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Abstract

In this thesis, three different aspects of thin-film flow over complex surfaces are investi-

gated. First, locally-unidirectional rivulet flow on a slippery surface is considered. We

study rivulets with prescribed flux and either fixed semi-width or fixed contact angle. In

both cases we determined the effect of varying the slip length on the rivulet. We found

that in the limit of strong slip, for a rivulet of a perfectly wetting fluid and a rivulet

with constant width, the velocity becomes large and plug-like, and the rivulet becomes

shallow, while for a rivulet with positive constant contact angle, the velocity becomes

large and plug-like, and the rivulet becomes narrow and shallow. Second, rivulet flow

over and through a permeable membrane is considered. We study rivulets with pre-

scribed flux and either fixed semi-width or fixed contact angle. We found that whereas

there is a physically realisable pendant rivulet solution only if the semi-width does not

exceed a critical value, there are physically realisable sessile and vertical rivulet solu-

tions for all values of the semi-width; moreover, a sessile rivulet with fixed semi-width

has a finite maximum possible length which is attained in the limit of a wide rivulet.

Lastly, patterns formed in a two-dimensional thin film with a Derjaguin-type disjoining

pressure on a planar substrate with periodic wettability stripes is considered. Using

Liapunov–Schmidt reduction, we study the local bifurcation structure of the problem

for spatially homogeneous disjoining pressure and how the structure depends on the

average film thickness. Using methods of local bifurcation theory and the continua-

tion software package AUTO, we perform a continuation analysis of the steady state

solutions and establish the existence of both nucleation and metastable regimes. The

dependence of the steady state solutions on the wettability contrast are investigated

for two forms of spatially non-homogeneous disjoining pressure.
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3.3.4 Behaviour of the rivulet length L as a function of β̄ . . . . . . . 113

3.3.5 Rivulet shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4 Patterns Formed in a Thin Film with Spatially Homogeneous and

Non-Homogeneous Derjaguin Disjoining Pressure 117

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2 Liapunov–Schmidt Reduction Method . . . . . . . . . . . . . . . . . . . 121

4.3 Liapunov–Schmidt Reduction in the Spatially Homogeneous Case . . . . 124

4.4 Two–Parameter Continuation of Solutions in the Spatially Homogeneous

Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.5 The Spatially Non-Homogeneous Case . . . . . . . . . . . . . . . . . . . 131

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5 Conclusions and Future Work 146

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A Real Solution of Equation (2.19) in the General Case λ ≥ 0 153

B Real Solution of Equation (2.44) in the General Case λ ≥ 0 156

vii



C Asymptotic Behaviour of αmin and βmin in the Limit λ→∞ 159

D Asymptotic Behaviour of αmin and hm(min) in the Limit λ→∞ 163

E Errors in Section V of Davis and Hocking [29] 167

F Solution for Small ρ with the Disjoining Pressure of the Form (4.43)170

G O(2) Symmetry Breaking by Spatial Non-Homogeneity 172

Bibliography 176

viii



Chapter 1

Introduction

In this thesis we will consider three different aspect of thin-film flow over complex sur-

faces. In Chapter 2 and 3 we will consider rivulet flow over a slippery substrate and over

and through a permeable membrane, respectively, while in Chapter 4 we will consider

aspects of two-dimensional thin-film flow over homogeneous and non-homogeneous sub-

strates. In this introductory chapter we will introduce the key concepts of thin-film

flow, rivulet flow, flow in porous media, and thin-film flow on complex surfaces required

as a basis for the new results presented in the remainder of the thesis.

1.1 Thin-Film Flow

The deposition and flow of thin fluid films on homogeneous, heterogeneous, and porous

substrates is ubiquitous in nature, and their characteristic lengths vary over a wide

range, from nanometres to kilometres. A “thin film” in this context refers to a film

that has a significantly smaller depth than width. This definition is important as it

includes geophysical phenomena that are “thin” but not “small”. Thin films are found

in numerous industrial processes, and in many biological and geophysical contexts.

Industrial contexts that involve thin fluid films include processes such as painting,

printing, and coating. For example, Figure 1.1 depicts a fruit coated with a solidified

film, which reduces cellular respiration and enhances fruit quality. As well as being of

fundamental scientific interest in their own right, understanding of thin-film flows is

1



Chapter 1 2

Figure 1.1: A fruit coated with a solidified film to reduce cellular respiration and
enhance the fruit quality [110]. (Reproduced with permission.)

necessary for the control and safety of industrial processes.

We will now describe an important class of industrial processes involving thin-film

flows. Coating is the industrial process of forming a fluid layer on a solid substrate.

In such process, the solid substrate is completely or partially covered by layers of

possibly different materials. Industrial coating is performed using a variety of methods

and processes, including chemical vapor deposition (CVD), physical vapor deposition

(PVD), and dip coating. CVD involves the exposure of a substrate to one or more

materials which react chemically and create a deposition layer on the surface of the

substrate to produce the desired coating [36]. Electron beam deposition is a form of

PVD in which a target material is bombarded with an electron beam from a charged

tungsten filament to evaporate and convert it to a gaseous state; this is followed by

deposition of the evaporated material on the substrate surface to be coated. Dip coating

involves depositing a layer of the material on a solid substrate by pulling the solid

substrate out of a liquid reservoir [116]. Figure 1.2 shows an image of gloves removed

from a tank during the dip coating process [1].

Another example of a thin-film flow can be found in many industrial applications
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Figure 1.2: Image showing gloves removed from a tank during the dip coating process
[1]. (Reproduced with permission.)

which involve the lubrication of moving solid machine parts. Lubrication is a process by

which a thin layer of oil or another lubricating fluid is used to reduce the friction that

would otherwise occur if moving parts came into contact. This is used in mechanical

devices such as pistons and turbines [114].

With regard to biological processes, thin fluid films can appear in human beings in

the form of sebum fluid that lubricates the surface of the skin, as mucus that protects

and lubricates epithelium tissues such as in the stomach and intestines, as synovial fluid

that lubricates joints, as tears that lubricate the eyes, and as plasma that lubricates

the red blood cells in capillaries.

1.2 Thin-Film Flow Over Complex Surfaces

While much of the previous theoretical and experimental work on thin-film flow has, for

obvious reasons, involved ideal (i.e. solid, impermeable and homogeneous) substrates,

many of the substrates which occur in practice are complex (i.e. not ideal). Specifically,

some substrates are porous while many others are non-homogeneous. It is the need for
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a better understanding of such situations that motivates the study of the problems

analysed in the present thesis.

A porous medium is a material containing pores (small holes or voids), and such

material can be characterized by properties such as permeability and porosity. Flows

through porous media occur in a wide range of applications. Inkjet printing onto paper

and textiles is an example of fluid spreading on a porous substrate. Another example

is screen printing, in which a fluid is transferred onto a substrate such as a fabric or

paper, using a permeable screen; the fluid transfers only to the areas the screen permits

[117]. For example, in one application, graphene ink is pushed through a mesh screen to

fabricate highly conductive graphene patterns on a substrate beneath the screen [43].

Water harvesting is another example that involves flow through a porous medium.

In this method, storm water penetrates a porous asphalt surface, then enters a stone

reservoir beneath, thereby reducing the water runoff. The water then infiltrates into the

underlying soil, which results in improved water quality and restoration of groundwater

supplies [32]. Flow in porous media is discussed further in Section 1.6.

Thin-film flows on chemically patterned substrates have been studied extensively

with a view to control and direct fluid behaviour on a substrate. In this context, it is

important to consider the role of surface heterogeneities and the wetting properties of

the fluid in determining the behaviour of the film. Substrates with chemical patterning

have many practical applications; notably, they are used in the construction of mi-

crofluidic devices and soft materials with a particular pattern (see, for example, Aimé

and Ondarcuhu [78], Brasjen and Darhuber [16], Quake and Scherer [87] and Sehgal et

al. [97]). One example of such applications is in the use of hydrophobic strip width to

control microbubble size. Microbubbles are microscopic bubbles with a mean diameter

of microns. They play a fundamental role in different applied fields. For example, in

medicine they can be used to deliver drugs to a specific part of the body. Herrada et al.

[44] proposed a technique to produce microbubbles of controlled sizes in a T-junction

geometry. In this technique, a gaseous stream is injected into a channel transporting a

liquid current with a hydrophobic strip printed on one of the channel surfaces. A rivulet

is formed over that strip, and when the rivulet breaks up, a collection of microbubbles
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Figure 1.3: Water rivulet in a kitchen sink. Picture courtesy of Truog [111]. (Repro-
duced with permission.)

much smaller than the channel size is formed. Thin-film flow on non-homogeneous

substrates will be discussed further in Section 1.7.

Before discussing flow in porous media in Section 1.6 and thin-film flow on non-

homogeneous substrates in Section 1.7, we first review previous work on rivulet flow in

Sections 1.3 and 1.4, and on the slip boundary condition in Section 1.5.

1.3 Rivulet Flow

A rivulet flow is a long, slender stream of fluid that flows predominantly in the direction

of the longer length scale. The flowing and spreading of rivulets of fluid on a variety

of substrates is an everyday occurrence in a wide range of situations, such as rivulets

of water on a car windscreen, and in a kitchen sink (for example, Figure 1.3 shows a

water rivulet meandering from a saturated sponge under a dripping tap in a kitchen

sink). Some common examples of large but thin streams found in geophysical and

environmental settings are the flow of a river, spreading flows of lava, and flows of mud

(for example, Figure 1.4 shows a rivulet flow of lava in an open channel with overflows
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Figure 1.4: Rivulet flow of lava [49]. (Reproduced with permission.)

at both sides). Motivated by such flows, several authors have studied various aspects of

rivulet flow. For example, Coussot et al. [24] and Wilson and Burgess [118] investigated

flows of mud, and Griffiths [40] investigated flows of lava.

In Chapters 2 and 3 we will consider locally-unidirectional rivulet flow on a slip-

pery substrate and over and through a porous membrane, respectively. Hence, in the

following subsections, we discuss previous work concerning rivulet flow.

1.3.1 Review of previous literature on rivulet flow

The topic of gravity-driven rivulet flow down impermeable surfaces has been the subject

of much theoretical and experimental work. Early work on this problem was undertaken

by Towell and Rothfeld [108], who analysed theoretically and experimentally the steady,

unidirectional flow of a uniform rivulet of Newtonian fluid as it flows down an inclined

substrate. Towell and Rothfeld [108] derived the ordinary differential equation that

describes the shape of the free surface, depending only on the surface tension of the

fluid and on gravity, and obtained expressions for the shape of the free surface and

the velocity profile within the rivulet. Their experimental measurements of rivulet
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flow of three different liquids, namely water, glycerol-water mixtures and n-dodecane,

on an inclined glass substrate, support their theoretical predictions. For the same

problem, Allen and Biggin [3] obtained the leading and first-order asymptotic solutions

in the limit of a thin rivulet, and compared their asymptotic predictions with numerical

solutions to the full problem.

Bentwich et al. [11] extended the method employed by Allen and Biggin [3] to

obtain an analytical solution for the velocity distribution of unidirectional rivulet flow

down a vertical substrate for large contact angles. They also obtained a polynomial

approximation for the velocity distribution for the case of an inclined substrate, and

found that, up to a contact angle of 140◦, only the first four terms of the polynomial

approximation can produce adequate velocity profiles.

Duffy and Moffatt [31] investigated the locally-unidirectional flow of a thin rivulet

with a prescribed non-zero contact angle β > 0 and used this solution to analyse rivulet

flow in the azimuthal direction with prescribed volume flux round a large horizontal

cylinder. Their work demonstrates that the rivulet is wide, with finite thickness near

the top of the cylinder, but it is narrow and deep near the bottom. This work will

be reviewed in detail in Section 1.4.1. Subsequently, Wilson and Duffy [119] extended

Duffy and Moffatt’s [31] work to include the effect of substrate variation transverse to

the direction of flow. Their study demonstrates that a rivulet can only run continuously

from the top to the bottom of a large horizontal cylinder if the transverse profile of the

substrate is a sufficiently shallow trough. Near the bottom of the cylinder, a rivulet is

not possible if the profile is a deeper trough; near the top of the cylinder, a rivulet is

not possible if the profile is a ridge.

Wilson and Duffy [120] described the flow of a thin rivulet with zero contact angle

(i.e. a rivulet of a perfectly wetting fluid) in the azimuthal direction with prescribed

volume flux over a large horizontal cylinder. This research reveals that no such rivulet

is possible on the upper half of the cylinder. However, it also shows that there are

infinitely many solutions corresponding to arrays of rivulets on the lower half of the

cylinder, each of which is a suitably rescaled copy of the single-rivulet solution.

Perazzo and Gratton [85] considered unidirectional flow of a rivulet with constant
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width and derived exact solutions to the Navier–Stokes equations that describe the

steady flow of a sessile rivulet down an inclined substrate. In particular, they compared

the solutions for the cross section of the rivulet obtained by solving the full Navier–

Stokes equations with the results of the lubrication approximation, and found that the

global properties of the rivulet, such as the area of the cross section and the volume

flux, are predicted quite accurately by the lubrication approximation.

Tanasijczuk et al. [104] built on the work of Perazzo and Gratton [85] to obtain

exact solutions for both sessile and pendant rivulets for any profile of the substrate

(transversally to the direction of flow).

Paterson et al. [83] studied the locally unidirectional flow of a thin rivulet with a

prescribed width (i.e. with pinned contact lines) over a large horizontal cylinder. This

work will be reviewed in detail in Subsection 1.4.2.

1.3.2 Experiments on and numerical simulations of rivulet flow

Much experimental and numerical simulation work on the flow of rivulets has been

done by many authors. Zhang et al. [126] experimentally investigated the flow of fluid

draining in a falling film microreactor. This microreactor is a reactor device consisting

of a solid flat surface or a surface containing microchannels and used for numerous

gas-liquid reactions. They observed three flow regimes; namely, corner rivulet flow,

falling film flow with dry patches, and complete falling film flow.

Howell et al. [47] studied, both theoretically and experimentally, the flow of a thin

rivulet draining down a flexible beam which is fixed at one end, as shown in Figure

1.5. They showed that the weight of the rivulet will increase the deflection of the beam

and, as a result, enhance the spreading rate of the rivulet.

Three-dimensional numerical simulations of a fluid down an inclined substrate were

conducted by Singh et al. [100] to calculate the interfacial area of rivulets under the

variation of liquid properties, flow rates, substrate inclination angle, and contact angle.

In particular, they found that the interfacial area for the rivulet flow decreases with

increasing contact angle, whereas the height of the rivulet increases. They studied

the impact of the flow rate, characterized by the Weber number, which is the ratio of
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(a) Small beam deflection (b) Large beam deflection

Figure 1.5: Side and top images of the flow of a thin rivulet draining down a flexible
beam, obtained by Howell et al. [47]. These images shows how the beam deformation
over time and display two particular regimes, namely (a) small deflection and (b) large
deflection. Reprinted from Howell et al. [47] with permission from Cambridge University
Press.

inertia force and surface tension force, on the wetted area. In particular, at very low

Weber numbers (< 0.05), a liquid droplet is formed and further increase in the Weber

number develops the flow from droplet to rivulet and finally full film for Weber number

(> 0.90), as shown in Figure 1.6.

Singh et al. [101] conducted three-dimensional simulations to study the breakup of a

rivulet down an inclined substrate. They also conducted experiments for a rivulet flow

down an inclined substrate to confirm the reliability of their simulations and showed

that the simulations predictions compared well with experimental results. The flow

of fluid draining down an inclined substrate was also investigated experimentally by

Schmuki and Laso [95]. They examined the effects of the flux, inclination of the sub-

strate, substrate material, liquid viscosity, and surface tension on the flow. They ob-

served several different flow regimes, including continuous film flow, droplet flow, linear
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(a) Weber number=0.02 (b) Weber number=0.24

(c) Weber number=0.47 (d) Weber number=0.67

Figure 1.6: Illustration of various snapshots of the interface of film flow over an inclined
plate for different Weber numbers ranging from droplet to rivulet and finally full film.
Reprinted from Singh et al. [100], Copyright (2020), with permission from Elsevier.

rivulet, meandering rivulet, and pendulum rivulet regimes, as shown in Figure 1.7.

1.3.3 Stability of rivulet flow

The stability of various aspects of rivulet flow has been studied by many researchers.

Several authors have studied the stability of rivulets by exploring whether or not it is

energetically favourable for a rivulet to break up into sub-rivulets. Myers et al. [70]

used lubrication theory to investigate the flow of a rivulet down an inclined substrate,

subject to interfacial shear and gravity. They obtained analytical solutions for the free
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Figure 1.7: Images of the flow regimes obtained experimentally by Schmuki and Laso
[95], namely (from left to right) continuous film flow, droplet flow, linear rivulet, me-
andering rivulet, and pendulum rivulet. Reprinted from Schmuki and Laso [95] with
permission from Cambridge University Press.

surface profile, velocity, and pressure. The energy of the rivulet was calculated in order

to determine when it was energetically favourable for a gravity-driven rivulet to split

into two sub-rivulets, and they conjectured that purely shear-driven rivulets are always

stable and will never split.

Wilson and Duffy [121] explored the flow of a thin rivulet with prescribed flux

on a vertical substrate, subject to uniform longitudinal surface shear stress. They

calculated when it is energetically favourable for a rivulet to split into two narrower

rivulets. Their findings disproved the conjecture of Myers et al. [70] that it is never

energetically favourable for a purely shear stress driven rivulet to split.

Sullivan et al. [103] explored the steady, unidirectional flow of a perfectly wetting

fluid on an inclined substrate, subject to a constant longitudinal shear stress. They

investigated the stability of the rivulet, in particular, they also determined the condi-

tions under which it is energetically favourable for a rivulet to split into one or more

identical sub-rivulets.

Wilson et al. [122] studied the flow of both a film and a rivulet on a vertical sub-

strate subject to a prescribed uniform longitudinal shear stress at the free surface. In
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particular, they determined when it is favourable for both a film to break up into a

periodic array of rivulets and for a rivulet to break up into one or more sub-rivulets.

They found that there is a critical thickness below which it is energetically favourable

for a film to break up into rivulets, and there is a critical semi-width above which it is

energetically favourable for a single rivulet to break up into sub-rivulets.

The flow of a rivulet down an inclined substrate may exhibit many different flow

regimes, including the well-known phenomenon of meandering, which in general is

observed upon increasing flow rate (see, for example, Culkin and Davis [26], Nakagawa

and Scott [72], Nakagawa [71], Le Grand-Piteira et al. [61], Birnir et al. [13], Daerr et

al. [27], and Couvreur and Daerr [25]).

1.4 Mathematical Modelling of a Unidirectional Rivulet

Flow

In this section we review the previous mathematical modelling of unidirectional rivulet

flow which forms the basis for the work described in Chapters 2 and 3. Consider the

unidirectional steady gravity-driven flow of a rivulet of a Newtonian fluid with constant

volume flux Q = Q̄ down a planar substrate inclined at an angle α to the horizontal.

Referred to a Cartesian system of coordinates Ox′y′z′, the substrate is at z′ = 0, the

x′-axis is in the direction of the flow, the y′-axis is horizontal and transverse to the

direction of the flow, and the z′-axis is normal to the substrate. We take the free

surface to be at z′ = h′, where h′ = h′(y′) is the rivulet thickness, and take the contact

lines of the rivulet, where h′ = 0, to be at y′ = ±a′, where a′ is the semi-width of the

rivulet, β′ is the contact angle of the rivulet, and the thickness of the rivulet at y′ = 0

by h′m = h′(0). The fluid is assumed to have constant density ρ, viscosity µ and surface

tension γ. The velocity u′ = u′(y′, z′)i and pressure p′(y′, z′) of the fluid are governed

by the mass conservation equation

∇′ · u′ = 0, (1.1)
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and the steady Navier–Stokes equation

ρ(u′ · ∇′u′) = −∇′p′ + ρg + µ∇′2u′, (1.2)

where g is the body force due to gravity, and ∇′ is the gradient operator.

Note that in general, the governing equations, namely the mass conservation equa-

tion (1.1) and the Navier–Stokes equation (1.2) must be solved numerically; however,

by considering a sufficiently thin film of fluid we can apply the well-known lubrication

approximation to the equations and boundary conditions and make analytical progress

in the thin-film flow problem. The lubrication approximation leads to a set of equations

which are simpler to solve than the full Navier–Stokes equations. Thus, in what follows

we apply the lubrication approximation in order to replace the governing equations and

obtain a general partial differential equation for the rivulet thickness h describing the

flow of a rivulet of a Newtonian fluid.

We consider the flow of a thin rivulet with small contact angle β′ � 1 for which the

length scale in the z′-direction (denoted by δ`) is much smaller than the length scale

in the y′-direction (denoted by `), where δ (� 1) is the transverse aspect ratio of the

rivulet. We non-dimensionalise and scale the variables by writing:

y′ = `y, a′ = `a, β′ = δβ, z′ = δ`z, h′ = δ`h

h′m = δ`hm, u′ = Uu, Q′ = δ`2UQ, p′ = δρg`p,
(1.3)

where g is the magnitude of acceleration due to gravity, ` = (γ/ρg)1/2 is the capillary

length, U = δ2ρg`2/µ is the appropriate velocity scale. With these scalings, the Navier–

Stokes equations (1.2) become

uzz + sinα = 0, (1.4)

−py = 0, (1.5)

−pz − cosα = 0, (1.6)

which are subject to the dimensionless boundary conditions which we discuss next. The



Chapter 1 14

no-slip condition at the interface between the fluid layer and the substrate z = 0 is

u = 0 on z = 0. (1.7)

The continuity of stress condition on the free surface is,

[σ · n]21 = Kγ n on z = h, (1.8)

where σ = −pI+µ[∇u+(∇u)T] is the stress tensor, I is the unit tensor, K is the mean

curvature of the free surface, n is the unit vector normal to the free surface, and [φ]21

denotes the jump in the quantity φ going from region 1 just below the free surface to

region 2 just above the free surface. The normal and tangential stress-balances at the

free surface z = h(y) given by (1.8) are

p = −d2h

dy2
, (1.9)

uz = 0, (1.10)

The conditions of zero film thickness and the contact angle at the contact-lines y = ±a
are

h = 0 and
dh

dy
= ∓β. (1.11)

Solving equations (1.4) and (1.6) subject to the boundary conditions (1.7), (1.9) and

(1.10) gives

u =
sinα

2
(2hz − z2), (1.12)

p = (h− z) cosα− d2h

dy2
. (1.13)

Therefore the local flux ū in the x direction is given by

ū =

∫ h

0
u dz =

sinα

3
h3, (1.14)

and hence the volume flux of fluid along the rivulet, Q, is given by
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Q =

∫ a

−a
ū dy =

2 sinα

3

∫ a

0
h3dy. (1.15)

In the general case of non-zero contact angle β > 0, Duffy and Moffatt [31] showed

that applying (1.5) to the solution for p given by (1.13) leads to a third-order ordinary

differential equation for the rivulet thickness h, namely

d

dy

(
d2h

dy2
− h cosα

)
= 0, (1.16)

which when integrated subject to (1.11) yields the free surface shape, h = h(y), namely

h = β ×



coshma− coshmy

m sinhma
for 0 ≤ α < π

2
,

a2 − y2

2a
for α =

π

2
,

cosmy − cosma

m sinma
for

π

2
< α ≤ π,

(1.17)

and so, in particular, the maximum thickness of rivulet, hm = h(0), is given by

hm = β ×



1

m
tanh

(ma
2

)
for 0 ≤ α < π

2
,

a

2
for α =

π

2
,

1

m
tan

(ma
2

)
for

π

2
< α ≤ π,

(1.18)

and the volume flux along the rivulet is given by

Q = 2

∫ a

0

∫ h

0
udz dy =

β3 sinα

9m4
f(ma), (1.19)

where we have defined m = | cosα|1/2. The function f(ma) is given by

f(ma) =


15ma coth3(ma)− 15 coth2(ma)− 9ma coth(ma) + 4 for 0 ≤ α < π

2
,

12

35
(ma)4 for α =

π

2
,

−15ma cot3(ma) + 15 cot2(ma)− 9ma cot(ma) + 4 for
π

2
< α ≤ π.

(1.20)

In the special case of zero contact angle β = 0, Wilson and Duffy [120] showed that
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there is no rivulet solution for 0 ≤ α ≤ π/2 but for π/2 < α ≤ π there are infinitely

many solutions given by

a =
nπ

m
, h =

hm

2
(1− (−1)n cosmy), (1.21)

for n = 1, 2, 3, ..., and the maximum thickness of the rivulet hm is given by

hm =

(
24mQ̄

5nπ sinα

) 1
3

. (1.22)

Note that all of these solutions are physically realisable, but since the higher-branch

solutions (i.e. those for n = 2, 3, ..) are simply appropriately re-scaled copies of the

lowest-branch solution (i.e. n = 1) representing arrays of contiguous identical rivulets,

we choose n = 1 without loss of generality in what follows.

1.4.1 Rivulet with constant contact angle (β = β̄ > 0)

Duffy and Moffatt [31] used the unidirectional flow solution (1.17)–(1.20) to describe the

locally unidirectional flow with prescribed flux Q = Q̄ down a slowly varying substrate,

in particular the flow in the azimuthal direction from the top α = 0 to the bottom

α = π of a large horizontal cylinder, of a rivulet with constant contact angle β = β̄

but slowly varying semi-width a. Note that α is now the local slope of the substrate,

and also that ”slowly varying” means that the longitudinal aspect ratio ε = `/R, where

R is the radius of the cylinder, satisfies ε � δ so that ε/δ → 0 in the limit ε → 0.

Applying the condition of prescribed volume flux, Q = Q̄ with Q given by (1.19),

yields a transcendental algebraic equation for the semi-width a, which can generally be

solved numerically. The solution (1.17) shows that, unlike in the case β̄ = 0 described

above, solutions exist for both 0 ≤ α ≤ π/2 and π/2 < α ≤ π. In Figure 1.8 we

show plots of the semi-width a given by solving (1.19) when Q = Q̄ and the maximum

thickness hm given by (1.18) plotted as functions of the scaled angle α/π for a rivulet

with constant contact angle β = β̄ = 1 for a range of values of Q̄. In particular, Figure

1.8 illustrates that the rivulet becomes wide with finite thickness near the top of a large

horizontal cylinder i.e. α = 0, while it becomes infinitely deep and of finite width near
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α/π

a

(1, π)

Q̄ = 100

Q̄ = 0.01

(a)

α/π

hm

Q̄ = 100

Q̄ = 0.01

(b)

Figure 1.8: Plots of (a) the semi-width a obtained by solving (1.19) when Q = Q̄ and
(b) the maximum thickness hm given by (1.18) as functions of the scaled angle α/π for
a rivulet with constant contact angle β = β̄ = 1 for Q̄ = 0.01, 0.1, 1, 10, 100.

the bottom of the cylinder, i.e. α = π.

1.4.2 Rivulet with constant semi-width (a = ā > 0)

Paterson et al. [83] described the flow of a rivulet with constant semi-width a = ā (> 0)

(i.e. pinned contact lines) with slowly varying contact angle down a slowly varying

substrate by using the solution (1.17)–(1.20) together with the solution for a rivulet of

a perfectly wetting fluid given by (1.21). They showed that the behaviour of the rivulet

in this case is qualitatively different from that of a rivulet with constant contact angle

described in Subsection 1.4.1. In particular, setting Q = Q̄ and a = ā in (1.19) they

obtained an explicit solution for β, namely

β =

(
9Q̄m4

f(mā) sinα

) 1
3

, (1.23)

and showed that for a narrow rivulet with constant semi-width a = ā ≤ π a rivulet can

run from the top (α = 0) to the bottom (α = π) of a large horizontal cylinder, but for

a wide rivulet with constant semi-width a = ā > π there is a critical value of α on the
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α/π

β

ā/π = 1.5

ā/π = 0.5

(a)

α/π

hm

ā/π = 1.5

ā/π = 0.5

(b)

Figure 1.9: Plots of (a) the contact angle β given by (1.23) and (b) the maximum
thickness hm given by (1.18) when ā ≤ π and given by (1.22) when ā > π as functions
of α/π for ā/π = 0.5, 0.75, 1, 1.25, 1.5 when Q̄ = 1. The dots (•) denote the values of
β = 0 and hm at αdepin given by (1.24).

lower half of the cylinder, denoted by αdepin (π/2 < αdepin < π) and given by solving

mā = π to obtain

αdepin = cos−1

(
−π

2

ā2

)
for ā > π (1.24)

at which the contact angle β is equal to zero and beyond which there is no physically

realisable solution. In order to give an alternative description of the rivulet behaviour

beyond α = αdepin, Paterson et al. [83] assumed that the contact lines de-pin at α =

αdepin, and that thereafter the rivulet runs from α = αdepin to the bottom of the

cylinder α = π with zero contact angle β = 0 with monotonically decreasing semi-

width a. Figure 1.9 show plots of the contact angle β and the maximum thickness hm

as functions of α/π for a range of values of ā/π.

1.5 The Slip Boundary Condition

In Chapter 2 of this thesis, we consider rivulet flow over a slippery substrate. This

section gives a brief overview of the slip boundary condition and, in particular, discusses

the existence of slip over different surfaces and the effects of using a proper interfacial
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slip boundary condition, rather than the traditionally used no-slip boundary condition.

Slip is the motion of fluid particles relative to a solid boundary. It is commonly

(and usually correctly) assumed that the appropriate boundary condition for a viscous

fluid at a solid boundary is the no-slip condition, in which the fluid moves with the

same tangential velocity as that of the boundary, and the no-penetration condition in

which the normal component of the fluid velocity is the same as that of the boundary.

The no-slip condition has long been accepted as the appropriate boundary condition in

many (but not all) practical situations for the Navier-Stokes equations because in many

situations effects of slip are too small to make a difference. However, in some practical

situations where the material properties of the solid-liquid interface are important, such

as patterned and structured surfaces (Ajaev et al. [2]), and superhydrophobic surfaces,

which tend to strongly repel liquid droplets and remain completely dry (Schäffel et al.

[94]), significant fluid slip has been observed. Slip can also occur when a thin film flows

over a porous substrate, where a slip boundary condition can be used to describe the

influence of porosity [10]. To model such slip at a boundary, the Navier slip boundary

condition is usually introduced. Navier proposed a slip boundary condition in which

the interface slip velocity, Us, is proportional to the shear rate, according to

Us = λ
dU

dz
, (1.25)

where U is the tangential component of the fluid velocity, z is the normal coordinate and

dU/dz is the shear rate [15]. He introduced the idea of a slip length, which quantifies

the slip of a fluid at a solid boundary, here denoted by λ. The slip length λ is defined

as the extrapolated distance below the boundary at which the fluid velocity is equal

to zero, as shown in Figure 1.10. In particular, Figure 1.10(a) represents the no-slip

boundary condition and shows that the velocity at the stationary solid boundary is

equal to zero. Figure 1.10(b) represents the slip boundary condition and shows that

the velocity at the stationary solid boundary, Us, is nonzero, in which the velocity of

the fluid matches the zero velocity of the wall at some distance λ below it. Figure

1.10(c) shows the perfect slip condition, in which the stationary solid boundary has no
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Figure 1.10: Diagram illustrating (a) no slip, (b) slip with interface slip velocity Us and
slip length λ, and (c) perfect slip at a solid-liquid interface. Reprinted by permission
from Springer Nature: Nature [57], copyright 2007.

influence on the velocity profile.

