantity and distribution of 

electrolyte in the insulation have not been extensively studied in the literature. In fact, 

studies on corrosion of metals under insulation are quite sparse compared to 

immersion (uninsulated) conditions.  

 

Therefore, the objectives of this study were to assess the effect of temperature (60 oC 

to 130 oC) on corrosion of carbon steel under insulation, effectiveness of a new 

commercial inhibitor (VpCI 619) in mitigating CUI of carbon steel, quantity and 

distribution of electrolyte (1wt. % NaCl) in mineral wool insulation as well as 

investigation of the drying times of the insulation using galvanic current and 

electrochemical impedance measurements. In addition, the prediction of CUI rate 

using Artificial Neural Network (ANN) was carried out with the aim of assessing the 

accuracy of prediction of different network parameters such as number of hidden 

layers, number of input parameters and choice of activation function. 

 

Prior to CUI studies, the water absorption capacity of mineral wool insulation was 

determined using standard procedures (ASTM C1511). This was carried out to assess 

the time it will take for the insulation to be saturated with water, the variability of 

repeated measurements as well as the total water content in the insulation. The CUI 

studies were carried out using a test rig that was based on ASTM G189-07 standard. 

The corrosion rates were estimated using weight loss technique and the effects of 

temperature, vapour phase inhibitor consisting primarily of sodium molybdate, quantity 

of electrolyte in insulation were investigated. The drying out profile of the insulation 

was assessed using galvanic current and electrochemical impedance measurements. 

Furthermore, the prediction of CUI rate was carried out using Artificial Neural Network 

and the effect of single and double hidden layers, sigmoid and hyperbolic tangent 
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activation functions, as well as number of input parameters on accuracy of prediction 

of CUI rate were assessed. 

 

The results of the water absorption studies indicated continuous absorption of water 

even after immersion for 22 days. The water absorption capacity was greater for 

thermally treated insulation compared to untreated insulation samples due to thermal 

degradation of the oily additives and polymeric binders. The effect of temperature on 

CUI indicated an increase in corrosion rate from 60 oC to 80 oC. Further increase in 

temperature up to 130 oC resulted in a decrease in corrosion rate. The existence of a 

maximum point in the curve was attributed to the competing effects of two factors 

which include increased diffusivity of oxygen which dominates at low temperature and 

decreasing solubility of oxygen and insulation dry-out which dominates at 

temperatures exceeding 80 oC. 

 

The new commercial inhibitor was observed to mitigate the corrosion rate at the 

temperatures investigated in this study. The inhibition efficiency indicated an average 

of 89% when a dosage of 5.2 g/m2 of the inhibitor was used. The effectiveness was 

also observed to be dosage dependent with lower doses having less inhibition 

efficiency. The drying times of the insulation assessed using galvanic current and 

impedance methods were observed to decrease as temperature increased. The 

galvanic current was observed to decrease to zero while the impedance increased to 

high values as the insulation dries out. However, the drying times obtained from 

galvanic current method showed a higher variability compared to impedance method.  

 

The result of prediction of CUI rate using Artificial Neural Network indicated an 

increase in accuracy as the number of input parameters increased. Surprisingly, the 

accuracy of the predicted output from the four input parameters (temperature, dosage 

of inhibitor, quantity of electrolyte in insulation and sample position) was higher than 

the accuracy of the most influential parameters (temperature and dosage of inhibitor). 

This suggests that incorporation of more input parameters having some relationship 

with the output is more important in achieving a higher accuracy compared to using 

the most influential parameters only.   
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In conclusion, this study indicated that mineral wool insulation absorbs water for a long 

period without saturation which increases the risk of CUI. Also, CUI rate increased 

with temperature up to 80 oC but decreased on further increase up to 130 oC. The new 

commercial inhibitor was effective in mitigating CUI at the temperatures investigated. 

Also, more test solution was observed at the lower part of the insulation compared to 

the upper part when installed on the CUI test rig which increases the risk of severe 

corrosion at the lower section of the insulation. The prediction of CUI rate using ANN 

indicated that inclusion of more input parameters could improve prediction accuracy. 

Moreover, the choice of activation functions also has effect on the accuracy of the 

predicted output.   
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CHAPTER ONE 

INTRODUCTION 

1.1) Definition of corrosion 

Corrosion is the deterioration of a material as a result of its chemical or electrochemical 

reaction with the environment [1]. The corrosion of metals is a hybrid process involving 

chemical reactions and electron transfer occurring between the metal and its 

environment [2]. Although corrosion is possible with different materials, this study will 

particularly focus on corrosion of metals or alloys. For corrosion to occur, there must 

be an anode where metal oxidation takes place, a cathode where reduction of species 

occurs, an electrolytic path for transport of ions and electronic pathway for transport 

of electrons [3]. Naturally, most metals exist as oxides and lots of energy is required 

to convert it to the metallic state. Although most metals are more useful when 

processed, however, they have a natural tendency to return to its original state (lower 

energy state) in the presence of favourable conditions which is the reason why metals 

corrode as shown in Figure 1.1. 

 

 

Figure 1.1 : Conversion of ore to pure metals and susceptibility to corrosion 
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1.2) Types of corrosion damage 

Corrosion can occur in different forms as shown in Figure 1.2. This could be uniform 

corrosion which takes place when the attack on the metal occurs throughout the entire 

surface. In this case, the anodes and cathodes are not fixed but are changing at any 

given time resulting in deterioration across the entire metallic surface. On the other 

hand, it is also possible to have localised corrosion such as pitting where degradation 

is restricted to a certain location. This is often characterised by fixed anodic and 

cathodic points [4]. In addition, corrosion accompanied by mechanical stress will result 

in stress corrosion cracking, while metals with different electrode potentials would 

result in galvanic corrosion if they were in direct contact with each other. In this case, 

the less noble metal will preferentially corrode. Intergranular corrosion occurs when 

the attack on the metal occurs at the grain boundaries while crevice corrosion occurs 

due to differences in oxygen availability [3].  Selective leaching occurs when one of 

the components of the alloy dissolves under certain conditions, while erosion corrosion 

arises from a combination of electrochemical reaction and mechanical wear which may 

be caused by solids or a flowing liquid [4]. 

 

Figure 1.2: Types of corrosion damage [4] 
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1.3) Background of corrosion under insulation 

Corrosion under insulation (CUI) is a special case of corrosion which takes place 

beneath the insulation due to the ingress of water and contaminants such as chlorides 

[5]. An insulated metal system comprises of an outer jacketing, the insulation material, 

and a metal substrate which may be coated or uncoated.  The term ‘corrosion under 

insulation’ is usually used to refer to degradation occurring at the external surface of 

metals as shown in Figure 1.3. The metal is hidden underneath the insulation making 

it difficult to access unless the insulation is removed for visual inspection which is quite 

time consuming and expensive. The fact that the insulation covers the underlying 

metal and hides it from view implies that degradation may proceed unnoticed, 

potentially leading to severe consequences [6]. The challenging aspect is that CUI is 

a continuous issue rather than a one-off problem [7]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Image of a corroded metal under insulation [8]. 

 

The corrosion of insulated metals is influenced by a combination of factors such as 

temperature, quality of insulation, quantity and distribution of electrolyte in the 

insulation, chemical composition of the insulation among others. The root cause of 

CUI is the penetration of water through the insulation to the surface of the metal [5]. 

This can take place externally where the insulation has not been properly installed or 

where there is a breach giving opportunity for water to enter the insulation. In this case, 

sources of water ingress could be rain, snow, dew, and other forms of precipitation. In 

 

Outer jacketing 

Insulation 
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addition, there could be condensation occurring internally due to temperature 

difference at the insulation-metal interface which might occur when air is cooling down 

at a temperature below the dew point [9]. In a three-tier configuration, the dew point is 

the temperature at which the first change from the gaseous phase to the liquid phase 

is observed, this is crucial to the formation of water film or droplets on the surface of 

the metal [10]. The entrapment of moisture beneath the insulation culminates in the 

corrosion of the metal especially if there was no form of additional protection.  

 

Corrosion under insulation is a challenging problem for the oil and gas industry as well 

as other chemical industries [11]. The risks associated with CUI can range from 

leakages to explosions which does not only affect normal operations but also puts the 

lives of personnel at risk. It has been reported that there is a yearly increase in the 

number of accidents due to loss of containment in different countries which mounts 

lots of pressure on chemical companies in the bid to mitigate these occurrences [12]. 

Moreover, failure analyses of these occurrences in industry have revealed that most 

of the severe incidences were traced to CUI [13, 14].  

 

Furthermore, removal of insulation for visual inspection is not economically feasible as 

well as being time consuming and requiring lots of effort and risks of exposing the 

substrate to moisture if not properly reinsulated. Moreover, corrosion under insulation 

has been reported to have significant economic implications for industries. For 

example, a leakage from a 4’’ pipe in a petrochemical plant in USA which culminated 

in fire was traced to corrosion under insulation, which cost the company $50 million 

[15]. In addition, a study conducted by Exxon Mobil in 2003 has revealed that 40-60 

% of leakages in the oil and gas industry were attributed to CUI [16]. An estimate of 

the corrosion cost in different industries as reported by the American Society of Civil 

Engineers (ASCE 2013) is shown in Figure 1.4. 
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Figure 1.4: Estimated annual cost of corrosion in affected industries [17] 

 

These undesirable occurrences associated with insulated metals which has enormous 

consequences begs the question why insulation should be used on metals in the first 

instance. Insulation is needed in industry to control process conditions such as 

temperature or conserve energy, it can also be used to protect personnel from direct 

contact with metal surfaces [16]. The need for insulation in industry based on these 

reasons should be balanced by adequate inspection and maintenance plans to ensure 

that the structural integrity of insulated metals is maintained to avoid failure due to 

corrosion. The potential problems associated with CUI should be factored in during 

planning and regular reviews. Besides, adequate risk assessment regarding asset 

integrity should be frequently carried out to ensure that degradation is identified early 

and attended to before it escalates. Although there are various inspection methods for 

CUI which may not require removal of insulation, there are still lots of challenges 

associated with these techniques which are reported by Amer et al. [18]. Therefore, 

there is need to quantify the rate of corrosion under insulation which would give an 



 

7 
 

overview of the extent of damage needed to make informed decision about the 

potential risks. 

1.4) Factors affecting the occurrence of CUI 

The major factors influencing the occurrence of CUI include water, contaminants such 

as chlorides, temperature, and quality of insulation. Water can enter the insulation due 

to poor installation or damage to the insulation.  During installation, difficult areas such 

as bends, welds, joints, and junctions are the challenging areas that usually serve as 

entry points of water into the insulation system. This is because these areas are quite 

complex and require expertise to ensure that they are installed correctly. Water from 

different forms of precipitation may enter the insulation and migrate to the metal 

surface where they are trapped and prolonged contact with the metal surface might 

result in CUI. Moreover, the presence of chlorides in the water could also aggravate 

CUI. Chloride can also be leached from the insulation when water penetrates it, 

especially if the metal is operating under cyclic conditions. 

 

 

Figure 1.5: Overview of the variables in a CUI process 

 

In addition, the operating temperature of pipe could also lead to the occurrence of CUI. 

De Vogelaere [9] has identified two different temperatures that could initiate CUI. This 

include: service temperatures operating between 0 oC and 100 oC where water is 

expected to exist as a liquid and cyclic temperature involving a switch between two 
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extreme temperatures [9]. In transporting gas from one site to another in an insulated 

pipe, temperature has been identified as a critical factor to be considered when 

assessing the possibility of CUI [19]. In fact, the temperature range where aggressive 

CUI should be expected on carbon steel and stainless steel include 50 oC to 175 oC 

[19]. Also, the quality of the insulation can also influence the occurrence of CUI. It is 

expected that insulation materials used in chemical industries should be hydrophobic. 

Different insulation materials have different water absorption and retention capacities. 

Therefore, it is important that these qualities be assessed when considering the choice 

of insulation materials. 

 

1.5) Typical incidence of CUI in different chemical plants 

In this section, typical examples of corrosion under insulation are discussed. The 

adverse impacts of CUI to chemical industries are two-fold, this include economic 

concerns involving production loss, and safety concerns where the environment and 

human life are at risk [16]. Incidences of CUI have been reported in different chemical 

industries which includes leakage of ammonia in 2004 at Yara’s chemical facility, 

which was caused by corrosion of an insulated elbow joint resulting in a significant 

loss of chemicals [16] as presented in Table 1.1. Statistics provided by Exxon Mobil in 

2003 indicated that 40-60 % of failures in oil and gas industry is due to CUI [15, 13]. 

This resonates with the recent DNV report that 50% of the leakages in chemical 

industry in Norway is caused by CUI as shown in Figure 1.6.   
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Figure 1.6: Number of leakages due to CUI in oil and gas industry in Norway [18] 

 

Figure 1.6 shows the frequency of CUI induced leakages in the oil and gas industry in 

Norway as reported by Amer et al. [18]. The report indicates repeated fluctuations in 

the number of CUI induced leakages in chemical industries every year from 2001 till 

2020. The fact that CUI induced leakage is observed every year for ten years implies 

that CUI is a serious issue which needs to be frequently observed to avoid undesirable 

occurrences.  

 

Other CUI related incidences as well as the cause of failure as reported in different 

literatures are summarized and presented in Table 1.1. The main cause of failure 

presented in these reports include ingress of water and chloride ions into the 

insulation, which resulted in continuous wall loss of the metal till leakage occurs. The 

consequences include gas fires as well as leakages which poses environmental and 

health concerns. For instance, in 2006, a leak was reported in an aging petrochemical 

plant, which was attributed to CUI, this culminated in a fire that burnt half the 

processing unit, incurring a cost of about USD 50 million including an irreversible 

damage to the environment [5]. This suggests that CUI comes with enormous 

consequences and adequate understanding of the causes of CUI including factors that 
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aggravate it could help in developing preventive measures to avoid unexpected 

failures. A summary of the failure occurrences due to CUI is summarized in Table 1.1. 

 

Table 1.1: Failure due to corrosion under insulation and impacts 

 

1.6) Strategies to mitigate corrosion of metals under insulation 

The accumulation of water underneath the insulation is the main cause of CUI in 

industry. These are influenced by the type of insulation, the design of the equipment, 

maintenance, and inspection schedule, as well as presence of any first line of defence 

such as paints or coatings [23]. Corrosion under insulation has been managed using 

Examples of failure in process facilities Reasons for 
failure 

Impacts References 

 
Hydrogen pipeline 
insulated with glass 
wool. 

The presence of 
chloride ions 
under the foil of 
the glass wool 
insulation. 

Leakages 
were 
observed in 
service. 

 
 

[19] 

 
A pipeline under  
Insulation. 

Water was 
observed to enter 
the insulation due 
to poor 
installation. 

There was a 
fire 
outbreak. 

 
 
 

[20] 

 
A transport pipe under 
Insulation. 

The quality of the 
insulation was 
poor. 

Leakages 
were 
observed in 
service. 

 
 

[16] 

 
A pipeline  
conveying ammonia 
  

The insulation 
was damaged 

Gas fire  
 

[16] 

Stainless steel cracks 
 after being removed  
from mineral wool  
insulation. 

Chloride ions was 
observed to leach 
from the 
insulation. 

Contents 
leaked out. 

 
 

[21] 

Corrosion along the bending region of 
insulated carbon steel. 

Penetration of 
water due to poor 
installation. 

Increased 
wall 
thinning.   

 
 

[22] 
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methods that is aimed at mitigating its effect. Such methods include the use of 

inhibitors [24], cathodic protection [25], and the use of coatings [26] to avoid direct 

contact of water with the surface of the metals. This is because it seems there is no 

one-off solution that could completely eradicate the problem of CUI. At best, proactive 

measures of reducing the likelihood of water penetration are usually employed for new 

installations or adequate management strategy are used for existing structures. The 

requirements of some of these measures of mitigating CUI has been discussed 

extensively in the literature [20]. Among these methods of mitigating CUI, the focus of 

discussion will be on the use of inhibitors. This is because that is the most studied 

method which may be quite cost effective depending on the type of inhibitor. 

 

Corrosion inhibitors are chemical substances that retard the rate of the reactions 

leading to corrosion. The reactions culminating in corrosion involve anodic dissolution 

of the metal giving out electrons which migrate to the cathode areas and are consumed 

in the reduction of oxygen to water if the medium is a neutral solution. The inhibitor 

that mitigates the anodic reaction is regarded as anodic inhibitors or passivators which 

forms a film of oxide on the surface of the metal preventing further dissolution of the 

base metal [21]. Example of anodic inhibitors include molybdates, chromates, nitrates 

etc. Cathodic inhibitors inhibit the reactions at the cathode by forming a protective 

coating for example sodium pyrophosphate [21]. Some inhibitors may have potential 

to inhibit both anodic and cathodic reactions, these are called mixed inhibitors. The 

inhibitors may be applied to the insulation or the metal, which forms a film at the 

insulation-metal interface preventing direct contact of water with the metal. The 

method of application should ensure uniform distribution of the inhibitor at the metal 

surface to ensure effective protection [22]. 

 

1.6.1) Corrosion under insulation management program 

CUI management programs include activities carried out to assess the possibility of 

CUI and ways to tackle it. This is usually aimed at reducing the risks of failure to an 

accepted level which could be beneficial to industry as it guarantees safety, reliability, 

and cost reduction [27]. CUI management process involves risk assessment, 

mitigation, update, and systematic experience transfer [28]. Risk assessment involves 

inspecting the insulated metal or assessing the corrosion rate, while risk mitigation 
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involves approach to reduce the likelihood of failure which includes the use of 

inhibitors, coatings, cathodic protection amongst others. Risk update involves a review 

of all risks that have been identified and places it in order of priority as well as tracks 

the mitigation progress, while experience transfer is a systematic way of reducing the 

likelihood of failure by experts after assessing all the possible options [28]. There are 

two broad perspectives to explore when discussing CUI management process. First, 

the possibilities that CUI could exist under the present conditions and the likelihood 

that it might soon result in failure. A typical procedure to determine the existence of 

CUI and the likelihood of failure due to CUI are shown in Figure 1.7 and Figure 1.8. 

 

 

Figure 1.7: Corrosion under insulation management program [27]. 
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Figure 1.8: Framework for assessing the possibility of CUI failure [29].  

 

In Figure 1.7, the possibility of CUI depends on the type of metal, operating conditions, 

and the presence of any additional protection such as coatings or inhibitors. Carbon 

steel or low alloy steel without any additional protection and operating between the 

temperature range of -4 oC and 60 oC are likely to be susceptible to CUI [27]. On the 

other hand, assessing the likelihood of failure due to corrosion under insulation depend 

on the type of data available. The probability of failure can be calculated from 

quantitative CUI data using degradation analysis models and time to failure can be 

extrapolated from the results [29]. In addition, the likelihood of CUI failure can also be 

estimated from qualitative data obtained from visual inspections which can be used to 

ascertain the severity of corrosion and identify measures to mitigate its effects. 
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1.7) Problem statement and justification 

Corrosion under insulation is a serious issue for the oil and gas industry as well as 

other chemical industries. CUI is hidden under the insulation which implies that 

degradation can proceed unnoticed till failure becomes imminent. A number of factors 

such as quality of insulation, temperature of the metallic substrate (skin temperature), 

presence of chemical contaminants such as chlorides can have significant impact on 

CUI. The fact that the fluid flowing through insulated pipes are usually at targeted 

temperatures implies that there is need to investigate the effects of different 

temperatures on CUI. In addition, the water absorption capacity of insulation also 

determines the severity of CUI. Therefore, there is need to investigate measures of 

mitigating the effects of CUI as well as assessing the possibilities of predicting the 

occurrence of CUI using mathematical models which serves as a proactive step 

towards mitigating the adverse effects of CUI. 

 

1.8)  Motivations for the research 

The severity of corrosion under insulation in terms of the risks it imposes on humans 

and the environment is one of the key motivations for this research. Moreover, there 

has been dearth of information regarding key factors that causes CUI. For instance, 

there has been scarcity of laboratory data showing the trend of temperature with CUI 

rate.  The available data in the literature on effect of temperature on CUI rate were 

either reported at two temperature points for wet/dry cycle [6, 16], or at most 3 

temperature points when testing for the effectiveness of protective coatings [25] which 

cannot be used to form a trend. Most of the temperature trends on CUI found in the 

literature were measured in the field [16]. However, field data cannot be relied upon 

because temperature is difficult to control under field condition. In addition, study of 

CUI mitigation using inhibitors is quite scarce. Most of the inhibitors reported in the 

literature are mostly organic inhibitors used in uninsulated conditions [21].  

 

Moreover, the time of wetness of the insulation is likely to have significant effect on 

the corrosion process; therefore, there is need to assess the drying times of the 

insulation using electrochemical techniques. In addition, the ability to predict corrosion 

rates obtained in the laboratory using mathematical models employed in artificial 
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neural network could be quite useful in estimating the corrosion rates of metals in the 

field based on the prevailing conditions. This could serve as a proactive measure of 

preventing undesirable occurrences due to CUI. Therefore, the precision and accuracy 

of different network architectures of artificial neural network such as number of hidden 

layers, choice of activation function and number of input parameters in predicting 

corrosion under insulation were carried out. These parameters could serve as a useful 

starting point to consider when building a neural network to solve a CUI problem in the 

industry. 

  

1.9) Objectives of the study 

The main objectives of this study include the following: 

❖ To determine the water absorption capacity of mineral wool insulation which will 

provide information on the time it takes to be saturated with water. 

❖ To determine the effects of temperature ranging from 60 oC to 130 oC on CUI, 

which includes the range where aggressive CUI has been reported. 

❖  To assess the water distribution in mineral wool insulation as well as the drying 

out times using galvanic current and electrochemical impedance 

measurements. 

❖ To investigate the effectiveness of a new commercial inhibitor (VpCI 619) in 

mitigating corrosion of carbon steel under insulation. 

❖ To assess the accuracy and precision of Artificial Neural Network in predicting 

corrosion of carbon steel under mineral wool insulation. 

1.10) Organisation of thesis 

This thesis is structured to provide an overview of the research and the results that 

were obtained. The thesis has 8 chapters, details of each chapter is summarised as 

follows: 

 

Chapter 1 introduces the background information of corrosion under insulation, factors 

affecting CUI as well as measures to mitigate the effects of CUI. In addition, the 

chapter also highlights the problems posed by CUI and the need to undertake the 

research. 
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Chapter 2 discusses the fundamental concepts of corrosion of iron and its 

mechanisms. Also, the theory of insulation dry-out using galvanic current and 

impedance measurements as well as theory of CUI prediction using artificial neural 

network are also covered. 

 

Chapter 3 reviews the available literature on corrosion of carbon steel under mineral 

wool insulation. This covers water absorption studies, effects of temperature and 

inhibitors on CUI, as well as prediction accuracy of CUI using Artificial neural network. 

 

Chapter 4 provides details of the experiments including water absorption capacity of 

mineral wool insulation, the design of the test rig used in this study, effects of 

temperature, distribution of electrolyte in insulation, drying out, as well as inhibitors on 

CUI rate. Also, the steps in carrying out CUI rate predictions using ANN are also 

discussed. 

 

Chapter 5 presents the results of water absorption capacity of mineral wool insulation 

including the effects of temperature, dosage of inhibitor on CUI. Also, the available 

field data on the effect of temperature on CUI are discussed. 

 

Chapter 6 presents the results of the water distribution in mineral wool insulation, 

quantification of the CUI rate between the top and bottom parts of carbon steel rings 

as well as the drying times of the insulation using galvanic current and electrochemical 

impedance measurements.  

 

Chapter 7 discusses the results of CUI rate predictions using Artificial Neural Network 

including the effect of number of hidden layers, choice of activation function, number 

of input parameters and repeatability of predictions. 

 

Chapter 8 provides a general conclusion of the research and future works that could 

further expand the research. 

 

In addition, some appendices are attached at the end of the thesis, including the 

results that were omitted from the body of the thesis which included replicate 

measurements of the results and some calculations that were carried out. 
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CHAPTER 2 

FUNDAMENTALS 

This chapter covers the basic concepts of general corrosion of metals and corrosion 

under insulation which will provide background information that would enhance 

understanding of the results in this study. The fundamental concepts covered in this 

chapter include: the mechanism of general corrosion, the types of corrosion 

(concentration cell corrosion and differential aeration corrosion), as well as the 

electrochemical reactions driving corrosion processes. In addition, the fundamental 

concepts of corrosion under insulation, which is focused on explaining the mechanism 

of CUI are explained. The purpose is to provide the background information required 

in understanding the causes of CUI as well as its potential impact. 

 

 In addition, the fundamental concepts of galvanic current and electrochemical 

impedance spectroscopy with regards to the measurement of insulation dry out times 

will be discussed. This will provide the basis for understanding the results of insulation 

dry out obtained from the galvanic current and electrochemical impedance 

measurements. Also, the theory of artificial neural network and the mechanism of CUI 

rate predictions are also covered. This will explain the hidden calculations performed 

by the software to arrive at the predicted output. Moreover, ANN, like other predictive 

models have certain limitations; some of these limitations which determines its 

boundaries in predictive modelling are also discussed. 

 

2.1) Mechanism of corrosion of metals 

The corrosion of metals involves an electron loss and the subsequent transfer to an 

acceptor leading to the deterioration of the metal in the presence of certain conditions 

such as water, acid, oxygen, chlorides among others [1, 2]. The four fundamental 

criteria for corrosion of metals to occur include the presence of an anode, a cathode, 

an ionic circuit, and an electrical circuit [3] as shown in Figure 2.1.  
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Figure 2.1: Fundamental requirements for corrosion of metals to occur 

 

The active sites on the surface of the metal where degradation takes place include the 

anode and cathode. At the anode, the metal loses electrons and goes into solution as 

ions, while the electron is accepted by another specie at the cathode, which may be 

oxygen, or an acid [2]. The anodic reaction involves a single reaction where the metal 

is oxidized to its ions, while the cathodic reaction involves different possible reactions 

depending on the chemistry of the medium where the corrosion takes place as shown 

in the chemical reactions below [3]: 

𝐴𝑛𝑜𝑑𝑖𝑐 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 (𝑚𝑒𝑡𝑎𝑙 𝑑𝑖𝑠𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛): 𝐹𝑒 → 𝐹𝑒2+ + 2𝑒− 

𝐶𝑎𝑡ℎ𝑜𝑑𝑖𝑐 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 (𝐴𝑡 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑝𝐻): 𝑂2 + 2𝐻2𝑂 + 4𝑒
− → 4𝑂𝐻− 

𝐶𝑎𝑡ℎ𝑜𝑑𝑖𝑐 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑦 𝑎𝑙𝑠𝑜 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠: 

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑖𝑜𝑛𝑠 (𝑎𝑐𝑖𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛): 2𝐻+ + 2𝑒− → 𝐻2 

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐻2𝑂 (𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑜𝑟 𝑎𝑙𝑘𝑎𝑙𝑖𝑛𝑒 𝑝𝐻): 2𝐻2𝑂 + 2𝑒
− → 𝐻2 + 2𝑂𝐻

−     

Corrosion 
of metals

Anode

Electrical 
circuit

Cathode

Ionic 
circuit
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Reduction of dissolved oxygen can take place in an acidic, neutral, or alkaline 

medium. 

𝐴𝑐𝑖𝑑𝑖𝑐 𝑚𝑒𝑑𝑖𝑢𝑚: 𝑂2 + 4𝐻
+ + 4𝑒− → 2𝐻2𝑂  

𝑁𝑒𝑢𝑡𝑟𝑎𝑙 𝑜𝑟 𝑎𝑙𝑘𝑎𝑙𝑖𝑛𝑒 𝑚𝑒𝑑𝑖𝑢𝑚: 𝑂2 + 2𝐻2𝑂 + 4𝑒
− → 4𝑂𝐻− 

Complete corrosion reactions involve the coupling of these electrochemical half-cell 

reactions to yield metal oxides. For Iron and carbon steel, the initial product consists 

of ferrous hydroxide which can be further oxidized to give ferric hydroxide. Dehydration 

of ferric hydroxide results in the formation of rust as shown in Figure 2.2. 

 

Figure 2.2: Electrochemical reactions showing the corrosion of iron [2]. 

The distribution of the active sites (anode and cathode) on the surface of the metal 

depends on certain conditions. For instance, oxygen rich areas of the metal will likely 

serve as the cathode, while oxygen deficient areas will likely serve as the anode [4]. 

In addition, the corrosion of metals can either be uniform or localized [5]. This is 

determined by some factors such as surface properties and conditions under which 

corrosion occur. In uniform corrosion, the anode and cathode are not restricted to any 

region of the metal but are constantly changing resulting in deterioration across the 

metal surface. However, localized corrosion tends to have fixed anodic and cathodic 

sites where degradation occurs and are restricted to only these areas [6].  
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2.1.1) Uniform and Localized corrosion 

In uniform aqueous corrosion, the dissolution of the metal resulting in material loss 

occurs across the metal surface. On the other hand, localized corrosion results when 

discrete regions of the metal surface are selectively attacked by the corrosive medium, 

culminating in accelerated corrosion rates at specific sites relative to the bulk surface 

[7]. A metal surface consists of different anodic and cathodic sites. These active sites 

may be permanently fixed to certain regions of the metal surface, or they may be 

flipping temporarily across the entire surface depending on certain conditions.  

Localized corrosion arises from a metal surface that has a fixed or permanent anodic 

and cathodic sites, while uniform corrosion is due to continuous flipping of these active 

sites as shown in Figure 2.3. Areas of the metal surface with high concentration of 

oxygen is likely to serve as the cathode, while areas with low availability of oxygen will 

likely serve as the anode. For localized corrosion, the distribution of the active sites 

can be fixed such that degradation of the metal (corrosion) only occur at these regions 

only. For example, defects in the surface of the metal can create anodic sites, or less 

noble metal in a combination of two different metals could become the anode. A typical 

example of localized corrosion is the formation of pits in chloride-laden region [8].  In 

addition, the formation of partially protective films could also serve as conduits for 

initiation of localized corrosion [9]. 

Carbon steel is generally known to undergo uniform corrosion and it is widely used in 

different structural applications. However, there are a number of environmental factors 

that can determine whether localized corrosion of carbon steels would predominate 

rather than a slow uniform corrosion. Such factors include temperature, concentration 

of chlorides and pH. Brossia and Cragnolino [10] have reported that there is a critical 

pH which serves as the boundary between uniform and localized corrosion, which may 

be attributed to the dependence of the formation and stability of passive film on pH.  

The susceptibility of metals to corrosion at different pH could be evaluated using 

Pourbaix diagrams. A typical Pourbaix diagram for assessing the susceptibility of iron 

to corrosion at different pH is shown in Figure 2.4.   
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Figure 2.3: Schematic representation of uniform and localized corrosion. 

 

Figure 2.4: Pourbaix diagram for an iron-water system, 𝛼𝐹𝑒2+ = 10
−6𝑀 [11]. 
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In Figure 2.4, the lines in bold face indicate the boundary between two solid species, 

the thin lines represent the boundary between a solid and an aqueous species and 

the dotted lines indicate the boundary between two aqueous species. The lines 

marked 1 and 2 are horizontal lines which indicates pure redox reactions which are 

independent of pH. Line 3 is a vertical line representing an acid-base type of reaction 

which is independent of the potential. Lines 4 and 5 represent a combination of redox 

and acid base reactions which are pH dependent [12].  

 

Three distinct regions have been identified which includes, immune region indicating 

region of unreacted metal, corrosion region representing region where stable ionic 

species are formed and passive region indicating the formation of an oxide layer which 

hinders further corrosion [11]. Therefore, corrosion is not expected to occur within the 

immune and passive regions. Although Pourbaix diagrams are quite useful in 

describing corrosion behaviour of metals, it does not provide information on the 

kinetics of corrosion. Moreover, it only applies to pure metals and does not account 

for the corrosion behaviour of alloys which are frequently used in engineering 

structures. In addition, Pourbaix diagrams does not consider the effect of anions such 

as chlorides which can penetrate passive films and induce localized corrosion.  

 

2.2) Mechanism of Corrosion under Insulation (CUI) 

Corrosion of metals under insulation is an external degradation of metals due to the 

ingress of water and contaminants such as chlorides [13]. This can take place in both 

hot and cold service equipment. The occurrence of CUI depends on certain factors 

such as the frequency of operation, the conditions under which the metal is being 

operated, as well as the type of metal [14]. The areas where CUI are most likely to 

occur are the lower regions where moisture tends to accumulate, irregular insulation 

surface, openings of jacketing etc [15]. In addition, metal pipes with small bore have 

been reported to be more susceptible to CUI due to the small thickness and surface 

area [16]. The history of CUI started in the early 1970’s, during which thermal 

insulations was not quite necessary until process temperatures reached about 150 oC 

[17]. This necessitated the use of thermal insulations to protect personnel from hot 

metal surface and control process conditions. Within a short period of time, the need 

for high quality insulation materials arose when about 50 % of the degraded assets 
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were observed to be caused by corrosion under insulation [17]. Since then, the search 

for solution has continued and gone through several phases. 

 

When metals are exposed to air, moisture present in the air will likely condense on the 

surface, if the equipment was not properly insulated; this condensate will find its way 

to the surface of the metal substrate and will initiate corrosion as shown in Figure 2.5. 

The aim of corrosion engineers regarding this problem has been to try as much as 

possible to prevent such condensation in chemical plants [18]. One of such strategy 

is the use of vapour barriers on the external surface of pipes which should prevent 

moisture from the external environment from penetrating the insulated metal surface. 

However, despite these efforts, it has been observed in the field that some tiny holes 

in the jacketing or sealed joints not properly fixed serves as conduits by which water 

enters the insulation and penetrates the metal surface. This could significantly 

depreciate the thermal performance of the insulation leading to corrosion under 

insulation.  

 

 

 

 

Figure 2.5: The process of condensation within an insulated system [19] 

Some corrosion experts in industry do assume that CUI is more significant in old metal 

facilities compared to new ones; however, it has been advised that such assumptions 
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could have severe consequences as CUI is aggravated by the operating conditions 

and should be treated as a serious issue irrespective of the age of the metal [20]. Early 

maintenance and inspection schedule could help to identify vulnerable areas and 

appropriate action can be taken prior to failure [21]. In order to have a better 

understanding of CUI, the components of a typical metal insulated system is hereby 

described. 

  

(a)                                    (b) 

Figure 2.6: (a) Components of an insulated system [22] (b) Top view of an insulated 

system showing the ingress of water, oxygen, and chlorides. 

An insulated metal system comprises of the metal (with or without coating) as the inner 

layer, this is followed by the insulation that contacts the metal surface. The outer part 

consists of the jacketing that prevents the intrusion of water into the insulation. A 

schematic representation of this composition is shown in Figure 2.6. Water from rain, 

dew, snow, and other form of precipitation can find its way into the insulation if it was 

not properly installed or if there is a physical damage on the insulation either through 

regular trampling on the insulation or wears out by other mechanical means [23]. The 

water will find its way to the surface of the metal, if the metal is in operation at elevated 

temperature, the water will be heated up, and condenses back to the surface of the 

metal when it reaches the jacketing. This cycle will continue in a reflux pattern which 

has the tendency of dissolving chlorides within the insulation material, thereby 

increasing its concentration resulting in enhanced CUI. If the metal is out of service or 

operating under cold conditions, the water has the tendency of having prolonged 

contact with the metal surface which will also lead to increased CUI. 
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2.2.1) Mechanism of corrosion of carbon steel in sodium chloride solution 

The corrosion of carbon steel in contact with insulation that is wetted with sodium 

chloride solution is an electrochemical reaction involving anodic dissolution of iron and 

cathodic reduction of oxygen. During CUI, chlorides could enter the insulated substrate 

externally through the surrounding fluid or it could be leached from the insulation itself. 

