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Abstract

The thesis considers different aspects of the probability distribution of the time series
of stock price changes in the UK market. It places particular emphasis on the character of
the volatility of the series. Chapter 2 documents some preliminary findings about changes in
the FT-ALL share price index. These findings are: (1) its distribution has fat tails; (2) the
BDS test rejects the hypothesis of identically, and independently distributed price changes;
(3) the BDS test applied to the GARCH(1,1) residuals, adjusted according to de Lima

(1995b), indicates that Autoregressive Conditional Heteroscedasticity explains most of the
nonlinearity in the FT-ALL price changes.

The hypothesis of constant variance is rejected for the FT-ALL series using the
Loretan and Phillips test, reported in chapter 3. An intervention model along the lines of Box
and Tiao (1975) 1s used to model possible shifts in the variance of the FT-ALL price changes
during the 1973 oil crisis and the 1987 market crash. The model allows for slow decay in
the shocks effects and a different level of volatility after both crises. The results suggest that
the reaction of the UK market to both crises differs only with regard to the slow decay ot
the shocks. The null hypothesis of constant variance is "accepted” for the residuals from the
intervention model. This "acceptance” is due to the filtering of the effects of the 1973 and
1987 crisis from the FT-ALL series.

The hypothesis that GARCH volatility persistence becomes insignificant when the
volume of trade is included is examined in chapter 4. In a test covering the price behaviour
of 57 UK companies over the period from 4/1/1988 to 28/2/1994, it is found that although
the parameter estimates of the GARCH model becomes insignificant when volume is used
in the conditional variance of price changes, the autocorrelations of the squared residuals still
exhibit a highly significant GARCH pattern. It is argued that the GARCH-volume model of
Lamoureux and Lastrapes (1990b) suffers from a multicollinearity problem, apart from the
possible simultaneity bias which could lead to an inconsistent estimate of the parameter for
volume. It is found that unexpected volume reduces volatility persistence. This reduction can
be attributed to the strong association in the timing of innovational outliers in the price
changes and unexpected volume found in the study. The results are consistent with the
market depth hypothesis of Bessembinder and Seguin (1993).

The GARCH model with the conditional normal, Student's t and generalized error
distributions is estimated for the UK FT-ALL price changes in chapter 5. The model also
considers seasonal and leverage effects. The time period for the study is chosen so as to
avoid including the 1987 crash. The results suggest: (1) volatility persistence is low after the
1987 crash; (2) the ARMA and ARCH effects, along with the seasonal effects of Monday
and holidays, explain a significant part of the departure from normality; (3) there is a need
for leptokurtic distribution such as the Student's t; and (4) there is no evidence tor a leverage

effect in the FT-ALL series. That is, positive and negative surprises tend to affect volatility
In the same way.
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Chapter 1 : Introduction

1. Introduction

The departure of stock price changes from normality has been well
documented over the last three decades since the seminal works of Mandelbrot and
Fama 1n the mid 1960's [see Mandelbrot (1963a) and Fama (1963 and 1965a)]. The
enthusiasm of academics and practitioners alike to find out more about the stochastic
process generating stock prices has never waned. Practitioners are interested in
finding out how to improve their share selection and portfolio management skills [see
Lofthouse (1994)], dvhilst academics are interested in developing a better
understanding of how asset prices are determined in the capital market. This
understanding can tell them, for example, what the theoretical models for derivative
securities should consider. The well-used Black-Scholes formula for the valuation of
European call option prices 1s based on the assumption that continuously compounded
returns are normally distributed with a constant variance. Contrast this assumption,
however, with the well documented findings that stock returns have fatter tails than

the normal distribution [see Bollerslev ef al. (1993) for a review].

Bookstaber and McDonald (1987) describe two approaches to the study of the

distribution of stock price changes in finance. The first begins by describing the

economic theory that gives rise to stock price changes, and the second searches for




a distribution function that empirically fits stock price changes. Examples of research

using the first approach are Epps and Epps (1976), Tauchen and Pitts (1983), and
Andersen (1995). Such studies give support to a model of price changes based on a
mixture of distributions, and emphasise the market process and the relationship
between price volatility and volume of trade. The second approach generally start by
observing that the empirical distribution of stock price changes is leptokurtic
compared with the normal distribution. The next step is to search for a density

function that can account for this leptokurtosis [see for example, Fama (1963 and

1965a), Mandelbrot (1963a), Blattberg and Gonedes (1974), and Hall et al. (1989)].

