
Towards Highly Efficient Algorithms
and Hardware Architecture Design
for Single-Photon Signal Processing

Zhenya Zang

Strathclyde Institute of Pharmacy and Biomedical

Sciences

University of Strathclyde

A thesis submitted for the degree of

Doctor of Philosophy

Supervisor:

Dr. David Day Uei Li

January 14, 2025

Copyright

This thesis is submitted to the University of Strathclyde for the degree of

Doctor of Philosophy in the Faculty of Science.

This thesis is the result of the author’s original research. It has been composed

by the author and has not been previously submitted for examination which has

led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the

United Kingdom Copyright Acts as qualified by the University of Strathclyde

Regulation 3.51. Due acknowledgement must always be made of the use of any

material contained in, or derived from, this thesis.

Date: January 14, 2025

Signed:

i

Abstract

In recent decades, single-photon detectors have emerged as crucial technolo-

gies for 3D remote sensing and biomedical applications. However, extracting

essential parameters from encoded single-photon data presents significant chal-

lenges due to the ill-posed nature of parameter reconstruction, leading to high

computational complexity. Robust yet compact algorithms are essential to en-

sure accuracy and computational efficiency. Furthermore, implementing these

efficient algorithms on reconfigurable hardware processors promotes portability

and real-world applicability.

This thesis addresses these challenges through three interrelated topics that

integrate signal processing on single-photon data, deep learning, and hardware

implementation. For each topic, quantitative comparisons are conducted between

our algorithms and state-of-the-art methods, demonstrating the superiority of our

compact algorithms and hardware architectures.

In the first topic, depth images are reconstructed from 3D point cloud data

captured by a single-photon avalanche diode (SPAD) array, even under extreme

low signal-to-background ratios (0.2, 0.04, and 0.02) per pixel. A low-bit quanti-

zation strategy is applied to the 3D DL model to achieve a small model size while

maintaining accuracy.

ii

The second topic focuses on fluorescence lifetime reconstruction of both syn-

thetic data and real data from experiments, utilizing 1D temporal point spread

functions (TPSF) acquired by a photomultiplier tube (PMT) coupled with a time-

correlated single-photon counting (TCSPC) system. A lightweight 1D DL model,

in conjunction with TPSF compression and a customized hardware processor,

facilitates rapid and accurate lifetime image reconstruction. This approach sur-

passes conventional DL models and non-linear fitting methods in performance.

In the third topic, we accurately reconstruct the blood flow index and coher-

ence factor from autocorrelation functions for a diffuse correlation spectroscopy

(DCS) system using customized 1D DL. A processor implemented on a reconfig-

urable device paves the way for integrating portable DCS systems in the future.

Through these contributions, this thesis advances the field of single-photon

signal processing by providing compact algorithms and hardware implementations

that improve accuracy, computational efficiency, and portability in single-photon

applications for 3D sensing and biomedical imaging.

iii

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor, Dr.

David Day Uei Li, for giving me the opportunity to pursue my Ph.D. studies.

This thesis could not have been completed without his patient supervision during

technical discussions and paper revisions. With sufficient flexibility, I was able to

delve into my favorite research areas. Moreover, I am grateful that he helped me

apply for a scholarship, which remarkably assisted me in focusing on my research.

Beyond research, our group outings marked unforgettable and enjoyable times

throughout my study.

I would also like to express my gratitude to DataLab and Photon Force Ltd.

for their research funding, which covered my living expenses. I learned imperative

skills for a Ph.D. student, such as academic presentation and writing, from the

training sessions provided by DataLab. Additionally, I want to appreciate the

support from all group members, not only for research discussions but also for

pleasant times on basketball courts, in lounges, and during video games.

Last but not least, I want to express my love and gratitude to my parents.

They always try their best to provide me with the best educational resources and

living conditions without any complaints.

iv

List of Symbols

𝛼𝑖: Amplitude Fractions of the 𝑖th Lifetime Component

𝛼: Ratio between Dynamic Scatterers and All Scatterers

𝛽: Coherence Factor

𝛽ℎ: Hyper-parameter for Total Variance

𝛽𝐸𝐿𝑀 : Learned Parameters in ELM

𝛽(𝑖): Learned Parameter in Batch Normalization of the 𝑖th output channel

𝛿: Accuracy Threshold

𝛿𝜏: Noise of Autocorrelation Function in DCS

𝛿𝐵𝑁 : Statistical Standard Deviation of Input Feature Map

𝜖 : Poisson Noise

𝜂: Quantum Efficiency

𝛾: Attenuation Factor

𝛾(𝑖): Learned Parameter in Batch Normalization of the 𝑖th output channel

𝜃: Trained Parameters in Deep Neural Network

𝜆: Wavelength

𝜆𝐸𝐿𝑀 : Hyper-parameter in ELM Training

𝜇𝑎: Absorption Coefficient

𝜇𝐵𝑁 : Statistical Mean of Input Feature Map

𝜇
′
𝑠: Reduced Scattering Coefficient

v

𝜌: Source-Detector Distances

𝜏: Lag Time in DCS

𝜏𝐴: Amplitude-Weighted Average Lifetime in FLIM

𝜏𝐼 : Intensity-Weighted Average Lifetime in FLIM

Γ: Decay Rate of Electric Field Autocorrelation Function

L: Loss Function

Υ: Ground Truth Data for Training ELM

vi

List of Abbreviations

AC Adder-Convolutions

ACF Autocorrelation Function

ACNN Adder-Based Convolutional Neural Network

ANN Artificial Neural Network

ASIC Application Specific Integrated Circuit

ALR Adaptive Learning Rates

AXI Advanced eXtensive Interface

BCMM Bi-Decay Centre of Mass Method

BN Batch Normalization

BFi Blood Flow Index

BRAM Block Random Access Memory

CDE Correlation Diffusion Equation

CMM Centre of Mass Method

CNN Convolutional Neural Network

CW Continuos Wave

CS Compress Sensing

CPS Count per Second

DCS Diffuse Correlation Spectroscope

DDR Double-Data-Rate Synchronous DRAM

vii

DFF D-flip-flop

DSP Digital Signal Processing

DNN Deep Neural Network

ELM Extreme Learning Machine

FM Feature Map

FRET Förster Resonance Energy Transfer

FLIM Fluorescence Lifetime Imaging

FLAN Fluorescence Lifetime AdderNet

FLOPS Floating-Point Operations per Second

FPGA Field Programmable Gate Array

FLP Floating Point

FWHM Full Width at Half Maximum

FXP Fixed Point

GNR Gold Nanorod

GPU Graphics Processing Unit

GT Ground Truth

HLS High-Level Synthesis

KL Kullback-Leibler

IRF Instrument Response Function

KL Kullback-Leibler

LiDAR Light Detection and Ranging

LM Log-Matched

LS logarithmic Scale

LSTM Long Short-Term Memory

LUT Look-up Table

MAE Mean Absolute Error

viii

MC Monte Carlo

MCX Monte Carlo eXtreme

MLE Maximum Likelihood Estimation

MLP Multilayer Perceptron

MSE Mean Square Error

MPSoC Multiprocessor Systems-on-Chip

NLSF Non-Linear Square Fitting

PDF Probability Density Function

PE Processing Element

PMT PhotoMultiplier Tube

PS Processing System

PL Programmable Logic

PPMS Pixel per Millisecond PMS Pixels per MilliSecond

SBR System Background Ratio

SDD Source-Detector Distance

SGD Stochastic Gradient Descent

SNR System Noise Ratio

SIMD Single Instruction Multiple Data

SSIM Structural Similarity Index

SoC System on Chip

SPAD Single-Photon Avalanche Diode

SLFN Single hidden Layer Feed-forward Neural network

TCSPC Time-Correlated Single-Photon Counting

ToA Time of Arrival

ToF Time of Flight

TDC Time to Digital Converter

ix

TPSF Temporal Point Spread Function

TV Total Variation

UAC Unified Added-Convolution

VFPU Vector Floating-Point Unit

VM Vector-Multiplication

x

Publication List

• Z. Zang and D. D. U. Li, "Object Classification through Heterogeneous

Fog with a Fast Data-driven Algorithm Using a Low-Cost Single-Photon

Avalanche Diode Array," Optics Express, vol. 32, no. 19, pp. 33294-33304,

2024.

• Z. Zang, Q. Wang, and D. D. U. Li, "Towards High-performance Deep

Learning Architecture and FPGA Accelerator Design for Robust Parameter

Reconstruction of Diffuse Correlation Spectroscope," Computer Methods

and Programs in Biomedicine, 108471, 2024.

• Q. Wang, Z. Zang, and D.D.U. Li, "Quantification of Blood Flow Index in

Diffuse Correlation Spectroscopy Using a Robust Deep Learning Method,"

accepted, Journal of Biomedical Optics, vol. 29, no. 1, 015004, 2024.

• Z. Zang, D. Xiao, Q. Wang, Z. Jiao, Y. Chen, and D.D.U. Li, "Compact

and Robust Deep Learning Architecture for Fluorescence Lifetime Imaging

and FPGA Implementation," Methods and Applications in Fluorescence,

vol. 11, no. 2, 025002, 2023.

xi

• Z. Zang, U. Dolinsky, P. Ghiglio, S. Cherubin, M. Goli, and S. Yang,

"Building a Reusable and Extensible Automatic Compiler Infrastructure

for Reconfigurable Devices," pp. 351-352. 33rd International Conference

on Field-Programmable Logic and Applications (FPL), 2023.

• Z. Jiao, Z. Zang, Q. Wang, Y, Chen, D, Xiao, and D. D. U. Li, "PAIM

(𝜋M): Portable AI-enhanced Fluorescence Microscope for Real-Time Target

Detection," Optics and Laser Technology, vol. 163, 109356, 2023.

• Z. Zang, D. Xiao, Q. Wang, W. Xie, Y. Chen, and D. D. U. Li, "Fast Anal-

ysis of Time-Domain Fluorescence Lifetime Imaging via Extreme Learning

Machine,"Sensors, vol. 22, no. 10, 3758, 2022.

• Q. Wang, Yahui Li, D. Xiao, Z. Zang, Z. Jiao, and D. D. U. Li, "Simple and

Robust Deep Learning Approach for Fast Fluorescence Lifetime Imaging,"

Sensors, Vol. 22, No. 19, 7293, 2022.

• Z. Zang, D. Xiao, Q. Wang, Z. Li, Y. Chen, and D. D. U. Li, "Hardware

Inspired Neural Network for Efficient Time-Resolved Biomedical Imaging,"

44th Annual International Conference of the IEEE Engineering in Medicine

& Biology Society (EMBC), pp. 1883-1886, 2022.

• D. Xiao, Z. Zang, Q. Wang, Z. Jiao, F. Rocca, Y. Chen, and D. D. U.

Li, "Smart Wide-Field Fluorescence Lifetime Imaging System with CMOS

Single-Photon Avalanche Diode Arrays," 44th Annual International Con-

ference of the IEEE Engineering in Medicine & Biology Society (EMBC),

pp. 1887-1890, 2022.

xii

• D. Xiao, Z. Zang, W. Xie, N. Sapermsap, Y. Chen, and D. D. U. Li, "Spa-

tial Resolution Improved Fluorescence Lifetime Imaging via Deep Learn-

ing,"Optics Express, vol. 30, no. 7, pp. 11479-11494, 2022.

• Z. Zang, D. Xiao, and D. D. U. Li, "Non-Fusion Time-Resolved Depth

Image Reconstruction Using a Highly Efficient Neural Network Architec-

ture,"Optics Express, vol. 29, no. 13, pp. 19278-19291, 2021.

• D. Xiao, Z. Zang, N. Sapermsap, Q. Wang, W. Xie, Y. Chen, and D. D.

U. Li, "Dynamic Fluorescence Lifetime Sensing with CMOS Single-Photon

Avalanche Diode Arrays and Deep Learning Processors,"Biomedical Optics

Express, pp. vol. 12, no. 6, pp. 3450-3462, 2021.

• W. Xie, H. Chen, Z. Zang, D. D. U. Li, "Multi-Channel High-Linearity

Time-to-Digital Converters in 20 nm and 28 nm FPGAs for LiDAR Appli-

cations,"6th International Conference on Event-Based Control, Communi-

cation, and Signal Processing (EBCCSP), pp. 1-4, 2020.

xiii

Contents

Copyright i

Abstract ii

Acknowledgements iv

List of Symbols v

List of Abbreviations vii

Publication List xi

Contents xiv

List of Figures xviii

List of Tables xxv

1 Introduction 1

1.1 Thesis Structure . 4

2 Non-Fusion Deep Learning Framework for Accurate Depth Re-

construction for Single-Photon LiDAR 9

xiv

CONTENTS

2.1 Background . 9

2.2 Prior Work . 10

2.3 Problem Definition . 12

2.4 Non-Fusion ToA Denoising Model 14

2.4.1 Neural Network Architecture 14

2.4.2 Training Detail . 18

2.5 Evaluation . 20

2.5.1 Loss Evaluation . 20

2.5.2 Synthetic Data . 22

2.6 Captured Data . 27

2.7 Discussion . 29

2.8 Summary and Future Work . 33

3 Compact and Robust Deep Learning Architecture for Fluores-

cence Lifetime Imaging and FPGA Implementation 34

3.1 Background . 34

3.2 Prior Work . 36

3.2.1 Deep Learning for FLIM 36

3.2.2 Hardware Platforms for FLIM 37

3.3 Problem Definition . 38

3.4 Deep Learning Network Details 39

3.4.1 Network Architecture . 40

3.4.2 Preparation for Hybrid Training Data 44

3.5 Training Details . 46

3.6 Data Compression Strategies . 47

3.6.1 Log-Scale Mapping for Time-Bin 47

xv

CONTENTS

3.6.2 On-Chip Linear Quantization 50

3.7 Synthetic Data Evaluation . 50

3.8 Real-Case Study: Fluorescent Beads Discrimination 54

3.8.1 Sample Preparation . 54

3.8.2 Optical Setup . 55

3.8.3 Quantitative Analysis . 55

3.9 Hardware Implementation . 60

3.10 Summary and Future Work . 66

4 Fast Fluorescence Lifetime Imaging Analysis Using Extreme Learn-

ing Machine for Time-Domain Single-Photon Detector 68

4.1 Background . 68

4.2 Apply ELM to FLIM . 69

4.2.1 ELM Theory . 70

4.3 ELM Network Architecture . 71

4.4 Synthetic Data Analysis . 72

4.4.1 Comparisons of Individual Lifetime Components 73

4.4.2 Comparisons of 𝜏𝐴 . 78

4.4.3 Comparisons of 𝜏𝐼 . 80

4.5 Experimental FLIM Data Analysis 81

4.5.1 Experimental Setup and Sample Preparation 82

4.5.2 Algorithm Evaluation . 83

4.5.3 Low Counts Scenarios . 85

4.6 Summary and Future Work . 86

xvi

CONTENTS

5 Towards High-performance Deep Learning Architecture and Hard-

ware Accelerator Design for Robust Parameters Analysis in Dif-

fuse Correlation Spectroscopy 88

5.1 Background . 88

5.2 Prior Work . 91

5.2.1 Algorithms Review . 91

5.2.2 Hardware Processor Review 92

5.3 Analytical Model . 93

5.3.1 Monte Carlo Simulation 98

5.4 DL Architecture . 98

5.4.1 Accuracy Evaluation . 102

5.4.2 Accelerator Architecture 104

5.4.3 Accelerator Evaluation . 107

5.5 Summary and Future Work . 109

6 Conclusions and Final Remarks 110

6.1 Summary of Remarks . 110

6.2 Potential Future Works . 111

References 114

xvii

List of Figures

1.1 The structure of the thesis. 5

2.1 Time intervals between emitted and detected photons are mea-

sured and digitalized by the TCSPC system. Detected photons

are accumulated to generate a 3D tensor. Each data cube (blue)

is a histogram, and neural network post-processing is adopted to

retrieve the time-bin index representing the average distance. . . . 12

2.2 The proposed model’s architecture. The input is a ToA tensor

corrupted by background noise. By adopting dense connections in

each row, short- and long-range information can be fully explored.

A more robust depth map can, therefore, be obtained. 15

2.3 Dataflow and quantization process in each convolutional layer. In

the forward propagation phase, the weight and activation are quan-

tized with a low-bit accordingly. 17

2.4 (a) and (b). Training and validation loss; (c) and (d). RMSE plots

with different quantization cases. Each plot contains the original

FLP 32-bit format and three quantization cases. 21

xviii

LIST OF FIGURES

2.5 Depth images reconstructed from the ToA tensor. The fidelity dif-

ferences between monocular-SPAD fusion and the proposed model

are marked in red boxes. The proposed model can reveal more

details for long-distance objects and obtain a lower overall RMSE

when SBR equals 0.04. 23

2.6 Reconstructed images using different algorithms. The SBRs from

the first row to the last row are 0.2 (2 target photons and 10

background photons), 0.04 (2 target photons and 50 background

photons), and 0.02 (2 target photons and 100 background photons).

Our model can obtain lower RMSE than other algorithms when

SBR equals 0.2 and 0.04 and achieves a comparable RMSE with

Sunet al., even without fusion strategies. 25

2.7 (a). Intensity images of the five scenes used for fusing with Lindell

et al.’s and Sun et al.’s models. (b). Detected ToA data cubes of

five scenes. The bouncing ball and a hallway (the 4𝑡ℎ and 5𝑡ℎ rows)

scenes contain intense ambient light, leading to blurred impact.

(c). Reconstructed depth maps. Lindell et al. used the intensity-

SPAD fusion, and Sun et al. used the monocular-SPAD fusion.

The processing time is proportional to the network’s depth, and

the RMSE decreases for a deeper network. 28

2.8 (a) RMSE and (b) squared relative difference (Sq rel) plots in

terms of SBR. The dashed lines indicate neural network-based al-

gorithms, and the rest represent optimization based algorithms.

‘Sun’ and ‘Lindell w/’ shown in the legend use the monocular-

SPAD and intensity-SPAD fusion strategy, respectively. 30

xix

LIST OF FIGURES

2.9 The processing time is proportional to the network’s depth, and

the RMSE decreases for a deeper network. 32

3.1 Overview of FLAN architecture. Histograms from each pixel will

be processed consecutively, and the pixels from the background

will be discarded initially. Prostatic cells coated with biomarkers

are adopted here for illustration. 41

3.2 Procedures for generating mono- and bi-exponential TPSFs. The

simulated IRF I(t) convolved with mono- and bi-exponential PDFs

h(t). After that, peak photon counts 𝑁𝑝 were applied to mimic real

histograms. And then Poisson noise 𝜖 (𝑡) was added at the final step. 45

3.3 Training and validation loss curves from 1D CNN, FLAN, and

FLAN + LS. 46

3.4 IRFs, original and compressed synthetic decays.(a) Mono-exponential

decay with lifetime. (b) Bi-exponential decay with lifetime. 48

3.5 Nonlinear time-bin mapping, merging original 256 time-bin to com-

pressed 80 time-bin. 48

3.6 Synthetic GT and reconstructed 𝜏𝐴 and 𝜏𝐼 FLIM images. MSE

is used to evaluate the accuracy. (a),(b), and (c) reconstructed

𝜏𝐴 in [1000,5000], [100,1000], and [10,100] photon-count. (d),(e),

and (f) reconstructed 𝜏𝐼 in [1000,5000], [100,1000], and [10,100]

photon-count. 52

3.7 Lifetime distributions of 𝜏𝐴 in (a),(b), and (c); 𝜏𝐼 in (d),(e), and

(f) retrieved from different algorithms in different levels of photon

count. 53

xx

LIST OF FIGURES

3.8 Phasor plots of unmixed (Yellow-green) fluorescent beads and mixed

(Yellow-green and Crimson), showing (a) one cluster and (b) two

clusters. 56

3.9 Unmixed beads (Yellow-green) evaluation using accuracy and pre-

cision . 57

3.10 Lifetime reconstruction of mixed beads (Yellow-green and Crimson). 57

3.11 Reconstructed lifetime distributions of mixed beads using different

algorithms. The reference lifetimes of Yellow-green and Crimson

are 2.1 ns and 3 ns, respectively. 58

3.12 Reconstructed lifetime images of Convallaria majalis cells.(a) in-

tensity image; (b) phasor projection image; (c) and (d) recon-

structed 𝜏𝐴 and 𝜏𝐼 from FLAN; (e) and (f) reconstructed 𝜏𝐴 and

𝜏𝐼 from FLAN+LS. 59

3.13 Pipelines of files generation for (a) training on PC and (b) inference

on FPGA. 61

3.14 Overview of the FPGA hardware platform embedding four FLANs. 61

3.15 Architecture of UAC. BRAMs storing and caching learned param-

eters and FMs are partitioned to feed data to corresponding ACs.

Multiple ACs and BN modules are instantiated to improve paral-

lelism. (b) BRAMs were partitioned into smaller portions to cache

parallel data on-the-fly. 62

3.16 Relationships between batch sizes and throughput (pixel/ms) in

the inference phase on CPU, GPU, and FPGA + CPU. 65

xxi

LIST OF FIGURES

4.1 ELM is used for lifetime analysis. The input data are a 1-D pixel-

wise histogram from the raw point cloud that contains 256 time

bins. The histogram is fed into a single-hidden-layer ELM, and

lifetime parameters (𝜏1, 𝜏2, and 𝛼) can be obtained from output

nodes. 72

4.2 Box plots of absolute error versus different peak intensity levels re-

garding testing datasets. (a,b) Single lifetime estimations of mono-

exponential decays from ELM and NLSF, respectively. (c,d) Dou-

ble lifetime estimations of bi-exponential decays from ELM and

NLSF, respectively. (e,f) 𝜏𝐴 estimated by ELM and NLSF, respec-

tively. 74

4.3 Lifetime parameters’ estimation results, photon counts for each

pixel were randomly picked between 25 and 500. (a) The estimated

single lifetime using a mono-exponential decay model, where 𝜏 ∈

[0.1, 5] ns from top to down in the image. (b) The two estimated

lifetimes using a bi-exponential decay model where 𝜏1=0.3 ns, 𝜏2=3

ns, and 𝛼 ∈ [0, 1], from the top down. (c) Two phasor plots of GT

distributions of (a, b). (d) Prediction accuracy and 𝑅2 of 𝜏𝐴 from

ELM and NLSF, with 𝜏1=0.3 ns, and 𝜏2=2.5 ns, respectively. . . . 75

4.4 F -value ys with 𝜏1, 𝜏2, and 𝛼 in the ranges [0.1, 1] ns, [1, 3] ns,

and [0, 1], respectively. (c,d) Bias per histogram for mono- and

bi-exponential decays. 77

4.5 (a) Intensity image of GT 𝜏𝐴 in n exact ranges. 𝐼𝑝𝑐 depicts total

photon counts in one pixel. The range from 40 to 400 is viewed as

low photon counts. (b) the GT 𝜏𝐴 lifetime image with the range

[0.3, 2.5] ns. (c-e), 𝜏𝐴 images from ELM, NLSF, and BCMM. . . . 77

xxii

LIST OF FIGURES

4.6 (a) GT 𝜏𝐼 image in exact ranges. (b-d), Reconstructed 𝜏𝐼 images

from ELM, NLSF, and CMM for bi-exponential decays. 79

4.7 (a), (b) Loss curves and time consumption vs. different numbers

of nodes in the hidden layer. 79

4.8 Lifetime analysis of prostatic cells loaded with gold nanoprobes.

(a) The intensity image, b) phasor plot, and (c) phasor projection

image. (d–g) 𝜏𝐴 restored by ELM, 1D CNN, NLSF, and CMM.

(h) Lifetime histograms of ELM, 1-D CNN, NLSF, and BCMM. . 83

4.9 (a) Intensity images with different scales of colorbars, scanning

cycles were set to 10, 40, 60, and 80. Colorbars are unified. (b) 𝜏𝐴

ages and pixel occurrence reconstructed by ELM in different cycles. 86

5.1 The concept of spatial diffuse reflectometry in a semi-infinite ge-

ometry. 94

5.2 𝑔2(𝜏) curves with fixed optical parameters but with (a) different

averaging time (t = 1 seconds, 5 seconds, and 10 seconds) and (b)

with different photon intensities (I = 20 kcps, 40 kcps, and 80 kcps). 96

5.3 Comparison between MC simulation and analytic model for 𝑔1(𝜏)

and 𝑔2(𝜏) of milk. (a) and (b) generated and fitted curves us-

ing MCX and analytical models. (c) and (d) Euclidian distance

between simulated and fitted curves. 97

5.4 ACNN architecture in training and inference phases. 99

5.5 Training and validation loss curves of ACNN and CNN. (a) and

(b), ACNN training and validation loss curves in 109 epochs. (c)

and (d), CNN training and validation loss curves in 96 epochs. . . 100

xxiii

LIST OF FIGURES

5.6 R-square and MSE evaluation between ACNN, CNN, NLSF. (a)

and (b) R-square of BFi and from ACNN. (c) and (d) R-square of

BFi and 𝛽 from CNN. (e) and (f) R-square of BFi and 𝛽 from NLSF.101

5.7 Histograms depict the weights distribution of CNN and ACNN. (a)

and (b) represent Gaussian and Laplace distributions of CNN’s and

ACNN’s weights. 103

5.8 Accuracy evaluation of ACNN and CNN under different levels of

photon rate in the noise model. (a) and (b) reconstructed 𝛽 and

BFi. 103

5.9 Hardware architecture integrates intensity temporal ACF compu-

tation and ACNN accelerators (10 cores on Zynq and 15 on Zynq

UltraScale+). (a). The architecture overview illustrates the data

transfer and functionalities of each module. (b). Detailed architec-

ture of each DL core, data path and memory access were depicted

with back and yellow arrows, respectively. (c). Detailed structures

of each UAC illustrate parallelism in the input channel, output

channel, and kernel size. 106

5.10 DL cores implementation on Zynq-7000 and Zynq-UltraScale+ with

different quantization FXP schemes, and their corresponding MAE

of BFi and 𝛽. 108

xxiv

List of Tables

2.1 Compression rates of our FLP model and existing networks in

terms of the parameter size, training time and compression rate. . 22

2.2 Extensive evaluations between Sun et al.’s [23] and the proposed

models with SBR = 0.04. The proposed model achieves more ro-

bust results across five evaluations metrics. 25

2.3 Quantitative analysis of the proposed and existing algorithms over

seven indoor scenes. Three tables are for three different SBR levels

- 0.2, 0.04, and 0.02. And the underlined numbers mean that they

are comparable to the best existing results. 26

3.1 Comparisons of DL Architectures for FLIM 43

3.2 Ranges of lifetime parameters for synthetic data. 46

3.3 Comparisons of Hardware-Efficient DL Networks Implemented on

FPGA. 64

4.1 Time Consumption (Seconds) of NLSF and ELM for Reconstruct-

ing Lifetime Parameters. 78

4.2 Comparisons of Existing NN Architecture for Lifetime Estimation. 80

5.1 Detailed computational information of each layer. 100

xxv

LIST OF TABLES

5.2 Evaluation results of ACNN accelerators with different quantiza-

tion bit-width on Zynq-7000 and Zynq-UltraScale+ FPGA. 106

5.3 Performance comparisons of CPU, GPU, and FPGA-based SoC

when processing different numbers of pixels (ACFs) for each batch. 107

xxvi

Chapter 1

Introduction

Many time-domain active imaging systems that utilize single-photon detectors

and lasers, such as single-photon LiDAR [1, 2], fluorescence lifetime imaging

(FLIM) [3, 4], and diffuse correlation spectroscopy (DCS) [5, 6], can be effec-

tively described using corresponding mathematical models. These models cap-

ture the optical interactions between lasers, objects, and detectors. For instance,

temporal point spread functions (TPSFs) or histograms generated from collected

photons in LiDAR and FLIM are modeled based on the experimental setup and

key parameters of interest, such as time-of-flight (ToF) and fluorescence lifetime,

respectively. In the case of DCS, autocorrelation functions, calculated directly

from time-resolved photon intensity, can be derived using an analytical model

involving the blood flow index, which characterizes the transport and scatter-

ing behavior of photons in tissue or phantoms. These models typically integrate

optical illumination behavior, observed data, and a function containing the pa-

rameters to be reconstructed. However, reconstructing these parameters from the

function using observed data constitutes an inverse problem, posing significant

challenges due to its inherently ill-posed nature.