The presence of chloride around the environment of the metal have been reported to 

accelerate corrosion rate [24], induce pitting and creates an environment prone to 

stress corrosion cracking [25, 26]. The combination of products formed at the anode 

and cathode gives rise to ferrous oxide which oxidizes to ferric oxide in the presence 

of dissolved oxygen. The schematic representation of corrosion of insulated carbon 

steel is shown in Figure 2.7.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Schematic representation of corrosion under insulation in the presence of 

oxygen. 

 

The surface of the metal has both anodic and cathodic sites. For localized corrosion, 

these sites tend to be fixed to certain region of the metal. Pitting has been identified 

as the most common form of localized corrosion where degradation of the metal is 

restricted to small areas as a result of the presence of salt particles, discontinuities in 

the coating or surface defects [3]. However, in the case of uniform corrosion, these 

sites are not restricted to a particular region of the metal but are constantly changing 
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depending on certain conditions. Areas of the metal where there is high availability of 

oxygen will serve as the cathode while the region with less oxygen will serve as the 

anode. The consistent change in anodic and cathodic areas on the surface of the metal 

results in uniform corrosion. At the anode, iron loses electrons to form ferrous ions, 

the electrons migrate to the cathode areas and reduces oxygen to hydroxyl ions. The 

ferrous oxide becomes oxidized to ferric oxide which is the corrosion product as shown 

in Figure 2.7. 

2.3) Theory of galvanic corrosion 

Galvanic corrosion is the corrosion occurring between two or more dissimilar metals 

in contact with an electrolyte. When two different metals are in contact with a 

conductive solution, the metal with the higher electronegativity will serve as the anode 

while the less electronegative metal will serve as the cathode (Figure 2.8). In this case, 

the metal that serves as the anode would rapidly corrode more than it would alone and 

the metal serving as the cathode would usually corrode less than it would alone [27]. 

The exposed area of the anode and cathode is an important factor in galvanic 

corrosion. A small anode to cathode area ratio would result in a rapid anodic 

dissolution due to the concentration of galvanic current on a smaller anodic area [28]. 

In addition, different techniques that have been employed to mitigate galvanic 

corrosion include isolating the two metals from each other, selecting similar materials 

or materials with close electrical potentials, or adding a corrosion inhibitor [29]. 

 

Figure 2.8: Galvanic corrosion of aluminium/copper couple. 

Lower potential metal Higher potential metal 
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2.4) Fundamental concepts on insulation dry out using galvanic current 
measurement. 

Galvanic current is the current that flows between dissimilar metals when they are 

electrically connected and in contact with an electrolyte [3]. The dissimilar metals must 

have different electrode potentials and the metals should be electrically connected to 

each other [30]. In this section, the discussion about the use of galvanic current to 

measure insulation drying times will be restricted to aluminium-copper galvanic couple 

in contact with mineral wool insulation that is wetted with 1 wt % NaCl solution. This 

represents the system that was studied in this research; hence, it will provide the 

required understanding to the methodology and results presented herein. The 

schematic representation of the flow of electrons across a Cu/Al galvanic couple in 

contact with the electrolyte in the insulation is shown in Figure 2.9, while the electrical 

equivalent circuit for the ring electrode system is shown in Figure 2.10.  

 

The concept of determining the degree of wetness of insulation lie in the fact that when 

the insulation is dry, there will be no flow of galvanic current; however, when it is wet, 

a measurable current is produced. A pair of dissimilar metals (Cu and Al) serving as a 

sensor are used to create a galvanic cell, the resulting current (Ig) produced when the 

metals are in contact with the wet insulation is measured using a multimeter. The 

opposition to the flow of current (resistance) due to the presence of a liquid film at the 

surface of the metal is referred to as solution resistance. This is caused by the 

interaction of ions with each other, which prevents the directed movement of ions 

between the electrodes [31]. Within an insulated system, the solution resistance could 

indicate the drying out process of the insulation. For the Cu-Al galvanic couple (Figure 

2.9), the magnitude of the galvanic current depends mainly on the solution resistance 

(Rs) which represents the ohmic resistance between the two electrodes. The 

magnitude of Rs depends on the geometry of the rings as well as the conductivity of 

the solution in the insulation. 
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Figure 2.9: Schematic representation showing preferential corrosion of Al in an Al/Cu 
galvanic couple. 

 

 

Figure 2.10: Equivalent circuit of the Cu-Al electrode system 

 

This is an indirect method of determining the solution resistance (Rs) which is believed 

to relate to the degree of drying out in a reasonable way. This is because Rs is 

expected to increase as the insulation dries out due to the decrease in conductivity of 
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the solution. The galvanic couple used in this study consisted of copper and aluminium 

rings. When both metals are not connected, they will corrode independently, each 

having separate corrosion potentials, Ecor. The galvanic series of metals in sea water 

presented in Table 2.1 indicates that aluminium has a lower corrosion potential 

compared to copper. In other words, aluminium is less noble, hence, it will serve as 

the anode, while copper functions as the cathode where reduction of oxygen will occur 

according to the following reactions [32]. 

𝐴𝑛𝑜𝑑𝑒: 𝐴𝑙 → 𝐴𝑙3+ + 3𝑒− 

𝐶𝑎𝑡ℎ𝑜𝑑𝑒 (𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝐻 𝑖𝑠 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑂2𝑎𝑛𝑑 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡): 𝑂2 + 2𝐻2𝑂 + 4𝑒
− → 4𝑂𝐻− 

 

 

Table 2.1: Galvanic series of metals and alloys in seawater [32] 

Metal/alloy Potential range 
(V) vs SCE 

Magnesium -1.60 to 1.63 

Zinc -0.98 to -1.03 

Aluminium -0.70 to -0.90 

Cadmium -0.70 to -0.76 

Cast iron -0.60 to -0.72 

Steel -0.60 to -0.70 

Brass -0.30 to -0.40 

Copper -0.28 to -0.36 

Lead-tin solder -0.26 to -0.35 

400 series 
stainless steel 

-0.20 to -0.35 

Lead -0.19 to -0.25 

Copper-Nickel 
(70/30) 

-0.13 to -0.22 

Silver -0.09 to -0.14 

Monel  

300 series 
stainless steel 

-0.00 to -0.15 

Titanium +0.06 to -0.05 

Platinum +0.25 to +0.18 

graphite +0.30 to +0.20 

 

On the other hand, when both metals are connected in the presence of an electrolyte, 

galvanic cells will form which can be represented by an equivalent circuit as shown in 

Figure 2.9. The magnitude of the solution resistance depends on the geometry of the 
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aluminium and copper rings as well as the conductivity of the solution in the insulation 

[33]. The external resistance (Rext) is the resistance due to the external circuit and the 

measuring equipment (multimeter). The total resistance in the circuit (RT) is the sum 

of the solution resistance (Rs), polarisation resistances (𝑅𝑝𝐼 + 𝑅𝑝𝐼𝐼) and the external 

resistance due to the measuring instrument (Rext.). The flow of current across an 

electrode will result in a shift in the potential of the electrode when compared to its 

potential when there is no current flow (open circuit potential). The resistance of a 

material to this shift in potential (polarisation resistance) is inversely proportional to the 

corrosion rate of the material [34]. 

 

The change in corrosion potential between the electrodes (∆Ecor) represents the 

difference between the potentials of each electrode which is applied across all the 

possible resistances (Rs, Rext, RpI and RpII) producing a galvanic current (Ig). This is in 

accordance with ohm’s law as shown in equations 2.1 and 2.3 [35]. 

∆𝐸𝑐𝑜𝑟 = 𝐼𝑔𝑅𝑇         (2.1) 

𝑅𝑇 = 𝑅𝑝𝐼 + 𝑅𝑝𝐼𝐼 + 𝑅𝑒𝑥𝑡 + 𝑅𝑠           (2.2) 

𝐼𝑔 =
∆𝐸𝑐𝑜𝑟

𝑅𝑝𝐼 + 𝑅𝑝𝐼𝐼 + 𝑅𝑒𝑥𝑡 + 𝑅𝑠
           (2.3) 

Assuming the interfacial polarisation resistances (𝑅𝑝𝐼 , 𝑅𝑝𝐼𝐼) and the external resistance 

(Rext) are quite small compared to the solution resistance (Rs), then equation 2.3 

reduces to equation 2.4. 

𝐼𝑔 =
∆𝐸𝑐𝑜𝑟
𝑅𝑠

                        (2.4) 

Equation 2.4 corresponds to situation where ohmic control is dominant and suggests 

that the galvanic current is inversely proportional to the solution resistance. This 

implies that as the solution resistance increases towards infinity (∞) during the drying 

process of the insulation, the galvanic current (Ig) will tend to zero. However, this might 

only be accurate as the insulation continues to dry or as Rs increases. When the 

insulation is wet, the solution resistance may be relatively low, and the galvanic current 

may also be partly controlled by the polarisation resistances [35].  
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2.4.1) Theory of Electrochemical impedance technique in measuring insulation 

dry out 

Electrochemical Impedance spectroscopy (EIS) is a frequency-based technique 

involving the application of a sinusoidal signal to an electrochemical system and 

measuring the resulting response due to this perturbation [36]. This can give insight to 

the mechanism of electrochemical reactions including transport properties of materials 

[37]. This technique has been useful in probing corrosion mechanisms and other 

electrochemical systems at different frequencies since the advent of potentiostats in 

the 1940’s and frequency analysers in the 1970s [38]. EIS is characterised by a time 

dependent potential and current functions, a phase shift and a frequency. Impedance 

is the opposition to the flow of alternating current offered by an electric circuit [39]. This 

is represented in equation 2.5. 

 

𝑍 =
𝐸

𝐼
      (2.5) 

Where E is the applied sinusoidal potential, and I is the measured AC current. This 

method can be used to study the metal/solution interface as well as the surface 

treatments [37]. The equivalent circuit of a metal-solution interface is shown in Figure 

2.11. 

 

Figure 2.11: Equivalent circuit of a metal-solution interface [37] 
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The existence of two layers of electric charge at the metal-electrolyte interface having 

opposite polarities is referred to as double layer capacitance. The charge separation 

at this metal-solution interface helps to provide the driving force in terms of the 

potential drop for corrosion reactions [40]. Figure 2.11 shows that the polarisation 

resistance (Rp) and the capacitance of the electrical double layer (Cdl) of the metal-

solution interface are in series with the solution resistance existing between the double 

layer and the reference electrode. Therefore, the overall impedance of the system 

depends on the contribution of all these components. Copper has been reported to 

possess good corrosion resistance in electrolytes such as sodium chloride [41]. 

Therefore, in this study, two copper rings were used as this is fairly noble and it is not 

expected to form surface films which would contribute its own impedance to the 

system; hence, it is suitable for this application. The main interest was to determine 

the solution resistance (Rs) between the rings. It was assumed that as the insulation 

dries out, the solution resistance will increase and approach infinity when the insulation 

is completely dry. The equivalent circuit of the two-ring system is shown in Figure 2.12. 

 

 

Figure 2.12: Equivalent circuit of the two-ring system used in this study 

 

It should be noted that the polarisation resistance (Rp) and the double layer 

capacitance (Cdl) are the same for both electrodes. However, for simplicity, the 

equivalent circuit shown in Figure 2.11 will be used as it is relevant to this analysis. 

The impedance between points 1 and 3 is given in equation 2.6 [35]. 
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𝑍 = 𝑅𝑠 +
𝑅𝑝

1 + 𝜔2𝑅𝑝2𝐶𝑑𝑙
2 − 𝑗

𝜔𝑅𝑝
2𝐶𝑑𝑙

1 + 𝜔2𝑅𝑝2𝐶𝑑𝑙
2              (2.6) 

 

Equation 2.6 can be rewritten as a complex number with imaginary and real 

components as in equation 2.7 [35]. 

𝑍 = 𝑍′ + 𝑗𝑍′′                 (2.7) 

 

Where 𝑍′ = 𝑅𝑠 +
𝑅𝑝

1+𝜔2𝑅𝑝
2𝐶𝑑𝑙
2        (2.8) 

𝑍′′ = −
𝜔𝑅𝑝

2𝐶𝑑𝑙

1 + 𝜔2𝑅𝑝2𝐶𝑑𝑙
2              (2.9) 

 

The resulting impedance (Z) obtained from the real and imaginary parts is shown in 

Figure 2.13. 

 

 

Figure 2.13: Representation of imaginary impedance, real impedance, and the 

absolute value of the impedance [42]. 



 

39 
 

 

The absolute value of the impedance can be obtained from Figure 2.13 by applying 

the Pythagoras theorem. 

 

|𝑍| = √(𝑍′2 + 𝑍′′2)                (2.10) 

|𝑍| = √(𝑅𝑠 +
𝑅𝑝

1 + 𝜔2𝑅𝑝2𝐶𝑑𝑙
2 )

2 + (
𝜔𝑅𝑝2𝐶𝑑𝑙

1 + 𝜔2𝑅𝑝2𝐶𝑑𝑙
2 )

2            (2.11) 

 

Equation 2.11 shows that the total impedance depends on the various circuit 

parameters including the frequency. The dependence of impedance on the frequency 

is usually represented by the Bode plot. This is shown in Figure 2.14 for instance 

where the double layer capacitance (Cdl) is 10 μFcm-2, polarisation resistance (Rp) is 

1 kΩ, and solution resistance is 100 Ω. 

 

 

Figure 2.14: Typical Bode plot for an electrochemical surface [37] 
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Figure 2.14 shows that the polarisation resistance is prominent when a small value of 

the angular frequency is used. However, at high frequency of 1 kHz – 100 kHz, the 

measured absolute impedance is equal to the solution resistance (Rs). Therefore, in 

this study, the angular frequency of 1 kHz was used to ensure that the measured 

impedance reflects only the contribution of the solution resistance which was the 

primary target. In addition, the phase shift is another important parameter which shows 

the relationship between the AC current and voltage. This is illustrated in Figure 2.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15: Schematic representation of the phase shift between current and 

potential operating at the same frequency. 

 

In Figure 2.15, the potential and current are said to be in phase if at any instant in time 

in a complete cycle, both parameters reach the maximum, zero and minimum values 

at the same time even though the amplitude may be different; otherwise, they are said 

to be out of phase [39]. The potential and current are always in phase in a circuit 

containing only a resistor; but the current leads the voltage by 90o in a capacitor [39]. 

This is because the current (IR) passing through a resistor (R) is directly proportional 

to the applied voltage(V), while the current (IC) passing through a capacitor (C) is 

proportional to the rate of change of voltage. Therefore, in a capacitive circuit, the 

capacitor opposes a change in voltage and stores energy as an electric field, this 
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results in the current (IC) leading the voltage by 90o [43]. Within the context of a 

corrosion system, the capacitive behaviour is observed at the electric double layer 

which exists at the electrolyte-metal interface [43].  

 

When the total impedance is dominated by the solution resistance (Rs), the impedance 

is entirely resistive in nature and the measured phase angle is expected to be zero. 

This offers a means of confirming that the effects of other circuit components are 

negligible. It is expected that when the solution resistance is small (wet insulation), the 

effects of other components might be significant, and the phase angle might not be 

zero. However, as the insulation dries, the impedance continues to increase until it 

gets to very high values indicating significant drying out of the insulation. In this case, 

the phase angle and the measured impedance will be quite noisy and unreliable. 

 

2.5) Theory of predictions using Artificial Neural Network 

Artificial neural network (ANN) is a program that can be used to predict outcomes 

based on pattern recognition and classification acquired during training [44]. It is a 

biologically inspired program which mimics the activities of the biological neurone in 

the brain. A comparison of the activities of ANN and the neurone in the brain is shown 

in Figure 2.16. The input variables are compared to the dendrites, the hidden layer to 

the cell body, the output to the axon terminals [45]. Information is passed from the 

input layer to the hidden layer which processes it using an activation function and 

sends it to the output layer. This is similar to the impulse received at the dendrites, 

processed in the cell body and passed through the axon to the terminals where they 

are picked up by other cells. 
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Figure 2.16: Comparison of artificial neural network with biological neural network 
[46] 

 

ANN makes predictions by learning the patterns that exists in a set of complicated 

data. The ability to establish and recognise complex patterns is the reason why ANN 

has been quite useful in predicting the outcome of non-linear systems [47]. Prediction 

of the fate of chemical systems that are linearly related with the input parameters can 

easily be carried out using linear regression analysis; however, when they are non-

linear, machine learning techniques such as artificial neural networks become the ideal 

tool in establishing patterns between the input and output variables.  

 

Corrosion under insulation is affected by parameters such as temperature, electrolyte 

concentration, pH, inhibitors among others. These factors have a complex relationship 

with CUI rate, and it is quite difficult to establish the contribution of each of these 

parameters to the overall CUI rate. Moreover, it is almost impossible to control these 

factors in the field which further makes prediction of CUI rate quite difficult [48]. 

However, ANN is an ideal tool for studying non-linear relationships existing between 

these parameters (independent variables) and establish a pattern with the expected 

output [49]. Therefore, this section focuses on the background information on Artificial 

neural networks with the aim of providing the necessary understanding on its 

mechanism of operation. This will begin with the composition of ANN, followed by 

mechanism of prediction and limitations of ANN. 

Biological Neural Network  
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2.5.1) Components and classification of artificial neural network 

ANN consists of three layers which include: the input, hidden and output layers [50]. 

The input layer contains the studied parameters affecting corrosion rate (independent 

variables), the hidden layer is where the calculations are carried out based on some 

activation functions and the output layer contains the expected outcome which is the 

corrosion rate (dependent variable). The input and output layers usually consist of a 

single layer while the hidden layer can be single, dual, or multiple hidden layers. The 

choice of the number of hidden layers for a particular prediction depends on the 

quantity and type of data [45]. Large industrial data might be difficult to process using 

a single hidden layer as it will make the network clumsy, slow, and difficult to train [51]. 

Therefore, dual, or multiple hidden layers might be used in such instance.  

 

The number of neurons in any type of hidden layer chosen is also significant as 

choosing the appropriate number will enhance training and adaptability of the network. 

The architectural design of an artificial neural network as used in this study is shown 

in Figure 2.17. This represents the layout of a typical ANN design. This consists of the 

input layer which consists of the studied influencing factors on CUI rate. For an output 

that results from several related parameters, the higher the number of these factors 

incorporated into the network, the better the prediction, provided these parameters 

have some relationship with the expected output. It is important that these input 

parameters have some relationship with the expected output, if there is no relationship, 

the program will be difficult to train, and it will result in a reduced accuracy of prediction 

[52]. The hidden layer serves as the pivot that contains the activation functions. Some 

of the activation functions that have been used in artificial neural network include: 

Linear, identity, sigmoid, hyperbolic tangent, rectified linear unit functions (RELU) 

among others. ANN can be classified based on the number of layers, type of 

connections, direction of propagation and activation function as shown in Figure 2.18.  
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Figure 2.17: Components of ANN 

 

 

Figure 2.18: Classification of artificial neural network [52] 

 

2.6) The role of activation functions in artificial neural network 

Activation functions are mathematical functions that transform the input data fed into 

its node into an output [53]. During this process, it tries to suppress data that it 
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considers to be irrelevant, thus ensuring that only the important information is being 

processed. Activation function performs this task by using mathematical equations to 

decide whether the information in a certain neurone should be activated or not. The 

hidden layer is not exposed as the name implies. This means that the software 

performing this task does not explain what it is doing or how it arrives at the predicted 

output. This is probably the reason why many researchers working with artificial neural 

network hardly explains what the software is doing and how it arrives at the predicted 

output as seen in its absence in many publications. Nevertheless, the complex 

mathematical derivations associated with ANN predictions will be explained in the 

mechanism of prediction in the next section. 

 

The primary purpose of activation functions to neural networks is to introduce non-

linearity to the network so that complex patterns can be recognised [54]. Without an 

activation function, the output of the network will simply be a linear transformation of 

the input variables, and this will be independent of the number of hidden layers. 

Complicated data will be difficult to train under these circumstances and the network 

will reduce to a simple linear regression model. However, the presence of an activation 

function introduces non-linearity into the network which makes it easy to learn complex 

relationship existing between the input and output variables. 

 

2.6.1) Types of Activation functions 

Activation functions are grouped into linear and non-linear activation functions. The 

linear activation functions include linear, identity, and binary step function while non-

linear functions include sigmoid, hyperbolic tangent, rectified linear unit, exponential 

linear unit, softmax, gaussian error linear unit, as well as Swish activation functions 

[55]. The non-linear activation functions used in this study include sigmoid and 

hyperbolic tangent functions; hence, these two functions will be the focus in 

subsequent discussions. For a mathematical function to be suitable to serve as an 

activation function in neural network, it must have a derivative that is differentiable so 

that adequate learning using gradient descent algorithm can take place [56]. Also, the 

function is expected to be symmetrical around 0 so that it does not shift the gradient 

to any direction in addition to being computationally feasible. The two significant types 
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of activation functions used in this study include the sigmoid and hyperbolic tangent 

functions and this will be discussed in detail. 

 

2.6.1.1) Sigmoid activation function 

Sigmoid activation function is a non-linear mathematical function which takes in any 

input data and processes an output that is restricted to 0 and 1 [57]. This implies that 

it is impossible to obtain a negative output or values higher than 1 when using a 

sigmoid activation function. All the possible variables that could be obtained is 

normalized within this range which means that the sigmoid activation function takes in 

all real numbers in its domain but produces an output that is more of a probability. This 

characteristic really fits CUI data since the impact of CUI is often evaluated in terms 

of probability of failure (PoF). The plot of a sigmoid function as well as its derivative is 

shown in Figure 2.19.  

 

 

Figure 2.19: Representation of a sigmoid function and its derivative 

 

The mathematical expression of the sigmoid function is given as  

𝑆𝑔(𝑥) =
1

1 + 𝑒−𝑥
             (2.1) 

𝑆𝑔′(𝑥) = 𝑓(𝑥)(1 − 𝑓(𝑥))          (2.2) 
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The function sg(x) is differentiable, and the gradient is smooth, which implies that it 

will not skip output values. This makes it desirable for neural network analysis [52]. 

However, the plot of the derivative of sigmoid function as shown in Figure 2.19 

indicates that the gradient is only important for the output values of -3 to 3. The curve 

flattens out at other x values. This is the so called ‘gradient vanishing problem’ [58]. 

What this means for neural network modelling is that during the training process where 

the network computes the derivative of sg(x) in order to adjust the weight and bias 

values via the mechanism of backpropagation which will be discussed in detail in 

subsequent section, the network will stop learning as the gradient is close to 0. 

Besides, the curve of sigmoid function is not symmetric around 0 which will also affect 

the learning rate. 

 

 

2.6.1.2) Hyperbolic tangent activation function 

The hyperbolic tangent function also has real numbers in its domain but the output 

falls within the range of -1 to 1 as shown in Figure 2.20. This implies that large input 

values will tend to approach 1 while smaller input values will approach -1. Hyperbolic 

tangent function is zero centred; hence, it makes the learning process during training 

easy unlike sigmoid function. The mathematical expression of hyperbolic tangent 

activation function and its derivative are given in equations 2.3 and 2.4 respectively 

[59].  

 

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
         (2.3) 

𝑡𝑎𝑛ℎ′(𝑥) = 1 − tanh(2𝑥)     (2.4) 
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Figure 2.20: Representation of hyperbolic tangent function and its derivative 

 

Although the gradient of the hyperbolic tangent function is symmetric around 0 which 

improves the learning rate, it still experiences the gradient vanishing problem around 

-3 to 3. Nevertheless, the gradient has no restriction in terms of which direction it 

should go which makes it preferable over sigmoid activation function.  

 

2.7) Mechanism of prediction 

In this section, the steps utilized by ANN in making its predictions are described. Prior 

to ANN analysis, the data needs to contain two different parts for it to be possible to 

be analysed using ANN. The first part involves variables affecting the expected output 

(independent variables), while the second aspect is the output itself. In terms of 

corrosion under insulation, the corrosion rate represents the output, while the different 

variables affecting CUI rate (temperature, quantity and distribution of electrolyte in the 

insulation, presence of inhibitor, among others) represent the independent variables. 

The mechanism of prediction involves two types of data propagation. This include 

feedforward propagation which involves feeding the weighted input variable into the 

hidden layer containing the activation function where the output is being processed 

[58]. The other type is called backpropagation which involves feeding the error 

between the predicted output and actual output back into the hidden layer and 

assessment of the input variable with the highest error and makes the necessary 
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adjustment to its weight and bias values [58]. At the input layer, no computation is 

carried out, the input variables are assigned weights and bias values randomly during 

the feedforward propagation mode. The hidden calculations to arrive at the predicted 

output is shown below [59]. 

𝐿𝑒𝑡 𝐼 =

(

 
𝑥1
𝑥2
𝑥3...
𝑥𝑛)

 , 𝑤𝑖 =

(

 
𝑤1
𝑤2
𝑤3...
𝑤𝑛)

  𝑏𝑖 = 𝑏,    𝐴𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑥𝑎, I represent the input 

parameters, wi  and b represent the weights and bias respectively. 

 

The linear combination of the input parameters as reported by IBM [59] is given as: 

𝐿𝑖(𝑥𝑖) = 𝑏 +∑𝑤𝑖𝑥𝑖

𝑚

𝑖=1

      (2.5) 

The function Li(xi) is passed to the hidden layer where it becomes transformed by the 

sigmoid and hyperbolic activation functions. 

Activation function: Sigmoid 𝑓(𝑥) =
1

1+𝑒−𝑥
          (2.6)  

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑦𝑜) = 𝑓(𝐿(𝑥)) = (
1

1+𝑒
−(𝑏+ ∑ 𝑤𝑖𝑥𝑖

𝑚
𝑖=1 )

)       (2.7) 

It is worth noting that the first predicted output (yo) was obtained by random assigning 

of weights and bias values to the input variables. The network will then compute the 

error and identify the degree of deviation of the first predicted output with the original 

output. 

 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟(𝑀𝑆𝐸𝑖) =
1

𝑁
∑(𝑥𝑎 − 𝑦𝑜)

2     (2.8)

𝑁

𝑖=1

 

Where xa is the actual output and yo is the predicted output. 

The software will then compute the error due to the weights and bias through the back 

propagation mechanism and initiates the gradient optimization algorithm to correct the 

old random weights and bias values [60]. 

 

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 − 𝑦𝑜 × 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡           (2.9) 

𝑏𝑛𝑒𝑤 = 𝑏𝑜𝑙𝑑 − 𝑦𝑜 × 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡             (2.10) 
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The new weights and bias are then applied on the input variables and the entire 

process is repeated several times until the predicted output converges to the minimum 

specified error. The different steps employed by ANN in obtaining predicted outputs 

from data sets are shown in Figure 2.21. 

 

 

Figure 2.21: Mechanism of prediction using ANN 

 

 

2.8) Limitations of artificial neural network 

Artificial neural network has some drawbacks which limits its application despite the 

aura accorded to the technique as being among the top 5 within the field of predictive 

modelling [61]. One of which is that performance increases with number of input 

variables. This suggests that it tends to require the data for all the causal effects in 

order to obtain improved accuracy [62]. This is significant for outputs such as corrosion 

rate that results from a combination of parameters. In addition, ANN has been 

criticised to behave like a ‘black box’ in its predictions [63], which means that 

sometimes it presents an output that cannot be justified, in addition to being time 

consuming. However, these criticisms were applicable to the early ANN models, the 

calculations at the hidden layer are now known and the modelling time is now in 

minutes and no longer several hours. Nonetheless, the architectural network of ANN 

is designed for a particular application and may not be applicable in solving other 
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problems [62, 63]. This means that it presents the hassle of designing a new network 

architecture for each problem. 

 

2.9) Summary 

Corrosion under insulation is an external degradation of metals that is caused by the 

presence of water, moisture, oxygen, and other contaminants such as chlorides 

beneath the insulation. This occurs if the protective jacketing is breached leading to 

CUI which has enormous economic and safety concerns. CUI is affected by factors 

such as type of metal, condition of operation such as temperature, humidity, pH among 

others. The study of CUI is important in scheduling early maintenance and inspection 

plans to avoid unexpected failure. 

 

The mechanism of corrosion of ferrous metals include: anodic dissolution of the metal 

with the release of electrons which migrates to the cathode where it reduced oxygen 

to hydroxide ions. The combination of the anodic and cathodic products results in the 

formation of ferrous oxide which can be oxidized to ferric oxide. The resulting corrosion 

could be said to be uniform if the degradation occurs over the entire or significant area 

of the metal surface. This is possible because the anodic and cathodic sites are not 

localized to a particular region of the metal. A uniform corrosion results from mobile 

anodic and cathodic sites with areas of high levels of oxygen likely to be the cathode, 

while the region with less oxygen will likely be the anode. Failure analysis of CUI 

incidences have revealed that a breach of the jacketing due to poor installation or 

damage which allows water to enter the insulation are the main causes of failure. 

 

The use of galvanic current to determine the drying times of insulation has relied on 

the fact that as drying proceeds, the solution resistance increases which results in the 

galvanic current decreasing; thus, making it possible to monitor the drying process. 

The initial increase in temperature prior to reaching the target value, the galvanic 

current also increases. When the temperature stabilizes the galvanic current also 

tends to stabilize and starts decrease as the insulation dries out due to decrease in 

conductivity of the solution. On the other hand, the impedance decreases as 

temperature increases due to increased conductivity of the solution and stabilizes 

when the target temperature was reached. Then the resistance starts increasing even 
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though the temperature is still maintained at the target temperature due to the 

electrolyte in the insulation drying out. Moreover, when the quantity of electrolyte in 

insulation is very low or it has completely dried out, the galvanic current tends to 0 

while the resistance becomes very high. 

 

Artificial neural network uses patterns observed in data obtained from different 

influencing variables to make predictions by subjecting the variables to some non-

linear activation functions and mapping to an output. The difference between the 

predicted and the actual output is computed and fed back to the hidden layer 

containing the activation function. This is iterated several times till the predicted output 

conforms to the specified minimum error. This has been useful in predicting the 

corrosion rates of metals since CUI depends on different variables such as 

temperature, quantity of electrolyte in the insulation as well as the presence of 

corrosion inhibitor in the insulation.  

 

ANN prediction is based on these input parameters and the choice of activation 

functions as well as the network parameters such as number of hidden layers and 

nodes in each layer. Sigmoid and hyperbolic tangent activation functions have been 

widely used for corrosion predictions because they accept all real numbers in their 

domain and processes outputs that can be interpreted in terms of probabilities which 

is suitable for describing CUI data. Despite its usefulness, the fact that there is no 

universal network design that can solve all problems implies that each design is 

tailored to solve a particular problem which is one of the limitations of the technique 

apart from requiring large number of input data and variables for improved accuracy.  
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CHAPTER THREE 

REVIEW OF RELATED LITERATURE 

 

This chapter covers the study of the corrosion of metals under insulation. This includes 

water absorption studies, design of CUI test rigs, effects of temperature and inhibitors 

on the rate of CUI as well as predictive modelling of CUI rate using artificial neural 

network. The review is mainly focused on CUI systems that uses carbon steel as the 

metal substrate and mineral wool as the insulation, though reference is also made to 

other materials when needed. This is because carbon steel and mineral wool 

insulation are the most common materials used in the industry due to cost, availability, 

ease of installation, high thermal insulation properties, among others [1, 2, 3].  

 

The purpose of the review is to assess the research that has been done within the 

field of corrosion of metals under insulation. This includes identifying gaps in the 

literature which this study is trying to fill and areas that still needs further research as 

well as linking up the research that has been carried out to assess the trend over the 

previous years. In addition, only a few researchers have shown interest in the 

corrosion of insulated metals, which is evident in the number of publications compared 

to uninsulated or immersion conditions. Therefore, this review will highlight technical 

challenges associated with measurement of CUI rates which will elicit discussions for 

solutions.  

 

In addition, this section also assesses the water absorption capacity of different 

insulation materials with particular attention to mineral wool and different designs of 

test rig used for CUI studies as well as its limitations. Also, the effects of temperature 

and inhibitor on the corrosion rate of insulated carbon steel are covered.  This is to 

ensure that there is not much deviation from the focus of the research as other metallic 

substrates has significantly different properties. The prediction of CUI rate using 

artificial neural network was assessed for both insulated and uninsulated conditions 

due to the dearth of publications on the CUI rate prediction using Artificial Neural 

Network.  

 

 



 

60 
 

There are interesting discussions on CUI in the literature ranging from water 

absorption capacity of insulation materials [4, 5, 6], inspection techniques [7, 8], failure 

analysis [ 9, 10], rate of CUI [11, 12], inhibitors [13, 14, 15], and theoretical predictions 

of CUI rate [16, 17]. Nevertheless, in this chapter, only discussions that are relevant 

to this research are included. This includes relevant water absorption studies, rate of 

CUI, inhibitors, and theoretical predictions using ANN. Therefore, the review begins 

with the study of the water absorption capacity of mineral wool insulation, including the 

effect of thermal treatment on water absorption capacity. This is followed by the study 

of the effect of factors affecting CUI rate such as temperature, including thermal 

cycling, and inhibitor. In addition, the available literature on electrochemical methods 

of measuring drying times of the insulation as well as the prediction of the rate of 

corrosion of carbon steel using ANN are assessed. 

 

3.1) Available literature on the determination of the water absorption 

capacity of mineral wool insulation 

The water absorption capacity of mineral wool insulation has been studied by some 

researchers in the literature in order to assess the moisture content and to understand 

the moisture transport properties within the mineral wool insulation. Investigations of 

the water absorption capacity of mineral wool insulation can be carried out over a short 

period in hours or over a long term like several days. It is important to study the degree 

of water absorption or repellency of mineral wool insulation as the quantity of water 

absorbed can influence the CUI rate of the underlying metal as well as the drying out 

time. For instance, Karamanos et al. [18] has explained that the fibres of mineral wool 

insulation are detached from each other under moist conditions as water separates 

the binders holding the fibres together. There are standard methods of determining 

the water absorption capacity of insulation materials; some of which involves full 

immersion of the insulation in water [19, 20], while some involve partial immersion of 

the insulation in water [21, 22]. A summary of the procedures for determining the water 

absorption capacity of insulation materials using these standards are presented in 

Table 3.1. 
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During the production of mineral wool insulation, some hydrophobic additives of 

organic or inorganic origin are usually added to improve the water repellency of the 

insulation material [23]. The thermal treatment of mineral wool insulation at 

temperatures as high as 250 oC has been reported to result in the degradation of the 

organic additives that impart hydrophobicity to the insulation culminating in enhanced 

water absorption properties of the insulation [23]. Moreover, the lifetime of these 

additives has been reported to reduce with increasing temperature resulting in a 

greater risk of water penetration to the insulation [24]. Organic binders may be in the 

form of polymeric resins from the family of esters or aromatic compounds.  

 

The thermal decomposition products of the organic moiety in the resin as reported by 

Knop and Pilato [25] as well as the mechanism involved in the product formation are 

shown in Figure 3.1. The binder will decompose at temperatures greater than 175 oC 

to give lower chain structures such as dihydroxy benzophenone, which further breaks 

down to 2,4-xylenol, which is a highly volatile compound and will likely escape from 

the insulation alongside CO2. Although the fibres of mineral wool insulation have been 

reported to withstand high temperatures up to 1200 oC [26], the phenol formaldehyde 

resin that binds the fibres together as well as other organic compounds responsible 

for the hydrophobicity of the insulation have been reported to degrade when 

conditioned at 105 oC [27]. This would result in rapid uptake of water by the thermally 

degraded insulation allowing water to gain access to the insulation. 
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Figure 3.1: Thermal decomposition products of phenolic resin of mineral wool 

insulation [25]. 

