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Abstract

This thesis explores the development of data-driven and machine learning

methods in application to the health monitoring of rotating plant items being

used in the primary and secondary cycles of the Advanced Gas-cooled Reac-

tor (AGR) nuclear power plants in the UK. The methods fall broadly into two

categories: the statistical augmentation of a pre-existing knowledge-based sys-

tem for turbine generator vibration alarm analysis, and the development of a

machine learning model for the exploration of long-term predictive measures

of asset health for AGR gas circulator units. Both of these topics are unified in

their engineering context, and the overall aim of the approaches employed: to

provide improved decision support using data to reliability staff tasked with

monitoring key nuclear assets.

A self-tuning methodology for knowledge-based system parameterisation

and data selection in rotomachinery vibration monitoring is introduced, pro-

viding a comparative study of numerous methods and case studies for features

of interest in both steady-state and step change conditions. These approaches

were developed using a historical dataset taken from a turbine generator in

use at an AGR, with time series streams from multiple component channels.

An event-driven approach to asset health is presented, utilising a support

vector machine & logistic regression hybrid model to estimate particular states

of interest associated with the gas circulator duty cycle. This approach to

health monitoring (examining responses during semi-regular refuelling events)

is shown to correlate highly with the remaining useful life of a circulator unit

which eventually underwent an unexpected failure, and provides a potential

quantitative metric for preventing repeat instances.
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Chapter 1

Introduction

1.1 Introduction to the research

Condition monitoring (CM) has a long and distinguished history as a scien-

tific and engineering discipline. Since the industrial revolution in the late 18th

century, the world has become increasingly reliant on machinery and auto-

mated processes. Industries such as transportation, manufacturing, construc-

tion and energy production all require almost innumerable numbers of me-

chanical, chemical and electrical processes and machines. Accordingly, the

proper maintenance and analysis of these assets represents an important area

for the organisations and practitioners in these fields, helping ensure that sys-

tems remain operational without the risk of unexpected failures and outages.

The supply of reliable and secure energy in today’s technologically-centred

economy is a commodity more important [Bra10, YM13, CI17] than ever be-

fore. With the level of consumption steadily rising [Ama14, IEA17], keeping

asset availability high is critical in meeting the market requirements from both

industry and consumers. Coupled with the ever-increasing threats from cli-

mate change, a common approach for nation states to consider is to build a

diverse generation mix [PK15], of which nuclear energy can play a significant
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role.

Nuclear generation in the UK has a long legacy and potentially expansive

future as a part of the energy strategy of the country. Irrespective of the next

stages for prospective new builds and developments in next-generation nu-

clear technologies, the pre-existing fleet in the UK continues to provide 18%

[WNA18a] of the energy cross-section, and requires continued attention in the

areas of operational efficacy and safety. A premium is placed on reliability and

sound quantitative decision making by the operator on all of the primary, sec-

ondary and auxiliary processes involved in the plants, given the importance

of maintaining output economically and safely.

Among the primary and secondary cycle plant items for nuclear operators,

turbine generators (TGs) and gas circulators (GCs) are instrumented to survey

a variety of data streams for the purposes of monitoring behaviour and per-

formance empirically. These records are well integrated into the reliability en-

gineering workflow: regulatory requirements exist [iso09] dictating acceptable

levels of vibration for observables such as amplitude time series and frequency

components. Data-based resources for the reliability engineer are also increas-

ing in availability and sophistication, corresponding analogously with the ‘big

data’ [Loh12] revolution seen elsewhere in technology trends.

While there has been historical successes [Ran04, Tav08] in applying quan-

titative and automated techniques to common CM problems within rotating

machinery CM, there remains analyses still reliant on manual legacy approaches

to extract diagnostics from machine data. There is a wealth of useful informa-

tion to be derived from the steadily improving data view of key rotomachinery

systems in contexts such as nuclear generation, and the increased adoption of

data-driven techniques can take advantage of this - resulting in improvements

to machine availability and generation reliability. However, the necessity of

clear decision-making and accountability when considering safety critical as-
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sets (such as primary cycle nuclear machines like GCs) means that any data-

driven inference needs to be provided in a concise and explicable manner to

engineers who may not be domain experts in the fields of data science & intelli-

gent systems. This has been a recognised issue [PCLH15] for the application of

so-called ‘black box’ techniques to problems in various domains. Any methods

employed should provide clear explanations or employ intuitive visualisation

techniques when presenting decision support to the end-user.

This thesis demonstrates several techniques which exploit the increased

data resource for nuclear rotomachinery reliability engineering; in particular

approaches from the discipline of machine learning (ML); while considering the

importance of the presentation of clear reasoning. Two suites of approaches

are demonstrated; a self-tuning augmentation of an existing knowledge-based

intelligent system for alarm analysis on TGs, and a data-based model of GC re-

fuelling for predictive health monitoring purposes. From these examples, the

value of robust intelligent system methodologies in data-rich but explicability-

focused scenarios is presented.

1.2 Contributions from the research

The key novel contributions from this work can be summarised as:

• Augmentation of an existing knowledge-based intelligent system with

ML and statistical inference techniques, providing an improved hybrid

intelligent system tackling the engineering problem of routine alarm anal-

ysis in TGs,

• A self-tuning framework for vibration diagnostics, allowing for the ap-

plication of a routine alarm knowledge base across an entire asset family

under a single maintenance regime,

• The use of techniques in statistical inference to automatically define pe-
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riods of system normality and transient behaviour in rotomachinery vi-

bration data,

• Construction of a data-driven classification model with the ability to ac-

curately label historical periods of refuelling events from the vibration

response data,

• Development of an empirical model mapping event state to remaining

useful life, providing predictive metrics to anticipate future failures in

GC units,

• Presentation of a new GC phase space view for repeated asset events,

which visually provides feedback on typical vibration characteristics across

the machine,

Alongside these research outcomes, a number of industrial deliverables

make up the contributions from the project. Much of the work outlined has

been developed into a prototype vibration analysis toolkit (the Rotating Machinery

Alarm Analyst, ROMAAN, system), which was demonstrated on data taken from

machines at two UK nuclear power plant sites.

1.3 Overview of the thesis

This thesis opens with two chapters covering important areas of background

and contextual information. Chapter 2 discusses the history and present day

setup of nuclear generation in UK, before introducing the rotating asset class

within this context. The chapter goes on to provide an in-depth overview of

the state-of-the-art in rotating machinery CM, before concluding with the op-

portunities where improvements can be made using intelligent systems tech-

niques.

Chapter 3 introduces the discipline of machine learning, providing a broad

overview of the field, relevant techniques and its history of application in sim-
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ilar engineering areas. It then concludes by presenting the argument for ML

solutions to the engineering problems introduced in the previous chapter.

Chapter 4 introduces the first novel contribution from the research: a data-

driven augmentation of an existing knowledge-based system for use in the

vibration analysis of rotating machinery. The ‘self-tuning’ framework under-

pinning this is discussed in detail, providing insight into the development and

reasoning behind the selected approaches. Several empirical and statistical

methods for time series analysis were developed as part of this section, which

are all also introduced and demonstrated.

Chapter 5 presents a novel data-driven model for examining refuelling

events in GC units. This section illustrates the process of constructing and

testing this model utilising a variety of ML candidate techniques, before dis-

cussing the potential for its application in long-term GC health monitoring.

Finally, Chapter 6 concludes the thesis by summarising the two strands of

work, discussing their overlaps and recommending on potential next stages

for this research.

1.4 Associated publications

• J. J. A. Costello, G. M. West and S. D. J. McArthur, “Machine learning

model for event-based prognostics in gas circulator condition monitor-

ing”, IEEE Transactions on Reliability, 66(4), pp 1048-1057 (2017)

• J. J. A. Costello, G. M. West, S. D. J. McArthur and G. Campbell, “Self-

tuning routine alarm analysis of vibration signals in steam turbine gen-

erators”, IEEE Transactions on Reliability, 61(3), pp 731-740 (2012)

• J. J. A. Costello, G. M. West, S. D. J. McArthur and G. Campbell, “Investi-

gation of gas circulator response to load transients in nuclear power plant

operation”, The Eighth American Nuclear Society International Topical Meet-
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ing on Nuclear Plant Instrumentation, Control and Human-Machine Interface

Technologies, San Diego CA., USA (2012)

• J. J. A. Costello, G. M. West, S. D. J. McArthur and G. Campbell, “Self-

tuning diagnosis of routine alarms in rotating plant items”, The Eighth

International Conference on Condition Monitoring and Machinery Failure Pre-

vention Technologies, Cardiff UK, (2011)

• V. M Catterson, J. J. A. Costello, G. M. West, S. D. J. McArthur, C. W.

Wallace, “Increasing the adoption of prognostic systems for health man-

agement in the power industry”, Chemical Engineering Transactions, 33(3),

pp. 271-276 (2013)

• C. J Wallace, J. J. A. Costello, G. M. West, S. D. J. McArthur, M. Coghlan,

“Integrated condition monitoring for plant-wide prognostics”, Chemical

Engineering Transactions, 33(3), pp. 859-864 (2013)
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Chapter 2

Condition monitoring of

nuclear-context rotating plant

This chapter introduces the main setting of the research in this thesis: namely

the Advanced Gas-cooled Reactor (AGR) and its associated rotating assets that

ensure the effective and safe operation of this reactor design. Alongside this,

the concept of condition and health monitoring for engineering assets is pre-

sented.

2.1 Nuclear energy

2.1.1 Background

Nuclear fission as a source of exploitable energy was proposed in the first third

of the 20th century, with physicist Enrico Fermi heading the development of the

first fission-based reactor - the Chicago Pile 1, or CP-1 - in 1942 [Fer46]. This

was shortly followed by the Experimental Breeder Reactor 1, or EBR-1, which

marked the first instance nuclear fission was used to produce electricity, pro-

viding power to a number of everyday lightbulbs in December 1951 [Mic01].

Since then nuclear power has evolved into an important modern generation
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Table 2.1: Nuclear generation from selected nations [WNA19]

Current Planned
Country No. reactors (NPPs) Net MWe % No. reactors Gross MWe
Canada 19 (7) 13553 14.6 2 1500
China 45 (23) 42976 3.9 43 50900
France 58 (19) 63130 71.6 1 1720
Germany 7 (3) 9444 11.6 0 -
India 22 (7) 6219 3.2 14 10500
United Kingdom 15 (8) 8883 19.3 3 5060
United States 98 (60) 99376 20.0 14 3100

means, with around 450 civil nuclear reactors around the globe supplying an

estimated 11% [WNA18b] of the world’s electricity as of 2018. Thirty countries

[WNA18b] have active civil nuclear programmes. A selection of some of the

major countries utilising nuclear power plants (NPPs) is provided in Table 2.1,

providing details of their operable nuclear capacity in each state along with the

confirmed plans for future reactors . Note that the percentages given indicate

the proportion of the total generation mix in that nation.

Even Germany, where the governing authority have elected to rescind plans

for future atomic energy development, has an existing NPP-based function

that sees nuclear-based generation continuing for the next twenty years as the

current capacity is phased out (Neckarwestheim 2 plant is scheduled for de-

commissioning in 2036 [WNA13]). As shown by these figures, the ongoing op-

eration and management of atomic energy is important (at least in the short-

to medium-term) for a large proportion of the major economic powers.

This international interest in nuclear can be attributed to a variety of factors,

but one of the most overriding considerations for future generation capacity

(of any format) is its associated ‘carbon footprint’; the estimated rate at which the

construction, operation and decommissioning of a generation facility expels

CO2 and other greenhouse gases into the Earth’s atmosphere. The reduction

of carbon emissions was identified by the United Nations in the seminal Kyoto

Protocol [dB08] as of great importance in tackling climate change, with thirty-
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Table 2.2: Estimated emissions (tonnes of CO2 per GWh) from generation
[MHA18]

Emissions
Generation type 2015 2016 2017
Coal 909 931 918
Gas 382 378 357
All fossil fuels 625 497 460
All fuels (incl. nuclear & renewables) 335 265 225

seven parties (including the European Union and it’s 28 states) agreeing to

meet binding targets in reducing their output by 2020.

This has rendered management of emissions a massive issue for industry as

a whole; often with the tender of projects being decided on the expected green-

house gas expulsion rate [UKC08] of the proposal. Within energy, this is made

particularly pertinent as much of the existing conventional capacity (coal-fired,

natural gas) have an ongoing associated emission rate when producing power.

Table 2.2 shows the marked difference in emission ratios between conventional

approaches in coal and gas when compared against a mixed including nuclear

and renewable solutions. The inclusion of nuclear and renewables markedly

reduces the CO2 output per GWh unit generated. Coupled with the existing

base-load penetration of nuclear across many developed nations, maintain-

ing and developing the sector is a key point for many national administra-

tions. From a more quantitative perspective, studies over the previous decade

[POS11, PAH+17] have consistently placed nuclear among the best performing

low-carbon technologies available to the UK moving forward.

Each of these points contribute to the fact that existing and new build nu-

clear capacity has an important role to play in addressing global energy re-

quirements.
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2.1.2 Nuclear fission

While numerous NPP designs exist, the general principle surrounding their

operation can be considered fairly uniform. The process of energy genera-

tion comes from the fissile1 material (commonly Uranium-235 or Plutonium-

239) contained in the reactor core undergoing radioactive decay into fission

products. From a first principles perspective, the process occurs when a large

atomic nucleus is stimulated and decomposes into multiple smaller compo-

nent atomic nuclei, an amount of free neutrons and energy in the form of

gamma radiation [SF07]. The difference between the binding energies of the

larger parent nucleus and the resultant daughter nuclei accounts for emitted

energy. Fig. 2.1 provides a schematic example of a fission process.

n0

Nucleus of
fissile material Fission products

Smaller fissile nuclei

Energy

+

Free
neutron n0

Free
neutrons

Figure 2.1: Illustration of a nuclear fission reaction.

The free neutrons previously contained in the larger nucleus go on to in-

teract with neighbouring atomic nuclei; stimulating them to decay in a similar

manner and in turn create their own fissile products, thus propagating the

reaction on. This is commonly referred to as a chain reaction in the nuclear

literature; with the major aim being to maintain a self-sustaining but control-

1The definition of ‘fissile’ refers to the ability of a material to maintain a fission reaction,
whereas ‘fissionable’ materials can undergo nuclear fission but their low probability of neutron
emission makes them unsuitable for sustaining a reaction.
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lable chain reaction, or criticality. The day-to-day operation of a nuclear facility

is largely concerned with the maintenance and management of the conditions

favourable to the ongoing criticality.

In order to optimise the absorption rate of produced free neutrons in fis-

sion reactions by nearby atomic nuclei, the kinetic energy of the neutrons is

reduced through means of a material known as the moderator. This slows high

energy neutrons down to a value corresponding to a greater efficiency of re-

action likelihood, as faster neutrons often have a smaller neutron absorption

coefficient in fissile materials. The slowed neutrons, or thermal neutrons, are

brought to lower energies by moderators including deuterium oxide (2H2O),

a heavy isotope of water, or materials such as graphite. The moderator is nor-

mally the major enclosing structure or fluid of the reactor core. For example,

the Pressurised Water Reactor (PWR) design submerses the fuel assemblies in

a deuterium oxide fluid moderator. Each moderator has individual character-

istics and requirements that directly affect the nature of the NPP, making many

designs of reactor quite different due to their selection of this material.

As the chain reaction continues, the fissile material eventually depletes in

atomic structure to an isotope unable to maintain a continued fission process,

moving from a majority of fissile to fissionable. This creates radioactive iso-

topes of the fuel that are no longer useful for generation, or ‘waste products’.

The spent fuel requires to be stored safely for a sufficient length of time in or-

der to allow the long term radioactivity of the material to fall to a safe environ-

mental level. Management of spent fuel and waste products in the nuclear fuel

cycle represents a point of contention for the nuclear industry, with a number

of solutions being brought forward in order to address such issues.
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2.1.3 UK nuclear programme

The UK began its development in civil nuclear energy with the formation of the

United Kingdom Atomic Energy Authority (UKAEA) in 1954 [BBC54], which

paved the way for the opening of Calder Hall A NPP in 1956. This represented

the world’s first reactor generating at rate consistent with (then) commercial re-

quirements [JE56]. Calder Hall, along with numerous sites across the UK, was

of the MAGNOX design: a British endeavour investigating the use of CO2 gas

and graphite material as the reactor coolant and moderator respectively. MAG-

NOX NPPs utilised enriched Uranium as their primary fuel source, which also

allowed for the creation of weapons-grade materials as a by-product of the

nuclear fuel cycle.

Towards the conclusion of the MAGNOX site licenses, the UK industry be-

gan work on the design of its successor. The Advanced Gas-cooled Reactor

(AGR) is an evolution from the first generation MAGNOX, taking many of

the principles of its predecessor and introducing technological improvements.

Both the moderator and coolant remain the same, however the AGR’s reac-

tor temperature is higher than that of the MAGNOX. This allows for greater

thermal efficiency [SF07] comparatively.

The first AGR-type facility was constructed for experimental and testing

purposes at Windscale in 1963 [Nat13]. Development of the first of the com-

mercial AGR (note that there are ad-hoc features unique to each reactor site)

began in 1965, at Dungeness B. The first operational AGRs began generation

in 1976 at the twinned design sites of Hunterston B and Hinkley Point B, fol-

lowed by sites at Heysham (two NPPs), Hartlepool and Torness. Alongside

this, a single PWR was commissioned to complement the majority gas-cooled

capacity, with a single site opened at Sizewell in 1995. The prominence of the

AGR as the main UK reactor design is the reason for the focus on this reactor

type in this research.
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Figure 2.2: Civil nuclear sites in the UK, showing the AGR and PWR stations
presently operational

An illustrative overview of the currently operational (as of 2019) UK civil

nuclear sites is provided in Fig. 2.2, with two reactors operating on each AGR

site and a single reactor on each of the PWR/MAGNOX sites. In total, the

UK operates 16 nuclear units for civil energy purposes, with a contribution

of 9,231MW at around 18% of the generation used nationwide [NEI13]. With

this substantial share to the energy mix, the existing nuclear builds across the

British Isles represent a vital base-load asset. The lifetime of the AGR design

has been extended at various stages [Bri05] [NEI12], in line with continual as-

sessment and improvements to the AGR.

For the reasons outlined in the Section 2.1.1, this existing capacity looks
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set to continue operating well beyond its original life expectancy and be aug-

mented through development and investment in future NPPs. The operational

life of the AGR design has been extended on regulatory review and research in-

terest [WWJ+10, BRTL11] beyond its initial sixty year tenure. Furthermore, as

shown in Table 2.1, at least four new build reactors were confirmed at the time

of writing. Further to this, the UK government has outlined detailed plans for

around 16GW more nuclear-driven capacity by 2030 [HG08, HG13, WNA18a]

approximately corresponding to twelve reactors in total. Most prominently in

2018, this includes a third nuclear site at Hinkley Point.

2.2 Advanced Gas-cooled Reactor (AGR)

Classified within the Generation-II reactor group, the AGR was constructed

with an initial design life of 30-40 years, a figure which has since been extended

on regulatory review to over 60. The AGR is the reactor design studied in this

research for a number of reasons:

• The AGR is the major reactor model utilised in the current generation of

NPPs in the UK, and is responsible for a considerable proportion of the

UK’s energy mix (all but 2 reactors in the 19.6% outlined in Table 2.1)

• There a number of unique features related to the AGR (explored later

in this section) and its operation, along with its repeated life-extension

cycles, that make deep understanding of the design important for the

UK nuclear operator

This short section will discuss some of the key features of the design.
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Figure 2.3: Core photographs of Hinkley Point B, showing the nature of the
in-core graphite brick structure

2.2.1 Reactor core

The reactor itself is centred around large core fashioned from graphite, which

acts as both an integral structure and nuclear moderator. This is constructed

from a combination hollowed cylindrical and squared bricks which interlock

to form the whole body, with core-length channels facilitating the entry of fuel

and movement of control rods about the core. Fig. 2.3 provides photographs

taken during the construction stages of one of the Hinkley Point B units, giving

a useful illustration of the inter-brick formation of the graphite core and the

differences between fuel and control rod channels.

The fuel channels throughout the core house the nuclear material, which is

enriched UO2, in contrast with the U237 used in the previous MAGNOX gen-

eration. These are assembled into long processions of fuel and associated in-

strumentation known as ‘fuel stringers’. Through a process of conversion and

manufacture from uranium ore, UO2 is extracted from mined materials and

fabricated into pellets. These are stacked into fuel rods that make up the fuel

stringer, with each rod consisting of around 64 fuel pellets [Wes11]. Across the

core, there are over 300 fuel channels containing various levels of rods in their
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corresponding stringers, depending on the operational history of the plant.

In order to exercise control over the fission reaction in the core, the control

rod channels allow for the rods of boronated steel to be mechanically inserted

as and when required. Spaced interstitially among the fuel channels, the inser-

tion of control rods brings the reaction rate down due to the high absorption

properties of the rod material. AGR rods consist of two types: bulk rods, for

long-term low power periods which are generally used during specific events,

and regulating rods, which are involved in the fine adjustment of maintain-

ing a steady power output [WWJM10]. For unplanned shutdown scenarios,

nitrogen is also available to be injected into the coolant to arrest any criticality

unable to be brought under control by conventional means.

2.2.2 Primary cycle

The primary cycle comprises the nuclear-side coolant flow through the reac-

tor into the AGR boilers (in order to generate steam), and is driven by high

pressure CO2. This gas is held at approximately 4,000kPa, and propagates

through the fuel assemblies housed within the fuel channels from the bottom

of the core, through the graphite core itself and then directed to the boilers by

a structure known as the gas baffle. On its pass of the criticality in the graphite

core, energy is transported via heat from the core to the boiler units by the pro-

cession of this gas. The selection of CO2 is largely attributed to its chemically

inert properties in radioactive environments.

In order to propel the CO2 through the primary cycle, each AGR uses eight

induction motor-based assets known as gas circulators (GCs). Two of these ro-

tating machines correspond to each quadrant of the core; being responsible for

the successful propagation of coolant to each of the channels in that area. The

GCs represent one of the major assets under consideration in this thesis, and

will be revisited in greater detail in later sections. An illustrative overview of

16



the core and primary cycle is shown in Fig. 2.4, providing explanatory exam-

ples of the core with its channels, boilers, control rods and GCs. Note that a

single GC unit is annotated in this diagram - in total, eight of these will be

positioned around the core.

Figure 2.4: Overview of the primary cycle of the AGR core, with annotation of
CO2 gas flow [Non96]

2.2.3 Secondary cycle

In the design stages of the gas-cooled UK reactors, one of the earliest defined

aims for the project was the outlet temperature and pressure of the primary cy-

cle be conducive to the use of conventional steam-driven plant already utilised

in coal-fired and other conventional generation types [Non96]. This decision

allowed for the wealth of expertise and support already existent in these areas

to be used, with analysis and experience from over a century of use informing

their everyday operation.
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Figure 2.5: Primary and secondary loop of an AGR power plant

From each of the boiler units, superheated steam is output to inlets for the

turbine generators (TGs). The TGs are the mechanism by which the heat en-

ergy generated in the reactor core is converted into mechanical work. On ex-

iting each of the turbine stages, the steam is then condensed back to water in

order to be reused in the boiler for future conversion. A schematic of the sec-

ondary cycle, along with a corresponding primary cycle, is provided in Fig.

2.5.

2.2.4 Associated rotating machinery

Though referred to within the context of their cycle loops in the reactor through-

out previous sections, it is of use to list the rotating machinery utilised within

the AGR and its support systems in order to gain perspective of the extent and

importance the class has. Within a single AGR system, the assets falling into

the rotating machine class can be listed as follows:

• Gas circulators (primary cycle, eight units),
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• Main boiler feed pumps (primary cycle, one unit),

• Steam turbine generators (secondary cycle, one unit),

• Various auxiliary rotating machines.

The ongoing analysis and upkeep of these is central to the safe and effective

operation of the reactor, with each playing a notable role in the day-to-day con-

siderations of the operator. Accordingly, there exists regulatory and licensing

requirements directly in reference to the correct operation, upkeep and report-

ing for these machines. Much of the existent knowledge and best-practice has

been derived from years of rotating machinery research and development.