1

1.

Persistent issues such as low signal-noise ratios (SNR), and slow computational

speeds have continued to impede real-time and accurate parameter reconstruc-

tion, despite the use of typical optimization-based or fitting strategies tailored

to specific inverse problems [7–11]. To tackle these challenges, there is a grow-

ing interest in leveraging mathematical models to generate authentic synthetic

data or developing automated data collection pipelines. Deep neural networks

(DNNs) have emerged as promising solutions to address these challenges in a

data-driven manner. Additionally, with the non-iteration properties of DNNs’

feed-forwards inference and compressible raw data from single-photon sensors,

compression strategies and hardware acceleration can be achieved.

In this thesis, we aim to tackle mentioned challenges within the realm of emerging

photonic signal processing topics using data-driven methods.

• Chapter 2: photon efficient DNN and data compression for data-

driven 3D ranging: Single-photon avalanche diode (SPAD) arrays are

emerging detectors for modern time-resolved single-photon LiDAR systems.

The ToF of individual photons, emitted from the light source and subse-

quently reflected from the object, is encoded into histograms, delineating

the distribution of the photons’ ToF for each pixel. Crucially, the recon-

struction of the object’s geometry relies on accurately retrieving the peak

from these histograms. Nonetheless, this task is often hindered by the pres-

ence of low signal-to-background ratio (SBR). We endeavors to tackle the

challenges posed by low SBR through the utilization of a high computa-

tional efficiency data-driven approach. This chapter was derived from the

published paper:

2

1.

Z. Zang, D. Xiao, and D. D. U. Li, "Non-Fusion Time-Resolved Depth

Image Reconstruction Using a Highly Efficient Neural Network Architec-

ture,"Optics Express, vol. 29, no. 13, pp. 19278-19291, 2021.

• Chapter 3: Hardware-friendly DNN and hardware implementa-

tion for FLIM: While fluorescence lifetime reconstruction is commonly

performed offline on CPUs or GPUs, often exhibiting low computational

efficiency, we propose a hardware-friendly data-driven framework and an

FPGA-based embedded solution to accelerate this process. Furthermore,

we tackle the challenge of low photon count conditions, especially prevalent

in specialized bio-tissues like the retina, while ensuring high accuracy in

lifetime estimation. This chapter was derived from the published paper:

Z. Zang, D. Xiao, Q. Wang, Z. Jiao, Y. Chen, and D.D.U. Li, "Compact

and Robust Deep Learning Architecture for Fluorescence Lifetime Imaging

and FPGA Implementation," Methods and Applications in Fluorescence,

vol. 11, no. 2, 025002, 2023.

• Chapter 4: Fast training and inference for data-driven FLIM:

FLIM is a powerful indicator of molecular dynamics. Emitted individual

photons from the stimulated tissue or cells by the light source are col-

lected by a time-resolved single-photon sensor. Intensity information and

fluorescence lifetime can be reconstructed pixel-by-pixel or globally using

histograms obtained during acquisition time. We propose a data-driven

algorithm with a fast training approach to accelerate model learning and

lifetime estimation, paving the way for clinical and surgery applications.

This chapter was derived from the published paper:

3

1.

Z. Zang, D. Xiao, Q. Wang, W. Xie, Y. Chen, and D. D. U. Li, "Fast Anal-

ysis of Time-Domain Fluorescence Lifetime Imaging via Extreme Learning

Machine,"Sensors, vol. 22, no. 10, 3758, 2022.

• Chapter 5: Compact DNN and hardware implementation for

data-driven DCS: DCS is a non-invasive method for monitoring the blood

flow index (BFi), typically employing coherent near-infrared light. This

technique relies on detecting speckle patterns generated by the rapid move-

ment of red blood cells within the tissue. By measuring the temporal au-

tocorrelation function (ACF) of photon counts, BFi can be estimated via

reconstruction algorithms. We introduce a compact deep learning (DL)

architecture and FPGA-based accelerator designed to achieve rapid embed-

ded reconstruction of BFi. This chapter was derived from the paper being

peer-reviewed:

Z. Zang, Q. Wang, and D. D. U. Li, "Towards High-performance Deep

Learning Architecture and FPGA Accelerator Design for Robust Parame-

ter Reconstruction of Diffuse Correlation Spectroscope," submitted to Com-

puter Methods and Programs in Biomedicine, 2024.

1.1 Thesis Structure

The structure of the thesis is depicted in Figure 1.1. Although they all fall under

the purview of single-photon signal processing, each topic is uniquely tailored to

address specific applications, underpinned by distinct and discerning design im-

peratives. The abstract of each chapter are summarized as follows. For concep-

tual clarity, the background of each topic will be expounded within the confines

of each chapter.

4

1.

Figure 1.1: The structure of the thesis.

• Chapter 2: proposes a photon-efficient, non-fusion DNN that can directly

reconstruct high-fidelity depth images from histograms without relying on

other guiding images with extremely low SBR - 0.2, 0.04, 0.02. Besides, the

DNN is compressed via a low-bit quantization scheme so that it is suitable to

be implemented on embedded hardware platforms. The proposed quantized

DNN achieves superior reconstruction accuracy and fewer parameters than

previously reported networks.

• Chapter 3: reports a bespoke adder-based DNN for FLIM analysis. By

leveraging the 𝑙1-norm extraction method, an 1D Fluorescence Lifetime

AdderNet (FLAN) without multiplication-based convolutions is proposed to

reduce the computational complexity. Further, fluorescence decays are com-

pressed in temporal dimension using a log-scale merging technique to dis-

5

1.

card redundant temporal information derived as log-scaling FLAN (FLAN

+LS). FLAN+LS achieves 0.11 and 0.23 compression ratios compared with

FLAN and a conventional 1D convolutional neural network (1D CNN) while

maintaining high accuracy in retrieving lifetimes. This chapter extensively

evaluates FLAN and FLAN+LS using synthetic and real data. A tradi-

tional fitting method and other non-fitting, high-accuracy algorithms are

compared with our networks for synthetic data. Our networks attain a

minor error in different photon-count scenarios. For real data, fluorescent

beads’ data acquired by a confocal microscope is presented to validate the

effectiveness of real fluorophores, our networks can differentiate beads with

different lifetimes. Additionally, FLAN and FLAN+LS are implemented on

an FPGA with a post-quantization technique to compress the bit-width,

thereby improving computing efficiency. FLAN+LS on hardware achieves

the highest computing efficiency compared to 1D CNN and FLAN. This

chapter also discusses the applicability of our network and hardware ar-

chitecture for other time-resolved biomedical applications using photon-

efficient, time-resolved sensors.

• Chapter 4: presents the extreme learning machine (ELM) for fast and

accurate FLIM analysis. This chapter used extensive metrics to evaluate

ELM and existing algorithms. First, these algorithms are compared using

synthetic datasets. The results indicate that ELM can obtain higher fidelity,

even in low-photon conditions. Afterward, ELM is used to retrieve lifetime

components from human prostate cancer cells loaded with gold nanosensors,

showing that ELM also outperforms the iterative fitting and non-fitting

algorithms. By comparing ELM with a computationally efficient DNN,

6

1.

ELM achieves comparable accuracy with less training and inference time.

As there is no back-propagation process for ELM during the training phase,

the training speed is much higher than existing DNN approaches. The

proposed strategy is promising for edge computing with online training.

• Chapter 5: leverages a rigorous analytical model to generate ACFs to train

a compact DNN. This chapter assesses the accuracy of the proposed DNN

using simulated data based on a single-layer model of milk. Compared to

convolutional neural networks (CNN), our lightweight DNN achieves 66.7%

and 18.5% improvement in mean square error (MSE) for BFi and the co-

herence factor 𝛽, using synthetic data evaluation. The DNN is optimized

by using subtraction for feature extraction, considering further hardware

implementation. The chapter extensively explores computing parallelism

and fixed-point quantization within the DNN. With the DNN’s compact

size, we employ unrolling and pipelining optimizations for computation-

intensive for-loops in the DL model while storing all learned parameters in

on-chip BRAMs. We also achieve pixel-wise parallelism, enabling simul-

taneous, real-time processing of 10 and 15 ACFs on Zynq-7000 and Zynq-

UltraScale+ FPGA, respectively. Unlike existing FPGA accelerators that

produce BFi and 𝛽 from ACFs on standalone hardware, our approach is an

encapsulated, end-to-end on-chip conversion process from intensity photon

data to the temporal intensity ACF and subsequently reconstructing BFi

and 𝛽. This hardware platform achieves an on-chip solution to replace post-

processing and miniaturize modern DCS systems that use single-photon

7

1.

cameras. While comprehensively comparing the performance running the

DNN on CPU, GPU, and FPGA, FPGA surpasses CPU and GPU in terms

of computational efficiency.

8

Chapter 2

Non-Fusion Deep Learning Framework for

Accurate Depth Reconstruction for

Single-Photon LiDAR

2.1 Background

Depth imaging has been an essential tool in various applications, such as au-

tonomous vehicles [12], vision-guided robotic systems [13], and augmented reality

applications [14]. Many strategies have been proposed to obtain depth infor-

mation from captured intensity images. For example, Zhan et al. used machine-

learning and monocular depth perception [15] principles to retrieve depth informa-

tion from RGB images. However, the reconstruction fidelity deteriorates because

of the scale ambiguity. The stereo-vision technique mimicking human vision sys-

tems [16] is also popular. It uses the triangulation principle to understand spatial

information. Conventionally, stereo-based cameras are not photon-sensitive; few

reflected photons are detected. Besides, the sensing accuracy of the stereovision

approach deteriorates when it works in dark conditions or performs long-distance

9

2.

measurements, whereas LiDAR can overcome the limitations. LiDAR has become

popular in ranging applications. Unlike Radar systems [17] that use radio waves

to measure the ToF between transmitted and reflected signals, LiDAR systems

adopt pulsed light with a much shorter wavelength to detect an object’s range.

Therefore, LiDAR can obtain more accurate spatial information than Radar for

seeing objects at a longer distance [1]. SPADs [18] are effective LiDAR sensors

due to their singlephoton sensitivity and excellent temporal resolutions. Richard-

son et al. developed and applied low-noise SPAD sensors [19] to time-resolved

imaging [3, 20]. Recent advances in silicon manufacturing have introduced more

compelling high fill-factor devices [21].

2.2 Prior Work

Convex-optimization [22] and Bayesian inference [23] approaches have been widely

adopted to tackle the recovery problem in low photon-flux conditions. Shin et

al. [7] modelled photon registration behaviors as the rate function [24] of a

Poisson process and used the constrained maximum likelihood estimation (MLE)

to reconstruct depth images. Later, to improve the reconstruction accuracy, Rapp

and Goyal [8] proposed a pixel-wise spatial unmixing strategy to split the signal

cluster and background noise. Tachella et al. used the Bayesian theory to identify

surfaces from pixel-wise histograms [25], using the advanced Markov chain Monte

Carlo (MCMC) sampling method to address the maximum-a-posterior (MAP)

problem. Although their algorithm yielded outstanding 3D reconstructions with

a fast processing speed, some hyperparameters should be adjusted to maintain

accuracy and computing efficiency. Quentin et al [26] have used the expectation-

10

2.

maximization (EM) method to estimate multi-spectral and depth profiles. It

shows excellent performances in estimating mixed probabilistic models with latent

variables.

Deep neural networks (DNNs) feature hierarchical structure, showing powerful

learning ability from complex data. Using DNN with sensor-fusion strategies has

been a new trend for extracting ToA depth maps. Lindell et al. [27] first intro-

duced a U-net neural network [28] merging 2D intensity images and 3D SPAD

tensor data to reconstruct depth images. To make the hardware platform more

compact, a dedicated neural network was proposed [29] for a SPAD array that can

simultaneously generate intensity images and ToA data. Another sensor fusion

architecture [30] uses monocular depth perception principles to retrieve a coarse-

grain depth map in advance. The corresponding ToA data is fused with the

up-projected monocular depth map. This fusion strategy achieved more accurate

results than the SPAD-intensity version. A non-local neural network model [31]

was introduced to explore the long-range correlation along spatial and temporal

dimensions. Zhao et al. [32] presented presents a two-stage network for improving

depth estimation in SPAD-based LiDAR 3D imaging, integrating a multi-scale

encoder-decoder with a deep boosting network and an intensity-guided edge re-

finement sub-network to enhance detail and robustness. However, the networks

mentioned above have large model sizes and redundant parameters. Therefore,

they show a long training time and slow inference speed, not suitable for real-

time (10 Hz to 20 Hz or higher frame rate) scenarios. Also, it is intractable to

implement them on embedded hardware such as field-programmable gate arrays

(FPGA) or application-specific integrated circuits (ASIC).

11

2.

Figure 2.1: Time intervals between emitted and detected photons are measured and
digitalized by the TCSPC system. Detected photons are accumulated to generate a 3D
tensor. Each data cube (blue) is a histogram, and neural network post-processing is
adopted to retrieve the time-bin index representing the average distance.

Figure 2.1 shows a conventional SPAD-based LiDAR system, including a pulsed

laser, a SPAD sensor, and a time-correlated single photon counting (TCSPC)

module. The TCSPC module includes a picosecond time-to-digital converter

(TDC) to measure and time-stamp reflected photons from the target. The system

also contains a histogramming module to establish a time of arrival profile for

estimating the average depth (or the distance).

2.3 Problem Definition

For raster-scanning and wide-field ranging systems, a laser source generates pe-

riodic pulses s(t) to illuminate the target scene. The reflected photon flux can

be detected by individual pixels with the quantum efficiency 𝜂 ∈ [0, 1). We as-

sume that there are only a few detected photons (less than 1 photon per pixel).

Therefore, pile-up effects and carriers’ crosstalk [33] are negligible. The spatial

12

2.

resolution of the SPAD array is (𝑚1, 𝑚2) ∈ {1, 2, ...,M}2. According to previously

published reports [24–27], the number of recorded photons in the time interval

𝑛 ∈ {1, 2, ..., 𝑁} of each pixel can be formulated as

𝑟𝑚1,𝑚2 [𝑛] =
∫ (𝑛+1)Δt

𝑛Δt
𝜂(𝑔 ∗ 𝑠) (𝑡 −

2𝑑𝑚1,𝑚2

𝑐
)𝑑𝑡 + 𝑏𝜆, (2.1)

where g denotes the instrument response function (IRF), Δt is the time bin-width

of the TDC, d ∈ R𝑀×𝑀
+ is the scene’s depth profile, c is the speed of light, and

b𝜆 is the ambient light with a wavelength 𝜆. The photon arrival behavior can

be formulated as an inhomogeneous Poisson process [34]. The dark count [33],

triggered by thermally-generated carriers in the SPAD sensor is also considered

the time-varying factor in the Poisson process’s rate function. Consequently, the

histogram in one pixel with I illumination periods can be formulated by a Poisson

process P(·) with a time-varying arrival function

ℎ[𝑡] ∼ P(𝐼 ((𝛾𝑟 [𝑛] + 𝑏𝑑))), (2.2)

where the constant 𝛾, represents the attenuation factor caused by photon scat-

tering on the surface and 𝑏𝑑 is the dark count rate. Suppose 𝑓 (·) is the neural

network’s feed-forward function, and the input is a noise-corrupted tensor com-

posed of 1D pixel-wise histograms with a 2D spatial resolution 𝑀2. Therefore,

pixel-wise denoised ToA data can be modelled as

ℎ̂(𝑚1,𝑚2) = 𝑓 (ℎ(𝑚1,𝑚2); 𝜃), (2.3)

13

2.

where 𝜃 is the parameter set to be learned, and we can use maximum likelihood

estimation (MLE) to calculate it as

𝜃𝑀𝐿 = argmax
𝜃

𝑃(ℎ̂(𝑚1,𝑚2) |ℎ(𝑚1,𝑚2); 𝜃). (2.4)

Equation 2.4 can be solved by the neural network’s learning phase to be detailed

in the next section.

2.4 Non-Fusion ToA Denoising Model

This section introduces the proposed network architecture, loss function, and

low-bit quantization scheme. To conduct a fair comparison with peers’ work, we

focus on depth images retrieved in low photon-flux conditions with a low SBR.

2.4.1 Neural Network Architecture

As shown in Figure 2.2, the U-net++ [35] was used as the network’s backbone,

modified to a 3D version to denoise the ToA tensor. The network consists of two

parts: a main feature extraction module and a refinement module. In Figure 2.2,

𝑥𝑖, 𝑗 represents the nodes where 𝑖 ∈ {0, 1, 2, ..., 𝑙} is the row number along the down-

sampling path (blue arrows) 𝑗 ∈ {0, 1, 2, ..., 𝑙} is the number of nodes in skipped

connections in each row, and l is the level or depth of the down-sampling. The

refinement and a differentiable argmax function after the last up-sampled node

14

2.

Figure 2.2: The proposed model’s architecture. The input is a ToA tensor corrupted
by background noise. By adopting dense connections in each row, short- and long-
range information can be fully explored. A more robust depth map can, therefore, be
obtained.

are included. The procedure for calculating a feature map can be formulated by

𝑥𝑖, 𝑗 =


𝐶𝑜𝑛𝑣(M(𝑥𝑖−1, 𝑗)), 𝑖 > 0, 𝑗 = 0

𝐶𝑜𝑛𝑣([[𝑥𝑖,𝑘] 𝑗−1
𝑘=0],U(𝑥𝑖+1, 𝑗−1)), 0 < 𝑗 < 𝑙

S(𝐶𝑜𝑛𝑣(𝑥𝑖, 𝑗)) 𝑖 = 0, 𝑗 = 𝑙

(2.5)

where Conv (·) denotes the convolution operation, M (·) the max-pooling to

perform downsampling, U (·) the transposed convolution to perform up-sampling,

[·] the concatenating layer’s operation, and S (·) is the soft argmax function to

find the bin index.

By adding dense connections in each horizontal node, our architecture can com-

pensate for information lost due to the down-sampling. Besides, long-range and

short-range concatenations (black dot lines in Figure 2.2) between horizontal con-

15

2.

volutional layers can fuse different non-local spatial and temporal information of

time-of-arrival (ToA) measurements. Within a pixel, a soft-argmax function [20]

is applied to find the index corresponding to the ToF (or the distance) (see Figure

2.2). So the ToA tensor’s noise can be censored during the learning phase, and

the network generates a squeezed 2D depth map from the denoised ToA tensor.

This architecture does not need any guiding images (monocular and intensity)

due to the above features, thereby saving processing time and parameters than fu-

sion approaches. The max-pooling as down-sampling operations along the down-

sampling path is applied to reduce network parameters and computing time. To

make our network portable to embedded hardware, a model compression strat-

egy was applied to simplify it. The bottleneck of embedding neural networks in

reconfigurable hardware is due to limited on-chip memory for storing pre-trained

parameters and the large memory bandwidth for data transfer. Therefore, we

generalize a 2D low-bit parametric quantization scheme [36] for 3D data quanti-

zation to compress the model. Multiplication operations of floating-point (FLP)

numbers can be converted to bitwise operations of fixed-point (FXP) numbers

(in binary). Briefly, suppose x and y are two FXP integers coded with M -bit and

K -bit binary digits respectively. The conversions are subject to x=
∑𝑀
𝑚=0 𝑐𝑚 (𝑥)2𝑚

and y=
∑𝐾
𝑘=0 𝑐𝑘 (𝑥)2𝑘 , where (𝑐𝑚 (𝑥))𝑀−1

𝑚 = 0 and (𝑐𝑘 (𝑥))𝐾−1𝑘
= 0 are corresponding

binary digits. The dot product of x and y can therefore be indicated by

𝑥 ¤𝑦 =
𝑀−1∑︁
𝑚=0

𝐾−1∑︁
𝑘=0

2𝑚+𝑘𝑏𝑖𝑡𝑐𝑜𝑢𝑛𝑡 [𝑎𝑛𝑑 (𝑐𝑚 (𝑥), 𝑐𝑘 (𝑦))], (2.6)

where all operations can be performed via economic bitwise operations in FPGAs.

More details are provided in [36]. As for our neural network, weights (W) and

and activation functions’ outputs (A) are quantized with different bit-widths,

16

2.

Figure 2.3: Dataflow and quantization process in each convolutional layer. In the
forward propagation phase, the weight and activation are quantized with a low-bit
accordingly.

denoted as WXAY, where X and Y are bit-widths. The quantization process in

each convolutional layer is depicted in Figure 2.3, The weights and activations

can be quantized with an arbitrary low bit-width during the forward propagation.

The weights are firstly normalized via a tanh(·) function, and a quantization

function Q𝑘 (·) converts the normalized FLP weights to a FXP format, defined in

Equation 2.8. To avoid information loss, we keep weight parameters in the first

and last layers in the FLP format and compress internal layers’ parameters. k is

the bit-width of parameters’ FXP representations, 𝑤𝑖 and 𝑤𝑜 are FLP weight and

the quantized version, respectively, and 𝑎𝑖 and 𝑎𝑜 are FLP activation functions’

output and the corresponding quantized version. 𝑤𝑜 and 𝑎𝑜 are


𝑤𝑜 = 2Q𝑘 (𝑡𝑎𝑛ℎ(𝑤𝑖)

2𝑚𝑎𝑥(|𝑡𝑎𝑛ℎ(𝑤𝑖) |) +
1
2) − 1

𝑎0 = 2Q𝑘 (𝑎𝑖)
(2.7)

where Q𝑘 (𝑟) is defined as

Q𝑘 (𝑟) =
1

2𝑘 − 1
𝑟𝑜𝑢𝑛𝑑 ((2𝑘 − 1)𝑟). (2.8)

17

2.

The combination of Equation 2.7 and 2.8 is s a ‘straight-through estimator’ [36]

that is also used in the back-propagation. And FLP parameters are quantized to

the k -bit FXP format in the forward propagation. The quantization procedure

was emulated in PyTorch, and it is a prototype for future hardware implemen-

tations. The performance of the proposed quantization strategy is evaluated in

Figure 2.4, presented in Section 2.5.1.

2.4.2 Training Detail

As solving the MLE problem in Equation 2.4 is mathematically equivalent to

minimizing the KL divergence [37], the KL divergence is adopted as the loss

function to minimize the KL distance between the ground truth (GT) histograms

and the network’s output histograms over the spatial dimension:

L(𝐻, 𝐻, 𝜃) = 1

𝑀2

𝑀∑︁
𝑚1=1

𝑀∑︁
𝑚2=1

∑︁
𝑛∈𝑁

𝐷𝐾𝐿 (ℎ(𝑚1,𝑚2) [𝑛] | | ℎ̂(𝑚1,𝑚2)
𝜃

[𝑛])

=
1

𝑀2

𝑀∑︁
𝑚1=1

𝑀∑︁
𝑚2=1

∑︁
𝑛∈𝑁

ℎ(𝑚1,𝑚2) [𝑛] log ℎ
(𝑚1,𝑚2) [𝑛]
ℎ̂
(𝑚1,𝑚2)
𝜃

[𝑛]

(2.9)

where H is the histogram tensor composed of the pixel-wise GT histograms (de-

noted as h) and 𝐻 is the network output containing the predicted pixel-wise

histograms (denoted as ℎ̂). To enhance the efficiency of 2D spatial denoising,

the TV regularization [38] can minimize the spatial variation. The whole loss

function becomes

L(𝐻, 𝐻) = L𝐾𝐿 (𝐻, 𝐻) + 𝛽ℎ𝑇𝑉 (S(𝐻)), (2.10)

18

2.

where 𝛽ℎ is a tunable hyper-parameter before training. We use the SGD to learn

the parameters during the back-propagation, expressed as

𝐽 (𝜃) = ∇𝜃L(𝐻, 𝐻, 𝜃). (2.11)

As for preparing training data, the NYUv2 [39] and Middlebury [40], datasets

were utilized as the training and testing datasets, respectively. The training

dataset contains nine types of indoor scenes with 13k synthetic ToA tensors, and

the validation dataset contains 1.3k. The network’s input is the data cube with

the size of 512 × 512 × 1024, and the SGD with the ADAM algorithm [41] in the

Pytorch library was employed to execute the back-propagation. Loss curves of

training and validation shown in Figure 2.4 were generated and fetched from the

Tensorboard toolkit. To achieve better visualization, we apply a smooth factor

of 0.8 to alleviate fluctuations. For each convolutional module except the last,

batch normalization and ReLU operations are added after the convolution oper-

ations to alleviate the vanishing gradient. We used a mini-batch to optimize the

gradient descent and save memory with a batch size of 5. The hyper-parameter

𝛽ℎ of the TV loss function is 105. 4 epochs (each contains 3200 iterations) are

configured to train the network, guaranteeing a converging loss. The training

dataset is randomly shuffled before each training epoch to generalize our model.

Our architecture’s training time is 17 hours, 7 hours shorter than the existing

sensor-fusion networks. For the inference phase, we aim to retrieve depth im-

ages with a high spatial resolution of 688 × 552. Due to limited GPU memory,

the whole tensor (with the size 588 × 552 × 1024) was divided into small ones

for the network’s input with the size 64 × 64 × 1024. Since the loss curve of

validation fluctuates significantly, it is difficult to use the early-stop method to

19

2.

cease the training to prevent over-fitting. Our approach is to smooth the loss

curve and obtain an approximate range that contains the smallest loss. Then

we apply the synthetic testing dataset on these saved models, and we pick the

one generating the minimum loss or RMSE. The selected model is employed to

deduce the depth images from captured SPAD data. Finally, the reconstructed

result with a high spatial resolution can be generated by seaming the individual

low-resolution ones consecutively. We used SPAD and intensity data captured by

the LinoSPAD system [42], as real-word test datasets. The tensor’s size is 256 ×

256 × 1536, and the average bin-width of embedded TDCs is 26 ps. Moreover,

for a fair comparison with the monocular-SPAD architecture [30], DenseDepth

[43] was used to reproduce monocular depth images to be fused with ToA data

in the SPADnet [30].

