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1- Additional introduction, investigation and reviews. 

 

With technological progress and development of more industrialised 

societies, advances are made in the field of medicine and in particular 

rehabilitation of the disabled. But rapid progress has also resulted in an 

increase in the number of disabled persons caused by diseases common to the 

western way of life. This increase is also due to the decrease in mortality 

rate due to advances in health care. Other than disabilities, which are due 

to disease or general accidents, there are also the victims of the gravest 

form of human aggression. i.e. War. The economic instability of the whole 

world has resulted in many years of political unrest manifested in smaller 

forms of war. However for the amputee portion of the disabled population, 

the progress of rehabilitation of the lower limb amputee has been marked 

after each major war, mainly due to large injections of finance into 

government veteran organisations. 

The rehabilitation process of the general population of the amputee 
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population by its nature becomes twice as hard with a subsequent doubling of 

the failure rate (Stewart 1986) when compared with other populations. 

Although the limb fitting services in European and North American countries 

are far from ideal, they are considered to be fairly advanced relative to 

the almost non existence of these services in some of the third world 

countries, despite the continuous effort made by organisations such as World 

Health Organisation and other affiliated United Nations’ Organisations. In 

fact with the knowledge and experience available in the developed countries 

and with the availability of resources and willingness of the individual 

governments, the solution to this problem would be relatively simple. A 

typical example is the recent automation in the manufacture of prostheses 

(Foort 1985, Davice 1983). With this technique, once fully developed, in 

conjunction with objectively based fitting procedures, one prosthetist could 

be in a position to handle a large number of patients. The use of Computer 

Aided Socket Design and Manufacture technology now estimated to cater for 

more than 1/5 of UK and USA sockets manufactured. This evolution would 

eventually solve the immediate need of large-scale rehabilitation in the 

underdeveloped nations. In the long-term evolution of such technologies have 

the potential to facilitate major improvement in the services in the more 

advanced societies. 

 

1.1- Additional Statistical data: 

The UN population forecast suggests aging population and with increased in 

Diabetics population; the number of amputees globally would be estimated to 

be 6m by 2016. Although the advances in vascular surgery and salvage and 

medication has resulted in reduction of disease related amputation, however 

with technological advances in China and India as well as far East, in the 

merging countries there is expected growth in amputees from 0.5 to 1 per 

1,000 person. ISPO from time to time has provided estimates in amputation 
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population from various countries as part of education and training 

dissemination of information. This is one sources of information in addition 

to data gathered by the major manufacturers. The charts below provide some 

of the information collected as a forecast for prosthetic development for 

2007 prior to re submission of this final draft.  

With regard to the level of amputation, Glattly's figure of 44.1% above knee 

and 36.8% below knee was changed to 32.6% above knee, 53.8% below knee. 

(From Goh 1982). Similar data from the Department of Health and Social 

Security for England, Wales and Northern Ireland for 1976 and-1980 showed no 

change in 53% above knee and no marked change in 34% (average) in below 

knee. Apart from a small increase in through knee amputations in the 1980 

results the figures for the various levels of amputation in upper and lower 

limbs in both the United States and the United Kingdom statistics show no 

significant change (variation around the 1% figure) at the various levels of 

amputation. The reason for the higher level of above knee compared to below 

knee amputation is mainly related to the cause. The breakdown of the results 

from all the statistical data available shows that an average of 75% of 

amputations are due to disease, 5% to tumour, 2% to congenital deformities 

and 18% to trauma. Looking at these results more carefully, the figures from 

the United States show 50% higher values for congenital deformities and 

trauma. The UK figures however, in the case of disease, their figures are 

10% lower than those from the United Kingdom. Although from a sex 

distribution point of view there are no significant differences in disease 

and congenital deformities, the figures for trauma show 50% higher values in 

the male population than female, and the figures for tumour shows exactly 

the opposite for both sets of statistics from the two countries. 

 

Although most of the results are as expected the important differences in 

the cause of amputation in disease, trauma and congenital between the United 

Kingdom statistics excluding Scotland and that of the United States could be 

perhaps related to the socio-economic differences in the structure and 

development of the two nations. Despite several government acts on health 

and safety at work and more traffic control, still amputation due to trauma 

is increasing. The lower values in percentage of disease in the United 
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States could be attributed to the higher standard of living, less polluted 

cities due to greater spread of industry and greater advances in the medical 

field in the last decades. The higher numbers of congenital deformities 

could be due to the higher number of immigrants from underdeveloped 

countries, which have a much larger percentage of amputation due to 

congenital deformities. In the World scale the prime cause of amputation is 

disease while trauma, the second major cause, has an upward trend. However a 

closer look at the statistics in relation to male and female has shown the 

increase and an upward trend in the number of female amputees, but with 

regard to age, all studies showed the prime cause of amputation in the 20-40 

year age group as trauma, while in the largest number of amputees between 

the ages of 60 and 80 the prime cause is disease. The distribution of trauma 

cases with respect to age describes a normal distribution with a mean of 35. 

However the distribution of disease does not show a uniform distribution and 

the peak value is at 70. It must be noted that the Kay and Newman results 

showed a higher value of disease related amputation between the ages of 40 

and 60 years old than that of the United Kingdom statistics. With regard to 

malignancy there is an even distribution in the ages between 10 and 80 and 

the congenital cases of amputation occur at the childhood age. However due 

to insufficiency of the numbers of these cases no particular valid 

conclusion can be made. 

 

As can be appreciated the rehabilitation of the amputee population has to be 

geared to the rehabilitation of the more than 90% of the amputees who are 

above and below knee amputees. As can be seen no explanation can be given to 

the wide differences in the number of above knee to below knee. The main 

disease for the cause of amputation is peripheral vascular disease and the 

average age of amputee is 70 with a life expectancy of 4 years. However 

ironically the successful rehabilitation of this group of amputees is 

dependent on preservation of the knee joint. Yet, from these statistics 

there has been a drop in the number of above knee amputees and an increase 

in the number of below knee amputees in the United States and Scotland, and 

no change has been reported in England, Wales and Northern Ireland. A study 

(ISPO V 1986) reported on 10 years of collecting data in Denmark showed an 

increase in the number of above knee amputation while no increase in below 

knee amputation takes place. Similar results were reported from Sweden with 

a large ratio of above knee to below knee. An explanation of the difference 

in amputation level in different countries is the avocation of the 

philosophy of preservation of as much anatomical part as possible (Murdoch 

1969). The advances in techniques of level assessment using radio-isotopes, 

thermograph and blood flow/pressures measurement (Spence 1985), along new 

techniques of amputation, wound closure, myoplasty (Murdoch 1985) and proper 

post-operative care has been the major contributor to the reduction in 

number of the above knee amputations. The recent data from USA and the data 

reported on 10 years experience in Dundee, Scotland, have shown the 
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conversion of the ratio of 5:3 above knee to below knee to the 5:3 below 

knee to above knee to be possible by the end of one decade. 

 

It must be noted that these statistics do not take into account the full 

implication of the amputations due to wars, although the total amputee 

number in UK is 60,000 (48000 lower limb, includes over 2000 primary 

amputees per year as well the war veterans and amputees from Ireland and 

other global conflict). Therefore the use of such statistics for allocation 

of funds has to consider the number of war veterans, aging influence and 

cost modern prosthetic care accordingly. There are no statistical data 

available on the resources and services provided for amputees. However the 

extracted information from various sources portrays a gloomy picture 

worldwide. The resources available in terms of manpower, technological and 

finances in the underdeveloped countries are almost non-existent for the 

large majority of amputees. In the developed countries although the picture 

is much different, it is not anywhere near the fulfilment of the need. Until 

1973 there were only two schools for training prosthetists in the world. 

This has now increased to 9 in the developed countries. On average they 

produce 60 prosthetists annually. There has not been any major increase in 

the number of the private companies responsible for the manufacture of 

prostheses for amputees. The government resources for the services provided 

for the rehabilitation of the amputee population have been minimal. The 

figures are in the order of 0.01% of defence spending in the United Kingdom 

and 0.05% of the defence spending in the United States. There have been 

insignificant changes in the curriculum of medical schools with regard to 

specialist teaching in amputation and rehabilitation. In fact in the 

majority of the teaching schools worldwide, this topic is not covered. 

 

Research in the field of lower limb prosthetics peaked in 1960s in the USA 

and later in UK and other European countries. Although in recent years 

several major advances have been made in amputation surgery and techniques 

of pre- and post-operative care which are directly attributed to the 

advancement of technology and science of medicine, and advances in 

prosthetic production using up to date production technology, however the 

continuing reduction of research funding has almost brought to a halt all 

the research in this field and forced the researchers to divert to other 

areas which are in short term economically viable. A typical example is the 

funds available from the Scottish Home and Health Department for 

prosthetics; shared with orthotic research, for Scotland with a population 

of 5 million for 1985 has been £750,000, which is 0.0001% of UK defence 

spending. There is a very similar pattern in the rest of the developed 

countries. At the beginning of 21st century the expenditure of government on 

prosthetics and orthotics is less than £80m a year, which is equivalent to 3 

months of expenditure of MOD for Iraq conflict. 
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This project was funded by SHHD from the very limited resources and as more 

than 80% of amputees are constituted from below and above knee patients the 

main objectives of this work will be directed toward above knee and below 

knee prosthetics. Organisations affiliated to the United Nations which are 

responsible for providing resources and training and provision of services 

for the amputee and other disabilities world wide, such as UNICEF, UNESCO 

and World Health Organisation, have published few reports or shown little 

evidence regarding any marked reduction in the number of amputee or 

improvement services or any increase in funding or supply and training of 

skilled personnel. There is no statistical evidence for the improvement in 

the state of the art and the rehabilitation process in developed and 

underdeveloped countries. 

 

3.1. Introduction and History of Prosthetics.  

 

The earliest known prosthetic device was recovered from a tomb and dates 

back to 300 BC. The materials used in the early prosthesis were made of wood 

and copper. The devices used from 5th century BC. Until 16th century AD. Peg 

legs were made from wooden splints. The first known jointed prosthesis was 

made by Ambroise Pare {1510-1590}, figure. 3.1.1 the limb was based on 

armoured legs for soldiers, which was made weight bearing. It incorporated a 

semi-automatic knee lock with an articulated foot. The device appears too 

heavy for any practical use. In the late 17th century, with development of 

modern surgical procedures and recovery rate of 85% (Lister) from surgery, 

resulted in a sharp increase in the number of amputee. This was naturally a 

turning point in the history of artificial limb. For further details the 

reader is referred to special appendix. 
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Figure. 3.1.1  This 

is the first known 

jointed leg 

prosthesis from the 

16  century. (From 

Pare, A., Ocmrcs 

Completes. Edition 

Malgaigne, Paris, 

1540. from the copy 

in the Armed Forces 

Figure 3.1.3 A 

TYPICAL 

PROSTHESIS FOR 

BELOW-KNEE 

AMPUTEES SIDE 

STEELS AND THIGH 

CORSET ARE SHOWN 

(From "Progress 

And Achievement." 

Desoutter Bros. 

Ltd. London. 

1934) 

THE DESOUTTER LIGHT 

METAL 

LIMB For Below'-Knee 

Amputation. 

The whole of the 

lower portion of 

this limb is made 

from a seamless one 

- piece pressing. It 

is fitted with Ball-

bearing, side steels 

Figure. 3.1.2 Verduin Limb Figure 3.1.4 - Anglesea Leg (1800), Below 

knee at left. above knee at right. Knee, ankle and foot are articu-

lated. From Bigg H Orlhopraxy 1877. 
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In 1696, Verduin a Dutch surgeon devised a below knee prosthesis with a 

wooden foot, a copper socket lined with leather and a thigh cuff. Figure 

3.1.2 this prosthesis resembles the National Health Service Below knee 

prosthesis No 8, Figure 3.1.3 that is still being prescribed. In 1800, James 

Pott designed the first above knee prosthesis with a wooden socket, a steel 

knee joint and articulated foot. The device as the Marquis of Anglesey first 

wore it was known as Anglesey leg. It had at the time an ingenious feature 

of a control cord assisting active plantarflexion of the foot with knee 

flexion. Figure 3.1.4 shows the above and below knee version of the Anglesey 

leg. Many refinements of this basic design in United States in the mid 19th 

century resulted in the American leg. 

 

As mentioned in the introductory chapter, each major war was followed by the 

devotion of more resources to the development of artificial limbs. Following 

the Second World War, with an increased number of veterans throughout Europe 

and the United States, governments initiated organised production of 

functional and economically viable prostheses. Large-scale research 

programmes were initiated, especially in United States, as it was the only 

post war country whose economy was booming. This also coincided with massive 

technological, and scientific advances during the war and a massive 

expansion in medical research in the U.S.  

3.2 Types of below knee prosthetic sockets; 

 

Figures 3.2.4 developed by Lyquist in California in 1968, was concerned with 

weight bearing. This socket involved the use of a soft elastic liner, whose 

distal end was laminated with a polyester cap. The design was such that a 

volume of air was contained between the cap and liner.  

    
Figure 3.2.4 the basic structure of the PTB air-cushion socket is shown to 

the left.  The function of the silicone-laminated sleeve is indicated 

(exaggerated) to the right. 

 

This PTB 'Air-Cushion Socket' was designed to ensure adequate pressures on 

the distal portion of the stump, minimizing the risk of oedema. The use of 

the plastic sleeve, which will displace longitudinally under weight bearing, 

will tend to minimize abrasive skin damage, which might occur with the stump 

JUNCTION BETWEEN 

EXTERNAL RIGID SHELL 

AND INTERNAL ELASTIC 

SLEEVE  SILASTIC 

LAMINATE SEALED AIR 

VOLUME (ATMOSPHERIC 
PRESSURE) 
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in contact with a rigid socket wall. Higher loading of the distal end is 

possible with the 'Air-Cushion' Socket; this has the advantage of decreasing 

the need for the more constrictive proximal loading, and thus the 

circulation is improved. 

Wilson, et al (1968), detailed the design and fabrication of the PTB 'Air-

Cushion Socket' and stated that it was not indicated as the first permanent 

socket for an amputee for a variety of reasons. These include difficulties 

in fabrication, rapid stump shrinkage, obesity and conditions such as 

neuroma. Concurrent with the development of the 'Air-Cushion Socket' 

Fillauer (1968), Fajal (1968) and Marshall and Nitchke (1966), concentrated 

their efforts on the development of alternative means of suspension. The 

Fajal (1968) design utilized the femoral condyle width as an area over which 

the socket should extend. The actual socket design is detailed by Fillauer 

(1968); this design has become known as the Supracondylar PTB although it is 

sometimes known as the condylar clip, KBM or STP. The VA Program Guide 

(1970) recommends the PTB-SC for its terminology (Figure 3.2.5) Marshall and 

Nitchke (1966), in similar fashion to the PTB-SC, developed a socket 

employing high medial-lateral walls to encompass the condyles, but included 

a high anterior wall which covered the patella. This design made use of a 

liner and has become known as the Supracondylar/Suprapatellar PTB or PTB-

SC/SP. 

  

Marshall and Nitchke (1967) further developed their design in order to allow 

its use without a liner, wedges being employed to permit entry and removal 

of the socket. The high walls of this type of socket may take some of the 

weight bearing in the knee region, thus decreasing the loading required in 

the regular weight-bearing areas. Both these supracondylar PTB designs 

provide an increase in medio-lateral knee stability, the PTB-SC/SP having 

the added facility of providing stabilization in the sagittal plane, 

especially at push-off, and will reduce any tendency of the knee to go into 

hyperextension. Although the PTB-SC and PTB-SC/SP variants offer increased 

stability of the knee, especially for those with short stumps, and improved 

suspension over the standard cuff suspension of the conventional PTB, there 

are disadvantages. These are basically in the cosmesis and wear of clothing, 

and in the difficulty in fitting. The proximal brim appears somewhat bulky 

Figure 3.2.5 The P T S 

socket entirely encloses 

the patella and  provides 

suspension by 'hooking' 

over its superior edge. 

Enclosure of femoral 

condyles provides an 

additional function of 

suspension and increases 

medio Iateral stability 

(gastrocnemius) muscle. 
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and in some cases may restrict extreme flexion as might be encountered in 

kneeling. However Hamontree, et al (1968) comment that successful fittings 

were achieved with the PTB-SC/SP design for cases that could not normally 

have been fitted with a PTB, most of these cases involved either short 

stumps or instability of the anatomical knee.  