The study of the health and behaviour of these items falls under the gen-

eral umbrella of machinery condition monitoring; a discipline rooted in mechan-

ical and electrical engineering, physics and statistical analysis. Reliability en-

gineering staff are employed by the operator to provide support analysis to

station-side operational staff by studying both the medium- to long-term con-

dition of these systems. This topic and a more general overview of the rotating

machines under consideration in this thesis are discussed in the following sec-

tion.

2.3 Rotating machinery condition monitoring

Not limited to nuclear generation, rotating machinery is a major asset fam-

ily used in a wide array of engineering systems including transportation and

manufacturing processes. Fundamental machine components including en-

gines, lathes, propellers, rotors and even the wheel itself all provide useful

work by function of their rotational characteristics. Accordingly, the ongoing

study and maximisation of availability for such assets and mechanisms is cen-

tral to a wide spectrum of engineering analysis; rendering their ongoing condi-
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tion monitoring an important consideration for safety and economic-conscious

operators.

This section provides a top-down overview of the typical rotating machines

examined throughout this research, detailing their general theory of operation

and the characteristics pertinent to their successful health monitoring. Parallel

to these discussions, an overview of the common condition monitoring strate-

gies is provided, outlining the challenges, drivers and opportunities facing the

modern-day asset manager and monitoring engineer.

2.3.1 Historical perspective

The umbrella term ‘condition monitoring’ encompasses a wide variety of ap-

proaches [Moh18], technologies [GP16] and techniques rooted in the analysis

of machine asset health and reliability. In order to successfully manage compo-

nents and assets within an engineering system, as much information regard-

ing the characteristics of the machine in question needs to be brought together

from a myriad of available data sources. Monitoring approaches are developed

in order to support maintenance decision making, and to allow for counterac-

tive measures to be taken against emergent faults and failure conditions.

2.3.1 a) Drivers for monitoring

The successful maintenance of engineering machinery has a variety of under-

lying drivers and considerations. Most prominently, safety is a high priority

for many disciplines: catastrophic failures are simply not an option for any as-

sets where a fault could endanger staff, the general public or the environment.

In order to operate in safety-critical environments such as nuclear, aerospace

and nautical applications, there are often associated regulatory requirements

for adequate maintenance to safeguard against potentially dangerous fault

scenarios. These measures complement design considerations such as redun-
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dancy, contributing to the overall ‘defence in depth’ strategy [Moh11, YJH16]

seen in the nuclear industry to combat failure and failure repercussions.

Beyond the obvious safety considerations, the economic effects of an un-

planned asset outage can be very damaging for any organisation dependent

on a particular machine class. Any process centred around the ongoing opera-

tion of an asset class has an associated monetary value per hour. For example,

if a coal-fired plant loses the capacity to generate from a combined-cycle gas

turbine due to an unplanned machine failure, the operator loses revenue for

every potential operating hour the system remains unavailable.

2.3.1 b) Knowledge, experience and data

The rotating machinery health monitoring community, like many maintenance-

focused sectors, has historically built on the available knowledge through a

combination of first principles study [BH02] and lessons learned [Nea06, EMAQAG16]

from hands-on experience. This paradigm is common across a wide range of

mechanical and electrical analysis problems, where the inherent complexity of

the system in question often rules out an entirely physics-based model of faults

and anomalies.

Accordingly, the acquisition, archiving and scrutiny of machine data is par-

ticularly important in the ongoing analysis of machines under condition moni-

toring regimes where a complete knowledge domain isn’t available. Operators

in a wide array of disciplines have identified this concept, and the previous

decade has seen a noted increase in the volume, variety and velocity of data

associated with rotating machines.

The machinery observables2 of importance are often asset-dependent, with

particular machines have differing measures corresponding to useful metrics

for behaviour. For the purposes of this research, we define the collection of

2The term ‘observable’ is used in lieu of the more common engineering term ‘parameter’
as portions of this thesis refer to machine learning parameters - a different concept entirely.

21



machine observables used to reason about a particular system as that system’s

‘machine view’. For example, an off-shore wind turbine condition monitoring

system will likely utilise sensing technology to survey gearbox conditions such

as temperature. However, a monitoring system developed to collect informa-

tion regarding a circuit breaker unit will focus more on electrical observables

including load and voltage. While there exists a difference in the machine

views, there are often strong parallels in monitoring practices across assets.

2.3.1 c) Maintenance regimes

Maintenance regimes can be broadly categorised into the following approaches:

• Failure-based maintenance; where assets are maintained or replaced as

and when they reach a failure criteria (e.g. a light-bulb being replaced

when blown),

• Time-based maintenance; where assets are maintained or replaced at

a given time interval, selected in order to minimise unexpected failures

(e.g. an automobile’s regular MOT assessment to determine road-worthiness),

• Condition-based maintenance; where assets are examined at a suitable

fidelity to ascertain their ongoing condition and health in order to effec-

tively take preventative measures against incipient faults or problems,

• Predictive maintenance; also referred to as prognostics, where assets are

modelled and condition is extrapolated into the future in order to make

predictions about future states and potential failures.

The selection of the maintenance regime to be used is dependent on the ma-

chinery under scrutiny itself and the resources available to the asset manager.

A succinct argument for a particular regime needs to be made: for example,

it would be considered uneconomical to spend a large amount of resources
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on the condition-based maintenance of an easily replaceable system or compo-

nent. Similarly, mission-critical assets need to be given greater consideration of

their ongoing health as a function of use and planned usage, in order to avoid

potentially disastrous results.

Generally, a combination of time-based and condition-based regimes are

employed for rotating machinery (there are not many large scale engines that

can be run to destruction in an economical business model, for example).

2.3.2 Vibration monitoring

Vibration has been a mainstay in the analysis of rotating machinery since the

1950s [Fos67]: being used as a direct or indirect indicator of state, condition

and asset health. While it is certainly not the only measure condition moni-

toring engineers use in analysis of this kind, with temperature and oil-based

techniques also employed, it has seen the most success and adoption in bench-

marking normality and outlining machine anomalies [Ran04] for rotating ma-

chinery assets.

2.3.2 a) Vibration

From a fundamental perspective, vibration is a quantitative measurement of

motion of a body as it oscillates to and from a point of equilibrium. This pe-

riodic motion is set off by an initial displacement, from which the body then

oscillates back to the initial state. Within classical mechanics, vibration is a

well-studied phenomenon with an extensive literature [Ton02, Tho96] associ-

ated with its first principles. All of the research herein is concerned with the

study of forced vibration; or vibration where the displacement driving the pro-

cess is time dependent. In rotating machines, this displacement is often in the

form of the rotary motion itself, undesirable component contact or the applica-

tion of external load. In contrast, the study of free vibration is centred around
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examples where an initial displacement is the only driver experienced - for ex-

ample, in the case of the harmonic motion exhibited by a simple pendulum.

Forced vibration response remains at a constant amplitude when the driving

force is constant, whereas free vibration response decays with time after the

original impulse [Sch04].

There are a huge number of potential sources of vibration-based behaviours

in a moving body utilised in engineering systems, not least in the mechanisms

encountered in rotomachinery. Naturally, bodies undergoing any form of mo-

tion will undergo some degree of vibration, which is to be expected as these

are the result of unavoidable mechanical and thermal processes such as friction

existent in any real-world system. For a machine dynamicist, a distinction is

often made between nominal and excessive vibration in order to classify unde-

sirable changes in asset conditions and behaviour. Large values are generally

considered as unwanted for two reasons. Firstly, extreme vibrating conditions

subject the rotating machine to undue internal stresses which have the poten-

tial to lead to mechanical damage itself. There is also the problem of unwanted

contact between otherwise separated parts and components in the system. A

simple example of a conditions like this would be in driving an engine at a

rate greater than its components are designed to cope with. Conversely, exces-

sive vibration can itself be symptomatic of an existing or emergent problem in

the asset, presenting a powerful feature of vibration as an analysis tool. Sig-

natures consistent with faults such as shaft cracks, rotor imbalance or gearbox

wear have been extensively studied and documented for diagnostic purposes

[Mit81, PRB03]. In fact, experienced vibration experts have the ability to diag-

nose each of these faults, make judgement calls on their severity and advise on

future maintenance action - all based the scrutiny of the vibration data.

24



Figure 2.6: Single frequency signal component with annotated measurements

2.3.2 b) Measurements

The two major vibration measurands are amplitude and frequency. Amplitude

corresponds to the incident signal level on the transducer, predominantly de-

noted in either a distance or distance/time unit base (though a number of

legacy systems also use a voltage measurement proportional to the actual move-

ment experienced). Depending on the particular engineering discipline and

aims of the monitoring system, the amplitude can be measured using a num-

ber of different conventions. Peak to peak (pk-pk) amplitude measurements

take into account the procession of the entire waveform from maximum to

minimum values. In contrast, peak and root mean squared amplitude consider

the maximum or scaled-maximum value against the zero or equilibrium state

of the signal. Each of these values are annotated in Fig. 2.6.

Peak to peak is the among the most commonly used measurements in the

analysis of rotomachinery due to the nature of multiple frequency components

existent in real-world vibration signals. Considering both the positive and neg-

ative components of the overall displacement allows for the analysis of both
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of these to be made in the post-processing in creating a frequency-based view

of the system. Conversely, there are numerous examples where the fidelity of

peak to peak is not required. For example, in the measurement of time series

velocity components. In such instances, peak or RMS measurements are often

utilised [BH02].

Frequency (defined as the inverse of the signal period, or 1
T

, denoted in

Fig. 2.6) is the periodic, repetitive rate of any oscillation or recurrent event.

With particular regards to vibration, the frequency measures the cycles per

second of the vibratory oscillation incident on the physical system. This is

particularly useful when compared with the frequency of operation of the ro-

tating machinery itself, allowing for the nominal characteristics of the machine

and secondary behaviours potentially coinciding with damaging behaviour to

be separated and identified. Many types of machinery fault are manifested

primarily in this frequency space [CF04], so it is important to examine these

components.

2.3.2 c) Transducers

The sensing technology used in vibration monitoring is predominantly based

on the measurements of position and displacement between the component’s

equilibrium and excited mechanical states. Accelerometers are mounted at strate-

gic positions on asset casings and components in order to record the experi-

enced vibration levels. This short section provides a high-level overview of

transducer principles in vibration monitoring. It should be noted that this is

intended as an illustrative summary to allow the reader to better understand

vibration as a data source: further details on vibration instrumentation are

available from a large existing literature on the subject [NK03, dS12].

Fig. 2.7 gives an illustrative overview of a typical instrumentation setup.

The transducer would be mounted on an encasing or nearby structure of the
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component, and measures the relative distance between itself and the excited

rotor. Measuring this difference in separation at a regular interval allows for a

time series of the vibration level to be created.

Rotating shaft

Transducer
t

mV

Measurement

Figure 2.7: Vibration measurement example, showing a vibrating rotating ele-
ment oscillating in the horizontal axis

2.3.3 Steam turbines

Steam turbines are a member of the turbomachinery family, reliant on the flow

of high-temperature pressurised steam to provide useful mechanical work. A

noted invention of the industrial revolution, the conception and construction

of the first steam turbine has largely been credited to Sir Charles Parsons, who

built the first unit in 1887 [Par11]. Among the early applications for these ma-

chines was propulsion and transportation; with designs being applied to both

marine and locomotive vehicles.

Within the scenario of power generation, these machines (also commonly

referred to as ‘turbo-generators’ (TGs)) make use of input thermal energy in

driving a rotational mechanism which is in turn exploited by a partnered gen-

erator unit to produce electricity. Steam monopolises the power industry as

the major driver of TGs, with as much as 90% [Wis00] of the generation means

around the world today being at least in-part facilitated by it. The ubiquity
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Figure 2.8: Schematic of a steam turbine generator

of steam-based generation makes the understanding and upkeep of these ma-

chines animportant topic for the reliability industry as a whole.

Fig. 2.8 provides an illustration of a three stage steam turbine generator

unit, depicting the input and outputs of the system along with each of the

turbine components. Each of these turbine stages differ in their pressure char-

acteristics: from high pressure (HP) stages, to intermediate pressure (IP) to low

pressure (LP). From a mechanical perspective, we can distinguish the opera-

tional characteristics of a steam turbine into two functional areas for clarity of

discussion: the turbine stages and the generator. The following sections expand

on both of these areas.

2.3.3 a) Turbine stages

The first functional priority of the turbine unit is to create a rotary procession

from the supplied inlet steam to the machine. This is achieved through inter-

action with the turbine blades of the machine’s rotor, which are oriented to

alter the momentum of the incident steam flow. A variety of blade setups ex-

ist (which can be largely grouped as impulse or reaction-based) which interact

with the steam in differing manners. However the main outcome remains the

creation of a force acting on the machine rotor to drive movement [BH02]. This

principle governs the operation of all steam turbines.

A typical generation-context unit is comprised of a number of turbine blade

stages at varying pressures, a characteristic dependent on the rating and in-
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tended application of the machine. Multiple blade stages allows for greater

efficiency of movement to be drawn from the steam supply, providing as opti-

mal a generation rate as possible. Steam leaving directly from the boiler goes

through a blade stage before being recycled through a re-heating process for

use at a lower pressure blade stage, increasing the total net energy output from

the system. In application to gas-cooled nuclear stations and conventional fos-

sil fuel-fired plant, a steam turbine would tend to consist of a single high pres-

sure (HP) turbine stage, a single intermediate pressure (IP) turbine stage and

two or more low pressure (LP) turbine stages [JLD+91]. The stage components

of TGs used for energy generation means represent a large body of equipment;

requiring adequate housing in often volumes power plant premises. A pho-

tographic example of a TG is shown in Fig. 2.9 for a representation of scale,

particularly for the turbine stages.

Figure 2.9: Photograph of steam TG [NRC]
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2.3.3 b) Generator

The generator component consists of a driven rotor and a stator, each with a

complement of windings forming a particular electromagnetic polar orienta-

tion when provided with a generated or supplied potential. There are a num-

ber of means by which electrical energy can be created between the windings

of the rotor to the stator, but generally this is facilitated by exploitation of Fara-

day’s law of induction [Ben96]; stating that a moving (or time-variant) mag-

netic field will induce an electrical potential across a conductor. An electro-

magnet is created within the generator (normally through energising the rotor

windings) and the motion of the rotor creates the required moving magnetic

field, therefore inducing an electromotive force (EMF) in the stator windings

to the output of the generator. This propulsion requirement of the rotor is

the main function of the steam-driven components in the steam turbine, effec-

tively converting thermal energy (steam) into useful mechanical work (move-

ment of the rotor) and then into electrical energy (EMF generated in the stator

windings). This basic principle governs the operation of all generator units

[WWS13], irrespective of the origin of the mechanical work.

2.3.4 Gas circulators

Purpose-designed and -built for use in the AGR, the gas circulators (GC) func-

tion as primary cycle CO2 propagators. As discussed in 2.2.2 there are eight

circulator units per reactor, each corresponding to a particular area of the core.

Mounted under the main reactor structure, these machines maintain the de-

sired temperature conditions in-core, and transfer the fissile energy production

to the boiler units onto the secondary cycle. This dual purpose nature of the

GC function renders them an important asset in the AGR system.

The circulators are variable speed machines; they have the ability to operate
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at a variety of duty cycles dependent on the requirements of the operator. For

example, the stepped load regimes immediately following a planned outage

require the circulator units to be brought up in discrete levels to a maximum

value, maintaining a controlled rise in coolant flow in line with the return to

criticality. Along with this regulation, fine tuning of the circulation rate at

steady-state operation can be altered through manipulation of the inlet guide

vane (IGV) component of the GC machines. A photograph of a typical AGR

GC design is provided in 2.10.

In common with the TGs under the auspices of nuclear maintenance pro-

fessionals, the standard means of monitoring GCs is rooted on vibration-based

monitoring. The instrumentation setup can be considered analogous to the

systems deployed on the TGs, meaning large overlaps of the analysis used on

each asset class. However, the role of the GC in the AGR’s operation creates

unique duty cycle and response features when compared to other turboma-

chinery. The bespoke nature of the circulator units in relation to the reactor

design makes them an important source of insight for AGR health, but with

comparatively less study associated with their own characteristics when con-

trasted with a generic steam TG.

2.4 Modern condition monitoring

2.4.1 Hardware, storage and visualisation

As referred to previously in 2.3.2 c), the interrogation of a system undergoing

vibration is achieved utilising mounted transducers on key strategical com-

ponents and areas of the machine in question. The physical mounting of an

accelerometer or eddy current-based instrument on these components allows

for the vibration characteristics to be noted and examined. Once acquired,

these signals need to be presented and managed in an extensible and effective
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manner, in order to extract the greatest value from their contents. A number of

post-processing and visualisation considerations need to be addressed when

presenting information back to the engineer; with numerous time series and

frequency-space abstractions being available to inform decision making.

A variety of vibration monitoring hardware and software vendors trade in

both the regional and global markets; including organisations such as Bent-

ley Nevada. In the UK, Beran Instruments provide end-to-end vibroacoustic

solutions to the needs of rotating plant reliability experts. Their PlantProTech

transducer-interrogator-software package is a good example of the industry

standard of systems presently operated by the CM professional.

With the continued advancement of computer technology, the reliability in-

dustry has generally followed the technology sector at large in embracing im-

provements in storage and hardware capabilities. Ever-larger machine datasets

are becoming become available for real-time and retrospective analyses [JLB06,

MH14, XSW+17, AHMR18].

A number of health monitoring areas have also seen the application of wire-

less sensor networks in their data collection processes; an agile technology al-

lowing for quick and reliable interrogation of engineering systems [PFKC08]

by taking advantage of techniques such as energy harvesting [SZ16] to make

deployment onto assets straightforward. The development of these related

sensor networks is notable as they provide access to larger still volumes and

fidelities of streaming data.

2.4.2 Monitoring strategies

2.4.2 a) Components, systems and complexity

Zio [Zio09] provides a still relevant historical overview of reliability engineer-

ing, documenting the advance from rudimentary testing towards the scientifi-

33



cally mature approaches rooted in probability and statistics utilised today. Of

particular interest is the identified shift in the 1960s and 1970s from component-

level analysis (often focused on consumable device components such as tran-

sistor valves [Cop84]) to introducing system and subsystem-wide reliability

measures. Such techniques infer root cause and probabilistic measures of his-

torical and potential failures at the interaction level between components in

complex systems, including the rotating machines considered in this research.

While the failure rate of a single element within an engineering asset was pre-

viously the major unit of study [Vee80, BZS76, HW58], the ‘scaling up’ of such

measures has become necessary to provide meaningful decision support to re-

liability staff tasked with the maintenance schedule of an entire asset or class

of asset. Reliability also underwent an incentivisation process through this pe-

riod; with the inherent positives of increased availability being championed

alongside the more traditional production output successes.

This evolution reflects the changing requirements of the modern asset man-

ager. As monitored plant items continue to increase in complexity, the mod-

elling approaches utilised must follow similarly in their sophistication. For ex-

ample, a historical precedent was generally made in reliability studies in con-

sidering the state of a component; it would either occupy a functional or faulty

classification [Zio09]. However, today’s reality much more closely represents

a multi-state or continuous functional state when considering dynamic as-

sets including rotary machinery, engines and other energy-based plant items.

The performance output of a particular machine will often not vary in a bi-

nary fashion between 100% and 0%, and making this distinction is worth-

while when considering the maintenance strategy for the asset in question.

This change in perspective has opened the potential for quantifying health as

a continuous quantity, in contrast with the discreteness of previous philoso-

phies, leading naturally to the concepts of benchmarking, extrapolation and
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prediction of state.

The term ‘soft computing’ is widespread in the reliability research litera-

ture; especially when coupled with established maintenance arenas such as

energy, transportation and production3. For the purpose of this discussion, this

refers to the application of nonlinear modelling techniques to reason about the

inherent complexity, uncertainty and ‘fuzziness’ [Zad93] of engineering sys-

tems, taking into consideration both quantitative measurements from data and

qualitative heuristics from previous experience. Techniques including neu-

ral networks [KWM92, Alt09] (with recent developments in deep neural nets

[FLL+16, LSG+16, SJZW17]), fuzzy logic [FMJ+11, CNGT97] and genetic algo-

rithms [JN00, CPL96] have all been exercised in maintenance-type scenarios

with valuable results. ,

2.4.2 b) Alarms and notifications

In view of the varied and large data streams that health monitoring profes-

sionals are required to survey, an intuitive policy for keeping abreast of sys-

tem changes as and when they occur is via use of alarm-based strategies. Such

approaches provide a particularly useful machine view from a maintenance

perspective; a large proportion of the data-based features of interest can be

attributed to points of change or anomalous behaviour. This allows for multi-

variate observable spaces for assets, or entire families of asset, to be surveyed

effectively and target analysis to operational periods of interest.

The rotomachinery industry commonly uses limits of acceptable behaviour

for each of the monitored observables in the corresponding machine view.

Breaches of these boundaries will trigger latched notifications for examination

at a later time, and engineering staff will use these alerts at both a single- and

3The term is less mature in fields owing a direct heritage to computer science and modern
technology, for example - datacentre or technical computing reliability, where the distinction
between soft computing and general artificial intelligence tends not to be made
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multi-level in making decisions regarding the ongoing operation of the plant

item in question. In fact, a number of industry agreed standards exist [iso09]

in defining these thresholds of tolerable behaviour, some of which are central

in the regulation efforts of nuclear and other safety-premium scenarios. A key

strength of this practice is in the explicability of particular values crossing a

pre-determined standard boundary, without the requirement for specific anal-

ysis on the machine example or scenario.

Despite the dimensionality- and labour-reductive benefits to taking an alarm-

centric approach when devising a monitoring strategy, there remains a number

of disadvantages associated with the current best practice associated with the

procedure:

• Alarms can be numerous; While it is true that setting allowable bands

of behaviour allows reliability staff to focus only on operational features

that deviate from some nominal baseline, the amount of notifications re-

quiring post-analysis can still remain high. This is especially true when

considering the multiplicity of assets often under the charge of small CM

engineering teams,

• Alarms can be brittle; The majority of vibration-based alarms define al-

lowable limits of operation at set values, without considering the dy-

namism of the monitored piece of plant. For example, increased or de-

creased duty cycle within an operational regime may breach an alarm

boundary but be non-indicative of a relevant change to the reliability en-

gineer,

• Alarms can be inflexible; Through the life cycle of an item of machin-

ery, the inevitable degradation processes that occur during normal use

will have an effect on the item response to steady state conditions. Hard-

coded boundaries will not take this evolution of state into consideration,
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and may in fact prompt unrequired analysis at the single alarm level

when coupled with the strong regulatory requirements surrounding op-

erational standards.

2.4.2 c) From diagnosis to prognosis

The previous decade has seen a notable rise in interest [KHV06, HZTM09,

SZ15, RSWZ18, WGC+18] for predictive reliability measures: robust metrics

for the quantitative (and, by necessity, probabilistic) measurement of future

states, data features and potential failures. The trend can be attributed, along

with the system-level reliability engineering paradigm discussed in 2.4.2 a), to

the move towards more condition-based maintenance regimes (as defined in

2.3.1 c)) as the health monitoring profession looks to move with improved tech-

nology and expectation. Machinery prognostics, as a scientific sub-discipline of

engineering CM, has experienced a flurry of academic interest and some indus-

trial developments [SHM11, KMF+16], due to its promise of identifying prob-

lematic behaviours before they occur; avoiding costly outages and scheduling

preventative maintenance.

Numerous distinguished engineering organisations such as NASA [NAS]

& General Electric [Bon06] have focused resources of developing prognostic

techniques. A large proportion of the literature discusses the requirement for

predictive ability [HACF05, JSB04, JLB06, TBT15] in modern CM, suggesting

roadmaps and measures of success. When benchmarked against other anal-

ysis functions in reliability engineering such as fault detection and diagnosis,

prognostics is a comparatively young discipline. However, some developed

and deployed systems have already brought initial success in industrial appli-

cations [LWZ+14].