2.5 Evaluation

2.5.1 Loss Evaluation

The training and validation loss of the FLP and the quantified model are shown

in Figure 2.4. We implemented three quantization cases and compared them with

the FLP version. Since the training and inference are susceptible to the activa-

tion’s bit-width, we tried different bit-widths to quantize the activations’ output

and selected the best case. As depicted in Figure 2.4, only Case W2A2 shows

degraded performances. Therefore, considering the accuracy and consumption of

computing resources, W2A4 works the best. Table 2.1 compares the model sizes

of existing sensor-fusion models and the proposed architecture, where ‘Lindell

w/ intensity’ and ‘Lindell w/o intensity’ indicate the training with and without

intensity images. The compression rate is determined by comparing the model

20

2.

Figure 2.4: (a) and (b). Training and validation loss; (c) and (d). RMSE plots with
different quantization cases. Each plot contains the original FLP 32-bit format and
three quantization cases.

21

2.

Table 2.1: Compression rates of our FLP model and existing networks in terms of the
parameter size, training time and compression rate.

Parameter size Training time Compression rate

Lindell w/ intensity 3.95MB 24 h 21.99×
Lindell w/o intensity 3.93MB 24 h 21.93×

Sun et al. 3.95MB 24 h 21.99×
Non-local 1.01MB 36 h 5.61×

Proposed (FLP 32-bit) 2.19MB 17 h 12.17×
Proposed (W2A4) 0.18MB 16 h -

size (obtained from PyTorch) with existing models. Although our network was

trained by less powerful GPUs (NVIDIA RTX 5000, whereas NVIDIA Titan V

and 1080 Ti were used in [27], [30], [31]), it can still achieve the shortest training

time. Moreover, after the quantization process, the network obtains a remarkable

compression ratio compared with the original FLP model and existing network

architectures. It is suitable for hardware-embedded solutions, as it requires much

less on-memory to pre-load the model. The performance of the compressed model

will be detailed in the following subsection.

2.5.2 Synthetic Data

We first evaluated the reconstruction quality for simulated data using five different

metrics to assess the depth reconstruction. They are the accuracy of a given

threshold thr, RMSE, RMSE (log), the absolute relative difference (Abs rel), and

22

2.

the squared relative difference (Sq rel), defined to be

𝑅𝑀𝑆𝐸 (d, d̂) =

√√√
1

𝑀2

𝑀∑︁
𝑚1=1

𝑀∑︁
𝑚2=1

(𝑑𝑚1,𝑚2 − 𝑑𝑚1,𝑚2)2

𝑅𝑀𝑆𝐸log (d, d̂) =

√√√
1

𝑀2

𝑀∑︁
𝑚1=1

𝑀∑︁
𝑚2=1

(log10(𝑑𝑚1,𝑚2) − log10(𝑑𝑚1,𝑚2))2

Abs rel(d, d̂) = 1

𝑀2

𝑀∑︁
𝑚1=1

𝑀∑︁
𝑚2=1

|𝑑𝑚1,𝑚2 − 𝑑𝑚1,𝑚2 |
𝑑𝑚1,𝑚2

Sq rel(d, d̂) = 1

𝑀2

𝑀∑︁
𝑚1=1

𝑀∑︁
𝑚2=1

(𝑑𝑚1,𝑚2 − 𝑑𝑚1,𝑚2)2

𝑑𝑚1,𝑚2

(2.12)

and accuracy with threshold thr :

percentage of d̂ 𝑠.𝑡.
1

𝑀2

𝑀∑︁
𝑚1=1

𝑀∑︁
𝑚2=1

𝑚𝑎𝑥(
𝑑𝑚1,𝑚2

𝑑𝑚1,𝑚2

,
𝑑𝑚1,𝑚2

𝑑𝑚1,𝑚2

) = 𝛿 < thr, (2.13)

where d and 𝑑 denote the ground truth and predicted depth images.

Figure 2.5: Depth images reconstructed from the ToA tensor. The fidelity differences
between monocular-SPAD fusion and the proposed model are marked in red boxes.
The proposed model can reveal more details for long-distance objects and obtain a
lower overall RMSE when SBR equals 0.04.

23

2.

Seven indoor target scenes of the Middlebury dataset were assessed. Table 2.3,

shows the averaged values across seven scenes with three SBRs. Compared with

existing algorithms, our compressed architecture obtains comparable or improved

accuracy to Sun et al. [30] using RGB-SPAD fusion strategy and Peng et al.

[31] using long- and short-range residual connections architecture. Despite the

similar performances, we should notice that Sun et al. adopted a log-scale binning

method merging fewer time-bins for the front indexes and more time-bins for the

ending indexes; thereby, the accuracy deteriorates when sensing long-distance

objects. We use a simulated indoor scene (a lecture theatre) to prove this point

(shown in Figure 2.5) that the binning method cannot reconstruct relatively long

objects highlighted in red boxes.

Table 2.2 shows our results are better than [30]. As for Peng et al.’s architecture,

long-range correlations of feature maps were effectively explored, and dilated

convolutions were employed to enlarge the reception field. Both methods can

enhance the accuracy and generate fewer parameters. However, Peng et al.’s

method has many vectorized operations during the training and inference phases,

resulting in a longer training time (36 hours) than ours (17 hours with a less

powerful GPU). Moreover, owing to the complicated residual connections of [31],

it is difficult to reconfigure the structure for different tasks with a proper trade-

off. Instead, our architecture has good scalability where the number of down- and

up-sampling can be configured without redesigning the connections. Lastly, our

network maintains high reconstruction accuracy despite a much smaller model

size. To better indicate the statistically significance, we further calculated the p-

value of our compressed model and the models in [30] and [31] in test datasets in

terms of Abs rel. We obtained a list of Abs rel (in total 21 elements, representing

7 scenes in 3 SBR levels) from each pair of GT and reconstructed depth images

24

2.

Table 2.2: Extensive evaluations between Sun et al.’s [23] and the proposed mod-
els with SBR = 0.04. The proposed model achieves more robust results across five
evaluations metrics.

Signal photons: 2; Background photons: 50; SBR: 0.04
Accuracy (Higher is better) Error (Lower is better)
𝛿 < 1.25 𝛿 < 1.252 𝛿 < 1.253 RMSE(log) RMSE(m) Abs rel Sq rel

Sun et al. 0.9087 0.9503 0.9625 0.292 1.766 0.071 0.269

Proposed 0.8545 0.9618 0.9927 0.249 0.330 0.065 0.246

from each algorithm. The p-value of Abs rel is 2.94 × 10−5 between the model in

[30] and ours (and 0.0162 between the model in [31] and ours). Both are smaller

than 0.05, meaning Abs rel of our model is statistically significant versus [30] and

[31].

Figure 2.6: Reconstructed images using different algorithms. The SBRs from the first
row to the last row are 0.2 (2 target photons and 10 background photons), 0.04 (2 target
photons and 50 background photons), and 0.02 (2 target photons and 100 background
photons). Our model can obtain lower RMSE than other algorithms when SBR equals
0.2 and 0.04 and achieves a comparable RMSE with Sunet al., even without fusion
strategies.

25

2.

Table 2.3: Quantitative analysis of the proposed and existing algorithms over seven
indoor scenes. Three tables are for three different SBR levels - 0.2, 0.04, and 0.02. And
the underlined numbers mean that they are comparable to the best existing results.

Signal photons: 2; Background photons: 10; SBR: 0.2
Accuracy (Higher is better) Error (Lower is better)
𝛿 < 1.25 𝛿 < 1.252 𝛿 < 1.253 RMSE(log) RMSE(m) Abs rel Sq rel

LM filter 0.5018 0.6115 0.6415 1.183 4.690 1.403 11.606

Shin et al. 0 0 0.0052 1.180 4.306 2.259 9.566

Rapp and Goyal 0.8691 0.9982 0.9998 1.102 0.063 0.0778 0.0310

Lindell et al. 0.9962 0.9982 0.9999 0.031 0.066 0.011 0.020

Peng et al. 0.9966 0.9981 0.9999 0.029 0.062 0.007 0.0015

Sun et al. 0.9966 0.9987 0.9999 0.030 0.064 0.0087 0.0019

Proposed (FLP) 0.9968 0.9983 0.9999 0.027 0.059 0.0069 0.0013
Proposed (W2A4) 0.9967 0.9980 0.9999 0.028 0.061 0.0056 0.0013

Signal photons: 2; Background photons: 50; SBR: 0.04

LM filter 0.3492 0.4317 0.4737 1.184 5.774 2.070 17.615

Shin et al. 0 0 0 1.362 5.401 2.916 15.671

Rapp and Goyal et al. 0.8614 0.9976 0.9995 0.106 0.236 0.0780 0.0334

Lindell et al. 0.9827 0.9951 0.9999 0.064 0.149 0.026 0.0120

Peng et al. 0.9948 0.9971 0.9998 0.034 0.073 0.0082 0.0026

Sun et al. 0.9961 0.9980 0.9999 0.030 0.064 0.0087 0.0019

Proposed (FLP) 0.9961 0.9980 0.9999 0.029 0.063 0.0067 0.0017
Proposed (W2A4) 0.9962 0.9980 0.9999 0.030 0.064 0.0060 0.0016

Signal photons: 2; Background photons: 100; SBR: 0.02

LM filter 0.2691 0.3439 0.3924 1.270 6.210 2.283 20.382

Shin et al. 0 0 0 1.383 5.620 2.990 16.568

Rapp and Goyal 0.8610 0.9974 0.9994 0.111 0.301 0.0790 0.0414

Lindell et al. 0.9357 0.9729 0.9902 0.129 0.321 0.0580 0.0600

Peng et al. 0.9952 0.9978 0.9999 0.033 0.069 0.0081 0.0021
Sun et al. 0.9961 0.9981 0.9999 0.031 0.064 0.0087 0.0020

Proposed (FLP) 0.9963 0.9980 0.9999 0.030 0.064 0.0060 0.0017

Proposed (W2A4) 0.9963 0.9981 0.9999 0.030 0.065 0.0060 0.0017

26

2.

Since the compressed version (W2A4) can obtain almost the same performance

as the FLP version, we employed it to conduct further visual comparisons here-

after. As shown in Figure 2.6, we chose one exemplar image named Art as an

example. Rapp and Goyal’s algorithm achieves better recovering results than the

LM filter and Shin et al.’s approach because they used pixel-wise signal refining

and spatial regularization to smooth objects’ boundaries. However, their method

is not robust in distinguishing object boundaries, whereas the neural networks in

the last five columns (see Figure 2.6) can identify the boundaries through learn-

ing numerous training scenes. The proposed compressed model can achieve the

smallest RMSE among existing methods.

2.6 Captured Data

We also tested the proposed compressed model (W2A4) and existing networks

on five real-world image datasets. These scenes were captured in a low light

condition (less than 1 photon per pixel) with low SBRs. In the first row of

Figure 2.7, the reconstructed depth results from the LM filter [44] and Shin et

al. [7] show the shadow that did not receive active illumination. In contrast, the

other four algorithms can in-paint the shadow and generate relatively detailed

depth maps. Our model can retrieve a more precise structure for the lamp scene.

Although Rapp and Goyal adopted the super-pixel method to obtain robust depth

estimations, some essential signals are lost, like the lamp’s circle part.

Similarly, in the second and the third rows, a rolling ball and an elephant toy

are presented, as highlighted in red boxes. The human’s thumb and the ivory

with distinct boundaries can be identified in our model’s depth images. However,

these two small objects are over-smoothed by the monocular-SPAD fusion owing

27

2.

Figure 2.7: (a). Intensity images of the five scenes used for fusing with Lindell et al.’s
and Sun et al.’s models. (b). Detected ToA data cubes of five scenes. The bouncing
ball and a hallway (the 4𝑡ℎ and 5𝑡ℎ rows) scenes contain intense ambient light, leading
to blurred impact. (c). Reconstructed depth maps. Lindell et al. used the intensity-
SPAD fusion, and Sun et al. used the monocular-SPAD fusion. The processing time is
proportional to the network’s depth, and the RMSE decreases for a deeper network.

28

2.

to the monocular perception. In the fourth row, the depth images of a bouncing

ball from stairs are compared. The intense sunlight illumination at the top part

of the scene leads to tremendous background noise. Rapp and Goyal’s spatially

averaging strategy achieves relatively robust results. And for the last row, Peng

et al.’s strategy can in-paint the spots corrupted by the ambient light; this might

be due to the dense residual connections that can extract more features.

2.7 Discussion

We evaluated the proposed model with three depth levels, meaning the input

tensor is downsampled three times. The fewer levels we use, the shorter processing

time it costs (with fewer parameters). Figure 2.9 shows the network’s depth versus

the processing speed and RMSE. L1 is a naive U-net architecture with one down-

sampling module without long-range connections. As our architecture becomes

deeper with both long- and short-range connections, the reconstruction error

decreases significantly. The RMSEs for L4 to L2 are acceptable when the model’s

depth reduces since they are better than existing studies. However, the processing

time increases as more layers are added. Notably, due to the structural regularity

of our model, it is easy to configure the numbers of down- and up-sampling

without modifying the connections in the architecture. The log-scale binning

method introduced by Sun et al. [30] can significantly reduce the GPU memory

consumption and reduce the processing time. The binning method, however,

would lead to critical degradation of performance. The configurability of our

network can also be deemed the model pruning since fewer nodes are involved

in computations when reducing the number of down-sampling. Therefore, our

network is more robust to achieve a reasonable trade-off between processing time

29

2.

and accuracy. The processing time is measured by inferencing one depth map

from a ToA tensor with the size 552 × 668 × 1024 under SBR=0.04. RMSE is

an average value of seven scenes from the Middlebury dataset that are the same

data used in Table 2.3.

It should be noted that there is no acceleration for our quantized architecture

because the GPU cannot handle FXP operations due to the unified intrinsic hard-

ware and instruction set architecture. However, FPGA can manipulate quantized

numbers and accelerate the analysis; the hardware implementation is regarded as

future work. Additionally, our architecture contains dense connections and multi-

ple 3D convolution modules that consume the most processing time. ToA tensors

are sparse with many zero elements involved in computing. Thus, more aggres-

sive compression approaches like model pruning, sparse convolution strategies can

help further accelerate the forward-propagation process.

Figure 2.8: (a) RMSE and (b) squared relative difference (Sq rel) plots in terms of
SBR. The dashed lines indicate neural network-based algorithms, and the rest represent
optimization based algorithms. ‘Sun’ and ‘Lindell w/’ shown in the legend use the
monocular-SPAD and intensity-SPAD fusion strategy, respectively.

30

2.

The proposed network under different SBR conditions was further investigated

in Figure 2.8. The algorithms using neural networks are more sensitive to back-

ground noise, especially when the SBR decreases from 0.02 to 0.01. We can

increase the training dataset to cover a broader range of SBRs to alleviate this

problem, although it costs more processing time. Nevertheless, the other three

methods (LM filter, Shin et al., and Rapp and Goyal) are more robust across all

the SBRs. The LM filter and Shin et al.’s approach have maximum errors across

all SBR levels. Rapp and Goyal’s and Lindell et al.’s fusion models achieve rela-

tively lower errors, and the former is more robust across all SBR levels. Sun et

al.’s and the proposed network obtain the lowest errors and are robust for rela-

tively low SBRs except the level 0.01. Therefore, it is feasible for the proposed

neural network to achieve low prediction errors at standard SBR levels, and re-

main robust without using complementary training images from another camera.

And optimization-based algorithms can be more stable than neural network-based

methods over various SBR levels.

Despite relative better reconstruction results, our method still has limitations.

For the scenes corrupted with enormous background noise, the time-bin index

retrieved by the soft-argmax might be not the correct ToF profile. Whereas

Rapp and Goyal [1] separated the signal and noise, a pixel-wise noise censoring

algorithm and a windowing approach were introduced to remove noise and obtain

the ToF information accurately. The reconstructed bouncing ball in Figure 2.7

shows that Rapp and Goyal’s algorithm can produce relatively high fidelity in a

noisy scenario.

31

2.

Figure 2.9: The processing time is proportional to the network’s depth, and the RMSE
decreases for a deeper network.

32

2.

2.8 Summary and Future Work

We developed a non-fusion network that does not require an additional camera

for depth estimation. It is much more practical for real-world applications. The

proposed model was quantized to achieve a smaller model size without degrading

performance. Due to the model’s flexible structure, the trade-off between accu-

racy and processing speed can be balanced by manipulating the network’s depth.

It achieves excellent reconstruction performance in low light conditions and poor

signal-to-background ratio conditions, and it can be extended to low photon-count

biomedical computational imaging using single-photon avalanche diodes SPADs,

such as time-domain FLIM. Accurate FLIM analysis in photon-starved conditions

is challenging due to poor quantum yield, low photosensitivity, and suboptimal

wavelength of excitation. The low photon emission deteriorates lifetime recon-

struction. As reconstruction of fluorescence lifetime in FLIM and depth infor-

mation in single-photon LiDAR both involve resolving ill-posed problems from

histograms, the efficient deep neural network in this chapter is transferable to low-

count FLIM. Another future work involves implementing the quantized network

on portable hardware such as FPGAs and NVIDIA Jetson Nano GPUs. This

effort aims to facilitate practical embedded single-photon LiDAR applications,

such as long-range sensing and robotic vision.

33

Chapter 3

Compact and Robust Deep Learning

Architecture for Fluorescence Lifetime

Imaging and FPGA Implementation

3.1 Background

Fluorescence is represented by detectable photon emission from molecules or

atoms, a radiative process transferring energy from an excited state to a lower

state. Fluorescence lifetime is a quantitative metric to analyze fluorescence phe-

nomena. FLIM is an emerging technique boosting biomedical imaging. For ex-

ample, endogenous fluorophores, such as amino acids, metabolic enzymes, and

vitamins, have been engineered to assess in Vivo imaging [45, 46]; exogenous

fluorophores, such as FRET pairs, have been adopted to investigate protein in-

teractions [47] and drug developments [48]. Autofluorescence has been utilized in

fluorescence-guided surgery [49, 50]. TCSPC [51] is a powerful technique for time-

resolved, wide-field [52], and confocal [53] FLIM as it exhibits high SNR of limited

photons emitted from fluorophores [54]. To guarantee precise time-of-arrival, a

34

3.

stopwatch employing high temporal resolution (picosecond) time-to-analogue or

-digital converters can accumulate arrival photons from a train of laser pulses and

generate a histogram decay. Retrieving lifetimes from TPSF (or histogram decays

of collected photons) is an ill-posed problem in which a perfect solution cannot

be found. Traditional deconvolution-based non-linear square fitting (NLSF) [55]

and MLE [56] methods are computationally expensive.

Fast, model-free methods such as centre-of-mass (CMM) [3] and its derivatives

[57] were proposed to estimate lifetimes without iterations to overcome the men-

tioned issues. However, they are susceptible to low SNRs. They can resolve

either mono- or bi-exponential decays, meaning it is hard to analyze complex

fluorophores with multi-exponential decays. Moreover, they cannot simultane-

ously and accurately recover two critical average lifetimes, i.e., amplitude-(𝜏𝐴)

and intensity-weighted average lifetime (𝜏𝐼). The selection of the two average

lifetimes should be considered for different applications [58]. This study clarified

that 𝜏𝐴 is a crucial parameter to deduce energy transfer efficiency and dynamic

quenching behaviours; 𝜏𝐼 is essential to solving the quenching constant from the

Stern-Volmer constant. The study [59] clarified that the ratio of 𝜏𝐴 to 𝜏𝐼 is an in-

tuitive indicator for monitoring multi-exponential fluorescence decays. Therefore,

we aim to construct a model-free and robust method to reconstruct 𝜏𝐴 and 𝜏𝐼 to

cover most FLIM applications. Given that generating artificial FLIM TPSFs is

well-documented, synthetic data-powered data-driven approaches can boost the

accuracy and computing efficiency of FLIM analysis. Therefore, we constructed

a compact hardware-friendly DL architecture for high-accuracy 𝜏𝐴 and 𝜏𝐼 recon-

struction. Further, we introduced a non-linear mapping approach to compress

histograms without performance degradation.

35

3.

On the other hand, an increasing number of computing platforms for biomedical

devices are migrating toward the edges. For example, portable oximeters can

measure oxygen concentration of flowing blood non-invasive using photoplethys-

mography. Such highly integrated devices perform efficient computing, yet the

power budget is considerably low. Likely, we yearn to implement our DL net-

works on FPGA as it can achieve highly parallel, reconfigurable computing while

consuming low power. We designed an automatic software script to extract, and

export learned parameters from pre-trained models to FPGA, paving the way

for other time-resolved biomedical applications. Further, we adopted on-chip

post quantization to shorten the bit-width of the on-the-fly data. We analyzed

the computing efficiency of the FPGA embedded with our neural networks and

compared it with CPU and GPU.

3.2 Prior Work

This section summarizes existing work that utilizes DL to reconstruct fluorescence

lifetime, and hardware accelerator to accelerate the reconstruction.

3.2.1 Deep Learning for FLIM

In the recent decade, DL has been an emerging approach for FLIM analysis. An

MLP [60] was initially reported to analyze bi-exponential decays for a two-photon

system. Another MLP model using skip-connections was proposed [61], which

surpasses the conventional FLIM-MLP models in terms of accuracy. To build a

noise-robust DL architecture, a 1D convolutional neural network (CNN) [62] was

proposed to resolve bi- and tri-exponential decays with low SNRs. An MLP [4]

was applied on a high spatial resolution, wide-field FLIM using time-gated SPAD

36

3.

without raster-scanning to miniaturize the FLIM system. Another MLP [63] pro-

cesses phasor coordinates and generates lifetime parameters. Because the inputs

are coordinates rather than histograms, the MLP exhibits fast speed. To extract

both spatial and temporal features from raw fluorescence data tensors, a 3D CNN

[64] was reported for near infrared FLIM applications. Besides, Ruoyang et al

proposed a 3D CNN combined with CS [65] for widefield FLIM imaging in vitro

and in vivo environments. Further, to address the challenge of FLIM with photon-

starved conditions, Yuan-I et al. reported a generative adversarial network [66]

for FLIM imaging in low-photon scenarios (below 400). DL was also adopted to

unmix fluorescence coefficients from spectrally overlapped fluorophores. Jason et

al. proposed a hybrid CNN architecture [67] to extract individual lifetime com-

ponents from multi-exponential, hyperspectral fluorescence emission decays. To

enhance the spatial resolution of FLIM images, Dong et al. [68] introduced a

cascade CNN architecture to infer fluorescence lifetime and improve the spatial

resolution afterwards. An ELM [69] was presented to achieve fast and accurate

lifetimes reconstruction with back-propagation-free, online training. Dong et al.

[70] proposed a photon-efficient DL to reconstruct fluorescence lifetime with a

few photons per pixel, using spatial correlation and intensity information.

3.2.2 Hardware Platforms for FLIM

GPUs have been extensively adopted as hardware accelerators for FLIM. Byungyeon

et al. [71] proposed a mean-delay technique and implemented it on a GPU to

directly extract fluorescence lifetime from analogue fluorescent decays. Addition-

ally, a GPU was utilized to realize a pixel-wise, fitting-free phasor method [72] to-

wards a two-photon FLIM system to achieve video-rate fluorescence lifetime infer-

ence. A compressed sensing algorithm was applied to a high-resolution, widefield

37

3.

FLIM system that used compressed ultrafast photography [73]. A GPU-based

computer cluster was used to solve the iterative reconstruction algorithm. An

FPGA is the ideal hardware for data readout and computing due to its sufficient

I/O interfaces and reconfigurable computing parallelism. Particularly, SPAD ar-

rays [74] coupled with FPGA as parallel and high-throughput data readout are

needed. Therefore, some FPGA friendly FLIM algorithms were proposed. Em-

bedded CMM algorithms were implemented on FPGAs [75] and ASICs [76, 77] to

determine lifetimes from TDCs’ time stamps directly. Another CMM processor

was implemented on an FPGA coupled with a SPAD-based silicon photomulti-

plier sensor [78], realizing real-time fluorescence lifetime estimation and online

fluorescence lifetime cytometric sorting. After that, a DL prototype that is less

susceptible to noise [79] was embedded on an FPGA to estimate fluorescence life-

time in a fluorescent flow cytometry system. On-chip lifetime estimation was also

realized in the frequency domain; discrete Fourier transform was embedded on an

FPGA to compute phase lifetimes and modulations [80]. An embedded recurrent

neural network was realized on FPGA to reconstruct fluorescence lifetime [81],

integrated into a SPAD-based FLIM microscope.

3.3 Problem Definition

Our initial objective is to retrieve lifetime parameters from TPSFs, where TPSF

h(t) for each focal point can be formulated by the convolution of the periodic IRF

I(t) and the multi-exponential PDF p(t)

ℎ(𝑡) = 𝐼 (𝑡) ∗ 𝑝(𝑡) + 𝜖 (𝑡)

= 𝐼 (𝑡) ∗
[
𝐴

𝑁∑︁
𝑖=1

𝛼𝑖 exp

(
− 𝑡
𝜏𝑖

)]
+ 𝜖 (𝑡)

(3.1)

38

3.

where
∑𝑁
𝑖=1 𝛼𝑖 = 1, A depicts the amplitude, 𝛼𝑖 and 𝜏𝑖 mean the amplitude fractions

and lifetime of an individual lifetime component, N implies the number of lifetime

components. As Poisson noise is inevitable in TCSPC systems, 𝜖 (𝑡) represents

Poisson noise which is the square root of the total photons in each time bin

in a decay curve. The intensity-weighted average lifetime 𝜏𝐼 means the average

lifetime a fluorophore stays excited, depicted by

𝜏𝐼 =

∫ ∞
0
𝑡
∑
𝛼𝑖 exp

(
− 𝑡
𝜏𝑖

)
𝑑𝑡∫ ∞

0

∑
𝛼𝑖 exp

(
− 𝑡
𝜏𝑖

)
𝑑𝑡

=

∑𝑁
𝑖=1 𝛼𝑖𝜏

2
𝑖∑𝑁

𝑖=1 𝛼𝑖𝜏𝑖
(3.2)

An amplitude-weighted average lifetime is the integral of an intensity decay that

is equivalent to steady-state intensity, formulated by

𝜏𝐴 =

∫ ∞

0

∑︁
𝛼𝑖 exp

(
− 𝑡
𝜏𝑖

)
𝑑𝑡 =

𝑁∑︁
𝑖=1

𝛼𝑖𝜏𝑖 (3.3)

3.4 Deep Learning Network Details

We intend to achieve high-fidelity FLIM images with a minor computing overhead.