 

Figure 3.2.6 Variations of PTB prosthesis (from Pritham, 1979)  

More recently, experience with both the conventional and PTB-SC/SP sockets 

led Lyttle (1985) to state a preference for the latter design. This 

experience included skiers and ice skaters, both groups who need good 

rotational stability for quick turns. Lyttle further concluded that for a 

first prosthetic fitting the PTB-SC/SP enforces a good gait by the fact that 

is prohibits knee extension beyond the desirable 5 degrees of flexion. 

Pearson, et al 1974, investigated suction pressure within PTB suction socket 

prosthesis in order to establish information about the prosthesis suspension 

during swing phase. A model prediction indicated that cavity suction 

necessary for static suspension may vary from -3 to -52 mmHg, depending on 

the shape and dimensions of the limb stump, and on the coefficient of 

friction between limb and interface material. Experimental data revealed 

that cavity suction is increased by calf muscle contraction to a level of -

200 mmHg. The cyclic pumping action in walking increased it further to 

approximately -350 mmHg. Statistical data showed severe scattering 

reflecting the variability of the quality of the fit of the prosthesis to 

limb with respect to the establishment of negative pressures. 

Recommendations for improvement in the suction suspension are included. A 

summary of the variations of PTB prostheses can be seen in figure 3.2.6. 
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3.3 Types of Above knee prosthetic socket 

 

 

 

In order to manufacture a quadrilateral socket, casting of the stump is 

necessary, unlike 'H' type. Brims can be utilised or a hard casting method 

may be employed, which allows good rotational stability. The means of 

suspension most commonly used are Suction or Silesian belt or Pelvic belt. A 

summary of the differences in these types of sockets used in prostheses is 

shown in figure 3.3.7 there are very few other designs of above knee socket, 

which have been widely accepted. There are several old and new ideas such as 

U.S. Navy socket and the Triangular socket described by (Naeff and Pijkeren 

(1980) and the narrow M-L and /or the CAT-CAM socket and the concept of a 

flexible socket, which is described later. 

  

Figure. 3.3.7 Variations of Quadrilateral Sockets and Knee Mechanisms 

 

The necessary criteria for design of knee mechanism. For more detailed 

analysis of the biomechanics of knee mechanisms the reader is referred to 

Radcliffe (1977), Radcliffe (1969) and Edelstein (1966). Figure 3.3.2 

illustrates the forces and pressure patterns acting on the stump, viewed 

posteriorily. As can be seen, the large pressure distribution on the lateral 

aspect of the stump is due to the moments produced by W and M and the 

inertia forces. Abductor muscle action T increases this. Thus it is 

essential for the socket to have good lateral contact and hence good medio-

lateral stability during the gait cycle. 
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3.4.1 Hip Disarticulation and Hemipelvectomy Prostheses 

 

The prosthesis generally prescribed for prosthetic fitting to a hip 

disarticulation amputee is the Canadian Hip Prosthesis. This has effectively 

replaced the "tilting table" prosthesis. The principles of operation and 

design are detailed by McLaurin (1954), and Solomonidis and Berme (1978). 

The basic principles are shown in figure 3.3.8 illustrating the well forward 

position of the hip joint, with a solid rubber bumper to prevent 

hyperextension. Similarly, the knee joint is mounted posterior to the weight 

bearing line. McLaurin (1969) stressed that it is important that a line 

through the hip axis and knee passes about 2 cm behind the heel so that the 

knee will not flex at the moment of heel contact. Figure 3.3.8 also 

illustrates the sitting position, indicating that it is possible to choose a 

position for the hip axis, such that the prosthetic knee corresponds with 

the physiological knee in both standing and sitting positions, even though 

it may be distal to the physiological knee at intermediate points. An 

elastic strap achieves swing control although various limb centres have 

incorporated several modifications. Figures 3.3.9 illustrate the behaviour 

of the Canadian Hip Prosthesis during locomotion. Socket design and casting 

details are documented by McLaurin (1969) and McQuirk (1969). The essential 

feature to note is that when fitting, it is important to obtain an accurate 

fit at the crest of the opposite ileum in order to avoid discomfort during 

the stance phase of the prosthetic side. The Canadian Hip Prosthesis is also 

prescribed for hemipelvectomy amputees, the only modification being the 

design of the socket. Because there are no bony areas for firm vertical 

support, the socket must extend up to the rib cage, not for weight-bearing 

purposes necessarily, but to prevent the soft body tissue from extruding out 

above the socket. 

  

  

Figure 3. 3. 8 The Canadian hip 

disarticulation prosthesis 

showing basic configuration in 

standing and sitting position. 

(Re-drawn from Hip 

Disarticulation Prosthetics. A. 

McLaurin, Mar. 15, 1954, Report 

No. 15, Prosthetic services D. 
V.A. Canada). 

Figure 3.3.9 (a) The Canadian hip 

disarticulation prosthesis. During 

the first part of the swing phase the 

hip joint is in contact with the 

bumper, and the elastic control strap 

is assisting knee extension. 

Figure 3.3.9 (b) The 

Canadian hip 

disarticulation 

prosthesis. After knee 

extensior the hip 

flexes and the control 

strap limits the 

swing. 
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(a)         (b) 

3.4.2 Through-Knee Prosthesis (Knee Disarticulation) 

 

The through-knee amputation results in a stump, which has good end-bearing 

characteristics. This is however, a stump without any natural knee and hence 

any prosthesis will require a knee mechanism. This has generally proved to 

be the most difficult aspect in the successful prosthetic fit of through-

knee prosthesis. Nowadays there are various types of knee joint (Figure 

3.4.1 shows 4 bar linkages) suitable for through knee prostheses. 

Traditionally, the socket designs have been based on the use of laminated 

thermosetting plastics but recently, in common with many other prostheses 

for different levels, the use of thermoplastics has allowed room for design 

developments. These have followed similar lines to the above-knee socket 

designs such that flexible brim, flexible suction socket designs are 

currently in production and being fitted to amputees. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.1 The Instantanious Centre (IC) of 

rotation is developed through linking the 

trajectories of the  linkages, where the cross 

over is the mechanical centre of rotation. With 

the knee flexion through stance phase, the path 

of IC is designed to stay behind the ground 

reaction force vector, thus providing an inherent 

stability. The further away from the linkages the 

IC is designed, the greater the mechanical 

leverage provided to create easier flexion. 

During the swing, the joint will take up to 60 

degrees of flexion  and the IC path is in between 

the 4 bar linkages, thus providing a more 

cosmetic apearance for the operation of join. 

Hence as shown the typical 4 bar linkage joint is 

ideal for the long stump of the knee 

disarticulation amputee which is capable of lerge 

mechnaical leverage for knee stability and end 

load bearing, but requires the knee to be closer 

as possible the end of the stump, cosmetically 

when sitting the sound and prosthetic knee are 
maintaned in line. 
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3.4.3 through ankle - Syme Type Prosthesis (ankle disarticulation) 

 

The typical Syme's or ankle disarticulation stump exhibits good end bearing 

characteristics. In general shorter stumps with a small distal end are 

easier to fit with prosthesis. The design of the socket should be such that 

it provides weight-bearing, suspension, resistance to rotation and A-P and 

M-L forces for stability. In a classical Syme's stump, full end bearing 

presents no problem other than shaping the end of the socket to accommodate 

the contours of the stump. Fitting the socket snugly over the distal bulge 

readily provides suspension; this does however require an opening for easy 

entry and exit of the stump. The fitting of the foot to the Syme's 

prosthesis normally presents the greatest problem due to the lack of room 

for the standard foot. A low profile SACH foot is normally fitted. For more 

active amputees, the modern energy storing feet with Derlin or low profile 

composite keels are fitted to assist with collection of mechanical energy in 

spring and return   

 

3.5.4 Other type of Foot 

 

Figure 3.5.3 illustrates some of the new prosthetic feet. 

 

 

 

 

 

 

Figure 3.5.3 Otto Bock Dynamic and Blatchford Multiflex dynamic response 

foot. 

 

(a) V.A. Seattle Foot and Otto Bock Dynamic Foot: 

During running, the ground reaction (or impact) force may reach two to three 

times body weight. This results in a shortening of life of the prosthesis, 

and the development of a gait, which is potentially damaging to lower limb 

joints. To reduce these problems, in 1983 the V.A. Seattle foot was 

designed. In an effort to simulate push off, the V.A. Seattle foot 

originally incorporated a series of leaf springs in the ball of the foot. 

When the runner rolled onto the ball of the foot, the leaf springs, storing 

kinetic energy for release in whatever direction one desired. The current 

design however, replaces the leaf springs with one integral beam, or keel, 

that runs to the ball of the foot. 

 

(b) Flex-Foot: 

Like the V.A. Seattle foot in concept, the Flex-Foot was designed for 

runners. This prosthesis has a graphite core giving a very long spring 
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fatigue life. At heel strike the shock load is absorbed by the heel spring 

connected to mid toe. At mid stance the foot is flat on level ground, the 

knee and ankle/thigh segment is vertical; the strain energy (due to vertical 

force and ankle bending in AP plane) is stored in preparation for push-off. 

At late stance, this energy is released assisting push off by propelling 

drive forward, which is believed to overcome the customary 'break' or 

jerkiness after heel strike and transition to foot flat and the rollover 

periods. The exceedingly high price of this type of foot keeps it out of 

bounds for many users.  

 

 

 

 

 

 

 

 

 

 

 

(c) S.A.F.E. Foot: 

The Stationary Attachment Flexible Endoskeletal (S.A.F.E.) Foot is also 

suitable for runners. Manufactured by Campbell-Childs, Phoenix, Oregon, the 

S.A.F.E. Foot is designed to simulate the shape and action of the human 

foot, where movement is dictated by articular surfaces and ligamentous 

restrictions. The S.A.F.E. Foot provides dorsiflexion-plantarflexion, 

eversion-inversion, pronation-supination and transverse rotation. A clinical 

trial in (1981) reported that the S.A.F.E. Foot allowed a smoother gait and 

was less fatiguing to wear than the conventional walking prosthesis. The 

trial also indicated that the S.A.F.E. Foot was easily adaptable to 

irregular terrain. Comments from prosthetists involved with S.A.F.E. Foot 

prostheses report that fewer alignment adjustments are needed to achieve 

optimum transition from heel strike to foot flat to toe-off, in the stance 

phase of the gait cycle. 

 

(d) Jaipur Foot: 

This foot was developed in India by Sethi et al (1971) in order to overcome 

shortcomings of the SACH foot when used in a society with different cultural 

habits and modes of behaviour. The SACH foot for example, does not allow the 

amputee to comfortably sit crossed-legged; squatting is also difficult due 

to the limited range of SACH foot dorsiflexion. Whilst the feet tend to be 

heavier than the SACH foot, Sethi et al see no reason why this drawback 

cannot be overcome. Because so many of the users wear no shoes, and its use 

may encompass working in the paddy fields, the Jaipur foot is covered in 

vulcanized rubber with a sole being of a tougher grade, similar to 

Below knee amputee sprinting 

prosthesis, derivitive of Flex 

modular III, the Chitta, the design 

based on biomechanics of amputee 

sprinting Zahedi et al (1999 added 

to thesis). Chitta enables the 

amputee to flex the spring made of 

carbon under 4 times body weight 

enabling the mass of the foot to go 

under the hip during the flight 

phase, thus minimising inertia. 

Whilst during running the spring 

absorbs the strain energy generated 

by loads twice the body weight 

enabling small flexion and rapid 

extension. 
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automobile tyre grade, to withstand abrasion, tears and cuts. There are 

obviously many specially adapted or designed feet for specific activities. 

One such foot, developed by Viau and Chadderton, is the Swivel Golf Shoe. 

This was designed to be fitted to those amputees who do not have a 

rotator built into the prosthesis, or if he or she has undergone a Syme's 

amputation. This foot can be built into a conventional golf shoe to allow 

rotation and hence facilitate the golf swing and reduce strain on the 

spine.  

 

 

 

 

 

3) The Polycentric Knee Mechanism. 

Figure 3.5.7 shows the principle of these devices, where the knee 

instantaneous centre of rotation changes as the knee flexion angle 

changes. This type of joint over-comes the deficiency of alignment 

stability in uniaxial knee mechanisms where the knee centre is always 

in a stable position at heel strike while the knee is in extension and 

moves to an unstable position with increased flexion. The 4 bar linkage 

design, figure 3.5.7 which positively separates the thigh segment from 

the shank allows less protrusion of the knee in a sitting position, a cosmetic 

feature most welcomed by through knee amputees. 
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2) Hydraulic and Pneumatic Devices. 

 

These are cadence responsive devices with increase of resistance with 

velocity. The hydraulic and pneumatic swing phase control devices 

work on a piston in cylinder dashpot mechanism. The adjustable control 

valves make the fulfilment of most of the above criteria for swing 

phase devices possible. However they are heavy and require regular 

maintenance. The most recent devices have a significant reduction in 

bulk, mass and maintenance requirements. Despite the advantages in 

pneumatic devices with regard to mass and easier maintenance they 

suffer from disadvantage of non-smooth movements when compared to 

hydraulic devices.  

 

3) Variable Friction Devices. These devices allow the magnitude of 

resistance to increase near the extremes of flexion and extension and 

reduce at mid swing. This is achieved by increments and decrements in 

frictional force via concentrically mounted friction discs, or eccentric 

bearing surfaces or hydraulic or pneumatic systems whose functional 

resistance varies during swing phase. Extension bias devices may be used in 

conjunction with any of the above devices. These straps or spring loaded 

devices act continuously to extend the knee from the flexed position. 

 

3.5.9. Other Prosthetic Components. 

 

The other prosthetic components used are more of the specialist types. 

These include attachable flipper or skis for particular sporting 

activities. The most common component is the "torque converter" 

incorporated in the shank of prostheses. Figure 3.5.10 shows such 

device in which a rubber element reduces soft tissue from twisting 

motion thereby stopping the undesirable condition of stump rotation 

within the socket. This is achieved through compliance of rubber or similar 

Figure. 3.5.7 The 

four-bar linkage 

knee mechanism. 

And an example in 

Endolite 4 bar. 

The IC as 

descrbed in 

figure 3.4.1 

above. (Redrawn 

from Radcliffe in 

Murdoch 1969, 

"Prosthetic and 

Orthotic 
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material/structures allowing angular acceleration and the inertia torque to 

diminish at ground foot contact point. 

 

 

 Figure 3.5.10 the Tele Torsion device 

 

Some more recent innovations are the use of a spring mechanism in the 

shank which only compresses under a force of 3 times body weight for 

runners as described by Martan (1985), the special socket attachment 

mechanism for quick changes of different prosthetic section to aid various 

sporting activities as described by Kerr (1987) and presently being 

developed by the author and the microprocessor based knee control 

mechanism developed in Japan and Yugoslavia.  

3.6.1 Biomechanics of the Skin  

Evans (1973) and Kenedi et al (1975) demonstrated that skin shows a 

tendency to exhibit a delayed recovery after it has been subjected to 

a period of stress or strain. Furthermore Kenedi et al (1975) showed 

that skin would not return to its original condition unless the subject 

is free to move and apply the typical stresses and strains to which the skin is 

normally subjected. 

Cyclic loading, as frequently occurs when walking with a 

prosthesis, induces changes in the mechanical characteristics, the 

strain tending to increase, for a given stress, after repeated 

cycling, until a stable 'preconditioned' characteristic point is 

reached, [Daly (1966); Finlay (1970), Fung (1972), Evans (1973)]. This 

preconditioning and delayed recovery are obviously important in clinical 

investigations and have important implications on the effect of tissue 

loading experienced by amputees, by the fit and design of prostheses. 

This is particularly important when considering the concept of check 

sockets. The physiological factors contributing to the behaviour of the 

skin and relating to the aetiology of pressure sores are given below: 

 

(1) The body and tissues are made up of individual structures and thus 

inhomogeneous conditions are found. 
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(2) These inhomogeneous conditions can be seen microscopically as the 

obvious boundaries between the bone, muscle, fascia, skin and underlying 

fatty tissue. It is at these interfaces that in homogeneity in the stress and 

strain distributions are formed. 

 

(3) The above has very important implications, for it is at these boundaries 

that arterial, venous and lymphatic vessels cross from one layer to 

another. The arterial vessels, which supply the skin, enter the skin at 

the skin/subcutaneous tissue interface, at right angles to the interface. 