 

In the literature, Zwaag and Rasmussen [28] investigated the effects of different 

hydrophobic additives on the water repellency of mineral wool insulation using both 

partial immersion method according to BS EN 13472 standard and full immersion 

technique reported in ASTM C1763 standard. The results in this report were presented 

as numbers in tables, this has been plotted for better visualization and it is shown in 

Figure 3.2. 
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Table 3.1 : Comparison of the four standards used in determining the water 

absorption characteristics of thermal insulation materials. 

ASTM C1511 [2] ASTM C1763 [3] BS EN 13472 [4] BS EN 1609 [5] 

No conditioning of 
the specimen is 

required. 

Pre-conditioning 
according to C870 

standard is required. 

Conditioning is 
required at 23 oC 

for 6h. 

Conditioning is 
required at 23 oC 

for 6h. 

Determines the 
absorption by full 

immersion 

Determines absorption 
by full immersion 

Determines 
absorption by 

partial immersion 

Determines 
absorption by 

partial immersion 

Distilled or deionized 
water is 

recommended as the 
immersion medium 

Distilled or deionized 
water is recommended 

as the immersion 
medium 

Tap water can be 
used as the 
immersion 
medium 

Tap water can be 
used as the 
immersion 
medium 

The sample drainage 
for 60seconds is 

recommended after 
immersion. 

The specimen is 
weighed immediately 

after removal from 
water. 

Drainage is 
recommended for 
10 minutes after 

immersion. 

Drainage is 
recommended for 
10 minutes after 

immersion. 

The immersion time 
is 15 minutes. 

The immersion time is 
a minimum of 48 

hours. 

The immersion 
time is 24 hours. 

The immersion 
time is 24 hours. 

The Insulation is 
tested without a 

facing or a jacketing. 

Not specified. Any skin, facing or 
coating shall be 

retained. 

Any skin, facing or 
coating shall be 

retained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Water absorption of mineral wool samples with different hydrophobic 

additives using EN13472:2012 standard: samples 1-5 represent an insulation with a 

mineral oil-based additive, 6 and 7 represent an insulation with a silicone oil-based 

additive while sample 8 represent an insulation with an inorganic resin [28]. 
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The sample numbers shown in Figure 3.2 represent the type of hydrophobic additive 

in the insulation as well as the region of purchase. Sample number 1-5 represent a 

mineral oil additive, while 6 and 7 represent silicone oil and 8 represents an inorganic 

resin. Samples 1 and 2 were purchased from the mainland Europe while 3-5 were 

purchased from North America. Samples 6 and 7 were obtained from the UK. The 

results show significant variability in water absorption for samples that were treated 

with the same type of hydrophobic additive. This may be due to differences in material 

properties due to different production recipes. The insulation samples with mineral oil 

additives that were aged at 250 oC were observed to show higher water absorption 

compared to insulation samples that were not aged. This is attributed to the fact that 

these additives are decomposed at a higher temperature thereby reducing the water 

repellency of the insulation material; hence, a higher water absorption is observed 

compared to unaged insulation samples. 

 

It is interesting to observe that the water absorption of insulation samples with silicone 

oil and inorganic resins (samples 6 and 8) showed no difference in water absorption 

after heat treatment which indicates that the additives are yet to be decomposed at 

that temperature. However, the water absorption capacity of sample number 7 is 

questionable as the authors have declared that it was also made of silicone oil additive. 

The thermal stability limit of silicone oils has been reported to be 250 oC in a different 

study [23]. Therefore, it could be possible that slight temperature fluctuation beyond 

250 oC might initiate decomposition of silicone oils leading to the reported water 

absorption value.  Notwithstanding, the results reported by Zwaag and Rasmussen 

[28] (Figure 3.2) seems like a one-off measurement as no repeated measurements 

were reported which might not be representative of the true absorption capacity as 

significant deviations between replicate measurements have been reported by other 

researchers [29].  

 

In another study, mineral wool insulation samples were aged at different temperatures 

(100 oC and 150 oC) for different aging times ranging from 1 h to 36 days. These 

temperatures are expected to degrade the organic additives in the insulation, while the 

silicone oil additives are expected to degrade at about 250 oC. In the report, the water 

absorption capacity of the insulation material was investigated using ASTM C1511 

standard. This involved immersing the insulation samples in water at a temperature of 
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about 21 oC for 15 minutes after which the samples were removed and allowed to 

drain for a minute before it was reweighed. The authors presented the results in a 

table, this has been plotted to show the trend of thermal treatment and water 

absorption capacity of the insulation material. 

 

Figure 3.3 : Effect of thermal treatment on the absorption of water by mineral wool 

insulation using ASTM C1511 standard [29]. 

The result shown in Figure 3.3 also indicate an increase in water absorption as the 

temperature that the insulation was aged increases which agree with the result of [28]. 

This indicates decomposition of the binder and oily additives resulting in increased 

absorption of water by the insulation. Mineral wool insulation consists of polymeric 

binders that hold the fibres together and oily additives that impart hydrophobicity to the 

material. The slight increase in water absorption for samples aged at 100 oC for 15 

and 35 days compared to samples that were not thermally treated suggests that only 

the polymeric binder was decomposed. Also, some polymeric resins from esters or 

aromatic origin have been reported to decompose at 175 oC [30], while phenyl 

formaldehyde resins have been reported to decompose at 105 oC [31]. Therefore, this 

suggests that the polymeric binder used in the research might be the first to 

decompose as it also imparts some hydrophobicity to the material in addition to the 

oily additive. Nevertheless, the results shown in Figure 3.3 indicates significant 

variability at some points as observed by the length of the error bars which according 

to the authors represent the standard deviation of several repeated measurements. 
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The long-term water absorption of mineral wool insulation was investigated by 

Kosinski et al. [32] and Williams and Evans [33] using EN ISO 12571:2013-12 

standard. The results of their investigation are shown in Figures 3.4 and 3.5 

respectively. Kosinski et al. [32] observed that the insulation continued to absorb water 

after a 22-day immersion period without saturation. This agrees with the findings of 

Williams and Evans [33], who also observed an increase in water absorption for 80 

days without saturation. However, the absorption is continuous in their report, whereas 

the report of Kosinski et al. [32] contains some reduction in quantity of water absorbed 

as time increased which might be due to error during measurement. Moreover, in 

Kosinski’s report, it is quite strange that when the medium was changed to sodium 

chloride solution, the insulation tends to saturate after 1 day. The authors did not 

provide any explanation for this behaviour, neither did they carry out repeated 

measurements to validate their results. It is important that repeated measurements be 

carried out when performing water absorption studies in order to observe repetitive 

trends which will provide an overall trend of water content with time. This would enable 

valid discussions and conclusions to be drawn which is more reliable than one-off 

measurements. 

 

 

Figure 3.4 : The absorption capacity of mineral wool insulation in different media 

using EN ISO 12571:2013-12 standard [32]. 
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Figure 3.5 : The water absorption of mineral wool board and pipe [33]. 

 

3.2) Test rigs for studying the rate of CUI in the laboratory 

There are a few test rigs that have been used in studying the rate of corrosion of 

insulated metals in the laboratory. This includes: the ASTM test rig [34], the rain 

chamber by Ayello and co-researchers [35], as well as other modified CUI test rigs 

based on the ASTM G189 standard by researchers at Curtin University, Australia [36], 

University of Alberta, Canada [37] and Safety and Risk Management group, Canada 

[38]. 

 

3.2.1) The ASTM CUI test rig 

This is an advanced test rig for accelerating CUI in the laboratory. It has been the 

basis of most test rigs used in the literature due to its ability to simulate both isothermal 

and wet-dry cycles. The schematic representation of the ASTM test rig is shown in 

Figure 3.6. 
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Figure 3.6 : Schematic representation of ASTM test rig [34] 

 

The test rig consists of six metal ring samples separated from each other by PTFE 

spacers to prevent contact with each other which could interfere with electrochemical 

measurements. Even with the weight loss method, the ASTM standard still 

recommends that the metal rings be separated from each other using PTFE spacers. 

The six metal rings and spacers are polished with silicon carbide papers, rinsed with 

deionized water, alcohol and dried in an inert atmosphere, the cleaned rings are held 

together in a stack. At both ends of the stack are two end flanges that holds the stack 

together in position. The base metal plates, held together by a bar clamp are used to 

support the end flanges from where the inlet and outlet tubes are connected to allow 

the flow of oil in and out of the rig from a reservoir. An Immersion heater is inserted at 

the internal portion of the rig to maintain the temperature of the rings and the insulation 

is wrapped around the test area containing the rings, leaving a small annular space of 

about 0.5 cm to allow the flow of electrolyte around the test region. Electrolyte is 
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pumped into the test rig from a solution reservoir, which fills the annular space between 

the insulation and the ring and can be drained out at the bottom of the rig. 

 

3.2.2) Limitations of the ASTM test rig 

 Although the ASTM test rig has been quite useful in simulating CUI in the laboratory, 

a few limitations have been identified by researchers that prompted the development 

of modified versions in order to better reflect the CUI situation in the field. For example, 

Pojtanabuntoeng et al. [36] had outlined some of the limitations of the ASTM test rig 

to include incorporation of a gap at the insulation-metal interface which does not 

simulate actual CUI situation, possibility of interruption during electrochemical 

measurements when the insulation fully dries out, the rig does not allow for 

investigation of the effect of climatic factors such as temperature changes.  

 

In addition, each experimental run using the ASTM rig requires assembly, disassembly 

and re-assembly for subsequent experiments which is quite labour intensive. The 

researchers at Curtin University suggested the use of split rings which is easy to 

remove without disassembling the entire test rig [36]. However, the split ring system 

might be quite prone to oil leakage if not properly sealed. Besides, it is difficult to align 

the metal rings and spacers perfectly and reproducibly. Any misalignment during 

experiments could result in an oil leakage which means that the whole rig must be 

disassembled, cleaned, and reassembled.  

 

These limitations pointed out by researchers at Curtin University seems valid 

especially the incorporation of a gap between the insulation and metal as engineers 

try to eliminate such gaps during installation so that it does not serve as conduit for 

water to infiltrate. Besides, circulating an electrolyte at the insulation-metal interface 

merely simulates an immersion condition rather than a CUI. Also, the ASTM test rig 

and most of the modified test rigs use immersion heaters to maintain constant 

temperature of the feed as well as the rings. Although this will provide reasonable CUI 

data as all the ring samples are being investigated under isothermal condition, this 

does not reflect the situation in the field. In industry, only the insulation is used to 

maintain the temperature of the pipe as the influent flow from one point to another, 

and no inner heating element is used across the entire length of the pipe. In addition, 
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the introduction of an electrolyte from the top and collected from the bottom does not 

actually wet the insulation. A typical CUI condition considers the entry of electrolyte at 

the top only in most cases due to damaged or poorly installed insulation, which is why 

CUI is always regarded as the more severe form of corrosion as water is trapped 

beneath the insulation and maintains contact with the metal for a long period. 

3.3) The rain chamber 

The rain chamber was developed to study how the response from different 

atmospheric conditions can be used to develop a reliable sensor network for the 

detection of CUI [35]. A schematic representation of the rain chamber is shown in 

Figure 3.7. This consists of an insulated loop in which the temperature is maintained 

by circulating a liquid either from the heating or cooling unit through the loop. Rain in 

the form of droplets is simulated using a pump and a steam generator. Also, different 

conditions such as drizzle, shower and dry can be simulated and corrosion detection 

sensors (s) and humidity sensors (H) were installed to detect any degradation of the 

underlying metal. However, Pojtanabuntoeng et al. [36] has pointed out that it may not 

be possible to achieve a significant CUI rate within a realistic timeframe as CUI takes 

a long time to occur if certain conditions have been met.  

 

In addition, it seems the design is not operating under an accelerated condition. With 

the jacketing in place, the raindrops will merely run over it without penetrating or 

soaking the insulation. Even if a single drop eventually gets in by some means, the 

CUI rate obtained might just be negligible. The fact that the authors have not specified 

the route of entry of the water into the insulation makes it difficult to know how the 

insulation will get wet. Also, if the temperature of the pipe is not sufficient to degrade 

the insulation, then any rain drop that finds its way through the jacketing may not gain 

access to the surface of the metal. Besides, the design requires corrosion detection 

sensors to be attached throughout the insulated loop. This is expensive and unrealistic 

in real life application. This is because it might not be economically feasible to install 

sensors at every point on all the pipes in operation. Besides, it is possible that 

corrosion might initiate at a spot that has no corrosion sensor installed leading to 

leakage at that spot.  
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Figure 3.7 : A rain chamber for simulating CUI [35] 

 

3.4) Other modifications of ASTM test rig 

The ASTM test rig has served as the basis of most modified test rigs reported in the 

literature despite the limitations mentioned earlier. In this section, the focus will be on 

the modifications that each author has made instead of repeating the entire ASTM test 

rig for each modification. In 2015, researchers at Curtin university have reported a new 

experimental rig shown in Figure 3.8 to investigate CUI at different climate conditions 

which was used to accelerate CUI in the laboratory. The reported test rig contained a 

few adjustments from the ASTM G189 standard such as elimination of the gap 

between insulation and metal, pre-wetting of the insulation instead of pumping in the 

test solution into the rig, the use of split rings to compare corrosion rates at the top 

and bottom parts of the rings independently. This seems quite useful and eases the 

stress of the frequent disassembly and reassembly of the test rig for each experimental 

run. However, for this configuration, there is a high possibility of an oil leakage 

especially at the joints where the top and bottom rings meet. 
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Figure 3.8: A modified CUI test rig by researchers at Curtin University [36]. 

 

 

In addition, the Safety and Risk Engineering group at the Memorial University of 

Newfoundland, Canada developed a CUI test rack to monitor the corrosion of insulated 

metals under field conditions as shown in Figure 3.9, in addition to the ASTM test rig 

that they used to monitor CUI under laboratory conditions. The CUI test rack looked 

quite promising; however, it will take an unrealistic time to obtain a reasonable CUI 

rate under field conditions as CUI is a slow process which may take years before a 

significant CUI rate can be obtained. This is the reason why accelerated conditions 

are usually employed in the laboratory. Other studies that have used the ASTM test 

rig without any significant modifications include In situ measurement of CUI by Yang 

and Liu [37], cyclic CUI testing by Zwaag and Rasmussen [4], effect of coatings, 

temperature variation and insulation types on CUI by Putra et al. [39] among others. 

Furthermore, Cao et al. [40] provided a report where a vessel was used to monitor the 

CUI of mild steel panels as well as the effect of dissolved metal ions. In their report, 

they soaked pieces of wet insulation in the vessel and immersed the metal panels 

inside the wet insulation. This merely represents an immersion condition rather than a 

corrosion under insulation environment. 
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Figure 3.9: A CUI test rack for field studies [32]. 

 

In another study, a modified version of the ASTM test rig was reported by Essien and 

Neville [41]. The key modifications include the use of a single continuous pipe instead 

of metal rings, separation of the test area from the other pipe sections as well as 

different dimensions of the rig. A schematic representation of the modified test rig is 

shown in Figure 3.10. The design of the test rig is quite suitable for comparing two 

different conditions which may serve as test and control. For example, the corrosion 

rates of metals in an insulated and uninsulated environment or CUI with and without 

inhibitor since it is separated into two different compartments. However, a major 

drawback of the modified rig is that it has an operational limit of 90 oC which means it 

is not safe to operate at higher temperatures where CUI have been reported. Besides, 

the use of a single continuous pipe will present difficulty in quantifying the corrosion 

rate by weight loss across different sections of the pipe. 
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Figure 3.10: A modified CUI test rig by Essien and Neville [41] 

 

3.5) The challenges and precautions associated with CUI test rigs 

The challenges associated with CUI test rigs might likely be the reason for the disparity 

between published articles on corrosion under insulation in the literature and 

immersion conditions that do not require any test rig besides the vessel the samples 

will be immersed. Besides, the fact that the test rig needs to be disassembled after 

every trial in order to access the rings, clean and measure the weight loss and 

reassemble the test rig again for next experiments is enough demotivation for most 

researchers. Even though an advanced test rig has been provided by the ASTM 

standard as the basis by which other modified forms can be developed, most 

researchers don’t see the need to talk about these challenges. This may probably be 

attributed to the fact that either they don’t want to discourage researchers, or they 

assume it will devalue the research output. However, bringing these issues to limelight 

will enable researchers to take it into consideration when designing test rigs or 

modifying already established test rigs for CUI studies.   

 

The challenges associated with the CUI test rigs will be discussed in relation to similar 

issues faced during this research. This will serve as the basis for discussions on 
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possible solutions. For the ASTM based rig, the common issue with the CUI test rigs 

is oil leakage during experiments [4, 36]. This may be caused by not tightening the 

bolts of the base metal plates properly or the PTFE spacers used to isolate the metal 

rings have become squashed. This implies that the experiment will be stopped, and 

the entire CUI set up would be disassembled, which can be quite laborious. To avoid 

this problem, it is important that the bolts of the base metal plates be tightened, and 

new PTFE spacers replaced frequently to avoid being squashed during experiments.  

 

Another important issue associated with CUI test rig include aligning the metal rings 

and spacers perfectly. Failure to achieve this could result in an oil leakage, lack of 

contact of some parts of the rings with the insulation among others. To minimize this 

effect, it is necessary to machine both the metal rings and the spaces together so that 

both materials have equal and uniform diameter. This would ensure that the insulation 

contacts the metal without a gap. In addition, care must be taken into consideration 

during assembly and disassembly of the CUI test rigs. This is because the base metal 

plates, end flanges and the metal rings can cause serious harm if it fell on someone. 

Therefore, complete PPE must always be worn during experiments. Moreover, the hot 

circulating oil must be allowed to cool to a safe temperature before the rig can be 

disassembled. 

3.6) Determination of CUI rate and effect of some influencing factors  

The determination of the rate of CUI has been carried out mostly using weight loss 

method [36, 4, 30], linear polarisation resistance (LPR) technique [42, 40, 12, 37], and 

electrochemical noise [43, 44, 45]. The weight loss method involved determining the 

difference in weights of the metal samples before and after exposure to a corrosive 

environment. This can either be studied under isothermal condition where the pipe is 

gradually heated to a constant temperature, and it is maintained at that temperature 

for some time before cooling to room temperature or cyclic conditions involving gradual 

heating of the pipe to the target temperature, it is maintained at the temperature for a 

short period then it cools to a certain temperature and heats up again to the target 

temperature and the cycle continues.  

 

For a cyclic CUI condition, the wet cycle involves measurement at temperatures that 

would allow the electrolyte to exist as a liquid in the insulation, while the dry cycle 
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consists of measurements at a temperature that the insulation is expected to dry out. 

In Figure 3.10, C-F and D-G represents an isothermal condition where the temperature 

is fixed for the entire duration of the tests. However, an initial ramping up to the target 

temperature is required prior to attaining the isothermal temperature. In the guideline, 

it has been suggested that the heating up stage to the target temperature should be 

about 1 h duration or less, the point at which the temperature is maintained can be as 

long as necessary, but the cooling down should not exceed 2 h and should reach 38 

oC for the duration to be considered complete [34]. 

 

On the other hand, the cyclic condition (B-E) requires an intermittent change in 

temperature in which the insulation is expected to be wet at one temperature and dry 

out at the other temperature. The ASTM G189 standard recommends that the duration 

for the wet cycle be 20 h, while the duration of the dry cycle be 4h. However, it did not 

specify the temperatures that should be used for each cycle; instead, it suggested that 

the temperature should be specified by the user. The isothermal and wet dry cycles 

as used in most literatures are shown in Figure 3.11, while the 4 possible cycles 

specified by the ASTM standard and the minimum duration are presented in Table 3.2. 

 

Figure 3.11: A plot showing the difference between an isothermal and a cyclic 
condition. 

 

 

Table 3.2 : A plot showing the recommended times for isothermal and cyclic 
conditions [34] 

A 

B 

C 

D 

E 

F 

G 
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Code Description Minimum 
Duration (h) 

Cycle time (h) 

IW Isothermal-wet 72 NA 

IWD Isothermal-wet/dry 72 20 wet / 4 dry 

CW Cyclic-wet 96 24 hot / 24 cold 

CWD Cyclic-wet/dry 72 20 wet / 4 dry 
20 cold / 4 hot 

 

Rana et al. [42] investigated the effect of isothermal and cyclic conditions on the 

corrosion of carbon steel under mineral wool insulation. The isothermal condition was 

carried out at 100 oC for 24 h, while the cyclic condition consists of 40 oC for 20 h 

during the wet period and 100 oC for 4 h during the dry period. The results are shown 

in Figure 3.12. Comparing the isothermal wet/dry with the isothermal wet and cyclic 

wet/dry with cyclic wet conditions, the results indicated that the wet/dry and cyclic 

temperature cycles have higher corrosion rates than the isothermal wet and cyclic wet 

conditions. The authors suggested that cyclic temperatures involved the concentration 

of chloride ions especially during the dry cycle as well as higher concentration of 

dissolved oxygen at 40 oC compared to 100 oC, which tends to suppress anodic 

reactions but favours the cathodic reaction involving the reduction of oxygen to 

hydroxyl ions [42]. This agrees with the recent report of Cao et al. [40] who showed 

that CUI is aggravated in an equipment operating under wet/dry or thermal cyclic 

conditions. Although the distribution of dissolved oxygen within a liquid depends on 

the chemical composition of the study site, it has generally been established that 

dissolved oxygen levels is higher at the surface compared to the bulk of the liquid [46]. 

Therefore, corrosion which occurs at the metal-solution interface is expected to be 

aggravated.  

 

However, the cyclic wet/dry condition had a significantly lower corrosion rate 

compared to an isothermal wet/dry condition both in the presence and absence of 

drain holes. It is only when there was no contact between the insulation and the rings 

and there was drain holes that the isothermal wet/dry condition was less than the cyclic 

wet/dry condition. Besides, the duration of thermal cycling (96 h) was higher than the 

isothermal wet/ dry condition (72 h) which makes the results a bit strange. Moreover, 

the authors did not explain the reasons for the choice of the temperature especially 
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the reason why 40 oC was chosen for both isothermal and cyclic conditions. The choice 

of temperature when simulating isothermal and cyclic CUI conditions is quite important 

and should be justified.  

 

 

Figure 3.12: The corrosion rate of carbon steel under mineral wool insulation for 

isothermal and cyclic conditions [42]. 

 

Notwithstanding, the results presented by [42] also agree with the findings of Yang 

and Liu [37] who investigated the CUI of carbon steel under wet/dry and cyclic 

temperature conditions. In their report, the corrosion rate of carbon steel under mineral 

wool insulation was assessed at 50 oC for 20 h under wet condition and 93 oC for 4 h 

under dry conditions, as well as isothermally at 50 oC and 93 oC. Their results are 

shown in Figure 3.13. This also indicated a higher CUI rate during the thermal cycling 

compared to the isothermal condition at both temperatures. However, when 

considering the effect of increasing temperature on CUI, it would be expected that the 

corrosion rate at 50 oC should be reasonably lower than the corrosion rate at 93 oC. 

This is because corrosion rate is expected to increase with temperature and the drying 

out effect of the insulation is not expected to be dominant at 50 oC yet. This is because 

an increase in temperature is expected to increase the mass transport of ions and/or 

influence the kinetics of the reactions. However, this is expected to dominate at lower 

temperatures as other competing factors such as decreasing dissolved oxygen levels 
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and increased drying out of the insulation which would likely result in a decreasing 

corrosion rate tends to dominate as the temperature is increased.  

 

However, only a slight difference in corrosion rate is observed between the isothermal 

conditions at 50 oC and 93 oC which is quite unusual, and the authors have not 

provided any explanation to this effect. Moreover, Cottis et al. [47] had asserted that 

corrosion data is inherently variable, this has reflected in the large error bars of 

corrosion data reported in the literature; however, the corrosion rates reported by Yang 

and Liu [37] seems quite reproducible from the length of the error bars unlike a typical 

corrosion data that has always shown significant variability. 

 

Figure 3.13: CUI rate under isothermal and cyclic conditions [37] 

 

The laboratory investigation of the effect of temperature on corrosion of metals under 

insulation have been limited to the isothermal and cyclic conditions. There are other 

studies that are discussed in the result chapter (Chapter 5) of this thesis which focuses 

on these two conditions only. In addition, there has been field studies also discussed 

in Chapter 5 that have attempted to show the trend of CUI rate with temperature. It 

should be noted that the determination of the effect of temperature on CUI rate in the 

field cannot be relied upon. This is because it is difficult to control the temperature in 
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the field, but it can be controlled in the laboratory. To the best of our knowledge, there 

has been no laboratory report showing the trend of CUI rate with temperature apart 

from a couple of temperature points which does not exceed 3 temperature points as 

in the work of Putra et al. [39]. These few points are not sufficient to form a reliable 

trend of temperature with CUI rate. Also, most of the trends reported in the literature 

are based on field studies and some standards for example API 581 standard [48, 49], 

and ASTM standard [34], which are discussed in detail in the result section of this 

thesis (Chapter 5). As earlier stated, the two temperature points used in studying wet 

and dry cycles are not sufficient to form a trend of CUI rate with temperature. 

Therefore, this is one of the objectives of this research to investigate the CUI rate 

dependence on temperature in order to fill the gap which is lacking in the literature.  

 

3.7) Effectiveness of inhibitors in mitigating corrosion under insulation 

The use of inhibitors is one of the viable means of mitigating the effect of corrosion of 

insulated metals. These inhibitors may be classified based on the mechanism of 

inhibition as anodic, cathodic, or mixed inhibitors [50]; or they may be classified based 

on the state of the inhibitor as liquid or vapour phase inhibitors [51], or its chemistry 

such as organic or inorganic inhibitors [52]. The anodic inhibitors mitigate corrosion by 

forming a protective oxide layer on the metal surface that blocks the anodic sites 

resulting in a reduced corrosion rate, while the cathodic inhibitors slow down the 

reduction reaction at the cathode by blocking these sites through precipitation [53]. 

For an insulated metal, some important features to be taken into consideration when 

investigating the effectiveness of inhibitors for the mitigation of CUI include: the 

method of application which should ensure uniform spread of the inhibitor on the metal, 

the dosage required which will help in balancing cost and performance, as well as the 

temperature limits of the inhibitor which specifies the temperature range at which the 

inhibitor can be used. 

 

In the literature, the corrosion inhibition efficiencies of some inhibitors in mitigating the 

CUI of metals have been reported to vary depending on the inhibitor used and the 

experimental conditions. It might not be possible to make comparisons of inhibition 

efficiencies between different reports due to differences in inhibitors, as well as the 

experimental conditions. Notwithstanding, one should be able to draw conclusions 
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from each report if every detail regarding the inhibitor and the experimental conditions 

are reported. However, this is not usually the case, for instance, Hou et al. [43] 

reported that 2mL of an undisclosed volatile inhibitor was effective in mitigating the 

corrosion of carbon steel under mineral wool insulation that has been wetted with 

artificial sea water at 80 oC for 14 days. The results are shown in Figure 3.14, the 

inhibitor seems to be effective in mitigating CUI only at the top parts of the rings but 

seems not to cause any change at the bottom part of the rings which is quite unusual, 

and no explanation have been given regarding this effect. Moreover, more corrosion 

was reported for the top rings compared to the bottom rings which contradicts the 

previous results reported by the same research group in 2015 as shown in Figure 3.15 

[43]. 

 

 

 

Figure 3.14: The effectiveness of a commercial volatile inhibitor in mitigating the 

corrosion under mineral wool insulation wetted with an artificial sea water at 80 °C for 

14 days [43]. 
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Figure 3.15: A comparison of the corrosion rate of carbon steel for the top and 

bottom rings under mineral wool insulation [36]. 

 

In another study, Cullin et al. [54] investigated the effectiveness of a sodium bentonite 

inhibitor which is a clay material that impedes moisture propagation by swelling along 

the metal surface. The inhibitor was injected into the insulation-metal interface and its 

effectiveness in mitigating CUI of carbon steel was assessed at temperatures of 60 

oC, 71.1 oC and 82.2 oC. The results showed an average inhibition efficiency of 50.9 

%. The authors did not report the dosage of their inhibitor, neither did they assess the 

inhibition efficiency as a function of dosage which would have provided additional 

information whether the applied dosage was sufficient. 

 

Bavarian and co-researchers have provided two different reports published in 2015 

and 2020 on the effectiveness of vapour phase corrosion inhibitors (VpCI 658) and an 

undisclosed vapour phase inhibitor respectively in mitigating API 5L X65 steel pipes 

[55, 56]. The authors showed that VpCI 658 was effective in mitigating CUI by reducing 

the initial corrosion rate from 0.96 mpy to 0.03- 0.04 mpy. However, the undisclosed 

inhibitor was only assessed under immersion condition and visual inspection only 

which makes it difficult to conclude for CUI. Also, it was interesting to realize that the 

undisclosed inhibitor was the same inhibitor used in this research. This information 

was obtained through communication with the company (Cortec Corporation) that 

Bavarian and co-researchers worked for. This was a new molybdate based inhibitor 

that the company carried out a preliminary investigation to assess its effectiveness 
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under immersion condition. Therefore, it would be interesting to assess its 

effectiveness under a CUI condition which is discussed in the result section (chapter 

5) of this thesis. 

3.8) Prediction of CUI rate using Artificial Neural Network (ANN) 

Theoretical predictions of the corrosion rate of metals using ANN have mostly been 

carried out using data obtained from uninsulated metals or immersion conditions. To 

the best of our knowledge, only one research publication by Burhani et al. [16] 

regarding prediction of corrosion of metals under insulation using ANN was found. The 

same author had revised the available prediction methods for CUI in 2014 without 

including Artificial Neural Network [17], which suggests that it is likely that no research 

has been carried out in predicting CUI using ANN prior to this time.  

 

The prediction carried out by Burhani et al. [16] was based on two input parameters, 

elapsed time and temperature, and the corrosion rate as the output parameter. The 

network involved a single hidden layer with a sigmoid activation function. The results 

of the prediction indicated 85-91 % accuracy as shown in Figure 3.16. When assessing 

accuracy from Figure 3.16, it should be noted that the scales on both axes are not the 

same even though it tends to show a good fit.  Therefore, improvement in the 

prediction accuracy is still required which could be obtained if more input parameters 

affecting CUI are included in the model. 

 

Moreover, the output was obtained from a one-off prediction. It is important that these 

predictions be repeated using the same network architecture to ensure a reliable 

output. In addition, the effect of different network architectures such as number of 

hidden layers, number of input parameters and the choice of activation function for 

CUI are missing in the literature. Studying these parameters will provide information 

on the network designs that could be useful in building a neural network to solve a CUI 

problem. 
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Figure 3.16: A comparison of the actual and predicted CUI rates using ANN [16]. 

 

The prediction of atmospheric corrosion of uninsulated carbon steel using ANN have 

been carried out by [57]. The network architecture consisted of two input parameters: 

temperature and time as well as the corrosion rate as the output variable. In addition, 

the network consisted of one single hidden layer containing a sigmoid activation 

function. The outcome of the prediction is shown in Figure 3.17. This compares the 

predicted and actual corrosion rates at different temperatures. The results indicated 

that only very few points had good accuracy. Most of the points have been 

underpredicted which may be attributed to the fact that just two input parameters have 

been used in the model to train the network. Cottis et al. [47] had noted this deficiency 

in neural networks by stating that ANN predictions cannot be relied upon when the 

conditions of the input data are different from the conditions used in the training 

process. The input data is usually obtained from laboratory experiments involving 

different factors that are supposed to serve as the input variables in neural networks; 

however, selecting a few parameters to train the neural network might lead to a 

reduced accuracy of prediction. 
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Figure 3.17: A plot showing the prediction accuracy for atmospheric corrosion of 
carbon steel using ANN [57]. 

 

In a different study, Kenny et al. [58] used 10 input variables to predict the atmospheric 

corrosion rate of an uninsulated carbon steel. The input variables are shown in Figure 

3.18, while the predicted and actual outputs are shown in Table 3.3. It should be noted 

that the ten input parameters reported in the study were not arranged according to 

priority even though an independent importance analysis would have provided the 

contribution of each input parameter to the overall corrosion rate. However, the 

authors did not carry out this investigation. Hence, the entries are just a list of the input 

variables used in the prediction of corrosion rate.  
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Figure 3.18: An ANN architecture showing the input variables [58]. 

 

Table 3.3: A comparison of the predicted and experimental corrosion rates [58] 

Specimen Corrosion rate (μm/yr) 

Laboratory Predicted Error (%) 

Validation 1 79.88 80.32 0.6 

Validation 1 24.57 23.78 -3.2 

Test 1 23.16 24.24 4.6 

correlation 0.999 

Validation 2 169.53 169.46 0.0 

Validation 2 19.68 20.59 4.6 

Test 2 164.53 159.67 -3.0 

Correlation 0.997 

Validation 3 19.78 19.78 0.0 

Test 3 21.77 19.06 -12.5 

Correlation 0.999 

 

In Table 3.3, the data were split into three groups, validation 1, 2 and test groups. This 

might be confusing as the first validation group should be correctly named as the 

training group. Nevertheless, there were good agreement between the predicted and 

the experimentally determined corrosion rates. This is evident in the low prediction 

error which varies between 0 % and 12.5 %. This suggests that inclusion of more input 
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parameters will likely improve the accuracy of prediction. This is supported by the work 

of Pintos et al. [59] who also observed a good prediction accuracy (90 %) when 6 

meteorological variables (humidity, temperature, precipitation, chloride deposition 

rate, sulphate deposition rate and time of wetness) were used as the input variables 

to predict the corrosion rate of carbon steel. 

3.9) Summary 

In summary, the water absorption reports in the literature has indicated that mineral 

wool absorbs water for a long time without saturation. The results obtained from 

replicate measurements have indicated that the water absorption capacity is quite 

variable which is evident in the length of the error bars representing the standard 

deviation from triplicate measurements. Also, the effect of thermal treatment of the 

insulation has revealed that mineral wool insulation that has been thermally treated at 

temperatures exceeding 250 oC absorbs water more readily than the insulation that 

has not been thermally treated. This is because the hydrophobic additives are 

degraded allowing water to penetrate the insulation. 

 

The study of corrosion under insulation of metals have mostly been carried out using 

the ASTM G189 test rig. This has been useful in simulating isothermal as well as cyclic 

temperature and wet/dry cycles. However, a few limitations have been pointed out by 

some researchers, one of which is the incorporation of a gap between the insulation 

and the metal rings to supply sufficient volume of electrolyte which resembles an 

immersion condition rather than a CUI condition. Moreover, the rain chamber reported 

by Ayello et al. [14] was also found not to be able to yield the required results in a 

reasonable time. The difficulty associated with the frequent assembly and disassembly 

of the test rigs as well as issues such as oil leakage during experiments have been 

identified as a likely reason associated with less publications on CUI compared to 

immersion conditions.  

 

CUI has been reported to be worse when cyclic conditions are used compared to 

isothermal conditions. This has been attributed to the fact that cyclic conditions 

increase the concentration of chloride in the system as a result of the repetitive 

condensation of water which dissolves the chlorides in the insulation and transports it 

to the metal surface. Moreover, CUI rate has been measured at two different points 
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where water is expected to exist as a liquid and when it is expected to dry out. 

