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Abstract

The Faecal Egg Count Reduction Test (FECRT) is the most widely used field-
based method for estimating anthelmintic efficacy and as an indicator of an-
thelmintic resistant nematodes in cattle. In this thesis, statistical aspects such
as the analysis of cattle faecal egg count (FEC) data and the identification of
statistically robust experimental study designs for the FECRT, are examined.

Using field study cattle FECRT data, the validity of current guidelines on param-
eter estimates for evaluating percentage estimates and confidence intervals (CIs),
were assessed. For FECs obtained using sensitive counting techniques, percent-
age estimates are recommended to be evaluated using arithmetic group means.
For FECs obtained by less sensitive counting techniques, the maximum likelihood
estimator of zero inflated distributions is recommended when evaluating percent-
age estimates. It would not be recommended however, to use CIs that assume
FECs to be normal, and it is therefore recommended that relevant intervals for
percentage estimates be obtained using a Bootstrap or Bayesian framework.

A simulation study was conducted using Bootstrap methodology to assess the
coverage probability of 95% percentile intervals, associated with different per-
centage estimates. The coverage was considered for scenarios involving various
diagnostic sensitivities, treatment group sizes and classifications of pre-treatment
group means. Very few scenarios consisted of 95% Bootstrapped percentile in-
tervals with adequate coverage probabilities. A further simulation study was
then carried out with Bayesian methodologies being employed. The accuracy of
percentage estimates was examined under the scenarios described above. In the
majority of scenarios: in order to obtain the most accurate percentage estimates,
one would only need to adopt a paired study design involving a positive treatment
group.

The following R Shiny prototype webpage application is available to carry out
the recommended analysis of cattle FECRT data, i.e. averaging over individual-
based egg count percentage reductions/changes based on the form of the Sym-
metrised Percentage Change, using our developed Bayesian methodologies: http:
//outreach.mathstat.strath.ac.uk/apps/FECRT.
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Chapter 1

Introduction

1.1 Parasites: a brief introduction

Parasites are responsible for considerable morbidity and mortality across animal,
plant and human health populations. A parasite is an organism either living
within (endoparasitic) or living on (ectoparasitic) a particular host, which pro-
vides the parasite with the nutrients it requires (Schmidt and Roberts 1989).
Some parasite species live at the expense of other parasites (hyperparasitism).
For example, Plasmodium spp. live within mosquitos and are the main cause of
Malaria in humans. This is also an example of a parasitic species that exhibits
a vector life-cycle; one that involves an agent, such as water, wind or an insect
to facilitate spread and in some cases, to complete their life-cycle (Lyons 1978).
Hosts can be categorised as being definitive, meaning that the parasite is said to
have a direct life-cycle which requires the presence of only one type of host in or-
der to complete its life-cycle; or intermediate, meaning the parasite undergoes an
indirect life-cycle where the parasite spends part of its life in another host before
it parasitises its final host (Paton 1983). If a parasite requires an intermediate
host, then generally it will not cause disease in this host as this would reduce the
parasite’s chances of survival.

When considering parasites, Lyons (1978) explains that they gain and exploit
much from their hosts, such as regulated and maintained environments, extensive
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food supplies, etc. In fact, parasites evolve in parallel with their hosts, i.e. as the
hosts speciate and develop then so do the parasites becoming highly specialised
to their way of life (known as co-evolution). Generally, different species of hosts
- such as cattle, sheep, goats and horses - have their own species of parasites
associated with them.

As well as being host-specific, most parasites are site-specific. This can effect
their development and survival. For example, some parasites may develop and
reproduce in areas of the body such as the intestines, which would be considered
ideal for egg excretion and dispersion to occur, yet some parasites may develop
and reproduce in the lungs for instance, which are further located away from
where the parasite must excrete their eggs. Some host sites show less reaction
to parasites than others (i.e. immunologically privileged sites, where the host is
less likely to fight infection) and parasites occupying these types of sites may be
relatively safe from host attack. Additionally, a parasite has to be able to resist
the host’s defence reactions and feed without damaging the host to the extent
that it may provoke an immune response - or in some cases cause the death of
the host. If the parasite is unable to become established from the first point-
of-contact with the host, then the host is said to display innate (i.e. natural)
immunity. In contrast, if an initial infection sparks a degree of resistance to
subsequent infections then the host is said to have an acquired immunity (Lyons
1978; Schmidt and Roberts 1989; Taylor et al. 2007). Also, parasites reproduce
in abundance to increase their survival rates and so competition for resources,
within and outwith the host, becomes an issue. With this in mind, there is also
the issue of the dispersal of parasites across the host populations: a parasite’s
location within (or out with) the host may effect this. However, the dispersal of
parasites is also dependent on time, since certain parasites may only be able to
infect their hosts at certain times of the year and so parasites have to synchronise
their own life cycles with that of their hosts.

Parasite population sizes are related to the population size and density of the final
host involved in their life-cycles. However, parasites are known to not be evenly
distributed through a host population: most hosts are uninfected or contain very
few parasites and very few are heavily infected (Shaw and Dobson 1995; Levecke
et al. 2012). The variables affecting parasitic populations are complex; in order
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to study such interactions mathematical population models are helpful (Paton
1983; Byrom 1990).

And so, what makes a successful parasite? Many parasitologists, as well as Lyons
(1978), agree that it is simply one that is in balance with its host.

1.2 Nematodes (helminthic parasites)

The presence of helminthic parasites has been known for over 3000 years and
the study of these parasites has been mainly due to their ever growing economic
and animal health, welfare and production importance (Crofton 1966; Vlassoff
and McKenna 1994; Corwin 1997; Molento 2009; Voort et al. 2013; Charlier
et al. 2014). There are helminths that exist as free-living or involve free-living
stages as part of their life-cycles, meaning that such organisms are not parasitic
or involve stages where no parasitism occurs, however these types of helminths
are mainly over-shadowed by the economic and social importance of the parasitic
kinds. Lyons (1978) clarifies that helminths are classed into three main groups:
platyhelminths (flatworms) and nematodes (roundworms) which both consist of
free-living and parasitic forms, as well as the acanthocephalans (spiny-headed
worms) that are known to be purely parasitic.

Nematodes typically have a cylindrical form, tapered at each end with a protective
cuticle (outer-most layer). The basic nematode life-cycle is a direct life-cycle as
represented in Figure 1.1 (this Figure considers a bovine host, but the life-cycle is
similar for other hosts as well). The life-cycle involves an egg and various larval
stages - denoted as L1, L2, L3, L4 and L5 in which L3 is usually the infective
larval stage. The eggs are excreted in the faeces of the host and, within the
faecal pat, develop into the L2 larval stage and thereafter to the infective third
larval stage over a period of a few weeks (depending on ambient temperature).
When moist conditions are present, the L3 will then migrate from the faeces onto
vegetation and be ingested by the hosts. The entire parasitic phase of the life-
cycle will normally take up to three weeks since the ingested larvae undergo a
series of parasitic moults until they reach sexual maturity and hence the life-cycle
will begin for the new generation of parasites (Crofton 1966; Schmidt and Roberts
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1989; Taylor 2010a; COWS 2015b). But under certain circumstances some of the
ingested L3 become arrested in their development at the early fourth larval stage
for periods of up to six months in certain species; this is referred to as hypobiosis.

Taylor (2010a) and COWS (2015b) describe the epidemiology of parasitic infec-
tions as being heavily influenced by the weather and seasonal effects. In fact, the
effects of climate change on the seasonality and the spread of nematodes in more
recent times are being investigated (Mas-Coma et al. 2008; Dijk et al. 2009;
Morgan and Dijk 2012; Skuce et al. 2013). In spite of this, any parasitic eggs
present in the spring develop steadily to L3 and this rate of development increases
as temperatures increase. Therefore, eggs deposited during April-June all reach
the infective larval stage from around July, where peak numbers in worm burden
occur. Progressing into autumn, with the decline of temperatures, an increasing
proportion of ingested L3 become suspended at the early fourth larval stage. As
a result, in the late autumn calves can play host to many of these early fourth
larval staged parasites.

Figure 1.1: Direct life-cycle of a Nematode, adapted from Taylor (2010a)

There are many different classes of experts who study nematodes: those concerned
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with the infections of humans are known as medical parasitologists, veterinary
helminthologists are those concerned with nematodes infecting animals and ne-
matologists study these kinds of infections with regards to plants. In fact, there
are some organisations and reports that suggest the use of helminths as treat-
ments (worm therapies) and promote their usefulness in society (R. Nuwer 2013;
Worm Therapy 2018). For example, M. Jackson 2004 tells us that leeches (an
example of an ectoparasite) are used in the human health industry to aid blood
circulation and for healing skin grafts.

Initially, parasites of medical significance were the first to be noticed; the first
written records of these types of parasites dates back to the Papyrus Ebers (circa
1500 B.C.). It was not until the 16th and 17th centuries that new anthelmintics
(i.e. agents that destroy/expel parasitic worms) were introduced and, prior to
this period, nematodes were considered as the carriers of diseases - rather than
the infecting organisms that we think of today (Crofton 1966).

Gastro-intestinal nematodes continue to be one of the main sources of economic
constraint in Great Britain (GB), and other areas of the world, with respect
to the production of domesticated animals and ruminants (Byrom 1990; Falzon
et al. 2013; Playford et al. 2014). For example, the Moredun Research Institute
(Moredun) estimated that the cost of these helminths to the British sheep indus-
try is estimated to be £84 million per annum (Moredun 2018). Helminth species
belonging to the taxonomic order Strongylida are, in particular, of economic and
medical importance.

Nematodes belonging to the Trichostrongylidae family are of particular interest;
in spite of there being many genera and an immense number of species in this
family (Schmidt and Roberts 1989). Ostertagia spp. are a small intestinal species
known as the brown stomach worms and are the most economically important
in comparison to others. Teladorsagia (Ostertagia) circumcincta are prevalent in
sheep and are a major cause of intestinal infections according to Paton (1983) and
Abbott et al. (2009), whereas Ostertagia ostertagi are normally found in cattle.
In fact, cattle can play host to over 18 species of gastrointestinal nematodes
and the disease caused by these organisms is commonly referred to as parasitic
gastroenteritis (Taylor 2010a).
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Another species of nematode found in GB is Cooperia oncophora (Taylor et al.
2007; Taylor 2010a), which is considered to be a mild pathogen in calves and is
commonly found in young cattle during their first grazing season. It is also the
dose-limiting species of nematodes for cattle, meaning this species identifies the
dosage of anthelmintics for which 90% of efficacy occurs (Vercruysse and Rew
2002; Taylor 2012). In fact, C. oncophora and O. ostertagi can infect young
cattle concurrently, in which case the impact of infection can be much higher
in comparison to the impact of individual infections from each species (COWS
2015b). Other species such as C. punctata and C. pectinata are of interest even
though they are less common in GB - but are still considered to be pathogenic
(i.e. able to cause diseases). Worms in this genus are also considered to be the
main contributor to parasitic, faecal egg counts in cattle.

Moreover, the species Haemonchus contortus is also found in cattle and lives in
the abomasum (the fourth division of the stomach of cattle) and feeds by sucking
blood. This species of nematode is known as the Barber’s pole worm and with
heavy infections, cattle will generally die. As a result from the loss of blood that
this nematode can cause, cattle can suffer from anaemia and intestinal problems.
Surviving cattle develop an acquired immunity. Abbott et al. (2009) also states
that this species is widespread in sheep, in GB.

Nematodirus spp. is another genus associated with domestic livestock: Nema-
todirus helvetianus are associated with cattle and Nematodirus battus are asso-
ciated with sheep. These species can be found worldwide (Hoberg et al. 1986;
Bogale et al. 2014) but is not the most harmful of the nematodes mentioned.

Dictyocaulus vivaparus (more commonly known as lungworm or husk) is another
genus found in GB, and is considered highly pathogenic. The number of recorded
cases of this parasite has been on the rise in recent times according to the, formerly
known as, Animal Health and Veterinary Laboratories Agency (AHVLA) and is
of economic importance (AHVLA 2012, COWS 2015a). Adult worms of this
species live in the animal’s lungs where they produce eggs that hatch quickly.
The L1 then travel up the windpipe, are swallowed and excreted in the faeces.
These then mature onto pasture to the L3 infective stage and are ingested - in
which case they mature to adults in the lungs. However, outbreaks of lungworm
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disease are quite unpredictable; even though this parasite is found widespread
across cattle herds in GB (COWS 2015a).

Fasciola hepatica (liver fluke) is a trematode of major economic significance. In
fact, it is estimated that this trematode costs the United Kingdom (UK) agricul-
ture sector £300m per year (COWS 2013). Prevalence of this infection is on the
increase due to a variety of reasons such as climate change. The main difference
when considering flukes is that their life-cycles depend on an intermediate host.
In the case of liver flukes, this type of trematode depends on the Galba truncatula
mud snail as shown in Figure 1.2. High risk conditions that influence the infec-
tion rates of these trematodes include warm weather and high rainfall during the
summer seasons and the location of the mud snail, i.e. wet muddy areas, that
could be found near or on farm.

Figure 1.2: Life-cycle of Liver Fluke, adapted from Taylor (2010a)

This parasite can prove to be very harmful to the definitive host as they have
the ability to cause liver damage and the destruction of tissue due to the nature
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of their migration technique, once ingested by the host, and generally those with
heavy infections will die.

Rumen fluke are another group of trematodes that have been found increasingly
in British and Irish livestock (Taylor 2010a). Generally, rumen fluke are found as
co-infections with liver fluke since they both rely on the same intermediate host.

1.3 Supporting organisations of the cattle farming

industry

Government organisations are responsible for the health, welfare and associated
policies related to cattle (and other animal species) - such as the Department for
Environment, Food and Rural affairs (Defra) in the UK. The Veterinary Medicines
Directorate (VMD) and the Animal and Plant Health agency (APHA), formerly
known as the Animal Health and Veterinary Laboratories Agency (AHVLA)
(APHA 2018; VMD 2018) are part of Defra and have key responsibilities for
animal health and veterinary medicine. Defra invests in the rural economy, sup-
ports and develops British farming, encourages environmentally sustainable and
healthy food production and aims to improve the standards of animal welfare
(Defra 2018a).

The two main industries concerned with cattle are the dairy and beef industries.
For the latter, the Agriculture and Horticulture Development Board (AHDB) Beef
and Lamb is an organisation that exists, on behalf of levy payers, to enhance the
profitability and sustainability of the English beef and lamb industry. Its main
aims are to aid the beef and sheep meat supply chain to become more efficient, and
to also make the industry more profitable. Additionally, AHDB Beef and Lamb
carries out many research projects in animal health and welfare (AHDB Beef and
Lamb 2018). Similarly, Hybu Cig Cymru (Welsh Red Meat Levy), Livestock and
Meat Commission for Northern Ireland and Quality Meat Scotland are the cattle
beef and lamb levy boards for Wales, Northern Ireland, and Scotland respectively
(Hybu Cig Cymru 2018; Livestock and Meat Commission 2018; Quality Meat
Scotland 2018).
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Equivalently, the AHDB Dairy exists for British dairy farmers, funded by levy
payers, in order to improve the sustainability of the British dairy industry by
providing evidence-based information on issues such as animal health and welfare
(AHDB Dairy 2018). These levy boards are also part of the AHDB, which is
an impartial board to make these industries competitive and sustainable through
evidence-based advice, information and activities (AHDB 2018).

With respect to parasitism, in 2010 the Control of Worms Sustainably (COWS)
initiative was set up in order to provide evidence-based information to the cattle
industry in relation to the sustainable control of parasites in cattle herds (COWS
2018). There are several other equivalent forms of these initiatives for other
livestock species - such as Sustainable Control of Parasites in Sheep (SCOPS
2018).

There are also organisations that exist in order to ensure the safeguarding of
medicines and vaccinations for cattle. The Responsible Use of Medicines in Agri-
culture Alliance (RUMA) is a growing coalition of organisations, that has been
set up to review and provide guidance on the use of medicines in all livestock
(RUMA 2018). In fact, they have established practical strategies to promote the
correct use of vaccines in the dairy and beef cattle industries and also highlight
the responsibilities of the dairy and beef farmers with respect to the health, wel-
fare and productivity of their herds (RUMA 2007). Further, the National Office
of Animal Health (NOAH) represents the UK animal medicines industry and aims
to promote the benefits of safe, effective use and quality of medicines for animals
(NOAH 2018a).

In summation, there are many organisations that consider the welfare of cattle
to be of high significance and will continue to do so for the foreseeable future.

1.4 Anthelmintics used for controlling helminth

populations in cattle

By definition, Cattle is the generic term that describes the many different clas-
sifications of the domesticated bovine species. For male members of the species,
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they can be classed as bulls (non-castrated) or steers (castrated). In addition,
the term oxen is given to those castrated males that are kept for draft purposes,
i.e. an animal trained to perform tasks. For the female members of the species,
a young female that has not given birth to a calf (a term given to young cattle
of either sex) and is also under three years of age is known as a heifer. A heifer,
after giving birth, is referred to as a cow.

As mentioned in Section 1.2, anthelmintics (also known as wormers) are chemical
agents used for the control of helminths. Many products are available in GB, and
worldwide, and for cattle most are marketed for both treatment and prevention
of helminthoses. Broad-spectrum anthelmintics that are licensed for use in cattle
are discussed by Taylor (2010a) and COWS (2014), and can be categorised into
one of three classes: benzimidazoles, imidazothiazoles and macrocyclic lactones.
These classes of anthelmintics are referred to as the BZ, LV and ML groups
respectively.

The BZ group of anthelmintics were first made available on the cattle anthelmintic
market, with their discovery being made in the 1960s (Yadav and Singh 2011).
Following from this, much progress was made in producing LV anthelmintics
(McKellar and Jackson 2004). Afterwards, in the 1980s, ML anthelmintics were
made available for use in cattle and now dominate the anthelmintic market
(Campbell et al. 1983; Vercruysse and Rew 2002; Omura 2008; Taylor 2010a).

According to COWS (2014), anthelmintics can be administered in many ways (on
the basis of an animals weight): drench (the animal swallows the anthelmintic),
injection or by topical application (pour-on). Anthelmintics can also be delivered
through means of a bolus device; where a relatively large quantity of anthelmintic
is swallowed (with use of a specially designed dosing gun) and sits in the forestom-
ach and is delivered prophylactically. Boluses can be categorised in two ways:
either the bolus releases the drug constantly over a period of time (sustained
release); or the drug is released at certain time intervals (pulse released).

Taylor (2010a) tell us that the BZ class of anthelmintics (also known as white
drenches) are effective against nematodes and their eggs, i.e. they are also ovici-
dal, and are often efficacious against trematodes (COWS 2014). After receiving
the anthelmintic, the BZ anthelmintic passes into the rumen (the first division of
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the stomach) of the cattle and this acts as a reservoir allowing gradual release of
the drug.

The LV class of anthelmintics are commonly known as yellow drenches (SCOPS
2016). According to Taylor (2010a) and Yadav and Singh (2011), LV anthelmintics
paralyse the worms leading to their expulsion. The drugs that are found in this
class of anthelmintics are rapidly absorbed and excreted within 24 hours. As a re-
sult, it is not essential to maintain high concentrations of these types of drugs for
prolonged periods of time and it is worth noting that this class of anthelmintics
are not ovicidal.

ML anthelmintics (known as clear drenches) are regarded as the most popular
among the three classes of anthelmintics mentioned (Vercruysse and Rew 2002;
Omura 2008; Taylor 2010a). After administration the compounds for this class of
anthelmintic are stored in fat tissue from where they are then slowly released. Due
to popularity, ML anthelmintics are available in a wide range of forms, including
injectable and pour-on formulations.

Not all anthelmintics are efficacious against hypobiotic fourth-stage larvae. Ac-
cording to Taylor (2010a), at recommended dose rates, BZ and ML classes of
anthelmintics are more active against hypobiotic larvae and are also ovicidal
compared to the LV class of anthelmintics, resulting in BZ and ML classes being
more widely used (Levecke et al. 2012).

Information on recommended dose rates and anthelmintics can be found courtesy
of NOAH, which provides a compendium of data sheets for animal medicines for
veterinarians (NOAH 2018b). As well as this, SCOPS provides information on
different classes of anthelmintics mentioned (SCOPS 2016) and COWS provides
information on anthelmintics specifically used for cattle (COWS 2014).

1.4.1 Alternative approaches to using anthelmintics

According to Stear et al. (2007), control measures for parasitic, nematode in-
fections rely on anthelmintic treatments; but are threatened by the development
of resistance in parasite populations. Resistance is defined to be the genetically-
transmitted ability of a parasite to tolerate a normally effective dose of an an-
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thelmintic (Bishop and Stear 2003; Taylor 2010a).

Alternative methods for controlling worms have been suggested without relying
on efficacious anthelmintics. One of these is grazing management schemes (Waller
2006; Stear et al. 2007). The objective of these schemes involves maximising the
use of available pasture for livestock grazing and the level of parasites in-refugia,
i.e. the non-parasitic stages of the nematode life-cycle, whilst at the same time
minimising the number of infective L3 larvae that have the potential to infect
grazing animals.

For instance, the number of animals on a particular area of pasture for a specific
period of time (i.e. stocking density) could be considered, to the extent where
farmers reduce the number of animals in a given area. As a result, fewer animals
being infected with egg-laying nematodes would occur and could lead to lower
levels of pasture contamination (Stromberg 1997). In addition, farmers could also
have different livestock species present on their pastures to reduce contamination,
since most nematodes are host-specific; though, mixed infections are the most
pathogenic according to Bishop and Stear (2003). There is also the option of
rotational grazing, where pasture is divided into sections that are sequentially
grazed on. The logic here is that in the absence of a grazing host in certain
sections; infective larvae cannot parasitise and would eventually die by the time
animals return to a section of pasture. However, the length of life-cycles and
weather conditions would have to be considered in order for this to be a viable
option for a grazing management scheme (Callinan et al. 1982).

Outwith grazing management schemes, there is a promising option of using bi-
ological control methods, such as introducing predators of parasitic nematodes
to pastures. For example, the nematode-trapping fungus Duddingtomia flagrans,
has the ability to reduce the number of infective L3 on pasture and reduce the
intensity of infection (Wolstrup et al. 1994; Waller et al. 2004; Waller 2006; Stear
et al. 2007).

There are also various ways in which to control nematode infections by enhancing
the immune response of the host through nutritional supplementation, by devel-
oping new vaccinations for cattle and through the utilisation of genetic variation
in hosts to become more resistant towards nematodes. However, Stear et al.
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(2007) also explains that not one control method could be recommended to the
extent of excluding another; as well as no single method being recommended to
all types of farms. As a result, there could be scope for a potential combination
of the control methods to be explored and implemented in the future.

1.4.2 Anthelmintic efficacy and resistance

Anthelmintic resistance is defined to be the heritable ability of a parasite to
tolerate a normally effective dose of an anthelmintic (Bishop and Stear 2003;
Taylor 2010a). Parasites are considered resistant if they survive exposure to the
standard, recommended dose of the anthelmintic and this ability to survive is
passed on to their offspring. According to Taylor (2010a) and Gilleard and Beech
(2007), anthelmintic resistance is now accepted as a pre-adaptive phenomenon, in
that the alleles (different forms of a gene at a specific position on a chromosome)
that give rise to resistance already exist in the worm population, before they have
even been exposed to the anthelmintic. On the other hand, natural selection keeps
the resistance alleles at a very low frequency - in the absence of anthelmintics -
since these alleles make the helminthic parasites carrying them less fit for survival
than the susceptible (those that can be affected by the anthelmintic). However
in the case of when an anthelmintic is continually used, resistant nematodes gain
a survival advantage as they reproduce at higher rates (in comparison with the
susceptible nematodes present) and their numbers increase.

Worldwide, the numbers of cattle herds thought to have been exposed to an-
thelmintic resistant helminths are not as alarming as the numbers for sheep flocks
(Sangster 1999; Kaplan 2004; Wolstenholme et al. 2004; Waller 1997; COWS
2015b) though resistance has been widely reported in Australia, New Zealand,
parts of Europe and in some parts of the United States of America (Waghorn et al.
2006; Demeler et al. 2009; El-Abdellati et al. 2010; Edmonds et al. 2010; Suther-
land and Leathwick 2011). Although there have been no widespread reports of
resistant helminths in cattle in the UK, sporadic cases have been reported in
the dose-limiting species, C. oncophora (Stafford and Coles 1999; Sargison et al.
2009). Indeed, the true representation of resistance is difficult to assess mainly
due to inconsistencies in treatment dose administrations, faecal sample collection
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and handling methods, faecal egg counting techniques used, associated exper-
imental designs (Taylor 2012) and the lack of robust methods for determining
anthelmintic resistance under field conditions i.e. the lack of field data supported
by controlled slaughter studies, or the availability of validated molecular and
in-vitro methods for cattle nematodes

Efficacy can be defined as a quantitative measure of the effectiveness of a drug
intended to produce a desired effect (Vidyashankar et al. 2012). A fully effective
anthelmintic is expected to reduce faecal egg counts (FECs), i.e. the measured
response of anthelmintic studies, to zero after administration of the anthelmintic.
The most reliable method for determining anthelmintic efficacy is the controlled
anthelmintic efficacy test, whereby animals are artificially infected, treated, then
slaughtered and worm burden counts performed (Powers et al. 1982), but these
are not practicable in the field. It is common to assume that any apparent lack of
efficacy is due to anthelmintic resistance – but this apparent resistance can be the
result of anthelmintic failure due to other factors, most commonly under-dosing
due to inaccurate estimation of bodyweight (Taylor et al. 2002).

The most common method used to investigate anthelmintic resistance is the Fae-
cal Egg Count Reduction Test (FECRT) (Coles et al. 1992; Coles et al. 2006)
which will be further explained in Section 1.5.2. However, this test has not been
validated against slaughter studies and the European Medicines Agency (EMA)
regards this test as an estimation of efficacy, and not confirmation of resistance
(EMA 2014). True resistance must be confirmed through laboratory slaughter
studies, potentially supported by molecular level studies, or methods such as egg
hatch tests (Vidyashankar et al. 2012).

There are many factors that can influence the anthelmintic resistance status of
nematodes. For example the size of in-refugia populations should be considered,
as these stages are not exposed to any anthelmintic treatment (Wak 2001). In
general, the larger the in-refugia population is, in comparison to the anthelmintic-
exposed population; the more slowly resistance will develop since unexposed pop-
ulations are not affected by the anthelmintics.

The more frequent anthelmintic treatments are given to cattle, the faster an-
thelmintic resistance is likely to develop in nematode populations. Again, Taylor
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(2010a) explains that the underlying principle for anthelmintic resistance is due to
treatments giving the resistant nematodes a survival advantage over the suscep-
tible nematodes, since resistant worms have a longer period of time to reproduce.
As a result, the number of resistant nematodes increases along with the number
of susceptible worms decreasing and so a high pasture contamination of resistant
worms occurs. In fact, if the pasture is highly infective, and the cattle are highly
susceptible, re-infection occurs quickly and selection for resistance is minimised,
due to susceptible worms being re-established, explains Taylor (2010a).

Anthelmintic dosing rates can also affect the resistance status of helminths in
cattle herds, since low dose rates are likely to result in a low number of re-
sponses of the desired effect of the anthelmintic, and add to the selection pres-
sure for anthelmintic resistance when resistance is in the early stages of develop-
ment. Under-dosing of cattle with anthelmintics occurs frequently due to farmers
under-estimating weights, faulty dosing equipment, misleading dose calculations
or adverse weather conditions effecting treatments at the time of administration.

Other resistance selection pressures can stem from previous parasitic exposures
and concurrent diseases. However there are some methods, such as rotation of
anthelmintics that are used to delay the onset of resistance in helminths. Accord-
ing to Taylor (2010a), it was considered in the past that the gradual rotation of
anthelmintics of different classes should be adopted by farmers - particularly for
sheep worm control practices. This has however proved to be more challenging
carry out in cattle herds, mainly due to the widespread use of ML anthelmintics
on UK cattle farms. If this method can be adopted, the emphasis shifts to using
a different class of anthelmintic - as it is natural selection that would be expected
to reduce the prevalence of resistant nematode populations.

1.5 Faecal egg counts (FECs)

Counting eggs in faeces gives an indirect measure of worm burden present in
cattle herds (and other livestock) since experimental studies have shown there is
a weak, positive correlation between FEC data and actual worm burden (Eysker
and Ploeger 2000). These counts, usually reported as the number of worm eggs
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per gram (epg) of faeces, can aid in the decision-making process regarding whether
or not anthelmintic treatments are necessary to use, to be safely delayed in using
or not to be used for cattle herds. Monitoring FECs (i.e. FEC screenings)
can also direct the use of anthelmintics to be better timed and more efficient.
In cases where anthelmintics are used excessively, FEC monitoring can provide
farmers with information to reduce the use of anthelmintics, in order to decrease
the selection pressure to resistance (Taylor 2010a). This is known as targeted
strategic treatment.

Counting parasitic eggs, does however, present many interpretational issues. For
instance, a high parasitic egg count in faeces may be regarded as an indication
of a high worm burden, but takes no consideration of the fact that species of
nematode vary in their fecundity and pathogenicity. Also, faecal egg produc-
tion varies throughout the year and is greatly influenced by a number of factors
including levels of parasite challenge (which in turn is influenced by seasonal
weather patterns) and the development of protective immunity. Also, FECs can-
not distinguish between certain species of cattle nematode, whose eggs look very
similar morphologically. As a result, according to Taylor (2010a) larval culture
and differentiation (hatching the eggs found in a sample of faeces and identify-
ing the larvae) are often carried out in order to find out whether worms of one
particular species dominate FECs or not. Normally, 50 or 100 larvae are counted
and the proportion of each species is reported. These results are best used as a
general indication of the species’ present, rather than an exact determination of
the proportion of the FECs contributed by each species.

On the other hand, a low parasitic egg count cannot be associated with a low worm
burden since low egg counts do not take account of parasites being immature
or in a hypobiotic state. Furthermore, as cattle grow older they can develop an
acquired immunity that will effectively reduce nematode fecundity and this results
in egg counts being an unreliable indicator of the magnitude of worm burdens
present (COWS 2015b). The only way of estimating worm burden to a higher
degree of accuracy than what egg counts can provide is through a post-mortem
examination of cattle (i.e. slaughter trials).
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1.5.1 Faecal egg counting techniques

Egg counts can be determined by a variety of methods. The methods most
commonly used worldwide are those counting processes involving the McMaster
technique. There have been many modifications of this technique since it was first
established (Gordon and Whitlock 1939; Whitlock 1948) and these offer different
egg detection limits, i.e. diagnostic sensitivities typically ranging from 15 to 100
epg according to the Ministry of Agriculture, Fisheries and Food (MAFF) (MAFF
1986).

Most counting processes, where the McMaster slide is present (Figure 1.3), involve
weighing out Fgrams of faeces, say, into a test tube and adding water to the
faeces (this is known as the dilution stage). Afterwards, the test tube is shaken
to break up the faecal matter. The solution is screened through a sieve, and the
resultant filtrate centrifuged. The supernatent is discarded and a volume of Vml
salt solution is added to the tube so as to break up the pellet (this is regarded
as the flotation stage). Using the resultant solution, the McMaster slide is filled
and examined microscopically to count the number of eggs present under each
grid, or chamber. The distribution of eggs would be expected to follow a Poisson
distribution, assuming eggs are well mixed within the faecal sample (Denwood
2010).

Variations of this method involve differences between weights of the faeces used,
flotation times and the specific gravity of the solutions involved (these solutions
are used to break up the composition of the eggs and faeces in the pellet to ensure
eggs are well mixed within the faecal sample), presense/absence of a centrifugation
stage (this removes fine particles and colouring and eases the identification of
eggs) and the number of McMaster counting chambers and grids that are used in
the counting process (MAFF 1986; Taylor 2010b; Lester and Matthews 2013).

The McMaster slide features two chambers and grids, and the volume of faecal
suspension used is determined by the McMaster slide itself, Cml say, by counting
different partitions of the chambers and grids of the slide. Since both the ruled
grids and each chamber are precisely measured, eggs can be examined under one
or both grids, under one chamber or under the total area of both chambers. If one
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grid is used, then C takes the value of 0.15ml but if two grids are used then the
area used to count eggs is doubled and so C takes the value of 0.3ml. Similarly,
if one chamber is used then C takes the value of 0.5ml (i.e. we increase the area
to be examined and should be able to identify more eggs in comparison with the
0.15ml when using only one grid) but if two chambers are used as part of the
counting process then, similarly, C doubles in value to 1.0ml. These potential
values of C contribute to determining the limit of detection used as part of the
counting process (MAFF 1986; Taylor 2010b).
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The limit of detection (i.e. diagnostic sensitivity) is essentially a multiplication
factor; where the number of eggs present on the McMaster slide is multiplied by
this value in order to represent the number of eggs per gram of faeces that have
been sampled. This diagnostic sensitivity is calculated as:

V

FC
eggs per gram (1.1)

where F , V and C are defined as before. For example, if one were to use 10ml
water and 2g of faeces to obtain the faecal suspension and used two chambers
on the McMaster slide when counting faecal eggs (so C would equal the value of
1ml), then we would derive a limit of detection of 5 epg using equation (1.1).

According to Lester and Matthews (2013), if the egg detection limit is high (for
example 30 epg, 50 epg, etc.) then the counting technique will not be particularly
sensitive to changes in egg abundance below or around this limit and so zero eggs
seemingly found may not necessarily correspond to no eggs being present; this is
more likely to mean that the counting technique is not sufficiently sensitive to be
able to detect any eggs that could actually be present. As a result, false/excess
zeros could be obtained. Hence, a lower-valued limit of detection corresponds to
an increased precision in counting faecal eggs and this can be achieved by de-
creasing the volume Vml (the dilution) or by increasing the grams of faeces used,
Fgrams, or by increasing the value of Cml - for example, using more chambers
and grids on the McMaster slide to count eggs (Cringoli et al. 2004). However,
Morgan et al. (2005) and Lester and Matthews (2013) tell us that increasing
the precision is counteracted by the increased effort, e.g. from trained operators
counting the eggs, associated costs of the slides and by the diminishing returns,
if more than four chambers are counted.

The standard McMaster technique in the veterinary and parasitology communi-
ties uses a limit of detection of 50 epg and this is recommended for featuring
in counting processes by published guidelines (Coles et al. 1992; Coles et al.
2006). However, Coles et al. (2006) tell us that an agreed standard method for
counting faecal eggs is warranted, as there are several methods and variations on
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the standard McMaster technique that result in different diagnostic sensitivities
being achieved such as 30 epg, 15 epg and 10 epg (MAFF 1986; Taylor 2010b).
For example, the Parasep system is also a helminth egg filtration kit that uses
the McMaster counting chamber and can produce sensitivities such as 10 epg.

It is also possible to obtain a 1 epg diagnostic sensitivity through means of a
Sensitive Centrifugal Flotation technique (MAFF 1986). Using a technique with
a 1 epg limit of detection means that any eggs that are not detected are indeed
not present in the used faecal sample and this is highly suitable for anthelmintic
studies when low egg counts may be present in faeces obtained. In fact, some
research institutes have invested much time into developing techniques that are
accurate in detecting not just the high number of egg counts that may be present;
but also possible low numbers (Christie and Jackson 1982; Lester and Matthews
2013).

Another counting method for monitoring faecal eggs is the FLOTAC technique,
which involves the FLOTAC apparatus that has been designed to carry out flota-
tion in a centrifuge and carries a limit of detection of 1 epg (Cringoli 2006) -
but specialist equipment and training are required to carry out this technique.
However, the suitability of this technique for anthelmintic studies in cattle is
questionable, since very few studies involving cattle FEC data have been used as
part of on-going validation testing and comparisons with existing counting pro-
cesses in recent times (Cringoli et al. 2010; Rinaldi et al. 2010; Rinaldi et al.
2011; Levecke et al. 2012).

FECPAK is another development with respect to parasitic egg counting. It is a
commercial attempt to sell all materials (in a small case) required to count faecal
eggs on farm by the farmers themselves or by their farm vet (Techion Group
Ltd, Technology in Action 2018). However, McCoy et al. (2005) tell us that in a
study examining on-farm FECPAK and in-lab FECPAK results there dramatic
differences in the number of eggs counted, with the results indicating that farmers
were over-estimating their counts.

Evidently there are many methods available for monitoring and measuring FECs.
However, it is worth noting that different diagnostic sensitivities being used when
measuring FECs can result in different interpretations with respect to apparent
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anthelmintic efficacy, since the higher the multiplication factor used; the higher
the number of eggs thought to be present per gram of faeces.

1.5.2 Faecal Egg Count Reduction Test (FECRT)

The Faecal Egg Count Reduction Test (FECRT) is the most widely used field-
based method for investigating suspected anthelmintic resistance and estimating
apparent anthelmintic efficacy (EMA 2014), but has not been validated against
slaughter studies in cattle. The test traditionally involves evaluating the arith-
metic group means of FECs (i.e. central tendency and maximum likelihood
estimator of a Poisson or Negative Binomial distribution) and calculating the
percentage reduction in FECs and the corresponding 95% confidence intervals
for a treated (i.e. positive treatment) and untreated control (i.e. negative con-
trol) group of animals - usually based on the faecal samples collected on Day 14,
post-treatment. As a result, the percentage estimate is calculated as:

100

(
1− T14

C14

)
%, (1.2)

where T14 and C14 are the arithmetic group sample mean FECs collected on Day
14 (post-treatment), from the treatment and control groups respectively.

The methodology for carrying out a FECRT, described above, is recommended
as part of produced guidelines from the World Association for the Advancement
in Veterinary Parasitology (WAAVP) (Coles et al. 1992; Coles et al. 2006) and
are widely accepted. In them, WAAVP recommends the use of the McMaster
technique with a limit of detection of 50 epg but also refers to the use of the
McMaster technique where 15 epg can be adopted as the diagnostic sensitivity
for the utilised counting techniques.

A negative control group is present in order to allow for natural changes in FECs
during the test period. The sample size to be used in each treatment group was
originally 10 animals per treatment group according to Coles et al. (1992), but
these group sizes were updated to 15 animals based on a review of the guidelines
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(Coles et al. 2006). If individual cattle FECs are initially recorded as a value
below 100 epg, then Coles et al. (2006) recommend that a faecal egg counting
technique with a lower limit of detection be used.

The corresponding 95% confidence interval for the percentage estimate (1.2) is

100

(
1− T14

C14

exp

(
±2.048

√
s2
t.eos

ntreatT 2
14

+
s2
c.eos

ncontrolC2
14

))
% (1.3)

where, s2
t.eos, ntreat, s2

c.eos and ncontrol represent the sample variances and group
sizes for the treated and control groups at Day 14, respectively (Coles et al. 1992).
More on the statistical exploration and derivation of the form of the confidence
interval (1.3) are discussed in Section 2.5.1.

According to Coles et al. (1992), anthelmintic resistance is confirmed if the
percentage estimate value (1.2) is less than 95% and the lower confidence limit
of the confidence interval (1.3) is less than 90%. If only one of these criteria are
met; anthelmintic resistance is suspected.

These guidelines have evoked much discussion in the veterinary and parasitologi-
cal worlds. For instance, the use of more sensitive faecal egg counting techniques
have featured in many anthelmintic studies (Cabaret and Berrag 2004; Levecke
et al. 2012; Lester et al. 2013) other than what the WAAVP guidelines rec-
ommend. There is also a lack of consensus in communications with respect to
how percentage estimates and confidence intervals should be evaluated as part of
a FECRT; with alternative experimental designs and statistical frameworks and
approaches featuring in communications (Dash et al. 1988; Torgerson et al. 2005;
Dobson et al. 2009; Lyndal-Murphy et al. 2010; Dobson et al. 2012; Levecke
et al. 2012; Lyndal-Murphy et al. 2014).

WAAVP primarily produced these guidelines for anthelmintic investigations in-
volving sheep, but were extended to consider other livestock species, such as
other ruminants and equines. Many studies involving sheep have been conducted
(Dobson and Barnes 1995; Cabaret and Berrag 2004; Taylor et al. 2009; Barrere
et al. 2013; Falzon et al. 2013) since communications such as Coles et al. (1992),
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Jackson and Coop (2000), Wolstenholme et al. (2004) and Abbott et al. (2009)
warned that widespread anthelmintic resistance in sheep now poses problems to
sheep farmers and the livestock industry. It is worth mentioning that at the farm
level, obtaining FEC data from sheep is considered easier (due to large flock num-
bers and the fact that they are smaller ruminants in comparison to others) and
occurs at a reduced cost in comparison to other livestock species. As a result,
there is an abundance of egg count data concerning sheep.

For horses, according to Kaplan (2002) not much progress has been made in
the experimental design or data analysis of the FECRT on horse farms; in fact
Vidyashankar et al. (2007) and McKenna (2006) tell us that issues are present
in the study design and analysis of FEC data from horses due to large numbers
of horses being detected with zero egg counts and few numbers of horses being
present in herds available to test. However, in recent times studies involving FEC
data from horses have been carried out and are growing in terms of availability
(Dobson et al. 2012; Lester et al. 2013; Relf et al. 2014; Stratford et al. 2014).

It is also worth noting that there has been an increase in the use of data that has
been simulated through known and accepted distributions (these will be discussed
in Chapter 3) and the utilisation of Bootstrapping and Monte Carlo methods
(both of which will be explained later in Chapter 2), featuring in many com-
munications as a means of obtaining and concluding on FEC data for different
livestock species (Morgan et al. 2005; Learmount et al. 2006; Dobson et al. 2009;
Denwood 2010; Levecke et al. 2012; Calvete and Uriarte 2013; Lyndal-Murphy
et al. 2014; Wang et al. 2017). Though it is an approach with minimal costs
and effort to carry out; simulations could be thought of as being idealistic and
do require validation, usually from multiple data sources in order to achieve a
degree of confidence in their representation of data that could be obtained in the
real world.

Generally, research and obtaining cattle FEC data has been limited in the past,
but the number of anthelmintic investigations being conducted is growing in re-
cent times (Fiel et al. 2001; Lyndal-Murphy et al. 2010; Dobson et al. 2012;
Levecke et al. 2012; Geurden et al. 2015; George et al. 2017).
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1.6 Overview of the field study and data

The cattle FEC and FECRT data available for use in this project were obtained
as a result of the VM0503 Defra project (Defra 2015; Defra 2018b).

The Defra project began on 1st September 2011 and was completed on 28 Febru-
ary 2015. During the projectWestpoint Farm Vets (WFV) conducted field studies
on cattle over three and a half years, i.e. over three grazing seasons, in different
parts of England. The main objectives of this project were to conclude on practi-
cal methods for the early detection of anthelmintic resistance in cattle in England
and to evaluate how efficacious commonly used anthelmintics were in reducing
levels of worm egg output. Farms (either beef or dairy) that participated in the
field studies were clients of and approached by WFV. Farms that had adequate
handling facilities and that had not yet treated their first year grazing cattle prior
to turn-out to pasture were selected for the field studies, on the basis that cattle
in their first grazing season had not developed their immunities towards cattle
nematode species.

Table 1.1 highlights the details of the number of animals enrolled onto the study
and the distributions (i.e. locations) of farms used each year. It is worth noting
that in 2011, the Defra project was in its infancy and only five treatment groups
(540 cattle) were recruited and all of the cattle were located in the South East
of England. The project began mid-season and none of the groups of animals
reached the threshold for treatment (described below) and thus no FECRTs were
performed.

Table 1.1: Number of animals recruited onto study and the distribution of farms
used by year, adapted from Defra (2015)

Composite group faecal samples were collected approximately every two weeks
from farms (i.e. routine FEC screening) until the group mean FEC reached a high
enough level (>150 epg) to conduct a FECRT. This threshold was chosen as it
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was unlikely to be high enough to cause clinical disease in individual animals, but
still high enough for a robust FECRT assessment (Coles et al. 1992; Coles et al.
2006). These FEC screenings were carried out with ten cattle being sampled
per 40 cattle in a group, where possible, and approximately 50g of faeces were
retrieved from each individual animal. Composite samples were prepared by
taking 0.3g of fresh faeces from each of the ten animals, and each 3g composite
was then examined using the Modified McMaster technique with a diagnostic
sensitivity of 15 epg (MAFF 1986).

Once the group mean FEC reached the pre-determined threshold level (or less
for some groups which had clinical lungworm outbreaks), a FECRT was then
conducted. Cattle at Day 0 were systematically allocated to treatment groups
as they came through the cattle crush and faecal samples were collected prior to
treatment administration, from all animals involved. Fresh faecal samples were
collected from all animals, placed into zip-lock bags, labelled with the individual
ear tag numbers and refrigerated. Cattle in the treatment groups were dosed
based on the individual body weights (kg), measured using either weightape or by
electronic weigh scales, where available, using dose rates based on 10kg increments
(ML) or 13kg increments (BZ). All cattle were returned to the same pastures so
that they were subject to the same parasite challenge. Further faecal samples were
collected 14 days post-treatment. The control animals which were not treated
on Day 0 were treated after obtaining faecal samples on Day 14. Blinding of
the laboratory technicians was maintained during faecal egg counting. However,
in the years 2013 and 2014, on a small number of farms, faecal samples were
collected on Days 0, 14 and 21 (in these cases, control groups were treated on
Day 21 post-treatment after faecal samples were collected, as opposed to the
usual Day 14 post-treatment). The Day 21 samples were collected in order to
investigate whether or not egg counts increased between Days 14 and 21 post-
treatment; indicating a period of temporary suspension in egg laying following
treatment with the anthelmintic used, rather than truly expelling/killing worms
present.

As well as egg counts, faecal samples from treated and untreated cattle (pre-
and post-treatment) had worm eggs hatched and 100 individual, larvae cultured
to third-stage larvae in order to identify the species of nematodes present (since
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it is challenging to identify species’ of nematode by inspection of their eggs).
The species’ proportions were evaluated before and after treatment to see if one
particular species of nematode survived treatment, as this can occur if they are
becoming resistant to an anthelmintic.

On farm treatments were with products either from the BZ and ML class of an-
thelmintics, based on farm history and previous anthelmintic use. From the BZ
group, an oral drench product containing fenbendazole (Panacur 10% Oral So-
lution TM, MSD Animal Health, 7.5mg fenbendazole/kg bodyweight); and from
the ML group, doramectin injection (Dectomax Injection for Cattle and Sheep,
Elanco Animal Health Ltd, 200 mcg doramectin/kg bodyweight), doramectin
pour-on (Dectomax Pour-On for Cattle, Elanco Animal Health, Ltd, 500mcg/kg
bodyweight), ivermectin injection (Ivomec Classic Injection for Cattle and Sheep,
Merial Animal Health, Ltd., 200mcg/kg bodyweight) and ivermectin pour on
(Ivomec Classic Pour-On for Cattle, 500mcg/kg bodyweight) featured as part of
this study and report (Defra 2015). A negative or a positive control group (i.e.
a control group that is not exposed to the direct treatment of interest, but is ex-
posed to some other treatment that is known to produce the expected effect) was
used on all pastures, excluding those where pour-on products were used due to
the likelihood of cross-contamination of negative controls with pour-on products.
Treatment groups varied in size on farms throughout the study, with some farms
also having more than one positive treatment group enrolled into the FECRT.

An outline of the FECRT method study design described above is given in Figure
1.4.

With respect to the egg counting techniques adopted for the duration of the
project, the following methods were used in order to investigate any methodolo-
gies that could be recommended to use for the early detection of anthelmintic
resistance in cattle:

• Modified McMaster method involving 30 epg limit of detection;

• Modified McMaster method involving 15 epg limit of detection;

• Modified McMaster method involving 10 epg limit of detection;
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Figure 1.4: An outline of the Faecal Egg Count Reduction Test (FECRT) method
study design, adapted from Defra (2015)

• Sensitive-Centrifugal Flotation Technique (SCFT) with a limit of detection
of 1 epg (Primary counting technique used in all field studies that involved
following the procedure of the Modified McMaster Improved counting tech-
nique but eggs floated to a coverslip following centrifugation, re-suspension
and re-centrifugation (MAFF 1986));
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• FLOTAC system using a limit of detection of 1 epg;

• and a Parasep system using 30 epg and 15 epg limits of detection.

Any individual faecal samples that were detected as having below 120 epg (in
2012) or 60 epg (in 2013 and 2014), with respect to a 15 epg diagnostic sensitivity,
were re-analysed with a technique that had a lower limit of detection, i.e. the
SCFT. The change in threshold between the years resulted from a project review.