The extreme case of lightweight DL networks is the binarized-neural network [82]

that only involves bit-wise operations. However, it suffers from low accuracy in

practical applications [83]. It was proved that 2D AdderNet [84] could achieve

comparable accuracy with CNN without matrix multiplications. Here, we intro-

duce a derivative of the original AdderNet, compressed 1D fluorescence lifetime

AdderNet (FLAN), catering to the histogram decays’ processing.

39

3.

3.4.1 Network Architecture

The naïve AdderNet was initially used for 2D image classification [84]. It has been

proved that adder-convolution (AC) using l1 distance to calculate similarities

between feature maps (FM) and kernels can achieve nearly identical accuracy

versus traditional convolutions. We use strides in each AC instead of zero-padding

to simplify hardware logic to enlarge reception fields. The schematic of FLAN

is shown in Figure 3.1. We constructed UAC modules including AC, ReLU and

batch-normalization (BN) to facilitate hardware implementation. And a ResNet

[85] block was placed in the network’s backbone to alleviate gradient vanishing.

Differentiating from our previous work [62] that extracting individual lifetime

40

3.

Figure 3.1: Overview of FLAN architecture. Histograms from each pixel will be
processed consecutively, and the pixels from the background will be discarded initially.
Prostatic cells coated with biomarkers are adopted here for illustration.

41

3.

components, we adopted a branched topology to infer two average lifetimes 𝜏𝐴

and 𝜏𝐼 that can analyze most FLIM applications. Algorithm 1 demonstrates the

entry and the first layer of FLAN. A pre-defined threshold (T) was applied to

filter out background pixels (Line 1). If the pixel is not from the background

(𝑁𝑝𝑐 > T), a unified AC (UAC) will process the histogram (from Line 2 to 11).

Moreover, we proposed FLAN + LS that compresses histograms using log-scale

(LS) non-linear mapping. FLAN + LS needs fewer down-sampling layers because

the length of input histograms was compressed in advance. Therefore, FLAN +

LS is more compact and saves less computing overhead than FLAN. The details

of compression will be illustrated in Section 3.6.

We compared the size of existing DLs for FLIM, and the compression ratio is de-

fined by the ratio of FLAN + LS’s parameter size to uncompressed models. Table

3.1 summarizes current DL architectures for FLIM. Among the existing architec-

tures that can resolve multi-exponential decays, our models obtain the smallest

parameter size apart from Phasor-MLP. Phasor-MLP has the fewest parameters

as histograms were initially converted into phasor coordinates using the Fourier

transform. Despite the simplicity, reconstructed lifetime parameters sometimes

had distinct dispersion than 3D CNN [64]. ELM [69] has the simplest structure

containing only one hidden layer, where the hidden layer contains 500 nodes.

ELM’s computational complexity exponentially increases as the number of nodes

grows. Such a complex, fully connected structure is not efficient for hardware im-

plementation. Besides, although the 1D CNN [79] for fluorescence flow cytometry

has a compact size and was optimized and implemented on FPGA, it cannot an-

alyze multi-exponential decays. As the data throughput of photomultiplier tube

(PMT) or SPAD array is enormous (Gigabyte per second), lightweight DL archi-

42

3.

T
ab

le
3.

1:
C

om
pa

ri
so

ns
of

D
L

A
rc

hi
te

ct
ur

es
fo

r
F
LI

M

3D
C

N
N

[6
4]

1D
C

N
N

[7
9]

1D
C

N
N

[6
2]

M
L
P

[6
0]

P
h
as

or
-M

L
P

[6
3]

M
L
P

[4
]

G
A

N
[6

6]
E
L
M

[6
9]

F
L
A

N
F
L
A

N
+

L
S

M
ul

ti
-e

xp
on

en
ti

al
co

m
pa

ti
bl

e
Y

es
N

o
Y
es

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

In
pu

t
da

ta
ty

pe
3D

Te
ns

or
1D

hi
st

og
ra

m
1D

hi
st

og
ra

m
1D

hi
st

og
ra

m
P

ha
so

r
co

or
di

na
te

1D
hi

st
og

ra
m

1D
hi

st
og

ra
m

1D
hi

st
og

ra
m

1D
hi

st
og

ra
m

1D
hi

st
og

ra
m

M
od

el
si

ze
4
.1
4
M
B

(1
08
4
04
5)

0
.0
16

M
B

(4
28
4)

0
.1
9
M
B

(4
8
67
5)

0
.5
7
M
B

(1
49

25
2)

1
.8
4
K
B

(4
71

)
14
.3
1
M
B

(3
75
0
25
0)

0
.5
5
M
B

(1
43

52
8a

)
0
.1
3
M
B

(2
05

60
0)

0
.0
88

M
B

(2
3
00
3)

0
.0
17

M
B

(4
05
8)

Tr
ai

ni
ng

ti
m

e
4

h
17

m
in

23
m

in
4

h
15

m
in

38
m

in
6.

9
h

10
.8
5
se
c

20
m

in
18

m
in

Tr
ai

ni
ng

ha
rd

w
ar

e
G

P
U

G
P

U
G

P
U

G
P

U
C

P
U

G
P

U
G

P
U

C
P

U
G

P
U

G
P

U

In
fe

re
nc

e
ha

rd
w

ar
e

G
P

U
G

P
U

or
F
P

G
A

G
P

U
G

P
U

C
P

U
G

P
U

G
P

U
C

P
U

G
P

U
or

F
P

G
A

G
P

U
or

F
P

G
A

D
at

a
co

m
pr

es
si

on
-

Q
ua

nt
iz

at
io

n-
aw

ar
e

tr
ai

ni
ng

-
-

-
-

-
-

P
os

t-
qu

an
ti

za
ti

on
P
os

t-
qu

an
ti

za
ti

on
+

LS

a
T

he
m

od
el

si
ze

w
as

no
t

gi
ve

n
in

th
e

pa
pe

r;
th

e
si

ze
w

as
ca

lc
ul

at
ed

fr
om

th
e

ne
tw

or
k

st
ru

ct
ur

e.

43

3.

tecture and efficient data compression are imperative to alleviate the bandwidth

of the data transfer. FLAN and FLAN + LS can efficiently address the issues

with the ACs and histogram compression method.

3.4.2 Preparation for Hybrid Training Data

As bi-exponential models could well approximate multi-exponential decays

[59], we generated hybrid datasets containing both mono- and bi-exponential

decays according to Equation 3.1 to cover most cases of fluorescence decays. The

generation flow is shown in Figure 3.2. The synthetic IRF with 0.167 ns FWHM

was simulated following a Gaussian curve centre at the 14𝑡ℎ time bin that is

consistent with our two-photon system, given by

𝐼 (𝑡) = exp{−2[(𝑡 − 14)2(0.5 ln 2)1/2𝑁
𝐹𝑊𝐻𝑀

]2𝑁 }, (3.4)

where we set N = 1 to make the synthetic IRF close to the real IRF. The mono-

and bi-exponential probability dense functions (PDFs) were generated using the

same instrumental parameters. Then bespoke TPSF were generated by convolv-

ing the IRF with PDFs. Poisson noise was added, ultimately using Poissrnd (·)

in MATLAB® to mimic background and shot noise. Peak photon counts (N𝑝)

and lifetime parameters (𝜏 for mono-exponential, 𝜏𝐼 , 𝜏𝐴, and 𝛼 for bi-exponential

decays) were randomly selected in given ranges, as shown in Table 3.2. Each

synthetic TPSF was labelled with GT lifetime parameters to train our networks

afterwards. Then, these two types of TPSFs were shuffled to finalize the datasets.

44

3.

Figure 3.2: Procedures for generating mono- and bi-exponential TPSFs. The simu-
lated IRF I(t) convolved with mono- and bi-exponential PDFs h(t). After that, peak
photon counts 𝑁𝑝 were applied to mimic real histograms. And then Poisson noise 𝜖 (𝑡)
was added at the final step.

45

3.

Table 3.2: Ranges of lifetime parameters for synthetic data.

𝜏1(ns) 𝜏2(ns) 𝛼 𝜏𝐼(ns) 𝜏𝐴(ns) N𝑝

Mono-exp. [0.1, 5] - 1 [0.1, 5] [0.1, 5] [10, 400]
Bi-exp. [0.1, 5] [1, 3] [0, 1] [0.01, 3.98] [0.01, 3.98] [10, 400]

Figure 3.3: Training and validation loss curves from 1D CNN, FLAN, and FLAN +
LS.

3.5 Training Details

FLAN and FLAN + LS architectures were implemented by PyTorch and

trained on a 16 GB NVIDIA Quadro RTX 5000 GPU. To accelerate the training,

we employed adaptive learning rates (ALR) with an initial value of 0.001 and

a momentum factor of 0.995. RMSProp is the optimizer in the training phase.

50,000 synthetic decays were generated for training purposes; extra 5,000 decays

were utilized for validation. Early-stopping with 20-epoch patience was adopted

to prevent overfitting. ReLU is the activation function after each AC layer. BN

was used to mitigate the internal covariate shift of FMs in the network, whereby

46

3.

the training can be accelerated. The adopted loss function is MSE, depicted as

ℒ(𝜃) = 1

𝐵1

𝐵1∑︁
𝑏1

𝐵2∑︁
𝑏2

∥F𝑏2 (ℎ𝑏1 , 𝜃) − 𝐺𝑏1 ∥22, (3.5)

where 𝐵1 and 𝐵2 are the batch size (128) and the number of output nodes (2),

F (·) is the end-to-end inference function of training parameters 𝜃 and G is the

set of ground truth lifetimes. To make comparisons, we re-trained the 1D CNN

[62] with traditional multiplications-based convolutional kernels for comparison,

where we kept the networks’ topology identical to FLAN and FLAN + LS. As

the learning rate (0.0001) of the original 1D CNN is constant, it would exhibit

a slower convergent speed than ALR. The loss curves of the three networks are

shown in Figure 3.3. FLAN + LS achieves a similar loss curve versus FLAN even

with fewer time bins. And these two networks obtained similar ending loss versus

1D CNN when training ceased.

3.6 Data Compression Strategies

We introduce two-fold data compression methods to alleviate computing la-

tency and reduce data movements. At first, we compressed histograms using a

logscale bin-merging technique to reduce redundant time bins. And then, a post-

linear-quantization was employed on FPGA to compress bit-width throughout

the FLAN and FLAN + LS architecture.

3.6.1 Log-Scale Mapping for Time-Bin

The fluorescence decays are less informative as the index of time-bin increases,

especially for the specimen with ultra-small lifetimes.

47

3.

Figure 3.4: IRFs, original and compressed synthetic decays.(a) Mono-exponential
decay with lifetime. (b) Bi-exponential decay with lifetime.

Figure 3.5: Nonlinear time-bin mapping, merging original 256 time-bin to compressed
80 time-bin.

48

3.

As blue lines show in Figure 3.4, they are mono-and bi-exponential decays with

lifetimes of 0.5 ns and 0.45 ns, respectively. No photon occurred after 86𝑡ℎ and

84𝑡ℎ time-bin, meaning that time bins behind them can be merged to compress the

histogram and moderate the sparsity. Therefore, the computational complexity

can be decreased. The target number of time bins M was controlled by a factor

that should be predefined; the time-bin interval of the compressed histogram is

𝑆 = 𝑠(𝑥 + 1) − 𝑠(𝑥)

= ⌊𝑟
𝑥 − 1

𝑟 − 1
⌋ − ⌊𝑟

𝑥+1 − 1

𝑟 − 1
⌋,

(3.6)

where floor(·) rounds each element to the nearest integer less than or equal to that

element, T is the original number of time-bin (256), x is the index of compressed

time-bin. r is calculated from M, given by

𝑟𝑀 − 1

𝑟 − 1
= 𝑇, (3.7)

where M is 80 in our experiments because the compressed histograms can reserve

sufficient temporal information after merging. The number of photons in the new

time interval is the summation of the counts from the original intervals.

The non-linear mapping process is depicted in Figure 3.5; more temporal

information can be reserved for the front bins. Accordingly, in Figure 3.4, both

typically synthesized mono- and bi-exponential decays with 256 time-bin can be

effectively converted into 80 bins. Compressed decays with fewer time-bin will

simplify the neural network. For the decays with greater lifetimes, M can be

easily adjusted; and the training data can be generated accordingly.

49

3.

3.6.2 On-Chip Linear Quantization

Quantization for FMs and learned parameters are well-known approximate

arithmetic for DL. And it is economical for logic utilization and power consump-

tion on FPGA. We adopted the linear quantization (or static fixed-point) strategy

[86] to convert FLP learned parameters and FMs in pre-trained models into FXP.

To maintain the computing accuracy, we configured FMs with 16-bit integer and

16-bit fractional length segmentation; learned parameters with 10-bit integer and

10-bit fractional parts. The conversion can be depicted as


D = round(N𝐹𝐿𝑃 × 2𝐹)

B = D2B(B)

N𝐹𝑋𝑃 = shift(B,F)

(3.8)

Where F represents the fractional length of the FXP number, D2B refers to

converting from a decimal to a binary representation. For FM values, the shift(·)

operation moves the decimal point 16 places to the left to convert the number to

an FXP format. N𝐹𝐿𝑃 and N𝐹𝑋𝑃 denote the FLP number and the binarized FXP

number, respectively. The precision of FXP numbers can be calculated using

2−N, where N is the number of fractional bits. Quantization can be implemented

using FXP libraries in Vivado HLS.

3.7 Synthetic Data Evaluation

With hybrid test datasets containing shuffled mono- and bi-exponential de-

cays, we quantitatively evaluated FLAN and FLAN + LS in terms of 𝜏𝐴 and 𝜏𝐼

reconstruction. And we compared them with traditional curve fitting and other

50

3.

high-accuracy algorithms in different photon-count conditions. To generate intu-

itive 2D GT FLIM images, two individual lifetime components (𝜏1, 𝜏2 in Equation

3.1) were fixed values of 0.3 ns and 2.5 ns. And from the top to the bottom of

GT lifetimes, amplitude fractions uniformly increased from 0 to 1.

MSE was used to evaluate the accuracy of each method in Figure 3.6. Three

DL methods achieved better recovery performance for both 𝜏𝐴 and 𝜏𝐼 And both

FLAN and FLAN + LS outperformed 1D CNN under different photon-count

conditions with the same training datasets. Despite the compression of FLAN +

LS, the performance was not deteriorated, even in low-count conditions. In terms

of 𝜏𝐴, the performance of NLSF declined as photon counts decreased because the

fitting process (Levenberg-Marquart deconvolution) required enough counts to

guarantee accuracy. The previous study [87] using similar synthetic parameters

to ours unraveled that, for mono-exponential decays, the necessary number of

photons of the deconvolution method is around 100 for the minimal resolvable

lifetime of 0.3 ns. Moreover, pre-set initial values are critical for the deconvolution

method, and we did not fine-tune them here. BCMM was also susceptible to the

low-count condition (below 100) as Romberg’s integration in BCMM is inaccurate

for sparse vectors. As for 𝜏𝐼 , in Figures 3.6 (d) and (e), although CMM achieved

smaller MSE than DL methods under high and medium photon count conditions,

discernable bias can be observed in the top half of CMM’s recovered images.

Before using CMM, prior knowledge about the width of the analysis window

is required to achieve optimal results. To observe the lifetime distributions more

efficiently, we visualized the lifetime distributions of all recovered and GT images

in Figure 3.7.

51

3.

Figure 3.6: Synthetic GT and reconstructed 𝜏𝐴 and 𝜏𝐼 FLIM images. MSE is used to
evaluate the accuracy. (a),(b), and (c) reconstructed 𝜏𝐴 in [1000,5000], [100,1000], and
[10,100] photon-count. (d),(e), and (f) reconstructed 𝜏𝐼 in [1000,5000], [100,1000], and
[10,100] photon-count.

52

3.

Figure 3.7: Lifetime distributions of 𝜏𝐴 in (a),(b), and (c); 𝜏𝐼 in (d),(e), and (f)
retrieved from different algorithms in different levels of photon count.

53

3.

3.8 Real-Case Study: Fluorescent Beads Discrimination

To evaluate our networks using fluorescent samples, we used different algo-

rithms to retrieve lifetimes based on fluorescent beads with characterized life-

times. Moreover, we used convallaria majalis cells with short acquisition time

(3 seconds) to validate the accuracy of our algorithms in real low counts condi-

tions. This section introduces the sample preparation processes, optical setup,

and evaluation results.

3.8.1 Sample Preparation

We chose fluorescent latex beads to evaluate the accuracy of our networks as

they are intuitive tools applied to tracing fluid dynamics [88] and validating hy-

perspectral imaging microscopy [89]. Here, yellowgreen and crimson fluorescent

beads of 10 𝜇m diameter (F8831, FluoSphere Polystyrene Microspheres, Thermo

Fisher, UK) were dissolved in an aqueous concentration of 3.6105 beads/ml. We

dropped the diluted solution of fluorescent beads onto a microscope slide cov-

ered with coverslips and then mounted it on the microscope sample holder of

a twophoton system. The unmixed set encompasses yellowgreen beads with a

reference lifetime of 2.1 ns. Alone with the unmixed group, the mixed set in-

cludes extra crimson beads with a 3 ns reference lifetime. The reference lifetime

was measured using the TCSPC technique on a Horiba Deltaflex fluorometer and

analyzed using Horiba DAS6 software.

54

3.

3.8.2 Optical Setup

The utilized excitation source was a femtosecond Ti: sapphire laser (Chameleon,

Coherent, Santa Clara, USA) with tunable wavelengths, and the laser pulse width

is less than 200 fs with an 80 MHz repetition rate. The emission light was col-

lected by a 10 × objective lens (N.A = 0.25) with a 685 nm short pass filter.

Our setup acquired both sets of beads using LSM 510 confocal laser scanning

microscope. A TCSPC (SPC-830, Becker & Hickl GmbH) card was mounted on

the computer with a PCIe interface to record the time-of-flight of fluorescence

emission. The spatial resolution of the FLIM data was configured as 256 × 256

on the SPImage software, and the field of view was selected by moving the trans-

lation stage. The number of time bins was configured as 256 in each pixel, and

39.06 ps was the temporal resolution in each time-bin.

3.8.3 Quantitative Analysis

Given that phasor [90] is a fitting-free, frequency domain approach to observ-

ing lifetime distributions represented by polar coordinates g and s


g𝑖, 𝑗 =

∫ ∞
0
ℎ(𝑡)𝑖, 𝑗 cos(𝑘𝑤𝑡)𝑑𝑡∫ ∞
0
ℎ(𝑡)𝑖, 𝑗𝑑𝑡

s𝑖, 𝑗 =

∫ ∞
0
ℎ(𝑡)𝑖, 𝑗 sin(𝑘𝑤𝑡)𝑑𝑡∫ ∞
0
ℎ(𝑡)𝑖, 𝑗𝑑𝑡

, (3.9)

where i and j is the pixels’ index in the FLIM image, kw is the angular frequency

of the excitation source. Here, we initially used a phasor plot to analyze distri-

butions of lifetimes in each pixel to validate the prepared beads. As shown in

Figure 3.8, the cluster is not located in the semi-circle, meaning that the two

types of beads are not perfect mono- and bi-exponential decays resulting from a

55

3.

Figure 3.8: Phasor plots of unmixed (Yellow-green) fluorescent beads and mixed
(Yellow-green and Crimson), showing (a) one cluster and (b) two clusters.

mixture of dyes. Given that there is no spectral overlap of the beads, meaning no

energy transfer occurs, we used 𝜏𝐼 to analyze reconstructed lifetime images and

to compare different algorithms. Two metrics, i.e. accuracy and precision in dB

[79], were used for evaluation, defined as


𝐴𝑐𝑐. = 20 log10mean (𝜏𝐼/Δ𝜏𝐼)

𝑃𝑟𝑒. = 20 log10mean (𝜏𝐼/𝛿𝜏𝐼)
, (3.10)

where 𝜏𝐼 is reconstructed lifetimes, Δ𝜏𝐼 and 𝛿𝜏𝐼 means absolute error and standard

deviation of the reconstructed lifetimes. From Figure 3.9, we can tell DL methods

obtained similar accuracy versus CMM, yet FLAN and FLAN + LS exhibit the

best precision (small standard deviations). Note that NLSF has an obvious bias

compared to others because it involves iterative deconvolutions that significantly

rely on initial values. Likewise, we used 𝜏𝐼 to evaluate the algorithms for mixed

beads. According to Figure 3.8 (b), as there were two individual clusters, we

applied different algorithms to discriminate between these two types of beads.

Reconstructed FLIM images and lifetime distributions from each algorithm were

plotted in Figure 3.10 and 3.11. The CNN is less discerning than FLAN and

56

3.

Figure 3.9: Unmixed beads (Yellow-green) evaluation using accuracy and precision

Figure 3.10: Lifetime reconstruction of mixed beads (Yellow-green and Crimson).

57

3.

Figure 3.11: Reconstructed lifetime distributions of mixed beads using different al-
gorithms. The reference lifetimes of Yellow-green and Crimson are 2.1 ns and 3 ns,
respectively.

58

3.

Figure 3.12: Reconstructed lifetime images of Convallaria majalis cells.(a) intensity
image; (b) phasor projection image; (c) and (d) reconstructed 𝜏𝐴 and 𝜏𝐼 from FLAN;
(e) and (f) reconstructed 𝜏𝐴 and 𝜏𝐼 from FLAN+LS.

FLAN + LS to discriminate between the two types of beads. CMM can distin-

guish the beads well, but bias still exists. Peaks’ indexes of FLAN and FLAN +

LS are closest to the reference lifetime. Hence, our networks resolve two types of

beads with accuracy lifetime estimation.

Figure 3.12 shows reconstructed lifetime results for low counts condition where

the maximum count is 200. Figure 3.12 (b) is the phasor projection image cal-

culated from high counts decays (with maximum counts of 2,500) with a longer

acquisition time (15 seconds). Phasor projection images were leveraged as a ref-

erence to investigate the contrast of lifetime images [62, 69]. Figure 3.12 (c) and

(d) indicate reconstructed 𝜏𝐴 and 𝜏𝐼 from FLAN; Figure 3.12 (e) and (f) indicate

reconstructed 𝜏𝐴 and 𝜏𝐼 from FLAN + LS. FLAN and FLAN + LS exhibit simi-

lar contrast compared to high-count phasor protection image, meaning that our

algorithms are also robust in real low-count conditions.

59

3.

3.9 Hardware Implementation

The FLAN and FLAN + LS algorithms were implemented on a PYNQ-Z2

board integrating the processing system (PS) and the programmable logic (PL).

The DL cores were implemented in the PL part using Vivado ® high -level synthe-

sis (HLS). Hardware drivers of the cores and less computing-intensive arithmetic,

such as eliminating background pixels and decoding input FLP histograms into

FP, were programmed in the PS.

As shown in Figure 3.14, four DL cores were instantiated to process four pixels

concurrently to achieve instances-level parallel computing. The four consecutive

histograms from an AXI bus (through a high-performance slave port) should be

copied into four memory buffers. And then, the four chunks of data will be

fed into corresponding DL cores. Learned parameters, including weights and

BN, were fetched from the pre-trained model and exported into BRAMs using an

automatic Python script. Thanks to the quantization strategy, all the parameters

encoded in shortened bit-width save memories and can be prestored in on-chip

BRAMs instead of off-chip DDR memory, which decreases the latency of data

movement. Before computing lifetimes, according to the predefined threshold, a

binarized mask map with zeros and ones should be generated offline. Only the

pixels’ indexes with ones will be processed. Similar to learned parameters, original

input histograms should also be encoded from FLP to FXP. This encoding process

was conducted in the ARM processor. Eventually, the output lifetimes will be

converted to readable FLP after lifetime’s inference. As mentioned in Section

3.4.1, gathered AC, ReLU, and BN can simplify the hardware implementation;

we merge the three modules into one hardware module, indicated by grey areas

next to the main AC modules in Figure 3.15 (a). The original channel-wise BN

60

3.

Figure 3.13: Pipelines of files generation for (a) training on PC and (b) inference on
FPGA.

Figure 3.14: Overview of the FPGA hardware platform embedding four FLANs.

61

3.

Figure 3.15: Architecture of UAC. BRAMs storing and caching learned parameters
and FMs are partitioned to feed data to corresponding ACs. Multiple ACs and BN
modules are instantiated to improve parallelism. (b) BRAMs were partitioned into
smaller portions to cache parallel data on-the-fly.

operation in i𝑡ℎ output channel of forwards propagation is

x𝐵𝑁 =
(x (𝑖) − 𝜇(𝑖))√︁
𝛿(𝑖)2 + 𝜖

𝛾(𝑖) + 𝛽(𝑖), (3.11)

where 𝛾 and 𝛽 are learned parameters that can be parsed from pre-trained models,

𝜇𝐵𝑁 and 𝛿2
𝐵𝑁

are the statistical mean and standard deviation of x, 𝜖 is a constant

to avoid dividing by zero (0.0001 by default). The scaling and shift coefficients

can be extracted as 
scale(𝑖) = 𝛾(𝑖)√

𝛿𝐵𝑁 (𝑖)2+𝜖

shift(𝑖) = 𝛽(𝑖) − 𝛾(𝑖)𝜇𝐵𝑁 (𝑖)√
𝛿𝐵𝑁 (𝑖)2+𝜖

.

(3.12)

Therefore, BN can be simplified as matrix multiplications and vector additions

on the hardware

x𝐵𝑁 = scale(𝑖) × x(𝑖) + shift(𝑖), (3.13)

62

3.

scale and shift were calculated and extracted offline using a Python script. As

limited writing and reading ports of BRAM would hinder simultaneous data

transfer to multiple PEs. To overcome the challenge, BRAMs under usage were

partitioned into small portions to increase write-read bandwidth, leading to more

hardware consumption. Due to our models’ compaction, all the intermediate

results among layers were cached in on-chip BRAM instead of accessing the DDR

memory. After processing four adjacent pixels, only a vector containing eight

inferred lifetime values will be output to ARM via address-mapping AXI for

anti-quantization decoding and validation.

Figure 3.13 depicts the flow from training to inference. Notably, equations

3.12 and 3.13 are automated in Figure 3.13(b), making them transferable to new

models. Additionally, hardware instances implemented using HLS were param-

eterized for flexible configuration of model size. Table 3.3 compares hardware

utilization and computing performance of three pixel-wise DL networks, namely,

1D CNN with 32-b FLP, FLAN with 16-b FXP, and FLAN + LS with 16-b FXP,

implemented on FPGA. The accuracy was assessed by MSE using synthetic test

datasets. We randomly picked 100 histograms and divided them into 25 batches

as our DL processors can process 4 pixels concurrently. And the batches of

histograms were stored in the DDR. For 1D CNN, only 2 DL cores can be accom-

modated due to more hardware consumption of FLP computing, whereby the 100

histograms should be divided into 50 batches. The latency of the three networks

is presented by the consumed time for processing 4 pixels.