However, these measurements cannot be used to form a trend of CUI rate with 

temperature, this shows the need for the investigation of CUI rate at different 

temperatures. The vapour phase corrosion inhibitors (VpCI 658) have been shown to 

be effective in mitigating the CUI of carbon steel. However, in the literature, the new 

commercial inhibitor (VpCI 619) was only assessed under immersion conditions and 

visual inspection rather than CUI condition. Therefore, it would be interesting to assess 

the effectiveness of VpCI 619 inhibitor in mitigating corrosion of carbon steel under 

insulation. 

 

Theoretical prediction of the CUI rate from the report of [60] has shown good prediction 

prospects which could be observed from the accuracy which was about 85-91% 

despite the fact that only two input parameters were used. ANN usually requires large 

input data and inclusion of more parameters affecting CUI rate is likely to result in 

improved accuracy of prediction. A similar decrease in the prediction accuracy was 

reported by Almomani who also used two input parameters resulting in an accuracy of 

92.3 %. It is important that more parameters affecting the expected output be included 

in the model in order to obtain reliable predictions with a good accuracy. In addition, it 

is suggested that researchers working on predictive modelling especially for 

application in corrosion studies carry out repetitive predictions just to ensure that 

reliable outputs are obtained. 
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CHAPTER FOUR 

EXPERIMENTAL AND PREDICTIVE MODELLING OF CUI 

This chapter gives the detailed description of the methods used in studying the 

corrosion of carbon steel under mineral wool insulation. This begins with the study of 

water absorption capacity of mineral wool when the insulation has been thermally 

degraded at 250 oC. The purpose of carrying out the water absorption study was to 

assess the time it will take the insulation to be saturated with water as well as the 

reproducibility of measurements. This is important because the severity of CUI 

depends on the degree of water and contaminant intrusion to the insulation [1]. This 

is followed by the study of the effect of temperature ranging from 60 oC to 130 oC on 

the corrosion of carbon steel under insulation. This temperature range was selected 

based on the laboratory and field studies that have agreed that it is the range where 

aggressive CUI is usually observed [2]. Afterwards, the distribution of the test solution 

(1 wt % NaCl) between the top and bottom parts of the insulation as well as the ends 

and the centre of the insulation were investigated. This was to assess areas of the 

insulation that is more vulnerable to corrosion as well as relating it to the corrosion 

rates of carbon steel rings in these regions. 

 

The effectiveness of a new commercial inhibitor (VpCI 619) in mitigating CUI at the 

targeted temperatures were also investigated. This was carried out to assess the effect 

of increasing temperature and dosage of the inhibitor in mitigating CUI of carbon steel. 

This could be useful in determining the effectiveness of the inhibitor at the temperature 

range where aggressive CUI have been reported as well as providing useful 

information on the performance when the dosage is reduced, which can be used for 

cost analysis. In addition, the rate of insulation dry out was investigated at different 

temperatures using galvanic current and electrochemical impedance measurements. 

This was based on the ability to measure the corrosion current across the Al-Cu couple 

which is in contact with the wet insulation as well as the resistance as the electrolyte 

in the insulation dries. The main purpose of this study was to assess the time it will 

take for the insulation to dry out at different temperatures which can be useful to 

explain the trend of CUI rate with temperature. 
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Furthermore, the model used to predict the corrosion rate of carbon steel under 

insulation using artificial neural network are also discussed. The purpose was to 

determine the effectiveness of the logistic sigmoid and hyperbolic tangent activation 

functions in predicting the rate of CUI of carbon steel. These functions were selected 

because they are non-linear and differentiable functions with a smooth gradient, which 

means they can learn the complex relationship between the factors (input variables) 

affecting the corrosion rate of metals under insulation and the rate of CUI (output 

variable). Also, both functions take all real numbers into their domain, which means 

that it permits wide input variables but processes output that can be interpreted in 

terms of probabilities (0 to 1) in the case of a logistical sigmoid function and a wider 

output (-1 to 1) in the case of a hyperbolic tangent function which is quite suitable for 

describing CUI data.  Moreover, the study also aims at investigating the effect of 

number of input parameters, the number of hidden layers as well as the repeatability 

of predictions which could be useful in assessing the reliability of CUI rate predictions. 

 

4.1) Determination of water absorption capacity of mineral wool insulation 

This was carried out to assess the water absorption capacity of mineral wool insulation 

as well as the time of wetness which is believed to have significant influence on the 

corrosion of insulated metals. Corrosion under insulation is dependent on the amount 

of water or test solution that penetrates the insulation as well as the duration of contact. 

If the water absorption capacity of the insulation is low and it has a higher rate of 

insulation dry out, then the corrosion rate is likely to be low [3]. It is likely that the 

chemical composition as well as the properties of mineral wool insulation may 

influence its water absorption behaviour. In this study, mineral wool insulation 

(RockLap from Rockwool), having an inner diameter, an outer diameter and a wall 

thickness of 6.0 cm, 8.5 cm and 2.5 cm respectively and covered with an aluminium 

jacket was used for the trials (Figure 4.2). The properties and chemical composition of 

the insulation as reported in the product data sheet and Material safety data sheet are 

presented in Tables 4.1 and 4.2 respectively. 
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Table 4.1 : Properties of mineral wool insulation (‘RockLap’ from Rockwool) as 

described in the product data sheet [4]. 

Properties of mineral wool insulation Value/units 

Thermal conductivity (at 50 oC) 0.037 W/mK 

Relative density 20-300 kg/m3 

Melting point >1000 oC 

Binder Decomposition temperature 175 oC 

Maximum service temperature 250 oC 

Odour Odourless 

Appearance Grey-green/brown 

 

Table 4.2 : Chemical composition of mineral wool insulation as described in the 

product data sheet [5]. 

Chemical composition Percentage by mass (%) 

Stone wool 95-100 

Synthetic thermosetting binder 0-5 

Mineral oil 0-0.5 

Silicone oil/emulsion 0-0.5 

 

There are standard methods that are available for determining the water absorption 

characteristics of insulation materials. These include ASTM C1511 which describes 

methods of determining the water absorption characteristics of fibrous insulation 

materials [6]. Another standard is the ASTM C1763 which specifies methods of 

determining the amount of water retained by flat specimen of thermal insulation 

materials after full immersion in water for a prescribed time interval under isothermal 

conditions [7]. Also, BS EN 13472 is a standard method that describes the short-term 

water absorption by partial immersion of a preformed pipe insulation [8]. Furthermore, 

BS EN 1609:2013 also measures the short-term water absorption of thermal insulating 

products used in building applications in order to simulate the absorption caused by a 

24-hour raining period during construction work [9]. Details of the water absorption 

measurements provided in these standards are reported in Chapter 3 (Literature 

review). 
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In this study, the ASTM C1511 standard was chosen because it offers a more realistic 

way of assessing the water absorption characteristics when the protective barrier of 

the insulation is breached [6]. The water absorption characteristic of the insulation 

under this condition is important in deciding its performance when it is in a dilapidated 

state. Besides, this standard is specifically designed to assess the water absorption 

characteristics of fibrous insulation material especially those ones that are used in 

aircrafts to provide a measure of the potential weight increase due to water retention. 

In order to evaluate the water absorption characteristics, the standard (ASTM C1511) 

specifies that all facings and jacketing be removed from the insulation material prior to 

determination. This is to ensure that the water absorption capacity of the insulation is 

assessed under worst case scenario. The properties of the insulation material as 

described in the product data sheet is presented in Table 4.1.  

 

Each mineral wool insulation was initially 100 cm in length, which was further cut into 

10cm length. The foil covering the insulation was removed as specified in the standard 

(ASTM C1511). The bare sample was weighed in an electronic balance (Sartorius 

27349) with a precision of 0.1 mg and placed on a 6.4 mm rigid screen in a tank of 

distilled water at 21 ± 2 oC. With the aid of some weight, the screen was slowly 

submerged until it rests on a support at a level that is 127 mm above it and 51 mm 

below as shown in Figure 4.1. The mineral wool insulation was submerged for 15 

minutes, after which it was slowly removed from the test system and hanged on a 

spring clamp in a vertical position for 60 ± 5s. Then it was reweighed and recorded. 

The percentage absorption by weight was calculated using equation 1: 

 

% absorption by weight =
w2−w1

w1
× 100  (1) 

 

Where w1 is the weight before immersion in water and w2 is the weight after immersion. 
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Figure 4.1 : Experimental set up for the determination of the water absorption 

capacity of mineral wool. 

 

 

 

 

 

 

 

 

 

(a)                         (b) 

Figure 4.2 : Pictures of mineral wool insulation (a) with aluminium foil removed (b) with 

aluminium foil intact. 

 

4.1.1) Other ways of determining the water absorption capacity of insulation  

materials  
 
There are other methods of determining the water absorption capacity of insulation 

materials such as: BS EN 13472:2012 method which determines the short-term water 

absorption by partial immersion of preformed pipe insulation [8]. This method 

investigates the water absorption by partial immersion in water. It aims at determining 

the absorption characteristics of insulation material when exposed to rain for about 24 

  

 water 
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hours which is usually observed during installation. Here, the dry insulating material is 

first weighed and recorded. It is then placed in an empty tank, having the external 

surface of the material facing downwards and a sufficient load is placed on it to keep 

it in position as shown in figure 3. Water is carefully added to the tank and adjusted 

until the lowest point of the external surface of the insulation is 20 ± 2 mm. After 24 

hours, the insulating material is removed from the test system and drained for 10 

minutes by placing on a rigid mesh inclined at 45o. Then the insulating material is 

reweighed to determine the water absorption capacity. 

 
 

 

 

 
Figure 4.3: Experimental set up of BS EN 13472:2012 [8] 
 

 

Another method of determining the water absorption capacity of insulation materials 

involves the BS EN 1609:2013 method which also measures the short-term water 

absorption by partial immersion [9]. This method is useful in determining the water 

absorption behaviour of insulating materials during construction work when exposed 

to rain for about 24 h. The insulating material is weighed to the nearest 100 mg to 

determine the initial dry weight. It is then placed in an empty water tank, and a load is 

placed on it to keep it in position as shown in figure 4. Water is carefully added until 

the insulating material is 10 ± 2 mm above. The water level required to keep the 

material partially immersed is maintained throughout the experiment. The insulating 

material is then removed after 24 h ± 30 min, it is held in a horizontal position and 

allowed to drain for 5 seconds and then reweighed. 

 

1-Water tank      2-Load       3-Mesh          4-Insulation 
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Figure 4.4: Experimental set up for BS EN 1609:2013 standard [9] 

 

 

4.2) Design of corrosion under insulation test rigs 

There are various test rigs to study the corrosion of insulated structures in the 

laboratory. This includes: the test rig originally developed by the Association of 

Standard Testing and Materials (ASTM) in 2007 [10], the rain chamber developed by 

Ayello and co-researchers in 2011 [11] and other modified test rigs based on the ASTM 

standard [12]. Details of these test rigs including their limitations have been 

documented in Chapter 3 of this thesis (Literature review). The design of the ASTM 

test rig is shown in Figure 4.5.   

1-Water tank      2-Load       3-Insulation    
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Figure 4.5 : A CUI test rig as designed by ASTM G189 [10]  

 

4.2.1) Test rig used in this research for corrosion studies  

The diagrams of CUI test rig used in this study as well as its schematic representation 

are shown in Figures 4.6 and 4.7 respectively. The entire CUI equipment including the 

work area is shown in Figure 4.8, while the arrangement of the rings and spacers is 

shown in Figure 4.9. This test rig is a modified version of the ASTM G189-07 previously 

described in Chapter 3 (Literature review). It is worth noting that although the ASTM 

test rig is still an advanced rig for simulating corrosion under insulation in the laboratory 

and have been widely used in the literature to accelerate CUI in the laboratory [13-16], 

a number of limitations associated with it have been pointed out by some researchers 

[17]. One of which is the incorporation of a gap between the insulation and the metal 

substrate to supply sufficient volume of electrolyte which closely reflects an immersion 

condition rather than corrosion under insulation. In industry, the insulation material is 

usually tight to the metal surface during installation in order to minimize the gap 

between the insulation and the metal substrate to help prevent the retention of water 

or electrolyte. Therefore, it was necessary to modify the ASTM standard in order to 

reflect CUI conditions in industry.  
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In the CUI set up used in this study, the insulation was made to be a tight fit with the 

carbon steel rings using aluminium tape to keep it in position thereby eliminating the 

gap between the insulation and the rings, reflecting actual CUI conditions. Besides, 

the introduction of the test solution from an external reservoir using a micrometering 

pump as specified in the ASTM standard did not really work with the CUI rig used in 

this study due to the hydrophobicity of mineral wool insulation. A report on the rig has 

revealed that an attempt to introduce the test solution into the rig from a reservoir 

resulted in the test solution running through the insulation and was collected at the 

bottom without wetting it as observed in industry. Therefore, it was necessary to 

thermally degrade the insulation at 250 oC and pre-soak it in the test solution for about 

48 hours before installing on the test rig. This would accelerate the water absorption 

process and allow investigation of the CUI rate within a realistic timeframe. 

 

The modified version of the test rig consists of six carbon steel rings (outer diameter 

58 mm and thickness 0.5 mm) machined from a 2’’ schedule 80 API 5/A106 seamless 

pipe section which was purchased from M & T Pipeline Supplies Limited. The chemical 

composition of the carbon steel pipe is presented in Table 4.3. This material was 

chosen because it is commonly used in the construction of pipes and vessels for high 

temperature service in industry. Besides, this type of carbon steel pipe is highly 

recommended in the ASTM G189 standard [10]. The carbon steel rings were labelled 

1-6 as shown in figures 4.7 and 4.9, and properly cleaned using 1200 grit silicon 

carbide papers (sourced from RS PRO Limited), rinsed with deionized water, isopropyl 

alcohol (Sigma Aldrich, 99.8% purity) dried with nitrogen gas and weighed as specified 

in the standard ASTM G1-03 [19].  

 

The rings were held in a stack, separated by polytetrafluoroethylene spacers (0.5 cm 

thick and 6.0cm outer diameter). Although the PTFE spacers are particularly important 

when carrying out electrochemical measurements in order to electrically isolate the 

metal rings; nevertheless, to be compliant with ASTM G189 standard, the spacers 

were used even though they were not strictly necessary for weight loss 

measurements. In the study of Zwaag and Rasmussen [18], the PTFE spacers were 

removed to allow better sealing and to avoid oil leakage. The stack consisting of 

carbon steel rings and spacers were kept in position by two end flanges made of 304 
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grade stainless steel. At the end of the flanges are two base metal plates made of 304 

grade stainless steel held together by threaded tie bars in order to hold the entire set 

up in position. Mineral wool insulation having an inner diameter of 60 mm and a 

thickness of 25 mm was pre-soaked in 1% by weight sodium chloride solution 

(prepared from NaCl, Sigma Aldrich, 99% purity) (pH 5.07) for about 48 hours, this 

was wrapped around the rings and held in place by an aluminium tape. A higher 

concentration of chloride proposed by the researchers at Curtin University [1] than the 

concentration (0.01 wt %) recommended by the ASTM standard was used in this 

study. This was to accelerate the test so that results could be obtained in a reasonable 

time.  

 

End caps made of Delrin polymer were used at both ends of the insulation to keep the 

insulation in position and to prevent evaporation of the test solution at the ends. 

Although the end caps were very useful in holding the ends of the insulation and 

preventing evaporation at these regions, it presented its own challenges such as 

sticking to the end flanges at lower temperatures making it difficult to access the ends 

of the insulation. In order to overcome this, it was necessary to either adjust the end 

caps to the desired position when the end flanges are hot or if the pipe is already cold, 

it will require heating up the end flanges to release the end caps so that it can be 

adjusted to the desired position.  

 

Hot silicone oil (Dow Corning 200/200 Cs fluid) from a temperature programmed bath 

(TXF 200, Grant instruments) is circulated through the internal portions of the pipe at 

different temperatures of 60 - 130 oC. The silicone oil enters the rig through end flange 

1, passes across ring 1 to 6 and exits the rig at end flange 2 as shown in figure 4.7. 

The temperature of the rings was monitored by means of a K-type thermocouple 

connected to a digital voltmeter (Keithley 2110). The accuracy of the temperature 

measurement was estimated to be ± 1oC. Temperature program involved slow ramps 

from room temperature to the target temperature (60-130 oC), this was programmed 

to last for 1.5 h, and was maintained for 4 hours at the target temperature before 

cooling down to room temperature slowly for 1.5 h as shown in figure 4.10.  

 

Prior to the start of experiments, it was necessary to allow the test rig to run for some 

time in order to check for silicone oil leakages. In some occasions, very minimal leaks 
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were observed and it was eliminated by either re-tightening the bolts of the base metal 

plates or replacing the PTFE spacers with new ones.  Three experimental cycles were 

repeated with a fresh mineral wool pre-soaked in the test solution for the same amount 

of time (48 hours). It was quite difficult to install the wet insulation reproducibly for each 

run without losing some test solution. The estimated amount of test solution in the 

insulation before and after the CUI test for each experimental run was recorded, after 

which the test rig was dismantled, and the rings were removed from the test rig to be 

cleaned in order to determine the weight loss.  

 

The corrosion product was removed from the carbon steel using standard methods 

reported in ASTM G1-03 [19]. The purpose was to ensure that the corrosion products 

are removed which would interfere with weight loss measurements without removal of 

the base metal. The etching solution required to remove the corrosion product as 

stated in the standard includes strong hydrochloric acid combined with antimony oxide 

and tin (II) chloride, this is the so-called Clarke’s solution [19, 20]. The main role of the 

antimony oxide is to inhibit attack on the metal substrate during cleaning of the 

corrosion product, while the tin (II) chloride is used to reduce the ferric chloride 

produced by the rust solution to ferrous chloride. This is necessary because ferric 

chloride is suggested to increase corrosion whereas ferrous chloride appeared not to 

affect the carbon steel [20]. 

 

The test involved 50 ml of the Clarke’s solution which was prepared by adding 2.5 g 

of tin (II) chloride (Sigma Aldrich, 98 % purity) and 1.0 g of antimony (III) oxide (Sigma 

Aldrich 99% purity) to 50ml of 37 % w/w hydrochloric acid (Sigma Aldrich). The 

corroded carbon steel samples were then immersed in the prepared etching solution 

for about 5-7 minutes. This time was selected to ensure that the corrosion products 

are completely removed with minimal attack on the base metal. It is important to rinse 

the carbon steel samples with large amounts of distilled water following cleaning in 

Clarke’s solution as it has been reported that failure to rinse it will lead to surface 

contamination [20]. The ring samples were rinsed with large amounts of distilled water 

and further rinsed with isopropyl alcohol (Sigma Aldrich, 99.8 %) and dried with 

nitrogen gas and reweighed in an electronic balance (Sartorius AX 224) with a 

precision of 0.1 mg. The corrosion rate was then evaluated by weight loss following 
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equation 2 as described in the standard ASTM G1-03 [19]. The entire experimental 

cycle was repeated four times to determine the reproducibility of the experiments. 

 

 

Table 4.3 : Chemical composition of the carbon steel pipe used in this study [21]. 

Element Composition by weight (%) 

Carbon 0.25 

Manganese 0.27-0.93 

Phosphorus 0.035 

Sulphur 0.035 

Silicon 0.10 

Chromium 0.40 

Copper 0.40 

Molybdenum 0.15 

Nickel 0.40 

Vanadium 0.08 

 

The corrosion rate was estimated using the following expression given in the ASTM 

G189 standard: 

𝐶𝑅 (
𝑚𝑚

𝑦𝑟
) =

𝐾 × ∆𝑊(𝑔)

𝑇(ℎ𝑟) × 𝐴(𝑐𝑚2) × 𝜌 (
𝑔
𝑐𝑚3

)
                       (2) 

 

Where CR is the corrosion rate in mm/yr, K is a constant with the value 87600 which 

is a conversion factor from cm/hr to mm/yr, ∆𝑊 is the weight loss obtained from the 

difference between the initial and final weights of the carbon steel rings (g), A is the 

measured surface area of the rings (cm2),  𝜌 is the density of carbon steel which is 

7.86 g/cm3 and T is the duration of experiments (hours). It should be noted that the 

corrosion rate was estimated relative to the entire area of the carbon steel rings even 

though visible corrosion products were not uniform over the entire surface. Therefore, 

the estimated corrosion rate will best be termed relative corrosion rate. 
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Figure 4.6 : Pictures of CUI test rig used in this study (a) without insulation installed 

(b) with insulation and end caps installed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: A schematic representation of the CUI test rig used in this study. 
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Figure 4.8 : Picture showing the complete set up of the CUI test rig 

 

 

 

 

 

 

 

 

 

Figure 4.9: Picture of the test rig showing the arrangement of rings and spacers 

 

 

Figure 4.10 : Temperature program for each cycle used for CUI study. 
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Polish the carbon steel rings with 1200 grade SiC papers, rinse 

with deionized water, isopropyl alcohol and dry with nitrogen gas. 

Weigh the cleaned rings in an electronic balance. 

Assemble the CUI test rig and insert the 

cleaned rings and PTFE spacers. 

Switch on the silicone oil bath circulating oil 

throughout the rig and check for leakages. 

Disassemble the test 

rig 

Send the program to the silicone oil bath and 

run the experiment for 7 h for the first run. 

Retighten the bolts of 

the base metal plate. 

Is it still 
leaking oil? 

Install mineral wool insulation pre-

soaked in 1 % NaCl (pH 5.07) for 48 h 

Open Labwise software and 

write temperature program. 

Repeat the experiment with a fresh mineral 

wool insulation pre-soaked in 1 % NaCl (pH 

5.07) for second and third runs. 

Yes 
No 

Is there any oil 

leakage? 

Disassemble the test rig, remove the rings, 

and clean in Clarke’s solution, rinse with DI 

water, IPA and dry with nitrogen gas. 

Reweigh the cleaned rings and calculate the 

corrosion rate by weight loss. 

Yes No 

Figure 4.11: Flow chart showing the 

steps involved in the determination of 

corrosion rate of carbon steel under 

insulation by weight loss. 
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4.3) Distribution of test solution between the top and bottom sections of the 
insulation 

These experiments were aimed at determining the quantity of test solution held by the 

top and bottom sections of the insulation to account for the reported differences in the 

corrosion rate between the top and bottom sections of the rings. The mineral wool 

insulation was sectioned into two halves representing the top and bottom sections 

(Figure 4.12) after soaking in the test solution (1 wt% NaCl, pH 5.07) for 48 hours. The 

two sections were weighed to determine their initial weight before the test. Both parts 

of the insulation were installed on the CUI test rig and measurements were carried out 

from 60 oC-130 oC for about 7 hours. On completion of the test, the insulation was 

removed and reweighed to determine the final weight of the insulation after test for 

both parts. The amount of test solution remaining in each part was calculated. The 

entire experiment was repeated three times to determine the reproducibility of the 

experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 : Determination of the variation of test solution between the top and bottom 

parts of the insulation (a) An insulation showing the axis to be sectioned (b) An 

insulation sectioned into top and bottom parts (c) Insulation installed around rings (d) 

The complete set up including use of end caps to hold the insulation together. 

 

(a) (b) 

(c) 

(d) 
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4.4) Distribution of the test solution between the ends and centre of the 
insulation 

The distribution of the test solution between the ends and centre of the insulation is 

shown in Figure 4.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Determination of the variation in test solution between the ends and 

centre of the insulation (a) Full insulation showing the axis to be sectioned (b) An 

insulation sectioned into three pieces (c) A test rig without the insulation in place (d) A 

test rig with the three pieces of insulation installed. 

 

This was carried out to determine the distribution of test solution between the ends 

and centre of the insulation in order to assess its influence on the degree of corrosion 

 

 

(a) (b) 

 

(c) 

(d) 
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across the six rings and to verify if the observed differences in corrosion rate across 

the six rings are due to end effects. In this method, a piece of mineral wool insulation 

was sectioned into three parts and labelled as w1 representing insulation wrapped 

around the inlet section (rings 1 and 2), w2 representing insulation around the middle 

rings (rings 3 and 4) and w3 representing insulation wrapped around the rings close 

to the outlet (rings 5 and 6) as shown in Figure 4.11. The three sections of the 

insulation were weighed separately and soaked in the test solution (1% by weight NaCl 

at a pH of 5.07) for 48 hours, after which they were removed and re-weighed to 

determine the quantity of test solution absorbed by each section. The three sections 

were installed on the CUI test rig using aluminium tape and experiments were 

conducted at different temperatures of 60-130 oC for about 7 hours. On completion of 

the experiment, the three sections of mineral wool were removed from the CUI test rig 

and re-weighed. This experiment was carried out in triplicate in order to assess its 

reproducibility. 

 

4.5) Monitoring temperature variations across the six carbon steel rings 

It is possible that there could be temperature variations across the six rings that may 

either influence the corrosion rate or affect the drying out time of different part of the 

mineral wool insulation. The test rig was arranged such that silicone oil enters the rig 

through ring1 and exits the rig through ring 6 as previously described and shown in 

Figure 4.7. This experiment was aimed at determining the temperature of each of the 

rings in order to correlate with the differences in corrosion rate across the rings. Six 

carbon steel rings labelled 1-6 from the inlet to the outlet end were used to set up the 

CUI test rig and mineral wool insulation was used to wrap around the rings. The 

temperature of each of the rings was monitored using a K-type thermocouple 

connected to a digital multimeter (Keithley 2110). The temperature of the silicone oil 

bath (TXF 200, Grant instruments) was set from 60 oC-130 oC and the temperature of 

each of the carbon steel rings was measured to an accuracy of ±1 oC.  
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4.6) Quantifying the corrosion rate between the top and bottom parts of 
carbon steel rings 

It has been reported that there is difference in corrosion rate between the top and 

bottom parts of the rings, with the bottom rings corroding more than the top as a result 

of test solution settling to the bottom due to gravity [12]. This assertion has previously 

been investigated in this study by assessing the content of test solution between the 

top and bottom sides of the insulation but not correlated with corrosion rate. Therefore, 

this study uses Lacomit lacquer purchased from Agar Scientific Limited to quantify the 

degree of corrosion occurring in the top and bottom parts of the carbon steel rings. 

The chemical composition of the lacquer as well as the remover as specified in the 

product data sheet is presented in table 4.5.  

 

This product was used to assess and quantify the difference in the corrosion rate 

occurring between the top and bottom of the rings. This was carried out by masking 

the top parts of the rings with Lacomit lacquer using a paint brush. The masked rings 

were mounted on the CUI test rig and the experiment was carried out at 80 oC for 

about 7 hours, after which the test rig was disassembled, and the rings were removed 

and cleaned with Clarke’s solution. For comparison, this was repeated with the varnish 

applied to the bottom parts and the corrosion occurring at the top was assessed at 80 

oC for about 7 hours. At the end of the experiments, the rings were removed from the 

rig and the corrosion products were also removed.  

 

 

 

 

 

 

 

 

 

 

Figure 4.14: A schematic diagram showing the application of Lacomit lacquer to the 

carbon steel rings (a) Application of the lacquer to the top part of the ring samples (b) 

Application of the lacquer to the bottom part of the rings. 

(a) (b)  
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(a)                 (b) 

Figure 4.15: Top view images of the test rig showing (a) Lacomit lacquer applied to 

the bottom part of the rings (b) Lacomit lacquer applied to the top part of the carbon 

steel ring samples. 

 

Table 4.4 : Chemical composition of Lacomit lacquer and remover [22]. 

 
Chemicals present 

Lacomit lacquer Lacomit remover 

Composition (%) Composition (%) 

Xylene 45 25 

Acetone 3 75 

Butyl acetate 15 - 

Butan-1-ol 20 - 

1-methoxy-2-propanol 3 - 

 

4.7) Effectiveness of a new commercial inhibitor (VpCl 619) on corrosion rate 

Vapour phase corrosion inhibitors (VpCIs) are volatile chemical compounds that form 

a stable bond with metallic surface preventing the formation of corrosion cells thereby 

significantly reducing corrosion in insulated structures [23]. Among the available 

inhibitors, VpCl 619 was chosen because it is specifically designed to protect metals 

under insulation and it has properties such as high temperature tolerance up to 600 

oC, non-flammable and protects metals under insulation against corrosion in both wet 

and dry cycles.  

 

As specified in the product data sheet [23], the vapour phase corrosion inhibitor 

purchased from Cortec Solutions made up of sodium molybdate (10-25 wt%), boric 

acid (2.5-5.5 wt%) and borax pentahydrate (≤ 2.5 𝑤𝑡%). The density of the inhibitor is 
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1.1 g/cm3, while the vapour pressure at 20 oC is 0.023 bar which is similar to the vapour 

pressure of water at the same temperature. Based on these characteristics, using the 

term ‘vapour phase’ with VpCI 619 inhibitor seems to be a misnomer as this is 

consistent with liquid phase inhibitors rather than vapour phase inhibitors. 

Notwithstanding, the insulation was applied to the internal parts of the insulation that 

was pre-soaked in the test solution for 48 hours. First, the area of the mineral wool 

insulation which is similar to the area of an open-ended cylinder was calculated. Since 

the coverage of the inhibitor per area of insulation as specified in the guide provided 

by Cortec is 3.68-4.9 l/m2, the quantity of inhibitor required per area of insulation was 

calculated from this specified range. The detailed calculations and equations used are 

shown in the appendix.  

 

The inhibitor was put in a weighed plastic spray bottle and the weight of the bottle with 

the inhibitor was taken. This was used to spray the internal portions of the wet 

insulation and it was weighed regularly to ensure that a similar quantity of inhibitor was 

used for all the trials. The treated insulation was then wrapped around the central 

portions of the CUI test rig containing carbon steel rings that was previously polished 

with silicone carbide papers, rinsed with deionized water, isopropyl alcohol, dried with 

nitrogen gas and weighed. Experiments were carried out at different temperatures of 

80 oC, 95 oC, 110 oC and 130 oC for three different experimental runs. After the third 

run, the test rig was disassembled and the rings removed and cleaned in Clarke’s 

solution, rinsed with deionized water and isopropyl alcohol and blown dry with nitrogen 

gas and re-weighed. In order to assess the effectiveness of the inhibitor, the corrosion 

rate obtained using the inhibitor was compared with the corrosion rate determined 

without the inhibitor (control), and the percentage inhibition was calculated using 

equation 3 reported by McCaferty [24]. 

 

% 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 =
𝐶𝑅𝑜 − 𝐶𝑅1
𝐶𝑅𝑜

× 100               (3) 

 

Where CRo represents the corrosion rate without inclusion of the inhibitor and CR1 is 

the corrosion rate with the use of inhibitor. 
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Table 4.5 : Properties of VpCI 619 inhibitor as reported in the safety data sheet [23] 

State Liquid 

Colour White 

Odour Characteristic 

pH at 20 oC 8.2-8.7 

Density at 20 oC 1.04-1.15 /cm3 

 

4.7.1) Effect of dosage of inhibitor on CUI of carbon steel 

The effect of an increasing dosage of inhibitor in mitigating the corrosion of carbon 

steel under insulation was carried out to assess the effectiveness of different amounts 

of the inhibitor. Besides, it will also give some insight into the mechanism of inhibition. 

Therefore, in this study, different dosage of inhibitor ranging from 1.2 g/m2, 3.6 g/m2 

and 5.2 g/m2 was applied to the internal part of the insulation prior to installation on 

the test rig. After application of the inhibitor to the insulation, it was then installed on 

the test rig and experiments were carried out at 80 oC for a total of 21 h. On completion 

of experiments, the insulation was removed, and the test rig was disassembled. The 

rings were removed and cleaned in Clarke’s solution, rinsed with deionized water, 

isopropyl alcohol and blown dry with nitrogen gas and re-weighed. The corrosion rate 

was determined, and the percentage inhibition was calculated. 

 

4.8) Monitoring of drying out times of mineral wool insulation using galvanic 
current and impedance measurements 

The time it takes for mineral wool insulation that has been wetted with 1 wt % NaCl 

solution to dry out at different temperatures was investigated using galvanic current 

and electrochemical impedance measurements. The purpose of this measurement 

was to assess the insulation dry out time and how it affects CUI rate. This is important 

because the severity of CUI depends on the time the metal is in contact with the 

electrolyte in the insulation [15]. Also, monitoring the insulation drying out time could 

also provide useful information on the moisture transport properties of the insulation 

which can be used in the characterization of the material [20]. The CUI test rig showing 

the connections for galvanic current and impedance measurement is shown in Figure 

4.16, while the schematic representation of the connections is shown in Figure 4.17. 
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Figure 4.16: CUI test rig showing connections for insulation dry out using galvanic 

current and electrochemical impedance measurements. 

 

Figure 4.17: Schematic representation of the connections for measurements of 

insulation dry out using galvanic current and electrochemical impedance 

measurements. 
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In this study, rings 2 and 3 from the inlet end were replaced with copper and aluminium 

rings respectively. Aluminium is less noble than copper and it will preferentially corrode 

instead of copper (galvanic corrosion) as earlier discussed in chapter 2. Both metals 

were masked with Lacomit varnish leaving out a surface area of 0.5 cm2, the masked 

area was further covered with a tape to ensure that current flow is around the exposed 

area only and not the entire metal surface. A mineral wool insulation prewetted with 1 

wt % NaCl solution was installed on the rig containing the Cu-Al couple for galvanic 

current measurement and Cu-Cu rings placed at positions 4 and 5 for impedance 

measurements as shown in Figure 4.15. The galvanic couple was connected to a 

digital multimeter (Keithley 2110). The 10mA DC current range was used with an 

internal resistance of 5.1 Ω and a resolution of 0.1 μA. The current-time data was 

sampled every 2 seconds using Labwise software. Impedance and phase data were 

recorded every 10 seconds at a fixed frequency of 1kHz and AC amplitude of 25 mV 

using a Palm Sens 4 potentiostat.  

 

The galvanic current measurement records the current flowing through the exposed 

area as a function of time, while the two copper rings at positions 4 and 5 were 

connected to the potentiostat (PalmSens 4) for impedance measurements. The 

connections of the galvanic couple would result in the flow of galvanic current which 

was measured using a multimeter. The two copper rings were chosen for the 

impedance measurements because they will corrode without the formation of 

corrosion products under acidic condition which might cause additional impedance. 

 

The drying out of the insulation was monitored at temperatures ranging from 70 oC to 

130 oC. These temperatures were selected so that complete insulation dry out can be 

obtained in a reasonable time and the results can be compared with the CUI rate 

previously measured at the same temperatures. The copper and aluminium rings were 

drilled halfway through to allow similar metal rod to be inserted for electrical 

connections. The rings were painted with the Lacomit lacquer leaving out a small area 

of 0.5 cm2 to allow for contact with the wet insulation. A laboratory jack was used to 

ensure that adequate contact between the wet insulation and the bottom of the rings 

were achieved (Figure 4.16). Experiments were carried out at the target temperatures 

in triplicates to assess the reproducibility of measurement. Experiments were also 

repeated to assess the drying out at the top and sides of the metal rings. 
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4.9) Predictive Modelling of Corrosion of Carbon Steel under Insulation 
using Artificial Neural Network 

The modelling of corrosion rate of carbon steel under insulation was carried out using 

artificial neural network (ANN) in SPSS software (version 13.0). The purpose of this 

investigation was to assess the accuracy of ANN in predicting laboratory CUI data 

based on the input parameters (temperature, dosage of inhibitor, quantity of electrolyte 

in insulation and sample position) studied in the laboratory as well as the effects of 

different network architectures such as number of hidden layers, the choice of 

activation functions on accuracy of prediction including precision of the predicted 

output. Artificial neural network uses the short-term data obtained from experiments 

to train itself on the pattern and determines the degree of relationship between each 

of the contributing parameters that influences the corrosion rate as studied in the 

laboratory and the observed output which is the corrosion rate.   

