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Abstract

We derive new, exact expressions for network centrality vectors associated with

classical Watts–Strogatz style “ring plus shortcut” networks. We also derive easy-

to-interpret approximations that are highly accurate in the large network limit.

The analysis helps us to understand the role of the Katz parameter and the

PageRank parameter, to compare linear system and eigenvalue based centrality

measures, and to predict the behavior of centrality measures on more complicated

networks. We also derive accurate upper and lower bounds for the domiannt,

Perron-Frobenius, eigenvalue of a “ring plus shortcut” network. The results are

illustrated with computational experiments, and directions for future work are

discussed.
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Chapter 1

Introduction

1.1 Outline of thesis

Algorithms that quantify the importance of nodes in a network are proving to

be extremely useful [21, 41, 49]. They allow us to understand hierarchies, dis-

cover critical components, and identify targets for deeper investigation. Many

of the key ideas behind network centrality measures arose out of the social sci-

ences, where researchers were interested in understanding structural attributes of

human interaction networks [23]. The ability to determine who or what is im-

portant is also valuable in many application areas, including healthcare, security,

advertising, publishing and politics [3, 26, 35, 38].

A key issue, and perhaps a reason for the continued development of new ideas

in the field, is that there is no universally-agreed definition (or set of definitions)

for importance, and hence no gold-standards for judging centrality measures. So,

issues such as validating implementations, understanding the role of algorithm

parameters, and comparing centrality measures can only be partially addressed,

typically by using real world data sets where some proxy for importance is avail-

able, leading to conclusions that are (a) empirically based and (b) problem-set

dependent.

In this work, we contribute to the field by showing that there is a synthetic but

widely studied “small world” type network for which we can analytically char-
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acterize and compare four well-known centrality measures—degree, Katz, eigen-

vector and PageRank. In particular, we can quantify how the node centralities

change as the Katz parameter moves from zero (degree centrality) to its upper

limit (eigenvector centrality). Moreover, we show how the same techniques al-

low us to characterize fully these measures on more complex networks where the

performance can depend strongly on the choice of Katz or PageRank parameter.

Chapter 2 provides a brief background to the area of network science. Chapter 3

gives a brief overview of centrality measures and details Katz, eigenvector and

PageRank centrality that we study in more detail in this thesis. Chapter 4 sum-

marizes relevant work on Watts-Strogatz style small world networks and then we

analyse the Katz and eigenvector centrality in the context of a Watts-Strogatz

‘ring plus shortcut’ setting. This ‘ring plus shortcut’ model analysis is extended

to M -shortcuts across the ring and to 2n-nearest neighbours in Chapter 5. In

Chapter 6 the same style of analysis is applied to more general networks, giving

Katz parameter cut-offs where the ranking from out-degree gives way to that of

eigenvector centrality. PageRank centrality is analysed separately in Chapter 7

where the exact solution is found to have a more complicated non-monotonic

form and we then analyse an example network where we find PageRank param-

eter cut-offs where the ranking of nodes change. We finish with a discussion in

Chapter 8.

1.2 Publications and presentations

Some of the content presented within this thesis appears in the article

• M. Paton, K. Akartunalı and D.J. Higham, Centrality analysis for modified

lattices, SIAM J. Matrix Anal. Appl., 38(3) (2017), 1055-1073. [45]

Results derived from this were presented at

• 27th Biennal Numerical Analysis Conference (2017), University of Strath-

clyde;

• Capita PhD Symposium (2016), University of Strathclyde.
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Chapter 2

Background and notation

Within this Chapter we give a brief background to the area of network science

and discuss some random networks that are pertinent to the work presented in

later Chapters. We also provide some information on the notation and definition

of terms used throughout this thesis.

2.1 Network science

The field of network science has experienced a renewed period of interest in the

last few decades due in part to its applicability to modeling complex systems that

surround us in our everyday lives [3, 26, 35, 38]. Indeed, as computing perfor-

mance continues to increase and with an increasing amount of data around us

the field continues to undergo an intense period of research activity. Applications

to areas of healthcare, security, advertising, publishing and politics have demon-

strated the area can be useful for extracting meaningful insights and predictions

that may not be entirely obvious.

Network science is the branch of mathematics concerned with the modelling of

complex systems - systems defined by entities and the pairwise interactions that

exist between them. In short, network science is the study of complex systems

such as biological, social, financial and transportation networks. It is by modelling

the system as a mathematical network we can utilise ideas from other fields of
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mathematics such as graph theory, statistics and numerical linear algebra to gain

further insight into the system. Its roots are in the area of graph theory with what

is thought to be the first publication in the field by mathematician Leonhard Euler

in 1736 [22]. The posed problem in the original publication has now become a

staple example in almost any undergraduate mathematics class - the Bridges of

Königsberg as depicted in Figure 2.1.

Figure 2.1: Bridges of Königsberg as depicted in [22]

The problem devised was to find a route through the city of Königsberg (Kingdom

of Prussia now known as Kaliningrad, Russia) which was divided into four parts,

two mainland portions and two islands, by the Pregal River such that each bridge

was only used once. Euler shown that the problem could be posed in terms of

the distinct land areas and the bridges which connect them, demonstrating that

the absence of an Eulerian path rendered no solution. It was this paper by Euler

that laid the foundations for what is now known as graph theory and introduced

the idea of topology.

The study of random networks followed in the 20th century by Paul Erdős and

Alfréd Rényi. Erdős and Rényi considered graphs with both a fixed number of

nodes and edges with each possible graph equally likely to arise [20]. For example,

if we consider the set of simple undirected graphs with 3 nodes and 2 edges there

are a total of 3 defined graphs and each one may be induced with probability 1/3.
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Edgar Gilbert later described a similar class of random networks defined by a fixed

number of nodes but unlike that posed by Erdős and Rényi, Gilbert considered

each edge to have an equal independent probability of existence [24]. Although

these models are widely used, the consideration of each edge being equally likely

to be present is not a good reflection of networks encountered in practice. In this

sense, the Erdős–Rényi and Gilbert models are unlikely to capture the observed

properties of many real-life networks.

Many networks exhibit properties that can be termed into the class of being

‘small world’. These networks are typically classified by structures in which each

node does not neighbour each other but the notion that neighbours of one node

are common to neighbours of another. This implies that the average distance

between any nodes (the number of edges traversed to get from node to node) is

proportional to the logarithm of the number of nodes. A typical example of this

would be in considering social friendships in society in which friendship circles

overlap so although A may not be friends with C they may share a common friend

B such that a path from A to C in the network exists, thereby the cliché “it’s a

small world”.

In the 1960s, social scientist Stanley Milgram noted the importance of the small

world problem and its range of application areas being of interest to not just

social scientists. In a real world experiment he set out to answer the question of

how many intermediate people are needed before a route between any two people

in the world is achieved [39]. The experiment was simple: person A has to get a

folder delivered to person Z only by sending the folder to a person they personally

knew on a first name basis. Each intermediary was to note their details in the

folder which meant that an endless loop of passing the folder back to another that

had already received it could be avoided. This stage of the process also allowed

for further insight by studying the chains of transmission.

Milgram’s experiment reported chains of transmission ranging from 2 to 10 with a

reported median of 5. An important limitation of this experiment, that Milgram

recognised, is that whilst each person in the chain may try to be most efficient

in deciding who to pass the folder to it’s inconceivable to think that the folder

always followed the shortest possible path from person A to person Z. Analysis
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of the transmissions highlighted that the participants were roughly three times

more likely to send the folder on to someone of the same sex and almost six times

more likely to send to a friend as opposed to a relative.

As the need to model and understand real-life phenomena grew it became more

important to develop classes of networks that mirrored observed properties. Sem-

inal work of Watts and Strogatz published in 1998 did just that by defining a

class of random networks that mirrored properties of real-life networks [50]. Their

idea was to start with a regular k-neighbour ring and rewire each edge with in-

dependent probability p. Here, rewiring means replacing the “target” node by a

node chosen uniformly at random. As the probability of rewiring each edge in-

creases from zero to one we interpolate between the original k-neighbour ring and

a completely random graph as depicted in Figure 2.2. It is within this range of

probability that we observe a regime with lattice-like structure where the short-

cuts allow efficient traversal around the network.

Figure 2.2: Small world network as depicted in [50]

The work of Watts and Strogatz focused on two independent properties – shortest

path length connecting nodes and the clustering coefficient – as randomness is

added to the regular lattice. Watts and Strogatz defined a node clustering coef-

ficient as the proportion of edges each node has compared to a complete graph

in which all nodes are connected and subsequently averaged over all nodes to

form a single network measure. They found there was an interval for the choice
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of rewiring probability p that give a shortest path length almost equivalent to

a random graph but retained a significantly higher clustering coefficient than a

random graph. Watts and Strogatz noted that many real-life world networks have

higher clustering coefficient than what should be expected of a random graph.

It is the clustering coefficient property of their proposed class of networks that

distinguishes it from previous work of Erdős–Rényi and Gilbert.

2.2 Notation & definitions

In its most basic form, a network is simply a collection of nodes and edges.

Depending on the application area, a node can represent an object, a person or

even a place while an edge would illustrate a connection or some form of pairwise

interaction.

A set is a well-defined collection of objects and we refer to the objects that belong

to a set as being elements or members of that set. A rule of thumb is we represent

sets by upper case letters and its elements by lower case letters. We write a ∈ A

if a is an element of the set A and a /∈ A if a is not an element of the set A. A

set is defined by some condition or by giving an explicit list of its members, for

example A = {1, 2, 3} or B = {b3 such that 0 < b < 1}.

A network or graph is defined by two sets - one set of nodes and one set of edges.

Typically, the nodal set will be denoted by the set V (for vertices) and the edge

set by E. An element of an edge set is an ordered pair (i, j), where i, j ∈ V ,

meaning an edge originates from node i and terminates at node j. The graph

induced by the set of nodes V and the set of edges E is given by G(V,E). Each

node in the network should be uniquely identifiable.

For example, in Figure 2.3 there are a total of 5 nodes. As each edge is undirected

(indicated by lack of direction on edges) the edge set must contain 14 elements.
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Figure 2.3: Example network with 5 nodes and 7 edges.

This graph is induced by the nodal and edge set

V = {1, 2, 3, 4, 5}

E = {(1, 2), (1, 4), (1, 5), (2, 1), (2, 3), (2, 4), (3, 2), (3, 4),

(4, 1), (4, 2), (4, 3), (4, 5), (5, 1), (5, 4)}.

Note how |V | = 5 and |E| = 14 meaning there are 5 nodes and 14 directed edges

(7 undirected edges). We will denote the number of nodes in a network by N .

A traversal of edges around the network

(v1, v2), (v2, v3), . . . , (vp−1, vp)

is called a walk. The length of a walk is the number of edges traversed. A trail

is a walk in which the edges traversed are unique. If the nodes in the walk are

unique then it follows that the edges are also unique and this is called a path.

There are many well established ways to represent a network mathematically such

as an edge or adjacency list or an adjacency matrix. Each representation has its

own advantages and disadvantages, for example, in the case of a large sparse

network it would be much more efficient to only store the sets of edges which

had a connection rather than store a full matrix. Due to the reliance on linear

algebra for many applications in network science it is common to work with the

adjacency matrix which is typically sparse.

A network’s adjacency matrix, A ∈ RN×N , is a square binary matrix where

a row/column represents an element in the nodal set V of cardinality N . If

8



A = (aij)1≤i,j≤N then

aij =

 1, if (i, j) ∈ E,

0, otherwise.

That is, we put a 1 in position i, j if there is an edge connecting node i to node j

and put a 0 if there is no such edge. A network is said to be simple if there is no

self–loop in the network (i.e., aii = 0 for all i), no multiple edges between nodes

and the edges are undirected meaning information can travel in both directions.

In this case the diagonal elements of the adjacency matrix are zero and A is

symmetric. Our work will primarily be focused on unweighted directed networks

without self–loops, however the adjacency matrix definition can be extended to

the case of weighted networks with aij = wij if required.

As the adjacency matrix A details the connections between nodes in the network

it can be used to compute walks around the network with Ak being a count of

walks of length k between each pair of nodes.

The spectral radius of the adjacency matrix A is defined as

ρ(A) = max{|λ1|, |λ2|, . . . , |λN |},

where λ1, λ2, . . . , λN are the eigenvalues of A such that Ayi = λiyi.

Throughout this thesis we let 1 ∈ RN denote the vector of ones and AT be the

transpose of A such that (AT )ij = (A)ji.

In this work we encounter palindromic polynomials of even degree with real co-

efficients and therefore we state here some useful properties of these polynomials

that we rely upon later. Given a polynomial

p(z) = a0 + a1z + . . .+ anz
n =

n∑
i=0

aiz
i,

the reciprocal polynomial (a reversal in coefficients) is given by

p∗(z) = an + an−1z + . . .+ a0z
n =

n∑
i=0

an−iz
i.
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A polynomial is self-reciprocal if p(z) = p∗(z) for all z, and therefore ai = an−i

[46]. In this case the coefficients form a palindrome and we use the term palin-

dromic polynomial. A well known palindromic polynomial is (z + 1)n where the

coefficients are given by the n-th row of Pascal’s triangle.

The reciprocal polynomial can be written in terms of the original polynomial as

p∗(z) = znp(z−1). It follows that in the case of a palindromic polynomial we have

p(z) = znp(z−1). Therefore if z1 ̸= 0 is a root of a palindromic polynomial then

z−1
1 is also a root of the palindromic polynomial. That is, roots of palindromic

polynomials appear in reciprocal pairs.

If we have a polynomial with real coefficients it follows that if z1 ∈ C is a root

then the complex conjugate, z̄1 ∈ C, is also a root [31].

In the context of the palindromic polynomials, if we have a complex root then

the inverse of the complex root is also a root and so is the complex conjugate of

both, i.e., z1, z
−1
1 , z̄1, z̄1

−1 are all roots.

We note here that if a complex root lies on the unit circle, i.e., has modulus one,

then the inverse is equal to the conjugate. In this special instance this gives rise

to two distinct roots rather than four.
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Chapter 3

Centrality measures

Given a network adjacency matrix, A, a centrality measure assigns a value xi >

0 to each node i, with a larger value indicating a greater level of importance.

Typically, it is the ranking of the centrality values that matters—we only care

whether one node is more or less important than another, so the vector x ∈ RN

is equivalent to βx+ γ1 for any β, γ > 0.

Within this chapter we explore a brief history of centrality measures and introduce

Katz, eigenvector and PageRank centralities that our work is built upon.

3.1 History

Many of the key ideas behind network centrality measures arose in the social

sciences, where researchers wanted to quantify the importance of some individ-

uals in human-interaction networks by studying the structural attributes of the

network [23].

In 1948 Alex Bavelas first hypothesised a link between centrality and influence

in communication networks [5]. Subsequent research, led by Bavelas, at Mas-

sachusetts Institute of Technology (MIT) in the late 1940s and early 1950s in-

volved a problem solving exercise. Participants were given different information

and the group had to piece all the information together before taking decisions
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and solving the problem. The research concluded there was a relationship between

leadership, efficiency and organisation of the group and centrality in communica-

tion patterns [6, 7, 36].

This research carried out at MIT motivated others to get involved and experi-

ments of similar and more complicated guises followed whereby different commu-

nication strategies could be employed to see the impact on efficiency at problem

solving. Robert Burgess provides a summary of the subsequent experiments but

notes that the “research has not provided consistent and cumulative results” [15].

It is clear that centrality is related to the influence of outcomes, for example, if we

were to examine a company’s email communications we would be able to identify

those that are in charge as information typically flows down a hierarchy.

The early idea of centrality was also being used in other contexts throughout the

1960s and 1970s. For example, researchers have used centrality to understand

political integration in India [18] and diffusion in the steel industry [19].

Freeman explains that whilst the idea of centrality is accepted and in use in a wide

variety of applications there is no consensus on what exactly centrality is or indeed

what exactly it should measure [23]. Therefore there exists a plethora of centrality

measures in use today, each of which has its own definition of importance.

Although the term centrality was coined in the late 1940s the fundamental ideas

and notions that lay behind it have a longer history dating back to the latter

part of the 19th century in the context of ranking chess players. In a round robin

competition players would amass points – 1 for a win; 1/2 for a draw; 0 for a

loss. In today’s terminology this would form the basis for a weighted adjacency

matrix.

Whilst it would perhaps be reasonable to assume that a player’s overall number of

points should determine the rankings of those in the competition, Oscar Gelbfuhs

and later Hermann Neustadl argued that this however gives equal weight to a win

against a weak or a strong player and suggested that points should be weighted

according to the strength of the opposition [1].

Whilst there is merit in the argument made by Gelbfuhs and Neustadl it proved

to be controversial as it could give rise to determining a tournament winner not
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because they are the strongest player but rather their opponents were strong.

Outraged at the suggestion, a young Edmund Landau got involved and instead

proposed that the overall rankings should be based on an eigenvector, of the now

known, adjacency matrix [33]. Interestingly, one of Landau’s points of criticism

was that such a method proposed by Gelbfuhs and Neustadl would produce a

different result on every iteration even though, as we now know through analysis

of the power method, the iteration converges to the aforementioned eigenvector.

The work of Landau in terms of ranking methods in a range of different contexts

is discussed in [9].

This notion is widely accepted today and is fundamental to what is perhaps

the most commonly used ranking algorithm – Google’s PageRank [44]. Used by

millions on a daily basis to find and rank web pages according to the search

criteria the PageRank centrality is based on the idea that an important web page

is one to which many other important web pages link.

Whilst there are lots of centrality measures with different proxies for what it

means to be important, the rise of digital information and online social media

in a range of applications such as advertising, defence and security has meant

that what are known as spectral methods have become more important than

the classical alternatives. As with the examples touched upon above, spectral

methods have the property that a measure of importance and hence ranking is

based upon mutual reinforcement, i.e., a good chess player is someone that wins

against other good chess players and an important web page is one that other

important web pages link to. The history of spectral ranking is detailed in [48].

3.2 Spectral centrality measures

We summarize here the concepts of Katz, eigenvector and degree centrality, refer-

ring to [2, 11, 21, 41, 49] for historical details and discussions of implementation

issues. We also consider the PageRank algorithm [25, 34, 44] which has a dif-

ferent feel; summarizing incoming, rather than outgoing, information, but also

assigning a positive real value to each node. Our overall aim is to study, in a spe-

cific setting, how changes to the network affect centrality. We note that related
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questions have been addressed in other contexts; see, for example, [10, 17].

A network is strongly connected if there exists a path between every pair of nodes

in the network. That is, there exists a sequence of edges that allows every node to

be reached from every other node. We now assume that the networks are strongly

connected so that the adjacency matrix, A, is irreducible. This property holds

for the network class that we study in subsequent chapters.

Katz centrality [32] defines x via the linear system

(I − αA)x = 1, (3.1)

where α ∈ (0, 1/ρ(A)) is a free parameter. Several authors have suggested par-

ticular choices for α; see [2] and the references therein. This measure can be

motivated by expanding the resolvent (I − αA)−1 to give

x =
(
I + αA+ α2A2 + α3A3 + · · ·

)
1.

Noting that (Ak)ij counts the number of distinct walks of length k from i to j,

we see that xi is a weighted sum of the number of walks from node i to all other

nodes, where the count for walks of length k is scaled by αk. So xi is a measure

of how well node i can send information around the network, with more weight

given to shorter traversals.

In the limit as α → 0 from above the ranking given by (3.1) coincides with the

ranking from degree centrality, which arises from taking xi to be the out-degree

(number of edges originating from the node) of node i; that is,

xi = outdegi, where outdeg = A1. (3.2)

This makes sense intuitively, since accounting only for the shortest possible

walks—of length one—is equivalent to computing the out-degree.

Eigenvector centrality can be motivated recursively, with a node being important
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if it has links to important nodes. This leads to the expression

xi ∝
N∑
j=1

aijxj. (3.3)

Letting 1/λ denote the constant of proportionality, we may write

Ax = λx, (3.4)

showing that x must be an eigenvector of A corresponding to eigenvalue λ. Re-

quiring xi > 0 for all i forces λ and x to be the Perron-Frobenius eigenvalue and

eigenvector, respectively. For a discussion of Perron-Frobenius theory, we refer

to [30]. Here we note that λ = ρ(A) is the dominant eigenvalue of A, under our

assumption that A is irreducible.

In the limit as α tends to 1/ρ(A) from below, the Katz centrality vector in (3.1)

gives the same results as the eigenvector centrality vector; see, for example, [8].

The PageRank algorithm, originally proposed in [44], can be motivated from

several different perspectives. For example, keeping in mind the context of web

pages, we could alter (3.3) by arguing that the importance of a node is dependent

on the importance of the nodes that point to it. If aij = 1 indicates a hyperlink

from node i to node j, then we can set up an iteration where each node is given

a convex combination of a basal score and a normalized sum of the scores of its

followers, so that

x
[k+1]
i = 1− d+ d

N∑
j=1

aji
outdegj

x
[k]
j .

Here, scaling by outdegj ensures that every node has the same opportunity to

distribute its influence across its neighbours. The parameter 0 < d < 1 controls

the relative weight given to this redistribution. Taking the limit k → ∞, we

define the PageRank vector as the solution of

(
I − dATD−1

)
x = (1− d)1, (3.5)

where D = diag(outdegj). We refer to [25, 34] for further details.
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Chapter 4

Analysis of modified rings

Chapter 4 introduces the network class, a nearest neighbour periodic ring with

a shortcut, that we study centrality measures on. This chapter focuses on Katz

and eigenvector centality demonstrating a similar form of solution to both but

one central difference – Katz centrality tends to a fixed non-zero value whilst

eigenvector tends to zero on moving away from the spike node. We also include

bounds on the Perron-Frobenius eigenvalue associated with the adjacency matrix

that justifies a restriction of the Katz parameter domain in our analysis.