Regarding the field studies as a whole, slight modifications were made each year,
i.e. target minimum group size, presence of negative control group, inclusion of
Day 21 FEC post-treatment. In 2014, following a statistical review of the data
obtained from 2012 and 2013, negative control groups did not feature as part
of the field studies for that year in order to increase available treatment group
sizes. Overall however, the majority of the studies tried to follow a parallel group
design, where possible.

As part of the Defra project, statistical analyses were also carried on the FECRT
data. In accordance, with the recommended WAAVP guidelines (Coles et al.
1992; Coles et al. 2006) any cattle for which FECs were not obtained either on
Day 0, or Day 14, were removed and not included in the analysis. Any cattle that
were mis-dosed (as recorded by the veterinarian at the time of treatment), e.g.
anthelmintic was rejected by animals after administration or animal movement
caused only a partial dose being received, were also excluded from this analysis.
Under both circumstances animals received a re-dosing with a full dose as per
standard veterinary practice. Where duplicate samples were obtained through
the experimental process, the first set of FECs recorded was used as part of the
analysis in order to ensure independence between the egg counts obtained per
animal.

In total, 113 treatment groups were considered for the statistical analyses: 25
negative control groups, 19 and 8 doramectin injectable and pour-on treatment
groups respectively, 27 and 16 ivermectin injectable and pour-on treatment groups
respectively and 18 fenbendazole treatment groups. Overall, 2,762 cattle met the
criteria for inclusion of the statistical analyses.

The percentage reduction (1.2) was calculated
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100

(
1− T14

C14

)
%,

as well as the following percentage estimate (1.4) (which will be described in more
detail in Chapter 2):

100

(
1− T14

T0

)
%, (1.4)

where T0 is the arithmetic group sample mean of FECs obtained at baseline,
i.e. on Day 0, from a positive treatment group, were evaluated along with 95%
confidence intervals of a similar form given by the interval (1.3), to conclude on
apparent efficacy/resistance in cattle herds.

For further information on the results of this analysis we refer the reader to Defra
(2015), but we will consider and present some of these results later in Chapter 6.

1.6.1 Data used as part of this PhD project

We use the term data to describe each of one of the variations of the sets of egg
counts that were obtained from the first and second McMaster chambers which
featured as part of the Modified McMaster technique adopted, using a diagnos-
tic sensitivity of 30 epg (hereby referred to as 30EPG_McM1, 30EPG_McM2
data, respectively). The average of the two chambers was also considered, re-
sulting in data sets with egg counts being obtained using a diagnostic sensitivity
of 15 epg (hereby referred to as 15EPG_McM counts). A hybrid set of FEC
data was also considered, which involved counts obtained using the SCFT with
a 1 epg sensitivity, as well as the other 15EPG_McM counts that were greater
than or equal to the thresholds mentioned in Section 1.6 (hereby referred to as
15EPG_McM_SCFT data). As a result, there were four possible sets of data
produced for each individual treatment group. Seventy six treatment groups were
considered for analysis purposes as part of this project, based on the Day 0 and
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Day 14 FEC data obtained by the counting techniques considered above. As a
result, a total of 304 data sets were considered for analysis, i.e. 76 data sets were
considered for each diagnostic sensitivity grouping.

From this subset of data and with the inclusion criteria adopted described in
Section 1.6, 12 groups of cattle who received a fenbendazole treatment (coded
as FBZ) were considered. From the ML group of anthelmintics: 19 groups of
cattle who received a doramectin injection (coded as DectoInj), 8 groups of cat-
tle who received a doramectin pour-on formulation (coded as DectoPouron), 15
ivermectin injection and 7 ivermectin pour on (coded as IvmInj and IvmPouron,
respectively) treatment groups of cattle were also considered. Based on the 61
positive treatment groups present in this subset of data, the median group size
for positive treatment groups was 27 cattle, with group sizes ranging between
12-61 cattle. For the 15 negative control groups present in this study, the median
group size was 18 cattle, with group sizes ranging between 12-54 cattle. Overall,
2,501 cattle were sampled during the FECRTs over this subset of 52 farms, and
of these, 2,175 animals results were used for analysis purposes of this project that
satisfied the inclusion criteria highlighted in Section 1.6.

All analyses were carried out using RStudio software (version 0.98.994 along with
R software version 3.1.1.) and any statistical tests which feature as part of this
project were carried out at a 5% significance level.

1.7 Aims and objectives of this project

The overall aim of this project is to improve the analysis of cattle FEC data and,
subsequently, identify appropriate experimental designs that could be carried out
and utilised as part of improving the FECRT. This is achieved using various sta-
tistical methodologies/frameworks, which will be able to provide robust statistics,
in order to conclude on the apparent anthelmintic efficacy/resistance status’ of
cattle herds.

In Chapter 2, a literature review is presented. This review highlights the differ-
ent types of statistical analyses and frameworks and examines the various exper-
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imental designs that have been adopted as part of conducting FECRT studies for
different livestock species.

Following the review, an investigation of the statistical validity of current guide-
lines on constructing percentage estimates and confidence intervals as part of
the FECRT is undertaken (Chapter 3). Namely, the validity of the asymptotic
assumption of normality of cattle FEC data, on which recommended confidence
intervals are based, is investigated and various discrete probability distributions,
such as compound distributions other than the Negative Binomial, are fitted
to cattle FEC data. The latter is conducted in order to determine the most
appropriate distributions, and by extension location parameter estimates/central
tendencies, for representation. Based on the results, recommendations of possible
alternative calculations are given.

The conclusions from Chapter 3, along with available cattle FEC field study data,
are used in simulation studies that identify robust percentage estimates and, by
extension, design of experiments within Bootstrapping and Bayesian frameworks,
and are described in Chapters 4 and 5, respectively.

Furthermore, the robust methodologies identified in Chapter 5 are adopted and
applied to available field study FEC data. A breakdown of the classifications of
the apparent anthelmintic efficacy/resistance status’ of cattle herds and measures
of agreement between the classifications using these methodologies used and those
carried out as part of the Defra project, are highlighted in Chapter 6.

Finally, general discussion and ideas about future work are described in Chapter
7, along with a robust field-based FECRT calculator, i.e. a R Shiny prototype
webpage application being presented.
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Chapter 2

Review of current statistical
methodologies used in studies of
anthelmintic efficacy

2.1 Introduction

In this Chapter, a review of the literature is presented, focusing on the experimen-
tal design considerations, various statistical calculations (i.e. different percentage
estimates that can be considered) and the statistical frameworks for which in-
terval estimation can be carried out for the FECRT. With respect to statistical
frameworks, confidence intervals using asymptotic approximations for the most
commonly used percentage estimates were derived and presented as part of this
project. Bootstrap and Bayesian methodologies are also discussed here.

2.2 Experimental design considerations for the FE-

CRT

According to Winer et al. (1991), experimental design is concerned with reduc-
ing and controlling variability in ways which make statistical theory applicable
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to decisions made about nature. An experimental design simply describes how
an experiment is to be executed and in designing the structure, decisions must
be made regarding the variables and experimental material of interest, such as
measured responses, objective of the study being conducted and the experimental
units under observation. For example, in the case of FECRT studies, FECs would
be considered the measured responses, the objective of these studies would be to
investigate the apparent efficacy/resistance status of the herds being considered
and the experimental units would be the animals sampled.

The types of experiment considered for the FECRT are currently recommended
(Coles et al. 1992; Coles et al. 2006) to involve two treatment groups: one positive
treatment group which receives the treatment/intervention under consideration
and one negative control group which does not receive the treatment/intervention
and these form as part of a parallel group study design; where only counts from
end of study are included in calculations (end of study usually being Day 14
after administration of treatment/intervention). The use of a negative control
group in this case is to allow for natural changes in FECs during the test period,
between baseline and end of study. By only obtaining post-treatment counts, this
can result in saved labour and time at the farm level. However, no information
is used about the groups of animals involved from the baseline of study when
investigating apparent efficacy in this case.

Some communications also recommend the use of baseline counts of the positive
treatment and negative control groups (Dash et al. 1988; Torgerson et al. 2005;
Lyndal-Murphy et al. 2010; Lyndal-Murphy et al. 2014). As a result, all of the
available information that can be obtained from this type of experiment can be
used. However, interpreting the changes in the negative control group could be
challenging due to the different sources of variation. Indeed, Vidyashankar et al.
(2007) and Vidyashankar et al. (2012) tell us that there are numerous sources of
variability in FEC data that can impact on the interpretation of efficacy. Some of
these sources include the overdispersed distribution of parasites in the hosts (caus-
ing differences in pre-treatment counts between animals on farm), differences in
infection intensities between farms (causing differences in counts between farms),
the variability in different samples from the same animals, overall health and
well-being of animals which impacts on the pharmacokinetics and pharmacody-
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namics, spatial and temporal differences between farms due to the location of the
farms and time of sampling, respectively, and differences in age, breed and sex of
animals both on and between farms (we refer the reader to Vidyashankar et al.
(2007) and Vidyashankar et al. (2012) for further information).

There are some communications, however, that conduct anthelmintic studies by
only considering the pre- and post-treatment counts of a positive treatment group,
particularly in the instance where it may not be possible to have a negative
control group (Cabaret and Berrag 2004; Lyndal-Murphy et al. 2010; Levecke
et al. 2012; Lester et al. 2013; Lyndal-Murphy et al. 2014; Stratford et al. 2014;
George et al. 2017). In fact, Vidyashankar et al. (2007) tell us that this type of
design of experiment is adopted for anthelmintic studies in horses; mainly due to
the fact that too few horses are usually available to contribute to two treatment
groups on one farm. This set up of experimental design ensures that all animals
are treated. In the instance of considering counts from both Day 0 and Day 14
from a treatment group, this would form the basis of a paired study design or,
as it is formally known, a paired comparison study since repeated measures are
involved from the same subjects. Gardiner and Gettinby (1998) tell us that this
design allows us to account for an extraneous source of variation. Any differences
detected between FECs obtained between Days 0 and 14, could be due to, for
example, the effects of the treatment, variation between animals on each day or
a mixture of both. A paired study design allows us to account for the variation
between animals because each animal is considered as their own control, thus any
differences between the measured responses over time are more likely to be caused
by the effects of the treatment administered. It is worth noting that the paired
study design focuses on one treatment group being examined, this usually being
the positive treatment group, whereas a parallel group design is an extension that
involves two treatment groups under paired study design regimes being used in
calculations (where a negative control group would usually be considered as well).
The distinction between the parallel group design and paired study design can
be highlighted in Figure 2.1.
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Gardiner and Gettinby (1998) also tell us that the development of experimen-
tal design principles is generally attributed to Sir Ronald Fisher (Fisher 1970)
and terms such as statistics, experimental design, treatment effect, randomisa-
tion, etc. were to become recognised with the planning, collecting and analysis
of data. In fact, the term experiment is open to a very broad interpretation and
covers any type of study, trial or investigation where data are to be collected and
assessed. With respect to variation, Gardiner and Gettinby (1998) also explain
that data can be thought of intuitively as a combination of variation which is con-
trolled through the experimental process and variation which can be considered
as random, i.e. experimental error. Indeed, experimental design is considered the
cornerstone of good statistical practice and has been internationally adopted for
the effective development of new processes, products and investigations (Gardiner
and Gettinby 1998).

The question, however, of what design of experiment, and particularly what per-
centage estimate, should be used to ensure robust statistical calculations are car-
ried out as part of a FECRT remains unanswered. With respect to anthelmintic
studies for cattle, this is mainly due to limited research being carried out in this
species as well as a lack of consensus being present towards the definition of a
design being robust for these investigations (Cabaret and Berrag 2004). Despite
the differences discussed above, as agreed by many researchers, there is a strong
need to investigate which design is appropriate to determine and classify apparent
anthelmintic efficacy in a robust manner with respect to statistical calculations
being carried out as part of the FECRT (Vidyashankar et al. 2007; Vidyashankar
et al. 2012; Lyndal-Murphy et al. 2014).

2.3 Percentage estimates for efficacy

To investigate apparent anthelmintic efficacy, the FECRT is currently recom-
mended to evaluate a percentage estimate (based on the ratio of arithmetic means
from the treated and untreated groups of animals) and a 95% confidence intervals
(CIs) for these estimates, using faecal samples collected on Day 14 post-treatment
(Coles et al. 1992) as part of a parallel group design. This estimate is shown in
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(2.1):

100

(
1− T14

C14

)
%, (2.1)

where T14 and C14 are the arithmetic group sample mean FECs collected on Day
14, after baseline of study, from the treatment and control groups respectively.

In this Section, we consider the generalisation of the above percentage estimate
and other formulations that are explored in the communications considered.

The percentage estimate (2.1), is a specific case of the generalisation in (2.2):

100

(
1− Ti

Ci

)
%, (2.2)

where Ti and Ci are the arithmetic group sample mean FECs collected on Day
i, after baseline of study, from the treatment and control groups, respectively
(Pepper et al. 2003; McKenna 2006; Barrere et al. 2013; Falzon et al. 2013).

Another commonly used percentage estimate observed in the literature, which
involves the ratio of arithmetic means of baseline and end of study FECs from a
positive treatment group of animals (i.e. from a paired study design) is percentage
estimate (2.3):

100

(
1− Ti

T0

)
%, (2.3)

where Ti and T0 are defined as the arithmetic group sample mean FECs at the end
of study, on Day i, and baseline, on Day 0, for the treatment group, respectively
(Kochapakdee et al. 1995; McKenna 2006; Lyndal-Murphy et al. 2010; Dobson
et al. 2012; Levecke et al. 2012; Vidyashankar et al. 2012; Lester et al. 2013;
Lyndal-Murphy et al. 2014; Relf et al. 2014; George et al. 2017).
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The final, most commonly used percentage estimate in communications, which
involves baseline and end of study arithmetic mean FECs from positive treatment
and negative control groups, is given in (2.4):

100

1−

(
Ti
T0

)
(
Ci
C0

)
% = 100

(
1− C0Ti

T0Ci

)
% (2.4)

where Ti, T0, Ci, C0, are defined as the arithmetic group sample mean FECs at
the end of study, on Day i, and baseline on Day 0, for the treatment and control
groups, respectively (Dash et al. 1988; Torgerson et al. 2005; McKenna 2006;
Taylor et al. 2009; Lyndal-Murphy et al. 2010; Dobson et al. 2012; Lyndal-
Murphy et al. 2014).

The Symmetrised Percentage Change (SPC) (Berry and Ayers 2006), given in
(2.5):

100

(
T0 − Ti
T0 + Ti

)
% (2.5)

could also be considered as an estimate for apparent anthelmintic efficacy, where
T0 and Ti are defined as before. If this percentage estimate were to be considered,
we would be able take account of any increases in FECs between baseline and
end of study as well as any zero valued FECs at baseline or end of study. The
SPC, according to Berry and Ayers (2006), is also bounded (±100%) and having
a bounded range means that the influence of outliers is greatly reduced. It is
often the case with FEC data that a small number of individual animals will be
shedding high numbers of eggs in their faeces, and thus be outliers.

It is also worth noting that values obtained for the most popular percentage esti-
mates are not necessarily the same as those obtained using the SPC. For example,
if T0 = 100 and T14 = 5, then this would correspond to a 95% reduction, but the
SPC = 90.5%. Also, if T0 = 100 and T14 = 10, then this would correspond to
a 90% reduction, but the SPC = 81.8% (these would be the threshold values to
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be adopted to correspond to those recommended by WAAVP).

The approach of averaging over individual-based egg count percentage reduc-
tions/changes has also been considered, but not much research has been dedi-
cated to this concept (Cabaret and Berrag 2004). For instance, in the case of
considering percentage estimate (2.3), we would have (2.6) as an average:

∑ntreat
j

[
100

(
1− Ti,j

T0,j

)
%
]

ntreat
, (2.6)

where T0,j and Ti,j are, respectively, Day 0 and Day i FECs from host j, from
a total ntreat hosts from the positive treatment group. In fact, each host would
serve as its own control. To consider this type of approach, we would be re-
quired to work with FECs from individual animals at baseline and end of study.
Cabaret and Berrag (2004) tell us that the individual-based egg count percentage
reductions/changes of the form (2.6) presented lower values and more reliable
evaluations given certain conditions than the average-based egg count percentage
reductions/estimates in most cases.

We could also extend this approach to consider the individual-based egg count
percentage reductions/changes in the case of the SPC (2.5), that is (2.7):

∑ntreat
j

[
100

(
T0,j−Ti,j
T0,j+Ti,j

)
%
]

ntreat
. (2.7)

2.3.1 Central tendencies for representing egg count data

The most commonly used percentage estimates in the literature, i.e. percentage
estimates (2.2), (2.3) and (2.4), are based on arithmetic group means of treatment
group FECs. These are the central tendencies/maximum likelihood estimates
from a Poisson or a Negative Binomial distribution, which FEC data are assumed
to follow since most hosts are uninfected with parasites (or contain very few
parasites) and very few hosts are heavily infected; hence parasite populations
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are known to be statistically aggregated (Shaw and Dobson 1995; Levecke et al.
2012; Wang et al. 2017).

These are not the only central tendencies that have been considered in the liter-
ature, however. According to Presidente (1985), Wood et al. (1995), Smothers
et al. (1999) and Vercruysse et al. (2001), geometric group means could also be
used when forming percentage estimates, on the grounds that we could gain a
more accurate representation of the distribution of nematode populations within
a herd of animals and could also gain a more accurate degree of apparent efficacy
of an anthelmintic. Upton and Cook (2011) defines the geometric mean, g as

g =

(
n∏
i

xi

) 1
n

for a set of positive observations x1, x2, ..., xn. However, Dobson et al. (2009)
concluded that efficacy estimated from using arithmetic means using percentage
estimate (2.2) provided consistent, unbiased results, i.e. the expected value of
efficacy was close to the true value of efficacy, in comparison to the use of ge-
ometric means which consistently produced biased results. Additionally, Dash
et al. (1988) advocates the use of arithmetic means as opposed to geometric
means on the basis that geometric means underestimate total egg outputs and
different transformations being used on egg count data, before evaluating the
geometric mean (otherwise the geometric mean becomes zero in the presence of
zero egg count data being present) make it difficult to draw comparisons and
conclusions.

Transformations of FEC data, such as log10(·), ln(·), square-root and arcsine
transformations, have been considered by several authors in order to correct the
usual skewness present in FEC data. The transformed data have then been
used to calculate arithmetic means (Fulford 1994; Pook et al. 2002; Mejia et al.
2003; Torgerson et al. 2005; Vidyashankar et al. 2007; Dobson et al. 2009).
Transformations such as ln(x + a), where a > 0, have also been considered to
take account of egg counts with a value of zero (Torgerson et al. 2005). More on
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data transformations will be discussed in Section 3.2.1.

However, it could be meaningful to investigate other representative distributions
and their relevant central tendencies, i.e. investigate the validity of assuming FEC
data follow Poisson/Negative Binomial distributions, and hence observe whether
it is valid to use arithmetic means in percentage estimate calculations.

2.3.2 Maximum likelihood estimation (MLE) as a means

of estimating central tendencies

Maximum likelihood estimation (MLE) is the most commonly used technique for
estimating parameters of probability distributions (Rice 2007), such as central
tendencies. It is based on the Likelihood Principle, which asserts that if a proba-
bilistic model is claimed to describe the behaviour of observed data, then all the
relevant information about the model (available from the data) is contained in
the joint probability density function (pdf) or probability mass function (pmf),
assuming the model is correct.

Suppose a random variable X had pmf/pdf fX(x; θ) on some domain Ω for X,
where θ is a parameter of the model whose value we do not know but wish to
estimate. Suppose further that we observe a simple, random sample of size n,
where our observations are independent of one another and follow the identical
pdf with the same value of θ. Then the joint pdf of our vector of observations
X = (X1, X2, ..., Xn) is simply

fX(x, θ) = fX(x1; θ)fX(x2; θ)...fX(xn; θ)

on the domain Ωn. This is a legitimate multivariate pmf/pdf of X. It is worth
noting however, that the unknown parameter θ plays an essential role and, in
general, it too will belong to some particular domain, i.e. the parameter space T.

In using the maximum likelihood method, instead of considering fX(x, θ) as a
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function of x1, x2, ...xn in which θ is a fixed but unknown constant, we regard
x1, x2, ...xn as values which are fixed once the data have been collected, and allow
θ to vary across the parameter space T. When we think of the joint density
function as a function of θ in this way, it is re-named as the Likelihood Function.

We write the likelihood function as given in (2.8):

L(θ;x) =
n∏
i=1

fX(xi; θ), (2.8)

where the xi are the different observed data values. The likelihood function does
not have a direct probabilistic interpretation in terms of the parameter space, but
the most plausible values for θ are those which make the likelihood function as
large as possible, i.e. make the observed data values most likely, and this principle
is used for choosing an estimator θ̂ for θ. This is regarded as the Maximum
Likelihood Principle.

It is worth noting that, according to Rice (2007), it is the log-likelihood function
which is most often used in practice, i.e. by using equation (2.8) we consider l(θ) =

ln(L(θ)). Working with the log-likelihood function often simplifies the algebra
involved in deriving estimators plus any value of θ which maximises L(θ) will
also maximise l(θ), since the ln(·) is monotonically increasing function. Finally,
if a probability model contains several unknown parameters, then the maximum
likelihood method can be used to estimate these parameters simultaneously.

2.4 Statistical frameworks used to derive point

and interval estimates of data

The point and interval estimates associated with a data set can be estimated
in a variety of ways. In this Section, we consider the three main statistical
frameworks from which we can obtain point and interval estimates of data, namely
the asymptotic approximation, Bootstrap and Bayesian approaches.

43



2.4.1 Asymptotic approximation for obtaining point and

interval estimates

2.4.1.1 Calculation of expected values and variance

Suppose we have a random variable X with some distribution f(x) and we know
the expected value, E[X], and variance of X, V ar[X]. Let the random variable Y
be defined as Y = g[X] for some real-valued function g(·). How do we calculate
E[Y ] and V ar[Y ]? To solve this problem, in the case of finding an analytical
solution, we would evaluate either

E[Y ] =
∑
j

g(xj)P (X = xj)

for a discrete random variable X, or

E[Y ] =

∫ ∞
−∞

g(xj)f(xj)

for a continuous random variable X, where xj, for j = 1, .., n are our data.

The V ar[Y ] is defined as

V ar[Y ] = E[Y 2]− (E[Y ])2

= E[g(X)2]− (E[g(X)])2.

However, for most real world problems, the conclusion of an analytical solution
is intractable and as a result, we can look to approximation approaches to aid us
in point and interval estimation, such as the Delta Method.
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2.4.1.2 The Delta method

The main idea behind the Delta method is that we can use a linear approxima-
tion of g(·), near the maximum likelihood estimator (mle) θ̂, for the population
parameter θ, of a random variable X this gives approximations for E[Y ] and
V ar[Y ] (Hosmer et al. 2008) for Y defined as in Section 2.4.1.1.

Let g : Θ → R, where Θ is the parameter space and suppose that g(·) is dif-
ferentiable for all θ ∈ Θ and g′(θ) 6= 0. If we use a first-order Taylor series
approximation around θ:

Y = g(X) ≈ g(θ) + g′(θ)(X − θ)

and so to first order

E[Y ] ≈ E[g(θ) + g′(θ)(X − θ)]

= E[g(θ)] + E[g′(θ)(X − θ)]

= g(θ), since E[(X − θ)] = 0. (2.9)

Furthermore, we obtain the first-order approximation for V ar[Y ]

V ar[Y ] ≈ V ar[g(θ)] + V ar[g′(θ)(X − θ)]

= 0 + [V ar[X]− V ar[θ]](g′(θ))2

= (g′(θ))2V ar[X]. (2.10)

How good the approximations (2.9) and (2.10) are, depends on how non-linear
g(·) is in the neighbourhood of θ and also on the size of V ar[X].

For the remainder of this Chapter, we will let g(·) equate to the natural logarith-
mic function ln(·), since, if we were to consider the logarithm of a ratio of two
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parameters, then this is equivalent to considering the difference of the logarithms
of the two parameters. As a result, by using approximations (2.9) and (2.10) we
can obtain the following approximations (2.11) and (2.12):

E[Y ] ≈ ln(θ) (2.11)

and

V ar[Y ] ≈ V ar[X]

θ2
. (2.12)

2.4.1.3 Extension of the Central Limit Theorem

Another useful property which we will make use of centralises around convergence
of estimators. Suppose that a sequence of random variables Xn converges to a
random variable X, if there exists N such that for all n > N , X and Xn have
the same cumulative distribution function. Further, assume

θ̂
d−→ N

(
θ,
σ2

n

)

where d−→ represents convergence in distribution, which implies that θ̂ will be cen-
tred at θ with variance σ2

n
for a sufficiently large sample size n and N represents

the normal distribution with mean θ and variance σ2

n
. If we consider a differen-

tiable and continuous function g(·) for all θ in the parameter space Θ, then we
have the following result (Hosmer et al. 2008; Greene 2012):

g(θ̂)
d−→ N

(
g(θ),

σ2(g′(θ))2

n

)
. (2.13)

If we let g(·) equate to the natural logarithmic function ln(·) again, then the
convergence property (2.13) becomes
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ln(θ̂)
d−→ N

(
ln(θ),

σ2

nθ2

)
. (2.14)

In essence, equation (2.14) tells us that the sampling distribution of ln(θ̂) will
follow a normal distribution with mean ln(θ) and variance σ2

nθ2 . This is similar to
the Central Limit Theorem (Upton and Cook 2011; Rumsey 2016), which states
that in spite of the distribution of the population, the sampling distribution of the
sample mean, x̄ say, will follow a normal distribution with mean θ and variance
σ2

n
, for sufficiently large n.

One might ask how sufficiently large n has to be in order to ensure the sam-
pling distribution of the sample mean satisfies this condition? The answer to this
question depends on the distribution of the population from which the samples
are taken from. If we consider a population that has finite mean θ and vari-
ance σ2 and is normally distributed then the distribution of x̄ must be normally
distributed, irrespective of the size of n. In other words, if the population dis-
tribution is normal then the sampling distribution of x̄ is normal. However as
the population becomes of a more non-normal nature, a larger n is needed to
guarantee convergence (Rumsey 2016). Upton and Cook (2011) tell us that as
long as a sample size of at least 30 is obtained, then the sampling distribution of
x̄ can be assumed to be normal.

2.4.2 Bootstrapping theory

The use of Bootstrapping methods has proved to be popular in the veterinary
and parasitological communities in different animal studies (Cabaret and Berrag
2004; Vidyashankar et al. 2007; Traversa et al. 2009; Vidyashankar et al. 2012;
Lester and Matthews 2013; Lester et al. 2013; Wang et al. 2017) in order to
obtain point and interval estimates for percentage estimates. In this Section, we
describe the various Bootstrapping techniques that can be used to obtain these.

Bootstrapping is a computer-intensive technique which involves re-sampling from
observed data. Essentially, there are two types of Bootstrapping: parametric and
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non-parametric. Parametric Bootstrapping involves re-sampling from observed
data under the assumption of a well-defined probability distribution. Conversely,
non-parametric Bootstrapping does not require a probability distribution to be
assumed. The theory proceeds as follows: suppose we have a set of n random
measurements of some characteristic of the population of interest (in our case
this would be FECs) and we want to estimate some parameter of the distribu-
tion. Bootstrapping theory tells us that the true distribution of FECs, f say,
can be reasonably approximated by the distribution of sampled observations, f ∗

say. As a result the larger the value of n the more reasonable this assumption.
Based on this assumption, the theory continues by constructing n random sam-
ples (with replacement) from f ∗ and calculating the statistic of interest from the
generated sample. This process is repeated a large number of times until a stable
distribution of the statistic of interest is obtained. This distribution is then the
uncertainty/sampling distribution of the statistic of interest for which we can
obtain point estimates and confidence intervals.

The following give algorithmic steps associated with the parametric and non-
parametric Bootstrapping procedures.

The Non-parametric Bootstrap:

1. Collect a data set of measurements with sample size n: X =

{x1, . . . , xn}.

2. Generate B Bootstrap data sets {x∗1, . . . , x∗B}, where each x∗i (for 1 ≤
i ≤ B) is a generated dataset of size n, i.e. a replication/iteration,
featuring randomly sampled values (with replacement) from X.

3. For each Bootstrap data set {x∗1, . . . , x∗B} calculate the required statistic
of interest, {θ̂∗1, . . . , θ̂∗B} respectively.
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The Parametric Bootstrap:

1. Collect a data set of measurements with sample size n: X =

{x1, . . . , xn}.

2. Determine the parameter(s) of the distribution that best fits the data
from the known distribution, such as the maximum likelihood estima-
tor(s).

3. Define the known distribution using, say, the maximum likelihood esti-
mate(s) of the parameter(s).

4. Generate B Bootstrap data sets {x∗1, . . . , x∗B}, where each x∗i (for 1 ≤
i ≤ B) is a generated data set of size n, i.e. a replication/iteration,
featuring randomly sampled values (with replacement) from the fitted
distribution.

5. For each Bootstrap data set {x∗1, . . . , x∗B} calculate the required statistic
of interest which estimate the parameter(s) defined earlier, {θ̂∗1, . . . , θ̂∗B}
respectively.

Both techniques offer their own benefits and costs as described in Table 2.1:
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Non-parametric Bootstrap Parametric Bootstrap

Advantages
– Simple to apply.
– General and robust

method of setting
confidence intervals.

– General and robust
method of setting
confidence intervals.

– measurements need not
be identically and inde-
pendently distributed.

Disadvantages
– Measurements need to

be identically and inde-
pendently distributed.

– In complex applications,
it is often unclear what
the unit of re-sampling
should be.

– Generally only asymp-
totically exact, i.e. when
B,n→∞.

– Parametric model must
be assumed.

– Generally only asymp-
totically exact, i.e. when
B,n→∞.

Table 2.1: Advantages and disadvantages for types of Bootstrapping

The Bootstrap approximates the sampling distribution with three sources of ap-
proximation error: simulation, statistical and specification. The simulation error
refers to the fact that we are using a finite number of replications to stand for
the whole sampling distribution. Statistical error refers to the distributions of
the simulated data estimates and the distribution of the original data set not
being exactly the same. Finally, the specification error refers to the idea that
any specified distribution, i.e. the subjectivity of the modeller when specifying
the distribution, might not be suitable given the original and any simulated data
sets.

With bootstrapping methods, there are usually three statistical features which
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are of interest:

Distribution of Uncertainty:

When considering the approaches described above, the distribution of the esti-
mate θ̂ can be denoted as dist{θ̂∗1, . . . , θ̂∗B} , and this represents the uncertainty
about the true value of the population parameter θ.

Variance and Standard Error:

According to Efron and Tibshirani (1993), from the sampling distribution dist{θ̂∗1, . . . , θ̂∗B}
we are able to derive approximations for the variance and standard error for the
population parameter θ namely:

V ar[θ] ≈ V ar[θ̂]

≈ V ar[dist{θ̂∗1, . . . , θ̂∗B}]

where V ar[dist{θ̂∗1, . . . , θ̂∗B}] is the sample variance estimate of the sampling dis-
tribution of θ̂.

The standard error associated with θ, se[θ] can be approximated in a similar way:

se[θ] ≈ se[θ̂]

≈ sd[dist{θ̂∗1, . . . , θ̂∗B}]

where sd[dist{θ̂∗1, . . . , θ̂∗B}] is the sample standard deviation estimate of the sam-
pling distribution of θ̂.

Bias:

Bias can be defined as the difference between the population parameter θ and the
expected value of the estimator θ̂. This bias may occur due to simulation, statis-
tical and/or specification errors occurring. It can be written and approximated
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as follows:

Bias = E[θ̂]− θ (2.15)

≈ E[dist{θ̂∗1, . . . , θ̂∗B}]− θ̂

≈ θ̂∗ − θ̂ (2.16)

where θ̂∗ is the average of dist{θ̂∗1, . . . , θ̂∗B}.

The most common reason as to why we would be interested in estimating the
bias (2.15) of θ̂ is to enable correction for it. To do this, let approximation (2.16)
be denoted as b. An obvious bias-corrected estimator would be as follows:

θ− = θ̂ − b

= θ̂ − (θ̂∗ − θ̂)

= 2θ̂ − θ̂∗ (2.17)

However, Efron and Tibshirani (1993) cautions us that this straight-forward bias
correction (2.17) may not be reliable in practice - for instance correcting the
bias may result in a larger standard error being evaluated. The notion of bias
correction will be used when constructing confidence intervals in Section 2.5.2.

2.4.3 The Bayesian approach

Bayesian statistics involve estimating parameters of interest using available data.
The classical approach to statistics (often known as the frequentist approach)
assumes that the parameters of interest are fixed, but have known values to be
estimated; whereas the Bayesian approach assumes the parameters are not fixed
but have some fixed, unknown distribution. Thus by using the Bayesian approach,
this leads us to working with a distribution for the parameters of interest and is
the basis for subsequent inference within the Bayesian paradigm (Lee 2004; Rice
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2007; Gelman et al. 2013).

In the discrete sense and according to Rice (2007), Bayes’ Theorem can be
thought of in terms of basic probability laws. Let A and B1, . . . , Bn be events,
such that the Bi are disjoint, the union of the Bi’s forms the sample space and
P (B) > 0 for all i where P denotes the probability of the event occurring. Then
based on the law of conditional probability (which we do not state here):

P (Bj|A) =
P (A|Bj)P (Bj)∑n
i=1 P (A|Bi)P (Bi)

.

In the continuous sense, Bayes’ Theorem states in (2.18):

π(θ|x) =
f(x|θ)p(θ)
f(x)

, (2.18)

where π(θ|x) is the posterior distribution of the parameters θ = {θ1, . . . , θm}
given the data x = {x1, . . . , xn}, f(x|θ) is the probability of observing the data
x under different parameter values θ (this is known as the likelihood), p(θ) is
the prior distribution of the parameters and f(x) is a normalisation constant so
that the posterior distribution is a valid probability density function. In the case
of discrete random variables, the probability density functions are replaced with
probability mass functions. In fact, Bayes’ Theorem is often written as

π(θ|x) ∝ f(x|θ)p(θ),

Intuitively, Bayes’ Theorem focuses on our prior beliefs about an experiment
before we observe any data (the prior); we then conduct the experiment and
observe data (the likelihood) and as a result we update our prior beliefs on the
grounds of the observed data (the posterior), where the updating procedure is
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just Bayes’ Theorem (2.18).

We may, however, be interested in a particular parameter, θ1 say, and we can
make inference on this parameter from the posterior distribution given in (2.18)
by the marginal (posterior) distribution, which is defined as

π(θ1|x) =

∫
π(θ|x)dθ2, . . . , dθm (2.19)

(the integration featured in (2.19) is analytically intractable for many real prob-
lems but we are able to estimate such integrals).

A Bayesian approach to analysing data offers many benefits as well. For instance,
the usual normality assumption within statistical models can typically be removed
and unrealistic assumptions and simplifications can be avoided when considering
data. The more appealing advantage of this approach is the idea of being able
to incorporate external information into an analysis, via prior specification. This
concept is, however, controversial, since classical approaches to statistics involve
any analyses being objective and based purely on the observed data.

To commence the analysis, a prior distribution is specified, for each parameter
of interest, independent of the observed data. Essentially, there are two types of
prior distribution that can be considered: informative and non-informative priors.
The former involves aiming to reflect the available information, independently of
the data being studied. Conversely, a non-informative prior distribution reflects
not having any prior information concerning the parameters of interest. Examples
of this type of prior include the Uniform, Jeffrey’s and Hierarchical. One can also
adopt the use of conjugate priors, where the prior for the parameter(s) are such
that the corresponding posterior distribution for them is from the same family
(irrespective of sample size and data observed).

It is also worth mentioning that the dependence of the posterior distribution on
the prior distribution should always be assessed through a prior sensitivity anal-
ysis to confirm whether or not the posterior distribution is data-driven (i.e. a
posterior distribution that is insensitive to the choice of prior) or prior-driven
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(i.e. a posterior distribution that is sensitive to the choice of prior), and this is
typically carried out by considering a range of prior specifications and comparing
the posterior distributions obtained. In the presence of reasonably informative
data there should be little prior sensitivity, though extreme prior sensitivity of-
ten points to problems such as parameter redundancy or overly restrictive prior
assumptions.

The posterior distribution is the most appropriate summary for the parameters
involved, and is often summarised by point estimates (such as central tendency,
spread and correlation) and credible intervals for these estimates, of which we
will discuss in Section 2.5.3. To obtain these estimates of interest, we require
integration of the posterior density, e.g. for the specified value

Eπ(θ) =

∫
θπ(θ|x)dθ.

Integration can be undertaken using Monte Carlo methods and this is known
as Monte Carlo integration (Rice 2007) and Expectations of this sort can be
estimated by drawing samples θ1, . . . , θm from the posterior distribution of θ
(i.e. obtaining the sampling distribution of θ) and then calculating the sam-
ple mean/median of these values - this method of integration is also necessary to
derive the marginal distribution (2.19). In a similar way, we would also be able
to obtain estimates of spread, such as the variance.

The question of how to generate these samples from the posterior arises. One
way of doing this is to construct a Markov Chain. This is a stochastic sequence
of numbers where each value in the sequence depends only upon the last and
the starting point of the process is arbitrary. At time t, the state of the chain is
updated from θt to θt+1 using some stochastic process. As a result, such a Markov
Chain - given certain conditions - should converge to a stationary distribution,
i.e. if we run the chain for a long enough time then the generated values will have
a certain probability distribution, which would be the posterior. Thus, we would
have carried out a Markov Chain Monte Carlo (MCMC) process.

There are several ways of constructing these chains, for example Gibbs sampling

55



and the Metropolis-Hastings (MH) algorithms, and these sampling methods are
described in Appendix B.1. However, it is worth mentioning that an assessment
of convergence should always be carried out to observe indications that the distri-
bution of parameters has reached convergence to the stationary distribution. this
can be done by examining relevant trace plots, acceptance rates (essentially the
percentage of unique values the chain has) and autocorrelations of chains and one
could also consider deriving the Brooks-Gelman-Rubin Statistic. These methods
of assessment are described in further detail (and have been utilised as part of
work presented in Chapter 5) in Appendix B.2. It is worth noting however, that
even though convergence is guaranteed mathematically, there is no way of being
able to prove if a chain has converged to the stationary distribution - these as-
sessments can only provide an indication of lack of convergence and how efficient
we are being when sampling estimates from the stationary distribution. On that
note, sometimes a burnin-period - a discarding of so many initial samples - is
required in order to try and achieve sampling from the converged distribution
(Rice 2007). As well as this, one can also consider thinning-out the resulting
sample of estimates, i.e. consider every n-th sample, which can aid in avoiding
autocorrelation bias of Markov chain samples and can help to save storage and
memory.

The main appeal of the MCMC method for obtaining posterior estimates is that
the updating procedure remains relatively simple; no matter how complex the
posterior distribution may be. Though a computational skill set may be required
to carry out analysis in the Bayesian context; software packages such as Just An-
other Gibbs Sampler (JAGS), Bayesian inference Using Gibbs Sampling (Open-
BUGS or WinBUGS) and R/RStudio can be used to ease the implementation of
computations (Lunn et al. 2000; M. Plummer 2008; CRAN 2018).

Research into the application of Bayesian methods when conducting anthelmintic
studies has featured in communications, but mainly using equine FEC data (Den-
wood 2010; Denwood et al. 2010; Vidyashankar et al. 2012; Lester and Matthews
2013; Matthews 2014). Matthews (2014) tells us that MCMC methods are being
suggested to account for the highly aggregated distribution that appears when
dealing with equine FEC data. However, Bayesian approaches are being em-
ployed in more recent sheep and cattle studies (Denwood et al. 2008; Dobson
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et al. 2012; Busin et al. 2013; Geurden et al. 2015; Wang et al. 2017).

As mentioned in Section 1.5.2, the amount of egg count data being obtained
from horses is growing in terms of availability; yet most results being derived
using MCMC methods are based on simulated horse egg count data sampled
from different distributions - with only some verification of real-world data be-
ing conducted (Denwood et al. 2008; Denwood 2010; Denwood et al. 2010).
Matthews (2014) also tells us that a limitation to adopting MCMC methods in
analysing FEC data is the ability to use advanced statistical programmes, such as
JAGS, BUGS and R/RStudio discussed earlier in this Section, which the layper-
son may not be familiar with using. On the other hand, attempts for those with
a lack of statistical training to carry out these advanced statistical methods have
been made in the form of producing R/RStudio packages such as eggCounts and
bayescount (Denwood 2010; Michaela and Furrer 2014; Torgerson et al. 2014;
Denwood 2015).

In contrast, not much research has been invested in adopting Bayesian methods
for the analysis of cattle FEC data (Geurden et al. 2015; Wang et al. 2017).
This could be due to the limited research and data that has been carried out and
made available to date. It may thus be worth exploring this further.

2.5 Obtaining intervals for estimates within the

different statistical frameworks

2.5.1 Confidence intervals using asymptotic approximation

Many communications obtain the corresponding confidence intervals for percent-
age estimates which assume a normal distribution under the logarithmic trans-
formation as discussed in Section 2.4.1.3 (Coles et al. 1992; Lyndal-Murphy et al.
2010; Levecke et al. 2012; Lyndal-Murphy et al. 2014).

In this Section, original derivations of confidence intervals, for some of the more
commonly used percentage estimates, i.e. (2.2), (2.3) and (2.4), were carried out
as part of this project and make use of the asymptotic approximation presented
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in Section 2.4.1.3. Any statistical properties that should be considered when
deriving the confidence intervals are also discussed.

2.5.1.1 Percentage estimate derivation 1: post-treatment counts (neg-
ative control group of cattle present)

As mentioned in Section 1.5.2, the percentage reduction recommended by Coles
et al. (1992) and Coles et al. (2006) as part of a parallel group design is percentage
estimate (1.2):

100

(
1− T14

C14

)
%,

and has a corresponding 95% confidence interval (1.3):

100

(
1− T14

C14

exp

(
±2.048

√
s2
t.eos

ntreatT 2
14

+
s2
c.eos

ncontrolC2
14

))
%

where, s2
t.eos, ntreat, s2

c.eos and ncontrol represent the sample variances and group
sizes for the treated and control groups at the end of study, respectively. The
value of 2.048 comes from the Student’s t-distribution with ntreat + ncontrol − 2

degrees of freedom (where ntreat and ncontrol are both equal to 15, giving rise to
28 degrees of freedom) with an upper-tail probability α

2
for a significance level

α%.

Again, the percentage estimate (1.2), is a specific case of the generalised per-
centage estimate (2.2). Now to obtain the corresponding confidence interval for
this generalised percentage estimate, let µc.eos and µt.eos represent the population
mean FECs at end of study for the control and treatment groups, respectively.

Now we make no assumptions about the distribution of the FECs at end of
study for either the positive treatment group or negative control group, which
we define as our random variables, Xt.eos and Xc.eos, respectively. By letting
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Y = ln(X) = ln
(
Xt.eos
Xc.eos

)
then we can use the approximation (2.11) in order to

obtain:

E[Y ] = E

[
ln

(
Xt.eos

Xc.eos

)]
= E[ln(Xt.eos)− ln(Xc.eos)]

= E[ln(Xt.eos)]− E[ln(Xc.eos)]

≈ ln(µt.eos)− ln(µc.eos)

≈ ln(Ti)− ln(Ci)

= ln

(
Ti
Ci

)

where Ti and Ci are defined as the sample mean FECs at the end of study, on
Day i, for the treatment and control groups, respectively.

Also, we can use approximation (2.12), derived earlier, to obtain

V ar[Y ] = V ar

[
ln

(
Xt.eos

Xc.eos

)]
= V ar[ln(Xt.eos)− ln(Xc.eos)]

= V ar[ln(Xt.eos)] + V ar[ln(Xc.eos)]− 2Cov[ln(Xt.eos), ln(Xc.eos)]

≈ V ar[Xt.eos]

µ2
t.eos

+
V ar[Xc.eos]

µ2
c.eos

− 2Cov[ln(Xt.eos), ln(Xc.eos)]

≈ s2
t.eos

T 2
i

+
s2
c.eos

C2
i

− 2Cov[ln(Xt.eos), ln(Xc.eos)] (2.20)

where s2
t.eos and s2

c.eos represent the sample variances for the treated and un-
treated control groups, respectively, and Cov[ln(Xt.eos), ln(Xc.eos)] represents the
co-variance between the ln-transformed, end of study counts of the positive treat-
ment and negative control groups. In fact, the co-variance between two random
variables, A and B say, can be defined as:
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Cov[A,B] = E[AB]− E[A]E[B]

= ρ(A,B)
√
V ar[A]V ar[B].

where ρ is defined as the product-moment correlation coefficient.

It is worth noting that before ln-transforming counts, zero-valued counts would
have to be handled in an appropriate manner in order to conclude on the co-
variance.

Some communications have assumed independence between the counts obtained
from the control and treatment groups (Coles et al. 1992; Lyndal-Murphy et al.
2014), so approximation (2.20) becomes:

V ar[Y ] ≈ s2
t.eos

T 2
i

+
s2
c.eos

C2
i

,

This assumption is likely to be fair as different animals are involved between
treatment and control groups, though non-independence might arise when data
from many farms are combined to be studied as animals within a farm are more
likely to be similar than animals in different farms.

In order to obtain a 100(1−α)% confidence interval, where 0 < α < 1, we extend
the asymptotic result (2.14) to consider the difference between two population
means, which in our case is essentially the natural logarithm of the ratio of two
population means. The following interval (2.21) is thus obtained

ln

(
Ti
Ci

)
± Z(α

2
)

√
s2
t.eos

ntreatT 2
i

+
s2
c.eos

ncontrolC2
i

(2.21)

where Z(α
2

) is the α
2
percentile of the standard normal distribution (this is for a

large sample approximation) and ntreat and ncontrol are the number of animals in
the treatment and control groups, respectively.
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Now for the percentage estimate (2.2), the 100(1 − α)% confidence interval can
be defined as

100

(
1− Ti

Ci
exp

(
±Z(α

2
)

√
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i

+
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i

))
%.

In fact, we can obtain the following 100(1− α)% confidence interval

100

(
1− Ti

Ci
exp

(
±t(ntreat+ncontrol−2)

√
s2
t.eos

ntreatT 2
i

+
s2
c.eos

ncontrolC2
i

))
%. (2.22)

where t(ntreat+ncontrol−2) is the α
2
upper-tail probability for a Student’s t-distribution

with ntreat + ncontrol − 2 degrees of freedom. The Student’s t-distribution is used
under the assumption of a normal distribution but for smaller sample sizes, such
as those less than 30, the Student’s t-distribution is more conservative as the
limits are wider in comparison with the standard normal distribution being used
in confidence interval (2.21),which produces more useful limits in large sample
results. However, it is worth noting that if a percentage estimate of 100% was to
be observed, then confidence interval (2.22) would not be defined since Ti = 0,
which would be the case if an anthelmintic was 100% effective.

For the confidence interval (2.22) to match the confidence interval (1.3), we sim-
ply set ntreat and ncontrol equal to the value of 15, in which case t(ntreat+ncontrol−2) =

2.048. However, the value of 2.048 should not be regarded as fixed, i.e. t(ntreat+ncontrol−2)

should change value for different values of the group sizes ntreat and ncontrol.
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2.5.1.2 Percentage estimate derivation 2: pre- and post-treatment
counts (treated groups of cattle involved only)

To derive the corresponding confidence interval for percentage estimate (2.3):
consider the population means µt.base and µt.eos for the baseline and end of study
FECs of a positive treated group, respectively. Our random variables are defined
as the FECs at baseline and end of study for the positive treatment group, Xt.base

and Xt.eos , respectively, and let Y = ln(X) = ln
(
Xt.eos
Xt.base

)
.

In a similar way to deriving the approximations in Section 2.5.1.1, from approxi-
mations (2.11) and (2.12), we can derive the following:

E[Y ] = E

[
ln

(
Xt.eos

Xt.base

)]
= E[ln(Xt.eos)− ln(Xt.base)]

= E[ln(Xt.eos)]− E[ln(Xt.base)]

≈ ln(µt.eos)− ln(µt.base)

≈ ln(Ti)− ln(T0)

= ln

(
Ti
T0

)

where T0 and Ti are the sample means of the baseline and end of study FECs of
a positive treated group, respectively.