Throughput was defined by pixels per millisecond (PMS). MSE was adopted

to assess the accuracy, aligning with Figure 3.6. The hardware utilization was

obtained after place-and-route implementation. The power consumption was es-

timated in the post-implementation phase using power analyzer tools in Vivado

63

3.

Table 3.3: Comparisons of Hardware-Efficient DL Networks Implemented on FPGA.

1-D CNN (2-core) FLAN (4-core) FLAN+LS (4-core)

Frequency 98MHz 110MHz 120MHz
Precision 32 b FLP 16 b FXP 16 b FXP

DSP (220 Ava.) 51 (23.2%) 100 (45.4%) 76 (34.6%)
LUT (53.2K Ava.) 51 072 (95.8%) 25 886 (48.6%) 18 553 (34.9%)
DFF (106.3K Ava.) 30 827 (28.7%) 18 816 (17.7%) 15 629 (14.7%)
BRAM (140 Ava.) 41 (29.1%) 124.5 (88.9%) 47 (33.6%)

LUTRAM (17.4K Ava.) 1566 (9%) 2202 (12.7%) 2198 (12.6%)
𝜏𝐴 (MSE) 0.121 ns 0.125 ns 0.138 ns
𝜏𝐼 (MSE) 0.089 ns 0.083 ns 0.102 ns

Power (W) 2.56 1.93 1.78
Latency (ms) 1.73 0.16 0.11

Throughout (PMS) 15 33 40
Efficiency (PMS/W) 5.86 17.10 22.47

2018.2. FLAN and FLAN + LS with shorter bit-width save multitudes of hard-

ware and achieve high operating frequency. FLAN and FLAN + LS still utilize

DSPs as multiplications of BN were synthesized using DSP. Although four DL

units were implemented in FLAN + LS, it consumes the fewest LUT and DFF.

Due to the numerous partitioned memory blocks in FLAN and FLAN + LS, more

distributed (LUT) RAMs were consumed to meet the memory bandwidth. De-

spite the on-chip quantization, there was no apparent accuracy degradation for

𝜏𝐴 and 𝜏𝐼 reconstruction.

We also investigated how batch sizes would affect the performance of FLAN

+ LS on CPU, GPU, and FPGA, depicted in Figure 3.16. GPU’s computing

performance significantly relied on the batch size and the scale of DL models.

Small batch size and model size would dramatically deteriorate the speed. The

figure shows that CPU and GPU present similar throughput when the batch size

is smaller than 32. GPU’s throughput exceeds CPU when the batch size exceeds

64

3.

Figure 3.16: Relationships between batch sizes and throughput (pixel/ms) in the
inference phase on CPU, GPU, and FPGA + CPU.

65

3.

32 and FPGA when the batch size is more significant than 128. Note that, for

some FLIM microscope applications like ours, the contrast between the sample

and background should be distinguished, whereby each pixel should be compared

to the threshold. This compels GPU process histograms pixel-by-pixel in serial

(batch size equals 1) instead of parallel. Moreover, pixel-wise data movement on a

GPU consumes extra time. Another reason hindering GPU’s performance is that

CUDA and cuDNN are not providing optimizations for adder-based convolutions.

As for FPGAs, they are not restricted by batch sizes, and they excel at processing

data streams and addition operations.

3.10 Summary and Future Work

This study reports a multiplication-free and robust DL network for time-

domain FLIM analysis. Besides, two data compression strategies were introduced

to accelerate the processing. Both synthetic and real data were adopted to exten-

sively and quantitatively demonstrate superior results comparing existing algo-

rithms. Besides, to illustrate the applicability of hardware, we implemented our

DL architectures on FPGA and compared them with traditional 1D CNN on hard-

ware. Results show that our compression methods can significantly save hardware

resources and achieve high computational efficiency without performance deteri-

oration. Also, we investigate our lightweight DL network’s performance on GPU,

CPU, and FPGA+CPU. We conclude that our heterogeneous FPGA+CPU is not

affected by batch sizes and outperforms GPU for small batch sizes. A potential

improvement of this work is that the training datasets and the network architec-

ture are tailored for confocal microscopes that require a scanning mechanism and

long acquisition time to guarantee high SNR of the captured data. Whereas for

66

3.

wide-field FLIM, imaging systems using SPAD array do not use scanning strate-

gies but widefield illumination, leading to shorter acquisition time and low SNR.

And IRFs vary for different systems. Therefore, training datasets and the IRF

should be modified to cater to various single-photon sensors. Further, our DL

hardware cores cannot be integrated with the TCSPC module coupled with the

confocal microscope due to the non-configurable property of the TCSPC board.

However, it is possible to embed the DL cores in the data readout circuit of SPAD

arrays because FPGA acts as the readout and control hardware for SPAD arrays.

We will make our DL more generalized for SPAD array-based systems in software

and hardware aspects.

Apart from FLIM, the DL network can be applied to analyze data from diffuse

correlation spectroscope (DCS) [91] that also relies on single-photon sensors and

TCSPC systems. For DCS, the essential task is to retrieve scattering coefficients

and blood flow index from temporal correlation functions. To migrate the work-

flow in this work to DCS, we need to alter the theoretical modelling of training

datasets and the optical path, and this work paves the way for DCS research.

67

Chapter 4

Fast Fluorescence Lifetime Imaging

Analysis Using Extreme Learning Machine

for Time-Domain Single-Photon Detector

4.1 Background

As discussed in Section 3.1, 1D DL exhibits superior accuracy and compu-

tational efficiency while reconstructing lifetimes. However, DL’s accuracy may

deteriorate when the input data comes from a different optical setup with vary-

ing instrument specifications, such as IRF, temporal resolution of TDC, quantum

efficiency, etc. Although transfer learning can alleviate this effect, risks such as

domain shift, overfitting, and computational overhead [92] still exist. Our goal

is to address the generalization issue via an online learning algorithm. The ex-

treme learning machine (ELM) [93] offers an efficient solution for processing 1D

signals in biological applications, such as electrocardiogram (ECG) and electroen-

68

4.

cephalogram (EEG) signals [94]. Inspired by related literature, we employed ELM

to reconstruct lifetimes from 1D histograms using multi-variable regression. Here,

the contributions of the ELM-based lifetime inference approach include:

1. The propagation-free property in ELM training was utilized to learn the

datasets, achieving shorter training times compared to existing ANN meth-

ods. This paves the way for fast online training on embedded hardware for

FLIM.

2. Mono- and bi-exponential models, widely used in practical experiments,

were employed to evaluate the performance of ELM, focusing on the ampli-

tude and intensity average lifetimes.

3. Reconstructed lifetime parameters from ELM are more accurate than those

from fitting and non-fitting algorithms for both synthetic and experimen-

tal data under various photon-counting conditions, while maintaining fast

computational speed.

4.2 Apply ELM to FLIM

Due to ELM’s superior capability of processing 1-D signals, we associated

synthetic 1D histograms with ELM regarding training and inferencing phases.

We also illustrate the probabilistic model of photon arrivals of FLIM data and

the artificial IRF based on TCSPC.

69

4.

4.2.1 ELM Theory

Conventionally, back-propagation is the gold standard to minimize object

functions in most ANN architectures. ELM is theoretically a single-layer feed-

forward network (SLFN) that uses matrix inversion (or Moore–Penrose matrix

inversion) and minimum norm least-square solution to train models. The train-

ing can be accelerated significantly compared with iterative back-propagation

procedures whilst avoiding slow convergence and over-fitting resulting from back-

propagation. Assume H training samples (H pairs of vectors 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, ... ,

𝑥𝑖𝑚]𝑇 ∈ R𝑚 and 𝑦𝑖 = [𝑦𝑖1, 𝑦𝑖2, ... , 𝑦𝑖𝑛] ∈ R𝑛) are the ith input vectors and ith

target vectors, respectively, and suppose there are L nodes in the single hidden

layer; output matrix of the hidden layer can be defined as:

A =


𝜙(𝑤1 · 𝑥1 + 𝑏1) · · · 𝜙(𝑤𝐿 · 𝑥1 + 𝑏𝐿)

...
. . .

...

𝜙(𝑤1 · 𝑥𝐻 + 𝑏1) · · · 𝜙(𝑤𝐿 · 𝑥𝐻 + 𝑏𝐿)

𝐻×𝐿
, (4.1)

where 𝜙(·) is the activation function, and usually, a sigmoid function can achieve

a relatively good result. w𝑙 = [𝑤𝑙1, 𝑤𝑙2, . . . , 𝑤𝑙𝑚]𝑇 and b𝑙 = [𝑏1, 𝑏2, . . . , 𝑏𝐿]𝑇 ,

𝑙 = 1, . . . , 𝐿, are randomly assigned weights and biases between the input nodes

and the hidden layer before training. Say 𝛽𝑙 is the weight connecting the 𝑙th

hidden layer and output nodes, defined as:

β𝑬𝑳𝑴 =


𝛽𝑇1
...

𝛽𝑇
𝐿


=


𝛽11 · · · 𝛽1𝑛
...

. . .
...

𝛽𝐿1 · · · 𝛽𝐿𝑛

 𝐿×𝑛
. (4.2)

70

4.

To learn the parameter matrix of β𝑬𝑳𝑴 with a dimension of L × n, the ridge loss

function is widely adopted as:

argmin
𝛽∈R𝐿×𝑛

∥Aβ𝑬𝑳𝑴 − 𝚼∥2 + 𝜆𝐸𝐿𝑀 ∥β𝑬𝑳𝑴 ∥2 (4.3)

where A is s the matrix composed of the activation functions with dimensions

𝐻 × 𝐿; 𝚼 is a matrix with dimensions 𝐻 × 𝑛 containing GT data:

𝚼 =


𝑦𝑇1
...

𝑦𝑇
𝐻


=


𝑦11 · · · 𝑦1𝑛
...

. . .
...

𝑦𝐻1 · · · 𝑦𝐻𝑛

𝐻×𝑛
. (4.4)

Through solving the loss function, we can obtain the matrix 𝛽 by:

ˆβ𝑬𝑳𝑴 = (A𝑇A + 𝜆𝐸𝐿𝑀I)−1A𝑇𝚼 (4.5)

where I is an identity matrix with dimensions L × L, the hyper-parameter 𝜆𝐸𝐿𝑀

helps obtain a reliable result when the matrix (A𝑇A + 𝜆𝐸𝐿𝑀I) is not full rank.

4.3 ELM Network Architecture

The structure of ELM is depicted in Figure 4.1. Suppose the input vector is a

pixel-wise histogram measured by a TCSPC system containing 256 time bins in

the inference phase. The number of output nodes depends on the number of life-

time components we defined in synthetic datasets. For instance, if the measured

data consists of bi-exponential decay model, the output layer should be config-

ured as three nodes, namely, 𝜏1, 𝜏2, and 𝛼. We can easily obtain average lifetimes

from Equations 3.2 and 3.3. All the histograms from the sensor are fed into

71

4.

Figure 4.1: ELM is used for lifetime analysis. The input data are a 1-D pixel-wise
histogram from the raw point cloud that contains 256 time bins. The histogram is fed
into a single-hidden-layer ELM, and lifetime parameters (𝜏1, 𝜏2, and 𝛼) can be obtained
from output nodes.

the network sequentially; lifetime parameters can be obtained from output nodes

pixel by pixel. The number of nodes in the hidden layer can be flexibly adjusted

to achieve a trade-off between accuracy and computing time consumption.

4.4 Synthetic Data Analysis

𝜏𝐴 and 𝜏𝐼 are used to estimate energy transfer for FRET or indicate fluo-

rescence quenching behaviours [59]. This section compares NLSF, BCMM, and

ELM to retrieve 𝜏𝐴 m bi-exponential decays. Likewise, we also compared NLSF,

CMM, and ELM to reconstruct 𝜏𝐼 Besides, ELM was compared with existing

ANNs for FLIM in terms of (1) the network scale and (2) training time. Multiple

72

4.

widely used metrics (F -value, SSIM, R2, MSE) were adopted for performance

evaluations. Synthetic training datasets were generated with the same optical

parameters using Equation 3.4 and 3.1, and Table 3.2.

4.4.1 Comparisons of Individual Lifetime Components

As NLSF was usually adopted in previous studies [60, 64, 66], we compared

the inference performances of ELM and deconvolution-based NLSF (implemented

with lsqcurvefit(·) function in MATLAB® using iterative Levenberg–Marquardt

algorithm) in Figure 4.2. As such, 2,000 simulated testing datasets were generated

for recovery for single and double lifetimes. Here, we define the absolute error

Δg = |𝑔 − 𝑔𝑒𝑠𝑡 |, where g = 𝜏1, 𝜏2, 𝛼, 𝜏𝐴 and 𝑔𝑒𝑠𝑡 is the estimated g . ΔgELM and

ΔgNLSF e the absolute errors for ELM and NLSF. Figure 4.2 (a) and (b) show the

Δg of ELM and NLSF for mono-exponential decays, respectively. Δg, decreases

as the peak intensity increases, and ΔgELM is smaller than ΔgNLSF . Likewise,

Figure 4.2 (c) and (d) indicate Δg plots for g=𝜏1, 𝜏2, and 𝛼, where ΔgELM is

smaller than ΔgNLSF . Similarity, Figure 4.2 (e) and (f) indicate ELM obtained

a much more accurate 𝜏𝐴 than NLSF. Therefore, ELM can perform better than

NLSF in mono- and bi-exponential decays.

Additionally, as shown in Figure 4.3, we visually inspected estimate 𝜏1, 𝜏2, and

𝛼, based on pre-defined variables in synthetic 2D images. We used the SSIM to

evaluate reconstructed images in Figure 4.3 (a) and (b). The 2D lifetime images

were reconstructed from a 3D synthetic data cube, composed of either mono- or

bi-exponential decay (256 × 256 × 256, representing spatial and temporal dimen-

sions). All the GT lifetime parameters (𝜏 and 𝛼) are pre-defined in Equation

3.1. The 2D lifetime images are recovered pixel by pixel from noisy synthetic 3D

data cubes. Figure 4.3 (a) shows reconstructed 2D images from mono-exponential

73

4.

Figure 4.2: Box plots of absolute error versus different peak intensity levels regarding
testing datasets. (a,b) Single lifetime estimations of mono-exponential decays from ELM
and NLSF, respectively. (c,d) Double lifetime estimations of bi-exponential decays from
ELM and NLSF, respectively. (e,f) 𝜏𝐴 estimated by ELM and NLSF, respectively.

decays with GT 𝜏 varying from 0.1 to 0.5 ns. Likely, Figure 4.3 (c) shows esti-

mated 𝜏1, 𝜏2, and 𝛼 bi-exponential decays. Results obtained from ELM are more

accurate than NLSF. Fugure 4.3 (c) shows the phasor plots of GT distribution

of mono- (Figure 4.3 (a)), and bi-exponential (Figure 4.3 (b)) decays. From the

phasor theory [95], cluster points of mono-exponential decays should locate on

the semi-circle. For bi-exponential decays, two-lifetime components are indicated

by the intersections of a fitted line and semi-circle. We utilize 𝑅2 defined as

𝑅2 = 1 −
∑𝑃
𝑖=1(𝜏𝑖𝐴 − 𝜏

𝑖
𝐴_𝐺𝑇)∑𝑃

𝑖=1(𝜏𝑖𝐴 − 𝜏
𝑖
𝐴_𝐴𝑣𝑒)

, (4.6)

to evaluate the estimation consistency, where 𝜏𝑖
𝐴

is the predicted parameter 𝜏𝑖
𝐴_𝐺𝑇

is the GT parameter 𝜏𝑖
𝐴_𝐴𝑣𝑒 is the average of GT parameters, P is the number

of simulated decay curves. As shown in Figure 4.3 (d), scatter plots show ELM

74

4.

Figure 4.3: Lifetime parameters’ estimation results, photon counts for each pixel were
randomly picked between 25 and 500. (a) The estimated single lifetime using a mono-
exponential decay model, where 𝜏 ∈ [0.1, 5] ns from top to down in the image. (b) The
two estimated lifetimes using a bi-exponential decay model where 𝜏1=0.3 ns, 𝜏2=3 ns,
and 𝛼 ∈ [0, 1], from the top down. (c) Two phasor plots of GT distributions of (a, b).
(d) Prediction accuracy and 𝑅2 of 𝜏𝐴 from ELM and NLSF, with 𝜏1=0.3 ns, and 𝜏2=2.5
ns, respectively.

75

4.

is closer to GT, and NLSF shows more outliers. We further evaluated ELM

and NLSF using the F -value defined as Equation 4.7 with synthetic mono- and

bi-exponential decays.

𝐹 =
𝛿𝑥

𝑥
·
√
𝐼 . (4.7)

F > 1 and lower F means higher precision, where I is the detected photon

count, 𝛿𝑥 is the standard deviation of the estimated lifetime parameter, and x

is the GT parameter. We generated 200 synthetic decays for given ranges of

lifetimes and peak intensities in Figure 4.4. Figure 4.4 (a) shows the F -value of

mono-exponential decays versus the lifetime in the range [0.1, 5] ns. Figure 4.4

(b) shows the F -value of bi-exponential decays versus 𝜏1, 𝜏2, and 𝛼 in [0.1,1] ns,

[1, 3] ns, and [0, 1], respectively. We assigned 200 decays with a total photon

count (<2,000) per synthetic histogram for both scenarios. Both figures show

that ELM obtained a smaller F than NLSF, meaning ELM can achieve better

precision. Furthermore, we defined the bias Δ𝜏
𝜏

to evaluate ELM and NLSF versus

the photon count. 𝜏 was set to 3.0 ns for mono-exponential decays. 𝜏1, 𝜏2, and 𝛼

were set to 0.3 ns, 3.0 ns, and 0.5 for bi-exponential decays. Figure 4.4 (c) shows

that the bias of NLSF increases as the photon count increases, which is worse

than ELM. Figure 4.4 (d) shows that the bias of ELM is smaller than NLSF, and

ELM is more robust to varying photon counts. Moreover, NLSF is also sensitive

to initial conditions of lifetime parameters [59]. The bias decreases when the

initial conditions are closed to GT values, meaning that users need to have prior

knowledge about the parameters to be extracted.

76

4.

Figure 4.4: F -value ys with 𝜏1, 𝜏2, and 𝛼 in the ranges [0.1, 1] ns, [1, 3] ns, and [0, 1],
respectively. (c,d) Bias per histogram for mono- and bi-exponential decays.

Figure 4.5: (a) Intensity image of GT 𝜏𝐴 in n exact ranges. 𝐼𝑝𝑐 depicts total photon
counts in one pixel. The range from 40 to 400 is viewed as low photon counts. (b) the
GT 𝜏𝐴 lifetime image with the range [0.3, 2.5] ns. (c-e), 𝜏𝐴 images from ELM, NLSF,
and BCMM.

77

4.

Table 4.1: Time Consumption (Seconds) of NLSF and ELM for Reconstructing Life-
time Parameters.

Algorithm
Mono-Exponential

mode
Bi-Exponential

mode

NLSF 371.9 s 670.9 s

ELM 6.2 6.5

CMM [3] 1.9 1.9 (𝜏𝐼)

BCMM [57] - 16.1(𝜏𝐴)

4.4.2 Comparisons of 𝜏𝐴

We evaluated ELM in estimating 𝜏𝐴 in various count conditions. As shown

in Figure 4.5 (a), we set three regions at three count levels, changing 𝜏𝐴 from

top to bottom. We refer to the three regions as low, middle, and high counts

hereafter. Figure 4.5 (b) depicts the GT 𝜏𝐴. From Figure 4.5 (c) and (d), ELM

shows a more accurate 𝜏𝐴 image than NLSF, with ELM producing a smaller MSE

than NLSF in each region. We also included the non-fitting BCMM [57], for the

comparison due to its fast speed and capacity to resolve bi-exponential decays.

From Figure 4.5 (e), BCMM is not robust in low counts, outperforming NLSF

in middle and high regions. Further, ELM obtained better results than BCMM.

BCMM is less photon efficient, and it is sensitive to the measurement window T

(T should be larger than 5 × 𝜏2, otherwise bias correction is needed [57]). Table

4.1 compares ELM with NLSF regarding the time consumption for inference

(forward-propagation) tasks in Figure 4.3 (a) and (b). NLSF resolving mono-

exponential decays consumes more time than for bi-exponential decay models.

In contrast, the analysis time of ELM is not affected by the number of lifetime

components and it is substantially less than NLSF.

78

4.

Figure 4.6: (a) GT 𝜏𝐼 image in exact ranges. (b-d), Reconstructed 𝜏𝐼 images from
ELM, NLSF, and CMM for bi-exponential decays.

Figure 4.7: (a), (b) Loss curves and time consumption vs. different numbers of nodes
in the hidden layer.

79

4.

Table 4.2: Comparisons of Existing NN Architecture for Lifetime Estimation.

Algorithm
Training

Parameters
Hidden
Layer

Resolve
Multi-Exp. Decays Training Time

ELM 205 600 1 ✓ 10.85 s

FLI-NET [64] 1 084 045 7 ✓ 4 h

1D CNN [62] 48 675 7 ✓ 23min

MLP [4] 3 750 205 3 × 38min

MLP [60] 149 252 2 ✓ 4 h

4.4.3 Comparisons of 𝜏𝐼

CMM [3] achieves the fastest speed for intensity average lifetime analysis. We

further compared CMM with ELM for 𝜏𝐼 reconstruction. As shown in Figure 4.6

the result from ELM is better than NLSF but slightly worse than CMM. How-

ever, CMM is sensitive to and biased by measurement window if bias correction

is not included. Although CMM obtained a smaller overall MSE, the bias occurs

as 𝜏𝐼 becomes longer. It agrees with the conclusion from the previous work [59],

indicating that CMM causes misleading inference when there are multi-lifetime

species in the field of view. Further, 𝜏𝐼 sometimes generates a shorter dynamic

lifetime range than 𝜏𝐴 as 𝜏𝐼 cannot correctly distinguish clusters with different life-

times, especially for strong FRET phenomena [96]. ELM and CMM can achieve

shorter processing time than NLSF and BCMM, as shown in Table 4.1. In this

case, although ELM is slightly slower than CMM, the consumed time varies with

the number of nodes in the hidden layer. Figure 4.7 (a) shows training errors in-

dicated by MAE versus different numbers of nodes in the hidden layer. Here, the

number of the hidden layer is set to 500 for both mono- and bi-exponential mod-

els, as there was no apparent MAE decrease, and a moderate processing time

80

4.

was achieved, as shown in Figure 4.7 (b). Moreover, we compared ELM with

relevant ANNs for FLIM. Since ELM uses the Moore–Penrose matrix inversion

strategy to learn parameters instead of back-propagation, it is much faster. As

shown in Table 4.2, although ELM has more parameters than 1D CNN [62], the

training time is much shorter than the other existing studies [4, 60, 62, 64]. Many

CNN hyperparameters should be fine-tuned, and batch normalizations should be

implemented to avoid gradient vanishing [97]. In contrast, ELM’s architecture is

much simpler, and we simply need to adjust the number of nodes in the hidden

layer. Furthermore, the efficient training process enables online training and is

suitable for embedded hardware implementations [98]. ELM is highly reconfig-

urable to provide a flexible solution to balance the trade-off between computing

complexity and accuracy. The evaluations of ELM and NLSF were conducted in

MATLAB® R2016a, 64-bit CPU (Intel Core i5-4200H @ 2.80 GHz) with 8 GB

memory. Notably, other studies in Table 4.2 used much more powerful GPU to

train their models. Despite this, ELM still delivers the shortest training time.

Based on the analysis of synthetic datasets, ELM is more robust for analyz-

ing mono- and bi-exponential decays than traditional NLSF methods. We will

evaluate ELM using realistic experiment data in the next section.

4.5 Experimental FLIM Data Analysis

To investigate the feasibility of ELM for experimental FLIM data, we utilized

living prostate cancer cells incubated with functionalized Gold Nanorods (GNRs).

A commercial two-photon FLIM system was used to acquire raw 3D data cubes.

This section compares ELM with 1D-CNN, NLSF, and BCMM.

81

4.

4.5.1 Experimental Setup and Sample Preparation

We used the proposed ELM to analyze a living cellular sample, acquired by

a two-photon FLIM system. To achieve an efficient imaging contrast, prostate

cancer cells were treated with GNRs functionalized with Cy5 labeled ssDNA [99].

GNRs have tunable longitudinal surface plasmon resonance and enable the in-

teractions between the strong electromagnetic field and activated fluorophore in

biological samples [100, 101]. Functionalizing GNRs with fluorophore-labelled

DNA has been adopted to probe endocellular components [102, 103], including

microRNA detections for human breast cancer or monitoring the intracellular

level of metal ions in human serums. Here, prostate cancer cells were incubated

with nanoprobe for 6 hours and washed three times with phosphate-buffered

saline. Cells were blended with 4% paraformaldehyde for 15 min. After removing

paraformaldehyde, cells were washed with distilled water three times. The two-

photon FLIM platform consists of a confocal microscope (LSM 510, Carl Zeiss,

Oberkochen, Germany) with 256 × 256 spatial resolution, where the scan module

includes four individual PMTs. A TCSPC module (SPC-830, Becker & Hickl

GmbH, Berlin, Germany) with 256 time bins and 39 picosecond timing resolu-

tion was mounted on the microscope. A tunable femtosecond Ti: sapphire laser

(Chameleon, Coherent, Santa Clara, CA, USA) was configured with a repetition

frequency 80 MHz and 850 nm wavelength to excite the sample. The emission

light was collected using a 60 × water-immersion objectives lens (numerical aper-

ture = 1.0) and a 500–550 nm bandpass filter. One hundred scanning cycles were

selected to prevent GNRs heating and obtain sufficient photons, where each cycle

took three seconds.

82

4.

Figure 4.8: Lifetime analysis of prostatic cells loaded with gold nanoprobes. (a) The
intensity image, b) phasor plot, and (c) phasor projection image. (d–g) 𝜏𝐴 restored by
ELM, 1D CNN, NLSF, and CMM. (h) Lifetime histograms of ELM, 1-D CNN, NLSF,
and BCMM.

4.5.2 Algorithm Evaluation

Due to the strong two-photon photoluminescence property of GNRs, high

optical discernibility can be observed between the GNRs and cell tissues [104].