4.1 Small world models

As mentioned in Chapter 1, the seminal work of Watts and Strogatz [50] in-

troduced a class of random graphs characterised by having many “local” links

and a few “long range” links. Those authors showed, via computational exper-

iments, that such a model can reproduce clustering and pathlength properties

that have been observed in real world complex networks. A key idea in [50]

was to add randomness to a regular lattice. Starting from an undirected peri-

odic ring with fixed-range nearest-neighbour connections, the authors introduced

a rewiring procedure—each node in the lattice was examined in turn, and, for

each of its undirected links, with small independent probability the end point of

that link was replaced by another node chosen uniformly at random. In terms of
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developing analytical results to back up the observations in [50], the rewiring pro-

cess presents difficulties; for example, a node may become isolated with nonzero

probability. For this reason, subsequent research focused on a slight variation

where existing edges are not altered, but new edges, termed shortcuts, are added

between randomly selected nodes in the network. For example, focusing on the

N → ∞ limit, [40, 42, 43] develop heuristic approximations and [4] gives rigorous

results. Markov chain versions with hitting time (mean number of edges traversed

to get from node i to node j on a random walk for the first time) as a proxy for

pathlength were also studied rigorously in [16, 28, 29, 51]. Of particular relevance

to our study is the reference [37], which analysed the effect of shortcuts on the

underlying matrix spectrum from a linear algebra viewpoint.

In this work we will therefore use the shortcut concept, rather than rewiring. The

details are described in the next section. We also note that in the case where each

undirected edge in the underlying periodic ring is regarded as an independent pair

of directed edges, so that a rewired edge produces a directed link, the study of

Katz and eigenvalue centralities is not interesting. This can be seen from the

following simple lemma.

Lemma 4.1. Suppose that all nodes in a network have the same out-degree. Then

all nodes have the same Katz centrality measure. Similarly, assuming strong

connectivity, all nodes have the same eigenvector centrality measure.

Proof. We have

A1 = od1, (4.1)

where od ≡ outdegi denotes the common out-degree. Hence 1 is the Perron-

Frobenius eigenvector and ρ(A) = od. Any Katz parameter 0 < α < 1/od

is valid, and we see from (4.1) that x = 1/(1 − α od) solves the Katz system

(3.1).
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4.2 Matrix modification

Let C ∈ RN×N be the adjacency matrix for the periodic nearest neighbour ring;

so in the N = 6 case,

C =



0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0


. (4.2)

We note that C is symmetric and circulant, and standard theory shows that the

Perron-Frobenius eigenvalue is ρ(C) = 2 with corresponding eigenvector x = 1

[30, page 100], which, from Lemma 4.1, also solves the Katz system (3.1), up

to a multiplicative factor, for any 0 < α < 1/ρ(C). It is, of course, intuitively

reasonable that all nodes in this network should be assigned the same centrality

value in (3.1), (3.2) and (3.4).

Next we add a single directed shortcut. Without loss of generality we give the

shortcut to node 1 and let L be the index of the target node. So our adjacency

matrix A in (3.1) has the form A = C +E, where the rank one matrix E is zero

except for E(1, L) = 1. Liu, Strang and Ott [37] describe this as a modification

of C, to emphasize that we have an O(1) change in a matrix entry, rather than

the type of small change studied in classical matrix perturbation theory. These

authors studied the eigenvector associated with the dominant eigenvalue of A,

and related matrices, and constructed accurate approximations to this vector.

Further work concerning the eigenvalues arising from general modifications to

structured matrices has appeared in, for example, [12, 13, 14].

Our work is strongly motivated by [37] but differs from it in three respects.

• Rather than deriving small residual approximations and then using stability

arguments to bound the forward error, we construct exact solutions that

can be expanded asymptotically. This more direct route leads to shorter

proofs and sharper bounds.
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• We consider Katz and PageRank centrality (as well as the eigenvalue prob-

lem).

• We interpret the results from a network science perspective and show how

they can give new insights about behaviour on more complicated networks.

For convenience, we let p(i) for any 1 ≤ i ≤ N denote the periodic distance from

node i to node 1, that is,

p(i) = min (|i− 1|, |N − (i− 1)|) . (4.3)

We can assume without loss of generality that the receiving node L is not beyond

the half way, or “six o’clock”, position on the ring. We are interested in large

networks with long-range shortcuts. So, letting ⌊·⌋ denote the integer part, for

some fixed proportion 0 < θ ≤ 1 we set

L =

 ⌊θ(N/2 + 1)⌋ when N is even,

⌊θ(N + 1)/2⌋ when N is odd.
(4.4)

We note that L → ∞ as N → ∞.
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(a) Without shortcut

(b) With shortcut

Figure 4.1: Illustration of nearest neighbour periodic ring with N = 10
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4.3 Exact solution for Katz centrality

In the upper picture of Figure 4.2, the asterisks show Katz centrality values for

a network with adjacency matrix A = C + E, that is, components of x from

(3.1). We chose a small network size in order to make the key effects visible.

More precisely, we used an N = 20 node ring with a shortcut from node 1 to

node L = 8, for α = 0.3. Because node 1 owns the extra, long-range edge,

it attains the highest centrality score, at around 3.5. The most distant node,

periodically, node 11, is deemed the least central. Insight from [37], or from

eyeballing the solution, suggests that components of xi, when suitably shifted,

might be varying geometrically as the index i moves periodically around the ring;

that is xi = b + htp(i) for some constants b, h > 0 and 0 < t < 1. Fitting an

ansatz of this form leads us to the circles in the upper picture of Figure 4.2. The

agreement is close—below 2× 10−5 in Euclidean norm.

The lower picture in Figure 4.2 shows, on a log scale, the discrepancy between

those asterisks (true solution) and circles (geometric decay ansatz). We see a very

small contribution that, in contrast to the overall solution, grows geometrically

as we move periodically away from node 1.

We now state a theorem that explains Figure 4.2. The theorem concerns the limit

N → ∞ with a fixed Katz parameter 0 < α < 1/2. This upper limit for α is

chosen because, as proved in Section 4.5, ρ(A) tends to 2 from above as N → ∞.

Theorem 4.1. For the undirected ring plus directed shortcut network with adja-

cency matrix A = C +E, for sufficiently large N the unique solution of the Katz

system (3.1) has the form

xi = b+ h1t
p(i)
1 + h2t

p(i)
2 . (4.5)

Here, b, t1, t2, h1, h2 are constants, i.e., independent of i, and b, t1, t2 are also

independent of N . In particular, h1 > 0, h2 > 0, b = 1/(1 − 2α) and t1, t2 are

the roots of the palindromic quadratic αt2 − t+ α, so that

t1 =
1−

√
1− 4α2

2α
, t2 =

1 +
√
1− 4α2

2α
, (4.6)
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Figure 4.2: Upper picture: asterisks show components of Katz vector from (3.1)

and circles show the approximation b + h1t
p(i)
1 from (4.7). Here b = 1/(1 − 2α),

t1 is defined in (4.6) and h1 was found by solving (4.15). Lower picture: the

discrepancy xi − b − h1t
p(i)
1 on a log scale. From Theorem 4.1, this quantity

has the form h2t
p(i)
2 , and hence grows geometrically away from the shortcut node.

However, it is uniformly O(t
N/2
1 ) for a fixed 0 < t1 < 1, and hence rapidly becomes

negligible as the network size N increases.
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with t2 = 1/t1 and 0 < t1 < 1 < t2. Moreover, the final term in (4.5) is

exponentially small asymptotically, in the sense that for all 1 ≤ i ≤ N ,

xi = b+ h1t
p(i)
1 +O(t

N/2
1 ), (4.7)

with h1 = O(1).

Proof. We begin with the ansatz

xi = b+ htp(i). (4.8)

The Katz system (3.1) essentially reduces to three scalar equations where we need

to consider:

• General node k where each neighbouring node, k − 1 and k + 1, differs by

a factor of t

• Node 1 which has a shortcut across the ring to node L

• The node(s) furthest away from node 1 periodically, i.e.

– node q = N/2 + 1, if N is even

– node q = (N + 1)/2 or q = (N + 3)/2, if N is odd.

At a general node k, corresponding to the kth row of the linear system, for k ̸= 1

and k ̸= q we have

−αxk−1 + xk − αxk+1 = 1. (4.9)

Inserting (4.8), this becomes

b(1− 2α) + htp(k) [1− αt− α/t] = 1.

We can satisfy this equation independently of k by setting b = 1/(1 − 2α) and

choosing t to be either root of the quadratic αt2 − t + α. By linearity of (4.9),

we may extend (4.8) to include a linear combination involving both roots, so our

ansatz becomes

xk = b+ h1t
p(k)
1 + h2t

p(k)
2 , (4.10)
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where

t1 =
1−

√
1− 4α2

2α
, t2 =

1 +
√
1− 4α2

2α
.

Because the quadratic is palindromic, t1 and t2 must satisfy t1t2 = 1. It is clear

that these roots are real, with 0 < t1 < 1 < t2, and we note the further useful

facts

1− 2αt1 =
√
1− 4α2 > 0, 1− 2αt2 = −

√
1− 4α2 < 0 (4.11)

and

(1− α)t1 − α = αt1(t1 − 1) < 0, (1− α)t2 − α = αt2(t2 − 1) > 0, (4.12)

The two remaining equations to satisfy from (3.1) arise at nodes 1 and q, where

we require

−αxN + x1 − αx2 − αxL = 1 (4.13)

and {
−αxN/2 + xN/2+1 − αxN/2+2 = 1, if N is even (4.14a)

−αx(N−1)/2 + x(N+1)/2 − αx(N+3)/2 = 1, if N is odd (4.14b)

respectively. In (4.14b) above, we have used q = (N + 1)/2 but q = (N + 3)/2 is

equally valid and will result in the same analysis.

Consider the case where the number of nodes, N , is even.

Inserting (4.10) into (4.13) and (4.14a), using b(1 − 2α) = 1, we have the linear

system [
1− 2αt1 − αtL−1

1 1− 2αt2 − αtL−1
2

t
N/2−1
1 (t1 − 2α) t

N/2−1
2 (t2 − 2α)

][
h1

h2

]
=

[
bα

0

]
. (4.15)

To prove that a solution of the form (4.10) exists, we now show that this system

is nonsingular. The determinant may be written as

(
1− 2αt1 − αtL−1

1

)
t
N/2
2 (1− 2αt1)−

(
1− 2αt2 − αtL−1

2

)
t
N/2
1 (1− 2αt2). (4.16)
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Recalling that 0 < t1 < 1 < t2, we see from (4.11) that, as N → ∞ and hence

L → ∞, the first term in (4.16) becomes, to leading order,

(1− 2αt1)
2 t

N/2
2 → ∞.

The second term in (4.16) becomes, to leading order,

αtL−1
2 t

N/2
1 (1− 2αt2) = αt

N/2−L
1 (t1 − 2α). (4.17)

Recall that L = ⌊θ(N/2 + 1)⌋, so

N/2− L > N/2− θ(N/2 + 1) = (1− θ)N/2− θ.

Hence, as N → ∞, the term αt
N/2−L
1 (t1− 2α) in (4.17) is bounded for θ = 1, and

tends to zero for θ < 1. So the first term in (4.16) dominates, and the determinant

is bounded away from zero for large N .

Consider the case where the number of nodes, N , is odd.

Inserting (4.10) into (4.13) and (4.14b), using b(1 − 2α) = 1, we have the linear

system[
1− 2αt1 − αtL−1

1 1− 2αt2 − αtL−1
2

t
(N−3)/2
1 [(1− α)t1 − α] t

(N−3)/2
2 [(1− α)t2 − α]

][
h1

h2

]
=

[
bα

0

]
. (4.18)

To prove that a solution of the form (4.10) exists, we now show that this system

is nonsingular. The determinant may be written

(
1− 2αt1 − αtL−1

1

)
t
(N−3)/2
2 [(1− α)t2 − α]−

(
1− 2αt2 − αtL−1

2

)
t
(N−3)/2
1 [(1− α)t1 − α] .

(4.19)

Recalling that 0 < t1 < 1 < t2, we see from (4.11) and (4.12) that, as N → ∞
and hence L → ∞, the first term in (4.19) becomes, to leading order,

(1− 2αt1) t
(N−3)/2
2 [(1− α)t2 − α] → ∞.
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The second term in (4.19) becomes, to leading order,

αtL−1
2 t

(N−3)/2
1 [(1− α)t1 − α] = αt

(N−1)/2−L
1 [(1− α)t1 − α] . (4.20)

Recall that L = ⌊θ((N + 1)/2)⌋, so

(N − 1)/2− L > (N − 1)/2− θ((N + 1)/2) = (1− θ)(N − 1)/2− θ.

Hence, as N → ∞, term αt
(N−1)/2−L
1 [(1− α)t1 − α] in (4.20) is bounded for

θ = 1, and tends to zero for θ < 1. So the first term in (4.19) dominates, and the

determinant is bounded away from zero for large N .

Continuation of general case: N even or odd.

We have shown that for sufficiently large N the unique solution of the Katz

system (3.1) has the form (4.10). We now follow up by showing that, in the exact

solution (4.10), the growing term h2t
p(i)
2 is negligible for large N .

To do so, we first show that the second equations in (4.15) and (4.18) can both

be reduced to the same condition. Using (4.15) and (4.11),

h2 = −t
N/2−1
1 (t1 − 2α)

t
N/2−1
2 (t2 − 2α)

h1 = −tN1
1− 2αt2
1− 2αt1

h1 = h1t
N
1 . (4.21)

Similarly, using (4.18) and (4.12),

h2 = −t
(N−3)/2
1 [(1− α)t1 − α]

t
(N−3)/2
2 [(1− α)t2 − α]

h1 = −tN−3
1

t21(1− t2)

t2(t2 − 1)
h1 = h1t

N
1 . (4.21)

Hence, in the first equation of (4.15) and (4.18),

h1

[
1− 2αt1 − αtL−1

1 − αtN−L+1
1 − 2αtN−1

1 + tN1
]
= bα.

We see that h1 = O(1). Also, using (4.11), we deduce that h1 > 0 for large

N . It then follows from (4.21) that h2 > 0 and h2 = O(tN1 ). Since the term
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h2t
p(k)
2 = h1t

N−p(k)
1 is largest when k = N/2 + 1, we also see that

xi = b+ h1t
p(i)
1 +O(t

N/2
1 ).

4.4 Exact solution for eigenvector centrality

This section looks at eigenvector centrality for the matrix C + E. We note that

ρ(C + E) ≤ ||C + E||∞ = 3. Also, it is true in general that adding an edge

to a strongly connected network strictly increases the spectral radius; see [30,

Problem 8.4P14]. So 2 < ρ(C + E). From the network centrality perspective,

we are concerned mainly with the structure of the Perron-Frobenius eigenvector.

However, for completeness, in Section 4.5 we establish a tight bound on the

corresponding eigenvalue.

The asterisks in the upper picture of Figure 4.3 show the components of the

Perron-Frobenius vector for A = C+E in the case where N = 40 and L = 12. As

in the Katz case seen in Figure 4.2, there is evidence of periodic geometric decay.

The circles in the picture show an ansatz of the form xi = s
p(i)
1 for 0 < s1 < 1.

Both vectors were normalized to have unit Euclidean norm. The lower picture

shows the discrepancy between the two, and again we see a small contribution

that increases periodically away from node 1.

Theorem 4.2 makes these observations concrete. The result is strongly moti-

vated by the approach in [37], where exponentially accurate approximations were

constructed.

In [37], Liu, Strang and Ott consider the case of a string of nodes which connect

to each nearest neighbour. This can be represented as an adjacency matrix,

A ∈ RN×N , with ones on the sub and super diagonals and zero elsewhere. The

authors then modify this adjacency matrix with a matrix B ∈ RM×M such that

the i, j-th entry of B modifies the ri, rj-th entry of A. This set up allows the

authors to consider the case of M modifications to the underlying string of nodes.
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Figure 4.3: Upper picture: asterisks show components of the Perron-Frobenius
vector and circles show the approximation s

p(i)
1 from (4.22), with s1 defined in

(4.23). Both vectors are normalized to have unit Euclidean norm. Lower picture:

the discrepancy. From Theorem 4.2, xi − s
p(i)
1 has the form s

N−p(i)
1 , and hence

grows geometrically away from the shortcut node.
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In the simplest form, the authors consider the case of a modification of A in

position (r, r) which represents a change in this position from 0 to b. The ‘new’

eigenvalue (λ) is shown to have increased and moved outwith the range [−2, 2]

(the spectrum of the unmodified matrix) which still contains all other eigenvalues.

The components of the Perron-Frobenius eigenvector are shown to be almost

zero except near node r where there is a localised spike with geometric decay.

Fitting an ansaztz of xj = t|j−r| the authors approximate the value of t and λ

by considering the system at the general nodes and node r whilst ignoring the

boundary effects which are argued to be of O(tL) where L = min(r − 1, N − r).

This gives the approximations

t =
1

2

[
−b+ sign(b)

√
4 + b2

]
λ = sign(b)

√
4 + b2.

The authors extend this approach to the case of M modifications highlighting

that it would be reasonable to observe M localised spikes in the Perron-Frobenius

eigenvector. The ansatz is now a sum ofM spikes centred at rk each with differing

height hk, i.e., xj =
∑M

k=1 hkt
|j−rk|. Once more the authors ignore boundary

effects and the higher order terms observed at row rk to give the approximations

t =
1

2

[
−µ+ sign(µ)

√
4 + µ2

]
λ = sign(µ)

√
4 + µ2,

which relate the rate of decay t and new eigenvalue λ to µ (the leading eigenvalue

of the modification matrix B). Similarly, the heights of the spikes are shown to

be given by eigenvectors of the modification matrix B. The authors then prove

that the approximations for the eigenvalue and eigenvector are within O(tL) to

the actual eigenvalue-eigenvector pair.

We extend this approach in order to obtain an explicit expression for the Perron-

Frobenius eigenvector. We note here that our problem is posed on a periodic

ring unlike that of Liu, Strang and Ott who considered a string. Rather than

ignore higher order contributions at the boundary or on spike rows we account
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for them explicitly and this allows us to identify geometrically increasing but

exponentially small (in N) growth that was absorbed into the O(tL) term in

[37]. Hence, Theorem 4.2 gives both exact solutions and approximations that

are highly accurate in a large network limit. The technique of proof is similar to

that in Theorem 4.1. However, we point out that whereas the Katz parameter

α in Theorem 4.1 is fixed, the Perron-Frobenius eigenvalue λ in Theorem 4.2 is

dependent upon N .

Theorem 4.2. For the undirected ring plus directed shortcut network with adja-

cency matrix A = C+E, let λ denote the Perron-Frobenius eigenvalue. Then, for

sufficiently large N , we have 2 < λ < 5/2 and the Perron-Frobenius eigenvector

x has the form

xi = s
p(i)
1 + s

p(i)−N
2 , (4.22)

where s1, s2 are the roots of the palindromic quadratic s2 − λs+ 1, so that

s1 =
λ−

√
λ2 − 4

2
, s2 =

λ+
√
λ2 − 4

2
, (4.23)

with s2 = 1/s1 and 0 < s1 < 1 < s2.

Proof. Following the proof of Theorem 4.1, we start with the ansatz

xi = b+ hsp(i) (4.24)

for the eigenvector, and attempt to satisfy the requisite equations for general

node k, for node 1 and for the node, q, furthest away from node 1.

At a general node k, that is, in the kth row of (3.4), for k ̸= 1 and k ̸= q we have

xk−1 − λxk + xk+1 = 0. (4.25)

Inserting the ansatz (4.24) this becomes

b(2− λ) + hsp(k)(1/s+ s− λ) = 0.

This may be satisfied by setting b to zero and s to the value s1 or s2. By linearity,
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we therefore continue with

xi = h1s
p(i)
1 + h2s

p(i)
2 . (4.26)

Since the eigenvector is only unique up to a scaling, we set h1 = 1, leaving h2 and

λ as free parameters. The two remaining equations to satisfy arise from nodes 1

and q where

−λx1 + x2 + xL + xN = 0, (4.27)

and {
xN/2 − λxN/2+1 + xN/2+2 = 0, if N is even (4.28a)

x(N−1)/2 − λx(N+1)/2 + x(N+3)/2 = 0, if N is odd (4.28b)

respectively. In (4.28b) above, we have used q = (N + 1)/2 but q = (N + 3)/2

is equally valid and will result in the same analysis. Using (4.26) with h1 = 1 we

have

(2s1 − λ+ sL−1
1 ) + h2(2s2 − λ+ sL−1

2 ) = 0, (4.29)

and {
s
N/2
1 (2s2 − λ) + h2s

N/2
2 (2s1 − λ) = 0, if N is even (4.30a)

s
(N−1)/2
1 (s2 + 1− λ) + h2s

(N−1)/2
2 (s1 + 1− λ) = 0, if N is odd (4.30b)

respectively. Since s1 = 1/s2 and s1 + s2 = λ, multiplying (4.30a) by a factor of

s
N/2
2 we obtain

h2 = s−N
2

(
−(2s2 − λ)

2s1 − λ

)
= s−N

2

(
−(s2 − s1)

s1 − s2

)
= sN1 .

Similarly, multiplying (4.30b) by a factor of s
(N−1)/2
2 we obtain

h2 = s
−(N−1)
2

(
−(s2 + 1− λ)

s1 + 1− λ

)
= s

−(N−1)
2

(
−s1(s2 − 1)

1− s2

)
= sN1 .

We have shown that both (4.30a) and (4.30b) reduce to h2 = sN1 so writing (4.29)
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in terms of the remaining unknown, λ, we have

F (λ) = 0, (4.31)

where

F (λ) = (s1 − s2)(1− sN1 ) + sL−1
1 + sN−L+1

1

= −
√
λ2 − 4

(
1−

(
λ−

√
λ2 − 4

2

)N
)

+

(
λ−

√
λ2 − 4

2

)L−1

+

(
λ−

√
λ2 − 4

2

)N−L+1

. (4.32)

It is straightforward to show that F (2) > 0, whereas at λ = 5/2 we have

F (5/2) = −3

2

(
1− 2−N

)
+ 21−L + 2L−N−1

for large N .