Additionally,

V ar[Y ] = V ar

[
ln

(
Xt.eos

Xt.base

)]
= V ar[ln(Xt.eos)− ln(Xt.base)]

= V ar[ln(Xt.eos)] + V ar[ln(Xt.base)]− 2Cov[ln(Xt.eos), ln(Xt.base)]

where Cov[ln(Xt.base), ln(Xt.base)] represents the co-variance between the ln-transformed
counts at baseline and end of study for the positive treatment group.
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It would not be reasonable to assume that there is independence between the
counts at baseline and end of study, since faecal samples obtained on these days
would be from the same experimental unit, i.e. the individual members of the cat-
tle herd (in the case of assuming independence, we would have Cov[ln(Xt.base), ln(Xt.eos)] =

0). As a result, we obtain the following approximation by using asymptotic ap-
proximation (2.12):

V ar[Y ] ≈ V ar[Xt.eos]

µ2
t.eos

+
V ar[Xt.base]

µ2
t.base

− 2Cov[ln(Xt.eos), ln(Xt.base)]

≈ s2
t.eos

T 2
i

+
s2
t.base

T 2
0

− 2Cov[ln(Xt.eos), ln(Xt.base)].

where s2
t.eos and s2

t.base represent the sample variances for the treated group at end
of study and baseline, respectively.

Therefore, the 100(1−α)% confidence interval can be defined using the asymptotic
approximation (2.14):
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)

√
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ntreatT 2
i

+
s2
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ntreatT 2
0

− 2Cov[ln(Xt.base), ln(Xt.eos)]
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))
%

where ntreat is the number of animals in the treatment group.

For finite ntreat we have the following 100(1− α)% confidence interval:

100

(
1− Ti

T0

exp

(
±t(ntreat−1)

√
s2
t.eos

ntreatT 2
i

+
s2
t.base

ntreatT 2
0

− 2Cov[ln(Xt.base), ln(Xt.eos)]

ntreat

))
%.

(2.23)

where t(ntreat−1) is the α
2
upper-tail probability for a Student’s t-distribution with

63



ntreat − 1 degrees of freedom. Again, it is worth noting that if a percentage
estimate of 100% was to be observed, then confidence interval (2.23) would not
be defined since Ti = 0.

Mood et al. (1913) tell us that an approximation for the variance of a ratio of
random variables is

V ar[Y ] = V ar

[
Xt.eos

Xt.base

]
≈
(
µt.eos
µt.base

)2(
s2
t.eos

µ2
t.eos

+
s2
t.base

µ2
t.base

− 2Cov[Xt.eos, Xt.base]

µt.eosµt.base

)
(2.24)

and this resembles the form of variance that some communications present for
this efficacy description (Lyndal-Murphy et al. 2014). However, to completely
match the formulae in these communications, we would require

(
µt.eos
µt.base

)2

= 1⇔ µt.eos = µt.base, since µt.eos, µt.base ≥ 0.

By the nature of the experiment we would not, however, expect and could
not guarantee that µt.eos = µt.base and so it would not be advisable to assume(
µt.eos
µt.base

)2

= 1. As a well as this, the approximation (2.24) is not considering
random variables being dealt with on the natural logarithmic scale.

2.5.1.3 Percentage estimate derivation 3: pre- and post-treatment
counts (negative control and treated groups of cattle present)

To derive the corresponding confidence interval for percentage estimate (2.4);
consider the population means µt.base, µt.eos, µc.base, µc.eos for the baseline and
end of study FEC counts for the positive treatment and negative control groups,
respectively. Our random variables are defined as the FECs at baseline and end
of study for the positive treatment group and negative control groups, i.e. Xt.base,
Xt.eos, Xc.base and Xc.eos, respectively, and let Y = ln(X) = ln

(
Xc.baseXt.eos
Xc.eosXt.base

)
.
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From the approximations (2.11) and (2.12), we derive the following:

E[Y ] = E

[
ln

(
Xc.baseXt.eos

Xc.eosXt.base

)]
= E[ln (Xc.baseXt.eos)]− E[ln (Xc.eosXt.base)]

= E[ln(Xc.base)] + E[ln(Xt.eos)]− E[ln(Xc.eos)]− E[ln(Xt.base)]

≈ [ln(µt.eos)− ln(µt.base)] + [ln(µc.base)− ln(µc.eos)]

≈ [ln(Ti)− ln(T0)] + [ln(C0)− ln(Ci)]

= ln

(
C0Ti
CiT0

)

where C0 is the sample mean of the FECs from the control group at baseline of
study, i.e. Day 0.

Additionally,

V ar[Y ] = V ar

[
ln

(
Xc.baseXt.eos

Xc.eosXt.base

)]
= V ar[ln(Xt.eos)− ln(Xt.base) + ln(Xc.base)− ln(Xc.eos)]

= V ar[ln(Xt.eos)− ln(Xt.base)] + V ar[ln(Xc.base)− ln(Xc.eos)]

− 2Cov[ln(Xt.eos)− ln(Xt.base), ln(Xc.base)− ln(Xc.eos)].

Again, as in Section 2.5.1.1, if we assume independence between the treatment
and control group then we obtain

V ar[Y ] = V ar[ln(Xt.eos)− ln(Xt.base)] + V ar[ln(Xc.base)− ln(Xc.eos)]

= V ar[ln(Xt.eos)] + V ar[ln(Xt.base)] + V ar[ln(Xc.eos)] + V ar[ln(Xc.base)]

− 2Cov(ln(Xt.eos), ln(Xt.base))− 2Cov(ln(Xc.eos), ln(Xc.base)).
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Similarly as in Section 2.5.1.2, it would not be reasonable to assume that there
is independence between the counts obtained from baseline and end of study,
with respect to either the control or treatment groups since faecal samples ob-
tained on these days would be from the same experimental units. As a result,
Cov[ln(Xt.eos), ln(Xt.base)] 6= 0 and Cov[ln(Xc.eos), ln(Xc.base)] 6= 0, and so we ob-
tain the following approximation for V ar[Y ] in a similar fashion as to Section
2.5.1.2:

V ar[Y ] ≈ s2
t.eos

T 2
i

+
s2
t.base

T 2
0

− 2Cov[ln(Xt.eos), ln(Xt.base)]︸ ︷︷ ︸
V ariance1

+
s2
c.eos

C2
i

+
s2
c.base

C2
0

− 2Cov[ln(Xc.eos), ln(Xc.base)]︸ ︷︷ ︸
V ariance2

.

where s2
t.eos, , s2

t.base represent the sample variances for the treated group at end
of study and baseline, respectively. Also, s2

c.eos, , s2
c.base represent the sample

variances for the control group at end of study and baseline, respectively.

Therefore, the 100(1− α)% confidence interval for the percentage estimate (2.4)
can be derived in a similar fashion to that of (2.22) in Section 2.5.1.1 and is
defined as:

100

(
1−

(
C0Ti
T0Ci

exp

(
±Z(α

2
)

√
V ariance1

ntreat
+
V ariance2

ncontrol

)))
%

where ntreat and ncontrol are the number of animals in the treatment and control
groups respectively (the number of animals at baseline and end of study should
be the same with respect to each group).

For finite ntreat and ncontrol we have the following 100(1−α)% confidence interval
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100
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1−
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T0Ci

exp

(
±t(ntreat+ncontrol−2)

√
V ariance1

ntreat
+
V ariance2

ncontrol

)))
%.

(2.25)

Again, it is important to note that if a percentage estimate of 100% was to be
observed, then confidence interval (2.25) would not be defined since Ti = 0.

2.5.2 Involving the Bootstrap

When considering Bootstrapping, there are many ways of constructing confidence
intervals for estimates. With reference to Efron and Tibshirani (1993) and Car-
penter and Bithell (2000), in this Section we discuss some of the more well-known
methods of forming these intervals - all of which can be obtained through R soft-
ware through the bootstrap and boot packages (Kostyshak 2015; Canty and Ripley
2015; CRAN 2018).

2.5.2.1 Basic confidence intervals

The most basic 100(1− α)% confidence intervals that can be formed for an esti-
mate θ̂ are those based on assuming a normal distribution is present, that is

θ̂ ± Z(α
2

)se[θ̂] (2.26)

and

θ̂ ± t(n−1)se[θ̂] (2.27)

where t(n−1) is the α
2
upper-tail probability for a Student’s t-distribution with

(n − 1) degrees of freedom. Note: we are basing the degrees of freedom on the
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value of n since the original data set described earlier in Section 2.4.2, X, has a
sample size n.

The confidence interval (2.26) is formed based on the following asymptotic result
involving the standard normal distribution with mean zero and variance one:

θ̂ − θ
se[θ̂]

∼ N (0, 1)

and is valid as n → ∞ but is an approximation for finite samples, which is
mainly what we would be dealing with in the Bootstrap framework. Hence, the
confidence interval (2.27) is usually used in practice.

These confidence intervals do not account for any skewness in the data, or any
other errors that can result when θ̂ is not the sample mean. As a result we
consider the Bootstrap-t interval, which can adjust for these types of errors. The
procedure in forming this type of interval involves estimating the distribution of
Z directly from the data. When we consider the Bootstrap techniques described
in Section 2.4.2, once we have generated B Bootstrap data sets {x∗1, . . . , x∗B} we
then compute

Z∗(i) =
θ̂∗i − θ̂
se[x∗i ]

,

where θ̂∗i is the estimate for θ and se[x∗i ] is the standard error corresponding to
the i-th Bootstrap sample x∗i (from 1 ≤ i ≤ B).

Then the α
2
th percentile of Z∗(i) is estimated by the value t∗(α

2
) such that:

{Z∗i ≤ t∗α
2
}

B
≤ α

2

This value is also known as an approximate pivot, where the distribution obtained
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is approximately the same for each value of θ and so we can obtain the following
confidence interval:

(θ̂ − t∗1−α
2
se[θ̂], θ̂ − t∗α

2
se[θ̂]). (2.28)

This interval is known as the Studentised interval in the boot and bootstrap pack-
ages in R/RStudio. It is also worth mentioning that in order to obtain an estimate
for se[θ̂]; a Double Bootstrap must occur, i.e. one generated set of Bootstrapped
data sets are obtained to estimate θ̂ and another set is obtained to estimate se[θ̂],
in order to eventually obtain the confidence interval (2.28). However if we were
Bootstrapping for B Bootstrap replications say, then to obtain the Studentised
interval we would require B2 Bootstrap replications due to the double Bootstrap
being present. This would be time consuming to compute.

In large samples, the coverage probability of the Bootstrap-t intervals tends to
be closer to the desired level, in comparison to the coverage that the confidence
intervals (2.26) and (2.27) can provide. However, this gain in accuracy is at a
cost of generality according to Efron and Tibshirani (1993); confidence interval
(2.26) can be applied to data sets of all sizes, confidence interval (2.27) can be
applied to data sets of a finite sample size and the confidence interval (2.28) can
be applied to the given data set of interest. Yet, the Bootstrap-t interval can be
asymmetric about the value of zero and this is due to the improvement in the
coverage offered by this interval.

It is also worth noting that the Bootstrap-t interval (2.28) is a generalisation of
interval (2.27). The Bootstrap-t interval is not however transformation-respecting,
i.e. the scale used to construct the interval does affect the interval itself and
different scales work better than others. We can however use the Bootstrapping
approaches, on the provided data, to estimate an appropriate transformation
for the construction of the Bootstrap-t interval. In fact, these transformations
approximately normalise and stabilise the variance of the estimate θ̂, the latter
being regarded as more important (refer to Efron and Tibshirani (1993) for how
to construct these variance-stabilised Bootstrap-t intervals).
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2.5.2.2 Percentile methods

Percentile methods have proved popular in the veterinary and parasitological
communities when constructing confidence intervals (Cabaret and Berrag 2004;
Vidyashankar et al. 2007; Traversa et al. 2009; Lester and Matthews 2013; Lester
et al. 2013). These intervals are mainly data-driven, empirical and depend much
on the sampling distribution of the estimate θ̂, despite whether one is using a
parametric and non-parametric Bootstrapping approach.

When we consider the Bootstrapping approaches described in Section 2.4.2, once
we have obtained the sampling distribution dist{θ̂∗1, . . . , θ̂∗B} for our estimate θ̂
an obvious choice of construction for a 100(1−α)% confidence interval is to read
off the α

2
and (1 − α

2
) percentiles of the (ordered) sampling distribution. This is

known as the percentile interval for the estimate θ̂ and is mathematically written
as follows:

(θ̂∗(α
2

), θ̂
∗
(1−α

2
)). (2.29)

This interval (2.29) is simple to calculate (Carpenter and Bithell 2000) in com-
parison to other intervals discussed in this Section and is ideal when the number
of Bootstrap replications is infinite; but in practice we can only work with a finite
number of these replications and this is accounted for when constructing this in-
terval based on the sampling distribution. If the Bootstrap sampling distribution
is approximately normal, then the confidence intervals (2.26), (2.27), (2.28) and
(2.29) will nearly agree; otherwise they will differ.

In fact based on Efron and Tibshirani (1993), the percentile interval described
above is also transformation-respecting and also range-preserving ; meaning if
there are restrictions on the values that parameters can take, then the interval is
able to respect and keep within or equate to these restrictive values. This is due
to the fact that θ̂ and the values of the bootstrap estimates θ̂∗i will keep within
the same restrictions as the parameter value θ.

However there are ways in which the confidence intervals discussed so far can
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fail, such as the case of a bias estimator being present. We now go on to discuss
if there are any modifications that can be made to the intervals that have been
discussed so far that could possibly correct for these types of estimators being
used in calculations.

2.5.2.3 Bias-Correction intervals

In this Section we consider a modification of the percentile interval namely the
Bias-corrected and accelerated (BCA) interval, which can be calculated in the
boot package in R/RStudio.

Again we refer to the sampling distribution of the estimate θ̂: dist{θ̂∗1, . . . , θ̂∗B}.
The 100(1− α

2
)% BCA interval is defined as follows:

(θ̂∗α1, θ̂
∗
α2),

where

α1 = Φ

(
ẑ0 +

ẑ0 + z(α
2

)

1− â(ẑ0 + z(α
2

))

)

and

α2 = Φ

(
ẑ0 +

ẑ0 + z(1−α
2

)

1− â(ẑ0 + z(1−α
2

))

)
.

Here, Φ(·) is the standard normal cumulative distribution function and z(α
2

) is
the 100(1− α)th percentile of a standard normal distribution.

ẑ0 represents the bias-correction (this concept was explained earlier in Section
2.4.2), which is calculated from the proportion of the Bootstrap replications which
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are less than the original estimate θ̂ and â represents the acceleration that can
be described as the rate of change of the standard error associated with θ̂ with
respect to the true parameter θ (measured on a normalised scale). In other words,
â is proportional to the skewness of the sampling distribution dist{θ̂∗1, . . . , θ̂∗B},
estimated via a jackknife approach Efron and Tibshirani 1993. However, Carpen-
ter and Bithell (2000) tell us that the calculation of â is tortuous, and therefore
time consuming, particularly for complex parametric problems.

The BCA interval is also transformation-respecting and also more accurate in
comparison to the other intervals (in fact, the BCA interval can be shown to be
second-order accurate, but we do not show this here and refer the reader to Efron
and Tibshirani (1993) for more details).

This indeed looks like a complicated interval in comparison to the other intervals
discussed so far. But there are other confidence intervals such as the Approximate
Bootstrap Confidence (ABC) intervals that can reduce the computation needed to
calculate BCA intervals. BCA intervals also require a large number of Bootstrap
replications. Efron and Tibshirani (1993) tell us that at least 1000 are needed in
order to reduce sampling error.

It is also worth noting that even though the intervals described in this Section all
have theoretical advantages and disadvantages one must also consider the nature
of their data when it comes to choosing the most appropriate confidence interval
to make inferences about the parameters of interest.

2.5.3 Credible intervals

As mentioned in Section 2.4.3, a variety of point estimates are often used to
describe different characteristics of the posterior distribution such as central ten-
dency, spread and correlation. However, these point estimates do not provide
information on the skewness of the distribution or bi-modality for instance. To
aid in providing this type of additional information, interval estimates can be ob-
tained. A Bayesian 100(1−α)% credible interval is defined to be an interval that
contains 100(1− α)% of the posterior distribution of the parameter of interest.

There are two types of credible intervals that are unique. There is the well-
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known symmetric credible interval (symmetric with respect to probability), that
is obtained by quoting the lower α

2
quantile and the upper (1− α

2
) quantile of the

posterior distribution, which is a similar approach to forming the Bootstrapped
percentile interval (2.29) discussed in Section 2.5.2.2. There is also the Highest
Posterior Density Interval which is the shortest 100(1 − α)% credible interval
and it obtains the region of the highest posterior density. In the case of uni-
modal and symmetric data this interval and the symmetric credible interval are
identical; though they can dramatically differ when data are skewed. In general,
it is preferred to use the symmetric credible interval since for this interval an
easier interpretation can be concluded, is transformation-respecting and is easy
to compute. Though in the presence of skewed data, one would be most likely to
adopt the use of the Highest Posterior Density interval.

2.5.4 Frequentism vs. Bayesianism: differences in approaches

and interpretations

When considering these approaches to statistics, the differences often stem from
considering the context of probability. In classical statistics, probabilities are re-
lated to frequencies of events and so the interpretation is that parameters are fixed
(but unknown) and data are random; whereas in the Bayesian paradigm prob-
abilities are extended to cover the degree of certainty about statements and are
related to a degree of subjectiveness and so the interpretation is that parameters
are random and data are fixed.

Over and above this, there are subtle differences in the interpretations of intervals
for parameters of interest. The 100(1 − α)% credible interval is the Bayesian
analogue of the confidence interval. According to Rice (2007) and VanderPlas
(2014), a credible interval tells us that given the observed data, there would be a
100(1−α)% probability that the true value of the parameter, θ say, lies within the
credible region. For example, a 95% credible interval for a parameter θ, tells us
that we can be 95% sure that the parameter lies in the credible region obtained.

For a typical 100(1−α)% confidence interval, we would say that if an experiment
was to be repeated many times; in 100(1−α)% of these cases the computed confi-
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dence interval will contain the true parameter value θ. Here we make a statement
of probability about the confidence interval itself given a fixed parameter value.
For instance, a 95% confidence interval tells us the range in which the parameter,
θ say, would occur 95% of the time with repeated sampling of the population.

2.6 Determining resistance with the FECRT

According to WAAVP, anthelmintic resistance is confirmed if the percentage es-
timate (1.2) is less than 95% and the associated lower confidence limit, of the
confidence interval (1.3) is less than 90%. If only one of these criteria are met;
anthelmintic resistance is suspected.

Vidyashankar et al. (2007) describes these thresholds as arbitrary for livestock
species, though these thresholds have been widely accepted and adopted in rela-
tion to the other percentage estimates described in Section 2.3 and their respec-
tive confidence intervals reviewed in Section 2.5.1 (Torgerson et al. 2005; Dobson
et al. 2012; Falzon et al. 2013; Lyndal-Murphy et al. 2014). For sheep and cattle
FEC data, Lyndal-Murphy et al. (2014) suggests that as well as the thresholds
recommended by Coles et al. (1992), a threshold for the upper confidence limit
of the respective confidence interval, that is less than 95% should also be consid-
ered - especially if the percentage estimate is in the range of 90-95% for which
resistance could be suspected.

Yet, for some livestock species, studies have used different thresholds for deter-
mining resistance. For example, Kaplan (2002) tells us that for horses, resistance
to the Benzimidazole class of anthelmintics is declared if a percentage estimate is
less than 90%. In addition, some equine studies have classed an anthelmintic to be
effective, suspected resistance and ineffective if the FEC reduction is greater than
90%, between 80-90% and less than 80%, respectively. These are however thresh-
olds for percentage estimates; there is no mention of thresholds for confidence
limits for equine studies and so the WAAVP recommendations are adopted.

EMA regards the FECRT as an estimation of efficacy, and not confirmation
of resistance (EMA 2014), since egg counts give an indirect measure of effi-
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cacy/resistance. True resistance must be confirmed through laboratory slaughter
studies, potentially supported by molecular level studies, or methods such as egg
hatch tests (Vidyashankar et al. 2012) and so any interpretation from calcula-
tions as part of a FECRT would be considered with respect to apparent efficacy
and resistance of livestock.

2.7 Discussion

As part of this review, experimental designs and considerations and the various
statistical frameworks for which point and interval estimation can possibly be car-
ried out for the conduct of the FECRT, have been examined. This examination
has highlighted the need to investigate which experimental designs are appropri-
ate to determine and classify apparent anthelmintic efficacy in a robust manner,
with respect to statistical calculations and frameworks that can be adopted for
the FECRT. With respect to statistical frameworks, derivations of confidence
intervals using asymptotic approximations that assume normality of data, for
the most commonly used percentage estimates, were presented. Bootstrap and
Bayesian frameworks to carry out statistical calculations, as part of the FECRT,
were also discussed.

This review highlighted the most commonly used percentage estimates that have
been observed in the literature, as well as alternative percentage estimates and
approaches, such as the Symmetrised Percentage Change and averaging over
individual-based FEC reductions/changes, that could possibly be of use when
conducting the FECRT. It is also worth mentioning that the percentage es-
timates currently being recommended and popularly utilised in the literature
involve arithmetic means of treatment group FECs, which are the central ten-
dency/maximum likelihood estimates for data assumed to be Poisson or follow a
Negative Binomial distribution. Given that, in general, research and obtaining
cattle FEC data has been limited in the past, it could be meaningful to consider if
other appropriate discrete distributions, and their associated central tendencies,
such as maximum likelihood estimators, would be better representative of the
real cattle FEC data that this project provides.
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The statistical frameworks for constructing corresponding intervals for these per-
centage estimates were also examined. When considering confidence intervals
derived from asymptotic approximations, it would be meaningful to verify statis-
tical assumptions that arise in the derivations presented for cattle FEC data (even
upon transformation), i.e. normality of data. This is because communications
have traditionally worked with these types of confidence intervals to conclude on
the apparent anthelmintic efficacy/resistance status of livestock herds. With re-
spect to Bootstrapping and Bayesian paradigms, the methodologies of obtaining
point estimates and Bootstrapped confidence intervals and credible intervals were
presented and have fairly recently been utilised as part of research conducted in
anthelmintic studies. It could be meaningful to develop and compare the per-
formance of methodologies within each framework to conclude on the percentage
estimates examined as part of this review, and by extension the experimental de-
signs, that provide robust statistical calculations for the conduct of the FECRT.
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Chapter 3

Probabilistic distributions to
represent cattle FECs

3.1 Introduction

In Chapter 2, it was highlighted that percentage estimates currently being recom-
mended and popularly utilised in the literature, i.e. percentage estimates (2.2),
(2.3) and (2.4) (with i = 14), involve arithmetic means of treatment group FECs,
which are the central tendency/maximum likelihood estimates for data assumed
to be Poisson or follow a Negative Binomial distribution (for which the Poisson
distribution is a specific case).

When considering the probabilistic distribution of FECs, we would expect this to
be Poisson with location parameter µ, which would be estimated by the arithmetic
mean x (by maximum likelihood estimation). If we let the number of eggs per
gram of faeces be a random variable Y, then the probability mass function (pmf)
of the Poisson distribution, denoted as PO(µ), for the random variable Y is given
by (3.1):

P (Y = y|µ) =
e−µµy

y!
, (3.1)

77



where y = 0, 1, 2, . . . and µ > 0.

This assumption arises because we are dealing with discrete, count ecological
data (Linden and Mantyniemi 2011) and would naturally assume that the eggs
are randomly dispersed in the faeces. However, most hosts are uninfected with
parasites (or contain very few parasites) and very few hosts are heavily infected;
hence parasite populations are known to be statistically aggregated (Shaw and
Dobson 1995; Levecke et al. 2012; Wang et al. 2017), as mentioned in Chap-
ter 2. Denwood et al. (2008) tell us that due to this aggregation, FEC data
and the associated number of parasites, would follow an over-dispersed Poisson
distribution. As a result, for parasite populations in general, different parameter-
isations of the Negative Binomial distribution (an extension of the Poisson but
still having a location parameter µ) are frequently used to represent the number
of parasites in a given host in order to account for this statistical aggregation and
some communications have used this distribution to represent FEC data (Wilson
et al. 1996; Morgan et al. 2005; Levecke et al. 2012). However, how valid is
it to assume that cattle FEC data follow a Negative Binomial distribution, and
hence use the location parameter µ in FECRT calculations? Also, if there are any
other distributions that better represent cattle FEC data, then how do FECRT
calculations compare when these distributions’ location parameters are utilised in
comparison to using the location parameter µ, which is currently recommended
to be used in FECRT calculations?

As well as this, the associated confidence intervals (2.22), (2.23) and (2.25) for
their respective percentage estimates (2.2), (2.3) and (2.4) (with i = 14) described
in Section 2.5.1, were derived in Chapter 2 using an asymptotic approximation
which assumes the natural logarithm of FEC data and the original FEC data
being normally distributed. But again, are these assumptions valid?

In this Chapter, the above shall be investigated using the data described in Section
1.6.1.
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3.2 Validity of normality assumption for confidence

intervals

3.2.1 Data transformations

A random variable X, such as FECs, may be transformed by some function g(·)
to define a new random variable Y . In this case, g(·) is referred to as a trans-
formation of the random variable X (Mood et al. 1913; Upton and Cook 2011).
There are many transformations that exist for both continuous and discrete ran-
dom variables, however, most are employed mainly to correct for skewness in an
attempt to make the distribution of the data more symmetric, i.e. (at least) ap-
proximately normal. As a result, one is able to quote the arithmetic mean as the
central tendency of the distribution, rather than other location parameters such
as the median or the mode.

According to Newton and Rudestam (2012), one type of transformation that
can be used to reduce skewness, condense outliers and condition the distribution
of data to approximate the normal curve are power transformations, i.e. Y =

Xp for some power p. In fact in the biological sciences, it is most common to
use transformations for which zero values (if any) are easily identifiable on the
transformed scales (Zar 1996) such as the square-root transformation. However,
one of the biggest limitations of transforming data is the possible challenge of
interpreting them (Newton and Rudestam 2012).

Transformations of FEC data have been considered by several authors, for ex-
ample log10(·), the natural logarithm ln(·), square-root and arcsine transforma-
tions (Fulford 1994; Pook et al. 2002; Mejia et al. 2003; Torgerson et al. 2005;
Vidyashankar et al. 2007; Dobson et al. 2009). Transformations such as ln(x+a),
where a > 0, have also been considered in order to take account of FEC data
with values of zero (Torgerson et al. 2005).

It is thus of interest, not only to assess the normality of counts that have been
transformed using some variation of the natural logarithmic function (in order to
guarantee that the sampling distribution of the ratio of means on the appropriate
scale is asymptotically normal), but also to observe whether or not other trans-
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formed versions of FECs could prove useful to obtain data of a normal nature. If
this were the case, it could be possible to utilise the Delta Method and provide
asymptotic results of the sampling distribution of the ratio of means, as in Section
2.4.1.2, with respect to the appropriate transformation scale.

3.2.2 Null hypothesis significance testing

A statistical hypothesis is a statement about a statistical parameter, θ say, or
about the nature of the probability distribution of a random variable. According
to Upton and Cook (2011), hypothesis testing is a procedure for deciding between
two hypotheses on the basis of the value of a test statistic, which is a function
of the observations in a random sample, based on the Neyman-Pearson lemma
(Rice 2007).

A hypothesis is considered simple if the hypothesis considers one parameter value
θ or a single (fully specified) probability distribution, otherwise it is a composite
hypothesis. In a test considering the value of an unknown parameter, θ, the null
hypothesis, usually denoted as H0 specifies a particular value for the parameter θ,
whereas the alternative hypothesis, denoted as H1, specifies either an alternative
value or a range of alternative values. For example, a typical null hypothesis
might state that the population mean µ = 50. The alternative hypothesis may
be that µ < 50 and this is classified as a one-tailed hypothesis test. Conversely,
if an alternative hypothesis such as µ 6= 50 was stated then the hypothesis test is
considered to be two-tailed.

Upton and Cook (2011) tell us that the probability of obtaining a value for the
test statistic that is as extreme, or more extreme, than when H0 is true is called
a p-value, which can be interpreted as the probability that one’s results have
occurred through chance. If the actual value of the statistic is too far from its
expected value, i.e. the probability that the results obtained have occurred by
chance is extremely low, then the test is deemed to be significant and the decision
is to reject H0. However, if the value of the statistic is close to its expected value
the test is considered to be non-significant and we fail to reject H0. The set of
values of the statistic that lead to the rejection of H0 is called the critical/rejection
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region.

When considering the outcomes of null hypothesis significance testing procedures,
there are two cases when the test leads to the correct result, i.e. when H0 is in
fact true and the test leads to the failure of its rejection or when H1 is indeed true
and the test procedure leads to the rejection of H0 (Rice 2007). Similarly, there
are two cases when the testing procedure leads to an incorrect result, namely H0

is true but the test leads to the rejection of H0, i.e. a Type I error, or when H1

is true and the test leads to a failure of the rejection of H0, i.e. a Type II error.

Upton and Cook (2011) also tell us that the size of the critical region is determined
by the desired significance level, denoted as α, which is in fact the probability of
making a Type I error - it is this which is pre-determined before carrying out the
hypothesis testing procedure by the researcher and is usually set to 5% (Cowles
and David 1982). The smaller the value of α, the smaller the size of the critical
region. Furthermore, the probability of a Type II error is often denoted as β and
it is this value which contributes to the power of the test, which is defined to be
1 − β i.e. the probability that one favours the alternative hypothesis when it is
in fact true, and is often desired to be of at least 80% (Gardiner and Gettinby
1998). If there is a choice of test with pre-determined α, it is usual to choose the
test (if one exists) which maximises the power of the test (Rice 2007; Newton
and Rudestam 2012).

3.2.3 Assessing normality of original and transformed FECs

In our study, using the data described in Section 1.6.1, an assessment of normality
was conducted by the use of a Shapiro-Wilk normality test at the 5% significance
level, in which the null hypothesis is that the data follow a normal distribution
(Royston 1982a; Royston 1982b; Royston 1995; Razali and Wah 2011). Each
original data set was assessed for normality and the ln(x+ 1) (where x is defined
as a FEC), the square-root and x

2
3 power transformations were also applied and

assessed for normality. These transformations were chosen in order to account
for any zero-valued counts present and could therefore be easily identifiable on
the transformed scales.
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Table 3.1: Shapiro-Wilk Normality test results for Day 0 and Day 14 data and
the various transformations applied to these data

In the case of an inconclusive result being obtained from the normality test, this
would be due to either the relevant data set being of too small a sample size for
the test to be conducted or the counts present in the data set being all of the
same value.

3.2.4 Results

Table 3.1 highlights the normality results of the original 304 Day 0 and Day 14
FEC data and their transformed versions. Of the original Day 0 and Day 14
FEC data, 87.5% and 93.8% of these data sets, respectively, were classed as non-
normal. With respect to the transformed versions of these data, apart from the
square-root transformed Day 0 data, the majority of the transformed versions of
the Day 0 and Day 14 FEC data were also considered to be non-normal. As a
result, it would not be valid to assume that FEC data, even upon transformation,
follow a normal distribution.
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3.3 Investigating distributions to be used for rep-

resenting cattle FEC data

3.3.1 Issues with discrete count data

3.3.1.1 Over-dispersion of count data

Over-dispersion is the term given to discrete count data, such as FECs, where
the variability present between counts is far larger than would be expected. In
the case of the Poisson distribution, we expect the variability in count data to
be the equivalent of the location parameter µ (Zuur et al. 2009), that is E[Y ] =

V ar[Y ] = µ. According to (Rigby et al. 2014) however, very often when dealing
with count data E[Y ] = φV ar[Y ], where φ > 0 and is referred to as the dispersion
parameter (Zuur et al. 2009). If φ > 1 then we say the count data is over-
dispersed and it is suggested that a distribution other than the Poisson should
be used to represent the data. However, if φ is close or equal to the value of one,
resulting in E[Y ] ≈ V ar[Y ] then this would suggest that the Poisson distribution
is an appropriate representation for the data. For φ < 0, then we would say the
data is under-dispersed.

Various solutions to the problem of over-dispersion in count data have been sug-
gested (Consul and Famoye 1989; Dossou-Gbété and Mizère 2006), one of which
is to assume a random effect at the observation level (Rigby et al. 2014), i.e. the
use of compound distributions and this will be further discussed in Section 3.3.2
when considering FEC data.

3.3.1.2 Excess zeros in count data

Another problem that can appear when dealing with count data is the excess or
shortage of zero counts than expected from a Poisson distribution (more often
the former case). Zuur et al. (2009) tell us that in the case of an excess of zeros
in count data, then this data is referred to as zero inflated.

In the presence of zero inflation, zeros are considered to comprise of two groups:
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the first containing only zeros that are the false/excess zeros which have occurred
due to experimental design, survey or observer errors. This group of zeros is
called the observations with zero mass or structural zeros. The second group of
zeros comes from the appropriate discrete count distribution which is assumed
(and this distribution is dependent on the dispersion of the count data) and these
zeros can be classed as sampling zeros. It is worth noting here that we do not
know which of these two groups the zeros belong too, we just assume that these
two groups co-exist.

In the case of dealing with FEC data, it is likely that the choice of counting
technique would influence the presence of excess zeros, since for diagnostic sensi-
tivities with values greater than 1 epg, zero eggs being found may not necessarily
correspond to no eggs being present; it is more likely to mean that the counting
technique is not precise enough to be able to detect any eggs that could in fact be
present. Although, excess zeros could also be the result of hosts being uninfected
with any parasites, resulting in no eggs being obtained as part of sampled faeces.

3.3.2 Compound distributions

Compound distributions are distributions that result from allowing their associ-
ated parameters to vary, i.e. follow other distributions (Upton and Cook 2011).
According to (Rigby et al. 2014), these types of distributions can account for
over-dispersion present in count data.

Assume that the conditional distribution of the response variable Y, such as
FECs, is a discrete probability function P (Y = y|Γ = γ), given Γ = γ, a value of
a continuous random effect variable Γ which has probability density function f(γ).
The marginal probability function of Y, which results in a continuous mixture of
discrete distributions, is thus given by (3.2)

P (Y = y) =

∫
P (Y = y|Γ = γ)f(γ)dγ. (3.2)

If however the random effect variable Γ has a discrete probability function P (Γ =
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γ), then the resulting probability distribution of Y is called a discrete mixture of
discrete distributions, and is given by (3.3):

P (Y = y) =
∑

P (Y = y|Γ = γ)P (Γ = γ). (3.3)

For example, Y |γ ∼ PO(µγ) where PO denotes the Poisson distribution and
γ ∼ GA(1, σ

1
2 ), for which GA denotes the Gamma distribution and σ > 0, gives

rise to the marginal distribution that is the Negative Binomial distribution that
has parameters mean µ and scale parameter σ – this distribution is also referred
to as the Gamma-Poisson distribution (Denwood 2010).

Additionally, these types of distributions can also solve the problem of having
excess zeros in count data, i.e. by considering special cases of compound dis-
tributions known as zero inflated and zero-adjusted distributions. Subsections
3.3.2.1 and 3.3.2.2 give brief definitions of these distributions.

3.3.2.1 Zero inflated distributions

In general, for a zero inflated distribution (ZID) we consider a discrete response
variable Y that can exhibit a greater probability of value zero than that of a
certain discrete distribution, Y1 say. That is P (Y = 0) > P (Y1 = 0) and thus we
have that Y ∼ ZID(·), which is a discrete mixture of two components, namely
(3.4):

P (Y = 0) = ν + (1− ν)P (Y1 = 0)

P (Y = y) = (1− ν)P (Y1 = y),
(3.4)

where 0 < ν < 1 and y = 1, 2, 3, ... (Zuur et al. 2009; Rigby et al. 2014).

The parameter ν is defined as the proportion of structural zeros present, and is
subsequently estimated as the proportion of zeros in count data. This distribution
is a discrete mixture of two components: value zero with probability ν and the
discrete counting distribution Y1 involved with probability (1− ν).
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In fact, Bohning et al. (1999) tell us that the central tendency for a ZID, is the
maximum likelihood estimator µ1, say, and is derived as

µ1 =
µ

(1− ν)
. (3.5)

The parameter µ1 given in equation (3.5) of the zero inflated distribution can
be interpreted as the ratio of two variables; the parameter µ, estimated as the
arithmetic mean of the data, and the proportion of non-structural zero counts
present in the data. Thus, µ1 can be thought of as a re-scaling of the arithmetic
mean parameter µ with respect to the proportion of non-structural zero counts
present to a value representative of the discrete counting distribution. This re-
scaled value will be greater than that of the value of the arithmetic mean µ,
since:

ν > 0

⇔ 1− ν < 1

⇔ 1

1− ν
> 1

⇔ µ

1− ν
> µ

⇔ µ1 > µ.

Hence, the parameter µ1 can take account of non-structural zero counts and
higher-valued data points present in zero inflated data, which may be less ac-
counted for when locations such as the arithmetic mean are used. This is due to
zero inflation of potential excess zeros decreasing these values to that of a value
closer to zero. Therefore, we are essentially trying to correct/compensate for the
presence of zero inflation by using µ1 as an estimate of central tendency/location
of the discrete count distribution involved.
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When we consider µ1 as a ratio, there are two scenarios which may result:

• µ1 is large, due to either µ being large (due to outliers present in the data)
and/or ν being large (due to the proportion of zeros being high, as expected),
• or the less likely scenario in the context of zero inflation, that µ1 is small, which
involves either µ being small or ν being small (in this case we would likely be
considering a data set with low-valued counts).

3.3.2.2 Zero adjusted distributions

Zero adjusted distributions (ZADs) are used when a discrete response variable
Y can exhibit either a greater or less probability of value zero than that of a
particular discrete distribution, Y2 say. We say that Y ∼ ZAD(·) which is a
discrete mixture of two components (Rigby et al. 2014),

P (Y = 0) = ν

P (Y = y) =
(1− ν)P (Y2 = y)

1− P (Y2 = 0)
,

where y and ν are defined as before in Subsection 3.3.2.1.

Rigby et al. (2014) tell us that P (Y = 0) can be greater or less than P (Y2 = 0)

and hence the distribution is called zero-adjusted. If ν = P (Y2 = 0), then Y = Y2

and the ZAD becomes the discrete distribution Y2. If ν > P (Y2 = 0), then the
zero adjusted distribution is just a re-parameterisation of the zero inflated distri-
bution defined in (3.4). Hence the zero inflated distribution is a re-parameterised
sub-model of the zero adjusted distribution. If ν < P (Y2 = 0), however, then the
zero adjusted distribution becomes the discrete count distribution Y2 but with ν
less than P (Y2 = 0), i.e. the proportion of zeros we would expect under the given
discrete counting distribution Y2.
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3.3.3 Fitting distributions to count data

3.3.3.1 General Additive Models for Location, Scale and Shape (GAMLSS)
package

The General Additive Models for Location, Scale and Shape (GAMLSS) pack-
age available in R/RStudio (Rigby and Stasinopoulos 2005; Stasinopoulos and
Rigby 2007) is flexible in the fitting of distributions in the sense that it can con-
sider distributions that may not necessarily belong to the exponential family, e.g.
compound distributions. This package is also able to estimate relevant parame-
ters other than the location of a given distribution. The gamlssML(·) function
utilises maximum likelihood estimation, for parameters such as location, through
a non-linear maximisation algorithm, i.e. the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm (Broyden 1970; Fletcher 1970; Goldfarb 1970; Shanno 1970).
This algorithm is the same as the one used in the mle(·) function, which is avail-
able in the stats4 package in R/RStudio’s system library. The BFGS algorithm
is the most popular Quasi-Newton method for carrying out optimisation for the
log-likelihood function, mainly due to it being a gradient descent method which
does not involve the necessity of evaluating second derivatives that feature as part
of the Hessian matrix for the maximum likelihood estimation. As a result, this
package and the gamlssML(·) function were utilised for fitting discrete count
distributions to the cattle FEC data, as described in Section 1.6.1 using RStudio
software (version 0.98.994 along with R software version 3.1.1.).

The gamlssML(·) function also gives us the option of specifying sensible initial
values for parameters before carrying out the maximum likelihood process, oth-
erwise the algorithm picks a random number as its initial value. In using this
function, intuitive starting values for the location parameter µ were used as the
arithmetic mean of the data, except for in the instance of zero altered or inflated
distributions. In these cases initial starting values were given as the estimated lo-
cation parameter µ1 in equation (3.5). For the scale parameter σ, an initial value
was specified as the standard deviation of the data and the parameter ν for the
zero altered and inflated distributions was assigned an initial value estimated by
the proportion of zeros in the data. Some distributions fitted also involved skew-
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ness parameters, for which an initial value of (µ
σ
)3 was estimated from the data.

However, if no distributions could be fitted to a particular data set due to the
counts being all of the same value, namely the value of zero, the fit was recorded
and classed as inconclusive, and this was also summarised, if appropriate. The
distributions available (Wimmer and Altmann 1999; Johnson et al. 2005; Rigby
et al. 2014) to be fitted to discrete count data are explained in more detail as
follows.

3.3.3.2 Distributions available to be fitted using GAMLSS

For count data, this package offers seventeen potential discrete distributions.
These include: the Poisson distribution given by (3.1), denoted as PO(µ) and
two parameterisations of the Negative Binomial distribution type I and type II,
denoted as NBI(µ, σ) and NBII(µ, σ) respectively. The main difference between
these two distributions is that the former is derived using a Gamma distribution

GA(1, σ
1
2 ) and the latter uses a Gamma distribution GA

(
1,
(
σ
µ

) 1
2

)
but both

have a maximum likelihood estimator (mle), and hence central tendency, µ. In
addition, NBI(µ, 1) is the equivalent to the Geometric distribution, denoted as
GEOM(µ), and this distribution can also be fitted.

The Poisson inverse-Gaussian, Sichel and Delaporte distributions can also be fit-
ted - denoted as PIG(µ, σ), SICHEL(µ, σ, ν) and DEL(µ, σ, ν) respectively -
and these are further examples of continuous mixtures of discrete distributions de-
scribed by equation (3.2), where the discrete distribution involved is the Poisson
distribution and f(γ) takes the form of an inverse-Gaussian (IG(1, σ

1
2 )), general-

ized inverse-Gaussian (GIG(1, σ
1
2 , ν)) and a shifted Gamma mixing distribution

(SG(1, σ
1
2 , ν)) respectively. These distributions have a mle, and hence central

tendency, µ.

With respect to zero inflated distributions, based on the definition given by equa-
tion (3.4), Y1 ∼ PO(µ) and the gamlssML(·) function can fit two different types
of zero inflated Poisson distributions: one denoted as ZIPI(µ1, ν), which has
mle µ1, and ZIPII(µ, ν), which is re-parameterised to have mle µ (described by
Rigby et al. (2014)). In addition it is also possible to fit a zero inflated Poisson
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inverse-Gaussian distribution by letting Y1 ∼ PIG(µ, σ) and this is denoted as
ZIPIG(µ1, σ, ν) and a zero inflated Negative Binomial (type I) distribution can
also be fitted, where Y1 ∼ NBI(µ, σ) and this is denoted as ZINBI(µ1, σ, ν)

both having mles µ1 that can be estimated.

For zero adjusted distributions, we are able to fit a zero adjusted Poisson and zero
adjusted Negative Binomial distributions and these distributions are denoted as
ZAP (µ1, ν) and ZANBI(µ1, σ, ν), respectively, both having mles µ1.

There are another four distributions that the gamlssML(·) function is able to
fit to count data, namely the logarithmic, zero adjusted logarithmic, Yule and
Waring distributions. However, the latter two distributions consist of shape pa-
rameters being estimated only, not parameters of location, and the Logarithmic
distribution is the limiting distribution of the ZANBI distribution, which we con-
sider already. It is for these reasons we do not consider these distributions here
but refer the reader to Wimmer and Altmann (1999), Winkelmann (2000) and
Johnson et al. (2005) for further information on these distributions. Table 3.2,
gives a summary of the distributions fitted and their associated parameters.

3.3.4 Distribution selection methods

3.3.4.1 Hypothesis test based selection methods

For ecological and biological data, there exist various methods for selecting distri-
butions of best representation and fit. In general, selection methods strive to find
a balance between complexity/flexibility and parsimony, i.e. wanting to consider
more complex distributions but only if it is worthwhile in doing so. It is worth
noting that the terms distribution and model are often used in communications
interchangeably, and throughout this Section the former term is utilised.

One way to determine whether or not a distribution is of adequate fit is by using
the χ2 goodness-of-fit test. This is a one-tailed hypothesis test procedure where
the null hypothesis, H0 say, assumes that the data do follow the distribution
under consideration (Weiss and Hasset 1991; Bolker 2008; Upton and Cook 2011).
According to Weiss and Hasset (1991), if we assume the sample size involved is
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Distribution (denoted as) Parameters

Poisson (PO) µ

Geometric (GEOM) µ

Negative Binomial Type I (NBI) µ, σ

Negative Binomial Type II (NBII) µ, σ

Poisson inverse-Gaussian (PIG) µ, σ

Sichel (SICHEL) µ, σ, ν

Delaporte (DEL) µ, σ, ν

Zero Inflated Poisson Type I (ZIPI) µ1, ν

Zero Inflated Poisson Type II (ZIPII) µ, ν

Zero Inflated Poisson inverse-Gaussian (ZIPIG) µ1, σ, ν

Zero Inflated Negative Binomial Type I (ZINBI) µ1, σ, ν

Zero Adjusted Poisson (ZAP) µ1, ν

Zero Adjusted Negative Binomial Type I (ZANBI) µ1, σ, ν

Table 3.2: Distributions fitted and their parameters

large, and consider a significance level α, then if H0 is true, the random variable
is given by

χ2 =

∑
(O − E)2

E
∼ χ2

k−1

where O and E represent the observed and expected frequencies of the data,
respectively and the term k − 1 represents the degrees of freedom which is inter-
preted as one less than the number of categories in the distribution.

In general, each expected frequency is computed as E = np where n is the sample
size and p is the relative frequency of the categories of the data involved. The
assumptions of this hypothesis test procedure include all expected frequencies
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being of a greater value than one and at most 20% of the expected frequencies
being of a value less than five. However, it is not always possible to satisfy
these assumptions in practice and it is worth noting that this hypothesis test
procedure is essentially an asymptotic result, since a large sample is assumed to
be worked with and the random variable χ2 is said to approximately follow a χ2

distribution. In fact, Bolker (2008) tell us that this test works only for simple
count data and if data are continuous or over-dispersed then the χ2 goodness-
of-fit test is no longer useful as another parameter describing the variance is
present. Upton and Cook (2011) also refers us to using the non-parametric test
that is the Kolmogorov-Smirnov test, which assesses the null hypothesis that a
random sample has been drawn from a specified distribution, however, this test
is applicable mainly for considering the fit of continuous distributions (Birnbaum
and Tingey 1951; Conover 1971; Durbin 1973; Sprent 1989; Marsaglia et al.
2003).

Another method of selecting distributions is by means of the likelihood ratio test
(LRT) which was originally developed to compare nested distributions (Newyman
and Pearson 1928) but can also be extended to assess non-nested distributions
under the asymptotic assumption that the sample size tends to infinity (Cox and
Hinkley 1974). For example, Zuur et al. (2009) tell us this test can be used to
assess whether a Poisson or Negative Binomial distribution are more appropriate
to describe a discrete, count response since the Poisson distribution is a nested
distribution of the Negative Binomial and this test can also be utilised when
comparing the zero inflated versions of these distributions.

Within the GAMLSS framework, the LRT is carried out using a fitted distribu-
tions global deviance, denoted as GD, which is essentially −2l(θ̂), where l(·) is the
log-likelihood function and θ̂ represents the estimated parameters associated with
the relevant distribution. According to Stasinopoulos et al. (2015), the GD is dif-
ferent from the deviance that is considered with generalised linear and generalised
additive modelling. The global deviance is exactly minus twice the log-likelihood
function, including all constant terms in the log-likelihood, whereas in the other
modelling frameworks the deviance is calculated as a deviation from the simpler
model and it does not include constant terms in the fitted log-likelihood.
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As a result let D0 and D1 be two different distributions with fitted global deviances
GD0 and GD1, respectively such that D0 is nested within D1, with respective
degrees of freedom df0 and df1. Then we consider the statistic

Λ = GD0 −GD1

which has an asymptotic χ2 distribution, under the null hypothesis that the
correct distribution for representation is D0 with degrees of freedom df0 − df1.
However, as with the χ2 goodness-of-fit test, the LRT is essentially an asymptotic
result, meaning the random variable Λ will approximately follow a χ2 distribution
for a finite sample.

One final hypothesis test based selection method worth mentioning is the vuong ’s
test, which is essentially a likelihood ratio test for non-nested distributions (Vuong
1989), though it has recently been commented on it’s misuse for the assessment
of zero inflation for discrete count data (Wilson 2015). Again, however, this test
is essentially an asymptotic result.