This study does not seek to provide a definitive prognostics representation

for the rotating plant items in question, but it is useful nonetheless to formu-
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late a definition (at least in the interim) for clarity and the sake of argument.

Among the most succinct and well cited definitions is provided by Sheppard

et al. [SKW09]; where prognostics is the estimation of the remaining useful life

(RUL) of a particular asset or process. The RUL is dependent on the asset

class, data availability and requirements of the developed system but the uni-

fying characteristic is RUL estimates have either an explicit or latent connec-

tion to the operational hours available before a minimum functional condition

boundary is breached. Selection of this RUL parameter is an area of study in

itself [Cob10].

2.4.3 Intelligent condition monitoring

Through this section, computational techniques that fall into the broad cate-

gory of ‘intelligent’ are discussed; with a strong focus on those used in reason-

ing about engineering asset condition. The state-of-the-art is framed alongside

a variety of important application examples across a wide variety of health

monitoring scenarios.

2.4.3 a) Definition

Krishnakumar [Kri03] describes the techniques associated with the term ‘intel-

ligent system’ as:

“. . . nature-inspired, mathematically sound, computationally in-

tensive problem solving tools and methodologies. . . [which are] ide-

ally suited for tasks such as search and optimization, pattern recog-

nition and matching, planning, uncertainty management, control,

and adaptation”

While the exact definition of the term is likely to prompt lively debate

among practitioners from a variety of fields (in both reliability engineering
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and beyond), for the purposes of this discussion we will consider this descrip-

tion as satisfactory. Two important additions (or clarification of existing condi-

tions) are the abilities of diagnosis (inference of state or features of state, more

broadly falling into the category of data interpretation [Hop11]) and prognosis

(the extrapolation of state to make predictive reasoning on future states and

conditions).

For the types of condition monitoring problems encountered through this

research, therefore, the goal of an intelligent system is to provide some form

of automated, repeatable analysis to staff which aids them in making good

decisions regarding asset health. This output can be a wide variety of different

results: from a quantitative measure with no real abstraction of the modelled

item at hand, to more detailed decision support advising on a particular course

of preventative action regarding particular components or processes.

2.4.3 b) Types of intelligent system

We can consider intelligent systems techniques to fall into three broad cate-

gories, as follows:

knowledge-based; systems built upon heuristic and expert-derived know-

how, often relying on sets of rules to reason,

data-based; systems which take advantage of asset data in order to rea-

son statistically,

model-based; systems comprising of a modelled representation of the

asset (physics-based or otherwise), which use outputs of this model to

reason.

These headings are not exclusive; in fact many ‘hybrid’ systems have proved

successful in fusing features from each of these categories to solve particular

engineering problems.
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2.4.3 c) Applied to generation-based rotating machinery

Rotomachinery used throughout the energy industry has seen success in in-

telligent system development [JLB06, HZTM09] applied to their monitoring

processes for fault detection [LYZC18], classification [GCGP16, CZC+16] and

predictive analyses. As discussed through 2.3.2, decisions are largely based

upon vibroacoustic analysis [Ran04] and the identification of particular diag-

nostic conditions.

Knowledge-based techniques have historically dominated rotating plant

decision support systems, with a number of major knowledge-based systems

(KBS) breaking new ground in recent years for both rotary asset-specific and

general engineering intelligent system development. From a pure KBS per-

spective, a few rule-based inference systems elicited through formal knowl-

edge engineering [SWdH+83, SAA+00] processes have been created and ap-

plied to steam turbine generators [YZX+11, MAK14]. Further augmentations

to such techniques have also proved successful [EP08], notably resulting the

VIBEX (VIBration EXpert) system [YLT05]. Gas turbine units have also seen

KBS development, with a rule base being used in conjunction with model-

based and qualitative techniques [TM92, ZLCM14] to positive effect.

Data-driven approaches [CWT+11, TMMZT12, BMZ12] have grown in stature

over the past decade, attributable to the increased rotomachinery data avail-

ability coupled with the rising sophistication in required decision support.

The maturity of such techniques (discussed in greater depth through Chap-

ter 3) has allowed for previously unattainable levels of quantitative and sta-

tistical reasoning to be applied to generation asset reliability problems where

plentiful historical information is available. Approaches including neural net-

works [ACS+08], hidden Markov models (HMMs) [MM07, KCMT13], ensem-

ble methods [BMZ12] and kernel machines [ZZXC10, ZD12] have all been ex-

plored with success. Concurrent to these technique-based solutions are the
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continual improvements made to the signal pre-processing, with feature engi-

neering and signal representation [GPJW12, HYHY10] also being investigated.

2.4.3 d) Applied to rotating machinery in other domains

Adjacent to the intelligent CM progress being made in conventional genera-

tion plant, the wind energy industry has also embraced AI-based technolo-

gies [CLEP12], which is likely due to the distributed and multiplicative nature

of the average wind turbine fleet. Wind-specific monitoring approaches have

been constructed with support vector machines (SVMs) [LSoO11], neural net-

works [SF11, KL11] and predictive analytic techniques such as particle filters

[BCFR12] and Markov chains [BD10]. There is also a significant interest in

weather modelling [SBH+05] for predictive and scheduling purposes using a

similar family of techniques, illustrating the broad applicability of such meth-

ods.

The aerospace sector has historically represented one of the more data-rich

monitoring arenas, naturally making it one of the trailblazers in terms of in-

telligent technique experimentation and adoption. This is likely driven by the

‘high integrity’ [CBT07] nature of rotary assets in such scenarios; a property

mirrored in nuclear-context machines of the same family. Statistical [CTM+08]

and AI-based [HSTA00] approaches have all seen application to aero engines,

with particular focus on the prognostics [BRG02, HWB06, ZMHF16] leg of in-

telligent CM research.

2.4.3 e) Applied to nuclear generation

Considering the monitoring of an NPP as a whole, the improvement of reli-

ability engineering processes has continued to grow in importance for many

reactor designs. This is in part due to the policy of life extension associated

with many of the recent generation of nuclear plants [VR11, IOU+12], with de-
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ployments of the AGR, CANDU [Tap08] and BWR [BAG+14] types each seeing

consideration for use beyond their original commissioning period. While more

traditional disciplines such as materials science [AAK17] and innovations in

inspection techniques [MWMM16] have historically made most of the contri-

butions, data-driven approaches have seen success [BMZ15, ZD10, WMT09,

LWDG17] in recent years as well.

2.4.3 f) Applied in power and electrical scenarios

After the generation process, power needs to be provided through the distribu-

tion and transmission networks on the grid to homes and centres of industry

- a complex engineering problem with its own reliability requirements. Con-

sequently, CM is also mature in this industry; with a plethora of intelligent

systems being deployed across a wide spectrum of power system monitoring

tasks including circuit breakers, transmission lines and power transformers.

The complexity of the power system in the infrastructure of developed coun-

tries has necessitated a blend of knowledge- [SRM+08], model- [DMM03] and

data-based [NM11, RCMJ11] decision support systems and studies. Numerous

protocol standards, such as supervisory control and data acquisition (SCADA), ex-

ist which allow the interrogation of remote assets; with a number of deployed

systems being designed specifically [GMW13, DMM+06] for such data types.

2.4.3 g) Other applications

Reliability and operational considerations have become a central issue for the

distributed high performance and cloud computing industries, with Google

recently publishing [Gao14] insights into a neural network approach for data

centre procedures. The data centre represents a new frontier in reliability sci-

ence [ZCB10], with the hugely parallel physical and virtual machines present-

ing a unique scenario where engineers need to understand system health at
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scale from the outset.

2.5 Challenges and opportunities

This short section condenses the topics touched on throughout this chapter to

a variety of key points of importance. The principle aim of this discussion is

to extract the perceived shortcomings in the present approach to health moni-

toring in the rotomachinery discipline (in particular, the practice surrounding

rotating plant in the nuclear environment) and to present the opportunities for

research and innovation to meet these challenges.

2.5.1 Challenges

2.5.1 a) Energy security

Numerous studies [Bra10, YM13] have identified that the rising trend in en-

ergy consumption shows no short-term signs of abating and is expected to

continue well into the future. The reliance on affordable energy at the global

scale has prompted intense debate in the topic of energy security [ACN15] with

relation to engineering, national policy and macro-economical thinking across

nearly all of the nations around the world today. Some uncertainty surrounds

the term (with it often being used in both economic and political [LMR10] ar-

guments), however Winzer [Win12] provides a useful quantification as:

“. . . [energy security] is the absence of, protection from or adapt-

ability to threats that are caused by or have an impact on the energy

supply chain.”

With this in focus, a number of academic policy and canvassing studies

[CVS+11] illustrate the perceived importance nuclear has to play in the energy
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security of the UK; especially when coupled with the low carbon future con-

cerns of modern society. Elsewhere, the clear ramifications of a catastrophe

such as that experienced in Fukushima Daiichi [Hat12], Japan) have subtler

long-term effects on the decision made on nuclear [HH13].

2.5.1 b) An ageing nuclear fleet

The AGR core has itself an entire field of researchers working on understand-

ing its condition and health, from both a materials science and empirical [WJM+06,

MRS10] perspective. While the rotating assets discussed in this study do not

undergo degradation processes related to the nuclear environment experienced

in-core, the implicit dependence and dependencies between the TGs and (per-

haps especially, being a primary cycle unit class) the GCs with regards to the

whole reactor condition are of high importance. This is especially true when

considering the regulatory-centric nature of the UK nuclear industry, where

the examination of rotating assets is made with the context of the AGR clearly

in focus.

The UK government and regulatory bodies have extended the operational

lifetime of the AGR at several points in the last couple of decades [NEI12], mir-

roring the trend in NPP lifetime extension around the globe [BRTL11]. Main-

taining and optimising the throughput of nuclear-context assets, irrespective

of their relative proximity to the criticality, is vitally important for operators.

This viewpoint is confirmed by the importance placed on lessons learned in

historical asset failures [Kal72] on UK NPP sites. As the core itself begins to

deteriorate, the effectiveness of the assets surrounding it will ensure the func-

tionality, efficiency and safety is kept sustainable. Keeping this effectiveness at

a satisfactory level presents another challenge.
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2.5.1 c) An ageing nuclear workforce

The human resource issue in the UK for nuclear, and energy engineering as a

whole, has been a topic of concern in recent years. Public sector forecasting

[COG09] estimates that 70% of the workforce surveyed in 2009 are due to re-

tire by 2025, decimating the numbers of skilled professionals in the discipline.

Reductions of expertise at this scale compounded with the plans for new build

is a major hurdle for the UK; especially with the heightened variety and com-

plexity, as discussed in 2.4.2, of analysis being asked of reliability engineers

today and in the years to come.

While emergent technology does not seek to entirely replace the workforce,

the codification of tacit knowledge in fields of expertise like those of reliability

in the nuclear industry can benefit from knowledge-based and other AI-driven

systems. Rule bases [TMMS07] intuitively fit this role, but it is argued that the

volume and variety of advanced analytics required for future energy systems

calls for the increased adoption of statistical, data-driven analyses to comple-

ment crisp inference.

2.5.2 Opportunities

2.5.2 a) Increased data availability

Section 2.4.1 made reference to the notable volumes of operational information

in the form of historical data now available to reliability professionals. It is dif-

ficult to overstate the value of such data as a resource when reasoning about

rotomachinery and other such engineering assets; as discussed, the machines

in question are often complex and any source of empirical insight into their be-

haviour is of value. The growing data volumes lend themselves to approaches

in AI and machine learning, where the potential performance is often directly

proportional to the amount of data available for a given problem.
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This data explosion seen in engineering maintenance is by no means lim-

ited to this discipline alone. At the most extreme, disparate fields such as parti-

cle physics [Bru11], biostatistics [ABO10] and econometrics have all seen direct

benefits in adopting the so-called ‘big data’ philosophy in their development ef-

forts to tackle domain-specific problems. While the volume, variety, veracity,

value and velocity of information directly sourced from engineering assets are

not quite at the same levels, the industry has began to take note of these ad-

vances from further afield [Rus14, LLBK13].

2.5.2 b) Increased technique sophistication

The previous ten years have seen the fields of applied AI and machine learning

explode into the public consciousness, with numerous high-profile and ever-

day products now powered by these technologies. Where in the past, systems

reliant on statistical and automated inference were limited to fringe prototypes

and demonstrations, more and more engineering problems are being solved

by AI-based solutions. Nowhere is this more prevelant then the internet in-

dustry, where numerous billion dollar companies have built their successes on

innovation [JM15] in systems which provide useful inference from data. Ar-

eas rich in data all benefit: including social media [LK12], commercial speech

recognition [PP08] and more recently healthcare [JM15]. Open source devel-

opment libraries have become more and more available [PA13] and easier to

build reliable software with [Aea16], bringing intelligent technique construc-

tion towards the realm of engineering as opposed to remaining in research

environments.

The successes reaped from other data abundant fields provide an indica-

tion of the potential rewards awaiting the nuclear and reliability industries as

a whole when they adopt such techniques as central to their monitoring strate-

gies.
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Chapter 3

Statistical methods and machine

learning

This chapter discusses a number of relevant statistical methods, before intro-

ducing the topic of machine learning: a computer science sub-discipline fo-

cused on the extraction of patterns and information from data using a com-

bination of statistical and computational techniques. Key methods and ap-

proaches are introduced, and then contextualised against the domain area of

application.

3.1 Statistical methods

In this section, a number of key concepts from statistics are examined in or-

der to better contextualise and explain methods introduced later. The theory

discussed herein is not intended as a rigorous mathematical foundation to ML

and statistical techniques in general; merely enough detail to allow for the suc-

cinct demonstration of the approaches used throughout the research.
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3.1.1 The Gaussian distribution

Encountered throughout engineering and the physical sciences, the Gaussian

is a continuous probability distribution which describes random variables dis-

tributed symmetrically about a mean µ with a variance σ2. It is expressed as:

f(x|µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 (3.1)

The prevalence of the Gaussian distribution in real processes can be at-

tributed to a few key reasons [Lyo13]: its importance to many exponential

family distributions defined by the central limit theorem [Haz01], and its ac-

curacy in describing many physical phenomena.

3.1.2 Probability density function

Some of the most important advances in technology have the advent of proba-

bilistic techniques and reasoning in science to thank for driving their progress.

In the most general sense, probability is a measure of likelihood; how likely

it is that a particular event will occur. This is an immensely useful property

when dealing with random variables; observables which have some compo-

nent of stochasticity associated with their measurement. In reasoning about

real world data, uncertainty can be derived from a variety of sources: the finite

nature of observed data points, measurement noise and complex losses to the

environment or other obscured factors.

Random variables (in the strictest sense) are idealised mathematical objects.

However, we can consider many observables encountered empirically in engi-

neering (for example, vibration [Lal14]) to follow similar principles.

There is a large amount of mathematical discussion available regarding

the fundamentals of probability theory (Breiman [Bre68] provides an excellent
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overview on the subject).

A common means of examining data-based behaviours and their associated

probabilities is in the use of a probability density function (PDF). PDFs provide an

associated probabilistic measure of likelihood for a particular observable value

in any number of dimensions. PDFs are analogous to the familiar histogram,

differing in that the associated p(x) is a real-valued continuous function as

opposed to a binned discrete count. p(x), as a function describing probability,

is subject to the constraints

p(x) ≥ 0 (3.2)∫ ∞
−∞

p(x)dx = 1. (3.3)

Note that property (3.3) dictates that the integral of the function needs to

equal unity. This allows for probability density values of > 1, so long as the

area bounded under the function integrates to one. Fig. 3.1 provides three

example PDFs, each corresponding to a Gaussian distribution of differing pa-

rameters ([µ, σ2] = [0, 0.5], [−0.3, 0.8] & [1, 0.4]).

The major conclusion to be derived from these figures is: in the event of a

random example being taking from a process described by an associated p(x),

what is the probability of the example taking value x.

3.1.3 Cumulative distribution function

The cumulative distribution function (CDF) is a continuous real-valued distri-

bution that examines the probability of a value of X , with an associated prob-

ability density p(x), existing under or equal to the value x. More formally, a

CDF examines the relationship:

FCDF (x) = Pr(X ≤ x). (3.4)
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Figure 3.1: Three example PDFs, drawn from the Gaussian family

CDFs are monotonic increasing functions, representing the continuous ana-

logue to discrete cumulative frequency analysis techniques. Fig. 3.2 provides

an example CDF taken from a Gaussian distribution. The examination and

comparison of CDF’s characteristic in relation to commonly utilised distribu-

tions is a standard technique in hypothesis testing and inference. For example,

ascertaining the feasibility of a data population being taken from a particular

distribution could be achieved by examining the similarity of the example with

respect to an idealised CDF.

3.1.4 Empirical statistical analyses

In working with observables from real data where the parent distributions

aren’t defined a priori, there needs to be an intermediate between the functions

that describe textbook distributions and the collected data itself. A histogram

can be used to help visually examine the data distribution, but the strength of
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Figure 3.2: Example cumulative distribution function of Gaussian PDF

tools like the PDF and CDF lies in their ability to create a continuous represen-

tation of probability density. Therefore, we look to empircally create density

estimates of these distributions.

To approach this, the associated probability distributions can be empirically

estimated from the available data through a number of techniques inspired by

mathematical empiricism. This section discusses these approaches, under the

general heading of empirical techniques.

3.1.4 a) Kernel density estimation

Kernel density estimation (KDE) [Cam02] utilises a finite set of observations, our

input dataset x, drawn from a behaviour of interest in order to create an em-

pirical approximation of the associated PDF. The KDE approach achieves this

through the assignment of a kernel, a standardised weighting function selected

from a variety of common distribution families, to each instance in the dataset.
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The global estimation of the PDF is then created through a summation over

each the assigned kernel functions, creating a smoothed aggregation of the as-

sociated probability density. The frequency-based nature of this smoothing

process often leads KDE to be referred to as a ‘smoothed histogram’. There are

a variety of different kernel functions that can be utilised; some of the most

commonly used kernels are provided in Fig. 3.3 and Table 3.1.

We can express the previous definition mathematically. Let x = {x1, . . . , xn}

be set n observable inputs drawn from dataset D with associated idealised

probability density p(x); we are concerned with the estimation of p(x) through

the KDE technique. f̂(x|h) represents our created empirical best-estimate, the
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Figure 3.3: Four kernel functions commonly used in non-parametric statistics:
uniform, triangular, Gaussian & Epanechnikov
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Table 3.1: Selection of kernel functions

Kernel type Function

Uniform K(u) =


1
2
, |u| ≤ 1

0, else

Triangular K(u) =

 1− |u|, |u| ≤ 1

0, else

Gaussian K(u) =
1√
2π
exp

(
−u

2

2

)

Epanechnikov K(u) =


3
4

(1− u2) , |u| ≤ 1

0, else

density estimation, of the PDF p(x) associated with the dataset. Our KDE,

f̂(x|h), is expressed as:

f̂(x|h) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (3.5)

where K(. . . ) is the utilised kernel function and h is a free parameter re-

ferred to as the bandwidth [Sil87]. The bandwidth parameter corresponds to

the variance of each kernel, allowing for the smoothing component of the KDE
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to be optimised as required. The selected kernel function must satisfy the con-

dition

∫ ∞
−∞

K(x)dx = 1, K ≥ 0 (3.6)

ensuring that the probability mass of the global estimate function does not

exceed unity, as required by (3.3). Once again, note that this property allows

for the KDE function the have density values of greater than one.

By far the most commonly used kernel in empirical data analysis is the

Gaussian, owing to its flexible and accurate representation of measured pro-

cesses encountered in real world applications. However, there exists ample

discussion regarding the merits of each of the commonly usedKh(u) functions,

with evidence existing that the selection of the kernel function is much less im-

portant than the selection of the associated bandwidth h. Despite this, the

Gaussian kernel is used exclusively throughout this research due to its preva-

lence in modelling physical systems [Lyo13].

Fig. 3.4 shows the effect of h selection on the smoothing properties of the

KDE, with the bandwidth of a Gaussian kernel altered on a generated dataset;

100 randomly drawn instances from a Gaussian with properties mean µ = 50,

standard deviation σ2 = 3. There are a few methods [JMS96] of selection for

a suitable h value of varying complexity. However, as a general heuristic; the

KDE should be smoothed to an extent that removes unnecessary kernel-based

features without undue loss of behaviour information from the associated p(x).

For the example illustrated in Fig. 3.4, bandwidth values h = 0.1 and to a

lesser extent h = 0.5 under-smooth the density estimate, retaining features

characteristic of the individual data instances. It can be argued that while

h = 10 provides the most Gaussian-like representation, the low instance count

of the dataset should retain some non-Gaussian characteristics in an ideal KDE.
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With this in mind, it is argued that h = 10 over-smooths the data, and that in

this case the almost-Gaussian KDE renders by h = 1 is the preferable band-

width value.

KDE-based techniques are useful in providing inference to empirical engi-

neering problems for a number of reasons.

• They are entirely non-parametric: all that is required for a KDE to be

created is the data itself. This negates any requirement for a priori mod-

elling or reasoning about the behavioural process in the first instance. In

fact, this property of KDEs make them particularly useful in data explo-
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Figure 3.4: Variation of the kernel bandwidth, with h = {0.1, 0.5, 1, 10}
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ration, where they are often used to determine general characteristics of

data-based processes.

• The feedback provided by a KDE is visually intuitive. Peaks in the den-

sity function correspond to more probable modes of behaviour, making

it quick to ascertain likely modes of behaviour. In providing an output to

an engineer about some physical process, for example, the KDE function

clearly presents any dominant tendencies and a measure of how often

each mode has been observed historically. This allows for lengthy pe-

riods of historical operation to be condensed and presented in a single

diagram.

3.1.4 b) Empirical cumulative distribution function

Similar to the KDE technique, empirical approaches exist in the approxima-

tion of the CDF from real-world data. Empirical cumulative distribution functions

(ECDFs) are created to estimate the CDF associated with a sample population,

with the function is determined by:

f̂ECDF (x) =

(
1

n

) n∑
i=1

 1, if{xi ≤ x}

0, else
(3.7)

As touched upon in Section 3.1.3, an accurate representation of a CDF can

be useful in a variety of decision making processes associated with statisti-

cal inference. In particular, the underlying process underlying observed data

can be attributed to a particular family of distribution from the application of

ECDF-based inference. As means of an example, an ECDF of an observed vi-

bration measurement from a piece of engineering plant can be compared with

an ideal Gaussian CDF in order to determine how Gaussian-like the process is.
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3.1.5 Parametric vs. non-parametric

It is useful to examine the concepts of parametric and non-parametric models.

These concepts cover both statistical methods and ML techniques, and under-

standing their approach to inference problems is important when considering

potential solutions.

The differences between these are rooted in how each utilises the data or

training domain D during the inferential stages. Both paradigms have asso-

ciated advantages, disadvantages and design considerations which impact on

their selection for particular problems. It remains important to have a func-

tional grasp of their differences in order to select an appropriate model for the

task at hand.

3.1.5 a) Parametric models

Parametric machine learning techniques, as the name suggests, model hypoth-

esis functions through use of a finite number of parameters, sometimes re-

ferred to as weights. Common notation defines a parameter vector consisting

of i parameters as θ = {θ1, . . . , θi}where i� n for n training examples, and the

corresponding hypothesis function defined parametrically as hθ(x) or h(x; θ).

An accurately weighted θ encompasses all the required features of a training

domain D, allowing for the training set to be discarded as θ can be used to

make accurate hypotheses henceforth. The memory advantages of parametric

approaches are obvious; there are no implications on training set size with re-

gard to storage of the trained model, as future predictions made by the trained

model only require the learned parameters.

The number of parameters explicitly used in the model is dependent on a

number of factors, but it can be asserted that a higher parameter count tends

to be required when learning more complex behaviours.
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3.1.5 b) Non-parametric models

In contrast, non-parametric models are dependent only on the data or training

examples (or a subset of these) at each stage in order to generate hypotheses.

Commonly referred to as ‘instance’-based techniques, each data point of D is

mapped to some feature space representation, from which the model inference

is then made. This means that non-parametric models require storage of at

least a subset of the data used in training to provide future hypotheses on new

data.