In the N even case we have L = θ(N/2 + 1) so 1 − L = 1 − θ − θN/2 and

L−N − 1 = θN/2 + θ −N − 1 = −(2− θ)N/2− (1− θ). Therefore,

F (5/2) = −3

2

(
1− 2−N

)
+ 21−L + 2L−N−1

= −3

2
+ 21−L + 2L−N−1 +

3

2
2−N

= −3

2
+ 21−θ2−θN/2 + 2−(1−θ)2−(2−θ)N/2 +

3

2
2−N

= −3

2
+O(2−θN/2) +O(2−(2−θ)N/2) < 0,

for large N .

In the N odd case we have L = θ(N + 1)/2 so 1 − L = 1 − θ/2 − θN/2 and
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L−N − 1 = θN/2 + θ/2−N − 1 = −(2− θ)N/2− (1− θ/2). Therefore,

F (5/2) = −3

2

(
1− 2−N

)
+ 21−L + 2L−N−1

= −3

2
+ 21−L + 2L−N−1 +

3

2
2−N

= −3

2
+ 21−θ/22−θN/2 + 2−(1−θ/2)2−(2−θ)N/2 +

3

2
2−N

= −3

2
+O(2−θN/2) +O(2−(2−θ)N/2) < 0,

for large N .

So the continuous function F changes sign in the interval (2, 5/2).

We have thus established that the nonsymmetric matrix C+E has an eigenvector

of the form (4.22) with an eigenvalue in (2, 5/2). We can rule out the possibility of

an eigenvector existing that has a larger eigenvalue. This follows from [30, Prob-

lem 8.4.P15] (which applies to all nonnegative, irreducible matrices)—because we

have constructed an eigenvector with all xi > 0, it must be a Perron-Frobenius

eigenvector.

4.5 Bounds on the Perron-Frobenius eigenvalue

In Theorem 4.2 it was sufficient to have a crude bound on the associated Perron-

Frobenius eigenvalue. Here, we derive a sharper result that justifies the restriction

0 < α < 1/2 imposed in Section 4.3.

Theorem 4.3. Given any ϵ > 0 and K > 0, for sufficiently large N the Perron-

Frobenius eigenvalue λ in Theorem 4.2 is such that

2 +
K

N2
< λ < 2 +

K

N2−ϵ
.

Proof. We consider F (λ) in (4.32) for values of λ close to 2, noting that the

Perron-Frobenius eigenvalue satisfies F (λ) = 0. That is we regard λ as a general

point and use the idea that if F (λa)F (λb) < 0 then F (λ) = 0 for some λ ∈ (λa, λb).
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If λ has the form

λ = 2 +KN−β

for some β > 0, then to leading order in (4.23) we have

s1 = 1−K1/2N−β/2 +O(N−β), (4.33)

s2 = 1 +K1/2N−β/2 +O(N−β). (4.34)

Now suppose β = 2, then recalling that L is proportional to N , we have

log sL−1
1 = (L− 1) log

(
1−K1/2N−1 +O(N−2)

)
= (L− 1)

(
−K1/2N−1

)
+O(N−2)

→ −γK1/2,

log sN−L+1
1 = (N − L+ 1) log

(
1−K1/2N−1 +O(N−2)

)
= (N − L+ 1)

(
−K1/2N−1

)
+O(N−2)

→ −(1− γ)K1/2,

log sN1 = N log
(
1−K1/2N−1 +O(N−2)

)
= N

(
−K1/2N−1

)
+O(N−2)

→ −K1/2,

for some fixed γ = (L− 1)/N > 0. So

sL−1
1 → e−γK1/2

, sN−L+1
1 → e−(1−γ)K1/2

sN1 → e−K1/2

.

Since F (λ) in (4.32) may be written

F (λ) = (2s1 − λ)(1− sN1 ) + sL−1
1 + sN−L+1

1 ,

we conclude that it takes the form of an asymptotically small negative term plus

positive terms that are bounded away from zero. Hence F (λ) > 0 for large N .

Now suppose β < 2. Similar analysis shows that, as N → ∞,

sL−1
1 → 0, sN−L+1

1 → 0, sN1 → 0,
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at rates that are exponential; that is, as fast as e−νN1−β/2
for some fixed ν > 0. It

follows that F (λ) in (4.32) is dominated by the term −2
√
KN−β/2, so F (λ) < 0

for sufficiently large N .
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Chapter 5

Extensions

In this Chapter we consider variations of the periodic ring plus shortcut across the

network by examining the case of (a) multiple shortcuts and (b) nodes connecting

to more than one neighbour on each side. To do so, we will first consider the

simplest form of such a network and then conjecture to the general case.

In this Chapter we only consider Katz centrality as this work forms a basis for

our approach to more complex examples presented later in Chapter 6.

5.1 M-shortcuts across the ring

In this section we consider the case of adding more than one shortcut across the

network. To keep things simple and identify the key ideas we will consider the

case of adding one undirected shortcut which we can consider to be a pair of

directed shortcuts. We then hypothesise about what we would expect to happen

by removing the constraint of the additional shortcut pointing backwards at itself

and then conjecture about M shortcuts across the network. We also test our

conjecture with computational experiments.

Following on from Chapter 4 we assume that node 1 and node L are involved in

the shortcuts. We therefore have that node 1 has a shortcut to node L and node

L has a shortcut to node 1. Using the same notation, we have the adjacency
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matrix A = C +E ′ where E ′(1, L) = E ′(L, 1) = 1. Without loss of generality, we

assume that L is not beyond the half point. Therefore for some fixed proportion

0 < θ ≤ 1

L =

 ⌊θ(N/2 + 1)⌋ when N is even,

⌊θ(N + 1)/2⌋ when N is odd.
(5.1)

As was the case in Chapter 4 we let p(i) denote the periodic distance from node

i to node 1 as in (4.3) and let pL(i) denote the periodic distance from node i to

node L, i.e.

pL(i) = min (|i− L|, |N − (i− L)|) . (5.2)

In the upper picture of Figure 5.1, the asterisks show Katz centrality values for

a network with adjacency matrix A = C + E ′, that is, components of x from

(3.1). To make the key effects visible we chose a small network size. We used an

N = 20 node ring with a shortcut from node 1 to node L = 8 and a shortcut

from node L = 8 to node 1, for α = 0.3. Since node 1 and node L own an

extra, long-range edge, they attain the highest centrality scores and hence are

equally ranked. The more distant nodes, from both node 1 and node L, which

in this case would be node 14 and node 15 should be deemed least central. As

we have shown previously, in the case of a single shortcut, the components of

xi when suitably shifted were varying geometrically. In this instance, we have

2 shortcuts and therefore we might expect when the components of xi, when

suitably shifted, to vary as a sum of 2 geometric terms as we move around the

ring, that is xi = b + h(tp(i) + tpL(i)). Using an ansatz of this form leads to the

circles in the upper picture of Figure 5.1. The agreement between the two are

close — below 5× 10−5 in Euclidean norm.

The lower picture of Figure 5.1 shows, on a log-scale, the discrepancy between

those asterisks (true solution) and circles (geometrically decaying ansatz). We

observe that this discrepancy is at its maximum at nodes furthest periodically

from those nodes that own an additional shortcut, i.e. nodes 11 and 18. The

discrepancy is a very small contribution that decays geometrically as we move

away periodically from nodes 11 and 18.
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We now state a theorem that explains Figure 5.1. This theorem concerns the

limit N → ∞ with a fixed Katz parameter 0 < α < 1/ρ(A).

Theorem 5.1. For the undirected ring plus undirected shortcut network with

adjacency matrix A = C + E ′, for sufficiently large N the unique solution of the

Katz system (3.1) has the form

xi = b+ h1

(
t
p(i)
1 + t

pL(i)
1

)
+ h2

(
t
p(i)
2 + t

pL(i)
2

)
. (5.3)

Here, b, t1, t2, h1, h2 are constants, i.e., independent of i, and b, t1, t2 are also

independent of N . In particular, h1 > 0, h2 > 0, b = 1/(1 − 2α) and t1, t2 are

the roots of the palindromic quadratic αt2 − t+ α, so that

t1 =
1−

√
1− 4α2

2α
, t2 =

1 +
√
1− 4α2

2α
, (5.4)

with t2 = 1/t1 and 0 < t1 < 1 < t2. Moreover, the terms in (5.3) involving h2

are exponentially small asymptotically, in the sense that,

xi = b+ h1

(
t
p(i)
1 + t

pL(i)
1

)
+O(t

N/2
1 ), (5.5)

with h1 = O(1).

Proof. Our proof proceeds in a similar way to the proof of Theorem 4.1. We begin

by assuming that the height of the spikes at nodes 1 and L could be different and

use the ansatz

xi = b+ htp(i) + h′tpL(i). (5.6)

The Katz system (3.1) essentially reduces to five scalar equations where we need

to consider:

• General node k where each neighbouring node differs by a factor of t.

• Node 1 which has a shortcut across the ring to node L.

• Node L which has a shortcut across the ring to node 1.

• The node(s) furthest away from node 1 periodically, i.e.
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Figure 5.1: Upper picture: asterisks show components of Katz vector from (3.1)

and circles show the approximation b + h1(t
p(i)
1 + t

pL(i)
1 ) from (5.5). Here b =

1/(1 − 2α), t1 is defined in (5.4) and h1 was found by solving (5.18). Lower

picture: the discrepancy xi−b−h1(t
p(i)
1 +t

pL(i)
1 ) on a log scale. From Theorem 5.1,

this quantity has the form h2(t
p(i)
2 + t

pL(i)
2 ), and hence grows geometrically away

from the shortcut nodes. However, it is uniformly O(t
N/2
1 ) for a fixed 0 < t1 < 1,

and hence rapidly becomes negligible as the network size N increases.
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– node q1 = N/2 + 1, if N is even,

– node q1 = (N + 1)/2 or q1 = (N + 3)/2, if N is odd.

• The node(s) furthest away from node L periodically, i.e.

– node q2 = N/2 + L, if N is even,

– node q2 = (N − 1)/2 + L or q2 = (N + 1)/2 + L, if N is odd.

At a general node k, corresponding to the kth row of the linear system, for k ̸= 1,

k ̸= L, k ̸= q1 and k ̸= q2 we have

−αxk−1 + xk − αxk+1 = 1. (5.7)

Inserting (5.6), this becomes

b(1− 2α) + htp(k) [1− αt− α/t] + h′tpL(k) [1− αt− α/t] = 1.

We can satisfy this equation independently of k by setting b = 1/(1 − 2α) and

choosing t to be either root of the quadratic αt2 − t + α. By linearity of (5.7),

we may extend (5.6) to include a linear combination involving both roots, so our

ansatz becomes

xk = b+ h1t
p(k)
1 + h2t

p(k)
2 + h′

1t
pL(k)
1 + h′

2t
pL(k)
2 , (5.8)

where t1 and t2 are given in (5.4).

In addition to the useful facts (4.11) and (4.12) in Section 4.3 we also note that

1− 2αt1 − α =
√
1− 4α2 − α > 0 (5.9)

on our domain 0 < α < 1/ρ(A).

The four remaining equations to satisfy from (3.1) arise at nodes 1, L, q1 and q2,

where we require

−αxN + x1 − αx2 − αxL = 1, (5.10)

−αxL−1 + xL − αxL+1 − αx1 = 1, (5.11)
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{
−αxN/2 + xN/2+1 − αxN/2+2 = 1, if N is even (5.12a)

−αx(N−1)/2 + x(N+1)/2 − αx(N+3)/2 = 1, if N is odd (5.12b)

and {
−αxN/2+L−1 + xN/2+L − αxN/2+L+1 = 1, if N is even (5.13a)

−αx(N−3)/2+L + x(N−1)/2+L − αx(N+1)/2+L = 1, if N is odd (5.13b)

respectively. In (5.12b) above, we have used q1 = (N+1)/2 but q1 = (N+3)/2 is

equally valid and will result in the same conclusion. Similarly, in (5.13b) above,

we have used q2 = (N − 1)/2 + L but q2 = (N + 1)/2 + L is equally valid and

will result in the same conclusion.

Inserting (5.8) into (5.10) – (5.13b), using b(1 − 2α) = 1 and 1 − αt − α/t = 0,

we have

h1

[
1− 2αt1 − αtL−1

1

]
+ h2

[
1− 2αt2 − αtL−1

2

]
− αh′

1 − αh′
2 = bα, (5.14)

h′
1

[
1− 2αt1 − αtL−1

1

]
+ h′

2

[
1− 2αt2 − αtL−1

2

]
− αh1 − αh2 = bα, (5.15){

h1t
N/2−1
1 [t1 − 2α] + h2t

N/2−1
2 [t2 − 2α] = 0, if N is even (5.16a)

h1t
(N−3)/2
1 [(1− α)t1 − α] + h2t

(N−3)/2
2 [(1− α)t2 − α] = 0, if N is odd (5.16b)

and{
h′
1t

N/2−1
1 [t1 − 2α] + h′

2t
N/2−1
2 [t2 − 2α] = 0, if N is even (5.17a)

h′
1t

(N−3)/2
1 [(1− α)t1 − α] + h′

2t
(N−3)/2
2 [(1− α)t2 − α] = 0, if N is odd (5.17b)

We can now conclude that h = h′, that is h1 = h′
1 and h2 = h′

2, meaning that we

can now reduce the system to only considering the situation at nodes 1 and q1 or

nodes L and q2.

Consider the case where the number of nodes, N , is even.

The linear system is[
1− α− 2αt1 − αtL−1

1 1− α− 2αt2 − αtL−1
2

t
N/2−1
1 (t1 − 2α) t

N/2−1
2 (t2 − 2α)

][
h1

h2

]
=

[
bα

0

]
. (5.18)

To prove that a solution of the form (5.8) exists, we now show that this system
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is nonsingular. The determinant may be written

(
1− α− 2αt1 − αtL−1

1

)
t
N/2
2 (1− 2αt1)−

(
1− α− 2αt2 − αtL−1

2

)
t
N/2
1 (1− 2αt2).

(5.19)

Recalling that 0 < t1 < 1 < t2, we see from (4.11) and (5.9) that, as N → ∞ and

hence L → ∞, the first term in (5.19) becomes, to leading order,

(1− 2αt1 − α) t
N/2
2 (1− 2αt1) → ∞.

The second term in (5.19) becomes, to leading order,

αtL−1
2 t

N/2−1
1 (t1 − 2α) = αt

N/2−L
1 (t1 − 2α). (5.20)

Recall that L = ⌊θ(N/2 + 1)⌋, so

N/2− L > N/2− θ(N/2 + 1) = (1− θ)N/2− θ.

Hence, as N → ∞, term αt
N/2−L
1 (t1 − 2α) in (5.20) is bounded for θ = 1, and

tends to zero for θ < 1. So the first term in (5.19) dominates, and the determinant

is bounded away from zero for large N .

Consider the case where the number of nodes, N , is odd.

We have the linear system[
1− α− 2αt1 − αtL−1

1 1− α− 2αt2 − αtL−1
2

t
(N−3)/2
1 [(1− α)t1 − α] t

(N−3)/2
2 [(1− α)t2 − α]

][
h1

h2

]
=

[
bα

0

]
. (5.21)

To prove that a solution of the form (5.8) exists, we again show that this system

is nonsingular. The determinant may be written(
1− α− 2αt1 − αtL−1

1

)
t
(N−3)/2
2 [(1− α)t2 − α]

−
(
1− α− 2αt2 − αtL−1

2

)
t
(N−3)/2
1 [(1− α)t1 − α] .

(5.22)

Recalling that 0 < t1 < 1 < t2, we see from (4.12) and (5.9) that, as N → ∞ and
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hence L → ∞, the first term in (5.22) becomes, to leading order,

(1− 2αt1 − α) t
(N−3)/2
2 [(1− α)t2 − α] → ∞.

The second term in (5.22) becomes, to leading order,

αtL−1
2 t

(N−3)/2
1 [(1− α)t1 − α] = αt

(N−1)/2−L
1 [(1− α)t1 − α] . (5.23)

Recall that L = ⌊θ((N + 1)/2)⌋, so

(N − 1)/2− L > (N − 1)/2− θ((N + 1)/2) = (1− θ)(N − 1)/2− θ.

Hence, as N → ∞, term αt
(N−1)/2−L
1 [(1− α)t1 − α] in (5.23) is bounded for

θ = 1, and tends to zero for θ < 1. So the first term in (5.22) dominates, and the

determinant is bounded away from zero for large N .

Continuation of general case: N even or odd.

We have shown that for sufficiently largeN the unique solution of the Katz system

(3.1) has the form (5.8). We now follow up by showing that, in the exact solution

(5.8), the growing terms h2t
p(i)
2 and h2t

pL(i)
2 are negligible for large N .

To do so, we first show that the second equations in (5.18) and (5.21) can both

be reduced to the same condition. Using (5.18) and (4.11),

h2 = −t
N/2−1
1 (t1 − 2α)

t
N/2−1
2 (t2 − 2α)

h1 = −tN1
1− 2αt2
1− 2αt1

h1 = h1t
N
1 . (5.24)

Similarly, using (5.21) and (4.12),

h2 = −t
(N−3)/2
1 [(1− α)t1 − α]

t
(N−3)/2
2 [(1− α)t2 − α]

h1 = −tN−3
1

t21(1− t2)

t2(t2 − 1)
h1 = h1t

N
1 . (5.24)

Hence, in the first equation of (5.18) and (5.21),

h1

[
1− α− 2αt1 − αtL−1

1 − αtN−L+1
1 − 2αtN−1

1 + (1− α)tN1
]
= bα.

We see that h1 = O(1). Also, using (5.9), we deduce that h1 > 0 for large

43



N . It then follows from (5.24) that h2 > 0 and h2 = O(tN1 ). Since the term

h2t
p(k)
2 = h1t

N−p(k)
1 is largest when k = N/2 + 1 and h2t

pL(k)
2 = h1t

N−pL(k)
1 is

largest when k = N/2 + L , we also see that

xi = b+ h1

(
t
p(i)
1 + t

pL(i)
1

)
+ h1

(
t
N−p(i)
1 + t

N−pL(i)
1

)
= b+ h1

(
t
p(i)
1 + t

pL(i)
1

)
+O(t

N/2
1 ).

For a large, fixed, value of N , the expression (5.5) in Theorem 5.1 will be domi-

nated by the contribution from whichever of nodes 1 and L is closest to node i.

Hence, the Katz centrality of node i will take the approximate form

xi = b+ h1t
p1,L(i)
1 +O(tL−1

1 ) +O(t
N/2
1 ),

= b+ h1t
p1,L(i)
1 +O(t

θ(N/2+1)−1
1 ) +O(t

N/2
1 ),

= b+ h1t
p1,L(i)
1 +O(t

θN/2
1 ) +O(t

N/2
1 ),

where

p1,L(i) = min (|i− 1|, |N − (i− 1)|, |i− L|, |N − (i− L)|) .

We began our proof by assuming that the height of the spikes at the originating

shortcut nodes could be different and were then able to show that h = h′, i.e.,

that the height of the spikes were equal. This was only the case in our proof as

we considered an undirected shortcut (a pair of directed shortcuts that point in

opposite directions) and therefore they span the same periodic distance across

the ring.

Therefore, considering the condition of a pair of independent shortcuts (shortcuts

that do not involve the same pair of nodes) then retaining the definition of a

shortcut from node 1 to node L we would impose a similar definition to the

second shortcut. That is, we have an additional shortcut from node S to node T

whereby node S is no more than half way around the network, i.e., S < N/2 + 1

and node T does not extend more than half-way around the ring from node S.
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Therefore for some fixed proportion 0 < ϕ ≤ 1

T =

 ⌊ϕ(N/2 + 1)⌋+ S − 1 when N is even,

⌊ϕ(N + 1)/2⌋+ S − 1 when N is odd.
(5.25)

Looking back at (5.14) – (5.15) we would expect the height of the spikes to

be slightly different unless the shortcuts still span the same periodic distance.

However, in the asymptotic regime when N → ∞ and hence L → ∞ and T → ∞
the height of the spikes should be equal regardless.

We therefore conjecture that in the general case of a nearest neighbour periodic

ring with M well-separated shortcuts across the network originating from nodes

y1, y2, . . . , ym the solution of the Katz system (3.1) is given by

xi = b+
M∑
j=1

hjt
pyj (i)

1 + tN1

M∑
j=1

hjt
pyj (i)

2 .

Here, b, t1, t2, hj are constants, i.e., independent of i, and b, t1, t2 are also inde-

pendent of N . In particular, hj > 0, b = 1/(1− 2α) and t1, t2 are the roots of the

palindromic quadratic αt2 − t+ α so that t1 and t2 are as provided in (5.4) with

t2 = 1/t1 and 0 < t1 < 1 < t2. Moreover, as N → ∞ the Katz system (3.1) has

the approximate form

xi ≈ b+ h

(
M∑
j=1

t
pyj (i)

1

)
. (5.26)

We test this conjecture computationally by considering a nearest neighbour ring

with 3 directed shortcuts. To allow comparison as we increase the number of

nodes in the ring (keeping N even) we define our shortcuts as 1 7→ L, S1 7→ T1

and S2 7→ T2 where

L =

⌊
7

10

(
N

2
+ 1

)⌋
,

S1 =

⌊
1

2

(
N

2
+ 1

)⌋
, T1 =

⌊
3

5

(
N

2
+ 1

)⌋
+ S1 − 1,

S2 =

⌊
9

10

(
N

2
+ 1

)⌋
, T2 =

⌊
4

5

(
N

2
+ 1

)⌋
+ S2 − 1.
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Our shortcuts therefore scale and remain well-separated with the increase in the

number of nodes. We also define the Katz parameter α = 0.4 < 1/ρ(A). Let x

be the solution by solving the Katz system (3.1) directly and let x̂ be our ansatz

as defined in (5.26).