Huh and Scriven [48] studied the movement of a three-phase contact line, i.e. the

line where the interface of two fluid phases intersects the substrate, over a solid surface.

They noted that applying the no-slip condition to flow close to the contact line leads to

physically unacceptable stress and energy dissipation singularities at the contact line.

To relieve the force singularity, Huh and Scriven [48] suggested allowing slip in the

region of the contact line.

Lauga et al. [57] presented a comprehensive review of slip results from different

experimental investigations. They discussed the validity of the no-slip boundary condi-

tion at a solid-liquid interface, focusing on measuring the magnitude of the slip length

and its dependence on parameters such as surface roughness, wettability, dissolved gas

and bubbles and shear rate. According to Lauga et al. [57], the phenomenon of slip is

encountered in three different contexts. The first context is that of gas flow in devices

with small dimensions. In general, the Knudsen number Kn is used to characterise the

boundary condition for gas flow, with slip being important when Kn & 0.1. The second

context arises in flows of certain non-Newtonian fluids such as polymer solutions. The

third context involves Newtonian fluid flows near moving contact lines, where includ-

ing slip is necessary to remove the singularities described earlier by Huh and Scriven

[48]. These authors found that the slip lengths reported experimentally can range from

several nanometres up to hundreds of nanometres and the impact of slip on systems
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with typical dimensions larger than tens of microns will be limited.

Finally, it has been experimentally observed that slip occurs on both hydrophobic

and hydrophilic surfaces and the factors that affect the slip length are the shear rate,

and contact angle [124].

Neto et al. [73] published a review of experimental studies on the boundary slip of

Newtonian liquids on solid surfaces and considered the effects on the measured slip of

surface roughness, wettability, and the presence of gaseous layers.

Biswal et al. [14] investigated the role of slip on evaporation of a thin liquid film

in a microfluidic channel. The authors concluded that the film spreading and the total

mass of evaporation increases with the increase in the slip length.

Chao et al. [19] studied the dynamics of thin-film flows down a uniformly heated

or cooled cylinder with wall slippage. They reported that the slip boundary condition

enhances the size and speed of the sliding droplets for the thin liquid films on the

cylinder.

Nicholson et al. [74] analysed film flow dynamics in which the film can be thin,

motivated by an aero-engine application where an oil film flows at the bearing chamber

walls. They developed an extended model for rimming flow driven by surface shear

within a stationary cylinder. In particular, they replaced the no-slip condition with a

slip boundary condition imposed upon the chamber surface and compared the results

obtained to cases with no-slip condition from previous studies of rimming flows. Addi-

tionally, they investigated the influence of wall slip on the transition between smooth

film solution and pooling solution, where fluid accumulates in a recirculation in the

bottom of the cylinder. Their study shows that increasing the slip length results in a

significant thinning of the film flow profile toward domain boundaries. In particular,

the film profile shows a significantly deeper pooling solution when the slip length is

comparable to the film height. A summary of slip lengths from experimental studies

was collated by Nicholson et al. [74] and is reproduced here as Table 1.1 which shows

that an infinite slip length is expected in the presence of an air only interface [73] and

gives details of observed slip for a variety of surfaces and fluids.

Large slip lengths (i.e. low friction) have been reported on superhydrophobic sur-
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Table 1.1: Summary of the slip lengths from experimental studies. Reprinted from
Nicholson et al. [74], with the permission of AIP Publishing.

Author Fluid Substrate Slip length

Dimethyldichlorosilane
Lauga et al. [57] Water

coated glass
1µm− 10µm

Trimethlychlorosilane
Mercury

coated quartz
70nm

Propanedial vacuum Silica 1µm
Lee et al. [62] Water Hydrophobic polymer surface 1.7µm
Neto et al. [73] Water Air ∞µm
Zhu and Granick [127] Deionized water Octadecyltriethoxysilane 2.5µm

Tetradecane Octadecyltriethoxysilane 1.5µm
Tetradecane mix Mica 1.0µm

Ou et al. [80] Water Ultrahydrophobic silicon 20µm
Choi and Kim [21] Water Ultrahydrophobic silicon 20µm

30wt.% glycerin Ultrahydrophobic silicon 50µm
Aurelian et al. [8] Oil Hydrophobic substrate 0.013mm
Maali and Bhushan [67] Water Superhydrophobic surface 20µm

faces [89]. Rothstein [89] discussed the use of superhydrophobic surfaces and demon-

strated that such surfaces can significantly reduce drag in both laminar and turbulent

flows by accommodating large slip velocity near the surface, and hence affect different

important technologies such as microfluidic devices. The slip length in such surfaces

can be up to hundreds of µm [51].

Lee et al. [62] conducted a review of published literature on boundary conditions

for flow on rough and structured surfaces, surfaces with chemical patterns, surfaces

bearing nanobubbles and superhydrophobic surfaces, and discuss how these properties

can affect the slip length. In particular, they showed that experiments on superhy-

drophobic surfaces show a significant drag reduction on a macroscopic scale, which can

be interpreted as a slip on the surface.

Sochi [102] reviewed slip at the solid-liquid interface and pointed out that the mag-

nitude of slip is affected by properties such as viscosity and density, the physical and

chemical properties of the surface such as wettability and roughness, the geometry of

the flow system, and to the ambient conditions, such as temperature and pressure.

Sochi [102] also showed experimental evidence that supports the large values of slip

length due to the presence of gaseous films or pockets on the surface.
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1.6 Flow in Porous Media

1.6.1 Small-scale flows in porous media

In Chapter 3 of this thesis we consider rivulet flow over and through a porous membrane.

This section discusses flow in a porous medium and, in particular, the appropriate

boundary conditions at the interface between a fluid and a porous medium.

Large scale-flows, such as tidal motion over a sandy beach, the possible escape of

liquidised carbon dioxide sequestered in porous underground reservoirs, and the flow

of lava over fractured bedrock, have motivated several authors to use theoretical and

experimental approaches to address different aspects of the flow of fluid over a porous

substrate. However, the motivation for the work described in the present thesis is

small-scale flows. Therefore, in addition to the examples given in Section 1.1, we will

now give several other examples of small-scale flows through porous media. Small-scale

flows can arise in different applications. Of the many applications, the following seem

to us the most significant and promising: absorption of agrochemicals, printing, dyeing

textiles and fog-harvesting, which we now describe briefly.

Tredenick et al. [109] investigated the process of the absorption of pesticides by the

leaves of plants. They introduced a mathematical model to simulate the absorption of

ionic agrochemicals, such as pesticides, herbicides and fertilizers through aqueous pores

in plant cuticles in order to enhance the efficacy of the agrochemicals. They found

that the most important component determining absorption was the cuticle structure,

including the tortuosity and density of the aqueous pores.

Another application connected with coating and inkjet printing onto porous re-

ceivers, such as paper, was studied by Clarke et al. [23]. They modelled the spreading

and imbibtation into a porous surface of an inkjet drop. The model was experimentally

verified for water droplets and droplets of an aqueous solution of glycerol and hexelene

glycol over a range of microporous filter membranes. They found that, as the aver-

age pore size increased, the rate of decrease of droplet volume increased in all of the

experiments.

Shamey and Zhao [98] discussed and reviewed dyeing processes, such as in dyeing
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textiles. In such an application, a dye solution imparts its colour to a textile fibre, and

under suitable conditions, the dye is absorbed by the fibre.

Another interesting application is the flow of condensed water on mesh fog-harvesting

devices. Such devices can be used as a technology to generate water through fog har-

vesting.

Park et al. [81] investigated the fog-collection efficiency of woven meshes with a

range of surface coatings. They developed a model to predict the overall fog-collection

efficiency of the meshes and found that mesh type and pattern can affect the fog

collection on the mesh. They created a design chart which can be used to select an

optimal mesh to enhance the fog collection.

1.6.2 Darcy’s equation

Modelling small-scale flows such as discussed in the previous subsection requires an

accurate description of fluid flow through the porous medium. Many of the authors

who have considered problems involving a fluid flow over and/or through a porous

substrate have used Darcy’s equation to describe the flow in the porous medium (see,

for example, Pascal [82] and Sadiq et al. [92]). Pioneering work on flow through a

porous medium was performed by Darcy [28], who experimentally investigated the

flow of water in a vertical steel column filled with layers of sand [68]. The results of

Darcy’s experiments indicated that there is a relationship between the fluid volume

flux per unit area U (now known as the Darcy velocity) through the porous medium,

the permeability k, the fluid viscosity µ, the pressure gradient in the porous medium

∇P , the fluid density ρ, and the acceleration due to gravity g. This relationship is now

known as Darcy’s equation and is given by

U = −k
µ

(∇P − ρg) . (1.26)

For high-porosity porous media, Brinkman [18] generalised Darcy’s equation by

adding an extra viscous term (now known as the Brinkman term) in which viscous

shear effects are accounted for. The new equation, the Darcy–Brinkman equation, is
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given by

∇P = −µ
k
U + µ′∇2U, (1.27)

where µ′ is an effective viscosity, a parameter with the dimensions of viscosity.

1.6.3 Boundary conditions at the interface

Next we consider the boundary conditions at the interface between flow in a porous

medium and that of a fluid layer. A variety of different modelling assumptions have

been made by previous researchers. One such assumption, valid for materials with small

permeability, is to regard the surface of the porous medium as a solid surface containing

small holes, and apply the no-slip boundary condition. The no-slip condition was used

in several studies dealing with a porous medium adjacent to a fluid. However, for

materials with larger permeability, significant slip occurs and so the no-slip condition

is not appropriate.

Beavers and Joseph [10] examined the interfacial boundary conditions for a Poiseuille

flow through and over a homogeneous porous medium. The main goal of their exper-

imental studies was to obtain accurate measurements of the flow rate through a long

porous block and through a small uniform gap immediately above the block. Two differ-

ent porous media (namely, low-density nickel foametal and aloxite) were used. Beavers

and Joseph [10] suggested that there is a boundary layer at the interface over which

the transition in velocity takes place, and that the effect of this boundary layer can be

replaced by a slip condition at the interface, as shown in Figure 1.11, which illustrates

that across the permeable lower wall the velocity changes rapidly from its value u at

the wall to the Darcy value given by equation (1.26). Based on their experiments, the

authors proposed the following slip boundary condition, now called the Beavers-Joseph

condition,
∂u

∂z
=

α√
k

(u− U) on z = 0, (1.28)

where z is the direction perpendicular to the interface, u is the tangential velocity

component in the fluid parallel to the interface, U is the tangential Darcy velocity

component obtained from the Darcy equation (1.26), and α is the slip coefficient which
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Figure 1.11: Velocity profile for the unidirectional flow of a fluid through a horizontal
channel formed by a permeable lower wall and an impermeable upper wall, as examined
by Beavers and Joseph [10].

is a dimensionless parameter depending on the structure of the porous medium.

Saffman [93] provided a theoretical justification for the boundary condition proposed

by Beavers and Joseph [10]. He generalized Darcy’s equation (1.26) to non-planar

geometries which was not considered by Beavers and Joseph [10] and obtained the

following boundary condition

u =

√
k

α

∂u

∂z
+O(k), (1.29)

indicating that the tangential velocity term in the porous medium (i.e. the U in equation

(1.28)) is much smaller than the tangential velocity in the fluid parallel to the interface

in the Beavers–Joseph equation (1.28), and therefore this term may be neglected.
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(a) (b)

Figure 1.12: Diagram illustrating (a) a membrane with a series of periodically dis-
tributed slits of width 2c and immersed in an infinite fluid medium and (b) diagram
of a membrane with a square array of circular holes, as examined by Tio and Sadhal
[107]. Reprinted by permission from Springer Nature: Nature [107], copyright 1994.

1.6.4 Flow of a fluid over and through a porous inclined plane

Next we consider the flow of a fluid over and through a porous membrane. In particular,

we describe different types of membrane, where fluid can penetrate. Tio and Sadhal

[107] studied both the flow through a thin membrane driven by the difference in pressure

between the two sides of the membrane, and the flow parallel to the membrane. This

study considered two types of model. The first model was a membrane with a series

of periodically distributed slits of equal width, while the second was a membrane with

a regular square and hexagonal array of circular holes, as shown in Figure 1.12. They

obtained a formula relating the flow rate to the pressure drop across the membrane

in the case of flow through the membrane. Then, for the case of flow parallel to the

membrane, these authors considered both transverse and parallel shear flows on each

side of the membrane and obtained a formula that expressed the relationship between

the slip velocity and the shear stress as a function of porosity.
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Davis and Hocking [29] considered the spreading and imbibition of two-dimensional

droplets on permeable substrates. A number of different imbibition scenarios were

considered and the main objective of the study was to determine the evolution of the

droplet and specifically the lifetime of the drop and the position of the contact lines.

Among these scenarios, they investigated the flow and spreading of a two-dimensional

fluid sheet down an inclined substrate, which is impermeable before and permeable after

the origin. To describe the permeable substrate, the authors used a simple model in

which the substrate acts as a porous membrane of uniform thickness d and is modelled as

an array of vertical pores of constant width 2b with a number density n per unit width.

They also assumed that the flow in each pore is driven by pressure gradient. Following

these assumptions the vertical velocity component at the top of the substrate indicates

that the flow through the substrate is proportional to the pressure on the substrate as

w = −kp
µ
, (1.30)

where k = nb2/3d. They found that, as the fluid moves over the porous membrane,

it gradually passes through it, until the entire fluid is completely imbibed by it. They

demonstrated that the length of the fluid sheet (i.e. the distance over which the fluid is

completely absorbed) on the porous part of the membrane increases as the permeability

of the substrate decreases. However, there are some errors and inconsistencies in some

aspects of this analysis. Therefore, we will revisit this problem as a limiting case of the

rivulet problem solved in Chapter 3 of the present thesis.

Esṕın and Kumar [34] developed a model for the spreading of a droplet on a per-

meable substrate. They incorporate surface roughness and used a modified boundary

condition, derived from Darcy’s equation (1.26), for liquid imbibition in their model,

which can be applied to other situations like flow down an inclined plane. In this model,

they used a precursor film and two-term disjoining pressure (see Section 1.8) to describe

the behaviour of the contact line of the droplet. In particular, in order to remove the

need for thickness-dependent permeability, which has been used in similar studies to

prevent imbibition of the precursor film, they derived the imbibition condition such
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that the thickness of the substrate and the precursor film above the substrate are con-

sidered. Esṕın and Kumar [35] described the influence of external shear and substrate

permeability on droplet motion on an inclined substrate by imposing the same bound-

ary conditions as those used in their earlier work. It has been shown experimentally by

the authors that as droplet speed increases, the droplets go through different wetting

transitions in which the droplet goes from a round footprint shape and a tear-drop

shape to smaller droplets formed by a pearling process. In this process, the droplet

stretches its shape and forms a liquid tail that breaks up into smaller droplets (pearls)

and separated completely from the main droplet (i.e. the leading droplet). They found

that in the presence of strong external shear, which opposes the droplet motion, the

droplet can remain stationary on the inclined substrate and has a shape similar to

the shape of a droplet on a horizontal substrate. Activating the external shear at a

later time during the pearling process, can reduce the speed of the leading droplet and

cause the smaller droplet to move upward. For the substrate permeability effects, they

observed that the liquid absorption caused droplets to change their shape and motion

due to the mass loss. In particular, the substrate permeability has a significant impact

on droplet wetting transitions as it suppresses the pearling process.

If the assumption of small permeability is made, then one can decouple the dynamics

of the fluid layer and the fluid flow through the porous medium. This approach is known

as a “one-sided” model in which the effect of substrate permeability is incorporated as a

boundary condition. Another approach is to use a “two-sided” model in which the fluid

layer and porous layer are treated separately. In that case, the Stokes equations govern

the flow of the clear fluid, while either the Darcy equation (1.26) or Darcy–Brinkman

equation (1.27) describe the flow in the porous medium, with boundary conditions

imposed at the fluid-substrate boundary. Because Darcy’s equation (1.26) does not

take into account fluid-fluid viscous interactions which become important very close

to the interface and/or when the permeability becomes large, Le Bars and Worster

[60] introduced a viscous transition zone below the porous interface, inside the porous

medium, within which the Stokes equation still applies down to a depth δ, and obtained

a new condition at the fluid-porous interface which takes into account fluid-fluid viscous
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interactions at the interface in the following form:

u(x, y,−δ) = U(x, y,−δ), (1.31)

where δ = c
√
k is the length scale of the transition zone and c is a constant.

The one-sided approach was used by Pascal [82] who examined the linear stability

of a fluid flowing on a porous inclined substrate. He imposed the Beavers–Joseph

condition (1.28) at the fluid-substrate boundary, together with Darcy’s equation (1.26)

governing the flow through the porous medium. In this work, the author neglected the

flow in the porous medium by assuming k/d2 � 1, where k is again the permeability

and d is the vertical length scale of the fluid layer. The results show that an increase

in the permeability of the substrate enhances the instability of the flow.

Sadiq and Usha [91] explored the effect of surface tension, using the same model and

with the same assumptions as Pascal [82]. They described the flow of a fluid layer on an

inclined porous substrate and, by performing a linear stability analysis, they obtained

the same results as Pascal [82] in the absence of surface tension effects, in which they

demonstrated that the fluid flow on a porous inclined substrate is more unstable than

that on a rigid inclined substrate.

Sadiq et al. [92] investigated the stability of a fluid film flow down a heated porous

inclined substrate, using Darcy’s law to describe the flow through the porous medium.

This study also used the same one-sided model as Pascal [82] to examine the combined

effects of the gravity, capillary force, and permeability of the porous medium on the

film. They showed that the role of permeability is to increase the amplitude of the

disturbance leading to the destabilization of the film. It was found that an increase in

the permeability of the porous medium led to an oscillatory behaviour.

Liu and Liu [65] similarly examined the linear stability of the flow of a fluid layer

on a porous inclined substrate. This study extended Pascal’s [82] one-sided model to

a two-sided model by incorporating the Darcy velocity (1.26) in the porous medium

which was not considered by Pascal [82] and compared the results of the two different

approaches. The results highlight the fact that the two models are in good agreement
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only when permeability is very low.

Thiele et al. [106] analysed the stability of a thin fluid film flowing down a heated

porous substrate. The study employed the Darcy–Brinkman equation (1.27) to describe

the flow in the porous medium, and utilised a stress jump boundary condition at the

porous-fluid interface proposed by Ochoa-Tapia and Whitaker [77]. Thiele et al. [106]

showed that, in certain conditions, the porous layer can be replaced by an effective

slip boundary condition at the porous-fluid interface. The authors analysed the effects

of the thickness of the porous medium on the stability of the film flow, ultimately

proposing a relation between the slip length and the thickness and properties of the

porous substrate. The results of their study show that the one-sided model is accurate

only when the permeability is sufficiently low and the porous substrate is sufficiently

thin.

Nong and Anderson [76] described a thin fluid film on a permeable contact lens,

which is modelled as a rigid porous layer of constant thickness. At the surface of

the contact lens, they considered two slip models: Beavers–Joseph condition (1.28)

and the Le Bars–Worster condition (1.31). The study investigated the influence of

various effects, including contact lens thickness, lens permeability, slip, and gravity.

The authors ultimately demonstrated that an increase in lens thickness, permeability,

or slip length/depth in both slip models increases the film thinning rate (i.e. the rate

at which the film thickness decreases) and, therefore, the possibility of film rupture.

Researches which take account of the flow of fluid into and/or out of the porous layer

are relevant to our work, for example, the work by Ramon et al. [88], Knox et al. [54, 55]

and Venerus [113] on porous squeeze-film flow. Knox et al. [54] considered squeeze-film

flow of a thin layer of fluid between a flat impermeable surface moving vertically under a

constant load and a flat thin porous bed coating a stationary flat impermeable surface.

They assumed that the flow in the porous medium was governed by Darcy’s law and

imposed the Beavers–Joseph condition, together with the continuity of normal stress

at the fluid-porous medium interface. They obtained an implicit expression for the

fluid layer thickness as a function of time and an explicit expression for the contact

time at which the two surfaces come into contact. In particular, they showed that
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increasing permeability reduced the contact time between the two surfaces. Knox et al.

[55] extended their earlier work to study a curved impermeable surface. In particular,

they investigated the influence of changing the shape of the impermeable surface.

Venerus [113] investigated the squeeze-film flows between porous and impermeable

disks. They considered two configurations: (a) a sealed-face configuration where the

upper surface of the porous disk is impermeable, and (b) a sealed-edge configuration

where the upper surface of the porous disk is permeable and in contact with a reservoir.

Darcy’s law is assumed in the porous disk, while the flow in the liquid film is described

by lubrication theory and allows for slip between the porous disk and liquid film. The

author obtained expressions for velocity and pressure fields and showed that for a

constant applied load, the contact time decreased as the disk permeability increased in

both configurations.

Let us summarise the implications for our work of the research briefly reviewed

above. The existence of the classical no-slip boundary condition has been adopted

in many theoretical works. However, the existence of slip at the solid surfaces was

established in many experiments as we discussed in the previous sections and, therefore,

it is more appropriate to use a slip boundary condition. In particular, in Chapter 2

we will consider small-scale locally unidirectional gravity-driven rivulet flow down an

inclined slippery substrate and hence an appropriate slip condition is considered. As

we mentioned at the beginning of this section, in Chapter 3 we consider thin rivulet

flowing over and through a permeable membrane. In particular, we consider the flow

within the membrane and derive a boundary condition on the substrate similar to these

of the “one-sided” model used by some of the previous authors described above where

the flow through the permeable membrane is govern by Darcy’s equation (1.26).

Note that, as far as we are aware, thus far there has been no previous theoretical

work on rivulet flow over and through a porous substrate.
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1.7 Thin Films on Non-Homogeneous Substrates

In Chapter 4 of this thesis we consider stationary solutions of a thin-film equation

describing the flow on homogeneous and on non-homogeneous substrates. This section

gives a brief overview of studies that focused on thin-film flow on non-homogeneous

substrates and, in particular, the use of such substrates in determining the behaviour

of fluid films. Dust and chemical contamination on surfaces are examples of naturally

heterogeneous surfaces in which patches of surface properties are generated that are

different from the surrounding substrate. In industrial and experimental situations

heterogeneous solid surfaces can be constructed by using a flat surface with spatially

periodic variation of chemical properties (i.e. patterned surfaces), such as stripes of an

ultra thin film of gold, or by structured surfaces with periodic variations of topography,

such as periodic arrays of parallel grooves or arrays of pillars of circular cross section

[2, 63].

Organic semiconductors are semiconductors which use organic molecules, such as

carbon, rather than silicon for their material. Organic semiconductors have become a

very important field, both in science and in industrial research; in particular, for their

applications in electronic devices, including organic light emitting diodes (OLEDs),

sensors, organic solar cells (OSCs), lasers and transistors. Organic semiconductors

are of major interest due to lower production cost, easy fabrication, flexibility and

the lightness of the structures. In general, design of such devices involves the use

of heterogeneous substrates. These substrates are prepared by a number of different

methods, such as depositing a thin film of organic material on the substrate [64, 125].

Honisch et al. [46] theoretically modelled an experiment on organic semiconductors

performed by Wang et al. [115]. In this experiment, the authors deposited thin layers

of orange light-emitting organic molecules on a substrate, using an organic molecular

beam deposition method, as shown in Figure 1.13. In this method, molecules are

evaporated from a vacuum and subsequently condensed on the substrate. In order

to control pattern formation, Wang et al. [115] used periodic gold stripes on a silicon

oxide substrate and created high resolution triple colour patterns. Honisch et al. [46]
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Figure 1.13: Different growth regimes during the deposition of organic molecules on
a silicon oxide substrates patterned with Au stripes of alternating width. (a) Atomic
force microscopy (AFM) image of 3 nm of organic molecules on Au stripes. (b) AFM
image of 10 nm of organic molecules on Au stripes. (c) Sketches of the different growth
regimes as amounts of deposited molecules increases: (I) random small droplets, (II)
large droplets, (III) elongated drops, (V) the stripe is covered with a cylindrical ridge
and (VI) bulges on both the stripe and the substrate. Reprinted with permission from
Honisch et al. [46]. Copyright 2020 American Chemical Society.

formulated a thin-film equation that describes the evolution of the height profile of the

layer of deposited molecules and used it to analyse the linear stability of stationary

solutions. In particular, they analysed the influence of the wettability contrast, the

mean film thickness (liquid volume), and the geometry of the stripe pattern on the

stability of liquid ridges. Honisch et al. [46] performed numerical continuation and found

two different types of instabilities, both of which were also observed in the experiment.

For a small amount of deposited molecules, small droplets formed on the gold stripes,

while for large amounts of deposited molecules, bulges formed which also covered part

of the silicon oxide substrate.

Konnur et al. [56] studied the rupture of thin films on chemically heterogeneous

substrates. In particular, they studied the case of an isolated circular patch with
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wetting properties different from the rest of the substrate. They solved an appropriate

evolution equation numerically and found that, if the circular patch is less wettable

than the rest of the substrate, then liquid flows away from the less wettable regions,

while if the patch is more wettable than the rest of the substrate, the liquid tends to

accumulate and form droplets. In addition, they found that the presence of chemical

heterogeneities can destabilize and rupture the thin film, and the time to rupture on

the heterogeneous patch is independent of the size of the patch.

Kargupta and Sharma [52] investigated dewetting on chemically patterned sub-

strates. They considered a substrate consisting of alternating less wettable and more

wettable stripes and used a spatially periodic disjoining pressure (see Section 1.8) to

model the heterogeneity of the substrate. In particular, they explored numerically the

effect of the periodicity interval (i.e. the distance between two stripes) and the stripe

width on the dewetting structure. They found that a successful templating on a striped

substrate, in which the pattern of the substrate is transferred into the pattern of liquid

structure, can be achieved if the periodicity interval of the substrate is very close to the

characteristic lengthscale of the instability. This therefore ensures dewetting on every

less wettable site on the patterned substrate (i.e. number of dewetting sites equals the

number of dewetted stripes). Finally, regarding the influence of the stripe width, they

showed that good templating can be achieved only if the stripe width does not exceed

an upper limit, otherwise the templating of the substrate will breakdown.

In order to determine the right conditions for good templating, Kargupta and

Sharma [53] continued their investigations of dewetting of liquid films for different

types of substrate patterns. Instead of simple stripe pattern they considered periodic

arrays of square and rectangular blocks of wettability different from the rest of the sub-

strate, as well as checkerboard patterns of alternating more and less wettable blocks,

as shown in Figure 1.14. In addition they considered templating of complex patterns,

such as an N-shaped substrate pattern. They found that the best templating occurs

when the following conditions are satisfied: (1) the pattern periodicity in x and y di-

rections is more than a characteristic length scale of instability, (2) the less wettable

area fraction is less than a transition value beyond which the liquid spills over the less



Chapter 1 36

Figure 1.14: Different types of substrate patterns: (a) arrays of more wettable blocks
on a less wettable substrate, (b) arrays of less wettable blocks on a more wettable
substrate and (c) checkerboard pattern of more and less wettable blocks. Reprinted
with permission from Kargupta and Sharma [53]. Copyright 2020 American Chemical
Society.

wettable part, (3) the less wettable block width must be less than a transition width,

and (4) the aspect ratio of the periodicity of the pattern is close to unity.

Sharma et al. [99] investigated the effect of the chemical heterogeneity of the sub-

strate on the dewetting. They considered two different cases, namely a substrate con-

taining a localized single heterogeneous patch and a periodically patterned substrate

consisting of alternating less wettable and more wettable stripes. The main concern of

the paper was to investigate how the substrate patterns are reproduced in the liquid

film, and what are the conditions for the best templating. The results show that an

increase in the width of the patch results in an increase in the rupture time. Further-

more, increasing the patch width further beyond a critical width leads to the formation

of a single drop at the centre of the patch. The conditions for the best templating are

similar to the results obtained in [52], in which the ideal templating is only possible

if the substrate periodicity is larger than characteristic length scale of instability, and

the less wettable stripe width is less than a transition stripe width.

Similarly to the previous studies, Thiele et al. [105] discussed the process of dewet-

ting on a chemically patterned substrate. They studied the influence of the chemically

patterned substrate on the dewetting and the solution structure of a thin liquid film on

a substrate with a sinusoidal wettability pattern. In particular, the influence of varying

the amplitude and periodicity of the chemical heterogeneity of the surface was consid-

ered. Thiele et al. [105] determined the stability of stationary periodic solutions for
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both homogeneous and heterogeneous substrates. They found that if the period of the

heterogeneity is much smaller than a critical wavelength of the corresponding flat film

on the homogeneous substrate, it is not possible to pin patterns to the heterogeneities.

Conversely, a smaller critical wavelength will result in a weaker heterogeneity needed

for the pattern to pin.

1.8 Disjoining Pressure

Studies of dewetting and spreading of a thin liquid film on a substrate are generally

based on models involving an evolution equation of the thickness of the liquid film

with a disjoining pressure term. Disjoining pressure describes the intermolecular forces

arising from the interaction between the solid substrate and the fluid film. Depending

on the particular situation being modelled, there are many forms of disjoining pressure,

which may incorporate several interactions, such as the van der Waals forces and/or

various types of short-range interaction terms.

The concept of a disjoining pressure has been applied in various systems including

suspensions, foams, emulsions, and liquid films on solid surfaces. Various studies have

considered the impact surface forces have on wetting and liquids spreading on solid

substrates. The most common form of disjoining pressure used in these models is:

Π(h) =
B

hn∗

[(
h∗
h

)n
−
(
h∗
h

)m]
, (1.32)

where h is the film thickness, B and the exponents n and m are positive constants

with n > m > 1. This disjoining pressure incorporates a thin wetted layer (i.e. a

thin precursor layer) on the substrate of height h∗. This typically has a thickness of

a few nanometres. Liquid-solid repulsion is represented by the first term and the

corresponding attraction by the second term. Note that, when the disjoining pressure

is only repulsive, it is called by some authors the conjoining pressure.

The interaction between the solid substrate and the fluid film can also be discussed

in terms of the energy potential U(h), where U(h) =
∫

Π(h) dh. Figure 1.15 shows a

plot of the disjoining pressure given by (1.32) and its corresponding potential for B = 1,
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Π(h)

U(h)

Figure 1.15: Plot of the disjoining pressure Π(h) given by (1.32) and its corresponding
energy potential U(h) for B = 1, h∗ = 1/2, n = 4 and m = 3.

h∗ = 1/2, n = 4 and m = 3. In particular, Figure 1.15 illustrates that Π(h∗) = 0 that

Π(h) has a global minimum at h = 4h∗/3 = 2/3, and that the energy potential U(h)

has a global maximum at h = h∗.

The kind of disjoining pressure presented in (1.32), which incorporates both attrac-

tive and repulsive forces has been considered numerous times in thin film problems.

Models with the exponent pair (n,m) = (4, 3) have been considered frequently, while

the 6–12 Lennard-Jones potential, which corresponds to the exponent pair (n,m) =

(9, 3) is also commonly used.

Attractive and repulsive surface forces can be used separately or in combination.

Many studies have used only the attractive term, which, in general, leads to film rupture

(i.e. the film thickness approaches zero in finite time), while the repulsive term tends

to stabilise the film and prevent the fluid from reaching a zero thickness. Analytical

and numerical difficulties due to a film of zero thickness may be prevented by using

only the repulsive term [69].