Stress fields in the plane of this interface, may cause bending and 

occluding deformations of these vessels with a consequent reduction in 

the nutritive supply to the skin.  

 

These factors perhaps indicate the pressure sore effects found by Bennett 

et al (1979) concerning the relationship between shear stresses and 

normal pressures on the occlusion of blood flow. Hickmann et al 

(1966) in a study on the effects of loads and deformations normal to 

the skin surface found no clear-cut conclusion although mean capillary 

pressure does not appear to be a critical parameter in the inhibition of 

capillary blood flow. 

 

The Viscoelastic properties of skin will change under the influence of 

temperature. Mahanty et al (1979) concluded that the rise in 

temperature after application of a localized pressure would lead to a 

change in skin characteristics. 

 

3.6.2 Aetiology of Pressure Sores 

 

Barton (1979) suggests that there are two types of pressure sore the first type is 

developed following prolonged ischemia and the second results from damage 

to tissue vasculature. Ferguson-Pell et al (1981) considered that tissue 

damage resulting from a poorly fitting prosthesis is likely to fall into 

this second category. 

 

Occlusion of blood vessels and lymphatic in tissues overlying bony 

prominence occurs as tissues are deformed when transmitting body 

weight, and other forces, to the support surface. The spatial 

distribution of these forces may be represented as stress components 

normal and tangential to the plane of the skin. 

The duration for which ischemic conditions can be tolerated is thought 

to be inversely proportional to the amplitude of the associated 

normal stress. Trumble (1930) found that patients soon complained of 

pain when subjected to an applied skin pressure of 80 mmHg (110 milli 

bars) and that these pressures caused collapse of veins. Husain (1953) 

concluded that low pressures maintained for long periods of time resulted in 
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more tissue damage than high-pressure acting for short periods. 

Hussein suggested that the tissue injury resulted due to the 

permeability of capillaries increasing in the compressed regions once a 

certain threshold has been exceeded. This threshold appears particularly 

critical after release of compression; the threshold value was a function 

of both time and pressure. The reason for this is that following the 

release of compression, interstitial oedema develops, the lymphatic and 

venous channels become choked and as a consequence tissue damage may result. 

These findings have been corroborated by Kosiak (1959), Lindan (1961), 

Brand et al (1970), Willms-Kretschener and Manjo (1969). Exton-Smith 

and Sherwin (197.) found that the skin of humans is not adapted to 

sustain pressures of more than 40 mmHg for time intervals of several 

hours, except the skin on the soles of the feet. This obviously is 

an important factor in prosthetic socket design. The corollary to the 

tissue damage process outlined above is that the slowing of blood flow, 

due to point loading of the particular tissue parts, will result in 

ischemia and hence further tissue damage will ensue [Hussein (1953)]. 

Hussein (1953) further showed that the pressure effects on tissue could induce 

pathological changes in muscle, which subsequently impair its 

functional capacity. Due to this factor, the value of the 

aforementioned threshold is reduced, even by a partial interruption of 

the arterial blood supply, within the pressurised part. Schell and Wilcott 

(1966) suggest the following factors may be implicated in pressure 

sore aetiology:  

 

(1) Physical  - pressure, heat, moisture, friction, shear force, 

hygiene. 

(2) Nutrition - general under nutrition, specific nutritional deficiencies. 

(3) Anaemia. 

(4) Infection. 

Bennett et al (1979) have shown that the pressure vs. shear stress 

relationship has important implications as a causative factor in skin blood 

flow occlusion. Although pressure is more effective as an occlude the 

threshold value can be lowered dramatically by the combination of shear 

stress. The investigation of shear stress as a causative factor has also 

been investigated by Reichel (1958), Roaf (1976), Guttman (1973). 

Mahanty and Cocmer (1979) have shown the effect of pressure in 

producing a thermal response at the skin with the obvious implications to the 

physical factors identified by Schell and Wolcott. 

 

Greenstead and Zahedi (1987) measured 6 below and 6 above knee amputee stump 

socket interface pressures using Force Sensing Resistors and showed the 

dynamic nature of the pressure amplitude during walking. Areas of high 

pressure were shown by the check socket shown in figure 3.5.9 pressure on 

various sites around stump. 



 375

  
Figure 3.5.9 Stump interface pressure on 8 sites such as PTB, Fibular head & 

Hamstrings tendons. Diagram on right shows the variation of PTB pressure 

below against axial load above showing variation with loads. 

 3.6.4. The Concept of Check Socket. 

 

 

The most important criterion in this rehabilitation of amputees, at all 

levels, is a functional prosthesis; this is a function of comfort, and 

correct stump/socket interface design and manufacture. 

In order to assess the quality of sockets, which are fitted, recent 

developments in the U.S.A. have revitalised the use of a so-called, 

check socket [Schuch (1986); Pike and Black (1982); Mooney and Nelson 

(1972)]. 

  

 

Figure 3.6.1 Uvex check socket in use on below knee amputee stump. 

Zahedi (1987) described the use of a check socket in a routine clinical 

practice to improve the prosthetist’s ability to fabricate the socket. Using 

pins at specified landmarks, the amount of rectification was quantified and 

charted. During a 9 months period of providing feed back from interface 

measurements, it was possible to reduce the amount of rectification, produce 

a novel casting technique, referred to as stage casting with minimal 
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rectification. This work has lead to development of the “Adaptive Socket” 

(under development).  

The objectives of a check socket are:  

 (1) To evaluate the accuracy of casting and rectification performed by the 

prosthetist prior to the final socket manufacture. 

 (2) To obtain information on present methods of casting and 

rectification. This information can then be fed back to the prosthetists. 

 (3) To produce accurate and correctly fitting sockets with very close 

tolerances so that the fitting of hard sockets can be facilitated. 

The check socket, is manufactured from a clear plastic, e.g. Surlyn, 

polypropylene, UVEX (as shown on Figure 3.6.1) This enables the prosthetist 

to determine the areas of high and low loading, when the socket is fitted, 

by assessing the pigmentation pattern present on the stump surface. Under 

weight bearing conditions, loose areas are marked by redness, and inject 

able materials (glycerine, alginate) are then added to equalize weight-

bearing pressures. Areas of excessive weight bearing, if not relieved by 

the newly injected materials, are either relieved in socket or modified on the 

master mould. 

The principal limitation of the check socket, to date, is that it is not 

applicable to dynamic situations. 

3.7.2. Application of CAD/CAM in Below Knee Prosthetics 

 

This has been the most exciting development in the first half of 1980s. With 

advances in transducer technology, the possibilities of shape 

measurements and digitisation of form became a reality. With 

substantial progress in faster and cheaper computer processors the 

topic of Computer Aided Design and Computer Aided Manufacture took 

substantial leaps forward. Application of such techniques although at 

first spontaneous and sporadic at the beginning of this study, are 

now implemented into service. 

The use of lasers and solid-state cameras placed around the stump, 

which swiped the silhouettes of stump, was first described by Ferrnie et 

al. (1983). This data was then put into a computer routine to generate the 

shape of the stump and perform the necessary modification for socket 

rectification, thus eliminating the casting and rectification process. 

The computer-rectified socket in digital form was input to computer 

Numerically Controlled single axis milling machine. Simultaneously and in 

conjunction with Canadian groups the Bioengineering Centre of University 

College London, was developing the Rapid Form machine as described by 

Davis et al. (1983). This system allowed polypropylene sockets to be 

built rapidly with an automated drape form machine. Thus the 

rectified socket on the computer screen was converted into a wax model 

of the stump with the CNC machine and later, using rapid form the 

polypropylene socket was made with a total time of fabrication measured in 

hours. 
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Simultaneously the use of thermoplastic and carbon fibre reinforced 

plastics for manufacture of alignment units, and prosthesis shanks was 

developed at University of London described by Davis et al (1983). 

The development of modular components and their popular use has brought the 

acceptance of a cost effective and rapid procedure of manufacturing prostheses 

forward. This is now being followed on a major project at University of 

London as described by Davis (1985) the "Project Shape" which is 

comprises five parts; the Module Form, Sense Form, Computer Form, Shape 

Form and Rapid Form. 

Further, detailed research is being conducted mainly in shape 

formulation and sensing. The use of solid modelling and finite 

element techniques for surface generation is being evaluated. Figure 

3.6.3 shows the surface of below knee socket generated from a surface generation 

routine used for stress analysis, primarily used in this study for 

measurement of socket axis from 40 3D co-ordinates measured using alignment 

measuring equipment. The details of this will be discussed in 

chapter 5.  

  
Figure. 3.6.3 Computerised surface generation. Below knee socket. 

 

Jones and Mackay (1985) also used solid graphics in conjunction with 

a fast processor for shape display. Application of the findings of 

this study in the concept of rapid, economic fitting and delivery of a 

complete lower limb prosthesis and consistent high quality limb manufacture 

will be discussed in later chapters.  

3.7.3. Current Development in Below-Knee Socket Design 
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The recent development of the PTB Suction Prostheses is detailed by Grevsten 

(1977). This design, based on the well-tried above-knee suction prosthesis was 

developed in Sweden as a result of a series of failures and problems with the 

conventional PTB prosthesis, as far back as 1968. Although the name 

suction socket is used, Holmgren (1979), a prosthetist involved with 

the development of the prosthesis, considers that the contribution of 

the suction has been misinterpreted. The function of the socket is a 

result of the deformation and displacement of the soft tissues in 

the distal direction and the pre-tension of the skin in the distal 

direction. This is only possible if the skin can adhere directly to the 

entire walls of the rigid or semi-rigid socket, and maintained by suction, 

as in the above-knee suction socket. Since the prosthesis is fixed to the leg via 

deformable soft tissues, the stability of the fixation depends on how much 

relative movement between socket and skeleton can be restricted. Holmgren states 

that this has been improved with the advent of the PTB-SC and PTB-SC/SP 

designs, but considered the pre-tensioning of the skin in the PTB-suction 

socket to provide the most stable and secure fixation and suspension, to 

date. Roentgenological studies indicate that the movement of the skeleton 

inside the socket in the PTB-suction socket is less than half that of the 

conventional PTB prosthesis. Furthermore, this has a useful adjunct 

in reducing the mechanical wear and effects of friction on the skin 

relative to the socket wall; thus the risk of sores is reduced. 

Further advantages of the PTB-suction socket include reduced 

discomfort and damage due to piston action, improved circulation, 

increased sensory information and feedback, and an improved cosmesis. 

Some of the limitations of the PTB-suction socket include difficulty in 

seating if stump is too short and bony, requiring for increased skill 

in casting; the PTB-suction socket is contraindicated for subjects whose 

stump volume varies, such as geriatric amputees.  

 

Other recent and current developments in the design of below-knee 

prostheses have tended to be based upon the use of different materials. 

This has obviously given the designers further scope for design changes. 

The materials, which have probably constituted the most towards prosthetic 

development, have been the thermoplastics. 

 

The design of the PTB-suction socket depended upon the use of the flexible 

nature of the thermoplastic socket to conform readily to the contours of the 

stump. Sarmiento (1974), in an attempt to find improved fitting procedures 

for below-knee prostheses, used polypropylene as the basis for socket 

fabrication. This could be easily formed; re-heating in the desired area 

could affect using conventional vacuum techniques, and any minor 

adjustments.  

 

Another design for below-knee prostheses, utilising thermoplastics, is 
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the Flexible Brim Socket Design by Schuch and Bennett Wilson (1986). The 

need for increased socket comfort has been realized for many years and 

has resulted in many different liners and inserts being fitted, [Radcliffe 

and Foort (1961); Bennett (1974); Staats (1984) being examples of 

publications addressing themselves to this problem. The Flexible 

Brim Socket has been developed as an alternative approach to this 

problem, doubtlessly deriving from the results of the flexible 

above-knee designs currently available. The basic design criteria were: 

 

(1) Flexible brim. 

(2) Tapering flexibility of the socket in the brim area. 

(3) Flexible options in other areas of the socket.  

(4) Light weight, but durable.  

(5) Thermoplastic and modular (i.e. No lamination, no epoxy, no glue, etc.). 

(6) Compatibility with existing modular component systems. 

3.7.4. Further Developments in Above Knee Prostheses. 

 

There are several variation and new techniques of fabrication. However 

there are two concepts, which are applicable to the socket, rigid and 

flexible socket. Within the rigid sockets unlike below knee prostheses, 

there are no provisions for an inner liner. In fact there are several 

schools of thought regarding the use of soft liners; some reject the 

pelite liner as an element which reduces proprioceptive feedback, does not 

control stump volume and covers the prosthetist's mistakes in cast 

rectification. With the rigid socket however there are cases of floppy 

soft stumps, which has the consequence of painful impingement of the 

cut end of the femur against the socket. There are provisions in fabrication 

for distal end cushion or deformation of stump tissue at casting stage as 

described by Redhead (1979). Figure 3.7.1 shows the principle of casting. 
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Figure 3.7.1 Total Bearing Surface above-knee prosthesis (from Redhead, 

1979) 

 

With Flexible sockets the basic concept has been the use of a flexible 

inner socket inside a rigid cradle for transfer of loads. This concept 

has been used more often in recent time especially in above knee 

prostheses to solve problem such as perspiration, lack of feedback 

sensation and lack of mobility is removed by the use of a flexible 

socket. The ISNY socket, result of joint collaboration with 

Icelandic and New York University research uses one of the earlier 

designs in flexible sockets. Other variations such as the Icelandic 

socket differ in the shape of brim, number of the sidebars on 

cradles with relation to type of load transfer and method of 

fabrication.  

 

3.7.5. Application of CAD/CAM in Above Knee Prosthetics. 

 

Fernie (1985) and Foort (1985), amongst others, have developed software 

package systems for computer socket design (CASD). Further development 

has combined the design and manufacture processes to provide an 

integrated CAD/CAM system, as shown in Fig. 3.7.2 These processes remove 

the need for plaster casting and allow a faster and more flexible means 

of socket manufacture. Although originally conceived for B/K socket 

production the system has been adapted for A/K levels too. 
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* C A S D_ Computer Aided Socket Design (socket, cosmesis or 

alignment) Figure. 3.7.2 SCHEME FOR CAD SOCKET MANUFACTURE. 

 

Zahedi (1988,2004) describes the Computer Aided Prosthetic Laboratory 

(CAPL), which aims at integrating socket fabrication with construction and 

assembly of the complete prosthesis, setting bench alignment based on 

measured sound limb anatomy prediction of gait, assisting dynamic 

alignment based on insole force/pressure measurement and fabrication of 

bespoke cosmesis based on sound side limb scan.   

3.7.6. Current Developments in A/K Socket Design 

The advent of this new generation of socket design has resulted in a re-

evaluation of the supporting structures. The trend is for fenestrated 

designs with their inherent reduction in weight and improved heat 

dissipating properties. The corresponding reduction in rigidity has 

provided improved proprioception and hence prosthetic control has been 

refined. 

 

Lehneis (1985) has also outlined some of the design failures of the 

quadrilateral socket and demonstrates, in biomechanical terms the shortcomings 

of these sockets. Figure 3.7.3 shows how at heel strike, a point in the 

gait cycle where the need to support body weight is perhaps greatest, 

the socket's ischial seat is not in contact with the ischial 

tuberosity. Furthermore, at heel off, as the hip is extended there is 

a tendency for the ischial tuberosity to become a fulcrum, about which 

the prosthesis tends to rotate. This results in the stump being pulled 

out of the socket, gapping of the anterior brim, elevation of the body 

on the involved side and discomfort. The effects of these can be reduced, 

according to Lehneis, by sloping the ischial seat forward and downward so that 

it is tangent to a radius from the joint to the ischium. 

 

With the increase in the average age of patients, Lehneis argues that there is 

even more need to consider socket design beyond the present 

quadrilateral, especially when one considers the physical problems 
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associated with the elderly amputee. Figure 3.7.3 demonstrates the effect 

of a quadrilateral socket, fitted to a manual knee locked prosthesis; As a 

result, the tissue below the ischium is compressed significantly, 

due to typically poor muscle tone, resulting in excessive skin 

tension, anterior proximal gapping of the socket and the ischium being too 

far posterior to the ischial seat on the socket brim. Due to lack of flexion 

during stance, the amputee’s centre of gravity rises excessively to clear the 

ground, thus increasing the effort in walking. In cases prosthetists will 

alter the alignment to increase flexion of socket and reduce limb length to 

solve this deficiency, which would then results in secondary low back or other 

similar problems.  