 

In this study, the multilayer perceptron (MLP) was used, which is a more advanced 

modelling tool with a better prediction accuracy than the single layer perceptron. In 

addition, MLP offers more flexible options as number of neurons and hidden layers 

can be adjusted compared to radial basis function [25]. The modelling process starts 

by specifying the dependent variable (corrosion rate) and independent variables 

identified by the software as covariates (temperature, sample position, amount of test 

solution in insulation and dosage of inhibitor). Corrosion rate was fed into the output 

layer while the aforementioned independent variables were fed into the input layer of 

the ANN module. The data at the input layer was subjected to hyperbolic tangent and 

sigmoid activation functions in the hidden layer. The data at the input layer was 

partitioned into the training and test data sets. This was carried out exclusively by the 

software; however, the percentage of data classified into each set (training and test) 

can be adjusted manually by the user. In this study, a 70%:30% combination was used 

based on the reported prospects of better adaptability resulting in an enhanced 

prediction accuracy [26].  

 

The comparative prediction accuracies of the neural network were assessed for both 

a single layer and a dual hidden layer. In the single layer configuration, the sigmoid 

and hyperbolic tangent activation functions were independently assessed, while in the 

dual hidden layer configuration, sigmoid and hyperbolic tangent activation functions 
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were used at each layer. In both configurations, the input and output layers which were 

both made of one layer each remained unchanged while the feedback error was set 

at 1%. The parameters such as temperature, quantity of test solution in the insulation, 

positional arrangement of the rings and dosage of inhibitor were used as input 

variables while the corrosion rate was used as the output variable.  

 

The effect of the activation function on the prediction accuracy was assessed with a 

single layer configuration. In this case, two sets of prediction were carried out 

independently, the first set consists of a sigmoid function as the activation function 

while the second set consists of a hyperbolic tangent as the activation function. In both 

cases, the prediction was carried out three times to assess the repeatability of the 

prediction. A 70/30 % data splitting pattern as reported in other corrosion prediction 

reports [27] was adopted. Also, an independent variable importance analysis was 

carried out to assess the contribution of each of the input parameters to the predicted 

output. This is based on the estimation of the variations based on the patterns 

established between each input variable and the output (corrosion rate) and it could 

be a decisive factor in parameter prioritisation. The step-by-step process showing the 

modelling steps is shown in Figure 4.18. 
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Figure 4.18: A flow chart showing the steps involved in the modelling process. 

 

 

 

Open ANN module in SPSS 

Specify dependent (corrosion rate) and independent 

variables (temperature, quantity of test solution in the 

insulation, positional arrangement of the rings and 

dosage of the inhibitor) 

Choose method of rescaling of covariates (Standardized, 

normalized, or adjusted normalized) 

Data Partitioning (Training and Test data) 

ANN Architecture selection (number of hidden 

layers and nodes) and activation functions 

Training of data 

Check fitness of trained data 

Run simulation for test data 

Compare actual and predicted data 

Is the level of error 

accepted? 
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Load experimental data into SPSS 
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CHAPTER 5 

RESULTS AND DISCUSSION 

Water absorption studies and rate of CUI of carbon steel 

This chapter covers the results showing the quantity of water absorbed by mineral 

wool insulation, the effect of temperature on corrosion of carbon steel under mineral 

wool insulation, and the effectiveness of a new commercial inhibitor (VpCI 619) in 

mitigating CUI rate of carbon steel. The water absorption study was carried out to 

determine the water absorption capacity of mineral wool insulation and the time 

required for the insulation to be saturated with water, which could be useful to assess 

the risk of CUI of metals operating at different temperatures. This is important because 

mineral wool insulation is usually impregnated with organic compounds predominantly 

silicone oil which consists of siloxanes, silicones and hydrocarbon chains linked 

together to impart hydrophobicity to the material [1, 2]. Also, the insulation consists of 

a phenyl formaldehyde resin which binds mineral wool fibres together, this also 

contribute to the hydrophobicity of the material [3].  

 

However, when mineral wool insulation is installed on pipes that are intended to 

operate at high temperatures, these additives will likely decompose if the operating 

temperature exceeds its thermal stability limit, resulting in the loss of hydrophobicity. 

This could enhance water absorption leading to increased risk of corrosion under 

insulation. Therefore, this study was aimed at investigating the absorption capacity of 

mineral wool insulation under these conditions, as well as assessing the time it will 

take for the degraded insulation to be saturated with water and the variability 

associated with the trials. This was carried out without the protective jacketing as 

specified in ASTM C1511 standard, which could be useful in assessing the worst-case 

scenario that should be expected if the insulation is exposed to water. 

 

Afterwards, the effect of increasing the temperature of the pipe from 60 oC to 130 oC 

on the corrosion rate of carbon steel under mineral wool insulation is reported. This 

temperature range was selected because it has been reported to be the hotspots for 

aggressive CUI. Also, most chemical plants using insulated metals operate within this 

temperature range during service. Therefore, it was necessary to focus on this range 
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where the corrosion rate is expected to be high. It is worth noting that these results 

were obtained under an accelerated CUI conditions in order to obtain a meaningful 

CUI data within a realistic timeframe. This is because the corrosion of insulated metals 

is a slow process that could take several years before failure could be imminent 

depending on the operating conditions. Hence, it would be difficult and unrealistic to 

monitor the corrosion rate of insulated metals following the timescales typically 

observed in industry. Apart from the short exposure time compared to outdoor tests, 

accelerated conditions also offer the possibility of assessing the corrosion resistance 

of a material under controlled and stressed conditions. For these reasons, it was 

necessary to accelerate the corrosion process by deliberately saturating the insulation 

with water and increased concentration of sodium chloride relative to the ASTM G189 

standard so that corrosion rate could be accelerated to facilitate testing in a reasonable 

time.  

 

In addition, the effectiveness of a new commercial inhibitor in mitigating the corrosion 

of carbon steel under mineral wool insulation is reported. The effect of different dosage 

of the inhibitor is described as well as the effect of temperature at a fixed dosage is 

reported. This would enable the estimation of the cost and effectiveness in mitigating 

CUI in order to obtain a balance between both parameters which are important factors 

when choosing an inhibitor for insulated metals in a typical industrial process. The 

mechanism of inhibition of the main component of the inhibitor based on its chemistry 

is also described. 

5.1) Water absorption capacity of mineral wool insulation 

The results showing the water absorption capacity of mineral wool insulation for three 

replicates, the average absorption capacities, as well as the standard deviations 

computed from the repeated measurements are shown in Figure 5.1. These represent 

the results of three repeated measurements for the conditions where the insulation 

was untreated and when it was thermally treated at 250 oC for 3 h.  
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Figure 5.1: The water absorption profiles (a) Triplicate measurements without 

preheating the insulation (b) The average absorption of untreated samples (c) 

Triplicate measurements for insulation treated at 250 oC for 3 h (d) The average of 

treated samples. 
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Figure 5.2 : Results showing the long-term water absorption test of mineral wool 
insulation 

 

Figure 5.1a shows an increase in the water absorption with time for the three 

replicates. Even though all the replicates show a similar trend, the amount of water 

absorbed in the third replicate is different from the first two trials. The standard 

deviation of the replicate measurements which signifies variability are shown in 

Figures 5.1b and d. It is obvious that the third replicate is the main contributor to the 

overall variability. This was initially suspected to be due to the distribution of the 

hydrophobic additives since the three insulation parts used for the replicate 

measurements were from the same insulation material. However, Figures 5.1c and d 

which represent the water absorption capacities of the insulation after thermal 

decomposition of the organic additives have shown even more variability. This 

indicates that the differences in the replicate measurements might be inherent in the 

method used rather than differences in the hydrophobicity across the insulation.  This 

is not unusual as other researchers have observed very high variability of about 52 % 

in the replicate measurement of the water absorption of mineral wool insulation that 

was thermally treated at 150 oC using the same ASTM standard [4].  

Moreover, the relatively slow absorption at about 2 hours seemed that saturation may 

likely be attained if the time is further extended. This prompted further investigation of 

the absorption capacity over an extended period. However, the result of the 22-day 
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immersion tests shown in Figure 5.2 indicated continuous absorption of water instead 

of saturation. This suggested that saturation may not be attained within a reasonable 

time. This agrees with the report of Williams and Evans [5] who observed an increase 

in water absorption without saturation in mineral wool insulation immersed in water for 

60 days. Comparison of the water absorption capacity of the insulation with and 

without heat treatment at 250 oC for 3 hours was carried out as a separate experiment 

where both materials were immersed in the same water under similar conditions. The 

result of the triplicate measurement is shown in Figure 5.3. 

 

 

 Figure 5.3: Results showing the water absorption capacity of mineral wool insulation 

with and without heat treatment at 250 °C for 3h. 

 

In Figure 5.3, the quantity of water absorbed by the insulation that was thermally 

treated was higher than the untreated insulation. The amount of water absorbed has 

tripled as a result of the heat treatment. This may be attributed to the decomposition 

of the organic additives to volatile compounds, this renders the insulation vulnerable 

to water penetration. The additives are mainly silicone oils and phenolic resins [1,2].  

From the material safety data sheet, the insulation contains 0-0.5 wt. % silicone oils 

and 0-5 wt. % organic binders [2], both chemical compounds contribute to the overall 
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hydrophobicity of the material. The organic binder has been reported to be stable up 

to 175 oC, while the silicone oil has a stability limit of 250 oC. However, both 

compounds will decompose if the operating temperature exceeds this value to give 

volatile products [1].  

 

5.1.1) A comparison of the water absorption data with the available reports in 

the literature 

The water absorption capacity of the untreated mineral wool insulation and the 

insulation that was thermally treated at 100 oC and 150 oC as reported in the literature 

is shown in Figure 5.4 [4]. For better comparison, the water absorption data in this 

study which was obtained using mineral wool insulation that was thermally treated at 

250 oC for 3h is also shown in Figure 5.4. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Results showing the long term water absorption of MW insulation obtained 

in this study and results reported in the literature [4]. All studies were conducted 

according to ASTM C1511 standard. 

 

In Figure 5.4, the result indicates an increase in the water absorption for all the 

temperatures investigated. These were observed to be higher than the water 

absorption capacity of the untreated insulation. The absorption capacity of the 
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insulation treated at 150 oC is higher than the untreated and the treated insulation at 

100 oC. In addition, the absorption capacity of the mineral wool insulation reported in 

this study which was treated at 250 oC is much higher than the absorption capacities 

reported by Pojtanabuntoeng et al. [4]. This significant difference may be attributed to 

the fact that the temperature used in this study has exceeded the stability limit of the 

organic binder and reached the point at which silicone oil is expected to start degrading 

(250 oC) resulting in an increased absorption of water, while the temperatures used to 

treat the insulation in the literature (100 oC and150 oC) are below the stability limit of 

175 oC which suggests that both the binder and the silicone oil may not be 

decomposed yet. 

 

In another study, mineral wool insulation was thermally treated at 300 oC, and the 

water absorption capacity was assessed by immersion in water for 17 weeks instead 

of the 15 minutes specified by ASTM C1511 standard [5]. For better comparison, the 

results of the 22-day water absorption data obtained in this thesis has been overlaid 

with the data reported in this literature, this is shown in Figure 5.5. The results also 

indicated an increased absorption but at a slower rate than what is obtained in this 

study. However, the authors did not specify the duration of treatment of the insulation 

as well as the type of hydrophobic additive used in the insulation which would have 

been useful to explain the difference in absorption capacity shown in Figure 5.5. 

Notwithstanding, the important information from the study is that it took quite a long 

time before saturation was likely to be obtained. This is evident in the absence of a 

plateau after 60 days in the report by Williams and Evans, which agrees with the 22-

day continuous absorption obtained in this study.  

 

In addition, it should be noted that unlike organic additives, inorganic compounds used 

to improve hydrophobicity of insulation materials may require a higher temperature for 

a sustained period before degradation is imminent. This is evident in the report of 

Zwaag and Rasmussen [6], who observed that there was no difference in the water 

absorption of mineral wool insulation impregnated with inorganic resin before and after 

thermal treatment at 250 oC. This may be attributed to the fact that the inorganic resins 

were yet to be decomposed at that temperature. Nevertheless, the consensus found 

in these reports is that increasing the temperature used in treating the insulation 

reduces the hydrophobicity culminating in enhanced water absorption. In addition, 
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water absorption studies by mineral wool insulation show significant variability in 

replicate trials. Characterization of the different parts of a thermally treated mineral 

wool insulation using SEM/EDX by Ivanic et al. [3] has revealed the presence of a 

localized melt within certain parts of the insulation which opens up during thermal 

degradation allowing more water to be absorbed in this region than other areas of the 

insulation. This could possibly contribute to the observed differences in the water 

absorption capacity when the same insulation was cut into small parts and were 

immersed in the same solution under the same condition. 

 

 

 

Figure 5.5: Comparison of water uptake of mineral wool board and cylindrical mineral 

wool used on pipe as reported by Williams and Evans [5] with the results obtained 

from this study. 

These results indicate a significant increase in the water absorption when mineral wool 

insulation was subjected to thermal treatment due to the decomposition of the binder 

that account for the hydrophobicity of the material. The degraded insulation under 

these conditions was observed to absorb water for several days without reaching 

saturation. Other researchers also reported a continuous increase in the water 

absorption of a thermally treated mineral wool insulation for as long as 60 days [5]. 
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Moreover, in this study, the mineral wool insulation treated at 250 oC was observed to 

absorb water continuously for 22 days without saturation. Considering the time 

constraint, it was necessary to discontinue the experiment and proceed with the 

measurement of corrosion rates using the CUI test rig. Nevertheless, a reasonable 

amount of time (2 days) where the insulation is known to absorb a well-defined and 

constant amount of water was chosen for CUI tests even though the insulation was 

not saturated within the chosen time. 

 

5.2) Effect of temperature on corrosion rate of carbon steel under insulation  

In this section, the results showing the effect of different pipe temperatures ranging 

from 60 oC to 130 oC on the corrosion rate of carbon steel under insulation are 

discussed. This temperature range was selected mainly because field data and failure 

analysis reports have indicated that corrosion under insulation is worse within this 

temperature range [7, 8]. In addition, scarcity of laboratory data showing the effect of 

temperature on corrosion rate of insulated metals have also been one of the reasons 

for initiating this research. The available CUI data showing the trend of corrosion rate 

with temperature were obtained from field studies. However, field data is not reliable, 

this is because the factors influencing CUI of metals as discussed in the introductory 

chapter are difficult to control under field conditions. This implies that laboratory data 

is required to validate the observed trend of CUI rate with temperature obtained from 

field studies.  

 

Surprisingly, to the best of our knowledge, most of the laboratory report showing the 

trend of corrosion rate of insulated metals over different temperatures have focused 

on two extreme points and at most 3 points when testing coatings or inhibitors [9, 10]. 

However, this is not sufficient to show a reliable trend of CUI rate with temperature.  In 

industry, the different temperatures of fluid flowing through insulated metals is known 

to have significant impact on the integrity of insulated metallic structures. Hence, it is 

important to assess and quantify the effect of temperature on CUI rate over a wider 

range to understand their contribution to corrosion of insulated assets. In this section, 

the results showing the effect of six different pipe temperatures selected between 60 

oC and130 oC on the corrosion rate of carbon steel under mineral wool insulation is 

hereby presented and discussed.  
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To enhance clarity, the process of obtaining the mean values is first explained. This 

involves the description of how the CUI rates of the 6 independent rings were analysed 

as well as the significance.  This will be followed by presentation and discussion of the 

results for each mean value. The overall trend of the change in CUI rate with 

temperature is assessed using the global average of all the rings for the four replicates 

and the trend is shown and discussed accordingly. This is followed by the mechanism 

of CUI rate with respect to temperature which will focus on providing explanation to 

the observed trend reported in this study. Furthermore, the results will be compared 

with the field data reported in the literature. Finally, the effectiveness of a new 

commercial inhibitor in mitigating the corrosion of carbon steel under insulation as well 

as the mechanism of inhibition will be presented and discussed.  

 

5.2.1) Averaging results of corrosion rate with temperature 

The average corrosion rates of the metal rings were computed both horizontally across 

the six rings (inter-ring average) to obtain the average corrosion rate of all the rings 

for each replicate and vertically to obtain the mean CUI rate for each ring position for 

the four replicates (intra-ring average). Inter-ring average involved computing the 

mean corrosion rates of all the six rings at each temperature for each replicate, which 

provides information on the reproducibility of the data at each temperature, while intra-

ring average involved averaging the corrosion rates of all the rings occupying the same 

position for each temperature. This provides the trend of CUI rate with temperature for 

each ring position as well as showing the deviation in the CUI rate across the different 

ring positions.  

 

5.2.2) Inter-ring average of CUI data 

The average CUI rate for the six carbon steel rings operating at different temperatures 

is shown in Figure 5.6. This shows an initial increase of corrosion rate with temperature 

up to a maximum temperature of 80 oC, further increase in temperature resulted in a 

decrease in corrosion rate up to 130 oC. In addition, the replicates seem to show a 

similar rate of increase in the corrosion rate with temperature as indicated by the 

steepness of the curve, though with slightly different values especially at 70 oC. The 

maximum corrosion rate is observed at 80 oC for all the replicates and the values of 
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the corrosion rate at this threshold are reasonably similar for replicates 1, 2 and 4. 

Ideally, the curves would be expected to be quite close to each other in addition to 

showing a similar shape. However, there are slight differences in the corrosion rates 

measured at each temperature, which may be attributed to the stochastic nature of 

corrosion as well as the difficulties associated with assembling the CUI rig reproducibly 

for each replicate measurement. Some of the field data also follows similar trend of 

initial increase in corrosion rate with temperature up to some maximum point, then it 

decreases as the temperature is further increased. The reason for this behaviour as 

well as the chemical reactions involved will be explained under the mechanism 

section. 

 

 

    

 

    

 

  

 

 

 

 

 

     

 

Figure 5.6: (a) Arrangement of the six carbon steel rings (b) Inter-ring average of the 

corrosion rate across the six rings at all the temperatures investigated. Error bars 

represent the standard deviation of four replicate measurements. 

 

The average CUI rate across the six rings is based on the assumption that the 

difference in the corrosion rate at each ring position is negligible for each replicate  

measurement at the temperatures studied. This assumption was tested statistically by 

subjecting the mean CUI rate of each replicate  to one way analysis of variance at 95 

% confidence interval using SPSS (version 15). The null hypothesis stated that there 
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is no difference between the mean CUI rate of each replicate at the temperatures 

investigated, while the alternative hypothesis stated otherwise. The computed f-value 

(0.55) was observed to be less than the critical f-value (3.07) which implies that there 

is no statistically significant difference in the mean CUI rate of each replicate across 

the six temperature points, hence, the null hypothesis is not rejected. This is evident 

in the variability of the CUI rates of each replicate observed for each temperature cycle 

as shown in Figure 5.6. The experimental data which represents four replicates at 

each temperature has shown to be fairly close to each other at most of the temperature 

points investigated which indicates agreement between replicate measurement. 

 

 

Other studies have observed significant variability in replicate measurement of CUI 

rate as shown in the reports of the researchers from Curtin University shown in Figures 

5.7 and 5.8 and other researchers (Figure 5.9). The researchers reported the average 

corrosion rate and standard deviation of triplicate measurements of CUI rate for the 

top and bottom metal ring samples insulated with mineral wool at 80 oC (Figure 5.7), 

the results showing the effects of jacketing and drain holes on CUI rate (Figure 5.8) 

and the influence of chloride concentration on the CUI rate. The results provided in 

these reports show significant variability as indicated by the large error bars. This is 

not surprising as it is expected that there will be more variability in the corrosion rate 

obtained from metals under insulation compared to immersion methods. This is clearly 

observed in Figure 5.9 where the uninsulated metal had the lowest corrosion rate 

compared to the metals under insulation. This is due to the difficulty in obtaining a 

consistent quantity of electrolyte in the insulation wrapped around the test area where 

the CUI rate is being monitored as well as other challenges involved in re-assembling 

the CUI test rig reproducibly during each replicate measurement. 
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Figure 5.7: Average corrosion rate of carbon steel under mineral wool insulation at 

80 oC [11] 

 

Figure 5.8: Average CUI rate of carbon steel under mineral wool insulation at 80 oC 
[12]. 
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Figure 5.9: Corrosion of mild steel under mineral wool insulation [13]. 

 

Table 5.1 : Available laboratory data showing the corrosion rate of carbon steel under 

mineral wool insulation at a fixed temperature 

Temp. 
(oC) 

Electrolyte 
used 

Time 
(h) 

CUI rate 
(mm/yr) 

References 

24  
Salt fog 

 
336 

0.02  
[9] 60 0.05 

80 0.05 

 
80 

1.0 wt % 
NaCl 

 
336 

 
0.61 

[11] 

 
80 

1.0 wt % 
NaCl 

 
168 

 
0.10 

[12] 

 
80 

4.0 wt % 
NaCl 

 
336 

 
2.08 

 
[14] 

 
82 

100 ppm 
NaCl 

 
480 

 
0.25-1.0 

 
[15] 

30 Sea water 336 0.03 [13] 

50 Sea water 336 0.06 [13] 

70 Sea water 336 0.07 [13] 

        

 

 



 

141 
 

5.2.3) Intra-ring average of CUI data 

 

The corrosion rate of the metal rings was also assessed by computing the average of 

the four replicates of each ring at different temperatures as shown in Figure 5.10. In 

this case, the average corrosion rate of the metal rings occupying the same position 

for the four replicates were computed. This was used to assess the degree of variability 

of the CUI rate across the six ring positions as well as the trend of CUI rate of each 

ring position with temperature. Results revealed that the corrosion rates of all the ring 

positions showed a similar initial increase with temperature and a subsequent 

decrease as temperature exceeds 80 oC. However, there are slight differences in the 

values of the corrosion rate at each ring position. The first ring tends to have the lowest 

corrosion rate compared to other ring positions. Ideally, it would be expected that the 

corrosion rate should slightly decrease with ring position. This is because the 

measurement of temperature of the rings showed a slight temperature difference of 

about 1-2 oC between the first ring and the last ring (Figure 5.11), which may be due 

to the heat loss as the oil flows through the pipe. The fact that the corrosion rate across 

the six ring positions does not follow this trend suggests that there are other factors 

that may contribute to the observed corrosion rate besides temperature.  

 

One of such factors could be the distribution of the test solution in the insulation. 

Preliminary water absorption test of mineral wool insulation earlier discussed in this 

study showed a high variability in the water absorption with replicate trials. The reason 

for this increased variability even when the same insulation was used in repeated 

measurement has been suggested by Ivanic et al. [3] to be caused by the presence of 

localized melt inserts in the insulation which tends to open up during thermal treatment 

absorbing more water than other areas with good binding strength [3]. Therefore, this 

could influence the quantity of electrolyte in the insulation around each ring, which has 

a significant effect on the rate of corrosion across the ring positions. Hence, further 

investigation to determine the distribution of test solution in the insulation wrapped 

around the inlet rings (positions 1 and 2), middle rings (3 and 4) and the outlet rings 

(5 and 6) was necessary to assess the content of test solution across these regions 

which will be discussed in the subsequent chapter.  
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Figure 5.10: (a) Arrangement of six carbon steel rings (b) Average corrosion rate at 

each metal ring position for all the temperatures investigated (error bars represent 

the standard deviation of the four replicates) 

 
 

Figure 5.11: Temperature variation across the six ring samples 
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5.3) Overall trend of CUI rate with temperature 

An overview of the variation of corrosion rate with temperature can be estimated by 

computing the global average of the corrosion rates of all the six metal rings for all the 

four replicates as well as the standard deviation. This was carried out at each 

temperature (60 oC - 130 oC). The result is presented in Table 5.2 and shown in Figure 

5.12. 

 

Table 5.2 : Global average and standard deviations of corrosion rate with increasing 

temperature 

Temperature 
(oC) 

Average CUI 
rate (mm/yr) 

Standard 
deviation 

60 0.22 0.08 

70 0.52 0.15 

80 0.58 0.19 

95 0.55 0.08 

110 0.44 0.12 

130 0.24 0.07 

 

 

Figure 5.12: Global average corrosion rates of all the four replicates for the six metal 

rings (Error bars represent the standard deviation of all the replicates for the six metal 

rings). 

50 60 70 80 90 100 110 120 130 140

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
v
e

ra
g

e
 C

R
 (

m
m

/y
r)

Temperature (°C)



 

144 
 

The data presented in Table 5.2 and shown in Figure 5.12 represent the global 

average of all the six rings for the four replicates, while the error bars represent the 

standard deviation of the four replicates. In addition, the data obtained from replicate 

measurements in corrosion studies have been reported to have significant deviations 

due to the stochastic nature of corrosion. Results shown in Table 5.2 reveal an 

increase in the corrosion rate as the temperature is increased up to 80 oC. Further 

increase in temperature beyond this threshold results in a decrease in the corrosion 

rate as shown in Figure 5.12. The reason for this trend will be explained using the 

mechanism of corrosion in the next section. 

 

5.3.1) Mechanism of CUI of carbon steel  

The variation of corrosion rate with temperature observed in this study will be 

discussed in three aspects. First, the region of increasing corrosion rate with 

temperature will be explained. This will be followed by the region of decreasing 

corrosion rate with temperature, while the third part will consist of explanation of the 

observed corrosion rate at temperature as high as 130 oC when no liquid film is 

expected to be present as shown in Figure 5.13 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Mechanism of corrosion of insulated carbon steel at different 
temperatures 
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In Figure 5.13, the variation of corrosion rate with temperature across the wet and dry 

regions representing temperatures below and above 100 oC respectively is described. 

The wet region consists of two parts (A and B) consisting of the region of initial 

increase of CUI rate with temperature up to 80 oC (part A), while the second part (B) 

consists of the area of decreasing corrosion rate with temperature even when liquid 

water is still expected in the insulation (80-100 oC). On the other hand, the dry region 

consists of temperatures greater than 100 oC, where liquid water is not expected in 

the insulation. The dependence of corrosion rate with temperature is based on the fact 

that either the anodic reaction involving metal dissolution and cathodic reaction 

involving oxygen reduction are rate controlled or there is mass transport control which 

influences the diffusivity of oxygen required to initiate the cathodic reaction [16].  

 

Region I shows an increase in the corrosion rate with temperature which reaches a 

maximum point during the transition into region II. The existence of this point suggests 

that there are different factors having opposite effects on CUI rate. For instance, 

increase in temperature is likely to increase the diffusivity of oxygen required for 

cathodic reactions resulting in initial increase in corrosion rate, which dominates at low 

temperatures. However, as temperature increases above 80 oC, other opposing 

effects such as a decrease in the solubility of oxygen as temperature increases and 

increased drying out of the test solution becomes dominant resulting in the existence 

of a maximum point as shown in the transition from region I into II. This continues up 

to region III where the decreased solubility and drying out of the insulation are 

dominating factors resulting in a reduced CUI rate.  

 

In addition, it might be expected that the metal will not corrode within the dry region as 

shown in Figure 5.13 due to the absence of a liquid film. However, a low corrosion rate 

was still observed at temperature as high as 130 oC. Other researchers that have 

investigated CUI rate under cyclic conditions have also noted that insulated metals 

corrode at a slow rate under a dry cyclic condition of about 120 oC [15]. In another 

report, Kane et al. [17] expected the corrosion rate of carbon steel insulated with 

mineral wool to fall to zero when the insulation dried out; however, the corrosion rate 

reduced to a steady value of 0.002 mm/yr. The possibility of obtaining a reduced 

corrosion rate when there is no electrolyte at high temperatures has been described 

as dry corrosion in the literature [18]. However, the corrosion rate observed within the 
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dry region in this study is greater than what should be expected from ‘dry corrosion’ 

and the temperature is not as high as temperatures where a typical dry corrosion is 

usually observed. Therefore, the reduced corrosion rate observed at 130 oC could 

likely be attributed to the short period of wetness prior to the complete insulation dry 

out as well as existence of steam when the target temperature was reached.  

 

5.4) Comparison of laboratory CUI results with field data 

The results showing the trend of corrosion rates with increasing temperature for 

insulated carbon steel reported in this study was compared with the report provided in 

the American Standard Testing and Materials (ASTM G189-07) [19], American 

Petroleum Institute standard (API 581) [8] and other field data reported by researchers 

in the literature. This is important to validate the observed trend of corrosion rate with 

temperature reported under field conditions. Therefore, the data obtained from this 

study is overlaid with the available field data for adequate comparison. 

5.4.1) Comparison of laboratory CUI data with field data reported in the ASTM 

standard 

The data showing the effect of temperature on the CUI rate as obtained in this study 

is overlaid with some field data reported in ASTM G189-07 standard as well as some 

trends of the corrosion rate with temperature that would be expected from close and 

open systems as shown in Figure 5.14.  In an open system, oxygen is free to escape 

as the system is not sealed, whereas oxygen is trapped in a closed system and cannot 

easily escape as it is sealed. This will likely lead to differences in the corrosion rate of 

both systems as oxygen is a major reactant required at the cathode to obtain a 

complete corrosion reaction. Therefore, this comparison would allow assessment of 

the trend of CUI rate with temperature for field data reported in the ASTM standard as 

well as the laboratory data reported in this study. 

 

Figure 5.14 shows that for a closed system, the corrosion rate would be expected to 

increase linearly with temperature, while for open systems, the corrosion rate tends to 

initially increase with temperature and reaches a maximum value, then decreases with 

further increase in temperature. It should be noted that a CUI system will experience 

the effects of the water enclosed within the pores of the insulation material (absorbed 
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water) and the condensed water held between the jacketing and the insulation material 

(trapped or adsorbed water), which would have significant influence on the estimated 

corrosion rate.  

 

The field CUI data reported in the standard tends to show a linear increase of CUI rate 

with temperature up to 80 oC. This trend is similar to the laboratory CUI data obtained 

in this study for measurements carried out from 60 oC to 80 oC; however, the laboratory 

CUI data shows a decrease in the CUI rate as the temperature exceeds 80 oC, 

resembling an open system rather than a closed system. This is similar to the corrosion 

of iron in water in systems exposed to the atmosphere as shown in Figure 5.15 [18]. 

Unfortunately, the field CUI data in the ASTM standard has not recorded any data 

above 80 oC which would have been useful in comparing with the laboratory CUI data. 

Therefore, the trend of CUI rate obtained from this study resembles an open system 

when the temperature exceeds 80 oC rather than a closed system where oxygen and 

water are likely to escape with increase in temperature resulting in a decrease in the 

corrosion rate.  

 

Figure 5.14: Comparison of CUI data from this study with the field data showing the 

effect of temperature on corrosion of metals as reported in ASTM G189 standard 

[19]. 
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Figure 5.15: Effect of temperature on corrosion of iron in water [18]. 

 

 

5.4.2) Comparison of laboratory CUI results with the field data reported in the 

API 581 standard 

The laboratory CUI data obtained by taking the global average of the corrosion rates 

of all the six rings for the four replicates is overlaid with the field data reported in API 

581 standard and shown in Figure 5.16. This was necessary to compare the trend and 

to assess the dependence of rate of CUI with temperature obtained from field studies. 

This was important because temperature, in addition to other parameters are difficult 

to control in the open field. Therefore, it was necessary to assess the relationship in 

the laboratory over a certain temperature range in order to observe the trend and 

assess the degree of deviation of the data in this study from the field data from API 

581 standard.  
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Figure 5.16: Comparison of the laboratory CUI data from this study with the field CUI 

data reported in API 581 standard [8] 

 

Figure 5.17: Relationship between the CUI of carbon steel and the operating 
temperature [8, 20]. 

 

The field data reported in API 581 standard (Figure 5.16) are quite scattered, this may 

be as a result of the different factors that influences CUI rate in the field besides 

temperature. Notwithstanding, the corrosion rates reported in this study are within the 

range of the reported CUI rates from field studies. In addition, the maximum corrosion 

rates tend to lie between 60 oC and 100 oC, while the other data points have much 

lower corrosion rates despite the further increase in temperature. This also suggest 

an initial increase in corrosion rate with temperature to a maximum value observed 

between 60 oC and 100 oC, which starts to decrease as the temperature increases 

further. It should be noted that corrosion is still observed at a slower rate at 
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temperatures as high as 130 oC which agrees with the findings of this study. Also, a 

similar trend of increasing corrosion rate with temperature up to a maximum value of 

0.51 mm/yr was observed for the field data shown in Figure 5.17. Although 

temperature and quantity of test solution in the insulation have been identified as the 

key factors that can influence corrosion rate of insulated metals [21], other contributing 

factors such as the type of insulation and the concentration of contaminants can also 

have a significant effect on the corrosion rates of insulated assets [22].  

 

5.4.3) Comparison of Laboratory CUI data with other field data reported in the 

literature  

The field data showing the effects of temperature on corrosion rate as a function of 

different qualities of insulation as well as the corrosion depth has been reported by De 

Vogelaere [23] and Matsuda et al. [24] respectively. These are shown in Figures 5.18 

and 5.19 respectively. In the report of De Vogelaere [23], an unspecified insulation is 

grouped into three categories, such as good, which indicates that the jacketing in 

addition to the insulation are in good condition devoid of damages which could give 

access to water intrusion. Also, average quality is another category which represents 

a minimal damage to the jacketing and the insulation, while poor quality represents 

the condition in which the jacketing is damaged giving access to water intrusion into 

the insulation. It should be noted that these classifications are based on field 

experiences and not on the standard grading of insulation performance. The corrosion 

rate profile shows a similar trend of an initial increase in the corrosion rate with 

temperature with a maximum point obtained at 90 oC for the three categories of 

insulation. In addition, the corrosion rate is observed to increase with a decrease in 

the quality of the insulation as would be expected.  

 

Although the insulation used in this study was completely immersed in the test solution 

prior to carrying out experiments rather than deliberately damaging the jacketing, the 

maximum corrosion rate (0.51 mm/yr) obtained for the insulation with poor quality 

indicating an unrestricted access of water and contaminants to the insulation can be 

compared to the maximum corrosion rate obtained in this study. However, no 

corrosion has been observed at 120 oC as shown in Figure 5.19, but a significant 

corrosion has been reported at 110 oC, which also agrees with the fact that there will 
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still be corrosion at temperatures exceeding the boiling point of water where a liquid 

film is not expected to be present. This observation is different from the findings of 

Matsuda et al. [24] who reported that no corrosion was observed at 110 oC for carbon 

steel insulated with calcium silicate insulation and there was no obvious temperature 

dependence on the corrosion rate as the points were scattered (Figure 5.19). This 

suggests that the type of insulation could also contribute to the variation of CUI rate 

with temperature across different reports. 

 

 

Figure 5.18: Corrosion rate as a function of temperature and condition of insulation 
[23] 
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Figure 5.19: Variation of corrosion depth of carbon steel pipe under calcium silicate 
insulation with temperature [24]. 

 

5.5) Risk Based Assessment of CUI 

Risk assessment is one of the CUI management strategies to qualitatively assess the 

probability of failure using available CUI data. This is necessary to make informed 

decision on the level of risk as well as suggest options to mitigate unacceptable risks. 