Schwartz and Eley [96] proposed a numerical method that permits the calculation of
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the unsteady motion of droplets on heterogeneous substrates. In their study Schwartz

and Eley [96] used an evolution equation which includes capillary, viscous, gravitational,

and disjoining pressure forces. In particular, the disjoining pressure used was as in

(1.32). Schwartz and Eley [96] used three different exponent pairs: (3,2), (4,3) and

(9,3) to explore the effect of changing the disjoining exponents on the final droplet

pattern. They found that the major observed difference between the three cases is the

size of the droplet fragments. The authors studied axisymmetric spreading of a drop on

a partially wetting substrate and found that similar to experiments, the contact angle

does not affect the droplet spreading rates until the droplet has nearly stabilized (i.e.

reached its equilibrium height).

Thin liquid films have been shown to rupture and merge into complex dewetting

patterns when influenced by attractive and repulsive forces [12]. In their study Bertozzi

et al. [12] focused on the effect of the disjoining/conjoining intermolecular forces exerted

on a thin film. In their work, the disjoining pressure term had the form given by (1.32),

with B = 1 and h∗ = ε, and represented as:

Π =
1

hn
− εm−n

hm
=

1

hn

(
1−

[ ε
h

]m−n)
, (1.33)

where ε represents a small parameter. The study results show that the model’s solutions

have a similar qualitative structure for large set of (n,m) values.

Liu and Witelski [66] studied thin films on a chemically heterogeneous substrate.

Unlike other studies, which modelled a sinusoidally-varying wettability of the substrate,

they used stepwise wettability patterns modelled by a piecewise constant function. In

their work, they considered the disjoining pressure as given in equation (1.32), with

B = ε2, h∗ = ε, and the exponent pair (n,m) = (4, 3) which has the form

Π(h) =
ε2

h3
− ε3

h4
. (1.34)

Based on the structure of the bifurcation diagram they obtained, their study categorized

the 1-D steady-state solutions into six distinct but connected branches; small-thickness

films, small-width droplets, pinned droplets, large-width droplets, confined droplets,
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and large-thickness films. A linear stability analysis established that confined droplets

are the only unstable branch, while the rest of the branches are stable.

Thiele et al. [105] examined the dewetting of a thin liquid film on a chemically

patterned substrate, using the wettability contrast as a control parameter as discussed

in Section 1.7. They used a thin-film evolution model that included a spatially varying

disjoining pressure given by:

Π(h) =
2κ

a
e−h/l

(
1

a
e−h/l − 1

)
. (1.35)

The term a is a small dimensionless positive parameter that represents the wetting

properties, l is the diffuse interface’s length scale, and κ has the dimension of a spreading

coefficient per length which represented by the heterogeneity

κ = κ0 (1 + εξ(x)) , (1.36)

to make it spatially varying where ξ(x) = cos 2πx/Phet and ε and Phet correspond to

the amplitude (i.e. wettability contrast) and the period of the heterogeneity.

Glasner and Witelski [37] examined two coarsening mechanisms that occur in dewet-

ting films, mass exchange between droplets that influences the breakdown of individual

droplets, and the spatial motion of the droplets that results in droplet collisions and

merging events. They aimed to quantify the coarsening process. Using a disjoining

pressure similar to the one given in equation (1.34), this study combined the effects

of the intermolecular forces. This study suggested that, in certain regimes, isolated

droplets can move substantially, which allows for droplet collisions as the mechanism

responsible for coarsening.

Brasjen et al. [17] used numerical simulations and experiments to examine dewetting

in thin liquid films on chemically heterogeneous substrates. The substrates included

narrow and long hydrophobic stripes, with bigger hydrophilic domains separating them.

They restricted their study to small contact angles θ which permitted the use of the

lubrication approximation to identify the time evolution of the film thickness distribu-

tion. To represent the disjoining pressure, this study used the form given by (1.32),



Chapter 1 41

with

B = hn−1
∗ γ(1− cos θ)

(n− 1)(m− 1)

(n−m)
, (1.37)

so that equation (1.32) becomes

Π = γ(1− cos θ)
(n− 1)(m− 1)

(n−m)h∗

[(
h∗
h

)n
−
(
h∗
h

)m]
, (1.38)

where γ is surface tension. In this study, the authors used the values n = 3, m = 2

and h∗ = 10 nm. The authors demonstrated that there exist critical values of the film

thickness, stripe width and contact angle so that when these critical values are not

reached or are exceeded, dewetting does not occur. The study showed that the speed

of the dewetting contact line on the substrate was strongly dependent on the contact

angle; while being weakly dependent on the film thickness and the stripe width.

In Chapter 4, we revisit the results obtained by Honisch et al. [46] who considered a

disjoining pressure of the form

Π(h) =

(
1

h6
− 1

h3

)
(1 + ρG(x, y)) , (1.39)

where the function G(x, y) models the non-homogeneity of the substrate and the pa-

rameter ρ is the wettability contrast. The disjoining pressure of the form (1.39) incorpo-

rates the wettability of the substrate in both attractive and repulsive forces. However,

in Chapter 4 we incorporate the wettability of the substrate in either the attractive

or the repulsive forces and study the dependence of the steady-state solutions on the

wettability contrast.

1.9 Outline of Thesis

The outline of this thesis is as follows.

In Chapter 2, we analyse the steady flow of a thin and slender (i.e. slowly varying)

rivulet of a Newtonian fluid down a slippery planar substrate. We follow the approaches

of Duffy and Moffatt [31] and Paterson et al. [83], described in Subsections 1.4.1 and

1.4.2, and use the solutions for the unidirectional flow of a thin rivulet with prescribed
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constant volume flux down an inclined slippery planar substrate to describe the effect

of slip on the locally unidirectional flow of a rivulet with constant width (i.e. pinned

contact lines) but slowly varying contact angle as well as a rivulet with constant contact

angle and slowly varying semi-width down a slowly varying substrate.

In Chapter 3, we analyse the steady locally unidirectional flow of a thin and slender

rivulet over and through an inclined planar permeable membrane. We impose both a

condition relating the normal component of the velocity of the fluid to the pressure

drop across the membrane and a no-slip condition on the tangential component of the

velocity of the fluid at the fluid/membrane interface in order to determine both the

flow within and the shape of the rivulet. In particular, we use the solutions obtained to

investigate the effect of the angle of inclination of the substrate and the permeability

of the membrane on the length of the rivulet.

In Chapter 4, we build on the work of Honisch et al. [46] and consider patterns

formed in a two-dimensional thin film on a planar substrate with a Derjaguin disjoin-

ing pressure and periodic wettability stripes. For the case of constant wettability, we

elucidate the change in the global structure of branches of steady-state solutions as

the average film thickness and the surface tension are varied. Using the continuation

software package AUTO, we perform a continuation analysis of these steady-state solu-

tions and establish the existence of both nucleation and metastable regimes, and discuss

admissible forms of spatially non-homogeneous disjoining pressure.
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held in Cambridge in the University of Cambridge from 27th to 29th August 2019,

and at the 13th European Coating Symposium (ECS) held in Heidelberg, Germany

from 8th to 11th September 2019. Aspects of the work described in Chapter 4 were

presented at the British Applied Mathematics Colloquium (BAMC) held in Guilford in

the University of Surrey from 10th to 12th April 2017, and at the 30th Scottish Fluid

Mechanics Meeting held in Glasgow in the University of Strathclyde on 19th May 2017.



Chapter 1 43
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has recently been published in Physical Review Fluids (Alshaikhi et al. [6]), and a full

account of the work in Chapter 4 has recently been published online in the European

Journal of Applied Mathematics (Alshaikhi et al. [4]).



Chapter 2

Rivulet Flow Over a Slippery

Substrate

In this chapter we generalise the analysis of Duffy and Moffatt [31] and Paterson et al.

[83], described in Subsections 1.4.1 and 1.4.2, to analyse rivulet flow over a slippery

substrate, modelled using the Navier slip condition. We use the solutions for the

unidirectional flow we described in Section 1.4 to analyse the effect of slip on the

locally unidirectional flow with prescribed constant flux Q = Q̄ (> 0) down a slowly

varying substrate, for example, the flow in the azimuthal direction from the top (α = 0)

to the bottom (α = π) of a large horizontal cylinder of a rivulet together with either

prescribed constant semi-width a = ā (> 0) (i.e. pinned contact lines) and slowly

varying contact angle β = β(α) or prescribed constant contact angle β = β̄ (≥ 0) and

slowly varying semi-width a = a(α).

2.1 Problem Formulation

Similar to the analysis in Section 1.4, we consider unidirectional steady gravity-driven

flow of a thin symmetric rivulet, i.e. the transverse aspect ratio of the rivulet is small,

of a fluid with prescribed volume flux Q̄ (> 0) down a slippery planar substrate inclined

at an angle α (0 ≤ α ≤ π) to the horizontal, as sketched in Figure 2.1. The fluid is

assumed to have constant density ρ, viscosity µ and surface tension γ. The velocity u′

44
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Figure 2.1: Unidirectional gravity-driven flow of a thin symmetric rivulet with semi-
width a′ (> 0), contact angle β′ (≥ 0) and volume flux Q (> 0) down a slippery planar
substrate inclined at an angle α (0 ≤ α ≤ π) to the horizontal.

and pressure p′ of the fluid are governed by the mass conservation and Navier–Stokes

equations (1.1) and (1.2), respectively. Referred to Cartesian coordinate Ox′y′z′, the

substrate is at z′ = 0, the free surface profile of the rivulet is denoted by z′ = h′(y′), the

semi-width of the rivulet by a′ and the contact angle of the rivulet by β′. In addition,

the maximum thickness of the rivulet, which always occurs at y = 0 since the rivulet is

symmetric about its centreline y = 0, is denoted by hm = h(0). We non-dimensionalise

and scale the variables according to

y′ = `y, a′ = `a, β′ = δβ, z′ = δ`z, h′ = δ`h, h′m = δ`hm

λ′ = δ`λ, u′ = Uu, Q′ = δ`2UQ, p′ = δρg`p,
(2.1)

where g is the magnitude of acceleration due to gravity, U = δ2ρg`2/µ is the appropriate

velocity scale, and δ � 1 is the transverse aspect ratio of the rivulet.

As we described in Section 1.4, for unidirectional flow, the velocity is of the form
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u = u(y, z)i and therefore the Navier–Stokes equation (1.2) reduces to

sinα+ uzz = 0, −py = 0, −pz − cosα = 0, (2.2)

which are to be solved subject to the dimensionless boundary conditions of slip between

the fluid and the substrate z = 0, namely the Navier slip condition (1.25) as discussed

in Section 1.5,

u = λ
∂u

∂z
on z = 0, (2.3)

where λ (≥ 0) is the constant slip length, and the continuity of stress condition as

discussed in Section 1.4,

[σ · n]21 = Kγ n on z = h. (2.4)

At the free surface z = h(y), the unit normal vector, the tangent vector, and the

curvature of the free surface are given by

n =
(−δhy, 1)

(1 + δ2h2
y)

1/2
, (2.5)

t =
(1, δhy)

(1 + δ2h2
y)

1/2
, (2.6)

K = ∇ · n = − (δ/`)hyy

(1 + δ2h2
y)

3/2
, (2.7)

respectively. The normal and tangential components of (2.4) are

n · σ · n = Kγ, (2.8)

t · σ · n = 0. (2.9)

From equations (2.8) and (2.9) we can obtain expressions for the normal and tangential

stress balances, namely
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p+
2

1 + δ2h2
y

[−δ3uyh
2
y + δuzhy] =

−Ca
−1hyy

(1 + δ2h2
y)

3/2
, (2.10)

uz − δ2uzh
2
y − 2δ2uyhy = 0, (2.11)

where Ca = ρg`2/γ is the appropriate capillary number. At leading order in the limit

δ → 0 the normal and tangential stress balances at the free surface z = h(y) given by

(2.10) and (2.11) reduce to

p = −C−1
a hyy, (2.12)

uz = 0. (2.13)

We define the capillary length ` by ` = (γ/ρg)1/2 so that Ca = 1. In addition, h satisfies

both the zero thickness and the contact angle conditions at the contact-lines y = ±a,

namely

h = 0 and hy = ∓β at y = ±a. (2.14)

At leading order in the limit of small transverse aspect ratio δ → 0 (i.e. for a thin

rivulet) the governing equations are readily solved to yield the pressure,

p = cosα(h− z)− hyy, (2.15)

and the velocity of the fluid within the rivulet,

u =
sinα

2

[
2h(z + λ)− z2

]
, (2.16)

so that the local flux is given by

ū =

∫ h

0
u(y, z) dz =

sinα

3
h2(h+ 3λ). (2.17)

Note that setting z = 0 and z = h in (2.16) yields the velocity at the substrate

u(y, 0) = λh sinα and the velocity of the free surface u(y, h) = h(h + 2λ) sinα/2,
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respectively. When λ = 0 the analysis of Paterson et al. [83] discussed in Subsection

1.4.2 is recovered.

The present work draws from the previous studies on longitudinal shear stress stud-

ied by Wilson and Duffy [120], Sullivan et al. [103], Wilson et al. [122], and Paterson

et al. [84] as discussed in Subsection 1.3.1, and especially focusses on the novel features

of the current problem, namely, the rivulet’s dependence on α, λ and Q.

In order to derive the asymptotics of the semi-width a, the contact angle β and the

maximum thickness of rivulet hm in various relevant limits, we use the mathematical

software packages Maple and Mathematica. Note that the superscripts − and + which

appear in some of the asymptotic results that follow indicate that the limit is a left-

handed or right-handed one, respectively.

2.2 Perfectly Wetting Fluid (β = 0)

In the special case of a perfectly wetting fluid, β = 0, solving (2.15) with (2.14) shows

that there is no solution for 0 ≤ α ≤ π/2, but for π/2 < α ≤ π we have

a =
π

m
, h =

hm

2
(1 + cosmy) , Q =

π

24m
(5hm + 18λ)h2

m sinα, (2.18)

where hm denotes the maximum thickness of the rivulet, which occurs at y = 0. Note

that the semi-width a is independent of both λ and Q̄.

Setting Q = Q̄ (where Q is given by (2.18)) yields a cubic equation for hm, namely

h3
m +

18λ

5
h2

m −
24Q̄m

5π sinα
= 0. (2.19)

In the special case of zero slip length, λ = 0, we recover the real solution of (2.19) given

by Wilson and Duffy [120] described in Section 1.4 and given by (1.22), while in the

general case λ > 0, equation (2.19) has three real roots (two of them negative and one

positive) when 0 < 25Q̄m ≤ 36πλ3 sinα, where the real positive solution is given by

hm =
6λ

5

{
2 cos

[
1

3
cos−1

(
25Q̄m

18πλ3 sinα
− 1

)]
− 1

}
, (2.20)
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Figure 2.2: Plots of (a) the semi-width a given by (2.18) and (b) the maximum thickness
hm as functions of the scaled angle α/π given by (1.22) and (2.21) when Q̄ = 1 for
λ = 0, 1, 2, 3, 4, 5, 10, 100, 1000 for a rivulet of a perfectly wetting fluid with β = 0.

and that when 25Q̄m ≥ 36πλ3 sinα the solution is given by

hm =
6λ

5

{
2 cosh

[
1

3
cosh−1

(
25 Q̄m

18πλ3 sinα
− 1

)]
− 1

}
, (2.21)

(see Appendix A for details of the derivation of this solution).

Note that by replacing λ with τ/2 sinα in equations (2.20) and (2.21) we recover

the corresponding solutions obtained by Sullivan et al. [103] (their equations (A.2) and

(A.5) with (A.6) and (A.7)) for their problem.

Figures 2.2 and 2.3 show plots of the semi-width a and the maximum thickness

hm as functions of the scaled angle α/π for various values of λ and Q̄. We can get

further insight into the behaviour of the semi-width a given by (2.18) and the maximum

thickness hm given by (1.22) and (2.21) by looking at the asymptotic behaviour of these

equations. Specifically, Figure 2.2 shows that in the special case of zero slip length,

λ = 0, the rivulet becomes wide and shallow according to

a ∼ π
(
α− π

2

)− 1
2 →∞ and hm ∼

(
24Q̄

5π

) 1
3 (
α− π

2

) 1
6 → 0+ (2.22)
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Figure 2.3: As Figure 2.2, except for Q̄ = 0.1, 1, 10, 100, 1000 when λ = 1.

as α→ π/2+, and deep with finite semi-width π according to

a = π +
π

4
(π − α)2 +O

(
(π − α)4

)
→ π+ and hm ∼

(
24Q̄

5π (π − α)

) 1
3

→∞ (2.23)

as α→ π−.

Note that the thin-film approximation is based on the assumption that the fluid is

sufficiently thin, but since hm →∞ as α→ π− in (2.23), this approximation ultimately

fails and breaks down sufficiently close to α = π.

In the general case, λ > 0, the rivulet becomes wide and shallow according to

a ∼ π
(
α− π

2

)− 1
2 →∞ and hm ∼

(
4Q̄

3πλ

) 1
2 (
α− π

2

) 1
4 → 0+ (2.24)

as α→ π/2+, and deep with finite semi-width π according to

a = π +
π

4
(π − α)2 +O

(
(π − α)4

)
→ π+ (2.25)

and

hm =

(
24Q̄

5π (π − α)

) 1
3

− 6λ

5
+O

(
(π − α)

1
3

)
→∞ (2.26)



Chapter 2 51

as α→ π−.

Figure 2.2 also illustrates that hm is a monotonically decreasing function of λ, and

shows that the rivulet approaches its finite maximum thickness in the case λ = 0 given

by (1.22) according to

hm =

(
24Q̄m

5π sinα

) 1
3

− 6

5
λ+O

(
λ2
)
→
(

24Q̄m

5π sinα

) 1
3
−

(2.27)

as λ→ 0+, and becomes shallow according to

hm =

(
4Q̄m

3πλ sinα

) 1
2

− 5Q̄m

27π sinα

1

λ2
+O

(
1

λ
7
2

)
→ 0+ (2.28)

as λ→∞.

Figure 2.3 also illustrates that hm is a monotonically increasing function of Q̄, and

shows that the rivulet becomes shallow according to

hm =

(
4Q̄m

3πλ sinα

) 1
2

− 5Q̄m

27πλ2 sinα
+O

(
Q̄

3
2

)
→ 0+ (2.29)

as Q̄→ 0+ and deep according to

hm =

(
24Q̄m

5π sinα

) 1
3

− 6λ

5
+O

((
1

Q̄

) 1
3

)
→∞ (2.30)

as Q̄→∞.

2.3 Non-Perfectly Wetting Fluid (β > 0)

As discussed in Section 1.4, in the general case of non-perfectly wetting fluid, β > 0,

Duffy and Moffatt [31] showed that applying (2.2b) to the solution for p given by (2.15)

leads to a third-order ordinary differential equation for the free surface profile, namely

d

dy

(
d2h

dy2
− h cosα

)
= 0, (2.31)
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which when integrated subject to (2.14) yields the free surface shape, h = h(y), given

by (1.17), namely

h = β ×



cosh(ma)− cosh(my)

m sinh(ma)
for 0 ≤ α < π

2
,

a2 − y2

2a
for α =

π

2
,

cos(my)− cos (ma)

m sin(ma)
for

π

2
< α ≤ π,

(2.32)

where we have defined m = | cosα|1/2.

In particular, the maximum thickness of rivulet, hm = h(0), is given by (1.18), namely

hm = β ×



1

m
tanh

(ma
2

)
for 0 ≤ α < π

2
,

a

2
for α =

π

2
,

1

m
tan

(ma
2

)
for

π

2
< α ≤ π.

(2.33)

The volume flux along the rivulet is given by

Q = 2

∫ a

0

∫ h

0
udz dy = 2

∫ a

0
ūdy =

β3 sinα

9m4
f(ma) +

λβ2 sinα

m3
g(ma), (2.34)

where the function f(ma) is given by

f(ma) =


15ma coth3(ma)− 15 coth2(ma)− 9ma coth(ma) + 4 for 0 ≤ α < π

2
,

12

35
(ma)4 for α =

π

2
,

−15ma cot3(ma) + 15 cot2(ma)− 9ma cot(ma) + 4 for
π

2
< α ≤ π,

(2.35)

and the function g(ma) is given by

g(ma) =


3ma coth2(ma)− 3 coth(ma)−ma for 0 ≤ α < π

2
,

4

15
(ma)3 for α =

π

2
,

3ma cot2(ma)− 3 cot(ma) +ma for
π

2
< α ≤ π.

(2.36)

Note, as discussed in Section 1.4, that the function f(ma) was first obtained by Duffy
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Figure 2.4: Plots of f and g (solid lines), defined by (2.35) and (2.36) respectively,
together with their derivatives f ′ and g′ (dashed lines) as (a) functions of ma for
0 ≤ α < π/2 when 0 ≤ ma < ∞, and (b) functions of ma/π for π/2 < α ≤ π when
0 ≤ ma < π. The horizontal dashed lines in (a) show the constant asymptotic values
for f ′ and g′ in the limit ma→∞.

and Moffatt [31] in their work on a rivulet of non-perfectly wetting fluid on a slowly

varying substrate (their equation (14)) and the function g(ma) was previously obtained

by Sullivan et al. [103] in their work on a rivulet of perfectly wetting fluid subject to a

longitudinal surface shear stress τ (their equation (2.16)) and by Paterson et al. [84] in

their work on a rivulet of non-perfectly wetting fluid subject to a longitudinal surface

shear stress τ (their equation (2.9)). For future reference we note that for 0 ≤ α < π/2

both f and g are positive and monotonically increasing functions for ma ≥ 0, while their

derivatives f ′ and g′ are also monotonically increasing functions such that g′(ma) = 2

and f ′(ma) = 6 in the limit ma→∞. Figure 2.4(a) shows plots of f , g, f ′, and g′ as

functions of ma for 0 ≤ α < π/2. For π/2 < α ≤ π both f and g and their derivatives

f ′ and g′ are positive and monotonically increasing functions for 0 ≤ ma < π. Figure

2.4(b) shows plots of f , g, f ′, and g′ as functions of ma/π for π/2 < α ≤ π. For future

reference (especially when calculating asymptotic solutions) it is useful to note that in
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the limit ma→ 0+

f(ma) =


12

35
(ma)4 − 8

105
(ma)6 +O(ma)8 for 0 ≤ α < π

2
12

35
(ma)4 +

8

105
(ma)6 +O(ma)8 for

π

2
< α ≤ π

(2.37)

and

g(ma) =


4

15
(ma)3 − 4

105
(ma)5 +O(ma)7 for 0 ≤ α < π

2
4

15
(ma)3 +

4

105
(ma)5 +O(ma)7 for

π

2
< α ≤ π.

(2.38)

In the limit ma→∞ for 0 ≤ α < π/2

f(ma) = 6ma− 11 +O(ma exp(−2ma)) (2.39)

and

g(ma) = 2ma− 3 +O(ma exp(−2ma)). (2.40)

In the limit ma→ π− for π/2 < α ≤ π

f(ma) =
15π

(π −ma)3
− 6π

(π −ma)
+O(π −ma) (2.41)

and

g(ma) =
3π

(π −ma)2
− π +O

(
(π −ma)2

)
. (2.42)

Note that by replacing λ sinα with τ/2 in equation (2.17) and equation (2.34) we

recover expressions that coincide exactly with the corresponding expressions for ū and

Q obtained by Sullivan et al. [103] (their equations (2.12) and (2.14)) and Paterson et

al. [84] (their equations (2.3) and (2.7)), but with a different velocity given by

u =
sinα

2
(2h− z)z + τz, (2.43)

due to the different boundary conditions of no slip at the substrate, and prescribed

non-zero tangential stress at the free surface (i .e. uz = τ) used in their work.
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Figure 2.5: Contour plots of the velocity u(y, z) given by (a) equation (2.16) for the
present problem with λ = 2 and by (b) equation (2.43) for the corresponding longitudi-
nal shear stress problem with τ = 2λ sinα = 4. In both cases α = π/2, a ' 1.1998, β = 1
and Q = 1. The contour interval is 0.25 in both (a) and (b).

Figure 2.5 shows contour plots of the velocity u in the special case of a vertical substrate

(α = π/2) for the present problem given by (2.16) and for the corresponding shear-

driven problem with τ = 2λ sinα given by (2.43) with the same values of a ' 1.1998,

β = 1 and Q = 1. In particular, Figure 2.5 confirms that despite having the same local

flux ū and flux Q, the velocity profiles u are, as expected, qualitatively different.

Figure 2.6 shows contour plots of the velocity u given by (2.16) in the special case

of a vertical substrate (α = π/2), for a small and a large value of λ with the same

values of β and Q (but different values of a). Specifically, in the limit of weak slip,

λ → 0, (as illustrated in Figure 2.6(a)) the velocity contours depend on both y and

z and approaches the familiar semi-parabolic in z profile in the case λ = 0, namely

u ∼ sinα(2h− z)z/2, while in the limit of strong slip, λ→∞, (as illustrated in Figure

2.6(b)) the velocity profile is independent of z but not y and becomes plug-like in z,

namely u ∼ λh sinα, and so the contours become straight lines perpendicular to the

substrate.
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Figure 2.6: Contour plots of the velocity u(y, z) given by equation (2.16) when (a)
λ = 0.02 and a ' 2.2293 and (b) λ = 20 and a ' 0.5716. In both cases α = π/2, β = 1
and Q = 1. The contour interval is 0.06 in (a) and 1 in (b).

2.4 A Rivulet with Constant Width a = ā (> 0)

In this section we describe the steady, locally unidirectional flow of a slowly varying

rivulet of non-perfectly wetting fluid with constant width a = ā but slowly varying

contact angle β = β(α). In Subsections 2.4.1 and 2.4.2 we follow the analysis of Paterson

et al. [83] and show that, even in the general case λ > 0, we expect the behaviour of

the rivulet to be qualitatively different for a narrow rivulet with a = ā ≤ π and a wide

rivulet with a = ā > π as discussed in Subsection 1.4.2. Therefore, we treat these two

cases separately in what follows. In Subsections 2.4.3–2.4.6 we describe the behaviour

in the limits of weak slip, λ → 0+, strong slip, λ → ∞, small flux, Q̄ → 0+, and large

flux, Q̄→∞, respectively.

If we set Q = Q̄ with Q given by (2.34) and a = ā, then β can be determined

exactly from the cubic equation for β, namely

β3 +
9λmg(mā)

f(mā)
β2 − 9Q̄m4

f(mā) sinα
= 0. (2.44)

Setting λ = 0 in equation (2.44) recovers the solution for β obtained by Paterson et al.
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[83] given by (1.23), namely

β =

(
9Q̄m4

f(mā) sinα

) 1
3

, (2.45)

and the maximum thickness hm is given by (2.33) with β given by (2.45).

In the general case, λ > 0, the real positive solution of (2.44) for the contact angle

β when 0 < Q̄mf(mā)2 ≤ 12λ3g(mā)3 sinα is

β =
3λmg(mā)

f(mā)

{
2 cos

[
1

3
cos−1

(
Q̄mf(mā)2

6λ3g(mā)3 sinα
− 1

)]
− 1

}
, (2.46)

and when Q̄mf(mā)2 ≥ 12λ3g(mā)3 sinα, the solution is given by

β =
3λmg(mā)

f(mā)

{
2 cosh

[
1

3
cosh−1

(
Q̄mf(mā)2

6λ3g(mā)3 sinα
− 1

)]
− 1

}
, (2.47)

with the corresponding solution for hm is given by (2.33) with β given by (2.46) and

(2.47) (see Appendix B for details of the derivation of this solution).

Note that by replacing λ with τ/2 sinα in (2.46) we recover an expression that

coincides exactly with the expression for β obtained by Paterson et al. [84] (their

equations (5.6)) for their problem in the general case of strictly negative shear, τ < 0,

and in the limit λ → 0 equations (2.46) and (2.47) reduce to the solution given by

Paterson et al. [83] in (2.45).

2.4.1 A narrow rivulet with a = ā ≤ π

In this section we will show that for a narrow rivulet with ā ≤ π for all values of Q̄

and λ there is always a rivulet solution given by (2.45)–(2.47) and (2.33) in the interval

0 ≤ α ≤ π, and both its contact angle β and maximum thickness hm have a single

minimum. Figures 2.7 and 2.8 show plots of the contact angle β and the maximum

thickness hm given by (2.45)–(2.47) and (2.33) plotted as functions of the scaled angle

α/π for a narrow rivulet with constant width a = ā = 2 (< π) for a range of values

of λ and Q̄, respectively. In particular, Figures 2.7 and 2.8 illustrate that the rivulet
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Figure 2.7: Plots of (a) the contact angle β given by (2.45)–(2.47) and (b) the maximum
thickness hm given by (2.33) as functions of the scaled angle α/π for a narrow rivulet
with constant width a = ā = 2 (< π) for λ = 0, 1, 2, 3, 4, 5, 10, 100, 1000 when Q̄ = 1.

becomes deep according to

β ∼
(

9Q̄

f(ā)α

) 1
3

→∞ and hm ∼
(

9Q̄

f(ā)α

) 1
3

tanh
( ā

2

)
→∞ (2.48)

as α→ 0+ and deep (except when ā = π in which β → 0+ and hm →∞) according to

β ∼
(

9Q̄

f(ā)(π − α)

) 1
3

→∞ (2.49)

and

hm ∼
(

9Q̄

f(ā)(π − α)

) 1
3

tan
( ā

2

)
→∞ (2.50)

as α→ π−, recovering the corresponding results in the case λ = 0 obtained by Paterson

et al. [83] (their equations (14) and (15)). Figure 2.7 also illustrates that both β and

hm are monotonically decreasing functions of λ, while Figure 2.8 illustrates that both

β and hm are monotonically increasing functions of Q̄.

Figure 2.7(a) shows that the contact angle β has a single minimum, denoted by β = βmin

and occurring at α = αmin. Therefore, in Figure 2.9 we show plots of αmin and βmin
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Figure 2.8: As Figure 2.7, except for Q̄ = 0.1, 1, 10, 100, 1000 when λ = 1.

as functions of the slip length λ for a rivulet with constant semi-width ā = 2 (< π)

when Q̄ = 1. The dots indicate the corresponding values of αmin/π and βmin in the

special case λ = 0, and the dashed line in Figure 2.9(a) shows the corresponding value

of αmin/π in the limit λ→∞. In particular, Figure 2.9 illustrates that, in the limit of

weak slip, λ→ 0+, both αmin/π and βmin are monotonically decreasing functions of λ

satisfying

αmin ∼ α0 −
B′2(α0)

B′′1 (α0)
λ→ α−0 (2.51)

where

B1(α) =

(
9m4Q̄

f(mā) sinα

) 1
3

and B2(α) = −3mg(mā)

f(mā)
, (2.52)

and

βmin ∼
(

9m4
0Q̄

f(m0ā) sinα0

) 1
3

− 3m0g(m0ā)

f(m0ā)
λ→

(
9m4

0Q̄

f(m0ā) sinα0

) 1
3
−

(2.53)

where m0 = m(α0) and α0 is given by

α0 = π − cos−1

([
H−1(ā)

]2
ā2

)
, (2.54)
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Figure 2.9: Plots of (a) αmin/π and (b) βmin as functions of the slip length λ for a
rivulet with constant semi-width ā = 2 (< π) when Q̄ = 1. The dots (•) indicate the
corresponding values of (a) αmin/π ' 0.74265 and (b) βmin ' 1.02486 in the special case
λ = 0, and the dashed line in (a) shows the corresponding value of αmin/π ' 0.6833 in
the limit λ→∞.

where H−1 is the inverse function for H(x) given by

H(x) = x

(
xf ′(x)− 2f(x)

xf ′(x)− 4f(x)

) 1
4

, (2.55)

where x = m0ā.