Figure 5.2 shows the Euclidean-norm of the residual error, ||r||2 = ||x − x̂||2 on

a log scale. We observe the residual error decreasing at what appears to be a

constant rate until it reaches a plateau at around N = 500. The residual error

when N = 1, 000 is < 2.5× 10−14 providing evidence to support the conjecture.

Figure 5.2: Euclidean-norm of the residual error r = x− x̂ on a log scale for the
nearest neighbour periodic ring with 3 directed shortcuts from 1 7→ L, S1 7→ T1

and S2 7→ T2
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5.2 2n-nearest neighbours

In this section we consider the case of having a 2n-nearest neighbour ring so

that each node connects to the n nearest neighbours on each side with a directed

shortcut, as defined previously, from node 1 to node L. To keep things simple we

first analyse the case of a 4 neighbour ring and then conjecture about what we

would expect to happen in the general case of 2n neighbours.

Let C4 ∈ RN×N be the adjacency matrix for the periodic 4-nearest neighbour on

each side ring; so in the N = 6 case,

C4 =



0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0


. (5.27)

As with C in (4.2), we note that C4 is symmetric and circulant, and standard

theory shows that the Perron-Frobenius eigenvalue is ρ(C4) = 4. We now add a

single directed shortcut to the ring from node 1 to node L as previously defined

so that our adjacency matrix is A = C4 + E.

In the upper picture of Figure 5.3, the asterisks show Katz centrality values for a

network with adjacency matrix A = C4 +E, that is, components of x from (3.1).

We chose a small network size in order to make the key effects visible. More

precisely, we used an N = 20 node ring with a shortcut from node 1 to node

L = 8, for α = 0.1. Because node 1 owns the extra, long-range edge, it attains

the highest centrality score, at around 1.84. The most distant node, periodically,

node 11, is deemed the least central. An observable difference from that shown

previously is that that nodes 3 and 19, which now connect to node 1 have had a

boost in centrality. Insight from [37] and results from Chapter 4, suggests that

components of xi, when suitably shifted, might be varying as a sum of differing

geometric components as the index i moves periodically around the ring. We

would expect to see one of the geometric components presenting as an oscillatory
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term in that it should increase the centrality for odd nodes and decrease the

centrality for even nodes. That is, we have xi = b + h1t
p(i)
1 + h3t

p(i)
3 for some

constants b, h1 > 0, h3 > 0, 0 < t1 < 1 and −1 < t3 < 0. Fitting an ansatz of this

form leads us to the circles in the upper picture of Figure 5.3. The agreement is

close—below 9× 10−6 in Euclidean norm.

The lower picture in Figure 5.3 shows, on a log scale, the discrepancy between

those asterisks (true solution) and circles (geometric decay ansatz). We see a very

small contribution that, in contrast to the overall solution, grows geometrically as

we move periodically away from node 1. We would once again expect to observe

an oscillatory term that changes sign on even and odd nodes.

We now state a theorem that explains Figure 5.3. This theorem concerns the

limit N → ∞ with a fixed Katz parameter 0 < α < 1/4.

Theorem 5.2. For the undirected 4-nearest neighbour ring plus undirected short-

cut network with adjacency matrix A = C4+E, for sufficiently large N the unique

solution of the Katz system (3.1) has the form

xi = b+ h1t
p(i)
1 + h2t

p(i)
2 + h3t

p(i)
3 + h4t

p(i)
4 . (5.28)

Here, b, t1, t2, t3, t4, h1, h2, h3, h4 are constants, i.e., independent of i, and b, t1, t2, t3, t4

are also independent of N . In particular, h1 > 0, h2 > 0, h3 > 0, h4 > 0 if N is

even and h4 < 0 if N is odd, b = 1/(1 − 2α) and t1, t2, t3, t4 are the roots of the

palindromic quartic αt4 + αt3 − t2 + αt+ α, so that

t1 =
x−

√
y − 2x− 1

4
, t2 =

x+
√
y − 2x− 1

4
,

t3 =
−x+

√
y + 2x− 1

4
, t4 =

−x−
√
y + 2x− 1

4
,

(5.29)

where x =
√

4/α + 9 and y = 4/α− 6. We have the roots appearing in reciprocal

pairs such that t2 = 1/t1, t4 = 1/t3 and t4 < −1 < t3 < 0 < t1 < 1 < t2.

Moreover, the terms in (5.28) involving h2 and h4 are exponentially small asymp-

totically, in the sense that,

xi = b+ h1t
p(i)
1 + h3t

p(i)
3 +O(t

N/2
1 ) +O(|t3|N/2), (5.30)
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Figure 5.3: Upper picture: asterisks show components of Katz vector from (3.1)

and circles show the approximation b+h1t
p(i)
1 +h3t

p(i)
3 from (5.30). Here b = 1/(1−

4α), t1 and t3 is defined in (5.29), h1 and h3 was found by solving (5.50). Lower

picture: the discrepancy xi−b−h1t
p(i)
1 −h3t

p(i)
3 on a log scale. From Theorem 5.2,

this quantity has the form h2t
p(i)
2 + h4t

p(i)
4 , and hence grows geometrically away

from the shortcut node. However, it is uniformly O(t
N/2
1 ) +O(|t3|N/2) for a fixed

0 < t1 < 1 and −1 < t3 < 0, and hence rapidly becomes negligible as the network
size N increases.
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where h1 > h3 with h1 = O(1) and h3 = O(1).

Proof. Our proof proceeds in a similar manner to previous proofs. We begin by

assuming that we have only spike centered at node 1 and use the anzatz

xi = b+ htp(i). (5.31)

The Katz system (3.1) essentially reduces to five scalar equations where we need

to consider:

• General node k where each neighbouring node differs by a factor of t.

• Node 1 which has a shortcut across the ring to node L.

• A node that neighbours node 1, i.e., node 2 or node N .

• The node(s) furthest away from node 1 periodically, i.e.,

– node q1 = N/2 + 1, if N is even,

– node q1 = (N + 1)/2 or q1 = (N + 3)/2, if N is odd.

• A node that neighbours the furthest away node from node N (the smallest

ranking node(s)). If N is even then node q1− 1 or node q1+1. If N is odd,

and q1 = (N+1)/2 then node q1−1 or q1+2 and similarly, if q1 = (N+3)/2

then node q1 − 2 or q1 + 1.

For the purpose of this proof, when we consider the case of N odd we will use

q1 = (N + 1)/2. When we have a choice of neighbouring nodes we will examine

node 2 and q1 − 1. Other choices are equally valid and will result in the same

analysis.

At a general node k, corresponding to the kth row of the linear system, for k ̸= 1,

k ̸= 2, k ̸= N , k ̸= q1, k ̸= q1 − 1 and k ̸= q1 + 1 we have

−αxk−2 − αxk−1 + xk − αxk+1−αxk+2 = 1. (5.32)
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Inserting (5.31), this becomes

b(1− 4α) + htp(k)
[
1− αt2 − αt− α/t− α/t2

]
= 1.

We can satisfy this equation independently of k by setting b = 1/(1 − 4α) and

choosing t to be roots of the quartic polynomial αt4+αt3−t2+αt+α. By linearity

of (5.32), we may extend (5.31) to include a linear combination involving all four

roots, so our ansatz becomes

xk = b+ h1t
p(k)
1 + h2t

p(k)
2 + h3t

p(k)
3 + h4t

p(k)
4 . (5.33)

The rates t1, t2, t3 and t4 are given by (5.29). The roots appear in reciprocal pairs

such that t1t2 = 1 and t3t4 = 1. In addition we have t4 < −1 < t3 < 0 < t1 <

1 < t2 and given the form of the polynomial we note that

1− αt2j − αtj = αt−1
j + αt−2

j . (5.34)

The four remaining equations to satisfy from (3.1) arise at nodes 1, 2, q1 and

q1 − 1, where we require

−αxN−1 − αxN + x1 − αx2 − αx3 − αxL = 1, (5.35)

−αxN − αx1 + x2 − αx3 − αx4 = 1, (5.36){
−αxN/2−1 − αxN/2 + xN/2+1 − αxN/2+2 − αxN/2+3 = 1, (5.37a)

−αx(N−3)/2 − αx(N−1)/2 + x(N+1)/2 − αx(N+3)/2 − αx(N+5)/2 = 1, (5.37b)

and{
−αxN/2−2 − αxN/2−1 + xN/2 − αxN/2+1 − αxN/2+2 = 1, (5.38a)

−αx(N−5)/2 − αx(N−3)/2 + x(N−1)/2 − αx(N+1)/2 − αx(N+3)/2 = 1, (5.38b)

respectively. Equations (5.37a) and (5.38a) are valid when N is even and (5.37b)

and (5.38b) are valid when N is odd.
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Inserting (5.33) into (5.35) – (5.38b), using (5.34) and b(1− 4α) = 1, we have

4∑
j=1

hj

[
t−2
j + t−1

j − tj − t2j − tL−1
j

]
= b, (5.39)

4∑
j=1

hjtj
[
t−2
j − 1

]
= 0, (5.40)



4∑
j=1

hjt
N/2
j

[
t2j + tj − t−1

j − t−2
j

]
= 0, if N is even (5.41a)

4∑
j=1

hjt
(N−1)/2
j

[
t2j + tj − 1− t−1

j

]
= 0, if N is odd (5.41b)

and 

4∑
j=1

hjt
N/2−1
j

[
t2j − 1

]
= 0, if N is even (5.42a)

4∑
j=1

hjt
(N−1)/2
j [tj − 1] = 0, if N is odd. (5.42b)

We will now consider the cases of N even and N odd to show that (5.41a) –

(5.42b) can be reduced to the same two conditions.

Consider the case when the number of nodes, N , is even.

Using the fact that t1t2 = 1 and t3t4 = 1 we can simplify (5.41a) to get

[
t22 + t2 − t1 − t21

] [
−h1t

N
1 + h2

]
t
−N/2
1 +

[
t24 + t4 − t3 − t23

] [
−h3t

N
3 + h4

]
t
−N/2
3 = 0,

(5.43)

and simplify (5.42a) to get

[t2 − t1]
[
−h1t

N
1 + h2

]
t
−N/2
1 + [t4 − t3]

[
−h3t

N
3 + h4

]
t
−N/2
3 = 0. (5.44)

In order to satisfy both (5.43) and (5.44) it follows that

[
t22 − t21

] [
−h1t

N
1 + h2

]
t
−N/2
1 +

[
t24 − t23

] [
−h3t

N
3 + h4

]
t
−N/2
3 = 0, (5.45)
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which can only be true if

h2 = h1t
N
1 , h4 = h3t

N
3 . (5.46)

Consider the case when the number of nodes, N , is odd.

Using the fact that t1t2 = 1 and t3t4 = 1 we can simplify (5.41b) to get

h1t
(N−1)/2
1

[
t21 + t1 − t2 − 1

]
+ h2t

(N−1)/2
2

[
t22 + t2 − t1 − 1

]
+h3t

(N−1)/2
3

[
t23 + t3 − t4 − 1

]
+ h4t

(N−1)/2
4

[
t24 + t4 − t3 − 1

]
= 0,

(5.47)

and simplify (5.42b) to get

h1t
(N−1)/2
1 [t1 − 1] + h2t

(N−1)/2
2 [t2 − 1]

+h3t
(N−1)/2
3 [t3 − 1] + h4t

(N−1)/2
4 [t4 − 1] = 0.

(5.48)

In order to satisfy both (5.47) and (5.48) it follows that[
t
3/2
2 − t

3/2
1

] [
−h1t

N
1 + h2

]
t
−N/2
1 +

[
t
3/2
4 − t

3/2
3

] [
−h3t

N
3 + h4

]
t
−N/2
3 = 0, (5.49)

which can only be true if

h2 = h1t
N
1 , h4 = h3t

N
3 . (5.46)

Continuation of general case: N even or odd.

We have shown that the conditions imposed at nodes q1 and q1−1 can be reduced

to the same conditions irrespective of whether the number of nodes is even or odd.

We may now use the relation (5.46) to eliminate h2 and h4 in (5.39) and (5.40),

thus reducing the system to 2 equations in 2 unknowns. This may be written as

(B +∆B) v = r, (5.50)
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where

B =

[
t22 + t2 − t1 − t21 t24 + t4 − t3 − t23

t2 − t1 t4 − t3

]
, v =

[
h1

h3

]
, r =

[
b

0

]
,

and ∆B ∈ R2×2 is such that ∥∆B∥∞ = O(t
θN/2
1 ) +O(t

θN/2
3 ). The determinant of

B is given by

[
t22 + t2 − t1 − t21

]
(t4 − t3)−

[
t24 + t4 − t3 − t23

]
(t2 − t1). (5.51)

Since t4 < −1 < t3 < 0 < t1 < 1 < t2 it follows that t4 − t3 < 0 and t2 − t1 > 0.

Using (5.29) and noting that x =
√

4/α + 9 ≥ 3 we have

[
t22 + t2 − t1 − t21

]
=

1

4
(x+ 1)

√
y − 2x > 0[

t24 + t4 − t3 − t23
]
=

1

4
(x− 1)

√
y + 2x > 0.

Therefore the first part of (5.51) is negative and the second part of (5.51) is

positive. It then follows that the determinant is negative so B is non-singular.

From (5.50), we have (
I +B−1∆B

)
v = B−1r.

The matrix I + B−1∆B is invertible for sufficiently large N , which establishes

that (5.50) has a unique solution. We conclude that x in (5.33) solves the Katz

system (3.1). Moreover, since (I + B−1∆B)−1 = I + O(∆B), we see that v =

B−1r +O(t
θN/2
1 ) +O(|t3|θN/2), which leads to[

h1

h3

]
≈ 1

det(B)

[
b(t4 − t3)

−b(t2 − t1)

]
.

We know that b = 1/(1 − 4α) > 0, t4 − t3 < 0, t2 − t1 > 0 and we have shown

that det(B) < 0. It then follows that h1 > 0 and h3 > 0. Using the relations

(5.46) we also have that h2 > 0 and since t3 < 0, h4 > 0 if N is even and h4 < 0

if N is odd. Since t4 − t3 = −1
2

√
y + 2x and t2 − t1 = 1

2

√
y − 2x it follows that

|t4 − t3| > |t2 − t1| and therefore h1 > h3.
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As with the approach in previous theorems, we can use (5.46) to deduce that

h2 = O(tN1 ) and h4 = O(|t3|N). It follows that h2t
p(k)
2 = h1t

N−p(k)
1 and h4t

p(k)
4 =

h3t
N−p(k)
3 is largest when k = N/2 + 1 so

xi = b+ h1t
p(i)
1 + h2t

p(i)
2 + h3t

p(i)
3 + h4t

p(i)
4

= b+ h1t
p(i)
1 + h3t

p(i)
3 +O(t

N/2
1 ) +O(|t3|N/2).

Since t4 < −1 < t3 < 0 we observe geometric decay and growth terms that change

sign depending on whether the node is even or odd. We can explain the rationale

of why this may be the case. In effect the h1t
p(i)
1 and h2t

p(i)
2 terms can be thought

of as representing the 2-nearest neighbours ring and the h3t
p(i)
3 and h4t

p(i)
4 can be

thought of as representing the next nearest neighbour ring.

Consider a ring in which each node did not connect to its nearest neighbour but

was instead connected to its second nearest neighbour. If we have an even number

of nodes, N even, then the ring would not be considered well connected as the

network could be split into two disjoint sets – one with the odd nodes and one

with the even nodes. Should we add a shortcut across this ring from node 1 to

node L then we would have a spike at node 1, geometric decay around the odd

nodes and N/2 + 1 would be the least ranked odd node. The even nodes would

all be ranked equal with the baseline centrality score. Considering the odd nodes

we have geometric decay at node 1 and geometric growth from node 1 that peaks

at node N/2 + 1 (an odd node).

Should we have an odd number of nodes, N odd, then the network cannot be

split into two disjoint sets as the two odd nodes 1 and N are neighbours. In this

case information can flow directly via the edges with periodic distance 2 through

both the odd and even nodes.

Now when N is even we have h3t
p(i)
3 and h4t

p(i)
4 which are positive for odd nodes

and negative for even nodes. We are in effect, adding the geometric decay and

growth terms to the odd nodes to account for the shortcut that the odd nodes

can access and subtracting them from the even nodes.
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When N is odd, h3t
p(i)
3 is as before - positive for odd nodes and negative for even

nodes. However, h4t
p(i)
4 is negative for odd nodes and positive for even nodes.

In this instance, we are adding the decay term and subtracting the growth term

from the odd nodes.

We hypothesise that in the general case of a 2n-nearest neighbour periodic ring

that connects to n-nearest nodes on each side with a shortcut across the ring

from node 1 to node L that the solution of the Katz system (3.1) has the form

xi = b+
2n∑
j=1

hjt
p(i)
j (5.52)

where b = 1/(1− 2αn) and tj are the roots of the palindromic polynomial αt2n +

· · ·+ αtn+1 − tn + αtn−1 + · · ·+ α.

Thus far we have only considered the instances where the roots of the palindromic

polynomial are real. In considering higher order polynomials, for example, the

degree 6 polynomial

αt6 + αt5 + αt4 − t3 + αt2 + αt+ α, (5.53)

resulting from each node of the ring connecting to 3 nearest neighbours on each

side we encounter complex t. We know that ρ(A) ≤ ||A||∞ = 1/7 for such an

adjacency matrix so it follows that 1/7 ≤ 1/ρ(A). For example, solving for the

roots of (5.53) with α = 0.1 < 1/ρ(A) we find

t1 ≈ 0.6081, t3 ≈ −0.2380− 0.3388i, t5 ≈ −0.2380 + 0.3388i,

t2 ≈ 1.6446, t4 ≈ −1.3884 + 1.9765i, t6 ≈ −1.3884− 1.9765i.

We know that since the polynomial is palindromic the roots appear as reciprocal

pairs and as demonstrated above as complex conjugate pairs.

In Chapter 2 we discussed properties of palindromic polynomials with real coeffi-

cients noting that if complex roots exist then we encounter them in groups of four

complex roots: z, z, z−1 and z−1. We note here that for the above example the

complex roots do not lie on the unit circle and thus we have four distinct roots.
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We conjecture that in the case of complex t, the combination in (5.52), cancels the

imaginary terms by having some hj1 = hj2 . This would however require further

study to determine.

In the case of this network class where the sub-diagonals and super-diagonals of

the adjacency matrix representing the circulant ring are equal (same number of

connections on each side of the node) the general node equation will always give

rise to a palindromic polynomial. Under our ansatz, this palindromic polynomial

with roots appearing in reciprocal pairs will determine the rate of both geometric

decay and growth on moving away from the node with the shortcut. We rule

out the possibility of unit roots as this could not give rise to geometric decay

or growth. We therefore conjecture it always to be the case that we will have n

roots with |t| < 1 and n roots with |t| > 1.
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Chapter 6

Example networks

The results from Theorems 4.1, 4.2 and 5.1 give exact characterizations of the

centrality vectors, and the presence of both geometrically decaying and geometri-

cally increasing components is not intuitively obvious. However, the qualitative

nature of the solution, with most weight given to the node with the highest out-

degree and with overall centrality decaying according to periodic distance from

this node, is no surprise. In this Chapter, we show that the type of analysis

developed here can be applied to more general networks where the results are not

predictable. To our knowledge, this is the first example to capture analytically

(rather than experimentally) a change in node centrality ranking as the Katz

parameter is varied. To isolate the key ideas, we have chosen simple network

structures, but we note that the same approach can be applied in more general

settings.

In this Chapter we study a class of networks built from R identical undirected,

periodic, nearest neighbour m-node rings. Nodes 1 to m, m + 1 to 2m, . . .,

(R− 1)m+ 1 to Rm make up rings 1, 2, . . . , R respectively. We also introduce a

‘hub’ node N := Rm + 1 that connects to local node 1 in each ring. Within the

following sections we examine the networks generated when (a) we add a directed

or undirected shortcut across each of the R rings and (b) the hub node edge(s)

are directed or undirected. For examples of the networks that we study please

refer to Figures 6.1, 6.5, 6.9 and 6.13.
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We note that as we increase Katz parameter, α, from 0 to 1/ρ(A) we interpolate

between degree and eigenvector centrality [21]. We will therefore focus this Chap-

ter on considering the Katz centrality. By symmetry, we only need to consider

centrality for nodes in the first ring, that is, nodes 1 to m, and for the additional

node, N . We use an ansatz from the respective theorem, but rather than deriving

an exact solution, we focus on the dominant term and proceed heuristically. We

then follow up the analysis with computational results.

In this class of networks, the edges possessed by node N connect to nodes that

are themselves well-connected and can propogate more walks around the network

than other nodes on the ring. This suggests that as α is increased, and hence

longer walks become more relevant, Katz centrality may give more relative weight

to node N . Our aim is to quantify this effect.

All figures which relate to the following sections have been placed at the end of

their respective section.

6.1 R-rings with a directed shortcut

In this section we consider the case of each ring in the network having a directed

shortcut across the ring. As each ring is identical, we denote this using ring 1 as

an edge from node 1 to node L where 1 ≪ L ≤ m/2+ 1. In considering this ring

with a directed shortcut we would expect node 1 to attain the maximum score

and define the node with the minimal score as node δ. That is, node 1 will be

ranked first and node δ will be ranked last. Should L = m/2+1 then node δ = L.

We explore how the influence of the Katz parameter α effects the ranking of the

central node N .

6.1.1 Connection to a directed hub

This subsection considers the case of each of the R rings connecting to the central

hub node with an incoming directed edge from central hub node N to each of the

local node 1s. Figure 6.1 illustrates an example network with R = 3 rings where
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each ring contains the same identical directed shortcut from local node 1 to local

node 6 (i.e. 1 7→ 6, 11 7→ 16, 21 7→ 26). Each local node 1 is connected to the

central node 31 via an incoming directed edge (i.e. 31 7→ 1, 31 7→ 11, 31 7→ 21).