It is necessary that the important factors contributing to the overall risk of failure be 

included in the risk model in order to obtain a reliable output. In this study, the main 

risk factors include water absorption capacity of the insulation (water wetting barrier), 

presence of jacketing which serves as barrier (design barrier) and corrosion resistance 

of carbon steel (material barrier). Other important factors such as temperature and 

quantity of electrolyte in insulation are sub-factors which may be categorised under 

material and water wetting barriers respectively. The risks associated with these 

factors have been assessed as a function of temperature in the report of Wiggen [25], 

this is shown in Figure 5.20.  
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Figure 5.20: Probability of failure of material barrier as a function of temperature [25] 

 

Figure 5.20 shows the risk rating for a carbon steel pipe operating at different 

temperatures. The temperature range used in this study (60 oC-130 oC) starts from the 

high-risk zone, passes through the maximum risk zone to the medium risk range 

observed at high temperatures. It is important to note that the highest corrosion rate 

obtained in this study which was observed at 80 oC falls within the maximum risk zone 

(70 oC-100 oC) in the Wiggen’s model. Moreover, as the temperature increases further, 

the probability of failure reduces to medium at about 120 oC and it is maintained at this 

level for temperatures as high as 210 oC. This corresponds to the observed decrease 

in the corrosion rate as the temperature is increased to 130 oC as obtained in this 

study. It should be noted that the risk level did not fall to 0 at temperatures exceeding 

100 oC where liquid water is not expected in the insulation, which agrees with the low 

corrosion rate at 130 oC observed in this study. This implies that even at elevated 

temperatures where water is not expected, it is important to monitor the integrity of 
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insulated structures as corrosion is still possible, though the corrosion rate would be 

expected to be quite low with a reduced likelihood of failure.   

 

5.6) Effectiveness of the corrosion inhibitor (VpCI 619) at different temperatures 

In this section, the results showing the effectiveness of a commercial inhibitor (VpCI 

619) in mitigating the corrosion of carbon steel under insulation at different 

temperatures (80 oC, 95 oC, 110 oC, and 130 oC) are presented and discussed. These 

temperatures were selected based on previous measurements where no inhibitor was 

used, which would allow the estimation of inhibition efficiency within the temperature 

range where CUI has been reported to be severe. In addition, this study was aimed at 

assessing the performance of the new inhibitor (VpCI 619) in mitigating the corrosion 

of carbon steel under mineral wool insulation. This was achieved by assessing the 

inhibition efficiency as a function of temperature, investigating the effectiveness of the 

inhibitor at different dosages which could provide useful information on the mechanism 

of inhibition and cost analysis as well as comparing its performance with other 

available commercial inhibitors used to mitigate CUI in the literature.  

Due to the complexity of CUI systems, it is not surprising that there has been scarcity 

of data assessing the performance of inhibitors for CUI. A handful of reports 

investigating the effectiveness of inhibitors in mitigating CUI include: the performance 

of vapour phase inhibitor (VpCI 658) on insulated API X65 steel operating between 

120 oC-140 oC [26], the effectiveness of sodium bentonite inhibitors on an insulated 

steel [27], the effectiveness of a volatile corrosion inhibitor in mitigating the CUI of 

carbon steel under mineral wool insulation [14] and more recently, the performance of 

self-fused silicone inhibitors impregnated on tapes for the mitigation of CUI of steel at 

175 oC [28]. The CUI data reported in these literatures are summarized and 

comparison made with the present work. 

Although these reports have tried to provide some data showing the performance of 

certain inhibitors under CUI conditions, the effectiveness of the inhibitors are either 

assessed at a single temperature point or are not quantified but observed by mere 

visual inspection. Moreover, there has been no report showing the effectiveness of 

inhibitors over different temperature ranges where CUI is expected to be severe. A 
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preliminary investigation of the effectiveness of the new inhibitor (VpCI 619) used in 

this study was only assessed qualitatively for Cortec Corporation in 2018 using a visual 

inspection technique, this was later published in 2020 [29]. However, no data 

quantifying the degree of performance of the inhibitor under CUI condition were 

reported. The available corrosion data reported in the publication were obtained by 

boiled immersion test rather than CUI.   

Therefore, the need to provide adequate scientific data that validates the effectiveness 

of the ‘new’ inhibitor (VpCI 619) under CUI conditions was necessary and has been 

the drive for this study. Hence, this study was aimed at providing laboratory data that 

assesses and quantifies the effectiveness of VpCI 619 inhibitor for the mitigation of 

CUI of carbon steel operating between 80 oC and 130 oC. First, the results showing 

the corrosion rates of the inhibited and uninhibited CUI systems at the temperatures 

investigated are presented and discussed. Then, the mechanism of inhibition will be 

explained based on the composition of the inhibitor as well as the effects of 

temperature and dosage on the inhibition efficiency. Furthermore, the results obtained 

from this study is compared with the available CUI data in the literature to assess its 

performance in relation to the available reports.  

 

5.6.1) Effectiveness of the inhibitor at different operating temperatures 

The effectiveness of the inhibitor (VpCI 619) in mitigating CUI of carbon steel was 

assessed by computing the difference between the inhibited and uninhibited corrosion 

rates and expressing the result as a percentage of the uninhibited CUI rate which gives 

the inhibition efficiency as shown in equation 5.1. The chemical composition of the 

inhibitor comprises of sodium molybdate (10-25 wt.%), boric acid (2.5-5.5 wt.%), and 

borax (< 2.5 wt.%). The density of the inhibitor is 1.1 g/cm3, while the vapour pressure 

at 20 oC is 0.023 bar which is similar to the vapour pressure of water at the same 

temperature. Based on these characteristics, the term ‘vapour phase’ seems to be a 

misnomer as this is consistent with liquid phase inhibitors rather than vapour phase 

inhibitors. However, the focus of this research is not on the state of the inhibitor, but 

on the performance in mitigating CUI of carbon steel. The composition of the inhibitor 

suggests that molybdate ion is the main inhibiting component, while boric acid and 

borax may also contribute or just serve as a buffer. This is necessary because 
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molybdates require a stable pH, which may be neutral or alkaline for an effective 

corrosion inhibition. The inhibition efficiency at each operating temperature was used 

as the performance indicator, this is presented in Table 5.3 and shown in Figure 5.21. 

 

Table 5.3 : Comparing the average corrosion rates in the presence and absence of 

the inhibitor as well as inhibition efficiencies. 

 
S.P. 

Corrosion rates (mm/yr) and inhibition efficiencies (I %) at different temperatures 

80 oC 95 oC 110 oC 130 oC 

CRo  CR  I(%) CRo  CR  I(%) CRo  CR  I(%) CRo  CR  I(%) 

1 0.5 0.08 84 0.5 0.07 89 0.2 0.04 81 0.1 0.02 82 

2 0.6 0.06 89 0.6 0.07 88 0.4 0.05 85 0.2 0.04 80 

3 0.6 0.07 89 0.5 0.06 88 0.6 0.05 90 0.3 0.04 87 

4 0.5 0.04 91 0.6 0.06 83 0.5 0.04 89 0.2 0.04 84 

5 0.6 0.06 89 0.6 0.06 89 0.4 0.05 88 0.3 0.04 86 

6 0.6 0.06 90 0.5 0.07 88 0.5 0.03 94 0.2 0.04 79 

S.P.= Sample Position, CRo = corrosion rate in the absence of inhibitor (mm/yr), 

CR=corrosion rate in the presence of inhibitor (mm/yr), I=inhibition efficiency (%). 

 

𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =
𝐶𝑅𝑜 − 𝐶𝑅

𝐶𝑅
× 100           (5.1) 
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Figure 5.21: Plot of mean corrosion rate of insulated carbon steel and inhibition 

efficiency of VpCI 619 as a function of temperature. 

 

The data presented in Table 5.3 and Figure 5.21 show a significant decrease in the 

corrosion rate when the inhibitor was used compared to the absence of inhibitor. The 

pictures of the corroded rings in the absence of the inhibitor and inhibited metal rings 

where no visible corrosion products were observed is shown in Figure 5.22. The 

effectiveness of the inhibitor can be quantified in terms of the inhibition efficiency as 

shown in Figure 5.21. In this study, high inhibition efficiencies were observed across 

all temperatures investigated which ranges from 81.3 % to 94.3 %. Similar inhibition 

efficiencies were observed at temperatures of 80 oC to 110 oC; however, a slight 

decrease in the inhibition efficiency is observed as the temperature is increased to 130 

oC. In the material safety data sheet of the inhibitor, it was stated that the inhibitor 

could be used on pipes operating at high temperature up to 600 oC [30]. It is likely that 

the inhibition efficiency will continue to decrease as the operating temperature 

increases to this threshold.  
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Figure 5.22: Images of carbon steel rings showing the degree of corrosion at 80 °C 

(a, b) and 95 oC (c, d). Inhibitor was only used in b and d, no inhibitor was applied in 

a and c. 

 

5.6.2) Effect of varying dosage of inhibitor  

This was carried out to assess the performance of the inhibitor at different dosages. 

This could be useful when carrying out cost analysis as inhibitors with reduced dosage, 

but having a high inhibition efficiency would be highly desirable in industry. The 

manufacturer’s suggested the quantity of the inhibitor per area of the insulation to be 

3.6-5.2 g/m2 [30]. However, it was necessary to calculate the cost of the specified 

dosage as well as reduced dosages of the inhibitor and assess its performance in 

mitigating CUI. Therefore, in this study, the internal area of the cylindrical insulation 

was calculated and the weight of the inhibitor corresponding to the target range 

recommended by Cortec as well as reduced dosages and the difference in 

performance between the upper limit of the recommended dosage and the reduced 

  

(a) (b) 

(c) (d) 
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dosages were determined.  The effectiveness of the inhibitor in terms of the measured 

corrosion rate at different dosages compared to the control experiment where no 

inhibitor was used is presented in Table 5.4 and shown in Figure 5.23, while the cost 

of the inhibitor as a function of the dosages is presented in Table 5.5. 

Table 5.4 : Average corrosion rate (mm/yr) of carbon steel with different dosage of 

inhibitor 

Dosage of 
inhibitor (g/m2) 

Corrosion rate 
(mm/yr) 

S.D. Inhibition 
efficiency (%) 

0.0 0.58 0.19 - 

1.3 0.14 0.03 76.16 

2.6 0.09 0.03 83.80 

5.2 0.06 0.02 89.23 

 

The result of the effectiveness of VpCI 619 inhibitor in mitigating CUI of carbon steel 

at 80 oC is presented in Table 5.4. The results indicate an increase in the inhibition 

efficiency as the dosage of the inhibitor increases, resulting in a corresponding 

decrease in the corrosion rate. The assessment of the effectiveness of dosage of a 

new commercial inhibitor in mitigating CUI is basically aimed at analysing the cost in 

order to maintain balance between inhibition efficiency and the cost, these are 

presented in Table 5.5. 

 

 

 

 

 

 

 

 

 

Figure 5.23: Effect of inhibitor dosage of CUI rate 
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Table 5.5: Cost analysis of the inhibitor for a given area of the insulation 

Dosage of 
inhibitor 
(g/m2) 

Estimated 
area of 
insulation 
(m2) 

 
 
Cost (£) 

1.3 500 19.4 

2.6 500 38.8 

5.2 500 77.5 

 

The upper limit of the dosage recommended by Cortec was 5.2 g/m2. This has been 

observed to significantly reduce the degree of corrosion, with a high inhibition 

efficiency of 89.20 %, 88.23 % and 83.04 % observed at 80 oC, 110 oC, and 130 oC 

respectively. When the dosage was halved, there was a decrease in inhibition 

efficiency of about 6 %. Further decrease in the dosage of the inhibitor led to a 

significant decrease in the inhibition efficiency which was estimated to be 14.6 %. The 

cost evaluation shown in Table 5.5 was computed from the total cost of a 20 L pail 

which was £656 including tax. The volume of the inhibitor was converted to weight in 

kilograms by multiplying it with density. The corresponding cost of the dosages used 

in this study were computed from the 23.2 kg inhibitor. Results showed a significant 

increase in the cost as dosage increases. The cost saving between the minimum and 

maximum dosage limit per area of the insulation is 78 % which suggests that it is 

important to consider the cost at the planning stage to maintain balance between cost 

and performance of the inhibitor. In addition, the inhibition efficiency of VpCI 619 was 

compared with other vapour phase corrosion inhibitors and this is presented in Table 

5.6. 
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Table 5.6 : Performance of inhibitors for CUI 

  

 

Inhibitor 

 

 

Composition 

aDosage of inhibitor, 

bconcentration of test 

solution and 

ctemperature 

Maximum 

Inhibition 

Efficiency 

(%) 

 

 

References 

 

 

VpCI 658 

Naphtha, 3-

butoxy propan-

2-ol, and alkyl 

triazole 

aNR, b200 ppm NaCl, 

cTemperature: 45 oC and 

120-140 oC. 

 

 

  98.63 

 

[26] 

Sodium 

bentonite 

Sodium 

bentonite 

aNR, bSynthetic 

seawater, c60 – 82.2 oC 

   

  50.9 

[27] 

 

   VCI 

 

NR 

a660 mL/m3, bartificial 

seawater, c80 oC. 

    

   66.8 

[14] 

 

VpCI 619 

Sodium 

molybdate and 

boric acid 

a1.3 – 5.2 g/l 

b1 wt % NaCl 

c80-130 oC 

 

  94.27 

  

 This study 

  NR-Not reported 

The effectiveness of the new commercial inhibitor used in this study in mitigating CUI 

was compared with other commercial inhibitors used for a similar purpose. Although 

all the inhibitors show different inhibition efficiencies, this is only meant to provide an 

overview of the performance of these inhibitors in different CUI environments. It might 

not be reasonable to make direct comparison in terms of the inhibition efficiencies of 

these inhibitors. This is because the CUI systems, the dosage of the inhibitors 

including the conditions which the investigation were carried are quite different. At 

best, the information provided in Table 5.6 might be useful in assessing the 

composition of each inhibitor as well as the corresponding inhibition efficiency under 

the conditions which it was investigated.  This would be important in evaluating the 

cost, eco-friendliness and performance in mitigating CUI which are key factors to be 

taken into consideration when choosing inhibitors for a specific application.  
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5.6.3) Mechanism of Inhibition 

In this section, the mechanism of inhibition as well as the chemical reactions involved 

during inhibition and in the absence of the inhibitor will be discussed. Based on the 

chemical composition of the inhibitor, it would be reasonable to assume that sodium 

molybdate is the main contributor to the overall inhibition efficiency. Boric acid-borax 

combination mainly serves as a buffer to ensure that the pH is kept constant. A 

preliminary characterization of API 5L X65 steel pipe treated with the VpCI 619 

inhibitor using SEM/EDX has revealed the formation of a molybdenum rich compound 

without any trace of ferric oxide [29]. This suggests the incorporation of molybdenum 

to the protective film, which would be expected to reflect on the proposed mechanism.  

Molybdate inhibitors are known to inhibit the corrosion of carbon steel by slowing down 

metal dissolution at the anode thereby passivating the metal in non-CUI systems [30]. 

Although oxygen is an essential component required for corrosion to occur, molybdate 

inhibitors also require oxygen to initiate spontaneous passivation due to their weak 

oxidizing property [31]. The mechanisms of inhibition using sodium molybdate and the 

formation of the passive oxide film on the surface of the metal are shown in Figures 

5.24. 

 

Figure 5.24: The mechanism of inhibition of corrosion of insulated carbon steel 

 

[32]) 

[33] 
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For the uninhibited system shown in Figure 5.24, the anodic reaction involves the 

dissolution of iron to give ferrous ions (Fe2+) giving out electrons in the process. At the 

cathode, oxygen accepts the electrons generated from the anodic reaction and it is 

reduced to hydroxyl ions. The resulting anodic and cathodic products culminates in 

the formation of a ferric oxide layer on the metal surface. Moreover, the hydrated ferric 

oxide film formed on the surface of the metal without the inhibitor is anion selective, 

this would allow the transfer of corrosive species (Cl-) to the metal surface. However, 

in the presence of a molybdate inhibitor, the molybdate ions react with the ferrous ions 

to form ferrous molybdate, which can be oxidized by dissolved oxygen to form an 

insoluble and protective ferric molybdate film. Furthermore, the presence of a 

molybdate ion makes the film to be cation selective, which will therefore be fully 

protective as it will prevent an inward transfer of aggressive anions (Cl-) to the metal 

surface as well as preventing the outward migration of metal ions into the solution [36]. 

This will reduce the susceptibility of the steel to corrosion. 

 

5.7) Conclusions  

 

In conclusion, this study indicates an increased water absorption when the insulation 

was thermally treated at 250 oC for 4 h compared to the untreated samples. This may 

be attributed to the decomposition of the organic additives and silicone oil that are 

responsible for the hydrophobicity of the insulation [37]. In addition, it was observed 

that the insulation absorbed water continuously for 22 days without saturation, which 

indicates an increased risk of CUI if water penetrates the system. Other researchers 

have also observed a continuous absorption of water by mineral wool insulation 

soaked for 60 days without saturation [5]. In addition, variable water absorption 

capacities for triplicate measurements were observed which is similar to other reports 

in the literature [4]. This has been attributed to the presence of localized melts in the 

insulation which opens during thermal degradation absorbing more water than other 

parts of the insulation [3]. 

 

Mineral wool insulation wetted with 1 wt % of NaCl solution when installed on carbon 

steel pipe was observed to result in the corrosion of the metal. The corrosion rate 
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initially increased with temperature up to 80 oC where maximum CUI rate was 

observed. The existence of a maxima could be attributed to a combination of an 

increased drying, decreasing solubility of oxygen as temperature increases which has 

opposite effects to the increased diffusion of oxygen as temperature increases. This 

agrees with the observation of Pedeferri [3] who reported that the trend of corrosion 

rate with temperature is neither linear nor exponential as reported in routine chemical 

reactions, but it is determined by the prevailing factor of either decreased solubility of 

oxygen as the temperature increases or an increased diffusion coefficient of ions. In 

this study, further increase in temperature up to 130 oC resulted in a decrease in the 

corrosion rate due to the dominating effects of insulation dry out and the decreasing 

solubility of oxygen.  

 

The available field data on the dependence of corrosion rate on temperature reported 

in the literature either showed no trend [24] or tends to increase to a certain threshold, 

then decrease on further increase in temperature as observed in this study and 

reported by De Vogelaere [23]. The differences in the effect of temperature on CUI in 

these reports may likely be attributed to the differences in the field as well as the 

experimental methods and conditions which the investigation was carried out. 

Moreover, some of the field data and laboratory reports agree with what is observed 

in this study that it is possible to have corrosion of insulated metals at temperatures 

greater than 100 oC. The maximum corrosion rate of about 0.58 mm/yr obtained at 80 

oC in this study agrees with Wiggen’s risk assessment model which suggests an 

increased risk of failure for pipes operating between 70 oC and 100 oC compared to 

pipes operating at much lower or higher temperatures.  

 

The new commercial inhibitor (VpCI 619) was observed to be effective in mitigating 

CUI at the temperatures investigated (80 oC-130 oC). The maximum inhibition 

efficiency was about 89 % which was observed at 80 oC when the recommended 

dosage as specified by Cortec was used. Although reduced dosages of the inhibitor 

were still effective in protecting the metal, the inhibition efficiencies were reduced 

compared to the recommended dosage. It is reported that corrosion inhibition using 

molybdates is caused by the formation of a passive ferric molybdate film on the surface 

of the metal, which restricts the penetration of aggressive species such as chlorides 

resulting in an enhanced protection. The incorporation of molybdate to the protective 
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oxide layer on the surface of the inhibited metal has already been reported using 

SEM/EDX [29]. This provides a technical guidance for design and material selection 

to prevent failure of insulated metallic structures. 
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CHAPTER 6 

RESULTS AND DISCUSSION 

ELECTROLYTE DISTRIBUTION IN INSULATION AND RATE OF DRYING USING 

GALVANIC CURRENT AND ELECTROCHEMICAL IMPEDANCE 

MEASUREMENTS 

 

In this chapter, the results showing the distribution of test solution (1 wt % NaCl) in the 

insulation as well as the time taken for the insulation to dry at different temperatures 

ranging from 70 oC to 130 oC as measured using galvanic current and electrochemical 

impedance measurements are presented. The purpose of the electrolyte distribution 

study was to assess how the test solution is distributed between the top and bottom 

parts as well as the ends and centre of the insulation and how it relates with CUI rate 

within these regions. In addition, a Cu-Al galvanic couple was used as a sensor to 

monitor the drying times of the insulation at different temperatures.  

 

This is based on the fact that the presence of an electrolyte in contact with the galvanic 

couple would induce the flow of electrons from the metal with a lower potential 

(aluminium) to the metal with a higher potential (Cu). This electron flow due to the 

potential difference existing between the two metals will lead to the preferential 

corrosion of aluminium (galvanic corrosion). However, the focus of this study was not 

on galvanic corrosion but taking advantage of the corrosion current between the 

dissimilar metals when it is in contact with the wet insulation to monitor the rate of 

drying of the insulation at different temperatures. This was carried out to validate the 

drying out effects of the insulation which was assumed to dominate at high 

temperatures leading to a reduced CUI rate earlier discussed in the previous chapter 

of this thesis.  

 

The estimation of the drying times using galvanic current and electrochemical 

impedance measurements were based on the ability to measure the corrosion current 

(Icorr) between the galvanic couple as well as the resistance as the insulation dries.  

This is important because the severity of CUI is influenced by the contact time of an 

insulated metal with the electrolyte. The longer the time a metal contacts an insulation 

that has been wetted with an electrolyte, the greater the severity of CUI [1, 2, 3]. 
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Besides, the drying process provides information on the moisture transport as the 

insulation reverts to the dry state which gives useful insight to the characterization of 

insulation materials [4]. Also, the efficiency of the drying process as well as the time 

required for mineral wool insulation to revert to a completely dry state is quite 

significant in industry [5, 6], especially for monitoring the structural integrity of insulated 

pipes. Therefore, the study of the drying process will help to assess if the observed 

decrease in the CUI rate as the temperature increases which was discussed in the 

previous chapter is due to the drying out of the insulation or some other effect.  

 

In this study, the distribution of electrolyte in the insulation was estimated 

gravimetrically by calculating the quantity of water absorbed by the different parts of 

the insulation (top, bottom, ends and centre) after pre-soaking for 48 h, as well as the 

remaining water after each experimental cycle. In addition, the drying out times at each 

temperature was estimated from the current-time and impedance-time profiles which 

were obtained at about the same time. The results showing the electrolyte distribution 

will be discussed in two parts; the first part consists of the distribution of the test 

solution between the top and bottom sections of the insulation while the second part 

consists of the distribution of the electrolyte between the ends and centre of the test 

area of the rig. Thereafter, the results showing the drying out times estimated from the 

current-time and impedance-time profiles will be presented and discussed. 

 

6.1) Results showing the insulation dry out at different temperatures 

The drying of the insulation was assessed for both the top and bottom parts as well as 

ends of the insulation versus the centre. This was carried out to observe areas with 

high susceptibility to CUI. It has been reported that increase in the quantity of test 

solution within a specific region will culminate in an increased CUI rate within that area 

[1, 2]. The non-uniform distribution of an electrolyte in the insulation implies that the 

corrosion rate will vary with position. Therefore, it is important that the quantity of 

electrolyte across different parts of the insulation be investigated to assess its 

contribution to CUI. 
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6.1.1) Results showing the insulation dry-out between the top and bottom 

parts and effect on CUI rate 

The results showing the average quantity of the electrolyte lost at each temperature is 

shown in Figure 6.1, while the distribution of the electrolyte in the insulation before and 

after experiments at 80 oC and the corrosion rate measured at the same temperature 

are shown in Figures 6.2 and 6.3 respectively. The corrosion test results shown in 

Figure 6.3 has been overlaid with the results reported by Pojtanabuntoeng et al. [1]. 

The data represents the percentage of electrolyte lost relative to the initial quantity of 

electrolyte in the insulation, while the error bars represent the standard deviation of 

three replicates. This was obtained by a quick ramp to the target temperature and then 

held at the temperature for 4 hours to observe the quantity of the test solution lost at 

each temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 : Quantity of test solution lost between the top and bottom parts of the MW 

insulation at different temperatures. 
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 A     B    C 

Figure 6.2: Distribution of test solution at the top and bottom parts of the insulation at 

80 oC (A) initial weight of insulation (B) Weight after experiment (C) Quantity of test 

solution lost. 

 

Figure 6.3: Comparison of the top (section 1) and bottom (section 2) CUI data of 

Pojtanabuntoeng et al. [1] with the average CUI rate obtained in this study which was 

carried out at 80 oC. Error bars represent the standard deviation of three replicates. 

 

The results shown in Figure 6.1 indicates that more test solution is lost at the top 

section compared to the bottom for all the temperatures investigated. The bottom part 
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of the insulation was observed to hold more test solution than the top. This may be 

attributed to the fact that the test solution settles down quickly to the bottom part of the 

insulation. This results in an increased corrosion rate at the bottom part of the rings 

compared to the top as shown in Figure 6.2. This results also agree with the report of 

Pojtanabuntoeng et al. [1] who also observed a higher quantity of electrolyte in the 

insulation wrapped around the bottom of the half-ring samples compared to the 

insulation at the top of the rings. This also resulted in a higher corrosion rate for the 

half rings that were at the bottom compared to the top as shown in Figure 6.2. This 

implies that a higher corrosion rate would be expected for the bottom section of the 

insulated metal due to the increased settling of electrolyte as a result of gravity.  

 

However, this is not always the case as another report from the same research group 

has shown that the top part of the insulation dries out faster than the bottom parts of 

the insulation. The two contradictory results reported from the same research group is 

shown in Figure 6.4. In both studies, the same grade of carbon steel (UNS G10220) 

and mineral wool insulation were used. However, a significant difference in the 

corrosion rate of the half ring samples at the top was observed compared to the bottom 

ring samples [7]. This contradicts the results earlier reported by Pojtanabuntoeng et al 

[8] who observed that the bottom ring samples corroded more than the top.  

 

In these reports, the authors had explained that the settling of the test solution to the 

bottom of the solution in addition to the delayed drying out of the insulation at the 

bottom parts of the rings may be the reason for the increased corrosion rate observed 

with the half ring samples at the bottom of the rig. However, Hou et al. [7] has neither 

provided any explanation why a higher corrosion rate was observed at the top parts 

compared to the bottom ring samples nor is there any information regarding the water 

distribution in the insulation around both rings. 
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 A        B 

Figure 6.4: Results showing the corrosion rate at the top and bottom parts of the 

carbon steel pipe (UNS G10220) under mineral wool insulation. (A) Pojtanabuntoeng 

et al. [8] (B) Hou et al. [7]. 

 

6.1.2) Results of insulation dry out between the ends and middle sections 

The results showing the quantity of the test solution lost in the insulation covering the 

inlet rings (1 and 2), the middle rings (3 and 4) and the outlet rings (5 and 6) as shown 

in Figure 6.5 are presented and discussed. Each data point represents the average of 

three replicates and the error bars represent the standard deviation. 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Quantity of test solution lost in the inlet (I), middle (II) and the outlet (III) 

regions of the mineral wool insulation. 
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The distribution of the test solution across the three sections of the insulation 

consisting of the inlet where silicone oil enters the rig, the middle and outlet regions 

where the oil leaves the rig is shown in Figure 6.5. The results indicate an increase in 

the quantity of the test solution lost with temperature for all the three sections of the 

insulation due to drying out as the temperature increases. However, a decrease in the 

quantity of the test solution lost from the insulation was observed across the inlet end 

to the outlet end for all the temperatures studied. This could partly be attributed to the 

slight temperature gradient across the six rings as shown in Figure 6.6. Nevertheless, 

the statistical test results using one way analysis of variance discussed in the previous 

chapter (chapter 5) has indicated that these temperature deviations across the six 

rings and quantity of test solution across the three sections of the insulation is 

statistically insignificant. 

                    

Figure 6.6 : Temperature variation across the six rings 
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Figure 6.7: A plot of the corrosion rate as a function of the sample position at the 

different temperatures investigated. 

 

The results of the corrosion rate of the metal rings as a function of the sample position 

is shown in Figure 6.7. This indicates significant fluctuations in the corrosion rates 

across different positions of the rings. The first two rings tend to have lower corrosion 

rates compared to the rest of the rings in most cases, this may likely be due to 

increased drying out within these regions as Figure 6.6 has shown a slight temperature 

gradient across the six rings with rings 1 and 2 being at a higher temperature 

compared to the rest of the rings. However, this is not reflected at the other ring 

positions as there is a significant variation in the corrosion rate across the other ring 

positions. This suggests that temperature is not the only factor affecting the corrosion 

rate of the metal, other contributing factors include, distribution of electrolyte at 

different region of the insulation.  

 

Moreover, Figure 6.6 shows a slight decrease in temperature across the six sample 

positions. Comparing Figures 6.5 and 6.6, it would be reasonable to assume that the 

three data points at each temperature in Figure 6.5 would have been quite close to 

each other as observed at 70 oC and 130 oC if the difference in the quantity of the test 

solution lost in the three sections was exclusively controlled by the temperature 

gradient. This is because a temperature difference of about 1-2 oC is not expected to 
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cause much deviation in the quantity of the test solution lost as observed at some of 

the temperatures like 60 oC and 80 oC. The significant deviations at these data points 

may be attributed to the random errors during installation of the wet insulation on the 

rig as well as during its removal to determine the final weights. Therefore, 

electrochemical techniques consisting of galvanic current and electrochemical 

impedance measurements were carried out to monitor the drying out in real time 

without the need to remove the insulation. 

 

6.2) Drying out profile of insulation using galvanic current measurements 

In this section, the current-time profile obtained at different temperatures are 

presented and discussed. The results obtained from this study are also compared with 

other reports in the literature. Estimation of the drying times is important because the 

severity of CUI is also determined by the time of wetness [9,7]. Therefore, the main 

purpose was to assess the time it takes the wet insulation to dry out at different 

temperatures which would explain the observed decrease in the CUI rate as 

temperature was increased up to 130 oC. The drying times were evaluated at initial, 

mid, and late stages represented by 0%, 50% and 90% at all the temperatures 

investigated. These values were chosen to monitor the progress of the insulation dry 

out, which represents initial, mid, and late stages of insulation dry out respectively 

which will enable comparison to be made with the CUI rate data obtained at those 

temperatures. The reference point (to) represents the time at which the galvanic 

current starts drifting towards the horizontal axis. The mid and late drying stages were 

then calculated from the reference current (𝐼𝑜) and the corresponding times for 50 % 

and 90% decrease in 𝐼𝑜 were estimated as shown in Figure 6.8. 
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Figure 6.8: Estimation of initial (𝑡𝑜), mid (𝑡1) and late drying stages (𝑡2) 

 

The galvanic current-time profile obtained in this study is shown in Figure 6.9. The 

initiation of the drying process is shown by the vertically dotted lines which represents 

the point at which the curve starts dropping to the horizontal axis. The entire area 

under the plot could be divided into two regions. The region before the dotted lines 

may be regarded as the wet region, where the metal is in contact with the wet 

insulation without an insulation dry out being initiated. The region after the dotted lines 

may be considered as the drying region, where the insulation dry out gradually begins. 

The colours of the dotted lines should be matched with the colours of the plot when 

assessing these two regions. Each plot represents the three trials at the temperature 

under investigation. The reproducibility of the plot (wet and dry region) was not 

excellent. This is observed by the variability of each of the trials measured at one 

temperature. The differences in replicate measurements may be attributed to the fact 

that galvanic current across the small area of the electrodes is quite sensitive to any 

small changes in contact between the wet insulation and the metal.  

 

The water absorption was quite variable as earlier discussed in the previous chapter 

(chapter 5). The insulation holding the higher quantity of the test solution will be 

expected to dry longer than the insulation with the less amount when measured at the 
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same temperature. Nevertheless, the triplicate measurements at each temperature 

shown in Figure 6.8 was necessary to observe the variability associated with each trial 

which will indicate the reliability of the technique as a sensor in monitoring insulation 

dry out. In Figure 6.8, there are four aspects of interests which forms the basis of 

discussion. The area of increasing galvanic current with temperature, which is uniform 

across all trials, the aspect of variable current density during the wet region, the 

estimated point in which the curve starts moving towards the horizontal axis and the 

final point at which the galvanic curve is negligible or 0.  

 

Despite the variability, the plot shows an initial increase in the galvanic current with 

time for all the temperatures under investigation. This might be attributed to the fact 

that the temperature shown in the secondary axis increases initially from room 

temperature to the target temperature. This results in an increase in the galvanic 

current as the temperature increases which is uniform across the three trials at each 

temperature. However, as the temperature stabilizes and it is maintained, the current 

tends to drift towards the horizontal axis. This initial drift does not represent drying out 

but an attempt to attain a stable value of the corrosion current. The variability in this 

region may be attributed to the sensitivity of the technique to slight changes in contact 

between the insulation and the metal. 

 

The estimated point at which the curve starts drifting towards the horizontal axis and 

actually reaches it is quite reproducible at some trials for example, the last two trials 

at 70 oC, the first two trials measured at 80 oC, and all the trials measured at 110 oC. 

This is the estimated point at which the drying out process is initiated. As the insulation 

starts to dry out, the solution resistance increases which reduces the galvanic 

corrosion current. The solution resistance continues to increase as the drying process 

continues till it reaches the point where the galvanic current is negligible or 0 as shown 

in Figure 6.9. It can be observed that the time at which the galvanic current reaches 0 

decreases with temperature. This is as expected as an increase in temperature 

enhances the drying process by driving out the test solution rapidly compared to the 

lower temperatures. 
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Figure 6.9: A plot of galvanic current density (A/cm2) against drying time (seconds) at 

different temperatures (primary axis) and temperature ramp against time (secondary 

axis). The vertically dotted lines of each colour correspond to the colour of each trial, 

which represents the estimated time where drying of the insulation is initiated. 
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To obtain a better picture of the drying process, it was necessary to estimate the 

average drying times for each temperature including the standard deviation 

represented as error bars. This is presented in Table 6.1 and shown in Figure 6.10. 

 

Table 6.1 : Drying times (minutes) of insulation at different temperatures 

Temperature 
(oC) 

Replicates to (x 103) 

(seconds) 
(0%) 

t1 (x 103) 

(seconds) 
(50%) 

t2 (x 103) 

(seconds) 
(90%) 

 
70 

Trial 1 25.01 27.16 28.15 

Trial 2 12.06 26.11 33.60 

Trial 3 8.04 16.09 22.09 

 
80 

Trial 1 11.64 20.89 24.25 

Trial 2 12.31 21.04 24.17 

Trial 3 2.13 22.77 24.37 

 
90 

Trial 1 11.69 15.92 17.92 

Trial 2 15.00 17.27 19.22 

Trial 3 13.59 14.38 14.98 

 
100 

Trial 1 10.57 13.29 15.65 

Trial 2 7.60 9.58 17.24 

Trial 3 11.15 15.62 16.13 

 
110 

Trial 1 13.49 14.35 14.99 

Trial 2 12.11 13.72 14.57 

Trial 3 12.89 14.67 15.68 

 

Figure 6.10: Average drying times estimated from the galvanic current density-time 

profile at different temperatures. 
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The drying times shown in Figure 6.10 is an average of the triplicate measurements 

presented in Table 6.1. This will be discussed in two directions, vertically, representing 

the differences in the data points at each temperature and horizontally, representing 

the differences in the estimated points across the temperatures for each plot. For the 

estimated data points at each temperature, the distance between to, t1 and t2 indicates 

the progress of the insulation dry out. This gap is observed to decrease with 

temperature which indicates that an increase in temperature enhances insulation dry 

out. The significant decrease in the insulation dry out observed at 110 oC explains the 

decrease in the corrosion rate observed at 110 oC compared to 80 oC as discussed in 

the previous chapter.  