In the limit of strong slip, λ→∞, we have

αmin ∼ α0 −
B′2(α0)

B′′1 (α0)

(
1

λ

) 3
2

→ α+
0 (2.56)

where

B1(α) =

√
m3Q̄

g(mā) sinα
, B2(α) = − m2Q̄f(mā)

18g2(mā) sinα
, (2.57)

and

βmin ∼
√

m3
0Q̄

g(m0ā) sinα0

(
1

λ

) 1
2

− m2
0Q̄f(m0ā)

18g2(m0ā) sinα0

(
1

λ

) 1
2

→ 0+, (2.58)
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where α0 is given by

α0 = π − cos−1

([
W−1(ā)

]2
ā2

)
, (2.59)

where W−1 is the inverse function for W (x) given by

W (x) = x

(
xg′(x)− g(x)

xg′(x)− 3g(x)

) 1
4

(2.60)

(see Appendix C for details of the derivation of this solution).

2.4.2 A wide rivulet with a = ā > π

For a wide rivulet with a = ā > π for all values of Q̄ and λ there is always a rivulet

solution given by (2.45)–(2.47) and (2.33) only in the interval 0 ≤ α ≤ αc, where the

critical angle α = αc(ā) (π/2 < αc < π) is where the contact angle β reaches its

minimum value of zero (i.e. β = 0 at α = αc). The critical angle α = αc is given by

solving mā = π to obtain

αc = cos−1

(
−π

2

ā2

)
for ā ≥ π. (2.61)

Note that αc is independent of both Q̄ and λ, and coincides exactly with the corre-

sponding critical angle found by Paterson et al. [83] (their equation (19)) in the special

case λ = 0 described in Subsection 1.4.2. From α = αc to α = π we follow the analysis

of Paterson et al. [83] which assumes that the contact lines de-pin at α = αc, i.e. the

contact lines are no longer fixed, and assume that the rivulet runs with monotonically

decreasing semi-width a = π/m and zero contact angle according to the solution in the

case β = 0 given by (2.18).

The behaviour of the contact angle β given by (2.45)–(2.47) for 0 ≤ α ≤ αc and by

β ≡ 0 for αc ≤ α ≤ π and the maximum thickness hm given by (2.33) with β given by

(2.45)–(2.47) for 0 ≤ α ≤ αc and by (1.22) and (2.21) for αc ≤ α ≤ π when a = ā > π

is illustrated in Figures 2.10 and 2.11, which show plots of the contact angle β and the

maximum thickness hm as functions of α/π for various values of λ and Q̄, respectively.

The dots denote the values of β = 0 and hm = hmc at α = αc at which de-pinning
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Figure 2.10: Plots of (a) the contact angle β given by (2.45)–(2.47) for ā = 5, 0 ≤
α/π ≤ αc/π ' 0.6292 and by β ≡ 0 for αc/π ≤ α/π ≤ 1 and (b) the maximum
thickness hm given by (2.33) with β given by (2.45)–(2.47) for 0 ≤ α/π ≤ αc/π and by
(1.22) and (2.21) for αc/π ≤ α/π ≤ 1 as functions of the scaled angle α/π for a wide
rivulet with constant width a = ā = 5 (> π) for λ = 0, 1, 2, 3, 4, 5, 10, 100, 1000 when
Q̄ = 1. The dots (•) denote the values of β = 0 and hm = hmc at α = αc at which
de-pinning occurs.

occurs. In particular, Figures 2.10 and 2.11 illustrate that the rivulet becomes deep

according to

β ∼
(

9Q̄

f(ā)α

) 1
3

→∞ and hm ∼
(

9Q̄

f(ā)α

) 1
3

tanh
( ā

2

)
→∞ (2.62)

as α→ 0+ and deep with finite semi-width π according to

a = π +
π

4
(π − α)2 +O (π − α)4 → π+ (2.63)

and

hm =

(
24Q̄

5π (π − α)

) 1
3

− 6λ

5
+O (π − α)

1
3 →∞ (2.64)

as α→ π−. Figure 2.10 also illustrates that both β and hm are monotonically decreasing

functions of λ, while Figure 2.11 illustrates that both β and hm are monotonically

increasing functions of Q̄.
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Figure 2.11: As Figure 2.10, except for Q̄ = 0.1, 1, 10, 100, 1000 when λ = 1.

2.4.3 The limit of weak slip (λ→ 0+)

In the limit of weak slip, λ→ 0+, β and hm take the forms

β = β0 + λβ1 +O
(
λ2
)

and hm = hm0 + λhm1 +O
(
λ2
)
. (2.65)

For a narrow rivulet, the leading order terms β0 and hm0 are given by

β0 =

(
9Q̄m4

f(mā) sinα

) 1
3

and hm0 =

(
9Q̄m

f(mā) sinα

) 1
3

tanh
(mā

2

)
(2.66)

for 0 ≤ α < π/2,

β0 =

(
105Q̄

4ā4

) 1
3

and hm0 =

(
105Q̄

32ā

) 1
3

(2.67)

for α = π/2,

β0 =

(
9Q̄m4

f(mā) sinα

) 1
3

and hm0 =

(
9Q̄m

f(mā) sinα

) 1
3

tan
(mā

2

)
(2.68)
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for π/2 < α ≤ π, while for a wide rivulet, the leading order terms are the same as for

a narrow rivulet for 0 ≤ α < αc, and the same as for a perfectly wetting rivulet for

αc ≤ α ≤ π (i.e. the solution in the case of no slip λ = 0) in which

β0 = 0 and hm0 =

(
24Q̄m

5π sinα

) 1
3

. (2.69)

For a narrow rivulet, the first order terms β1 and hm1 are given by

β1 = −3mg(mā)

f(mā)
and hm1 = −3g(mā)

f(mā)
tanh

(mā
2

)
(2.70)

for 0 ≤ α < π/2,

β1 = − 7

3ā
and hm1 = −7

6
(2.71)

at α = π/2,

β1 = −3mg(mā)

f(mā)
and hm1 = −3g(mā)

f(mā)
tan

(mā
2

)
(2.72)

for π/2 < α ≤ π, while for a wide rivulet, the first order terms are the same as for

a narrow rivulet for 0 ≤ α < αc, and the same as for a perfectly wetting rivulet for

αc ≤ α ≤ π in which

β1 = 0 and hm1 = −6

5
. (2.73)

2.4.4 The limit of strong slip (λ→∞)

In the limit of strong slip, λ→∞, a narrow rivulet becomes shallow according to

β ∼
(

Q̄m3

λ sinαg(mā)

) 1
2

→ 0+ and hm ∼
(

Q̄m

λ sinαg(mā)

) 1
2

tanh
(mā

2

)
→ 0+ (2.74)

for 0 ≤ α < π/2,

β ∼
(

15Q̄

4λā3

) 1
2

→ 0+ and hm ∼
(

15Q̄

16λā

) 1
2

→ 0+ (2.75)
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at α = π/2, and

β ∼
(

Q̄m3

λ sinαg(mā)

) 1
2

→ 0+ and hm ∼
(

Q̄m

λ sinαg(mā)

) 1
2

tan
(mā

2

)
→ 0+ (2.76)

for π/2 < α ≤ π, while for a wide rivulet, the solutions are the same as for a narrow

rivulet for 0 ≤ α < αc, and the same as for a perfectly wetting rivulet for αc ≤ α ≤ π

in which

hm ∼
(

4Q̄m

3πλ sinα

) 1
2

→ 0+. (2.77)

2.4.5 The limit of small flux (Q̄→ 0+)

In the limit of small flux, Q̄→ 0+, a narrow rivulet becomes shallow according to

β ∼
(

Q̄m3

λ sinαg(mā)

) 1
2

→ 0+ and hm ∼
(

Q̄m

λ sinαg(mā)

) 1
2

tanh
(mā

2

)
→ 0+ (2.78)

for 0 ≤ α < π/2,

β ∼
(

15Q̄

4λā3

) 1
2

→ 0 and hm ∼
(

15Q̄

16λā

) 1
2

→ 0+ (2.79)

at α = π/2, and

β ∼
(

Q̄m3

λ sinαg(mā)

) 1
2

→ 0+ and hm ∼
(

Q̄m

λ sinαg(mā)

) 1
2

tan
(mā

2

)
→ 0+ (2.80)

for π/2 < α ≤ π, while for a wide rivulet, the solutions are the same as for a narrow

rivulet for 0 ≤ α < αc, and the same as for a perfectly wetting rivulet for αc ≤ α ≤ π

in which

hm ∼
(

4Q̄m

3πλ sinα

) 1
2

→ 0+. (2.81)
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2.4.6 The limit of large flux (Q̄→∞)

In the limit of large flux, Q̄→∞, a narrow rivulet becomes deep according to

β ∼
(

9Q̄m4

sinαf(mā)

) 1
3

→∞ and hm ∼
(

9Q̄m

sinαf(mā)

) 1
3

tanh
(mā

2

)
→∞ (2.82)

for 0 ≤ α < π/2,

β ∼
(

105Q̄

4ā4

) 1
3

→∞ and hm ∼
(

105Q̄

32ā

) 1
3

→∞ (2.83)

at α = π/2, and

β ∼
(

9Q̄m4

sinαf(mā)

) 1
3

→∞ and hm ∼
(

9Q̄m

sinαf(mā)

) 1
3

tan
(mā

2

)
→∞ (2.84)

for π/2 < α ≤ π, while for a wide rivulet, the solutions are the same as for a narrow

rivulet for 0 ≤ α < αc, and the same as for a perfectly wetting rivulet for αc ≤ α ≤ π

in which

hm =

(
24Q̄m

5π sinα

) 1
3

− 6λ

5
+O

((
1

Q̄

) 1
3

)
→∞. (2.85)

2.5 A Rivulet with Constant Contact Angle β = β̄ (> 0)

In this section we describe the steady, locally unidirectional flow of a slowly varying

rivulet of non-perfectly wetting fluid with constant contact angle β = β̄ > 0 but slowly

varying semi-width a = a(α). In Subsections 2.5.1–2.5.4 we describe the behaviour in

the limits of weak slip, λ → 0+, strong slip, λ → ∞, small flux, Q̄ → 0+, and large

flux, Q̄→∞, respectively.

If we set Q = Q̄ with Q given by (2.34) and β = β̄ (> 0), we get a transcendental

equation for a, namely

f(ma) +
9λm

β̄
g(ma)− 9Q̄m4

β̄3 sinα
= 0, (2.86)

which, in general, can only be solved numerically.
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Figure 2.12: Plots of (a) the semi-width a obtained by solving (2.86) and (b) the
maximum thickness hm given by (2.33) as functions of the scaled angle α/π for a
rivulet with constant contact angle β = β̄ = 1 for λ = 0, 1, 2, 3, 4, 5, 10, 100, 1000 when
Q̄ = 1.

By setting λ = 0 in (2.86), we recover the solution of Duffy and Moffatt [31] in which

the rivulet becomes infinitely wide at α = 0 (i.e. a→∞ as α→ 0+) and its maximum

thickness approaches the finite value β̄, while the rivulet has a finite semi-width π at

α = π and its maximum thickness becomes infinite (i.e. hm →∞ as α→ π−) according

to

a ∼ 3Q̄

2β̄3α
→∞ and hm = β̄ +

β̄

4
α2 +O(α4)→ β̄+ (2.87)

as α→ 0+ and

a = π −
(

5πβ̄3(π − α)

3Q̄

) 1
3

+O
(
(π − α)2

)
→ π− (2.88)

and

hm =

(
24Q̄

5π(π − α)

) 1
3

+O
(

(π − α)
1
3

)
→∞ (2.89)

as α→ π−.

In the general case λ > 0, Figures 2.12 and 2.13 show plots of the semi-width a and

the maximum thickness hm as functions of the scaled angle α/π when β̄ = 1 for various



Chapter 2 68

α/π

a

(1, π)

Q̄ = 104

Q̄ = 0.01

(a)

PSfrag replacements

1.5 α/π

hm

Q̄ = 0.01

Q̄ = 104

(b)

Figure 2.13: As Figure 2.12, except for Q̄ = 0.01, 0.1, 1, 10, 100, 1000, 10000 when λ = 1.
In (a) the dotted line denote the leading order solution for a = π/m for π/2 < α ≤ π
attained at leading order in the limit Q̄→∞. In (b) the dotted line denotes the leading
order solution for hm for 0 < α < π/2 in the limit Q̄→∞, namely hm = β̄/m.

values of λ (≥ 0) when Q̄ = 1 in Figure 2.12 and for various values of Q̄ when λ = 1

in Figure 2.13. In particular, Figures 2.12 and 2.13 illustrate that the rivulet becomes

infinitely wide at α = 0 (i.e. a→∞ as α→ 0+) and its maximum thickness approaches

the finite value β̄, while it becomes infinitely deep (i.e. hm →∞ as α→ π−) with finite

semi-width π at α = π as shown in Figures 2.12 and 2.13 according to

a ∼ 3Q̄

2β̄2(β̄ + 3λ)α
→∞ and hm = β̄ +

β̄

4
α2 +O

(
α4
)
→ β̄+ (2.90)

as α→ 0+ and

a = π −
(

5πβ̄3(π − α)

3Q̄

) 1
3

−
(

3λ3β̄3π2(π − α)2

5Q̄2

) 1
3

+O (π − α)→ π− (2.91)

and

hm =

(
24Q̄

5π(π − α)

) 1
3

− 6λ

5
+O

(
(π − α)

1
3

)
→∞ as α→ π−. (2.92)

It can be shown numerically from (2.34) that there exists a critical flux Q̄ = Q̄c(λ)
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Figure 2.14: Plots of (a) the maximum thickness hm given by (2.34) as functions of
the scaled angle α/π for a rivulet with constant contact angle β = β̄ = 1 for λ = 0
when Q̄ = 1 > Q̄c ' 0.817, λ = 1 when Q̄ = 3 < Q̄c ' 3.614 and λ = 3 when
Q̄ = 8 < Q̄c ' 9.183 and (b) the critical flux Q̄c as a function of λ. The dot (•) denotes
the minimum value Q̄c ' 0.817 at λ = 0.

such that if Q̄ < Q̄c then hm has two stationary points, and increases from hm = 1 at

α = 0 to a maximum in 0 < α < π/2, decreases to a minimum also in 0 < α < π/2,

and then increases monotonically to ∞ as α→ π−, whereas if Q̄ ≥ Q̄c then hm has no

stationary points, and increases monotonically from hm = 1 at α = 0 to hm → ∞ as

α → π−. Figure 2.14(a) shows plots of the maximum thickness hm given by (2.34) as

a function of the scaled angle α/π for a rivulet with constant contact angle β = β̄ = 1

for two cases with Q̄ = 3 < Q̄c(1) ' 3.614 and Q̄ = 8 < Q̄c(3) ' 9.183, so that hm has

a local maximum and minimum, and for the case Q̄ = 1 > Q̄c(0) ' 0.817 at which hm

has no stationary points. Figure 2.14(b) shows a plot of the critical flux Q̄c as function

of λ and the dot denotes the minimum value Q̄c ' 0.817 at λ = 0. In particular,

Figure 2.14(b) shows that Q̄c is a nearly-linearly increasing function of λ for the range

of values of λ shown.

Figure 2.12(a) shows that the semi-width a has a single minimum, denoted by

a = amin and occurring at α = αmin. Therefore, in Figure 2.15 we show plots of αmin/π

and amin plotted as functions of the slip length λ for a rivulet with constant contact
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Figure 2.15: Plots of (a) αmin/π and (b) amin as functions of the slip length λ for a
rivulet with constant contact angle β = β̄ = 1 when Q̄ = 1. The dots (•) indicate the
corresponding values of (a) αmin/π ' 0.7474 and (b) amin ' 2.0252 in the special case
λ = 0, and the dashed line in (a) shows the corresponding value of αmin/π ' 0.5 in the
limit λ→∞.

angle β = β̄ = 1 when Q̄ = 1. The dots indicate the corresponding values of αmin/π

and amin in the special case λ = 0, and the dashed line in Figure 2.15(a) shows the

corresponding value of αmin/π in the limit λ→∞. In particular, Figure 2.15 illustrates

that both αmin/π and amin are monotonically decreasing functions of λ, satisfying

αmin ∼ α0 +
9λ

2β̄

j(x)x

s(x)

√
2f(x)

f ′(x)x− 4f(x)
→ α0

+ (2.93)

and

amin ∼ a0 −
9

β̄

g(x)

f ′(x)
λ→ a0

+ (2.94)

in the limit of weak slip, λ→ 0+, where x = m(α0)a(α0) and

α0 = π − arcsin

√
2f(x)

f ′(x)x− 2f(x)
, (2.95)
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a0 = x

(
f ′(x)x− 2f(x)

f ′(x)x− 4f(x)

) 1
4

, (2.96)

j(x) =
g′(x)f ′(x)− g(x)f ′′(x)

[f ′(x)]2
, (2.97)

s(x) =
1

2m0

f(x)

f ′(x)

[
3

(f ′(x)x− 2f(x))2

f(x) (f ′(x)x− 4f(x))
− x2 f ′′(x)

f ′(x)x− 4f(x)
− 1

]
, (2.98)

and

αmin ∼
π

2
+

1

7

(
15Q̄

4β̄2

) 2
3
(

1

λ

) 2
3

→ π

2

+
(2.99)

and

amin ∼
(

15Q̄

4β̄2

) 1
3
(

1

λ

) 1
3

− 1

21

(
β̄ +

15Q̄

56β̄2

)(
15Q̄

4β̄2

) 2
3
(

1

λ

) 5
3

→ 0+ (2.100)

in the limit of strong slip, λ→∞.

Figure 2.12(b) shows that the maximum thickness hm has a single minimum, de-

noted by hm = hm(min) and occurring at α = αmin. Therefore, in Figure 2.16 we show

plots αmin and hm(min) plotted as functions of the slip length λ for a rivulet with con-

stant contact angle β = β̄ = 1 when Q̄ = 1. The dot indicates the corresponding value

of hm(min) in the special case λ = 0, and the dashed line in Figure 2.16(a) shows the cor-

responding value of αmin in the limit λ→∞. In particular, Figure 2.16 illustrates that

αmin is an increasing function of λ, while hm(min) is monotonically decreasing function

of λ, satisfying

αmin ∼ α0 −
s2 (α0)

s′1 (α0)
λ→ α0

+ (2.101)

and

hm(min) ∼
β

m0
h(x)− 9

g(x)

f ′(x)
h′(x)λ→ β

m0
h(x)

+

(2.102)

in the limit of weak slip, λ→ 0+, where x = m0a0, h(x) = tanh(x/2) and

αmin ∼
π

2
− 3

112

(
30Q̄

β̄2

) 2
3
(

1

λ

) 2
3

→ π

2

−
(2.103)

and
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Figure 2.16: Plots of (a) αmin/π and (b) hm(min) as functions of the slip length λ for
a rivulet with constant contact angle β = β̄ = 1 when Q̄ = 1. The dashed line in (a)
shows the corresponding value of αmin/π ' 0.5 in the limit λ→∞, and the dot (•) in
(b) indicates the corresponding value of hm(min) = 1 in the special case λ = 0.

hm(min) ∼
1

2

(
15β̄Q̄

4

) 1
3
(

1

λ

) 1
3

→ 0+ (2.104)

in the limit of strong slip, λ→∞, and

α0 = sin−1

√
2h′(x)f(x)

h(x)f ′(x)− 2h′(x)f(x)
, (2.105)

s1 (α0) = βh (x)
tanα0

2m0
− βh′ (x)

f (x)

m0f ′ (x)
[cotα0 + 2 tanα0], (2.106)

and

s2 (α0) = 9

[
g′(x)

f ′(x)
h′(x)− g(x)

[f ′(x)]2
f ′′(x)h′(x) +

g(x)

f ′(x)
h′′(x)

]
tanα0

2

h(x)

h′(x)
(2.107)

(see Appendix D for details of the derivation of this solution).
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2.5.1 The limit of weak slip (λ→ 0+)

In the limit of weak slip, λ→ 0+, the rivulet approaches its finite semi-width and finite

maximum thickness according to

a = a0 −
9g(ma0)

β̄f ′(ma0)
λ+O

(
λ2
)
→ a−0 and hm ∼

β̄

m
tanh

(ma0

2

)
= O(1) (2.108)

for 0 ≤ α < π/2,

a =

(
105Q̄

4β̄3

) 1
4

− 7λ

4β̄
+O

(
λ2
)
→
(

105Q̄

4β̄3

) 1
4

−

(2.109)

and

hm =

(
105Q̄β̄

64

) 1
4

− 7λ

8
+O

(
λ2
)
→
(

105Q̄β̄

64

) 1
4

−

(2.110)

for α = π/2, and

a = a0 −
9g(ma0)

β̄f ′(ma0)
λ+O

(
λ2
)
→ a−0 and hm ∼

β̄

m
tan

(ma0

2

)
= O(1) (2.111)

for π/2 < α ≤ π, where a0 is given by

a0 =
1

m
f−1

(
9Qm4

β3 sinα

)
(2.112)

where f−1 is the inverse function for the function f .

2.5.2 The limit of strong slip (λ→∞)

In the limit of strong slip, λ → ∞, the rivulet becomes narrow and shallow according

to

a ∼
(

15Q̄

4β̄2λ sinα

) 1
3

→ 0+ and hm ∼
(

15β̄Q̄

32λ sinα

) 1
3

→ 0+ (2.113)

for all 0 ≤ α ≤ π.
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2.5.3 The limit of small flux (Q̄→ 0+)

In the limit of small flux, Q̄ → 0+, the rivulet becomes narrow and shallow according

to

a =

(
15Q̄

4λβ̄2 sinα

) 1
3

− β̄

21λ

(
15Q̄

4λβ̄2 sinα

) 2
3

+O
(
Q̄
)
→ 0+ (2.114)

and

hm ∼
(

15Q̄β̄

32λ sinα

) 1
3

→ 0+ (2.115)

for all 0 ≤ α ≤ π.

2.5.4 The limit of large flux (Q̄→∞)

In the limit of large flux, Q̄ → ∞, the rivulet becomes wide with finite thickness

according to

a ∼ 3Q̄m3

2β̄2 sinα
(
β̄ + 3λm

) →∞ and hm ∼
β̄

m
tanh

(
3Q̄m4

4β̄
2

sinα
(
β̄ + 3λm

))→ β̄

m

−
= O(1)

(2.116)

for 0 ≤ α < π/2, wide and deep according to

a =

(
105Q̄

4β̄3

) 1
4

− 7λ

4β̄
+O

((
1

Q̄

) 1
4

)
→∞ (2.117)

and

hm =

(
105Q̄β̄

64

) 1
4

− 7λ

8
+O

((
1

Q̄

) 1
4

)
→∞ (2.118)

at α = π/2, and deep with finite width according to

a =
π

m
−
(

5πβ̄3 sinα

3m7Q̄

) 1
3

+O

((
1

Q̄

) 2
3

)
→ π

m

−
= O(1) and (2.119)

and

hm ∼
(

24Q̄m

5π sinα

) 1
3

→∞ (2.120)

for π/2 < α ≤ π.
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2.6 Behaviour of a Rivulet with Greenspan Slip

In this section we consider the possibility of there being qualitative changes in the

rivulet’s behavior when using a slip condition different to that used in this chapter

(i.e. the Navier slip condition). In particular, we use the Greenspan slip condition

introduced by Greenspan [39] in which the constant Navier slip length λ is replaced

with the non-constant Greenspan slip length, λ = λG/h, where λG > 0.

By analysing this problem with Greenspan slip in the same way as we did for Navier

slip, we obtain the corresponding expressions for the velocity in (2.16) and the local

flux in (2.17), namely

u =
sinα

2

[
2 (hz + λG)− z2

]
(2.121)

and

ū =
sinα

3
h
(
h2 + 3λG

)
, (2.122)

respectively, and hence the volume fluxes in (2.34) and (2.18) become

Q =
β3 sinα

9m4
f(ma) +

λGβ sinα

m2
gG(ma) (2.123)

and

Q =
π sinα

24m
hm

(
5h2

m + 24λG

)
, (2.124)

respectively, where the function gG(ma) is given by

gG(ma) =


2(ma cothma− 1) for 0 ≤ α < π

2
,

2

3
(ma)2 for α =

π

2
,

2(1−ma cotma) for
π

2
< α ≤ π.

(2.125)

Similar to the analysis we presented in Section 2.2, we show that for 0 ≤ α < π/2

both g and gG behave qualitatively similarly as both are positive and monotonically

increasing functions from zero at ma = 0 to infinity as ma→∞, while their derivatives

g′ and g′G are also positive and monotonically increasing functions from zero at ma = 0
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ma

g(ma)

g′(ma)

gG(ma)

g′G(ma)

(a)

ma/π

g(ma)

g′(ma)
gG(ma)

g′G(ma)

(b)

Figure 2.17: Plots of g and gG (solid lines), defined by (2.36) and (2.125) respectively,
together with their derivatives g′ and g′G (dashed lines) as (a) functions of ma for
0 ≤ α < π/2 when 0 ≤ ma < ∞, and (b) functions of ma/π for π/2 < α ≤ π when
0 ≤ ma < π. The horizontal dashed lines in (a) show the constant asymptotic values
for g′ and g′G in the limit ma→∞.

to 2 as ma → ∞. Figure 2.17(a) shows plots of g, gG, g′, and g′G as functions of ma

for 0 ≤ α < π/2. For π/2 < α ≤ π both g and gG and their derivatives g′ and g′G

are positive and monotonically increasing functions from zero at ma = 0 to infinity as

ma → π−. Figure 2.4(b) shows plots of g, gG, g′, and g′G as functions of ma/π for

π/2 < α ≤ π.

In the special case of a perfectly wetting fluid, β = 0, Setting Q = Q̄ (where Q is

given by (2.124)) yields a cubic equation for hm, namely

h3
m +

24λG

5
hm −

24Q̄m

5π sinα
= 0. (2.126)

In the special case of zero Greenspan slip length, λG = 0, we recover the solution for a

rivulet of perfectly wetting fluid given in (1.22), while in the general case, λG > 0, the
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real solution of (2.126) is given by

hm =
π sinα

A
1
3
1

 A
2
3
1

5π2 sin2 α
− 8λG

 , (2.127)

where

A1 =

(
20
√

5

√
32λG

3π2 sin2 α+ 45Q̄2m2 + 300Q̄m

)
π2 sin2 α. (2.128)

2.6.1 The case of a rivulet with constant width a = ā (> 0)

Similar to the analysis we performed in Section 2.4, we set Q = Q̄ with Q given by

(2.123) and a = ā, then β can be determined from the cubic equation for β, namely

β3 +
9λGm

2gG(mā)

f(mā)
β − 9Q̄m4

f(mā) sinα
= 0. (2.129)

Setting λG = 0 in equation (2.129) recovers the solution for β given in (2.45) and the

maximum thickness hm is given by (2.33) with β given by (2.45).

In the general case, λG > 0, the real solution of (2.129) for the contact angle β is

β =
2 sinα

A
1
3
2

 A
2
3
2

4f(mā) sin2 α
− 3λGgG(mā)

 , (2.130)

where

A2 =

12
√

3

√
4gG(mā)3λG

3 sin2 α+ 3Q̄2m2f(mā)

f(mā)
+ 36Q̄m

 f(mā)2 sin2 α, (2.131)

where the corresponding solution for hm is given by (2.33) with β given by (2.130).

2.6.2 The limit of strong Greenspan slip (λG →∞)

In the limit of strong Greenspan slip length, λG →∞, a narrow rivulet becomes shallow

according to
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β ∼ Q̄m2

λGgG(mā) sinα
→ 0+ and hm ∼

Q̄m

λGgG(mā) sinα
tanh

(mā
2

)
→ 0+ (2.132)

while for a wide rivulet, the rivulet becomes shallow according to

β = 0 and hm ∼
Q̄m

πλG sinα
→ 0+. (2.133)

2.6.3 The case of a rivulet with constant contact angle β = β̄ (> 0)

If we set Q = Q̄ with Q given by (2.123) and β = β̄ (> 0), we get a transcendental

equation for a, namely

f(ma) +
9λGm

2

β̄2
gG(ma)− 9Q̄m4

β̄3 sinα
= 0, (2.134)

which, in general, can only be solved numerically.

2.6.4 The limit of strong Greenspan slip (λG →∞)

In the limit of strong Greenspan slip length, λG →∞, the rivulet becomes narrow and

shallow according to

a ∼
(

3Q̄

2β̄λG sinα

) 1
2

→ 0+ and hm ∼
(

3β̄Q̄

8λG sinα

) 1
2

→ 0+ (2.135)

for all 0 ≤ α ≤ π.

2.7 Conclusions

In this chapter we investigated the locally unidirectional flow of a rivulet with positive

prescribed flux Q = Q̄ > 0 on an inclined slippery locally planar substrate, subject to

a Navier slip boundary condition. We considered both a rivulet with constant contact

angle β = β̄ > 0 but slowly varying semi-width a = a(α) and a rivulet with constant

semi-width a = ā but slowly varying contact angle β = β(α), and showed that they

have qualitatively different behaviour. In particular, we determined the effect that
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varying the slip length λ has on the rivulet and showed that features of the rivulet such

as the shape and size of the rivulet depend strongly on the value of λ.

In Section 2.4 we showed that, while a narrow rivulet with constant semi-width

a = ā ≤ π can run from α = 0 to α = π, a wide rivulet with constant semi-width

a = ā > π can run from α = 0 only to a critical angle α = αc, where its contact

angle becomes zero. In particular, we showed that αc is independent of λ. More

fundamentally, Figure 2.7 shows that for any given value of α there can be a rivulet

solutions for all values of λ ≥ 0, while Figure 2.10 shows that there are no physically

realisable rivulet solutions with a = ā = 5 (> π) for all values of λ ≥ 0 in the interval

αc < α ≤ π. In this section the behaviour of a rivulet with a constant semi-width in

the case of zero slip length is qualitatively different to those in the case of positive slip

length. In particular, in the limit of strong slip, λ → ∞, the rivulet becomes shallow

like O
(
λ−1/2

)
, while in the limit of large flux, Q̄ → ∞, the rivulet becomes deep like

O
(
Q̄1/3

)
.

In Section 2.5 we showed that a rivulet with constant contact angle β = β̄ > 0 can

run from α = 0 to α = π. In addition, we showed that in the limit of weak slip, λ→ 0+,

the rivulet approaches its finite semi-width and maximum thickness in the case λ = 0,

while in the limit of strong slip, λ→∞, the rivulet becomes narrow like O
(
λ−1/3

)
and

shallow like O
(
λ−1/3

)
. Moreover, the maximum thickness hm of the rivulet with λ > 0

is qualitatively different for a rivulet with zero slip length. In particular, as Figures

2.12(b) and 2.16 illustrate, for λ > 0 the rivulet maximum thickness hm has a single

minimum value which does not exist for the case of λ = 0.

In Section 2.6 we anticipated that using other slip conditions would not lead to

significant qualitative changes in the behavior of the rivulet. In particular, we used

the Greenspan slip condition instead of the Navier slip condition and showed that in

the limit of strong Greenspan slip, λG →∞, the rivulet behave qualitatively similarly

to that in the limit of strong Navier slip, λ → ∞, described in Subsections 2.4.4 and

2.5.2 with O
(
λ−1/2) replaced by O(λG

−1) for a rivulet with constant width, and with

O(λ−1/3) replaced by O(λG
−1/2), for a rivulet with positive constant contact angle.
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Rivulet Flow Over and Through

a Permeable Membrane

In this chapter we formulate and analyse a mathematical model for the steady gravity-

driven flow of a rivulet of fluid over and through a permeable membrane. In particular,

we show how the length of the rivulet on the permeable part of the membrane de-

pends on the physical properties of the system, such as the angle of inclination of the

membrane and the rivulet’s semi-width and contact angle.