 Figure. 3.7.3 Fixed knee at heel strike. 

Perhaps the most significant new design for above-knee sockets is the 

Contoured Adducted Trochanteric Controlled Alignment Method (CAT-CAM) 

developed by Sabolich (1985). Like Long (1985), Sabolich was 

concerned to reduce the apparently inevitable abduction of the femur 

in above-knee amputees, supplied with quadrilateral sockets as shown 

in Figure 3.7.4.  
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A-K Stump in Quadrilateral Socket (Redrawn from Mital & Pierce, 1971) Figure 

3.7.4 shows the resulting effects of the gluteus medius muscle action present in 

the stabilization of the upper trunk during normal gait. 

The essential features of the CAT-CAM (later renamed as Ischium 

containment or narrow ML) design include undercutting of the trochanter 

and a special fossa in which the ischial tuberosity and descending 

ramus can rest, thus giving this bony prominence three-dimensional 

support within the socket. The Scarpa's triangle profile is virtually 

eliminated, as are the adductor longus and rectus channels, and the ischial 

seat. Fig. 3.7.5 shows the radical change in design from the quadrilateral 

socket. 

 
Fig. 3.7.5 Comparison of CAT-CAM and quadrilateral sockets in a transverse 

view. Since the Femur and ischial tuherosity are fixed in position, the 

adductor longus tendon has to shift a small amount. (Oklahoma City) 
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channel/femur 

  

Figure. 3.7.6 Ischial tuberosity is locked in the socket to develop a counter 

force against femoral shift. 

  

Figure. 3.7.7  Cross-sectional view of the SCAT-CAM socket. 

 

The philosophy of the CAT-CAM socket hinges on the assumption that if 

the femur can be held in adduction then an improved gait and comfort 

will result. The femur is held in adduction by two means. Firstly, 

the ischial tuberosity, and part of the interior ramus of the 

ischium, rests inside the socket proper, and bear laterally 

directed forces, which work in conjunction with medially directed 

forces borne by the femur. Medially directed forces bearing on the 
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proximal portion of the femur in the trochanteric and sub-trochanteric 

region act to hold the ischial tuberosity on an inclined medial-

posterior surface within the socket, while forces on the mid and distal 

portion of the femur act to maintain the correct adduction angle. The 

second means is that by virtue of the narrow socket, the pressure 

bearing areas of the socket bear directly against the skeletal 

elements, thus reducing motion lost through intervening soft tissues. 

Sabolich (1985) reports that patients’ comments have been 

favourable, and that the system is compatible with the S.F.S. and the 

new Total Flexible Brim (TFB) socket. A second generation of CAT-CAM 

was subsequently introduced; known as the SCAT-CAM or Skeletal CAT-

CAM which is a highly bone and muscle contoured design, see figure 3.7.7 

above. 

  

Triangular Socket for an above-knee prosthesis (from Naeff & Pijkeren, 

1980) 

Marlo in 1988 started the work on scanning and analyzing the location of 

muscles of several CAT-CAM and Quad sockets. The conclusion has been in 

development of the so-called “Marlo” socket. Figure 3.7.8 illustrates 

location of socket in relation to anatomical landmarks and a balance 

strike between offering of quad and narrow ML socket, which has proved to 

provide best control of the stump in many cases. 

  

Figure 3.7.8 the principle of Marlow’s socket design compensation for 

soft tissue. 

4.1 Human Locomotion 

 

The Sanskrit is been said to be the oldest spoken and written 

language. The precise measurement required for speaking and sounding 

the 28 sounds of this language requires accurate study of the motion 

of tongue and lips. The ancient Vedanta tradition describes the dance of 

Shiva, which requires high precision of the movement of lower limbs in 

relation to upper limb, the trunk and the head. This religious oriented 

type of dancing and study of human locomotion are seen more clearly 

in the description of Dervishes dance, which was given as a 
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spiritual exercise with extraordinary high levels of consciousness. 

The whirling Dervishes (figure 4.1.1) have intrigued many scientists 

with their amazing display of controlled, mathematically precise 

movements at varying speeds carried out in an atmosphere of complete 

serenity. The angular rotation of relative position of hood, arms 

and foot has shown a precise relationship of 9, 3 to 1. 

Indeed from archaeological advances it is apparent that even Greek 

philosophers like Hippocrates, Aristotle and Archimedes applied themselves 

to the understanding of human locomotion. Leonardo da Vinci (1500) 

perhaps is the first artist and scientist who approached the subject of 

locomotion in a systematic way in a subjective fashion. Borelli 

(1680) perhaps the pioneer of combined science applied the science 

of mathematics, physics and anatomy for understanding of human 

locomotion. The Weber brothers (1836) presented the theory of pure 

pendulum motion of the leg in gait. The understanding of human locomotion 

based on subjective analysis was not indisputable until the introduction 

of objective measurements of gait. 

4.2 Review of various studies on Body segment  

Braune and Fischer (1888), Contini and Drillis (1964), Miller (1973) and 

Chandler (1975) give full details of the history and measurements 

based on large samples of individual measurements performed both in 

vitro and in vivo. 

Figure 4.2.7 shows the physical length of segments as a percentage 

of body height. This is from technical report No 1166.03 from New York 

University. (Drillis and Contini 1970). 

 

           C a d a v e r  l i v e  c a d a v e r  l i v e  c a d a v e r   l i v e  

 

Figure 4.2.7 the Body segment parameter from 6 different studies 

Contini & Drillis 

(1970) Technical 

Report No 1166.03 

(New York 

University) 

Segment Mass in 

Percent of the Total 

Body Mass (Mean 

Values) 
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Figure 4.2.8 illustrates the mass distribution of body segments relative 

to each other as determined by Harless (1860).  

 
Figure 4.2.8 Mass distribution of human body from Harless 

 

Later methods of immersion, and photogrammetric techniques for determination 

of volume and reaction boards for direct measurements of mass from live 

subjects were used. Meeh (1884) is the first to report the measurements 

on 8 males and 2 females. Braune and Fisher (1889) reported on 3 male 

cadavers. Bernstein (1936) developed the first realistic set of measurements 

based on 76 males and 76 females. Dempster (1955) produced the body segment 

parameters to be used by NASA, based on 8 male cadavers. Contini 

(1972) as well presenting data on live normal subjects determined the 

parameters for some hemiplegics and amputee subjects. Several more 

studies were conducted in the 70's for aerospace, ergonomics and 

automotive industries. However the data from these are not readily 

available.  

 

4.3 Force Platform evolution 

Figure 4.3.1 illustrates this platform mechanism 

  

FIGURE. 4.3.1 Amar's Force Platform (from Amar, 1916) 

The natural frequency of their platform was given at 105 Hz for horizontal 

shears and 140 Hz for torsional oscillation. This system allowed an 

accurate and safe method of measurement of human kinetics sampled at 50 
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Hz, provided correction was made for cross talk for each 

information channel. Figure 4.3.2 shows this device. Laura (1957) 

developed a triangular force platform using piezo electric transducers. 

This device only measured the three force components. More information and 

the usage of this system are described in Brouha (1960).  

 

Figure. 4.3.2 Force platform from Cunningham and Brown (1952). 

 

Since Cunningham and Brown the rectangular force plate under went 

several modification by many workers and it eventually and has been mainly 

developed and distributed on an international scale by Kistler 

instruments AG of Switzerland. Paul (1965) modified the physical 

dimensions and the strain gauging circuits. It is reported, that this 

plate had a transverse natural frequency of 56 Hz and for the vertical at 260 

Hz. Kilpatrick (1969) presented the modified plate with top plate not 

rigidly fixed to the columns. The ball bearing and grooved joints were 

used for connection instead. The natural frequency for vertical was 

1610 Hz and for horizontal vibration at 38 Hz. Although the Cunningham 

and Brown version used a viscous damping system to reduce the 

excessive vibration in the horizontal plane, an analogue low pass 

filter replaced this for elimination of noise by McLeish and Arnold (1972) and 

later Cohen (1980) described suspended force plates. Cohen's version had 

seven strain gauged steel strips, pre tensioned to suspend an inner 

plate from an outer support frame. Three of these transducers were 
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employed to measure the vertical, and the remainder for horizontal 

forces. The outputs from steel transducers generated the three 

orthogonal forces, the coordinate of centre of pressure on the top 

surface of platform and the torque applied along the vertical (the axis 

normal to top surface of platform). The natural frequencies were 

given as approximately 70 Hz and there was no report of cross talk 

values. Other modification which were used for measurements of the load 

actions in more than one step, apart from using several force plates along 

each other were the long platforms. Skorecki (1966) devised a two-track 

force platform 3.3 meters long. Each platform supported by two tubular 

columns near each end. This platform was only capable of measuring the 

vertical force with a natural frequency of 85 Hz. Riddle (1966) described 

a similar device with use of a "Boors" force cells which measured the 

anterio posterior shear force along the platform as well as vertical. 

Wirta (1970) devised a 1.5 m platform capable of measuring the three 

orthogonal components by means of suspended strain gauged columns. 

Lately Oberg (1986) described a 10 m long force platform based on this 

principle. 

Figure 4.3.3 shows the AMTI strain gauge load cell  

 

4.3 Pylon Transducer evolutions. 

Figure 4.3.5 illustrates this design.  
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Figure 4.3.5 pylon transducer of Lowe (1969) 

 

The torque gauges, which are set at centre of the tube, are 45-degree 

rosette and with circumferential gauges 2.25 inches below them, allows the 

measurements of the torque applied. At the upper and lower sections, the 

medio lateral and anterio posterior bending moments are measured and from 

these the shear forces in A-P and M-L are derived, thus the reason for 

such long tube which was needed for accuracy purposes. This large 

length limited the application of this transducer to the prosthesis for 

a long stump below knee amputee. Four gauges positioned measured the 

axial load similar to bending gauges 90 degrees apart around the 

circumference of the pylon. 

 

Figure 4.3.4 shows the location map of strain gauges.  

 

  

Figure 4.3.4 Pylon force transducer from Cunningham and Brown (1952). 
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4.3.3 Insole platform development. 

 

(Figure 4.3.8) 

  

Figure. 4.3.8 Pneumatic foot-force measuring device. (From Carlet, 1872) 

without measuring shear forces. 

 

Figure. 4.3.9 Force transducer insole load cell design from Spolek and 

Lippert (1976). Parameters obtainable from the instrumented shoe of Spolek 

and Lippert (1976) included shear forces and bending moments. 

An air cushion is attached to the sole of the shoe and with the aid of a 

hand held recorder he monitored the changes in air pressure during 

the gait. Scwartz and Heath (1947) were amongst the first workers who 

attached pressure transducers to the sole of the foot. The pressure 

transducers were positioned under the first, third and fifth metatarsal 

heads, medial and lateral aspects of the heel and under the big toe inside 

the shoe, and measured force between the shoe and the foot. Holden and 

Muney (1953) used 3mm thick capacitance pressure transducers in the heel and 

other sites similar to Schwartz and Heath. Hargreaves and Scales (1975) 
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described a sandal with force transducers. Later this system had to be 

modified to an insole of sport shoe as the heel transducer affected the 

walking pattern. The device could only measured the vertical force 

component. Spolek et al (1975) designed an instrumented shoe with 

force transducer attached to the heel and fore foot. Each transducer 

consisted of a strain gauged cross beam supported by base plates at its 

end. Figure 4.3.9 shows this device, which measured the three orthogonal 

forces and moments acting at the heel and the fore foot by means of 

bending of the beam. Klyajic and Trnkocky (1977) developed 8 strain 

gauge cantilever transducers built into the sole of a specially made 

leather shoe. Figure 4.3.10 shows these transducers, which can only 

measure the orthogonal forces. Due to lay out of such transducer, it was 

possible to calculate the position of the centre of pressure. Miyazaki and 

Inakura (1978) designed a transducer to be strapped to any shoe.  

  

Figure 4.3.10 Force measuring shoe. (From Kljajic and Trnkoczy, 1977), left 

and Force transducer design. (From Miyazaki and Iwakura, 1978) on right 

 

It consisted of a stainless steel rectangular plate with two supports at 

each end. The centre of the plate is strain gauged for vertical load 

measurement. Each shoe will have two such devices at heel and sole under 

the metatarsal region. 

 

4.3.4 Ideal platform length 

 

Another essential criterion is the frequency response. For accurate 

analysis, the platforms must have a minimum natural frequency higher 

than all applied frequencies. Skorecki (1966) suggested that only low 

frequency components of below 15 to 20 Hz are present in walking. While 

Crowinshield and Brand (1978) suggested that significant components of 

the floor reaction force are in the frequency range of 0 to 50 Hz. Minor 

components may be recorded even at 100 Hz. Simoel et al (1981) reported 

the high frequency impulsive load at heel strike at 75 Hz. Thus force platforms 

with resonant frequencies of 100 - 200 Hz were regarded to be adequate 

for providing accurate measurements, however during this study, it was 

found that certain phenomena and components on above knee amputee were 
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required sampling rates of over 100 Hz. The sampling theorem dictates that the 

correct sampling rate must be at least half the natural frequency, thus 

requiring the transducers natural frequency to be relatively high. Thus 

the ideal force plate should be at least 2.5 m long to cover a minimum 

of 3 steps for repeatability purposes, and the type of track construction, 

which is easily adjusted for subject base or made of several narrow tracks 

eliminating the interference of the contralateral side. The platform 

should be able to measure the three orthogonal force and moment 

components as well as the coordinates of the centre of pressure. 

Additional facility of deducing foot contours by means of foot 

pressure measurements if incorporated would be of great value. The 

minimum natural frequency for individual components should be higher 

that 200 Hz and there should be no cross talk in any channels. (This was 

later achieved at University of Surrey and duplicated system made for the 

Queen merry NHS trust using the short pylon transducer described earlier by 

Ewins etal)  

 

In fact such ideals are not far fetched. Dhandaran and Hutton (1976) 

described the use of 128 strain gauged ring transducer laid in a matrix 

of 8 by 16 covering an area of 20 by 40 cm, which were capable of 

performing all the above requirements. At the time of this research 

the state of computer technology did not allow on line sampling of 

more than 128, six component load cells. However a platform 2.5 m long 

and 1 m wide filled with these transducers would provide all information 

required, and with present state of computer technology such an amount of 

data processing is possible. Another interesting area of development has 

been the six-component insole force transducer, which employs telemetry 

for transmission of data. Such a development, although it requires to be 

worn by the subject, allows measurements of kinetics of human 

locomotion during outdoor activities. Such developments are now used in 

United States, Japan and Europe for athletes training. 

 

4.4.4 Kinematic studies  

 

(see Figure. 4.4.1) 
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Figure 4.4.1 One of Marey's subjects (from Bernstein, 1967) and 4.4.2 a 

later derivative used in 1981 using mirrors and glass platform. 

  

This system of multi-exposure is known as cyclography or 

cyclophotogrammetry. The addition of a shutter in the camera allowed the 

production of known dark periods. This made the recorded images readily 

discernible. Figure 4.4.2 shows the movement of lower and upper limb 

joints with segmental lines joining them. This was the first stick 

diagram. It is perhaps one of the most common ways of illustrating human 

movements. 

 

Braune and Fisher (1895) replaced the passive reflective 

illuminators with active "Geisler" tubes. These emit light at a 

frequency of 26 flashes per second. From the recorded data they 

measured the co-ordinates of identification landmarks. By arranging four 

cameras around the subject, they were able to perform the first 3-

dimensional analysis of human gait. Using the displacement data, it was 

possible to establish the velocities and accelerations of segments and with 

information on body segment parameters, made the first scientific 

calculation of force actions on the body. This pioneer technique of gait 

analysis is the principle of more advanced systems, which are used at 

present and in this study. However, one of the great difficulties in 

cyclography is overlapping of trajectories, which makes differentiation of 

images difficult. Also if there were large displacements in more than one 

direction, there would be a sharp reduction in images' brightness. 



 395

  

Fig. 4.4.3 Arrangement for recording pin-study data. (from: Klopsteg & 

Wilson, "Human Limbs and their Substitutes", 1954,. EBERHART & INMAN : 

University of California 1947) 

  

To overcome these problems, several modifications to the original system 

were performed. Berstein (1927) introduced the concept of slowly moving 

photographic plates known as 'kymocyclography'. Later with Ropova (1929) 

they used smaller active markers to reduce image overlaps. Eberhart and 

Inman (1947) were responsible for the first extensive study of human 

locomotion for the design of artificial limbs. One of their reported methods 

was chrono- cyclogrammetry, which used interrupted light photogrammetry. 