Figure 4.8 (e), shows the grey-scale intensity image of the sample, where the

bright spots are GNRs. As the background pixels with fewer photon counts im-

ply less useful information, they can be neglected during the analysis. In this

case, a threshold (100 photon counts) was considered to neglect these pixels. As

conventional data readout from TCSPC systems is pixel by pixel, accumulated

histograms can be directly fed into the ELM without data conversion. The bi-

ological sample should be illuminated with a long acquisition time to achieve a

high SNR to obtain a reliable reference. However, a long acquisition time can

easily lead to photobleaching. The previous study [62], reported that a phasor

projection image could alternatively serve as a reference image to identify aut-

ofluorescence and gold nanoprobes. Two clusters representing autofluorescence of

83

4.

the cell and gold nanoprobes can be observed in the phasor plot shown in Figure

8b, after we had applied pixel filtering. Cluster 2 contains the majority of pixels

with shorter lifetimes depicting gold nanoprobes. A fitted line was obtained by a

linear regression fitting algorithm:

argmin
𝑎,𝑏

𝑀∑︁
𝑛=1

| |𝑠𝑛 − (𝑎𝑔𝑛 + 𝑏) | |22 (4.8)

where a and b are slope and intercept of the fitted line, 𝑔𝑛 and 𝑠𝑛 are locations of

pixels in the phasor domain. The intersection points A(ga , sa) and B (ga , sa) can

be obtained accordingly. As shown in Figure 4.8 (c),we employed the pixel-wise

phasor score 𝜌 to generate a phasor projection image by computing

𝜌𝑛 = [(𝑔𝑛 − 𝑔2) (𝑔1 − 𝑔2) + (𝑠𝑛 − 𝑠2) (𝑠1 − 𝑠2)]/𝐷 (4.9)

where D is the Euclidean distance between A and B, n is the number of filtered

pixels.

By comparing 𝜏𝐴 images obtained from ELM (Figure 4.8 (d)), 1D CNN (Fig-

ure 4.8 (e)), NLSF(Figure 4.8 (f), and BCMM(Figure 4.8 (g)), the image from

NLSF shows obvious bias because, as mentioned, NLSF is sensitive to initial val-

ues and fails to converge sometimes. Given that the 1D CNN [62] achieved high

speed and accuracy, we compared ELM and the 1D CNN in term of 𝜏𝐴 using

the same training datasets. From Figure 4.8 (d), (e), ELM is in good agree-

ment with the 1D CNN, and they showed similar distributions of pixel counts,

as shown in Figure 4.8 (g), the NLSF’s result is significantly more biased than

the other three algorithms. This is because deconvolution was involved in NLSF,

causing non-convergent results due to dealing with ultra-short decays caused by

84

4.

gold nanoprobes. As mentioned, BCMM is not robust in varying ranges of pho-

ton counts; many pixels are out of the defined range (0 to 2 ns), as the white

pixels show in Figure 4.8 (g). Nevertheless, BCMM is a fast algorithm that only

took 6.53 s to reconstruct the image. The inference time of 1D CNN on a GPU

(NVIDIA GTX 850M) is 116.43 s, whereas ELM only consumed 1.73 s during

inference on the CPU.

4.5.3 Low Counts Scenarios

Fragile tissues, such as retinas, cannot be excited by laser for a long time. To

avoid tissue damage and photobleaching caused by a long acquisition time, we

investigated ELM’s performance for data in low-photon scenarios. We kept the

experimental setup identical to Section 4.5.1. To acquire less-emitted photons,

we chose the field of view with fewer nanoprobes. Increased scanning cycles

were set on the software. As the number of cycles increased, we changed the

intensity threshold to guarantee sufficient pixels were saved. The value of the

intensity threshold should be fine-tuned according to different bio-samples (5%

of total counts in our experiments). Figure 4.9 (a), (b) depict intensity and

reconstructed 𝜏𝐴 images, respectively. The lifetime of cells and nanoprobes can be

consistently reconstructed, even if the cycle decreases to 10. Notably, nanoprobes

and boundaries of cells cannot be identified in intensity images with 10 and 40

cycles, yet lifetime images can restore the lifetime and reveal cell boundaries.

Below each lifetime image in Figure 4.9 (b), histograms of pixel occurrence were

below 𝜏𝐴 images, showing means 𝜇 and standard deviations 𝛿. There was no

distinct shift in 𝜇 and 𝛿 at different collection cycles, indicating that ELM is

robust, even at low counts.

85

4.

Figure 4.9: (a) Intensity images with different scales of colorbars, scanning cycles
were set to 10, 40, 60, and 80. Colorbars are unified. (b) 𝜏𝐴 ages and pixel occurrence
reconstructed by ELM in different cycles.

4.6 Summary and Future Work

In summary, we presented an ELM architecture to accurately retrieve fluores-

cence lifetime parameters from mono- and bi-exponential decays. Both synthetic

and realistic experimental FLIM datasets were employed to evaluate the proposed

network. Our results show ELM outperforms fitting and non-fitting methods, re-

garding synthetic datasets at different photon counts. Further, ELM can better

identify GNRs and cells and yield a comparable result to the 1D CNN method.

Since ELM does not need back-propagation to train the network, it is more flex-

ible to reconfigure the network topology. Due to the potential on-line training

property, it is promising to implement it on embedded hardware in the future,

coupling with sensors and readout circuits to achieve fast on-chip training and

86

4.

inference. Despite histogram data from different optical instruments, the on-

line training will enhance the generalization. More FLIM applications relying on

GNRs will benefit from this study for cellular cancer diagnosis.

87

Chapter 5

Towards High-performance Deep Learning

Architecture and Hardware Accelerator

Design for Robust Parameters Analysis in

Diffuse Correlation Spectroscopy

5.1 Background

Blood flow is a critical bio-indicator to investigate the consumption and sup-

plement of oxygen and glucose in the brain and muscles. Existing blood flow

sensing techniques have been summarized in previous studies [105], [106], among

which DCS is making a remarkable stride in monitoring cerebral [107], [5] and

muscular [108], [109] blood flow variations in non-invasive, continuous manners.

In essence, DCS measures how fast coherent light loses coherence because of

the movement of red blood cells. DCS uses a near-infrared laser and a photon-

sensitive detector (such as SPAD [5], [91], [6, 110, 111], avalanche photodiodes

[105], [112], PMT [113]) placed near the laser with a SDD. After the laser illu-

88

5.

minates the tissue, the detector collects scattered photons. The detected inten-

sity fluctuations are then fed into correlator hardware to compute the intensity

auto-correlation function ACF, i.e., 𝑔2(𝜏). 𝑔2(𝜏) is related to the electric field

autocorrelation function, 𝑔1(𝜏), defined by the Siegert relation [114]. The opti-

cal parameters 𝜇𝑎 and 𝜇′𝑠, BFi, and the coherence factor 𝛽 can be retrieved by

fitting measured 𝑔2(𝜏) via analytical models defining the solution of correlation

diffusion equations. Fitting algorithms [91], [11] are suitable for single-point de-

tectors in terms of accuracy and speed. However, advanced CMOS SPAD arrays

are emerging DCS detectors, as parallelized acquisition generates a higher SNR

compared with single-point detectors. Massively parallelized acquisition increases

data throughput and requires efficient algorithms and hardware architectures to

interpret DCS data. Despite the efficacy of conventional fitting. Despite the ef-

ficacy of conventional fitting [11], [115], [116], [117] and DNNs [118], [119], [120],

[121] for either single-point detectors or SPAD arrays, their speeds are not ap-

plicable for array detectors due to the high throughput. Furthermore, a highly

integrated hardware computing architecture is necessary for the miniaturization

of DCS systems. We target the challenges mentioned and propose strategies in

four aspects.

1. We propose an ACNN tailored for hardware implementation, focusing on

reconstructing BFi and 𝛽 from intensity ACFs. The ACNN architecture uti-

lizes multiplication-free convolutions to alleviate computational complexity,

enabling higher parallelism and lower hardware utilization. Notably, addi-

tion operations save half of the latency compared with multiplication oper-

ations according to micro-instructions of various CPU operations [122].

89

5.

2. To assess ACNN’s performance in characterizing BFi, we quantitatively

compare speed and accuracy with a conventional CNN that performs the

same network topology and training strategies. This evaluation is based on

a semi-infinite analytical model and in-silico MC simulations of the single-

layer model of milk with known diffuse parameters. Our results demonstrate

that ACNN achieves accurate reconstructed BFi in the inference phase.

3. We present a heterogeneous computing platform implemented on Zynq-

7000 and UltraScale+ multiprocessor systems-on-chip (MPSoC) FPGA.

The ACNN accelerator is implemented on FPGAs. The ACNN accelerator

fully explores the parallelism of the ACNN model, achieving different levels

of parallelism ranging from nested for-loops unrolling to pixel-wise paral-

lelism. Alongside FPGA fabric, SIMD on the embedded CPU is enabled to

accelerate ACF generation.

4. To further miniaturize the accelerator, we employ various quantization

strategies with different bit widths. Herein, we report the corresponding

hardware utilization and speeds on cost-effective and high-performance FP-

GAs. This analysis examines the trade-off between reconstruction accuracy

and hardware efficiency, facilitating choosing application-specific configura-

tions aiding in selecting appropriate configurations for specific application

needs.

The following sections are organized: Section 5.2 provides a comprehensive review

of relevant literature, highlighting advancements in reconstruction algorithms and

on-chip processing methods. Prospective enhancements in these areas are also

presented. Section 5.3 illustrates the DCS theory for generating ACNN’s training

datasets. A canonical MC simulation was used as the reference to validate the

90

5.

consistency with the analytical model. Section 5.4 presents a detailed description

of our ACNN and hardware implementation, and quantitative analysis. Section

5.5 summarizes this study and indicates future work.

5.2 Prior Work

This section reviews existing algorithms for reconstructing BFi and 𝛽 from

ACFs. Besides, state-of-the-art on-chip processing strategies are also examined.

We illustrate potential improvements in the two aspects of our work targets.

5.2.1 Algorithms Review

Existing BFi reconstruction algorithms can be categorized into two streams:

optimization fitting algorithms and deep-learning approaches. Fitting measured

ACF with analytical models to extract BFi and 𝛽 is an ill-posed regression

problem. The Matlab NLSF (Mathwork, Inc., USA) functions, for example,

𝑙𝑠𝑞𝑛𝑜𝑛𝑙𝑖𝑛(·) using the interior-reflective Newton method [116], 𝑓 𝑚𝑖𝑛𝑠𝑒𝑎𝑟𝑐ℎ(·),

the Nelder-Mead simplex algorithm [120] and 𝑜𝑝𝑡𝑖𝑚𝑠𝑒𝑡 (·) the Levenberg Mar-

quardt method [123], have been adopted to reconstruct BFi and to assess errors re-

sulting from uncertainties in optical properties and tissue thicknesses. Given that

the fitting methods are constrained optimization problems, they involve numer-

ous iterations and are therefore time-consuming. This time-consuming problem

can be remarkably mitigated using data-driven DNNs that perform fast forward-

propagation in inference. DNNs have catalyzed improvements in enhancing re-

construction and accuracy. For example, intensity ACFs were first converted into

2-D images and fed into a 2-D CNN for BFI and 𝛽 reconstruction [119], achieving

a 23-fold speedup compared to a nonlinear fitting method. Another study pro-

91

5.

posed a LSTM for BFi reconstruction and relative blood flow analysis due to its

superior capability for extracting features from sequences of data [120]. Similarly,

gated recurrent units were embedded with a 1-D CNN to enhance information

extraction, thereby retrieving relative BFi [121]. An LSTM variant [118] was

proposed to denoise ACFs and extract BFi. Despite existing DNNs’ high accu-

racy for DCS, redundant trainable parameters and complex topologies impede

on-chip, real-time processing. The motivation to design a compact DNN is that

most modern CW and time-domain DCS systems [5], [124] use SPAD arrays for

data acquisition, where FPGAs are essential for controlling clocks and decod-

ing data. We are inspired to embed the analysis on-chip to achieve end-to-end

processing, taking the frame-based intensity as input and generating BFi and 𝛽.

5.2.2 Hardware Processor Review

Researchers have successfully implemented on-FPGA autocorrelators and on-

FPGA BFi reconstruction . Buchholz et al. implemented a multi-channel auto-

correlator for a 32 × 32 SPAD array, but the normalization of pixel-wise ACFs

was not implemented [125]. To alleviate the computational burden, F. Rocca et

al. [6] proposed an on-chip, scalable column-wise autocorrelator that can simul-

taneously compute up to 128 columns for a SPAD array with 192 × 64 enabled

pixels. Another study [110] employed two FPGAs to accumulate detected pho-

tons and compute ACF for a 500 × 500 SPAD array, implementing element-wise

matrix multiplications. But computationally expensive divisions and square root

operations for FPGAs are implemented on PCs.

Besides embedded autocorrelators, an iterative nonlinear curve-fitting algo-

rithm was implemented on-FPGA using LabVIEW [117]. Although it achieves

real-time BFi reconstruction, the high-level LabVIEW implementation exhibits

92

5.

a coarse control over allocating logic and data paths, leading to a redundant

hardware overhead. Also, iterative operations significantly hinder on-FPGA data

pipeline, thereby deteriorating the throughput. Overall, existing FPGA plat-

forms merely integrate ACF generation and BFi reconstruction in a monolithic

fashion. In this study, we take full advantage of reconfigurable heterogeneous

SoC platforms embedding CPUs and PL, to encapsulate all computing pipelines

on-chip, including ACF generation and DL-accelerators for BFi and 𝛽 recon-

struction. The proposed approach demonstrates superior efficiency compared to

a common CPU and GPU. Extended from our previous work [126], [79] for an

FPGA-embedded DL processor for fluorescence lifetime imaging, we proposed a

more concise, multiplication-free, CNN for estimating BFi and 𝛽.

5.3 Analytical Model

This section introduces a generic DCS analytical diffusion model, adopted for

synthetic dataset generation hereafter. Besides, we adopted MC simulations to

simulate a semi-infinite phantom to validate the consistency between analytical

models and MC simulations. For typical DCS systems, ACF can be calculated

by

𝑔2(𝑟, 𝜏) =
⟨𝐼 (𝑟, 𝑡) · 𝐼 (𝑟, 𝑡 + 𝜏)⟩

⟨𝐼 (𝑡)⟩2
, (5.1)

where 𝐼 (𝑟, 𝑡) indicates the photon intensity at time 𝑡 and position 𝑟, ⟨·⟩ means a

time average, 𝜏 is the lag time. The electric field ACF 𝑔2(𝑟, 𝜏), satisfied the CDE

in a scattering tissue [127]

(𝐷∇2 − 𝑣𝜇𝑎 − 1/3𝑣𝜇′
𝑠𝑘

2
0𝛼⟨Δ𝑟

2(𝜏)⟩)𝐺1(𝑟, 𝜏) = −𝑣𝑆(𝑟). (5.2)

93

5.

Figure 5.1: The concept of spatial diffuse reflectometry in a semi-infinite geometry.

In Eq. 5.2, 𝐷 = 𝑣
3(𝜇𝑎+𝜇′𝑠) denotes the photon diffusion coefficient, 𝜇𝑎 and 𝜇′𝑠 the

absorption and reduced scattering coefficients, v the light speed in the medium,

k the wavenumber in the medium, and 𝛼 the ratio between dynamic scatters

and all scatters. As the Brownian motion model has been widely adopted for

specific biological tissues in DCS research [11], [127], [128], this work focuses on

Brownian motions because Brownian motion model is adequate for most bio-

tissue [112]. In future we can derive a version for the ballistic model [129]. The

Brownian motion model ⟨△𝑟2(𝜏)⟩ describes the mean-square displacement, and

𝑆(𝑟) is the CW isotropic light source. The tissue can be modelled as a semi-

infinite medium bounded by the tissue surface for biomedical tissues with a high-

scattering property. And the solution [112], [11]. 𝐺1(𝑟, 𝜏) in Eq. 5.1 can be

94

5.

represented as

𝐺1(𝜏) =
3𝜇

′
𝑠

4𝜋
(𝑒𝑥𝑝(−𝑅𝑟1)

𝑟1
− 𝑒𝑥𝑝(−𝑅𝑟2)

𝑟2
), (5.3)

where 𝑅2 = 3𝜇′𝑠𝜇𝑎 +𝛼𝜇
′2
𝑠 𝑘

2
0⟨△𝑟

2(𝜏)⟩, and 𝑟1 =
√︃
𝜌2 + 𝑧20 and 𝑟2 =

√︁
𝜌2 + (𝑧0 + 2𝑧𝑏)2

are shown in Figure 5.1. Besides, 𝑘0 = 2𝜋
𝜆

, where 𝜆 is the wavelength in the

medium. 𝑅𝑛 =
𝑛𝑖
𝑛𝑜

, where 𝑛𝑖 and 𝑛𝑜 are the refractive indices inside and outside

of the tissue. 𝑧0 = 1
𝜇′𝑠

means the distance between the virtual isotropic point

source and the tissue surface. 𝑧𝑏 =
2(1+𝑅𝑒 𝑓 𝑓)

3𝜇′𝑠 (1−𝑅𝑒 𝑓 𝑓) means the distance between the

extrapolated boundary and the tissue surface, where the effective reflection co-

efficient, 𝑅𝑒 𝑓 𝑓 = −1.440𝑅−2
𝑛 + 0.710𝑅−1

𝑛 + 0.668 + 0.0636𝑅𝑛 indicates the internal

reflection coefficient between two media. As we mentioned, ⟨Δ𝑟2(𝜏)⟩ can be ap-

proximated to 6𝐷𝐵𝜏 for diffusive motion [130]. Therefore, 𝑅2 can be derived as

3𝜇′𝑠𝜇𝑎 + 𝛼𝜇2𝑠 𝑘206𝐷𝐵𝜏. The details about spatial diffuse reflectometry have been

explained in [131].

Recalling the Siegert relation [114], 𝑔2(𝜏) = 1+𝛽 |𝑔1(𝜏) |2, 𝑔1(𝜏) = 𝐺1(𝜏)/𝐺1(0),

where 𝛽 is the coherence factor, mainly determined by the system setup. It has

been proven that 𝛼𝐷𝐵 can present BFi [107], [132], [133]. Also, for liquid phan-

tom, 𝛼 ≈1 [132]. Alongside generating 𝑔2(𝜏) with the analytical model, the noise

model of 𝑔2(𝜏) is also crucial for simulating noise in real media. Existing studies

[112], [11], [134], [135] state that the noise 𝛿(𝜏) (standard deviation) of measured

(𝑔1(𝜏) − 1) can be approximated as

𝛿(𝜏) =
√︂
𝑇

𝑡

[
𝛽2

(1 + 𝑒−2Γ𝑇) (1 + 𝑒−2Γ𝜏) + 2𝑚(1 − 𝑒−2Γ𝑇)𝑒−2Γ𝜏
1 − 𝑒−2Γ𝑇

+ 2⟨𝑛⟩−1𝛽(1 + 𝑒−2Γ𝜏) + ⟨𝑛⟩−2(1 + 𝛽𝑒−Γ𝜏)
]1/2 (5.4)

95

5.

Figure 5.2: 𝑔2(𝜏) curves with fixed optical parameters but with (a) different averaging
time (t = 1 seconds, 5 seconds, and 10 seconds) and (b) with different photon intensities
(I = 20 kcps, 40 kcps, and 80 kcps).

in a homogeneous medium with an infinite geometry. Here, T is the time intervals

between two adjacent 𝜏, m is the bin index, t is the total averaging time. ⟨𝑛⟩ = 𝐼 ·𝑇

the average number of photons, and I is the photon count rate. Γ is the decay

rate of a single exponential function that approximates 𝑔1(𝜏) = 𝑒𝑥𝑝(−𝜏/𝜏𝑐) [134].

Since 𝜏𝑐 is an unknown parameter, we apply the fitting method fminsearch(·) in

MATLAB® to retrieve it after we obtain 𝑔2(𝜏) from the Siegert relation. We

investigated the sensitivity in terms of the averaging time and photon intensity.

We set the other optical parameters as constant, namely, we fixed 𝜇𝑎 and 𝜇
′
𝑠 to

0.1 𝑚𝑚−1 and 2.0 𝑚𝑚−1, 𝜌 = 10 𝑚𝑚, BFi = 5×10−7 𝑚𝑚2/𝑠, 𝛽 = 0.5, and 𝜆 = 700

𝑛𝑚. As shown in Figure 5.2, the noise is related 𝑡, and 𝑔2(𝜏) curves become noiser

when 𝑡 decreases. Similarly, the amplitute of noise is negatively proportional to

𝐼.

96

5.

Figure 5.3: Comparison between MC simulation and analytic model for 𝑔1(𝜏) and
𝑔2(𝜏) of milk. (a) and (b) generated and fitted curves using MCX and analytical models.
(c) and (d) Euclidian distance between simulated and fitted curves.

97

5.

5.3.1 Monte Carlo Simulation

We chose the single-layer model of milk (𝜇𝑎 = 0.27 𝑚𝑚−1 and 𝜇′𝑠 = 160 𝑚𝑚−1

at 780 𝑛𝑚 [136]) in the Monte Carlo eXtreme (MCX) photon propagation simula-

tions [115], [137]. We configure that 107 photons were emitted from a light source.

The radius of the detector is 1 𝑚𝑚. 𝜌 was configured to be 10 𝑚𝑚. The voxel

of the phantom is 60 𝑚𝑚3. MCX employs fminsearch(·) as the non-linear fitting

algorithm by default. The fitting method can obtain accurate results because

the simulated curves are noise-free. Once we obtained parsed 𝑔1(𝜏) using MCX

studio, we used Siegert relation to calculate the corresponding 𝑔2(𝜏), depicted

by red lines in Figure 5.3 (a) and (b), respectively. Also, by using analytical

model, we obtained the fitted 𝑔1(𝜏) and 𝑔2(𝜏) with reconstructed 𝛼D (equivalent

to BFi) and 𝛽, shown by black lines in Figure 5.3 (a) and (b). The Euclidian

distances shown in Figure 5.3, (c) and (d) indicates small errors. Therefore, the

reconstructed BFi and 𝛽 can be the reference for evaluating our algorithms. Also,

the analytical model achieves nearly consistent 𝑔1(𝜏) and 𝑔2(𝜏) curves compared

to Monte Carlo simulations in MCX, meaning that we can quickly generate train-

ing datasets for our DNN model by constructing and automating the analytical

model in MATLAB®.

5.4 DL Architecture

Inspired by the previous 1D CNN FPGA implementation [126], [79], [138], we

propose a similar but more compact DL network that does not involve multiplica-

tions apart from BNs. Furthermore, we do not use ResNet blocks [85] compared

with the previous work [126] as its skip connections introduce data dependency

that impedes data pipelining and for-loop unrolling on FPGAs. We have proven

98

5.

Figure 5.4: ACNN architecture in training and inference phases.

that our network can converge without ResNet blocks. The DL architecture is

depicted in Figure 5.4. The 𝑔2(𝜏) curves synthesized from the analytical model

were applied to training and validation as the model is based on rigorous deduc-

tions and assumptions. On the other hand, using the curves generated from MC

simulations for the test datasets provides a realistic evaluation of the model’s

performance in real-world scenarios.

We generated 40,000 𝑔2(𝜏) curves for training, using the analytical model (Eq.

5.3) and the noise generator (Eq. 5.4). The dataset is configured with 𝛽 ∈ [0, 1),

BFi ∈ [10−8, 10−5]𝑚𝑚2/𝑠, 𝜌 = 10 𝑚𝑚, and 𝜆 = 700 𝑛𝑚, to emulate realistic

experiments. The noise rate varies from 20 kcps to 80 kcps. 10% (4,000) curves

of the training dataset were used for validation during training. The optimizer is

RMSprop, and the Huber loss was adopted as the loss function. The learning rate

is 0.001 with 0.997 exponential decreasing. It took 18 minutes for the NVIDIA

RTX A1000 GPU to train the model. 35 patience epochs were used to avoid over-

fitting. The total number of training epochs is 300. All 𝑔2(𝜏) datasets included

99

5.

Figure 5.5: Training and validation loss curves of ACNN and CNN. (a) and (b),
ACNN training and validation loss curves in 109 epochs. (c) and (d), CNN training
and validation loss curves in 96 epochs.

Table 5.1: Detailed computational information of each layer.

UAC1 BN1 UAC2 BN2 UAC3_1 BN3_1 UAC3_2 BN3_2 UAC3_3 BN3_3 Total

#parameters 270 30 2,940 30 2,730x2 60x2 465x2 30x2 16x2 2x2 9,880
FLOPs 10,260 1,140 17,640 180 2,730x2 60x2 465x2 30x2 16x2 2x2 35,830

Note: Some parameters and FLOPs multiply by two because of the branched structure.

100

5.

Figure 5.6: R-square and MSE evaluation between ACNN, CNN, NLSF. (a) and (b)
R-square of BFi and from ACNN. (c) and (d) R-square of BFi and 𝛽 from CNN. (e)
and (f) R-square of BFi and 𝛽 from NLSF.

101

5.

the noise model and were normalized to emulate realistic 𝑔2(𝜏). Figure 5.5, shows

training and validation loss curves, where ACNN exhibits comparable convergence

versus a CNN model with the same architecture and training strategy. The

number of parameters and floating-point operations per second (FLOPs) for each

layer was summarized in Table 5.1. The compact model size and low FLOPs pave

the way for high-parallel hardware implementation afterwards.

5.4.1 Accuracy Evaluation

As our ACNN uses the 𝑙1 norm to measure cross-correlation between weights

and feature maps, we should ensure that ACNN’s weights follow Laplace dis-

tributions according to [84]. As shown in Figure 5.7 (a) and (b), distribution

weights from CNN and our ACNN exhibit Gaussian and Laplace distributions, in

good agreement with the AdderNet theory [84]. To evaluate estimated BFi and

𝛽, in Figure 5.6, used 𝑅-squared and the MSE to evaluate the fitting goodness,

in comparison with the GT BFi and 𝛽. Both ACNN and the conventional CNN

offer nearly perfect 𝑅-squared results, However, for 𝛽, a few outliners from CNN

(at small 𝛽) are shown. As for BFi’s reconstruction, ACNN also attains better

R-squared and MSE.

We also assessed the impact of the photon rate in the noise model on the

reconstruction accuracy. We compared our ACNN with CNN at various photon

intensity levels, ranging from 1,000 to 35,000 counts per second (CPS). This range

was divided into 34 groups, each containing 100 noisy ACF curves. The GT 𝛽

and BFi values are 0.5 and 0.5×10−5𝑚𝑚2/𝑠, respectively. and 𝑡 (the averaging

time) = 5 seconds. As shown in Figure 5.8 (a), the accuracy of 𝛽 (ACNN and

CNN) is compromised when the photon rate is low, leading to inaccuracy in the

mean (M) and the standard deviation (Std). However, as the photon intensity

102

5.

Figure 5.7: Histograms depict the weights distribution of CNN and ACNN. (a) and
(b) represent Gaussian and Laplace distributions of CNN’s and ACNN’s weights.

Figure 5.8: Accuracy evaluation of ACNN and CNN under different levels of photon
rate in the noise model. (a) and (b) reconstructed 𝛽 and BFi.

103

5.

increases, both architectures provide more accurate reconstructions. ACNN tends

to offer better accuracy for most photon intensities, whereas CNN exhibits slightly

better accuracy (M) and precision (Std) when photon counts are lower than

9,000. Regarding BFi, ACNN outperforms CNN in terms of accuracy and achieves

similar precision. Both architectures produce accurate BFi at high photon rates,

whereas CNN is more robust for low photon rates (before 5,000 CPS).