3.1 Problem Formulation

3.1.1 Problem description

Consider the steady three-dimensional gravity-driven flow of a symmetric rivulet of an

incompressible Newtonian fluid (similar to that analysed in Sections 1.4 and 2.1) over

and through a permeable membrane of uniform thickness H ′, inclined at an angle α

(0 ≤ α ≤ π) to the horizontal. Referred to Cartesian coordinates Ox′y′z′ with the

x′ axis down the line of greatest slope, the y′ axis horizontal, and the z′ axis normal

to the substrate z′ = 0, the membrane at z′ = 0 is impermeable for x′ ≤ 0 and is

permeable with uniform permeability k′ for x′ > 0, as sketched in Figure 3.1. In

x′ ≤ 0, the rivulet is uniform with constant volume flux Q̄′ > 0, constant contact angle

80
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Figure 3.1: Geometry of the steady gravity-driven flow of a rivulet over and through
a planar membrane of constant thickness H ′ which is impermeable for x′ ≤ 0, but
permeable with permeability k′ for x′ > 0, inclined at an angle α (0 ≤ α ≤ π) to the
horizontal.

β̄′ > 0, and constant semi-width ā′ > 0. The fluid is assumed to have constant density

ρ, viscosity µ, and coefficient of surface tension γ. The velocity u′ = (u′, v′, w′) and

pressure p′(x′, y′, z′) of the fluid are governed by the mass conservation and Navier–

Stokes equations (1.1) and (1.2), respectively. The Darcy velocity (i.e. the volume

flux of fluid per unit area) U′ = (U ′, V ′,W ′) and the pressure P ′ (x′, y′, z′) within the

permeable part of the membrane both satisfy the mass conservation equation

∇′ ·U′ = 0, (3.1)

and Darcy’s law

U′ = −k
′

µ

(
∇′P ′ − ρg

)
, (3.2)
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where g = (g sinα, 0,−g cosα) denotes acceleration due to gravity. Combining (3.1)

and (3.2) shows that P ′ satisfies Laplace’s equation, i.e.

∇′2P ′ = 0. (3.3)

The free surface profile is denoted by z′ = h′(x′, y′), so that h′(x′, y′) is the thickness of

the rivulet which satisfies h′ = 0 when x′ = L′, where L′ is the length of the rivulet on

the permeable membrane over which the fluid is completely absorbed. For 0 ≤ x′ ≤ L′,
the contact angle of the rivulet is denoted by β′(x′) and the semi-width by a′(x′). The

rivulet is continuous as it passes from the impermeable to the permeable part of the

membrane, and so, in particular, Q′, a′ and β′ take the initial values Q̄′, ā′ and β̄′,

respectively, at x′ = 0. We assume that once the fluid from the rivulet has passed

through the membrane it plays no further role in the problem. Another assumption

would be necessary to describe the situation in which some or all of the fluid adheres

to the bottom surface of the membrane in the form of droplets and/or a new rivulet.

However, in the present work we restrict our attention to the simplest case in which

there is no fluid on the bottom surface of the membrane.

We consider the flow of a thin rivulet, for which the length scale in the z′-direction

(denoted by δR`) is much smaller than the length scale in the y′-direction (denoted by

`), which in turn is much smaller than the length scale in the x′-direction (denoted by

`/ε) i.e. δR` � ` � `/ε, where δR (� 1) is the transverse aspect ratio of the rivulet

and ε (� 1) is the longitudinal aspect ratio of the rivulet, and satisfy ε � δR. We

also assume that H ′ � h′, so that δM � δR, i.e. that the membrane is much thinner

than the rivulet, where δM (� 1) is the transverse aspect ratio of the membrane, and

hence we can neglect the effect of gravity within the membrane. Note that the closely

related situation in which the rivulet and the membrane are thin but the thickness of

the membrane is comparable to that of the rivulet, i.e. when δM ∼ δR � 1, in which

gravitational effects will play a more significant role within the membrane, could be

analysed using the same approach as that described in the present work. However, in

the present work we restrict our attention to the simplest case in which the thickness
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of the membrane is much thinner than the rivulet.

3.1.2 Lubrication approximation

We non-dimensionalise and scale the variables describing the flow of the rivulet by

writing:

x′ =
`

ε
x, L′ =

`

ε
L, y′ = `y, z′ = δR`z, h′ = δR`h, a′ = `a, β′ = δRβ,

u′ =
δ2
Rρg`

2

µ
u, v′ =

εδ2
Rρg`

2

µ
v, w′ =

εδ3
Rρg`

2

µ
w, Q′ =

δ3
Rρg`

4

µ′
Q,

p′ = pa + δRρg`p,

(3.4)

and the variables describing the flow in the membrane by writing:

z′ = δM`Z, H ′ = δM`H, k′ = εδ2
RδM`

2k,

U ′ =
εδ2
RδMρg`

2

µ
U, V ′ =

εδ3
RδMρg`

2

µ
V, W ′ =

εδ3
Rρg`

2

µ
W,

P ′ = pa + δRρg`P,

(3.5)

where pa denotes the constant atmospheric pressure and g denotes the magnitude of

acceleration due to gravity. Note that while the assumption that the rivulet is thin

requires that the unscaled contact angle β′ � 1 must be small, the scaled contact angle

β(> 0) can take any positive value.

Furthermore, we may choose

δR = β̄′, δM =
H ′

`
and ε =

k′

δ2
RδM`

2
=

k′

β̄′2`H ′
, (3.6)

so that β̄ = 1, H = 1 and k = 1 without loss of generality. However, to keep the

presentation as general as possible, we leave δR, δM and ε unspecified and retain β̄, H

and k in all of the analytical expressions for clarity.

With these scalings, the mass conservation and Navier–Stokes equations (1.1) and

(1.2) become
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ux + vy + wz = 0, (3.7)

Re∗(uux + vuy + wuz) = −εδRpx + ε2δ2
Ruxx + δ2

Ruyy + uzz + sinα, (3.8)

εRe∗(uvx + vvy + wvz) = −δRpy + ε(ε2δ2
Rvxx + δ2

Rvyy + vzz), (3.9)

εδRRe
∗(uwx + vwy + wwz) = −pz + εδR(ε2δ2

Rwxx + δ2
Rwyy + wzz)− cosα, (3.10)

where Re∗ = εδ4
Rρ

2g`3/µ2 is a reduced Reynolds number.

To obtain the lubrication equations for the rivulet, we assume that Re∗ � 1, so

that at leading order in δR and ε, equations (3.7)−(3.10) reduce to the well-known

lubrication equations,

ux + vy + wz = 0, (3.11)

uzz + sinα = 0, (3.12)

−δRpy + εvzz = 0, (3.13)

−pz − cosα = 0. (3.14)

Next we will discuss the boundary conditions satisfied by these variables.

3.1.3 Boundary conditions

Depending on the nature of the membrane, a variety of boundary conditions, such as

the slip condition discussed in Section 1.5 and used in Chapter 2 or the Beavers-Joseph

condition described in Section 1.6, may be appropriate. However, for simplicity we

restrict our attention to the simplest case of no flow in the x- and y-directions on the

top surface of both the permeable and the impermeable parts of the membrane. In

particular, the no-slip condition, relative to the fluid at the interface between the fluid

layer and both the permeable and impermeable parts of the membrane, z = 0, is

u = 0 and v = 0 on z = 0. (3.15)

The no-penetration condition at the impermeable part of the substrate is
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w = 0 on z = 0 for x ≤ 0. (3.16)

On the permeable part of the membrane, we impose continuity of both pressure and

normal velocity on Z = 0 and we impose continuity of pressure on the bottom surface

of the membrane, Z = −H, i.e.

P = p and W = w on Z = 0, (3.17)

P = 0 on Z = −H. (3.18)

Note that in dimensionless variables, and by neglecting the effect of gravity since δM �
δR as previously mentioned, Darcy’s law (3.2) and Laplace’s equation (3.3) become

U = (U, V,W ) = −k
(
εδR

∂P

∂X
,
∂P

∂Y
,
∂P

∂Z

)
, (3.19)

∂2P

∂Z2
= 0. (3.20)

Solving equation (3.20) subject to the boundary conditions (3.17) and (3.18) shows

that

P = p(x, y, 0)

(
1 +

Z

H

)
. (3.21)

Thus the Darcy velocity is given by U = (0, 0,W ), where

W = −k∂P
∂Z

= −ζp(x, y, 0), (3.22)

where ζ = k/H is a non-dimensional membrane permeability. Therefore, the appropri-

ate penetration condition on the permeable part of the substrate is

W = w = −ζp on z = 0. (3.23)

There are two boundary conditions at the free surface z = h(x, y). The first bound-

ary condition is the kinematic condition
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D

Dt
(z − h(x, y)) = 0 on z = h, (3.24)

where D/Dt = ∂/∂t+u · ∇ denotes the material time derivative. Hence for steady flow

the kinematic boundary condition becomes

w = u
∂h

∂x
+ v

∂h

∂y
on z = h, (3.25)

The second boundary condition is the continuity of stress condition

[σ · n]21 = Kγ n on z = h, (3.26)

where, as described previously in Section 1.4, σ = −pI + µ[∇u + (∇u)T] is the stress

tensor, I is the unit tensor, K is the mean curvature of the free surface, n is the unit

vector normal to the free surface, and [φ]21 denotes the jump in the quantity φ going

from region 1 just below the free surface to region 2 just above the free surface. At the

free surface z = h(x, y) the unit normal vector, the tangent vector in the x-direction,

the tangent vector in the y-direction, and the curvature of the free surface are given by

n =
(−εδRhx,−δRhy, 1)

(1 + ε2δ2
Rh

2
x + δ2

Rh
2
y)

1/2
, (3.27)

tx =
(1, 0, εδRhx)

(1 + ε2δ2
Rh

2
x)1/2

, (3.28)

ty =
(0, 1, δRhy)

(1 + δ2
Rh

2
y)

1/2
, (3.29)

K =
−(ε2δR/`)hxx(1 + δ2

Rh
2
y)− (δR/`)hyy(1 + ε2δ2

Rh
2
x) + 2(ε2δ3

R/`)hxhyhxy

(1 + ε2δ2
Rh

2
x + δ2

Rh
2
y)

3/2
, (3.30)

respectively. The normal and tangential components of (3.26) are

n · σ · n = Kγ, (3.31)

tx · σ · n = 0, (3.32)

ty · σ · n = 0. (3.33)



Chapter 3 87

From equations (3.31), (3.32) and (3.33) we can obtain three scalar expressions for the

normal and tangential stress balances, namely

− p+
2

1 + ε2δ2
Rh

2
x + δ2

Rh
2
y

[ε3δ3
Ruxh

2
x + εδ3

Rvyh
2
y + εδ3

Rhxhy(uy + ε2vx)

− εδRhx(uz + ε2δ2
Rwx)− δRhy(εvz + εδ2

Rwy) + εδRwz]

=
C−1

a [−(ε2hxx + hyy)− ε2δ2
R(hxxh

2
y + hyyh

2
x) + 2ε2δ2

Rhxhyhxy]

(1 + ε2δ2
Rh

2
x + δ2

Rh
2
y)

3/2
, (3.34)

2ε2δ2
Rhx(wz − ux)− δ2

Rhy(uy + ε2vx) + (uz + ε2δ2
Rwx)− ε2δ2

Rh
2
x(uz + ε2δ2

Rwx)

− ε2δ2
Rhyhx(vz + δ2

Rwy) = 0, (3.35)

− δ2
Rhx(uy + ε2vx)− 2δ2

Rhy(vy − wz) + (vz + δ2
Rwy) + δ2

Rhyhx(uz + ε2δ2
Rwx)

− δ2
Rh

2
y(vz + δ2

Rwy) = 0, (3.36)

where Ca = ρg`2/γ is the appropriate capillary number. At leading order in δR and

ε the normal and tangential stress-balances at the free surface z = h(x, y) given by

(3.34), (3.35) and (3.36) reduce to

p = −C−1
a hyy, (3.37)

uz = vz = 0. (3.38)

The condition of zero thickness at the contact-lines y = ±a is

h = 0, (3.39)

and the contact angle condition at the contact-lines y = ±a is

hy = ∓β. (3.40)
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We define ` to be the capillary length (γ/ρg)1/2 so that Ca = 1.

Solving equations (3.11)−(3.14) subject to the boundary conditions (3.15), (3.22),

(3.37) and (3.38) gives

u =
sinα

2
(2hz − z2), (3.41)

v =
δRpy

2ε
(z2 − 2hz), (3.42)

p = (h− z) cosα− hyy, (3.43)

w = −sinα

2
hxz

2 +
δRz

2

2ε

(
pyyh+ pyhy −

z

3
pyy
)
− ζ(h cosα− hyy). (3.44)

An expression for w(x, y, h) can be obtained by integrating the continuity equation

(3.11), from z = 0 to z = h subject to the boundary condition (3.23),

w(x, y, h) = −ζ(h cosα−hyy)−
∂

∂x

∫ h

0
u dz+u(x, y, h)

∂h

∂x
− ∂

∂y

∫ h

0
v dz+v(x, y, h)

∂h

∂y
.

(3.45)

Substituting the expression for w(x, y, h) given in (3.45) into the kinematic condition

(3.25) yields
∂

∂x

∫ h

0
udz +

∂

∂y

∫ h

0
v dz = −ζ(h cosα− hyy). (3.46)

Substituting the solutions for u and v given by (3.41) and (3.42) into (3.46) gives

the governing equation for h, namely

sinα

3
h3
x−

δRh
3

3ε
(h cosα−hyy)yy−

δR
3ε

(h3)y(h cosα−hyy)y = −ζ(h cosα−hyy). (3.47)

Note that, like Paterson et al. [83], we are considering the case ε � δR, so that

(3.13) becomes py = 0, and hence from (3.47) h satisfies

[
h3 (h cosα− hyy)y

]
y

= 0, (3.48)

so that

h3(h cosα− hyy)y = C, (3.49)

and because of the boundary conditions the constant is zero and then we can divide by
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h3 to obtain

(h cosα− hyy)y = 0. (3.50)

We solve (3.50) subject to (3.39) and (3.40) to recover the free surface shape obtained

by Duffy and Moffatt [31], as discussed in Section 1.4, namely

h = β ×



coshma− coshmy

m sinhma
for 0 ≤ α < π

2
,

a2 − y2

2a
for α =

π

2
,

cosmy − cosma

m sinma
for

π

2
< α ≤ π,

(3.51)

and so, in particular, the maximum thickness of rivulet, hm(x) = h(x, 0), is given by

hm = β ×



1

m
tanh

(ma
2

)
for 0 ≤ α < π

2
,

a

2
for α =

π

2
,

1

m
tan

(ma
2

)
for

π

2
< α ≤ π,

(3.52)

where we have defined m = | cosα|1/2.

3.1.4 Solution on the impermeable part of the membrane

On the impermeable part of the membrane, i.e. in x ≤ 0, the volume flux along the

rivulet is given by

Q = 2

∫ a

0

∫ h

0
udz dy =

β3 sinα

9m4
f(ma), (3.53)

where the function f(ma), as described in Section 1.4 and Chapter 2, is given by

f(ma) =


15ma coth3ma− 15 coth2ma− 9ma cothma+ 4 for 0 ≤ α < π

2
,

12

35
(ma)4 for α =

π

2
,

−15ma cot3ma+ 15 cot2ma− 9ma cotma+ 4 for
π

2
< α ≤ π.

(3.54)

As described in Section 1.4, in the special case of zero contact angle β = 0, Wilson

and Duffy [120] showed that there is no rivulet solution for 0 ≤ α ≤ π/2 but for
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π/2 < α ≤ π there are infinitely many solutions given by

a =
nπ

m
, h =

hm
2

(1− (−1)n cosmy), (3.55)

for n = 1, 2, 3, ..., and the maximum thickness of the rivulet hm is given by

hm =

(
24mQ̄

5nπ sinα

) 1
3

. (3.56)

3.1.5 Solution on the permeable part of the membrane

On the permeable part of the membrane, by the global conservation of mass, the volume

flux along the rivulet is equal to the sum of the volume flux along the rivulet at x = 0,

namely Q̄, and the (negative) volume flux lost through the membrane between x = 0

and the location x, namely

Q = Q̄+

∫ x

0

∫ a(x̃)

−a(x̃)
w(x̃, y, 0) dy dx̃. (3.57)

Substituting the solution for p given in (3.43) into the condition of continuity of flux

through the base of the rivulet (3.23) yields

w(x, y, 0) = −ζp(x, y, 0) = −ζ (h cosα− hyy) for x > 0, (3.58)

hence, substituting (3.53) and (3.58) into (3.57) yields

2

3

∫ a(x)

0
h3 sinα dy = Q̄− 2ζ

∫ x

0

∫ a(x̃)

0
(h cosα− hyy) dy dx̃. (3.59)

Substituting the solutions for h given in equation (3.51) into (3.59) leads to a key

equation describing the behaviour of the rivulet on which all of the subsequent analysis

is based, namely
β3 sinα

9m4
f(ma) = Q̄− 2ζ

∫ x

0
βg(ma) dx̃, (3.60)
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where the function g(ma) is given by

g(ma) =


ma cothma for 0 ≤ α < π

2
,

1 for α =
π

2
,

ma cotma for
π

2
< α ≤ π.

(3.61)

Note that for sessile and vertical rivulets (i.e. for 0 ≤ α ≤ π/2) the pressure at the

base of the rivulet, βg(ma)/a, is always positive, which always drives fluid out of the

base of the rivulet and through the membrane. However, for a pendant rivulet (i.e.

for π/2 < α ≤ π), there are three cases for the pressure at the base of the rivulet, i.e.

positive, zero and negative. First case is when a < acrit , where acrit = π/(2m), and

in this case the pressure is positive which drives fluid out of the base of the rivulet

and through the membrane. Second case is when a = acrit , and in this case the

pressure at the base of the rivulet is precisely zero, and hence no fluid flows either out

of or into the rivulet, and so the rivulet is infinitely long and remains uniform with

constant semi-width a = ā and constant contact angle β = β̄ at all stations x > 0. The

third case is when a > acrit , and in this case the pressure at the base of the rivulet

is negative, which would draw fluid through the membrane and into the base of the

rivulet. However, since, as previously noted, in the present work we assume that there

is no fluid on the bottom surface of the membrane, this is impossible and so there is

no physically realisable rivulet solution in this case. Hence, since a ≤ ā at all stations

x > 0, there are sessile and vertical rivulet solutions for all values of ā, whereas there is a

pendant rivulet solution only for ā < acrit . Note also that on the permeable membrane,

there is no solution corresponding to a rivulet with zero contact angle, β = 0, as we

have on the impermeable membrane given by (3.55) and (3.56), since such a rivulet is

possible only for π/2 < α ≤ π and has semi-width a = π/m = 2acrit, regardless of the

value of Q̄.
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3.2 A Rivulet with Constant Semi-Width (a ≡ ā)

In this section we consider the case of a rivulet with constant semi-width. Setting a = ā

and differentiating (3.60) with respect to x yields the first-order ordinary differential

equation for β = β(x) (≤ β̄) in 0 < x ≤ L, namely

d
(
β2
)

dx
= −12ζm4g(mā)

sinαf(mā)
, (3.62)

which can be solved subject to the condition that β(0) = β̄, to yield the explicit solution

for β,

β = β̄

(
1− 12 ζ m4g(mā)

β̄2 sinαf(mā)
x

)1/2

, (3.63)

and hence, setting β(L) = 0, the length of the rivulet on the permeable membrane is

given explicitly by

L =
β̄2 sinαf(mā)

12 ζ m4g(mā)
. (3.64)

Note that, in the special case of a vertical rivulet, (3.63) and (3.64) reduce to simply

β = β̄

(
1− 35ζ

β̄2ā4
x

)1/2

, L =
β̄2ā4

35ζ
. (3.65)

Inspection of the solution for L given by (3.64), shows that L is finite unless g(mā) =

0, and so for a narrow rivulet with constant width 0 < ā < π/2, there is a rivulet

solution which has a finite length for all 0 ≤ α ≤ π, but for a wide rivulet with

constant width ā ≥ π/2, there exists a critical value of α = αcrit (π/2 < αcrit ≤ π) such

that there is a rivulet solution only for 0 ≤ α ≤ αcrit , which has a length that tends to

infinity at αcrit and above which there is no physically realisable solution. The critical

value αcrit is obtained by solving the equation mā = π/2 for α to obtain

αcrit = cos−1

(
− π2

4ā2

)
for ā ≥ π

2
. (3.66)

In what follows we describe the behaviour of both narrow and wide rivulets, and,
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L

α/π

ā = 3/2

ā = 1

Figure 3.2: The length L of a rivulet with constant semi-width a ≡ ā given by (3.64)
plotted as a function of α/π for a narrow rivulet with ā = 1, 1.1, 1.2, 1.3, 1.4, 1.5 (< π/2),
initial contact angle β̄ = 1 and permeability constant ζ = 1.

ā/π

Lmax

(0, 0)

(a) ā/π

αmax/π

(0.5, 1)

(0, 0.5)

(b)

Figure 3.3: (a) Lmax and (b) αmax/π for a narrow rivulet with constant semi-width
a ≡ ā plotted as functions of ā/π with initial contact angle β̄ = 1 and permeability
constant ζ = 1. The dashed line in part (a) denotes the vertical asymptote of Lmax at
ā = π/2.
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in particular, their lengths L as a function of the scaled angle α/π, including sessile

(0 ≤ α < π/2), vertical (α = π/2), and pendant (π/2 < α ≤ π) rivulets.

3.2.1 A narrow rivulet with 0 < ā < π/2

Figure 3.2 shows plots of L as a function of the scaled angle α/π for a narrow rivulet

with constant semi-width 0 < ā < π/2. Such rivulets exist and have a finite length for

all 0 ≤ α ≤ π which satisfies L→ 0+ as α → 0+ and α → π−. Specifically, Figure 3.2

shows that for larger values of α the length of a narrow rivulet increases to a global

maximum value L = Lmax at α = αmax (π/2 < αmax < π) and then becomes short

again.

Specifically, the asymptotic behaviour of L is

L ∼ β̄2f(ā)

12ζg(ā)
α→ 0+ (3.67)

as α → 0+,

L =
β̄2ā4

35ζ
+O

(
α− π

2

)
→ β̄2ā4

35ζ
(3.68)

as α → π

2
, and

L ∼ β̄2f(ā)

12ζg(ā)
(π − α)→ 0+ (3.69)

as α → π−.

Figure 3.3 shows (a) Lmax and (b) αmax/π for a narrow rivulet plotted as functions

of ā/π, and, in particular, confirms that Lmax and αmax are monotonically increasing

functions of ā, and shows that Lmax and αmax increase from Lmax → 0+ and αmax =

(π/2)+ as ā→ 0+ to Lmax →∞ and αmax → π− as ā→ (π/2)−.

3.2.2 A wide rivulet with ā ≥ π/2

Figure 3.4 shows plots of L as a function of the scaled angle α/π for a wide rivulet

with constant semi-width ā ≥ π/2. Such rivulets only exist and have a finite length

for 0 ≤ α < αcrit with L → 0+ as α → 0+ and L → ∞ as α → αcrit
−, where αcrit

(π/2 < αcrit ≤ π) is given by (3.66). Specifically, Figure 3.4 shows that the length of a
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L

α/π

ā = 5

ā = π/2

Figure 3.4: The length L of a rivulet with constant semi-width a ≡ ā given by (3.64)
plotted as a function of α/π for a wide rivulets with ā = π/2, 2, 3, 4, 5 (≥ π/2), initial
contact angle β̄ = 1 and permeability constant ζ = 1. The dashed lines denote the
vertical asymptotes of L at α = αcrit .

wide rivulet always increases with α, and wide rivulets become infinitely long.

Specifically, the asymptotic behaviour of L is

L ∼ β̄2f(ā)

12ζg(ā)
α→ 0+ (3.70)

as α → 0+,

L =
β̄2ā4

35ζ
+O

(
α− π

2

)
→ β̄2ā4

35ζ
(3.71)

as α → π

2
, and

L ∼ 32β̄2ā2

3ζπ4
(αcrit − α)−1 →∞ (3.72)

as α → αcrit
−.

3.2.3 Behaviour of the rivulet length L as a function of ā

Figure 3.5 shows a plot of L as a function of ā for a sessile rivulets with a range of

values of α (< π/2). In particular, Figure 3.5 shows that the length of a sessile rivulet
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always increases with ā towards a constant value. In this case the length of the rivulet

is always finite and satisfies L→ 0+ as ā→ 0+ and L→ constant− as ā→∞.

Specifically, the asymptotic behaviour of L is

L =
β̄2 sinα

35ζ
ā4 +O

(
ā6
)
→ 0+ (3.73)

as ā → 0+, and

L =
β̄2 sinα

2ζm4
+O

(
1

ā

)
→
(
β̄2 sinα

2ζm4

)−
(3.74)

as ā → ∞.

Note that the asymptotic behaviour of L as ā → ∞ given by (3.74) provides the

expression for the length of an infinitely-wide sessile sheet flowing over and through a

permeable membrane, namely

L =
β̄2 sinα

2ζm4
=
h̄2

m tanα

2ζ
, (3.75)

where h̄m = β̄/m is the initial thickness of the sheet, which is in agreement with the

corresponding expression given by Davis and Hocking [29] provided that their erroneous

scaling of the membrane permeability is corrected as described in Appendix E.

Figure 3.6 shows plots of L as a function of ā for a vertical and pendant rivulets

with a range of values of α (≥ π/2). Figure 3.6 shows that in the special case α = π/2

the rivulet exists for all ā > 0 and satisfies L→ 0+ as ā→ 0+ and L→∞ as ā→∞.

Specifically on the other hand, Figure 3.6 shows that when π/2 < α ≤ π there is a

critical value of ā = ācrit at which the length of the rivulet tends to infinity and above

which there is no physically realisable solution. The critical value ācrit is obtained by

solving the equation ma = π/2 for a to obtain

acrit =
π

2m
for

π

2
< α ≤ π. (3.76)

When α = π/2 the asymptotic behaviour of L is

L ∼ β̄2

35ζ
ā4 → 0+ (3.77)
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ā

L

α = 5π/12

α = π/12

Figure 3.5: The length L of a rivulet with constant semi-width a ≡ ā given by (3.64)
plotted as a function of ā for a sessile rivulets with α = π/12, π/6, π/4, π/3, 5π/12
(< π/2), initial contact angle β̄ = 1 and permeability constant ζ = 1. The dashed lines
denote the asymptotic values of L as ā→∞.

ā

L

α = 11π/12

α = π/2

Figure 3.6: The length L of a rivulet with constant semi-width a ≡ ā given by
(3.64) plotted as a function of ā for a vertical and pendant rivulets with α =
π/2, 7π/12, 2π/3, 3π/4, 5π/6, 11π/12 (≥ π/2). The dashed lines denote the vertical
asymptotes of L at ā = acrit above which rivulet solutions do not exist.
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as ā → 0+, and

L ∼ β̄2

35ζ
ā4 →∞ (3.78)

as ā → ∞.

On the other hand, when π/2 < α ≤ π the asymptotic behaviour of L is

L =
β̄2 sinα

35ζ
ā4 +O

(
ā6
)
→ 0+ (3.79)

as ā → 0+, and

L ∼ 2β̄2 sinα

3ζπm5
(acrit − ā)−1 →∞ (3.80)

as ā→ acrit
−.

3.2.4 Behaviour of the rivulet length L as a function of β̄

Figures 3.7 and 3.8 show plots of L as a function of β̄ for a rivulet on a substrate with

angle 0 < α ≤ π for the cases ā = 1 (< π/2) and ā = 2 (≥ π/2), respectively. In

particular, Figure 3.7 shows that, for different values of α, a rivulet exists for all β̄ > 0

and satisfies L → 0+ as β̄ → 0+ and L → ∞ as β̄ → ∞. Note that the length of the

rivulet increases as we increase β̄ for 0 ≤ α ≤ αmax = 2.095 then the length decreases

until it reaches zero, this behaviour is consistent with the results shown previously in

Figure 3.2. On the other hand, Figure 3.8 shows that for 0 ≤ α ≤ αcrit the length of

the rivulet always increases with β̄ and satisfies L → 0+ as β̄ → 0+ and L → ∞ as

β̄ →∞.

Specifically, the asymptotic behaviour of L is

L ∼ sinαf(mā)

12ζm4g(mā)
β̄2 → 0+ (3.81)

as β̄ → 0+, and

L ∼ sinαf(mā)

12ζm4g(mā)
β̄2 →∞ (3.82)

as β̄ → ∞.
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Figure 3.7: The length L of a rivulet with constant semi-width a ≡ ā given by (3.64)
plotted as a function of β̄ for ā = 1 with α = π/6, π/3, π/2, 2π/3, 5π/6 and permeability
constant ζ = 1.

Figure 3.8: The length L of a rivulet with constant semi-width a ≡ ā given by (3.64)
plotted as a function of β̄ for ā = 2 with α = π/6, π/3, π/2, 2π/3 and permeability
constant ζ = 1.
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y

x

z

Figure 3.9: The three-dimensional shape of the free surface of a vertical rivulet with
constant semi-width a ≡ ā = 3, initial contact angle β̄ = 5, permeability constant
ζ = 1, and length L = β̄2ā4/(35ζ) = 2025/35 ' 57.8571.

3.2.5 Rivulet shape

Figure 3.9 shows a typical example of the three-dimensional shape of the free surface

of a vertical rivulet, and Figure 3.10 shows plots of the contact angle β as a function

of x for a sessile and pendant rivulets and for a range of values of ā.

Specifically, the asymptotic behaviour of β is

β = β̄ − 6ζm4g(mā)

β̄ sinαf(mā)
x+O

(
x2
)
→ β̄− (3.83)

as x → 0+, and

β ∼ β̄
(

1− 12 ζ m4g(mā)

β̄2 sinαf(mā)
x

)1/2

→ 0+ (3.84)

as x → L−, where L is given by (3.64).
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x

β

ā = 1

ā = 50

(a) x

β

ā = 1

ā = 1.8

(b)

Figure 3.10: The contact angle β of a rivulet with constant semi-width a ≡ ā given by
(3.63) plotted as a function of x with initial contact angle β̄ = 1 and permeability con-
stant ζ = 1 for (a) a sessile rivulet with α = π/4 for ā = 1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50,
and (b) a pendant rivulet with α = 3π/4 for ā = 1, 1.1, 1.2, . . . , 1.8 (< acrit ' 1.8680).

3.3 A Rivulet with Constant Contact Angle (β ≡ β̄)

In this section we consider the case of a rivulet with constant contact angle. Setting β =

β̄ and differentiating (3.60) with respect to x yields a non-linear ordinary differential

equation for a = a(x) (≤ ā) in 0 < x ≤ L, namely

da

dx
= − 18ζm4g(ma)

β̄2 sinα q(ma)
, (3.85)

where

q(ma) =



−45m2a coth4ma+ 54m2a coth2ma+ 45m coth3ma− 9m2a− 39m cothma

for 0 ≤ α < π

2
,

48

35
m4a3 for α =

π

2
,

45m2a cot4ma+ 54m2a cot2ma− 45m cot3ma+ 9m2a− 39m cotma

for
π

2
< α ≤ π.