The influential paper of Fama (1965a) suggested that stock price changes can
be safely approximated as uncorrelated despite the observation that they exhibit very
small though significant autocorrelations. However, Mandelbrot (1963a) and Fama
(1965a) recognized that there 1s a tendency for large price changes to be followed by
large price changes, and small price changes to be followed by small price changes
of either sign. This observation went unnoticed until the seminal work of Engle
(1982). Engle presented a model which can account for the fact that although stock
price changes can be characterized as uncorrelated in the mean, they are correlated
in the variance. Based on Engle’s approach price changes can be modelled so as to

generate the clustering of volatility observed empirically by Mandelbrot and Fama.

Many papers have appeared after Engle's 1982 work with a common message-

stock price changes can be adequately approximated by a variant of the ARCH




models [see Engle (1995), Bollerslev ef al. (1992), Bera and Higgins (1992), and
Bollerslev et al. (1993)]. There 1s no longer any doubt that stock price changes
cannot be described as being independent of each other. As a result, the interest in
the distribution of stock price changes has shifted to studying the properties of its
conditional distribution. The standard ARCH model, and its generalized form
(GARCH) of Bollerslev (1986), assume for convenience that the conditional
distribution of stock price changes 1s normally distributed. It is commonly found that
the conditionally normal GARCH model does not explain the fat tails of stock price

changes [see Bollerslev (1987)]. Several probability distributions are suggested to be
used as the conditional density function of the GARCH model. These include the

Student's t in Bollerslev (1987), the stable Paretian in McCulloch (1985), and the

generalized error distribution 1n Nelson (1991).

The thesis considers different aspects of the modelling of the probability
distribution of the time series of the UK stock price changes with particular emphasis
being placed on the character of the volatility of the series. A literature review along
with an exploratory analysis of the UK price changes can be found in chapter 2. The
main findings of the chapter are: (1) the distribution of the FT-ALL price changes
has heavier tails than the normal distribution; (2) the hypothesis of independently, and
identically distributed (1.1.d.) price changes 1s rejected using the BDS test [see Brock
et al. (1987)]; (3) the hypothesis of 1.1.d. is not rejected for the residuals from a
GARCH(1,1) model, suggesting that conditional heteroscedasticity can explain most

of the nonlinearity of the FT-ALL price changes. This evidence is consistent with the




results of Hsieh (1991) from the USA market, and Abhayanker et al. (1995b) and
Paudyal et al. (1993) from the UK market. However, my analysis contributes by

applying the recent adjustment suggested by de Lima (1995b) to the residuals from
the GARCH model betore conducting the BDS test. As 1s well recognised [see Hsieh
(1991)], the asymptotic distribution of the BDS test 1s not known when it is applied
to the residuals from the GARCH model. However, de Lima (1995b) shows that

asymptotic normality of the BDS test carries over the residuals from the GARCH

model after a simple adjustment.

The hypothesis that the unconditional variance of the FT-ALL price changes
1s constant over time 1s tested 1n chapter 3 using the recent test suggested by Loretan
and Phallips (1994). Their test does not assume the existence of the fourth moment
of the data, and therefore, it i1s more consistent with the findings of fat tails in the
financial time series [see Fama (1963 and 1965a), and Mandelbrot (1963)]. Since the
critical values for the test depends on the existence of moments, the null hypothesis
of finite second moment along with the null hypothesis of finite fourth moment are
tested using the Loretan and Phillips (1994) estimators'. The results suggest that
although the second moment of the data seems to be finite, there 1s doubt about the
existence of the fourth moment. This evidence is consistent with the evidence of
Longin (1993), Loretan and Phillips (1994), Hiemstra and Jones (1993) and

Abhyanker et al. (1995a) from the US market. Also consistent with the US evidence

‘The Loretan and Phillips (1994) estimators were criticised by Mittmik and
Rachev (1993) and Pagan (1995). The criticism is discussed in chapter 3.
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of Pagan and Schwert (1990a) and Loretan and Phillips (1994), the null hypothesis

of constant variance over time 1s rejected for the FT-ALL series.

The plot of the unconditional variance of rolling sub-samples of the data is
checked for variance constancy. The results can only be considered as indicative
since graphical inspection cannot be regarded as a formal test for variance constancy
[see Pagan and Schwert (1990a)]. The results suggest that there were two shifts in
the varniance: during the 1973 o1l crisis and the 1987 market crash. This 1s consistent
with the finding of Schwert (1989) from the US market that "the "OPEC o1l shock”

(1973-1974) caused an increase in the volatility of stock and bond returns”.

An intervention model on the line of Box and Tiao (1975) 1s used to model
and test for statistical significance of possible shifts in the variance around the 1973-
74 o1l crisis and the 1987 market crash. The model is flexible in the sense that it
allows for a possible slow decay in the shocks effects and a difterent level of
volatility after both crisis. The parameters of the model are estimated jointly using
the BHHH routine (see Berndt et al. (1974)) with the conditional Student's t density.
It 1s tound that the slow decay of the shocks effects differ between the two crisis,
with the oil crisis having a longer effect on volatility than the market crash.