5.4.2 Accelerator Architecture

The ACNN accelerator was implemented on PL on cost-optimized Zynq-7000

SoC and high-end Zynq-UltraScale+ MPSoC using Vivado HLS 2018.2. Along-

side the accelerator, the computation of ACF was implemented on the ARM-

based PS. The following reasons are for producing the ACF module on PS: firstly,

implementing Eq.5.1 on the FPGA requires taking thousands of frames and con-

ducting element-wise vector multiplications and divisions; it is challenging due

to limited DSP slices and on-chip memory. The onboard DDR with hundreds

of megabytes can efficiently accommodate raw data and bridge the data transfer

between the ACF module on PS and BFi reconstruction on PL. Secondly, in the-

ory, the multiplication operations in the numerator in Equation 5.1 are followed

by an averaging operation that can be implemented as adder-trees and end up

with a subsequent divider. Although the overhead of parallelizing the adder-tree

for averaging is negligible, vector multiplications and divisions are computation-

ally expensive in FPGAs. To address this concern, we leverage Neon and vec-

tor floating-point unit (VFPU) [139] technologies in ARM CPUs to accelerate

vector multiplications in the numerator, as the arithmetic logical unit in ARM

Cortex-A9 and -A53 CPU cores on our FPGA boards contain vectorized dividers

and multipliers optimized with SIMD, which offloads ACF processing from PL.

104

5.

We yielded 11-fold acceleration compared to the speed without enabling VFPU.

Therefore, allocating workloads to PS and PL achieves a trade-off between per-

formance and hardware utilization. Meanwhile, we can reserve more hardware

resources for regular vector-addition and accumulation and VM operations for

DL accelerators.

The processing pipeline in PS is summarized in Figure 5.9 (a). To validate the

functionality, we initially preloaded intensity data in the DDR. Multiple bit-width

FXP quantization methods were adopted to alleviate the hardware overhead and

timing latency, and the FLP to FXP conversion was implemented as shift oper-

ations and divisions on PS. Once enough ACFs are computed and a pre-defined

number corresponding to the number of cores specified in Table 5.2 is reached,

the quantized and normalized ACF are dispatched to the PL accelerators through

an AXI-full interface. Similarly, the FXP to FLP conversion was implemented

similarly for printing readable BFi and 𝛽. 𝑚𝑎𝑙𝑙𝑜𝑐(·) was used to store quantized

ACF vectors and dispatch them to AXI’s Master port. MACROS parameterizes

the pointer addressing space and the length of ACFs. A general-purpose timer

driver was employed to measure the time-consumption when DL accelerators re-

construct BFi and 𝛽.

As shown in Figure 5.9, our ACNN accelerator is a scalable, multi-core ar-

chitecture, where each DL-core can process one ACF and reconstruct BFi and

𝛽 simultaneously. The details about each DL-core are depicted in Figure 5.9

(b); the input feature go through a series of UAC modules, where the for-loops

of output channels and kernel windows are unrolled to improve the parallelism.

The Reshape flattens the feature and allocates the data in channel dimensions

for channel-wise convolution afterwards. Unrolling operations in UAC are decom-

posed in Figure 5.9 (c). The BRAMs (storing learned parameters) are partially

105

5.

Figure 5.9: Hardware architecture integrates intensity temporal ACF computation
and ACNN accelerators (10 cores on Zynq and 15 on Zynq UltraScale+). (a). The ar-
chitecture overview illustrates the data transfer and functionalities of each module. (b).
Detailed architecture of each DL core, data path and memory access were depicted with
back and yellow arrows, respectively. (c). Detailed structures of each UAC illustrate
parallelism in the input channel, output channel, and kernel size.

Table 5.2: Evaluation results of ACNN accelerators with different quantization bit-
width on Zynq-7000 and Zynq-UltraScale+ FPGA.

FPGA # Core Data type DFF LUT LUTRAM BRAM_18K DSP PPMS

Zynq-7000

5 Fixed<18, 9> 18.99% 50.56% 7.20% 36.07% 29.55% 21.74
(20,203/106,400) (26,898/53,200) (1,253/17,400) (50.50/140) (65/220)

5 Fixed<24, 12> 19.00% 49.89% 7.20% 36.07% 29.55% 17.86
(20,212/106,400) (26,541/53,200) (1,253/17,400) (50.50/140) (65/220)

10 Fixed<18, 9> 34.75% 91.93% 12.55% 75.36% 59.09% 41.67
(36,973/106,400) (48,588/53,200) (2,183/17,400) (105.5/140) (130/220)

10 Fixed<24, 12> 34.81% 90.07% 12.54% 75.36% 59.09% 35.01
(37,043/106,400) (47,919/53,200) (2,182/17,400) (105.5/140) (130/220)

Zynq UltraScale+ MPSoC

10 Fixed<18, 9> 5.88% 21.96% 1.35% 35.58% 7.52% 38.46
(27,083/460,800) (50,603/230,400) (1,375/101,760) (111/312) (130/1,728)

10 Fixed<24, 12> 5.68% 22.25% 1.35% 35.58% 7.52% 33.21
(26,162/460,800) (50,603/230,400) (1,375/101,760) (111/312) (130/1,728)

15 Fixed<18, 9> 8.35% 32.28% 1.82% 53.21% 11.28% 48.49
(38,473/460,800) (74,375/230,400) (1,855/101,760) (166/312) (195/1,728)

15 Fixed<24, 12> 8.05% 32.74% 1.82% 53.21% 11.28% 44.37
(37,101/460,800) (75,438/230,400) (1,855/101,760) (166/312) (195/1,728)

Note: Some results may vary depending on the quantization bit-width and FPGA configuration.

106

5.

partitioned accordingly to satisfy the bandwidth requirement of UACs. As BNs

are involved in each UAC, they are implemented as VMs after ACs. BNs were

simplified using Eq. 3.11, Eq. 3.12, and Eq. 3.13. Once these parameters from

the pre-trained model are extracted, they are preloaded on BRAMs, as the dashed

box shows in Figure 5.9 (b).

Table 5.3: Performance comparisons of CPU, GPU, and FPGA-based SoC when pro-
cessing different numbers of pixels (ACFs) for each batch.

5 pixels/batch

i7-12800H CPU RTX A1000 GPU Artix-7 and 1 thread Artix-7 and 1 thread
ARM-Cortex-A9 <18, 9> ARM-Cortex-A9 <24, 12>

Power (W) 3.586 4.438 1.962 1.981
Latency (ms/batch) 3.753 1.311 0.183 0.174
Efficiency (ms/W) 1.045 0.295 0.095 0.015

10 pixels/batch

i7-12800H CPU RTX A1000 GPU Artix-7 and 1 thread Artix-7 and 1 thread
ARM-Cortex-A9 <18, 9> ARM-Cortex-A9 <24, 12>

Power (W) 3.534 4.346 2.549 2.579
Latency (ms/batch) 3.927 1.356 0.258 0.267
Efficiency (ms/W) 1.111 0.312 0.101 0.104

15 pixels/batch

i7-12800H CPU RTX A1000 GPU UltraScale+ and 1 thread UltraScale+ and 1 thread
ARM-Cortex-A53 <18, 9> ARM-Cortex-A53 <24, 12>

Power (W) 3.549 4.236 4.826 4.846
Latency (ms/batch) 5.115 1.524 0.283 0.295
Efficiency (ms/W) 1.441 0.360 0.058 0.061

5.4.3 Accelerator Evaluation

We implemented the ACNN accelerator on Zynq-7000 and Zynq-UltraScale+

to investigate its performance. To validate the scalability, we implemented five

and ten DL cores on Zynq-7000, and ten and fifteen on Zynq UltraScale+. Each

scheme contains two sets of FXP bit-width, 24 bit-width containing 12 fractional

bits, and 18 bit-width containing 9 fractional bits. Hardware consumption and

speed are demonstrated in Table 5.2. Considering our accelerator targets single-

107

5.

Figure 5.10: DL cores implementation on Zynq-7000 and Zynq-UltraScale+ with
different quantization FXP schemes, and their corresponding MAE of BFi and 𝛽.

photon detector arrays, we use PPMS to assess the speed of simultaneously pro-

cessing ACFs. Timer functions on the PS measure the time-consumption of the

ACNN accelerator. According to Table 5.2, PPMS increases while the number

of DL cores increases. Besides, we evaluated the reconstruction accuracy of BFi

and 𝛽 of the eight schemes in terms of MAE that is directly output from the

FPGA board. As shown in Figure 5.10, there is no considerable fluctuation from

different numbers of cores and FXP bit-widths. We define the computational ef-

ficiency using the latency of batches over power consumption, as shown in Table

5.3. It measures the time required to complete a given workload under constant

power consumption. Therefore, a lower value indicates higher computational ef-

ficiency. We measured the power consumption of accelerators on FPGAs using

Xilinx Power Estimator [140]. We also used NVML [139] and PyJoules [141]

108

5.

APIs to measure the power consumption of GPU and CPU. FPGA-based SoC

platforms obtain the best computational efficiency across different batch sizes

compared to the CPU and GPU.

5.5 Summary and Future Work

This study reports a compact, hardware friendly DNN to reconstruct BFi

and 𝛽 in DCS. The correctness of our analytical model was verified by comparing

in-silico MC simulations. According to Fig. 5.6, we ensure that our DNN architec-

ture achieves higher accuracy than conventional CNNs yet has simpler operators.

By leveraging the miniaturized architecture, we implemented our scalable DL

clusters on an SoC-based FPGA to assess their accuracy, hardware utilization,

and computational efficiency. Enhanced with different bit-widths of quantization

schemes, we evaluated these quantized versions on cost-optimized and high-end

FPGAs. To achieve end-to-end processing, we encapsulated 𝑔2(𝜏) generation and

BFi reconstruction on a single SoC-based FPGA, providing different on-chip pro-

cessing solutions for modern DCS sensing systems. Given that current FPGAs

mounted on modern SPAD arrays are mainly middle-end devices that only con-

tain PL, our heterogenous hardware architecture provides a foundation for future

integration of high-end FPGA and SPAD arrays.

109

Chapter 6

Conclusions and Final Remarks

6.1 Summary of Remarks

In this thesis, we illustrate the effectiveness of data-driven DL strategies in bol-

stering both accuracy and computational efficiency in parameter retrieval across

three burgeoning applications within single-photon signal processing: depth re-

construction for single-photon LiDAR, FLIM analysis, and BFi reconstruction

for DCS.

The comprehensive technical conclusions for each application are provided at

the conclusion of their respective chapters. A unified methodology is applied in

each application. We harness analytical models of optical instruments and single-

photon data encoding to generate synthetic data for training DNNs. Furthermore,

we delve into an investigation on how the DNNs’ accuracy is affected by SNR, with

results indicating that our DNNs, whether employing compression schemes or not,

surpass conventional iterative optimization-based algorithms. Emphasizing the

importance of data compression or DNN model optimization, we underscore their

pivotal role in expediting parameter estimation, rather than solely concentrating

110

6.

on algorithmic development. We develop hardware-optimized DNNs on FPGA

to underscore their computational efficiency. Surpassing the performance of tra-

ditional CPU and GPU setups suggests a promising avenue towards embedded

computing solutions, supplanting the need for post-processing methodologies.

Overall, our work demonstrates the effectiveness of DNNs for analyzing en-

coded single-photon signals, specifically through the generation of histograms for

LiDAR and FLIM, and ACFs for DCS. We anticipate that the analytical models,

streamlined DNN construction, compression techniques, and hardware architec-

ture discussed in this study will contribute to improving parameter reconstruction

accuracy and computational efficiency within the respective communities.

6.2 Potential Future Works

In the realm of single-photon LiDAR, achieving real-time and accurate depth

reconstruction poses ongoing challenges. While a recent study [142] successfully

utilized sparsity within 3D point-cloud data from SPAD technology to attain

video-rate 3D reconstruction, a significant limitation persists. This approach

relied on synthetic training data tailored specifically for bespoke SPAD sensors,

meticulously considering optical parameters such as IRF, quantum efficiency, and

TDC temporal resolution. However, the performance of such algorithms may

degrade for different optical setups. To address this challenge, there is a criti-

cal need to develop robust algorithms capable of leveraging data sparsity while

demonstrating adaptability across diverse optical configurations with minimal

adjustments required.

111

6.

In FLIM analysis, constructing histograms not only requires additional on-

chip logic in the sensor or firmware on FPGA but also introduces latency for

lifetime reconstruction since histograms need to be available in advance. Recent

studies [81], [143] demonstrate that the raw data of photon-arrival timestamps

can be directly input into a recurrent neural network and a spiking neural net-

work without constructing histograms, thus mitigating latency concerns. This

approach offers a promising direction for future research. Firstly, validating the

robustness of timestamps-based methods under low-photon count scenarios is es-

sential. Secondly, efforts should focus on enabling timestamps-based methods to

reconstruct individual and average fluorescence lifetime effectively.

In our current approach to DCS, we use a single-layer semi-infinite analytical

model to generate synthetic data for training our DNN. However, human tissues,

like the brain, have a complex multi-layer structure. Moving forward, it’s crucial

to develop an accurate multi-layer analytical model that can effectively capture

this complexity. Validating this model through MC simulation techniques will

ensure its ability to accurately represent the intricate behavior of diffusion model

within multi-layered tissues. Another promising track for future work is inte-

grating our SoC-based FPGA accelerator into DCS systems. In contemporary

SPAD-based DCS systems, FPGAs typically offer mid-level performance, featur-

ing pure PL fabric without high-performance hardcore processors. For example,

Artix-7 [6] and Kintex-7 [110] have been used to compute 𝑔2(𝜏) directly on the

FPGA without performing BFi reconstruction following 𝑔2(𝜏). In contrast, we

utilized the powerful hardcore ARM CPU cores with SIMD acceleration on the

UltraScale+ MPSoC to compute 𝑔2(𝜏) and generate BFi. However, existing FP-

GAs like Artix-7 and Kintex-7 do not include hardcore ARM CPUs. Although

synthesizable soft-core processors in the PL fabric are an option, they are less

112

6.

performant than hardcore processors and consume significant hardware resources.

Therefore, we anticipate that our holistic accelerator prototype could significantly

enhance system capabilities once high-end FPGAs like the UltraScale+ MPSoC

are integrated into DCS systems.

This thesis introduces data-driven single-photon signal processing frameworks

for LiDAR, FLIM, and DCS, laying the groundwork for future research. Besides

the applications discussed, we aim to make our algorithms and hardware imple-

mentations adaptable to other fields utilizing single-photon detectors, such as

fluorescence diffuse spectroscopy and diffuse optical tomography.

113

References

[1] J. Rapp, J. Tachella, Y. Altmann, S. McLaughlin, and V. K. Goyal,

“Advances in single-photon lidar for autonomous vehicles: Working

principles, challenges, and recent advances,” IEEE Signal Processing

Magazine, vol. 37, no. 4, pp. 62–71, 2020.

[2] J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S.

Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3d reconstruction

from single-photon lidar data using plug-and-play point cloud denoisers,”

Nature communications, vol. 10, no. 1, p. 4984, 2019.

[3] D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa,

E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime

imaging camera with cmos single-photon avalanche diode arrays and

high-speed imaging algorithm,” Journal of biomedical optics, vol. 16,

no. 9, pp. 096012–096012, 2011.

[4] V. Zickus, M.-L. Wu, K. Morimoto, V. Kapitany, A. Fatima, A. Turpin,

R. Insall, J. Whitelaw, L. Machesky, C. Bruschini, et al., “Fluorescence

lifetime imaging with a megapixel spad camera and neural network

lifetime estimation,” Scientific Reports, vol. 10, no. 1, p. 20986, 2020.

114

REFERENCES

[5] W. Liu, R. Qian, S. Xu, P. Chandra Konda, J. Jönsson, M. Harfouche,

D. Borycki, C. Cooke, E. Berrocal, Q. Dai, et al., “Fast and sensitive

diffuse correlation spectroscopy with highly parallelized single photon

detection,” APL Photonics, vol. 6, no. 2, 2021.

[6] F. M. Della Rocca, E. J. Sie, R. Catoen, F. Marsili, and R. K. Henderson,

“Field programmable gate array compression for large array multispeckle

diffuse correlation spectroscopy,” Journal of Biomedical Optics, vol. 28,

no. 5, p. 057001, 2023.

[7] D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient

computational 3-d and reflectivity imaging with single-photon detectors,”

IEEE Transactions on Computational Imaging, vol. 1, no. 2, pp. 112–125,

2015.

[8] J. Rapp and V. K. Goyal, “A few photons among many: Unmixing signal

and noise for photon-efficient active imaging,” IEEE Transactions on

Computational Imaging, vol. 3, no. 3, pp. 445–459, 2017.

[9] J. Lee, J. V. Chacko, B. Dai, S. A. Reza, A. K. Sagar, K. W. Eliceiri,

A. Velten, and M. Gupta, “Coding scheme optimization for fast

fluorescence lifetime imaging,” ACM Transactions on Graphics (TOG),

vol. 38, no. 3, pp. 1–16, 2019.

[10] Y. Zhang, Y. Chen, and D. D.-U. Li, “Optimizing laguerre expansion

based deconvolution methods for analysing bi-exponential fluorescence

lifetime images,” Optics express, vol. 24, no. 13, pp. 13894–13905, 2016.

115

REFERENCES

[11] L. Dong, L. He, Y. Lin, Y. Shang, and G. Yu, “Simultaneously extracting

multiple parameters via fitting one single autocorrelation function curve in

diffuse correlation spectroscopy,” IEEE Transactions on Biomedical

Engineering, vol. 60, no. 2, pp. 361–368, 2012.

[12] M. Beer, O. M. Schrey, J. F. Haase, J. Ruskowski, W. Brockherde, B. J.

Hosticka, and R. Kokozinski, “Spad-based flash lidar sensor with high

ambient light rejection for automotive applications,” in Quantum Sensing

and Nano Electronics and Photonics XV, vol. 10540, pp. 320–327, SPIE,

2018.

[13] L. Nalpantidis and A. Gasteratos, “Stereo vision depth estimation

methods for robotic applications,” in Depth Map and 3D Imaging

Applications: Algorithms and Technologies, pp. 397–417, IGI global, 2012.

[14] A. N. Angelopoulos, H. Ameri, D. Mitra, and M. Humayun, “Enhanced

depth navigation through augmented reality depth mapping in patients

with low vision,” Scientific reports, vol. 9, no. 1, p. 11230, 2019.

[15] H. Zhan, R. Garg, C. S. Weerasekera, K. Li, H. Agarwal, and I. Reid,

“Unsupervised learning of monocular depth estimation and visual

odometry with deep feature reconstruction,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 340–349, 2018.

[16] Y. Wang, Z. Lai, G. Huang, B. H. Wang, L. Van Der Maaten,

M. Campbell, and K. Q. Weinberger, “Anytime stereo image depth

estimation on mobile devices,” in 2019 international conference on

robotics and automation (ICRA), pp. 5893–5900, IEEE, 2019.

116

REFERENCES

[17] E. Cippitelli, F. Fioranelli, E. Gambi, and S. Spinsante, “Radar and

rgb-depth sensors for fall detection: A review,” IEEE Sensors Journal,

vol. 17, no. 12, pp. 3585–3604, 2017.

[18] C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and

characterization of a cmos 3-d image sensor based on single photon

avalanche diodes,” IEEE Journal of Solid-State Circuits, vol. 40, no. 9,

pp. 1847–1854, 2005.

[19] J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count

single-photon avalanche diode structure compatible with standard

nanometer scale cmos technology,” IEEE Photonics Technology Letters,

vol. 21, no. 14, pp. 1020–1022, 2009.

[20] C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn,

Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson,

et al., “A 160× 128 single-photon image sensor with on-pixel 55ps 10b

time-to-digital converter,” in 2011 IEEE International Solid-State Circuits

Conference, pp. 312–314, IEEE, 2011.

[21] R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen,

D. Day-Uei Li, G. Hungerford, R. Hirsch, D. Mcloskey, P. Yip, and

D. J. S. Birch, “A 192 × 128 time correlated spad image sensor in 40-nm

cmos technology,” IEEE Journal of Solid-State Circuits, vol. 54, no. 7,

pp. 1907–1916, 2019.

117

REFERENCES

[22] Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is spiral-tap:

Sparse poisson intensity reconstruction algorithms—theory and practice,”

IEEE Transactions on Image Processing, vol. 21, no. 3, pp. 1084–1096,

2011.

[23] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press,

2012.

[24] J. F. C. Kingman, Poisson processes, vol. 3. Clarendon Press, 1992.

[25] J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller,

S. Mclaughlin, and J.-Y. Tourneret, “Bayesian 3d reconstruction of

complex scenes from single-photon lidar data,” SIAM Journal on Imaging

Sciences, vol. 12, no. 1, pp. 521–550, 2019.

[26] Q. Legros, S. Meignen, S. McLaughlin, and Y. Altmann,

“Expectation-maximization based approach to 3d reconstruction from

single-waveform multispectral lidar data,” IEEE Transactions on

Computational Imaging, vol. 6, pp. 1033–1043, 2020.

[27] D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3d imaging

with deep sensor fusion.,” ACM Trans. Graph., vol. 37, no. 4, pp. 113–1,

2018.

[28] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks

for biomedical image segmentation,” in Medical image computing and

computer-assisted intervention–MICCAI 2015: 18th international

conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18,

pp. 234–241, Springer, 2015.

118

REFERENCES

[29] A. Ruget, S. McLaughlin, R. K. Henderson, I. Gyongy, A. Halimi, and

J. Leach, “Robust super-resolution depth imaging via a multi-feature

fusion deep network,” Optics Express, vol. 29, no. 8, pp. 11917–11937,

2021.

[30] Z. Sun, D. B. Lindell, O. Solgaard, and G. Wetzstein, “Spadnet: deep

rgb-spad sensor fusion assisted by monocular depth estimation,” Optics

express, vol. 28, no. 10, pp. 14948–14962, 2020.

[31] J. Peng, Z. Xiong, X. Huang, Z.-P. Li, D. Liu, and F. Xu,

“Photon-efficient 3d imaging with a non-local neural network,” in

Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,

August 23–28, 2020, Proceedings, Part VI 16, pp. 225–241, Springer, 2020.

[32] X. Zhao, M. Wu, Y. Zhang, C. Wang, R. Chen, W. He, and Q. Chen,

“Robust single-photon 3d imaging based on full-scale feature integration

and intensity edge guidance,” Optics and Lasers in Engineering, vol. 172,

p. 107850, 2024.

[33] J. Arlt, D. Tyndall, B. R. Rae, D. D.-U. Li, J. A. Richardson, and R. K.

Henderson, “A study of pile-up in integrated time-correlated single photon

counting systems,” Review of Scientific Instruments, vol. 84, no. 10, 2013.

[34] D. L. Snyder and M. I. Miller, Random point processes in time and space.

Springer Science & Business Media, 2012.

[35] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++:

Redesigning skip connections to exploit multiscale features in image

segmentation,” IEEE transactions on medical imaging, vol. 39, no. 6,

pp. 1856–1867, 2019.

119

REFERENCES

[36] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:

Training low bitwidth convolutional neural networks with low bitwidth

gradients,” arXiv preprint arXiv:1606.06160, 2016.

[37] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,

2016.

[38] J. Liu, Y. Sun, X. Xu, and U. S. Kamilov, “Image restoration using total

variation regularized deep image prior,” in ICASSP 2019-2019 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 7715–7719, Ieee, 2019.

[39] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation

and support inference from rgbd images,” in Computer Vision–ECCV

2012: 12th European Conference on Computer Vision, Florence, Italy,

October 7-13, 2012, Proceedings, Part V 12, pp. 746–760, Springer, 2012.

[40] D. Scharstein and C. Pal, “Learning conditional random fields for stereo,”

in 2007 IEEE conference on computer vision and pattern recognition,

pp. 1–8, IEEE, 2007.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

[42] S. Burri, C. Bruschini, and E. Charbon, “Linospad: a compact linear spad

camera system with 64 fpga-based tdc modules for versatile 50 ps

resolution time-resolved imaging,” Instruments, vol. 1, no. 1, p. 6, 2017.

[43] I. Alhashim and P. Wonka, “High quality monocular depth estimation via

transfer learning. arxiv 2018,” arXiv preprint arXiv:1812.11941, 1812.

120

REFERENCES

[44] I. Bar-David, “Communication under the poisson regime,” IEEE

Transactions on Information Theory, vol. 15, no. 1, pp. 31–37, 1969.

[45] M. A. Yaseen, S. Sakadžić, W. Wu, W. Becker, K. A. Kasischke, and

D. A. Boas, “In vivo imaging of cerebral energy metabolism with

two-photon fluorescence lifetime microscopy of nadh,” Biomedical optics

express, vol. 4, no. 2, pp. 307–321, 2013.

[46] Y. Dancik, A. Favre, C. J. Loy, A. V. Zvyagin, and M. S. Roberts, “Use of

multiphoton tomography and fluorescence lifetime imaging to investigate

skin pigmentation in vivo,” Journal of biomedical optics, vol. 18, no. 2,

pp. 026022–026022, 2013.

[47] M. Nobis, E. J. McGhee, J. P. Morton, J. P. Schwarz, S. A. Karim,

J. Quinn, M. Edward, A. D. Campbell, L. C. McGarry, T. J. Evans, et al.,

“Intravital flim-fret imaging reveals dasatinib-induced spatial control of src

in pancreatic cancer,” Cancer research, vol. 73, no. 15, pp. 4674–4686,

2013.

[48] S. Karpf, C. T. Riche, D. Di Carlo, A. Goel, W. A. Zeiger, A. Suresh,

C. Portera-Cailliau, and B. Jalali, “Spectro-temporal encoded multiphoton

microscopy and fluorescence lifetime imaging at kilohertz frame-rates,”

Nature communications, vol. 11, no. 1, p. 2062, 2020.

[49] Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot,

and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor

image-guided surgery,” Journal of biomedical optics, vol. 15, no. 5,

pp. 056022–056022, 2010.

121

REFERENCES

[50] A. Alfonso-Garcia, J. Bec, S. Sridharan Weaver, B. Hartl, J. Unger,

M. Bobinski, M. Lechpammer, F. Girgis, J. Boggan, and L. Marcu,

“Real-time augmented reality for delineation of surgical margins during

neurosurgery using autofluorescence lifetime contrast,” Journal of

biophotonics, vol. 13, no. 1, p. e201900108, 2020.

[51] W. Becker, A. Bergmann, G. L. Biscotti, and A. Rueck, “Advanced

time-correlated single photon counting techniques for spectroscopy and

imaging in biomedical systems,” in Commercial and Biomedical

Applications of Ultrafast Lasers IV, vol. 5340, pp. 104–112, SPIE, 2004.