These methods and algorithms address an important issue associated with

parametric models; where the selected parametric view does not represent the

characteristics of the data sufficiently to provide accurate enough hypotheses.

A common issue in modelling hypotheses parametrically is selecting a suit-

able model family without detailed knowledge of the problem at hand. Non-

parametric models are said to be ‘led by the data’; allowing for the internal

structure and characteristics of the training data to exert a more explicit influ-

ence on the resulting model outputs. Persisting a subset of the data can also

bring about issues when scaling non-parametric models to tackle large-scale

problems.

Non-parametric models can be subject to performance and over-fitting is-

sues (a concept explored later in Section 3.2.4), as their complexity grows lin-

early with the volume of data used in their construction.

3.2 Machine learning fundamentals

3.2.1 Introduction

Among the range of problems computer science and artifical intelligence (AI)

has sought to address, engineering systems that learn from experience has
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remained one of the most prominent. Machine learning (ML) shares theoreti-

cal and semantic roots with many of the other sub-fields in AI; most notably

AI planning, robotics and the formal modelling of first principles knowledge.

Rooted in statistics and statistical inference, the term ‘statistical learning the-

ory’ is often been used in the past in lieu of the term ‘machine learning’, at least

to describe a core of the computational concepts exercised by ML techniques

and approaches.

ML is an enormous growth field in technology1, with the applications in-

creasing in multiplicity as more areas become rich in available data. The poten-

tial problem solving and commercial impact of learning technologies have not

went unnoticed by the cutting edge of the hi-tech sector [Rag18], with large

engineering firms like Google [Aea16], Apple [ST17], Amazon [SGS+18] and

[KSB+18] all researching and investing heavily in ML. In light of increased so-

phistication and data availability, it is only logical for ML to see deployment to

new arenas of application; including the engineering reliability industry.

The section will introduce the field of ML, with some focus on the context

and requirement for useful ML in a variety of today’s condition monitoring

problems. In particular, the techniques used throughout this study will be

introduced and discussed before their application to the domain is examined

in later sections.

3.2.2 Key concepts

To provide a complete, well-defined problem or set of problems that encom-

passes all potential learning scenarios is beyond the scope of this thesis (and

perhaps even current ML research in general), but it will be of some use to

define a loose format to the learning theory and tasks encountered. Mitchell

1For a perspective on scale, Google Scholar returns around 4.2 million article results in 2018
for the query ‘machine learning’ - which is almost a million more than the term ‘climate
change’ which has around 3.4 million entries
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[Mit97] provides a succinct definition in:

“A process (computer program or otherwise) is said to learn

from experience E with respect to some class of tasks T and per-

formance metric P , if its performance at tasks in T , measured by P ,

improves with experience E.”

As means of an example, a process might be in developing a program to

play the strategy game Go competitively against a skilled human opponent.

Learning the fundamentals of such a game may represent a complete set of log-

ical rules (allowed moves, end-game requirements, perhaps some rudimentary

heuristics), however this does not necessarily equate to proficiency in playing

the game2. The nuances of Go strategy and ‘game playing’ - in the game-

theoretic sense of term, with regards to the actions of an opponent - are likely

only to be achieved through sufficient study of previous games and experi-

ences. Figure 3.5 broadly illustrates such a system.

AutoGo!AutoGo!
LOSS VICTORY

Experience through learning
improves AutoGo! performance

Figure 3.5: Example machine learning process, where a program is constructed
and learns to play board game Go

2In fact, Go is a notable example of a game with a simplistic ruleset that remains unsolved
from a computational perspective. In contrast, draughts/checkers is an example of a solved
game.
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In this example, the task T is ability to play Go competitively, the perfor-

mance metric P will be the result of matches against a human opponent or

group of human opponents and the experience E will be historical games

played during a training phase or continued use of the program. Prior to

sufficient training, ‘AutoGo!’ will perform poorly against an opponent as its

strategy does not contain enough modelled knowledge3 regarding good play.

There are a number of means by which a program such as ‘AutoGo!’ might

seek to learn and model competence at the game beyond simply the rules of

play during a hypothetical training phase. This is a topic in itself, with Google-

backed organisation DeepMind successfully innovating the area of automatic

Go play [Gib16] to defeat top-level human opponents. At this stage of the

discussion, it is merely important to note that there is an improvement in the

performance metric through a learning process of the task at hand. This con-

cept of learning through experience or more generally, learning representation

from data, is a key principle of all ML systems and algorithms.

ML can be broadly considered in two categories of approach: supervised

and unsupervised learning. These differ in the availability of target examples

(in E) during the training process.

3.2.2 a) Supervised learning

Supervised learning encompasses a large set of inference problems, where the

creation of an ML model is undertaken to map a number of inputs to corre-

sponding outputs or targets. The targets can be of discrete or continuous nature

; the most important note is that there is an a priori mapping of input to exam-

ple targets by which the model looks to create a function with.

Formally, we take a set of n variables as an input pattern x = {x1, . . . , xn}
3The knowledge and reasoning in this thesis will predominantly refer to inductive means.

While deductive reasoning encompasses a large component of AI practice, this research is
concerned with empiricism and learning from experience.
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and map these to a target y. In order to achieve this, supervised learning

uses a training domain of m mapped pairs of x and y (or labelled data) D =

{(xi, yi)}i=1,...,m to create a hypothesis function h(x) = y. This is constructed

such that it provides output, or hypotheses, for all possible input values pro-

vided to the function after training. That is, given x′, a new input vector that

may not have been included in the training domain D, h(x′) provides a suit-

able corresponding output of y′ consistent with the intended target behaviour.

This is generally achieved through minimisation of an loss function L(h;x, y)

during the training phase, which provides a measure of the difference between

the actual output hypothesis of the model and the desired target function. Loss

functions come in a variety of different formats, such as Euclidean distance,

accuracy metrics or mutual information. The selection of these is often depen-

dent on the problem nature and requirements from the model.

3.2.2 b) Unsupervised learning

Unsupervised learning techniques seek to identify patterns and structure from

data without any a priori labelling information, as was the case in supervised

scenarios. Formally, only the input pattern x = {x1, . . . , xn} is available:

there is no corresponding set of y targets. Unsupervised techniques therefore

seek to discover structure, patterns, and regularities in the data empirically.

While this can be more challenging than in cases where fully labelled training

data is available, the successful application of unsupervised approaches has

the potential to tackle many more problems than in supervised, as labelled

data is often difficult to acquire.

Pure unsupervised, or unsupervised augmenting supervised elements (‘semi-

supervised’) techniques are being applied to speech recognition, natural lan-

guage processing [CW14] and many other data-rich environments. Techniques

range from statistical methods such as principal component analysis [Jol11] &
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independent component analysis [HKO04], to deep neural network-enabled

approaches like generative adversarial networks [RMS15].

3.2.2 c) Classification

In examples of classification, assignment is made of an input pattern x to one of

K discrete class labels. The learned h(x) provides the model for assigning the

corresponding class identified by the model for x′, rendering y ∈ {c1, . . . , cK}

- a discrete output provided from a finite set. There exists a number of sub-

problems under the umbrella of classification, of which it will be useful to

examine three. Note that the following terms are provided with particular

focus on application to engineering reliability problems, and these may vary

in other application areas.

Unary classification (K = 1) creates a single membership class from training

data D. The output of h(x) is therefore a decision on the membership of test

data to this label. D is often a nominal, routine or steady-state behaviour that

requires continued monitoring or surveillance. Anomaly detection techniques

such as this are therefore utilised to automatically flag changes in behaviour

from the established normal.

Binary classification (K = 2) examines two behaviours within D, often creat-

ing a decision boundary between them separating the extent of each. This par-

ticular family of classification is associated with some of the most rudimentary

machine learning approaches used as benchmarks in the field, with particular

approaches often being examined on their ability to perform in binary classifi-

cation scenarios.

Finally, multi-class classification (K > 2) seeks to provide automated la-

belling of any number from a family of classes. This introduces a number of

issues in terms of label discrimination between classes; the decision strategy

between hypotheses now must examine likelihood of membership to a label
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against all other potential labels for test data.

Typical classification tasks exist in:

information security; where an example task might be to label a test

input x′ representing credit card use as ‘Normal’, with failure to do so im-

plying suspicious behaviour (unary classification or anomaly detection),

e-mail spam filtering; where an example task might be to label a test

input x′ representing an e-mail as ‘Spam’ or ‘Not Spam’ (binary classifica-

tion),

handwriting recognition; where an example task might be to label a test

input x′ representing a 128×128 bitmapped image of a written character

as a letter from the English alphabet (multi-class classification).

3.2.2 d) Regression

Regression techniques provide an estimate or prediction of a continuous value

dependent on the properties of a given input pattern x, rendering y ∈ R or y ∈

RD for D-dimensional problems. In this task, the learned function h(x) is used

to determine the relationship between a dependent variable and a number of

independent variables, and uses this to provide output when examined with

new test data x′.

For example, it might be useful to learn the functional relationship between

two variables in a sample of historical data as this may provide some informa-

tion about the population the sample was taken from. Parameterising common

functions such as linear, power or exponential relationships between observ-

ables is often the first stage of analysis for many data problems. Fig. 3.6 shows

two bivariate data examples, taken from linear and exponential-type popula-

tions, along with some example regression curves overlayed.
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Figure 3.6: Two bivariate data relationships with a high likelihood of an un-
derlying relationship, which would typically be quantified through regression

A successful h(x) effectively ‘fits the curve’ in the bivariate-type examples

illustrated; however, it should be noted that regression is not limited in di-

mensionality to examples where a ‘curve’ can be easily visualised. Regression-

based inference can be carried out in any number of dimensions, though this

is not always a preferred approach due to the ‘curse of dimensionality’ [Tru79]

problem.

Generic regression analysis precedes ML and even modern computation by

a notable period, with a rich history existing within mathematical and statisti-

cal research surrounding the topic. Legendre’s paper [Leg05] on the trajectory

of comets provided an appendix introducing the technique of least squares, a

now ubiquitous method in the empirical fitting of continuous functions which

has become synonymous with regression.

3.2.2 e) Clustering

Clustering can be considered the among the most important subset of com-

monly encountered unsupervised problems. A well formulated cluster-based

procedure can be utilised to direct analysts towards features of interest in
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very large datasets; potentially extracting regularity from previously consid-

ered overly large data. This form of dimensionality is particularly popular in

building scalable ML systems for applications with little domain knowledge

available.

At the most generic level, a clustering technique will seek to group together

examples in order to determine any macro-organisation to the data, commonly

using a distance or statistical metric in defining potential group membership.

1

2 3

Figure 3.7: An example clustering problem, visualised in D3 phase space

Fig. 3.7 provides an example of a typical clustering-type phase space. Three

distinct groupings of data exist in the 3-dimensional space, and without labels

the empirical properties of the dataset need to be examined in order to enable

classification of future examples into these groups. The phase space itself can

be pre-processed in order to maximise the likelihood of a suitable clustering

result being found through dimensionality reduction techniques such as prin-

cipal component analysis [Jol11] and t-SNE embeddings [MH08].
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3.2.3 Deep learning

While not explicitly examined in this work, it is useful to acknowledge the vol-

ume of work being undertaken under the heading of deep learning. This refers

to a family of neural network-based techniques which rely on large volumes of

training data to construct networks with large numbers of nodes and weights.

Deep networks have the ability to create highly complex, nonlinear representa-

tions of almost any learning problem (given enough training data and compute

resources), as they allow for features themselves to be learned [GBC16] as op-

posed to engineered. Their training can be an expensive and time-consuming

process, and interpreted their outputs in an explicability-focused domain can

be a challenge.

3.2.4 Overfitting

It is important during the process of training models to avoid fitting the clas-

sifier or regressor to reflect every single training example used in the training

stage, as this would likely be training the model on noise as opposed to the

useful signal in the data. The aim of a well-trained ML model is to provide

useful and accurate predictions on unseen or future inputs: not to predict the

already seen, training set inputs.

Fig. 3.8 provides a clear comparison of a suitable and an over-fitted clas-

sification model. The data D used for training this example comprises two

distinct classes, separable by a non-linear decision function. In learning the

decision boundary to provide a classification on test data, the diagram (a) uses

a broad ellipse as the decision boundary. Conversely, the approach from (b)

creates a complex high order function modelling the behaviour interfaces with

great detail. While it is true that (b) successfully classifies each of the training

instances existing in D, with (a)’s decision boundary encompassing a misclas-

67



●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

95 100 105

95
10

0
10

5

Observable 1

O
bs

er
va

bl
e 

2

● A
B

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

95 100 105

95
10

0
10

5

Observable 1

O
bs

er
va

bl
e 

2

● A
B

(a) (b)

Figure 3.8: Supervised learning example (classification), with comparison of
ideal and over-fitted decision functions

sified instance, the computational complexity associated with generating (b)’s

hypothesis makes the approach of (a) preferable. The intricacy of (b)’s decision

function does not well represent the relatively simplistic task in this example,

instead introducing unnecessary features in the decision making procedure.

Applying these learned models to similar examples of ellipse-like binary clas-

sification test sets would illustrate the lack of generalisability of (b).

3.3 Machine learning approaches

In this section, the ML methods employed in the research are introduced to

provide context on how the data-driven models were constructed.

3.3.1 Linear classification

Consider a linearly separable binary classification problem, defined by a train-

ing set {(xi, yi)}i=1,...,m where m is the number of training tuples and y ∈

{−1, 1}. yi is the label for the i-th multidimensional input pattern xi. A vi-

sual representation of a two dimensional example of such a training domain is
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provided in Fig. 3.9 for clarity.

From the illustration in Fig. 3.9, it can be seen that an infinite number of

linear separating hyperplanes (known as decision boundaries) between the two

classes prospectively exist, with each being a straight line bisecting the training

domain and acting as a discriminator.

Linear decision boundaries in two dimensional examples take the generic

parametric form θ1x+θ0; the familiar ‘equation of a straight line’. Classification

from a successfully learned separating hyperplane on a test input pattern x′ is

achieved by examining the decision function:

y(x′|θ) = sgn(θTx′+ θ0) (3.8)

Figure 3.9: Typical linearly separable binary classification training domain in
two dimensions
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where sgn(.) denotes a sign or threshold function, defined as:

sgn(x) =

 1, x ≥ 0

−1, x < 0
(3.9)

This should be intuitive as the points along any given hyperplane satisfy

θTx+ θ0 = 0, so any hyperplane that satisfies a linearly separable classification

problem can say that points corresponding to θTx+ θ0 ≥ 0 belong to one class,

and the opposite by extension.

It should be noted that the parametric nature of the linear discriminant

function as described do not necessitate parametric-style learning approaches;

as will become evident when examining kernel methods in application to lin-

ear classification.

3.3.2 Perceptron learning

One of the earliest techniques4 investigated in classification problems [Ros58],

the perceptron is an example of an artificial neural network (ANN) - a learning

algorithm directly inspired by the cognitive processes undergone in the brain

[Heb49]. While used less often in application today (due in part to its limited

abilities in non-linear, non-linearly separable scenarios), it’s useful to under-

stand the origins of linear classification approaches.

A great number of ML problems have been tackled using perceptron-descendant

processes: multi-layer ANNs used in autonomous vehicle research [Pom89],

networks with recurrent properties in examining temporal data [Xin07] and

cascaded networks used to investigate highly non-linear features within fea-

tures [WRM12].
4Note that the perceptron is more formally an optimisation algorithm that can be used in a

variety of different ML techniques. The perceptron discussed herein is the simplest example
of such a technique, and might be alternatively labelled a ‘linear disciminant model’
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The learning of a suitable hypothesis function is achieved through the al-

gorithm:

• A primary state is initialised (typically θ, θ0 = 0),

• With values for θ, θ0, the function is examined for each input example

- comparing the hypothesised output with each target label. In the in-

stance θ, θ0 = 0, every example is labelled y = +1 due to (3.9),

• When a disparity between an output and target label exists (when y = +1

is hypothesis against an example labelled y = −1, for example), the per-

ceptron amends the values of θ, θ0 to better reflect the training examples.

θ’s values are updated at each iteration using the perceptron rule. For the ith

parameter:

θi ← θi + α(y − hθ(x))× xi (3.10)

where α is a selected parameter known as the learning rate; the selection of

which impacts the magnitude with which updates are made to the values of θ.

It has been proven that the perceptron will converge successfully in lin-

early separable scenarios using (3.12). Issues begin to arise when the training

domain is not linearly separable; the XOR function was famously proposed

as the perceptron’s downfall [Min88]; a limitation addressed by the develop-

ment of multilayer perceptrons in the 1980s. Thus in order to use perceptron

learning-based methods, the phase space for training needs to have a potential

linear classifier which solves the decision problem in that data space.

3.3.3 Logistic model

Linear discriminant functions reliant on solely a discrete sign function as de-

scribed in 3.3.1 are characterised by a ‘hard’ threshold; training examples close
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Figure 3.10: Comparison of standard discrete and logistic threshold functions

to the hypothesis hyperplane are as equally representative of the class as ex-

amples further away. However, it can be useful to introduce a graduation of

the importance assigned to examples at the boundary using some function de-

pendent on their distance from any candidate hyperplane.

As opposed to applying a stepwise thresholding function, the logistic or sig-

moid function can be used to output class membership hypotheses on candidate

test data. The threshold function recast to take logistic properties is defined as:

y(x′|θ) =
1

1 + eθ
Tx′

(3.11)

The logistic function is compared to the discrete sign function of (3.9) in

Fig. 3.10, illustrating its continuous, smoothed nature.

In contrast to the perceptron algorithm of the previous section, the pro-
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cess of using the logistic function for linear modelling5 seeks to minimise an

L2 loss function. This is due to the continuous nature of the logistic function

as h(y|xi) ∈ [0, 1], as opposed to the discrete h(y|xi) = {0, 1} as with the per-

ceptron algorithm. Thus, minimising the loss function is achieved through

updating the ith parameter:

θi ← θi + α(y − hθ(x))× hθ(x)(1− hθ(x))× xi (3.12)

The continuous nature of the thesholding function is particularly useful

when dealing with noisy datasets where absolute linear separation is not pos-

sible due to instance overlap at the boundary. Such properties have made the

approach popular in application to a wide variety of areas.

3.3.4 Kernel methods

Rather than considering a family of parametrised discriminant functions and

iterating through error space to reach some loss function minima, kernel meth-

ods recast the points of the training domain as a given kernel function map-

ping in a new feature space [Bis06] in order to perform inference. Utilising the

training domain in a feature mapping in this fashion makes kernel methods a

non-parametric family of approaches.

A generic mapping form can be expressed as:

k(x1,x2) = φ(x1).φ(x2) (3.13)

where φ(.) is a defined kernel mapping function. Kernel space views of D

can be made utilising a variety of kernel mapping selections, which is paral-

5Much of the ML literature use the term ‘logistic regression’ to encompass linear modelling
using the logistic function. To simplify the terminology in this research and avoid unneces-
sary confusion between classification and regression, ‘logistic regression’ will not be used to
describe the technique
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lel to the kernel selection process outlined in 3.1.4 a). The most rudimentary

kernel function is the linear kernel φ(x) = x.

3.3.4 a) Support vector machines

The support vector machine (SVM), largely credited to Vapnik [CV95], has

applications to both regression and classification problems. For classification,

SVMs tackle decision function selection through the creation of a maximum-

margin between data classes, their associated kernels and the function itself.

Applied to linearly separable cases, it should be obvious that any perceptron-

based classifier can provide multiple hypothesised decision functions which

successfully separate the training classes and fulfil the model requirements.

Use of the logistic function (as examined in 3.3.3) to threshold generated hy-

potheses on data instances further informs the selection of a plane among these

candidates. However, this takes into consideration each of the examples pro-

vided in the training domain, and therefore can be susceptible to outliers.

Using the feature space concept introduced in 3.3.4, the threshold expres-

sion (3.9) can be recast as:

h(x′|y) = sgn(
∑
i

θiyi(x′.xi)− θ0) (3.14)

The SVM inherently seeks the case which generalises best through its in-

ferential process of maximising the class discriminant margin; providing the

most effective hyperplane by how distant it is from the class fringes. This is

achieved by placing greater emphasis on the instances closer to the candidate

separating function (the support vectors), and seeking the best hypothesis us-

ing this information. The optimisation goal for the SVM can take a few forms,

with the most common variants being L1- and L2-SVMs. For L1-SVMs, this is:
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minimise
1

2
||θ||2 + C

m∑
i=1

ξi (3.15)

whereas for L2− SVMs this is changed to:

minimise
1

2
||θ||2 +

C

2

m∑
i=1

ξ2
i (3.16)

where C is the margin hyperparameter and ξ is the slack variable - both

hyperparameters which dictate the specificity and generalisability of the SVM

approach to dealing with outliers and errors [KS03].

SVMs have proven successful across a very wide range [MSR+97, OFG97,

OMS+15] of data scenarios, often ranking among the most accurate in predic-

tive measures across numerous domains.

3.3.5 Ensemble methods

ML techniques can be scaled to incorporate multiple discrete models inform-

ing a final decision, by averaging or aggregating their individual outputs.

These are known as ensemble methods, and this section will introduce two of

the most successful families of approaches in this area.

3.3.5 a) Random forests

A decision trees is a graph-based conditional inference modelling technique

which branches data points into discrete decisions based on a learned set of

rules. Random forests represent the ensembling of numerous decision trees

[Ho95], and taking an aggregate of their output in order to come to a final deci-

sion. Each tree is trained concurrently on a subset of the training data in order

75



to prevent overfitting and ensure the ensemble is approximately even in terms

of individual model contributions. Random forests often perform well in high

dimensional spaces [CKY08] due to this ensembling and subsetting property,

which introduces stability and robustness when generalising from the training

data.

3.3.5 b) Gradient boosting machines

A related tree-based approach is the gradient boosting machine, which differ

from random forests in the manner in which decisions trees in the ensemble are

constructed [Fri01]. Each tree is trained one at a time, and subsequent models

are added to the ensemble when adding branches to the tree has diminishing

returns in terms of model performance. Gradient boosting machines have ex-

hibited similar, or in some cases improved [OP11], benchmarking over random

forests.

3.3.6 Clustering

This section outlines the clustering methods used in this research.

3.3.6 a) k-means clustering

k-means clustering [Bis06] classifies a dataset into k groupings, where every

data instance belongs to the cluster with the nearest mean in Euclidean space.

The value is k is defined apriori, which makes it suitable when there is a likely

number of clusters that required to be identified. It can be used for cluster

identification, or as a dimensionality reduction method to potentially improve

the results of any vector-based ML [Mur12] approach.
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3.3.6 b) Gaussian mixture models

Mixture models are a family of statistical methods used for calculating the

likelihood of multiple statistical distributions contributing to an overall ob-

served dataset. Gaussian mixture models (GMMs) specifically seek out mul-

tiple Gaussian distributions (as introduced in Section 3.1.1) in a population,

and aim to provide the model parameters of the hypothesised contributory

distributions.

There are a number of potential ways to implement GMMs: however the

methods used in this study are reliant on the expectation-maximisation [Moo96]

methodology. This consists of initialising N Gaussians with random parame-

ters, and the probability that every data point in the population came from

each of the proposed distributions is calculated and then aggregated. The pa-

rameter space of the distributions is then explored in order to maximise the

total expectation of the mixture hypothesis.

3.3.6 c) Hierarchical clustering

The aforementioned clustering methods do not consider inter-instance or inter-

cluster relationships when defining a suitable grouping solution. In practice,

clusters might share properties or sub-populations of the data: something that

could be useful to know when considering large, multi-dimensional datasets.

Hierarchical clustering [Lia05] addresses this by constructing inter-cluster rela-

tionships based on similarity to build a holistic ranking and aggregative view

of the proposed groupings.

3.4 Machine learning in reliability

The exploitation of ML techniques in commercial settings is typically associ-

ated with areas of application where large datasets are the norm. Industries be-
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yond the research disciplines of theoretical computer science and statistics, in-

cluding information retrieval, finance, e-commerce and bio-informatics, have

seen adoption of many de facto standard ML algorithms [MLY17, Gao14] and

approaches to common data problems. Under the general umbrella of ‘data

science’, machine learning tools are also being used in central roles in astro-

physics, digital advertising and recommendation systems.