They used a rotating shutter in front of an open lens camera, which recorded 

the images of ophthalmic electric light bulbs on bony landmarks of the body. 

They used a 10-degree slit on the shutter, which rotated at 1800 rpm, giving 

an exposure of 1/600 second. 

Muybridge (1882) used 24 cameras with shutters and overlaid calibration grid 

board for quantitative assessment of human locomotion. Elftman (1939) used a 

camera for extensive study of human locomotion in the sagittal plane. 

Eberhert and Inman (1947) as described by Levens in 1948 used the principle 

of Braune and Fischer, with three cameras operating at 47 frames per second, 

positioned orthogonally around the subject, measured 3-dimensional co-

ordinates of wooden markers on stainless steel screws driven into bony 

prominences. Figure 4.4.3 shows Eberhart and Inman's camera arrangements. 

They determined the transverse rotation of lower limbs during walking. They 

also used a glass walkway with an inclined mirror underneath, with one 

camera perpendicular to the sagittal plane, taking the lateral view as well 

as the view from the mirror, and another camera taking the front view. Using 

this method they used a pelvic girdle connected to the ankle with brackets. 

Markers were positioned on the girdle and its extension arms. The use of 

such methods of marking is questionable on its effect on gait patterns due 
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to the discomfort it creates. 

 

4.4.5 Elite System  

This is the latest in television / computer data acquisition systems for 

human locomotion, which will soon be marketed as a commercial movement 

analysis system. The system developed by Ferrigno (1986) was primarily 

concerned with automatic and reliable analysis of body movement. It is 

principally a computer television system of 1976 developed at Strathclyde, 

with the application of 1986 technology to various key components. The 

cameras are replaced with solid-state cameras with digital output. The 

marker detection module is replaced with a Fast Processor for Shape 

Recognition (FPSR) designed by implementing fast VSLI chips. It is based on 

a real time processing of TV images to recognise multi-passive markers and 

computes their co-ordinates. A predetermined "mask" allows matching of the 

shape of the markers for automatic identification. The main characteristics 

are no restriction on the number of markers and resolution of one part in 

2,500, 50 Hz sampling rate is independent of the number of markers. 

 

4.4.6 The SELSPOT System 

 

The Selective Light Spot recognition known as SELSPOT is another 

commercially available system from Selcom AB of Partille, Sweden (1975). 

This system was first developed by Lindholm (1974) and is based on a 

continuous light spot position sensitive silicon photodiode sensor. The 

impingement of the light spot on the surface of the sensor varies the 

current of the load resistance giving its position. A dual axis sensor 

provides the 2-dimensional co-ordinates of the light spot. 
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Figure 4.4.8 the Selspot system. 

The system used active infra-red light emitting diodes mounted on a base 2 

cm wide by 3 cm long. There are usually 3 IR diodes on each plate but it is 

said that it is possible to use smaller markers with 1 IR diodes. Time 

multiplexing is used to track 30 markers up to 312.5 Hz as the sampling 

frequency. The IR LED's are sampled sequentially and two cameras could be 

used for 3-D co-ordinate measurements. The resolution of the system is 

dependent on the signal to noise ratio, hence to the intensity of the LED. 

 

Woltring and Marsolais (1980) evaluated this system and by varying the 

camera distance the changes in the accuracy of marker co-ordinates were 

reported. On a field width of 3m and an observation distance of 6m from a 

camera with standard 50 mm lens, they reported a resolution of +/-3mm. 

   

Figure 4.4.9 Dual-axis, duo-lateral, position sensitive photodiode. (Redrawn 

from Woltring 1975) 
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Paul and Nicol (1981) on another independent evaluation of the system found 

the background light interfered with the signal and significant cross errors 

were noticed due to stray reflection. Further, due to lens curvature, the 

recorded position of the peripheral LEDS in the field of view was found to 

be unstable. 

However, since these two evaluations, a number of investigators have used 

this system and the problem of reflection has to a great extent been sorted 

out with the use of a brown colour material as carpet and curtains as a 

background in motion analysis environments. This system has a significant 

clinical advantage over other systems, in terms of reliability, accuracy and 

the need for marker identification. Hence the tracking is automatic and 

immediate co-ordinates of markers may be obtained. Its price is fairly 

similar to the other 3-dimensional motion analysis systems. However, one 

great disadvantage of this system is the requirement for the subject to 

carry power units and the circuitry packs round the waist or on the back or, 

alternatively, the use of an umbilical cord, which in either case interferes 

with gait. Further, the size of markers for the determination of joint 

centres could produce unacceptable errors. Figure 4.4.9 shows the Enoch 

system. Enoch is the trade name for Selspot from Selcom.  

4.4.7 The CODA System 

 

The Cartesian Optoelectrical Dynamic Athropometer (known as CODA) was first 

developed by Mitchelson (1975). The system consists of three specially 

designed cameras in a specific arrangement. Figure 4.4.10 shows the layout 

of the CODA system.  

  

Figure 4.4.10 Schematic representation of the CODA system arrangement. 

(Redrawn from Mitchelson, 1975). 

 

The two outer cameras are for the measurement of the horizontal co-ordinates 

and the middle one is for the measurement of the vertical co-ordinates. The 

stereoscopic arrangement of the horizontal measurement cameras provides 

information on the depth of the marker in the field of view by electronic 
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processing within the camera system. The camera lens is a cylindrical 

doublet, which is used to focus a point light source into a line image in 

the focal plane. A matrix of silicon photodetectors with an encoded optical 

mark in front is responsible for detection of the line image position. 

Mitchelson (1981) produced the more updated version of the original CODA 

named CODA 3, which became commercially available from Movement Technique 

Ltd. Passive prism markers, made of glass and mirror in the shape of a 

pyramid replaced the active infra-red gallium arsenid laser of CODA. These 

prisms reflect light from a single powerful halogen light source as they 

have 200-degree effective angular range. Furthermore, each marker is 

identified by different colour filters, which are automatically identified 

with a colour decoding system from their respective wavelengths. The 

developers claim a resolution of 0.2mm and 1mm can be achieved over a 1m 

cubes and 10-cube field of view respectively. The field of view is 40 degree 

which is 0.8 of field width to distance ratio. The non-linearity is quoted 

to be 0.2% over the total field of view. 

 

4.4.7 Eberhart 1954 data measurements 

 

 

 

Fig 4.7.1 (from Eberhart et al, 1954) Top right joint angle displacement of 

ankle, knee and hip. Top left horizontal displacement of leg joints and 

above caption fore aft Displacement of leg joints angle during the stance 
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and swing 

 

 

Lateral displacement of leg joints 

 

Relation Rotations at knee and hip joints (from Eberhart et al, 1954) 

 

Rotations of leg segments (from Eberhart et al, 1954) 

 

Figure. 4.7.2 Rotations of pelvis and leg segments (from Eberhart et al, 

1954) and Rotations of leg joints, hip, Knee and ankle 
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4.4.8.1- Centre Goniometer 

 

The simplest form of this group is the protractor goniometer for measurement 

of passive movements. The centre of rotation of the arms of the goniometer 

has to be aligned with the centre of rotation at any one instant. Obviously, 

as none of the joints in the human body are uniaxial joints with a fixed 

centre of rotation, there are inaccuracies associated with this type of 

measurement. The second source of error is the alignment of the arms of the 

goniometer with the long axis of segments. However, these devices are fairly 

handy for a crude estimation of intersegmental angular displacement. Carlson 

(1981) described a mechanical "Peak-reading" goniometer, which by employing 

a dial gauge measures the maximum angular displacement during active 

movement. 

Karpovich and Karpovich (1959) introduced the electro goniometer or "Elgon", 

for recording relative angular motion during locomotion. This device 

consists of an electrical potentiometer fixed to an arm with its spindle 

fixed to another arm. Figure 4.4.11 shows the device, which is used for 

measurement of angular rotation in saggital plane. 

Wright (1964) introduced two potentiometers for measurements and ankle and 

subtalar rotation. Johnson and Smidt (1969) presented the next stage in the 

development of goniometers by introducing a tri-axial electro goniometer 

capable of measuring hip joint angle in saggital, coronal and transverse 

planes. In this case only one of the arms were firmly fixed to the proximal 

segment, while the other arm was allowed to slide in and out of a metal 

collar attached to the distal segment. Kittelkamp (1970) developed a similar 

device for the measurement of knee joint motion. Perhaps the most 

sophisticated system of goniometers has been presented by Chase (1970,1977). 

First, the cross-talk among tri-axial potentiometers were corrected by a 4x4 

matrices. Linkage system. Later a modified version consisting of miniature 

potentiometers (12 x 14 mm) allowed the development of a system for the 

measurement of ankle, knee and hip joint angles in 3-dimensions during 

locomotion. The results were on line and ready for real time analysis. The 

latest development is the use of telemetry for the elimination of 

interference by the ambulatory cord. Lamoureux (1971) developed an elaborate 

system of linkages for the measurement of pelvis and lower limbs 

orientation. The ankle, knee and hip angular displacements were measured 

simultaneously. Parallelogram linkages, which only transmit two out of three 

components of spatial motion, were used at the knee and ankle to absorb the 

third one. A major feature of this device was the self-alignment of 

linkages, which eliminated any errors caused by mal-alignment of 

potentiometers and joint centres. However, this exoskeleton system seems to 

be very bulky and cumbersome with a mass of 2.5 kg. 

Whittle (1980) evaluated this system and several questions were raised on 

the effects of the device on a subject's normal pattern of locomotion. 

Cousins (1975) designed a modification to this system using a moulded 
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polyurethane parallelogram chain used in conjunction with an electro 

goniometer. This device later became commercially available. The data was 

stored in a small portable cassette recorded worn by the subject. 

Jonson and Orback (1980) evaluated goniometric angular measurement 

techniques. On treadmill walking, using Lamoureux's parallelogram linkages, 

they reported a standard deviation of 5% and 10% in their hip and knee 

measurements in the saggital plane respectively. Figure 4.4.12 shows the 

first goniometer with six potentiometers capable of measuring 6 degrees of 

freedom by Kinzel (1972). This device was used for the measurement of 

intersegmental joints, which have more than 3 degrees of freedom. Three 

rotations and three translations of movement of the scapulo-humeras joints 

of an Alsatian dog were measured by firmly fixing the arms of the device to 

the bony segments by inserting pins into the bone. Townsend (1977) presented 

a similar device but which was non-invasive by replacing the harnessing 

technique with cuffs. The output of the six potentiometers formed a 3x3 

transformation matrix for the compete description of motion.  

 

4.4.8.2- Centre less Goniometers 

 

The devices, which have been developed within the 80’s have the advantage of 

operation without the need of alignment with joint centres and are not 

obstructive in terms of restriction of position in motion or in terms of 

bulk and weight. They are usually flexible in the form of a bar or rod with 

either end firmly connected to the segments for the intersegmental joint 

measurements. Johnson (1981) described a mercury in rubber strain gauge 

based goniometer, 200 mm long with 0.2 mm bore and 0.5 mm outside diameter. 

Platinum wires of 0.91 mm diameter are used to seal the end of the tubing. 

Slipping of the goniometer is prevented by the use of a sleeve, which 

attached to the front of the knee with its end taped to the skin. The 

initial lengthening is overcome by being 10% pre-stretched. Although the 

device was used for 24 hours outdoor activity recording, the effect of 

temperature changes on the measurements required a temperature compensation 

method. Dewar et al (1981) developed a 3-dimensional goniometer of the above 

system. A 1 cm diameter nylon rod with a large number of pairs of slots cut 

across it, each pair leaving webbing across the diameter, allowed bending in 

any direction except axial rotation. Figure 4.4.13 shows the device with 4 

equally spaced grooves around the circumference housing the mercury in 

rubber strain gauges.  
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The bending in the A-P and M-L were measured by diametrically opposing 

gauges. A reduced diameter at one end, such that the tube no longer held the 

gauges, allowed rotation in the axial direction to be measured by the 

increase in length of the gauges located in the spiral direction. However, 

determination of the direction of axial rotation has been a major stumbling 

block. Further, the method of manufacture is laborious and somehow untidy. 

 

Nicol (1985) designed the latest in flexible centre less goniometers by 

using a narrow steel foil fitted with long strain gauges. The device 

resolution is 0.02 degree and produced a linear relationship between the 

electrical output and the angle subtended between one encapsulated end and 

the other. A unique feature of this instrument is the fact that the 

measurement of angles is independent of the shape of bend along the length 

of the foil. Figure 4.4.14 shows the electro goniometer for measuring ankle 

(hind foot) and toe (forefoot) with a simple method of attachment. This 

device is now commercially available and a 3-dimensional one is under 

Fig. 4.4.13 A flexible electro 

goniometer -(from Dewar et 

a1,1981 ) 

 

1&2)  Rigid sections - 

duplicates limb 

segments movements. 

3)  Flexible section 

4) Web or hinge o f slot 

5)  Grooves for mercury-in -

rubber strain gauges. 

6) Reduced diameter 

section for axial 

rotation. 

7)  Flexible elastic covering 

8)  Hole for carrying 

wire connections. 
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evaluation. Rowe (1987) described the clinical use of this device in the 

determination of knee and hip angle measurements. 

  

Figure  4.4.14 Electrogoniometers measuring ankle -(hindfoot) and toe 

(forefoot) motion showing the simple method of - attachment. 

 

Other means of measuring joint angles have been explored by Grieve (1969), 

Reed and Reynolds (1969) and Mitchelson (1975) which consists of a polarised 

light generator that transmits light of rotating planes of polarisation and 

transducers sensitive to this light, receiving it as sinusoidal signals. The 

angular displacement is then calculated by passing a reference pulse and the 

sinusoidal signal into an electric circuit. 

 

4.4.9 Accelerometry 

 

Liberson (1936) was perhaps the first to use for the study of human 

locomotion a piezo-electric accelerometer, which consisted of a mass and a 

quartz crystal. Figure 4.4.15 shows the spring board employed on this 

device. Eberhert and Inman (1947) reported the use of accelerometer data to 

verify the numerical differentiation techniques of calculating acceleration 

values from displacement data. This technique is described in detail by 

Ryker and Bartholomew (1951). Cavagna et al (1961) introduced an 

accelerometer construction of a plate (30 x 5 x 0.1mm) pivoted at both ends 

with a mass clamped at the centre. Four foil strain gauges were firmly 

attached to both sides of the mass on the two faces of the plate. The gauges 

were arranged into a full Wheatstone bridge. The mass can then be varied 
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according to the desired sensitivity. The three linear accelerations 

obtained during walking enabled the investigators to calculate the 

 

 

Figure. 4.4.15. Piezo-electric accelerometer (from Liberson, 1936)  

  

Figure Un bonded resistance wire accelerometer (from Contini & Drillis, 

1966) 

 

Values of acceleration at the level of the centre of gravity. Gage (1964) 

used a pair of strain-gauged accelerometers to record the vertical and 

forward acceleration of the point approximating to the centre of gravity of 

the body. Simultaneous measurements of angular acceleration of the shank 

were performed by accelerometers mounted Achilles tendon as per Ryker and 
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Bartholomew (1951). The umbilical cable and physical size of the 

accelerometer were the main limiting factor. 

Morris (1973) used the measurement of acceleration for determination of 

complete movements of the body in space. The mathematical model used 

determined the angular velocity vector, the direction cosine matrix and the 

subsequent absolute acceleration vector of a body point. Double integration 

of the acceleration vector produced the spatial position of the point. No 

transverse rotation of the shank was assumed. 

Ishai (1975) modified the five accelerometers system of Morris by 

introducing a sixth accelerometer for measurements of the shank's transverse 

rotation. Padganker et al (1975) presented a system of Piezo electric 

accelerometers to minimise error due to cross sensitivity of such 

accelerometers. However, the physical size and weight of this system created 

the undesirable influence of inertia forces. Although the system of 

accelerometry because of direct analogue output and the relatively simple 

procedure of double integration and data reduction appears to be a good 

means of kinematic measurements; however, the method of attachment, 

especially on soft tissue, the instrument noise and the transducer inertia 

effect along cross sensitivity influences would defeat its purpose of being 

a simple kinematic measurement technique. 