(3.86)
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For α = π/2, equation (3.85) can be solved subject to the condition that a(0) = ā to

yield the exact solution for a,

a = ā

(
1− 105 ζ

2β̄2ā4
x

)1/4

, (3.87)

and hence, setting a(L) = 0, the length of the rivulet on the permeable membrane is

given explicitly by

L =
2β̄2ā4

105 ζ
, (3.88)

while for 0 ≤ α < π/2 and π/2 < α ≤ π it is necessary to solve equation (3.85)

numerically using a standard software package such as Maple. As we did in the constant

semi-width case, we will describe the behaviour of sessile, vertical and pendant rivulets,

and, in particular, describe their lengths L as a function of the scaled angle of inclination

α/π.

In order to study the asymptotic behaviour of the length of the rivulet L, it is more

convenient to consider x as a function of a, and we write (3.85) in terms of x = x(a)

to give
dx

da
= − β̄

2 sinα q(ma)

18ζm4 g(ma)
, (3.89)

subject to

x(0) = L and x(ā) = 0. (3.90)

3.3.1 A narrow rivulet with 0 < ā ≤ π/2

Figure 3.11 shows plots of L as a function of the scaled angle α/π for a narrow rivulet

with constant contact angle β = β̄ and for a range of values of ā (ā < π/2). Such

rivulets exist and have a finite length for all 0 ≤ α ≤ π. The length of the rivulet

satisfies L → 0+ as α → 0+ and α → π−. In particular, Figure 3.11 shows that

the length of a narrow rivulet increases to a global maximum value L = Lmax at

α = αmax and then becomes short again. Figure 3.12 shows (a) Lmax and (b) αmax/π

for a narrow rivulet, plotted as functions of ā/π, and, in particular, confirms that

Lmax and αmax are monotonically increasing functions of ā, and shows that Lmax and
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α/π

L

0.2

0.1

0
0 0.5 1

ā = 1

ā = 3/2

Figure 3.11: The length L of a rivulet with constant contact angle β̄ = 1 given by
(3.85) plotted as a function of α/π for a narrow rivulet with initial semi-width ā =
1, 1.1, 1.2, 1.3, 1.4, 1.5 (< π/2) and permeability constant ζ = 1.

αmax increase from Lmax → 0+ and αmax = (π/2)+ as ā → 0+ to Lmax = 0.2998 and

αmax ' 0.8750π ' 2.7488 when ā = π/2.

To study the behaviour of L as α→ 0+, we substitute (3.61) and (3.86) into (3.89)

to get

dx

da
= − β̄

2 sinα
(
−45m2a coth4ma+ 54m2a coth2ma+ 45m coth3ma− 9m2a− 39m cothma

)
18ζm5a cothma

.

(3.91)

We expand the right-hand side of equation (3.91) as a Taylor series in powers of α.

Then (3.91) becomes
dx

da
= f1(a)α+O

(
α3
)
, (3.92)

where

f1(a) = − β̄
2
(
6 cosh3 a sinh a− 36a cosh2 a+ 39 cosh a sinh a− 9 a

)
18ζa sinh3 a cosh a

. (3.93)
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ā/π

Lmax

(0.5, 0.2998)

(0, 0)

(a) ā/π

αmax/π

(0.5, 0.8750)

(0, 0.5)

(b)

Figure 3.12: (a) Lmax and (b) αmax/π for a narrow rivulet with constant contact angle
β̄ = 1 plotted as functions of ā/π with permeability constant ζ = 1.

Integrating equation (3.92) with respect to a, and taking into account that x(ā) = 0,

we get

L = x(0) = F (ā)α+O
(
α3
)
, (3.94)

where

F (ā) =

∫ 0

ā
f1(a) da (3.95)

As a result, the asymptotic behaviour of L is

L = F (ā)α+O(α3)→ 0+ (3.96)

as α → 0+.

For the behaviour of L as α → π/2−, we expand the right-hand side of equation

(3.91) as a Taylor series in powers of π/2− α. Then (3.91) becomes

dx

da
= g1(a) + g2(a)

(π
2
− α

)
+O

((π
2
− α

)2
)
, (3.97)

where



Chapter 3 105

g1(a) = −8 β̄2a3

105 ζ
, (3.98)

g2(a) =
16 β̄2a5

315 ζ
. (3.99)

Integrating equation (3.97) with respect to a, and taking into account that x(ā) = 0,

we get

L = x(0) = B1 +B2

(π
2
− α

)
+O

((π
2
− α

)2
)
, (3.100)

where

B1 =

∫ 0

ā
g1(a) da =

2 β̄2ā4

105 ζ
, (3.101)

B2 =

∫ 0

ā
g2(a) da = −8 β̄2ā6

945 ζ
. (3.102)

As a result, the asymptotic behaviour of L is

L =
2 β̄2ā4

105ζ
+O

(π
2
− α

)
→
(

2β2ā4

105

)−
(3.103)

as α → (π/2)−.

For the behaviour of L as α → π−, we substitute (3.61) and (3.86) into (3.89) to

get

dx

da
= − β̄

2 sinα
(
45m2a cot4ma+ 54m2a cot2ma− 45m cot3ma+ 9m2a− 39m cotma

)
18ζm5a cotma

.

(3.104)

We expand the right-hand side of equation (3.104) as a Taylor series in powers of π−α.

Then (3.104) becomes

dx

da
= m1(a) (π − α) +O

(
(π − α)3

)
(3.105)
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where

m1(a) = − β̄
2
(
−6 cos3 a sin a+ 36a cos2 a− 39 cos a sin a+ 9a

)
18ζa sin3 a cos a

. (3.106)

Integrating equation (3.105) with respect to a, and taking into account that x(ā) = 0,

we get

L = x(0) = M(ā) (π − α) +O
(

(π − α)3
)
, (3.107)

where

M(ā) =

∫ 0

ā
m(a) da (3.108)

As a result, the asymptotic behaviour of L is

L = M(ā) (π − α) +O
(

(π − α)3
)
→ 0+ (3.109)

as α → π−.

3.3.2 A wide rivulet with ā > π/2

For a wide rivulet with constant contact angle when ā > π/2 there is a critical value of

α = αcrit (π/2 < αcrit ≤ π) given by equation (3.66), at which the length of the rivulet

tends to infinity and above which there is no physically realisable solution (i.e. L < 0).

In Figure 3.13, unlike in the case described in Subsection 3.2, when π/2 < ā < amax

the length of the rivulet has a local maximum and local minimum, where amax '
0.5024π ' 1.5785 (see Figure 3.13(a)). Figure 3.13 shows plots of L as a function of the

scaled angle α/π for a rivulet with constant contact angle β̄ for (a) π/2 < ā < amax,

(b) ā = amax and (c) ā > amax. Such rivulets only exist and have a finite length for

0 ≤ α < αcrit with L → 0+ as α → 0+ and L → ∞ as α → αcrit
−. At the value amax,

the local maximum and minimum will coincide, as seen in Figure 3.13(b). In Figure

3.13(c), for all ā > amax the length of the rivulet is a monotonically increasing function

of α. Figure 3.14 shows that the qualitative behaviour of the length of a wide rivulet

with constant contact angle depends on the value of ā as illustrated in Figure 3.13.

Figure 3.15 shows (a) Lmax and Lmin and (b) αmax/π and αmin/π for a wide rivulet
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(a) (b)

(c)

Figure 3.13: Plots of L as a function of α/π for a rivulet with constant contact angle
β̄ = π/2, 2, 3 for initial semi-width (a) ā = π/2 + 10−3 (< amax), (b) ā = amax, (c)
ā = 2 (> amax) with permeability constant ζ = 1. The vertical dashed lines represent
the critical value αcrit given by (3.66).

plotted as functions of ā/π, and, in particular, confirms that Lmax, Lmin and αmax are

monotonically increasing functions of ā and that αmin is a monotonically decreasing

function of ā, and shows that Lmax = Lmin ' 0.3289, αmax = αmin ' 0.9150π ' 2.8746

when ā = amax.

The behaviour of L as α → 0+ and α → π/2− when ā > π/2 is rather similar to

those described in the previous Subsection 3.3.1.

For the behaviour of L as α → αcrit
−, the differential equation describing the func-
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α/π

L

0.6

0.3

0
0 0.5 1

ā = π/2

ā = 5

Figure 3.14: The length L of a rivulet with constant contact angle β̄ = 1 given by
(3.85) plotted as a function of α/π for a wide rivulets with initial semi-width ā =
π/2, 1.571, 1.572, 1.573, 1.576, 1.579, 1.6, 1.7, 1.8, 1.9, 2, 3, 4, 5 (≥ π/2) and permeability
constant ζ = 1. The dashed lines denote the vertical asymptotes of L at α = αcrit

for ā = 1.6, ..., 5 (the vertical asymptotes for ā = π/2, ..., 1.58 having been omitted for
clarity).

tion x(a) is given by (3.104). We expand the right-hand side of equation (3.104) as a

Taylor series in powers of αcrit − α. Then (3.104) becomes

dx

da
= b1(a) (αcrit − α)−1 +O(1), (3.110)

where

b1(a) = −4aβ̄2

ζπ2
. (3.111)

Integrating equation (3.110) with respect to a, and taking into account that x(ā) = 0,

we get

L = x(0) = E1 (αcrit − α)−1 +O (1) , (3.112)

where

E1 =

∫ 0

ā
b1(a) da =

2ā2β̄2

ζ π2
. (3.113)
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ā/π

L
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Lmin

(0.5024, 0.3289)

(0.5, 0.2998)

(0.5, 0)

(a) ā/π

α/π
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αmin/π

αmax/π
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(0.5, 0.8750)

(0.5, 1)

(b)

Figure 3.15: (a) Lmax and Lmin and (b) αmax/π and αmin/π for a wide rivulet with
constant contact angle β̄ = 1 plotted as functions of ā/π with permeability constant
ζ = 1.

As a result, the asymptotic behaviour of L is

L =
2ā2β̄2

ζ π2
(αcrit − α)−1 +O (1)→∞ (3.114)

as α → αcrit
−.

3.3.3 Behaviour of the rivulet length L as a function of ā

Figure 3.16 shows a plot of L as a function of ā for a sessile rivulet with a range of

values of α. In this case the length of the rivulet becomes short and always increases

with ā according to L→ 0+ as ā→ 0+ and L→∞ as ā→∞, respectively.

To study the behaviour of L as ā→ 0+, we expand the right-hand side of equation

(3.91) as a Taylor series in powers of a. Then (3.91) becomes

dx

da
= c1(α)a3 + c2(α)a5 +O

(
a7
)
, (3.115)
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ā

L

α = π/12

α = 5π/12

Figure 3.16: The length L of a rivulet with constant contact angle β̄ = 1 given by (3.85)
plotted as a function of ā for α = π/12, π/6, π/4, π/3, 5π/12 (< π/2) with permeability
constant ζ = 1.

where

c1(α) = −8β̄2 sinα

105 ζ
, (3.116)

c2(α) =
16m2β̄2 sinα

315 ζ
. (3.117)

Integrating equation (3.115) with respect to a, and taking into account that x(ā) = 0,

we get

L = x(0) =
2β̄2 sinα

105 ζ
ā4 − 8m2β̄2 sinα

945 ζ
ā6 +O

(
ā8
)
. (3.118)

As a result, the asymptotic behaviour of L is

L =
2β̄2 sinα

105ζ
ā4 +O

(
ā6
)
→ 0+ (3.119)

as ā → 0+.

Figure 3.16 indicates that as ā → ∞, L ∼ O (log(ā)). While proving rigorously

that this is the case needs an involved matched asymptotics argument, which we do
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not provide, we can argue heuristically as follows:

For large ā,
dx

da
∼ − β̄

2 sinα

3ζm4

1

a
+O(e−2ma). (3.120)

Hence it is reasonable to suggest, by integrating, that

x(ā)− x(0) ∼ − β̄
2 sinα

3ζm4
log(ā) +O (log(ā)) , (3.121)

so that

L ∼ β̄2 sinα

3ζm4
log(ā). (3.122)

as ā→∞.

Figure 3.17 shows plots of L as a function of ā for vertical and pendant rivulets with

angle π/2 ≤ α ≤ π. Figure 3.17 shows that in the special case α = π/2 (i.e. a rivulet

on a vertical substrate) the rivulet exists for all ā > 0 and satisfies L→ 0+ as ā→ 0+

and L→∞ as ā→∞. On the other hand, Figure 3.17 shows that when π/2 < α ≤ π
there is a critical value of ā = ācrit given by (3.76) at which the length of the rivulet

tends to infinity and above which there is no physically realisable solution.

When α = π/2, we see from equation (3.88) that

L ∼ 2β̄2

105ζ
ā4 → 0+ (3.123)

as ā → 0+, and

L ∼ 2β̄2

105ζ
ā4 →∞ (3.124)

as ā → ∞.

On the other hand, when π/2 < α ≤ π, we expand the right-hand side of equation

(3.104) as a Taylor series in powers of a. Then (3.104) becomes

dx

da
= k1(α)a3 + k2(α)a5 +O

(
a7
)
, (3.125)

where

k1(α) = −8β̄2 sinα

105 ζ
, (3.126)
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ā

L

α = π/2α = 11π/12

Figure 3.17: The length L of a rivulet with constant contact angle β̄ = 1 given
by (3.85) plotted as a function of ā for a vertical and pendant rivulets with α =
π/2, 7π/12, 2π/3, 3π/4, 5π/6, 11π/12 (≥ π/2) with permeability constant ζ = 1. The
dashed denote the vertical asymptotes of L at ā = acrit for pendant rivulets.

k2(α) = −16m2β̄2 sinα

315 ζ
. (3.127)

Integrating equation (3.125) with respect to a, and taking into account that x(ā) = 0,

we get

L = x(0) =
2β̄2 sinα

105 ζ
ā4 +

8m2β̄2 sinα

945 ζ
ā6 +O

(
ā8
)
. (3.128)

Specifically, the asymptotic behaviour of L is

L =
2β̄2 sinα

105ζ
ā4 +O

(
ā6
)
→ 0+ (3.129)

as ā → 0+.

For ā→ a−crit, we expand the right-hand side of equation (3.104) as a Taylor series

in powers of acrit − a. Then (3.104) becomes

dx

da
= − β̄

2 sinα

2ζm4
(acrit − a)−1 +

13β̄2 sinα

3ζπm3
+O (acrit − a) . (3.130)
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(a) (b)

Figure 3.18: Plots of L as a function of the contact angle β̄ for a rivulet with constant
contact angle for (a) ā = 1, α = π/6, ..., 5π/6 and (b) ā = 2, α = π/6, ..., 2π/3.

Integrating equation (3.130) with respect to a, and taking into account that x(ā) = 0,

we get the asymptotic behaviour of L as

L ∼ − β̄
2 sinα

2ζm4
log (acrit − ā)→∞ as ā→ a−crit. (3.131)

3.3.4 Behaviour of the rivulet length L as a function of β̄

Figure 3.18 shows plots of L as a function of β̄ for a rivulet with angle 0 < α ≤ π for

(a) ā = 1 (< π/2) and (b) ā = 2 (≥ π/2). Figure 3.18(a) shows that, for different

values of α, the rivulet exists for all β̄ > 0 and satisfies L→ 0+ as β̄ → 0+ and L→∞
as β̄ → ∞. Note that for a fixed value of β̄ the length of the rivulet increases as α

increases for 0 ≤ α ≤ αmax. However, for α > αmax the length of the rivulet decreases

until it reaches zero, this behaviour is consistent with the results shown previously in

Figure 3.11. On the other hand, Figure 3.18(b) shows that for 0 ≤ α ≤ αcrit the length

of the rivulet exists for all β̄ > 0 and satisfies L → 0+ as β̄ → 0+ and L → ∞ as

β̄ →∞.

To study the behaviour of L as β̄ → 0+, we integrate equation (3.89) with respect
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to a, and taking into account that x(ā) = 0, we get

L = x(0) =
sinαG(mā)

18ζ m4
β̄2, (3.132)

where

G(mā) =

∫ 0

ā

q(ma)

g(ma)
da. (3.133)

Specifically, the asymptotic behaviour of L is

L ∼ sinαG(mā)

18ζ m4
β̄2 → 0+ (3.134)

as β̄ → 0+, and

L ∼ sinαG(mā)

18ζ m4
β̄2 →∞ as β̄ →∞. (3.135)

y

x

z

Figure 3.19: The three-dimensional shape of the free surface of a vertical rivulet with
constant contact angle β̄ = 5, initial semi-width ā = 3, permeability constant ζ = 1
and length L = 2β̄2ā4/(105ζ) = 4050/105 ' 38.5714.
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Figure 3.20: The semi-width a of a rivulet with constant contact angle β̄ = 1 given
by (3.85) plotted as a function of x with permeability constant ζ = 1 for (a) a sessile
rivulet with α = π/4 for ā = 10, 25, 50, 75, 100, and (b) a pendant rivulet with α = 3π/4
for ā = 1, 1.1, 1.2, . . . , 1.8 (< acrit ' 1.8680).

3.3.5 Rivulet shape

Figure 3.19 shows a typical example of the three-dimensional shape of the free surface

of a vertical rivulet, and Figure 3.20 shows plots of the semi-width a as a function of x

for a sessile and pendant rivulets and for a range of values of ā.

To study the behaviour of the width a as x → 0+ and as x → L− in the special

case of a vertical rivulet, we expand the right-hand side of equation (3.87) as a Taylor

series in powers of x. Then specifically, the asymptotic behaviour of a(x) is given by

a = ā− 105 ζ

8 ā3β̄2
x+O

(
x2
)
→ ā (3.136)

as x → 0+.

For x→ L−, we expand the right-hand side of equation (3.87) as a Taylor series in

powers of L− x. Then specifically, the asymptotic behaviour of a is

a ∼
[

105 ζ

2 β̄2
(L− x)

]1/4

→ 0+ as x→ L−. (3.137)
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3.4 Conclusions

In this chapter we used lubrication theory to obtain and analyse the solution for the

steady gravity-driven flow of a thin rivulet over and through an inclined permeable

membrane.

In Section 3.2 we described the flow of a rivulet with constant semi-width but

decreasing contact angle. In particular, we obtained the exact solutions for both the

contact angle and the length of the rivulet on the permeable part of the membrane

by solving a first order ordinary differential equation given by (3.62). We found that

the behaviour of the length L of a rivulet with constant semi-width (a ≡ ā) on the

permeable part of the membrane depends on the value of ā. In particular, while a

narrow rivulet with constant semi-width 0 < ā < π/2 has always a finite length for all

0 ≤ α ≤ π, a wide rivulet with constant semi-width ā ≥ π/2 only exists and has a finite

length for 0 ≤ α < αcrit, where the critical angle αcrit is given by (3.66).

In Section 3.3 we described the flow of a rivulet with constant contact angle but

decreasing contact width. In particular, we obtained the exact solutions for both the

contact angle and the length of the rivulet on the porous membrane just for the case

α = π/2, while in the cases of rivulets with 0 ≤ α < π/2 and π/2 < α ≤ π, we solved a

non-linear ordinary differential equation given by (3.85) numerically and analysed the

behaviour of the length of the rivulet. Similar to that in the case of a rivulet with

constant semi-width, we found that a narrow rivulet with constant contact angle β ≡ β̄
when 0 < ā ≤ π/2 exists and has a finite length for all 0 ≤ α ≤ π, while a wide rivulet

with constant contact angle when ā > π/2 only has a finite length for 0 ≤ α < αcrit

but, unlike the case for a rivulet with constant semi-width ā ≥ π/2, the length of the

rivulet has both a local maximum and local minimum. Specifically, the length of the

rivulet increases to a local maximum value L = Lmax at α = αmax and then decreases

to a local minimum value L = Lmin at α = αmin (π/2 < αmax < αmin < αcrit ) before

increasing again and becoming infinitely long, as shown in Figure 3.14.



Chapter 4

Patterns Formed in a Thin Film

with Spatially Homogeneous and

Non-Homogeneous Derjaguin

Disjoining Pressure

In this chapter we consider patterns formed in a two-dimensional thin film on a planar

substrate with a Derjaguin disjoining pressure and periodic wettability stripes. We re-

visit the work of Honisch et al. [46], as discussed in Section 1.7, and we rigorously clarify

some of their numerical results. In particular, we examine steady-state solutions of a

one-dimensional thin-film equation with spatially homogeneous and non-homogeneous

Derjaguin disjoining pressure. For the case of constant wettability, we elucidate the

change in the global structure of branches of steady-state solutions as the average film

thickness and the domain size are varied. We discuss admissible forms of spatially

non-homogeneous disjoining pressure, and clarify the dependence of the steady-state

solutions on the wettability contrast in the case of a periodically patterned substrate.

117
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4.1 Problem Statement

Denoting the height of the thin liquid film by z = h(x, y, t), where (x, y, z) are the

usual Cartesian coordinates and t is time, Honisch et al. [46] considered the thin-film

equation

ht = ∇ · {Q(h)∇P (h, x, y)} , t > 0, (x, y) ∈ R2, (4.1)

where Q(h) = h3/(3η) is the mobility coefficient, with η being the dynamic viscosity

and the generalized pressure P (h, x, y) given by

P (h, x, y) = −γ∆h−Π(h, x, y),

where γ is the surface tension. Here we follow [46] in taking the Derjaguin disjoining

pressure Π(h, x, y) in the spatially homogeneous case to be of the form

Π(h, x, y) = − A
h3

+
B

h6
(4.2)

suggested, for example, by Pismen [86]. Here A and B are positive parameters that

measure the relative contributions of the short-range (h−6 term) and long-range (h−3

term) forces, as discussed in Section 1.8. However, we will see that both of these

constants can be scaled out of the mathematical problem.

In the case where the substrate is taken to be non-homogeneous, we can modify

(4.2) by assuming that the Derjaguin pressure term Π changes periodically in the x-

direction, with period L. The appropriate forms of Π in the non-homogeneous case are

discussed in Section 4.5.

In order to better understand solutions of (4.1), we study its one-dimensional, i.e.

y-independent, version,

ht = (Q(h)P (h, x)x)x , 0 < x < L. (4.3)

We start by characterising steady-state solutions of (4.3), subject to periodic bound-

ary conditions at x = 0 and x = L. In other words, we seek solutions h(x) of (4.3)
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satisfying, in dimensional variables, the following non-local boundary value problem,

namely

γhxx +
B

h6
− A

h3
− 1

L

∫ L

0

[
B

h6
− A

h3

]
dx = 0, 0 < x < L, (4.4)

subject to the constraint
1

L

∫ L

0
h(x) dx = h∗, (4.5)

where the constant h∗ (> 0) denotes the (scaled) average film thickness, and the periodic

boundary conditions

h(0) = h(L), hx(0) = hx(L). (4.6)

Note that to obtain (4.4) we set ht = 0 in (4.3), and integrated twice with respect to

x. The first integration yields

0 = −γhxxx −Π(h, x)x +
C0

Q(h)
, (4.7)

where C0 is a constant of integration. Here we are either considering P (h, x) periodic

in x or independent of x. Hence by periodicity of h, in both cases

hxx(0) = hxx(L), P (h(0), 0) = P (h(L), L). (4.8)

Therefore noting that Q(h) > 0, we integrate (4.7) between 0 and L and used (4.8) to

obtain ∫ L

0

C0

Q(h)
dx = 0, (4.9)

and from that it follows that C0 is zero. The second integration yields

C1 = −γhxx −Π(h, x). (4.10)

In order to determine the value of C1, we integrated (4.10) from x = 0 to x = L and

used (4.6) to obtain

C1 = − 1

L

∫ L

0
Π(h, x) dx. (4.11)
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Now we non-dimensionalise. Setting

H =

(
B

A

)1/3

, h = Hh̃, and x = Lx̃,

in (4.4) and removing the tildes, we obtain

ε2hxx + f(h)−
∫ 1

0
f(h) dx = 0, 0 < x < 1, (4.12)

where

f(h) =
1

h6
− 1

h3
(4.13)

and

ε2 =
γB4/3

L2A7/3
, (4.14)

subject to the periodic boundary conditions

h(0) = h(1), hx(0) = hx(1), (4.15)

and the volume constraint

∫ 1

0
h(x) dx = h̄ :=

h∗A1/3

B1/3
. (4.16)

Note that the problem (4.12)–(4.16) is very similar to the corresponding stationary

problem for the Cahn–Hilliard equation, considered as a bifurcation problem in the

parameters h̄ and ε by Eilbeck et al. [33]. The boundary conditions considered in that

work were the physically natural double Neumann conditions. The periodic boundary

conditions (4.15) in the present problem slightly change the analysis, but our general

approach in characterising different bifurcation regimes still follows that of Eilbeck et

al. [33], though the correct interpretation of the limit as ε→ 0+ is that now we let the

surface tension γ go to zero. In particular, we perform a Liapunov–Schmidt reduction

to determine the local behaviour close to bifurcation points and then use AUTO (in

the present work we use the AUTO-07p version [30]) to explore the global structure of

branches of steady-state solutions, both for the spatially homogeneous case and for the
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spatially non-homogeneous case in the case of an x-periodically patterned substrate.

We first investigate the homogeneous case, and having elucidated the structure of

the bifurcations of non-trivial solutions from the constant solution h = h̄ in that case

in Sections 4.3 and 4.4, we study forced rotational (O(2)) symmetry breaking in the

non-homogeneous case in Section 4.5. We concentrate on the simplest steady-state

solutions of (4.12)–(4.16), as by a result of Laugesen and Pugh [58, Theorem 1] only

such solutions, that is, constant solutions and those having only one extremum point,

are linearly stable in the homogeneous case.

4.2 Liapunov–Schmidt Reduction Method

In this section we introduce the Liapunov–Schmidt reduction method, as described by

Golubitsky and Schaeffer in [38], which can be used to classify the local structure and

nature of the bifurcations for solutions to equation (4.12).

Many problems in applied mathematics which exhibit multiple steady-state solu-

tions can be reduced to a single equation of the form g(x, λ) = 0 by a process called the

Liapunov–Schmidt reduction, where g : R × R → R. The reduction starts by writing

the boundary problem in an abstract form

G(u, λ) = 0, (4.17)

where the unknown u is the state variable and λ is the bifurcation parameter. We

assume that G : X × R → Y is a smooth mapping between the Banach spaces X and

Y , such that

G(0, λ) = 0 for all λ ∈ R. (4.18)

We use the Liapunov–Schmidt reduction to reduce the study of steady-state solu-

tions of (4.17) to the study of the zeros of a single algebraic equation g(x, λ) = 0.

In order to investigate possible multiplicity of solutions to (4.17), we study the
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linearisation (dG)u,λ of G. The linearisation of G applied to v ∈ X is given by

(dG)u,λ · v = lim
τ→0

G(u+ τv, λ)−G(u)

τ
, (4.19)

and we let S be (dG)0,λi = Gu (0, λi) where the values λi are points of bifurcation

from the trivial solution u = 0 for i = 1, ..., n. We assume that S : X → Y is a

Fredholm operator of index zero, meaning that dim kerS < ∞, rangeS is closed and

dim kerS = codim rangeS. Following Golubitsky and Schaeffer [38], the derivation of

the reduced equation g can then be divided into the following five steps:

Step 1: Decompose the spaces X and Y into

(a) X = kerS ⊕M, (4.20)

(b) Y = rangeS ⊕N, (4.21)

where M = (kerS)⊥ and N = (rangeS)⊥.

Step 2: Split the equation G(u, λ) = 0 into an equivalent pair of equations

EG(u, λ) = 0, (4.22)

(I − E)G(u, λ) = 0, (4.23)

where E : Y → rangeS denotes the projection of Y onto rangeS.

Step 3: Use the equation (4.20) to write u = v +w, where v ∈ kerS, w ∈M . Then solve

(4.22) for w as a function of λ and v by the implicit function theorem. This leads

to a function W : kerS × R→M such that

EG(v +W (v, λ), λ) = 0. (4.24)

Step 4: Define φ : kerS × R→ N by

φ(v, λ) = (I − E)G(v +W (v, λ), λ). (4.25)
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Step 5: Choose a basis v1, v2, ..., vn ∈ kerS and a basis v∗1, v
∗
2, ..., v

∗
n ∈ N and define

g : Rn × R→ Rn by

gi(x, λ) = 〈v∗i , φ (x1v1 + ...+ xnvn, λ)〉 , i = 1, ..., n, (4.26)

in which Y is now equipped with the L2-inner product denoted by 〈·, ·〉. Note

that since v∗i ∈ N and for any vector V ∈ Y , EV ∈ rangeS, so 〈v∗i , EV 〉 = 0.

Hence

〈v∗i , (I − E)V 〉 = 〈v∗i , V 〉 . (4.27)

Note also that if we substitute the definition of φ in (4.25) into (4.26), the pro-

jection I −E drops out as a result of equation (4.27) and we obtain the following

reduced function:

gi(x, λ) =

〈
v∗i , G

(
n∑
i=1

xivi +W

(
n∑
i=1

xivi, λ

)
, λ

)〉
. (4.28)

Therefore we have from Golubitsky and Schaeffer [38, Proposition 1.5] that the solutions

of (4.17) are locally in one-to-one correspondence with solutions of gi(x, λ) = 0, i =

1, 2, ..., n. where gi is defined by (4.26).

The partial derivatives of the function gi at a bifurcation point (0, λi) can be com-

puted with the use of the following chain rule:

∂

∂x

{
(drG)u,λ (z1, . . . , zr)

}
=
(
dr+1G

)
u,λ

(
∂u

∂y
, z1, . . . , zr

)
+

r∑
i=1

(drG)u,λ

(
z1, . . . ,

∂zi
∂y

, . . . , zr

)
,

(4.29)

where r ∈ N is fixed and (drG)u,λ is a symmetric, multilinear function of r arguments

given by

(drG)u,λ (z1, · · · , zr) =
∂r

∂t1 · · · ∂tr
G (u+ t1z1 + · · ·+ trzr, λ)

∣∣∣∣
t1=···=tr=0

. (4.30)

The derivatives of the reduced function (4.28) as shown in [38, Equation 1.14] are given
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by

∂gi
∂xi

= 〈v∗i , dG (vi)〉 ,

∂2gi
∂xj∂xk

=
〈
v∗i , d

2G (vj , vk)
〉
,

∂3gi
∂xj∂xk∂xl

= 〈v∗i , V 〉 , (4.31)

∂gi
∂λl

= 〈v∗i , Gλl〉 ,

∂2gi
∂xj∂λl

=
〈
v∗i , (dGλl) · vj − d2G

(
vj , L

−1EGλl
)
,

where

V = d3G (vj , vk, vl)− d2G (vj , wlk)− d2G (vk, wlj)− d2G (vl, wkj) , and

wst = L−1Ed2G (vs, vt) .

By using Liapunov–Schmidt reduction, we are mainly interested in the local bifur-

cation structure of our problem and how it depends on the the average film thickness,

which we are going to demonstrate in the following three Sections 4.3–4.5.

4.3 Liapunov–Schmidt Reduction in the Spatially Homo-

geneous Case

We start by performing an analysis of the dependence of the global structure of branches

of steady-state solutions of the problem in the spatially homogeneous case, given by

(4.12)–(4.16) on the parameters h̄ and ε. To do this, we use the Liapunov–Schmidt

reduction, as described in Section 4.2.

In what follows, we do not indicate explicitly the dependence of the operators on

the parameters h̄ and ε, and all of the calculations are performed for a fixed value of h̄

and close to a bifurcation point ε = εk for k = 1, 2, 3, . . . defined below.