Engineering, and more specifically reliability engineering, has embraced a

handful of key techniques on a largely requirements-driven basis. Typically, a

problem has been encountered and a solution using a particular class of ML

technique was applied to tackle the requirements of that example. There has

been comparatively little study in generalising such systems across wide cat-

egories of reliability type scenarios; resulting in the various sub-fields of the

discipline adopting small numbers of widely used techniques within their re-

search spheres.

There has been notable application of ML (and intelligent systems in gen-

eral) in the so-called ‘mission-critical’ or ‘function-critical’ areas of defence

and aerospace. These areas are characterised by a wealth of archived time

series data, which lends itself to a statistically-driven approach to tasks in

surveillance, control and automation. Unmanned aerial vehicle navigation

[KLO+12], impact damage monitoring and online jet engine behaviour infer-

ence [CTM+08] each have had recent developments.

3.4.1 Kernel methods in CM

The SVM has proved to be a useful tool for many machinery CM scenarios,

with the potential of the technique being heralded in publications as early as

2007 [WY07]. Both classification (fault identification) and regression (predic-

tion and prognostics) of the algorithm have seen experimentation and use in

the field with success.
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Bearing element [YS02] and induction motor faults, magnetic measurements

in rotating electric machines [PNA+02] and compressor valve failures [CX10]

each have example systems which use a standard (or simple variation, through

data pre- or post-processing) classification SVM implementation. Multi-class

[SSR08] systems have also been investigated, including using the SVM as part

of an ensemble of methods [NBTT12].

SVM regression naturally corresponds to the the empirical learning process

associated with latent degradation functions that may be existent in medium

and long-term time series data. Future state change indication metrics, for ex-

ample in shaft misalignment prediction [OJBH06] applied to rotomachinery,

map well to extrapolating a learned function to some time horizon, with the

data-led properties of the SVM accounting for any potential non-linearities. A

combination of both SVM classification and regression methods was used in

electronic prognostic [SP07] systems; combining state estimation and extrapo-

lation to predict the incidence of future failure states.

The crisp output of a learned SVM function can be further augmented

with application of the relevance vector machine (RVM) algorithm [Tip00];

a technique which has been especially popular among PHM research circles

as it augments the standard SVM approach with probabilistic output. Crack

growth through fatigue [ZD12], bearing condition [CWT+11] and battery life-

time [SGPC09] have each used the Bayesian enhancements of the RVM to pro-

vide parameter trajectory estimations with a corresponding confidence inter-

val for RUL outputs, a feature difficult to present with a simple SVM pro-

cedure. This is especially useful in delivering engineering decision support,

where communicating the degree of certainty associated with a prediction is

often as important as the hypothesis itself.
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3.4.2 Other techniques

Both ‘shallow’ and deep neural network (NN) ML approaches have also been

historically popular in reliability; with numerous nuclear-specific [SAT03, EB04,

VBKR03, SJZW17] systems developed over the previous decade and a half.

This rate of uptake has the potential to be even higher as more is invested in

data-driven solutions to problems in heavily regulated sectors; as historically

NNs have been met with some criticism for their ‘black-box’ nature.

Random forests have seen adoption [CSS+15, Yan06] due to their impres-

sive results coupled with their clear explicability when providing reasoning

behind decision-making. The flexibility of Gaussian processes [IAT13] in data-

driven problem spaces has also made them an area of interest for empirical

condition monitoring studies

3.4.3 Potential

The already existent developments in reliability-based ML aside, the CM dis-

cipline as a whole has a great opportunity to benefit from the further devel-

opment and application of learning systems to the process of maintaining en-

gineering machinery and assets. Outlined in 2.5.2 a), the volume of opera-

tional information now available to the reliability professional is enormous

and growing notably each year. Meeker and Yilli [MH14] discuss the direct

implications of the ‘big data’ revolution on the reliability field, road-mapping

a number of the key growth areas alongside points which need further devel-

opment in order to provide meaningful feedback from the myriad data streams

becoming available. Extracting meaningful inference from data is vital to the

success of future reliability systems; and bridging any perceived gap between

purely data-driven systems and the existent tacit knowledge of the domain

experts should be high on the list of priorities.
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Considered alone, simply the increased volume of data presents two im-

portant issues to the CM professional:

• How is the current reliability practice undertaken by CM engineers scaled

up to meet the multiplicity of data streams and data archives?

• How can the current reliability practice be improved upon with this pre-

vious unavailable quantity and variety of data about machines?

Many of the processes undertaken by the reliability professional rely on the

analysis of data-based features; of which a large number are well-defined pat-

tern recognition tasks. This examination of low-level data streams for familiar

‘signatures’ can be addressed by the creation of well-designed ML systems

with the ability to interpret streams of data and information. Where perhaps

the greatest potential for success lies is in the combination of knowledge and

automatic inference; allowing existing domain expertise to inform the empiri-

cal approaches of ML-type systems. The research presented in this thesis deals

with this concept in particular.

At the other extreme of the scale, many hypothesised analysis methods can

rely on often complex aggregations and ‘scaling-up’ of data-based features

across large volumes of information; a process which is often inconceivable

for even a team of engineers to undertake manually. Examples might be in the

automated detection of a specific time series pattern from terabytes of histori-

cal operation records; or a post-processing metric of a complex system change

which required numerous levels of computation to provide a meaningful deci-

sion support output. Investigating and developing systems which learn from

data can address these scenarios.
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Chapter 4

Self-tuning diagnostics in rotating

machinery

This chapter describes the first of the major contributions from this research:

the development of statistical techniques in application to automated alarm

inference for rotating machinery in the nuclear generation environment. The

engineering practice of alarm analysis is introduced, before a number of in-

ferential approaches are presented which improve on the existing procedure

undertaken by professionals in the domain.

The novel contributions from this chapter can be listed as:

• Augmentation of an existing knowledge-based intelligent system with

ML and statistical inference techniques, providing an improved hybrid

intelligent system tackling the engineering problem of routine alarm anal-

ysis in TGs,

• A self-tuning framework for vibration diagnostics, allowing for the ap-

plication a routine alarm knowledge base across an entire asset family

under a single maintenance regime,

• The use of techniques in statistical inference to automatically define pe-

riods of system normality and transient behaviour in rotomachinery vi-
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bration data.

4.1 Routine alarms

With regards to the common health monitoring approaches introduced through-

out Chapter 2, the industry standard in vibration-based condition monitoring

continues to rely on examinations of steady-state limits and boundaries of op-

eration in the identification of undesirable machine behaviours. These mea-

sures do correspond to industry-agreed standards and metrics [iso09]. How-

ever, the dynamic and non-stationary nature of power plant operation is often

not considered in greater depth beyond these high-level features.

The day-to-day schedule of a NPP like the AGR is made up of numerous

distinct events including online maintenance, ad-hoc adjustments to system

settings and operator interventions such as channel refuelling. Each of these

carry the potential to impart change to the conditions experienced by the plant

items, including those involved both explicitly and implicitly with the main

primary cycle nuclear system. A majority of the change behaviours covering

these scenarios are not to be considered anomalous, as there is as there is a clear

causality between a planned change in system state and any alteration in the

experienced machine state. This clear link between signals such as vibration

response and operational observables forms the basis for identifying periods

of change non-indicative of system damage. A hypothetical example of this

sort of data feature is provided in Fig. 4.1, where there is a clear temporal

correlation between the vibration response change and the underlying opera-

tional observable. A typical example of this might be an adjustment made to

the reactor load output, which results in a corresponding change in state for

the rotating assets in the primary and secondary cycle.

Events of this type can exceed the aforementioned alarm and alerting lim-
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Figure 4.1: Example coupling of response and operational observable

its, resulting in a call to action and analysis for the engineering team. With the

large number of data streams monitored by the CM professional and the strong

regulation required in the nuclear industry, these incidents will often require

analysis to verify their benign nature. When scaled to the numerous machines

reliability teams are tasked with monitoring, a significant proportion of engi-

neering effort is dedicated to the examination of these events. For example, a

typical UK-based NPP will house two turbine generators and up to eight gas

circulator units, each with upwards of twenty monitored vibration channels in-

strumented with the potential to produce time series measurements multiple

times per second. This is before considering other non-primary and secondary

auxiliary rotating plant items which may be used in other areas of the plant.

Instances lacking a corresponding operational tie (represented by the first

response feature shown in Fig. 4.2) are the main focus of the majority of vibra-

tion monitoring and surveillance efforts, where this might be due to system

damage or unexpected behaviours.

Alarms with this operational change-response link that are non-indicative

of damage (as in Fig. 4.1) are referred to as routine alarms. The associated en-

gineering analysis required from these events can be rudimentary: often as

simple as noting correlation between an operational change and the vibration
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Figure 4.2: Example feature in the response observable without a correspond-
ing operational change

response. Despite this, the volumes of alerts and machines requiring sign-off

can become time-consuming and open the potential for human error. This has

prompted the investigation of intelligent approaches to augment the current

processes for dealing with routine alarms, with the aim of automating simplis-

tic analyses and allowing reliability teams more time for examining complex

machine health indicators.

4.2 Knowledge-based system

The techniques outlined in this chapter build on existing investigations into

knowledge-based inference [Tod09, TMMS07] for steam turbine diagnostics.

This research focused on the initial stages of automating the routine alarm pro-

cess with a knowledge-based system (KBS) approach. The typical engineering

workflow undertaken by vibration diagnostics professionals was modelled in

detail, using the principles of knowledge engineering [SWdH+83] to document

both the explicit and tacit understanding of the diagnosis of a routine alarm di-

rectly from the expert. Augmenting this existing rule-based approach was se-

lected due to the explanatory power inherent with knowledge-based systems:

crisp rules make it clear why a particular automated decision was taken by any
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intelligent system.

A rule base for turbine generator routine alarm diagnostics was created,

which takes bearing pedestal-mounted vibration and, operational signals as

input and delivers decision support on potential alarming instances. This

system provides a rule-based conclusion on common alarm causes, follow-

ing the same inference process an industry professional would. In order to

use the knowledge codified in the KBS, the process extracts time series fea-

tures from turbine data which are subsequently used to build an overview of

the behaviour observed by the machinery. This section provides a technical

overview of the system, before outlining the areas for improvement addressed

in this chapter.

4.2.1 Rule base

The rule base comprises around 180 crisp IF-THEN clauses, with each of the

instances corresponding to either an intermediate or final step in reaching a

decision regarding the cause of an alarm notification. The structure of a typical

final rule chain in making an alarm conclusion is shown in Fig. 4.3. Each

of these steps outline the logical process taken by an engineer in examining

a vibration observable time series to determine if a behavioural change has

occurred due to a step in an operational observable.

The inference process accompanying Fig. 4.3 can be outlined as:

The alarm fired node needs to be asserted TRUE.

Three vibration observable nodes of four available need to be as-

serted TRUE: any trend in vibration needs to be within a set period

of the alarm (VIB trend period≤ alarm period + threshold)

and must last at least as long as the alarm period (VIB trend

period > alarm period). The vibration needs to be high (VIB
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Figure 4.3: Inference diagram of typical rule chain used in the knowledge-
based system
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trend level = HIGH) and stable (VIB level = STABLE).

Three operational observable nodes of four available need to be as-

serted TRUE: any step in operational observable needs to be within

a set period of the alarm (OP step period ≤ alarm period

+ threshold) and must last at least as long as the alarm period

(OP step period > alarm period). The operational observ-

able step can either be rising (OP step = RISING) or falling (OP

step = FALLING).

This discrete, modular approach to decision-making was selected as it re-

sembles the logical process undertaken by the domain experts themselves. For

example, a vibration engineer working on routine alarm investigations will

identify a step change feature as a key underlying root cause when looking for

clues to explain a machine state change, as opposed to examining each indi-

vidual data point in the time series discretely. The similarity of this symbolic

approach to that utilised by KBS-enabled inference systems is very powerful in

providing clear, explicable reasoning behind automatic inference and decision

support.

The particular rule illustrated in Fig. 4.3 falls neatly into a correlative-style

problem: there is an observed effect and the objective is to ascertain the most

likely root cause from a selection of potential stressors. This is the common

format for each of the rules in the knowledge base. While it is also useful

to take a more quantitative approach (calculating, for example, the pairwise

Pearson’s coefficient [RN88] for each of the observables in question) the asso-

ciated explicability of a detected and discrete feature that aligns with the ev-

idence an expert would normally look for is powerful in providing evidence

in the post-diagnosis context. This is especially true considering the required

transparency and conciseness required when building engineering systems for

highly regulated industries like nuclear generation.
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4.2.2 Signal-to-symbol transformation

The features used by the rule system are generated through a process of signal-

to-symbol transformation (STST). This is a classical AI technique which takes

continuous variables (i.e. time series streams) and maps these to a discrete rep-

resentation (e.g. trend and step events) which can be reasoned about through

propositional logic. A powerful aspect of this approach is clarity: showing evi-

dence for extracted features and how they relate to straightforward rule-based

inference is a concise approach for reasoning about problems and delivering

effective decision support.

Three time series features are defined by the system: trend, step and lev-

el/impulse. The level parameters help define the spot artefacts which corre-

spond to impulse changes (short deviations from outside the expected distri-

bution of values). Table 4.1 provides a definition of each of the symbol types

in relation to time series data.

Table 4.1: Definitions of time series primitives

Primitive Definition
Level/Impulse Corresponds to thresholds of expected behaviour;

defined by parameters of upper & lower limits
{ΛUpper,ΛLower}

Trend Used in the identification of rising and falling trends
in the data. Defined by parameters of trend tolerances
{τUpper, τLower}, and trend period TTrend

Step Used in the classification of rising and falling step
changes in the data. Defined by parameters of lead &
tail tolerances {τLead, τTail}, minimum step magnitude
|S| and step period TStep

These are defined for each observable covered by the KBS, meaning that

the parameter values for a wide variety of observables and potential machine

states need to be initialised correctly in order for the system to provide infer-

ence correctly on TG data streams.
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Figure 4.4: Example of impulse extraction, w.r.t. bounds of operation

4.2.2 a) Extracting impulses

Identifying anomalous instantaneous measurements from each time series stream

is achieved through setting bounds of operation relative to the expected value

of the observable, and flagging those data points which fall outside such en-

velopes. The limit parameters {ΛUpper,ΛLower} define these boundary values,

and are set independently for each of the observables on the machine.

Any instantaneous value which exceeds or falls below the set boundary

values of ΛUpper and ΛLower will generate an impulse symbol in the STST mod-

ule.

The impulse extraction procedure can be expressed as:

MImpulse = [0, 0, ...]

for xt in x do

if xt > ΛUpper or xt < ΛLower then

MImpulse(xt) = 1

end if

end for

where x is the time series of any given monitored observable, xt is a single

time series value at time t, and MImpulse is the index mask of x denoting the

indexes of impulses.
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4.2.2 b) Extracting trends

Trends are identified by slicing the data into regular periods, and examining

rudimentary features of the time series values within these. Trend periods are

flagged by comparing the start mean (µS , first N measurements) with the end

mean (µE , final N measurements) and evaluating the following:

∆Trend =
(µE − µS)

µS
(4.1)

where ∆Trend is the calculated trend difference. If this value exceeds τUpper,

or is lower than τLower, then that qualifies the period as a trend symbol. 4.1 is

normalised by µS to provide the change as a factor of the original value.

The initial construction of the KBS settled on the period tt = 24hrs (to re-

main consistent with the daily cadence of manual examination) and N = 5

Figure 4.5: Example of features and calculation used in extracting trends
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values for comparison at the start and end of the periods. The difference in the

dimensions between thse (hours for trend window, number of measurements

for pre- and post-averages) can be attributed to the potential for non-regular

measurements to be taken at varying fidelities of data acquision (e.g. measure-

ments may be available at sub-minute and minute period intervals at different

parts of the assets operational history). Values for 4.1 for each of the periods

are compared with the STST time series primitive parameters {τUpper, τLower}

(depending on the directionality of the change) in order to identify trending

periods of operation for a given observable. An example set of measurements

with the extracted ∆Trend is illustrated in Fig. 4.5. The normalised difference

between the start and end behaviours (represented by the values of the green

and red scatter points) is extracted, to give a quantitative metric for the trend.

The trend labelling procedure can be expressed as:

µS = µ(x[: N ])

µE = µ(x[length(x)−N :])

∆Trend = (µE−µS)
µS

if ∆Trend > τUpper or ∆Trend < τLower then

trend = True

end if

4.2.2 c) Extracting steps

In contrast to the discretised approach taken for trend feature extraction, step

changes are labelled by evaluating the time series context for each data point

with respect to the parameters defined in Table 4.1. This allows for instances

to be captured at an increased fidelity than the higher-level trend symbols.

The extraction process follows steps:

• The forward first-order finite difference (xt+1 − xt) is calculated for the

full time series under analysis,
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Figure 4.6: Example of features and calculation used in extracting steps

• The indexes of point-to-point deviations greater than the minimum step

change magnitude |S| are identified in the time series (naive step changes,

as there is no consideration of the behaviour pre- and post-change),

• Each of these naive changes have their lead and tail periods analysed in

order to ascertain the suitability for a legitimate step labelling (stable step

changes).

Considering only stable step changes is important to safeguard against in-
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stantaneous changes being flagged erroneously as steps (in cases where noise

or signal artefacts might be responsible for quickly resolving deviations or

point artefacts). The periods encapsulated within the time TStep before and

after the point change need to exhibit a level of relative stability and have a

distinct enough difference between their distributions to be considered. This

is captured by the lead and tail tolerance parameters {τLead, τTail}, which pro-

vide upper and lower bounds for which the lead and tail periods should fall

within. These are additive and subtractive factors which dictate what bounds

the before and after behaviours should be fully encompassed by to qualify as

stable step changes.

The mean values µLead and µTail should also maintain a difference > |S|

over and above the initial naive change delta. This specifically removes sin-

gle deviations from otherwise stable periods, which would otherwise be seen

as potential step changes. Each of these phases in parametric step change ex-

traction are illustrated in the example provided in Fig. 4.6. It should be noted

that step change features will also be flagged as the previous defined impulse

symbols, representing a special case of level-type changes.

The step tolerances {τLead, τTail} and step period TStep were set to {0.2, 0.2}

and 12 hours uniformly across each of the observables. Specific |S| values were

set on an individual basis for each observable through consultation with engi-

neering staff and their expectations of step deviations qualifying as anomalous.

The step extraction procedure can be expressed as:

x′ = xt+1 − xt
for x′t in x′ do

if x′t ≥ |S| then

xLead = x[t− TStep : t]

xTail = x[t : t+ TStep]

if max(xLead) < µ(xLead)+τLead and min(xLead) > µ(xLead)−τLead and
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max(xTail) > µ(xTail) + τTail and min(xTail) > µ(xTail)− τTail then

step = True

end if

end if

end for

4.2.3 Channel and machine profiles

The term ‘channel’ is often used in the vibration monitoring literature to refer

to a given accelerometer (or otherwise) data feed from a specific component of

a rotating asset. In practice, many TG health monitoring hardware and soft-

ware packages refer to individual observable time series as numbered chan-

nels. For example, the front bearing accelerometer instrument located in the

HP stage of a TG is referred to as ’channel 1’ throughout.

The parametric approaches described in the previous subsections need to

be initialised on a per-channel, per-machine basis. Thus, a given channel re-

quires a full set of level, trend and step parameters to be assigned: referred to

in the KBS as a channel profile. At the level above this, all the channel profiles

collected together for a given TG can be considered the machine profile. These

terms are used throughout the remainder of this chapter when discussing the

orientation of KBS parameters.

4.2.4 Proof-of-concept channel profiles

As a result of the research and KBS developed in [TMMS07], initialised channel

profiles exist for 3 channels for a single TG instance. Tables 4.2-4.5 provide the

parameters that were used as a result of this study, including the operational

observable values in Table 4.2 which are applied to each channel uniformly.

Each of these were created as generic starting points in the development of the
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Table 4.2: Operational observable profile

Operational observ. ΛUpper ΛLower τUpper τLower TTrend τLead τTail |S| TStep

Generator load 690 620 0.1 0.1 24 0.2 0.2 50 12
Rotor current 2600 1900 3 3 24 0.1 0.1 750 12
Generator MVARs 140 10 1 1 24 0.1 0.1 100 12

Table 4.3: Channel 5 (front LP-stage A bearing) machine profile

Vibration observ. ΛUpper ΛLower τUpper τLower TTrend τLead τTail |S| TStep

Overall amplitude 12 5 0.4 0.4 24 0.2 0.2 5 12
Order 1 magnitude 10 3 0.4 0.4 24 0.2 0.2 3 12
Order 2 magnitude 3 0.5 1.0 1.0 24 0.2 0.2 2 12
Sub-sync magnitude 12 2 1.5 1.5 24 0.2 0.2 5 12
Sub-sync frequency 30 5 1.5 1.5 24 0.2 0.2 5 12

Table 4.4: Channel 6 (rear LP-stage A bearing) machine profile

Vibration observ. ΛUpper ΛLower τUpper τLower TTrend τLead τTail |S| TStep

Overall amplitude 15 8 0.4 0.4 24 0.2 0.2 5 12
Order 1 magnitude 12 5 0.4 0.4 24 0.2 0.2 3 12
Order 2 magnitude 9 3 1.0 1.0 24 0.2 0.2 2 12
Sub-sync magnitude 12 2 1.5 1.5 24 0.2 0.2 5 12
Sub-sync frequency 30 5 1.5 1.5 24 0.2 0.2 5 12

Table 4.5: Channel 9 (front LP-stage C bearing) machine profile

Vibration observ. ΛUpper ΛLower τUpper τLower TTrend τLead τTail |S| TStep

Overall amplitude 25 15 2.0 2.0 24 0.2 0.2 5 12
Order 1 magnitude 35 15 2.0 2.0 24 0.2 0.2 3 12
Order 2 magnitude 40 20 2.0 2.0 24 0.2 0.2 2 12
Sub-sync magnitude 12 2 1.5 1.5 24 0.2 0.2 5 12
Sub-sync frequency 30 5 1.5 1.5 24 0.2 0.2 5 12

expert system.

These parameters were initialised as part of the knowledge elicitation pro-

cess used to build the original KBS, taking from domain experts in the field of

vibration monitoring for rotating plant assets.
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4.2.5 Retrospective

The KBS has a number of central advantages. As with many systems enabled

by STST, providing a strong reasoning chain with any presented decision sup-

port is very useful in communicating to end-users. This is especially important

in the monitoring of nuclear assets, where clear explicability can be a regu-

latory requirement. Each fired alarm has a set of time series symbols and a

specific KBS rule, which makes reporting on the cause of particular alarms

straightforward.

Furthermore, codifying large bodies of tacit domain knowledge can be used

in standardising the approaches taken by individuals in repeatable diagnostic

procedures. This can help inform best-practice guidelines, and utilised in the

training of future domain experts and engineers.

The main shortcoming of the approach is the simplicity of the channel pro-

file representation from a data perspective. In demonstrating the functionality

of the rule base, channel-specific case studies were used and currently the sys-

tem generalises to assume that there is no channel-, machine- or asset-specific

differences to be considered. As shown in Section 4.2.4, initialised channel

profiles only exist for two of the turbine-level components: bearings on the

LP-stage A & C bearings).

These profiles are also static: there currently exists no functionality for de-

termining behavioural characteristics of specific examples of rotating machin-

ery at both the asset class level (e.g. turbineA vs. turbineB), or for extensibility

to new asset classes (e.g. gas circulators, boiler feed pumps). This introduces

the potential likelihood of errors in time series feature classification during the

STST stage when deploying the KBS to previously unconsidered machines.

The initialisation of the symbolic parameters would need to be repeated for

each new instance, which represents a time-consuming effort if the process

outlined in [Tod09] is repeated.
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Furthermore, the system also disregards the case where the symbolic repre-

sentation of time series primitives for a given machine might alter and evolve

with continued operation. The potential for empirical changes to manifest in

the vibration data (and therefore the machine profile representation) with ma-

chine degradation introduces scope for predictive indicators and metrics to be

extracted from repeated use of the KBS if it had adaptive capabilities. Data-

driven techniques for ’updating’ the machine profile do not currently exist

with the system.