However, there is no evidence that either of the two crisis had a lasting effect on the

volatility of the stock market.

The Loretan and Phillips (1994) test for variance constancy is applied to the



residuals form the intervention model. The result suggests that the null of constant
variance should be "accepted”. This acceptance is due to the filtering of the effects
of the o1l crisis and market crash from the data. It is concluded that the stock market
1S subject to abrupt changes in volatility during some exceptional periods. Outside

these periods, however, stock price changes can be described as covariance

stationary.

The 1ssue of whether GARCH modelling captures the temporal dependence
in volume of trade for individual stocks in the UK market is examined in chapter 4.
Lamoureux and Lastrapes (1990b) offered results suggesting that for the purpose of
forecasting the conditional variance of stock price changes the volume of trade is
sutficient to replace the entire history of the past squared price changes. This issue
1s important since it can explain the observed volatility clustering in stock prices |see
Diebold (1986), and Stock (1987 and 1988)]. Whilst it 1s widely accepted that
GARCH models can account for volatility clustering there is less agreement on 1its
causes’. Bessembinder and Seguin (1992) added more insight on the volume-volatility
relationship by decomposing the volume of trade into its expected and unexpected
components, and studying the effects that these have on the volatility of price
changés. Bessembinder and Seguin (1992) explained unexpected volume as shocks

to the trading activity. They found that unexpected volume has a greater influence on

‘Due to the lack of an immediate economic rationale behind ARCH models, Hall
et al. (1989) note that ARCH models should be interpreted on the same lines as
ARMA models. That is they are "a convenient and parsimonious representation of
the behaviour of time series data", see Hall et al. (1989), pp. 344.
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the variance of US stock returns than expected volume.

The objective of the chapter is to combine the methodologies of Lamoureux
and Lastrapes (1990b) and Bessembinder and Seguin (1992) to investigate the
volume-volatility relationship in the UK stock market. The results are consistent with
those of Lamoureux and Lastrapes (1990b) in that the parameter estimates of the
GARCH model become 1nsignificant when volume of trade for individual stocks is
used 1n the conditional variance of price changes. However, the autocorrelations of
the residuals from the model are found to display highly significant ARCH eftects.
I argue that the GARCH-Volume model of Lamoureux and Lastrapes (1990b) sutfers

from a multicollinearity problem between volume of trade and the past conditional

volatility”.

It 1s found that unexpected volume reduces volatility persistence. Since
unexpected volume is not serially correlated by construction (the residuals from an

ARMA model), the results cannot be attributed to unexpected volume capturing the

serial dependence 1n the information flow rate. The results are more consistent with
the interpretation of Bessembinder and Seguin (1992 and 1993) of unexpected volume

as shocks to the trading activity. Moreover, the evidence is consistent with their

*There is a possible simultaneity bias in Lamoureux and Lastrapes model if
volume and price changes are correlated. Lamoureux and Lastrapes (1990b) assumed
that volume of trade is weakly exogenous in the sense of Engle et al. (1983). This
assumption could lead to inconsistent parameter estimate of volume of trade.
However, it would not affect the inference about volatility persistence. More details

about weak exogeneity and the problems of relaxing the assumption are provided in
chapter 4.



finding that positive unexpected volume has a greater affect on volatility than negative

unexpected volume. Bessembinder and Seguin (1993) use this evidence to argue in

favour of the hypothesis that volatility 1s affected by existing market depth for each
security. That 1s volatility 1s greater when unexpected volume is positive, i.e. there

1s more trading activity than expected in the market in terms of number and/or size

of transactions for the security.

Finally, I present evidence that the price changes-volume relationship is due
to a strong association in the timing of innovational outliers in both series. This
association 1s responsible for the noted reduction in the persistence of the GARCH
model when volume 1s included in the variance of price changes. The results in
general suggest that unexpected volume can help in forecasting the future volatility
of stock price changes. This 1s contrary to the conclusion di.wn by Lamoureux and
Lastrapes (1994) that contemporaneous volume and squared price changes are not

useful instruments in predicting the future volatility.