 

The galvanic current density-time plot for the top and bottom sections of the insulation 

obtained at 100 oC is shown in Figure 6.11. The drying profile begins with an increase 

in the corrosion current with time for all the temperatures studied. This could be 

attributed to an initial increase in temperature till the target temperature was reached. 

Thereafter, the temperature was maintained for hours till the drying was completed, 

which is evidenced by the corrosion current dropping to 0 before the pipe was allowed 

to cool down to room temperature. The initial increase in temperature will result in an 

increase in the corrosion current (Icorr) which also reflects the result observed with an 

increase in the corrosion rate as the temperature is increased up to 80 oC. Therefore, 

the gradual increase in the corrosion current prior to reaching the target temperature 

observed in this study could be attributed to the gradual increase in the temperature 

of the insulated couple (Al-Cu).  

 

The drying times of the insulation at the top, sides, and bottom parts at different stages 

is shown in Figure 6.11. The results indicate that the top and lateral sections of the 

insulation dries out more quickly than the bottom section of the insulation. This could 

be attributed to the fact that more test solution settles to the bottom of the insulation 

which takes time to dry out. Moreover, this agrees with the result of the distribution of 

test solution in the insulation between the top and bottom parts as well as the corrosion 

rate data estimated for these two regions. The estimated drying times at different 

stages (to: 0 %, t1:50 % and t2: 90%) is shown in Figure 6.12 below. 
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Figure 6.11: Galvanic current density-time profile for the top, bottom and lateral 

sections of the insulation at 100 °C. 

 

 

Figure 6.12: Average drying time estimated from the galvanic current density-time 

profile in Figure 6.7. 
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Figure 6.11 shows the estimated drying times (D) at different stages such as to: 0 % 

to t2: 90%. The fact that more test solution settles to the bottom and takes a longer 

time to dry out implies that the corrosion rate will be expected to increase at the bottom 

parts of the metal compared to the top and sides. This supports the previous results 

shown in Figures 6.1 and 6.2.  

 

6.2.1) Drying out profile of the mineral wool insulation using Electrochemical 

impedance measurements 

In this section, the results showing the drying out times of the mineral wool insulation 

at different temperatures as obtained from the electrochemical impedance 

measurements is presented. The purpose was to investigate the drying process of the 

mineral wool insulation wetted with 1 wt% NaCl, which would also help in validating 

the reduced CUI rate obtained in the previous chapter as the temperature increases 

beyond 100 oC. The fact that the solution resistance changes as the insulation dries 

out makes it possible to monitor the progress of insulation dry out at different 

temperatures. 

 

It has been reported that the ability to monitor the electrochemical impedance of 

electrolytes beneath the insulation could lead to an indirect detection of the CUI 

activities as well as the associated risks [8]. Therefore, this result will also help in 

monitoring the degree of wetness and the time it takes for the insulation to dry. Similar 

to the galvanic current measurements, the estimation of the mid (𝑡1) and late drying 

stages (𝑡2) representing the time it takes to obtain 50 % and 90 % increase in the 

reference impedance (𝑍𝑜) where drying is believed to be initiated as evident in the 

gradual increase in the impedance were calculated. The estimation of the different 

drying stages is shown in Figure 6.13. 
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Figure 6.13: Impedance-time plot showing an estimation of the different drying times.  

 

The drying out profiles obtained from the impedance measurements are shown in 

Figure 6.14, while the different stages of drying ranging from 0% to 90 % extracted 

from the plots are shown in Figure 6.15. Figure 6.14 shows the impedance-time data 

at different temperatures. The results indicate an initial decrease in impedance which 

corresponds to the time at which the electrolyte is heated up to the target temperature 

as shown by the vertically dotted arrows in green. The temperature program involved 

a rapid ramp to the target temperature at about 30 minutes. This is indicated by a 

decrease in impedance as a result of an increased conductivity of the solution. Also, 

an increased temperature will result in a decrease in the solution resistance [9, 10]. 

When the target temperature is reached, the temperature is maintained for at least 7 

hours as shown by the horizontally dotted arrows in green till the insulation dries out. 

Within this range, the impedance tends to stabilize initially before it gradually starts 

increasing slightly due to the gradual drying out of the insulation at the target 

temperature.  
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As the solution dries out, the solution resistance dominates, and the impedance 

increases. This continues until there is a sudden increase in the impedance to the 

point where the potentiostat cannot measure the signal beyond a certain threshold (1 

MΩ) due to the extremely high impedance. At this point, the solution resistance is quite 

high resulting in a noisy data which reflects either complete insulation dry out or 

negligible amount of test solution in the insulation as shown in Figure 6.14. The initial 

stages where the impedance decreases with increasing temperature is an indication 

that there are other contributing factors other than the solution resistance. However, 

as the insulation continues to dry out at constant temperature, the dominant nature of 

the solution resistance is reflected in the phase difference which tends to zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14: Impedance-time plot and phase versus time plot at different temperatures 

(T). 
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Figure 6.15: Plot showing the drying stages at different temperatures 

 

Figure 6.15 shows the different drying stages (0%, 50% and 90%) extracted from the 

plots in Figure 6.14. This indicates a decrease in the drying time as the temperature 

increases up to 110 oC as would be expected. In addition, Figure 6.13 also indicates 

that for all the temperatures studied, the initial increase in the drying time from 0% to 

50 % dry out seems greater than the late drying stages (50% to 90%) especially at 

high temperatures of 100 oC and 110 oC. This agrees with the gradual rate of insulation 

dry out followed by the rapid drying phase as shown in Figure 6.15. Although it is 

difficult to know the exact quantity of electrolyte around the test area as this might 

affect reproducibility, the triplicate measurement obtained in this study was quite 

reproducible compared to the galvanic current method. 

 

These results are comparable to the report of [10] as shown in Figure 6.16, who also 

observed an initial decrease in the impedance with time for the mineral wool insulation 

that was wetted with 0.5 M NaCl solution and water. This continued until the drying of 

the insulation sets in resulting in a sharp increase in the solution resistance. This is 

further supported by the work of Pojtanabuntoeng et al. [11] who investigated the 

drying out of mineral wool insulation using electrochemical impedance spectroscopy 

as well as the resultant effect on corrosion under insulation. They reported that low 

impedance values were obtained when there was a sufficient quantity of electrically 
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conductive water in the insulation. They also observed a reduced corrosion damage 

when holes were drilled at the bottom of the insulation to remove excess water from 

the bottom of the insulation. 

 

Figure 6.16: An impedance-time plot for mineral wool insulation wetted with 0.5 M 

NaCl and water at 40 °C at a frequency of 100 kHz [10].   

 

 

 

 

 

 

 

 

 

 

 

(a)           (b) 

Figure 6.17: An electrochemical impedance plot showing the drying times of wet 

mineral wool insulation installed on carbon steel rings at a frequency of 10 kHz (a) 

without drain holes (b) with drain holes [11] 
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Figure 6.18: Solution resistance values showing the drying of mineral wool insulation 

[12]. 

 

The results obtained in this study also agree with the reports of Pojtanabuntoeng and 

co-researchers shown in Figure 6.17 and 6.18, who investigated the drying times of 

wet mineral insulation occurring at the top and bottom parts of carbon steel rings with 

and without drain holes to remove water from the insulation. The results indicated a 

rapid increase in impedance as the solution dries out. The effect of drain holes seems 

pronounced for both the top and bottom parts of the insulation. The insulation without 

drain holes is still showing evidence of wetness after the initial increase in impedance, 

while the insulation with drain holes tend to show stable impedance values after some 

days which suggests less drainage of the water from the insulation [11]. The top parts 

of the insulation indicated a rapid increase in impedance which later remained 

constant, whereas the impedance at the bottom parts of the insulation showed some 

delay by 2 or 3 days, which suggests that the drying out step is slow at the bottom 

parts of the insulation compared to the top. 

6.3) A Comparison of the drying times of galvanic and impedance 
measurements  

In this section, the drying times obtained from galvanic current and impedance 

measurements have been compared to assess the difference between both methods. 

The drying times of both methods were collected as a function of temperature and the 
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calculated degree of insulation dry out (0%-90%). The result is presented in Table 6.1 

in the appendix and plotted in Figure 6.19. 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                             (b) 

Figure 6.19: A comparison of the drying times of the galvanic current (G.C.) and 
impedance measurements (E. I.). 

 

The estimated drying times from the galvanic current and electrochemical impedance 

measurements shown in Figure 6.19a indicates a similar trend with temperature but 

quite different in the values estimated at the same temperature (Figure 6.19b). The 

drying time falls more rapidly at 70 oC and 80 oC but seems not to cause much change 

at 100 oC and 110 oC.  Both shows a decrease in the drying time as the temperature 

is increased. However, in Figure 6.19b, the variability associated with the replicate 

measurements at each temperature for galvanic current method is seen by the large 

difference in the horizontal error bars at some of the data points compared to the 

vertical error bars. This significant variability associated with the galvanic current 

method may likely be attributed to the sensitivity of galvanic current measurements to 

slight changes in the degree of contact of the insulation with the metal rings. The 

impedance method seems quite reproducible across the studied temperature range 

and the values of the replicate measurements shown in Figure 6.19b does not show 

much difference compared to the galvanic current method. 
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Figure 6.20: A comparison of the change in drying times of both galvanic current and 

impedance methods with the change in corrosion rate at 70 oC, 80 oC and 110 oC. 

 

In Figure 6.20, the change in drying times is assessed with respect to the 

corresponding change in the corrosion rate. The red axis represents the temperature 

range that is believed to be exclusively dominated by an insulation dry out. The 

decrease in the drying times (t2) of both the electrochemical impedance and galvanic 

current methods from 70 oC to 110 oC are 52 % and 42 % respectively. The change in 

corrosion rate within this temperature range was observed to be 15 %. The drying out 

times within this range cannot account for the observed change in the corrosion rate, 

this could probably be caused by the fact that insulation dry out is not dominant at 70 

oC as observed by the time it takes to reach an impedance of 1 MΩ (Figure 6.14). This 

is also the case with the drying times and corrosion rates within 70 oC to 80 oC where 

the corrosion rate increases even when there is a 22 % decrease in the drying time. 

This suggests that within this temperature range, insulation dry out is not the dominant 

factor.  

 

 

However, within the temperature range (80 oC to 110 oC) where the insulation dry out 

is believed to be dominant, the decrease in the drying time for E.I and G.C.  methods 
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were obtained as 38 % and 35 % respectively. In this temperature range, the corrosion 

rate is observed to decrease by 24 %. The decrease in the drying time also 

corresponds to a significant decrease in the corrosion rate even though it is not exactly 

at the same rate. The non-linear dependence of the CUI rate with temperature implies 

that the drying times could only be used to account for the change in corrosion rate 

within the temperature range in which the insulation dry out is the dominant factor.  

 

6.4) Conclusions 

The distribution of electrolyte in mineral wool insulation was assessed at different 

temperatures in terms of the amount lost within the top and bottom sections as well as 

the ends and centre of the insulation. This was carried out to identify areas with high 

susceptibility to CUI as the rate of CUI depends on the quantity of electrolyte around 

each region of the metal. Results indicated that more test solution was lost at the top 

section compared to the bottom section of the insulation. This agrees with the work of 

[1] who also observed more CUI damage around the bottom ring samples compared 

to the top due to an increased settling of the test solution to the bottom part due to 

gravity. This suggests that the bottom part of the insulation may likely be more 

susceptible to CUI damage compared to the top. In addition, the ends and centre of 

the insulation did not show much deviation in the quantity of water lost between the 

inlet, middle and outlet ends of the insulation. The slight temperature gradient of about 

1-2 oC between the inlet and outlet end of the rig may likely be a contributing factor. 

However, this could not account for the variability of CUI rate across the six ring 

positions. This is probably because there are other factors such as variability in the 

distribution of test solution in the insulation used in different trials, difficulty aligning the 

rings and spacers reproducibly for each trial among other reasons.   

 

The drying out times of mineral wool insulation was investigated using galvanic current 

and electrochemical impedance measurements using an Al-Cu galvanic couple and 

Cu-Cu connection respectively which would serve as a sensor in monitoring the drying 

out of the mineral wool insulation. It was observed that it took a longer time for the 

bottom part of the insulation to dry out compared to the top and the sides which agrees 

with the water distribution results as well as the estimated corrosion rate results 

reported in this thesis and by Pojtanabuntoeng et al. [1]. This implies that more test 
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solution occupies the bottom part of the insulation and might likely cause more 

corrosion within this area compared to other regions. 

 

Both galvanic current and electrochemical impedance methods showed a similar trend 

in the drying times at the temperatures under investigation (70 oC-110 oC). The drying 

times of both methods decreased as the temperature increased. Replicate 

measurements of the drying times showed a higher variability with the galvanic current 

method compared to the electrochemical impedance method. Both methods showed 

that an increased drying out of the insulation resulted in a decreasing corrosion rate. 

However, the fact that the decrease in the drying out times of both methods was not 

exactly at the same rate as the decrease in corrosion rate within the temperature range 

where the drying out was believed to be dominant (80 oC-110 oC) implies that other 

factors such as the availability of oxygen, steam, among others may still have some 

effect on the CUI rate within this temperature region.  

 

 

References 

1. Pojtanabuntoeng, T., Machuca, L. L., Salasi, M., Kinsella, B. and Cooper, M. 

(2015a). Influence of drain holes in jacketing on corrosion under thermal 

insulation. Corrosion, 71 (12):1511–1520. 

2. De Vogelaere, F. (2009). Corrosion under insulation, Process safety progress, 

28(1): 30-35. 

3. Hou, Y., Pojtanabuntoeng, T. and Iannuzzi, M. (2020). Use of electrochemical 

current noise method to monitor carbon steel corrosion under mineral wool 

insulation. Materials Degradation, 4 (39):1-9.  

4. Jirickova, M., and Cerny, R. (2006). Effect of hydrophilic admixtures on 

moisture and heat transport and storage parameters of mineral wool. 

Construction and Building Materials, 20(6):425-434. 

5. Ojanen, T. (2017). Moisture performance of mineral wool insulation products in 

highly insulated structures. Energy Procedia, 132:795-800.  

6. Loboda, B. and Szurman, F. (2019). Thermal conductivity coefficient research 

on mineral wool after partial immersion in water and drying to constant mass. 

IOP Conference Series: Material Science and Engineering, 471:1-10. 



 

195 
 

7. Hou, Y., Pojtanabuntoeng, T. and Iannuzzi, M. (2020). Use of electrochemical 

current noise method to monitor carbon steel corrosion under mineral wool 

insulation. Materials degradation, 4 (39):1-9.  

8. Pojtanabuntoeng, T. Machuca, L. and Salasi, M. (2015). New experimental rig 

to investigate corrosion under insulation at different climate conditions. 

Corrosion and materials, 46-51. 

9. Caines, S., Khan, F., Shirokoff, J. and Qiu, W. (2015). Experimental design to 

study corrosion under insulation in harsh marine environments. Journal of Loss 

Prevention in the Process Industries, 33:39-51. 

10. Ayello, F., Hill, D., Marion, S., and Sridhar, N. (2011). Integrated sensor 

networks for corrosion under insulation: monitoring, cost reduction, and life 

extension strategies. NACE publications, paper number 11281. 

11. Pojtanabuntoeng, T., Kinsella, B., Ehsani, H., Brameld, M. (2017). Comparison 

of insulation materials and their roles on corrosion under insulation. NACE 

International, paper number 9287. 

12. Pojtanabuntoeng, T., Machuca, L. L., Salasi, M., Kinsella, B. and Cooper, M. 

(2015b). Influence of drain holes in jacketing on corrosion under thermal 

insulation. Corrosion, 71 (12):1511–1520. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

196 
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CHAPTER 7 

RESULTS AND DISCUSSION 

PREDICTIVE MODELLING OF CORROSION RATE OF CARBON STEEL UNDER 

INSULATION USING ARTIFICIAL NEURAL NETWORK 

 

This chapter covers the results of prediction of CUI rate using artificial neural network 

(ANN) which was carried out using SPSS software. First, the results of dimensional 

reduction of data using principal component analyses (PCA) tool are presented. This 

is followed by sensitivity analyses involving assessment of percentage contribution of 

each of the input parameters, as well as accuracy and precision of predicted CUI rate. 

In addition, the effect of different network designs such as number of input parameters 

and hidden layers as well as choice of activation function (logistic sigmoid and 

hyperbolic tangent functions) were investigated. This study was aimed at assessing 

the accuracy and precision of CUI rate predictions from artificial neural network and 

the architectural network designs that could enhance accuracy of predictions.  

 

This is important because corrosion of insulated metals is hidden beneath the 

insulation, which means that corrosion can proceed unnoticed till final consequences 

are severe. Therefore, accurate prediction of CUI rate would enable adequate 

inspection and maintenance schedule to be executed prior to failure which have 

enormous cost and safety implications. Although damage and probability of failure 

functions have been developed for CUI and non-CUI applications [1, 2, 3, 4], this was 

based either on the tendency of failure of protective coatings or fitting a single 

degradation measurement to failure-time distribution models in situations where field 

CUI data cannot be obtained. Theoretical prediction of the rate of CUI is difficult due 

to the fact that the interactions between different factors affecting CUI is quite 

complicated. For this reason, ANN has been the most suitable predictive tool 

compared to linear regression models since it specializes in identifying non-linear 

relationships between different interrelated variables and can be used to predict the 

behaviour of complex systems [5]. To the best of our knowledge, there has been 

scarcity of data assessing different neural network combinations that could enhance 

accuracy and precision of CUI rate predictions using ANN. 
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Most prediction of corrosion rates reported in the literature were carried out for 

uninsulated metals [6, 7]. In fact, the only available study on prediction of CUI rate 

using ANN after a thorough search on different search engines were the works of 

Burhani et al. [8] who utilized the machine learning module of JMP software to predict 

CUI rate as well as the prediction of wetness and CUI damage for above ground 

pipelines by Erickson et al. [3]. However, these were just one-off predictions, there 

was no data showing ways of improving accuracy and precision of prediction in these 

reports. Therefore, this study was carried out to provide a broader perspective to CUI 

rate prediction by assessing the accuracy of different network designs which would 

serve as a guide when choosing network parameters for improved accuracy and 

precision of CUI rate predictions.  

 

The prediction of CUI rate of carbon steel was carried out using patterns mapped 

between the experimental CUI rate as the dependent variable and the parameters that 

influenced CUI such as temperature, quantity of test solution (1 wt % NaCl) in 

insulation, dosage of inhibitor injected to insulation and arrangement of the metal rings 

as the input variables. These were parameters measured in the laboratory and their 

significance to CUI have already been discussed in Chapters 3 and 5. The mapping 

process is based on the variations captured between the input variables and the 

expected output variables which is used during the training step to establish a 

relationship between both variables. The training process involves assigning of 

weights and bias values to the input variables and subsequent implementation with an 

activation function to yield the first predicted output, the error obtained by computing 

the difference between the predicted and observed outputs are evaluated and 

minimized by adjusting the weights and bias iteratively till a minimum specified error 

(≤1%) was obtained [9]. 

 

Furthermore, it should be noted that theoretical predictions using ANN is not restricted 

to these parameters only; in fact, more measurable input parameters having effect on 

CUI can be added which may likely result in improved adaptation of the network during 

training [10]. The input variables were subjected to both logistic sigmoid and hyperbolic 

tangent functions using single and double hidden layers to compare the accuracy and 

precision of both network designs. The input data was split into training and test sets 

comprising of 70% and 30% respectively. The percentage of data assigned to each 
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set was user controlled, and the percentages were chosen based on the generally 

accepted criteria for data partitioning for ANN analysis [8, 11]. However, the assigning 

of specific data to each set was strictly software controlled which would eliminate 

human bias. 

 

Therefore, to enhance clarity, this result is organised and presented in four parts. The 

first part consists of evaluation of the relationship between the input parameters 

(independent variables) and the output which is CUI rate (dependent variable) using 

PCA and importance module of ANN. The second part consists of the results showing 

the effect of architectural design of ANN (single and double hidden layers), this is 

followed by prediction accuracy of logistical sigmoid and hyperbolic tangent activation 

functions as well as precision of the predicted output. Detailed explanation of the 

choice of network parameters including description of the calculations behind the 

training process and predictions have been provided in the Fundamentals chapter. It 

is expected that this study will provide useful information on the choice of network 

parameters and design of neural architecture for CUI rate predictions as well as clarify 

the degree of consistency of logistical sigmoid and hyperbolic tangent activation 

functions in making reproducible predictions of CUI rate. This could be useful in 

making informed decision on the state of insulated metals without the need to remove 

the insulation which has enormous cost implications.  

 

7.1) Relationship between the input parameters with CUI rate    

The existence of relationship between the input parameters used in this study such as 

temperature, dosage of inhibitor, quantity of test solution in insulation and sample 

position with CUI rate was assessed using principal component analysis and artificial 

neural network. This was to ensure that the data satisfy certain criteria such as 

existence of some correlation between each of the input parameters and the expected 

output. This is important because ANN relies on this relationship in making predictions. 

Therefore, input parameters that has no relationship with the expected output may not 

be suitable for predictions using ANN, as it will be difficult to train the software [8].  As 

a matter of fact, the greater the number of input parameters with some relationship 

with the expected output, the greater the adaptability of the network during training in 

making predictions. Also, the Scree and orthogonal component plots derived from 
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principal component analysis of CUI data are good data screening tools used in this 

study prior to carrying out CUI rate prediction.  

 

7.1.1) Principal Component Analysis (PCA) Results of CUI Data 

Principal component analysis (PCA) is one of the multivariate data analytical 

techniques that is mostly used in converting large datasets into units called 

components with a decreasing order of variations captured in each component [12]. 

The main purpose of PCA is to reduce the dimensions of many interrelated variables 

through a transformation to a newly ordered data set such that most of the variations 

of the original data are retained in the first few components [13]. This is important 

because ANN makes prediction based on the pattern that the software has learned 

from existing data. Therefore, narrowing the data to dimensions with highest variations 

would improve the training process resulting in improved predictions. Moreover, 

improved accuracy of corrosion rate prediction has been reported with PCA 

transformed data compared to the data without PCA transformation [14]. 

 

Therefore, it is necessary that the data used for training and predictions be subjected 

to PCA analysis to ensure that only the most significant data are included in the model 

for CUI rate prediction by capturing the significant variations in transformed data sets 

called components. Hence, this ensures that parameters with negligible variations are 

removed prior to making predictions. The outputs of PCA analysis used in this study 

include the orthogonal component and Scree plots which explains the relationship 

between the input parameters and the significance of each component respectively. 

This is presented and shown in Table 7.1 and Figure 7.1 respectively. 
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Table 7.1 : PCA table showing the correlation coefficients between each component 

and the variables studied 

Parameters Component   
1 

Component 
2 

Components 
3-5 

Corrosion rate (CR) -0.901 -0.278  
 
 

Discarded 

Dosage of inhibitor (DI) 0.868 - 

Temperature (T) 0.850 - 

Quantity of test solution 
(TS) 

-0.582 0.218 

Sample position (SP) - 0.959 

Variations (%) 80. 5 16.65 2.85 

 

The total number of components derived from the PCA result corresponds to the total 

number of the input and output variables as presented in Table 7.1. The order of 

significant groups based on the captured variations are arranged into components (1-

5); hence, the name principal component analysis. The most significant variation is 

captured in the first component, which represents the dimensions by which maximum 

spread out of the data is achieved. The next significant variation is captured in the 

second component, which represents the linear combination of the observations 

having a maximum variation in an orthogonal direction to the first principal component 

[12]. The less significant data are filtered into components 3 to 5, but these are 

excluded from further analysis due to the low contribution to the total variations of the 

original data set. According to Jollife [13], a single component is insufficient to describe 

the total variations in a data set and inclusion of components with negligible 

contributions would negatively affect the accuracy of predictions. Therefore, only the 

first two components were chosen for further analysis. The positive and negative 

numbers in both columns represent the correlation of each component with the original 

data for each parameter studied. The higher the value irrespective of the sign, the 

stronger the correlation.  

 

In addition, it is worth noting that the components are uncorrelated with each other, 

and the most significant correlations are filtered into the first component. This makes 

up 80.5 % of the total variations, while the second component accounted for 16.65 % 
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of the total variations. In total, both components accounted for 97.15% of the original 

variations, while the 2.85% spread across the three remaining components were 

discarded. The results shown in Table 7.1 indicates that the first principal component 

is strongly correlated with the corrosion rate, dosage of the inhibitor and temperature 

but moderately correlated with the quantity of the test solution in the insulation. 

However, the corrosion rate and the quantity of the test solution in the insulation have 

negative signs while temperature and dosage of the inhibitor have positive signs. This 

implies that an increased dosage of the inhibitor would result in a decrease in the 

corrosion rate, while an increase in the quantity of test solution in the insulation would 

result in an increased corrosion rate.  

 

On the other hand, the sample position has less significant effect on the corrosion rate 

as shown by the near perpendicular orientation with the CUI rate in Figure 7.1a. This 

may be attributed to the fact that the distance between the first ring and the last ring 

was just 6 cm; therefore, no significant difference in the corrosion rate would be 

expected. This agrees with the statistical test of hypothesis reported in chapter 5 of 

this study which indicated that there was no significant difference in the corrosion rate 

across the sample positions. This explains why no correlation has been established 

between the positional arrangement of the metal rings and the first component 

representing the most significant variation. Nevertheless, some of the important 

variations have also been filtered into the second component accounting for 16.65 % 

of the total variation. 

 

In addition, the relationship between the studied parameters is shown by the 

orthogonal component plot in Figure 7.1a, while the eigen values associated with each 

component is shown as a scree plot in Figure 7.1b. The orthogonal component plot is 

interpreted in terms of the position of each of the parameters in the quadrant, the 

distance from the origin as well as the presence of clusters. The interpretation of the 

correlations of the principal component result shown in Figure 7.1a will be carried out 

with respect to the corrosion rate as the reference point since this is the expected 

output. On the other hand, the scree plot shown in Figure 7.1b will be interpreted in 

terms of the significance of each of the components which is indicated by the eigen 

values and the contribution of each of the components to the total variation. 
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Figure 7.1 : (a) An orthogonal component plot of the CUI data (b) A Scree plot showing 

the decreasing order of significant data in each component 

 

An overview of the relationship of each of the input parameters with the expected 

output (CUI rate) is shown in Figure 7.1a. The dosage of the inhibitor shows a good 

negative relationship with the corrosion rate, this is supported by the fact that both 

values lie on the opposite side of the quadrant, which shows that an increased dosage 

of the inhibitor would result in low corrosion rates. In addition, the temperature also 

shows a near opposite correlation with the corrosion rate as shown by the proximity of 

the temperature to the opposite quadrant of the corrosion rate. This behaviour may be 

attributed to the initial increase in corrosion rate with temperature up to 80 oC and a 

subsequent decrease of corrosion rate when temperature was further increased to 

130 oC as discussed in chapter 5. Also, the quantity of test solution in the insulation 

shows an average positive relationship with the CUI rate. This could be attributed to 

the fact that the trend of an increase in the corrosion rate as the quantity of the test 

solution in the insulation increases is less significant due to the presence of the 

inhibitor. 

 

On the other hand, the sample position indicated a weak relationship with the corrosion 

rate compared to the rest of the parameters as shown by the near perpendicular 

orientation with the corrosion rate. This is evident in the lack of correlation with the 

 

(b) 
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component with the highest variation (component 1). Nevertheless, it has a good 

positive correlation with the second component representing the component with the 

next significance after the first component.  Although it has been suggested that the 

input parameters with negligible relationship with the expected output should be 

removed from the model in the bid to enhance prediction accuracy of the CUI rate [8], 

it is important that the contribution of these input parameters be quantified prior to 

making predictions to assist with the choice of parameters to be included in the 

prediction. This was carried out using the normalized importance module of the 

artificial neural network which will be discussed in the next section. 

 

Furthermore, the degree of variation captured by each component is shown on the 

Scree plot shown in Figure 7.1b. In this figure, each component represents the 

dimensional variable space showing the best least squares approximation. The degree 

of variation decreases as the number of component increases. This implies that the 

most significant variation is captured by the first component (PC1) as indicated by the 

highest eigen value, this is followed by the second principal component (PC2). The 

general rule of thumb relating to component selection is to choose components with 

an eigen value of at least 1 [15, 16]. This implies that only the first two components 

satisfy this criterion, and this will be sufficient to provide the required information 

expected from the input data. In predictive modelling, a single principal component 

may not be sufficient to model the variability existing in a set of data [12]. Therefore, it 

was important to choose the first two components as inclusion of more insignificant 

components will affect the accuracy of prediction. Further confirmation of this 

relationship was carried out using the normalized importance module of the artificial 

neural network. 

 

7.1.2) Percentage contribution of input parameters using ANN 

The contribution of the input data to the prediction of the expected output was 

assessed using the normalized importance module of the artificial neural network. This 

estimation was based on the degree of the relationship between the input variables 

and the output, which could be useful in determining if a parameter should be excluded 

from the model or not. This is important because it might be difficult to train the 

software using data sets that has a negligible trend with the expected output. 
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Moreover, it is likely that such data could be the main cause of error during prediction. 

Therefore, to ensure reliability of the predicted output, it is advisable to assess the 

importance of each of the input variables in terms of the degree of the relationship of 

each input parameter. Artificial neural network assesses the contribution of each 

independent variable by normalizing the importance values of each of the input 

variables to the parameter with the highest importance and further expresses it as a 

percentage.  The result could also be useful in verifying the output of the principal 

component analysis. The ANN result is presented in Table 7.2 and plotted in Figure 

7.2. 

Table 7.2 :Normalized importance of the input variables 

 
Input parameters 

With inhibitor (VpCI 
619) 

Without Inhibitor 

Normalized Importance 
(%) 

Normalized 
Importance (%) 

Dosage of inhibitor (DI) 100 - 

Temperature 60.2 98 

Sample position (SP) 40.5 16 

Amount of test solution 
(TS) 

26.3 100 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.2 : Significance plot of the input parameters (a) Data sets including inhibitor 

(b) data without inhibitor 
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The importance analysis is computed based on the significance of each of the input 

parameters to the prediction of the rate of CUI. The data presented in Table 7.2 and 

shown in Figure 7.2a indicates that the dosage of the inhibitor has the highest 

contribution in predicting the final value of the corrosion rate. Therefore, other 

parameters are normalized to this value. This is followed by temperature, which is also 

observed to have a good trend with the expected output. These results agree with the 

output of the principal component analysis. The quantity of the test solution in the 

insulation is observed to show the least relationship which may be attributed to the 

presence of the inhibitor. This is confirmed in Figure 7.2b where no inhibitor was used, 

the importance value for the quantity of electrolyte in the insulation became the most 

significant, which suggests that the effect of the quantity of electrolyte on the CUI rate 

was minimized by the inhibitor. On the other hand, sample position was observed to 

have low importance values independent of the presence of the inhibitor. The 

importance of the input parameters based on the mapped pattern with the 

experimental output is shown below. 

 

With inhibitor: Dosage of inhibitor > Temperature > Sample position > Test solution 

Without inhibitor: Test solution > Temperature > Sample position 

 

This indicates that the dosage of the inhibitor had the most significant effect on the 

predicted values of the rate of CUI. This implies that it has the strongest trend by which 

the network can learn in establishing the relationship between the experimentally 

determined input and output variables. In addition, the temperature is observed to be 

the next significant parameter that would also contribute significantly to the overall 

predicted corrosion rate. This shows the importance of monitoring the temperature of 

insulated pipes as it has a significant contribution to the overall corrosion rate predicted 

by the model. The least contributing factor to the corrosion rate was observed to be 

the amount of test solution in the insulation when the inhibitor was used but it became 

the most prominent factor when inhibitor was excluded. This indicates that the effect 

of test solution on corrosion rate has been minimized by the inhibitor indicating its 

effectiveness in mitigating CUI. 
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7.1.3) Mapping of input parameters  

In this section, a brief description of the network architecture used in estimating the 

degree of the relationship of input variables with the CUI rate which would form the 

basis of understanding the result presented herein. Detailed explanation of the ANN 

layout employed in the CUI rate prediction in this study have already been provided in 

the Fundamentals chapter. The main calculations carried out during training and actual 

predictions including the transfer of input data through the synapse involves only the 

functions used in the hidden layer. In this study, the sigmoid and hyperbolic tangent 

functions were used as the activation functions. These two functions were chosen 

based on specific characteristics which served as a good fit for corrosion data. For 

instance, logistic sigmoid function has domain values which are well defined across 

the real line plane and produces output as probabilities (0-1) which is quite useful in 

describing corrosion data. Similarly, the hyperbolic tangent function also has 

properties such as: non-linearity and wide domain values (all real numbers), but has 

a broader output range (-1 to 1). The prediction accuracies of these functions have 

been reported to be size dependent with an evidence of a reduced mean square error 

[17]. However, the ideal size or the minimum size required for predictive modelling has 

not been specified in the literature which makes the definition of sample size quite 

vague. In this study, a sample size of 36 was used for both the training and the 

prediction regimes. 

 

 

Figure 7.3 : Feedforward ANN architecture with a single hidden layer with j nodes used 

in this study (b=bias, w= synaptic weight, n=nodes). 

𝑓(𝑥) = 𝑚𝑥 + 𝑐 
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Figure 7.3 shows the three important layers of ANN which include the input, hidden, 

and output layers. Experimental data were fed into the input layer and the network 

parameters were selected prior to initiation of the training program. This involved initial 

estimation of the output using the sigmoid and hyperbolic tangent functions on 

separate trials, this was followed by feeding the deviation between the predicted and 

experimentally determined outputs back into the hidden layer through a 

backpropagation mechanism. The weights and bias values were assigned to each 

variable and repeatedly adjusted by means of series of iterations until an accepted 

predefined error was obtained as shown in equations 7.1 and 7.2. Weights represent 

the coefficient of the equation which the model is trying to solve, while the bias is an 

offset used to achieve an improved generalisation of the neural network model. The 

magnitude of the weights is an indication of the direction of mapping in each of the 

nodes. The nodes in the hidden layer are connected to the input layer by blue and 

grey lines which is referred to as synapse. For each node in the hidden layer, the 

positively and negatively mapped synapses are represented by blue and grey colours 

respectively.  

 

𝑝(𝑥)𝑚𝑜𝑑𝑒𝑙 = 𝑓 (∑𝑤𝑖𝑥𝑖

𝑚

𝑖=1

) + 𝑏                (7.1) 

𝑀𝑆𝐸𝑖 =
1

𝑁
∑(𝑝(𝑥)𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 − 𝑝(𝑥)𝑚𝑜𝑑𝑒𝑙)

2 

𝑁

𝑖=1

       (7.2) 

Where p(x) is the predicted output, f represents the activation function, wi is the 

synaptic weight of the ith parameter, xi is the ith input parameter, b and m are the bias 

and maximum number of the input parameter respectively, MSE represents the mean 

square error. The mathematical expressions of the activated functions used in this 

study is given as: 

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑆𝑔(𝑥) =
1

1 + 𝑒−𝑥
         (7.3) 

 

𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑡𝑎𝑛ℎ(𝑥) =
1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
      (7.4) 

 

In addition, the functions used in mapping the variables in the hidden layer to the 

output layer in Figure 7.3 can be a linear function or an identity function. The reason 
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is that the calculated variables at the hidden layer is supposed to be either a linear 

combination of the variables in the output layer or identical to the output variables. 