The hypothesis test procedures described here are frequently used with the in-
tention of selecting a probability distribution that can best represent one’s data.
However, it has been repeatedly mentioned that these procedures are carried out
at an asymptotic level, meaning large samples are assumed to be worked with -
but this can not always be guaranteed when working with real data. Assuming
this is achieved, the random variables involved with these procedures are also
said to be approximately distributed with various forms of the χ2 distribution.
As a result, it would be a natural response to be concerned about how adequate
these approximations are, on the grounds that this could potentially result in
various type I or type II errors occurring when carrying out these hypothesis test
procedures. It is for these reasons that no hypothesis test procedures were used
in the process of selecting the best-fitting distributions in this part of the project,
and as a result information criteria methods were considered and are explained
in more detail as follows.
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3.3.4.2 Information criteria based selection methods

An alternative distribution selection strategy is through the use of information
criteria, where we are able to evaluate these criterion for every distribution fitted
and are able to compare these evaluations, despite whether or not the distri-
butions are nested, to conclude on distributions of best fit. For example, the
Akaike’s Information Criterion (AIC) is frequently referred to when dealing with
selections (Akaike 1973; Bolker 2008; Zuur et al. 2009; Upton and Cook 2011;
Zuur et al. 2012). This is defined as

AIC = −2(l) + 2(df) (3.6)

where l represents the fitted log-likelihood function and df represents the asso-
ciated degrees of freedom, which is the number of associated parameters of the
distribution being fitted.

By observing the AIC, the distribution fit is being accounted for through the
2l term, whilst at the same time being penalized for complexity through ad-
dition of the 2df term. The AIC value (3.6) strives for balance between flexi-
bility/complexity (rewarding the distribution being fitted, at least indirectly, as
more complex distributions make it easier to explain the data involved and hence
lead to a decrease in the value of −2l) and parsimony, i.e. consider more complex
distributions only if it is worthwhile doing so, by penalizing the fit through the
penalty term 2df. Distributions which exhibit the lowest AIC values are consid-
ered to be of the best fit.

Another criterion to consider is the Schwartz Bayesian Criterion (Schwarz 1978),
which is also referred to as the Bayesian Information Criterion (BIC), which is
defined as

BIC = −2(l) + ln(n)(df) (3.7)
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where l is defined as before, ln(·) is the natural logarithmic function and n is the
sample size of the data involved. In a similar way to the AIC value (3.6), minimum
values of the BIC value (3.7) indicate distributions of the best fit, however the
penalty term is harsher for the inclusion of the ln(n) component. As a result,
the use of the BIC will usually result in the simpler distribution being favoured,
whereas the AIC will favour the more complex.

These information criteria were derived under different assumptions and are useful
in different settings. The AIC was derived under the assumption that a true model
requires an infinite number of parameters (Akaike 1973) and attempts to minimize
the information lost by using a given finite dimensional model to approximate
this. The BIC however, was derived as a large sample approximation to Bayesian
selection among a fixed set of finite dimensional models (Schwarz 1978), resulting
in it being consistent for selection among a fixed family of models (where one is
assumed to be the true model).

One final criterion worth mentioning is theDeviance Information Criterion (DIC),
which (Denwood 2010) tell us is used for evaluating the fit of distributions/models
within the Bayesian framework (Spiegelhalter et al. 2002).

All the criteria discussed are valid methods for selecting distributions of best
fit. Within the GAMLSS package, the function gamlssML(·) evaluates both
the AIC and BIC, since maximum likelihood estimation is used as part of the
fitting process. Additionally, communications referring to the use of the GAMLSS
package, base their decisions on selecting distributions/models using the AIC
value. It is also worth noting however when comparing these two criteria, the
BIC was derived under conditions for which one candidate model is assumed to be
the true model - but given the vast number of distributions that can be obtained
when considering compound distributions and the finite, available selection of
distributions for which the GAMLSS has to offer; it would be unfeasible to assume
in every case that one distribution is the true distribution of the observed data -
unless the number of distributions to be considered is indeed the entire number of
distributions that can be evaluated, but this is would be unachievable in reality.

Hence, in the interest of investigating if more complex distributions give a better
representation of FEC data, the AIC value was chosen to be evaluated for each
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distribution fitted and the distribution with the minimum AIC value for each
data set was recorded.

3.3.5 Results

A total of 304 sets of FEC data were obtained from Day 0 and a summary of the
frequencies of the best-fitting distributions for each of the diagnostic sensitivity
groupings are shown in Table 3.3. With respect to the Day 14 data, a total of 304
sets of FEC data were also considered and a similar summary of the frequencies
of best-fitting distributions for each diagnostic sensitivity grouping is displayed
in Table 3.4. From both tables we observe a high occurrence of ZIDs with central
tendency (3.5), being reported as the best-fitting types of distributions in the ma-
jority of the diagnostic sensitivity groupings, except for the 15EPG_McM_SCFT
data; in this case the most common best-fitted distributions were those associated
with the Negative Binomial distribution, with central tendency µ.

As a means of demonstrating the goodness of fit for the selection of distributions
that could be fitted, the Fenbendazole Day 0 and Day 14 treatment group FEC
data from an example farm, are displayed in Figures 3.1 and 3.2. Examples of
fitted distributions based on 1000 simulated random samples are also included
in these figures, where these samples were simulated from distributions using
parameters estimated from the gamlssML(·) function. Their associated AIC
values are displayed - where the lowest valued AIC displayed in these figures
indicates the distribution of best fit for that particular set of data. From these
figures, we can observe that zero inflated distributions represent the data obtained
using 30 or 15 epg sensitivities very well, particularly for Day 14 FEC data,
and how well distributions associated with the Negative Binomial fit the data in
comparison to one another for the 15EPG_McM_SCFT data.
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3.4 Comparing FECRT calculations: location pa-

rameters from best fitting distributions vs. arith-

metic means

Given the results in Sections 3.2.4 and 3.3.5, it was of interest to compare the FE-
CRT calculations of the percentage estimates (2.2), (2.3) and (2.4) (with i = 14)
and their associated 95% upper confidence limits (UCLs) and lower confidence
limits (LCLs) using estimated arithmetic means x̄ (the estimator for the loca-
tion parameter µ) and the central tendency estimates from the appropriate best-
fitted distributions across all four diagnostic sensitivity grouping of cattle FEC
data. From the available data for the project described in Section 1.6.1, twenty
100(1− T14

C14
)% and 100(1−C0T14

T0C14
)% percentage estimates and associated 95% confi-

dence limits and sixty-one 100(1− T14

T0
)% percentage estimates and 95% confidence

limits (essentially all of the available sixty-one treatment groups) were able to be
evaluated. Comparisons of each percentage estimate and associated 95% UCL
and LCL, for each of the diagnostic sensitivity groupings, were made visually via
scatterplots, where estimates based on utilising the location parameters of the
best fitting distributions and based on utilising arithmetic means are viewed on
the x and y axes, respectively. Straight lines were superimposed on these plots
to represent the scenario of any percentage estimate, 95% UCL and/or 95% LCL
being equal, irrespective of using arithmetic means and the location parameters
of the best fitting distributions.

Since results highlighted in Table 3.1 indicated that the majority of cattle FEC
data are of a non-normal nature, even upon transformation, then 95% Boot-
strapped percentile intervals were estimated from 5000 iterations for each of the
Day 0 and Day 14 negative control and positive treatment group data. Every
combination of the 5000 estimates obtained for each set of data was considered,
resulting in a sampling distribution of 2.5x107 percentage estimates, from which
the percentile intervals were derived. When considering distributions that were
classed as inconclusive, the central tendency µ was used to represent the counts
involved that all had the same value of zero, as this is the only appropriate central
tendency that can be used to represent these data.
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3.5 Results

Figures 3.3 and 3.5 give visual representations of the comparison of the twenty
100(1− T14

C14
)% and 100(1−C0T14

T0C14
)% percentage estimates and associated confidence

limits, respectively, using the data available from the four diagnostic sensitivity
groupings. Figure 3.4 displays similar information for the sixty-one 100(1− T14

T0
)%

percentage estimates and 95% confidence limits that were able to be evaluated.
The straight lines featuring in these plots represent the scenario of either the
percentage estimates (figures labelled (b), (e), (h) and (k)) UCLs (figures labelled
(a), (d), (g) and (j)) or LCLs (figures labelled (c), (f), (i) and (l)) being equal
when evaluated using both sets of estimates.

Overall, for each type of FECRT calculation method, the percentage estimate
and the associated confidence limits estimated for FEC data obtained using 30 or
15 epg sensitivities using arithmetic means resulted in higher valued percentage
estimates and interval estimates being obtained (i.e. values that lie above the
straight lines), in comparison to those estimated using the central tendencies of
the best-fitting distributions, i.e. zero inflated distributions. This was also the
case for the comparisons that could be considered as outliers in Figures 3.3, 3.4
and 3.5, since these points lie above the straight lines in these figures. However,
there was good agreement between the percentage estimates and confidence lim-
its estimated using arithmetic means and central tendencies of the best-fitting
distributions when considering the 15EPG_McM_SCFT data; since the major-
ity of comparisons lie on the straight lines in the associated figures, which is due
to the majority of 15EPG_McM_SCFT data being best fitted by distributions
that are associated with the Negative Binomial distribution (Tables 3.3 and 3.4)
and hence have the location parameter µ.
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3.6 Discussion

The FECRT remains a widely used field test for anthelminthic efficacy, despite
it never having been validated against slaughter studies. This Chapter provides
insight into the potential statistical distributions that could be applied and rep-
resent cattle FEC data obtained by counting techniques of varying sensitivity,
and the associated central tendencies that can be therefore utilised as part of
evaluating percentage estimates in FECRT calculations. The normality of cattle
FEC data, even upon transformation, has also been considered, which is an as-
sumption required to ensure that the use of associated 95% confidence intervals,
derived from asymptotic approximations, is valid.

The original 304 Day 0 and Day 14 FEC data sets and transformed versions
of these were assessed for normality, since confidence intervals currently recom-
mended to be used in a FECRT are derived assuming relevant data to be normal
to obtain approximate estimates for the ln-transformed ratio of means of FEC
data and its associated variance. For smaller sample sizes (<30), the Student’s t-
distribution is generally utilised to generate confidence intervals since it provides
a more conservative estimate in comparison with the standard normal distribu-
tion. Furthermore, the transformations were used in an attempt to correct the
usual skewness present in FEC data, to obtain data that would be considered as
symmetric (Zar 1996; Torgerson et al. 2005; Vidyashankar et al. 2007).

The majority of the original and transformed data sets, both on Day 0 and Day
14, were found to be non-normal via the Shapiro-Wilk normality test. As a result,
it would not be recommended to use confidence intervals that are based on large
sample approximations that assume normality. Moreover, some of the confidence
intervals derived by the Delta Method rely on correlations of natural logarithmic-
transformed FEC data being evaluated; but this would not be possible if zero-
valued FECs were obtained. In fact, given the nature of these data; confidence
or credible intervals would be more suitably estimated using alternative methods
such as Bootstrapping or a Bayesian approach, since generating these types of
intervals from such frameworks is not necessarily dependent on assumptions of
normality. Bootstrapping is a computer intensive and data driven technique that
involves re-sampling observed data (Efron and Tibshirani 1993) and is generally
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regarded by the veterinary and parasitological communities to potentially offer a
simple, accessible and robust method to generate and infer confidence intervals
for percentage estimates, even in the presence of small sample sizes (Cabaret and
Berrag 2004; Lester and Matthews 2013; Lester et al. 2013). Bayesian Statistics
lead us to work with a distribution for the parameters of interest (as opposed to
fixing parameters to be estimated from data) for which credible intervals can be
generated, and is the basis for subsequent inference within the Bayesian paradigm
(Rice 2007). A Bayesian approach to analysing data offers benefits such as the
usual normality assumption within statistical models being removed and unreal-
istic assumptions and simplifications being avoided when considering data, but
Matthews (2014) highlights that a limitation to adopting Bayesian methods in
analysing FEC data is the ability to use advanced statistical programmes, which
the layperson may not be familiar with. The work presented here makes use of
maximum likelihood estimation through the GAMLSS package, which is able to
estimate distributional parameters, other than central tendencies such as vari-
ability, proportion of zeros etc., without the extra computational intensity that
Bayesian inference can involve.

The results from this Chapter suggest that for cattle FECs obtained by sensitive
counting techniques (such as the SCFT with a diagnostic sensitivity of 1 epg),
distributions associated with and including the Negative Binomial distribution
could be recommended to represent these data. Hence, percentage estimates and
confidence limits can be estimated using arithmetic group means (i.e. the central
tendency estimates associated with these distributions) in order to evaluate ap-
parent anthelmintic efficacy. If cattle FEC data are obtained with less sensitive
counting techniques (such as the McMaster technique with diagnostic sensitivi-
ties of 30 epg or 15 epg), ZIDs are recommended to represent these data, with
central tendency µ1 being used when calculating percentage estimates and con-
fidence limits, due to excess zeros being produced by the counting techniques
employed. As a result, this study demonstrates that the diagnostic sensitivities
used in egg counting techniques influence the distribution of best representation
for FEC data. For cattle, this is a consistent result with the study of El-Abdellati
et al. (2010), who also reported that detection limits of counting techniques used
in experimental studies are confounding factors of major importance when inves-
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tigating anthelmintic resistance.

With respect to ZIDs, these distributions (more specifically zero inflated Negative
Binomial distributions) have been used in worm egg count simulation studies
involving sheep (Denwood et al. 2008) and horses (Denwood 2010; Denwood
et al. 2010). The work in this Chapter compliments these earlier studies and
advocates the use of ZIDs for representing real cattle FECs obtained using less
sensitive counting techniques, but with alternative estimators being utilised. One
could argue though, that in the present study there were animals involved whose
FECs were less than the 100 epg threshold recommended by Coles et al. (2006)
and so this introduces the need for ZIDs. However, the level of egg excretion is
generally low and highly aggregated in cattle, i.e. the majority of cattle will be
shedding low numbers of eggs in their faeces as well as few animals shedding a
higher number of eggs (Demeler et al. 2009; El-Abdellati et al. 2010; Levecke
et al. 2012) and is the reason as to why cattle with FECs less than 100 epg were
included.

The choice of which central tendencies be used to represent FEC data, and there-
fore be used as part of a FECRT, has been long debated in veterinary parasitol-
ogy research, despite the fact that the choice of central tendency depends on the
distributions of best fit. For instance, the use of geometric means has been sug-
gested previously (Presidente 1985; Mejia et al. 2003), but the use of arithmetic
means has been more widely adopted (Dash et al. 1988; Dobson et al. 2009). In
fact, Geurden et al. (2015) investigated anthelmintic efficacy in cattle in Europe,
where egg counts were obtained using a diagnostic sensitivity of 12.5 epg (and
15 epg in one country) and arithmetic means were used to calculate percentage
estimates. Our study, however, recommends the use of the central tendency µ1

for FECRT calculations as opposed to the use of arithmetic means when dealing
with ZIDs, on the basis that this is the maximum likelihood estimator for these
types of distributions.

With this recommendation in mind, it naturally leads us to ask for what diag-
nostic sensitivities between 15 epg and 1 epg do we start accepting distributions,
such as the Negative Binomial, being the better representation in comparison to
ZIDs? As part of the current study we are unable to answer this question, but
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this could be investigated as part of future studies.

Percentage estimates and their associated 95% UCLs and LCLs were evaluated
using arithmetic group means and using the central tendency estimates of the
best-fitted distributions for each of the different types of FEC data. With regards
to FEC data obtained using 30 or 15 epg sensitivities, using central tendency es-
timates of the best-fitted distributions resulted in lower percentage estimates and
confidence limits being obtained, in comparison to using arithmetic means in cal-
culations. This is because the central tendency featuring in calculations was µ1

in most cases, since the majority of these distributions were zero inflated distri-
butions. As a result, for FEC data obtained by less sensitive counting techniques,
an anthelmintic could be interpreted as over-performing (bearing in mind that
a FECRT gives an indirect indication of efficacy) when arithmetic group mean
estimates are used in the presence of zero inflated data.

Based on the hybrid sets of data with egg counts obtained with a 1 epg sensitivity,
there was good agreement between the percentage estimates and confidence limits
estimated using both arithmetic means and central tendencies of the best-fitting
distributions. This was because the majority of these data were best represented
by distributions whose central tendency was the arithmetic mean, i.e. those
associated with the Negative Binomial distribution.

The work presented in this Chapter has been concerned with the analysis of cat-
tle FEC data, and so it would be of interest to observe, using the above results
and recommendations, what form of percentage estimates, and by extension what
experimental designs, would be more appropriate to use for the FECRT in pro-
ducing robust statistical analyses in a Bootstrapping framework. This will be
considered in Chapter 4.
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Chapter 4

Identifying a robust design of
experiment via a simulation study
involving Bootstrap methodology

4.1 Introduction

In chapter 2, it was highlighted that, as agreed by many researchers, there is a
strong need to investigate which experimental designs are appropriate to deter-
mine and classify apparent anthelmintic efficacy in a robust manner, with respect
to statistical calculations being carried out as part of the FECRT (Vidyashankar
et al. 2007; Vidyashankar et al. 2012; Lyndal-Murphy et al. 2014). In Chapter 3,
the probability theory associated with cattle FEC data has been underpinned and
we shall utilise the findings from this Chapter to investigate what form of per-
centage estimates, and by extension what experimental designs, would be more
appropriate to use for the FECRT in producing robust statistical analyses in a
Bootstrapping framework.

In this section, we will primarily investigate the performance of confidence in-
tervals using Bootstrap methodology, as a means of investigating the robustness
of percentage estimates and, by extension, associated experimental designs. The
performance of these intervals will be assessed via a simulation study using RStu-
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dio software (version 0.98.994 along with R software version 3.1.1.). In the fol-
lowing section, we explore different aspects of confidence intervals and what is
currently used as criteria for utilising appropriate percentage estimates in an-
thelmintic studies.

4.2 Criteria currently used to utilise appropriate

percentage estimates in anthelmintic studies:

confidence intervals

In Section 3.2.2, concepts of classical, null hypothesis significance testing (NHST)
related to statistical parameters were explored. One disadvantage of NHST is
that related inference procedures provide no information on the magnitude of an
experimental effect (Gardiner and Gettinby 1998). Confidence intervals provide
means of estimating this type of magnitude and this type of interval is defined in
the general form as follows :

estimate± (critical value)(measure of variability). (4.1)

The interval (4.1) tells us the range in which the true value of a parameter would
occur with repeated sampling of the population with a pre-determined confidence
level 100(1−α)%, where α is defined as the significance level for the corresponding
hypothesis test for which the confidence interval is providing the magnitude of
effect for. It is worth noting that confidence intervals can take account of one-
tailed and two-tailed hypotheses by way of the critical value in interval (4.1).

With respect to the confidence intervals that can be produced for a FECRT,
Cabaret and Berrag (2004) tell us that one criterion for a good FECRT is one
which has a small confidence interval, i.e. one with a small width. Factors
which will influence the widths of a confidence interval are variability, which is
influenced by the choice of study design (Borenstein et al. 2009), and sample size.
The more variation present in a given sample; the wider the confidence intervals

111



that will be formed. On the other hand, if one were to increase the sample size
then this would reduce the widths of confidence intervals because more of the
study population of interest is being sampled from. For example, if we were to
consider the confidence interval (2.22):

100

(
1− Ti

Ci
exp

(
±t(ntreat+ncontrol−2)

√
s2
t.eos

ntreatT 2
i

+
s2
c.eos

ncontrolC2
i

))
%,

we can see that by increasing the values s2
t.eos and/or s2

c.eos or by decreasing
the sample sizes ntreat and/or ncontrol we would be able to produce a confidence
interval with a wider width.

The widths of confidence intervals are an indication of whether or not there is
sufficient data and whether or not the data are too variable to obtain a precise
estimate to infer about the population parameter of interest, bearing in mind
that precision can be thought of as the associated uncertainty of a given estimate.
Hence, confidence intervals with large widths are an indication of insufficient data
or large uncertainty.

One other thing that can impact on the width of a confidence interval is the
advertised coverage of the interval. Gardiner and Gettinby (1998) tell us that
in practice, the coverage offered by intervals is usually set to 95%, but can also
be set to 99% and 90% in some circumstances. It is also worth noting that the
higher the value of the advertised coverage as set by the researcher, the wider the
resulting confidence interval will be.

Related to this, the coverage probability is the proportion of time that the obtained
confidence interval actually contains the true specified parameter value upon re-
peated sampling of the population and this should be approximately equal to the
coverage that is advertised. For example, if we were to sample from the same user
population 1000 times, we would expect the average to fall within the interval
950, 990 and 900 times out of 1000 for the respective values of coverage mentioned
above. In fact, it is this performance measure which will be primarily examined in
our simulation study and will indicate the robustness of Bootsrapped percentile
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intervals for the different percentage estimates - since the probabilities obtained
will indicate whether or not the confidence intervals contain the true percentage
estimates as advertised.

Before this however, the variability associated with the different experimental
designs, from which relative percentage estimates are considered, must be inves-
tigated. Due to the nature of the positive treatment group paired study design
(or parallel group design where a negative control is present) our simulation study
will have to involve simulating paired data and we must ensure that the variabil-
ity associated with these types of data/designs is reflected in our simulations.
In doing this, we will be able to simulate representative FEC data, for which
the coverage probability of confidence intervals for different percentage estimates
can then be examined. As a result, the following section explores the variability
associated with paired study designs.

4.3 Variability of the measured responses in an-

thelmintic studies

4.3.1 Variability of paired data

To investigate the variability associated with the paired study design, if we let,
say, random variables X and Y be the FECs collected on Days 0 and 14, respec-
tively, then it is the differences between the measured responses that are to be
examined, i.e. X − Y (Gardiner and Gettinby 1998). To make inference with
paired study designs, the variance of the differences, i.e. V ar[X − Y ], is required
and usually estimated from the pairs of responses. Although traditionally the
logarithm of the ratio Y

X
is considered, this equates to ln(Y ) − ln(X), and so a

difference between measured responses can still considered.

Due to the fact that animals are considered as their own controls and FECs
are obtained over time, then it is unlikely that the measured responses taken
from Days 0 and 14 are independent, i.e. V ar[X − Y ] = V ar[X] + V ar[Y ].
In fact, we would expect some form of correlation to be present between these
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measurements, i.e. some form of dependence between FECs, due to the fact
that measured responses are being obtained from the same individual animals
throughout the study.

In fact, Rice (2007) tell us that the appropriate form for the variability present
in the differences of observations, i.e. V ar[X − Y ], is given by:

V ar[X − Y ] = V ar[X] + V ar[Y ]− 2Cov[X, Y ]. (4.2)

In addition, since we know the co-variance can be defined in terms of the cor-
relation between the random variables under observation, then equation (4.2)
becomes:

V ar[X − Y ] = V ar[X] + V ar[Y ]− 2ρ(X, Y )
√
V ar[X]V ar[Y ]. (4.3)

However, if we let V ar[X] ≈ V ar[Y ], i.e. the variability is held constant between
FECs obtained between Days 0 and Day 14 (this is generally assumed as part
of paired study designs, though it is important to note that there would be no
reason to expect this with FEC data), then equation (4.3) simplifies to

V ar[X − Y ] ≈ 2V ar[Y ]− 2ρ(X, Y )
√
V ar[Y ]2

≈ 2V ar[Y ]− 2V ar[Y ]ρ(X, Y )

≈ 2V ar[Y ](1− ρ(X, Y ))

≈ 2s2
Y (1− r). (4.4)

where s2
Y is the sample variation of the FECs obtained on Day 14 and r is Pear-

son’s correlation coefficient.

So, with reference to Equation (4.4), what can be said about V ar[X − Y ] for
given values of r?
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If we consider r > 1
2
:

r >
1

2

⇒ 1− r < 1

2

⇒ 2(1− r) < 1

⇒ 2(1− r)s2
Y < s2

Y

⇒ V ar[X − Y ] < s2
Y .

Thus, if the correlation is greater than 1
2
(a positive correlation), then the variabil-

ity in the differences between measured responses (i.e. the variability associated
with a paired study design) will be approximately less than the variability of the
single end of study measured responses, i.e. Day 14 FECs, in which case, con-
sidering animals as their own controls is favoured as an experimental design. For
example if r = 0.7, then V ar[X −Y ] = 0.6s2

Y , i.e. the variation of the differences
between Day 0 and Day 14 FECs is approximately 40% less than the variability
of the Day 14 FECs.

By a similar argument, if 0 < r < 1
2
, then the variability in the differences of

between measured responses will be approximately greater than the variability
of the single end of study measured responses. For instance, if r = 0.2, then
V ar[X −Y ] = 1.6s2

Y , i.e. the variation of the differences between Day 0 and Day
14 FECs is approximately 60% more than the variability of the Day 14 FECs
alone. The result being that including baseline, i.e. Day 0, measured responses
would be adding to the variability of the study, if a paired study design were to
be considered. In fact, if r ≤ 0 we find that the variability in the differences of the
measured responses would (approximately) at least be as twice as much as the
variability associated with the Day 14 measured responses but will at most be four
times as much as the variability associated with Day 14 responses since r ≥ −1.
Mathematically, we are saying that if −1 ≤ r ≤ 0, then 2s2

Y ≤ V ar[X−Y ] ≤ 4s2
Y .

This can be shown as follows: for correlations r1 and r2 satisfying
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−1 ≤ r1 ≤ −
1

2
≤ r2 ≤ 0

⇒ 2 ≥ 1− r1 ≥ 1.5 ≥ 1− r2 ≥ 1

⇒ 4 ≥ 2(1− r1) ≥ 3 ≥ 2(1− r2) ≥ 2

⇒ 4s2
Y ≥ 2s2

Y (1− r1) ≥ 3s2
Y ≥ 2s2

Y (1− r2) ≥ 2s2
Y .

It is clear that investigating and evaluating correlations between two sets of paired
measured responses, e.g. Day 0 and Day 14 FECs from individual cattle, allows
us to infer about the variability present in paired study designs. As a result, if we
are able to evaluate correlations and incorporate these into our simulation study
then we incorporate information on the variability of the paired study/parallel
group designs as required.

4.3.2 Investigating correlations of paired FEC data

The FEC data described in Section 1.6.1, for the mentioned diagnostic sensitiv-
ities, were used in order to investigate the correlations and, by extension, the
variability in the differences of the measured responses betweeen Days 0 and 14
associated with the available 15 negative control and 61 positive treatment groups,
on average. Treatment groups were categorised into those that had pre-treatment
group means greater than 150 epg, those which had pre-treatment group means
between 100 epg and 150 epg (inclusive) and those with pre-treatment group
means less than 100 epg (Coles et al. 1992; Coles et al. 2006). As a result, 149,
62 and 93 out of the 304 available data sets were classed into these respective
categories.

These data were further split into three categories based on treatment group
sample sizes. For the negative control groups, FEC data were categorised into:
12 ≤ ncontrol ≤ 20 (Small), 20 < ncontrol ≤ 40 (Medium) and 40 < ncontrol ≤ 54

(Large). For the positive treatment groups, FEC data were categorised into:
12 ≤ ntreat ≤ 20 (Small), 20 < ntreat ≤ 40 (Medium) and 40 < ntreat ≤ 61

(Large).
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Once these were evaluated, weighted averages of the average correlations for neg-
ative control and positive treatment groups were obtained for a particular diag-
nostic sensitivity grouping using the following formula:

∑
iwir̄i∑
iwi

,

where r̄i is the i-th average correlation for a given treatment group and sample
size range, and wi is the the number of data sets for which the i-th average
correlation was based on. By using a weighted average, we are able to attach more
importance (i.e. weight) to some average correlations than others (Upton and
Cook 2011) with respect to the number of studies that the average correlations
were based on. The value of the average correlation was taken to be either
the mean or median valued correlation coefficient, depending on whether or not
the distribution of given correlation coefficients was of a normal nature or not
(assessed using a Shapiro-Wilk normality test as described in Section 3.2.3). In
addition, the number of groups for which r̄ was based on, was evaluated.

4.3.3 Results

The average Pearson correlation coefficient, denoted as r̄, was evaluated for each
treatment group, given the appropriate group size range, type of diagnostic sen-
sitivity grouping and type of pre-treatment group means, as shown in Table 4.1.

By observing Table 4.2, we see that the correlations between Day 0 and Day
14 FEC data for the positive treatment groups, irrespective of the diagnostic
sensitivities and the range of the pre-treatment group mean ranges observed, have
a correlation ranging between the values of 0 and 0.5, on average. As a result,
FECs obtained between Days 0 and 14 have a weak, positive linear association
with each other.

For the negative control groups we observe that, on average, when these groups
have pre-treatment group means less than 100 epg or have a pre-treatment group
mean lying between 100 epg and 150 epg (inclusive), the correlation between
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Day 0 and Day 14 FECs lies between 0.5 and 1 and hence have a strong positive
linear association. However, when the negative control groups have pre-treatment
group means greater than 150 epg, we observe, on average, correlation values lying
between 0 and 0.5.

As a result of gaining insight into the correlations of Day 0 and Day 14 cattle
FEC data, we are able to reflect the variability of paired FEC data and can now
utilise these conclusions to inform a simulation study. These correlations will be
used in the simulation of FEC data to conclude on the performance of coverage
probabilities offered by confidence intervals using different percentage estimates,
offered by the paired study designs, as mentioned before.
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Pre-treatment Group Mean Range Type of Data Type of Treatment Group Weighted Average of Average Correlations

30EPG_McM1 Control 0.43

30EPG_McM1 Positive Treatment 0.25

30EPG_McM2 Control 0.42

means>150 epg 30EPG_McM2 Positive Treatment 0.21

15EPG_McM Control 0.4

15EPG_McM Positive Treatment 0.27

15EPG_McM_SCFT Control 0.38

15EPG_McM_SCFT Positive Treatment 0.28

30EPG_McM1 Control 0.84

30EPG_McM1 Positive Treatment 0.11

30EPG_McM2 Control 0.51

100 epg≤means≤150 epg 30EPG_McM2 Positive Treatment 0.15

15EPG_McM Control 0.73

15EPG_McM Positive Treatment 0.2

15EPG_McM_SCFT Control 0.79

15EPG_McM_SCFT Positive Treatment 0.15

30EPG_McM1 Control 0.58

30EPG_McM1 Positive Treatment 0.07

30EPG_McM2 Control 0.73

means<100 epg 30EPG_McM2 Positive Treatment 0.1

15EPG_McM Control 0.77

15EPG_McM Positive Treatment 0.12

15EPG_McM_SCFT Control 0.72

15EPG_McM_SCFT Positive Treatment 0.15

Table 4.2: Weighted Averages of the Average Correlations

4.4 Simulation studies: a general overview

There are many percentage estimates that can be used to conclude on apparent
anthelmintic efficacy/resistance, such as percentage estimates (2.2), (2.3), (2.4),
(2.5), (2.6) and (2.7) mentioned in Section 2.3 (with i = 14). As a result, the only
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sensible approach to determine what type of percentage estimate offers robust
statistical analyses would be to conduct a simulation study based on real cattle
FEC data (Burton et al. 2006). In this case, we would be interested in observing
the performance of the confidence intervals associated with the various percentage
estimates, via coverage probabilities. The performance of associated confidence
intervals for the relative percentage estimates is of interest, since these intervals
are used in the decision-making process of classifying apparent efficacy/resistance
in cattle herds.

According to Burton et al. (2006), simulation studies are considered to be com-
puter intensive procedures to assess the performance of a variety of statistical
methods in relation to a known truth/target value and such evaluation cannot be
achieved with studies of real data alone. As a result, an empirical estimation of
the sampling distribution of the parameters of interest is provided that could not
be achieved by means of a single study and the estimation of accuracy measures
can be compared to the known truth/target value as well.

For the purposes of this study, simulations will involve repeated random sampling
from probability distributions and are referred to as Monte Carlo simulations and
these can produce a vast number of scenarios, i.e. iterations (Diaz-Emparanza
2002; Burton et al. 2006). These types of simulations are considered to be a
relatively new area of Mathematics with a variety of applications and specialist
packages being developed for their implementation. For example, Monte-Carlo
simulation is easily implemented in R/RStudio using built in functions, which
generate random values from probability distributions. As a result, these func-
tions can be utilised within user-defined functions, which code the simulation.

The design of simulation studies however, in general, is considered to be a complex
process and presents itself with numerous issues to be considered. For example,
justifications have to be supplied for all decisions made prior to the simulation
study being carried out (these would be detailed in a study protocol), a description
of the simulation procedures, statistical methods to be evaluated, the storing of
data and estimates, the number of simulations to be performed, the particular
type of accuracy measures to be used, etc. (Burton et al. 2006).

Two issues in particular that are worth further discussion are those surrounding
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the questions: "How many simulations do I carry out?" and "What are the dif-
ferent types of performance measures available for me to use in my simulation
study?"

4.4.1 Number of simulations to carry out as part of a study

The number of simulations a researcher is required to carry out is an important
consideration, because the quality of the results is directly influenced by the
number of simulations carried out (Diaz-Emparanza 2002).

Burton et al. (2006) tell us that the number of simulations, B say, can be deter-
mined by using generic formula such as

B =

(
Z(1−α

2
)σ

δ

)2

(4.5)

where δ is the specified level of accuracy of the estimate of interest the researcher
is willing to accept, i.e. the permissable difference from the "true"/target value,
Z(1−α

2
) is the 1 − α

2
quantile of the standard normal distribution, α is the sig-

nificance level set by the researcher and σ2 is the variance of the parameter of
interest.

Alternatively, B could be determined based on the power 1 − β of a study, i.e.
the probability of detecting a significant difference from the "true"/target value,
where the following formula is considered:

B =

(
(Z(1−α

2
) + Z(1−β))σ

δ

)2

(4.6)

and in fact, (4.6) is equivalent to (4.5) if the power is assumed to be 50%.

These formulae require a realistic estimate of the variance being obtained from
data, but if the variance is unknown or cannot be estimated reliably then it may
be possible to perform an identical pilot/test simulation study to obtain these
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realistic estimates.

When one considers the relatively large FEC data set available in this project,
the estimation of variability of the positive treatment and negative control FEC
data for both Days 0 and 14 would require extensive time - a cost which is
often taken into account when carrying out these types of studies (Burton et al.
2006). If individual values of B were to be examined for each data set, there
is no guarantee that the maximum value of B that would be considered as the
number of simulations to carry out would be manageable to achieve given the time
constraints of this project - especially when we consider estimating the variability
of these data given the different types of treatment groups, diagnostic sensitivities
and farms involved. As a result, the number of simulations carried out was based
on what could be achieved given the time constraints of the project, as opposed
to evaluating the number of simulations based on the use of generic formulae such
as those mentioned above.

4.4.2 Performance measures

According to Burton et al. (2006), it is necessary to consider the criteria for
evaluating the performance of results from the different scenarios/statistical ap-
proaches being examined. The comparison of simulated results with the "true"/target
values used to simulate the data provides a measure of performance and associated
precision of the simulated process. Performance measures often considered are
bias, accuracy and coverage. In our case, we are primarily interested in assessing
the performance of confidence intervals and the estimation of percentage esti-
mates in a Bootstrapping framework and so the coverage will be adopted as our
primary performance measure. As an addition, if a percentage estimate provides
adequate coverage consistently, we will then consider observing the standardised
bias present for the relevant percentage estimates, which is described below.

Burton et al. (2006) tell us that the coverage is the proportion of times that
the obtained confidence interval contains the true specified parameter value and
that it should approximately be equal to the advertised coverage rate. Over-
coverage occurs when the coverage rates are above the advertised coverage rates
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and this can suggest that the results are too conservative since more simulations
will not find a significant result when there is a true effect thus leading to a loss
of statistical power with too many type II errors. On the other hand, under-
coverage occurs when the coverage rates are lower than the advertised coverage
rates and is considered unacceptable according to Burton et al. (2006) as it
indicates over-confidence in the estimates.

One possible criterion for acceptability of the coverage is that it should not fall
outside of approximately two standard errors (SEs) of the normal coverage prob-

ability, p say, i.e. SE(p) =
√

p(1−p)
B

(Burton et al. 2006). For example, if 95%
confidence intervals are calculated using 1000 independent simulations then the
coverage should fall between 93.6% and 96.4%. This criterion shall be utilised
as part of our simulation study in order to identify those percentage estimates
that offer suitable coverage and shall be referred to as Burton’s criterion for the
remainder of this Chapter.

Recall from Section 2.4.2, that the bias (Equation (2.15)) of an estimator, θ̂, for
a parameter θ say, is defined as

Bias = E[θ̂]− θ,

where E[θ̂] is the average value of the distribution for the estimate θ̂ in a set
of simulations. According to Burton et al. (2006), the amount of bias that
is considered troublesome has varied from 1

2
se[θ̂] to 2se[θ̂], where se[θ̂] is the

empirical standard error of the estimate θ̂ (estimated as the standard deviation)
over all simulations.

An alternative concept is that of the standardised bias:

Standardised Bias =
E[θ̂]− θ
se[θ̂]

.

According to Collins et al. (2001) and Burton et al. (2006), the standardised bias
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can be more informative, as the consequence of the bias depends on the size of the
uncertainty in the parameter estimate. For example, a value of -50% means that
the estimate, on average, falls one half of a standard error below the parameter
(Collins et al. 2001). It is also worth noting that a standardised bias within
±40% has been shown to not have noticeable adverse impact on the coverage
probabilities of confidence intervals as well as the efficiency of estimators and
error rates (Collins et al. 2001; Burton et al. 2006). As a result, this criterion
shall be utilised when observing the standardised biases for percentage estimates,
if required, and shall be referred to as Collins’ criterion for the remainder of this
Chapter.

4.5 Simulating paired data: copula

According to Nelsen (2006), the study of copula and their applications are a
modern branch of Statistics. The term copula is used to describe functions that
join multivariate distribution functions to their marginal distribution functions.
In other words, copulas are multivariate distribution functions whose margins
are uniform on the domain (0, 1). In fact, Nelsen (2006) also tell us that copulas
can offer us a way of studying scale-free measures of dependence and can be
thought of as a starting point constructing families of distributions with a view
to simulation. Upton and Cook (2011) also tell us that copulas encapsulate the
interdependencies between variables and is also referred to as the dependence
function.

In Mathematical terms, according to Upton and Cook (2011), let F be the mul-
tivariate distribution function for the random vector (X1, . . . , Xd) and let the
cumulative distribution function (CDF) of Xi (for 1 ≤ i ≤ d) be Fi.

Define the random vector (U1, . . . , Ud), such that Ui = Fi(Xi) for each i, so that
the marginal distribution of each Ui has a continuous uniform distribution on the
domain (0,1). Assume that for each value ui there is a unique value xi = F−1

i (ui)

(i.e. the inverse of Fi exists, and to guarantee this we assume Fi to be continuous)
and let the joint CDF of (U1, . . . , Ud) be C. Then the copula, C is defined as
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C(u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud) = F [X1 ≤ F−1
1 (u1), . . . , Xd ≤ F−1

d (ud)],

(4.7)

for all u1, . . . , un in (0,1), since Ui ≤ ui if and only if Xi ≤ F−1
i (ui).

Upton and Cook (2011) also tells us that an equivalent form of (4.7) is given by

C(F1(x1), . . . Fd(xd)) = F (x1, . . . xd),

for all x1, . . . , xd, where ui = Fi(xi) for each i.

Copulas are important due to Sklar’s Theorem, which states that, for a given F ,
there is a unique C such that (4.7) is satisfied (Nelsen 2006; Upton and Cook
2011).

As a result, the copula C contains all the relevant information on the depen-
dence structure between the components of the random vector (X1, . . . , Xd) and
the marginal cumulative distribution functions Fi, for 1 ≤ i ≤ d, have all the
relevant information about the marginal distributions (Nelsen 2006; Upton and
Cook 2011).

Equation (4.7) thus tells us that given the individual distribution functions are
known but the joint CDF is unknown then a copula can be used to suggest a suit-
able form for the CDF (Upton and Cook 2011). However, a more powerful use of
copulas lies in the reverse of the process described above. That is, given a pro-
cedure to generate the random vector (U1, . . . , Ud) from the copula distribution,
the required random vector (X1, . . . , Xd) can be formed as

(X1, . . . , Xd) = (F−1
1 (U1), . . . , F−1

d (Ud)).
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4.5.1 Gaussian copula

Nelsen (2006) explains that there are many families of copulas used in practical
applications, however, one of the most popular to be used, particularly in areas
of finance (Malevergne and Sornette 2003; Cherubini et al. 2004; Renard and
Lang 2007), is the Gaussian copula and this is the case where the joint CDF
is a multivariate normal distribution function. This distribution function is the
extension of the normal distribution of a single random variable to a random
vector of elements that are each normally distributed (Upton and Cook 2011) and
through its form, it naturally takes account of the correlations of the elements of
the random vector.

Recall that, for a random variable Y to follow a normal distribution, then it is
said to have probability density function

f(y) =
1

σ
√

2π
e

−(y−µ)2

2σ2

and we say that Y ∼ N (µ, σ2).

The multivariate normal distribution for a random vector Y = (Y1, . . . , Yd) is
given by:

f(y) =
1

2π
n
2

|Σd|−
1
2 exp

(
(y − µd)TΣ−1

d (y − µd)
2

)

where, | · | denotes the determinant, T denotes the transpose of a matrix, µd =

(µY1 , . . . , µYd) are the means for each of the respective components of Y and Σd

is defined as the covariance matrix of the d components present in Y (Rice 2007;
Upton and Cook 2011) and we say that Y ∼ N (µd,Σd).

For example, the bivariate case of the multivariate normal distribution consists
of µ2 = (µY1 , µY2) and
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Σ2 =


σ2
Y1

Cov[Y1, Y2]

Cov[Y1, Y2] σ2
Y2


for the normally distributed random variables Y1 ∼ N (µY1 , σ

2
Y1

) and Y2 ∼ N (µY2 , σ
2
Y2

).

In fact, according to Song (2000) and Arbenz (2013), if unit variances are allowed
such that Σd becomes a correlation matrix, so for instance in the bivariate case
we would obtain

Σ2 =


1 ρ(Y1, Y2)

ρ(Y1, Y2) 1

 ,

then the multivariate normal distribution N (0,Σd) induces the Gaussian copula
such that 0 is defined to be the mean zero vector and Σd is the relevant correlation
matrix. Arbenz (2013) tells us that a copula is invariant under strictly increasing
transformations of the margins, i.e. a positive scaling of the components of a
multivariate normal changes the covariance structure but not the copula. Hence,
the copula induced by the multivariate normal distribution N (0,Σd) (with Σd

a covariance matrix, but not necessarily a correlation matrix) depends only on
the correlation matrix induced by Σd. Malevergne and Sornette (2003) also tell
us that the Gaussian copula is completely determined by the knowledge of the
correlation matrix, which is indeed what we want to incorporate and account for
when simulating FEC data as part of our simulation study.

As a result, the Gaussian copula can be defined as

C(u1, . . . , ud) = ΦΣd(Φ
−1(u1), . . . ,Φ−1(ud))

where Φ−1 is the inverse cumulative distribution function of a standard nor-
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mal distribution and ΦΣd is the joint CDF of a multivariate normal distribution
N (0,Σd) where Σd is a correlation matrix with order d × d. It is worth noting
however, that due to a non-linear transformation, essentially, being applied to
the uniformly distributed random variables, it is the case that the correlations
of the simulated required samples will approximately be of the same value to the
correlations used when defining the joint CDF.

4.6 Simulation study methodology

It was decided and agreed by the project team that three farms would be selected
on which to base our simulation study, in order to compare the performance of
the coverage probabilities of 95% Bootstrapped percentile confidence intervals.
These were farms E32, D20 and D05. These farms were selected because they,
respectively, had treatment groups that had pre-treatment group means greater
than 150 epg, pre-treatment group means between 100 epg and 150 epg (inclusive)
and pre-treatment group means less than 100 epg (with respect to a 15 epg sen-
sitivity). As a result, we would be able to infer on the coverage of the confidence
intervals for different percentage estimates for farms with different pre-treatment
group mean thresholds based on published guidelines (Coles et al. 1992; Coles
et al. 2006). These farms also had one negative control and at least one positive
treatment group to utilise. For farm E32, the fenbendazole treatment group and
for farms D20 and D05, the ivermectin injectable treatment groups’ data were
considered as part of this simulation study. These field study data were then used
to evaluate the six percentage estimates: (2.2), (2.3), (2.4), (2.5), (2.6) and (2.7)
(with i = 14), as described in Section 2.3.

For percentage estimates constructed using central tendencies, these were evalu-
ated for each set of field study data, using the central tendencies/location param-
eters of the distributions of best fit, which were obtained from work presented in
Chapter 3. As a result, we obtain the known "true"/target percentage estimates
based on field study data for a particular diagnostic sensitivity grouping.

With respect to simulating FEC data, treatment group sample sizes of 15, 20, 30,
40 and 50 were considered and based on the correlation and variability results
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described in Section 4.3.3, Day 0 and Day 14 data were not simulated indepen-
dently for each type of treatment group; instead these data were simulated from
a Gaussian copula to ensure specific correlation values, rcontrol and rtreat say, were
reflected in the simulated data. For farm E32, rcontrol = 0.4 and rtreat = 0.3,
for farm D20, rcontrol = 0.7 and rtreat = 0.2 and for farm D05, rcontrol = 0.7 and
rtreat = 0.15, given the information available from Table 4.2.

As mentioned in Section 4.5.1, due to a non-linear transformation being applied in
the process of utilising the Gaussian copula, it is the case that the correlations of
the simulated samples will be of approximately the same value to the correlations
used when defining the joint CDF as part of the Gaussian copula. As a result,
data were simulated till the first 1000 negative control and positive treatment
group simulated sets of data, for farm E32, satisfied 0 < rcontrol < 0.5 and
0 < rtreat < 0.5, respectively. For farms D20 and D05, data were simulated
till the first 1000 negative control and positive treatment group simulated sets of
data, for each farm, satisfied 0.5 < rcontrol < 1 and 0 < rtreat < 0.5, respectively.
These boundaries on the correlation values were chosen since they distinguish
between different conclusions on the variability of paired data, as mentioned in
Section 4.3.1. Also, the value of 1000 was chosen because this was the number of
simulations that could be achieved given the time constraints of the project.

In the scenario where a correlation value of NA was obtained and stored in RStu-
dio, this value is obtained due to at least one of either the negative control or
positive treatment group Day 0 or Day 14 FEC data all being of the same value
upon simulation. These were kept and considered as part of the simulation study,
particularly since the scenario of positive treatment group Day 14 data all being
of a value of zero represents the scenario of 100% (apparent) efficacy.

The field study data were also used to inform the parameter estimates of the
required distributions for which the Gaussian copula aided in simulating. In par-
ticular, the field 15EPG_McM_SCFT data were used to inform the parameters
of the Negative Binomial distribution (parameterised and denoted by NBII as
described in Chapter 3), such that 1000 Day 0 and Day 14 negative control and
positive treatment group data (satisfying the boundaries on the correlations men-
tioned above) were simulated (refer to Appendix A.1 to view the code utilised
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for farm E32 data using treatment group sample sizes of 15, as an example).
The 30EPG_McM1, 30EPG_McM2 and 15EPG_McM field study data each
informed the parameters of a zero inflated Poisson inverse-Gaussian (ZIPIG) dis-
tribution (as described in Chapter 3), from which Day 0 and Day 14 negative
control and positive treatment groups data were simulated 1000 times (again,
satisfying the boundaries on the correlation values as stated above) as well (refer
to Appendix A.2 to view the code utilised for farm E32 data using treatment
group sample sizes of 15, as an example). These distributions were selected on
the basis that they are recommended for representing data obtained from sensi-
tive (i.e. 1 epg) and what could be considered less sensitive (e.g. 30 or 15 epg)
counting techniques based on work and results described in Chapter 3.

Using the 1000 simulated Day 0 and Day 14, negative control and positive treat-
ment group data sets; 95% Bootstrapped percentile confidence intervals (ex-
plained in Section 2.5.2) for the six percentage estimates considered, were evalu-
ated based on 1000 iterations for each central tendency associated with the Day
0 and Day 14 negative control and positive treatment group data. When con-
structing percentage estimates, every possible combination of the obtained central
tendencies for a given form of percentage estimate was evaluated; resulting in a
sampling distribution of 1x106 estimates to base the percentile intervals on. In
the instance of considering the percentage estimates (2.6) and (2.7), percentile
intervals were constructed based on 1x106 re-samplings of the individual-based
egg count percentage reductions/changes from the simulated data.