For the general R-ring network, the Katz system (3.1) reduces to

xj − α (xj−1 + xj+1) = 1, for 2 ≤ j ≤ m, (6.1)

x1 − α (x2 + xm + xL) = 1, (6.2)

xN −Rαx1 = 1. (6.3)

Inserting the ansatz (4.8) we find that, as in the proof of Theorem 4.1, the general

equation (6.1) is solved with b = 1/(1−2α) and t = t1. Using xL ≈ b and solving

(6.2) for h, we arrive at

h ≈ α

(1− 2α)
√
1− 4α2

. (6.4)

Requiring h > 0 in (6.4) places the restriction that 0 < α < α̂ where α̂ = 1/2.

We therefore conjecture that the network adjacency matrix has a spectral radius

that approaches 2 as N → ∞. Table 6.1 gives an indication of the discrepancy

between the spectral radius of the adjacency matrix (ρ(A)) and the reciprocal of

the upper bound placed on the α domain (1/α̂) such that h > 0.

R α̂ 1/α̂
|ρ(A)− 1/α̂|

m = 102 m = 104 m = 106

1 1/2 2 ≈ 3.3× 10−3 ≈ 4.3× 10−4 ≈ 6.2× 10−6

2 1/2 2 ≈ 3.3× 10−3 ≈ 4.3× 10−4 ≈ 6.2× 10−6

3 1/2 2 ≈ 3.3× 10−3 ≈ 4.3× 10−4 ≈ 6.2× 10−6

4 1/2 2 ≈ 3.3× 10−3 ≈ 4.2× 10−4 ≈ 6.2× 10−6

Table 6.1: R rings with directed shortcut and directed hub: Comparison of ρ(A)
and 1/α̂ where α̂ is the upper bound of the domain defined by the heuristic anal-
ysis. [Due to convergence issues in using MATLAB’s eigs, ρ(A) was computed
using the power method.]

We know that x1 = b+ h and from (6.3) that xN = 1+Rα(b+ h). We now turn

our attention to when xN > x1, i.e.,

1 + (Rα− 1)(b+ h) > 0.
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Using the expression for h in (6.4) this gives

1 + (Rα− 1)

[
1

1− 2α
+

α

(1− 2α)
√
1− 4α2

]
> 0

which rearranges to

(1− 2α)
√
1− 4α2 + (Rα− 1)[

√
1− 4α2 + α] > 0.

We arrive at

z1 := (R− 2)
√
1− 4α2 +Rα− 1 > 0. (6.5)

From Figure 6.2 we observe that z1 > 0 for R ≥ 3 and z1 < 0 for R < 3 for

0 < α < 1/2 which covers our whole α domain for which the Katz system is

valid. We can therefore conclude that xN > x1 when we have 3 or more rings in

our network and x1 > xN when we have fewer than 3 rings.

In the case of having fewer than 3 rings, a natural extension is to evaluate how

xN compares with the other nodes in the ring. To do so we first compare with

node δ (the minimum scored node). Using xδ ≈ b we find xN > xδ when

1 +Rα(b+ h) > b.

Using the expression for h in (6.4) this gives

1 +Rα

[
1

1− 2α
+

α

(1− 2α)
√
1− 4α2

]
>

1

1− 2α

which rearranges to

(1− 2α)
√
1− 4α2 +Rα[

√
1− 4α2 + α] >

√
1− 4α2.

We arrive at

Rα + (R− 2)
√
1− 4α2 > 0. (6.6)

It is clear that in the case when R = 2, (6.6) is satisfied for 0 < α < 1/2 indicating

that xN > xδ.

61



In the case when R = 1, we require α >
√
1− 4α2 indicating that there is a

critical value α∗
1 = 1/

√
5 for which the nodal rankings change. We therefore

have, in the case of 1 ring, xδ > xN when 0 < α < α∗
1 and xN > xδ when

α∗
1 < α < 1/2.

A summary of findings thus far can be found in Table 6.2.

R Degree Katz Eigenvector

1 x1 > xδ > xN
x1 > xδ > xN ∀α ∈ (0, α∗

1) x1 > xN > xδx1 > xN > xδ ∀α ∈ (α∗
1, α̂)

2 x1 > xN = xδ x1 > xN > xδ ∀α ∈ (0, α̂) x1 > xN > xδ

3 xN = x1 > xδ xN > x1 > xδ ∀α ∈ (0, α̂) xN > x1 > xδ

≥ 4 xN > x1 > xδ xN > x1 > xδ ∀α ∈ (0, α̂) xN > x1 > xδ

Table 6.2: R rings with directed shortcut and directed hub: Katz centrality for
x1, xδ and xN from the heuristic analysis compared with degree (α → 0) and
eigenvector (α → 1/ρ(A)) centrality

Figure 6.3 shows the ratio of x1 and xδ to xN as α is varied for 1 ≤ R ≤ 4. To do

this, we used m = 1, 000 with L = 501 and solved the Katz system (3.1) directly.

By examining these figures we can see that the results from our heuristic analysis,

presented consisely in Table 6.2, agree with the solution of the Katz system. In

particular, Figure 6.3a shows the change in ranking of nodes δ and N on passing

the threshold α∗
1.

In the case when node N is neither ranked first nor last, i.e. when x1 > xN > xδ,

we can quantify where node N is ranked in relation to nodes in the ring by

considering where xk > xN . This condition can be reduced to

b+ ht
p(k)
1 > 1 +Rα(b+ h).

Using the expression for h in (6.4) this gives

α

(1− 2α)
√
1− 4α2

[
t
p(k)
1 −Rα

]
> 1 +

Rα− 1

1− 2α
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which rearranges to

α
[
t
p(k)
1 −Rα

]
> (1− 2α)

√
1− 4α2 + (Rα− 1)

√
1− 4α2.

We arrive at

t
p(k)
1 > Rα + (R− 2)

√
1− 4α2.

As expected we find that the ranking of the central node is dependent upon the

choice of α and that, in particular, xk > xN for p(k) < p(k)max where

p(k)max =


log (α−

√
1− 4α2)

log (1−
√
1− 4α2)− log 2α

, for R = 1 and α∗
1 < α < α̂ (6.7a)

log 2α

log (1−
√
1− 4α2)− log 2α

, for R = 2 and 0 < α < α̂. (6.7b)

The functions (6.7a) and (6.7b) are shown in Figure 6.4. In the case of only

having 1 ring in the network, when α∗
1 < α < 1/2, it follows that nodes with

p(k) < 5 will always be deemed more central than node N . It is interesting to

see that as α increases in this range the periodic distance decreases, indicating

that node N is becoming more important, before reaching a turning point and

increasing at a quicker rate than it decreased. Figure 6.4b demonstrates that in

the case of 2 rings although x1 > xN > xδ, since p(k)max < 1, node N would be

ranked between nodes 1 and 2 (or equally m), i.e. xN > x2 = xm.
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Figure 6.1: R rings with directed shortcut and directed hub: Illustration with
directed shortcut and directed hub (R = 3, m = 10 and L = 6).
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(a) Fixed R (R=seq(1, 10)). R = 1 – bottom curve.

(b) Contour plot of z1.

Figure 6.2: R rings with directed shortcut and directed hub: Relationship between
number of rings R, Katz parameter α and z1 in (6.5).
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(a) R = 1 (b) R = 2

(c) R = 3 (d) R = 4

Figure 6.3: R rings with directed shortcut and directed hub: Ratio of x1 and xδ to
xN for the Katz centrality. We used m = 1, 000 so N = 1000R+1 with L = 501.
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(a) R = 1

(b) R = 2

Figure 6.4: R rings with directed shortcut and directed hub: p(k)max indicating
the maximum periodic distance for which xk > xN
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6.1.2 Connection to an undirected hub

This subsection considers the case of each of the R rings connecting to the central

hub node with an undirected edge from central hub node N to each of the local

node 1s. Figure 6.5 illustrates an example network with R = 3 rings where each

ring contains the same identical directed shortcut from local node 1 to local node

6 (i.e. 1 7→ 6, 11 7→ 16, 21 7→ 26). Each local node 1 is connected to the central

node 31 via an undirected edge (i.e. 1 7→ 31, 31 7→ 1, 11 7→ 31, 31 7→ 11, 21 7→
31, 31 7→ 21).

For the general R-ring network, the Katz system (3.1) reduces to

xj − α (xj−1 + xj+1) = 1, for 2 ≤ j ≤ m, (6.8)

x1 − α (x2 + xm + xL + xN) = 1, (6.9)

xN −Rαx1 = 1. (6.10)

Inserting the ansatz (4.8) we find that, as in the proof of Theorem 4.1, the general

equation (6.8) is solved with b = 1/(1−2α) and t = t1. Using xL ≈ b and solving

(6.9) and (6.10) for h, we arrive at

h ≈ α (2 + (R− 2)α)

(1− 2α)(
√
1− 4α2 −Rα2)

. (6.11)

Requiring h > 0 in (6.11) places the restriction that
√
1− 4α2−Rα2 > 0. Solving

for the roots of the quartic polynomial R2α4 + 4α2 − 1 we have

α2 =
−2±

√
R2 + 4

R2
.

Since we require α ∈ R+ it follows that 0 < α < α̂ where

α̂ =

√
−2 +

√
R2 + 4

R
. (6.12)

We therefore conjecture that the network adjacency matrix has a spectral radius

that approaches 1/α̂ as N → ∞ and hence the Katz system is valid for 0 < α < α̂.

Table 6.3 gives an indication of the discrepancy between the spectral radius of
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the adjacency matrix (ρ(A)) and the reciprocal of the upper bound placed on the

α domain (1/α̂) such that h > 0.

R α̂ 1/α̂
|ρ(A)− 1/α̂|

m = 102 m = 104 m = 106

1 ≈ 0.4859 ≈ 2.0582 ≈ 2.7× 10−6 ≈ 4.0× 10−14 ≈ 2.5× 10−14

2 ≈ 0.4551 ≈ 2.1974 ≈ 1.9× 10−10 ≈ 2.4× 10−14 ≈ 2.4× 10−14

3 ≈ 0.4224 ≈ 2.3676 ≈ 8.3× 10−14 ≈ 1.4× 10−14 ≈ 1.5× 10−14

4 ≈ 0.3931 ≈ 2.5440 ≈ 8.9× 10−15 ≈ 1.7× 10−14 ≈ 1.4× 10−14

Table 6.3: R rings with directed shortcut and undirected hub: Comparison of
ρ(A) and 1/α̂ where α̂ is the upper bound of the domain defined by the heuristic
analysis. [ρ(A) was computed using MATLAB’s eigs.]

We know that x1 = b+h and from (6.10) that xN = 1+Rα(b+h). We now turn

our attention to when xN > x1, i.e.

1 + (Rα− 1)(b+ h) > 0.

Using the expression for h in (6.11) this gives

1 + (Rα− 1)

[
1

1− 2α
+

α(2 + (R− 2)α)

(1− 2α)(
√
1− 4α2 −Rα2)

]
> 0

which rearranges to

(R− 2)(
√
1− 4α2 −Rα2) + (Rα− 1)(2 + (R− 2)α) > 0.

We arrive at

z2 := (R− 2)
√
1− 4α2 + (R + 2)α− 2 > 0. (6.13)

From Figure 6.6 we observe that z2 < 0 for R ≤ 2 and z2 > 0 for R ≥ 4 over

the domain for which the Katz system is valid. We can therefore conclude that

xN > x1 when we have 4 or more rings in our network and x1 > xN when we

have 2 or less rings.

In the case of having R = 3 rings, we require
√
1− 4α2 + 5α − 2 > 0 and so

solving for the roots of the quadratic 29α2 − 20α+ 3 we observe that z2 changes

sign on crossing a pole α∗
2 = (10 −

√
13)/29. We conjecture that this is the
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threshold value beyond which node N is regarded as more central than node 1.

The other pole of the quadratic, (10 +
√
13)/29, is outwith the domain of α, i.e.

α̂ =
√
−2 +

√
13/3 < (10 +

√
13)/29.

In the case when node N is not regarded as more central than node 1, a natural

extension is to see how xN compares with the other nodes in the ring. To do so

we first compare with node δ (the minimum scored node). Again, using xδ ≈ b

we find xN > xδ when

1 +Rα(b+ h) > b.

Using the expression for h in (6.11) this gives

1 +Rα

[
1

1− 2α
+

α (2 + (R− 2)α)

(1− 2α)(
√
1− 4α2 −Rα2)

]
>

1

1− 2α

which rearranges to

(R− 2)(
√
1− 4α2 −Rα2) +R(2α + (R− 2)α2) > 0.

We arrive at

2Rα + (R− 2)
√
1− 4α2 > 0. (6.14)

It is clear to see that in the case when R ≥ 2, (6.14) is satisfied for 0 < α < α̂

meaning that xN > xδ.

In the case when R = 1, we require 2α−
√
1− 4α2 > 0 indicating a critical value

α∗
3 = 1/

√
8 where (6.14) changes sign. We can therefore only satisfy (6.14) for

α∗
3 < α < α̂, meaning that xδ > xN when 0 < α < α∗

3.

A summary of findings can be found in Table 6.4.

Figure 6.7 shows the ratio of nodes 1 and δ to node N as α is varied for 1 ≤ R ≤ 4.

To do this, we used m = 1, 000 with L = 501 and solved the Katz system (3.1)

directly. By examining these figures we can see that the results from our heuristic

analysis, presented in Table 6.4, agree with the solution of the Katz system. In

particular, Figure 6.7a shows the change in ranking of nodes δ and N on passing

the threshold α∗
3 and Figure 6.7c shows the change in ranking of nodes 1 and N

on passing the threshold α∗
2.
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R Degree Katz Eigenvector

1 x1 > xδ > xN
x1 > xδ > xN ∀α ∈ (0, α∗

3) x1 > xN > xδx1 > xN > xδ ∀α ∈ (α∗
3, α̂)

2 x1 > xN = xδ x1 > xN > xδ ∀α ∈ (0, α̂) x1 > xN > xδ

3 x1 > xN > xδ
x1 > xN > xδ ∀α ∈ (0, α∗

2) xN > x1 > xδxN > x1 > xδ ∀α ∈ (α∗
2, α̂)

≥ 4 xN ≥ x1 > xδ xN > x1 > xδ ∀α ∈ (0, α̂) xN > x1 > xδ

Table 6.4: R rings with directed shortcut and undirected hub: Katz centrality for
x1, xδ and xN from the heuristic analysis compared with degree (α → 0) and
eigenvector (α → 1/ρ(A)) centrality

In the case when node N is neither ranked first nor last, i.e. x1 > xN > xδ, we can

quantify where node N is ranked in relation to nodes in the ring by considering

xk > xN . This condition can be reduced to

b+ ht
p(k)
1 > 1 +Rα(b+ h).

Using the expression for h in (6.11) this gives

α (2 + (R− 2)α)

(1− 2α)(
√
1− 4α2 −Rα2)

[
t
p(k)
1 −Rα

]
> 1 +

Rα− 1

1− 2α

which rearranges to

(2 + (R− 2)α)
[
t
p(k)
1 −Rα

]
> (R− 2)(

√
1− 4α2 −Rα2).

We arrive at

t
p(k)
1 >

2Rα + (R− 2)
√
1− 4α2

2 + (R− 2)α
,

where we find that p(k) < p(k)max for

p(k)max =



log (2α−
√
1− 4α2)− log(2− α)

log (1−
√
1− 4α2)− log 2α

, for R = 1 and α∗
3 < α < α̂ (6.15a)

log 2α

log (1−
√
1− 4α2)− log 2α

, for R = 2. (6.15b)

log (6α +
√
1− 4α2)− log(2 + α)

log (1−
√
1− 4α2)− log 2α

, for R = 3 and 0 < α < α∗
2 (6.15c)
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The functions (6.15a) – (6.15c) are shown in Figure 6.8. When we have 1 ring in

the network and α∗
3 < α < α̂ it follows that nodes with p(k) < 2 will always been

deemed to be more important than node N . In the case of 2 rings and 0 < α < α̂

or 3 rings and 0 < α < α∗
2 we can see that p(k) < 1 and therefore node N will

always be ranked between nodes 1 and 2 (or equally m).
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Figure 6.5: R rings with directed shortcut and undirected hub: Illustration with
directed shortcut and undirected hub (R = 3, m = 10 and L = 6).
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(a) Fixed R (R=seq(1, 10)). R = 1 – bottom curve.

(b) Contour plot of z2 with the solid black line representing α = α̂.

Figure 6.6: R rings with directed shortcut and undirected hub: Relationship be-
tween number of rings R, Katz parameter α and z2 in (6.13)
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(a) R = 1 (b) R = 2

(c) R = 3 (d) R = 4

Figure 6.7: R rings with directed shortcut and undirected hub: Ratio of x1 and
xδ to xN for the Katz centrality. We used m = 1, 000 so N = 1000R + 1 with
L = 501.
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(a) R = 1 (b) R = 2

(c) R = 3

Figure 6.8: R rings with directed shortcut and undirected hub: p(k)max indicating
the maximum periodic distance for which xk > xN
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6.2 R-rings with an undirected shortcut

In this section we consider the case of each ring in the network having an undi-

rected shortcut across the ring. As each ring is identical, we denote this using

ring 1 as an edge from node 1 to node L and an edge from node L to node 1

where 1 ≪ L ≤ m/2 + 1. This section differs from the previous in that we now

consider the ranking of node L due to its additional edge. We will once again,

denote the minimum scoring node as node δ.

6.2.1 Connection to a directed hub

This subsection considers the case of each of the R rings connecting to the central

hub node with an incoming directed edge from central hub node N to each of

the local node 1s. Figure 6.9 illustrates an example network with R = 3 rings

where each ring contains the same identical undirected shortcut from local node

1 to local node 6 (i.e. 1 7→ 6, 6 7→ 1, 11 7→ 16, 16 7→ 11, 21 7→ 26, 26 7→ 21). Each

local node 1 is connected to the central node 31 via an incoming directed edge

(i.e. 31 7→ 1, 31 7→ 11, 31 7→ 21).

For the general R-ring network, the Katz system (3.1) reduces to

xj − α (xj−1 + xj+1) = 1, for 2 ≤ j < L or L < j ≤ m, (6.16)

x1 − α (x2 + xm + xL) = 1, (6.17)

xL − α (xL−1 + xL+1 + x1) = 1, (6.18)

xN −Rαx1 = 1. (6.19)

Inserting the ansatz (5.6) we find that, as in the proof of Theorem 4.1, the general

equation (6.8) is solved with b = 1/(1−2α) and t = t1. As shown, in the proof of

Theorem 5.1, we expect the heights of the spikes at nodes 1 and L to be the same

indicating that h = h′. We expect to observe geometric decay as we move away

from both nodes 1 and nodes L. In essence, by considering only the dominant

contributions, we have that x1 = xL and x2 = xm = xL−1 = xL+1. It therefore

follows that (6.17) and (6.18) are equivalent.
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Using xL ≈ b+ h and solving (6.17) for h, we arrive at

h ≈ α

(1− 2α)(
√
1− 4α2 − α)

. (6.20)

Requiring h > 0 in (6.20) places the restriction that
√
1− 4α2 − α > 0. Solving

for the roots of the quadratic 1− 5α2 we require 0 < α < α̂ where

α̂ =
1√
5
. (6.21)

We therefore conjecture that the network adjacency matrix has a spectral radius

that approaches
√
5 as N → ∞ and hence the Katz system is valid for 0 < α < α̂.

Table 6.5 gives an indication of the discrepancy between the spectral radius of

the adjacency matrix (ρ(A)) and the reciprocal of the upper bound placed on the

α domain (1/α̂) such that h > 0.

R α̂ 1/α̂
|ρ(A)− 1/α̂|

m = 102 m = 104 m = 106

1 1/
√
5

√
5 ≈ 3.2× 10−11 ≈ 1.9× 10−14 ≈ 1.3× 10−14

2 1/
√
5

√
5 ≈ 3.2× 10−11 ≈ 1.5× 10−14 ≈ 9.8× 10−15

3 1/
√
5

√
5 ≈ 3.2× 10−11 ≈ 1.9× 10−14 ≈ 2.0× 10−14

4 1/
√
5

√
5 ≈ 3.2× 10−11 ≈ 7.5× 10−15 ≈ 1.6× 10−14

Table 6.5: R rings with undirected shortcut and directed hub: Comparison of
ρ(A) and 1/α̂ where α̂ is the upper bound of the domain defined by the heuristic
analysis. [ρ(A) was computed using MATLAB’s eigs.]

We know that x1 = b+h and from (6.19) that xN = 1+Rα(b+h). We now turn

our attention to when xN > x1, i.e.

1 + (Rα− 1)(b+ h) > 0.

Using the expression for h in (6.20) this gives

1 + (Rα− 1)

[
1

1− 2α
+

α

(1− 2α)(
√
1− 4α2 − α)

]
> 0
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which rearranges to

(1− 2α)(
√
1− 4α2 − α) + (Rα− 1)

√
1− 4α2 > 0.

We arrive at

z3 := (R− 2)
√
1− 4α2 + 2α− 1 > 0. (6.22)

From Figure 6.10 we observe that z3 < 0 for R ≤ 2 and z2 > 0 for R ≥ 3 over

the domain for which the Katz system is valid. We can therefore conclude that

xN > x1 when we have 3 or more rings in our network and x1 > xN when we

have fewer than 3 rings.

When we have fewer than 3 rings in the network we have node 1 being ranked

as more important than node N . A natural extension is to evaluate how xN

compares with other nodes in the ring. To do so we once again, first compare

with node δ. Using xδ ≈ b we find xN > xδ when

1 +Rα(b+ h) > b.