With these advantages taken into considered, it was decided that augment-

ing this KBS approach with further statistical methods that take advantage of

the available data on turbine generators was a worthwhile approach to tack-

ling routine alarms in reliability engineering.

The remainder of this chapter explores these areas: utilising data-driven

methods in to augment the existing KBS approach to improve its generalis-

ability, and investigate the evolving machine profile with extended machine

operation. This represents a hybrid method for tackling automatic inference in

routine alarm analysis by leveraging codified knowledge with empirical and

generalisable statistical analyses.

4.3 Learning the machine profile

In contrast to the static values assigned to the machine profile of a new TG, a

number of automated approaches were investigated in order to improve this

process for use in the engineering environment. The problem of extracting a

representation of state from labelled or semi-labelled data is presented as a

typical ML-type problem for the following reasons:

• The volume of available data: Both nuclear-specific and general vibra-

tion monitoring disciplines are ingesting large data volumes, with greater
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instrumentation sophistication, higher bandwidth of data output from

transducers and lower cost of archiving the data.

• The inherent complexity of health monitoring: Beyond the rudimen-

tary monitoring practices discussed in 4.1, it is of high importance to both

operators and equipment manufacturers to best understand any degra-

dation process associated with their machinery. This is not a presently

well-understood process from a first principles standpoint, and it is pre-

sented that data-driven techniques can provide insight into any existent

degradation mechanisms.

• The evolution of machine state: In evaluating the potential for any PHM

or predictive metrics, one of the underlying assumptions is that there is

a demonstrable data-based change in behaviour away from normality

[LWZ+14] with a degradation process.

4.3.1 Learning parameters

From a previously unseen machine instance, our primary aim is to infer the

best representation of system normality at that time in the life cycle of the ma-

chine. For a machine with k observables, we can define a machine profile α

with respect to the STST symbolic parameters (introduced in Section 4.2.2) as

follows:
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α[1,...,k] =



ΛUpper(x1) · · · ΛUpper(xk)

ΛLower(x1) · · · ΛLower(xk)

τUpper(x1) · · · τUpper(xk)

τLower(x1) · · · τLower(xk)

TTrend(x1) · · · TTrend(xk)

τLead(x1) · · · τLead(xk)

τTail(x1) · · · τTail(xk)

|S|(x1) · · · |S|(xk)

TStep(x1) · · · TStep(xk)



(4.2)

Note that each column in α is a channel profile. The parameters encap-

sulated by the machine profile can be broadly grouped into two types: en-

velope- (those involved with typical behaviour - level/impulse primitives:

ΛUpper,ΛLower) and event-based (those related to specific instances of machine

scenarios - trend/step primitives).

Figure 4.7: Overview of the parameter tuning steps to build a machine profile

The steps taken to create a suitable machine profile can be enumerated as:
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• Select representative periods of data from the available bulk historical

time series data,

• Extract relevant statistical moments and parameters from steady-state

periods of the data in order to set parameters associated with envelope-

based features,

• Extract relevant statistical moments and parameters from examples of

step & reactor transient changes in the data in order to set parameters

associated with event-based features.

A flowchart of the parameter learning process is provided in Fig. 4.7, illus-

trating the steps taken from bulk historical data towards a suitably initialised

machine profile ready for KBS use.

4.3.1 a) Envelope-based

Inferring the allowable boundaries of operation for a previously unexamined

observable or set of observables can be done by statistically profiling data

which corresponds to normal behaviour. Selecting applicable periods of oper-

ation representative of these conditions can be approached in a variety of ways

depending on the use-case: for this study, data is selected from an operational

perspective i.e. the observed values recorded by the CM surveillance systems

at times of regular, steady-state conditions. For example, an ideal candidate

for this sort of period would be taken a sufficient length of time after a system

event or transient, allowing for conditions to recover back to a less perturbed

state. This assumption allows for envelopes of allowed behaviour (bounded

by the channel profile values ΛUpper and ΛLower) to be set with confidence that

the learned parameters represent a single state and not multiple contributing

or overlapping machine states.
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4.3.1 b) Event-based

In contrast to steady state patterns that characterise envelope-based features

in the previous subsection, event-based reasoning in the inference process re-

quire parameters defining the nature of the vibration event (specifically, the

step change). In order to tune these parameters accurately, a training set of ex-

ample step changes corresponding to normal behaviour is required to define

each of the step parameters (as introduced in 4.1). The process for selecting

this seed data and extracting the relevant parameter settings are explored in

the following section.

4.3.2 Data selection - envelope-based

Example data from periods of steady state routine operation are most suitable

for defining the bounds [ΛUpper,ΛLower]. Hand-selecting subsets of the time

series for these purposes would be an onerous task: this section discusses some

of the central properties in defining suitable envelope-based tuning data, and

how this can be identified automatically through use of repeatable statistical

methods.

4.3.2 a) Unimodality

A major consideration for suitable steady-state data is how it compares to an

idealised unimodal distribution. Unimodality [CC04] applies to data consisting

of a single distinct mode value. Strictly, this corresponds to a single maximum

probability or frequency value: but distributions with multiple local maxima

are often considered to be non-unimodal for data analysis purposes. Fig. 4.8

shows comparative examples of unimodal and multimodal behaviours (note

that the multimodal example given has a local maxima second mode) with an-

notated KDEs for each of the sampled distributions. KDEs are useful for con-
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Figure 4.8: Example unimodal and multimodal distributions

sidering distribution modality: both in visualisation and statistically [Sil81].

ΛUpper and ΛLower are dependent on a single expected value x̄ with ran-

dom variation, so discriminating against obviously multimodal data in the

setting of these parameters is important. As with many scenarios with data

selection and pre-processing, guaranteeing strict unimodality can remain dif-

ficult. Cases where the PDF might have ambiguity regarding modality (i.e.

skewed unimodal or a single dominant mode amongst multiple contribut-

ing behaviours) can be mitigated against by examining the probability den-

sity values themselves: utilising features such as the full width half maximum
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(FWHM) [WH13] of the function. The provides a non-parametric measure to

aid thes setting factor-based boundaries around a detected mode in the data

distribution.

Testing for unimodality can be accomplished by examining the CDF (intro-

duced in Section 3.1.3) of candidate data subsets. Distributions where CDF (x)

is convex < x̄ and concave > x̄ meet the criteria of unimodality [HH85] . Map-

ping to to finite populations of time series data, this heuristic is used on the

ECDF measure compared directly to the CDF of an idealised Gaussian dis-

tribution with σIdeal = 1 and x̄Ideal = x̄ (as described in Section 3.1.4 b)). .

Examples of both unimodal and multimodal ECDFs in direct comparison to

an ideal unimodal continuous function are provided in Fig. 4.9

0 1 2 3 4 5
Observable value

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
de

ns
ity

Comparison of unimodal and multimodal ECDFs
PDF( (2.4, 0.16))
CDF( )
ECDF( )

0 1 2 3 4 5
Observable value

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
de

ns
ity

PDF( (2, 0.04) + (3, 0.09))
CDF( )
ECDF( )

Figure 4.9: Comparative illustration of ECDFs for unimodal and bimodal PDFs
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Figure 4.10: Comparative illustration of ECDFs for unimodal and bimodal
PDFs, with KS-statistic metric Dn annotated for each

Numerous techniques exist for hypothesis testing of distribution modal-

ity types [PSJ+13]. Kolmogorov and Smirnov introduced the KS-statistic

[Mas51] to quantitavely evaluate differences between target and empirical dis-

tributions, and this can be defined as:

Dn = sup ‖fECDF − fN‖ (4.3)

where fECDF is the ECDF function calculated from the data population and

the function is the target Gaussian with (µ, σ2) equivalent to those from the

data population.

Minimising the difference between the empirical and ideal is the objec-

tive in selecting data using these techniques, with candidate data periods with

smaller differences being closer to the ideal distribution. A quantitative met-

ric which defines this is the quantity Dn: the maximum deviation between the

empirical and idealised CDFs as shown in Fig. 4.9, or sup ‖fECDF −fN‖. When

selecting from a number of candidates, the data period with the smallest value

of this will correspond to the most suitable. KS-statistic values for each of the

examples illustrated in Fig. 4.9 are provided in Fig. 4.10.
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4.3.2 b) Rolling KS-statistic

The dynamic nature of vibration signals from TGs means periods of unimodal

and multimodal behaviour are to be expected when considering historical op-

eration at the macro level. Taking the full time series history of any given

turbine channel is highly likely to contain numerous modes of behaviour from

transient conditions and outliers. Identifying suitable distribution subsets to

build channel profiles with is dependent on extracting dominant unimodal pe-

riods throughout the long-term time series’, with confidence that the filtered

data is representative of the machine’s normal behaviour.

To achieve this, a technique for such periods of operation is presented which

is based on the principle of calculating the KS-statistic on a rolling basis with

a moving window. The process can be outlined as follows:

• The time series is batched into a rolling window of NDN observations,

• Dn is calculated for each window step (window set to 50 values),

• The distribution of windowedDn values is filtered to include only values

from the 10th percentile (selected as this represents the lowest rolling

Dn values) - those corresponding to the windows showing the strongest

unimodality properties. These windows have the lowest Dn values, so

are relatively speaking the most likely to be unimodal.

Filtering the data corresponding to windowed KS-statistic values in the

10th percentile is dependent on the operational period being largely station-

ary with transient condition changes.

Figs 4.11 and 4.12 illustrate this procedure with an example overall ampli-

tude TG series. The resulting empirically selected representation distribution

is shown in Fig. 4.13, from which the relevant machine profile parameters can

be derived.
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Figure 4.13: Tuned distribution example

4.3.2 c) Machine state phase space

To ensure that empirically unimodal data corresponds to steady-state behaviours

from the TG during the intended operating conditions, and not to stationary

data recorded during periods of interim operation (e.g. at stepped duty cycles,

or during low power operation regimes), the selection process also considers

the operational conditions corresponding to the selected tuning distribution.

Specifically, the generator load values exhibited during these periods is ex-

amined to identify non-transient conditions due to its contributory effects to

turbine behaviour [MGiAR08].

Considering the example empirical tuning data distribution introduced in

Fig. 4.13, the associated load values for this are illustrated in the vibration-

load phase space in Fig. 4.14. This shows a small number of non-full load

(< 600MW) states introducing vibration outliers which slightly skew the em-

pirical tuning data. A more dramatic view of this is shown in Fig. 4.15, where

the rolling dip unimodality filter is not applied. Without the pre-processing

step, the distribution parameters extracted from the data shown in Fig. 4.15

would not correspond to a meaningful estimate of normal, steady-state be-

haviour Ensuring that the tuning data for defining normality is only taken
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Figure 4.14: Vibration-load phase space with Dn filter, with crisp load bound-
ary
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Figure 4.15: Vibration-load phase space without Dn filter, with crisp load
boundary

from the relevant operational conditions helps keep the learned parameters as

robust as possible.

4.3.2 d) Extracting the dominant distribution

Over and above the efforts outlined so far with empirical unimodality and the

operational condition filter, periods of vibration behaviour can remain in the

tuning data distribution which do not correspond to an ideal, unimodal distri-

bution. This is especially true when extracting suitable data from an extended

period of historical operation (corresponding to 3 years+ on particular chan-

nels in the dataset used for this study). The most common cause of this will

be due to ’genuine’ changes in the TG vibration response which cannot be at-
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tributed to some sub-behaviour in the generator load values. An example of

this is provided in Fig. 4.15.

To mitigate against this, the selected data is clustered using k-means (k =

2), with the most populuous labelling being selected as the data to be used

as part of the tuning distribution. This is based on the assumption that, post-

filtering, there is likely to only be a single mode of outlier behaviour along-

side the target mode for tuning. Multi-modal outlier behaviours would not be

safe-guarded against using this method, and visual inspection of time series

periods likely to be subject to these conditions is recommended.

4.3.3 Data selection - event-based

Selecting a representative collection of step changes that typify the characteris-

tics of a machine is achieved through use of changepoint analysis techniques.

These examples can be used to determine the validity of the selected chan-

nel profile parameters for step changes, and make any necessary adjustments

using empirical evidence from the TG’s historical behaviour.

Changepoint identification as an area of study has seen many applications

in time series inference [CA17], and specifically in vibration monitoring [LZLL17]

of machinery.

Examining step changes and their expected properties marks an alternative

approach to reasoning about system normality beyond simplistic steady-state

analysis. Two changepoint extraction techniques are introduced in this sec-

tion (a simple standard deviation-based method, and a density-based method

similar to the KS-test approaches applied in Section 4.3.2 b)) for comparative

study.

The target parameters each approach extracts from the bulk time series

are: minimum step change magnitude (|S|), the pre- (τLead) and post-change

(τTail) stabilities in terms of standard deviation, and the period (TStep) over

110



which changepoints emerge. Note that periods including zero’d data val-

ues are treated as sensor errors and are not considered in the empirically-

defined populations of step changes. Each of these parameters are evaluated

post-extraction (with both methods described in the next two sub-sections) as

populations in order to ascertain the most representative values for the data.

The standardised nature of the step change definition (a changepoint, book-

ended by a before and after period) allows for the mean |S| and pre- and post-

changepoint standard deviations (τLead and τTail) to be calculated.

4.3.3 a) Standard deviation-based

A straightforward approach to step change extraction is the comparison of

point-by-point delta values to the properties of the batch distribution of the

entire time series. Defined as:

fChangepoint(x(t)) =

 1, : ‖x(t)− x(t− 1)‖ > µ(x∆) +Nσσ(x∆)

0, : else
(4.4)

where x is the full time series, x(t) is the value of x at a given time t, x∆ is the

first-order discrete difference of x and Nσ is a number of standard deviations

σ(x∆) from the mean of the difference distribution µ(x∆) defined as allowable

change non-indicative of a step change. In other terms, any single point-wise

change greater than µ(x∆)+Nσ(x∆) will be labelled as a potential changepoint.

Figure 4.16 provides an illustrative example of these. Typically, Nσ is set = 3

in accordance with the 99.7% rule [WH13] of statistical populations, where is

assumed that 99.7% of all samples from a population will fall within three

standard deviations of the mean.

The definition of step events introduced by the parametric view in Section

4.2.2 c) requires a level of stability exists both before and after the discrete
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Figure 4.16: Overview of standard deviation-based identification of change-
points in vibration time series data

changepoint in order to be quantified as a repeatable step feature.

This process belongs to a larger family of similar techniques [CBK09] that
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have seen wide adoption in a variety of application domains. The strength

of such techniques lie in their ease of explanation and simplicity in imple-

mentation: meaning standard deviation-based anomaly or novelty detection

approaches are often the first models tried in the identification of features of

interest.

4.3.3 b) Density-based

Using the same statistical principles but with the opposite inferential target as

the unimodality techniques outlined in Section 4.3.2 a), monitoring the rolling

density and corresponding measures of the distribution allows for examples

of bi- or multi-modality to be identified. Typical changes in the PDE under

changepoint conditions are illustrated in Fig 4.17, showing the evolution from

unimodal to bimodal behaviour.

From each window distribution, the rolling KS-statistic (as introduced in

Section 4.3.2 b)) can then be calculated to reason about the modality of each

time series snapshot. An example set of rolling dip figures for examining

changes is provided in Fig. 4.18, showing higher Dn values around points

of discrete change in the time series. The rolling Dn values above the 90th per-

centile are highlighted (in contrast with the unimodality considerations out-

lined in 4.3.2 b)).

Extracting changepoints is achieved by identifying groups of consecutive

Dn > 90th percentile values and taking the first index of each of these groups.

Example changepoints derived using this approach are annotated in the ex-

ample provided in Fig. 4.18. It should be noted that this method successfully

identifies the second changepoint in the time series despite their proximity in

load values (approx. 550MW to 620MW). The sensitivity of this method in

monitoring different time series observables for rotating machinery needs to

be investigated in more depth to ensure all relevant changepoints are likely to
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be flagged.
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Figure 4.18: Rolling KS-statistic applied to example load profile

4.4 Case study: Tuning channels

The techniques introduced in Section 4.3.2 are brought together into an auto-

mated tuning procedure, with the aim of identifying robust estimates of the

required channel profile parameters from suitable historical data. This allows

for previously ’un-tuned’ turbine channels to benefit from the KBS approach to

routine alarm analysis without the requirement for lengthy engineering con-

sultation on a channel-by-channel basis.

For this study, the time series histories for 9 sensor channels (each corre-

sponding to a particular TG component sensor) across two machines over the

period 2008 - 2012 (at various points of the operational history) were extracted

to provide a dataset for experimentation.

4.4.1 Channel profile vs. data

Comparing the preset channel profile values with typical operation data from

Turbine A gives an insight into how the KBS uses its parameters to define

normality when faced with typical conditions of a machine. An example pe-

riod of operation with corresponding distribution of values is illustrated in Fig.

4.19, showing how overall amplitude behaviour deviates above and below the

boundary ΛLower, resulting in the creation of impulse symbols in the STST
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module along with the major mode of operation falling inside the expected

bounds.

Figure 4.19: Time series and distribution of example overall amplitude subset,
with annotated channel profile parameters

Such behaviour is generally consistent with the dynamic operation of a TG

in the nuclear power context, and the highlighted impulse features given in

Fig. 4.19 provide useful alerting in isolation (when cross-examined with oper-

ational deviations), and in the context of a KBS where rule-chaining can deliver
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more complex conclusions.

In contrast, if this same channel profile is applied to the same observable

(overall amplitude) but on a different channel (channel 7, the transducer mounted

on the front bearing of the next turbine stage), the difference between the ex-

pected behaviour and observed data becomes apparent due to the difference in

expected vibration level from these components. Fig. 4.20 shows the preset pa-

rameters are no longer applicable, with the expected vibration distribution dif-

fering from that on channel 6. This results in vast over-reporting of impulse

symbols, due to the dominant behaviour now existing on the boundary of the

rule threshold.

4.4.2 Tuning process and results

4.4.2 a) Empirical tuning distributions

The following empirical tuning distributions were derived from Turbine A

data across the period of operation (where sufficient data was available for

each channel). Fig. 4.21 provides each of these extracted vibration observable

distributions. Note that the bandwidth selection method used for these den-

sity estimates was Silverman’s [Sil87] rule. The corresponding empirical dis-

tributions for the 3 operational observables over the same data period are illus-

trated in Fig. 4.22. Both these collections of distributions illustrate the diversity

of normal conditions exhibited across turbine channels that are otherwise not

considered in the KBS machine profile without a statistical augmentation that

the tuning methods provide.

These bulk calculations provide the basis for defining normality, bounds of

expected behaviour from historical steady-state data and subsequently more

applicable envelope values for use in the routine alarm KBS. Note that the x-

axis for each of the distributions in these collections represents the parameter
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Figure 4.20: Time series and distribution of example overall amplitude subset,
with annotated channel profile parameters (incorrect channel)

value itself, with the y-axis corresponding to probability density.

4.4.2 b) Selecting parameters

Where available, the preset channel profile envelope values can be compared

directly with these empirically-derived distributions: both in the case of oper-

ational observables in Fig. 4.23, and for vibration observables in Fig. 4.24.
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Figure 4.21: Empirical distributions for vibration observables

For the operational observables, both the rotor current and generator VARs

exhibit differences between the initialised profile values for ΛUpper and ΛLower,

and the empirical distribution. Since the nature of these observables is such
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Figure 4.22: Empirical distributions for operational observables

that they are determined by the duty cycle and operational strategy of the re-

actor, there is less of a case for altering the bounds of operation without input

from the reliability engineering staff. However, highlighting the differences in

the expected duty cycle bounds and the empirically-derived distribution from

the data has the potential to explain large volumes of operational change-based

routine alarms, which can be clearly explained from the alterations made to the

operational observables.

In the case of the vibration observables, the initialised values are largely in

agreement with the distributions when simply considering encapsulation by

the bounds (not considering the width of the envelope), except for examples

in channel 9 overall level & first order magnitude, and sub-synchronous mag-

nitude on both channels 5 & 9. These are clear candidates for amendments to

be made to the selected values for ΛUpper and ΛLower.

For such examples of disagreement or where the preset values do not al-

ready exist, the density function created by the KDE can be used to statistically

define the new values for ΛUpper and ΛLower. The FWHM is a useful descrip-

1000 1200 1400 1600 1800 2000 2200 2400 2600
0

20

40

60

80

100

120

140

160

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Ke
rn

el
 d

en
sit

y

rotor_current

600 620 640 660 680 700 720 740
0

20

40

60

80

100

120

140

160

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ke
rn

el
 d

en
sit

y

load

0 25 50 75 100 125 150 175
0

20

40

60

80

100

120

140

160

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Ke
rn

el
 d

en
sit

y

generator_vars

Figure 4.23: Empirical kernel density estimates for operational observables,
with annotated existing channel profile limits
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Figure 4.24: Empirical kernel density estimates for vibration observables, with
annotated existing channel profile limits
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Figure 4.25: Density-based envelope setting of revised channel profile values

tive measure [Bar13] from the probability density around the dominant mode,

from which a scaled factor can be taken to define bounds around which an en-

velope can be constructed (FWHM ≈ 2.355σ). Fig. 4.26 provides an example

of this metric.
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Figure 4.26: Illustration of FWHM taken from a density estimate

Based on the FWHM value of the dominant mode of each density estimate,

Fig. 4.25 shows the previous examples from 4.24 with a self-tuning approach

to selecting these channel profile parameters from the empirical distribution

itself, using a factor of the FWHM value:

ΛUpper = x̄+N
∆FWHM

2
(4.5)

ΛLower = max(0, x̄−N∆FWHM

2
) (4.6)

where x̄ is the dominant mode of the empirical distribution (argmax of the

density function), ∆FWHM is the FWHM value is the difference between the

density values at the FWHM, and N is the envelope factor around which the

thresholds are defined. Note the max expression keeps the lower bound from

not falling below a value of 0. For the examples provided in 4.25, N is set to a

value of 3 (as suggested in [WH13], consistent with the aforementioned 99.7%

rule).
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Figure 4.27: Standard deviation- & density-based changepoints on channel 9
time series

4.5 Case study: typical step changes

4.5.1 Technique selection

The techniques introduced in Section 4.3.3 are compared on the channel 9 over-

all level history of Turbine A, with the aim of ascertaining which is most suit-

able for bulk use for the remaining channels. Each of the identified change-

points are highlighted in Fig. 4.27 alongside the time series they were de-

rived from, and summary statistics for both methods are provided in Table 4.6.

As shown by the extracted step size and pre-/post- stabilities along with the

number of instances identified, the standard deviation-based method tends to

identify candidate step changes more often and less with greater pre-/post-

instability than the density-based technique. The mean step profiles for both

up- and down-steps for each of the changepoint detection methods are illus-

trated in Fig. 4.28, for both feature extraction and visual validation purposes.

Table 4.6: Identified steps per method

Method No. steps µ(|S|) µ(τLead) µ(τTail)
Standard deviation-based 96 3.75 2.16 2.71
Density-based 39 2.71 1.55 1.56
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Figure 4.28: Standard deviation- & density-based mean step profiles

Due to the windowed nature of the techniques, the potential for duplication

of step instances in the returned results is a potential issue for both methods.

Examining the uniqueness of the step example populations returned for each

is accomplished by comparing their time series hierarchical clustering [Lia05]

results, as illustrated in Fig. 4.29.

From this view, the standard-deviation method appears to exhibit a large

redundancy effect in the labelled step instances for a significant proportion of

the extracted examples, wheras the density-based method returns fewer steps

but with improved cluster diversity. Considering each of the points high-

lighted in this section, the density-based changepoint extraction method is

selected for use in bulk to continue the procedure of tuning the event-based

channel profile parameters.
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Figure 4.29: Standard deviation- & density-based hierarchical clustering

4.5.2 Tuning process and results

4.5.2 a) Empirically selected steps

For each of the Turbine A channel examples first examined in the results of

Section 4.4, the step extraction method was applied to build a characteristic

step profile for both up- and down-steps where sufficient data was available
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(at least 5 examples of steps were required for a step profile to be constructed

for a given channel-observable pair). The aggregate results for each of these

are provided in Figs. 4.30 and 4.31, showing a wide variety of time series sta-

bilities, changepoint magnitudes and general characteristics when considering

typical step changes for each of the channels.