4.5 Temporal distant parameters 

Gifford and Hutton (1980) described a microprocessor control mat made of a 

4.9x0.77 m sections laid side by side. Each mat consisted of fibreglass 

substrate, double sided board, with sensing strip and connecting wiring 

etched onto the upper and lower surfaces. The sensing strips were 6 mm apart 

on an upper surface. The conductive tape attached to the bottom of the foot 

provided a signal on short-circuiting of these strips. On the other side of 

the spectrum of these devices is the use of string attached to the heel of 

the shoe of the subject the actual measuring transducers consist of 

potentiometers, encoders and accelerometer assembled in a box, which is 

mounted, on a wall perpendicular to the walk path. The subject awareness of 

pulling two wires was assumed not to interfere with the gait pattern. The 

later development of this system by Klenerman (1987) has been the 

replacement of wall-mounted unit with a motor driven trailer following the 

patient. There is no mention of "steering mechanism" of this semi robotics-

trailing vehicle. The use of foot switches as a means of giving the temporal 

information is fairly common in the study of human gait. However there has 

always been difficulty in obtaining reliable foot switches. There are two 

types of switches; the ones inside the shoe and the ones attached to outside 

the shoe. The mechanism of operation are also in two categorise; The ones 

which by making contact under loading condition gives a signal, and the ones 

which by separating a contact when off loaded gives a signal. In an 

evaluation of various foot switches performed in this study, several of 

these type of switches were used, and the ones with mechanism of separation 
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was found most unreliable. The switches, which were put inside the shoe, 

despite their minute thickness, still were felt by the subject and resulted 

in interference with walking as well as occasional unreliability due to 

movement of the foot inside the shoe. From the range of commercially 

available and custom made switches tested, the keyboard membrane switches 

were found most reliable, and durable. They did not seem to be interfering 

with gait. 

 

Another temporal-distance parameter is the velocity of walking in terms of 

instantaneous forward velocity of the position of the centre of gravity of 

the body. Tachograph figure was first introduced by Drillis (1958). It 

consists of a small DC generator activated by the cable cord passing over a 

pulley coaxial with a rotor. The amplitude of the output signal is 

equivalent to the instantaneous velocity of walking. This device was later 

tried by Ganguli (1973) and problems with alignment of the pulleys were 

reported. Tibarewala (1979) presented the derivation of velocity from the 

data obtained from displacement measurements based on the argument that, the 

tachograph measures only the component of velocity along the direction of 

progression. Further development of the devices for measurement of 

instantaneous velocity of centre of gravity were performed by Mohen (1972) 

using magnetic tape with pre-recorded pulses and as the subject walked, the 

tape was stretched and on play back the change in frequency of pulses gave 

the momentary speed of walking. Bajd and Kralj (1980) developed a digital 

version of this tachograph. 

 

4.6 Energy expenditure of walking 
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Figure 4.6.1 Summary graphs of instantaneous energy of leg segments.(re 

drawn from Winter et al 1978). 

 

However several researchers have attempted to estimate the cost of walking 

in terms of energy measurement of one sort or the other. Ralston (1969) has 

reported perhaps the only detailed measurements of energy of human 

locomotion, using tread mill walking, with both the physiological cost of 

walking in terms of gas analysis measurements, and the heart rate / 

blood flow measurements, and compared this with mechanical energy 

from kinetic and kinematics measurements. Figure 4.6.2 and 4.6.3 

illustrates the optimum energy hyperbolic curves of energy expenditure 

for the optimum speed of walking for normal and amputee subjects. 

 
Figure 4.6.2 Comparison between the hyperbolic and quadratic 

equations. (From Zarrugh et al, 1974) 



 409

 
 

 
Figure 4.6.3.  Average energy expenditure during walking (from Bard 

& Ralston, 1959). Heavy Curve average energy expenditure, 

cal/meter/kg of normal subject walking at various speeds. 

Stippled area approximately one standard deviation. Broken line 

lower limb amputee subject. 

 

Garton (1979) has presented a detailed literature survey of 

measurement techniques and experimental protocols for the determination 

of metabolic energy expenditure in walking. The conclusion of this 

study was the good correlation of respiratory function and heart rate 

with energy expenditure. The expired gas analysis was the most 

reliable technique especially for high work level. For the purposes 

of measurements of energy cost of human locomotion, the use of a mask 

and a backpack for analyser chamber and instrument was thought to 

influence the gait and the real energy expenditure. Mcdonald (1961) 

surveyed metabolic rate measurements of normal walking and concluded that 

only weight, sex and speed of walking are significant factors influencing 

energy cost. On average the energy cost was least at speed of 1.3 m/s, which is 

also the average speed of walking for normal healthy adults. Further, the 

energy measured for females was 10% less than males. (Taken into 

account the differences in body weight, distance travelled and 

variations in speed of walking). Ralston (1958) correlated the speed of walking 

with changes in metabolic rate, and produced a parabolic relationship. An 

equation was also established between the energy expenditure per unit of body 

weight and the square of the velocity of walking. 

 

Energy expenditure/ body weight = 29+0.0053*(walking speed)**2 

 

The hyperbolic expression resulting from dividing of this equation by 

walking speed, gives rise to average minimum energy expenditure of 0.78 

cal/m.kg. of body weight at the speed of 1.23 m/s. Interestingly this 

finding was very similar to that of McGregor (1976) which found a similar 

hyperbolic expression using heart rate measurement between the number of beats 

per metre of distance covered per second as an index representing the energy 

expenditure with speed of walking. The least energy expenditure occurred at 
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1.24 m/s. Waters et al (1976) testing 74 subjects almost produced the same 

figures as above. Walt (1973) attempted to correlate the step length to 

oxygen consumption, and found no significant relationship. Fisher and 

Gullickson (1978) on another independent study, yet again concluded that 

the average natural speed of walking is 1.38 m/s with the least metabolic 

energy expenditure of 0.764 cal/m.kg of body weight. However Zarrugh et al (1974) 

proved that the hyperbolic relationship of speed of walking and energy 

expenditure was only valid until the speed of walking of 1.66 m/s, and on 

higher speed of walking the relationship is a quadratic and correlated to 

step length. Pimental and Pandolf (1979) reported on walking on 

different inclined surfaces. Their findings proved that there is a 

similar hyperbolic relationship between speed of walking and metabolic cost 

of walking, however there exist different curves for different inclines 

with the apex of the curve at higher values in metabolic cost and lower 

values in speed of walking. 

 

On the use of mechanical energy, researchers such as Fenn (1929) and Elftman 

(1939) and many others who measured kinematic and body segment 

parameters also reported totals of energy by calculation of mechanical 

work done by each segment at any instant. This ignores the energy 

cost of antagonistic muscle activities, which could be as much as the 

active muscle. Bresler and Berry (1951) developed a model based on 

Newtonian laws of motion which worked on the concept that mechanical 

work is transferred into a segment when a moment applied on the segment 

below and the joint angular displacement are in the same direction. 

Cavagna (1963) used a 3D accelerometer and cine film for calculation of 

external work in the sagittal plane. 

The clinical gait analysis which will be used to provide information on 

pathological gait, uses the understanding of normal gait pattern for 

biomechanical interpretation of pathological cases, and based on the 

available information from research work stated above adds to the 

existing understanding of present day practice. The impact of such 

services has been evaluated, (Zahedi et al SHHD report a model clinical 

gait analysis service 1987). 

  

Figure 4.7.11. Stick Diagram (from Winter, 1980) 
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5.2.4 other type of sockets. 

 

Other prosthetic components although hardly used in this study are 

defined by introducing certain modifications to the above procedures. 

For example the external hip joint where the Y-axis lies along the long 

axis of joint is joining the two points of attachment to the thigh 

and pelvic band. The centre of the joint is the origin and the z-

axis is along the articulation axis. Figure 5.2.4 shows an external 

hip joint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another example is the hip disarticulation socket as shown in figure 

5.2.5 where a pelvic reference system is applied with a proximal 

plane at the superior iliac crest is defined.  

  

 

 

 

A mid point is then found at the level of the superior iliac crest 

Figure 5.2.5 IDENTIFYING AN X-Y-Z CARTESIAN FRAME OF REFERENCE FOR A 

CANADIAN HIP-DISARTICULATION SOCKET 

Figure 5.2.4 shows Otto Bock 7E7 joint, 

where Z axis is along the hinge joint. 
(1993 photo replaced an 1980 picture) 
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indentation. The mid posterior point is chosen as the origin. The Z-

axis defined from left to right iliac crest as positive. The Y-axis 

is perpendicular to the base of the cradle and is vertical. The X-axis 

again follows the right-handed orthogonality principle. 

 

5.5.1.4 Blatchford Alignment Unit 

 

Like all other alignment coupling devices, the Blatchford alignment device 

has its own design features, which are similar to other systems. Although 

new materials are now used in prosthetic systems, the design principle of 

alignment coupling devices has not changed. In the case of Blatchford, the 

concept of two cups sitting one inside the other held together with a central 

pin with two perpendicular slots machined at the centre of each cup describes 

the basic design. The older devices were made of metal and were larger. A similar 

design although smaller is fitted inside the new Endolite prosthesis, with an 

additional A-P tilt facility for the multiflex foot mechanism. Figure 5.5.11 shows 

the Blatchford alignment unit mainly used in the A-K prosthesis, allowing the 

independent tilts due to the radius of the cup, forcing the pivoting point to 

occur in the joint centre proximal to the device. The range of movement for 

this device is 5.25 degree in A-P tilt, 6 degree in the M-L tilt, 1.25 cm in the A-P shift 

and 10 mm in the M-L shift bi-directionally. This device is not popular with 

prosthetists, as by loosening the central locking bolt, all alignment 

changes are fairly easily lost. Great care required in operation of this 

device, and with the relatively small range of adjustment, it is not widely 

used. The new system has overcome the problem of the transfer, and allows the device 

to remain in the assembly. The new system is used in both above and below knee 

systems. Any change in height can be achieved similar to other systems, which are 

attached to the tubes by altering the tube height. The toe out is achieved with a 

very simple and neat key and clamp mechanism on the connection of the foot to the pylon 

tube. 

 

5.5.1.5 Staros Gardner device. 

 

This adjustable coupling device consists essentially of two plate assemblies held 

together by a central toggle pin. Mounted to a middle intermediate plate with 

this plate carrying four screws, assembled on spaces 90 degrees apart, which 

contain independently adjustable, knurled screws used to "lock" the entire 

coupling as well as to provide adjustment for adduction-abduction and flexion and 

extension. Figure 5.5.12 illustrates this device.  
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The device is made of aluminium alloy and has a mass of 340 g and is 10 cm in 

diameter and 3 cm thick allowing it to be used in many long below and above 

knee stumps when attached distal to the end of the socket. The method of attachment is by 

screwing the top assembly to the distal end of stump and the bottom assembly to the 

wooden knee or shank block or with the aid of a coupling clamp to shank tube 

section and some knee units. The tilt screws are screwed in the same 

direction, for tilts by the two adjacent screws. There are scales provided 

indicating all adjustment made. The scale sensitivity for tilt adjustment is 2 

degree. The device allows 10-degree tilts in A-P and M-L bi-directionally. 

The shifts are provided by moving the toggle pin to the side, releasing the 

plates and allowing the top assembly to slide over the intermediate 

assembly and similarly the bottom plate relative to intermediate plate in A-P 

and M-L planes respectively in both directions. The A-P shift has a total 

range of 45 mm with scale marking increments of 3 mm. The M-L shift has a similar side 

with a total range of 30 mm. It has also incorporated a rotational mechanism for either toe 

out or knee int/external rotation. This facility has a total range of 20 degrees. The 

operation of this device is fairly simple, however one of the disadvantages, 

is the insufficiency of the locking mechanism, resulting in the possibility of 

losing changes made to one parameter when another parameter is altered. The devices 

require regular maintenance and the tilt screw gets fairly stiff. Over all the principle 

of operation is considered as one of the best devices from shape and mechanism 

of operation. It main draw back is the fact that it has to be transferred out of the 

prosthesis after the dynamic alignment stage. This device is generally used in 
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the wooden above knee systems. A major disadvantage in these cases is that any 

alteration in height requires total removal of the device and re-assembly of 

the prosthesis. 

 

6.6.4 Calibration of Pylon transducer 

 

 

The following procedure has been developed for calibration of the 

transducer. 

 

6.6.4.1 Axial Force: 

 

For axial load calibration, the arrangements used for loading the transducer 

axially, using the Instron or a special tool to hold the pylon centrally 

between the loading platforms. Two steel balls are used to ensure axiality 

of the applied load. In the case of calibration with the Instron test 

machine, the servo hydraulic ram is used to apply load in 100N intervals 

starting from 0 up to 1500N. For each loading, readings from all 6 channels 

are recorded. The calibration was repeated by turning the transducer upside 

down and then again repeated for each rotation of transducer by 90 degrees 

along its long axis. All collected data were inspected before averaging to 

obtain a set of data for calibration calculation. 

This method of calibration was used once a year. In order to carry out a 

brief check of calibration a simpler procedure was adapted. This was 

achieved by using the special tool, which ensured direct axial load. By 

using axial roller bearings all other components of load applied were 

eliminated. Known weights were applied and the readings were compared with 

the annual calibration data sheet. There was no indication of any distortion 

of the transducer during this study. 

 

6.6.4.2 A-P and M-L Shear Force: 

 

A steel cup was mounted on top of the pylon housing this device in a 

concentric parallel configuration of the transducer and the special cup with 

groves, which allowed application of the load on the centre line of the 

Pylon. This ensured that there were no bending moments applied. It was found 

that application of the dead weight on a holder round this cup located into 

the purposely machined grooved provided similar accuracy as using the 

Instron. Weights at 1kg interval were applied from 0 up to 20 kg equivalent 

of 196.3 N. At each interval readings from all 6 channels were recorded. The 

transducer was first positioned along its positive X-axis for positive A-P 

shear force. 

After completion of the calibration, the transducer was turned through 90 

degrees along its long axis. The calibration was repeated which was recorded 

as positive M-L shears. This was again repeated through further 90 degrees 
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intervals for obtaining calibration data for negative A-P and M-L shear 

forces. All collected data was then inspected and separated for A-P and M-L. 

The data for A-P and then M-L shear forces were averaged before individually 

being applied in calculation of calibration matrices. 

 

6.6.4.3 A-P and M-L Bending Moment: 

 

4 point bending set up for application of bending moment to the transducer 

was used. (See Appendix E) 

 

The bending moment calculated from the load applied and the lever arm 

provided by the support point. The Instron test machine was used with this 

method. It was found that the level of accuracy of calibration was increased 

by adopting the 4-point bending principle when compared with a conventional 

method of attaching a tube to the end of the transducer and then hanging 

weight at a fixed distance away from the pylon centre. Similar to 

calibration of the A-P and M-L shear, the transducer was turned through 90 

degrees to obtain a complete set of calibration data for A-P and M-L bending 

moment for both positive and negative direction. In this case when the 

bending moment load was applied, at the same instant the transducer was also 

subjected to pure shear force. Therefore for this calibration two sets of 

calibration graph are produced with results of the cross talk from the other 

4 channels. These are A-P bending moment and A-P shear force, and M-L 

bending moment and M-L shear force. The calibration data from 6.6.4.3 

provided the information for the shear forces. Thus by substituting these 

known values into the matrix, the bending moment calibration factors are 

determined. The bending moment were calibrated in steps of 20 Nm from 0 to 

200 Nm. 

 

6.6.4.4 Axial Torque: 

 

A set of special pulleys used for application of independent torque to the 

transducer. This was aimed to apply equal pull force to Pylon transducer in 

transverse plane. 

By placing equal weights on each side of the cross arm, and the use of the 

pulley a known bending moment was applied perpendicular to the long axis of 

the transducer. The resulting moment generated by this system is equal to 

the axial torque measured by the transducer. The calibration data was 

gathered for torque values of 0 to 25 Nm in the intervals of 5 Nm. The 

transducer as used in above two procedures was rotated through 90 degrees 

and after inspection of results the averaged data was used for development 

of the calibration factor. 

 

7.8.1 Biomechanical Comparison of Normal subject and Transtibial and 

transfemoral amputees. 
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Figure 7.8.1 to 7.8.2 shows the superposition of the above parameters for 

the normal and the amputee subjects for one complete gait cycle. Here an 

attempt will made to only highlight some typical differences. 