Using the expression for h in (6.20) this gives

1 +Rα

[
1

1− 2α
+

α

(1− 2α)(
√
1− 4α2 − α)

]
>

1

1− 2α

which rearranges to

(1− 2α)(
√
1− 4α2 − α) +Rα

√
1− 4α2 >

√
1− 4α2 − α.

We arrive at

2α + (R− 2)
√
1− 4α2 > 0. (6.23)

It is clear that in the case when R = 2, (6.23) is satisfied for 0 < α < α̂ indicating

that xN > xδ. In the case when R = 1, we require 2α −
√
1− 4α2 > 0 so we

identify a pole α∗
4 = 1/

√
8 where (6.23) changes sign. We can therefore only

satisfy (6.23) for α∗
4 < α < α̂, meaning that xδ > xN when 0 < α < α∗

4.

A summary of findings can be found below in Table 6.6.
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R Degree Katz Eigenvector

1 x1 > xδ > xN
x1 > xδ > xN ∀α ∈ (0, α∗

4) x1 > xN > xδx1 > xN > xδ ∀α ∈ (α∗
4, α̂)

2 x1 > xN = xδ x1 > xN > xδ ∀α ∈ (0, α̂) x1 > xN > xδ

3 xN = x1 > xδ xN > x1 > xδ ∀α ∈ (0, α̂) xN > x1 > xδ

≥ 4 xN > x1 > xδ xN > x1 > xδ ∀α ∈ (0, α̂) xN > x1 > xδ

Table 6.6: R rings with undirected shortcut and directed hub: Katz centrality for
x1, xδ and xN from the heuristic analysis compared with degree (α → 0) and
eigenvector (α → 1/ρ(A)) centrality

Figure 6.11 shows the ratio of nodes 1 and δ to node N as α is varied for 1 ≤ R ≤
4. To do this, we used m = 1, 000 with L = 501 and solved the Katz system (3.1)

directly. By examining these figures we can see that the results from our heuristic

analysis, presented in Table 6.6, agree with the solution of the Katz system. In

particular Figure 6.11a shows the change in ranking of nodes δ and 1 on passing

the threshold α∗
4.

In the case when node N is neither ranked first nor last, i.e. when x1 > xN > xδ,

we can quantify where node N is ranked in relation to nodes in the ring by

considering where xk > xN . This condition can be reduced to

b+ ht
p1,L(k)
1 > 1 +Rα(b+ h).

Using the expression for h in (6.20) this gives

α

(1− 2α)(
√
1− 4α2 − α)

[
t
p1,L(k)
1 −Rα

]
> 1 +

Rα− 1

1− 2α

which rearranges to

t
p1,L(k)
1 −Rα > (R− 2)(

√
1− 4α2 − α).

We arrive at

t
p1,L(k)
1 > 2α + (R− 2)

√
1− 4α2,
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where we find that p1,L(k) < p1,L(k)max for

p1,L(k)max =


log (2α−

√
1− 4α2)

log (1−
√
1− 4α2)− log 2α

, for R = 1 and α∗
4 < α < α̂ (6.24a)

log (2α)

log (1−
√
1− 4α2)− log 2α

, for R = 2 and 0 < α < α̂ (6.24b)

The functions (6.24a) and (6.24b) are shown in Figure 6.12. In the case of 1 ring

in the network, when α∗
4 < α < α̂, it follows that nodes with p1,L(k) ≤ 1, that is

nodes 2,m, L− 1 and L+ 1 will always be considered more important that node

N . In the case of 2 rings, since p1,L(k) < 1 it follows that node N will be ranked

between nodes 1 and 2 (or equally m, L− 1 or L+ 1).
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Figure 6.9: R rings with undirected shortcut and directed hub: Illustration with
undirected shortcut and directed hub (R = 3, m = 10 and L = 6).
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(a) Fixed R (R=seq(1, 10)). R = 1 – bottom curve.

(b) Contour plot of z3.

Figure 6.10: R rings with undirected shortcut and directed hub: Relationship
between number of rings R, Katz parameter α and z3 in (6.22)
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(a) R = 1 (b) R = 2

(c) R = 3 (d) R = 4

Figure 6.11: R rings with undirected shortcut and directed hub: Ratio of x1 and
xδ to xN for the Katz centrality. We used m = 1, 000 so N = 1000R + 1 with
L = 501.
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(a) R = 1

(b) R = 2

Figure 6.12: R rings with undirected shortcut and directed hub: p1,L(k)max indi-
cating the maximum periodic distance for which xk > xN
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6.2.2 Connection to an undirected hub

This subsection considers the case of each of the R rings connecting to the central

hub node with an undirected edge from central hub node N to each of the local

node 1s. Figure 6.13 illustrates an example network with R = 3 rings where

each ring contains the same identical undirected shortcut from local node 1 to

local node 6 (i.e. 1 7→ 6, 6 7→ 1, 11 7→ 16, 16 7→ 11, 21 7→ 26, 26 7→ 21). Each

local node 1 is connected to the central node 31 via an undirected edge (i.e.

1 7→ 31, 31 7→ 1, 11 7→ 31, 31 7→ 11, 21 7→ 31, 31 7→ 21).

For the general R-ring network, the Katz system (3.1) reduces to

xj − α (xj−1 + xj+1) = 1, for 2 ≤ j < L or L < j ≤ m, (6.25)

x1 − α (x2 + xm + xL + xN) = 1, (6.26)

xL − α (xL−1 + xL+1 + x1) = 1, (6.27)

xN −Rαx1 = 1. (6.28)

Inserting the ansatz (5.6) we find that, as in the proof of Theorem 4.1, the general

equation (6.25) is solved with b = 1/(1 − 2α) and t = t1. In this instance, we

would not expect the height of the spikes at nodes 1 and L to be the same due to

the influence of the additional outgoing edge at node 1 towards node N . However,

we will continue to observe the same geometric decay rates around nodes 1 and

L.

Using (6.26), (6.27) and (6.28) we arrive at the system

(1− 2α)(
√
1− 4α2 −Rα2)h− α(1− 2α)h′ = α [2 + (R− 2)α] (6.29)

−α(1− 2α)h+ (1− 2α)
√
1− 4α2h′ = α (6.30)

for h and h′. We now use (6.30) to express h′ in terms of h so that

h′ =
α [1 + (1− 2α)h]

(1− 2α)
√
1− 4α2
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and use this in (6.29). Following some algebraic manipulation we arrive at

h ≈
α
[
(2 + (R− 2)α)

√
1− 4α2 + α

]
(1− 2α)(1− 5α2 −Rα2

√
1− 4α2)

(6.31)

h′ ≈
α
[
2α(1− α) +

√
1− 4α2

]
(1− 2α)(1− 5α2 −Rα2

√
1− 4α2)

(6.32)

We know that the upper bound on the α domain must be less than 1/2 and

therefore requiring h > 0 and h′ > 0 means we need the denominators of (6.31)

and (6.32) to be positive. This places the restriction

1− 5α2 −Rα2
√
1− 4α2 > 0 (6.33)

which when solved will constrict 0 < α < α̂. We conjecture that the network

adjacency matrix has a spectral radius that approaches 1/α̂ as N → ∞. Table 6.7

gives an indication of the discrepancy between the spectral radius of the adjacency

matrix (ρ(A)) and the reciprocal of the upper bound placed on the α domain (1/α̂)

such that h > 0.

R α̂ 1/α̂
|ρ(A)− 1/α̂|

m = 102 m = 104 m = 106

1 ≈ 0.4254 ≈ 2.3506 ≈ 2.5× 10−13 ≈ 3.6× 10−15 ≈ 0
2 ≈ 0.4019 ≈ 2.4879 ≈ 1.8× 10−15 ≈ 5.8× 10−15 ≈ 2.7× 10−15

3 ≈ 0.3792 ≈ 2.6373 ≈ 1.8× 10−15 ≈ 6.2× 10−15 ≈ 2.7× 10−15

4 ≈ 0.3583 ≈ 2.7911 ≈ 8.9× 10−16 ≈ 1.8× 10−15 ≈ 3.1× 10−15

Table 6.7: R rings with undirected shortcut and undirected hub: Comparison of
ρ(A) and 1/α̂ where α̂ is the upper bound of the domain defined by the heuristic
analysis. [ρ(A) was computed using MATLAB’s eigs.]

We know that x1 = b+h and from (6.28) that xN = 1+Rα(b+h). We now turn

our attention to when xN > x1, i.e.

1 + (Rα− 1)(b+ h) > 0.

87



Using the expression for h in (6.31) this gives

1 + (Rα− 1)

[
1

1− 2α
+

α
[
(2 + (R− 2)α)

√
1− 4α2 + α

]
(1− 2α)(1− 5α2 −Rα2

√
1− 4α2)

]
> 0

which rearranges to

(R−2)(1−5α2−Rα2
√
1− 4α2)+(Rα−1)(2+(R−2)α)

√
1− 4α2+α(Rα−1) > 0.

We arrive at

z4 := [(R + 2)α− 2]
√
1− 4α2 + 2α2(5− 2R)− α +R− 2 > 0. (6.34)

From Figure 6.14 we observe that z4 < 0 for R ≤ 2 and z4 > 0 for R ≥ 4 over

the domain for which the Katz system is valid. We can therefore conclude that

xN > x1 when we have 4 or more rings in our network and x1 > xN when we

have 2 or fewer rings.

In the case of having R = 3 rings, we require (5α− 2)
√
1− 4α2− 2α2−α+1 > 0

and so solving for the roots we observe that z4 changes sign on crossing a pole

α∗
5 =

√
14
√
3

13
sin

(
−1

3
arctan

(
13
√
7

49

)
+

π

3

)

−
√
14

13
sin

(
1

3
arctan

(
13
√
7

49

)
+

π

6

)
+

1

13
≈ 0.2578.

We conjecture that this is the threshold value beyond which node N is regarded

as more central than node 1.

Given that node 1 has an edge more than node L we expect that x1 > xL and

therefore h > h′. We now therefore consider if xN > xL in the case where x1 > xN ,

that is, when R = 1, R = 2 or R = 3 and 0 < α < α∗
5.

Considering the condition xN > xL we have

1 +Rα(b+ h) > b+ h′.
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Using the expression for h in (6.31) and h′ in (6.32) this gives

1 +Rα

[
1

1− 2α
+

α
[
(2 + (R− 2)α)

√
1− 4α2 + α

]
(1− 2α)(1− 5α2 −Rα2

√
1− 4α2)

]

−

[
1

1− 2α
+

α
[
2α(1− α) +

√
1− 4α2

]
(1− 2α)(1− 5α2 −Rα2

√
1− 4α2)

]
> 0

which rearranges to

(R− 2)(1− 5α2 −Rα2
√
1− 4α2)

+Rα
[
(2 + (R− 2)α)

√
1− 4α2 + α

]
− 2α(1− α)−

√
1− 4α2 > 0.

We arrive at

z5 := (2Rα− 1)
√
1− 4α2 + 4(3−R)α2 − 2α +R− 2 > 0. (6.35)

From Figure 6.15 we observe that z5 > 0 for R ≥ 3 and z5 < 0 for R = 1 over

0 < α < α̂ and therefore it follows that xN > xL when we have 3 or more rings

and xL > xN when we have one ring. However, in the case when R = 2 we

observe a critical choice for α where z5 changes sign.

WhenR = 2, from (6.35) we have the condition (4α−1)
√
1− 4α2−2α(1−2α) > 0.

Solving for the roots we observe that z5 changes sign on crossing the pole

α∗
6 =

√
46

15
sin

(
1

3
arctan

(
15
√
111

269

)
+

π

6

)
+

1

30
≈ 0.3248.

We conjecture that this is the threshold value beyond which node N is regarded

as more central than node L.

In the case when node N is not regarded as more central than node 1, a natural

extension is to see how xN compares with the other nodes in the ring. To do so

we first compare with node δ (the minimum scored node). Using xδ ≈ b we find

xN > xδ when

1 +Rα(b+ h) > b.
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Using the expression for h in (6.31) this gives

1 +Rα

[
1

1− 2α
+

α
[
(2 + (R− 2)α)

√
1− 4α2 + α

]
(1− 2α)(1− 5α2 −Rα2

√
1− 4α2)

]
>

1

1− 2α

which rearranges to

(R− 2)(1− 5α2 −Rα2
√
1− 4α2) +Rα

[
(2 + (R− 2)α)

√
1− 4α2 + α

]
> 0.

We arrive at

z6 := 2Rα
√
1− 4α2 + 2(5− 2R)α2 +R− 2 > 0. (6.36)

From Figure 6.16 we observe that z6 > 0 for R ≥ 2 and that when R = 1 there

is a pole where z6 changes sign. In the case of R = 1 we solve for the roots of

2α
√
1− 4α2 + 6α2 − 1 which gives

α∗
7 ≈ 0.2953.

We claim this is the threshold value beyond which node N is regarded as more

important than the minimum scored node in the ring (node δ).

A summary of findings can be found below in Table 6.8.

R Degree Katz Eigenvector

1 x1 > xL > xδ > xN
x1 > xL > xδ > xN ∀α ∈ (0, α∗

7) x1 > xL > xN > xδx1 > xL > xN > xδ ∀α ∈ (α∗
7, α̂)

2 x1 > xL > xN = xδ
x1 > xL > xN > xδ ∀α ∈ (0, α∗

6) x1 > xN > xL > xδx1 > xN > xL > xδ ∀α ∈ (α∗
6, α̂)

3 x1 > xN = xL > xδ
x1 > xN > xL > xδ ∀α ∈ (0, α∗

5) xN > x1 > xL > xδxN > x1 > xL > xδ ∀α ∈ (α∗
5, α̂)

≥ 4 xN ≥ x1 > xL > xδ xN > x1 > xL > xδ ∀α ∈ (0, α̂) xN > x1 > xL > xδ

Table 6.8: R rings with undirected shortcut and undirected hub: Katz centrality
for x1, xL, xδ and xN from the heuristic analysis compared with degree (α → 0)
and eigenvector (α → 1/ρ(A)) centrality

Figure 6.17 shows the ratio of nodes 1, L and δ to node N as α is varied for
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1 ≤ R ≤ 4. To do this, we used m = 1, 000 with L = 501 and solved the Katz

system (3.1) directly. By examining these figures we can see that the results from

our heuristic analysis, presented in Table 6.8, agree with the solution of the Katz

system. In particular:

• Figure 6.17a shows the change in ranking of nodes δ and N on passing the

threshold α∗
7,

• Figure 6.17b shows the change in ranking of nodes L and N on passing the

threshold α∗
6,

• Figure 6.17c shows the change in ranking of nodes 1 and N on passing the

threshold α∗
5.

Now when x1 > xN > xδ and xL > xN > xδ we may quantify where node N is

ranked by considering where xk > xN . We fist examine this inequality for nodes

close to node 1, where we have

b+ ht
p(k)
1 > 1 +Rα(b+ h).

Using the expression for h in (6.31) this gives

α
[
(2 + (R− 2)α)

√
1− 4α2 + α

]
(1− 2α)(1− 5α2 −Rα2

√
1− 4α2)

[
t
p(k)
1 −Rα

]
> 1 +

Rα− 1

1− 2α

which rearranges to[
(2 + (R− 2)α)

√
1− 4α2 + α

] [
t
p(k)
1 −Rα

]
> (R− 2)(1− 5α2 −Rα2

√
1− 4α2).

We arrive at

t
p(k)
1 >

2Rα
√
1− 4α2 + 2(5− 2R)α2 +R− 2

(2 + (R− 2)α)
√
1− 4α2 + α

,
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where we find that p(k) < p(k)max for

p(k)max =



log (2α
√
1− 4α2 + 6α2 − 1)− log ((2− α)

√
1− 4α2 + α)

log (1−
√
1− 4α2)− log 2α

, (6.37a)

log (4α
√
1− 4α2 + 2α2)− log (2

√
1− 4α2 + α)

log (1−
√
1− 4α2)− log 2α

, (6.37b)

log (6α
√
1− 4α2 − 2α2 + 1)− log ((2 + α)

√
1− 4α2 + α)

log (1−
√
1− 4α2)− log 2α

, (6.37c)

where (6.37a) is valid for R = 1 and α∗
7 < α < α̂, (6.37b) is valid for R = 2 and

(6.37c) is valid for R = 3 and 0 < α < α∗
5.

The functions (6.37a) – (6.37c) are shown in Figure 6.18. In the case of R = 1,

assuming we do not choose α really close to α∗
7 then we find that node N is, at

worse, ranked 6 positions less than node 1. In the case when R = 2 or R = 3 we

see that p(k)max < 1 indicating that node N will be ranked more important than

node 2 (or equivalently node m).

We now examine this inequality, xk > xN , for nodes close to node L, where we

have

b+ h′t
pL(k)
1 > 1 +Rα(b+ h).

Using the expression for h in (6.31) and h′ in (6.32) this gives

α
[
2α(1− α) +

√
1− 4α2

]
(1− 2α)(1− 5α2 −Rα2

√
1− 4α2)

[
t
pL(k)
1

]
> 1 +

Rα− 1

1− 2α
+

Rα2
[
(2 + (R− 2)α)

√
1− 4α2 + α

]
(1− 2α)(1− 5α2 −Rα2

√
1− 4α2)

which rearranges to [
2α(1− α) +

√
1− 4α2

] [
t
pL(k)
1

]
> (R− 2)(1− 5α2 −Rα2

√
1− 4α2) +Rα

[
(2 + (R− 2)α)

√
1− 4α2 + α

]
.
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We arrive at

t
pL(k)
1 >

2Rα
√
1− 4α2 + 2(5− 2R)α2 +R− 2

2α(1− α) +
√
1− 4α2

,

where we find that pL(k) < pL(k)max for

pL(k)max =


log (2α

√
1− 4α2 + 6α2 − 1)− log (2α(1− α) +

√
1− 4α2)

log (1−
√
1− 4α2)− log 2α

, (6.38a)

log (4α
√
1− 4α2 + 2α2)− log (2α(1− α) +

√
1− 4α2)

log (1−
√
1− 4α2)− log 2α

, (6.38b)

where (6.38a) is valid for R = 1 and α∗
7 < α < α̂ and (6.38b) is valid for R = 2.

The functions (6.38a) and (6.38b) are shown in Figure 6.19. Similarly, in the case

of R = 1, assuming we do not choose α really close to α∗
7 then we find that node

N is, at worse, ranked 6 positions less than node L. In the case when R = 2

we see that pL(k)max < 1 indicating that node N will be ranked more important

than node L− 1 (or equivalently node L+ 1).
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Figure 6.13: R rings with undirected shortcut and undirected hub: Illustration
with undirected shortcut and undirected hub (R = 3, m = 10 and L = 6).
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(a) Fixed R (R=seq(1, 10)). R = 1 – bottom curve.

(b) Contour plot of z4 with the solid black line representing α = α̂.

Figure 6.14: R rings with undirected shortcut and undirected hub: Relationship
between number of rings R, Katz parameter α and z4 in (6.34)
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(a) Fixed R (R=seq(1, 10)). R = 1 – bottom curve.

(b) Contour plot of z5 with the solid black line representing α = α̂.

Figure 6.15: R rings with undirected shortcut and undirected hub: Relationship
between number of rings R, Katz parameter α and z5 in (6.35)
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(a) Fixed R (R=seq(1, 10)). R = 1 – bottom curve.

(b) Contour plot of z6 with the solid black line representing α = α̂.

Figure 6.16: R rings with undirected shortcut and undirected hub: Relationship
between number of rings R, Katz parameter α and z6 in (6.36)
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(a) R = 1 (b) R = 2

(c) R = 3 (d) R = 4

Figure 6.17: R rings with undirected shortcut and undirected hub: Ratio of x1

and xL to xN for the Katz centrality. We used m = 1, 000 so N = 1000R + 1
with L = 501.
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(a) R = 1 (b) R = 2

(c) R = 3

Figure 6.18: R rings with undirected shortcut and undirected hub: p(k)max indi-
cating the maximum periodic distance for which xk > xN for nodes close to node
1
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(a) R = 1

(b) R = 2

Figure 6.19: R rings with undirected shortcut and undirected hub: pL(k)max indi-
cating the maximum periodic distance for which xk > xN for nodes close to node
L
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6.3 Summary of key results

In this chapter we have shown that the style of analysis presented in previous

chapters can be applied to more complicated networks where results from cen-

trality rankings are not entirely predictable. We have studied a class of network

defined by R identical periodic nearest neighbour rings with different configura-

tions of shortcuts and connections to a central hub node.

We used the ansatz from previous chapters as an approximation that we have

shown to be highly accurate in a large network limit. This allowed us to find

highly accurate closed form expressions which relate the Katz parameter α to the

height of the spike resulting from a shortcut across the ring. Requiring the height

of the spike to be positive places bounds on the domain for α which intuitively

corresponds to that of the Katz system, i.e., 0 < α < 1/ρ(A). This led to

analytical estimates for ρ(A) that were seen to be extremely accurate.

This analysis also allowed us to characterise the Katz centrality score for nodes

in the rings and thus compare key nodes in each network configuration to the

central hub node. As Katz centrality is an interpolation of degree centrality

and eigenvector centrality we have been able to capture analytically rather than

experimentally how Katz centrality morphs between these two different centrality

measures. In particular, we found

• Directed shortcut and directed hub:

Key nodes are 1 (maximum in ring), δ (minimum in ring) and N (central

hub). When R = 1 there is a cut off value α∗
1 where the rank of nodes δ

and N change.

• Directed shortcut and undirected hub:

Key nodes are 1 (maximum in ring), δ (minimum in ring) and N (central

hub). When R = 1 there is a cut off value α∗
3 where the rank of nodes δ

and N change. Similarly, when R = 3 there is a cut off value α∗
2 where the

rank of nodes 1 and N change.

• Undirected shortcut and directed hub:

Key nodes are 1 (maximum in ring – note node L is equivalent), δ (minimum
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in ring) and N (central hub). When R = 1 there is a cut off value α∗
4 where

the rank of nodes δ and N change.