It should be noted that several of the channels included in these results for

both up- and down-step examples do not appear to show sufficient stability or

repeatability to begin examining their properties from a parametric perspec-

tive (e.g. sub synchronous up-step on channel 2). Also, several of the down-

step examples include zero-level data which wouldn’t otherwise be considered

in routine alarm inference (e.g. order 1 & 2 magnitude downsteps in channel

6). These results were included to illustrate some of the edge cases associated

with bulk step change inference in the vibration domain, and should be dis-

carded when considering such approaches in a fully automated solution when

deployed. This also highlights the importance of keeping engineering staff in-

the-loop when making decisions about the profiling of channel characteristics:

a key part of providing effective decision support.

4.5.2 b) Selecting parameters

The summary statistics for extracted steps are provided where enough data

and examples were extracted from the channel history. The results for each of

these are provided in Tables 4.7, 4.8 and 4.9.

The most striking element from these results is the inter-channel variability

in the typical stage change example values extracted by the self-tuning meth-

ods. With the exception of the channel 6 first order magnitude extracted step,

the mean step associated with each of the component channels is much less

than the initialised value provided in the original KBS parameterisation (as

shown in Section 4.2.4). This suggests that the flat, channel-agnostic setting
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Figure 4.30: Upstep profiles for Turbine A vibration channels, extracted using
the density-based methodf

for step change extraction is not sensitive enough to the differing conditions

seen on each channel, and could be misdiagnosing large proportions of rou-
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Figure 4.31: Downstep profiles for Turbine A vibration channels, extracted us-
ing the density-based method

Table 4.7: Turbine A overall level steps

Channel No. steps µ(|S|) µ(τLead) µ(τTail)
4 9 1.51 0.84 0.56
5 5 1.66 0.51 0.55
6 3 1.42 1.23 0.76
7 3 1.21 0.99 0.53
8 9 1.41 0.92 0.57
9 39 2.72 1.55 1.56
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Table 4.8: Turbine A first order magnitude steps

Channel No. steps µ(|S|) µ(τLead) µ(τTail)
4 31 1.10 0.80 0.74
5 30 0.99 0.80 0.66
6 10 2.56 1.80 1.41
7 33 0.85 0.58 0.63
8 33 0.96 0.64 0.50
9 53 1.70 1.34 1.26

Table 4.9: Turbine A second order magnitude steps

Channel No. steps µ(|S|) µ(τLead) µ(τTail)
4 14 0.43 0.20 0.28
5 20 0.35 0.19 0.17
6 8 1.24 1.07 0.75
7 24 0.38 0.37 0.40
8 32 0.28 0.26 0.26
9 89 1.15 0.88 0.88

tine alarm instances where an operational change has occurred.

4.6 Discussion

This chapter introduced a toolkit of statistical inference and data-driven tech-

niques for the augmentation of a pre-existing TG KBS-based intelligent system,

which allow for STST-base rulesets to be updated and self-tuned using auto-

matic data selection and feature extraction methods. Further to providing a

means to apply the knowledge base across more machine channels and exam-

ples of TGs, the distribution and parameter outputs from the approaches give

insight into the empirical behaviours associated with steady-state and step

change conditions for historical TG instances. Such methods can be used to

aid in the decision making regarding the long-term health and state evolution

of assets.
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Chapter 5

A data-driven degradation model

for circulators during refuelling

This chapter describes the second major contribution from this body of re-

search: the investigation and development of a data-driven model for GC units

during AGR refuelling events. The associated engineering problems, selected

data-driven approach and potential applications are each discussed, with a fo-

cus on the value the modelling approach can provide to engineering staff to

aid in GC health monitoring.

5.1 Problem definition

Gas circulators are monitored in a similar manner to turbine generators and

other auxilliary rotating plant items on AGR sites: through the deployment of

vibration monitoring transducers and surveillance systems. The mounting of

these devices allows for streams of vibration measurements to be taken during

the operation of the GCs, and give an insight into their behaviour and health.

This is true for both steady state operation (as with the TGs discussed in Chap-

ter 4), and for transient, dynamic conditions. This section will look into a key
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transient event in the GC duty cycle: the low power refuelling event, for which

online vibration data is available and potentially useful for reasoning about GC

health.

5.1.1 Low power refuelling

One of the unique operational features associated with the AGR design, low

power refuelling (LPR) is a regularly scheduled reactor event which allows for

the replenishment of fuel channels [Non96] without a complete halting of gen-

eration. The channels not involved in the refuelling process are allowed to

continue transferring energy to the TGs through the primary cycle which re-

fuelling occurs. The main benefit of this is in increased uptime in generation

hours when compared to offline refuelling reactor designs. Any MW output

that can be safely maintained during fuel replenishment is desirable for the

operator from an economic perspective.

From a monitoring perspective, regular LPR and other in-core interaction

events also provide unique opportunities to make measurements of the refu-

elled channels to asses in-core condition and health. These structures are often

unobservable to the operator without costly invasive inspections made while

the NPP is offline, so any opportunity to collect data about channel state is

worthwhile. The AGR design’s flexibility in allowing for dynamic duty cycles

and the process of partial refuelling is a feature that has been taken advantage

of for numerous successful core health studies [WMT12, BWMR17]. Refuelling

events typically occur for 5-8 fuel stringers per campaign over the period of

days, with around 6-8 weeks seperating campaigns [ZPC+04].

The LPR event is defined by an operational characteristic referred to as

‘castling’: the modification of the output reactor load to approximately 70%

and 30% of full capacity at set intervals. This duty cycle provides alternate

periods of medium and low power, and during the low phases it becomes

131



possible for the operator to interact with particular channels, restock fuel, and

maintain or replace fuel stringer components. Castling gives the generator

load time series during a single LPR campaign a distinctive profile; an exam-

ple of which is provided in Fig. 5.1.

Figure 5.1: Typical generator load profile during AGR refuelling events with
LPR highlighted

The example data in Fig. 5.1 for a single LPR is taken from a typical CM

surveillance and interrogation hardware/software system used by reliability

engineers responsible for the health of GCs. The variable fidelity of the time

series in this instance can be explained by the common practice of taking in-

creased granularity snapshots during periods of operational interest.

Correspondingly, the GCs are driven at variable circulatory output rates

during each of the ‘castle’ steps in a refuelling campaign to regulate the cool-

ing level required by that portion of the reactor. These changes of state are

reflected in the vibration-based response of the GC data recorded from each

unit, showing variation during each of the change periods. In common AGR

practice, the castle features will total between 6-8 periods during a single LPR

event. This is dependent on the replenishment requirements from an opera-

tional and fuel stock perspective.

An example of the vibration profile exhibited during a refuelling event is
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provided in Fig. 5.2, with peak-to-peak overall amplitude measurements taken

in both the horizontal and vertical axes at the drive and non-drive ends (DE,

NDE) of each unit.

Figure 5.2: Typical vibration response to changing conditions during AGR re-
fuelling events

5.1.2 Transient monitoring

‘Transient’ refers to periods of operation undergoing change or fluctuation, in

contrast to ‘steady state’ behaviours where conditions are taken from a station-

ary distribution of values. This has historically been used as a catch-all term

to describe unexpected changes, faults or temporary fluctuations, however it

is argued that the definition can also be expanded to include non-steady state

behaviours that are part of the normal operational duty cycle of a plant item.

Increased interest in transients as a potential source of diagnostic and prog-

nostic information in recent years [BIAL+17] stems from the premise that en-

gineering systems undergoing change can be subject to greater stresses, and

their resulting data streams during transients can provide new information re-

garding the asset’s condition previously unattainable during steady state op-

eration.
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5.2 Strategy

5.2.1 Importance of the LPR

Monitoring GCs during refuelling represents a potentially useful source of in-

formation for a few reasons:

• LPRs drive the circulators over a large dynamic range: The effects of

bringing the experienced load from full to 70% to 30% at regular inter-

vals is argued to be of similar stressing factors, or at least comparable, to

typical run up and run down conditions. Run up/run down events are

already commonly examined [ZGMS04, RST17] in turbomachinery CM,

providing useful data-based condition insights.

• LPRs are regular: During the lifetime of a circulator (the studied exam-

ple has data over the course of 4 years), it can expect to experience nu-

merous refuelling campaigns scheduled at roughly consistent intervals

(approx. every 6-8 weeks). This repeated transient action could provide

a wealth of previously unexamined information about the health and po-

tential degradation of the machine class at key points in its lifecycle.

• LPRs have a strong driver/response relationship: Since the driving con-

ditions are entirely observable (that is, we have measurement of the load

alterations in the system), it becomes possible to construct an empirical

relationship between the input and response observables.

The final point in particular is noteworthy; many engineering systems re-

quiring reliability studies do not have a strong coupling between input and

response, which may necessitate implicit measurements of latent, unobserv-

able states for meaningful analysis. For example, the dynamic conditions of

the AGR core itself are too complicated and numerous to map directly to a

single operational driving parameter.
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5.2.2 Data-driven model

The strategy for building a model of circulator operation during refuelling

campaigns herein can be split into two main goals:

• 1. Construct a robust and accurate LPR time series classifier which au-

tomatically labels data consistent with refuelling events from historical

records of circulator operation.

With eight instrumented GCs per reactor unit, the multiplicity of CM data

streams introduced thus far is already a factor in examining the fleet-wide re-

liability of these primary cycle units. Extracting LPR and LPR-like transient

data in an automated fashion from the large back catalogue of archived GC

data opens the potential for analyses on a large subset of vibration signals pre-

viously unsegmented from regular operation.

• 2. Examine any temporal characteristics of the model’s continued use to

isolate potential prognostic metrics.

The discrete nature of the repeated refuelling campaigns applied to GCs

provides a ‘snapshot’ of a system event at numerous moments of the opera-

tional history of the plant item. Any evolution in model parameters, orienta-

tion or empirical indicators in line with continued operation could provide an

implicit mapping of any underlying degradation processes being experienced

by the machine.

5.3 Model selection - theory

The best practice in training an ML model is to examine a number of suit-

able algorithms and select the approach which yields the best accuracy [Kot07,

Mur12] with the training domain and test criteria at hand. Note that perfor-

mance in this study refers to model accuracy, but this can also be quantified
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other metrics such as precision or mutual information. A variety of approaches

exist for this evaluation; cross validation [Koh95, CW12] (CV), model evidence

comparison [Bis06] and likelihood ratios [Vuo89] encompass most of the model

selection approach types for frequential- and Bayesian-style reasoning respec-

tively.

The suitability of each of the earlier identified candidate algorithms for use

in the LPR vibration data model is examined using a scoring method combin-

ing CV and out-of-sample test error (defined as the misclassification rate in the

held-out test set) when compared to the full LPR 2006 - 2010 dataset.

5.3.1 k-fold cross validation

Splitting the dataset D into training and test subsets while avoiding uninten-

tionally over-fitting to a particular test collection can be a difficult process.

A thorough shuffling and iterative train/test split procedure is often recom-

mended to avoid over-training to a particular data orientation, which would

reduce the applicability of the classifier in practice. Building a suitably general

model which is robust with as wide a range of test inputs relies on minimising

any inherent biases in the evaluation criteria; an issue that cross validation-

type techniques seek to address.

k-fold CV splits the dataset into k evenly sized partitions, which are then

each used in turn as the test set against a model trained by the remaining k− 1

folds. Each of these train/test splits are evaluated on their predictive accuracy

(in the LPR model example, how well the model predicts the {online, upper, lower}

class membership for each item in each test set), as illustrated in Fig. 5.3. The

average performance among the k splits is utilised as the overall CV perfor-

mance of the model.

Selecting k is dependent on the size and nature of D, and the requirements

from the trained model. Since the LPR dataset is built from 21 individual re-
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Figure 5.3: k-fold cross validation procedure

fuelling events, k = 21 is used in this example. This shuffles the full refuelling

data into folds of approximately equivalent size to the LPR events, but removes

any temporal- or event-based biases inherent from potential degradation from

the circulator unit.

5.3.2 Hyperparameters

Learning algorithms often require a number of initial conditions to be set which

govern the modelling technique’s strategy when finding an optimal hypothe-

sis. These hyperparameters differ for each ML approach, but their selection is

often critical to the success of the final model: for both D-classification accu-

racy and generalisability.

The systematic measurement of classification success with respect to a given

dataset D across a range of hyperparameter values for a learning technique is

known as a grid search strategy [CWCCCJ03], and represents one of the most

effective means to tune the hyperparameters of ML techniques.
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5.3.3 Classifiers

A selection of linear and non-linear classifiers were investigated with the refu-

elling dataset in order to identify the most suitable.

5.3.3 a) Linear classifiers

A total of four linear classifiers were evaluated (with their corresponding ref-

erence section parenthesised):

• Perceptron-based linear model (3.3.2),

• Logistic linear model (3.3.3),

• Linear SVM with L1-regularisation (3.3.4 a)),

• Linear SVM with L2-regularisation.

The implementations of these techniques [PVGM11, PA13] each have a sin-

gle regularisation hyperparameter to be optimised; α for the perceptron and

logistic linear models, and C for the linear SVM models. Note that this sim-

plification when compared to historical versions of these methods (which can

typically require a grid search of three or four hyperparameters) is due to im-

provements made in the scikit-learn model implementations, which use

a combination of optimised search and hypothesis space navigation heuristics.

These four were selected over the other techniques outliner throughout

Chapter 3 due to their suitability for low dimensional supervised learning

problems, and their track record in application to this domain. Future research

into other techniques (such as random forests, which often perform well in

high-dimensional spaces) and with enriched feature vectors would be a worth-

while next step.
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5.3.3 b) Higher-order classifiers

The non-linear RBF kernel SVM was also trained and tested with the refuelling

dataset, in an effort to investigate potential non-linearities in the decision func-

tion hyperplanes separating the three load classes. An additional kernel hyper-

parameter γ is required to be optimised, making the grid search 2-dimensional.

5.3.4 Dataset overview

To gain a better perspective of the dataset at hand, this section provides a few

explanatory visualisations and clarifies a number of characteristics inherent

to the GC data. Forming a proper understanding of the available informa-

tion by examining not only the relevant domain knowledge but also through

techniques of data exploration is important in constructing robust data-driven

models and useful systems built upon these.

The available observables for the GC asset class are broadly equivalent to

the vibration-based machine views common across rotating plant items. In or-

der to reason about the LPR and any potential effects it may impart on the GCs,

any model requires a measure of the duty cycle and corresponding response

of the machine. The LPR state is defined by variable load signatures (as intro-

duced in Sec. 5.1.1), making the generator load operational observable the best

choice to define state. For quantifying response to state, the overall amplitude

vibration signals at both the DE and NDE on the horizontal and vertical axes

are used.

A single circulator unit, which went on to experience an eventual inspection-

based failure, was taken as the data source for the construction of the model.

This data covers the period 2006 - 2010 and includes numerous LPRs, outages

and ad hoc operational adjustments. This totals 18,147 4-dimensional times-

tamped measurements. The experienced load duty cycle for this period is pre-
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Figure 5.4: Full (2006-2010) duty cycle of the GC used to construct the model,
with zoomed LPR instance

sented in Fig. 5.4.

From this period, a total of 21 labelled LPR events were selected to build

the LPR model representation. The load periods for these are provided in the

context of the full duty cycle in Fig. 5.5.

Fig. 5.6 provides the corresponding vibration response across each of these

events in horizontal and vertical phase space for both the DE and NDE trans-

ducers mounted on the circulator, with different colours corresponding to sep-

arate LPRs. This visualisation provides the full range of vibration response

behaviours to repeated LPR events, and shows initial visual evidence of some

clustering behaviour - potentially around the three LPR states.

Fig. 5.7 illustrates a kernel density estimate of the generator load observ-
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Figure 5.5: Duty cycle of the selected LPRs used to train the model

able across each of the selected LPR events, along with an average probability

density function. Three dominant modes of load value are evident along with

their probabilistic frequency - which maps intuitively to the LPR’s castling

characteristics.

The density estimates in Fig. 5.7 provides the kernel densities for each LPR,

along with the average kernel density denoted by the thick blue line. This

average is used by the GMM model to identify the suitable LPR boundary

Figure 5.6: Drive and non-drive end vibration phase space of the refuelling
events
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Figure 5.7: Kernel density estimate across the range of load values for the entire
dataset

settings empirically.

5.3.5 Labelling LPR behaviour

Using an N = 3 Gaussian mixture model (as introduced in Section 3.3.6 b)),

the classification boundaries which quantify membership to each of the LPR

load states (formally {Online, Upper, Lower}, each of the load levels) are

estimated empirically. This is achieved by taking the density minima between

the identified distributions (image provided in Fig. 5.8) as the boundaries. The

resulting piecewise labelling function is provided in (5.1).

fState(x) =


Online, : x > 603

Upper, : 386 ≤ x ≤ 03

Lower : 0 < x < 386

(5.1)

The delimitation of the load values into three discrete behavioural cate-

gories allows for the labelling of the entire vibration dataset; providing the

basis for a supervised classification problem as introduced in previously. With

one of the three major driving behaviours of the LPR assigned to every time
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Figure 5.8: Mixture of Gaussians (N = 3) model of load data, identifying the
bounds of the three load-based behaviours

series observable, it becomes possible to generalise the vibration response to

each of these behaviours in a sufficiently trained data-driven model and po-

tentially reason about any variation in this response from an observed range

of nominal values.

5.3.6 Training data feature vector and dimensionality

The data used in the supervised learning problem described in the follow-

ing sections is explained in this short section to provide some clarity about

the ML task at hand. The input feature vector is a 4-dimensional array of

the horizontal and vertical drive-end and non-drive end peak-to-peak instan-

tenaous vibration, while the output label is the load-based class taken from

[Online, Upper, Lower] (corresponding to the load values). Over the 21 LPR

campaigns used in the training data, there were 2, 366 examples, with an aver-

age of 113 measurements per refuelling event. For each class, 43% of the data

points in LPRs were Online, 40% were Lower and 17% were Upper. The imbal-

ance between each of these classes was deemed to be manageable due to the

relative similarity in scale between steady-state (Online) and transient (Upper

and Lower) as a whole.
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5.4 Model selection - results

For a primary implementation of an LPR model with a focus on label accu-

racy and performance, each of the candidate models take all four vibration ob-

servables as range normalised real value inputs, as recommended by various

practical ML engineering sources [CWCCCJ03]. This allows for any 4-tuple of

vibration values of the form (DE horz, DE vert, NDE horz, NDE vert) to

be used to predict the circulator state with respect to refuelling at that point.

Note that the primary aim of this refuelling model is to predict the category of

duty cycle behaviour (as defined by the load) from the vibration alone, which

explains why load is omitted.

A final evaluation for each of the ‘tuned’ candidate models post-grid search

is made on the full available operational records from which the refuelling

events were selected. The classification accuracy across this extended period

is used as the decision point in selecting the most suitable model for further

implementation.

5.4.1 Grid search results

5.4.1 a) Linear classifiers

The CV grid search scores for the linear perceptron, linear logistic, linear L1-

SVM and linear L2-SVM are provided in Fig. 5.9. These figures show the

variation in CV accuracy (including the standard deviation of each data point

highlighted by the blue envelope) when searching the hyperparameter space

associated with each model type. The hyperparameter setting with the largest

CV score for each model is used as the exemplar model for each. The test accu-

racy dropping when compared to the cross-validation results is to be expected

as the model is tested across the fuller validation set. It is of interest than the

L2-SVM increases in accuracy when considering the full test set: there are a
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Table 5.1: CV and test scores for linear classifiers

CV results Test accuracy
Classifier Hyperparameter Value CV score Score
Linear perceptron α 0.1233 88.5% 76.05%
Linear logistic α 8E−5 87.8% 71.55%
Linear L1-SVM C 10.975 87.8% 75.69%
Linear L2-SVM C 58.57 87.9% 88.23%

number of potential reasons for this, including that the training dataset being

drawn entirely from dynamic LPR states was more challenging to model state

more accurately than the state-steady examples in the full LPR history.

It should be noted that general shape of these results being approximately

mirror images (perceptron/logistic vs. SVMs) of each other is to be expected -

SVM convention dictates [KS03] that values of C are roughly proportional to

1
α

, their gradient descent counterpart.

Each model (with the tuned hyperparameter settings from the grid search

results) is then applied to the full 2006 - 2010 GC dataset. The percentage of

correctly labelled states from the vibration input - the test accuracy - is used as

the final selection criteria. The full results for the linear models are provided in

Table 5.1, showing the linear SVM with L2 regularisation is the most accurate

from the candidate algorithms.

5.4.1 b) Higher-order classifiers

Results of the two-dimensional grid search for the RBF SVM are provided in

Fig. 5.10 and Table 5.2. One of the most prominent features of this search

space is a high accuracy diagonal, where the proportional variation of C and

γ maintain a high cross validation rate. This has been observed in a number

of SVM models [Gri14] and can be considered normal - each of the candidate

models in this diagonal should be a candidate for selection, with the highest

test accuracy providing a useful measure for the most desirable selection. The

range of results for both CV and test accuracy (in terms of correct labelling of
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Figure 5.9: CV grid search scores for each candidate linear model
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state) observed in this diagonal region is also provided in Fig. 5.10.

Figure 5.10: Classification accuracy of RBF SVM with varying C and γ
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Table 5.2: CV and test scores for RBF SVM diagonal

Hyperparameters Validation
C γ CV score Test accuracy
0.0545 18329.8071 43.4% 64.5%
0.2069 3359.8182 73.9% 66.8%
0.7847 615.8482 89.8% 84.7%
2.9763 112.8837 90.4% 88.4%
11.2883 20.6913 89.7% 87.8%
42.8133 3.7926 89.5% 87.7%
162.3776 0.6951 89.6% 87.9%
615.8482 0.1274 89.1% 86.8%
2335.7214 0.0233 89.1% 89.0%
8858.6679 0.0042 89.0% 88.8%
33598.1828 0.0007 88.7% 88.9%
127427.4985 1.438E−4 88.8% 88.1%
483293.0238 2.636E−5 88.6% 88.7%
1832980.7108 4.832E−6 88.1% 88.7%
6951927.9617 8.858E−7 79.3% 74.3%
26366508.9873 1.623E−7 71.8% 75.5%
100000000 2.976E−8 77.5% 71.1%

Note that the hyperparameters used in the results outlined in Table 5.2 were

selected with a systematic grid-search exploration strategy, but without any

parameter space exploration beyond these bounds. Using techniques such as

Bayesian optimisation [CT07] to investigate this would be a worthwhile next

step.

5.4.2 Discussion

The results provided in the previous section illustrate the effectiveness in using

the SVM process when building a classification model for the LPR labelling

problem, with the two best test scores coming from the linear L2- (88.23%) and

RBF (89.0%) SVMs. These procedures are in fact theoretically similar [KL03],

with the linear SVM being a specific case of an RBF-type SVM - explaining

their coincidence at the top of test accuracy rankings in this case.

Training times1 for the RBF SVM were significantly longer than those ex-

1Training on the LPR dataset was done on a Macbook Pro Retina 2.5GHz Intel Core i7 with
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hibited by the linear L2-SVM: taking an average of 57:05 per run (5 runs) com-

pared with an average of 2:35 (5 runs) respectively. Despite the slight improve-

ment in test accuracy when using the non-linear RBF approach, the associated

training time is presented to be disadvantageous when considering the nature

of the problem at hand. Successive training of models at various timesteps of

the GC operational lifecycle combined with the number of units fleet-wide (8

per reactor) make the shorter training time of the linear L2-regularised model

preferable, despite the small loss in accuracy.

With these points considered, the L2-regularised linear SVM was selected

as the most suitable model for the LPR classification task. This model provides

the most accurate means of identifying LPR-type conditions from vibration

data only, and enables the long-term modelling approaches introduced later in

this chapter.