The GARCH model of Bollerslev (1986) with different conditional densities
1s used to model the FT-ALL returns in chapter 5. It 1s well documented that
although the GARCH model with conditional normal distribution generates some
degree of unconditional kurtosis, 1t 1s typically less than adequate to fully account for
the fat tails of stock returns [see Bollerslev (1987)]. The study models the conditional

mean and variance of FT-ALL returns using two distributions which allow for the

leptokurtic behaviour of stock returns; the Student's t and generalized error



distributions. The study also considers several factors which might affect the UK
stock returns. These include possible ARMA or ARCH effects, seasonal effects
corresponding to Monday, holidays, January, and the turn of the month, as well as
any asymmetries in the UK stock returns due to leverage effects. It is found that the
Student’s t distribution offers a better fit to the conditional distribution of FT-ALL
returns than the normal and generalized error distributions. The results also suggest
that the ARMA, ARCH, Monday, and holidays explain a significant part of the
departure of the FT-ALL returns from normality. In the UK, the average of returns
on Monday 1s found to be negative. Also, Mondays' returns have a higher volatility
than those of other trading days. In addition, the day following the closure of the

market for holidays is characterised by significantly positive returns. This suggests

that the negative Monday returns cannot be due to the market being closed on the

preceding two days since returns after holidays tend to be positive.

The January effect is found to be significant under the assumption of
conditionally normally distributed returns. But this assumption may not be appropriate
given the fat tails property of stock returns, and its use could lead to the wrong
inferences being drawn. There 1s no evidence of a leverage eftect in the UK stock
returns, suggesting that positive and negative surprises tend to affect the return
volatility in the same way. Finally, the results indicate that starting the sample period
after the 1987 crash leads to a significant reduction in the volatility persistence of the

UK returns. However, this does not result in any reduction in the departure of the

returns distribution from normality.



The thesis proceeds as follows. Chapter 2 briefly reviews the literature on the
probability distribution of financial time series, and offers some preliminary evidence
on the distribution of stock price changes in the UK market. The chapter also
discusses the possibility that structural changes in the unconditional variance of stock
price changes can explain both the departure from normality, and the high volatility
persistence observed empirically. Chapter 3 investigates the assumption of the
covariance stationarity for the UK stock price changes. Chapter 4 investigates the
relationship of the volume-volatility for individual stocks in the UK market. Chapter
5 models the conditional mean and variance of the UK equities returns using the
GARCH model with conditional Student's t and generalized error distributions.
Chapter 6 presents some concluding comments and provides some suggestions for

further research on the issues covered in the thesis.
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Chapter 2

Literature Review and Exploratory Data Analysis'

1. Introduction

The chapter briefly discusses some major probability distributions suggested
in the literature as a basis for modelling the price behaviour of securities, and
provides a preliminary analysis of the properties of the UK stock price changes. It
also contributes to the UK studies of nonlinearity [see for example, Paudyal ef al.
(1993) and Abhayanker et al. (1995b)] by incorporating the recent adjustment
suggested by de Lima (1995b) for tests of nonlinearity using the BDS test statistic
[see Brock et al. (1987)]. de Lima (1995b) suggests a simple adjustment to the
GARCH residuals before applying the test. This adjustment overcomes the problem

that the asymptotic normality of the BDS test is not valid when it is applied to the

GARCH residuals [see Hsieh (1991)].

2. Normal Distribution
The assumption that the distribution of asset price changes is normal 1s usually

based on the following reasoning - if price changes from one transaction to another

are independent and identically distributed (i.i.d.) variables, then the sum of them

‘Some parts of this chapter are forthcoming in the Journal of Applied Economics
Letters titled "Nonlinear Dependence and Conditional Heteroscedasticity in Stock
Returns: UK Evidence”.
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over a fixed number of transactions will converge to the normal distribution as the
number of transactions in the sum increases (the central limit theorem, CLT).
Bachelier (1900) and Osborne (1939) used the central limit theorem in their
discussion to support the normality assumption. As noted by Brock and de Lima

(19935), the central limit theorem would still be applicable for weakly nonstationary
and weakly dependent price changes as long as the number of variates in the sum
goes to infinity®. Figure 1 shows the histogram of the changes in the natural
logarithm of the daily FT-ALL stock index from 2/1/1970 to 31/12/91°. The FT-ALL
price changes are standardized by subtracting the mean and dividing by the standard
deviation. The figure also shows the density function of the standard normal

distribution. Apparently the FT-ALL distribution 1s more peaked in the middle and

has more outliers in the tails compared with the normal distribution.

‘However, Brock and de Lima (1995) argue that the use of the central limit
theorem for weakly dependent and weakly nonstationary data "... is not very useful
as a discriminator across the class of potential data generating process”.