As a result, 1000 Bootstrapped percentile confidence intervals were evaluated
for each of the six percentage estimates considered, for treatment groups associ-
ated with a given sample size and belonging to a particular diagnostic sensitivity
grouping. The coverage probabilities associated with these percentage estimates
was then obtained using the proportion of times that the target percentage es-
timates obtained using the field study FEC data were found to be in each of
the considered 1000 Bootstrapped percentile confidence intervals based on the
simulated data. Figure 4.1 highlights the methodology of this simulation study.
The coverage probabilities, including those which satisfy Burton’s criterion are
highlighted in Section 4.6.1.
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Only upon observing percentage estimates that consistently provided adequate
coverage across treatment group sample sizes for a particular type of diagnostic
sensitivity and classifications of pre-treatment means, were the associated stan-
dardised biases evaluated. With respect to the standardised bias, the value of
the average of the estimates obtained from the simulations was taken to be the
mean, since the standardised bias is dependent on the standard deviation of these
estimates and this statistic gives inference on the measure of spread of the data
about the mean (Upton and Cook 2011). These results are highlighted in Section
4.6.1.
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4.6.0.1 Robustness of code used to obtain Bootstrapped percentile
intervals

Due to the presence of paired data, the appropriate estimates that were produced
were not obtained as part of a boot(·) object; but with a sample(·) function be-
ing utilised across the paired sets of FECs from the simulated data, in order
to obtain Bootstrapped percentile intervals for each percentage estimate. When
constructing these percentage estimates, every possible combination of the asso-
ciated central tendencies for a given form of percentage estimate was evaluated;
resulting in a sampling distribution of 1x106 estimates to base the percentile in-
tervals on. In the instance of considering the percentage estimates (2.6) and (2.7),
boot(·) objects could be produced and percentile intervals were constructed based
on 1x106 re-samplings of the percentage estimates obtained from the simulated
data.

When considering the original field study data, in the possible, yet unlikely sce-
nario where one of the 15EPG_McM, 30EPG_McM1 or 30EPG_McM2 sets of
treatment group data did not contain at least one zero count on a particular day:
the value ν was set to 1x10−16 since the zero inflated distributions available in
the GAMLSS package in R/RStudio require this parameter to satisfy 0 < ν < 1.
As a result, µ1 ≈ µ. Similarly, in the scenario that one of the 15EPG_McM,
30EPG_McM1 or 30EPG_McM2 sets of treatment group data consisted of all
zero counts on a particular day: the value ν was set to 0.999... to 16 decimal
places, since the zero inflated distributions available in the GAMLSS package in
R/RStudio require this parameter to satisfy 0 < ν < 1.

In the possible instance where any simulated set of data consisted of FECs all of
a value of zero, then the arithmetic mean µ was used as the central tendency for
this data and to construct the relevant percentage estimates.

When dealing with percentage estimate (2.6), when a pairing of two zero values
for the Day 0 and Day 14 data occurred in the positive treatment group simulated
data, the estimate, based on this pairing, was stored as a NaN in R/RStudio and
removed before constructing the relevant Bootstrapped percentile interval, since
the estimate is undefined in this scenario. Also, in the case of the denominator
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of an individual percentage reduction/change being of a value of zero but the
numerator being a positive value (this corresponds to a zero valued Day 0 data
point with respect to the positive treatment group) this would be recognised as
-Inf in the R/RStudio environment and was stored as an NA value and removed
before constructing the relevant Bootstrapped percentile interval.

When dealing with the percentage estimate (2.7), when a pairing of two zero
values for the Day 0 and Day 14 data occurred in the positive treatment group
data; the percentage reduction estimate, based on this pairing, was stored as a
NaN value in R/RStudio and removed since the estimate is undefined in this
scenario.

4.6.1 Results

Tables 4.3-4.5 highlight the coverage probabilities associated with the Boot-
strapped confidence intervals for different percentage estimates based on farm
E32 D20 and D05 data, respectively. In particular, acceptable coverage probabil-
ities, with respect to Burton’s criterion are highlighted in the shaded grey cells
of the tables. We observe that these acceptable coverage probabilities are asso-
ciated with data simulated from the Negative Binomial distribution, for which
the 15EPG_McM_SCFT field study data were utilised. In fact, the majority
of these adequate coverage probabilities are associated with percentage estimates
based on a paired study design involving a positive treatment group only, namely

estimates 100

(
1− T14

T0

)
% and 100

(
T0 − T14

T0 + T14

)
%. Hence, Tables 4.6 and 4.7

highlight the associated standardised biases present for these percentage esti-
mates respectively, for a given classification of pre-treatment group mean and
treatment group sample sizes considered. The estimated standardised biases sat-
isfying Collins’ criterion are highlighted in the shaded grey cells of these Tables
as well.

All of the coverage probabilities that are associated with data simulated from
the ZIPIG distribution, for which field study data were obtained using a 15/30
epg sensitivity were utilised, are considerably less than the advertised coverage
probability of 95% and do not satisfy Burton’s criterion.
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Field study data Percentage Estimate (PEs)1 15 20 30 40 50 2

PE1 91.5 92.1 92.1 93.3 93.4

PE2 94.2 94.4 94.8 94.1 95.3

15EPG_McM_SCFT PE3 65.4 64.6 70.4 67.2 71.1

PE4 93.9 94.4 94.7 93.9 95.2

PE5 71.6 71 74.9 73.2 76.9

PE6 92.3 92.3 93.6 93.4 94.4

PE1 50.8 60.9 59.7 58.3 51.8

PE2 54.8 64.1 61.1 61.5 60

15EPG_McM PE3 29.8 44.9 5.4 0.1 0

PE4 54.8 64.1 61.1 61.5 60

PE5 18.8 40.7 3.7 0.1 0.1

PE6 72.8 76.2 68.4 73 72.2

PE1 69.1 66.4 69.1 63.9 64

PE2 72.2 68.5 74.5 68.1 74.9

30EPG_McM1 PE3 50.6 54.5 10.5 1.8 0.4

PE4 72.2 68.5 74.5 68.1 74.9

PE5 46.2 49.9 8.6 1.9 0.3

PE6 75.8 72.4 77.6 76.2 78.5

PE1 66.8 54.1 59.7 58.8 59.7

PE2 72.4 54.4 72.1 67.1 69.6

30EPG_McM2 PE3 40.1 81.3 8.7 1.8 0.8

PE4 72.4 54.4 72.1 67.1 69.6

PE5 35.9 80.5 9.6 1.2 0.8

PE6 78.9 54.7 69.2 75.2 76.7

Table 4.3: Coverage probabilities (%) for the associated 95% percentile intervals of
percentage estimates from a farm with pre-treatment group means greater than 150 epg
(highlighted cells have coverage probabilities that lie between 93.6% and 96.4%)

1PE1: 100

(
1−

T14

C14

)
%, PE2: 100

(
1−

T14

T0

)
%, PE3: Σj100

(
1−

T14,j

T0,j

)
%/ntreat, PE4:

100

(
T0 − T14

T0 + T14

)
%, PE5: Σj100

(
T0,j − T14,j

T0,j + T14,j

)
%/ntreat and PE6: 100

(
1−

C0T14

T0C14

)
%.

2Values represent the treatment group sample sizes ntreat and ncontrol considered.
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Field study data Percentage Estimates (PEs) 3 15 20 30 40 50 4

PE1 84.8 84.7 79.9 76.9 79.3

PE2 79.5 75 63.8 55.4 64.5

15EPG_McM_SCFT PE3 83.8 85.4 87.1 83.6 83.9

PE4 79.5 75 63.8 55.4 64.5

PE5 86 88.1 93.1 92.5 91.5

PE6 87.4 89.3 85.8 82.6 85

PE1 78.1 84.4 86.1 88.4 87.4

PE2 57.9 61.1 60.1 67.3 70.5

15EPG_McM PE3 83.1 45.2 25.1 66.5 25.2

PE4 57.9 61.2 60.1 67.3 70.5

PE5 81.3 30.3 16.4 31.8 4.9

PE6 75.6 76.6 77.7 80.8 81.8

PE1 75.6 86.8 83.8 85.7 87.2

PE2 68 62.5 61 63.2 71

30EPG_McM1 PE3 76.1 44.9 19.9 21.6 5.2

PE4 68 62.5 61 63.2 71

PE5 66.4 33.7 15.7 13 2.8

PE6 77.1 78.1 78.3 79.8 82.1

PE1 82.9 49.1 90 88.9 89.5

PE2 65.2 49.1 67.8 59.2 71.4

30EPG_McM2 PE3 81 72.9 37.7 22.2 27.9

PE4 65.1 49.1 67.8 59.2 71.4

PE5 89.6 68.4 45.5 79 39

PE6 86.2 49.3 84.9 77.7 83.5

Table 4.4: Coverage probabilities (%) for the associated 95% percentile intervals of
percentage estimates from a farm with 100 epg ≤ pre-treatment group means ≤ 150
epg (highlighted cells have coverage probabilities that lie between 93.6% and 96.4%)

3PE1: 100

(
1−

T14

C14

)
%, PE2: 100

(
1−

T14

T0

)
%, PE3: Σj100

(
1−

T14,j

T0,j

)
%/ntreat, PE4:

100

(
T0 − T14

T0 + T14

)
%, PE5: Σj100

(
T0,j − T14,j

T0,j + T14,j

)
%/ntreat and PE6: 100

(
1−

C0T14

T0C14

)
%.

4Values represent the treatment group sample sizes ntreat and ncontrol considered.
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Field study data Percentage Estimates (PEs) 5 15 20 30 40 50 6

PE1 92.5 92.6 93.8 93.8 92.7

PE2 92.3 93.1 93.6 94.3 94.7

15EPG_McM_SCFT PE3 72.6 61.3 36.8 21.3 12

PE4 92.3 93.1 93.6 94.3 94.7

PE5 73.8 62.3 45.9 31.1 21.7

PE6 89.3 89.9 90.5 92.8 91.6

PE1 80.1 86.2 85.9 79 88.4

PE2 86 83.1 85.1 86.8 86

15EPG_McM PE3 77.9 71.2 49.2 38.7 17.2

PE4 86.1 83.1 85.1 86.8 86

PE5 90.6 88.4 55.2 78 68.9

PE6 82.8 83.2 84.1 80.5 84.2

PE1 78.2 87.6 88.1 83.5 89.3

PE2 85.1 84.7 85.3 87.7 84.8

30EPG_McM1 PE3 79.9 68.2 38.3 61.3 12.2

PE4 85.1 84.7 85.3 87.7 84.8

PE5 90.3 87.1 70.2 91.6 86.8

PE6 78.3 84.7 83.9 82 84.7

PE1 82.2 85.3 87.2 80.6 88.5

PE2 83 84.5 82.7 86.3 83.7

30EPG_McM2 PE3 87 88.9 85.1 67.2 79.2

PE4 83.6 84.6 82.7 86.3 83.7

PE5 89.1 84.5 80.7 75.6 71.7

PE6 83.9 84.8 84.8 78.8 84.7

Table 4.5: Coverage probabilities (%) for the associated 95% percentile intervals of
percentage estimates from a farm with pre-treatment group means less than 100 epg
(highlighted cells have coverage probabilities that lie between 93.6% and 96.4%)

5PE1: 100

(
1−

T14

C14

)
%, PE2: 100

(
1−

T14

T0

)
%, PE3: Σj100

(
1−

T14,j

T0,j

)
%/ntreat, PE4:

100

(
T0 − T14

T0 + T14

)
%, PE5: Σj100

(
T0,j − T14,j

T0,j + T14,j

)
%/ntreat and PE6: 100

(
1−

C0T14

T0C14

)
%.

6Values represent the treatment group sample sizes ntreat and ncontrol considered.
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Pre-treatment Group Mean Range (Farm) ntreat = 15 ntreat = 20 ntreat = 30 ntreat = 40 ntreat = 50

mean>150 epg (Farm E32) -8.62 -5.84 -8.47 2.6 -5.49

100 epg≤mean≤150 epg (Farm D20) 90.97 133.57 192.95 232.81 185.62

mean<100 epg (Farm D05) -27.43 -26 -31.9 -34.63 -35.37

Table 4.6: Standardised biases (%) of the percentage estimate 100

(
1− T14

T0

)
%

for pre-treatment group mean classifications and treatment group sample sizes,
based on 15EPG_McM_SCFT field study data (highlighted cells have standard-
ised biases between ±40%)

Pre-treatment Group Mean Range (Farm) ntreat = 15 ntreat = 20 ntreat = 30 ntreat = 40 ntreat = 50

mean>150 epg (Farm E32) -7.51 -4.72 -7.27 3.88 -4.1

100 epg≤mean≤150 epg Farm (D20) 97.79 135.31 191.53 230.07 184.97

mean<100 epg (Farm D05) -19.52 -18.31 -26.42 -29.88 -30.64

Table 4.7: Standardised biases (%) of the percentage estimate 100

(
T0 − T14

T0 + T14

)
%

for pre-treatment group mean classifications and treatment group sample sizes,
based on 15EPG_McM_SCFT field study data (highlighted cells have standard-
ised biases between ±40%)

4.7 Sensitivity analysis

A sensitivity analysis can be thought of as a systematic approach of changing
the parameters involved in a model or simulation study and viewing the results
under the given changes, or more commonly known as scenarios. As a result, one
is able to view the impact that these changes in certain parameters may have on
a model or simulation study’s final conclusions.

In this case, we would be interested to see how the performance of the coverage
probabilities of the associated 95% Bootstrapped confidence intervals for each of
the percentage estimates react to changes in the correlation values that are used
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to simulate the appropriate data. In general, the simulation study carried out so
far involves observing the coverage of confidence intervals based on the first 1000
simulated Day 0 and 14 negative control and positive treatment group FEC data
satisfying 0 < rcontrol, rtreat < 1, for a given farm.

As part of this sensitivity analysis we set rcontrol and rtreat both to the value of
zero for any given farm’s data, which represents the scenario that there would
be no linear relationship between the Day 0 and Day 14 FECs of the positive
treatment and negative control groups. However, as mentioned in Section 4.5.1,
due to a non-linear transformation essentially being applied in the process of
utilising the Gaussian copula, it is the case that the correlations of the simulated
required samples will approximately be of the same value to the correlations used
when defining the joint CDF as part of the Gaussian copula. As a result, data
were simulated till the first 1000 negative control and positive treatment group
simulated sets of data satisfied −0.1 < rcontrol < 0.1 and −0.1 < rtreat < 0.1 for
any given farm.

4.7.1 Results

Tables 4.8-4.10 display similar information as in Tables 4.3-4.5, but with corre-
lations, for simulating the negative control and positive treatment groups’ FEC
data, being set to the value of zero. We observe fewer acceptable coverage proba-
bilities, with respect to Burton’s criterion, associated with data simulated from a
Negative Binomial distribution in comparison to what was obtained as part of the
original simulation study. As well as this, all of the coverage probabilities that are
associated with data simulated from the ZIPIG distribution are still considerably
less than the advertised coverage probability of 95% and do not satisfy Burton’s
criterion.
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Field study data Percentage Estimates (PEs) 7 15 20 30 40 50 8

PE1 91.7 93 93 93.3 92.6

PE2 91.1 92.4 92.1 92.8 93.9

15EPG_McM_SCFT PE3 81.6 85.2 87 90.3 92.9

PE4 90.9 92.3 92 92.6 93.8

PE5 84.2 88.1 89.2 92.3 93.6

PE6 92.2 92.7 93.5 93.7 93.8

PE1 65.5 77.4 73.1 65.2 63.9

PE2 64.2 79.2 71.4 68.4 70.3

15EPG_McM PE3 36.5 53.6 8.5 0.4 0.2

PE4 64.2 79 71.4 68.4 70.3

PE5 20.8 45.1 4.6 0.2 0.2

PE6 83.4 91.6 81.1 81.8 81.8

PE1 79.2 83.5 83.4 71 73.1

PE2 79.8 84.2 82.5 74.3 80.8

30EPG_McM1 PE3 53.3 57.6 15.9 2.7 0.2

PE4 79.8 84.2 82.5 74.3 80.8

PE5 44.8 48.8 9.8 1.2 0.2

PE6 83.6 86.8 87.6 83.8 85.6

PE1 81.6 73.1 72.7 66.6 69.9

PE2 83.2 74.8 80.9 74.3 76

30EPG_McM2 PE3 48.4 81.1 11.5 2.3 0.7

PE4 83.2 74.8 80.9 74.3 76

PE5 36 78.1 9.5 1.4 0.5

PE6 90.7 75.2 82.3 83.8 84.5

Table 4.8: Coverage probabilities (%) for 95% percentile intervals of % estimates from a
farm with pre-treatment group means greater than 150 epg as part of sensitivity analysis
(highlighted cells have coverage probabilities between 93.6% and 96.4%)

7PE1: 100

(
1−

T14

C14

)
%, PE2: 100

(
1−

T14

T0

)
%, PE3: Σj100

(
1−

T14,j

T0,j

)
%/ntreat, PE4:

100

(
T0 − T14

T0 + T14

)
%, PE5: Σj100

(
T0,j − T14,j

T0,j + T14,j

)
%/ntreat and PE6: 100

(
1−

C0T14

T0C14

)
%.

8Values represent the treatment group sample sizes ntreat and ncontrol considered.
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Field study data Percentage Estimates (PEs) 9 15 20 30 40 50 10

PE1 82.7 85.5 80.2 77.3 72.4

PE2 77.8 74.6 63.6 55.8 48.3

15EPG_McM_SCFT PE3 86.1 87.3 82.7 74.1 64.9

PE4 77.8 74.6 63.5 55.8 48.3

PE5 90 92.2 92.2 90.5 90.4

PE6 91.4 92.7 90.5 89.8 88.5

PE1 80.5 89 87.4 88.2 85.2

PE2 69.1 74.6 72.4 77 76.8

15EPG_McM PE3 82.2 53.1 38.2 78.5 34.5

PE4 69.1 74.6 72.4 76.9 76.7

PE5 83.3 32.7 18.5 33 4

PE6 90.5 92.1 90.5 90.1 89.1

PE1 81.7 88.9 82.2 84.9 84.7

PE2 80.1 77.3 73.1 74.4 76.9

30EPG_McM1 PE3 84.5 58.4 30.5 33.2 9

PE4 79.9 77.3 73.1 74.4 76.9

PE5 68.1 34.2 15.7 14.4 2.7

PE6 88.5 92.5 89.8 89.6 89.5

PE1 86.7 72.4 87.2 90 89

PE2 75.9 76.7 75.2 71.1 77.9

30EPG_McM2 PE3 77.8 79.8 47.9 40.1 43.7

PE4 76.1 76.7 75.2 71.1 77.9

PE5 90.7 67.5 45.8 82.5 39.5

PE6 90.8 75.8 92.1 87.3 90

Table 4.9: Coverage probabilities (%) for 95% percentile intervals of % estimates from
a farm with 100 epg ≤ pre-treatment group means ≤ 150 epg as part of sensitivity
analysis (highlighted cells have coverage probabilities between 93.6% and 96.4%)

9PE1: 100

(
1−

T14

C14

)
%, PE2: 100

(
1−

T14

T0

)
%, PE3: Σj100

(
1−

T14,j

T0,j

)
%/ntreat, PE4:

100

(
T0 − T14

T0 + T14

)
%, PE5: Σj100

(
T0,j − T14,j

T0,j + T14,j

)
%/ntreat and PE6: 100

(
1−

C0T14

T0C14

)
%.

10Values represent the treatment group sample sizes ntreat and ncontrol considered.
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Field study data Percentage Estimates (PEs) 11 15 20 30 40 50 12

PE1 92.6 92 93.3 94 94.1

PE2 91.7 92 92.8 94.5 94.9

15EPG_McM_SCFT PE3 65.3 51.6 27.7 12.7 5.6

PE4 91.7 92 92.8 94.5 94.9

PE5 67.5 58.7 40.6 27.6 16.7

PE6 92.8 92.2 92.7 93.4 93.9

PE1 88.9 86.9 87.9 76.2 86.7

PE2 90.6 90 90 90.7 88.7

15EPG_McM PE3 83.3 81.3 61.8 44.7 21.6

PE4 90.6 90 90 90.7 88.7

PE5 90.9 90.2 56.3 79.3 70.3

PE6 93 93.3 92.8 88.1 91.1

PE1 85.3 92.8 89.5 81.5 88.3

PE2 91.1 92.1 91 90 88.4

30EPG_McM1 PE3 86.5 82.1 50.1 72.8 19.1

PE4 91.2 92.1 91 90 88.4

PE5 92.9 90.7 72.5 92.7 87.8

PE6 89.8 93.6 93.6 89.6 91.4

PE1 87.1 87.3 88.2 76.4 88.1

PE2 86.5 88.7 85.9 90.4 86.7

30EPG_McM2 PE3 86 91 88.3 73.6 86.9

PE4 87.1 88.7 85.9 90.4 86.7

PE5 90.1 87.9 77.7 77.2 73.8

PE6 91.6 92.2 90.2 87.9 90.8

Table 4.10: Coverage probabilities (%) for 95% percentile intervals of % estimates from
a farm with pre-treatment group means less than 100 epg as part of sensitivity analysis
(highlighted cells have coverage probabilities between 93.6% and 96.4%)

11PE1: 100

(
1−

T14

C14

)
%, PE2: 100

(
1−

T14

T0

)
%, PE3: Σj100

(
1−

T14,j

T0,j

)
%/ntreat, PE4:

100

(
T0 − T14

T0 + T14

)
%, PE5: Σj100

(
T0,j − T14,j

T0,j + T14,j

)
%/ntreat and PE6: 100

(
1−

C0T14

T0C14

)
%.

12Values represent the treatment group sample sizes ntreat and ncontrol considered.
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4.8 Discussion

Results based on farm with pre-treatment group means greater than 150 epg:

For data simulated by the Negative Binomial distribution (based on 15EPG_McM
_SCFT field study data) which is often utilised and widely accepted to represent
and simulate FEC data from livestock due to FEC data being over-dispersed/
aggregated (Wilson et al. 1996; Shaw and Dobson 1995; Morgan et al. 2005;
Levecke et al. 2012), the SPC:

100

(
T0 − T14

T0 + T14

)
%,

had acceptable coverage probabilities associated with it for all treatment group
sample sizes considered. The SPC can offer many theoretical advantages accord-
ing to Berry and Ayers (2006), such as being bounded (i.e. between ±100%).

Adequate coverage was also achieved when the following percentage estimate was
considered:

100

(
1− T14

T0

)
%.

These acceptable coverage probabilities were associated with all treatment group
sample sizes as well. Published guidelines on establishing apparent anthelmintic
efficacy/resistance, such as the thresholds provided by Coles et al. (1992) and
Coles et al. (2006), have been adopted in the instance of this percentage estimate
being used. On the other hand, it could be argued that the SPC provides more
theoretical benefits. In addition, the standardised biases associated with these two
percentage estimates satisfied Collins’ criterion for all treatment group sample
sizes considered.

It can be observed however, that acceptable coverage probabilities were achieved
in the instance of the following percentage reduction being adopted for the more
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larger treatment group sample sizes of 30 and 50:

100

(
1− C0T14

T0C14

)
%.

Lyndal-Murphy et al. (2014) advocates the use of this percentage estimate, but
this recommendation is based on simulated data for animal group sample sizes of
15 only and confidence intervals derived using the Delta method were used, which
did involve correlations of FEC data; but not correlations of ln-transformed data
as required. However, our study is able to assess the coverage probabilities of con-
fidence intervals which do not depend on large sample normal approximations,
use appropriate estimators associated with the distributions utilised in simulating
FEC data, consider treatment groups of various sample sizes and various percent-
age estimates and also consider the correlations between Day 0 and Day 14 FEC
data appropriately.

One could argue however, that the practicability of this percentage estimate may
not be favourable, particularly since percentage estimates such as those involving
pre- and post-treatment counts from a positive treatment group only (i.e. those
mentioned above), simultaneously provide adequate coverage probabilities - for
all of the treatment group sample sizes considered. These percentage estimates
are calculated in the instance of a paired study design being adopted involving a
positive treatment group only, and not a parallel group study design involving a
negative control group. This type of design has proved popular in the veterinary
parasitology community and has been widely adopted due to the convenience of
not having to include a negative control group (Kochapakdee et al. 1995; Lyndal-
Murphy et al. 2010; Levecke et al. 2012; Vidyashankar et al. 2012; Lester et al.
2013; Stratford et al. 2014; Geurden et al. 2015; George et al. 2017).

The sensitivity analysis revealed fewer acceptable coverage probabilities being
obtained in comparison to those obtained as part of positive correlations being
set in the original simulation study. In fact, the majority of acceptable coverage
probabilities were associated with numerous percentage estimates where treat-
ment group sample sizes of 50 animals were considered. This indicates that the
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coverage probabilities are influenced by the correlations, and by extension, the
variability present between negative control and positive treatment group Days
0 and 14 FEC data when counting techniques of a 1 epg sensitivity are utilised
and pre-treatment group means are greater then 150 epg.

It is worth noting that no acceptable coverage probabilities were obtained for sim-
ulated data based on the 15EPG_McM, 30EPG_McM1 and 30EPG_McM2 field
study data as part of the original simulation study, or as part of the sensitivity
analysis.

Results based on farm with 100 epg ≤ pre-treatment group means ≤ 150 epg:

When considering data simulated by the Negative Binomial distribution, i.e.
those based on 15EPG_McM_SCFT field study data, acceptable coverage prob-
abilities were not obtained for any of the treatment group sample sizes considered.
No acceptable coverage probabilities were obtained for simulated data based on
the 15EPG_McM, 30EPG_McM1 and 30EPG_McM2 field study data either
and this is a consistent result for these data with results obtained from farm data
with pre-treatment group means greater than 150 epg.

No acceptable coverage probabilities were obtained as part of the sensitivity anal-
ysis, irrespective of the diagnostic sensitivity for which field study data were based
on.

One could argue at this point that a limitation of this simulation study is that one
representative farm is only being utilised for each classifications of pre-treatment
group means to draw conclusions from. However, given the consistency of the
results between the different types of farm data considered and the time con-
straints of the project that could be invested into carrying out this simulation
study, which is indeed a constraint that has to be taken into account when car-
rying out these types of studies according to Burton et al. (2006), three farms
from which to draw conclusions from was achievable. As well as this, the value
in utilising examples of field study data, no matter how few, supersedes this lim-
itation, since we are able to gain informative conclusions based on data, which is
indeed representative of what is collected in the field.
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Results based on farm with pre-treatment group means less than 100 epg:

For simulated data based on the 15EPG_McM_SCFT field study data, accept-
able coverage probabilities were obtained for the SPC and the percentage estimate
involving pre- and post treatment counts for a positive treatment group mentioned
above - but these probabilities are associated with treatment group sample sizes
of 30, 40 and 50 in this instance. The standardised biases associated with these
percentage estimates for these treatment group sample sizes also satisfy Collins’
criterion. On the other hand, one would have to consider the feasibility and
practicability of this result and ask if it is worth running a FECRT with a large
positive treatment group sample size of 30, 40 or 50 cattle (in order to ensure
adequate coverage), with pre-treatment group means are less than 100 epg?

Moreover, the following percentage estimate:

100

(
1− T14

C14

)
%

also had acceptable coverage probabilities associated with it, for treatment group
sample sizes of 30 and 40. Published guidelines, such as Coles et al. (1992) and
Coles et al. (2006), recommend the use of this percentage estimate for treat-
ment group sizes of 15 animals using arithmetic means, and these are indeed the
estimators being considered here. But again, one would have to consider the fea-
sibility and practicability of using this percentage estimate with a parallel group
design involving a negative control group and a positive treatment group with
sample sizes of 30 and 40 cattle, where pre-treatment group means are less than
100 epg? It is also worth mentioning that adequate coverage probabilities were
obtained with the percentage estimates, mentioned above, that involve a paired
study design with a positive treatment group only - for the same treatment group
sample sizes of 30 and 40. As a result, these percentage estimates may appear to
be more favourable to utilise, as opposed to the percentage estimate based on a
parallel group design being adopted, with respect to practicability and feasibility
given that pre-treatment group means are less than 100 epg.

Over and above this, no acceptable coverage probabilities were obtained for any
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of the percentage estimates based on data simulated from a zero inflated distri-
bution, and this is a consistent result with the other two types of farm data that
have been considered.

Interestingly, when we consider the sensitivity analysis: the SPC and the percent-
age estimate involving pre- and post treatment counts for a positive treatment
group only had accepted coverage probabilities associated with them for sample
sizes of 40 and 50. This could suggest that for these treatment group sample sizes
in particular, these percentage estimates could be perceived as robust in light of
the different values of correlations, and by extension variability, set as part of
the simulation study and sensitivity analysis, in the instance where we observe
pre-treatment group means less than 100 epg.

No acceptable coverage probabilities were obtained, again, for simulated data
based on the 15EPG_McM, 30EPG_McM1 and 30EPG_McM2 field study data
as part of the sensitivity analysis.

Overall conclusions:

This simulation study, along with the sensitivity analysis, revealed that the ac-
ceptable coverage probability offered by the associated 95% Bootstrapped per-
centile intervals can be influenced by treatment group sample sizes, the diagnostic
sensitivity of the counting techniques used in obtaining the original FEC data,
the correlations (and by extension the variability) between FEC data obtained
at baseline and end of study and the classifications of the pre-treatment group
means obtained.

By considering this study as a whole, very few scenarios consisted of 95% Boot-
strapped percentile intervals with adequate coverage probabilities being achieved.
Although, it could be recommended that the SPC or the percentage estimate us-
ing pre- and post-treatment group FECs from a positive treatment group only,
both using arithmetic means, be considered as percentage estimates to be used in
the conduct of a FECRT when FEC data are obtained using sensitive counting
techniques (1 epg sensitivity) with Bootstrapping methodologies being utilised.
However, depending on the classification of the pre-treatment group means will
influence the treatment group sample sizes for these percentage estimates to be
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utilised. Based on this study, when dealing with treatment groups with pre-
treatment group means greater than 150 epg, a minimum positive treatment
group sample size of 15 animals could be utilised to achieve adequate coverage,
whereas we are unable to recommend any treatment group sample sizes, based
on this study, to obtain percentage estimates with adequate coverage where pre-
treatment group means are between 100 epg and 150 epg (inclusive) and a min-
imum positive treatment group sample size of 30 animals would be required if
pre-treatment group means are less than 100 epg to obtain adequate coverage.

If either of these percentage estimates were utilised as part of the statistical
calculations for a FECRT, given the appropriate treatment group sample sizes
in the various scenarios discussed above, then a paired study design involving a
positive treatment group would only be required, as opposed to using a parallel
group design involving a negative control group.

No acceptable coverage probabilities were obtained in any of the scenarios con-
sidered based on field study data being obtained with less sensitive counting
techniques (i.e. 30 or 15 epg). Therefore, it would not be recommended to con-
duct a FECRT with counting techniques having these sensitivities in the case
where confidence intervals are obtained in the Bootstrapping framework - the
only alternative would be to obtain credible intervals in a Bayesian framework as
a means of interval estimation.

Since very few scenarios consisted of 95% Bootstrapped percentile intervals with
adequate coverage probabilities being achieved, Bayesian methods will now be
considered in Chapter 5, where we will aim to identify appropriate and robust
percentage estimates, and by extension experimental designs, to investigate ap-
parent anthelmintic efficacy/resistance.
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Chapter 5

Identifying a robust design of
experiment via a simulation study
involving Bayesian methodology

5.1 Introduction

Research has been invested into using Bayesian methods and obtaining credible
intervals when investigating apparent anthelmintic efficacy and resistance, but
mainly with respect to equine FEC data (Denwood 2010; Denwood et al. 2010);
though are being employed to analyse cattle and sheep FEC data in more recent
studies (Denwood et al. 2008; Dobson et al. 2012; Busin et al. 2013; Geurden
et al. 2015; Wang et al. 2017).

As mentioned in Section 2.4.3, a Bayesian approach to analysing data offers the
benefit of not necessarily assuming data to be normal for estimating intervals for
population parameters of interest - an assumption which has been found not to
be reasonable with regards to cattle FEC data, even upon transformation (refer
to Section 3.2 for further information).

Even though one could also consider constructing intervals for parameters of in-
terest via a Bootstrapping framework, in which we do not necessarily need data
to be of a normal nature to generate intervals; results from Chapter 4 indicated
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that some types of cattle FEC data, e.g. those obtained using less sensitive count-
ing techniques (15 or 30 epg) do not provide confidence intervals, for percentage
estimates considered in this project, with adequate coverage.

As a result, it was of interest to conduct another simulation study similar to
what was conducted and described in Chapter 4, i.e. investigate the robustness
of percentage estimates and, by extension, associated experimental designs, but
with Bayesian methodologies being utilised to construct posterior distributions
for point estimates and credible intervals for considered percentage estimates.

As mentioned in Section 2.4.3, the mean/median of the posterior distribution
is usually quoted as the point estimate for a parameter of interest, i.e. per-
centage estimate, and so how accurate this estimate is with respect to a known
"true"/target value of a percentage estimate will be examined as part of this
simulation study in order to investigate the robustness of percentage estimates
and, by extension, associated experimental designs.

It is also worth noting that, as explained in Section 2.5.4, a credible interval tells
us that given the observed data, there would be a 100(1− α)% probability that
the true value of the parameter, θ say, lies within the credible region, i.e. we can
be 100(1− α)% sure that the parameter lies in the credible region obtained. As
a result, we do not consider coverage as a performance measure as part of this
simulation study since, by definition, a credible interval is assumed to contain the
true parameter value with a 100(1− α)% probability.

This simulation study will be carried out using RStudio software (version 0.98.994
along with R software version 3.1.1.). The methodology adopted for this simula-
tion study is as follows.

5.2 Simulation study methodology

The farms, percentage estimates, treatment group sample sizes, diagnostic sensi-
tivities, probability distributions, methodologies and simulated FEC data, which
were presented in Section 4.6, were considered and utilised for this simulation
study.
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For each of the 1000 simulated Day 0 and 14 negative control and positive treat-
ment group Day 0 and 14 data, likelihoods were considered, namely the Negative
Binomial distribution (i.e. the NBII distribution, as described in Chapter 3) for
simulated data based on 15EPG_McM_SCFT data or a zero inflated Poisson
inverse-Gaussian distribution (i.e. the ZIPIG, as described in Chapter 3) for sim-
ulated data based on field study data collected with 15/30 epg sensitivities. Pos-
terior distributions were derived for the parameters µ and σ associated with the
NBII likelihood or µ1, σ and ν associated with the ZIPIG likelihood. The poste-
rior distributions for the parameters µ and µ1 were subsequently used (depending
on the type of simulated data being considered) for constructing the following per-

centage estimates: 100

(
1− T14

C14

)
%, 100

(
1− T14

T0

)
%, 100

(
T0 − T14

T0 + T14

)
% and

100

(
1− C0T14

T0C14

)
%. The prior specifications used to obtain the posterior dis-

tributions for each of the parameters described above are described in Section
5.2.1.

For each of the 1000 simulated Day 0 and 14 positive treatment group Day 0 and
14 data, individual-based egg count percentage reduction/change data of the fol-

lowing forms were also considered: 100

(
1− T14,j

T0,j

)
% and 100

(
T0,j − T14,j

T0,j + T14,j

)
%

data (where T0,j and T14,j are pre- and post-treatment FECs from host j, respec-
tively). For these data, the truncated normal distribution (further information
on this distribution can be found in Appendix B.3) was considered as a likelihood
for both forms of data and posterior distributions were derived for the associated
parameters: µ and σ. The posterior distribution for the parameter µ was then

used to construct the following percentage estimates: Σj100

(
1− T14,j

T0,j

)
%/ntreat

and Σj100

(
T0,j − T14,j

T0,j + T14,j

)
%/ntreat. It is worth noting that the prior specifications

used to obtain the posterior distributions for each of the parameters involved with
the truncated normal likelihood are independent of the priors specified above for
the parameters involved in the NBII and ZIPIG likelihoods, and further informa-
tion on these are available in Section 5.2.1.

To obtain posterior distributions, Metropolis-Hastings (MH) algorithms (further
information on MH algorithms is available in Appendix B.1) were developed us-
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ing RStudio software (version 0.98.994 along with R software version 3.1.1.) and
implemented based on a total of 10,000 iterations. An initial discard of 5,000
iterations was considered (i.e. the burnin period). Normal proposal distributions
centred around current parameter values of the chains were used, with a proposal
variance of one, i.e. N (θ, 1). Each parameter considered was updated in turn. To
ensure each of the parameters’ chains were tuned and explored their respective
posterior distributions efficiently (i.e. achieved acceptance rates between 20-40%
after the initial burnin period) the MH algorithms were programmed to be adap-
tive, such that at every 200th iteration in the burnin period: if the acceptance
rate of the chain was above 40% then the variance of the proposal distribution was
doubled and if the acceptance rate of the chain was below 20% then the variance
of the proposal distribution was halved. In developing these algorithms, conver-
gence diagnostics, such as trace plots, acceptance rates, autocorrelations and the
Gelman-Rubin statistic were applied to assess and verify that there was no indi-
cation of lack of convergence to the stationary, posterior distributions post-burnin
and how efficient the algorithm was when traversing the posterior distributions,
the results of which are available in Appendix B.2. For constructing the percent-
age estimates mentioned above, the remaining 5,000 iterations associated with
the location parameters µ or µ1 (depending on the likelihoods being considered),
were thinned-out so every 5th estimate contributed towards the sample from the
posterior distribution. The resulting sample for each central tendency/location
parameter considered, consisted of 1000 sampled estimates from the posterior dis-
tributions. The relevant percentage estimates were then constructed; resulting in
a sampling distribution of 1000 estimates for each relevant percentage estimate.

From the sampling distributions for each of the six percentage estimates con-
sidered, the medians of these distributions were obtained and the "true"/target
values obtained from field study data were used to derive the Root Mean Square
Error (RMSE) for each percentage estimate (further information on this statistic
can be found in Appendix B.3). It is also worth noting that 95% credible inter-
vals, i.e. Highest Posterior Density intervals, were obtained for each percentage
estimate. The percentage estimates associated with the lowest RMSEs evaluated
out of the six obtained values, for a given simulation, are of interest here, since
these indicate the percentage estimates that appear to be the most accurate and
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these results are presented in Section 5.3. Figure 5.1 highlights the methodology
of this simulation study.
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5.2.1 Prior and likelihood specifications

For positive treatment and negative control Day 0 and Day 14 data based on being
obtained by a sensitive counting technique (i.e. 1 epg), and based on the results
presented in Chapter 3, the likelihood was defined to be the product of proba-
bilities from a Negative Binomial Type II distribution, denoted as NBII(µ, σ).
Therefore, with respect to Equation 2.18:

f(x|µ, σ) =
n∏
i=1

NBII(xi, µ, σ).

When considering the approaches of averaging over individual-based egg count
percentage reductions/changes of a positive treatment group, given by percent-
age estimates (2.6) and (2.7), the likelihood was defined to be the product of
probabilities from a truncated normal distribution. In this case, the distribu-
tion is truncated at the value of 100 since, under the assumption of treatment
working effectively we would expect individual-based egg count percentage re-
ductions/changes to have a left-tailed skewed distribution to feature with the
majority of values located at the value of 100. This distribution will be denoted
as Ntrunc(µ, σ) and further information on this distribution can be found in Ap-
pendix B.3. As a result, with respect to Equation 2.18:

f(x|µ, σ) =
n∏
i=1

Ntrunc(xi, µ, σ).

For µ and σ, prior distributions, namely continuous uniform distributions, were
adopted to obtain posterior distributions and were defined over different domains
in light of the different types of data considered as part of this study:
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Prior Distributions for parameters for data based on 1 epg sensitivities:

Day 0 Negative Control Group Data :

µ ∼ Unif(1x10−16, 1000) and σ ∼ Unif(1x10−16, 500).

Day 14 Negative Control Group Data :

µ ∼ Unif(1x10−16, 1000) and σ ∼ Unif(1x10−16, 500).

Day 0 Positive Treatment Group Data :

µ ∼ Unif(1x10−16, 1000) and σ ∼ Unif(1x10−16, 500).

Day 14 Positive Treatment Group Data :

µ ∼ Unif(1x10−16, 300) and σ ∼ Unif(1x10−16, 500).

100

(
1− T14,j

T0,j

)
% Data :

µ ∼ Unif(−100, 100) and σ ∼ Unif(1x10−16, 500).

100

(
T0,j − T14,j

T0,j + T14,j

)
% Data :

µ ∼ Unif(−100, 100) and σ ∼ Unif(1x10−16, 500).

When considering the continuous uniform distribution as a prior for each of the
parameters, this distribution could be considered as unusual, on the grounds that
there are more commonly used distributions utilised for certain parameters. For
example, the inverse-Gamma distribution can often be adopted when considering
the dispersion parameter σ. However, from discussions with veterinarian and
parasitological collaborators on the project, the domains stated within each of
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the continuous uniform priors, for each given parameter, were agreed upon as
they are of a conservative nature and the parameters would not exceed the values
stated in the domains of the continuous uniform priors.

The domains chosen to define the continuous uniform distributions for the pa-
rameter µ, for Day 0 and 14 negative control and Day 0 positive treatment group
data are the same. This is because FECs at baseline would be assumed to come
from the same population (as they are collected prior to any treatments given to
the positive treatment groups on Day 0). As well as this, due to the purpose of a
control group we would not expect FECs to change drastically on Day 14 in the
absence of an intervention, however the value of 1000 for these central tendencies
is of a high, conservative nature. Under the assumption that positive treatments
have worked effectively, the continuous uniform distribution for the parameter µ
based on the Day 14 positive treatment group data being considered is defined
over a smaller, but could still be considered as a conservative range between 0 to
300 for these data. However, the lower limits of the domains for the continuous
uniform distributions defining the central tendencies are of a value 1x10−16, since
we require µ > 0 with respect to the Negative Binomial distribution.

Based on utilising individual-based egg count percentage reductions/changes of

the form 100

(
1− T14,j

T0,j

)
%, the continuous uniform distribution is defined over

the range of -100 to 100 for the parameter µ. We know that at most, any individ-
ual animal can obtain a 100% reduction in their FECs between Day 0 and Day 14.
However, there is the possibility that some animals may not present a reduction
in their FECs between this time; in fact their shedding of egg counts increases
between Day 0 and Day 14 and so in this scenario, the individual’s percentage
"reduction" would present itself as a negative value, and this scenario must be
accounted for when defining prior distributions for these data. We also know that
if the individual-based egg count percentage reductions/changes are of the form
represented by the SPC; the average of these individual changes must be bounded
by -100 to 100 since the SPC itself as a percentage estimate is bounded between
-100 and 100 Berry and Ayers (2006). Therefore, the continuous uniform distri-
bution Unif(−100, 100) was defined as a prior distribution for the parameter µ
for both types of data considered.
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It is also worth mentioning that the Unif(1x10−16, 500) distribution has been
defined for all σ parameters considered. Again, the value of 500 is of a high,
conservative nature and we require σ > 0 for all likelihoods considered thus
far. In terms of variability, the domain being considered is approximately σ2 ∼
Unif(0, 250000) in these cases which is reasonable, since we know that FECs are
over-dispersed/aggregated (Wilson et al. 1996; Shaw and Dobson 1995; Morgan
et al. 2005; Levecke et al. 2012). It is worth noting however, that these domains
can be modified as part of a prior-sensitivity analysis, and this will be presented
later.

For positive treatment and negative control Day 0 and Day 14 data based on being
obtained by a less sensitive counting technique (i.e. 15 or 30 epg), and based on
the results presented in Chapter 3, the likelihood was defined to be the product of
probabilities from a zero inflated Poisson inverse-Gaussian distribution, denoted
as ZIPIG(µ1, σ, ν). Therefore, we obtain the following likelihood:

f(x|µ1, σ, ν) =
n∏
i=1

ZIPIG(xi, µ1, σ, ν).

For µ1, σ and ν prior distributions, were adopted again to obtain posterior dis-
tributions and were defined over different domains in light of the different types
of data considered:
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Prior Distributions for parameters for data based on 15/30 epg sensitivities:

Day 0 Negative Control Group Data : µ1 ∼ Unif(1x10−16, 1500),

σ ∼ Unif(1x10−16, 500) and ν ∼ Unif(1x10−16, 0.99...(16.d.p.)).

Day 14 Negative Control Group Data : µ1 ∼ Unif(1x10−16, 1500),

σ ∼ Unif(1x10−16, 500) and ν ∼ Unif(1x10−16, 0.99...(16.d.p.)).

Day 0 Positive Treatment Group Data : µ1 ∼ Unif(1x10−16, 1500),

σ ∼ Unif(1x10−16, 500) and ν ∼ Unif(1x10−16, 0.99...(16.d.p.)).

Day 14 Positive Treatment Group Data : µ1 ∼ Unif(1x10−16, 500),

σ ∼ Unif(1x10−16, 500) and ν ∼ Unif(1x10−16, 0.99...(16.d.p.)).

100

(
1− T14,j

T0,j

)
% Data : Defined as before.

100

(
T0,j − T14,j

T0,j + T14,j

)
% Data : Defined as before.

It is worth noting that the domains considered for the continuous uniform dis-
tributions for the parameter µ1 have increased, in light of Day 0 and 14 positive
treatment and negative control data being considered. This is due to the work
presented in Chapter 3, since we know the location parameter/central tendency
of a zero inflated distribution is greater than the value of the parameter µ.

It is also worth noting that the parameter ν is defined using the Unif(1x10−16,

0.99...(16.d.p.)) distribution, which is defined over the domain from 1x10−16 to
0.9999999999999999, since we require for the ZIPIG distribution parameter ν to
be defined as 0 < ν < 1.
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5.3 Results

Tables 5.1-5.3 highlight the RMSE values associated with the different percentage
estimates considered as part of this study, based on farms E32, D20 and D05 data,
respectively. In particular, RMSE values closest to the value of zero, for a given
scenario, are highlighted in the shaded grey cells in these Tables.

For data simulated from the 15EPG_McM_SCFT field study data based on
farms with pre-treatment group means either between 100-150 epg (inclusive) or
greater than 150 epg, we observe that the majority of RMSE values closest to

the value of zero are associated with the percentage estimate 100

(
1− T14

T0

)
%.

However, this is not the case when these field study data are obtained from a
farm with pre-treatment group means less than 100 epg - in this case we see
that the majority of RMSE values closest to the value of zero are associated with
percentage estimates involving a negative control group (Table 5.3), but when we
consider treatment group sample sizes of 15 animals; the lowest RMSE value is

associated with Σj100

(
T0,j − T14,j

T0,j + T14,j

)
%/ntreat.

For data simulated with 15 and 30 epg data based on farms with pre-treatment
group means either between 100-150 epg (inclusive) or greater than 150 epg, we
observe that the majority of RMSE values closest to zero are associated with

the percentage estimate Σj100

(
T0,j − T14,j

T0,j + T14,j

)
%/ntreat. Although, for these same

field study data based on a farm with pre-treatment group means less than 100
epg, we observe that the majority of RMSE values closest to zero are associated

with the percentage estimate: 100

(
T0 − T14

T0 + T14

)
%.
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Field study data Percentage Estimates (PEs) 1 15 20 30 40 50 2

PE1 3.95 2.44 1.51 1.08 0.90

PE2 2.21 1.35 0.71 0.53 0.44

15EPG_McM_SCFT PE3 2.55 2.66 2.80 2.90 2.95

PE4 4.13 2.56 1.45 1.02 0.84

PE5 4.32 4.57 4.84 5.01 5.10

PE6 3.23 1.96 1.16 0.83 0.69

PE1 46.86 49.05 51.29 53.87 56.01

PE2 30.57 32.55 34.86 39.18 40.86

15EPG_McM PE3 46.02 49.55 51.54 54.09 56.89

PE4 41.20 42.94 44.99 47.83 49.77

PE5 6.83 4.53 3.91 2.87 2.20

PE6 42.80 45.04 48.64 51.25 53.69

PE1 41.44 46.56 49.59 51.73 52.97

PE2 28.48 30.32 32.86 35.63 38.33

30EPG_McM1 PE3 40.37 42.89 45.46 47.21 49.93

PE4 36.76 38.71 40.09 42.66 45.70

PE5 5.77 3.63 3.15 2.57 2.19

PE6 43.13 45.15 48.17 50.79 51.96

PE1 46.77 49.76 51.86 53.94 56.02

PE2 29.10 30.76 32.83 35.65 37.94

30EPG_McM2 PE3 45.86 44.98 42.82 40.17 39.01

PE4 37.83 39.38 42.16 44.85 46.03

PE5 6.41 3.86 3.28 2.89 2.24

PE6 45.15 44.81 43.56 41.75 39.95

Table 5.1: RMSE values of percentage estimates based on a farm with pre-treatment
group means greater than 150 epg (highlighted cells have the lowest RMSE values in a
given scenario)

1PE1: 100

(
1−

T14

C14

)
%, PE2: 100

(
1−

T14

T0

)
%, PE3: Σj100

(
1−

T14,j

T0,j

)
%/ntreat, PE4:

100

(
T0 − T14

T0 + T14

)
%, PE5: Σj100

(
T0,j − T14,j

T0,j + T14,j

)
%/ntreat and PE6: 100

(
1−

C0T14

T0C14

)
%.