The typical pattern in amputee's A-P shear force (figure 7.8.1) is reduction 

in magnitude of fore and aft shear on the prosthetic side and increase on 

the sound side for compensation action. The larger aft shear indicating a 

greater push as a means of propulsion. The little dip in transition from 

fore to aft in the prosthesis is associated with absence of active planter 

flexion and ankle and subtler joint, resulting in difficulties in rollover 

to over come resistance Paused by the prosthetic foot. 

In the vertical load, figure 7.8.2 lower second peak of below knee 

prosthetic side is associated with the absence of active plantarflexion. For 

the above knee, the subject although slightly heavier, there is an absence 

of second peak. The reduction in the inertia forces, associated with lower 

speed and momentum, preventing the increase in the vertical acceleration in 

above knee so as to bring the load much above body weight. A typical third 

peak in the sound side, which is sometimes removed by better alignment, is 

usually due to habitual vaulting during the swing phase of the prosthetic 

side. The MA shear figure 7.8.3 is an indicator of medial and lateral 

stability, associated with the base A the gait and the amount of sway in 

transition of load from one limb to other. With the above knee usually 

leaning onto the prosthetic side throughout the stance to maintain stability 

as there are now mussels to compensate for the mass of the body being 

positioned medially, which results in one large peaked figure with absence 

of any reduction in the force at mid stance, associated with maintenance of 

centre of gravity near the centre of base of gait. 

The butterfly diagrams. Figure 7.8.4, 5 and 6 in sagittal view is a combined 

graph of vertical and AP shear. The main use is the visual impression of the 

direction of resultant force vector toward the body and its centre of 

gravity and the speed of progression of load in below knee amputees the 

number of lines tightly collected together indicate a longer time spent at 

the solo of the foot during t& mid-stance of the prosthetic side. With the 

above knee the in secure feeling until the foot is flat on the ground, for 

stability purposes there is a rapid progression of load to sole of the foot. 

On the sound aide, there is a compensatory effect of rapidly reaching the 

mid stance. And lingering on the sole for completion of controlled swing of 

the prosthetic me, and assurance of heel contact of prosthetic side during 

the double support period. 

The kinematic data in the form of joint angles figure 7.8.7 show the gross 

deviations such as extended knee of above knee It patient during stance for 

stability compared with up to 15 degrees of flexion of normal subject, and 

absence of normal ankle angle on the prosthetic side. 

In the angle / angle diagrams figure 7.8.9 and 10 and 11, the hip versus 

knee joint angle shows a large and a small Loop. The smaller loop in below 



 417

knee is always smaller on prosthetic side than the sound side. This may be 

due to reduced hip flexion ensuring the foot is oil the ground for heel 

contact. This loop always disappears in above knee prosthetic side, as the 

knee is fully extended with the aid of hip extensor power before the heel 

contact for safety purposes, and the loop always has a triangular shape. 

In the A-P external bending moments figure 7.8.12. With increase level of 

amputation there is an increase in maximum value and duration of 

plantarflexion ankle moment. The knee in the above knee case is always under 

extension moment so as to provide stability during stance phase associated 

with a longer duration of hip extension moment. The sound side compensation 

is mote apparent in the above knee case, with large dorsiflexion at ankle to 

assist propulsion as shown in figure 7.8.13. The M-L bending moments figure 

7.8.14 and 15 in prosthetic side are a reflection of M-L shear force and 

vertical force placement relating to M-L stability. With the above knee 

showing fewer changes in M-L bending moment during the stance phase, perhaps 

due to limited ability to control body side to side sway. A similar 

compensatory pattern is seen in the sound side results. 

The axial torque figure 7.8.16 and 17 at the ankle in prosthetic side for 

both above and below knee has less fluctuation and lower maximum values. 

This may be due to the fact that excessive torque transmitted thee stump 

socket interface causes discomfort when there are no means of torque 

conversion. An observation that in both the above and below knee amputee a 

significant portion of the forces generated causes the rotation of the foot 

over the ground surface. Which may attribute to generation of lower torque. 

Finally the instantaneous energy level in figure 7.8.18 and 19, calculated 

by the from inertia forces and the work done, shows lower level in lower 

limb prosthetic segments of thigh, shank and ankle, with little difference 

at foot level. For the complete limb, as expected is lowest for above knee 

and then lower than normal for below knee. The replacement of the limb with 

a prosthesis which has different mass properties, and the reduction of 

muscular power for controlled acceleration and deceleration during the swing 

is thought to cause a much lower energy levels in the below and lower still 

in the above knee case. A similar level of energy is measured in the sound 

sides. 

.   

Figure 7.8.1 and 7.8.3 Comparison of For–aft & Medio-lateral shear force  
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Figure 7.8.2 Comparison of vertical forces normal, BK and AK amputee  
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Figure 7.8.4,5 and 6 Butterfly diagram for normal, BK and Ak subject 
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 Figure 7.8.7,8 and 9 Comparison of ankle, knee hip angle from normal, BK 
and AK amputee, prosthetic side (above) and Sound side (below) 

 

  
 

ANGLE v ANGLE DIAGRAMS (DEGREE) for 2 normal subjects 
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Figure. 7.8.10, 11 ANGLE v ANGLE DIAGRAMS (DEGREES) for Normal, (top) 

Below knee (middle) and Above Knee (below) amputee 
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Figure. 7.8.12 and 13  A-P Bending Moment for Normal, Below knee and Above 

Knee amputee 
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Figure 7.8.14 Prosthetic side and Figure 7.8.15 Sound side, ML Bending 

moment for normal, BK and AK subject. 
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Figu

re 7.8.16 Prosthetic side and Figure 7.8.17 Sound side, Axial torque for 

normal, BK and AK subject. 
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Figure 7.8.18 Prosthetic side and Figure 7.8.19 Sound side, Instantaneous 

energy levels for normal, BK and AK subject. 
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ABSTRACTS AND REPORTS REPEATABILITY OF ALIGNMENT IN BELOW KNEE 
PROSTHESES  

Zahedi M.S.; Spence W.D.; Solomonidis S.E. 
Presented at: The Advanced Courseon Below Knee and Through Knee Amputations and 

Prosthetics, May 1982, Koge, Denmark 
The prosthetist, during the process of dynamic alignment, uses his judgment and feedback from the 
amputee to achieve the most suitable limb geometry for the best function and comfort of the 
patient. The final limb configuration, known as the optimal alignment, was, until recently, 
believed to be unique for a given patient and prosthetist. 

In this study, six active below knee amputees and three experienced prosthetists were 
used. Each prosthetist aligned each patient on average, five times. A unique axis system allowed 
the repeatable measurement of the alignment of the prosthesis to be recorded using specially 
constructed apparatus. Accuracy of measurement and typical results are presented together with 
the total variations recorded from the 128 fittings considered. It is found that there is a range of 
alignments which are considered optimum for any patient/prosthetist combination. 
 
THE EFFECT OF VARIATIONS IN LIMB ALIGNMENT ON AMPUTEE GAIT: A 
QUANTITATIVE STUDY 

Zahedi M.S.; Spence W. D.; Solomonidis S. E.; Paul J. P. 
Bioengineering Unit , University of Strathclyde, Glasgow 
Submitted for presentation at I.S.P.O World Congress, London, Sept. 1983 
 
The concept of a unique optimum alignment for a particular patient has been found to be invalid 
as several alignments can be made equally acceptable to the amputee. The purpose of this study 
is to investigate the effect of alignment variation on amputee gait. Twelve active BK and AK 
amputees were dynamically aligned by three prosthetists, achieving a total of 108 fittings. A 
six quantity load transducer incorporated into the shank of the prosthesis and force platforms 
were utilised for acquisition of loading data. 3-D cine and TV systems together with goniometry 
were employed for the collection of kinematic data. The alignment configuration of the 
prosthesis was measured after each fitting. It was found that for a given patient two different but 
perfectly acceptable alignments result in considerable quantifiable changes in gait 
characteristics. For instance, one alignment can cause an AK amputee to exert a maximum 
moment by the hip extensors to control the prosthesis, 30% greater than that necessary for the 
same prosthesis but to a second alignment. Similarly, compensation by the contralateral side 
can show 50% change in moment values at the hip from one alignment to another. This paper 
discusses the results and their significance. Financial assistance was given by the Scottish Home 
and Health Department for this study. 

 

Submitted for presentation at I.S.P.O. World Congress, London, Sept. 1983 
 
Alignment of a prosthesis is defined as the position of the socket relative to the foot and other 
components. During dynamic alignment the prosthetist using subjective judgement and feedback from the 
patient aims to achieve the most suitable limb geometry for best function and comfort. Until recently it was 
generally believed that a given patient could only be satisfied with a unique "optimum" alignment. 
Previous work carried out at the University of Strathclyde showed that a patient may be satisfied by 
several alignment configurations. 

The present project aims to carry out a systematic study in order to establish the range of acceptable 
alignment and to understand the patient's tolerance in relation to dynamic alignment. Six BK and six AK 
active patients were studied. Three experienced prosthetists were involved in aligning each subject under 
clinical conditions several times; a total of 128BK and 80AK fittings were achieved. Following dynamic 
alignment, the prostheses were accurately measured using custom built apparatus. Typical results show that for 
a BK patient fitted 19 times the A/P socket tilt varied from 1

°
 to 11 ° and the A/P shift from 0.4cm to 

2.4cm. This paper discusses the variations of the alignment parameters and their interrelationships. 
Financial assistance given by the Scottish Home and Health Department for this study is 
acknowledged. 
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AN ELECTROGONIOMETRIC LINKAGE DEVICE FOR THE MEASUREMENT OF THREE 

DIMENSIONAL RECTANGULAR COORDINATES. 

 

DESIGNED: JULY 1979 

MANUFACTURED AND TESTED: OCTOBER 1979 

MICROPROCESSOR ADAPTED: 1981 

 

BIO ENGINEERING UNIT,UNIVERSITY OF STRATHCLYDE. GLASGOW. 

M.S.ZAHEDI. 

The concept of this device is based on the gemetrical polar coordinate 

system. Links are utilised to connect a point in space to a reference 

origin. By using potentiometers to measure the angle between the links the 

spherical (polar) coordinates of the point can be measured. A subsequent 

conversion from the polar to the cartesian system provides three dimensional 

rectangular coordinates of the point. 

The objective of this device is to allow the rapid and accurate measurement 

of the alignment configuration of lower limb prostheses. Reference points 

located inside the socket and on externally acceptable components are 

measured and subsequent calculation allows the alignment of the prosthesis 

or relative geometrical position of the individual components to be known. 

The device basically consists of two arms,one of which is connected 

to a swiveling base block which can be clamped to a surface and three 

electropotentiometers which measure the relative rotation of the individual 

links and base block to one another. That is, one potentiometer 

measures the angulation of the lower arm to the base 

: block, and the other measures the angulation of the lower arm to the 

upper arm. Electronic back up for the device consists of a power supply 

and output rectifier, contained in one box, a microcomputer for signal analysis, 

calculation and display of the final data. 

Simplicity of designs maintains cost at a low.level and allows 

manipulation by unskilled operator. The diagram below illustrates the 

hardware and electronic package. 
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On line measurement of alignment using electrolytic tilt transducers. * 

developed: June 1982 

 

 

BIO ENGINEERING UNIT, UNIVERSITY OF STRATHCLYDE, GLASGOW 

M.S.ZAHEDI;W.D.SPENCE 

The method of measurement employs as its 

sensor a monolith type 7655 2-axis 

electrolytic transducer. The sensor is 

designed for vertical mounting. In this 

position equal impedance are present 

between each of the two output electrodes 

corresponding to one axis and the common 

electrode. Any tilt corresponds to a 

rise in the imbalance in the 

impedances, which are employed as a 

differential output in a bridge circuit. 

The bridge is driven by an a.c ,power 

supply as direct current tends to break 

the electrolyte. The sensor purchased have 

an operational range of +/- 20 degrees to 

the vertical axis. The mutually 

perpendicular planes formed with the 

common vertical are referred to as M-L 

and A-P planes and the angle in these 

planes corresponds to the two output 

channels of each sensor. The sensor 

container is made of glass and is very 

delicate to handle. Its physical 

dimensions are a cylinder of 1cm 

diameter with a 2.4 cm height. To 

measure the tilt angles of the sensors 

and convert the output to differential 

voltage for further interfacing to a 

analogue to digital converter, the signals 

are first interfaced to a differential 

amplifier and then multiplexed. The 

output is then fed into a 10-bit A/D 

converter of the BBC microcomputer which 

is then sequentially sampled , averaged 

calibrated and finally is inputted to 

another software package which displays the 

alignment of the prostheses. All software 

programmes are in BASIC computing language. 

The diagram shows the display and the 

transducer mounted onto a prostheses. 
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Lower Limb Prosthetic Research In The 21st Century 
 

Saeed Zahedi 

Overview: 
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The last decade of the 20th century and the first years of the new millennium have 
been a period of rapid technological advances in lower limb prostheses.  
Paradoxically, this has occurred concurrently with an estimated reduction in funding 
for amputee care of 20 percent compared to prior decades.  Despite these 
technological improvements in components and materials, aggregating studies from 
Europe and the United States suggests that overall amputee satisfaction with the 
prosthesis has remained relatively constant, varying between 70-75% of those 
polled.  Figure 1 illustrates the relationship between these selected parameters, 
graphically demonstrating the challenge: to increase amputee satisfaction despite 
declining health care funding. 
 

Fig 1- Technology progress, prosthetic budget and amputee disatisfaction  
 
 
In the prior edition of this Atlas, Charles Pritham postulated that pending decreases 
in academic research in prosthetics might force commercial component 
manufacturer to divert profits into increased product research to fill the void. The 
accuracy of that prediction was borne out during the 1990s when published 
research from universities and government research organisation dropped 
dramatically.   In the past fifteen years, virtually all applied research has come from 
the commercial sector: new suspension options, innovative socket configurations, 
advances in knee mechanisms, and guidelines for prescription and reimbursement 
of prostheses. 
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Published in World Trade Journal – Medical Devices  1998 

 

RECENT ADVANCES  AND THE FUTURE IN ARTIFICIAL 

LIMB TECHNOLOGY  

by 

Saeed Zahedi, Senior Research Engineer, 

Chas. A. Blatchford & Sons Ltd., Products Division 

Early years of  the 20th century witnessed radical changes in 

lower and upper limb prosthetic technology. With increased 

understanding of amputees’  locomotion, quantification of limb 

movements, advances in medicine, and  in particular amputation 

surgery, it was possible to design new types of socket 

interfaces which enhanced the control of the prosthesis, and  

also to apply science and engineering into the design of 

components. Development of Solid Ankle Cushion Feet as a low 

cost functional foot, Patella Tendon Bearing Sockets design 

for Below Knee amputees and the myoelectric arm for children 

are some of the landmarks in the story of the evolution of 

artificial limbs.  

 

The concept of the Modular Assembly Prosthetic system allowed 

fabrication of the prosthesis from already manufactured 

components, thus enabling faster and more economical 

rehabilitation of the lower limb amputee. This  modular 

concept also freed the system from restriction of design, by 

allowing independent design of feet, ankles and knee 

mechanisms and new ideas in socket design to flourish. Hence 

the 70’s and 80’s were the era for many advances, which were 

rooted in the developments of earlier years. Typical examples 

of this include flexible energy efficient prosthetic feet, 

(Figure 1 shows various types of commercial feet), the 

development of  sophisticated stabilising and safety stance 

control and swing controls for knee mechanisms ;(Figure 2 

shows various types of swing phase devices), and the design of 

sockets utilising flexible materials. The latter provided 

total contact interface as well as better properioception, and 

enhanced the control of the prosthesis with further improved 

design for harnessing by containing and locking into bony 

landmarks of  the pelvis and making full  use of all the 

potential of stump muscles. (Figure 3 shows a typical 

Contoured Adductor Trochanteric Controlled Alignment Method or 

Ischial Containment Socket). 
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Published in IEEE in 1995 

 

THE INTELLIGENT PROSTHESIS 

 
S. Zahedi 

 
Chas. A Blatchford & Sons Ltd, Research & Development, Basingstoke, United 

Kingdom. 
 