In order to set up the Liapunov–Schmidt reduction for (4.12) we set v = h− h̄, so
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that v = v(x) has zero mean, and rewrite (4.12) as

G(v) = 0,

where

G(v) = ε2vxx + f(v + h̄)−
∫ 1

0
f(v(x) + h̄) dx.

If we set

H =

{
w ∈ C(0, 1) :

∫ 1

0
w(x) dx = 0

}
,

where G is an operator from D(G) ⊂ H → H, then D(G) is given by

D(G) =

{
v ∈ C2(0, 1) : v(0) = v(1), vx(0) = vx(1),

∫ 1

0
v(x) dx = 0

}
.

The linearisation of G at v applied to w is defined by

dG(v)w = lim
τ→0

G(v + τw)−G(v)

τ
.

We denote dG(0) by S, so that S applied to w is given by

Sw = ε2wxx + f ′(h̄)w. (4.32)

To locate bifurcation points, we have to find the nontrivial solutions of the equation

Sw = 0, subject to

w(0) = w(1), wx(0) = wx(1). (4.33)

The kernel of S is non-empty and two dimensional when

ε = εk =

√
f ′(h̄)

2kπ
for k = 1, 2, 3, . . . , (4.34)

and is spanned by cos(2kπx) and sin(2kπx). That these values of ε correspond to

bifurcation points follows from two theorems of Vanderbauwhede [112, Theorems 2 and

3].

In the neighbourhood of a bifurcation point (εk, 0) in (ε, v) space, solutions of
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G(v) = 0 on H are in one-to-one correspondence with solutions of the reduced sys-

tem of equations on R2,

g1(x, y, ε) = 0, g2(x, y, ε) = 0, (4.35)

for some functions g1 and g2 to be obtained through the Liapunov–Schmidt reduction

[38].

In accordance with Section 4.2, we decompose D(G) and H as follows:

D(G) = kerS ⊕M

and

H = N ⊕ rangeS.

Since S is self-adjoint with respect to the L2-inner product denoted by 〈·, ·〉, we can

choose

M = N = span {cos(2kx), sin(2kx)} ,

and denote the above basis for M by {w1, w2} and for N by {w∗1, w∗2}. We also denote

the projection of H onto rangeS by E.

Since the present problem is invariant with respect to the group O(2), the functions

g1 and g2 must have the form

g1(x, y, ε) = xp(x2 + y2, ε), g2(x, y, ε) = yp(x2 + y2, ε), (4.36)

for some function p(·, ·) [22], which means that, in order to determine the bifurcation

structure, the only derivatives given in (4.31) that need to be computed are g1,xε and

g1,xxx, as these immediately give g2,yε and g2,yyy and all of the other second and third

partial derivatives of g1 and g2 are identically zero.

We set v = 0 and choose

w1 = w∗1 = cos(2kπx),
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where w1 ∈ ker S and w∗1 ∈ (range S)⊥. Therefore, from (4.31) we have

d2G(z1, z2) =
∂2

∂t1∂t2
G(t1z1 + t2z2)

∣∣∣∣
t1=t2=0

=
∂2

∂t1∂t2

[
εk(t1z1,xx + t2z2,xx) + f(t1z1 + t2z2 + h̄)

−
∫ 1

0
f(t1z1 + t2z2 + h̄) dx

]∣∣∣∣
t1=t2=0

= f ′′(h̄)z1z2 −
∫ 1

0
f ′′(h̄)z1z2 dx,

and so

d2G(cos(2kπx), cos(2kπx)) = f ′′(h̄) cos2(2kπx)−
∫ 1

0
f ′′(h̄) cos2(2kπx) dx

= f ′′(h̄) cos2(2kπx)− 1

2
f ′′(h̄).

Since E : H → rangeS is the projection of H onto the range of S, we have

E
[(
d2G

)
(w1, w1)

]
=
(
d2G

)
(w1, w1) ,

and we consider

S−1E
[(
d2G

)
(w1, w1)

]
= S−1

(
d2G

)
(w1, w1) = R(x)

⇒
(
d2G

)
(w1, w1) = SR(x).

To obtain S−1E[d2G(w1, w1)], which we denote by R(x), so that SR = E[d2G(w1, w1)],

we use the definition of εk given in (4.34) and solve the second order ordinary differential

equation satisfied by R(x),

Rxx + 4k2π2R = 4k2π2 f
′′(h̄)

f ′(h̄)
cos2(2kπx)− 2k2π2 f

′′(h̄)

f ′(h̄)
,

subject to

R(0) = R(1) and Rx(0) = Rx(1),
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which has the solution

R(x) = S−1E[d2G(w1, w1)] = −1

6

f ′′(h̄)

f ′(h̄)
cos(4kπx),

and hence

d2G(w1, S
−1E[d2G(w1, w1)]) = d2G

(
cos(2kπx),−1

6

f ′′(h̄)

f ′(h̄)
cos(4kπx)

)
= f ′′(h̄) cos(2kπx)

(
−1

6

f ′′(h̄)

f ′(h̄)
cos(4kπx)

)
−
∫ 1

0
f ′′(h̄) cos(2kπx)

(
−1

6

f ′′(h̄)

f ′(h̄)
cos(4kπx)

)
dx

= −1

6

[f ′′(h̄)]2

f ′(h̄)
cos(2kπx) cos(4kπx). (4.37)

In addition, from (4.30) we have

d3G(z1, z2, z3) =
∂3

∂t1∂t2∂t3
G(t1z1 + t2z2 + t3z3)

∣∣∣∣
t1=t2=t3=0

= f ′′′(h̄)z1z2z3 −
∫ 1

0
f ′′′(h̄)z1z2z3 dx,

and therefore,

d3G(cos(2kπx), cos(2kπx), cos(2kπx)) = f ′′′(h̄) cos3(2kπx)−
∫ 1

0
f ′′′(h̄) cos3(2kπx) dx

= f ′′′(h̄) cos3(2kπx). (4.38)

Therefore, from (4.31), (4.37) and (4.38) we obtain

g1,xxx = 〈w∗1, d3G(w1, w1, w1)− 3d2G(w1, S
−1E[d2G(w1, w1)])〉

=

∫ 1

0
cos(2kπx)

[
f ′′′(h̄) cos3(2kπx)− 3

(
−1

6

[f ′′(h̄)]2

f ′(h̄)
cos(2kπx) cos(4kπx)

)]
dx

=
3

8
f ′′′(h̄) +

1

8

[f ′′(h̄)]2

f ′(h̄)
. (4.39)
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In addition, Gε(v) = vxx, so that Gε(0) = 0 at v = 0, and hence we have

d2G(wk, S
−1EGε(0)) = 0.

Furthermore, since dGε(w) = wxx, from (4.31) we obtain

g1,xε = 〈w∗1, dGε(w1)− d2G(w1, S
−1EGε(0))〉

=

∫ 1

0
cos(2kπx)

(
−4π2k2 cos(2kπx)

)
dx

= −2k2π2. (4.40)

Referring to (4.36) and the argument following that equation, the above analysis

shows that as long as f ′(h̄) > 0 at ε = εk a circle of equilibria bifurcates from the

constant solution h ≡ h̄. The direction of bifurcation is locally determined by the sign

of g1,xxx given by (4.39). Hence, using 1/ε as the bifurcation parameter, the bifurcation

of nontrivial equilibria is supercritical if g1,xxx is negative and subcritical if it is positive.

By finding the values of h̄ where g1,xxx given by (4.39) with f(h) given by (4.13) is

zero, we finally obtain the following proposition:

Proposition 1. Bifurcations of nontrivial solutions from the constant solution h = h̄

of the problem (4.12)–(4.16) are supercritical if 1.289 < h̄ < 1.747 and subcritical if

1.259 < h̄ < 1.289 or if h̄ > 1.747.

Proof. The constant solution h ≡ h̄ will lose stability as ε is decreased only if f ′(h̄) > 0.

i.e. if −6/h̄7 + 3/h̄4 > 0, for h̄ > 21/3 ≈ 1.259. From (4.39) we have that

g1,xxx =
57h̄6 − 426h̄3 + 651

2h̄9(h̄3 − 2)
,

so that g1,xxx < 0 if h̄ ∈ (1.289, 1.747) giving the result.

For h̄ 6 21/3 there are no bifurcations from the constant solution h = h̄. Further-

more, we have the following proposition:

Proposition 2. The problem (4.12)–(4.16) has no nontrivial solutions when h̄ ≤ 1.
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Proof. Assume that such a nontrivial solution exists. Then, since h̄ ≤ 1, its global

minimum, achieved at some point x0 ∈ (0, 1), must be less than 1. (We may take the

point x0 to be an interior point by translation invariance.) But then

ε2hxx(x0) =

∫ 1

0
f(h) dx− f(h(x0)) < 0,

so the point x0 cannot be a minimum.

4.4 Two–Parameter Continuation of Solutions in the Spa-

tially Homogeneous Case

To describe the change in the global structure of branches of steady-state solutions of

the problem (4.12)–(4.16) as h̄ and ε are varied, we use AUTO [30] and our results are

summarised in Figure 4.1.

As Figure 4.1 shows, a curve of saddle-node (SN) bifurcations which originates from

h̄ ≈ 1.289 at 1/ε ≈ 23.432 satisfies h̄→ 1+ as 1/ε→∞, while a curve of SN bifurcations

which originates from h̄ ≈ 1.747, 1/ε ≈ 13.998 satisfies h̄→∞ as 1/ε→∞.

Figure 4.1 identifies three different bifurcation regimes, denoted by I, II and III,

with differing bifurcation behaviour occurring in the different regimes, namely (using

the terminology of [33] in the context of the Cahn–Hilliard equation):

• a “nucleation” regime for 1 < h̄ < 21/3 ≈ 1.259 (Regime I),

• a “metastable” regime for 21/3 < h̄ < 1.289 and h̄ > 1.747 (Regime II), and

• an “unstable” regime for 1.289 < h̄ < 1.747 (Regime III).

In Regime I, the constant solution h(x) ≡ h̄ is linearly stable, which follows from

analysing the spectrum of the operator S for f ′(h̄) < 0 in (4.32) and (4.33), but under

sufficiently large perturbations, the system will evolve to a non-constant steady-state

solution. See Laugesen and Pugh [58] for an extensive discussion of the stability analysis

of steady-state solutions to thin-film equations.
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h̄

12.774

13.998

23.432

1/ǫ

1.7471 1.2891.259

I

II III

II

SN
SN

PF

Figure 4.1: The global structure of branches of steady-state solutions with a unique
maximum, including both saddle-node (SN) (shown with dash-dotted curves) and pitch-
fork (PF) bifurcation branches (shown with solid curves). The nucleation regime
1 < h̄ < 21/3 ≈ 1.259 (Regime I), the metastable regime 21/3 < h̄ < 1.289 and
h̄ > 1.747 (Regime II), and the unstable regime 1.289 < h̄ < 1.747 (Regime III) are
also indicated.

In Regime II, as ε is decreased, the constant solution h(x) ≡ h̄ loses stability through

a subcritical bifurcation.

In Regime III, as ε is decreased, the constant solution h(x) ≡ h̄ loses stability

through a supercritical bifurcation.

4.5 The Spatially Non-Homogeneous Case

As discussed in Section 1.8, Honisch et al. [46] chose the Derjaguin disjoining pressure

Π(h, x, y) to be of the form

Π(h, x, y) =

(
1

h6
− 1

h3

)
(1 + ρG(x, y)), (4.41)
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where the function G(x, y) models the non-homogeneity of the substrate and the pa-

rameter ρ, which can be either positive or negative, is called the “wettability contrast”.

Following Honisch et al. [46], in the remainder of the present work, we consider the

specific case

G(x, y) = sin (2πx) := G(x), (4.42)

corresponding to an x-periodically patterned (i.e. striped) substrate.

There are, however, some difficulties in accepting (4.41) as a physically realistic form

of the disjoining pressure for a non-homogeneous substrate. The problems arise because

the two terms in (4.41) represent rather different physical effects. Specifically, since the

1/h6 term models the short-range interaction amongst the molecules of the liquid and

the 1/h3 term models the long-range interaction, assuming that both terms reflect the

patterning in the substrate in exactly the same way through their dependence on the

same function G(x, y) does not seem very plausible. Moreover, there are other studies

which assume that the wettability of the substrate is incorporated in either the short-

range interaction term or the long-range interaction term, but not both simultaneously,

as discussed in Section 1.8. Hence in what follows we will consider the two cases

Π(h, x) = ΠLR(h, x) and Π(h, x) = ΠSR(h, x), where LR stands for “long range” and

SR stands for “short range”, where

ΠLR(h, x) =
1

h6
− 1

h3
(1 + ρG(x)) (4.43)

and

ΠSR(h, x) =
1

h6
(1 + ρG(x))− 1

h3
, (4.44)

in both of which G(x) is given by (4.42) and ρ is the wettability contrast.

For small wettability contrast, |ρ| � 1, we do not expect there to be significant

differences between the influence of ΠLR or ΠSR of the bifurcation diagrams, as these

results depend only on the nature of the bifurcation in the homogeneous case ρ = 0 and

on the symmetry groups under which the equations are invariant. To see this, consider
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the spatially non-homogeneous version of (4.12); i.e. the boundary value problem

ε2hxx + f(h, x)−
∫ 1

0
f(h, x) dx = 0, 0 < x < 1, (4.45)

where now

f(h, x) = ΠLR(h, x) or f(h, x) = ΠSR(h, x). (4.46)

subject to the periodic boundary conditions and the volume constraint,

h(0) = h(1), hx(0) = hx(1), and

∫ 1

0
h(x) dx = h̄. (4.47)

Seeking an asymptotic solution to (4.45)–(4.47) in the form

h(x) = h̄+ ρh1(x) +O(ρ2)

in the limit ρ → 0, by substituting this anzatz into (4.45), we find that in the case of

ΠLR(h, x), we have

h1(x) = − h̄4 sin (2πx)

4π2h̄7ε2 − 3h̄3 + 6
, (4.48)

while, in the case of ΠSR(h, x), the equivalent result is

h1(x) =
h̄ sin (2πx)

4π2h̄7ε2 − 3h̄3 + 6
, (4.49)

(see Appendix F for details of the derivation of these two solutions).

For non-zero values of ρ, in both the ΠLR and ΠSR cases, the changes in the bifur-

cation diagrams obtained in the homogeneous case (ρ = 0) are an example of forced

symmetry breaking (see, for example, Chillingworth [20]), which we discuss further in

Appendix G. More precisely, we show there that, when ρ 6= 0, out of the entire O(2)

orbit, only two equilibria are left after symmetry breaking. Note that, in Figure 4.2

and subsequent figures, we use ‖ · ‖2 to denote L2([0, 1]) norms.
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1/ǫ

‖h− h̄‖2

(a)

PSfrag replacements

1.5
1/ǫ

‖h− h̄‖2

(b)

PSfrag replacements

1.5
1/ǫ

‖h− h̄‖2

(c)

Figure 4.2: Bifurcation diagrams of solutions with a unique maximum, showing ‖h−h̄‖2
plotted as a function of 1/ε when the disjoining pressure is ΠLR for ρ = 0 (dashed
curves), ρ = 0.005 (doted curves) and ρ = 0.05 (solid curves) for (a) h̄ = 1.24, (b)
h̄ = 1.3, and (c) h̄ = 2, corresponding to Regimes I, III and II, respectively.

Figure 4.2 shows how, for small wettability contrast, |ρ| � 1, the resulting spa-

tial non-homogeneity introduces imperfections [38] in the bifurcation diagrams of the

homogeneous case ρ = 0 discussed in Section 4.4. It presents bifurcation diagrams in

Regimes I, II and III when the disjoining pressure ΠLR is given by (4.43) for a range
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ρ

‖h− h̄‖2

Figure 4.3: Bifurcation diagram for steady-state solutions with a unique maximum
showing ‖h − h̄‖2 plotted as a function of ρ when the disjoining pressure is ΠLR, for
h̄ = 3 and 1/ε = 50. The leading-order dependence of ‖h − h̄‖2 on ρ as ρ → 0, given
by (4.48), is shown with dashed lines.

of small values of ρ, together with the corresponding diagrams in the case ρ = 0. The

corresponding bifurcation diagrams when the disjoining pressure ΠSR is given by (4.44)

are very similar and hence are not shown here.

For large wettability contrast, specifically for |ρ| ≥ 1, significant differences between

the two forms of the disjoining pressure are to be expected. When using ΠLR, one

expects global existence of positive solutions for all values of |ρ|; see for example Wu

and Zheng [123]. On the other hand, when using ΠSR, there is the possibility of rupture

of the liquid film for |ρ| ≥ 1; see for example Bertozzi et al. [12] and Wu and Zheng

[123], which means in this case we do not expect positive solutions for sufficiently large

values of |ρ|.
In Figure 4.3, we plot the branches of the positive solutions of (4.45)–(4.47) with

a unique maximum when the disjoining pressure is ΠLR for h̄ = 3 and 1/ε = 50, so
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ρ

‖h− h̄‖2

Figure 4.4: Bifurcation diagram for steady-state solutions with a unique maximum
showing ‖h − h̄‖2 plotted as a function of ρ when the disjoining pressure is ΠSR, for
h̄ = 3 and 1/ε = 50. The leading-order dependence of ‖h− h̄|2 on ρ as ρ→ 0, computed
using (4.49), is shown with dashed lines. Note that the upper branches of solutions
cannot be extended beyond |ρ| = 1 (indicated by filled circles).

that when ρ = 0 we are in Regime II above the curve PF of pitchfork bifurcations from

the constant solution (see Figure 4.1). The work of Bertozzi et al. [12] and of Wu and

Zheng [123], shows that strictly positive solutions exist for all values of |ρ|, beyond the

range [−2, 2] for which we have we performed the continuation.

Figure 4.4 shows that the situation is different when the disjoining pressure is ΠSR

(with same h̄ and ε). At |ρ| = 1, one of the branches of smooth solutions disappears

due to rupture of the film, so that at some point x0 ∈ [0, 1], we have h = 0 and a

strictly positive solution no longer exists, while the other two branches disappear at a

saddle node bifurcation at |ρ| ≈ 5.8. Note that, in Figures 4.3 and 4.4, the non-trivial

“solution” on the axis ρ = 0 is, in fact, a whole O(2)-symmetric orbit of solutions
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Figure 4.5: Solutions h(x) when the disjoining pressure is ΠSR for h̄ = 2 and 1/ε = 30
for ρ = 0, 0.97, 0.98, 0.99 and 1, denoted by 1, 2, 3, 4 and 5, respectively, showing
convergence of strictly positive solutions to a non-strictly positive one as ρ→ 1−.

predicted by the analysis leading to Figure 4.1.

Note that, when the disjoining pressure is ΠSR, given by (4.44), we are unable to

use AUTO to continue branches of solutions beyond the rupture of the film.

Figure 4.5 shows the film approaching rupture as ρ → 1− at the point where the

coefficient of the short-range interaction term disappears when ρ = 1, i.e. when 1 +

sin(2πx) = 0 and hence at x = 3/4. These numerical results are consistent with the

arguments of Bertozzi et al. [12].

Investigation of the possible leading-order balance in (4.12) when the disjoining

pressure is ΠSR and ρ = 1 in the limit x → 3/4 reveals that h(x) = O
(
(x− 3/4)2/3

)
;

continuing the analysis to higher order yields

h = (2π2)
1
3

(
x− 3

4

) 2
3

− 4
(
4π10

)1/3
ε2

27

(
x− 3

4

) 4
3

+O

((
x− 3

4

)2
)
. (4.50)
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x

h
h(x)

Asymptotic
Solution

Figure 4.6: Detail near x = 3/4 of the solution h(x) shown with solid line when the
disjoining pressure is ΠSR and ρ = 1, and the two-term asymptotic solution given by
(4.50) shown with dashed lines for h̄ = 2 and ε = 1/30.

Figure 4.6 shows the detail of the excellent agreement between the solution h(x)

when ρ = 1 and the two-term asymptotic solution given by (4.50) close to x = 3/4.

Finally, Figures 4.7 and 4.8 show the multiplicity of solutions with a unique max-

imum for the disjoining pressures ΠLR and ΠSR, respectively, in the (1/ε, ρ)-plane in

the three regimes shown in Figure 4.1.

In Figure 4.8 the horizontal dashed line at ρ = 1 indicates rupture of the film and

loss of a smooth strictly positive solution, implying that there are regions in parameter

space where no such solutions exist.

In Figure 4.9, we give a detailed interpretation of Figure 4.7(c); a similar inter-

pretation applies to the other parts of Figure 4.7 and Figure 4.8. Each of the curves

in Figure 4.7(c) represents a saddle-node bifurcation. Like Figure 4.2(c), Figure 4.9

illustrates the bifurcation diagram of steady-state solutions with h̄ = 2 (Regime II) for

ρ = 0 and ρ = 0.005. Increasing 1/ε leads to a succession of saddle-node bifurcations

in which the steady-state solutions change from 1 to 3 to 5 and then back to 3 again.
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Figure 4.7: Multiplicity of strictly positive solutions with a unique maximum in the
(1/ε, ρ)-plane when the disjoining pressure is ΠLR for (a) h̄ = 1.24 (Regime I), (b)
h̄ = 1.3 (Regime III), and (c) h̄ = 2 (Regime II).

Figure 4.10, is a plot of the five steady-state solutions with a unique maximum, as

shown in Figure 4.9 by (i)-(v).
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Figure 4.8: Multiplicity of strictly positive steady state solutions with a unique maxi-
mum in the (1/ε, ρ)-plane when the disjoining pressure is ΠSR for (a) h̄ = 1.24 (Regime
I), (b) h̄ = 1.3 (Regime III), and (c) h̄ = 2 (Regime II).
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Figure 4.9: Bifurcation diagram of steady-state solutions with h̄ = 2 (Regime II) for
ρ = 0 (dashed curves) and ρ = 0.005 (solid curves) indicating the different branches of
steady-state solutions.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

U(
1)

x

h

(i)

(iv)

(v)

(iii)

(ii)

10.90.80.70.60.50.40.30.20.10
1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Figure 4.10: Steady-state solutions on the five branches of solutions indicated in Figure
4.9 by (i)-(v).
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4.6 Conclusions

In the present chapter we have investigated the steady-state solutions of the thin-film

evolution equation (4.1) both in the spatially homogeneous case (4.12)–(4.15) and in

the spatially non-homogeneous case for two choices. Notably, these choices of spatially

non-homogeneous Derjaguin disjoining pressure are given by (4.43) and (4.44). To this

end, we provided a physical motivation for the above choices regarding the disjoining

pressure. As we described in Section 4.1, we concentrated on the simplest steady-

state solutions of (4.12)–(4.16); in particular, on branches of solutions with a unique

maximum.

In the spatially homogeneous case (4.12)–(4.16), we used the Liapunov–Schmidt

reduction of an equation invariant under the action of the O(2) symmetry group to

obtain local bifurcation results and to determine the dependence of the direction and

nature of bifurcation in bifurcation parameter 1/ε on the average film thickness h̄;

our results on the existence of three different bifurcation regimes, (namely nucleation,

metastable, and unstable) are summarised in Propositions 1 and 2 and in the phase

diagram shown in Figure 4.1, obtained using AUTO.

In the spatially non-homogeneous case (4.45)–(4.47), we clarified the O(2) symmetry

breaking phenomenon (see Appendix G) and presented imperfect bifurcation diagrams

in Figure 4.2 and global bifurcation diagrams using the wettability contrast ρ as a

bifurcation parameter for fixed ε and h̄ in Figures 4.3 and 4.4.

To assist in more detailed discussion of Figure 4.3, Figure 4.11 adds labels to the

various branches of strictly positive steady state solutions that have a unique maximum.

These labels are explained below.

The language of global compact attractors [41, 123] can be used to explain our

results. In systems such as (4.3), the global compact attractor of the PDE is the union

of equilibria and their unstable manifolds. Figures 4.12 and 4.13 illustrate the global
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‖h− h̄‖2

Figure 4.11: Figure 4.3 with the different solution branches labelled.

O

Figure 4.12: Sketch of the global attractor for ρ = 0. The thicker circle represents the
O(2) orbit of steady-states and O represents the constant solution h(x) = h̄.

attractor of (4.3) for ε = 1/50 and h̄ = 3, which are the values that were used to plot

Figure 4.3. For these values of the parameters the attractor is two-dimensional and we

sketch its projection onto a plane.
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B

C

A

Figure 4.13: Sketch of the global attractor for small non-zero values of |ρ|. The points
A, B, C correspond to the steady-state solutions labelled in Figure 4.11.

When ρ = 0, for 1/ε = 50, the attractor is two-dimensional; the constant solution

h ≡ h̄ denoted by O has a two-dimensional unstable manifold and X corresponds to

a whole O(2) orbit of steady-state solutions. A sketch of the attractor in this case is

shown in Figure 4.12.

When |ρ| takes small positive values, only two steady-state solutions, denoted by A

and C remain from the entire O(2) orbit, as discussed in Appendix G, while the constant

solution continues to B without change of stability. The resulting two-dimensional

attractor is sketched in Figure 4.13.

Increasing |ρ| causes the steady-state solutions A and B to coalesce in a saddle-node

bifurcation, so that the attractor degenerates to a single asymptotically stable steady-

state solution. It would be interesting to understand why this collision of steady-state

solution branches occurs.

We have also explored the geometry of film rupture, which occurs as ρ → 1−

when the disjoining pressure is given by ΠSR. This phenomenon is shown in detail in

Figures 4.5 and 4.6.

Finally, Figures 4.7 and 4.8 show the results of a two-parameter continuation study

in the (1/ε, ρ) plane, which illustrates how the multiplicity of positive steady-state so-

lutions changes as parameters are varied. Specifically, in the case of Derjaguin pressure
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ΠSR shown in Figure 4.8, regimes are indicated in parameter space where no such solu-

tions exist. We conjecture that, in such regimes, solving the unsteady problem for any

positive initial condition will converge to a weak non-negative steady-state solution of

the thin-film equation, with regions where h(x) = 0, i.e. a steady-state solution with

film rupture. A discussion of this kind of non-classical solution of thin-film equations

in homogeneous cases is given in the work of Laugesen and Pugh [59].

In the case of disjoining pressure ΠSR (4.44), we could not use the AUTO-07p

version of AUTO to continue branches of solutions beyond rupture; that is, we could

not use AUTO to compute weak non-negative steady-state solutions discussed in the

previous paragraph. It would be an interesting project to develop such a capability for

this powerful and versatile piece of software.

Figures 4.8(b) and 4.8(c) provide numerical evidence for the existence of a curve

of saddle-node bifurcations, converging to the point (0, 1) in the (1/ε, ρ) plane; an

explanation for this feature of the global bifurcation diagrams requires further study.

In summary: the primary inspiration for our study came from the work of Honisch

et al. [46]. Our study clarifies the mathematical properties of (4.12)–(4.15) and (4.45)–

(4.47), giving a better understanding of the structure of bifurcations in Figure 3(a) of

that paper for non-zero values of ρ. However, mathematical exploration of many of

their other numerical findings has not yet been undertaken; this includes the stability

of ridge solutions shown in their Figure 5 in the context of the full two-dimensional

problem of a substrate with periodic wettability stripes. Clearly, a lot of work is still

needed on heterogeneous substrates with more complex wettability geometry.
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Conclusions and Future Work

5.1 Conclusions

In this thesis, we considered three different but related problems involving thin-film

flow over complex surfaces, two problems concerned with rivulet flow down an inclined

substrate and one concerning thin-film flow on a heterogeneous substrate.

In Chapter 2, we examined the locally unidirectional flow of a rivulet with prescribed

flux Q̄ > 0 on a slippery substrate inclined at an angle α to the horizontal in two cases.

The first case concerned a rivulet with constant semi-width a = ā (> 0) (i.e. pinned

contact lines) and a variable contact angle. The second case concerned a rivulet with

variable semi-width and a constant non-zero contact angle β = β̄ (≥ 0). In particular,

we considered rivulet flow in the azimuthal direction from the top, corresponding to

α = 0, to the bottom, corresponding to α = π, of a large horizontal cylinder. The

influence of different slip lengths λ upon the flow was determined, and, in particular,

we were able to show that the features of the rivulet, including shape and size, were

strongly dependent on the value of λ. However, in both cases, we found that for all

values of λ > 0 many of the qualitative features of the rivulet (such as, for example,

that a narrow rivulet with constant semi-width a = ā ≤ π can run from α = 0 to

α = π and a wide rivulet with constant semi-width a = ā > π can run from α = 0, but

only to a critical angle α = αc) are the same as in the classical case of no slip, λ = 0.

Furthermore, we observed that αc is independent of λ.

146
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For a rivulet with constant semi-width a = ā (> 0), we found that, in the limit of

strong slip (i.e. λ → ∞) the rivulet becomes shallow and the velocity becomes large

and plug-like, while for a rivulet with positive constant contact angle β = β̄ (> 0), we

found that in the same limit the rivulet becomes narrow and shallow and the velocity

becomes large and plug-like.

We also considered the effect of a Greenspan (rather than a Navier) slip condition

and found that the behaviour of the rivulet is qualitatively (but not quantitatively)

similar to the behaviour of the rivulet with the Navier slip condition.

In Chapter 3, we considered the steady gravity-driven flow of a symmetrical rivulet

of a Newtonian fluid as it flows over and through an inclined planar membrane inclined

at an angle α to the horizontal. In this problem, the membrane consists of two parts:

an impermeable part for x ≤ 0, and a permeable part for x > 0. As in Chapter 2,

we studied how a rivulet with a prescribed volume flux Q̄ (> 0) behaves with either a

constant semi-width or with a constant contact angle. We focused on the behaviour of

the rivulet on the permeable part of the membrane. In particular, we determined the

survival length L of the rivulet on the permeable part.

For a rivulet with constant semi-width a = ā (> 0), we found exact solutions for

both the contact angle and the survival length L of the rivulet. We found that the

survival length L of the rivulet depends on the value of ā. When 0 < ā < π/2, rivulets

exist and have a finite survival length for all values of α. On the other hand, when

ā ≥ π/2, there is a critical value of α = αcrit at which the survival length of the rivulet

tends to infinity, and for α > αcrit there is no physically realisable solutions because

it always predicts that L < 0, where αcrit (π/2 < αcrit ≤ π) is obtained by solving the

equation mā = π/2 for α.

For a rivulet with a constant contact angle β = β̄ (≥ 0), we obtained exact solutions

for both the contact angle and the survival length of the rivulet only for the special

case α = π/2. For other values of α, a nonlinear ordinary differential equation for a(x)

had to be solved numerically. We found that when 0 < ā ≤ π/2, rivulets exist and have

a finite survival length L for all values of α. On the other hand, when ā > π/2, similar

to the case of constant semi-width, there is a critical value of α = αcrit at which the
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survival length of the rivulet tends to infinity, and for α > αcrit there is no physically

realisable solutions. We also found that there exists an interval for the constant semi-

width ā in which the survival length of the rivulet L varies non-monotonically with α,

having a local maximum and a local minimum. At a critical value of ā = ācrit, the local

maximum and minimum coalesce. Above this critical value, the survival length of the

rivulet increases monotonically to infinity as α→ αcrit
−.