2Values represent the treatment group sample sizes ntreat and ncontrol considered.
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Field study data Percentage Estimates (PEs) 3 15 20 30 40 50 4

PE1 6.54 4.05 3.45 3.22 3.41

PE2 4.50 2.65 2.74 2.84 2.73

15EPG_McM_SCFT PE3 9.44 8.68 9.03 9.59 8.96

PE4 7.23 4.74 4.98 5.15 4.96

PE5 19.59 20.95 22.85 23.79 22.83

PE6 8.72 4.32 3.10 2.86 3.15

PE1 29.83 33.91 36.54 38.78 40.21

PE2 47.76 52.99 54.99 56.31 58.77

15EPG_McM PE3 54.61 55.75 56.98 58.22 60.33

PE4 40.00 44.22 48.54 49.76 51.11

PE5 16.73 16.44 15.02 13.38 12.66

PE6 56.70 61.01 62.73 65.35 67.74

PE1 30.90 35.49 37.84 39.29 41.26

PE2 48.05 55.32 56.61 58.55 59.92

30EPG_McM1 PE3 59.51 59.16 57.21 55.89 54.37

PE4 42.88 45.08 46.29 48.08 50.22

PE5 15.73 10.77 8.73 7.02 6.53

PE6 55.93 63.62 62.92 64.94 66.36

PE1 26.00 32.84 34.95 36.89 39.57

PE2 47.76 51.62 52.82 55.31 57.49

30EPG_McM2 PE3 66.17 60.98 58.49 56.26 54.14

PE4 39.28 42.45 44.24 46.86 49.99

PE5 51.06 11.56 10.03 8.81 6.98

PE6 59.26 65.32 66.29 68.77 70.21

Table 5.2: RMSE values of percentage estimates based on a farm with 100 epg ≤ pre-
treatment group means ≤ 150 epg (highlighted cells have the lowest RMSE values in a
given scenario)

3PE1: 100

(
1−

T14

C14

)
%, PE2: 100

(
1−

T14

T0

)
%, PE3: Σj100

(
1−

T14,j

T0,j

)
%/ntreat, PE4:

100

(
T0 − T14

T0 + T14

)
%, PE5: Σj100

(
T0,j − T14,j

T0,j + T14,j

)
%/ntreat and PE6: 100

(
1−

C0T14

T0C14

)
%.

4Values represent the treatment group sample sizes ntreat and ncontrol considered.

163



Field study data Percentage Estimates (PEs) 5 15 20 30 40 50 6

PE1 23.96 17.46 13.31 11.53 9.58

PE2 21.56 17.66 14.55 11.57 10.05

15EPG_McM_SCFT PE3 35.32 31.94 32.24 29.62 27.46

PE4 20.28 17.55 14.72 12.26 10.99

PE5 18.96 21.06 24.03 25.99 27.62

PE6 22.72 16.75 12.03 9.41 8.23

PE1 36.27 41.95 43.68 45.49 47.86

PE2 23.65 26.74 29.31 31.29 34.55

15EPG_McM PE3 62.30 67.50 69.96 70.59 72.03

PE4 20.08 20.24 19.84 17.56 15.84

PE5 30.51 32.82 34.54 36.72 39.88

PE6 53.49 60.42 62.42 65.55 67.64

PE1 31.52 38.15 40.01 42.35 45.25

PE2 31.60 33.29 35.65 37.62 39.89

30EPG_McM1 PE3 69.51 71.26 72.45 74.65 76.66

PE4 27.01 26.37 24.32 22.61 20.08

PE5 34.78 37.65 39.48 40.26 42.74

PE6 54.04 68.94 70.62 72.82 74.98

PE1 29.15 38.64 40.94 42.63 45.45

PE2 26.95 32.03 35.67 38.97 40.44

30EPG_McM2 PE3 54.87 58.41 60.91 62.37 64.42

PE4 21.61 22.42 19.86 18.78 17.54

PE5 24.99 24.70 26.86 29.29 31.51

PE6 54.43 69.19 71.54 73.63 75.42

Table 5.3: RMSE values of percentage estimates based on a farm with pre-treatment
group means less than 100 epg (highlighted cells have the lowest RMSE values in a
given scenario)

5PE1: 100

(
1−

T14

C14

)
%, PE2: 100

(
1−

T14

T0

)
%, PE3: Σj100

(
1−

T14,j

T0,j

)
%/ntreat, PE4:

100

(
T0 − T14

T0 + T14

)
%, PE5: Σj100

(
T0,j − T14,j

T0,j + T14,j

)
%/ntreat and PE6: 100

(
1−

C0T14

T0C14

)
%.

6Values represent the treatment group sample sizes ntreat and ncontrol considered.
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5.4 Prior sensitivity analysis

As mentioned in Chapter 2, the dependence of the posterior distribution on the
prior distribution should always be assessed through a prior sensitivity analysis
to confirm whether or not the posterior distribution is data-driven (i.e. a pos-
terior distribution that is insensitive to the choice of prior) or prior-driven (i.e.
a posterior distribution that is sensitive to the choice of prior), and this is typi-
cally carried out by considering a range of prior specifications and comparing the
posterior distributions obtained.

In our case, the priors on the parameter σ in Section 5.2.1 will be modified such
that each σ parameter will follow a continuous uniform distribution Unif(1x10−16,

1000). As a result, the prior for this parameter in each instance has an extended
domain and with respect to variability, the domain being considered is approxi-
mately σ2 ∼ Unif(0, 1x106). Therefore, we are being even more conservative in
our beliefs about the values that the parameter σ can take than before.

In light of any results and the priors considered as part of this study, it was also
of interest to observe the average standard deviation estimates of Day 0 and Day
14 FEC data from negative control and positive treatment groups. It was also of
interest to observe average standard deviations associated with different forms of
individual-based egg count percentage reductions/changes being considered from

positive treatment groups, i.e. 100

(
1− T14,j

T0,j

)
% and 100

(
T0,j − T14,j

T0,j + T14,j

)
%. The

value of the average was taken to be either the mean or median valued standard
deviation, depending on whether or not the distribution of given standard devi-
ations was of a normal nature or not (assessed using a Shapiro-Wilk normality
test as described in Section 3.2.3).

5.4.1 Results

Tables 5.4-5.6 display similar information as in Tables 5.1-5.3, but as part of our
priors, each σ parameter follows a continuous uniform distribution Unif(1x10−16,

1000). Again, RMSE values closest to the value of zero, for given types of field
study data and treatment group sample sizes are highlighted in the shaded grey
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cells in the Tables, as before.

For data simulated from the 15EPG_McM_SCFT field study data, similar re-
sults and conclusions are observed as before.

For data simulated based on 15 or 30 epg field study data based on a farm with
pre-treatment group means greater than 150 epg, we observe no change with
respect to the percentage estimates for which the lowest valued RMSE values are
associated with. However, this is not the case when these field study data are
obtained from a farm with pre-treatment group means either between 100-150
epg (inclusive) or less than 100 epg (Tables 5.5 and 5.6) - in this case we see
that all of the RMSE values closest to the value of zero are associated with the
percentage estimate 100

(
1− T14

C14

)
%.

By observing the average standard deviation estimates for different types of FEC
data (Table 5.7) and those associated with different forms of individual-based egg
count percentage reductions/changes being considered (Table 5.8) we observe that
all of the average standard deviation estimates, irrespective of the type of data
being considered, lie within the range between 0 and 500.

166



Field study data Percentage Estimates (PEs) 7 15 20 30 40 50 8

PE1 4.05 2.05 1.11 0.81 0.67

PE2 2.42 1.38 0.66 0.48 0.40

15EPG_McM_SCFT PE3 2.56 2.66 2.80 2.90 2.95

PE4 4.94 2.61 1.26 0.92 0.77

PE5 4.32 4.57 4.84 5.01 5.10

PE6 3.52 1.80 0.94 0.68 0.57

PE1 31.07 30.95 28.76 22.07 19.97

PE2 82.89 24.73 20.23 18.01 16.07

15EPG_McM PE3 36.74 37.95 39.42 42.33 45.44

PE4 35.83 35.69 30.66 27.85 22.75

PE5 6.87 4.50 2.98 1.75 1.10

PE6 74.54 29.26 27.54 23.82 20.04

PE1 25.04 26.38 28.72 31.24 33.63

PE2 20.02 20.91 23.02 26.66 29.12

30EPG_McM1 PE3 32.77 33.79 34.73 36.98 39.56

PE4 28.38 29.41 32.07 35.05 38.68

PE5 5.78 3.56 2.31 1.08 0.87

PE6 24.18 25.35 27.72 29.69 32.27

PE1 29.73 30.63 33.34 35.26 37.67

PE2 21.74 43.82 45.96 48.24 50.62

30EPG_McM2 PE3 35.42 34.98 33.62 34.51 33.01

PE4 30.91 31.65 30.98 32.73 34.24

PE5 6.48 3.82 2.76 1.32 1.05

PE6 27.68 40.43 42.67 45.15 47.72

Table 5.4: RMSE values of percentage estimates based on a farm with pre-treatment
group means greater than 150 epg as part of prior sensitivity analysis (highlighted cells
have the lowest RMSE values in a given scenario)

7PE1: 100

(
1−

T14

C14

)
%, PE2: 100

(
1−

T14

T0

)
%, PE3: Σj100

(
1−

T14,j

T0,j

)
%/ntreat, PE4:

100

(
T0 − T14

T0 + T14

)
%, PE5: Σj100

(
T0,j − T14,j

T0,j + T14,j

)
%/ntreat and PE6: 100

(
1−

C0T14

T0C14

)
%.

8Values represent the treatment group sample sizes ntreat and ncontrol considered.
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Field study data Percentage Estimates (PEs) 9 15 20 30 40 50 10

PE1 9.71 4.53 3.48 3.22 3.43

PE2 6.17 3.01 3.01 2.99 2.98

15EPG_McM_SCFT PE3 9.49 8.76 9.07 9.59 9.00

PE4 9.48 5.41 5.47 5.43 5.43

PE5 19.61 20.93 22.83 23.78 22.84

PE6 11.79 4.80 3.36 3.03 3.38

PE1 12.63 13.59 12.43 10.02 8.75

PE2 24.78 26.55 28.74 30.65 31.27

15EPG_McM PE3 41.71 41.08 39.28 37.86 34.54

PE4 25.68 27.67 29.63 31.72 33.68

PE5 16.83 16.48 14.07 13.24 11.57

PE6 22.91 24.78 26.87 27.29 29.95

PE1 15.13 9.75 8.62 6.57 5.88

PE2 25.79 27.73 30.37 31.28 34.24

30EPG_McM1 PE3 47.06 45.89 42.01 39.43 38.08

PE4 28.30 29.27 31.67 35.65 37.00

PE5 15.72 10.89 9.76 7.21 6.83

PE6 22.94 25.46 27.24 29.35 32.02

PE1 19.33 17.24 15.64 13.47 11.32

PE2 26.79 28.92 30.71 32.62 34.58

30EPG_McM2 PE3 53.23 50.21 48.31 45.26 43.34

PE4 27.25 29.89 31.21 33.58 35.61

PE5 31.08 22.28 20.09 18.57 16.28

PE6 24.98 26.76 28.45 30.66 32.33

Table 5.5: RMSE values of percentage estimates based on a farm with 100 epg ≤ pre-
treatment group means ≤ 150 epg as part of prior sensitivity analysis (highlighted cells
have the lowest RMSE values in a given scenario)

9PE1: 100

(
1−

T14

C14

)
%, PE2: 100

(
1−

T14

T0

)
%, PE3: Σj100

(
1−

T14,j

T0,j

)
%/ntreat, PE4:

100

(
T0 − T14

T0 + T14

)
%, PE5: Σj100

(
T0,j − T14,j

T0,j + T14,j

)
%/ntreat and PE6: 100

(
1−

C0T14

T0C14

)
%.

10Values represent the treatment group sample sizes ntreat and ncontrol considered.
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Field study data Percentage Estimates (PEs) 11 15 20 30 40 50 12

PE1 23.70 17.12 12.85 11.48 9.55

PE2 25.35 19.30 14.99 11.53 10.00

15EPG_McM_SCFT PE3 24.08 20.61 18.49 18.18 19.30

PE4 22.90 18.79 15.06 12.26 10.94

PE5 18.99 21.00 24.07 26.03 27.62

PE6 22.72 15.84 11.07 8.82 7.85

PE1 16.76 19.07 15.21 13.21 11.04

PE2 20.47 19.76 18.04 15.64 14.02

15EPG_McM PE3 48.30 50.05 49.37 50.22 48.76

PE4 20.21 19.26 17.24 15.28 13.62

PE5 30.51 32.78 34.28 36.75 38.98

PE6 21.71 23.10 25.75 26.86 29.99

PE1 18.76 20.51 17.92 15.48 13.75

PE2 33.04 32.41 30.65 28.79 25.45

30EPG_McM1 PE3 55.39 54.56 53.62 50.06 49.59

PE4 29.74 29.05 28.61 27.28 25.44

PE5 34.74 37.68 39.29 40.06 41.46

PE6 23.95 27.43 29.76 31.28 33.63

PE1 14.22 17.89 16.54 13.22 12.67

PE2 23.62 23.48 21.47 20.08 19.42

30EPG_McM2 PE3 44.55 45.24 46.26 47.88 48.92

PE4 23.10 22.46 21.01 19.86 18.77

PE5 24.99 24.65 23.05 22.01 21.17

PE6 25.00 29.84 32.64 33.78 34.47

Table 5.6: RMSE values of percentage estimates based on a farm with pre-treatment
group means less than 100 epg as part of prior sensitivity analysis (highlighted cells
have the lowest RMSE values in a given scenario)

11PE1: 100

(
1−

T14

C14

)
%, PE2: 100

(
1−

T14

T0

)
%, PE3: Σj100

(
1−

T14,j

T0,j

)
%/ntreat, PE4:

100

(
T0 − T14

T0 + T14

)
%, PE5: Σj100

(
T0,j − T14,j

T0,j + T14,j

)
%/ntreat and PE6: 100

(
1−

C0T14

T0C14

)
%.

12Values represent the treatment group sample sizes ntreat and ncontrol considered.

169



T
yp

e
of

D
at
a

D
ay

Tr
ea
tm

en
t
G
ro
up

Av
er
ag
e

st
an

-
da

rd
de
vi
a-

ti
on

s
fr
om

gr
ou

ps
w
it
h

pr
e-
tr
ea
tm

en
t

m
ea
ns

>
15
0
ep

g

Av
er
ag
e

st
an

-
da

rd
de
vi
at
io
ns

fr
om

gr
ou

ps
w
it
h

10
0

ep
g
≤

pr
e-
tr
ea
tm

en
t

m
ea
ns

≤
15
0

ep
g

Av
er
ag
e

st
an

-
da

rd
de
vi
a-

ti
on

s
fr
om

gr
ou

ps
w
it
h

pr
e-
tr
ea
tm

en
t

gr
ou

p
m
ea
ns

<
10
0
ep
g

0
C
on

tr
ol

27
2.
29

12
7.
76

84
.7
4

30
E
P
G
_
M
cM

1
14

C
on

tr
ol

25
7.
07

10
4.
38

12
6.
31

0
P
os
it
iv
e
Tr

ea
tm

en
t

23
5.
86

18
1.
99

65
.3
7

14
P
os
it
iv
e
Tr

ea
tm

en
t

35
.3

43
.3
9

15
.4
3

0
C
on

tr
ol

27
4.
91

16
9.
05

10
0.
42

30
E
P
G
_
M
cM

2
14

C
on

tr
ol

26
1.
77

11
2.
54

14
5.
67

0
P
os
it
iv
e
Tr

ea
tm

en
t

26
4.
69

16
0.
08

65
.5
6

14
P
os
it
iv
e
Tr

ea
tm

en
t

44
.5
6

27
.4
4

11
.2
1

0
C
on

tr
ol

25
8.
65

13
3.
25

93
.2

15
E
P
G
_
M
cM

14
C
on

tr
ol

23
5.
89

13
5.
74

13
4.
8

0
P
os
it
iv
e
Tr

ea
tm

en
t

24
2.
82

15
6.
71

60
.4
4

14
P
os
it
iv
e
Tr

ea
tm

en
t

35
.5
5

37
.0
1

12
.1
8

0
C
on

tr
ol

25
9.
66

14
4.
81

70
.7
1

15
E
P
G
_
M
cM

_
SC

F
T

14
C
on

tr
ol

22
7.
68

12
3.
36

15
0.
49

0
P
os
it
iv
e
Tr

ea
tm

en
t

23
9.
8

15
8.
6

61
.8
4

14
P
os
it
iv
e
Tr

ea
tm

en
t

32
.8
7

36
.7
7

2.
77

Ta
bl
e
5.
7:

Av
er
ag

e
st
an

da
rd

de
vi
at
io
n
es
ti
m
at
es

of
F
E
C

da
ta

fr
om

tr
ea
tm

en
t
gr
ou

ps

170



Pre-treatment Group Mean Range Type of Data Form of individual % reductions (%) Average standard deviation estimates

30EPG_McM1 100

(
1− T14,j

T0,j

)
24.14

30EPG_McM1 100

(
T0,j − T14,j

T0,j + T14,j

)
34.1

30EPG_McM2 100

(
1− T14,j

T0,j

)
26.1

mean>150 epg 30EPG_McM2 100

(
T0,j − T14,j

T0,j + T14,j

)
31.28

15EPG_McM 100

(
1− T14,j

T0,j

)
17.39

15EPG_McM 100

(
T0,j − T14,j

T0,j + T14,j

)
30.45

15EPG_McM_SCFT 100

(
1− T14,j

T0,j

)
16.04

15EPG_McM_SCFT 100

(
T0,j − T14,j

T0,j + T14,j

)
27.39

30EPG_McM1 100

(
1− T14,j

T0,j

)
66.53

30EPG_McM1 100

(
T0,j − T14,j

T0,j + T14,j

)
52.13

30EPG_McM2 100

(
1− T14,j

T0,j

)
42.3

100 epg≤mean≤150 epg 30EPG_McM2 100

(
T0,j − T14,j

T0,j + T14,j

)
43.91

15EPG_McM 100

(
1− T14,j

T0,j

)
55.57

15EPG_McM 100

(
T0,j − T14,j

T0,j + T14,j

)
46.36

15EPG_McM_SCFT 100

(
1− T14,j

T0,j

)
36.64

15EPG_McM_SCFT 100

(
T0,j − T14,j

T0,j + T14,j

)
36.35

30EPG_McM1 100

(
1− T14,j

T0,j

)
33.65

30EPG_McM1 100

(
T0,j − T14,j

T0,j + T14,j

)
43.21

30EPG_McM2 100

(
1− T14,j

T0,j

)
24.65

mean<100 epg 30EPG_McM2 100

(
T0,j − T14,j

T0,j + T14,j

)
49.83

15EPG_McM 100

(
1− T14,j

T0,j

)
30.92

15EPG_McM 100

(
T0,j − T14,j

T0,j + T14,j

)
41.25

15EPG_McM_SCFT 100

(
1− T14,j

T0,j

)
22.73

15EPG_McM_SCFT 100

(
T0,j − T14,j

T0,j + T14,j

)
38.88

Table 5.8: Average standard deviation estimates associated with individual-based
egg count percentage reductions/changes
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5.5 Are there any indistinguishable RMSE val-

ues?

With the results presented in Section 5.3, one may notice that some of the lowest
obtained RMSE values may be of similar value to other RMSE values in a given
scenario, presented in Tables 5.1-5.3. As a result, the question of "Are there any
lowest RMSE values that are indistinguishable to other RMSE values for a given
scenario?" is one of interest and, by extension, one would be able to conclude on
whether or not the accuracies of different percentage estimates be significant (or
not significant) from one another.

To investigate this, we explore the theory of assessing whether or not two variances
are significantly different from one another and examine how this theory can be
adapted when considering RMSE values.

5.5.1 The confidence interval for the ratio of two popula-

tion RMSE values

It can be shown that, assuming data are independent and the two populations
under consideration are normally distributed, then the 100(1 − α)% confidence
interval for the ratio of two population variances is given by

s2
1

s2
2

F(1−α) ≤
σ2

1

σ2
2

≤ s2
1

s2
2

F(α), (5.1)

where σ2
1 and σ2

2 are the population variances for populations 1 and 2 respectively,
s2

1 and s2
2 are the sample variances from the samples of populations 1 and 2

respectively, F(1−α) is the F -statistic on n1− 1 and n2− 1 degrees of freedom and
F(α) is the F -statistic on n2 − 1 and n1 − 1 degrees of freedom, where n1 and n2

are the sample sizes of the samples from populations 1 and 2, respectively. It is
also worth noting that this is based on a one-tailed test being considered for our
purposes since we will be examining if any RMSE values are significantly greater
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than the lowest RMSE values that were obtained for given scenarios, but this can
easily be edited to consider a two-tailed test, by replacing α with α

2
.

Upon taking the square root of confidence interval (5.1), one can obtain a confi-
dence interval for the ratio of two population standard deviations given by (5.2):

s1

s2

√
F(1−α) ≤

σ1

σ2

≤ s1

s2

√
F(α). (5.2)

Now we know that, with respect to estimators, Equation (B.1) tells us that the
MSE = V ar[θ̂] + (Bias)2 (essentially saying that the MSE is a variance and the
RMSE is a standard deviation). So we can re-arrange Equation (B.1) and obtain

V ar[θ̂] = MSE − (Bias)2 (5.3)

and by substituting Equation (5.3) into the confidence interval (5.1) and assuming
unbiasedness of the two estimators under consideration, we obtain:

ˆMSE1

ˆMSE2

F(1−α) ≤
MSE1

MSE2

≤
ˆMSE1

ˆMSE2

F(α), (5.4)

where, for estimators θ̂1 and θ̂2, MSE1 and MSE2 are the population mean
squared errors for these estimators respectively and ˆMSE1 and ˆMSE2 are the
estimated mean squared errors based on samples for the estimators θ̂1 and θ̂2,
respectively. Upon taking the square root of the confidence interval (5.4) we then
obtain (5.5):

ˆRMSE1

ˆRMSE2

√
F(1−α) ≤

RMSE1

RMSE2

≤
ˆRMSE1

ˆRMSE2

√
F(α). (5.5)

The interpretation accompanying these intervals is simple: if the confidence in-
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terval spans the value of one then one population variance, MSE or RMSE is
not significantly greater from the other, i.e. indistinguishable from one another.
Otherwise, one is significantly greater than the another with significance level α.

The ratio of values and confidence interval are able to tell us how many times one
population measure is greater than the other. As an example, if RMSE1

RMSE2
was esti-

mated to be 1.80 with a 95% confidence interval of (1.67,1.98) then we conclude
that the RMSE1 (associated with estimator θ̂1) would be significantly greater
than the RMSE2 value (associated with estimator θ̂2), and it is estimated as be-
ing 1.80 times greater than RMSE2. It is also highly likely that the population
RMSE1 value associated with θ̂1 can be at least 1.67 times greater, but at most
be 1.98 times greater than the population RMSE2 value associated with θ̂2, upon
repeated sampling of the population.

5.5.2 A Bootstrapped version of the confidence interval for

the ratio of two population RMSE values

Two limitations presented with the confidence intervals discussed thus far, is that
we assume that the two populations are normally distributed and the estimators
considered are unbiased, which may not always be satisfied.

As a result, a Bootstrapping approach for obtaining a confidence interval for the
ratio of two RMSE values could be considered. In essence if we were to consider
our simulation study methodology, we are able to obtain 1000 squared errors, i.e.
one thousand (θ̂−θ)2, for each given percentage estimate. We propose that if one
were to randomly sample the 1000 squared errors for one percentage estimate and
also randomly sample the 1000 squared errors of the percentage estimate that has
the lowest RMSE value (in a given scenario), for say 1000 iterations, then one
would be able to take the

√
mean(·) of each of these 1000 Bootstrapped samples

of squared errors for each percentage estimate. Then one could take the ratio
of each of these RMSE values for each iteration in turn (with those associated
with the percentage estimate having the lowest RMSE value being assigned to the
denominator of the ratio). As a result, one would obtain a sampling distribution
for the ratio of two RMSE values and could take the α

2
and (1 − α

2
) percentiles
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of the sampling distribution for a significance level α. Hence, one could obtain a
95% Bootstrapped percentile interval for the ratio of two RMSE values.

Now we will check to see if using the Bootstrapped approach presented in this Sec-
tion gives rise to similar results with the theoretical, explicit intervals presented
earlier.

5.5.3 Bootstrap approach vs. theoretical approach

We know it can be shown that if data are independent and if two populations
under consideration are normally distributed, then the theoretical, explicit con-
fidence intervals can be used to give inference on the ratio of two population
variances, standard deviations, etc. Here, we shall use R/RStudio software to
compare the results obtained from using explicit confidence interval formulae pre-
sented and the Bootstrapping approach proposed, using large sampled, normally
distributed data, to investigate if both approaches give similar results.

As a means of examining the two approaches, we can simulate two sets of 1000
samples from a normal distribution (one could say these were samples of estima-
tors, for instance) having defined location parameters µ1 and µ2 and standard
deviations σ1 and σ2, respectively. In addition, σ1 and σ2 will be chosen such
that the values of the ratio σ1

σ2
that will be considered are 1, 1.1, 1.5 and 2. We

shall utilise confidence interval (5.2) as a means of convenience and gaining a
confidence interval for two population RMSE values, since under the assumption
of unbiasedness, these confidence intervals and estimates are essentially equiva-
lent. The following R code was used to calculate the explicit confidence interval
formulae for the ratio of two population standard deviations:
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#Two independent samples from normal distribution,

#mu1, mu2, sd1 & sd2 to be defined below:

sample1<-rnorm(1000,mean=mu1,sd=sd1)

sample2<-rnorm(1000,mean=mu2,sd=sd2)

alpha<-0.05

Ratio_and_CI<-function(s1,s2){

perc<-1-alpha

x<- (var(s1)/var(s2))*(1/qf(perc,length(s1)-1,length(s2)-1))

y<- (var(s1)/var(s2))*(qf(perc,length(s2)-1,length(s1)-1))

Ratio<-sd(s1)/sd(s2)

LCL <- sqrt(x)

UCL <- sqrt(y)

vec<-c(round(Ratio,2),round(LCL,2),round(UCL,2))

return(vec)}

Ratio_and_CI(sample1,sample2)

The following results were then obtained using the above code, with µ1 = 10 and
µ2 = 5:

Ratio considered Ratio Estimate obtained 95% Confidence Interval (CI) CI Width

1 0.98 (0.93, 1.03) 0.1

1.1 1.13 (1.08, 1.19) 0.11

1.5 1.42 (1.35, 1.50) 0.15

2 2.03 (1.93, 2.14) 0.21

Table 5.9: Ratios of RMSE values obtained using theoretical calculations

Now that we have results obtained from theoretical calculations, we can con-
sider the coding for the Bootstrapping approach discussed earlier. Below is the
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R/RStudio code which makes use of the already available two sets of 1000 nor-
mally distributed samples, with µ1 = 10 and µ2 = 5, where the standard deviation
is the estimate of interest to be evaluated from Bootstrapped samples, from which
the ratio of the two would be considered:

a<-rep(NA,1000)

b<-rep(NA,1000)

#Re-sampling:

for(i in 1:length(b)){

newd<-sample(sample1,length(sample1),replace=TRUE)

b[i]<-sd(newd)}

for(i in 1:length(a)){

newd<-sample(sample2,length(sample2),replace=TRUE)

a[i]<-sd(newd)}

ratio1<-round(sd(sample1)/sd(sample2),2)

names(ratio1)<-c("Ratio")

z<-as.vector(b/a)

z<-subset(z,is.infinite(z)==FALSE)

CI1<-c(round(quantile(z,c(alpha/2),na.rm=TRUE),digits=2),

round(quantile(z,c(1-(alpha/2)),na.rm=TRUE),digits=2))

names(CI1)<-c(paste(100*(1-alpha),"%", "LCL",sep=""),

paste(100*(1-alpha),"%", "UCL",sep=""))

results1<-c(ratio1,CI1)

print(results1)

Utilising the Bootstrapping approach presented above, the following results were
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then obtained:

Ratio considered Ratio Estimate obtained 95% Confidence Interval (CI) CI Width

1 0.98 (0.92, 1.04) 0.12

1.1 1.13 (1.07, 1.21) 0.14

1.5 1.42 (1.34, 1.51) 0.17

2 2.03 (1.91, 2.17) 0.26

Table 5.10: Ratios of RMSE values obtained using developed Bootstrapping ap-
proach

From Tables 5.9 and 5.10, we observe very similar confidence intervals being
obtained for the various ratios of standard deviations considered, from both ap-
proaches. In fact, using the proposed Bootstrapping approach seems to have
produced only slightly wider confidence intervals being obtained.

In the Section to follow, the ratios of RMSE values and the lowest RMSE values
(for a given scenario) are presented, as well as 95% Bootstrapped percentile inter-
vals using our proposed approach, for those RMSE values obtained and presented
in Section 5.3.

5.5.4 Results

From Tables 5.11-5.13, we observe that the majority of the ratios of RMSE val-
ues are significantly greater than the lowest RMSE value obtained, for a given
scenario. In fact, there are only two instances where the 95% Bootstrapped per-
centile intervals span the value of one and these are highlighted in the shaded
grey cells in these Tables.

An example of how to interpret the results in the Tables is as follows: if we con-
sider the first entry in Table 5.11 which has the value 1.79 - this value is based
on the ratio of the RMSE value 3.95 and the lowest RMSE value 2.21 obtained
in this scenario and highlighted in Table 5.1, which are associated with the per-

centage estimates 100

(
1− T14

C14

)
% and 100

(
1− T14

T0

)
%, respectively and the
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confidence interval (1.71, 1.87) is the associated 95% Bootstrapped percentile in-
terval for this ratio. Subsequently, all other ratios are obtained in this scenario
with respect to the lowest RMSE value 2.21 for treatment group sample sizes of
15, where 15EPG_McM_SCFT have been used to simulate data. Similar in-
terpretations can be obtained for ratios associated with other treatment group
sample sizes, diagnostic sensitivities considered and the lowest RMSE values ob-
tained.
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5.6 Discussion

Results based on farm with pre-treatment group means greater than 150 epg:

For simulations based on 15EPG_McM_SCFT field study data, the percentage
estimate using pre- and post-treatment group FECs from a positive treatment
group only:

100

(
1− T14

T0

)
%,

using aNBII likelihood, had the lowest RMSE values associated with it, irrespec-
tive of the treatment group sample sizes considered. This is also the case when
we consider the results from the prior sensitivity analysis that was conducted.
As a result, it would appear that the posterior distributions obtained, for the
percentage estimates considered for these data, are insensitive to the choice of
prior being set for the parameter σ.

This percentage estimate for apparent efficacy/resistance has appeared in many
studies for several livestock species (Kochapakdee et al. 1995; McKenna 2006;
Denwood 2010; Levecke et al. 2012; Vidyashankar et al. 2012; Lester et al. 2013;
Geurden et al. 2015; George et al. 2017) and is obtained through use of a paired
study design involving a positive treatment group only. This design of experiment
is often adopted, particularly in the instance of not being able to facilitate a
negative control group due to having a smaller number of animals on farm. This
design also has the advantage that all animals receive the considered treatment,
effectively increasing the sample size to be featured as part of the experiment and
decreases the cost of the investigation by requiring fewer animals for the same
diagnostic sensitivity being utilised (Denwood 2010). Our simulation study is able
to compliment these studies and justify the use of this percentage estimate with
respect to it being the most accurate using the Bayesian methodologies adopted,
based on FEC data being obtained using sensitive counting techniques (i.e. 1
epg) with pre-treatment group means being greater than 150 epg.

For data simulated with 15 or 30 epg field study data, all of the lowest RMSE
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values were associated with

∑ntreat
j

[
100

(
T0,j−T14,j

T0,j+T14,j

)
%
]

ntreat
,

irrespective of the treatment group sample sizes considered and utilising a Ntrunc
likelihood. To consider this type of approach, we would only require to work with
FECs from the same individual animal as part of a paired study design involving
a positive treatment group only, though not much research has been dedicated to
this concept (Cabaret and Berrag 2004). Our simulation study is able to compli-
ment/support this earlier work by Cabaret and Berrag (2004), since the approach
of averaging over individual-based egg count percentage reductions/changes has
been observed to be the most accurate for various treatment group sample sizes for
field study data obtained by, what could be considered as, less sensitive counting
techniques (i.e. 15 or 30 epg). In our case, the individual-based egg count per-
centage reductions/changes are of a form which involves using the Symmetrised
Percentage Change (SPC). According to Berry and Ayers (2006) this percentage
estimate can present several theoretical benefits such as being bounded (i.e. be-
tween ±100%). Having a bounded range means that the influence of outliers, is
greatly reduced. In the case of FEC data being considered, it is often the case
that a small number of individual animals will be shedding high numbers of eggs
in their faeces, and consequently, these outliers can detrimentally affect the mean
values of treatment groups.

It is also worth noting that the lowest RMSE values obtained for data simulated
with 15 or 30 epg field study data as part of the prior sensitivity analysis, were
associated with the same percentage estimate. As a result, it would appear that
the posterior distributions obtained, for the percentage estimates based on 15 or
30 epg data, are insensitive to the choice of prior being set for the parameter
σ. Overall, it would appear that FEC data obtained as part of a farm with pre-
treatment group means greater than 150 epg are able to consistently produce,
accurate percentage estimates based on the Bayesian methodology adopted as
part of our study, irrespective of the priors on the dispersion/variability.
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That being said, when wanting to apply these methodologies one would have to
adopt one prior in practice. Given the average standard deviation estimates for
different types of field study FEC data and individual-based egg count percentage
reductions/changes (presented in Tables 5.7 and 5.8), all lie within the range of 0
to 500; these estimates would be better reflected and potentially achieved (with
respect to convergence) with a prior of σ ∼ Unif(1x10−16, 500), as opposed to a
wider range Unif(1x10−16, 1000).

Results based on farm with 100 epg ≤ pre-treatment group means ≤ 150 epg:

For simulations based on 15EPG_McM_SCFT field study data, the percentage
estimate using pre- and post-treatment group FECs from a positive treatment
group only,

100

(
1− T14

T0

)
%

using a NBII likelihood, had the lowest RMSE values associated with it for all
treatment group sizes considered. This is also the case when we consider the
results from the prior sensitivity analysis that was conducted. Again, it would
appear that the posterior distributions obtained, for the percentage estimates
considered for these data, are insensitive to the choice of prior being set for the
parameter σ.

For simulations based on 15 or 30 epg field study data, the majority of the lowest
RMSE values were associated with averaging over individual-based egg count
percentage reductions/changes based on utilising the SPC. The results mentioned
thus far, are consistent with those based on data from a farm with pre-treatment
group means greater than 150 epg.

However, all of the lowest RMSE values obtained for data simulated with 15 or 30
epg field study data as part of the prior sensitivity analysis were associated with
the following percentage reduction (where a ZIPIG likelihood was utilised):
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100

(
1− T14

C14

)
%.

As a result, it would appear that when considering FEC data obtained us-
ing counting techniques with a 15 or 30 epg sensitivity, from a farm with pre-
treatment group means between 100 epg and 150 epg (inclusive); the accuracy of
the percentage estimates obtained are sensitive to the beliefs about the parame-
ter σ, to an extent where a negative control group is required to obtain accurate
percentage estimates, the more conservative one is about the variability of FEC
data.

But it is worth remembering that, given the average standard deviation estimates
for different types of field study FEC data and individual-based egg count percent-
age reductions/changes, these estimates would be better reflected and potentially
achieved (with respect to convergence) with a prior of σ ∼ Unif(1x10−16, 500),
as opposed to a wider range Unif(1x10−16, 1000). Hence, any conclusions derived
from the prior sensitivity analysis should be interpreted with this in mind.

Results based on farm with pre-treatment group means less than 100 epg:

For simulated data based on 15EPG_McM_SCFT field study data, we observe
that the percentage estimates with the lowest RMSE values associated with them
vary across different treatment group sample sizes. For treatment group sample
sizes of 20 or above, the percentage estimate accurately estimated in the majority
of cases, utilising a NBII likelihood, was

100

(
1− C0T14

T0C14

)
%.

This is the first instance, as part of this simulation study, that a percentage esti-
mate based on a parallel group design has been considered the most accurate for
data obtained using sensitive counting techniques (i.e. 1 epg). Lyndal-Murphy
et al. (2014) advocates the use of this percentage estimate, but this recommen-
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dation is based on simulated data for animal group sample sizes of 15 only and
confidence intervals derived using the Delta method were used, which did in-
volve correlations of FEC data; but not correlations of ln-transformed data as
required. However, our simulation study is able to assess the robustness of per-
centage estimates by observing RMSE values via Bayesian methodologies, which
do not depend on large sample normal approximations for FEC data, consider
treatment groups of various sample sizes and various percentage estimates and
also account for the distributions of different FEC data and correlations between
Day 0 and Day 14 FEC data, upon simulation.

One would have to consider, however, the feasibility and practicability of this
result and ask if it is worth running a FECRT with both positive treatment and
negative control group sample sizes of 20 (or greater) cattle, where pre-treatment
group means are less than 100 epg? One possible reason as to why this percentage
estimate may have resulted in being the most accurate is that as part of the Defra
project, composite screening FECs were performed, and only those herds with a
composite count greater than 150 epg were enrolled onto a subsequent FECRT.
However, despite these composite screening attempts, repeated individual base-
line faecal egg sampling on some of these farms subsequently revealed mean egg
counts less than 100 epg at the baseline sampling point before treatment. This
highlights the variability in results that can be obtained between composite and
individual samples etc. and this may have affected the results presented here.
Indeed, various research groups have investigated the most appropriate method-
ology for conducting composite samples (Morgan et al. 2005; Calvete and Uriarte
2013; George et al. 2017). In fact, it would be considered unlikely that egg counts
less than 100 epg would be associated with sufficient worm burdens and/or pas-
ture contamination to justify anthelmintic use and, in such cases, would not be
consistent with best practice recommendations (Coles et al. 1992; Coles et al.
2006).

For the same type of data, but involving treatment group sample sizes of 15
animals, we observe that the percentage estimate with the lowest RMSE value is
(utilising a Ntrunc likelihood):
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∑ntreat
j

[
100

(
T0,j−T14,j

T0,j+T14,j

)
%
]

ntreat
,

which may be more favourable in terms of feasibility and practicability. Indeed,
these are the same conclusions obtained for these data under the prior sensitivity
analysis. This means that the posterior distributions obtained, for the percentage
estimates considered using FEC data obtained using sensitive counting techniques
(i.e. 1epg), are insensitive to the choice of prior being set for the parameter σ.

It is worth noting however, that one limitation to our study is that the small-
est number of animals considered was 15 (i.e. a total of 30 animals in a given
scenario). Upon reflection of the results, it would have been interesting to in-
vestigate the accuracy of percentage estimates associated with treatment group
sample sizes of 10 animals. Published guidelines, such as Coles et al. (1992)
and Coles et al. (2006), recommend the use of treatment group sample sizes
between 10-15. In the scenario of having, what could be considered as, small
treatment group sample sizes, one must ask if these sizes are able to provide suffi-
cient power for these types of studies. Denwood (2010) comments on this, saying
that prospective power calculations are rarely, performed prior to undertaking a
FECRT study and, with respect to equine data, are usually found to be under-
powered. As a result, it was more of interest to consider larger treatment group
sample sizes as part of our simulation study, but the accuracy of percentage es-
timates with regards to smaller treatment group sample sizes, of say 10 animals,
could be considered as part of future investigations.

For simulations based on 15 or 30 epg field study data being considered, all of
the lowest RMSE values were associated with the SPC, which involved utilis-
ing a ZIPIG likelihood. In comparison to the other farm data with different
pre-treatment group mean ranges considered as part of this study, this is the
first instance where averaging over individual-based egg count percentage reduc-
tions/changes based on utilising the SPC has not obtained the lowest RMSE
values for 15 or 30 epg field study data. This could possibly be because when
we consider farm data with pre-treatment group means less than 100 epg, zero
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counts are more likely to feature as part of Day 0 and 14 data, and for averag-
ing over individual-based egg count percentage reductions/changes, this is more
likely to lead to individual-based egg count percentage reductions/changes being
removed before evaluating the average of these or with lower individual-based egg
count percentage reductions/changes being evaluated, i.e. possibly resulting in
a larger difference being obtained between the average of the sampling distribu-
tion of percentage estimates and the known true/target percentage estimate, as
part of evaluating the RMSE. However, evaluating the SPC and averaging over
individual-based egg count percentage reductions/changes of the SPC form can
still both be obtained using only a paired study design with a positive treatment
group.

As part of the prior sensitivity analysis, however, the lowest RMSE values ob-
tained based on 15 or 30 epg field study data were associated with the percentage
reduction:

100

(
1− T14

C14

)
%,

indicating that when considering FEC data obtained using counting techniques
with a 15 or 30 epg sensitivity, from a farm with pre-treatment group means less
than 100 epg; the accuracy of the percentage estimates obtained are sensitive
to the beliefs about the variability of FEC data, to an extent where a negative
control group is required.

It is worth remembering however, that any conclusions derived from the prior sen-
sitivity analysis should be interpreted with the fact that the average standard de-
viation estimates, for different types of field study FEC data and individual-based
egg count percentage reductions/changes, would be better reflected and poten-
tially achieved (with respect to convergence) with a prior of σ ∼ Unif(1x10−16, 500),
as opposed to a wider range Unif(1x10−16, 1000).

Overall conclusions:

This simulation study, along with the prior sensitivity analysis, revealed that the
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accuracy of the estimation of the percentage estimates considered can be influ-
enced by treatment group sample sizes, the diagnostic sensitivity of the counting
techniques used in obtaining the original FEC data, the prior beliefs about the
dispersion and variability of the FEC data considered and the classifications of
the pre-treatment group means obtained.

By considering this study as a whole, it could be recommended that a prior of
Unif(1x10−16, 500) be adopted for the dispersion parameter σ for the different
types of FEC and individual-based egg count percentage reduction/change data
considered as part of this study. Subsequently, the following recommendations
are based on the above prior being utilised as part of the Bayesian methodology
considered as part of this study.

For FEC data obtained using a sensitive counting technique (1 epg sensitivity),
when pre-treatment group means are greater than or equal to 100 epg, the per-
centage estimate based on pre- and post-treatment group FECs from a positive
treatment group only (using a NBII likelihood) was estimated the most accurate,
for all treatment group sample sizes considered.

When considering FEC data obtained using a sensitive counting technique (1 epg
sensitivity) but from a farm with pre-treatment group means less than 100 epg,
for treatment group sample sizes of 20 or above the percentage estimate involving
pre- and post-counts from both a negative control and positive treatment group
(utilising aNBII likelihood) was estimated the most accurate. For the same FEC
data under consideration, but with treatment group sample size of 15 animals; one
could utilise a paired study design involving a positive treatment group only, to
average over individual-based egg count percentage reductions/changes utilising
the SPC estimate (utilising a Ntrunc likelihood), since this was the most accurate
percentage estimate in this scenario.

For FEC data obtained using less sensitive counting techniques (i.e. 15 or 30
epg), when pre-treatment group means are greater than or equal to 100 epg,
the approach of averaging over individual-based egg count percentage reduc-
tions/changes utilising the SPC estimate (utilising a Ntrunc likelihood), from a
positive treatment group only, was estimated the most accurate, for all treatment
group sample sizes considered. When considering this same type of FEC data but
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Table 5.14: A summary of the most accurate percentage estimates to be estimated
for a given diagnostic sensitivity and treatment group sample size

from a farm with pre-treatment group means being less than 100 epg, the SPC
(utilising a ZIPIG likelihood) was estimated the most accurate for all treatment
group sample sizes considered as part of this study.

It is worth noting however, that in the majority of scenarios considered, there
is an opportunity to adopt a paired study design involving a positive treatment
group only, in order to obtain those percentage estimates that were most accurate.
Table 5.14 highlights a summary of the above mentioned results.

With respect to answering the question "Are there any percentage estimates whose
accuracies are indistinguishable?", we observed that the majority of the ratios of
RMSE values were significantly greater than the lowest RMSE value obtained, for
a given scenario, at the 5% significance level. Table 5.15 highlights a summary of
these results, in which the most accurate percentage estimates are recommended
(i.e. those with the lowest RMSE values) as well as those percentage estimates
whose RMSE values were indistinguishable from the lowest RMSE values in a
given scenario (these are represented by X).
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Given the recommendations above, we will now consider using these to anal-
yse various cattle FEC data available, as part of this project, to investigate the
apparent anthelmintic efficacy/resistance status of cattle herds in the UK.
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Chapter 6

Applying Bayesian robust
methodologies to conclude on
apparent anthelmintic efficacy and
resistance in UK cattle populations

6.1 Introduction

In Chapter 5, we were able to identify robust percentage estimates (i.e. most
accurate) and, by extension, associated experimental designs utilising our devel-
oped Bayesian methodologies. We shall now apply some of our developed robust
Bayesian methodologies identified in Chapter 5, to conclude on the apparent an-
thelmintic efficacy/resistance status of cattle herds in the UK, using the available
data provided by Westpoint Farm Vets (WFV) and the Veterinary Medicines
Directorate (VMD). We shall also investigate the agreement between these clas-
sifications and those which were evaluated using the methodology adopted in the
Defra project (Defra 2015; Defra 2018b).
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6.2 Data and methodologies used

It was decided by the project team that 15 epg (i.e. 15EPG_McM) data and the
hybrid sets of data (i.e. 15EPG_McM_SCFT), which involved counts obtained
using the SCFT with a 1 epg sensitivity, as describe in Section 1.6, be considered
for analysis.

Treatment groups with pre-treatment means less than 100 epg were not to be fur-
ther considered as part of this analysis. This is because it is considered unlikely
that egg counts less than 100 epg would be associated with sufficient worm bur-
dens and/or pasture contamination to justify anthelmintic use (and associated
efficacy testing). Anthelmintic use in such cases would not be consistent with
best practice recommendations (Coles et al. 1992; Coles et al. 2006).

It is worth noting that as part of the Defra project (Defra 2015; Defra 2018b),
composite screening FECs were performed, and only those herds with a compos-
ite count greater than 150 epg were enrolled onto a subsequent FECRT. However,
despite these composite screening attempts, repeated individual baseline faecal
egg sampling on some of these farms subsequently revealed mean egg counts less
than 100 epg at the baseline sampling point before treatment. This highlights the
variability in results that can be obtained between composite and individual sam-
ples etc. Indeed, various research groups have investigated the most appropriate
methodology for conducting composite samples (Morgan et al. 2005; Calvete and
Uriarte 2013; George et al. 2017). As a result, 53 positive treatment groups were
considered for analysis.

For the 15EPG_McM_SCFT data, the percentage estimate 100
(

1− T14

T0

)
% was

evaluated using NBII(µ, σ) likelihoods for the Day 0 and Day 14 data, and for
the 15EPG_McM data the average of the individual-based egg count percentage
reductions/changes of the SPC form was evaluated utilising a Ntrunc(µ, σ) like-
lihood, along with 95% credible intervals using our developed Bayesian method-
ologies. These percentage estimates were utilised on the basis that these were
the most accurately estimated for data collected using these respective diagnostic
sensitivities and for pre-treatment group means greater than or equal to 100 epg,
irrespective of treatment group sample size, based on work and findings presented
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in Chapter 5.

Priors were specified for each parameter involved from the likelihoods for a specific
type of data, and are highlighted below:

Prior Distributions for parameters:

Day 0 Positive Treatment Group Data :

µ ∼ Unif(1x10−16, 1000) and σ ∼ Unif(1x10−16, 500).

Day 14 Positive Treatment Group Data :

µ ∼ Unif(1x10−16, 300) and σ ∼ Unif(1x10−16, 500).

100

(
T0,j − T14,j

T0,j + T14,j

)
% Data :

µ ∼ Unif(−100, 100) and σ ∼ Unif(1x10−16, 500).