Summery 
 
During the first 6 years of IP history over 3000 Transfemoral amputees have been 
provided with this award winning microprocessor controlled prostheses. Several 
independent studies have been performed during this period. The comprehensive 
evaluation carried out by C. Stewart, concluded lower external moments at the Hip 
and Knee when amputees were walking at different speeds. This more energy 
efficient way of walking was further verified by J. Buckly and A. Nakagawa, showing 
a reduction of  more than 15% in the physiological cost of walking at different 
speeds. Many researchers such as S. Kirker, Datta, Taylor have carried out their 
own survey of amputees’ reaction to this innovation. Interestingly, most amputees 
reported that for the first time they did not need to think about walking, and they 
were able to walk much longer distances and for longer periods at faster preferred 
speed. The sophistication of original prosthesis was enhanced with increased level 
of resistance to flexion, and more controlled extension assistance, combined with a 
more user-friendly method of adjustment. The effect of the IP on control of 
prosthesis has made large improvements in restoration of function as the result of 
limb loss. The advances in technology, particularly in the area of osseointegration 
and cybernetics have provided the basis for the next generation of prosthetics, 
which provides an adaptive control to meet the amputee need for different mode of 
locomotion.  
 

Conclusion 
 
The development of this second generation Intelligent Prosthesis is based on 
several years experience in the development and commercialisation of the first 
microprocessor swing phase control. The areas of improvement include 
simplification of adjustment, rationalisation of cylinder and its carrier with regard to 
interchangeability and manufacturing cost. The experience so far has demonstrated 
that, in combination with the enhanced Endolite Stanceflex Stabilised knee, the IP 
plus provides a very powerful solution in the selection of correct componentry for 
lower limb prosthetic devices. A wider range of adjustment, in addition to increased 
power in providing resistance and cushioning of terminal impact, allows a pneumatic 
cylinder to be considered for many hydraulic users. The reduction in manufacturing 
costs and subsequent economies in volume of production would indicate that all 
other swing phase devices could perhaps be replaced by a microprocessor knee 
control.  
  
The IP+ provides functional advantage of adjusting to any speed whilst reducing the 
effort in walking. A large number of technical barriers have been overcome in this 
design, resulting in a user friendly system where the principles of mechatronics in 
combining electronic controls with mechanical design have been usefully exploited. 
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The rapid adjustment facility, especially when carried out on the finished prosthesis, 
allowing walking on any terrain outside a clinical   environment, has provided the 
most realistic conditions for normal daily use. 
This innovation has facilitated an increase in general awareness by society of 
amputee limitations and aspirations and how the latest technology is employed in 
meeting their needs. The   IP + leads the way for the 21st Century generation of 
prosthetics where cyber-netics will be the standard technology. 
For the first time during 3 successive years, the amputees ( I in 1000 people) need 
and the technology available to them has been the subject of a wide spread media 
cover enhancing general public awareness of the state of art. In 1996 The Intelligent 
Prosthesis plus won the Prince of Wales Award for Innovation and Queens Award 

for technological Achievement. In 1997 It was a finalist at British Computer Society 
Award and was UK nominee from Design Council for European Design Prize. In 
1998 this product received the recognition as Millennium product. 
 

List of Publication: 

 

• Atlas of Prosthetics. American Association of Orthopaedic Surgeons.  2004 

• Eureka Board room report. Far East manufacture V home manufacturing. 2004 

• Adaptive Prosthesis, Journal of Robotics November 2003 

• Care of Elderly for Independent Living – Faraday partnership November 2003 

• Big Mother – Medical Device Technology – April 2003 

• Atlas of Prosthetics, American Association of Orthopaedic Surgeon March 2002 

• Ethical Product design – Design Engineering January 2002 

• Adaptive Prosthesis – Eureka October 2002 

• Application of Microprocessor technology in prosthetics.  BAPO Key note lecture, March 

2001 

• A new concept in Stance Control. Proceedings of ISPO 10
th

 World Congress, Glasgow UK. 

• Adaptive Prosthesis. A new concept in lower limp prosthetic knee control. Proceedings of 

Ortho 2000 Seville – Spain October 2000. 

• Study of Tele Torsion pylon on transtibial amputee walking and running. Journal of 

Orthopaedi Tecknik, Germany Issue 14, May 2000. 

• Standards in Prosthetic & Orthotics. Journal of Orthopeadie Tecknik, Germany Issue 14, 

May 2000. 

• Evaluation of the Tele Torsion pylon on amputees walking & Running. Le Journal de 

Orthopaedi No 4 . Dec 1999. 

• Adaptive Prosthesis A new Concept in knee stance control for transfemoral prosthesis. Le 

Journal de Orthopaedi No 3 Spring 1999. 

• Review of the modern knee controls in lower limb prosthetics. Invited lecture, ISPO UK 

Scientific meeting, Scotland October 1998. 

• Experience & Future of microprocessor swing &Stance control in lower limb prosthetics. 

Invited Lecture at IX ISPO World Congress- Amsterdam  June 1998 

• European Standards in Prosthetic and Orthotics. Invited Lecture at IX ISPO World Congress- 

Amsterdam June 1998 
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• The Adaptive Prosthesis. presentation at IX ISPO World Congress- Amsterdam June 1998 

• Vertical ground reaction forces in transfemoral amputee running. presentation at IX ISPO 

World Congress- Amsterdam June 1998 

• A new concept in Prosthetic Knee Stance control for walking on level, ramp, stairs descent 

and stumble. presentation at IX ISPO World Congress- Amsterdam June 1998 

• Institute of materials, Materials in prosthetics, Public Lecture, January 16th of 1998, 

published in IM journal Spring 98. 

• Advances in Prosthetic. ISBN 1-85922-895-x ISSN 1041-9918 Current Opinion in 

Orthopaedics 1996,7,VI;93-98 

• The Intelligent Prosthesis - The first 5 year and the outlook for future. Invited Speaker at 

10th conference of the European Society of Biomechanics, Leuven August 1996. 

• Introduction to Medical Devices Directive - Invited Lecture at XIII Interbor congress Oslo 

May 1996 

• Lower limb Kinematics & Isokinetic strength in amputee sprinting - Presentation at XIII 

Interbor congress Oslo May 1996 

• Swing Phase controls in Transfemoral amputees Presentation at XIII Interbor congress Oslo 

May 1996 

• Criteria for the design of new generation of prosthesis for Children presentation at XIII 

Interbor congress Oslo May 1996 

• Review of current advances in prosthetics, Rapid Publication 1997 

• Intelligent Prosthesis - IEEA  Electronic technology Journal June/July 1997 

• The effect of walking speed on Knee flexion  and joint moments. Orthopadie Tecknik , 

Nuremberg 97 

• Evaluation of different Prosthetic feet . Orthopadie Tecknik Nuremberg 97 

• IP Plus, The Intelligent Trans-Femoral Prosthesis. A New Development. American Orthotic 

& Prosthetic Association, San Antonio, USA. September 1995. 

• The Characterisation of Swing phase control units for Trans femoral amputees.15th Congress 

of International Society of Biomechanics. Jyvaskyla. Finland. July 1995. 

• Review of Intelligent Prosthesis and its future development. Invited Paper, 8th ISPO World 

Congress, Melbourne, Australia. April 1995. 

• Development of Prosthesis for sporting lower limb amputee. Abstract. 8th ISPO World 

Congress, Melbourne, Australia. April 1995. 

• Biomechanics of the Sporting Lower Limb Amputee. Part 1. Sprinting Abstract. 8th ISPO 

World Congress, Melbourne, Australia. April 1995. 

• Biomechanics of amputee Sprinting. White Paper on Research & Practice. European 

Conference on Adapted Physical Activity and Sports. Belgium Dec 1994. 

• Evaluation and Biomechanics of Intelligent Prosthesis, A two year study. Invited Paper, 

Orthopadie Tecknik Journal, World Congress Essen 1994. Vol 1. 1995 

• Design and Selection Criteria of Modern Prosthetic Feet. Orthopadie Tecknik Journal, World 

congress Essen 1994. Vol 12. 1994. 

• The Benefit of Compliance in the Structural design of lower extremity Prostheses Orthopadie 

Tecknik Journal, World congress proceedings, Essen 1994. 

• Application of Microprocessor control in artificial limbs. Invited paper, LBIST scientific 

meeting, Seven Oaks, October 1993. 

• Amputation & Prosthesis Prosthetic - Foot. Invited Paper, InterBor, Lisbon, Portugal. 

September 1993. 

• The field experience of combined intelligent swing & stabilising stance controls Abstract, 

InterBor, Lisbon, Portugal. September 1993. 

• Field test of microcomputer Controlled Intelligent AK Prosthesis. 

 Abstract, InterBor, Lisbon, Portugal. September 1993. 

• The need for different strength prosthesis. Abstract, InterBore, Lisbon, Portugal. September 

1993. 

• The Review and Design of Prosthetic feet. Invited Paper on main Congress session Inter 

Bore Congress, Lisbon, Portugal. September 1993. 

• The Intelligent Prosthesis. Abstract. ISPO Scientific Meeting. Swansea, April 1993. 

• The initial field experience of fitting Intelligent Prosthesis. Abstract. APO Scientific 
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Meeting. Edinburgh. March 1993. 

• The use of microprocessor swing phase control in above knee amputee. Invited Paper, 1st 

Brazilian Orthopaedic congress. Rio de Janeiro. July 1992. 

• 4 bar prosthetic joint for stability and cosmesis. Abstract, ISPO Scientific meeting, Norwich, 

April 1991. 

• The use of clinical gait analysis in alignment of below knee amputee. Abstract, ISPO UK 

Scientific Meeting, Edinburgh. April 1990. 

• The choice between Hydraulic and pneumatic knee control unit. Abstract, ISPO UK 

Scientific Meeting, Edinburgh. April 1990. 

• New generation of lower limb prosthesis. Abstract, ISPO UK Scientific Meeting, Edinburgh. 

April 1990. 

• A flexible prosthetic system. Proceedings of APO meeting, Sterling. February 1990. 

• Clinical Gait analysis. Proceedings, ISPO VI World Congress. Kobe Japan. November 1989. 

• A model Clinical Gait Analysis Laboratory. Scottish Home and Health Department. May 

1989. 

• The use of Kinetic and Kinematics measurements in lower limb prosthetic. proceedings of 

1st AFI meeting. Hawks Key USA. April 1989. 

• The use of Motorised Alignment Device in alignment of amputee. proceedings of 1st AFI 

meeting. Hawks Key USA. April 1989. 

• Development of a modular ankle foot orthosis for children. 

Abstract, ISPO UK Scientific 

• Meeting, Bath.           March 1989. 

• An experience in monitoring the stump-socket interface pressure. Abstract, ISPO UK 

Scientific Meeting, Bath. March 1989. 

• A motorised Alignment Device. Abstract, ISPO UK Scientific Meeting, Bath. March 1989. 

• Use of gait analysis in management of lower limb amputee Proceeding of APO meeting. 

Sterling. February 1988. 

• A study of stump socket pressure interface in Below and Above Knee amputee Journal of P 

& O International. December 1987. 

• The influence of Alignment on Amputee Gait. Amputation Surgery and lower limb 

prosthetic. Blackwell Pub. 1987 

• The use of gait analysis in lower limb prosthetic. Proceeding of Gait analysis & 

Photogrammetry conference. Oxford. April 1987. 

• Repeatability of Kinetic and Kinematics Measurements in Gait studies. Journal of P & O 

International. Vol. 11 No 2. August 1987. 

• The use of gait analysis in management of children with Cerebral Palsied. Proceeding of 

APO meeting, Glasgow. February 1987. 

• A report on establishment of a model clinical gait analysis laboratory. Progress report for 

Scottish Home & Health Department. January 1987. 

• The optimum bench alignment in lower limb amputee. Proceedings, ISPO V World 

Congress. Copenhagen, Denmark. July 1986. 

• The criteria for design of Alignment devices in lower limb prosthesis. Proceedings, ISPO V 

World Congress. Copenhagen, Denmark. July 1986. 

• Alignment of lower limb prosthesis. Journal of Rehabilitation Research & Development. Vol 

23. No 2. April 1986 

• Report- Development of alignment measuring systems Scottish Home and Health 

Department. May 1985. 

• The need for quantification of alignment process. Abstract, ISPO UK Scientific Meeting, 

Warwick. March 1985. 

• A study of biomechanical characteristic of Uniaxial feet. Abstract, ISPO UK Scientific 

Meeting, Warwick. March 1985. 

• Prosthetic loading in lower limb amputee outdoor activities. Abstract, ISPO UK Scientific 

Meeting, Warwick. March 1985. 

• A survey of amputee requirements of prosthetic knee joints. Abstract, ISPO UK Scientific 
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Meeting, Warwick. March 1985. 

• Final report on fre range amputee assessment. Scottish Home and Health Department. 

September 1984. 

• The range of optimum alignment in lower limb prostheses. Proceeding, ISPO IV World 

Congress, London. September 1983. 

• The effect of variation in limb alignment on amputee gait. Proceeding, ISPO IV World 

Congress, London. September 1983. 

• A system for measuring lower limb prosthetic load during 

outdoor activity. Proceeding, ISPO IV World Congress, 

London. September 1983. 

• Report- study of alignment of lower limb prostheses. Scottish 

Home and Health Department. April 1983. 

• Repeatability of Alignment in below knee amputee. Abstract, ISPO Advance Course. 

Copenhagen. Denmark. May 1982.  

Patents  in lower limb Prosthetics 
1980 Application for 3D Electro mechanical co ordinate measurements system 

1993 Remote & Adaptive Control system International Patent GB2280609 

1997 Smart Prosthesis European Patent application 

1997 Adaptive Prosthesis International Patent application 

1998 A hydro-pneumatic stance and swing prosthetic knee control 

1999 Intelligent Hip International Patent Application 

Professional memberships 

1988 Corporate member of Institute of Mechanical Engineers. Chartered Engineer C.Eng. 

F.I.Mech. E. 

2001 Fellow of Institute of  Mechanical  Engineers.  

2002          Member of Mechatronic Forum of Engineering Physic Science Research Council.  

Honorary Appointments- additional professional activities in Prosthetics,  
1978  President of Engineering Society 

1980            Initiating formation of the Biomedical Engineering Society 

1983 Formation of Association of Prosthetist and Orthotist 

1987- Honorary Lecturer at university of Dundee 

1988- Specialist Lecturer at Uni of Surrey Materials and Mechanical Engineering dept. 

1988- Specialist Lecturer at Uni. of Strathclyde National Centre for Training of P & O 

1989-  Member of International Standard Organisation TC 168 WG3 

1990- Certified Quality Assurance Auditor (ISO 9000, EN46000 series) 

1990- Member of CH 9 British Standard Institute Committee 

1993- Member of Committee for European Normalisation TC 293 WG5 

1995- Invited speaker at ISPO UK, France and World Congress 96,97,98,99 

1996- Invited presentation at Royal Society Soirée 

1997- Invited Referee for the award of Young Engineer of the year, Southampton Uni. 

1997- External post graduate examiner at University of Salford 

1997- Member of Engineering Physical Science Research Council 

1998- Invited Speaker Institute of Materials, London, Guildford, Cambridge 98, 99,2000 
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1998- Invited Speaker Royal Society of Art – October Lecture Millennium Products 

1999- Invited case presentation in Royal Academy of Engineering and Design Council 

1999- Invited Speaker at Dutch Interbor meeting Utrecht - Netherlands. 

1999- Honorary Lecturer at University of Strathclyde – Bioengineering unit 

2000- Speaker at American Association of Orthotic & Prosthetic – San Diego USA 

2000- Speaker at Orthopaedic Reha on Standards in P&O and Evaluation - Leipzig 

2000- Made OBE in the new year Honours list. 

2001 Invited Speaker to House of Commons select committee on Design & Innovation 

2001 Key note Speaker at British Association of Prosthetists and Orthotists – Nottingham 

2001 Invited Speaker on Knee controls at ISPO 10
th

 World Congress – Glasgow Scotland. 

2001 Appointed Visiting Professor of University of Surrey School of Mechanical & Mat. 

2002 Appointed Examiner Post graduate degree Orthopaedic Medicine Uni. of Dundee 

2003 Invites Speaker to Smart Material conference at Imperial College London 

2004  
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Mechanical Engineering in 1978 in London and then moved to the Bioengineering at the 
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the Intelligent Prosthesis which also won the Queens Award for Technological Achievements in 

1996 and the Prince of Wales Award for innovation in and became one of the UK Nominee for 
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Software Routine for Average data calculation 

For complete software see Archive at Computer centre WAX 1985 CLFR20 ID 

MS Zahedi. 
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