*The data set contains 5555 daily prices. Krushna Paudyal and Pradeep Yadav
kindly provided the data.
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Normal probability plot of the FTALL price changes.
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Figure 2 illustrates the normal probability plot for the FT-ALL price changes

over the period of the study. The horizontal axis of the graph shows the FT-ALL
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price changes and the vertical axis shows the n-scores values. The n-scores values are
the z values derived from the unit normal distribution at different fractile points for
a sample size equivalent to that of the FT-ALL price changes®. If the FT-ALL price
changes follow the normal distribution, they will fall on an approximately straight
line. The graph takes the shape of an elongated S, as do the graphs of the data sets
on the USA stocks examined in Fama (1965a). It indicates that there are more

outliers in the tails of the distribution relative to the normal distribution. It is clear

that the FT-ALL price changes cannot be viewed as normally distributed.

3. Stable Paretian Distribution (SPD)

Mandelbrot (1963a) argued that previous researchers in this area had neglected
the observed departure from normality, especially the observed leptokurtosis in the
distribution of asset price changes. As an alternative, he proposed the stable Parcuan
distributions. This family of distributions 1s usually defined by its characteristic
function, since its density function i1s not known explicitly except for a few special
cases, of which the best known are the Cauchy and the normal distributions. The

loganthm of the characteristic function for the stable family is:

log £(t) =1idt-y|t|*(1+ip (t/|¢t]) tan(na/2) ), (1)

*The n-scores are the inverse of the cumulative distribution function of the
estimated fractile (1 - 3/8)/(n + 1/4), where 1=1,...,n, and n 1s the sample size [see
Ryan and Joiner (1976) and Ryan (1990)].
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where t 1s a real number and 1 1s the i1maginary number. Four main
parameters are needed to specify the characteristic function: the location parameter
6 (the mean if « is greater than 1), the scale parameter vy, the measure of skewness
B (zero in symmetric distributions), and the most important parameter of all, the
characteristic exponent «. This last parameter relates to the probability mass in the
tails of the distribution, and can take a value in the range O to 2. The smaller the
value 1t takes, the thicker the tails and vice versa. Consequently, the distribution has
moments only of order k=< o < 2. When a=2, we have the normal distribution,

- which, of course, has moments ot all orders.

"By definition, a stable Paretian distribution 1s any distribution that 1s stable
or invariant under addition” [Fama (1963)]. Theretfore the distribution of the sum of
1.1.d. stable variables 1s stable with the same o and B as the individual variables in
the summand (the distribution 1s closed under addition). Mathematically, the log

characteristic function of the sum of n i.i.d. stable variables is given by’

nlog £(t) =1(nd) t- (ny) |t|°‘ (1+1f (t/|t|) tan (ne/2) ), (2)

Equation 2 shows that the distribution of the sum of 1.1.d. stable variables has
the same o and 8 as the component distribution. The location and scale parameters

in equation 2 are n times the component values. Stability under addition requires o

>See Fama (1963 and 1965b).
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and (3 to be constant under addition. The property of stability also applies to the case
in which the n stable variables have different locations and scale parameters. The log

characteristic function then 1s given by

Y log £;(t) =i (Y 8,) e~ (¥ vy |€[* (1+1p (t/]¢]) tan (na/2) ) .
J=1 7=1

J=1

(3)

Where log f(t) 1s the log characteristic function of the jth stable variable 1n
the sum. The expression shows that the location and the scale parameters of the
resulting sum are equal to the sum of the ¢; and +; parameters, but that o and 3 are

the same as the values in the component distributions.

Another important property of the SPD is that it is the only possible limiting
distribution for sums of i.i.d. variables (generalized central limit theorem, GCLT)°.

Thus, 1f the individual vaniables in the sum do not have finite variances, then the
limiting distribution of their sum, if the sum has a limiting distribution, 1s a SPD with
a<2. Let x, denote the natural logarithm of the high frequency price relatives for
security 1 for day t (the high frequency logarithmic returns). Then the low frequency

logarithmic returns, y,;, are given by

°See Gnedenko and Kolmogorov (1954) for details.
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Yir = (4)

The returns y,; are the continuously compounded returns over a period of T
consecutive days. If the x,'s are 1.1.d. with finite vanance, the distribution of y;;
converges to the normal as T goes to infinity (CLT)’. However, if the x,'s are i.i.d.
with infinite variance, the distribution of y,; converges (if at all) to the SPD with an
a <2 (GCLT)®% On the other hand, if x,'s are stably distributed with @ = o <2, then

the distribution of y,; will be stably distributed with « = «" for all T.

It 1s important to note that the family of SPD’s 1s the only one which is closed

under addition. This property was used by Fama (1965b) to generalize the

Markowitz's portfolio model to the case where price changes are assumed to follow
a non-normal SPD. Also, Fama (1971) generalizes the CAPM model to a market

where price changes may have a non-normal SPD.