5.5 Decision support

The focus when developing intelligent and data-driven technologies for the

CM engineering context should be on delivering actionable insights and infor-

mation to end users. Putting any predictive capabilities to the side (discussed

later in Section 5.6) for the moment, the model seeks to provide two key func-

tionalities:

• Automatic LPR data identification: The model should allow for the easy

categorisation of LPR-type data points from the large historical records

available to the operator, without the requirement for logistic records

or dates of campaigns to be input. This allows for the long-term be-

haviour of refuelling events to be documented and studied with minimal

co-ordination and effort.

16GB DDR3 memory
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• Improved presentation of LPR as an event: The model should provide a

useful visualisation of the refuelling event considered as a whole, moving

away from the time series-only approaches currently employed. This

allows for the LPR to be reasoned about discretely - a step forward from

the rudimentary analyses which don’t currently consider nuances of any

operational events which may be driving change.

This section examines the performance of the techniques employed in meet-

ing these requirements and how they might be utilised in the reliability engi-

neering environment.

5.5.1 Identifying LPR state data

The load-based class values and the predicted values (as annotated using 5.1)

from the modelling approach are compared in Fig. 5.11 across the full oper-

ational history dataset, covering the GC’s duty cycle between 2006 and 2010.

Included in this diagram are the deltas between the predicted and actual LPR

states: 0 refers to a correct result, 1 is a class difference of one (e.g. Online

instead of Upper), 2 is a class difference of two (e.g Online instead of Lower)

The prediction of the classifier is provided for each of the load values through

the duty cycle in Fig. 5.12, which can be compared with the earlier Fig. 5.4. As

demonstrated in Section 5.6.1, the model classifies the state correctly 88.23% of

the time using the vibration data, with each of the discrepancies highlighted by

the red deltas in Fig. 5.11. The vibration observables for each of the prediction-

based segmentations at both the drive and non-drive ends of the GC are pre-

sented in Figs. 5.13 and 5.14. Note that the hue of points denotes density of

instances in that part of the time series.

These groupings represent a data-driven estimation of the Online, Upper

and Lower behaviours across the full operational dataset. This is an improve-

ment from simply thresholding the load-based duty cycle for one key reason:
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Figure 5.11: Class vs. predicted output, with deltas shown in red

assigning the state classes based on the experienced vibration profile takes an

entirely response-based data view, which considers potential changes and evo-

lution to the behaviour of the individual GC with continual use. This becomes

particularly useful when considering the health monitoring of numerous cir-

culators subject to differing duty cycles, conditions and maintenance regimes,

where any circulator specific information regarding condition could prove use-

Figure 5.12: Load values of predicted class results
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Figure 5.13: Load values of predicted class results for drive end vibration

ful.

Specifically for the LPR instances, the confusion matrix corresponding to

the 2,366 measurements taking during refuelling campaigns is provided in Fig.

5.15.

5.5.2 Phase space view

Reliability engineers utilise phase plots in their examination of rotating ma-

chinery in order to ascertain properties regarding the magnitude and phase of

vibration on their machines. This data view is distinct from the common time

series analysis associated with much of the rest of CM (and predominantly the

focus of this chapter thus far) - the temporal aspect of the data stream is largely

abstracted out in favour of a holistic overview of the observed behaviours and
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Figure 5.14: Load values of predicted class results for non-drive end vibration

their context in the larger domain.

Phase plot-like approaches to visualisation are useful for considering the

Figure 5.15: Confusion matrix of model output from time series values taken
from periods of refuelling
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LPR behaviours in both the context of single refuelling events and the general

behaviour of the machine over longer periods. Considering the drive- and

non-drive-end orientations of the machine, the vibration states as presented in

time series in Figs. 5.13 and 5.14 can be presented to illustrate their context in

the larger data domain of the machine.

Figure 5.16: Phase space of drive end vibration, with predicted labels

The state segmentation at the drive end (Fig. 5.16) is the most prominent

of the two phase space overviews, with a clear visual clustering of the three

behaviours in the 20 - 50 µm pk-to-pk ranges on both observable axes. The non-

drive end instance is much less discrete, with a much larger dynamic range
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Figure 5.17: Phase space of drive end vibration, with predicted labels

without the near linear separability of the drive end data.

Both examples exhibit a further linear behaviour cluster corresponding to

markedly lower vibration observable values, which are predictably dominated

by the Lower behaviour. In the general scheme of circulator operation, these

values are likely to correspond to run-up and run-down transient conditions

experienced by the GC at the start and end of maintenance periods.

The potential usefulness of presenting the model classifications in phase

space become more apparent when considering the characteristics of individ-

ual or groups of refuelling events for comparative purposes, as illustrated in
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Fig. 5.18, which shows the output from 3 LPR events. Applying the same

principles of hyperplane separation to the drive end subset of the GC vibra-

tion data allows presentation of the behaviour as sectors in phase space. These

data-driven regions (and their associated accuracy properties) can provide an

informative overview of the data at a particular end of the circulator to allow

for comparison of behaviours by temporal groupings.

Figure 5.18: Multiple segmentations of the operational data in drive end space,
providing an abstraction of the vibration data for examination

5.6 Predictive capabilities

A sufficiently trained LPR model represents a quantitative measure of nor-

mality for the given machine at that point in its lifecycle, which can then be

compared with subsequent refuelling campaigns and re-trainings of the model

with new GC data. This snapshot can provide the basis to reason about any

evolution in the vibration response of the GC to continued operation, which

opens the potential for prognostic measures of state change and remaining

useful life (RUL) to be investigated. This section explores the opportunities

the developed refuelled model provides in creating predictive signals to aid in

determining future machine states.
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5.6.1 Model output evolution

Considering the entire operational history of the GC used throughout this

study, the misclassification rate of the online behaviour increases during the

latter stages of the unit’s operation. This is illustrated in Fig. 5.19, highlighting

that as the GC progresses with use (with the assumption of some latent degra-

dation process being experienced by the machine), the description of normal-

ity provided by the trained model becomes less applicable when considering

the vibration response to online (non-LPR) behaviour. This feature can be

used as an early indicator of potential state change in the monitoring of the

GC: for example, if the windowed average of misclassified instances begins to

increase then further investigative action can be taken. It is important to note

that this rise in misclassification is present despite behaviour corresponding to

the late-stage life of the GC being included in the overall training data.

5.6.2 State estimation

A key observation from the rising misclassification rate of the online be-

haviour shown in Section 5.6.1 is that the vibration response is quantitatively

being altered enough for a discrepancy to be identified by the trained LPR

model. Coupled with the context of the eventual failure of the GC used in

Figure 5.19: Misclassification of the online behaviour with operation
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the study, this suggests the existence of a degradation process being captured

explicitly or implicitly in the available circulator observables.

5.6.2 a) State classification

To investigate any change metric sequentially in the GC lifetime, each of the

identified behaviours classified by the data-driven model (namely online,

upper and lower) were delimited into four stages of operational progres-

sion: from early use through to operation just before the final inspection which

brought the unit offline permanently. Each of these stages were labelled {early,

mid1, mid2, late} by order of progression.

Each of these data subsets were used as labelled inputs to a further clas-

sification model - allowing for the prediction of the point in the GC lifecy-

cle a particular set of vibration observables corresponds to. The logistic lin-

ear model was used as it provides probabilistic outputs for each prediction,

which allows for the state estimation process to be done continuously rather

than discretely, allowing for the creation of a predictive function which can be

updated with each new data instance. This approach follows a similar state

estimation classification-based process to the prognostic model developed in

systems such as [KTM+08].

The series in Fig. 5.20 presents the probabilistic output of the class member-

ship for each of the behaviours labelled by the LPR model. Both the online

and upper behaviours exhibit a clear ordering of each of the four latent states,

while the lower behaviour is not as successful. This suggests that the most

fruitful segmentations of the data for extracting a health indicator will be from

either of the online or upper behaviours.
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Figure 5.20: Most probable state estimates for each of the refuelling behaviours
in chronological order

5.6.2 b) RUL estimation

Based on the assumption that the conclusion of the time series corresponds to

the failure point in the life cycle of the GC, the RUL can be defined as:
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RUL(t) = tFailure − t (5.2)

where tFailure is the end of the time series and t is any timestamp with cor-

responding data. Obviously the explicit RUL is unavailable at the point of

operation, so the goal in building a prognostic system in this case is to use

the available labelled RUL from this example to identify an implicit measure

which can be used by engineers prior to failures. Note that the RUL is calcu-

lated at t for each individual data point, which explains why the RUL series

differ in each figure of analysis.

Since the late behaviour corresponds to the response of the machine ob-

served closest to the end of life, the probabilistic output of the LPR model for

this behaviour represents a potentially useful measure for prediction. As the

probability of late increases, the failure criteria being met is assumed to be

sooner. The series’ in Fig. 5.21 provide a comparison of the RUL (represented

by the blue series) with p(late) for each of the LPR behaviours identified by

the data-driven model. For comparison, the series’ in Fig. 5.22 illustrate the re-

sults for the mid2 classification; a label corresponding to earlier in the expected

life cycle of the GC.

When evaluating these predictive measures, there are a number of consid-

erations for determining suitability. Primarily, the accuracy when compared to

the explicit RUL is most important. Also, as the operational history of the ma-

chine used in this study does not include any maintenance or repair records,

any degradation measure is assumed to be largely monotonic [Cob10].

Considering these points, the late probabilities for the Online and Upper

behaviours appear to map best to the RUL. While there are some limited breaches

of monotonicity shown in the smoothed moving average for these, the prob-
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Figure 5.21: Remaining useful life compared with probabilistic output of LPR
model for late class

abilities are largely trending upwards. The Online case has a much more

discrete up-tick than the more gradual Upper measure, which suggests a com-

bination of the two observables may be useful in identifying impending fail-

ures.
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Figure 5.22: Remaining useful life compared with probabilistic output of LPR
model for mid2 class

The Pearson’s correlation coefficients for both the class membership to mid2

and late temporal states when compared to the true RUL are provided in Table.

5.3. This shows that the vibration data labelled as Upper is strongly inversely

correlated to the true RUL value. In more specific terms, vibration response
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during 70% load transient periods appears to have an underlying temporal

feature that is encapsulated by the ML model that can then be taken advan-

tage of from a reliability engineering perspective by examining the likelihood

of it belonging to a late-period class.

Table 5.3: Correlation between late temporal class & true RUL

Temporal class LPR behaviour Pearson’s corr.
late Online -0.838
late Upper -0.938
late Lower -0.472
mid2 Online -0.041
mid2 Upper 0.542
mid2 Lower -0.146

The intended interpretation of the temporal class probability for reliability

engineers is as a proxy for the remaining useful life. This should be presented

in a more suitable context (e.g. ’predicted health metric’ or similar). A rising

trend in this metric between LPRs should be used as an early indicator that the

GC is degrading, with higher probabilities corresponding to more likelihood

of conditions associated with a machine failure.

5.7 Discussion

This chapter introduced a data-driven model for the health monitoring of AGR

gas circulator units, detailing its construction, evaluation and potential for

prognostics. For diagnostic classification problems, the model utilises a trained

L2-regularised linear SVM to identify vibration data corresponding to each of

the states encountered during refuelling campaigns. This algorithm provides

an 88.23% cross-validated accuracy, and was selected over the slightly more

accurate RBF SVM due to its considerably shorter training time. As well as

demonstrating high accuracy, this chapter also provided context on how the

output of the model would be used by engineering staff to augment their exist-
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ing CM processes surrounding GC units and their condition during refuelling

events.

The selected techniques in this study are not an exhaustive set of the poten-

tially applicable ML modelling approaches. It would be useful to continue this

research by comparing the results from other supervised learning algorithms

such as random forests [Bre01], gradiest boosting machines [TGF18] and deep

learning approaches.

Further to this, the model was shown to have some potential for predictive

analytics when considering the overall health of the GCs. The model output

was used as an input to a further classification metric (using the logistic linear

algorithm, due to its probabilistic properties) which was trained based on tem-

poral states in the GC’s operational history. This showed promise in approx-

imating the RUL of the circulator and could be used to schedule inspections

and maintenance pre-emptively to avoid unexpected failures and outages.

An alternative approach to predicting the RUL could be in fitting a regres-

sion model to the RUL value at each timestep. The discrete classification tech-

nique outlined in Section 5.6.2 was selected due to the asynchronous nature

of the time series data used in the study (i.e. the period between time series

instances was not fixed). However, if a regular measurement could be guar-

anteed (from a single measurement stream) then taking a regression-based ap-

proach could potentially provide a much more fine-grained and accurate view

of the health state.

It should be noted that this modelling approach does not currently consider

the potential changes or uncertainties a scheduled or reactive maintenance ac-

tion would introduce to the RUL calculation and prediction process. Integrat-

ing such events robustly into prognostic metrics is an open research challenge

[DVLL15], and should be considered in future investigations.
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Chapter 6

Conclusions & future work

As outlined in the opening of this thesis (Chapter 1 Section 1.2), there are a few

central contributions to the domain from the work undertaken as a part of this

research. This chapter will discuss and summarise these in more retrospective

depth than previous sections, along with the implications each may have for

future developments and areas of research. The contributions can be listed as:

• Augmentation of an existing knowledge-based intelligent system with

ML and statistical inference techniques, providing an improved hybrid

intelligent system tackling the engineering problem of routine alarm anal-

ysis in TGs,

• A self-tuning framework for vibration diagnostics, allowing for the ap-

plication a routine alarm knowledge base across an entire asset family

under a single maintenance regime,

• The use of techniques in statistical inference to automatically define pe-

riods of system normality and transient behaviour in rotomachinery vi-

bration data,

• Construction of a data-driven classification model with the ability to ac-

curately label historical periods of refuelling events from the vibration

response data,
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• Development of an empirical model mapping event state to remaining

useful life, providing predictive metrics to anticipate future failures in

GC units,

• Presentation of a new GC phase space view for refuelling campaigns,

which visually provides feedback on typical vibration characteristics across

the machine,

6.1 Conclusions

The research described falls into two related but distinct application areas of

rotating machinery in NPPs: namely turbine generators and gas circulators.

The methods employed for each of these asset classes are also different, as

they attempt to solve differing challenges and problems associated with the

health monitoring of each. Chapter 4 approaches the augmentation of exist-

ing knowledge-based approaches through statistical methods for TGs, while

Chapter 5 introduces an empirical methodology to the exploration of predic-

tive metrics for repeatable system events for overall GC health.

However, the unifying theme across both sub-sections is the use of intelli-

gent techniques and data to provide value for the reliability engineer in their

efforts to ensure key asset uptime is maximised. Both routine alarms and un-

planned catastrophic failures (the two problem domains examined for TGs

and GCs respectively) have a negative effect on the generation capacity of

their associated NPPs, and any methods that provide insights or automatic

approaches to tackling such problems will aid in mitigating the risks for both.

6.1.1 Turbine generator monitoring

The techniques presented throughout Chapter 4 provide data-driven approaches

to help with a number of key problems associated with routine alarm analysis.
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specifically on steam turbine generators in the nuclear-context.

• Ensuring the applicability and accuracy of the parametric rule-based ap-

proaches at the centre of the routine alarm expert system described in

Chapter 4,

• Providing a re-usable empirical toolkit which can be applied to bulk his-

torical turbine data in order to automatically extract the defining features

of normality for a given machine instance, without the requirement for

onerous manual labelling of data or behaviours,

• Extending the domain and applicability of the intelligent approach to

previously uninvestigated machine channels and instances, without the

same requirement for expert knowledge elicitation as with the original

KBS development,

• Development of statistical techniques which automatically define peri-

ods and features of system normality and transient behaviour in rotoma-

chinery vibration data.

Each of these points are defined by their use of data to augment an exist-

ing knowledge-based approach to increase the scope and flexibility of scenar-

ios where crisp features such as rules, conditionals or inference trees can be

used. The motivation behind a hybrid strategy like this is to take advantage

of the ever increasing asset of historical machine data (as explored in Section

2.5.2 a)) while maintain the strong explicability and confidence associated with

knowledge-based systems.

There were also a number of statistical methods unique in application to

the domain:

• Use of the Kolmogorov-Smirnov (KS) statistic to identify periods of uni-

modality for steady state behaviour parameter selection on vibration data,
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• Use of a windowed KS-statistic in order to extract periods of bi- and mul-

timodality for changepoint and step change detection purposes on vibra-

tion data.

The strength of utilising density-based approaches (such as the KS-enabled

methods enumerated above) lies in the explicability and communicability to

engineering staff inherent in the extracted density functions. Diagrams such

as those provided in Fig. 4.21 (created in the process of using the aforemen-

tioned statistical methods) can provide an intuitive view of how a distribution

behaves and the characteristics of data used in initialising or updating decision

support parameters (as with the expert system in Chapter 4).

The case studies outlined in Sections 4.4 and 4.5 cover important quantita-

tive tasks associated with the data-driven augmentation of the KBS for routine

alarm analysis, but also for general benchmarking and statistical reasoning

about machine condition. The role that both steady state and transient con-

ditions play in the day-to-day surveillance and asset management of rotating

plant items is an important one: investigating both stable and changing ma-

chine conditions increases the range, variety and coverage of scenarios under

scrutiny. The concept of event monitoring (repeatable changing conditions) is

a theme explored in further depth in the subsequent chapter.

6.1.2 Gas circulator monitoring

Chapter 5 examines a specific AGR event - the low power refuelling (LPR)

- and introduces an empirical modelling method utilising machine learning

techniques to explore potential prognostic measures inherent in the observed

gas circulator response to it. The philosophy behind this approach is to treat

the LPR as a semi-regular stressor event on the circulator’s long-term duty

cycle, and use the vibration-based reaction to the change in conditions as a

source of information on GC health itself.

168



As a result of the model development, there are a number of research out-

comes associated with the construction and evaluation of this technique:

• Automatic classification of LPR state based on the vibration response of

the circulator, allowing for bulk labelling of vibration data typical of re-

fuelling periods,

• Presentation of a phase space view of machine state (exemplified by Figs.

5.16, 5.17 and 5.18) for GCs based on LPR state classification, visually

providing feedback on typical vibration characteristics at each end of the

circulator unit

• Development of a state membership probability-to-remaining useful life

mapping, a metric that showed positive correlation with the true RUL

of the example circulator and has the potential to be used as an early

indicator of impending machine failure.

The development of the ML methods outlined thoughout Chapter 5 follows

a well-established pattern of train-test-cross validate seen in many ML-type

problem solving scenarios. The source of novelty for this section lies in the

combination of the application of the ML models to a specific sub-problem in

the GC health monitoring sphere, and the delimitation of the LPR as a repeated

event of interest for ongoing reliability engineering for nuclear-context rotating

plant.

The combination of ML techniques used as part of the final model (L2-

SVM with a logistic regression temporal step) is not unique in itself [CWY10] -

the novelty in the outlined approach lies with specifics of the application area

and the selected features and events the model does inference on. Specifically,

considering non-stationery periods of dynamic reactor operation at key points

of the plant item life cycle, and extracting quantitative metrics to map along

potential degradation behaviours is novel in application to the AGR GC. The
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LPR itself is a defining feature of the GC unit, and the ML model success is

predicated on the LPR.

It should also be reiterated that the model was built on the operational his-

tory of a single circulator unit undergoing degradation, mainly for the pur-

poses of metric exploration for prospective PHM and prognostic measures.

While robust testing and cross-validation was undertaken to mitigate against

overfitting, a wider set of circulator examples should be used to ensure the gen-

eralisability of the model features to GCs in refuelling campaigns as a whole.

6.2 Future work

The fields of intelligent systems and ML have continued to proceed rapidly

in terms of technology and notable achievements, largely due to the ever-

growing rates of data collection and reduction in costs associated with data

warehousing and archiving. Accordingly, there is a variety of potential next

steps the research outlined herein could be taken for improvement, or in explo-

ration of other related areas of rotating plant health monitoring. This section

provides some thoughts on where future efforts might best be spent in order to

continue to take advantage of new approaches and improve upon the methods

employed so far.

6.2.1 Routine alarm analysis

One of the strengths associated with the self-tuning methodology employed is

the percieved explicability improvement when compared with more black-box

techniques, which might require more ML or statistical understanding to fully

grasp the outcomes from. The use of intuitive parameters such as step change

magnitudes and visual distributions corresponding to steady state bounds of

behaviour is argued to be more suitable for use by reliability professionals.
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However, this needs to be tested and explored more fully in the development

of an industrial deployment of such a system: as there has not been any feed-

back on the output of these methods in a formal or informal way from engi-

neering staff.

The parameters associated with both the steady state/impulse and step

change instances were explored, but the trend primitive of the KBS remains

to be studied in greater detail. This is due to fewer examples of trend -like

periods existing within the TG data used for exploration. Trending behaviours

(as defined by the KBS rulebase) fall between steady state and step change fea-

tures, and the definition of their feature extraction would be useful in extract-

ing long-term changes that remain undetected due to their gradual emergence.

A study of multiple TGs, or other rotating asset classes, with a focus on trend

extraction would be a good next step to develop these methods.

Defining normality for the purposes of machine profile initialisation to utilise

the routine alarm KBS, or simply benchmark typical behaviours of each com-

ponent channel, was the primary aim of the techniques outlined in Chapter 4.

One potential re-application of these approaches is to consider the self-tuning

results at numerous points along a given TGs life cycle in order to track any

changes consistent with machine degradation. Such a system could automat-

ically re-tune after a given operation or time window, and provide a rolling

update of the channel profile that could in turn be surveyed and alarmed on in

the event of large enough a change in the extracted parameterisation and dis-

tributions. In a similar vein to the ML model explored in the following chapter,

metrics from such a system could prospectively map onto the RUL of a TG and

provide predictive decision support concerning the long-term strategy for op-

erating a turbine unit. While this has not yet been observed, it would be a

worthwhile research area for investigation get the similarities in the way in

which TGs are monitored to GCs, and their deployment in the dynamic sce-
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nario of the AGR.

6.2.2 Gas circulator monitoring

The inclusion of multiple GC instances in the training, testing and validation

data would be the next step in investigating and developing the potential for

LPR-based features from the model providing prognostic metrics. A gold stan-

dard process would be in keeping entire histories of GC operational data for

examples of GC with and without catastrophic failures during their lifetimes

held-out from any trained candidate model, and validating the efficacy of the

late state membership feature-RUL mapping on previously unseen examples.

This could be challenging, however, due to the relative rarity of full historical

data to failure for circulator units.

Specific model improvements could also include deeper investigation of

the temporal state fidelity, which was heuristically set to 5 time slices along

the degradation history of the GC unit. The number of time slices itself could

be increased to provide a more strongly-defined lifetime state to predict on, or

alternative ML methods could be employed to deal with the sequential degra-

dation aspect. Tools such as relevance vector machines (RVMs) [ZD12] have

seen some success with these types of engineering problem.

6.2.3 Machine learning and reliability

Much of the techniques applied to the TGs and GCs have strong crossover

potential for both asset classes (i.e. the techniques demonstrated on TGs could

be further developed for use on GC monitoring, and vice versa). The next

steps for building out the KBS-centred approach to cover circulator routine

alarm analysis would be to apply the self-tuning methods demonstrated on

the TG examples of Chapter 4 to instances of GC. The aim behind this suite
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of methods was precisely for this purpose: allowing for the rule-base to be

generalised beyond the original asset class it was developed on.

Introduced as an alternative technique in the context of unsupervised learn-

ing in Section 3.2.2 b), deep learning technologies have exploded in applicabil-

ity to a variety of domain areas and kickstarted their own sub-field [GBC16] of

ML research. ’Deep’ techniques have already began to see investigation in the

vibration monitoring field [CLS15, OJJY18], and the growing data volumes for

nuclear-context assets as discussed in this work lends itself to application of

these techniques. Caution should be exercised, however, with strongly empir-

ically weighted or ’black-box’ style methods when working in safety critical

domains such as nuclear, and densely built, deep neural networks are often

difficult to provide validation or communicable decision support [Cas16] back

to end-users with. The role of these methods in combination with knowledge-

based approaches (as explored throughout Chapter 4) represents a rich area

for further exploration and study: where the depth of the most advanced em-

pirical methods such as NNs are reinforced with the clear explicability and

human-readable reasoning associated with KBS-like solutions. There is an ac-

tive research interest in explaining neural net outputs [FH17], and investigat-

ing such advanced in the context of rotating machinery could be highly valu-

able.
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