• Undirected shortcut and undirected hub:

Key nodes are 1 (maximum in ring), L (another spike node), δ (minimum

in ring) and N (central hub). There is a cut off value in the case of R = 1

where the rank of nodes δ and N change on passing α∗
7. Similarly, there

are threshold values when R = 2 where rank of nodes L and N change on

passing α∗
6 and when R = 3 there is a threshold value α∗

5 beyond which the

rank of nodes 1 and N change.

A full summary of rankings can be found in Table 6.9.

Furthermore, in instances where the Katz centrality score of the central hub node

was greater than the minimum scored node in the ring but less than the maximum

scored node (i.e., x1 > xN > x∆) we have shown where node N ranks relative to

nodal positions in the ring for a given choice of parameter α.

These results completely characterise the Katz centrality score and thus the nodal

rankings thereby giving insight into the influence of the Katz parameter α.
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Network configuration R Degree Katz Eigenvector

Directed shortcut
Directed hub

1 x1 > xδ > xN
x1 > xδ > xN ∀α ∈ (0, α∗

1) x1 > xN > xδx1 > xN > xδ ∀α ∈ (α∗
1, α̂)

2 x1 > xN = xδ x1 > xN > xδ ∀α ∈ (0, α̂) x1 > xN > xδ

3 xN = x1 > xδ xN > x1 > xδ ∀α ∈ (0, α̂) xN > x1 > xδ

≥ 4 xN > x1 > xδ xN > x1 > xδ ∀α ∈ (0, α̂) xN > x1 > xδ

Directed shortcut
Undirected hub

1 x1 > xδ > xN
x1 > xδ > xN ∀α ∈ (0, α∗

3) x1 > xN > xδx1 > xN > xδ ∀α ∈ (α∗
3, α̂)

2 x1 > xN = xδ x1 > xN > xδ ∀α ∈ (0, α̂) x1 > xN > xδ

3 x1 > xN > xδ
x1 > xN > xδ ∀α ∈ (0, α∗

2) xN > x1 > xδxN > x1 > xδ ∀α ∈ (α∗
2, α̂)

≥ 4 xN ≥ x1 > xδ xN > x1 > xδ ∀α ∈ (0, α̂) xN > x1 > xδ

Undirected shortcut
Directed hub

1 x1 > xδ > xN
x1 > xδ > xN ∀α ∈ (0, α∗

4) x1 > xN > xδx1 > xN > xδ ∀α ∈ (α∗
4, α̂)

2 x1 > xN = xδ x1 > xN > xδ ∀α ∈ (0, α̂) x1 > xN > xδ

3 xN = x1 > xδ xN > x1 > xδ ∀α ∈ (0, α̂) xN > x1 > xδ

≥ 4 xN > x1 > xδ xN > x1 > xδ ∀α ∈ (0, α̂) xN > x1 > xδ

Undirected shortcut
Undirected hub

1 x1 > xL > xδ > xN
x1 > xL > xδ > xN ∀α ∈ (0, α∗

7) x1 > xL > xN > xδx1 > xL > xN > xδ ∀α ∈ (α∗
7, α̂)

2 x1 > xL > xN = xδ
x1 > xL > xN > xδ ∀α ∈ (0, α∗

6) x1 > xN > xL > xδx1 > xN > xL > xδ ∀α ∈ (α∗
6, α̂)

3 x1 > xN = xL > xδ
x1 > xN > xL > xδ ∀α ∈ (0, α∗

5) xN > x1 > xL > xδxN > x1 > xL > xδ ∀α ∈ (α∗
5, α̂)

≥ 4 xN ≥ x1 > xL > xδ xN > x1 > xL > xδ ∀α ∈ (0, α̂) xN > x1 > xL > xδ

Table 6.9: Katz centrality for key nodes in the various different network class configurations examined in this Chapter.
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Chapter 7

PageRank centrality

In this Chapter we apply a similar style of analysis as Chapter 4 but this time

we examine PageRank centrality which has a different feel to that of Katz and

eigenvector centrality in that it’s concerned with the ability to receive information

as opposed to send information. We finish this Chapter by putting our result into

use by examining a more complicated network where the nodal rankings are not

straightforward.

7.1 Exact solution for PageRank centrality

We now consider the PageRank system (3.5) on a periodic ring plus a directed

shortcut. To be consistent with the treatment in sections 4.3 and 4.4, we will

ensure that node 1 remains the most highly ranked. So the directed shortcut will

be added from node L to node 1. Hence, the adjacency matrix now has the form

A = C + Ê, where the rank one matrix Ê is zero except for E(L, 1) = 1.

Figure 7.1 relates to the case where N = 20, L = 8 and d = 0.8. Asterisks in the

upper picture show the components of the PageRank vector x in (3.5). We see

that node 1 is ranked highest, and node L, which gives away the extra shortcut,

has a low ranking that is slightly higher than its two neighbours. Unlike the cases

shown in Figures 4.2 and 4.3, the solution does not appear to be periodically

symmetric about node 1.
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Figure 7.1: Upper picture: asterisks show components of the PageRank vector x
from (3.5) and circles show the periodic spike approximation (7.3)–(7.4). Lower
picture: the discrepancy between these two vectors.

Figure 7.2 gives a view of the asymptotic N → ∞ structure by increasing N to

100, with L = 40. The solution now appears to be periodically decreasing locally

away from node 1 and periodically increasing locally away from node L.

Returning to the N = 20 ring, the circles in the upper picture of Figure 7.1

show the approximation arising from fitting suitable spikes. The lower picture in

Figure 7.1 shows the discrepancy, which takes relatively small values that peak

and trough at the nodes diametrically opposite 1 and L, respectively. We also

see in Figures 7.1 and 7.2 that node L does not quite fit into the general pattern

of periodic growth/decay.

The solutions seen in Figures 7.1 and 7.2 may be likened to a positive spike

centered at node 1 plus a negative spike centered at node L, so we may expect xi

to contain a term proportional to u
p(i)
1 and a term proportional to −u

pL(i)
1 , where

we recall that pL(i) in (5.2) denotes the periodic distance from node i to node L.

An exception occurs at node L, which seems to break this pattern. Theorem 7.1

below shows that the solution does indeed have this general form—plus expo-

nentially small terms—with a simple shift needed at node L. The general form

(7.1)–(7.2) involves five constants g1, g
′
1, g2, g

′
2, f and our proof technique relies
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Figure 7.2: Asterisks show components of the PageRank vector x from (3.5) for
a larger network: here N = 100 and L = 40.

on five “special” nodes that impose independent constraints. For this reason, we

need to rule out the exceptional case where node L is within one hop of being

diametrically opposite node 1, which would lead to fewer than five special nodes.

We therefore assume that the shortcut is chosen so that 0 < θ < 1 in (4.4). We

also treat the PageRank parameter 0 < d < 1 as being fixed, independently of

N .

Theorem 7.1. For the undirected ring plus directed shortcut network with adja-

cency matrix A = C + Ê, for 0 < θ < 1 and for sufficiently large N the unique

solution of the PageRank system (3.5) has the form

xi = 1 + g1u
p(i)
1 + g2u

p(i)
2 + g′1u

pL(i)
1 + g′2u

pL(i)
2 , for i ̸= L, (7.1)

and

xL = 1 + g1u
L−1
1 + g2u

L−1
2 + g′1 + g′2 + f. (7.2)

Here, u1, u2, g1, g2, g
′
1, g

′
2, f are constants, i.e., independent of i, and u1, u2 are

independent of N . In particular, g1 > 0, g2 > 0, g′1 < 0, g′2 < 0, f > 0, and
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u1, u2 are the roots of the palindromic quadratic du2 − 2u+ d, so that

u1 =
1−

√
1− d2

d
, u2 =

1 +
√
1− d2

d
.

Hence, u2 = 1/u1 and 0 < u1 < 1 < u2. Moreover, the terms in (7.1) and (7.2)

involving g2 and g′2 are exponentially small asymptotically, in the sense that

xi = 1 + g1u
p(i)
1 + g′1u

pL(i)
1 +O(u

N/2
1 ), for i ̸= L, (7.3)

xL = 1 + g′1 + f +O(uL−1
1 ). (7.4)

We also have

g1 =
d

1 + 2
√
1− d2

+O(u
θN/2
1 ), (7.5)

g′1 =
−1

1 + 2
√
1− d2

+O(u
θN/2
1 ), (7.6)

f =

√
1− d2

1 + 2
√
1− d2

+O(u
θN/2
1 ). (7.7)

Proof. As in the proofs of Theorems 4.1 and 4.2, we show by direct substitution

that x satisfies the required conditions. Because the style of analysis is similar,

we omit some of the fine details.

We begin with the ansatz

xi = b+ gup(i) + g′upL(i) + ϵf, (7.8)

where ϵ = 1 if i = L and ϵ = 0 for i ̸= L.

For a general node k, where each neighbouring node differs by a factor of u, the

PageRank system (3.5) requires

xk −
d

2
(xk−1 + xk−1) = 1− d. (7.9)
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Using (7.8) and substituting into (7.9) we have

b(1− d) + g1u
p(j)

(
1− 1

2
d
(
u+ u−1

))
+ g′upL(j)

(
1− 1

2
d
(
u+ u−1

))
= 1− d.

(7.10)

We can satisfy this equation independently of k by setting b = 1 and choosing

u to be either root of the quadratic du2 − 2u + d. By linearity of (7.9) we may

extend (7.8) to include a linear combination involving both roots, so our ansatz

becomes

xi = 1 + g1u
p(i) + g2u

p(i) + g′1u
pL(i) + g′2u

pL(i) + ϵf, (7.11)

where

u1 =
1−

√
1− d2

d
, u2 =

1 +
√
1− d2

d
.

Once again, since the quadratic is palindromic, u1 ad u2 must satisfy u1u2 = 1.

It is clear that these roots are real with 0 < u1 < 1 < u2 and we note the useful

facts

1− d

(
1

3
u−1
1 +

1

2
u1

)
=

1

6
du−1

1 , 1− d

(
1

3
u−1
2 +

1

2
u2

)
=

1

6
du−1

2 . (7.12)

It remains to check the system at

• node 1, where there are three incoming edges,

• node L, where, from (7.2), the general form of the solution has undergone

a shift,

• node L + 1 (or, equivalently, node L − 1), where the nonstandard node L

is involved,

• node N/2 + 1, which has neighbours that are the same periodic distance

from node 1, (assuming N is even). If N is odd we would consider either

node (N + 1)/2 or (N + 3)/2, where there is a single neigbour at the same

periodic distance.

• node N/2 + L, which has neighbours that are the same periodic distance

from node L, (assuming N is even). If N is odd we would consider either
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node (N − 1)/2 + L or (N + 1)/2 + L, where there is a single neigbour at

the same periodic distance.

Our equation for node 1 is x1 − d(x2/2 + xN/2 + xL/3) = 1− d. Using (7.1) and

(7.2), and simplifying, we arrive at

g1
(
1− d

(
u1 + 1

3
uL−1
1

))
+ g2

(
1− d

(
u2 + 1

3
uL−1
2

))
− 1

3
d (g′1 + g′2 + f + 1) = 0.

(7.13)

For node L, we have xL − d(xL−1/2 + xL+1/2) = 1− d, which simplifies to

g′1(1− du1) + g′2(1− du2) + f = 0. (7.14)

Node L+ 1 gives xL+1 − d(xL/3 + xL+2/2) = 1− d, from which, using (7.12), we

obtain

g1u
L−1
1 + g2u

L−1
2 + g′1 + g′2 − 2f = −1. (7.15)

At node N/2 + 1 we have xN/2+1 − d(xN/2/2 + xN/2+2/2) = 1− d, which leads to

g2 = g1u
N
1 . (7.16)

Similarly, at node N/2+L, the condition xN/2+L−d(xN/2+L−1/2+xN/2+L+1/2) =

1− d leads to

g′2 = g′1u
N
1 . (7.17)

In the derivation of (7.16) and (7.17) we have assumed N to be even. The same

result holds in the case of N odd.

Using (7.16) and (7.17) to eliminate g2 and g′2, we are left with three linear

equations, (7.13)–(7.15), for the three unknowns g1, g
′
1 and f . These may be

written in the form

(B +∆B) v = r, (7.18)
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where

B =

 1− du1 −d/3 −d/3

0 1− du1 1

0 1 −2

 , v =

 g1

g′1

f

 , r =

 d/3

0

−1

 ,

and ∆B ∈ R3×3 is such that ∥∆B∥∞ = O(u
θN/2
1 ). Writing u1 in terms of d, the

determinant of B reduces to −(1 + 2
√
1− d2)

√
1− d2 ̸= 0, so B is nonsingular.

From (7.18), we have (
I +B−1∆B

)
v = B−1r.

The matrix I + B−1∆B is invertible for sufficiently large N , which establishes

that (7.18) has a unique solution. We conclude that x in (7.1)–(7.2) solves the

PageRank system (3.5). Moreover, since (I + B−1∆B)−1 = I + O(∆B), we see

that v = B−1r + O(u
θN/2
1 ), which leads to (7.5)–(7.7). The relations (7.16) and

(7.17) then show that g2 > 0 and g′2 < 0 and also give the expansions (7.3) and

(7.4).

In a similar manner to previous theorems, we know from (7.16) and (7.17) that

g2 = O(uN
1 ) and g′2 = O(uN

1 ). Since g2u
p(k)
2 = g1u

N−p(k)
1 and g′2u

pL(k)
2 = g′1u

N−pL(k)
1

is largest when k = N/2 + 1 and k = N/2 + L respectively. Therefore for i ̸= L

xi = 1 + g1u
p(i)
1 + g2u

p(i)
2 + g′1u

pL(i)
1 + g′2u

pL(i)
2

= 1 + g1u
p(i)
1 + g1u

N−p(i)
1 + g′1u

pL(i)
1 + g′1u

N−pL(i)
1

= 1 + g1u
p(i)
1 + g′1u

pL(i)
1 +O(u

N/2
1 ).

When considering node L specifically (due to the shift), we have

xL = 1 + g1u
L−1
1 + g2u

L−1
2 + g′1 + g′2 + f

= 1 + g1u
L−1
1 + g1u

N−L+1
1 + g′1 + g′1u

N
1 + f

= 1 + g′1 + f +O(uL−1
1 ).

For the examples in Figures 7.1 and 7.2, we see that the node giving out the
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extra link, with index L, has a slightly larger PageRank value than its immediate

neighbours, but not more than its second-neighbours. The following corollary

shows that this behaviour is generic.

Corollary 7.1. For the undirected ring plus directed shortcut network with ad-

jacency matrix A = C + Ê, for sufficiently large N the PageRank vector satisfies

max (xL+1, xL−1) < xL < min (xL+2, xL−2) .

Proof. It follows from Theorem 7.1 that, ignoring asymptotically small terms,

xL = 1 + g′1 + f, xL+1 = xL−1 = 1 + g′1u1, xL+2 = xL−2 = 1 + g′1u
2
1.

Using (7.5), (7.6) and (7.7) we find that

xL − xL+1 = xL − xL−1 =
(1− d)

(
1−

√
1− d2

)
d(1 + 2

√
1− d2)

> 0,

and

xL − xL+2 = xL − xL−2 =
−
√
1− d2

(√
1− d2 − 1

)2
d2(1 + 2

√
1− d2)

< 0.

We can at least partially explain the ordering in Corollary 7.1 by noting that nodes

L + 1 and L − 1 suffer because one of their two neighbours, node L, has three

outgoing links. Hence the “vote of confidence” from node L is split three ways

instead of two. As a consequence, node L itself suffers from having two lowly-

ranked neighbours. What is perhaps less obvious, but proved in Corollary 7.1, is

that nodes L − 1 and L + 1 can never rise above node L, which itself can never

rise above nodes L− 2 and L+ 2.

7.2 Example network

In this section we consider the case of each ring in the network having a directed

shortcut across the ring. As each ring is identical, we denote this using ring 1 as
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an edge from node L to node 1 where 1 < L ≤ m/2 + 1.

We consider the case of each of the R rings connecting to the central hub node

with an outgoing directed edge from each of the local node 1s to the central hub

node N . Figure 7.3 illustrates an example network with R = 3 rings where each

ring contains the same identical directed shortcut from local node 6 to local node

1 (i.e. 6 7→ 1, 16 7→ 11, 26 7→ 21). Each local node 1 is connected to the central

node 31 via an outgoing directed edge (i.e. 1 7→ 31, 11 7→ 31, 21 7→ 31).

We explore how the influence of the PageRank parameter d effects the ranking

of the central node N.

For the general R-ring network, the PageRank system (3.5) reduces to

xk − d

(
1

2
xk−1 +

1

2
xk+1

)
= 1− d, (7.19)

x1 − d

(
1

2
x2 +

1

2
xm +

1

3
xL

)
= 1− d, (7.20)

x2 − d

(
1

3
x1 +

1

2
x3

)
= 1− d, (7.21)

xm − d

(
1

2
xm−1 +

1

3
x1

)
= 1− d, (7.22)

xL − d

(
1

2
xL−1 +

1

2
xL+1

)
= 1− d, (7.23)

xL−1 − d

(
1

2
xL−2 +

1

3
xL

)
= 1− d, (7.24)

xL+1 − d

(
1

3
xL +

1

2
xL+2

)
= 1− d, (7.25)

xN − 1

3
Rdx1 = 1− d. (7.26)

The general equation (7.19) is valid for 3 ≤ k ≤ L − 2 and L + 2 ≤ k ≤
m− 1. Whilst the form given by (7.19) when k = L is correct we have listed this

specifically as (7.23) as node L has a shift that we will need to quantify for our

analysis.

We know from Theorem 7.1, with the shortcut in the rings, that we should observe

growth at node 1, decay at node L and a shift at node L. In this instance, we
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have an additional edge originating from each of the local node 1s to the central

hub node N and therefore there will be decay at node 1 and a shift at node 1.

We therefore have growth and decay at node 1, the net effect of which will need

to be quantified, which can be combined into a single term in our ansatz. Let

xi = b+ gup(i) + g′upL(i) + ϵ1f1 + ϵLfL, (7.27)

for the centrality of nodes in the ring where ϵ1 = 1 if i = 1 and 0 otherwise,

ϵL = 1 if i = L and 0 otherwise.

Inserting (7.27) we find that (7.19) is solved with b = 1 and u = u1. Focusing

only on the dominant parts of the PageRank vector it follows that we need only

consider one neighbour of nodes 1 and L, i.e. (7.21) is equivalent to (7.22) and

(7.24) is equivalent to (7.25).

Using (7.27) in (7.20), (7.21), (7.23) and (7.25) we have

g(1− du) + f1 −
1

3
d(1 + g′ + fL) = 0, (7.28)

g − 2f1 = −1, (7.29)

g′(1− du) + fL = 0, (7.30)

g′ − 2fL = −1. (7.31)

Solving the system (7.28) – (7.31) leads to the solutions

g ≈ 2(d− 1)
√
1− d2 − 1

[1 + 2
√
1− d2]2

< 0, (7.32)

g′ ≈ − 1

1 + 2
√
1− d2

, < 0 (7.33)

f1 ≈ 2(d− 1)
√
1− d2 − 1

2[1 + 2
√
1− d2]2

+
1

2
< 0, (7.34)

fL ≈
√
1− d2

1 + 2
√
1− d2

> 0. (7.35)

From (7.32) we know that g < 0 and therefore the effect of the growth and decay

at node 1 leads to a net negative decay and so a negative spike will be observable
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around node 1. Nodes which are not close to 1 or L will obtain a centrality score

of 1. We need to know if node 1 can attain a better nodal ranking due to the

shift f1, i.e. is x1 = 1 + g + f1 > 1. Using (7.32) and (7.34) this leads to

6(d− 1)
√
1− d2 − 3

2[1 + 2
√
1− d2]2

+
1

2
> 0, (7.36)

which when multiplied by a factor of 2[1 + 2
√
1− d2]2 and rearranged reduces to

the condition

(3d− 1)
√
1− d2 + 1− 2d2 > 0. (7.37)

Solving for the roots in our range 0 < d < 1 gives a cut-off value of

d∗1 ≈ 0.9195, (7.38)

for which this condition is met. Therefore, if 0 < d < d∗1 we have x1 > 1 and if

d∗1 < d < 1 then x1 < 1.

Due to the shifts at nodes 1 and L we hereby characterise the ranking of nodes

that are immediate neighbours to these nodes, similar to Corollary 7.1. In this

instance

x1 = 1 + g + f1, x2 = xm = 1 + gu1, x3 = xm−1 = 1 + gu2
1,

and

xL = 1 + g′ + fL, xL+1 = xL−1 = 1 + g′u1, xL+2 = xL−2 = 1 + g′u2
1.

The upper plot of Figure 7.4 shows the value of x3 − x2 = xm−1 − xm and

x3 − x1 = xm−1 − x1. As by definition, we expected x3 − x2 > 0 but what is clear

is that since x3 − x1 < 0 we know that node 1 still manages to attain a higher

PageRank centrality value (due to the shift). The lower plot of Figure 7.4 shows

the value of xL−xL+1 = xL−xL−1 and xL−xL+2 = xL−xL−2. As previously seen

we observe that xL−xL+1 > 0 and xL−xL+2 < 0 meaning that xL is sandwiched

between xL+1 and xL+2.
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Now that we know the behaviour around the spikes we compare node N to key

nodes in the ring. In considering this ring we expect node 1 to be ranked first

when 0 < d < d∗1. We define nodes sufficiently far away from nodes 1 and L, i.e.

where the effects of the spikes are negligible, by ∆. In the case when d∗1 < d < 1

then we expect node ∆ to be the maximum ranked node.

We know from (7.26) that xN = 1 − d + Rd(1 + g + f1)/3 so we now turn our

attention to when xN > x1, i.e.