To obtain posterior distributions for parameters of the likelihoods considered,
Metropolis-Hastings (MH) algorithms (further information on MH algorithms
is available in Appendix B.1) were developed using RStudio software (version
0.98.994 along with R software version 3.1.1.) and implemented based on a total
of 10,000 iterations. An initial discard of 5,000 iterations was considered (i.e.
the burnin period). Normal proposal distributions centred around current pa-
rameter values of the chains were used, with a proposal variance of one. Each
parameter considered was updated in turn. To ensure each of the parameters’
chains were tuned and explored their respective posterior distributions efficiently
(i.e. achieved acceptance rates between 20-40% after the initial burnin period)
the MH algorithms were programmed to be adaptive, such that at every 200th

iteration in the burnin period: if the acceptance rate of the chain was above 40%
then the variance of the proposal distribution was doubled and if the acceptance
rate of the chain was below 20% then the variance of the proposal distribution was
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halved. For constructing the percentage estimates mentioned above, the remain-
ing 5,000 iterations associated with the location parameter µ were thinned-out so
every 5th estimate contributed towards the sample from the posterior distribu-
tion. The resulting sample for each location parameter considered, consisted of
1000 sampled estimates from the posterior distributions. The relevant percent-
age estimates were then constructed; resulting in a sampling distribution of 1000
estimates for each relevant percentage estimate.

From the sampling distributions for each of the percentage estimates considered,
the medians of these distributions were obtained as a point estimate for each
percentage estimate considered along with 95% credible intervals, i.e. Highest
Posterior Density intervals, being obtained for each percentage estimate.

In order to classify the apparent efficacy status of treatment groups as part of
this analysis, it was decided that published guidelines’ criteria (Coles et al. 1992;
Coles et al. 2006) be adapted in light of the European Medicines Agency (EMA)
regarding the FECRT as an estimation of efficacy, and not confirmation of re-
sistance (EMA 2014) and in the interest of being consistent with work that was
carried out as part of the Defra project (Defra 2015; Defra 2018b). A treatment
was classed as being apparently efficacious (Eff) if the relevant percentage esti-
mate was greater than or equal to 95% and the lower limit of the credible interval
was greater than or equal to 90%. If only one of these criteria were satisfied, then
treatment groups were classified as having suspected lack of efficacy (SLOE). If
both criteria were not satisfied, i.e. the relevant percentage estimate was less
than 95% and the lower limit of the credible interval being less than 90%, then
the FECRT result was classified as lack of efficacy (LOE).

As part of the Defra study, for 15EPG_McM_SCFT and 15EPG_McM data,
percentage estimates

100

(
1− T14

C14

)
%

and
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100

(
1− T14

T0

)
%

(i.e. percentage estimates (1.2) and (1.4)), were evaluated, respectively.

Confidence intervals (based on normality) were also evaluated using the following
respective formulae:

100

(
1− T14

C14

exp

(
±t(ntreat+ncontrol−2)

√
s2
t.eos

ntreatT 2
14

+
s2
c.eos

ncontrolC2
14

))
%

and

100

(
1− T14

T0

exp

(
±t(ntreat−1)

√
s2
t.eos

ntreatT 2
14

+
s2
t.base

ntreatT 2
0

))
%.

These percentage estimates and confidence intervals (based on normality) were
considered and classified utilising the adapted criteria for classifying apparent
efficacy outlined above. With these classifications, based on methods carried out
as part of the Defra project, measures of agreement between these sets of classi-
fications and those using our developed Bayesian methodologies were evaluated,
for each of the 15EPG_McM_SCFT and 15EPG_McM data. The measures
of agreement considered as part of this analysis were the exact agreement, the
kappa (κ) and weighted kappa (κw) statistics (refer to Appendix B.4 ofr further
information on these measures of agreement). The following general guideline for
interpreting the κ statistic, provided by Landis and Koch (1977), was adopted
for interpretation purposes and is shown below in Table B.2.

It is worth noting that due to a statistical review made as part of the study,
negative control groups did not feature as part of the field studies in 2014. With
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Value of κ Strength of Agreement

<0.20 Poor

0.21-0.40 Fair

0.41-0.60 Moderate

0.61-0.80 Good

0.81-1.00 Very Good

Table 6.1: Interpreting agreement using κ

this in mind, out of the 53 available positive treatment groups, 23 of these featured
in parallel group designs and hence, available to be used to evaluate the percentage
estimate 100

(
1− T14

C14

)
% as part of the analysis described in this Section. All

statistical analyses were carried out using RStudio software (version 0.98.994
along with R software version 3.1.1.). All visual representation of results, i.e. bar
charts, were produced using Microsoft Excel 2016 software.

6.3 Results

6.3.1 Classification of treatment groups using developed

Bayesian methodologies

The results from applying our developed Bayesian methodologies to the 53 avail-
able positive treatment group FECRT results from 2012, 2013 and 2014, based
on utilising the 15EPG_McM_SCFT data, are presented in Figures 6.1, 6.2 and
6.3, respectively. Included in all Figures are the 95% lower and upper credible
intervals represented by the black error bars. The horizontal blue solid line rep-
resents the 95% threshold used to classify apparent anthelmintic efficacy status’
and the horizontal red dashed line represents the 90% threshold set for the 95%
lower limit of the credible interval. Positive treatment groups that received an
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injectable or pour-on formulation of doramectin, a fenbendazole treatment, or an
injectable or pour-on formulation of ivermectin are highlighted as purple, orange,
red, blue and green, in these charts, respectively. Table 6.2 also highlights the
breakdown of the classifications with respect to each type of positive treatment
group featured.

Based on these results, the majority of treatment groups were classified as having
an apparent LOE status. In fact, from Table 6.2 we observe that approximately
73.58%, of the 53 positive treatment groups considered, were classified as having
an apparent LOE status.

Figure 6.1: 2012 FECRT results, based on 15EPG_McM_SCFT data, utilising
Bayesian methodologies with percentage estimate 100

(
1− T14

T0

)
% (Treatments:

DectoInj (purple); DectoPouron (orange): FBZ (red); IvmInj (blue) and Ivm-
Pouron (green))
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Figure 6.2: 2013 FECRT results, based on 15EPG_McM_SCFT data, utilising
Bayesian methodologies with percentage estimate 100

(
1− T14

T0

)
% (Treatments:

DectoInj (purple); DectoPouron (orange): FBZ (red); IvmInj (blue) and Ivm-
Pouron (green))

Figure 6.3: 2014 FECRT results, based on 15EPG_McM_SCFT data, utilising
Bayesian methodologies with percentage estimate 100

(
1− T14

T0

)
% (Treatments:

DectoInj (purple); DectoPouron (orange): FBZ (red); IvmInj (blue) and Ivm-
Pouron (green))
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Efficacy Status

Treatment Groups Eff SLOE LOE Total

DectoInj 4 2 9 15

DectoPouron 0 0 3 3

FBZ 8 0 1 9

IvmInj 0 0 17 17

IvmPouron 0 0 9 9

Total 12 2 39 53

Table 6.2: Classifications of treatment groups, based on 15EPG_McM_SCFT
data and utilising Bayesian methodologies with percentage estimate
100

(
1− T14

T0

)
% (Classifications: Efficacious (Eff); Suspected lack of efficacy

(SLOE) and Lack of efficacy (LOE))

When considering the 15EPG_McM data, the results from applying our devel-
oped Bayesian methodologies to the 53 available positive treatment group FECRT
results from 2012, 2013 and 2014 for these data, are presented in Figures 6.4, 6.5
and 6.6, respectively. Table 6.3 also highlights the breakdown of these classi-
fications with respect to each type of positive treatment group featured. The
majority of treatment groups were classified as having an apparent efficacious or
SLOE status. In fact, from Table 6.3, we observe that approximately 47.17%
of the 53 positive treatment groups considered, were classified as having an ap-
parent efficacious status and 26.42% were classified as having an apparent SLOE
status. Overall, 73.59% of treatment groups were classed as having an apparent
efficacious or suspected lack of efficacy status.
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Figure 6.4: 2012 FECRT results, based on 15EPG_McM data, utilising Bayesian

methodologies with percentage estimate
∑ntreat
j

[
100

(
T0,j−T14,j
T0,j+T14,j

)
%

]
ntreat

(Treatments:
DectoInj (purple); DectoPouron (orange): FBZ (red); IvmInj (blue) and Ivm-
Pouron (green))

Figure 6.5: 2013 FECRT results, based on 15EPG_McM data, utilising Bayesian

methodologies with percentage estimate
∑ntreat
j

[
100

(
T0,j−T14,j
T0,j+T14,j

)
%

]
ntreat

(Treatments:
DectoInj (purple); DectoPouron (orange): FBZ (red); IvmInj (blue) and Ivm-
Pouron (green))
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Figure 6.6: 2014 FECRT results, based on 15EPG_McM data, utilising Bayesian

methodologies with percentage estimate
∑ntreat
j

[
100

(
T0,j−T14,j
T0,j+T14,j

)
%

]
ntreat

(Treatments:
DectoInj (purple); DectoPouron (orange): FBZ (red); IvmInj (blue) and Ivm-
Pouron (green))
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Efficacy Status

Treatment Groups Eff SLOE LOE Total

DectoInj 9 6 0 15

DectoPouron 1 2 0 3

FBZ 7 2 0 9

IvmInj 5 2 10 17

IvmPouron 3 2 4 9

Total 25 14 14 53

Table 6.3: Classifications of treatment groups based on 15EPG_McM data and

utilising Bayesian methodologies with percentage estimate
∑ntreat
j

[
100

(
T0,j−T14,j
T0,j+T14,j

)
%

]
ntreat

(Classifications: Efficacious (Eff); Suspected lack of efficacy (SLOE) and Lack of
efficacy (LOE))

6.3.2 Agreement between classifications using developed

Bayesian methodologies and Defra study methodolo-

gies

The results from the Defra project involving the application of the percentage
estimate 100

(
1− T14

T0

)
%, with its associated 95% confidence interval based on

normality, to the 53 available positive treatment group FECRT results from 2012,
2013 and 2014, utilising the 15EPG_McM_SCFT data, are presented in Figures
6.7, 6.8 and 6.9, respectively. Included in all Figures are the 95% lower and upper
credible intervals represented by the black error bars. The horizontal blue solid
line represents the 95% threshold used to classify apparent anthelmintic efficacy
status’ and the horizontal red dashed line represents the 90% threshold set for the
95% lower limit of the credible interval. Positive treatment groups that received
an injectable or pour-on formulation of doramectin, a fenbendazole treatment,

208



or an injectable or pour-on formulation of ivermectin are highlighted as purple,
orange, red, blue and green, in these charts, respectively.

Utilising the classification criteria in Section 6.2 for these results, along with
those classifications concluded from the results based on our developed Bayesian
methodologies presented in Figures 6.1 - 6.3, a 3x3 contingency table of the clas-
sifications and agreement between the two methodologies considered, is presented
in Table 6.4. The exact agreement, i.e. the sum of the diagonal entries divided
by the total number of observations considered, is 83.02%. From Table 6.4, the κ
statistic was estimated to be κ̂ = 0.63 along with a 95% confidence interval (0.44,
0.83). The weighted κ statistic, i.e. κw, based on the results presented in Table
6.4, was estimated as κ̂w = 0.74 with a 95% confidence interval (0.58, 0.91).

Figure 6.7: 2012 FECRT results, based on 15EPG_McM_SCFT data, using
percentage estimate 100

(
1− T14

T0

)
% and confidence intervals based on normality,

featuring as part of Defra project (Treatments: DectoInj (purple); DectoPouron
(orange): FBZ (red); IvmInj (blue) and IvmPouron (green))
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Figure 6.8: 2013 FECRT results, based on 15EPG_McM_SCFT data, using
percentage estimate 100

(
1− T14

T0

)
% and confidence intervals based on normality,

featuring as part of Defra project (Treatments: DectoInj (purple); DectoPouron
(orange): FBZ (red); IvmInj (blue) and IvmPouron (green))

Figure 6.9: 2014 FECRT results, based on 15EPG_McM_SCFT data, using
percentage estimate 100

(
1− T14

T0

)
% and confidence intervals based on normality,

featuring as part of Defra project (Treatments: DectoInj (purple); DectoPouron
(orange): FBZ (red); IvmInj (blue) and IvmPouron (green))
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Classification using Bayesian method with 100
(

1− T14

T0

)
%

Classification
based on De-
fra project
methods with
100

(
1− T14

T0

)
%

Eff SLOE LOE Total

Eff 11 2 1 14

SLOE 0 0 5 5

LOE 1 0 33 34

Total 12 2 39 53

Table 6.4: 3x3 contingency table of classifications using developed
Bayesian methodologies using percentage estimate 100

(
1− T14

T0

)
% and De-

fra project methods using percentage estimate 100
(

1− T14

T0

)
%, based on

15EPG_McM_SCFT data (Classifications: Efficacious (Eff); Suspected lack of
efficacy (SLOE) and Lack of efficacy (LOE))

Based on utilising the 15EPG_McM_SCFT data, the 23 available positive treat-
ment group FECRT results from 2012 and 2013, involving the percentage estimate
100

(
1− T14

C14

)
% along with the associated 95% confidence interval based on nor-

mality (from the Defra project) are presented in Figure 6.10. It is worth noting
that some of the confidence limits were truncated in this Figure for presentation
purposes.

Using the adapted classification criteria in Section 6.2 for these results, along
with those classifications concluded from our developed Bayesian methodologies
for the relevant 23 positive treatment groups (which can be found in Figures 6.1
and 6.2), a 3x3 contingency table of the classifications and agreement between
the classifications from the two methodologies considered, is presented in Table
6.5. The exact agreement is 78.26%, κ̂ = 0.51 with a 95% confidence interval
(0.18, 0.85) and κ̂w = 0.57 with a 95% confidence interval (0.23, 0.91).
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Figure 6.10: FECRT results, based on 15EPG_McM_SCFT data, using per-
centage estimate 100

(
1− T14

C14

)
% and confidence intervals based on normality,

featuring as part of Defra project (Treatments: DectoInj (purple); DectoPouron
(orange): FBZ (red); IvmInj (blue) and IvmPouron (green))

Classification using Bayesian method with 100
(

1− T14

T0

)
%

Classification
based on De-
fra project
methods with
100

(
1− T14

C14

)
%

Eff SLOE LOE Total

Eff 4 0 2 6

SLOE 1 0 0 1

LOE 1 1 14 16

Total 6 1 16 23

Table 6.5: 3x3 contingency table of classifications using developed
Bayesian methodologies using percentage estimate 100

(
1− T14

T0

)
% and De-

fra project methods using percentage estimate 100
(

1− T14

C14

)
%, based on

15EPG_McM_SCFT data (Classifications: Efficacious (Eff); Suspected lack of
efficacy (SLOE) and Lack of efficacy (LOE))
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From the Defra project, the FECRT results of the 53 available positive treatment
groups from 2012, 2013 and 2014, based on utilising the 15EPG_McM data and
applying the percentage estimate 100

(
1− T14

T0

)
% along with its associated 95%

confidence interval, based on normality, are presented in Figures 6.11, 6.12 and
6.13, respectively. Again, some of the confidence limits were truncated in these
Figures for presentation purposes.

Utilising the classification criteria in Section 6.2 for these results, along with those
classifications concluded from our developed Bayesian methodologies presented
in Figures 6.4 - 6.6, a 3x3 contingency table of the classifications and agreement
between the classifications from the two methodologies considered, is presented in
Table 6.6. The exact agreement is 60.38%, κ̂ = 0.39 along with a 95% confidence
interval (0.23, 0.56) and κ̂w = 0.50 with a 95% confidence interval (0.33, 0.67).

Figure 6.11: 2012 FECRT results, based on 15EPG_McM data, using percentage
estimate 100

(
1− T14

T0

)
% and confidence intervals based on normality, featuring

as part of Defra project (Treatments: DectoInj (purple); DectoPouron (orange):
FBZ (red); IvmInj (blue) and IvmPouron (green))
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Figure 6.12: 2013 FECRT results, based on 15EPG_McM data, using percentage
estimate 100

(
1− T14

T0

)
% and confidence intervals based on normality, featuring

as part of Defra project (Treatments: DectoInj (purple); DectoPouron (orange):
FBZ (red); IvmInj (blue) and IvmPouron (green))

Figure 6.13: 2014 FECRT results, based on 15EPG_McM data, using percentage
estimate 100

(
1− T14

T0

)
% and confidence intervals based on normality, featuring

as part of Defra project (Treatments: DectoInj (purple); DectoPouron (orange):
FBZ (red); IvmInj (blue) and IvmPouron (green))
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Classification using Bayesian method with∑ntreat
j

[
100

(
T0,j−T14,j
T0,j+T14,j

)
%

]
ntreat

Classification
based on De-
fra project
methods with
100

(
1− T14

T0

)
%

Eff SLOE LOE Total

Eff 17 4 0 21

SLOE 2 1 0 3

LOE 6 9 14 29

Total 25 14 14 53

Table 6.6: 3x3 contingency table of classifications using developed Bayesian

methodologies using percentage estimate
∑ntreat
j

[
100

(
T0,j−T14,j
T0,j+T14,j

)
%

]
ntreat

and De-

fra project methods using percentage estimate 100
(

1− T14

T0

)
%, based on

15EPG_McM data (Classifications: Efficacious (Eff); Suspected lack of efficacy
(SLOE) and Lack of efficacy (LOE))

The 23 available positive treatment group FECRT results from 2012 and 2013,
based on utilising the 15EPG_McM data involving the percentage estimate 100

(
1− T14

C14

)
%

and its associated 95% confidence interval based on normality (from the Defra
project) are presented in Figure 6.14. Again, some of the confidence limits were
truncated in this Figure for presentation purposes.

Using the adapted classification criteria in Section 6.2 for these results, along with
those classifications concluded for the 23 available positive treatment groups using
our developed Bayesian methodologies (which can be found in Figures 6.4 and
6.5), a 3x3 contingency table of the classifications and agreement between the
classifications from the two methodologies, is presented in Table 6.7. The exact
agreement is 60.87%, κ̂ = 0.36 with a 95% confidence interval (0.11, 0.62) and
κ̂w = 0.43 with a 95% confidence interval (0.15, 0.70).
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Figure 6.14: FECRT results, based on 15EPG_McM data, using percentage
estimate 100

(
1− T14

C14

)
% and confidence intervals based on normality, featuring

as part of Defra project (Treatments: DectoInj (purple); DectoPouron (orange):
FBZ (red); IvmInj (blue) and IvmPouron (green))

Classification using Bayesian method with∑ntreat
j

[
100

(
T0,j−T14,j
T0,j+T14,j

)
%

]
ntreat

Efficacy Sta-
tus based on
Defra project
methods with
100

(
1− T14

C14

)
%

Eff SLOE LOE Total

Eff 7 1 0 8

SLOE 1 0 0 1

LOE 5 2 7 14

Total 13 3 7 23

Table 6.7: 3x3 contingency table of classifications using developed Bayesian

methodologies using percentage estimate
∑ntreat
j

[
100

(
T0,j−T14,j
T0,j+T14,j

)
%

]
ntreat

and De-

fra project methods using percentage estimate 100
(

1− T14

C14

)
%, based on

15EPG_McM data (Classifications: Efficacious (Eff); Suspected lack of efficacy
(SLOE) and Lack of efficacy (LOE))
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6.4 Discussion

Based on our developed Bayesian methodologies, for the FECRT results using the
15EPG_McM_SCFT data, we observed that the majority of treatment groups
were classified as having an apparent LOE status (39 out of 53 positive treatment
groups), whereas based on the 15EPG_McM being utilised, we observed that the
majority of treatment groups were classified as being either apparently efficacious
or having an apparent SLOE status (25 out of 53 positive treatment groups classed
as efficacious and 14 out of 53 positive treatment groups classed as having an
apparent suspected lack of efficacy status). As a result, the number of treatment
groups classed as having a LOE status increased upon improving the diagnostic
sensitivity of the counting techniques that were utilised. This is intuitive, since as
part of the FECRT studies conducted (Defra 2015; Defra 2018b), any individual
faecal samples that were detected below 120 epg (in 2012) or 60 epg (in 2013 and
2014) were re-analysed with a technique that had a lower limit of detection, i.e.
1 epg using the SCFT, and so it is more likely that these individual egg counts
that featured as part of the 15EPG_McM_SCFT data, replaced false/excess
zeros that may have been present in those individual samples as part of the
15EPG_McM data.

When considering the different positive treatment groups, we observed based on
the 15EPG_McM_SCFT data, all of the positive treatment groups who received
ivermectin (irrespective of the treatment being a pour-on or injectable formula-
tion) were classed as exhibiting an apparent LOE, and the majority of these
treatment groups featured as part of FECRT experiments conducted in 2012.

Based on the 15EPG_McM data, the majority of those who received the iver-
mectin injectable formulation were classed as having an apparent LOE status
as well (10 out of 17 ivermectin injectable groups). In fact, those ivermectin
injectable treatment groups that featured in FECRT studies conducted in 2013
were all classified as this. It is worth noting that all the apparent efficacious clas-
sifications of the ivermectin injectable treatment groups, based on 15EPG_McM
data, featured in FECRT studies that were conducted in 2012. With regards
to the pour-on formulation variation of ivermectin and the 15EPG_McM data,
the majority of these groups exhibited either an apparently efficacious or SLOE
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status (5 out of 9 treatment groups). One can also observe that all of those iver-
mectin pour-on treatment groups who were classed as having an apparent LOE
status, featured in FECRT studies conducted in 2013 and 2014 and all of the
apparent efficacious classifications associated with ivermectin pour-on treatment
groups were part of FECRT experiments conducted in 2012.

For those treatment groups that received doramectin, based on 15EPG_McM_SCFT
data being utilised, all three groups that received a pour-on formulation and the
majority of those who received the injectable formulation (9 out of 15 doramectin
injectable treatment groups) were classed as having an apparent LOE status.
Out of those treatment groups that received some formulation of doramectin,
two-thirds of these treatment groups (12 out of 18 in total) were classed as hav-
ing an apparent LOE and the majority of these treatment groups featured as part
of FECRTs conducted in the year 2014.

When considering the 15EPG_McM data, the majority of those groups who
received an injectable formulation of doramectin were classed as being apparently
efficacious (9 out of 15 treatment groups) with the others being classed as having
a suspected lack of efficacy status; however two of the three groups who received
a pour-on formulation of doramectin were classed as having an SLOE status, with
the other one treatment group being classed as apparently efficacious. Overall
though, the majority of those treatment groups who had received doramectin
were classified as being apparently efficacious (10 out of 18 in total) and most of
these treatment groups featured as part of FECRTs conducted in 2014.

As reported in Defra (2015), for the majority of groups where there was an ap-
parent LOE following treatment with a ML anthelmintic and a 1epg sensitivity
being used, C. oncophora larvae predominated, which is not a surprising result
given that C. oncophora is the dose-limiting species for the ML group of an-
thelmintics (Vercruysse and Rew 2002), and these findings are in agreement with
other studies (Sargison et al. 2009; McArthur et al. 2011; O’Shaughnessy et al.
2014). Though this is a limitation of the use of FECs as a measured response for
investigating the apparent anthelmintic efficacy status of livestock: FECs cannot
distinguish between certain species of cattle nematode, whose eggs look very sim-
ilar morphologically. As a result, it is usually recommended to carry out larval
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speciation as an indication of the species of worms present on farm (Taylor 2010a;
Defra 2015). Counting parasitic eggs also gives an indirect measure of worm bur-
den present in cattle herds (Eysker and Ploeger 2000) and can present many
interpretational issues. For instance, a high parasitic egg count in faeces may be
regarded as an indication of high worm burden, but takes no consideration of the
fact that species of nematode vary in their fecundity and pathogenicity. Faecal
egg production varies throughout the year and is greatly influenced by a num-
ber of factors including levels of parasite challenge (which in turn is influenced
by seasonal weather patterns) and the development of protective immunity. On
the other hand, a low parasitic egg count cannot be associated with a low worm
burden since low egg counts do not take account of parasites being immature or
in a hypobiotic state. Additionally, the variability in results that can be obtained
between composite and individual samples should also be considered. This is
because, as part of the Defra project (Defra 2015), composite screening FECs
were performed (i.e. obtaining pre-treatment means), and only those herds with
a composite count greater than 150 epg were enrolled onto a subsequent FECRT.
It is also worth noting that various research groups have investigated the most
appropriate methodology for conducting composite samples (Morgan et al. 2005;
Calvete and Uriarte 2013; George et al. 2017). However, despite these composite
screening attempts, repeated individual baseline faecal egg sampling on some of
these farms subsequently revealed mean egg counts less than 100 epg at the base-
line sampling point before treatment. The only way of estimating worm burden
to a higher degree of accuracy than what FECs can provide, however, is through
a post-mortem examination of cattle, i.e. slaughter trials Powers et al. (1982),
but these are not practicable in the field.

For treatment groups who received fenbendazole, i.e. a BZ class of anthelmintic,
the majority, based on the 15EPG_McM_SCFT data, were classed as being
apparently efficacious, i.e. 88.89% of the 9 groups who received this treatment.
Based on the 15EPG_McM data, the majority of these positive treatment groups
were also classed as being apparently efficacious, though this majority decreased
to 77.78%. As mentioned in Defra (2015), the performance observed using FBZ
is surprising given the almost ubiquitous resistance in equine small strongyles
to FBZ (Lester and Matthews 2013; Stratford et al. 2014) and high prevalence
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of FBZ resistance in sheep (Bartley et al. 2004; Sargison et al. 2005). This
could reflect limited use of this anthelmintic in cattle compared to other livestock
species. The consistency of classifications between the diagnostic sensitivities
(and by extension, the developed Bayesian methodologies) used and performance
of FBZ is encouraging as it could be used at pasture to reduce ML anthelmintic
use, which are regarded as the most popular among the classes of anthelmintics
currently used (Vercruysse and Rew 2002; Omura 2008; Taylor 2010a; Defra
2015), and allow targeted ML anthelmintic use.

When considering the measures of agreement between the sets of classifications
obtained using our developed Bayesian methodologies and Defra project meth-
ods: the exact agreements were 83.02%, 78.26%, 60.38% and 60.87% based on the
results from Tables 6.4, 6.5, 6.6 and 6.7, respectively. As a result, we observe that
the majority of the classifications, between any two competing methodologies car-
ried out as part of this analysis, were in agreement. It is worth noting that the ex-
act agreements were higher when utilising the 15EPG_McM_SCFT data in com-
parison to those exact agreements that were evaluated when the 15EPG_McM
data had been utilised. One possible reason for this could be that, as part of our
developed Bayesian methodologies for analysing the 15EPG_McM_SCFT data:
the percentage estimates being utilised were of a similar form, i.e. involved arith-
metic mean group estimates, to those that were involved with the Defra project
methodologies that were utilised.

Calculating the exact agreement, however, takes no account of where in the con-
tingency Tables 6.4-6.7 the agreement is and some agreement between any two
competing methodologies being used would be expected to occur by chance. One
could vote to evaluate the κ statistic as a measurement of agreement, and this
statistic along with associated 95% confidence interval has been evaluated for
completeness for each set of results. However a weakness of this statistic is that
it takes no account of the degree of disagreement present - all disagreements are
treated equally. Where the categories are ordered, as is in our case, it is prefer-
able to give different weights to disagreements according to the magnitude of the
discrepancy. Hence, the weighted κ statistic, κw, and associated 95% confidence
intervals were evaluated for each set of tables and will be discussed here.
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For the classifications presented in Table 6.4 based on 15EPG_McM_SCFT data,
the weighted κ statistic, κw was estimated as κ̂w = 0.74. According to Landis
and Koch (1977), this would mean that there is good agreement between the two
methods used to obtain classifications. An accompanying 95% confidence inter-
val for this estimate was obtained: (0.58, 0.91). As a result, with respect to the
two competing methodologies being utilised in obtaining the relevant classifica-
tions, it would be highly likely, i.e. 95% of the time, the κw statistic lies between
0.58 (i.e. moderate agreement) and 0.91 (i.e. very good agreement) if we were
to repeatedly sample from the same population/carry out the experiment many
times. These results are encouraging to observe since, even by accounting for the
degree of disagreement between the classifications obtained by the two competing
methodologies considered, we are able to obtain good agreement between classifi-
cations. As well as this, the developed Bayesian methodology used in this analysis
was based on using the percentage estimate 100

(
1− T14

T0

)
%, which is obtained

by utilising a paired study design with a positive treatment group only and is
a percentage estimate which has grown in popularity for these types of studies
amongst different livestock species (Cabaret and Berrag 2004; Lyndal-Murphy
et al. 2010; Levecke et al. 2012; Lester et al. 2013; Lyndal-Murphy et al. 2014;
Stratford et al. 2014; George et al. 2017).

Again, based on 15EPG_McM_SCFT data being utilised, for the classifications
presented in Table 6.5, κw was estimated as κ̂w = 0.57. With respect to Landis
and Koch (1977), this would mean that there is moderate agreement between
the two methods used to obtain classifications. The associated 95% confidence
interval for this estimate was (0.23, 0.91), meaning that 95% of the time, we would
expect the κw statistic to lie between 0.23 (i.e. fair agreement) and 0.91 (i.e. very
good agreement) if we were to repeatedly sample from the same population/carry
out the experiment many times. It is worth noting that the 95% confidence
interval here is wider in comparison to the interval mentioned above, though this is
probably due to a smaller group of observations being considered, i.e. 23 positive
treatment groups being utilised as opposed to 53 available positive treatment
groups. Nevertheless, it is encouraging to see that the agreement between the
two competing methodologies considered here have moderate agreement between
the classifications obtained, in light of the degree of disagreement being accounted
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for.

For the classifications presented in Table 6.6 based on 15EPG_McM data being
considered, the weighted κ statistic, κw was estimated as κ̂w = 0.50. According
to Landis and Koch (1977) there is then moderate agreement between the two
methods used to obtain classifications. An accompanying 95% confidence interval
for this estimate was obtained: (0.33, 0.67). As a result, we conclude that it
would be highly likely, i.e. 95% of the time, that the κw statistic lies between
0.33 (i.e. fair agreement) and 0.67 (i.e. good agreement) if we were to repeatedly
sample from the same population/carry out the experiment many times. For the
classifications presented in Table 6.7, κw was estimated as κ̂w = 0.43. According
to Landis and Koch (1977), this would mean that there is moderate agreement
between the two methods used to obtain classifications. The 95% confidence
interval associated with this estimate was (0.15, 0.70), meaning that it would
be highly likely, i.e. 95% of the time, that the κw statistic in this instance lies
between 0.15 (i.e. poor agreement) and 0.70 (i.e. good agreement) if we were
to repeatedly sample from the same population/carry out the experiment many
times.

One may notice that the estimates for the κw statistic are lower (i.e. more
disagreements between the two sets of classifications being present), in the in-
stances where our developed Bayesian methodology has been utilised for the
15EPG_McM data. One possible reason for this is that which was explained for
the exact agreement results: the Defra project methodologies depend on arith-
metic group mean estimates being utilised, which feature as part of the developed
Bayesian methodology for the 15EPG_McM_SCFT data, as opposed to aver-
aging over individual-based egg count percentage reductions/changes of the SPC
form, which featured in the analysis for the 15EPG_McM data. Nevertheless, it
is encouraging to observe an estimated moderate agreement between the classifi-
cations obtained from the developed Bayesian methodology and the Defra project
methodologies, applied to the 15EPG_McM data.

One may ask themselves and argue however, "Why would it be worth going to all
the extra effort of carrying out this recommended Bayesian method, when there is
a significant moderate agreement between the classifications it obtains with those
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obtained using currently recommended frequentist approaches?" In response to
this, the fact that our novel Bayesian method (involving individual-based egg
count percentage reductions/changes of animals of the SPC form) is able to ob-
tain a significant moderate agreement in the classifications it obtains compared
with classifications from methods currently utilised in anthelmintic studies is en-
couraging to observe and can be regarded as a positive result. Our novel Bayesian
method is statistically sound as well, on the grounds that one does not need to
assume normality of FEC data - which is an assumption that has been observed
to be valid when dealing with cattle FEC data - in order to produce interval esti-
mates, such as those provided by WAAVP guidelines and other communications
(Coles et al. 1992; Coles et al. 2006; Lyndal-Murphy et al. 2014).

Overall conclusions:

The discussion above highlights the importance of the choice of diagnostic sen-
sitivity for the counting techniques utilised for these types of experiments and
the interpretations that can be concluded from them. Though there was at least
an estimated significant moderate agreement between all sets of comparisons of
classifications produced by our developed Bayesian and Defra project methods,
for both types of diagnostic sensitivities considered (i.e. 1 epg and 15 epg counts).

The majority of treatment groups were classified as having an apparent LOE
status when 1 epg data were utilised, whereas based on FECs that had been
collected with a 15 epg sensitivity, we observed that the majority of treatment
groups were classified as being either apparently efficacious or having an apparent
SLOE status. However, work presented and conclusions by EMA (2014) and the
Defra project (Defra 2015) tell us that an apparent lack of efficacy status does
not necessarily indicate resistance. In fact, based on clinical grounds, the results
presented in this Chapter, the results presented in Defra (2015) and by, what was
considered from the project team, to be a better interpretation/representation
of what occurred in the field studies as part of the Defra project, it would be
recommended to:

• utilise a paired study design using a positive treatment group only;
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• determine FECs using a 15 epg sensitivity method;

• conduct with pre-treatment group means/composite samples greater than
150 epg;

• use a minimum treatment group sample size of 15 animals;

• and adopt the approach of obtaining the mean value of individual-based
egg count percentage reductions/changes of animals using the Symmetrised
Percentage Change form (along with its associated 95% credible interval)
with our developed Bayesian methodology,

in order to improve the FECRT. However, with these recommendations one must
remember the caveats of utilising egg count data as a means of investigating
apparent anthelmintic efficacy (as described above), in order to conclude overall
on the apparent efficacy status of cattle herds.
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Chapter 7

Discussion, future work and an R

Shiny prototype webpage
application

In this thesis, areas of interest and study with regards to the statistical aspects
of the FECRT for livestock, such as the identification of appropriate statistical
techniques/frameworks (Coles et al. 1992; Coles et al. 2006; Denwood 2010;
Lester and Matthews 2013) for the analysis of FEC data (Presidente 1985; Dobson
et al. 2009) and robust experimental study designs (Vidyashankar et al. 2007;
Vidyashankar et al. 2012; Lyndal-Murphy et al. 2014), have been examined.

In Chapter 2, a review of the relevant literature was presented, which focused on
experimental design considerations, various statistical calculations (i.e. different
percentage estimates that can be considered) and the statistical frameworks for
which interval estimation can be carried out for the FECRT. With respect to
statistical frameworks, derivations of confidence intervals using asymptotic ap-
proximations for the most commonly used percentage estimates were presented
and Bootstrap and Bayesian methodologies were also discussed here.

From this review, it was found that published guidelines, and other communica-
tions, promote the use of percentage estimates based on arithmetic group means
and associated 95% confidence intervals, which are derived by assuming FEC
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data to be of a normal nature. In doing so, we are able to obtain approximate
estimates for the ln-transformed ratio of means of FEC data their associated vari-
ances, which are then used in classifying the apparent efficacy status of treatment
groups (Coles et al. 1992; Coles et al. 2006; Lyndal-Murphy et al. 2014). In
Chapter 3, using available field study data, i.e. 30 and 15 epg McMaster data
and hybrid sets of data involving counts obtained with a 15 and 1 epg sensitivity,
it was found that the majority of FEC data were of a non-normal nature, even
upon transformation. As part of this work, three transformations were utilised,
i.e. ln(x+ 1) (where x is defined as a FEC), the square-root and x

2
3 power trans-

formation. If it had been the case that the majority of Day 0 and Day 14 FEC
data had been of a normal nature, in light of a particular transformation being
applied, then explicit confidence intervals based on asymptotic approximations
could have been derived. There is scope to do this as part of future work by
considering other transformations, such as other power transformations (Newton
and Rudestam 2012), since only three typical transformations (Zar 1996) were
utilised as part of this work.

The derivations of confidence intervals that involved the use of both Day 0 and 14
treatment data, explored in Chapter 2, were also found to be dependent on the
correlation between the ln-transformed versions of treatment data involved and
not the correlation between the original treatment data as some communications
promote (Lyndal-Murphy et al. 2014). It would not be possible to evaluate these
confidence intervals if zero-valued FECs were obtained as part of anthelmintic
studies. Indeed, this scenario is likely to occur, since the majority of 15 and 30
epg McMaster data, in Chapter 3, were found to be best represented by zero in-
flated distributions (ZIDs). As a result, the central tendency µ1. This is defined
as the arithmetic mean of the data divided by the proportion of non-structural
zero counts, and is estimated as the arithmetic mean of FECs divided by the pro-
portion of non-zero counts. This parameter would be recommended for use when
forming percentage estimates, on the basis that this is the maximum likelihood
estimator for these types of distributions, as opposed to the use of arithmetic
means when faced with zero inflated data. It is worth noting that µ1 can take
account of non-structural zero counts and higher-valued data points present in
zero inflated data, which may be less accounted for when locations such as the
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arithmetic mean are used. This is due to zero inflation of potential false zeros
decreasing these values to that of a value closer to zero. Therefore, we are es-
sentially trying to correct/compensate for the presence of zero inflation by using
µ1 as an estimate of central tendency/location of the discrete count distribution
involved.

For the hybrid sets of data involving counts obtained with a 1 epg sensitivity,
distributions associated with and including the Negative Binomial distribution
were found to be the best fitting, in Chapter 3. Hence, percentage estimates
and confidence limits could be estimated using arithmetic group means (i.e. the
central tendency estimates associated with these distributions). These findings
are re-assuring, since the Negative Binomial distribution and its associated central
tendency is recommended for representing parasitological FEC data (Shaw and
Dobson 1995; Morgan et al. 2005; Denwood et al. 2008; Levecke et al. 2012).

Overall, the results obtained in Chapter 3 indicated that the diagnostic sensitivity
of the counting techniques used to obtain FEC data influence the probability dis-
tributions of best fit. This, by extension, influences the central tendency/location
parameter to best represent the FEC data, and to subsequently be used as part
of constructing percentage estimates. The use of currently recommended forms
of confidence intervals, i.e. those derived on the assumption of FEC data being
normal, were also found not to be valid. Therefore, we must look to other statis-
tical frameworks for estimating intervals for percentage estimates used as part of
the FECRT.

With the probability theory in Chapter 3 underpinned, a simulation study using
field study data was conducted in Chapter 4 using Bootstrap methodology to
assess the coverage probability of 95% percentile intervals associated with differ-
ent percentage estimates. The performance of the intervals was considered under
various scenarios involving different diagnostic sensitivities, treatment group sizes
and classifications of pre-treatment group means. It was at this stage in the work
that percentage estimates such as the Symmetrised Percentage Change (SPC)
and averaging over individual-based egg count percentage reductions/changes of
different forms were considered (Cabaret and Berrag 2004; Berry and Ayers 2006).
Despite this, very few scenarios consisted of 95% Bootstrapped percentile inter-
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vals with adequate coverage probabilities. For those scenarios in which adequate
coverage probabilities were obtained however, data were collected with a 1 epg
sensitivity and percentage estimates were based on a paired study design being
used with a positive treatment group only. It is worth noting though, that only
one type of Bootstrapped confidence interval was utilised, namely the percentile
interval. As part of future work, a simulation study examining the coverage
probabilities involving the Bias-corrected and Accelerated (BCA) Bootstrapped
intervals (Efron and Tibshirani 1993) could be developed. However, Carpenter
and Bithell (2000) tell us that the calculation of estimating the acceleration pa-
rameter is tortuous, and therefore time consuming - a cost which is often taken
into account when carrying out these types of studies (Burton et al. 2006) -
particularly for complex parametric problems, such as in our case in dealing with
the ratio of means in forming percentage estimates. BCA intervals also require a
large number of Bootstrap replications, in fact Efron and Tibshirani (1993) tell
us that at least 1000 are needed in order to reduce sampling error. The coverage
probabilities of Bootstrapped percentile intervals though was investigated as part
of this work due to the fact that percentile Bootstrapping methods have proved
popular in the veterinary and parasitological communities when constructing con-
fidence intervals (Cabaret and Berrag 2004; Vidyashankar et al. 2007; Traversa
et al. 2009; Lester and Matthews 2013; Lester et al. 2013).

In light of these results, a further simulation study was carried out in Chapter 5,
but with Bayesian methodologies (Lee 2004; Rice 2007; Gelman et al. 2013) being
employed for the analysis of FEC data. A Bayesian approach to analysing data
offers benefits such as the usual normality assumption within statistical models
being typically removed and simplifications and unrealistic assumptions being
avoided when considering data. The more appealing advantage of the Bayesian
paradigm is the idea of being able to incorporate external information into an
analysis. Though, this concept of being able to introduce external information
into an analysis via prior specifications of parameters is one that is controver-
sial, since classical approaches to Statistics, i.e. the frequentist view, involves
any analyses being objective and based purely on the observed data. Research
has been invested into using Bayesian methods and obtaining credible intervals
when investigating apparent anthelmintic performance, but mainly with respect
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to equine FEC data (Denwood 2010; Denwood et al. 2010); though are being
employed to analyse cattle and sheep FEC data in more recent studies (Denwood
et al. 2008; Dobson et al. 2012; Busin et al. 2013; Geurden et al. 2015; Wang
et al. 2017).

Using the priors and likelihoods defined in Section 5.2.1, medians of the posteri-
ors obtained for each percentage estimate were utilised as point estimates of the
sampling distribution for each percentage estimate and 95% credible intervals,
i.e. Highest Posterior Density intervals, were obtained. In fact, priors and like-
lihoods (such as the truncated normal distribution) were identified and utilised
to obtain posteriors for newly considered percentage estimates, such as averaging
over individual-based egg count percentage reductions/changes of various forms
(Cabaret and Berrag 2004; Berry and Ayers 2006). The accuracy of estimat-
ing various percentage estimates was examined in our simulation study (via the
Root Mean Squared Error) for scenarios involving different diagnostic sensitiv-
ities, treatment group sizes and classification of pre-treatment group means, as
before. In the majority of scenarios considered, in order to obtain percentage
estimates that were most accurate, one would only need to adopt a paired study
design involving a positive treatment group (as highlighted in Table 5.14), with
even some of the newly considered percentage estimates being considered the
most accurately estimated. This type of experimental design has proved popular
in the veterinary parasitology community and has been widely adopted due to
the convenience of not having to include a negative control group (Kochapakdee
et al. 1995; Lyndal-Murphy et al. 2010; Levecke et al. 2012; Vidyashankar et al.
2012; Lester et al. 2013; Stratford et al. 2014; Geurden et al. 2015; George et al.
2017), which may not always be possible, depending on the number of animals
on farms.

There are several opportunities to further develop the work using Bayesian method-
ologies work. For instance, other likelihoods and/or the refinement of likelihoods
utilised, could be considered in light of the diagnostic sensitivities that featured as
part of our study. The Negative Binomial (NB) distribution however, was utilised
as a likelihood when considering the hybrid sets of data involving 1 epg counts and
the ZIPIG distribution was utilised as a likelihood for 15 and 30 epg McMaster
data, on the basis that these were representative of the best fitting distributions
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for the majority of the respective data presented in Chapter 3. Additionally,
a prior sensitivity analysis could be carried out with respect to parameters of
location, i.e. on parameters µ and µ1 for the NB and ZIPIG likelihoods, respec-
tively. As part of our simulation study, a prior sensitivity analysis was carried out
on the parameter σ, mainly due to FECs being over-dispersed/aggregated and
this can impact on anthelmintic studies (Wilson et al. 1996; Shaw and Dobson
1995; Morgan et al. 2005; Levecke et al. 2012). Finally, further methods for
sampling posterior distributions and different proposal distributions could be ex-
plored (Gelman et al. 2013) as well as considering different burn-in periods. The
latter being of particular interest, since well mixed chains appeared to be present
after a burnin-period of 2000 iterations as part of convergence diagnostics, i.e.
Appendix B.2, as opposed to the considered burnin period of 5000 iterations.
However, a burnin period of 5000 iterations was then considered a conservative
number of iterations to feature as part of an initial discard and was still able to
satisfy the convergence diagnostics explored.

One limitation of our Bayesian simulation study that is worth reflecting on, was
that the smallest number of animals being considered was 15 (i.e. a total of 30
animals in a given scenario). Published guidelines, such as Coles et al. (1992)
and Coles et al. (2006), recommend the use of treatment group sample sizes
of between 10-15 animals. In the scenario of having, what could be considered
as, small treatment group sample sizes, one must ask if these sizes are able to
provide sufficient power for these types of studies. Denwood (2010) comments
on this, saying that prospective power calculations are rarely, performed prior to
undertaking a FECRT study and, with respect to equine data, are usually found
to be under-powered. As a result, it was more of interest to consider larger treat-
ment group sample sizes as part of our simulation studies and power calculations
could be explored/developed as part of future work using our developed Bayesian
methodologies for cattle FEC data. It is worth mentioning that Denwood (2010)
also provides power calculation methods, based on equine FECRT data and their
developed Bayesian methodologies, as part of the bayescount package available in
R/RStudio (Denwood 2015; CRAN 2018), which is a testament to the importance
of power calculations being included and developed for these types of studies.

In Chapter 6, the apparent anthelmintic efficacy status of cattle herds in the
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UK was classified using available field study data and our Bayesian methodolo-
gies developed in Chapter 5, along with adapted published guideline thresholds
on efficacy. It is worth remembering that treatment groups with pre-treatment
means less than 100 epg were not considered as part of this analysis. This is
because it is considered unlikely that egg counts less than 100 epg would be as-
sociated with sufficient worm burdens and/or pasture contamination to justify
anthelmintic use (and associated efficacy testing). Anthelmintic use in such cases
would not be consistent with best practice recommendations (Coles et al. 1992;
Coles et al. 2006). Indeed, as part of the Defra project, composite screening
FECs were performed, and only those herds with a composite count greater than
150 epg were enrolled onto a subsequent FECRT. However, despite these com-
posite screening attempts, repeated individual baseline faecal egg sampling on
some of these farms subsequently revealed mean egg counts less than 100 epg at
the baseline sampling point before treatment. This highlights the variability in
results that can be obtained between composite and individual samples etc. It
is worth mentioning that several studies have investigated the most appropriate
methodology for conducting composite samples (Morgan et al. 2005; Calvete and
Uriarte 2013; George et al. 2017). This resulted in 53 positive treatment groups
available to be considered as part of the analysis, with 23 of them featuring as
part of parallel group designs with a negative control group.

For the hybrid sets of data collected with a 1 epg sensitivity: we observed that
the majority of treatment groups were classified, using our Bayesian methodol-
ogy developed for the percentage estimate 100

(
1− T14

T0

)
%, as having an appar-

ent LOE status (39 out of 53 positive treatment groups). Whereas, using FECs
that had been collected with less sensitive counting techniques (i.e. 15 epg sen-
sitivity) and our developed Bayesian methodology for the percentage estimate∑ntreat

j

[
100

(
T0,j−T14,j
T0,j+T14,j

)
%

]
ntreat

, we observed that the majority of treatment groups were
classified as being either apparently efficacious or having an apparent SLOE sta-
tus (25 and 14 out of 53 positive treatment groups classed as having an apparent
efficacious and suspected lack of efficacy status, respectively). As a result, the
number of treatment groups classed as having a LOE status increased upon im-
proving the diagnostic sensitivity of the counting techniques that were utilised,
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again emphasising on the importance of the diagnostic sensitivity of counting
techniques when investigating anthelmintic performance in cattle (El-Abdellati
et al. 2010). As well as this, we concluded that there was at least an estimated
significant moderate agreement between all sets of comparisons of classifications
produced by our developed Bayesian and Defra project methods, for both types
of diagnostic sensitivities being considered (i.e. 1 and 15 epg counts).

Based on those FECs that had been collected with a 15 epg: the majority of
ivermectin injectable treatment groups were classed as exhibiting an apparent
lack of efficacy status (10 out of 17 injectable treatment groups). For those who
received a pour-on formulation, the majority of these groups exhibited either
an apparently efficacious or suspected lack of efficacy status (5 out of 9 pour-
on treatment groups). For those that received doramectin, all three and fifteen
treatment groups that received a pour-on formulation and injectable formulation,
respectively, were apparently efficacious or had a suspected lack of efficacy status.
For those that received fenbendazole, the majority (7 out of 9 treatment groups)
were apparently efficacious.