Stability under addition and the GCLT properties of the SPD 1s often used to
test the hypothesis that returns follow a non-normal SPD against the alternative that

they follow the mixture of normals distribution (MND) [see for example Officer

"This central limit theorem is called the Lindeberg-Levi limit theorem, see Feller
(1968), pp. 244, Davidson (1994), pp. 366, Brock and de Lima (1995), pp. 20, and
Greene (1997), pp. 122.

* There are some exceptions to this general rule. For example, Feller (1971)
gives an example of a central limit theorem with infinite variance. He shows that
some distributions with infinite variance lie in the domain attraction of the normal

distribution, see Feller (1971) pp. 260 and pp. 312-313.
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(1972), Fielitz and Rozelle (1983), and Hall et al. (1989)]. These hypotheses can be
tested by estimating o for the entire sample and for non-overlapping sums of the data.
If the estimate of o increases over the larger sums towards a value of 2, then the
underlying distribution follows the MND [Fama and Roll (1971)]. On the other hand,

if the estimate of o tends to be equal across the sums, this suggests that returns
follow a non-normal SPD. It is also possible that the underlying distribution follows

a mixture of SPD's with different scales.

Fama and Roll (1971) suggest a simple method for estimating o of the

symmetric SPD. Their estimator is based on just 4 sample fractiles. Formally,

Xese— X
z,=0.827 [— 1L 7, (5)
X0.72 ~%0.28

o, = G(f, z;) . (6)

where z. is an estimator of the f fractile of the standardized SPD with
characteristic exponent «. Accordingly, G is a function that uniquely maps the
estimated fractile, z,, and fractile f into the characteristic exponent .. Also, X, ;, and
X, -3 are the estimates of 0.72 and (.28 fractiles of the returns distribution. Fama and
Roll (1968) presented tables for the cumulative density function of standardized
symmetric SPD’s for 12 values of « in the range 1 to 2 under different distributional

assumptions. Once the estimated fractile z, is calculated, it is compared to these tables

18



to get the value of «.

Fama and Roll's (1971) method offers very similar results to those derived
using much more complex methods. Fielitz and Rozelle (1983), for example,
compared the results obtained by using the Press (1972) method of moments with the
Fama-Roll method, and found that both methods produced very close results. They
report that "The mean difference between the Press o estimates and the Fama-Roll
a estimates for the 50 stock distributions studied here 1s - 0.0018 with standard
deviation 0.0715. The mean absolute value difference 1s 0.0490 with standard
deviation 0.0517". In another study Leitch and Paulson (1975) compared the results
they got using a method which assumes asymmetry, and 1s based on minimizing the
modulus of the difference between the theoretical and empirical functions of the data,
and the results obtained by using the Fama-Roll method. Their results suggest that
"agreement 1s generally very good for estimates of a and 4" for the twenty stocks

studied. They also compared the results of estimating o with and without restricting
B to zero, and found that 3 has a very small effect on o as well as finding that this

effect decreases as a approaches 2.

The empirical results on whether speculative price changes follow the SPD

are mixed. Mandelbrot (1963a), Fama (1963 and 1965a), Mcfarland et al. (1982),
Comnew et al. (1984), and So (1987) offer evidence in favour of the SPD, whereas
Blattberg and Gonedes (1974), Upton and Shannon (1979), Akgiray and Booth

(1988), Hall et al. (1989) and Lau ef al. (1990) offer evidence against it.



The Fama and Roll (1971) method 1s used to examine whether the FT-ALL
price changes, during the period from 2/1/1970 to 31/12/1991, lie in the domain of

attraction of the normal distribution. The method 1s based on the Lindeberg-Levi
CLT which states that the distribution of the sum of daily price changes approaches
the normal distribution as the number in the sum increases. This 1s only true if daily
price changes are 1.1.d. vaniables with finite varniance. If price changes lie in the
domain attraction of the normal distribution, then the estimate of the characteristic
exponent, «, for the sums of daily price changes should be closer to 2 than for the
entire sample [Fama and Roll (1971)]. The problem with this methodology 1s that the
sample size decreases as the sum size increases which makes the estimates of «
subject to greater sampling error [see Hall et al. (1989)]. Monte Carlo results of
Fama and Roll (1971) suggest that estimates of o are free of bias with a small
downward bias for sample sizes of less than 99 observations. The sample of the FT-
ALL price changes under investigation contains 55355 observations which makes a
sum size of 40 feasible. Adjacent daily price changes are summed up into groups of
non overlapping sums of 2, 10, 20 and 40 days, and the characteristic exponents are
estimated using the Fama and Roll method (1971). The results are presented 1n table

1.
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Table 1: the estimates of o of the FT-ALL price changes at different sum sizes