3(1− d) + (Rd− 3)(1 + g + f1) > 0.

Using the expression for g and f1 in (7.32) and (7.34) this gives

3(1− d) + (Rd− 3)

[
6(d− 1)

√
1− d2 − 3

2[1 + 2
√
1− d2]2

+
3

2

]
> 0,

which when multiplied by a factor of 2[1 + 2
√
1− d2]2 can be rearranged to[

1 + 2
√
1− d2

]2
[6(1− d) + 3(Rd− 3)]+6(Rd−3)(d−1)

√
1− d2−3(Rd−3) > 0.

(7.39)

After some simplification we arrive at the condition

z7 :=
√
1− d2

[
Rd2 + (R− 7)d+ 1

]
−2(R−2)d3+2d2+(2R−5)d−1 > 0. (7.40)

From Figure 7.5 we observe that z7 < 0 for R ≤ 2 and z7 > 0 for R ≥ 4. We

therefore conclude that x1 > xN when we have 2 or fewer rings and xN > x1

when we have 4 or more rings. When R = 3 there is a pole where z7 changes sign

and from (7.40) we have

z7 =
√
1− d2

[
3d2 − 4d+ 1

]
− 2d3 + 2d2 + d− 1

= (d− 1)
[
(3d− 1)

√
1− d2 + 1− 2d2

]
Since we are working with a multiple of (7.37) it follows that the the d∗1 is the

threshold value beyond which node N is ranked higher than node 1, i.e. where

xN > x1.
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Within the ring we observe an inverted spike at node L, however xL also contains

a shift (fL) and is therefore not the minimum ranked node. The node ranked last,

δ, in this instance is node L − 1 or L + 1. Using xδ = 1 + g′u1 we find xN > xδ

when

1− d+
1

3
Rd(1 + g + f1) > 1 + g′u1.

Using the expressions for g, g′ and f1 in (7.32), (7.33) and (7.34) respectively this

gives

−d+Rd

[
2(d− 1)

√
1− d2 − 1

2[1 + 2
√
1− d2]2

+
1

2

]
> − 1−

√
1− d2

d(1 + 2
√
1− d2)

,

which when multiplied by a factor of 2d[1 + 2
√
1− d2]2 can be rearranged to[

1 + 2
√
1− d2

]2
d2(R− 2) + 2Rd2(d− 1)

√
1− d2 −Rd2

+2(1−
√
1− d2)(1 + 2

√
1− d2) > 0.

(7.41)

Following some simplification we arrive at

z8 :=
√
1− d2

[
Rd3 + (R− 4)d2 + 1

]
+ (2R− 3)d2 − 2(R− 2)d4 − 1 > 0. (7.42)

From Figure 7.6 we observe that when z8 < 0 for R = 1 and z8 > 0 for R ≥ 3

meaning that xδ > xN when we have 1 ring in the network and xN > xδ when

there are 3 or more rings. When R = 2 there is a pole where z8 changes sign from

negative to positive indicating a threshold value beyond which node N moves up

the nodal rankings. Solving for the roots of
√
1− d2[2d3 − 2d2 +1] + d2 − 1 gives

d∗2 ≈ 0.7071.

So far, we have examined how the ranking of node N compares to that of nodes

1 and δ. For completeness, before we examine the rest of the nodes in the ring,

we first pay particular attention to node L since xL contains the shift fL. Using

xL = 1 + g′ + fL we have xN > xL when

1− d+
1

3
Rd(1 + g + f1) > 1 + g′ + fL.
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Using (7.32), (7.33), (7.34) and (7.35) this gives the condition

−d+Rd

[
2(d− 1)

√
1− d2 − 1

2[1 + 2
√
1− d2]2

+
1

2

]
> − 1−

√
1− d2

1 + 2
√
1− d2

,

which when multiplied by a factor of 2[1 + 2
√
1− d2]2 can be rearranged to[

1 + 2
√
1− d2

]2
d(R− 2) + 2Rd(d− 1)

√
1− d2 −Rd

+2(1−
√
1− d2)(1 + 2

√
1− d2) > 0.

(7.43)

Following some simplification we arrive at

z9 :=
√
1− d2

[
Rd2 + (R− 4)d+ 1

]
−2(R−2)d3+2d2+(2R−5)d−1 > 0. (7.44)

From Figure 7.7 we observe that when z9 < 0 for R = 1 and z9 > 0 for R ≥ 3

meaning that xL > xN when we have 1 ring in the network and xN > xL when

there are 3 or more rings. When R = 2 there is a pole where z9 changes sign from

negative to positive indicating a threshold value beyond which node N becomes

more central than node L. Solving for the roots of
√
1− d2[2d2−2d+1]+2d2−d−1

gives

d∗3 ≈ 0.8565.

Thus far we have examined how node N compares to nodes 1, L and δ. In the

instance when d∗ < d < 1 node 1 is not the highest ranked node. Instead this

is, as defined, node ∆. We therefore investigate how xN compares with x∆. We

have xN > x∆ when

−d+
1

3
Rd(1 + g + f1) > 0, (7.45)

which when using (7.32) and (7.34) gives the condition as

−1 +R

[
2(d− 1)

√
1− d2 − 1

2[1 + 2
√
1− d2]2

+
1

2

]
> 0. (7.46)

Multiplying by a factor of 2[1 + 2
√
1− d2]2 and collecting terms the condition
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xN > x∆ can be reduced to

z10 :=
√
1− d2 [R(1 + d)− 4]− 2(R− 2)d2 + 2R− 5 > 0. (7.47)

Using Figure 7.8 we observe that z10 < 0 for R ≤ 2 meaning that x∆ > xN when

there are 2 or fewer rings. In the instance of R ≥ 3 there is a cut-off value where

z10 changes sign indicating that there is a region where xN > x∆ and a region

where x∆ > xN . When R = 3, (7.47) is equivalent to (7.37) and therefore this

cut off is d∗1. When R = 4, we solve for the roots of
√
1− d2[4d]− 4d2 + 3 which

gives

d∗4 ≈ 0.9776.

We know from Figure 7.8 that this cut off value, d∗, increases as R increases so

we conclude that for R ≥ 4 there exists d∗ > d∗1 such that passing this threshold

value x∆ > xN .

A summary of findings can be found below in Table 7.1.

R PageRank

1
x1 > x∆ > xL > xδ > xN ∀d ∈ (0, d∗1)
x∆ > x1 > xL > xδ > xN ∀d ∈ (d∗1, 1)

2

x1 > x∆ > xL > xδ > xN ∀d ∈ (0, d∗2)
x1 > x∆ > xL > xN > xδ ∀d ∈ (d∗2, d

∗
3)

x1 > x∆ > xN > xL > xδ ∀d ∈ (d∗3, d
∗
1)

x∆ > x1 > xN > xL > xδ ∀d ∈ (d∗1, 1)

3
x1 > xN > x∆ > xL > xδ ∀d ∈ (0, d∗1)
x∆ > xN > x1 > xL > xδ ∀d ∈ (d∗1, 1)

≥ 4
xN > x1 > x∆ > xL > xδ ∀d ∈ (0, d∗1)
xN > x∆ > x1 > xL > xδ ∀d ∈ (d∗1, d

∗)
x∆ > xN > x1 > xL > xδ ∀d ∈ (d∗, 1)

Table 7.1: R rings with directed shortcut and directed hub: PageRank centrality
for x1, x∆, xL, xδ and xN from the heuristic analysis. In the case R = 4: d∗ = d∗4.

Figure 7.9 shows the ratio of x1, x∆, xL and xδ to xN as the free parameter d

is varied across its domain for 1 ≤ R ≤ 4. To do this, we used m = 1, 000

with L = 501 and solved the PageRank system (3.5) directly. By examining each

of these figures we can see that the results agree with those from our heuristic
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analysis as presented in Table 7.1. In particular, Figure 7.9a shows a change in

ranking between nodes 1 and ∆ on passing the threshold d∗1. Figure 7.9b shows

a change in ranking between nodes δ and N ; L and N ; 1 and ∆ on passing the

thresholds d∗2, d
∗
3 and d∗1 respecitively. In addition, Figure 7.9c shows the ranking

change between nodes 1, N and ∆ on passing the threshold d∗1. In addition to

Figure 7.9a – 7.9c, Figure 7.9d also shows the change in ranking between nodes

1 and ∆ on passing d∗1 – this change occurs independent on the number of rings

in the network. We note here the non-monotonic behaviour of these ratios and

whilst it is not particularly clear due to the scale, the ratio x1/xN in Figure 7.9c

becomes negative on passing d∗1 where it then reaches a turning point before

approaching 1 as d → 1.

To completely characterise the PageRank rankings on this network for all choices

of parameter d we now compare node N to those nodes in the ring close to the

spike nodes 1 and L. This is valid for R = 2 where d∗3 < d < 1 and R = 3 where

d∗1 < d < 1 where the general node k is ranked somewhere equivalent to a node

near either nodes 1 and/or L. We therefore consider where xk > xN which gives

1 + gu
p(k)
1 + g′u

pL(k)
1 > 1− d+

1

3
Rd(1 + g + f1).

Using (7.32), (7.33) and (7.34) this gives

2(d− 1)
√
1− d2 − 1

[1 + 2
√
1− d2]2

u
p(k)
1 − 1

1 + 2
√
1− d2

u
pL(k)
1

> −d+Rd

[
1

2
+

2(d− 1)
√
1− d2 − 1

2[1 + 2
√
1− d2]2

]
,

which when multiplied by a factor of [1 + 2
√
1− d2]2 rearranges to[

2(d− 1)
√
1− d2 − 1

]
u
p(k)
1 −

[
1 + 2

√
1− d2

]
u
pL(k)
1

>
[
(R− 4)d+Rd2

]√
1− d2 − 2(R− 2)d3 + (2R− 5)d.

We first consider nodes close to node 1 and note that when we are close to node
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1, u
pL(k)
1 = 0. The condition (7.48) reduces to p(k) > p(k)min where

p(k)min =


log [2d(1− d)

√
1− d2 + d]− log [2(1− d)

√
1− d2 + 1]

log (1−
√
1− d2)− log d

, (7.48a)

log [d(1− 3d)
√
1− d2 + 2d3 − d]− log [2(1− d)

√
1− d2 + 1]

log (1−
√
1− d2)− log d

. (7.48b)

Equation (7.48a) is valid for R = 2 and d∗3 < d < 1 whilst (7.48b) is valid for

R = 3 and d∗1 < d < 1.

Moving to now consider nodes close to node L we note that u
p(k)
1 = 0 and the

condition (7.48) reduces to p(k) > pL(k)min where

pL(k)min =


log [2d(1− d)

√
1− d2 + d]− log [1 + 2

√
1− d2]

log (1−
√
1− d2)− log d

, (7.49a)

log [d(1− 3d)
√
1− d2 + 2d3 − d]− log [1 + 2

√
1− d2]

log (1−
√
1− d2)− log d

, (7.49b)

(7.49a) is valid for R = 2 and d∗3 < d < 1 whilst (7.49b) is valid for R = 3 and

d∗1 < d < 1.

Figure 7.10 illustrates the functions (7.48a) – (7.49b).

The case of two rings in the network is illustrated in Figures 7.10a and 7.10b.

This shows that p(k)min < 1 and therefore all nodes close to 1 are deemed more

important than the central hub node N for values of the parameter d. Interest-

ingly, pL(k)min < 1 for d chosen very close to d∗3 before increasing and reaching

an asymptote as d → 1. It then follows that there is a choice of d just marginally

bigger than d∗3 such that all nodes close to node L will be more important than

node N . However, as d is increased so does xN at a rate faster than xk and there-

fore there are values of d really close to 1 such that only nodes with pL(k) > P

will be more important than then central hub node N .

The case of three rings in the network is illustrated in Figures 7.10c and 7.10d.

Both of these functions have the same characteristic shape with both approaching

an asymptote as d → d∗1.
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Figure 7.3: R rings with directed shortcut and directed hub: Illustration with
directed shortcut and directed hub (R = 3, m = 10 and L = 6).
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Figure 7.4: R rings with directed shortcut and directed hub: Difference in PageR-
ank centrality for nodes that neighbour nodes 1 and L
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(a) Fixed R (R=seq(1, 10)). R = 1 – bottom curve.

(b) Contour plot of z7.

Figure 7.5: R rings with directed shortcut and directed hub: Relationship between
number of rings R, PageRank parameter d and z7 in (7.40).
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(a) Fixed R (R=seq(1, 10)). R = 1 – bottom curve.

(b) Contour plot of z8.

Figure 7.6: R rings with directed shortcut and directed hub: Relationship between
number of rings R, PageRank parameter d and z8 in (7.42).
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(a) Fixed R (R=seq(1, 10)). R = 1 – bottom curve.

(b) Contour plot of z9.

Figure 7.7: R rings with directed shortcut and directed hub: Relationship between
number of rings R, PageRank parameter d and z9 in (7.44).

125



(a) Fixed R (R=seq(1, 10)). R = 1 – bottom curve.

(b) Contour plot of z10.

Figure 7.8: R rings with directed shortcut and directed hub: Relationship between
number of rings R, PageRank parameter d and z10 in (7.47).
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(a) R = 1 (b) R = 2

(c) R = 3 (d) R = 4

Figure 7.9: R rings with directed shortcut and directed hub: Ratio of x1, xδ and
xL to xN for PageRank centrality. We used m = 1, 000 so N = 1000R + 1 with
L = 501.
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(a) p(k)min for R = 2 and d∗3 < d < 1 (b) pL(k)min for R = 2 and d∗3 < d < 1

(c) p(k)min for R = 3 and d∗1 < d < 1 (d) pL(k)min for R = 3 and d∗1 < d < 1

Figure 7.10: R rings with directed shortcut and directed hub: Illustrating the
minimum periodic distance for which xk > xN
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7.3 Summary of key results

In this chapter we considered PageRank centrality which is different from that of

Katz and eigenvector centrality in that it is concerned with incoming information

as opposed to outgoing information. We have shown the PageRank centrality

vector form of solution on a nearest neighbour periodic ring with a single di-

rected shortcut, illustrating a positive spike at the shortcut receiving node and

an inverted spike and shift at the shortcut originating node. What was perhaps

most surprising was the shift at the originating shortcut node which gives rise to

an unexpected non-monotonicity in the nodal rankings.

We then applied this result to a more complicated network similar to that pre-

sented in Chapter 6 where we have R nearest neighbour rings with a single di-

rected shortcut connected to a central hub node. In this network configuration

the key nodes are 1 (the target of the shortcut and source of the edge that con-

nects to the central hub), ∆ (a baseline node where no spike has any influence), L

(the source of the shortcut), δ (the minimum in the ring – one of L’s neighbours)

and N (the central hub).

Our analysis allowed us to show analytically the cut off values where nodal rank-

ings changed in the network, hence illustrating the influence of the PageRank

parameter d. In particular we found:

• Node 1 changes to being the tip of an inverted spike rather than a positive

spike on passing the threshold value d∗1 – irrespective of R. This means that

we have a change in rank of nodes 1 and ∆.

• When R = 2 there is a cut off value d∗2 where the rank of nodes δ and N

change and there is a cut off value d∗3 where the rank of nodes L and N

change.

Furthermore, in the regions where node N is neither ranked first nor last in the

overall network our analysis shows where node N ranks relative to the other nodes

in the ring.

129



Chapter 8

Discussion

In this work, we have addressed issues in matrix analysis concerning modified

rings. In particular, we have extended the approximation technique from [37] in

order to give exact solutions, and applied these ideas to spectral and linear system

problems arising in network science, where the matrix modifications correspond

to shortcuts in the classic Watts-Strogatz model.

In the case of a nearest neighbour periodic ring plus single directed shortcut,

components of the Katz, eigenvector and PageRank centrality vector have the

form

xKatz
i = b+ h1t

p(i)
1 + h1t

p(i)−N
2 ,

xEV
i = s

p(i)
1 + s

p(i)−N
2 ,

xPgR
i = 1 + g1u

p(i)
1 + g1u

p(i)−N
2 + g′1u

pL(i)
1 + g′1u

pL(i)−N
2 + ϵf,

respectively where ϵ = 1 if i = L and ϵ = 0 otherwise.

Katz and eigenvector centrality exhibit a positive localised spike centred at the

node where the shortcut originates. This geometrically decreases on moving away

from the shortcut originating node. PageRank centrality on the other hand has

a different feel and exhibits not one but two localised spikes – a positive spike

centred at the node that receives the shortcut and a negative spike centred at

the shortcut source node. What was not intuitively obvious to all three of these
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centrality measures was the presence of an asymptotically exponentially small

increasing geometric component that accompanies every spike. Katz and eigen-

vector centrality have a single geometrically increasing component moving away

from the shortcut source node. PageRank centrality has two geometrically in-

creasing components – one centered at each of the nodes involved in the shortcut.

Katz and PageRank centrality have a free parameter α and d respectively. We

note that the parameters α and d, which influence the geometric growth and

decay rates, are independent of the network size. By contrast, for eigenvector

centrality the geometric decay and growth rates are dependent upon the network

size. The smaller the parameter the more localised the spike and the greater

the parameter the more non-localised the spike will be. The parameter therefore

affects the benefits that each node gets from a shortcut located a distance away in

terms of the centrality score but does not influence the node rankings. PageRank

centrality reveals an unexpected non-monotonicity in the rankings due to a shift

at the shortcut originating node for which it was shown that this shift is enough

to make the originating node more important than its neighbours but not more

than its neighbours neighbour.

These three centrality measures all have a difference in their baseline value, that

is, their value where the effect of a localised spike is negligible. Far from the

originating node, Katz centrality tends to a fixed non-zero b which depends on

the parameter α, eigenvector centrality tends to zero and PageRank centrality

tends to 1 independently of the parameter d.

We extended the Katz centrality measure to the class of networks defined by

(a) a nearest neighbour periodic ring with M shortcuts and (b) a 2n-nearest

neighbour periodic ring with directed shortcuts. This revealed that in the case

of multiple shortcuts the Katz vector is a sum of M spikes each centred at the

shortcut originating nodes plus a fixed non-zero value – each spike decaying and

increasing at the same rate. In the case of a a 2n-nearest neighbour periodic

ring with shortcut the Katz vector is a sum of n geometric decreasing terms, n

geometric increasing terms and a fixed non-zero value.

These results give a complete understanding of the structure of the centrality

vectors on this class. In particular, our analysis of more general networks where
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the node ranking is not predictable in advance provides the first analytically

derived examples where a threshold exists for the Katz and PageRank parameter

across which the node ranking changes.

This work can be applied to software verification, for example, if we have an

algorithm that proposes to compute a centrality score for nodes in a network.

How can one determine if the algorithm output is correct? By having nontrivial

example networks where we know exact expressions for centrality vectors means

the implementation of the algorithm can be tested and verified before turning to

large scale real-world application areas.

Additionally, in many real-world application areas, such as protein interactions,

there is a well known problem of how to label nodes in a way that reveals structure

that may not be apparent when nodes are labelled arbitrarily. These networks

often result in adjacency matrices that can be arranged into particular forms such

as those with entries dominated around the diagonal. In many of these areas data

is collected experimentally and therefore there may be an issue with false positive

results. Insight from our work may suggest that these false positive edges present

in the adjacency matrix may result in localised spikes. Detecting such spikes may

therefore aid in identification of these erroneous results.

Furthermore, these results give insight into the effect of adding shortcuts to a

network. The addition of shortcuts across a network will often incur cost to

implement and this work gives insight into where the benefit of such investment

would be felt. For example, consider the Glasgow subway system – a nearest

neighbour periodic ring network – and suppose that there were proposals to add

new tracks between existing stations. Insight from this work would suggest this

would result in a localised spike in importance of stations close to where this

shortcut originates (and terminates if trains can flow in both directions). This

allows investors to consider what they want to achieve and how best to achieve

it.

There is clearly much potential for further work in this area. Whilst we have

provided conjectures based on M -shortcuts across a nearest neighbour periodic

ring and the 2n-nearest neighbour periodic ring plus shortcut it would be nice to

be able to definitively prove these.
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In a M -shortcut ring questions such as

• how well separated should shortcuts be,

• is there a limit to the number of shortcuts that can be added before the

geometrically decaying spike structure is lost,

• what are the precise asymptotics of the Perron-Frobenius eigenvalue,

• can we study a limit where the number of shortcuts M and the number of

nodes N tend to infinity at differing rates,

could be addressed.

A more immediate issue in the 2n-nearest neighbour ring plus shortcut would

involve an understanding of the roots of the palindromic polynomial rn−α(r2n+

· · · + rn+1 + rn−1 + · · · + 1) which can give rise to complex rates of geometric

decay and growth such as in the case discussed at the end of Section 5.2 where

n = 3 and α = 0.1 < 1/ρ(A). Whilst we hypothesise that as these complex rates

appear in groups of four and counterbalance imaginary components we feel that

this is an interesting direction for further investigation.

As these extensions were provided as a basis of justification for the more complex

examples in Chapter 6, these ideas could be combined to consider the case of

M -shortcuts across a 2n-nearest neighbour periodic ring. As we have explored

network extensions under the Katz centrality these could be equally be examined

for other centrality measures such as eigenvector and PageRank.

Furthermore the questions addressed here could be posed on (a) higher dimen-

sional lattices, such as nearest-neighbour connections on a torus, (b) hierarchical

“network of network” structures, or (c) non-periodic lattices where boundary ef-

fects may be significant. In these cases, the underlying linear algebra challenges

involve spectral analysis of Toeplitz matrices with various block structures and

low rank perturbations, building on ideas in [13, 14].

Multiple shortcuts could be included, with various asymptotic scalings for their

length and separation. Also, in the spirit of [50], random shortcuts could be anal-

ysed in a suitable probabilistic framework. Extensions could also be considered to
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a temporal network setting where the edges are time-dependent by extending the

centrality measures in a manner described in [27, 47], or to the case of weighted

networks.
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