However, the properties of linear functions such as presence of gradient and intercept 

implies that there might be deviations between the calculated variables at the hidden 

layer and the varaibles at the output layer. Both linear and identity functions have real 

numbers in their domain but linear function produces an output (real number) which is 

different in value to the input variable in its domain, while identity function produces an 

output which is identical to the variable in its domain as shown in equations 7.5 and 

7.6.   

 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑓(𝑥) = 𝑚𝑥 + 𝑐                      (7.5) 

 

𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝐼𝑑(𝑥) = 𝑥                            (7.6) 

 

Where x represents any real number, m represents the gradient associated with the 

input variable, c is the intercept. 

 

7.1.4) Relationship of the input parameters with the CUI rate 

The reliability of the predicted output may likely be influenced by the degree of the 

relationship between the activation function and the variables in the input layer. In this 

study, this was estimated from the thickness of the synapse as shown in Figures 7.4 

and 7.5 respectively. The results shown in Figure 7.4 indicate that the temperature, 

quantity of test solution in the insulation and dosage of the inhibitor had good 

relationships with the output as evident in the thickness of the lines. However, the 

sample position was observed to have faint connecting lines for both activation 

functions in the hidden layer which is an indication of a weak relationship with the CUI 

rate. These results agree with the output of the principal component analysis which 

mapped the dosage of the inhibitor and temperature to the component of highest 

significance (component 1), but only mapped the sample position to the second 

component without including any of the data in component 1. 
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Figure 7.4 : Relationship between the input parameters and the hidden layer for 

hyperbolic tangent activation function (a) with inhibitor (b) without inhibitor  

On the other hand, the relationship existing between the input variables and the hidden 

layers for a logistic sigmoid function is shown in Figure 7.5. In this figure, the synapse 

of the quantity of test solution in insulation at the input layer without the use of inhibitor 

are thicker than the synapse of the same input parameter in the presence of the 

inhibitor. This is also observed for hyperbolic tangent activation functions as well. This 

suggest that the quantity of test solution (1 wt % NaCl) in the insulation is more 

significant when no inhibitor is used than when inhibitor is applied to the insulation. 

The effect of the network architecture involving two hidden layers was also 

investigated and the results will be compared with a single hidden layer in subsequent 

section. This is aimed at determining the best criteria for improved accuracy in 

predicting the rate of corrosion of carbon steel under mineral wool insulation.  

 
 
 
 
 
 
 
 

 

 

 

 

 

(a) 
(b) 
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(a)                                  (b) 
 
Figure 7.5 : The relationship of the input parameters at the input layer for a logistic 

sigmoid activation function (a) with inhibitor (b) without inhibitor  

 

7.2) Results showing the accuracy of ANN in predicting the CUI rate of 
carbon steel 

The prediction accuracy of ANN for the theoretical estimation of the CUI rate based 

on the patterns observed in the experimental data is presented and discussed in this 

section. For each of the studied parameters earlier mentioned, the best prediction will 

be decided by assessing the linearity of the predicted and experimentally determined 

CUI rates based on the proximity of the coefficient of determination (r2) to 1. The closer 

the predicted and experimentally determined outputs, the better the prediction. This is 

because a perfect prediction would imply that the predicted output is equal to the 

experimentally determined output as shown in equation 7.7. However, corrosion rate 

is stochastic; hence, it is quite unrealistic to obtain an output with an ideal prediction. 

This implies that the network design that yields an output with a coefficient of 

determination (r2) close to unity and the least prediction error would be the best design 

suitable for the theoretical prediction of the CUI rate. Therefore, in this section, the 

effect of different neural network parameters on the prediction accuracy is hereby 

discussed. 

 

𝐼𝑑𝑒𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛: 𝐶𝑈𝐼 𝑟𝑎𝑡𝑒𝑚𝑜𝑑𝑒𝑙 = 𝐶𝑈𝐼 𝑟𝑎𝑡𝑒𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡                            (7.7) 
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7.2.1) Comparison of the prediction accuracy between Logistic sigmoid and 

hyperbolic tangent activation functions 

The accuracy of logistic sigmoid and hyperbolic tangent functions in predicting the CUI 

rate based on the observed pattern in the experimental data are shown in Figures 7.6 

and 7.7 respectively. The logistic sigmoid function makes prediction by converting all 

real domain values into an output that lie between 0 and 1. This makes the 

interpretation of output derived from a logistic function a probability. Likewise, 

hyperbolic tangent function also has sigmoidal properties (s-shape) and has a domain 

of real numbers just like the logistic sigmoid function. However, the hyperbolic tangent 

function has a broader output range (-1 to 1) with a steeper derivative. These 

properties would suggest that both activation functions are suitable for mapping CUI 

data due to the nature of the output. However, corrosion rate data are always positive 

real numbers and though it might not be expected to differ significantly from the output 

of a logistic function, it has the tendency of predicting an output outside the probability 

range for which CUI data is based. 

 

Figures 7.6 and 7.7 show a similar trend between the predicted and the experimentally 

determined outputs for both logistic and hyperbolic tangent functions. Even when the 

number of parameters were reduced according to the least significant parameters 

earlier assessed with the principal component analysis and the importance module of 

artificial neural network, both functions still indicated a similar trend in all cases. Also, 

both functions showed comparable prediction accuracies when the same number of 

input parameters were compared. The slight improvement in the correlation coefficient 

was observed with the predicted output obtained from the sigmoid function. This may 

be attributed to the fact that sigmoid function is strictly a probabilistic function and does 

not make predictions that lie outside 0 and 1, unlike a hyperbolic tangent function that 

has the possibility of predicting negative outputs.  

Figures 7.6 (a-c) and 7.7 (a-c) have indicated an improved prediction accuracy as the 

number of input parameters increased as would be expected for both activation 

functions. The accuracy of the predicted outputs when all the four input parameters 

were used is much better than the accuracy of the output obtained from the two input 

parameters with the highest significance (7.6c and 7.7c). This suggests that the 

accuracy of prediction of CUI rate should not just be based on the main parameter 
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having the highest contribution. The gradual decrease in the prediction accuracy as 

the number of input parameters decreased is an indication that the rate of corrosion 

of metals under insulation is a consequence of a combination of different factors rather 

than a single or dual factors. Therefore, it might be concluded that for CUI data and 

other data obtained from non-linearly correlated variables, the greater the number of 

input parameters having some relationship with the expected output in the model, the 

better the prediction accuracy. 

 

 

 

 

 

 

 

 

(a)                       (b)           (c) 

Figure 7.6: A comparison of the predicted and experimentally determined CUI rates 

estimated using logistic sigmoid activation function (a) 4 input parameters (DI, T, TS 

and SP), (b) 3 input parameters (DI, T, TS), (c) 2 input parameters (DI and T). 

 

 

 

 

 

 

 

Figure 7.7 : A comparison of the predicted and experimentally determined CUI rates 

estimated using hyperbolic tangent activation function (a) 4 input parameters (DI, T, 

TS and SP), (b) 3 input parameters (DI, T, TS), (c) 2 input parameters (DI and T). 

R2 = 0.928 
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7.2.2) Effect of the network architecture on the prediction accuracy of CUI rate 

In this section, the effect of a single and double hidden layers of the network 

architecture on the prediction accuracy of CUI rate is reported. A single and dual 

hidden layers were designed and introduced to the model to observe and compare the 

prediction abilities of both activation functions for CUI data. A single hidden layer 

means that both the training process and the underlying calculations behind the 

predictions including allocation of weights and bias to the input variables and 

adjustment of these values to minimize the mean square error take place within one 

architectural unit of the network.  

 

On the other hand, a double hidden layer implies that the training and prediction 

process are carried out within two different architectural units. In this case, the 

information from one unit serves as the input to the next unit. In addition, the accuracy 

of single and dual hidden layers is likely to depend on the nature of the data as well 

as the data size. Most corrosion rate predictions using ANN use a single hidden layer 

in their model.  However, it is not known whether there will be any difference in the 

prediction accuracy if the network architecture is changed from a single layer to a 

double layered architecture. Therefore, this result is intended to provide some 

information on the suitability of double hidden layers for CUI rate predictions, which 

will serve as a guide in designing predictive models for CUI. The result of this 

investigation is shown in Figure 7.8. 

 

 

 

 

 

 

 

 

 

 

(a)                                      (b) 

Figure 7.8 : Network architecture used in this study (a) single hidden layer and (b) 

double hidden layers  
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 The prediction accuracy of single and double hidden layers in the literature has been 

unclear [18]. For instance, the researchers at Quest International University, Perak, 

Malaysia, have observed that a single layered architecture has a high accuracy of 

prediction of CUI rate [8], while Cai et al. [5] had observed that the neural network with 

a single hidden layer used to predict the corrosion rate of about 740 data sets was not 

suitable for predicting long term corrosion rate. However, both authors did not 

investigate the effect of using double hidden layers in their network; hence, it is not 

known what the accuracy would be as the comparison between both network designs 

for CUI has not been reported in the literature. Nevertheless, it is suspected that the 

number of hidden layers might have some effect on the accuracy as well as the 

duration of computation and may likely depend on the quantity of data sets to be 

analysed. Therefore, the results showing the accuracy of predictions using single and 

double hidden layers for both sigmoid and hyperbolic tangent activation functions are 

shown in Figure 7.9 and 7.10 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9 : Comparison of the prediction accuracy of (a) a single hidden layer and (b) 

a double hidden layer for a logistic sigmoid activation function. 
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(a)                                                                                    (b)  

Figure 7.10 : Comparison of the prediction accuracy of (a) a single hidden layer (b) a 

double hidden layer for a hyperbolic tangent function. 

Results shown in Figures 7.9 and 7.10 representing the prediction accuracies of single 

and double hidden layers using a logistic sigmoid and hyperbolic tangent functions 

respectively show comparable prediction accuracies. The difference is about 0.3 % for 

a logistic function and 0.7 % for a hyperbolic tangent function which are in favour of a 

single layered network though this is quite negligible. The total data sets used for these 

predictions was 36 which was observed to have no significant difference in the 

prediction accuracy with increase in the number of hidden layers. In addition, Halama 

et al. [19] also reported good accuracy with predictions consisting of 59 data sets when 

a single hidden layer with 12 neurons was used in the network design to predict the 

mass loss of carbon steel as shown in Figure 7.11. Moreover, Paul [20] reported that 

increasing the number of neurons in the single layer could enhance prediction 

accuracy yielding a minimum mean square error as shown in Figure 7.12. 
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Figure 7.11 : Predicted weight loss (mg) versus actual weight loss (mg) of an 

atmospheric corrosion of carbon steel using 12 neurons in a single hidden layer [19]. 

 

 

 

Figure 7.12 : Predicted weight loss (mg) versus target weight loss (mg) of mild steel in 

a marine environment [20]. 
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However, it may not be advisable to generalize this result to a higher number of CUI 

data sets. This is because poor predictions have been reported for long term corrosion 

rate of steel (average correlation coefficient of 0.78 and average error of 0.39) carried 

out with about 740 data sets using just a single hidden layer in its network design [5]. 

Comparison of prediction accuracy of ANN with other machine languages for the 

prediction of corrosion rate of carbon steel using large number of data in just a single 

hidden layer showed the highest mean square error compared to other machine 

language programs [21].  This also agrees with the results of Almomani et al. [22] who 

observed an accuracy of 63.2 % when large experimental data was modelled using a 

single hidden layer architecture to predict the corrosion rate of carbon steel (Figure 

7.13).  

 

 

 

 

Figure 7.13 : Predicted and actual corrosion rates of carbon steel (mm/yr) using ANN 

[22]. 

 

Therefore, for data sets having at most the same size as what is used in this study, it 

would be preferable to use a single layered network rather than double hidden layers 

as it is more time efficient and shows similar accuracy of prediction. In addition, it is 

important to note that for both activation functions, the coefficient of determination is 
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not unity which suggests that it is not a perfect fit. This suggests that there is still need 

for improvement of accuracy of prediction which could be obtained by adding more 

input parameters that influences CUI. 

 

7.3) Precision of the predicted CUI rate using ANN 

In this section, the results showing the ability of ANN to make precise CUI rate 

predictions over repeated trials is presented for the first time. The corrosion rate 

predictions using artificial neural network in the literature are mostly based on a one-

off prediction and the analysis of the predicted output is primarily focused on the 

accuracy of prediction [23], rather than consistency in making similar predictions over 

repeated trials.  For a model to be reliable especially in a highly sensitive field such as 

corrosion studies, it is important that the model makes consistent repetitive predictions 

even though there might be slight difference in the predicted values, which is expected 

to be as minimized as possible. The slight difference is expected from the fact that the 

data sets used for training and actual prediction are sampled differently each time and 

might lead to slight difference in the outputs. In this study, the precision of ANN for 

CUI data was assessed over triplicate trials for both logistic and hyperbolic tangent 

functions, the results are shown in Figures 7.14 and 7.15 respectively. 

 

 

 

 

 

 

 

Figure 7.14 : Repeatability of the CUI rate prediction using logistic sigmoid activation 

function with one hidden layer. 
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Figure 7.15 : Repeatability of the CUI rate prediction using a hyperbolic tangent 

activation function with one hidden layer. 

 

Table 7.3 : Summary of studied parameters and the corresponding coefficient of 
determination 

 
 

Parameters studied 

Type of activation 
function 

Sg(x) Tanh(x) 

 
 

Decreasing number of 
input parameters 

4(DI, T, TS, SP) 0.939 0.928 

3(DI, T, TS) 0.839 0.857 

2(DI, T) 0.799 0.760 

Number of hidden layers Single 0.936 0.928 

Double 0.928 0.921 

 
Repeatability 

Trial 1 0.939 0.928 

Trial 2 0.934 0.871 

Trial 3 0.935 0.937 

 Sg(x): logistical sigmoid function, tanh(x): hyperbolic tangent function 

 

The results of the triplicate predictions for both activation functions are quite consistent 

for both functions apart from the second repeated prediction using hyperbolic tangent 

activation function which seems more reduced compared to the rest of the outputs. 

The fact that the precision of prediction does not decrease sequentially according to 

the number of repetitions implies that the input data are randomly selected for training 

and test purposes. Nevertheless, the precision of logistic sigmoid activation function 

was better than hyperbolic tangent function. This could be attributed to the narrow 

range of logistic sigmoid function that is restricted to the probability range compared 
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to hyperbolic tangent function that has the tendency of predicting negative outputs 

which is not characteristic of corrosion data.  

 

7.4) Conclusions 

In this study, the ability of artificial neural network to predict the rate of corrosion of 

carbon steel under mineral wool insulation was assessed. This was based on the 

patterns observed between the studied input parameters which included the 

temperature of the pipe, quantity of electrolyte in the insulation, dosage of the inhibitor 

and positional arrangements of the metal samples. The studied data was first 

screened using principal component analysis tool of SPSS and the importance module 

of ANN to ensure that the input parameters have some relationship with the expected 

output. In both cases, the results indicated that dosage of the inhibitor and temperature 

had the strongest relationship, while the sample position had the lowest relationship. 

The correlation of quantity of electrolyte in the insulation with CUI rate was observed 

to be prominent when no inhibitor was used. However, in the presence of an inhibitor, 

the effect of quantity of electrolyte in the insulation with CUI rate had the lowest 

importance indicating the effectiveness of the inhibitor in mitigating CUI.  

 

Some modelling parameters such as effect of number of input variables, single and 

double hidden layers as well as the choice of activation function which are known to 

affect the prediction accuracy of ANN in other applications and have never been 

studied using CUI data in the literature have been reported in this study. The results 

indicated an increase in the accuracy of prediction as the number of input parameters 

increased for both logistic and hyperbolic tangent activation functions. The prediction 

involving the four parameters had a better fit than the plot involving the two most 

significant parameters (temperature and dosage of inhibitor). This suggests that for 

CUI data, the accuracy of prediction is enhanced by including more variables 

responsible for corrosion of insulated metals rather than restricting the analysis to 

parameters with the highest importance only. This is because corrosion under 

insulation is a result of the cumulative effect of different variables rather than a single 

independent variable. 
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In addition, there was no significant difference between the predictions obtained from 

a single hidden layer and the output obtained from two hidden layers for the data size 

of 36 used in this study. It seems that the choice of number of hidden layers depend 

on the size of the input parameters. It has been reported in the literature that for large 

data size, it is advisable to use double hidden layers with multiple nodes instead of a 

single layer [24]. Therefore, it would be advisable to choose a single hidden layer for 

small number of data sets as this is more time efficient than double hidden layers.  

 

The ability of artificial neural network to make precise CUI predictions over replicate 

trials was assessed for the first time. This is quite important in assessing the reliability 

of a model for corrosion rate predictions. In this study, there was only a slight 

improvement in the prediction accuracy obtained from logistic sigmoid activation 

function compared to the hyperbolic tangent function. This may be attributed to the 

fact that the logistic function is strictly restricted to outputs in the probability range and 

the CUI data used for the study was restricted to this range rather than the output 

range of the hyperbolic tangent function which includes negative numbers. However, 

a significant variation in precision was observed between the outputs of the logistic 

function and hyperbolic tangent function. For triplicate trials carried out to assess the 

repeatability of prediction, the output of logistic sigmoid function was more precise 

than the hyperbolic tangent function. This may likely be attributed to the narrow range 

of output of sigmoid function compared to the hyperbolic tangent function. However, 

this may not apply to other types of data as accuracy and precision of predicted output 

is influenced by the nature of input data, and the choice of the network parameters is 

important in obtaining the predicted output with a high accuracy and precision.  

 

Therefore, this study indicates that the inclusion of more input parameters that have 

some relationship with the CUI rate in an ANN model built with a single hidden layer 

architecture for small data set less than or equal to the number used in this study (36) 

and a sigmoid activation function would yield a good and reproducible output that can 

be used to take proactive measures to prevent sudden failure of insulated metals in 

industry. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

8.1) Conclusions 

The investigation of corrosion of carbon steel under mineral wool insulation included 

water absorption studies, effects of temperature, effectiveness of inhibitor in mitigating 

CUI, the distribution of electrolyte in the insulation, an assessment of the drying out 

times using galvanic current and impedance measurements as well as predictive 

modelling of the CUI rate using Artificial Neural Network. The water absorption studies 

were carried out to determine the time it will take for the insulation to be saturated with 

water as well as the variability associated with replicate measurements. Results 

indicated an increased absorption of water when the insulation was thermally treated 

at 250 oC compared to the untreated samples. This showed a continuous absorption 

over a 22-day period without saturation which agrees with the report of Williams and 

Evans (2010) who did not also observe any saturation after immersing the insulation 

in water for 60 days. The trials were quite variable as observed in the replicate trials 

which may likely be related to the properties of the insulation. 

 

The effect of temperature on corrosion of carbon steel under insulation was assessed 

from 60 oC to 130 oC. Results indicated an increase in the corrosion rate with 

temperature up to 80 oC, further increase in temperature resulted in a decrease in the 

corrosion rate. The existence of a maximum point at 80 oC may be attributed to the 

competing effects of increased diffusion of oxygen which dominates at low 

temperature resulting in an increased corrosion rate with temperature and the 

decreasing solubility of oxygen and insulation dry out at higher temperatures resulting 

in a decreasing corrosion rate. The study revealed that carbon steel under insulation 

was still corroding at a lower rate at temperatures above 100 oC which might be as a 

result of the presence of water vapour within the insulation. A new commercial inhibitor 

(VpCI 619) consisting primarily of sodium molybdate was used to test the effectiveness 

in mitigating CUI. The results indicated good inhibition efficiency of 89 % when 5.2 

g/m2 dosage was used. The inhibition efficiency was observed to decrease when the 

dosage was decreased to 1.3 g/m2. This suggests the need to maintain adequate 
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balance between the cost and effectiveness of protection when choosing an inhibitor 

for insulation. 

 

In addition, it was found that the distribution of electrolyte in the insulation was not 

uniform. The bottom part of the insulation was observed to hold more test solution than 

the top parts resulting in more corrosion at the bottom compared to the top. This 

resulted in an increased corrosion rate at the bottom part of the rings. A new method 

to assess the insulation dry out using galvanic current measurements was 

investigated. The results indicated an initial increase in the galvanic current due to an 

increase in temperature up to the target temperature. Variable trends were observed 

when the temperature stabilized but decreases to 0 as the insulation dries out due to 

an increased solution resistance. This method was compared with the electrochemical 

impedance method where the results showed an initial decrease in impedance as the 

temperature increases to the target value due to an increased conductivity of the 

solution as the temperature increases. The impedance tends to stabilize as the 

temperature reaches the target value but starts increasing as the insulation also starts 

drying out which may be attributed to an increased solution resistance. Both methods 

showed a decrease in the drying times as the temperature is increased. However, the 

measurement of drying times by the impedance method was more reproducible 

compared to the galvanic current method which may be attributed to the sensitivity of 

the galvanic current method to slight changes in the degree of contact of the insulation 

with the metal rings for each trial. 

 

The prediction of corrosion under insulation using Artificial Neural Network was carried 

out to assess the accuracy and precision of predictions which might indicate its 

suitability in predicting outcomes of CUI conditions. The effects of different modelling 

parameters such as number of hidden layers, choice of activation function and number 

of input parameters on the accuracy of prediction were assessed for the first time for 

CUI data. The results indicated that accuracy of prediction depends on the number of 

input parameters having some relationship with the predicted CUI rate. The four 

parameters included in the model had the highest accuracy compared to reduced 

number of input variables. Interestingly, it was observed that even the model involving 

variables having the highest importance on the CUI rate had a lower prediction 

accuracy compared to the model having the four input parameters. This suggests that 
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the more the input parameters having some relationship with the estimated output, the 

better the prediction accuracy. In addition, increasing the number of hidden layers 

seems not to have any effect on the CUI rate due to the small number of input data 

(36). However, a higher number of input data may likely show different results as 

including too many data in a single hidden layer will make the network clumsy which 

may affect the prediction accuracy. 

 

 

8.2) Future works 

The following are suggestions for future works that would expand the work further. 

❖ Investigation of effect of different pH of electrolyte on CUI rate: The corrosion 

rate can also be affected by changes in pH of the test solution. Therefore, it 

would be important to assess the effectiveness of the inhibitor or monitoring the 

effect of temperature on the corrosion of insulated assets at a different pH to 

what is reported in this study. 

❖ Investigation of the drying out of the insulation at a different frequency using 

electrochemical impedance measurements: This study assessed the drying out 

of the insulation at a frequency of 1kHz. It would be interesting to assess the 

response of the electrochemical impedance measurements at a higher 

frequency and a different scan rate. 

❖ Inclusion of drying times and pH in the prediction model of ANN to assess the 

accuracy of prediction: In this study, the drying out of the mineral wool insulation 

was measured without measuring the corresponding corrosion rate. It would be 

interesting to measure the corrosion rate as the insulation dries out which could 

be used in the prediction model to assess the contribution of insulation dry out 

to the overall corrosion rate.  

❖ Investigation of the penetration rate of water through mineral wool fibres using 

EIS or any other suitable technique: The penetration rate would provide more 

information on how fast the water or test solution was absorbed by the 

insulation. This could be useful in assessing the quality of the insulation as well 

as the risks or damage to the underlying equipment. 
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APPENDICES 

 

Appendix A: Effects of temperature on CUI rate of carbon steel: This data includes the 

effect of temperature on the corrosion rate of each of the metal ring samples from 60 

oC to 130 oC. Ring 1 represents the inlet ring where the silicone oil enters the rig, while 

ring 6 represents the outlet ring where the oil leaves the rig. 

Table A.1: Corrosion rate of the six carbon steel rings at 60 oC 

Ring 
Position 

Corrosion rate (mm/yr) 

Trial 1 Trial 2 Trial 3 Trial 4 Average SD (1 σ) 

R1 0.21 0.13 0.07 0.18 0.148 0.059 

R2 0.15 0.23 0.32 0.14 0.209 0.085 

R3 0.14 0.17 0.41 0.10 0.206 0.138 

R4 0.28 0.20 0.27 0.26 0.252 0.034 

R5 0.26 0.27 0.38 0.16 0.266 0.090 

R6 0.21 0.24 0.27 0.22 0.233 0.026 

 

Table A. 2: Corrosion rate of the six carbon steel rings at 70 oC 

Ring 
Position 

Corrosion rate (mm/yr) 

Trial 1 Trial 2 Trial 3 Trial 4 Average SD (1 σ) 

R1 0.28 0.39 0.30 0.32 0.320 0.049 

R2 0.41 0.76 0.64 0.51 0.579 0.149 

R3 0.52 0.61 0.50 0.50 0.536 0.051 

R4 0.51 0.74 0.64 0.56 0.613 0.097 

R5 0.35 0.80 0.63 0.61 0.598 0.183 

R6 0.32 0.50 0.50 0.47 0.445 0.084 

 

Table A.3: Corrosion rate of the six carbon steel rings at 80 oC 

Sample ID Corrosion rate (mm/yr) 

 Trial 1 Trial 2 Trial 3 Trial 4 Average SD (1 σ) 

R1 0.46 0.37 0.62 0.67 0.528 0.137 

R2 0.51 0.69 0.80 0.49 0.621 0.148 

R3 0.76 0.81 0.60 0.50 0.670 0.142 

R4 0.66 0.52 0.23 0.44 0.463 0.180 

R5 0.93 0.58 0.58 0.44 0.635 0.210 

R6 0.94 0.25 0.73 0.42 0.584 0.309 

 

 

 



 

231 
 

Table A. 4: Corrosion rate of the six carbon steel rings at 95 oC 

Ring 
Position 

Corrosion rate (mm/yr) 

Trial 1 Trial 2 Trial 3 Trial 4 Average SD (1 σ) 

R1 0.43 0.46 0.68 0.54 0.531 0.108 

R2 0.58 0.70 0.58 0.50 0.593 0.078 

R3 0.47 0.56 0.51 0.66 0.550 0.084 

R4 0.58 0.56 0.56 0.56 0.568 0.011 

R5 0.68 0.48 0.59 0.61 0.593 0.081 

R6 0.42 0.56 0.49 0.47 0.486 0.057 

 

Table A.5: Corrosion rate of the six carbon steel rings at 110 oC 

Ring 
Position 

Corrosion rate (mm/yr) 

Trial 1 Trial 2 Trial 3 Trial 4 Average SD (1 σ) 

R1 0.16 0.28 0.20 0.23 0.172 0.048 

R2 0.07 0.47 0.50 0.44 0.372 0.200 

R3 0.32 0.67 0.59 0.78 0.589 0.195 

R4 0.10 0.69 0.53 0.50 0.459 0.255 

R5 0.28 0.19 0.48 0.77 0.431 0.256 

R6 0.47 0.42 0.76 0.56 0.553 0.150 

 

Table A.6: Corrosion rate of the six carbon steel rings at 130 oC 

Ring 
Position 

Corrosion rate (mm/yr) 

Trial 1 Trial 2 Trial 3 Trial 4 Average SD (1 σ) 

R1 0.07 0.16 0.13 0.16 0.13 0.042 

R2 0.18 0.24 0.24 0.21 0.22 0.030 

R3 0.33 0.34 0.31 0.27 0.31 0.027 

R4 0.35 0.23 0.19 0.22 0.25 0.068 

R5 0.38 0.25 0.22 0.31 0.29 0.070 

R6 0.22 0.21 0.22 0.21 0.21 0.009 

 

 

Appendix B: Effectiveness of VpCI 619 inhibitor at different temperatures: The data 

shown in Table B1 represents the measured corrosion rates in the presence of 5.2g/m2 

of the inhibitor. The inhibition efficiency was computed using the equation below: 

 

𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝐼. 𝐸. )(%) =
𝐶𝑅𝑜 − 𝐶𝑅

𝐶𝑅𝑜
× 100 

CRo is the corrosion rate (mm/yr) without the use of inhibitor and CR is the corrosion 

rate (mm/yr) in the presence of the inhibitor.  
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Table B.1: Effectiveness of inhibitor at 80 oC 

 Corrosion rate (mm/yr) and inhibition efficiencies at different temperatures 

R.
P 

80 oC 95 oC 110 oC 130 oC 

CRo  CR  I.E 
(%) 

CRo  CR  IE 
(%) 

CRo  CR  I.E 
(%) 

CRo  CR  I.E 
(%) 

1 0.52 0.08 84.8 0.53 0.07 86.7 0.21 0.04 81.3 0.13 0.02 81.6 

2 0.62 0.06 89.4 0.59 0.07 88.1 0.37 0.05 85.1 0.21 0.04 80.2 

3 0.67 0.07 89.5 0.55 0.06 89.4 0.58 0.05 90.7 0.31 0.04 86.9 

4 0.46 0.04 91.1 0.56 0.06 88.8 0.45 0.04 89.6 0.24 0.04 83.5 

5 0.63 0.06 89.9 0.59 0.06 89.7 0.43 0.05 88.3 0.29 0.04 86.3 

6 0.58 0.05 90.2 0.48 0.07 85.5 0.55 0.03 94.2 0.21 0.04 79.5 

 

 

Appendix C: Calculation of dosage of inhibitor: The dosage of the inhibitor was 

calculated as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 (𝐴) = 2𝜋𝑟(𝑟 + ℎ), r = 0.5 x d 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 (𝜌) =
𝑚𝑎𝑠𝑠(𝑔)

𝑣𝑜𝑙𝑢𝑚𝑒 (𝑙)
 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑐𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 𝐴 =
1𝐿 × 𝐴𝑐𝑎𝑙.(𝑚

2)

𝐴𝑠𝑝(𝑚2)
 

Acal. Is the calculated area of the insulation, Asp is the specified area in the product data 

sheet. 

 

d 

h 



 

233 
 

Appendix D: Effect of dosage of inhibitor on CUI of carbon steel: The results showing 

the effects of different dosages of the inhibitor ranging from 1.3 g/m2 , 3.6 g/m2 and 5.2 

g/m2  are shown in Table D1 to D3 respectively. 

 

Table D.1: Effectiveness of inhibitor at 1.3 g/m2 at 80 oC  

Ring 
Position 

Corrosion rate (mm/yr) 

Trial 1 Trial 2 Trial 3 Trial 4 Average SD (1 σ) 

R1 0.08 0.10 0.08 0.05 0.080 0.019 

R2 0.05 0.09 0.06 0.05 0.065 0.018 

R3 0.07 0.08 0.08 0.04 0.070 0.017 

R4 0.04 0.05 0.06 0.02 0.041 0.015 

R5 0.03 0.07 0.1 0.06 0.064 0.027 

R6 0.04 0.09 0.05 0.04 0.057 0.026 

 

Table D.2: Effectiveness of inhibitor at 2.6 g/m2 at 80 oC 

Ring 
Position 

Corrosion rate (mm/yr) 

Trial 1 Trial 2 Trial 3 Trial 4 Average SD (1 σ) 

R1 0.16 0.11 0.12 0.11 0.126 0.021 

R2 0.14 0.11 0.13 0.10 0.120 0.016 

R3 0.08 0.09 0.09 0.09 0.087 0.007 

R4 0.08 0.05 0.07 0.06 0.064 0.010 

R5 0.15 0.08 0.06 0.06 0.087 0.040 

R6 0.08 0.07 0.10 0.08 0.083 0.016 

 

Table D.3: Effectiveness of inhibitor at dosage of 5.2 g/ m2 at 80 oC 

Ring 
Position 

Corrosion rate (mm/yr) 

Trial 1 Trial 2 Trial 3 Trial 4 Average SD (1 σ) 

R1 0.17 0.18 0.18 0.17 0.177 0.004 

R2 0.18 0.14 0.14 0.12 0.145 0.024 

R3 0.18 0.14 0.13 0.17 0.155 0.026 

R4 0.13 0.13 0.11 0.10 0.120 0.015 

R5 0.13 0.13 0.13 0.13 0.131 0.002 

R6 0.13 0.10 0.10 0.09 0.107 0.018 

 

 

 

 

Appendix E: Measurement of Drying times using galvanic current and impedance 

measurements: The drying times of the insulation at different temperatures for both 

galvanic current and electrochemical impedance methods are presented in Tables E1 

and E2 respectively. 
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Table E.1 comparison of drying times between galvanic current and impedance 

methods 

 Temperature 
(oC) 

Replicates to 
(seconds) 
(0%) × 103 

t1 
(seconds) 

(50%) 
× 103 

t2 
(seconds) 
(90%)×
103 

 
 
 
 
 
 

Galvanic 
Current 
Method 

 
70 

Trial 1 25.014 27.160 28.154 

Trial 2 12.059 26.112 33.599 

Trial 3 8.039 16.098 22.095 

 
80 

Trial 1 11.642 20.891 24.249 

Trial 2 12.313 21.035 24.168 

Trial 3 21.321 22.767 24.367 

 
90 

Trial 1 11.686 15.915 17.918 

Trial 2 15.000 17.266 19.223 

Trial 3 13.588 14.384 14.985 

 
100 

Trial 1 10.571 13.294 15.654 

Trial 2 7.598 9.577 17.241 

Trial 3 11.151 15.617 16.127 

 
110 

Trial 1 13.495 14.351 14.997 

Trial 2 12.112 13.720 14.571 

Trial 3 12.897 14.668 15.681 

 
 
 
 
 

 
Electrochemical 

Impedance 
Method 

70 Trial 1 25.014 27.160 28.154 

Trial 2 16.059 26.112 33.599 

Trial 3 15.039 16.098 22.095 

80 Trial 1 11.642 20.891 24.249 

Trial 2 12.313 21.035 24.168 

Trial 3 21.321 22.767 24.367 

90 Trial 1 11.686 15.915 17.918 

Trial 2 15.000 17.266 19.223 

Trial 3 13.588 14.384 14.985 

100 Trial 1 10.571 13.294 15.654 

Trial 2 7.598 9.577 17.241 

Trial 3 11.151 15.617 16.127 

110 Trial 1 13.495 14.351 14.997 

Trial 2 12.112 13.720 14.571 

Trial 3 12.897 14.668 15.681 

 

 

 

Appendix F: List of conference presentations 

1. John B. Edet, Todd Green and Sudipta Roy (2018). Investigation of the water 

absorption profile of mineral wool insulation. A poster presentation at the 
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Research Day celebration at Chemical and Process Engineering, University of 

Strathclyde. 

2. John B. Edet, Todd Green and Sudipta Roy (2019). Effect of temperature on 

corrosion of carbon steel under insulation. A poster presentation at Electrochem 

meeting (National conference) held at University of Strathclyde. 

3. John B. Edet, Todd Green and Sudipta Roy (2020): Effect of temperature and 

vapour phase inhibitor on corrosion of carbon steel under insulation. A poster 

presentation at Butler meeting held virtually on twitter. 

4. John B. Edet, Todd Green and Sudipta Roy (2021). Predictive modelling of 

corrosion of carbon steel under insulation using artificial neural network. An oral 

presentation at the Research Day celebration at Chemical and Process 

Engineering, University of Strathclyde. 

5. John B. Edet, Todd Green and Sudipta Roy (2021). Design of test rig and effect 

of temperature on corrosion of carbon steel under insulation. An oral 

presentation at the Postgraduate research seminar, Department of Chemical 

and Process Engineering, University of Strathclyde. 

6. John B. Edet, Todd Green and Sudipta Roy (2022). Investigation of corrosion 

of carbon steel under mineral wool insulation. A poster presentation at the 

European Corrosion Congress held in Berlin, Germany. 

  

  

 

 

 