Sum size of daily price changes
10 days 20 days 40 days
. [ m s [ m

o 1s a measure of the total probability in the tails of the distribution ot FT-ALL price
changes. o 1s estimated using equation 5 where the f fractile is set equal to 0.96.
The table shows that a's do not tend to increase over larger sums towards a
value of 2. As previously mentioned, o 1s a measure of the total probability in the
tails of the distribution. The range for o 1s 0 < a <2, with «=2 1mplying the normal
distribution. The lower the value that o takes, the thicker the tails of the distribution.
The results suggest that o for the distribution of the sums of 40 daily price changes
1s far less than 2 indicating that the tails of the distribution are much thicker than the
normal distribution. However, a major drawback of the Fama and Roll (1971)
method is that 1t does not provide standard errors which makes 1t difficult to
statistically assess the discrepancy between the empirical value found for o and 1its
theoretical value under the normal distribution. Therefore, these results can be best
viewed as indicative, and a more recent test suggested by Loretan and Philips (1994)

will be used in chapter 3.

One possible explanation for the estimate of o being different from 2 at sum
size of 40 days 1s that daily price changes are not independent of each other [see Hsu
et al. (1974)]. In other words, the existence of a linear or nonlinear dependence
structure in the data may cause the observed departure form normality. To investigate

this possibility Hsu et al. (1974) suggest randomizing the entire sample betore the
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sums are taken and « 1s estimated. If the daily price changes are independent, the a's
pattern of the onginal data should be quite similar to the o's pattern of the

randomized set. Any difference will indicate the effect of the linear or nonlinear

dependence on the distribution of price changes.

The possibility that data dependence 1s responsible for the deviation from
normality i1s examined by randomizing daily price changes first before taking the
sums, and computing the estimates of the t fractile of the data, Z,, using equation J.
This exercise 1s repeated 100 times to get a vector of 100 Z; at each sum size. Then,
the average and standard deviation, o, of Z; are computed at each sum size. The
average estimate of Z; is then matched to the tables for the cumulative density
function for the standardized symmetric SPD in Fama and Roll (1968) to get the
corresponding estimate of «. Finally, the standard error of the average Z; at ~~ch
sum size are computed using o/V'n, where o is the standard deviation of Z,, and n is
the number of the repeated randomizations. These standard errors are used to test the
hypothesis that the average estimate of Z; is not significantly different from 2.477,

the value taken by the normal distribution. The results are summarized 1n table 2.
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Table 2: Estimates of the average fractile, Z;, for daily price changes in randomized
order at different sums. The t-stats test the hypothesis that the average estimated
fractile 1s not significantly different from 2.477, the value taken by the normal

distribution and corresponds to a characteristic exponent of 2. The f used 1s 0.96.

Average fractile

{-stat.
corresponding «

(*) significantly different from 2.477 (an « of 2) at 5% level of significance.
(**) significantly different from 2.477 ( an o of 2) at 1% level of significance.

The results indicate that the estimated average fractile, Z,, 1s significantly
different from 2.477, the value taken by the normal distribution, at each sum size
except at sum size 40. This suggests that the distribution of the sums of 40 daily price
changes may be assumed to be normally distributed, and we can conclude that the
distribution of randomized daily price changes lie in the domain of attraction of the
normal distribution. The estimate of the characteristic exponent o at sum size 40,
is equal to 1.73 for the daily price changes when summed in chronological order
which is far less than the average o for the sum of the randomized price changes
(1.96). This indicates that the order of the chronological data is important and this
would not be the case for 1.1.d. random variables. However, given the limitations
of the Fama and Roll (1986) methodology [the non availability of standard errors,

and smaller sample sizes at larger sum sizes], the null hypothesis of 1.1.d. will be

further examined using the powerful test suggested by Brock et al. (1987) [see page

37].
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Another approach to studying the distribution of stock price changes is to
make direct inferences about the tail behaviour of their distribution without making
any assumptions about the form of the underlying distribution, an approach described
by DuMouchel (1983) as "Letting the tails speak for themselves" [see also Hill
(1975), Smith (1987), and Dekkers et al. (1989)]. Jansen and de Vries (1991) used
a method developed by Hill (1975) to study the probability mass in the distributions

of returns for ten American companies and two returns indices. They concluded that

at least the first two moments exist. Their results were also confirmed by Longin

(1993), Loretan and Phillips (1994), Hiemstra and Jones (1995), and Abhyanker et
al. (1995a). The results of these studies suggest that the fourth moment of stock

returns does not exist for either US aggregate nor individual stock returns’.