On the basis of the results, discussion and caveats of using FEC data highlighted
in Section 6.4, it would be recommended to:

• utilise a paired study design using a positive treatment group only;

• collect FEC data using a 15 epg sensitivity method;

• conduct with pre-treatment group means/composite samples greater than
150 epg;

• use a minimum treatment group sample size of 15 animals;

• and adopt the approach of obtaining the mean value of individual-based
egg count percentage reductions/changes of animals using the Symmetrised
Percentage Change form (along with its associated 95% credible interval)
with our developed Bayesian methodology,

in order to improve the FECRT, to conclude overall on the apparent efficacy
status of cattle herds.
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One may ask themselves and argue however, "Why would it be worth going to all
the extra effort of carrying out this recommended Bayesian method, when there is
a significant moderate agreement between the classifications it obtains with those
obtained using currently recommended frequentist approaches?" In response to
this, the fact that our novel Bayesian method (involving individual-based egg
count percentage reductions/changes of animals of the SPC form) is able to ob-
tain a significant moderate agreement in the classifications it obtains compared
with classifications from methods currently utilised in anthelmintic studies is en-
couraging to observe. Our novel Bayesian method is statistically sound as well,
on the grounds that one does not need to assume normality of FEC data (which
is an assumption that does not hold when dealing with cattle FEC data) in order
to produce interval estimates, such as those provided by WAAVP guidelines and
other communications (Coles et al. 1992; Coles et al. 2006; Lyndal-Murphy et al.
2014). Indeed, Denwood (2010) mentions that the lack of appropriate statistical
guidelines for carrying out a FECRT is unacceptable. Though, some commu-
nications have made comment on the availability of those involved/interested
in anthelmintic studies to be able to carry out advanced calculations within a
Bayesian framework (Matthews 2014), such as our recommended novel method.
As a result, it was decided to produce a field-based FECRT Calculator. It was
envisaged that users would be able to carry out analyses of FECRT data using
our recommended developed Bayesian methodology that was observed to have
been robust and exhibited at least a significant moderate agreement in classifying
the efficacy status of treatment groups, i.e. evaluating the average of individual-
based egg count percentage reductions/changes of the SPC form. This Bayesian
calculation would be carried out with minimal effort required by the user, which
is one of the main reasons as to why a webpage application was developed as
part of this project, which is described in more detail in the following Section.
It would be envisaged, as part of future work, to promote and convince those
involved/interested in anthelmintic studies to invest in the Bayesian paradigm
for carrying out statistical analyses as part of the FECRT and, particularly, to
use our recommended developed Bayesian method and webpage application for
analysing FEC data from U.K. cattle populations as part of anthelmintic effi-
cacy/resistance studies.
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7.1 Bayesian FECRT Calculator prototype web-

page application

The R Shiny prototype webpage application named: Bayesian FECRT Calculator
was developed as a means of carrying out the analysis of treatment group FECRT
data using our recommended developed Bayesian methodology. The prototype
webpage application can be found here: http://outreach.mathstat.strath.

ac.uk/apps/FECRT. Shiny is an R/RStudio package that makes it easy for users
to build interactive web applications straight from R/RStudio and can host stand
alone applications on a webpage (Chang 2017; Shiny 2018). Figure 7.1 highlights
our developed webpage:
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It is worth noting that the user interface (i.e. the display) of the prototype webpage
application may have been updated/altered/further developed, since the time of
submission/publishing of this thesis.

To begin using the prototype webpage application, users must first upload a data
set with their positive treatment groups’ FECs and ensure that:

• data are contained in a comma separated values (CSV) file,

• have appropriate column headings and

• data are paired across rows in the CSV file for treatment groups (i.e. each
row is representative of an individual animal with their egg counts and no
missing data are present).

Figure 7.2 highlights the webpage after a data set been uploaded (note that users
will be able to view the data set on completion of the upload).
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Afterwards, users would communicate to the application what columns of data
they want to analyse, via the drop down windows featured under the heading:
Columns of Data to be Submitted for Analysis. So in our example, under the
heading Positive Treatment Day 0 Data we would select from the drop down
window, the column heading treat_0 in our uploaded data set (Figure 7.2) to
tell the application that this is the column of data to be analysed as our positive
treatment Day 0 data, and so forth. Figure 7.3 shows the prototype webpage
application after selecting columns of data treat_0 and treat_14, in our featured
data set, from the drop down windows under the headings Positive Treatment
Day 0 Data and Positive Treatment Day 14 Data, respectively.
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Once users are satisfied with their selection of columns, then they need only click
the Submit for Analysis button. Afterwards, users would be expected to click on
the Summaries of Submitted Data tab to view histograms and summary statistics
of the columns of data that have been considered for analysis. It is worth noting
however, that after clicking the Submit for Analysis button, if users click on the
Summaries of Submitted Data tab, they may observe a Running Analysis counter
in the bottom right hand side of their screens - this indicates that the data are in
the process of being analysed. Figure 7.4 displays the output that would typically
be expected to be viewed from the Summaries of Submitted Data tab. It is worth
noting that summary statistics and a histogram relating to individual-based egg
count percentage reductions/changes of the SPC form are also produced.
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After obtaining summaries of the submitted data, users can click on the Results
of Bayesian Analysis tab to view the estimated percentage estimate and credible
interval that have been obtained based on our developed Bayesian methodology
presented in Chapter 5. Figure 7.5, highlights the output expected to be obtained
in this tab. Users will note that the level of credibility for the associated interval
is 95% and this is the value pre-defined (i.e. the default value) for producing
credible intervals in the webpage application.

The result presented in the table is based on utilising a truncated normal dis-
tribution likelihood for individual-based egg count percentage reduction/change
data of the SPC form, as described in Section 5.2.1. Therefore, the average
of individual-based egg count percentage reductions/changes based on the SPC
form with an associated 95% credible interval is evaluated and envisaged to be
reported.

As well as this, a description of the interpretation associated with a credibility
interval is featured and a disclaimer of using the reported result and the caveats of
utilising egg count data to investigate anthelmintic performance is also displayed.
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Future development and work would be needed to develop this prototype web-
page application into a more user-friendly smartphone or tablet application into
which data could be entered directly from the field or laboratory.

Overall summary:

The work presented in this thesis has given insight into statistical techniques,
frameworks, experimental designs and practical considerations for improving the
FECRT. Published guidelines have traditionally recommended the use of a par-
allel group study design (i.e. involving a positive treatment and negative control
group), and subsequently evaluate percentage estimates based on the arithmetic
means of FECs and their associated 95% confidence intervals (derived by assum-
ing FEC data to be normal). In this thesis, however, it was shown that the
majority of available cattle FEC data violated the assumption of normality and
as a result, Bayesian methodologies were developed for obtaining percentage es-
timates and associated 95% credible intervals. Within this statistical framework
and based on our results, practical recommendations are made, such as the di-
agnostic sensitivities of counting techniques and treatment group sample sizes
to be used in the field. The use of a robust percentage estimate is also recom-
mended, that is, averaging over individual-based egg count reductions/changes
of the Symmetrised Percentage Change form. This percentage estimate only
requires a paired study design with a positive treatment group, and can be eval-
uated, along with an associated 95% credible interval, via our Bayesian FECRT
Calculator prototype webpage application. For the field of veterinary parasitol-
ogy, it is envisaged that the findings, conclusions, discussions and outputs from
this work, will aid and improve further research in anthelmintic studies involving
livestock species, in the foreseeable future.
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Appendix A

R/RStudio code used for
simulating data

A.1 Code for simulating Negative Binomial data

require("gamlss")||install.packages("gamlss")

require("mvtnorm")||install.packages("mvtnorm")

#Reading in the data:

control <- read.table("file_name.csv", header=TRUE,sep=",")

treat <- read.table("file_name.csv", header=TRUE,sep=",")

#Obtaining the parameter estimates from using the real data to be used:

mu_control_base<-mean(control$"Baseline_Counts")

sd_control_base<-sd(control$"Baseline_Counts")

mu_control_eos<-mean(control$"EOS_Counts")

sd_control_eos<-sd(control$"EOS_Counts")

mu_treat_base<-mean(treat$"Baseline_Counts")

sd_treat_base<-sd(treat$"Baseline_Counts")
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mu_treat_eos<-mean(treat$"EOS_Counts")

sd_treat_eos<-sd(treat$"EOS_Counts")

#Dealing with the correlation of the control group:

corr_control<-0.4

S_control<-matrix(c(1,corr_control,corr_control,1),2,2)

#Dealing with the correlation of the treatment group:

corr_treat<-0.3

S_treat<-matrix(c(1,corr_treat,corr_treat,1),2,2)

#Obtaining Simulated Data:

counter <- 0

dataList <- vector("list", length = 1000)

while(counter < 1000){

AB_control <- rmvnorm(mean=c(0,0),sig=S_control,n=15)

U_control <- pnorm(AB_control)

simul_cont_base <- qNBII(U_control[,1],mu=mu_control_base,sigma=sd_control_base)

simul_cont_eos <- qNBII(U_control[,2],mu=mu_control_eos,sigma=sd_control_eos)

AB_treat <- rmvnorm(mean=c(0,0),sig=S_treat,n=15)

U_treat <- pnorm(AB_treat)

simul_treat_base <- qNBII(U_treat[,1],mu=mu_treat_base,sigma=sd_treat_base)

simul_treat_eos <- qNBII(U_treat[,2],mu=mu_treat_eos,sigma=sd_treat_eos)

if(cor(simul_cont_base,simul_cont_eos,method=c("pearson"))>0 &

cor(simul_cont_base,simul_cont_eos,method=c("pearson"))<0.5 &

cor(simul_treat_base,simul_treat_eos,method=c("pearson"))>0 &

cor(simul_treat_base,simul_treat_eos,method=c("pearson"))<0.5|
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is.na(cor(simul_cont_base,simul_cont_eos,method=c("pearson"))=="TRUE") &

cor(simul_treat_base,simul_treat_eos,method=c("pearson"))>0 &

cor(simul_treat_base,simul_treat_eos,method=c("pearson"))<0.5|

is.na(cor(simul_treat_base,simul_treat_eos,method=c("pearson"))=="TRUE")

& cor(simul_cont_base,simul_cont_eos,method=c("pearson"))>0 &

cor(simul_cont_base,simul_cont_eos,method=c("pearson"))<0.5|

is.na(cor(simul_cont_base,simul_cont_eos,method=c("pearson"))=="TRUE")

& is.na(cor(simul_treat_base,simul_treat_eos,method=c("pearson"))=="TRUE"))

{

counter<-counter+1

c0<-rep("c0",15)

sim_cont0<-rep(paste("Simulation",counter),15)

dt_c0<-as.data.frame(cbind(simul_cont_base,c0,sim_cont0))

names(dt_c0)<-c("Data","Treatment Status","Simulation")

c14<-rep("c14",15)

sim_cont14<-rep(paste("Simulation",counter),15)

dt_c14<-as.data.frame(cbind(simul_cont_eos,c14,sim_cont14))

names(dt_c14)<-c("Data","Treatment Status","Simulation")

t0<-rep("t0",15)

sim_treat0<-rep(paste("Simulation",counter),15)

dt_t0<-as.data.frame(cbind(simul_treat_base,t0,sim_treat0))

names(dt_t0)<-c("Data","Treatment Status","Simulation")

t14<-rep("t14",15)

sim_treat14<-rep(paste("Simulation",counter),15)

dt_t14<-as.data.frame(cbind(simul_treat_eos,t14,sim_treat14))

names(dt_t14)<-c("Data","Treatment Status","Simulation")

dataList[[counter]] <- rbind(dt_c0,dt_c14,dt_t0,dt_t14)
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print(counter)

}

}

# bring data together into single data frame

final_data_frame <- Reduce("rbind", dataList)

write.table(final_data_frame,file="Simulated_Data.csv",append=FALSE,

sep=",",col.names=TRUE,row.names=FALSE)

A.2 Code for simulating zero inflated data

require("gamlss")||install.packages("gamlss")

require("mvtnorm")||install.packages("mvtnorm")

#Location parameter for the zero inflated distribution:

modified_mean<-function(d){

mean(d)/(1-(length(subset(d,d==0))/length(d)))

}

#Reading in the data:

control <- read.table("file_name.csv", header=TRUE,sep=",")

treat <- read.table("file_name.csv", header=TRUE,sep=",")

#Obtaining the parameter estimates from using the real data to be used:

mu_control_base<-modified_mean(control$"Baseline_Counts")

sd_control_base<-sd(control$"Baseline_Counts")

nu_control_base<-length(subset(control$"Baseline_Counts",
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control$"Baseline_Counts"==0))/length(control$"Baseline_Counts")

mu_control_eos<-modified_mean(control$"EOS_Counts")

sd_control_eos<-sd(control$"EOS_Counts")

nu_control_eos<-length(subset(control$"EOS_Counts",

control$"EOS_Counts"==0))/length(control$"EOS_Counts")

mu_treat_base<-modified_mean(treat$"Baseline_Counts")

sd_treat_base<-sd(treat$"Baseline_Counts")

nu_treat_base<-length(subset(treat$"Baseline_Counts",

treat$"Baseline_Counts"==0))/length(treat$"Baseline_Counts")

mu_treat_eos<-modified_mean(treat$"EOS_Counts")

sd_treat_eos<-sd(treat$"EOS_Counts")

nu_treat_eos<-length(subset(treat$"EOS_Counts",

treat$"EOS_Counts"==0))/length(treat$"EOS_Counts")

if(nu_control_base==0){nu_control_base<-1e-16}

else{nu_control_base<-nu_control_base}

if(nu_treat_base==0){nu_treat_base<-1e-16}

else{nu_treat_base<-nu_treat_base}

if(nu_control_eos==0){nu_control_eos<-1e-16}

else{nu_control_eos<-nu_control_eos}

if(nu_treat_eos==0){nu_treat_eos<-1e-16}

else{nu_treat_eos<-nu_treat_eos}

if(nu_control_base==1){nu_control_base<-0.9999999999999999}

else{nu_control_base<-nu_control_base}

if(nu_treat_base==1){nu_treat_base<-0.9999999999999999}

else{nu_treat_base<-nu_treat_base}

if(nu_control_eos==1){nu_control_eos<-0.9999999999999999}

else{nu_control_eos<-nu_control_eos}

if(nu_treat_eos==1){nu_treat_eos<-0.9999999999999999}
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else{nu_treat_eos<-nu_treat_eos}

#Dealing with the correlation of the control group:

corr_control<-0.4

S_control<-matrix(c(1,corr_control,corr_control,1),2,2)

#Dealing with the correlation of the treatment group:

corr_treat<-0.3

S_treat<-matrix(c(1,corr_treat,corr_treat,1),2,2)

#Obtaining Simulated Data:

counter <- 0

dataList <- vector("list", length = 1000)

while(counter < 1000){

AB_control <- rmvnorm(mean=c(0,0),sig=S_control,n=15)

U_control <- pnorm(AB_control)

simul_cont_base <- qZIPIG(U_control[,1],mu=mu_control_base,

sigma=sd_control_base,nu=nu_control_base)

simul_cont_eos <- qZIPIG(U_control[,2],mu=mu_control_eos,

sigma=sd_control_eos,nu=nu_control_eos)

AB_treat <- rmvnorm(mean=c(0,0),sig=S_treat,n=15)

U_treat <- pnorm(AB_treat)

simul_treat_base <- qZIPIG(U_treat[,1],mu=mu_treat_base,

sigma=sd_treat_base,nu=nu_treat_base)

simul_treat_eos <- qZIPIG(U_treat[,2],mu=mu_treat_eos,

sigma=sd_treat_eos,nu=nu_treat_eos)
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if(cor(simul_cont_base,simul_cont_eos,method=c("pearson"))>0 &

cor(simul_cont_base,simul_cont_eos,method=c("pearson"))<0.5 &

cor(simul_treat_base,simul_treat_eos,method=c("pearson"))>0 &

cor(simul_treat_base,simul_treat_eos,method=c("pearson"))<0.5|

is.na(cor(simul_cont_base,simul_cont_eos,method=c("pearson"))=="TRUE") &

cor(simul_treat_base,simul_treat_eos,method=c("pearson"))>0 &

cor(simul_treat_base,simul_treat_eos,method=c("pearson"))<0.5|

is.na(cor(simul_treat_base,simul_treat_eos,method=c("pearson"))=="TRUE") &

cor(simul_cont_base,simul_cont_eos,method=c("pearson"))>0 &

cor(simul_cont_base,simul_cont_eos,method=c("pearson"))<0.5|

is.na(cor(simul_cont_base,simul_cont_eos,method=c("pearson"))=="TRUE") &

is.na(cor(simul_treat_base,simul_treat_eos,method=c("pearson"))=="TRUE"))

{

counter<-counter+1

c0<-rep("c0",15)

sim_cont0<-rep(paste("Simulation",counter),15)

dt_c0<-as.data.frame(cbind(simul_cont_base,c0,sim_cont0))

names(dt_c0)<-c("Data","Treatment Status","Simulation")

c14<-rep("c14",15)

sim_cont14<-rep(paste("Simulation",counter),15)

dt_c14<-as.data.frame(cbind(simul_cont_eos,c14,sim_cont14))

names(dt_c14)<-c("Data","Treatment Status","Simulation")

t0<-rep("t0",15)

sim_treat0<-rep(paste("Simulation",counter),15)

dt_t0<-as.data.frame(cbind(simul_treat_base,t0,sim_treat0))

names(dt_t0)<-c("Data","Treatment Status","Simulation")

t14<-rep("t14",15)

sim_treat14<-rep(paste("Simulation",counter),15)

251



dt_t14<-as.data.frame(cbind(simul_treat_eos,t14,sim_treat14))

names(dt_t14)<-c("Data","Treatment Status","Simulation")

dataList[[counter]] <- rbind(dt_c0,dt_c14,dt_t0,dt_t14)

print(counter)

}

}

# bring data together into single data frame

final_data_frame <- Reduce("rbind", dataList)

write.table(final_data_frame,file="Simulated_Data.csv",append=FALSE,

sep=",",col.names=TRUE,row.names=FALSE)
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Appendix B

Information relating to Bayesian
simulation study

B.1 Generating samples from posterior distribu-

tions

B.1.1 Gibbs sampler

Recall Equation 2.18 from Section 2.4.3:

π(θ|x) =
f(x|θ)p(θ)
f(x)

,

where π(θ|x) is the posterior distribution of the parameters θ = {θ1, . . . , θm}
given the data x = {x1, . . . , xn}, f(x|θ) is the probability of observing the data
x under different parameter values θ (this is known as the likelihood), p(θ) is
the prior distribution of the parameters and f(x) is a normalisation constant so
that the posterior distribution is a valid probability density function. In the case
of discrete random variables, the probability density functions are replaced with
probability mass functions.
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Suppose we are interested in the posterior distribution of θ = {θ1, . . . , θm}. Then
we can construct a Markov Chain using the following Gibbs Sampling algorithm
(Gelman et al. 2013):

The Gibbs Sampler:

• Begin with arbitrary starting values for the parameters, denoted as θ0 =

{θ0
1, . . . , θ

0
m}.

• At iteration t say, of the Markov Chain let the set of parameter values be
denoted by θt. From iteration t to t+1, we update each of the parameters
in turn, using their corresponding posterior conditional distributions.
Mathematically, this algorithm can be summarised as the following:

Simulate: θt+1
1 ∼ π(θ1|θt2, ..., θtm).

Update: θt+1
2 ∼ π(θ2|θt+1

1 , θt3, ..., θ
t
m) and so on...

Finally: θt+1
m ∼ π(θm|θt+1

1 , ..., θt+1
m−1).

The order in which parameters are updated does not matter, since it can be
shown that this algorithm produces a Markov chain with stationary distribution
π Gelman et al. (2013). In other words, if we run the chain long enough with
enough iterations, the simulated values can be regarded as a sample from the
posterior distribution.

One useful feature of the Gibbs sampler is that it tends to be efficient MCMC-
wise, with respect to the fact that the parameters are always updated within each
iteration. In fact one can also use blocked Gibbs sampling, which involves two or
more groups of variables and samples from their joint distributions, conditioned
on all other variables, as opposed to sampling from each one individually. On that
note, if the posterior distribution is highly dimensional then the Gibbs sampler
can result in being computationally slow (irrespective of blocking being present
or not) compared to other samplers, but of course this depends on the number of
parameters contributing to the posterior distribution.
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One obvious disadvantage of utilising this sampler however, is that the posterior
conditional distributions need to be derived for the parameters. Indeed, if con-
jugate priors are utilised in computations, then the derivations of the posterior
conditional distributions can result in simpler algebra being carried out, however
the use of a conjugate prior may not always be utilised. If the posterior distribu-
tion is of a non-standard form, more complex algorithms need to be implemented
to sample from the distribution. One of which is the Metropolis-Hastings algo-
rithm, which will be described next.

B.1.2 Metropolis-Hastings (MH) sampler

The Metropolis-Hastings (MH) Sampler:

• Begin with arbitrary starting values for the parameters, denoted as θ0 =

{θ0
1, . . . , θ

0
m}.

• At iteration t say, of the Markov Chain let the set of parameter values
be denoted by θt. We update the parameter values using a two-step
procedure:

Step 1: Sample a candidate value φ ∼ q(φ|θt),

where φ is known as the candidate point

and q is known as the proposal distribution.

Step 2: With probability α(θt, φ) = min

(
1,
π(φ|x)q(θt|φ)

π(θt|x)q(φ|θt)

)
set θt+1 = φ(candidate value is accepted)

else, set θt+1 = θt(candidate value is rejected).

Due to the form of the acceptance probability, we only need to know π up to pro-
portionality. Though, the choice of proposal distribution is essentially arbitrary
and often requires some pilot-tuning.
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B.1.2.1 Flavours of MH schemes

Within the MH scheme, there are a number of special cases depending upon the
(essentially arbitrary) choice of proposal distribution and here we will consider a
number of the most common type of proposal distributions.

One basic and common choice is to centre the proposal around the current pa-
rameter value θt. In other words, we propose the candidate value:

φ = θt + z,where z ∼ f.

For example, we may consider the proposal distribution (f) to be N (0, σ2I),
where σ2 is to be chosen. This choice is known as a Random Walk MH scheme.

It is worth noting that the choice of a proposal distribution need not be one which
is symmetric. In the instance of a symmetric proposal distribution being utilised
however, this is known as a Metropolis Update. In the instance of these types of
proposals being used, q(θt|φ) = q(φ|θt) and so the acceptance probability in the
MH algorithm simplifies to:

α(θt, φ) = min

(
1,
π(φ|x)

π(θt|x)

)

There is also the case of utilising an Independence Sampler, in which the proposal
distribution is independent of the current state of the chain, i.e. q(φ|θt) = q(φ),
but this algorithm does not perform as well as previous types of updates men-
tioned above.

It is also worth considering that in some instances the posterior distribution
will be high-dimensional. In this case, we can either update the parameters
simultaneously (as in the random walk MH scheme), or we can update each
parameter in turn. This is then known as a Single-Update MH and is considered
below:
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A glimpse into the Single-Update MH algorithm:

Suppose the set of parameter values is θt.

Step 1: Propose the value φ1 for θ1

(keep all the other parameter values the same).

Accept/Reject the proposed value with standard acceptance probability.

Step 2: Propose the value φ2 for θ2

(Note we now use the updated value θt+1
1 )

Accept or Reject this value and so on...

(Recall this is the same idea for the Gibbs sampler).

In order to balance the size of the proposed moves with the chance of accepting
them, the proposal variance from the proposal distribution is often tuned to
obtain an acceptance rate of 20-40%. Recall from Chapter 2, that the acceptance
rate is essentially the percentage of times that the chain obtains a unique value.
Most MH algorithms require some pilot-tuning in order to achieve satisfactory
performance (Gelman et al. 2013). It is worth noting that in the case of a
Metropolis Update being used, even though the acceptance probability is not a
function of the proposal variance σ2; the candidate value φ is dependent on σ2.

If one were to propose extremely small jumps, one is virtually bound to accept
them, but it will take a long time to move around the posterior distribution.
Alternatively, when proposing extremely large jumps one does have the potential
to move further but will generally have smaller acceptance rates. In other words,
there is a trade-off between the acceptance rate of a chain and the speed at which
the posterior distribution is traversed. This movement around the parameter
space is often referred to as mixing and hence why trace plots are often obtained
to observe this. In fact, some MH algorithms are programmed to be adaptive,
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meaning the proposal variance is modified within the running of the algorithm,
in order to improve the acceptance rates of the parameters at a given iteration of
the chain, which is a concept also discussed by Gelman et al. (2013).

One of the main advantages of these schemes is the fact that posterior conditional
distributions need not be derived to perform them, particulary in the instance
of distributions being of a non-standard form. If one were also to utilise the
concept of a symmetric proposal distribution, in the case of a Random Walk
MH scheme, then this also makes for easier computation with respect to the
acceptance probabilities, since the posterior distributions are all that would be
required for these to be evaluated. We could also say that if one were to adopt
the concept of updating each parameter in turn, as in the case of a Single-Update
MH scheme and with the Gibbs Sampler: the scheme would be efficient MCMC-
wise. With these concepts and advantages in mind, it is a variation of the MH
algorithm that has been utilised in our simulation study, as described in Chapter
5.

B.2 Examples of convergence diagnostics using de-

veloped Metropolis-Hastings (MH) algorithms

There are many methods in which we can assess that the distribution of param-
eters has reached convergence to the stationary distribution and that our chains
are well mixed across the parameter spaces (Gelman et al. 2013). For instance,
this can be assessed through examining relevant trace plots, acceptance rates
(essentially the percentage of unique values the chain has), autocorrelations of
the parameters and one could also consider deriving the Brooks-Gelman-Rubin
Statistic. It is worth noting however, that even though convergence is guaran-
teed mathematically, there is no way of being able to prove if the distribution of
parameters has converged to the stationary distribution - these assessments can
only provide an indication of lack of convergence and how efficient we are being
when sampling estimates from the stationary distribution.

In our examples to follow, for each of the four simulated data sets being consid-
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ered, two chains were generated with over-dispersed initial starting values for each
parameter involved. This is an approach recommended by Gelman et al. (2013).
Essentially, we are running several chains and comparing the output from each
individual chain and this can provide additional re-assurance since, in theory, the
chains should converge to the stationary distribution, i.e. the posterior distribu-
tion, and that no major modes have been missed in any one simulation.

As a means of assessing apparent convergence for the MH algorithms imple-
mented, here we consider chains and the parameters for four sets of data: the

first simulated Day 14 positive treatment group and 100

(
T0,j − T14,j

T0,j + T14,j

)
% sets of

data (from farm E32 with treatment group sample sizes of 50), where the relevant
Day 0 and Day 14 data were both simulated from a NBII distribution (which
was informed by 15EPG_McM_SCFT study data) and a ZIPIG distribution
(which was informed by 15EPG_McM field study data).

Overall, there are four examples of pairs of chains being considered here and the
assessment of convergence of the MH algorithms will be examined for each.

B.2.1 Trace plots and acceptance rates

When considering the simulated positive treatment group Day 14 data, based on
15EPG_McM_SCFT study data which were used to inform a NBII distribution
to simulate from, one chain was ran with initial starting values µ = 300 and
σ = 450 (referred to as Chain 1 ) and the other chain ran from initial starting
values µ = 1 and σ = 5 (referred to as Chain 2 ). Figure B.1 highlights the trace
plots for these two chains and the parameters considered.
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From Figure B.1, we are able to observe that even though the initial values
were over-dispersed for each parameter, the chains for each parameter appear
to converge to a common mode and result in well mixed distributions being
generated. It is worth noting that in the scenario where initial starting values
µ = 300 and σ = 450 were considered, the chains are not as well mixed up to the
2000th iteration. This is due to the fact that to ensure each of the parameters’
chains were tuned and explored their respective posterior distributions efficiently
(i.e. achieved acceptance rates between 20-40% after the initial burnin period) the
MH algorithms were programmed to be adaptive. In fact, based on these plots,
a burnin period of 2000 iterations could have been considered, thus a burnin
period of 5000 iterations is a conservative approach. After the burnin period of
5000 iterations, the acceptance rates of µ and σ for Chain 1 were 29.92% and
33.08%, respectively and for Chain 2, these were 29.38% and 33.38%, respectively
and these all lie within the range of between 20-40% as required.

For the same type of data considered but simulated using 15EPG_McM field
study data to inform a ZIPIG distribution to simulate from, one chain was ran
with initial starting values µ = 450, σ = 450 and ν = 0.9 (referred to as Chain
3 ) and the other chain ran from initial starting values µ = 1, σ = 5 and ν = 0.05

(referred to as Chain 4 ). Figure B.2 highlights the trace plots for these two
chains.
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From Figure B.2, we are able to observe that even though the initial values were
over-dispersed for each parameter, i.e. three highly valued starting points and
three low valued starting points, the chains for each parameter appear to converge
to a common mode and result in well mixed distributions being generated. In
fact, with respect to both chains, we observe a lot of the parameter spaces being
traversed. Again, we see that both chains are not as well mixed up to the 2000th

iteration, particularly for the parameters µ and σ. After the burnin period of 5000
iterations however, the acceptance rates of µ, σ and ν for Chain 3 were 28.42%,
32.78% and 30.8% respectively and for Chain 4, these were 28.9%, 32.7% and
30.58% respectively, and these all lie within the range of between 20-40% as
required.

For the simulated 100

(
T0,j − T14,j

T0,j + T14,j

)
% data, which consisted of using a NBII

distribution to simulate both Day 0 and Day 14 data by using 15EPG_McM_SCFT
field study data, one chain was ran with initial starting values µ = 100 and
σ = 450 (referred to as Chain 5 ) and the other chain ran from initial starting
values µ = 1 and σ = 5 (referred to as Chain 6 ). Figure B.3 highlights the trace
plots for these two chains.
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From Figure B.3, we are able to observe that the chains for each parameter
appear to converge to a common mode and result in well mixed distributions
being generated. It is worth noting that for Chain 5, we see that a burnin period
of 2000 iterations could be considered appropriate; but when considering Chain
6 a burnin period of 1000 iterations could be considered appropriate. After the
burnin period of 5000 iterations however, as programmed into our MH algorithms
from a conservative point of view, the acceptance rates of µ and σ for Chain 5 were
29.9% and 29.16%, respectively and for Chain 6, these were 30.58% and 29.1%,
respectively, and these all lie within the range of between 20-40% as required.

For the simulated 100

(
T0,j − T14,j

T0,j + T14,j

)
% data, which consisted of using a ZIPIG

distribution to simulate both Day 0 and Day 14 data by using 15EPG_McM field
study data, one chain was ran with initial starting values µ = 100 and σ = 450

(referred to as Chain 7 ) and the other chain ran from initial starting values µ = 1

and σ = 5 (referred to as Chain 8 ). Figure B.4 highlights the trace plots for these
two chains.
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From Figure B.4, we are able to observe that the chains for each parameter
appear to converge to a common mode and result in well mixed distributions
being generated. It is worth noting that for both chains, a burnin period of
1000 iterations could be considered appropriate. After the burnin period of 5000
iterations however, as programmed into our MH algorithms from a conservative
point of view, the acceptance rates of µ and σ for Chain 7 were 25.64% and
31.4%, respectively and for Chain 8, these were 24.82% and 32.5%, respectively
and these all lie within the range of between 20-40% as required.

Overall, it appears that, based on inspecting the trace plots and acceptance rates
of the chains for the parameters and simulated data considered, we are able to
obtain well mixed chains to obtain sample estimates from posterior distributions
of the parameters. It would appear that an improvement of the algorithms would
be to consider a burnin period of 2000 iterations as opposed to 5000. As a result,
5000 iterations can be considered as a conservative number of iterations to initially
discard, and this is still able to leave us with half the total number of iterations
to potentially thin out and sample estimates from the posterior distributions and
give us acceptance rates of between 20-40% as required.

B.2.2 Autocorrelations

According to Upton and Cook (2011), autocorrelation is a measure of the linear
relationship between two separate instances of the same random variable. This
is distinct from correlation, which refers to the linear relationship between two
random variables. As with correlation however, the possible values lie between 1
and -1 inclusive, with unrelated instances having a theoretical autocorrelation of
zero.

In the case of MCMC, autocorrelation measures the extent of the linear relation-
ship between parameter estimates at iterations that are a fixed interval (i.e. lag)
apart in a given chain. The sample autocorrelation for lag l, denoted as rl, is
given (for l = 1, 2, ..., t − 1) for the ordered sequence of t iterations θ1, θ2, ..., θt

for a parameter θ is defined as:
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rl =
Σt−l
t=1(θt − θ̄)(θt+l − θ̄)

Σt
t=1(θt − θ̄)2

,

where θ̄ is the sample mean.

We would expect the lth lag autocorrelation to be smaller as the lag l increases,
i.e. estimates from iterations close together will have a higher degree of correlation
in comparison to those estimates from iterations that are located further apart.
If autocorrelation is still relatively high for higher values of lag l, this would
indicate a high degree of correlation between iterations located further apart and
slow movement around the parameter space, i.e. slow mixing.

For Chains 1 and 2, Figure B.5 displays the autocorrelation, for various lags, for
the parameters µ and σ when a burnin of 5000 iterations has been considered with
Chains 1 and 2. It is clear from this Figure, that the autocorrelation between the
estimates reduces as the lag increases for both Chains 1 and 2, which indicates
that the distributions of parameters are well mixed. Figure B.6 displays similar
information, but the autocorrelations are based on a burnin of 5000 iterations
having occurred and then thinned-out so every 5th estimate contributed towards
the sample. From this Figure, we are able to observe that the autocorrelations
between estimates for both chains have further reduced, in comparison to those
displayed in Figure B.5.

In fact, these conclusions hold for the other autocorrelations of parameter es-
timates in the various other chains that have been considered in this Section.
In a similar fashion, Figures B.7 and B.8 represent the autocorrelations for the
parameters involved with Chains 3 and 4, Figures B.9 and B.10 represent the
autocorrelations for the parameters involved with Chains 5 and 6, Figures B.11
and B.12 represent the autocorrelations for the parameters involved with Chains
7 and 8. From all these Figures we are able to conclude that the thinning out
process has been effective in reducing the amount of autocorrelation in our sample
of estimates for each simulated data set considered, and that the distributions of
parameters are well mixed.
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Figure B.5: Autocorrelation between parameters µ and σ using simulated Day 14
positive treatment group data (based on 15EPG_McM_SCFT field study data)
after burnin period

Figure B.6: Autocorrelation between parameters µ and σ using simulated Day 14
positive treatment group data (based on 15EPG_McM_SCFT field study data)
after burnin period and thinning out
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Figure B.7: Autocorrelation between parameters µ, σ and ν using simulated Day
14 positive treatment group data (based on 15EPG_McM field study data) after
burnin period

Figure B.8: Autocorrelation between parameters µ, σ and ν using simulated Day
14 positive treatment group data (based on 15EPG_McM field study data) after
burnin period and thinning out

B.2.3 Gelman-Rubin diagnostic

The Gelman-Rubin Statistic, also known as the Potential Scale Reduction Factor
(PSRF), gives insight into the mixing of chains using between- and within-chain270



Figure B.9: Autocorrelation between parameters µ and σ using simulated

100

(
T0,j − T14,j

T0,j + T14,j

)
% data (based on 15EPG_McM_SCFT field study data) after

burnin period

Figure B.10: Autocorrelation between parameters µ and σ using simulated
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Figure B.11: Autocorrelation between parameters µ and σ using simulated
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Figure B.12: Autocorrelation between parameters µ and σ using simulated
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variances. According to Gelman et al. (2013), we consider this diagnostic after
the burnin period has been considered, and as such, the following outputs will be
based on the considered chains (i.e. Chains 1 -8 ) with the initial burnin period
of 5000 iterations having already been considered.

If we let p be the number of chains considered (in each instance for our purposes
this value would be 2) and q be the length of each chain (i.e. the number of
iterations to be considered which would be 5000 in our case after the considered
burnin period of 5000 iterations). For each parameter estimate θ, label the itera-
tions θij, (i = 1, ..., p; j = 1, ..., q). Then we can compute B and W , the between-
and within-chain variances:

B =
p

q − 1
Σq
j=1(θ̄j − θ̄)2,

where θ̄j =
Σp
i=1θij
p

and θ̄ =
Σq
j=1θ̄j

q
.

W =
Σq
j=1s

2
j

q
where s2

j =
Σp
i=1(θij − θ̄j)2

p− 1
.

The between-chain variance, B, contains a factor p because it is based on the
variance of the within-chain means, θ̄j, each of which is an average of p values
θij.

We can therefore estimate var(θ|x), the marginal posterior variance of the esti-
mate, by a weighted average of B and W , namely

ˆvar(θ|x) =
p− 1

p
W +

1

p
B.

As a result, we monitor convergence of the chain by estimating the factor by
which the scale of the current distribution for θ might be reduced if the iterations
were continued in the limit p→∞. The PSRF is then estimated by
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R̂ =

√
ˆvar(θ|x)

W
,

and this declines to the value of one as p → ∞. If the PSRF is high, then
this is reason to believe that proceeding with further iterations may improve
inference about the distribution of the associated estimate. According to Gelman
et al. (2013), if R̂ is not near the value of one (the word near meaning anything
less than the value of 1.1 as recommended by Gelman et al. (2013)) for each
estimate considered, then it is advisable to continue to run the chains for further
iterations. As well as this, Brooks and Gelman (1997) have also proposed a
multivariate version of the PSRF and the requirements mentioned above are still
desired when considering this multivariate case.

Figure B.13 displays the relevant R/RStudio output and plots, which have been
adapted for display purposes, for the Gelman-Rubin statistics obtained for Chains
1 and 2 with a burnin period of 5000 iterations. When observing the R/RStudio
output, the point estimate that is referred to as "[1,]" is the median PSRF for
the parameter µ (value 1) and the point estimate that is referred to as "[2,]" is
the median PSRF for the parameter σ (also with value 1). The respective upper
confidence limits for these median point estimates are also given in the output,
both of value approximately 1, since the PSRF is estimated with uncertainty
because our chain lengths are finite. The plots available in this Figure display
the estimates and the upper confidence limits of the PSRF over the iterations
considered. The plot on the left hand side displays this information for parameter
µ and the plot on the right hand side displays this information for parameter σ.
The multivariate version of the PSRF is also given as standard output, and this
has a value of 1.

Overall, based on the output and plots of this Figure, we observe that the median
point estimates and upper confidence limits for the PSRF (for both parameters)
and the multivariate version of the PSRF are all less than the value of 1.1, meaning
that that Chains 1 and 2 appear to be well mixed and there appears to be no
indication of a lack of convergence.
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Figure B.14 displays the relevant R/RStudio output and plots, which have been
adapted for display purposes, for the Gelman-Rubin statistics obtained for Chains
3 and 4 with a burnin period of 5000 iterations. The main difference between
this Figure and Figure B.13, is that there is an additional median point estimate
"[3,]" and an additional plot, both of which are to give inference on the estimated
PSRF for parameter ν. Again, we observe that the median point estimates and
upper confidence limits for the PSRF (for all parameters) and the multivariate
version of the PSRF are all less than the value of 1.1, meaning that there appears
to be no indication of a lack of convergence for Chains 3 and 4.

In fact, this is indeed the case when investigating if there is an indication of a lack
of convergence for the pairs of Chains 5 and 6 and Chains 7 and 8, for which the
relevant R/RStudio output and plots are highlighted in Figures B.15 and B.16.
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B.3 Additional Concepts: Mean squared errors

and the truncated Normal distribution

B.3.1 Mean squared errors

Recall from Section 2.4.2, that the bias of an estimator, θ̂ say, is defined as

Bias = E[θ̂]− θ,

where E[θ̂] is the average value of the sampling distribution for the estimate θ̂
in a set of simulations (Collins et al. 2001; Burton et al. 2006; Upton and Cook
2011).

While bias can quantify the average difference to be expected between an estima-
tor and a true parameter, an estimator based on a finite sample can additionally
be expected to differ from the true parameter due to the randomness in the sample
being considered.

The Mean Squared Error (MSE) of an estimator, given in (B.1), can be used to
try and reflect both types of difference (Collins et al. 2001) and is a measure of
overall accuracy for an estimator (Burton et al. 2006):

MSE = E[(θ̂ − θ)2]

= V ar[θ̂] + (Bias)2, (B.1)

where V ar[θ̂] is the variance of the sampling distribution for the estimate θ̂.

As a result, we see that the MSE is able to incorporate information about the bias
and the variance of estimators and this is often referred to as the Bias-Variance
decomposition. It is worth noting that in the case of an unbiased estimator being
considered, the MSE is essentially the variance of the the distribution for the
estimate θ̂. Comparisons of estimators, even those that are biased, are often
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based on the MSE (Upton and Cook 2011), since lower values of the MSE closer
to zero are an indication of more accurate estimates being produced.

In addition, the Root Mean Squared Error (RMSE) of an estimator is the square-
root of the above MSE value and is given in (B.2):

RMSE =

√
E[(θ̂ − θ)2]. (B.2)

By taking the square root of the MSE, this transforms the MSE back onto the
same scale as the parameter under consideration and we are able to report smaller
values in comparison to the MSE values (Collins et al. 2001; Burton et al. 2006).
Similarly, in the scenario where one finds themselves having to compare estima-
tors, lower values of the RMSE closer to zero being evaluated are an indication
of more accurate estimates being produced.

B.3.2 The truncated Normal distribution

Recall from Section 4.5.1, for a random variable Y to follow a normal distribution,
then it is said to have probability density function

f(y, µ, σ) =
1

σ
√

2π
e

−(y−µ)2

2σ2

and we say that Y ∼ N (µ, σ2).

It is worth noting that the standard normal distribution has mean 0 and variance
1. A random variable with this distribution is often denoted by Z and we write
Z ∼ N (0, 1). Its probability density function is usually denoted by φ and is
defined as

φ(z) =
1√
2π
e

−(z)2

2
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for −∞ < z <∞.

If Y ∼ N (µ, σ2), then Z defined by the standardizing transformation

Z =
Y − µ
σ

,

has a standard normal distribution. The cumulative distribution of Z is usually
denoted by Φ and tables of values of Φ(z) are commonly available (Upton and
Cook 2011). These tables usually give Φ(z) only for z > 0, since values for
negative values of z can be found using

Φ(z) = 1− Φ(−z).

The tables can be used to find cumulative probabilities for Y ∼ N (µ, σ2) via the
standardizing transformation given above since, for example,

P (Y < y) = Φ

(
y − µ
σ

)
.

In the scenario where Y ∼ N (µ, σ2) and is defined on the interval [a, b] where
−∞ ≤ a < b ≤ ∞, then Y conditional on a ≤ Y ≤ b has a truncated normal
distribution given by:

g(y, µ, σ) =
φ
(
y−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) .
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B.4 Measures of agreement: The Kappa (κ) and

Weighted Kappa (κw) Statistics

B.4.1 The Kappa statistic (κ)

Agreement between categorical assessments is usually considered as a problem of
comparing the ability of different raters (obervers) to classify subjects into one
of several groups. The approach outlined here also applies to the comparison of
two alternative categorisation schemes.

For our purposes, we are interested in assessing the agreement of classifications
of apparent efficacy of treatment groups, either EFF, SLOE or LOE according
to our adapted classification criteria presented in Section 6.2. For this, percent-
age estimates and associated intervals based on utilising our developed Bayesian
methodologies and those methodologies considered as part of the Defra project
shall be utilised. As such, a measure of agreement rather than association is
required, therefore a χ2 test for association is not applicable - this is not a hy-
pothesis testing problem (and also the data are paired and the classifications are
ordinal).

The simplest approach to assessing agreement is to see how many exact agree-
ments are observed. For example, Table B.1 displays the hypothetical situation
of two raters, 1 and 2, rating a total of a + b + c + d observations between two
types of classifications, 1 and 2.

Classification 1 by Rater 1 Classification 2 by Rater 1 (Row) Total

Classification 1 by Rater 2 a b a+b

Classification 2 by Rater 2 c d c+d

(Column) Total a+c b+d a+b+c+d

Table B.1: 2x2 Contingency Table of hypothetical classifications between 2 Raters

In the instance of Table B.1 being considered, the number of exact agreements is
simply a + d, i.e. the sum of the diagonal entries in the Table. Therefore there
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would be 100
(

a+d
a+b+c+d

)
% agreement between the two raters.

There are two issues with this simple calculation however. Firstly, the calculation
takes no account of where in the Table the agreement was and secondly, some
agreement between the two raters would be expected by chance, even if they
were guessing. A more reasonable approach would be to consider the agreement
in excess of the amount of agreement that would be expected by chance and so we
look to evaluate the κ statistic, i.e. the chance corrected proportional agreement.

The κ statistic (Cohen 1960; Cohen 1968; Fleiss et al. 1969) is calculated from the
observed and expected frequencies on the diagonal of a square table of frequencies
(Note: the expected frequency in a cell of a frequency table is the product of the
total of the relevant column and the total of the relevant row, divided by the
overall total of observations). If there are n observations in g categories, then the
observed proportional agreement is

po = Σg
i=1

fii
n
,

where fii is the number of agreements for category i.

The expected proportion of agreement by chance is given by

pe = Σg
i=1

rici
n2

,

where ri and ci are the row and column totals for the ith category.

The index of agreement, i.e. κ, is therefore given by

κ =
po − pe
1− pe

.

The κ statistic has a maximum of one when agreement is perfect, a value of zero
indicates that there is no agreement better than chance and negative values (up
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to the value of negative one) show worse than chance agreement (Cohen 1960).

An approximate standard error for κ presented by Cohen (1960) and Cohen (1968)
is

se(κ) =

√
po(1− po)
n(1− pe)2

, (B.3)

so that a 95% confidence interval for the population value of κ is

κ± 1.96(se(κ)).

However, it was shown by Fleiss et al. (1969) that this standard error seems
to overestimate the true standard error and variance, resulting in conservative
estimates. As a result, Fleiss et al. (1969) presented valid formulae for an ap-
proximate, large sample standard error and variance of the κ statistic. We refer
the reader to Fleiss et al. (1969) for further information. In fact, it is the formu-
lae presented by Fleiss et al. (1969) that are used in the calculation of standard
errors and confidence intervals in the psych package in R/RStudio (Revelle 2017).

It is worth noting however that, according to NCSS , the standard error (B.3) is
often used because of its simplicity, for planning purposes and is often close to
the approximation presented by Fleiss et al. (1969).

In general, the confidence interval for κ is not all that useful because, unless the
sample size is small, the confidence interval will be narrow and thus will not allow
for much variation in interpretation.

It is worth mentioning that there are no absolute definitions for interpreting values
between zero and one but a general guideline provided by Landis and Koch (1977)
is shown below in Table B.2.

The reduction of the data to a single number inevitably yields an answer that is
not terribly meaningful without examination of the table of frequencies. There is
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Value of κ Strength of Agreement

<0.20 Poor

0.21-0.40 Fair

0.41-0.60 Moderate

0.61-0.80 Good

0.81-1.00 Very Good

Table B.2: Interpreting agreement using κ

no substitute for inspecting the table of frequencies because many different tables
will yield similar values of κ.

B.4.2 Weighted Kappa (κw)

A weakness of the κ Statistic is that it takes no account of the degree of disagree-
ment - all disagreements are treated equally. Where the categories are ordered, as
is often the case, it may be preferable to give different weights to disagreements
according to the magnitude of the discrepancy. In this case, observations near to
the diagonal, representing a difference of only one category, are considered less
serious than those where the discrepancy is two or three categories.

The idea can be built into the calculation of κ to obtain a statistic called a
weighted κ (Cohen 1968; Fleiss et al. 1969). This is obtained by giving weights
to the frequencies in each cell of the table according to their distance from the
diagonal that indicates agreement. For the cell in row i and column j, with
observed frequency fij a weight can be calculated as

wij = 1− |i− j|
g − 1

.
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Thus, cells on the diagonal are given a weight of one, while those where the
difference is by one category are given a weight of 1− 1

g−1
, etc.

The weighted observed and expected proportional agreement are obtained as

po(w) =
Σg
i=1Σg

j=1wijfij

n

and

pe(w) =
Σg
i=1Σg

j=1wijricj

n
.

As a result, the weighted κ is given by

κw =
po(w) − pe(w)

1− pe(w)

.

Again, we refer the reader to Fleiss et al. (1969) for further information on
the approximate, large sample standard error and variance for the weighted κ

statistic.

As with other methods of observing small, squared frequency tables, there are
difficulties associated with the use and interpretation of κ. The main issue being
that the value of κ depends on the proportion of subjects in each category and
the consequence of this property of κ is that it is misleading to compare values of
κ from different studies where the prevalence of the categories differ. For larger
tables the same is true, but it is even more complicated to judge comparability.
Despite this shortcoming, the κ statistic and the weighted κ statistic, are the
best approaches to the analysis of these types of problems, but it is important to
display the raw data, if possible.
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