In Chapter 4, we investigated pattern formation in a thin film on both spatially ho-

mogeneous and non-homogeneous planar substrates with a Derjaguin disjoining pres-

sure. In the case of spatially homogeneous substrate we used a Liapunov–Schmidt

reduction to show how the local bifurcation structure of the problem is dependent on

the average film thickness h̄. Using AUTO, we explored the global structure of branches

of stationary solutions for both a spatially homogeneous substrate case and a spatially

non-homogeneous substrate case.

For the spatially homogeneous case, we showed, in Propositions 2 and 3, the condi-

tions under which supercritical and subcritical bifurcations occur. We also showed that

there are no nontrivial solutions when h̄ ≤ 1. We identified three different bifurcation

regimes; nucleation, metastable, and unstable regimes, as shown in Figure 4.1.

For the spatially non-homogeneous case, we considered two forms of Derjaguin

disjoining pressure and studied the dependence of the stationary solutions on the wet-

tability contrast ρ. When the wettability contrast was small, we found the same im-

perfections were introduced in the bifurcation diagrams of the homogeneous case for

both forms of disjoining pressure. When the wettability contrast was large, we found

significant differences between the bifurcation diagrams for the two forms of disjoining

pressure. Specifically, for the first form in which we introduced varying wettability

properties in the long-range part of the disjoining pressure, we found that positive so-

lutions exist for all values of the wettability contrast. For the second form in which

we introduced varying wettability properties in the short-range part of the disjoining

pressure, we found that positive solutions do not exist for sufficiently large values of

the wettability contrast. This is due to the rupture of the film which is expected since

the disjoining pressure of the second form is known to lead to finite-time rupture.
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For both cases, we calculated branches of stationary solutions using AUTO. How-

ever, for the spatially non-homogeneous case, we were not able to use AUTO to con-

tinue generating branches of solutions beyond the rupture of the film. In particular, we

could not use AUTO to compute weak non-negative stationary solutions of the thin-film

equation having regions in which the steady state is zero (i.e. h(x) = 0).

5.2 Future Work

As we said at the start of Section 5.1, the work described in this thesis has addressed

some problems regarding thin-film flows over complex surfaces. This section discusses

some possible directions for future work in this area building on the work presented in

this thesis.

In Chapter 2, we considered gravity-driven rivulet flow down an inclined slippery

substrate for a rivulet with either constant width or constant contact angle. In particu-

lar, we employed the most widely used slip condition, namely the Navier slip condition,

and determined the effect that varying the slip length λ has on the rivulet. Even though

we also used another slip model, namely the Greenspan slip condition, in which λ is

considered as a function of the rivulet thickness h namely λ = λG/h, where λG is a

positive constant, it would also be of interest to examine the effects of other slip models

and compare it with our analysis. For example, the slip model proposed by Haley and

Miksis [42] namely λ = λHM/h
2, where λHM is a positive constant, could be considered.

In Chapter 3, we considered the steady gravity-driven flow of a symmetrical rivulet

over and through a permeable membrane. One of the most fundamental assumptions

in this analysis is that once the fluid has passed through the membrane, it falls off the

lower surface of the membrane and plays no further role in the problem. Future research

on this problem should consider what happens if some or all of the fluid adheres to the

lower surface of the membrane in the form of a new rivulet, as shown in Figure 5.1,

where h+(x, y) and h−(x, y) denote the film thickness above and below the membrane,

respectively. In this situation (i.e. a rivulet flow below the membrane), the rivulet

may become unstable and break up into a number of separate rivulets depending on
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Q̄
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z = h+(x, y)

z = h−(x, y)

Figure 5.1: Geometry of a rivulet flowing down an inclined planar substrate similar
to the problem considered in Chapter 3, where h+(x, y) and h−(x, y) denote the film
thickness above and below the membrane, respectively. However, in this problem fluid
forms a second rivulet on the underside of the membrane after passing through it.

its width and the substrate inclination.

In Chapter 4, we revisited the work of Honisch et al. [46] and we investigated the sta-

tionary solutions of a thin-film equation. One possible avenue for future research would

be to extend this work by studying a three-dimensional situation in which the height

of the thin liquid layer h is dependent upon both the x and the y coordinates. Such a

study would help us to understand how ρ and h̄ influence the stability of y-independent

solutions in the plane and thereby investigate the stability of ridge solutions shown in

Figure 5 of Honisch et al. [46].

Future research could also examine the asymptotic structure of the stationary so-

lutions of (4.12)–(4.16) in the limit ε → 0, which corresponds to the limit of weak

surface tension. Our numerical calculations using AUTO show that a droplet-like (i.e.

“hump”) solution of this problem, with volume h̄−1 > 0 sitting on an adsorbed film of

uniform thickness unity, becomes thinner and taller as ε→ 0. Though this limit takes

us beyond the domain of validity of the thin film approximation, the challenge is to

quantify mathematically this sharpening and thinning process.



Chapter 5 151

Several studies, for example, Oron and Bankoff [79], Amini and Homsy [7] and Ji

and Witelski [50] have studied various evaporation models in which the evaporative

flux (i.e. the mass loss) has various different forms. Another way to expand upon

the work presented in Chapter 4 would be to incorporate the effects of evaporation

into the thin-film equation (4.1) and then to investigate the bifurcation structure of

its steady state solutions. Also, for example, we can investigate the influence of the

substrate properties, such as the wettability of the substrate and the stripe widths,

on the evaporation rate. Such an analysis would help to improve our fundamental

understanding of evaporation on complex surfaces.

Bates and Fife [9] formulated spectral comparison principles, comparing the spc-

tra of linearizations around steady states for the Cahn-Hilliard and nonlocal bistable

reaction-diffusion equation. This has relevance to the work described in Chapter 4. The

solutions of equations (4.45)–(4.47), the steady-state solutions of the one-dimensional

version of the evolution equation (4.1), which is a degenerate quasi-linear fourth-order

PDE given by (4.3), namely

ht = (Q(h)P (x, h)x)x, 0 < x < L, (5.1)

where Q(h) is the mobility coefficient, and P (x, h) is the generalized pressure as dis-

cussed in Section 4.1, are be thought of as the steady-state solutions of a much simpler

second-order semi-linear non-local equation:

ht = γhxx + Π(h, x)− 1

L

∫ L

0
Π(h, x) dx, 0 < x < L. (5.2)

Thus, it would be interesting to extend the work of Chapter 4 by using the spectral

comparison principles of Bates and Fife [9] to discuss the stability of stationary solutions

of equation (5.2).

As we mentioned at the end of Section 5.1, we could not use AUTO to compute

weak non-negative stationary solutions of the thin-film equation. Therefore, future

studies could fruitfully explore this issue further by adding to AUTO the capability to

solve for non-negative, non-smooth stationary solutions.
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In conclusion, while the work in this thesis gives some new insights into thin-film flow

over complex surfaces, there are still many aspects of this fascinating and industrially

important area to explore.
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Real Solution of Equation (2.19)

in the General Case λ ≥ 0

In this Appendix we present the real solution hm of the cubic polynomial equation

(2.19), namely

h3
m +

18λ

5
h2

m −
24Q̄m

5π sinα
= 0, (A.1)

in the general case λ ≥ 0.

Given a cubic polynomial of the form

f(x) = ax3 + bx2 + cx+ d, (A.2)

and defining the following quantities

xN = − b

3a
, yN = f(xN ), δ2 =

b2 − 3ac

9a2
, k = 2aδ3, (A.3)

Holmes [45] shows that in the case |yN/k| > 1, there is one real root given by

x = xN + 2δ cosh

(
1

3
cosh−1

(
−yN
k

))
, (A.4)

when
yN
k
< −1, (A.5)
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and

x = xN − 2δ cosh

(
1

3
cosh−1

(yN
k

))
, (A.6)

when
yN
k
> 1. (A.7)

For the case |yN/k| ≤ 1, Nickalls [75] showed that there are three real roots given by

x1 = xN + 2δ cos θ, (A.8)

x2 = xN + 2δ cos (2π/3 + θ) , (A.9)

x3 = xN + 2δ cos (4π/3 + θ) , (A.10)

where

θ =
1

3
cos−1

(
−yN
k

)
. (A.11)

Following the approach of Holmes [45] and Nickalls [75], we define the following quan-

tities

a = 1, b =
18λ

5
, xN = −6λ

5
,

yN =
432

125
λ3 − 24Q̄m

5π sinα
, δ =

6λ

5
, k =

432λ3

125
,

(A.12)

hence when Q̄ > Q∗ for λ > 0, we obtain yN/k < −1 and therefore the solution of

(A.1) is

hm =
6λ

5

{
2 cosh

[
1

3
cosh−1

(
25Q̄m

18πλ3 sinα
− 1

)]
− 1

}
, (A.13)

and that when 0 ≤ Q̄ ≤ Q∗ for λ > 0, we have |yN/k| ≤ 1 and therefore there is a

unique positive solution

hm =
6λ

5

{
2 cos

[
1

3
cos−1

(
25Q̄m

18πλ3 sinα
− 1

)]
− 1

}
. (A.14)

Note that in the limit of weak slip, λ→ 0+, the leading-order term of equations (A.13)

and (A.14) is given by

hm =

(
24Q̄m

5π sinα

) 1
3

(A.15)
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which is exactly the solution in the special case of zero slip length, λ = 0, given by

equation (1.22).



Appendix B

Real Solution of Equation (2.44)

in the General Case λ ≥ 0

In this Appendix we follows very similar lines to the derivation in Appendix A and

present the real solution β of the cubic polynomial equation (2.44), namely

β3 +
9λmg(mā)

f(mā)
β2 − 9Q̄m4

f(mā) sinα
= 0, (B.1)

in the general case λ ≥ 0.

Given a cubic polynomial of the form

f(x) = ax3 + bx2 + cx+ d, (B.2)

and defining the following quantities

xN = − b

3a
, yN = f(xN ), δ2 =

b2 − 3ac

9a2
, k = 2aδ3, (B.3)

Holmes [45] shows that in the case |yN/k| > 1, there is one real root given by

x = xN + 2δ cosh

(
1

3
cosh−1

(
−yN
k

))
, (B.4)
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when
yN
k
< −1, (B.5)

and

x = xN − 2δ cosh

(
1

3
cosh−1

(yN
k

))
, (B.6)

when
yN
k
> 1. (B.7)

For the case |yN/k| ≤ 1, Nickalls [75] showed that there are three real roots given by

x1 = xN + 2δ cos θ, (B.8)

x2 = xN + 2δ cos (2π/3 + θ) , (B.9)

x3 = xN + 2δ cos (4π/3 + θ) , (B.10)

where

θ =
1

3
cos−1

(
−yN
k

)
. (B.11)

Following the approach of Holmes [45] and Nickalls [75], we define the following quan-

tities

a = 1, b =
9λmg(mā)

f(mā)
, xN = −3λmg(mā)

f(mā)
,

yN =
54λ3m3g(mā)3

f(mā)3
− 9Q̄m4

f(mā) sinα
, δ =

3λmg(mā)

f(mā)
, k =

54λ3m3g(mā)3

f(mā)3
,

(B.12)

hence when Q̄mf(mā)2 > 12λ3g(mā)3 sinα for λ > 0, we obtain yN/k < −1 and

therefore the solution of (B.1) is

β =
3λmg(mā)

f(mā)

{
2 cosh

[
1

3
cosh−1

(
Q̄mf(mā)2

6λ3g(mā)3 sinα
− 1

)]
− 1

}
. (B.13)

Here we did not use (B.6) since (B.7) is not fulfilled. When 0 ≤ Q̄mf(mā)2 ≤
12λ3g(mā)3 sinα and for λ > 0, we have |yN/k| ≤ 1 and therefore there is a unique

positive solution given by
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β =
3λmg(mā)

f(mā)

{
2 cos

[
1

3
cos−1

(
Q̄mf(mā)2

6λ3g(mā)3 sinα
− 1

)]
− 1

}
. (B.14)

Note that in the limit of weak slip, λ→ 0+, the leading-order term of equations (B.13)

and (B.14) is given by

β =

(
9Q̄m4

f(mā) sinα

) 1
3

(B.15)

which is exactly the solution in the special case of zero slip length, λ = 0, given by

equation (2.45).



Appendix C

Asymptotic Behaviour of αmin

and βmin in the Limit λ→∞

In this Appendix we determine the asymptotic behaviour of αmin and βmin shown

in Figure 2.9 in Chapter 2 in the limit of a strong slip, λ → ∞, for a rivulet with

constant semi-width a = ā. Note that a similar procedure can be used to determine

the asymptotics behaviour in the limit of a weak slip, λ→ 0+.

When λ → ∞ we find from (2.34) that β → 0. Writing the solution of equation

(2.34) in the form of an expansion

β(λ) = β0(λ) + β1(λ) (C.1)

and substituting expansion (C.1) in (2.34), taking only the main terms β0(λ), we obtain

β0 =

√
m3Q̄

g(mā) sinα

1

λ
and β1 = − β2

0

18m

f(mā)

g(mā)

1

λ
. (C.2)

Hence we have

β =

√
m3Q̄

g(mā) sinα

1

λ
− m2Q̄

18 sinα

f(mā)

(g(mā))2

(
1

λ

)2

. (C.3)

159



Appendix C 160

Let

B1(α) =

√
m3Q̄

g(mā) sinα
and B2(α) = − m2Q̄

18 sinα

f(mā)

(g(mā))2
. (C.4)

Then

β = B1(α)

(
1

λ

) 1
2

+B2(α)

(
1

λ

)2

. (C.5)

To find αmin, we write the equation β′(α) = 0 then

β′(α) = B′1(α)

(
1

λ

) 1
2

+B′2(α)

(
1

λ

)2

= 0, (C.6)

where

B′1(α) =
1

2

√
mQ̄

g(mā) sinα

{[
3− g′(mā)

g(mā)
mā

]
m′(α)−m cotα

}
(C.7)

and

B′2(α) =− mQ̄

18(g(mā))2 sinα

×
{(

2f(mā)

[
1− g′(mā)

g(mā)
mā

]
+ f ′(mā)mā

)
m′(α)−mf(mā) cotα

}
.

(C.8)

We write the solution of equation (C.6) in the form

α(λ) = α0(λ) + α1(λ). (C.9)

Substituting expansion (C.9) in (C.6) and taking the first term α0(λ) and the main

terms, we obtain

B′1 (α0)

(
1

λ

) 1
2

= 0 (C.10)

and hence

B′1 (α0) = 0. (C.11)

Substituting (C.7) in (C.11) and using m =
√
| cosα| and m′(α) = − sinα/2m, we get

g′ (m0ā)

g (m0ā)
m0ā− 3 =

2m4
0

1−m4
0

, (C.12)
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where m0 = m (α0). Let x = m0ā, then

g′(x)

g(x)
x− 3 =

2x4

ā4 − x4
(C.13)

and hence

ā4 = x4 g
′(x)x− g(x)

g′(x)x− 3g(x)
. (C.14)

Let

H(x) = ā = x

(
g′(x)x− g(x)

g′(x)x− 3g(x)

) 1
4

(C.15)

then we can write x as

x = H−1(ā) (C.16)

where H−1 is the inverse function of H(x). Then we have

m0 =
1

ā
H−1(ā) (C.17)

and

α0 = π − arccos

(
1

ā2

[
H−1(ā)

]2)
. (C.18)

To find the term α1(λ), we substitute the expansion (C.9) in (C.6) and obtain

α1 = −B
′
2 (α0)

B′′1 (α0)

(
1

λ

) 3
2

(C.19)

then we have

αmin(λ) = α0 −
B′2 (α0)

B′′1 (α0)

(
1

λ

) 3
2

. (C.20)

To find βmin, we can write from (C.5) that

βmin = B1 (αmin)

(
1

λ

) 1
2

+B2 (αmin)

(
1

λ

)2

. (C.21)

Substituting expansion (C.9) in (C.21), taking into account (C.11) we obtain

βmin = B1 (α0)

(
1

λ

) 1
2

+B2 (α0)

(
1

λ

)2

(C.22)
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and hence

βmin =

√
m3

0Q̄

g (m0ā) sinα0

(
1

λ

) 1
2

− m2
0Q̄

18 sinα0

f (m0ā)

(g (m0ā))2

(
1

λ

)2

(C.23)

(Note that the root of (C.15) can only be found using a numerical method. Here we

used the mathematical software Mathematica and in particular we use the command

FindRoot which searches for a numerical root for the equation).



Appendix D

Asymptotic Behaviour of αmin

and hm(min) in the Limit λ→∞

In this Appendix we determine the asymptotic behaviour of αmin and hm(min) shown

in Figure 2.16 in Chapter 2 in the limit of a strong slip, λ → ∞, for a rivulet with

constant contact angle β = β̄. Note that the same procedure can be used to determine

the asymptotics behaviour in the limit of a weak slip, λ→ 0+.

When λ→∞ we find from (2.113) that

a = a0 + a1 =

(
15Q̄

4β̄2 sinα

) 1
3
(

1

λ

) 1
3

± 5Q̄m2

28β̄2 sinα

1

λ
, (D.1)

where the upper sign in (D.1) (and in the following formulas) corresponds to case

0 ≤ α < π/2, and the lower one corresponds to case π/2 < α ≤ π.

In the limit ma→ 0+, equation (2.33) become

hm =
β̄

m
×



ma

2
− (ma)3

24
+

(ma)5

240
+O

(
(ma)7

)
for 0 ≤ α < π

2
,

ma

2
for α =

π

2
,

ma

2
+

(ma)3

24
+

(ma)5

240
+O

(
(ma)7

)
for

π

2
< α ≤ π.

(D.2)
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Then, using (D.2) the expansion for function hm can be written as

hm =
β

m

{
m

2
(a0 + a1 + · · · )∓ m3

24
(a0 + a1 + · · · )3 ∓ m5

240
(a0 + a1 + · · · )5 + · · ·

}
(D.3)

then

hm =
β̄

2

{
a0 +

(
a1 ∓

m2

12
a3

0

)
+ · · ·

}
. (D.4)

Substituting a0 and a1 from (D.1) in (D.4), we obtain

hm =
1

2

(
15β̄Q̄

4 sinα

) 1
3
(

1

λ

) 1
3

∓ 15Q̄m2

224β̄ sinα

1

λ
∓ 1

42

(
15βQ

4 sinα

) 2
3
(

1

λ

) 5
3

. (D.5)

If α minimizes the function hm(α), then we write the equation hm
′(α) = 0

hm
′(α) = −1

6

(
15β̄Q̄

4

) 1
3 cosα

(sinα)
4
3

(
1

λ

) 1
3

∓ 15Q̄

224β̄

2mm′ sinα−m2 cosα

(sinα)2

1

λ
+O

((
1

λ

) 5
3

)
= 0,

(D.6)

where

m′ = ∓sinα

2m
. (D.7)

We can find the solution of equation (D.6) in the form of an expansion

α(λ) = α0(λ) + α1(λ), (D.8)

where α1(λ)� α0(λ). Substituting expansion (D.8) in (D.6) and keeping only the first

term α0(λ) and the main terms, we obtain

1

2

(
15βQ

4

) 1
3
(
−1

3

)
cosα0

(sinα0)
4
3

(
1

λ

) 1
3

= 0 (D.9)

hence

α0 =
π

2
. (D.10)

To find the term α1(λ), substituting expansion (D.8) in (D.6) and keeping only the
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main terms, we obtain

α1 = − 3

112

(
30Q̄

β̄2

) 2
3
(

1

λ

) 2
3

(D.11)

then, we have

αmin =
π

2
− 3

112

(
30Q̄

β̄2

) 2
3
(

1

λ

) 2
3

. (D.12)

From (D.12) we see that αmin <
π
2 , hence, m2 = cosαmin. Then the expression (D.5)

takes the form

hm(min) =
1

2

(
15β̄Q̄

4

) 1
3
(

1

sinαmin

) 1
3
(

1

λ

) 1
3

− 15Q̄

224β̄
cotαmin

1

λ

− 1

42

(
15βQ

4

) 2
3
(

1

sinαmin

) 2
3
(

1

λ

) 5
3

(D.13)

then by substituting (D.12) in (D.13) we obtain

hm(min) =
1

2

(
15β̄Q̄

4

) 1
3
(

1

cosα1

) 1
3
(

1

λ

) 1
3

+
15Q̄

224β̄
tanα1

1

λ

− 1

42

(
15βQ

4

) 2
3
(

1

cosα1

) 2
3
(

1

λ

) 5
3

. (D.14)

For small α1, we have the following expansions:

(
1

cosα1

) 1
3

= 1 +
α2

1

6
+
α4

1

24
+O

(
α6

1

)
, (D.15)

tanα1 = α1 +
α3

1

3
+

2α5
1

15
+O

(
α7

1

)
, (D.16)(

1

cosα1

) 2
3

= 1 +
α2

1

3
+
α4

1

9
+O

(
α6

1

)
. (D.17)

Substituting (D.15)–(D.17) in (D.14), we obtain

hm(min) =
1

2

(
15β̄Q̄

4

) 1
3
{

1 +
α2

1

6

}(
1

λ

) 1
3

+
15Q̄

224β̄
α1

1

λ
− 1

42

(
15βQ

4

) 2
3
(

1

λ

) 5
3

. (D.18)
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Substituting (D.11) in (D.18), finally we get

hm(min) =
1

2

(
15β̄Q̄

4

) 1
3
(

1

λ

) 1
3

− 1

42

(
15β̄Q̄

4

) 2
3
(

1 +
135Q̄

896β̄3

)(
1

λ

) 5
3

. (D.19)



Appendix E

Errors in Section V of Davis and

Hocking [29]

In this Appendix we describe the errors we found in Section V of Davis and Hocking

[29] results for a two-dimensional fluid sheet flowing down an inclined porous substrate

as described in Subsection 1.6.4.

The free surface equation (34) in Davis and Hocking [29] was written as

µ
∂h′

∂t′
+
∂Q′

∂x′
= k′H(x′)

(
σ
∂2h′

∂x′2
− ρgh′ cos θ

)
, (E.1)

µQ′ =
1

3
h′3
(
σ
∂3h′

∂x′3
− ρg cos θ

∂h′

∂x′
+ ρg sin θ

)
, (E.2)

where µ, h′, Q′, k′, H, t, σ, ρ, g and θ denote the viscosity, free surface profile, vol-

ume flux, permeability of the substrate, Heaviside unit function, time, surface tension,

density, magnitude of gravity and inclination angle of the substrate, respectively.

Note that there is a missing pair of brackets around ∂h′/∂t′+∂Q′/∂x′ in the first line

of their equation (34) (i.e. (E.1)), and therefore the corrected version of the equation
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(34) in Davis and Hocking [29] is

µ

(
∂h′

∂t′
+
∂Q′

∂x′

)
= k′H(x′)

(
σ
∂2h′

∂x′2
− ρgh′ cos θ

)
, (E.3)

µQ′ =
1

3
h′3
(
σ
∂3h′

∂x′3
− ρg cos θ

∂h′

∂x′
+ ρg sin θ

)
. (E.4)

Davis and Hocking [29] non-dimensionalise and scale the variables by writing:

x′ =
h0

β tan θ
x, h′ = h0h, k′ = Kk. (E.5)

Setting ∂h′/∂t′ = 0 and substituting (E.4) and (E.5) in the corrected version of equation

(34) in Davis and Hocking [29] (i.e. (E.3)), equation (E.3) becomes

d

dx

[
h3

(
σβ3tan3 θ

ρg sin θh2
0

d3h

dx3
− βdh

dx
+ 1

)]
=

3µKkH(x)

h0µβ tan θ

[
σβ2tan2 θ

ρg sin θh2
0

d2h

dx2
− h

tan θ

]
. (E.6)

By setting σβ3tan3 θ/(ρg sin θh2
0) = 1 and K = h0β

2 tan2 θ/3, we get

d

dx

[
h3

(
d3h

dx3
− βdh

dx
+ 1

)]
= kH(x)

[
d2h

dx2
− βh

]
, (E.7)

which is the same as equation (37) in Davis and Hocking [29]. Therefore, the correct

scaling for the permeability and the correct definition of the Bond number B is

k′ =
h0β

2 tan2 θ

3
k and B =

(
ρg sin θh2

0

σ

)
= (β tan θ)3 , (E.8)

which is different than the corresponding expressions given by Davis and Hocking [29],

namely

k′ =
µh0β

2/3 tan2/3 θ

3
k and B =

(
ρg cos θh2

0

σ

)
= (β tan θ)3 . (E.9)

Using the correct expression for k′, the correct expression for the survival distance a′ is

a′ =
h2

0 tan θ

2k′
, (E.10)

which is in exact agreement with the our expression for the length of an infinitely-wide
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sessile sheet flowing over and through a permeable membrane given by (3.75), and, in

particular, gives a′ ∼ (k′)−1h2
0.

Note that if we use the incorrect k′ (i.e. (E.9)) given by Davis and Hocking [29] to find

their version of this result, we get

a′ =
µh2

0 tan θ

2k′

(
σ

ρgh2
0 cos θ

)4/9

, (E.11)

which gives a′ ∼ (k′)−1g−4/9, which in turn is different to that which Davis and Hocking

[29] gave (i.e. a ∼ (k′)−1g−1/3), but, even assuming that they meant to write a rather

than a′, this would give

a =
µh2

0 tan θ

2k′

(
σ

ρgh2
0 cos θ

)1/9

, (E.12)

which gives a ∼ (k′)−1g−1/9, which still is not what they gave.



Appendix F

Solution for Small ρ with the

Disjoining Pressure of the Form

(4.43)

In this Appendix, we seek an asymptotic solution to (4.45)–(4.47) in the case of

ΠLR(h, x) given by (4.43), namely

ΠLR(h, x) =
1

h6
− 1 + ρ sin (2πx)

h3
. (F.1)

In particular, we seek an expansion of the form

h(x) = h̄+ ρh1(x) +O(ρ2), (F.2)

where ∫ 1

0
h1(x) dx = 0. (F.3)

Substituting (F.2) into (F.1) and expanding, we have

Π(h, x) =
1

h̄6
− 1

h̄3
+

(
− 6h1(x)

h̄7
− sin (2πx)

h̄3
+

3h1(x)

h̄4

)
ρ+O(ρ2). (F.4)
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Substituting into (4.12) and collecting the O(ρ) terms, we have

ε2
d2

dx2
h1(x)− 6h1(x)

h̄7
− sin (2πx)

h̄3
+

3h1(x)

h̄4
+ C = 0, (F.5)

where

C = −
∫ 1

0

[
− 6h1(x)

h̄7
− sin (2πx)

h̄3
+

3h1(x)

h̄4

]
dx = 0, (F.6)

by using equation (F.3).

Solving (F.5) with the boundary conditions

h1(0) = h1(1), h1x(0) = h1x(1), (F.7)

yields the solution

h1(x) = − h̄4 sin (2πx)

4π2h̄7ε2 − 3h̄3 + 6
. (F.8)

Therefore

h(x) = h̄− h̄4 sin (2πx) ρ

4π2h̄7ε2 − 3h̄3 + 6
+O(ρ2). (F.9)

Note that a similar procedure can be used to determine the asymptotics solution for

small ρ with the disjoining pressure of the form (4.44).



Appendix G

O(2) Symmetry Breaking by

Spatial Non-Homogeneity

In this Appendix, we present an argument that shows that when the wettability contrast

is present, i.e. when ρ 6= 0, the breaking of the O(2) symmetry which equation (4.45)

with the periodic boundary conditions (4.47) has for ρ = 0, leaves only two steady-state

solutions.

This is, in principle, a known result (see, for example, Chillingworth [20]), but, since

we are not aware of an easily accessible reference, we give the details here. As before,

we set G(x) = sin(2πx). We provide the proof for ΠSR given by (4.44), the proof for

ΠLR given by (4.43) is similar.

For the case of ΠSR, let us rewrite the boundary value problem (4.45) in the form

ε2hxx + f1(h) + ρf2(h)G(x)−
∫ 1

0
[f1(h) + ρf2(h)G(x)] dx = 0, 0 < x < 1, (G.1)

where

f1(h) =
1

h6
− 1

h3
(G.2)

and

f2(h) =
1

h6
, (G.3)
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i.e. we separate the spatially homogeneous and spatially non-homogeneous components

of the disjoining pressure. Equation (G.1) is subject to the periodic boundary conditions

(4.47).

Suppose that when ρ = 0 there is an orbit of steady-state solutions, i.e. a continuous

closed curve of solutions h0,s(x), parameterised by s ∈ R/[0, 1], such that h0,s(x) :=

h0(x + s), for some function h0(x), i.e. all these solutions are related by translation.

We aim to understand what remains of this orbit for small non-zero ρ.

Fix s ∈ R/[0, 1]. We write

h(x) = h0,s(x) + ρh1(x) +O(ρ2). (G.4)

Substituting this expansion into (G.1) and collecting the O(ρ) terms, we have

ε2h1,xx + (f ′1(h0,s) + f ′2(h0,s))h1 −
∫ 1

0

[
f ′1(h0,s) + f ′2(h0,s)

]
h1 dx

= −f2(h0,s)G+

∫ 1

0
f2(h0,s)G dx, (G.5)

where, just like h0,s(x), h1(x) also satisfies the periodic boundary conditions (4.47).

Now set

Ku := ε2u1,xx + (f ′1(h0,s) + f ′2(h0,s))u−
∫ 1

0
[f ′1(h0,s) + f ′2(h0,s)]udx, (G.6)

and let D(K), the domain of K, be

D(K) =
{
f ∈ C2 ([0, 1]) | f(0) = f(1), f ′(0) = f ′(1)

}
. (G.7)

The operator K is self-adjoint with respect to the L2([0, 1]) inner product. Invoking

the Fredholm Alternative [90, Theorem 7.26], we conclude that (G.5) has 1-periodic

solutions if and only if the right-hand side of (G.5) is orthogonal in L2([0, 1]) to the

solutions of Ku = 0.

Next, we show that u := h′0,s solves Ku = 0. Indeed, by differentiating (G.1) with
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ρ = 0 with respect to x, we find that u solves the equation

ε2uxx + (f ′1(h0,s) + f ′2(h0,s))u = 0. (G.8)

Integrating this equation over the interval [0, 1], we have that

∫ 1

0
(f ′1(h0,s) + f ′2(h0,s))udx = 0. (G.9)

Hence

0 = ε2uxx + (f ′1(h0,s) + f ′2(h0,s))u

= ε2uxx + (f ′1(h0,s) + f ′2(h0,s))u+

∫ 1

0
(f ′1(h0,s) + f ′2(h0,s))udx

= Ku.

(G.10)

Also note that as h0,s(x) satisfies periodic boundary conditions,

∫ 1

0
h′0,s(x) dx = 0. (G.11)

Hence the solvability condition for (G.5) is

∫ 1

0
h′0,s(r)

[
−f2(h0,s)G+

∫ 1

0
f2(h0,s)G dx

]
dr = 0. (G.12)

By (G.11), this condition reduces to

∫ 1

0
f2(h0,s)h

′
0,sGdx = 0. (G.13)

Now recall that h0,s(x) = h0(x+ s), so if we write F (x+ s) = f2(h0(x+ s))h′0(x+ s),

the function F (·) is 1-periodic in x with zero mean. Hence

F (z) =

∞∑
k=1

αk sin(2kπz) + βk cos(2kπz). (G.14)
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Therefore for G(x) = sin(2πx), the solvability condition for (G.5) becomes

α1 sin(2kπs)− β1 cos(2πs) = 0, (G.15)

which has two solutions s ∈ R/[0, 1], from which we conclude there is a solution h1(x)

only for two choices of s ∈ R/[0, 1], that is, that only two solutions to (G.1) remain

from the entire O(2) orbit that exists for ρ = 0.
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