4. Student's t distribution

The fact that there 1s no explicit density function to the SPD, except for a few
cases limits its use 1n economic analysis. Other distributions which have finite
variance and can account for the leptokurtic behaviour observed empirically have
consequently been suggested as alternatives. Blattberg and Gonedes (1974), for
example, suggest the Student’s t distribution as an alternative to the SPD. The density

function for the Student's t distribution with location parameter m, scale parameter

H >0, and degrees of freedom, d> 0, 1s:

*The studies by Loretan and Philips (1994), Abhaynker et al. (1995a), and
Longin (1993) examined aggregate US returns. The study by Hiemstra and Jones
(1995) examined 1,952 US ordinary common stocks returns.
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where y 1s the loganthmic return and B(.,.) is the beta function. The mean of
y 1s equal to m for d> 1, and the variance is equal to H'd/(d-2) for d>2. If d=1,
the Student's t distribution 1s the Cauchy distribution, and therefore the mean and
variance do not exist. The advantage of Student's t distribution is that the classical
central limit theorem 1s still applicable. Therefore, price changes converge to the
normal distribution as the interval of time over which price changes are measured
increases. Another important implication 1s that it can account for the fat tails
observed empirically in stock price changes. Also, it can account for the cluster of
price changes around the mean if 1t 1s properly standardized. This is achieved by
dividing the deviations of y from its mean by its standard deviation rather than the

square root of the scale parameter H [see Blattberg and Gonedes (1974)].

Blattberg and Gonedes (1974) presented evidence that the Student's t

distribution offers a better fit of the daily rates of return of the 30 securities in the
Dow-Jones Industrial average over the period 1957-62 than the SPD. Their estimates
of the degrees of freedom of the Student's t distribution for most of the securities
examined 1n their work are over 25 for monthly intervals which makes them very
close to the normal distribution. Also they pointed out that their results do not "mean
that the rates of return do, 1n fact, follow a Student model. It only indicates that the

latter provides a better empirical fit than the stable model. The Student model has fat
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tails as does the stable model, but converges to normality for larger sums (larger

sums of daily rates of return). The stable model does not converge to normality."

Their results were supported by Praetz (1972) who offered evidence that the Student's
t distribution offers a more accurate representation to the Sydney share price indices
than the SPD. However, Tucker and Pond (1988) present evidence that the mixed
jump process distribution offers a better fit than either the SPD or the Student's t
distribution. The mixed jump distribution models the total asset price changes as
having two components, the first is the standard Brownian motion which corresponds
to normal rate of changes, and the second 1s a jump process which corresponds to

abnormal rate of changes [see Merton (1976)].

5. Mixture of Normals Distribution (MND) and Subordinated Stochastic Process

(SSP)

An alternative to the SPD 1s the MND. If a vanable, y, follows a MND, it
can be expressed as y,=x,z,, where z, 1s normally distributed with mean zero and
variance 1, and x, 1s a positive random variable. The distribution of y, will be a
discrete MND 1f x, 1s a discrete random vanable, and continuous MND 1f x, 1s a
continuous random variable. In addition, specifying a distribution for the vanable x,
would lead to a different distribution to y,. Blattberg and Gonedes (1974) showed that

the symmetric SPD and Student's t can also be represented as a MND [see also

Mandelbrot and Taylor (1967) and Mandelbrot (1973)]. However, the distribution of

y, conditional on a given realization for x, is normally distributed.
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The MND 1is based on the notion that changes in speculative prices,
conditional on their vanances, are 1.1.d. random variables which follow a normal
distribution. A possible explanation for this model is that information evolves
unevenly through time, and so the variance of price changes may be greater during
days when information becomes available than those when there is no new

information arriving in the market.

Clark (1973) introduced the SSP model with finite variances. Let the sequence
P,, Pyo,.....,P, present realizations of a stochastic process at time t. The sequence of
P's 1s indexed by the t's rather than the integers 0,1,2,... The t's are realizations of
a stochastic process with positive increments T(t). If T(t) 1s a positive stochastic
process, then a new process can be formed, P(T(t)). The distribution of AP(T(t)),
the series of daily price changes, is subordinate to the distribution of AP(t), the price
changes on individual trades. These latter constitute the evolution of the stock price
P(T(t)), and T(t) 1s the directing process which determines the speed of evolution.
T(t) can be regarded as a clock which evolves according to economic time rather than
calender time'’. It then follows that specifying stochastic processes for each of AP(t)
and T(t) would affect the distribution of the subordinate process AP(T(t)). Clark
(1973) shows that if P(t) follows a normal distribution with independent increments,

directed by T(t) which follows a lognormal distribution with independent increments,

then AP(T(t)) will follow a lognormal-normal distribution.

'“See Stock (1987 and 1988)
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