[52] K. Suhling, L. M. Hirvonen, W. Becker, S. Smietana, H. Netz, J. Milnes,

T. Conneely, A. Le Marois, O. Jagutzki, F. Festy, et al., “Wide-field

time-correlated single photon counting-based fluorescence lifetime imaging

microscopy,” Nuclear Instruments and Methods in Physics Research

Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, vol. 942, p. 162365, 2019.

[53] J. C. Thiele, D. A. Helmerich, N. Oleksiievets, R. Tsukanov, E. Butkevich,

M. Sauer, O. Nevskyi, and J. Enderlein, “Confocal fluorescence-lifetime

single-molecule localization microscopy,” ACS nano, vol. 14, no. 10,

pp. 14190–14200, 2020.

[54] J. Philip and K. Carlsson, “Theoretical investigation of the signal-to-noise

ratio in fluorescence lifetime imaging,” JOSA A, vol. 20, no. 2,

pp. 368–379, 2003.

[55] J. R. Lakowicz, Principles of fluorescence spectroscopy. Springer, 2006.

122

REFERENCES

[56] Ž. Bajzer and F. G. Prendergast, “[10] maximum likelihood analysis of

fluorescence data,” in Methods in enzymology, vol. 210, pp. 200–237,

Elsevier, 1992.

[57] D. D.-U. Li, H. Yu, and Y. Chen, “Fast bi-exponential fluorescence

lifetime imaging analysis methods,” Optics Letters, vol. 40, no. 3,

pp. 336–339, 2015.

[58] A. Sillen and Y. Engelborghs, “The correct use of “average” fluorescence

parameters,” Photochemistry and photobiology, vol. 67, no. 5, pp. 475–486,

1998.

[59] Y. Li, S. Natakorn, Y. Chen, M. Safar, M. Cunningham, J. Tian, and

D. D.-U. Li, “Investigations on average fluorescence lifetimes for visualizing

multi-exponential decays,” Frontiers in physics, vol. 8, p. 576862, 2020.

[60] G. Wu, T. Nowotny, Y. Zhang, H.-Q. Yu, and D. D.-U. Li, “Artificial

neural network approaches for fluorescence lifetime imaging techniques,”

Optics letters, vol. 41, no. 11, pp. 2561–2564, 2016.

[61] Q. Wang, Y. Li, D. Xiao, Z. Zang, Z. Jiao, Y. Chen, and D. D. U. Li,

“Simple and robust deep learning approach for fast fluorescence lifetime

imaging,” Sensors, vol. 22, no. 19, p. 7293, 2022.

[62] D. Xiao, Y. Chen, and D. D.-U. Li, “One-dimensional deep learning

architecture for fast fluorescence lifetime imaging,” IEEE Journal of

Selected Topics in Quantum Electronics, vol. 27, no. 4, pp. 1–10, 2021.

123

REFERENCES

[63] L. Héliot and A. Leray, “Simple phasor-based deep neural network for

fluorescence lifetime imaging microscopy,” Scientific Reports, vol. 11,

no. 1, p. 23858, 2021.

[64] J. T. Smith, R. Yao, N. Sinsuebphon, A. Rudkouskaya, N. Un,

J. Mazurkiewicz, M. Barroso, P. Yan, and X. Intes, “Fast fit-free analysis

of fluorescence lifetime imaging via deep learning,” Proceedings of the

National Academy of Sciences, vol. 116, no. 48, pp. 24019–24030, 2019.

[65] M. Ochoa, A. Rudkouskaya, R. Yao, P. Yan, M. Barroso, and X. Intes,

“High compression deep learning based single-pixel hyperspectral

macroscopic fluorescence lifetime imaging in vivo,” Biomedical Optics

Express, vol. 11, no. 10, pp. 5401–5424, 2020.

[66] Y.-I. Chen, Y.-J. Chang, S.-C. Liao, T. D. Nguyen, J. Yang, Y.-A. Kuo,

S. Hong, Y.-L. Liu, H. G. Rylander III, S. R. Santacruz, et al., “Generative

adversarial network enables rapid and robust fluorescence lifetime image

analysis in live cells,” Communications Biology, vol. 5, no. 1, p. 18, 2022.

[67] J. T. Smith, M. Ochoa, and X. Intes, “Unmix-me: spectral and lifetime

fluorescence unmixing via deep learning,” Biomedical Optics Express,

vol. 11, no. 7, pp. 3857–3874, 2020.

[68] D. Xiao, Z. Zang, W. Xie, N. Sapermsap, Y. Chen, and D. D. U. Li,

“Spatial resolution improved fluorescence lifetime imaging via deep

learning,” Optics Express, vol. 30, no. 7, pp. 11479–11494, 2022.

[69] Z. Zang, D. Xiao, Q. Wang, Z. Li, W. Xie, Y. Chen, and D. D. U. Li,

“Fast analysis of time-domain fluorescence lifetime imaging via extreme

learning machine,” Sensors, vol. 22, no. 10, p. 3758, 2022.

124

REFERENCES

[70] D. Xiao, N. Sapermsap, Y. Chen, and D. D. U. Li, “Deep learning

enhanced fast fluorescence lifetime imaging with a few photons,” Optica,

vol. 10, pp. 944–951, Jul 2023.

[71] B. Kim, B. Park, S. Lee, and Y. Won, “Gpu accelerated real-time confocal

fluorescence lifetime imaging microscopy (flim) based on the analog

mean-delay (amd) method,” Biomedical Optics Express, vol. 7, no. 12,

pp. 5055–5065, 2016.

[72] J. E. Sorrells, R. R. Iyer, L. Yang, A. J. Bower, D. R. Spillman, E. J.

Chaney, H. Tu, and S. A. Boppart, “Real-time pixelwise phasor analysis

for video-rate two-photon fluorescence lifetime imaging microscopy,”

Biomedical Optics Express, vol. 12, no. 7, pp. 4003–4019, 2021.

[73] Y. Ma, Y. Lee, C. Best-Popescu, and L. Gao, “High-speed

compressed-sensing fluorescence lifetime imaging microscopy of live cells,”

Proceedings of the National Academy of Sciences, vol. 118, no. 3,

p. e2004176118, 2021.

[74] I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan,

C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256 × 256 , 100-kfps,

61fill-factor spad image sensor for time-resolved microscopy applications,”

IEEE Transactions on Electron Devices, vol. 65, no. 2, pp. 547–554, 2018.

[75] D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware

implementation algorithm and error analysis of high-speed fluorescence

lifetime sensing systems using center-of-mass method,” Journal of

biomedical optics, vol. 15, no. 1, pp. 017006–017006, 2010.

125

REFERENCES

[76] D. Tyndall, B. R. Rae, D. D.-U. Li, J. Arlt, A. Johnston, J. A.

Richardson, and R. K. Henderson, “A high-throughput time-resolved

mini-silicon photomultiplier with embedded fluorescence lifetime

estimation in 0.13 𝜇m cmos,” IEEE transactions on biomedical circuits

and systems, vol. 6, no. 6, pp. 562–570, 2012.

[77] N. Krstajić, J. Levitt, S. Poland, S. Ameer-Beg, and R. Henderson, “256×

2 spad line sensor for time resolved fluorescence spectroscopy,” Optics

express, vol. 23, no. 5, pp. 5653–5669, 2015.

[78] F. M. Della Rocca, J. Nedbal, D. Tyndall, N. Krstajić, D. D.-U. Li, S. M.

Ameer-Beg, and R. K. Henderson, “Real-time fluorescence lifetime

actuation for cell sorting using a cmos spad silicon photomultiplier,”

Optics letters, vol. 41, no. 4, pp. 673–676, 2016.

[79] D. Xiao, Z. Zang, N. Sapermsap, Q. Wang, W. Xie, Y. Chen, and

D. D. U. Li, “Dynamic fluorescence lifetime sensing with cmos

single-photon avalanche diode arrays and deep learning processors,”

Biomed. Opt. Express, vol. 12, pp. 3450–3462, Jun 2021.

[80] M. J. Serafino, B. E. Applegate, and J. A. Jo, “Direct frequency domain

fluorescence lifetime imaging using field programmable gate arrays for real

time processing,” Review of Scientific Instruments, vol. 91, no. 3, 2020.

[81] Y. Lin, P. Mos, A. Ardelean, C. Bruschini, and E. Charbon, “Coupling a

recurrent neural network to spad tcspc systems for real-time fluorescence

lifetime imaging,” Scientific Reports, vol. 14, no. 1, pp. 1–13, 2024.

126

REFERENCES

[82] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,

“Binarized neural networks,” Advances in neural information processing

systems, vol. 29, 2016.

[83] Y. Wang, M. Huang, K. Han, H. Chen, W. Zhang, C. Xu, and D. Tao,

“Addernet and its minimalist hardware design for energy-efficient artificial

intelligence,” arXiv preprint arXiv:2101.10015, 2021.

[84] H. Chen, Y. Wang, C. Xu, B. Shi, C. Xu, Q. Tian, and C. Xu, “Addernet:

Do we really need multiplications in deep learning?,” in Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition,

pp. 1468–1477, 2020.

[85] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 770–778, 2016.

[86] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of fpga-based

neural network inference accelerator (2018),” arXiv preprint

arXiv:1712.08934.

[87] A. L. Trinh and A. Esposito, “Biochemical resolving power of fluorescence

lifetime imaging: untangling the roles of the instrument response function

and photon-statistics,” Biomedical Optics Express, vol. 12, no. 7,

pp. 3775–3788, 2021.

[88] D. Kage, K. Hoffmann, G. Nifontova, V. Krivenkov, A. Sukhanova,

I. Nabiev, and U. Resch-Genger, “Tempo-spectral multiplexing in flow

cytometry with lifetime detection using qd-encoded polymer beads,”

Scientific Reports, vol. 10, no. 1, p. 653, 2020.

127

REFERENCES

[89] A. J. Bares, M. A. Mejooli, M. A. Pender, S. A. Leddon, S. Tilley, K. Lin,

J. Dong, M. Kim, D. J. Fowell, N. Nishimura, et al., “Hyperspectral

multiphoton microscopy for in vivo visualization of multiple, spectrally

overlapped fluorescent labels,” Optica, vol. 7, no. 11, pp. 1587–1601, 2020.

[90] M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor

approach to fluorescence lifetime imaging analysis,” Biophysical journal,

vol. 94, no. 2, pp. L14–L16, 2008.

[91] D. Tamborini, K. A. Stephens, M. M. Wu, P. Farzam, A. M. Siegel,

O. Shatrovoy, M. Blackwell, D. A. Boas, S. A. Carp, and M. A.

Franceschini, “Portable system for time-domain diffuse correlation

spectroscopy,” IEEE Transactions on Biomedical Engineering, vol. 66,

no. 11, pp. 3014–3025, 2019.

[92] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE

Transactions on knowledge and data engineering, vol. 22, no. 10,

pp. 1345–1359, 2009.

[93] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning

machine for regression and multiclass classification,” IEEE Transactions

on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 2,

pp. 513–529, 2011.

[94] H.-T. Li, C.-Y. Chou, Y.-T. Chen, S.-H. Wang, and A.-Y. Wu, “Robust

and lightweight ensemble extreme learning machine engine based on

eigenspace domain for compressed learning,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 66, no. 12, pp. 4699–4712,

2019.

128

REFERENCES

[95] D. M. Jameson, E. Gratton, and R. D. Hall, “The measurement and

analysis of heterogeneous emissions by multifrequency phase and

modulation fluorometry,” Applied spectroscopy reviews, vol. 20, no. 1,

pp. 55–106, 1984.

[96] Z. Heger, M. Kominkova, N. Cernei, L. Krejcova, P. Kopel, O. Zitka,

V. Adam, and R. Kizek, “Fluorescence resonance energy transfer between

green fluorescent protein and doxorubicin enabled by dna

nanotechnology,” Electrophoresis, vol. 35, no. 23, pp. 3290–3301, 2014.

[97] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine

learning, vol. 4. Springer, 2006.

[98] M. Tsukada, M. Kondo, and H. Matsutani, “A neural network-based

on-device learning anomaly detector for edge devices,” IEEE Transactions

on Computers, vol. 69, no. 7, pp. 1027–1044, 2020.

[99] G. Wei, J. Yu, J. Wang, P. Gu, D. J. Birch, and Y. Chen, “Hairpin

dna-functionalized gold nanorods for mrna detection in homogenous

solution,” Journal of Biomedical Optics, vol. 21, no. 9, pp. 097001–097001,

2016.

[100] K. A. Kang, J. Wang, J. B. Jasinski, and S. Achilefu, “Fluorescence

manipulation by gold nanoparticles: from complete quenching to extensive

enhancement,” Journal of nanobiotechnology, vol. 9, no. 1, pp. 1–13, 2011.

[101] C. Racknor, M. R. Singh, Y. Zhang, D. J. Birch, and Y. Chen, “Energy

transfer between a biological labelling dye and gold nanorods,” Methods

and Applications in Fluorescence, vol. 2, no. 1, p. 015002, 2013.

129

REFERENCES

[102] A. Heuer-Jungemann, P. K. Harimech, T. Brown, and A. G. Kanaras,

“Gold nanoparticles and fluorescently-labelled dna as a platform for

biological sensing,” Nanoscale, vol. 5, no. 20, pp. 9503–9510, 2013.

[103] Y. Zhang, G. Wei, J. Yu, D. J. Birch, and Y. Chen, “Surface plasmon

enhanced energy transfer between gold nanorods and fluorophores:

application to endocytosis study and rna detection,” Faraday discussions,

vol. 178, pp. 383–394, 2015.

[104] Y. Zhang, J. Yu, D. J. Birch, and Y. Chen, “Gold nanorods for

fluorescence lifetime imaging in biology,” Journal of biomedical optics,

vol. 15, no. 2, pp. 020504–020504, 2010.

[105] T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for

non-invasive, micro-vascular cerebral blood flow measurement,”

Neuroimage, vol. 85, pp. 51–63, 2014.

[106] S. A. Carp, M. B. Robinson, and M. A. Franceschini, “Diffuse correlation

spectroscopy: current status and future outlook,” Neurophotonics, vol. 10,

no. 1, pp. 013509–013509, 2023.

[107] Y. Shang, T. Li, and G. Yu, “Clinical applications of near-infrared diffuse

correlation spectroscopy and tomography for tissue blood flow monitoring

and imaging,” Physiological measurement, vol. 38, no. 4, p. R1, 2017.

[108] Y. Shang, T. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of

muscle fiber motion on diffuse correlation spectroscopy blood flow

measurements during exercise,” Biomedical optics express, vol. 1, no. 2,

pp. 500–511, 2010.

130

REFERENCES

[109] C.-G. Bangalore-Yogananda, R. Rosenberry, S. Soni, H. Liu, M. D.

Nelson, and F. Tian, “Concurrent measurement of skeletal muscle blood

flow during exercise with diffuse correlation spectroscopy and doppler

ultrasound,” Biomedical Optics Express, vol. 9, no. 1, pp. 131–141, 2018.

[110] M. A. Wayne, E. J. Sie, A. C. Ulku, P. Mos, A. Ardelean, F. Marsili,

C. Bruschini, and E. Charbon, “Massively parallel, real-time multispeckle

diffuse correlation spectroscopy using a 500× 500 spad camera,”

Biomedical Optics Express, vol. 14, no. 2, pp. 703–713, 2023.

[111] E. J. Sie, H. Chen, E.-F. Saung, R. Catoen, T. Tiecke, M. A. Chevillet,

and F. Marsili, “High-sensitivity multispeckle diffuse correlation

spectroscopy,” Neurophotonics, vol. 7, no. 3, pp. 035010–035010, 2020.

[112] C. Zhou, G. Yu, D. Furuya, J. H. Greenberg, A. G. Yodh, and

T. Durduran, “Diffuse optical correlation tomography of cerebral blood

flow during cortical spreading depression in rat brain,” Optics express,

vol. 14, no. 3, pp. 1125–1144, 2006.

[113] C. J. Stapels, N. J. Kolodziejski, D. McAdams, M. J. Podolsky, D. E.

Fernandez, D. Farkas, and J. F. Christian, “A scalable correlator for

multichannel diffuse correlation spectroscopy,” in Advanced Biomedical

and Clinical Diagnostic and Surgical Guidance Systems XIV, vol. 9698,

pp. 106–112, SPIE, 2016.

[114] S. O. Rice, “Mathematical analysis of random noise,” The Bell System

Technical Journal, vol. 23, no. 3, pp. 282–332, 1944.

131

REFERENCES

[115] H. Zhao, E. Sathialingam, and E. M. Buckley, “Accuracy of diffuse

correlation spectroscopy measurements of cerebral blood flow when using

a three-layer analytical model,” Biomedical Optics Express, vol. 12, no. 11,

pp. 7149–7161, 2021.

[116] D. Mazumder, M. M. Wu, N. Ozana, D. Tamborini, M. A. Franceschini,

and S. A. Carp, “Optimization of time domain diffuse correlation

spectroscopy parameters for measuring brain blood flow,” Neurophotonics,

vol. 8, no. 3, pp. 035005–035005, 2021.

[117] W. Lin, D. R. Busch, C. C. Goh, J. Barsi, and T. F. Floyd, “Diffuse

correlation spectroscopy analysis implemented on a field programmable

gate array,” IEEE Access, vol. 7, pp. 122503–122512, 2019.

[118] P. Zhang, Z. Gui, L. Hao, X. Zhang, C. Liu, and Y. Shang, “Signal

processing for diffuse correlation spectroscopy with recurrent neural

network of deep learning,” in 2019 IEEE Fifth International Conference

on Big Data Computing Service and Applications (BigDataService),

pp. 328–332, IEEE, 2019.

[119] C.-S. Poon, F. Long, and U. Sunar, “Deep learning model for ultrafast

quantification of blood flow in diffuse correlation spectroscopy,”

Biomedical Optics Express, vol. 11, no. 10, pp. 5557–5564, 2020.

[120] Z. Li, Q. Ge, J. Feng, K. Jia, and J. Zhao, “Quantification of blood flow

index in diffuse correlation spectroscopy using long short-term memory

architecture,” Biomedical Optics Express, vol. 12, no. 7, pp. 4131–4146,

2021.

132

REFERENCES

[121] J. Feng, M. Jiang, J. Bai, K. Jia, and Z. Li, “Cerebral blood flow

monitoring using a convgru model based on diffuse correlation

spectroscopy,” Infrared Physics & Technology, vol. 129, p. 104541, 2023.

[122] A. Fog, “Instruction tables-lists of instruction latencies, throughputs and

micro-operation breakdowns for intel, amd, and via cpus,” 2022.

[123] J. Dong, R. Bi, J. H. Ho, P. S. Thong, K.-C. Soo, and K. Lee, “Diffuse

correlation spectroscopy with a fast fourier transform-based software

autocorrelator,” Journal of biomedical optics, vol. 17, no. 9,

pp. 097004–097004, 2012.

[124] S. Xu, X. Yang, W. Liu, J. Jönsson, R. Qian, P. C. Konda, K. C. Zhou,

L. Kreiß, H. Wang, Q. Dai, et al., “Imaging dynamics beneath turbid

media via parallelized single-photon detection,” Advanced Science, vol. 9,

no. 24, p. 2201885, 2022.

[125] J. Buchholz, J. W. Krieger, G. Mocsár, B. Kreith, E. Charbon,

G. Vámosi, U. Kebschull, and J. Langowski, “Fpga implementation of a

32x32 autocorrelator array for analysis of fast image series,” Optics

express, vol. 20, no. 16, pp. 17767–17782, 2012.

[126] Z. Zang, D. Xiao, Q. Wang, Z. Jiao, Y. Chen, and D. D. U. Li, “Compact

and robust deep learning architecture for fluorescence lifetime imaging

and fpga implementation,” Methods and Applications in Fluorescence,

vol. 11, no. 2, p. 025002, 2023.

[127] D. A. Boas, L. Campbell, and A. G. Yodh, “Scattering and imaging with

diffusing temporal field correlations,” Physical review letters, vol. 75,

no. 9, p. 1855, 1995.

133

REFERENCES

[128] M. Seong, Y. Oh, K. Lee, and J. G. Kim, “Blood flow estimation via

numerical integration of temporal autocorrelation function in diffuse

correlation spectroscopy,” Computer Methods and Programs in

Biomedicine, vol. 222, p. 106933, 2022.

[129] R. Alfano, W. Wang, L. Wang, and S. Gayen, “Light propagation in

highly scattering turbid media: concepts, techniques, and biomedical

applications,” Photonics: Biomedical Photonics, Spectroscopy, and

Microscopy, pp. 367–412, 2015.

[130] C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. Yodh, “In

vivo cerebrovascular measurement combining diffuse near-infrared

absorption and correlation spectroscopies,” Physics in Medicine &

Biology, vol. 46, no. 8, p. 2053, 2001.

[131] T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of

spatially resolved, steady-state diffuse reflectance for the noninvasive

determination of tissue optical properties in vivo,” Medical physics,

vol. 19, no. 4, pp. 879–888, 1992.

[132] L. He, Y. Lin, Y. Shang, B. J. Shelton, and G. Yu, “Using optical fibers

with different modes to improve the signal-to-noise ratio of diffuse

correlation spectroscopy flow-oximeter measurements,” Journal of

biomedical optics, vol. 18, no. 3, pp. 037001–037001, 2013.

[133] R. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse

speckle contrast analysis,” Optics letters, vol. 38, no. 9, pp. 1401–1403,

2013.

134

REFERENCES

[134] X. Cheng, H. Chen, E. J. Sie, F. Marsili, and D. A. Boas, “Development of

a monte carlo-wave model to simulate time domain diffuse correlation

spectroscopy measurements from first principles,” Journal of Biomedical

Optics, vol. 27, no. 8, pp. 083009–083009, 2022.

[135] S. A. Carp, D. Tamborini, D. Mazumder, K.-C. Wu, M. R. Robinson,

K. A. Stephens, O. Shatrovoy, N. Lue, N. Ozana, M. H. Blackwell, et al.,

“Diffuse correlation spectroscopy measurements of blood flow using 1064

nm light,” Journal of Biomedical Optics, vol. 25, no. 9,

pp. 097003–097003, 2020.

[136] J. D. Johansson, D. Portaluppi, M. Buttafava, and F. Villa, “A multipixel

diffuse correlation spectroscopy system based on a single photon avalanche

diode array,” Journal of biophotonics, vol. 12, no. 11, p. e201900091, 2019.

[137] Q. Fang and D. A. Boas, “Monte carlo simulation of photon migration in

3d turbid media accelerated by graphics processing units,” Optics express,

vol. 17, no. 22, pp. 20178–20190, 2009.

[138] Z. Zang, D. Xiao, Q. Wang, Z. Jiao, Z. Li, Y. Chen, and D. D.-U. Li,

“Hardware inspired neural network for efficient time-resolved biomedical

imaging,” in 2022 44th Annual International Conference of the IEEE

Engineering in Medicine & Biology Society (EMBC), pp. 1883–1886,

IEEE, 2022.

[139] “Nvml api reference guide,”

https://docs.nvidia.com/deploy/nvml-api/index.html.

[140] “Xilinx power estimator user guide,” https://docs.xilinx.com/r/en-

US/ug440-xilinx-power-estimator?tocId=nnrf2odl4xIaqGp3~WtIBA.

135

https://docs.nvidia.com/deploy/nvml-api/index.html
https://docs.xilinx.com/r/en-US/ug440-xilinx-power-estimator?tocId=nnrf2odl4xIaqGp3~WtIBA
https://docs.xilinx.com/r/en-US/ug440-xilinx-power-estimator?tocId=nnrf2odl4xIaqGp3~WtIBA

REFERENCES

[141] “pyjoules,” https://docs.nvidia.com/deploy/nvml-api/index.html.

[142] G. Yao, Y. Chen, C. Jiang, Y. Xuan, X. Hu, Y. Liu, and Y. Pan,

“Dynamic single-photon 3d imaging with a sparsity-based neural

network,” Optics Express, vol. 30, no. 21, pp. 37323–37340, 2022.

[143] Y. Lin and E. Charbon, “Spiking neural networks for active time-resolved

spad imaging,” in Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision, pp. 8147–8156, 2024.

136

https://docs.nvidia.com/deploy/nvml-api/index.html

	Copyright
	Abstract
	Acknowledgements
	List of Symbols
	List of Abbreviations
	Publication List
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis Structure

	2 Non-Fusion Deep Learning Framework for Accurate Depth Reconstruction for Single-Photon LiDAR
	2.1 Background
	2.2 Prior Work
	2.3 Problem Definition
	2.4 Non-Fusion ToA Denoising Model
	2.4.1 Neural Network Architecture
	2.4.2 Training Detail

	2.5 Evaluation
	2.5.1 Loss Evaluation
	2.5.2 Synthetic Data

	2.6 Captured Data
	2.7 Discussion
	2.8 Summary and Future Work

	3 Compact and Robust Deep Learning Architecture for Fluorescence Lifetime Imaging and FPGA Implementation
	3.1 Background
	3.2 Prior Work
	3.2.1 Deep Learning for FLIM
	3.2.2 Hardware Platforms for FLIM

	3.3 Problem Definition
	3.4 Deep Learning Network Details
	3.4.1 Network Architecture
	3.4.2 Preparation for Hybrid Training Data

	3.5 Training Details
	3.6 Data Compression Strategies
	3.6.1 Log-Scale Mapping for Time-Bin
	3.6.2 On-Chip Linear Quantization

	3.7 Synthetic Data Evaluation
	3.8 Real-Case Study: Fluorescent Beads Discrimination
	3.8.1 Sample Preparation
	3.8.2 Optical Setup
	3.8.3 Quantitative Analysis

	3.9 Hardware Implementation
	3.10 Summary and Future Work

	4 Fast Fluorescence Lifetime Imaging Analysis Using Extreme Learning Machine for Time-Domain Single-Photon Detector
	4.1 Background
	4.2 Apply ELM to FLIM
	4.2.1 ELM Theory

	4.3 ELM Network Architecture
	4.4 Synthetic Data Analysis
	4.4.1 Comparisons of Individual Lifetime Components
	4.4.2 Comparisons of A
	4.4.3 Comparisons of I

	4.5 Experimental FLIM Data Analysis
	4.5.1 Experimental Setup and Sample Preparation
	4.5.2 Algorithm Evaluation
	4.5.3 Low Counts Scenarios

	4.6 Summary and Future Work

	5 Towards High-performance Deep Learning Architecture and Hardware Accelerator Design for Robust Parameters Analysis in Diffuse Correlation Spectroscopy
	5.1 Background
	5.2 Prior Work
	5.2.1 Algorithms Review
	5.2.2 Hardware Processor Review

	5.3 Analytical Model
	5.3.1 Monte Carlo Simulation

	5.4 DL Architecture
	5.4.1 Accuracy Evaluation
	5.4.2 Accelerator Architecture
	5.4.3 Accelerator Evaluation

	5.5 Summary and Future Work

	6 Conclusions and Final Remarks
	6.1 Summary of Remarks
	6.2 Potential Future Works

	References

