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Abstract. 

Techniques for the generation of quantitative ultrasonic images in non-destructive 

testing have generally involved a substantial cost in terms of data storage and 

computational time, and have thus found limited application. Preference has 

therefore been given to the more straightforward imaging methods, such as main 

beam projection, which detect the presence of defects and provide a limited flaw 

sizing capability. 

The relatively small number of flaws requiring detailed examination, coupled with 

substantial increases in available data storage and computational power, have made it 

possible to use a number of straightforward tomographic reconstruction methods to 

produce high resolution images of flaws contained within the material under 

examination. A set of these images are then fused together using a novel fuzzy logic 

image fusion technique into a single image from which more accurate measurements 

of flaw size, shape and orientation can be made. However, if the quality of the raw 

A-scan data is not sufficiently high then the data will be filtered using Maximum 

Likelihood Deconvolution (MLD). The aim of this blind deconvolution method is to 

improve the time resolution and Signal to Noise Ratio of the A-scan data with only 

knowledge obtained from the data, this is in contrast to the majority of techniques 

currently used for this purpose. 

The three tomographic methods which have been implemented in this work are 

Reflection tomography, Time-of-flight Diffraction tomography and Transmission 

tomography. In addition a Single Bounce Image Enhancement method has been 

developed to improve the images. Selection of images used in the fusion process 

depends on the nature of the flaw, as each of these methods identifies different 

characteristics of the flaw shape. The components of the imaging system have been 

validated experimentally by the generation of high resolution images from a variety 

of flaws contained within cylindrical aluminium test specimens. 
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Chapter 1. 

INTRODUCTION. 
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1.1. Background. 

Ultrasonic inspection is one of the most powerful and widely used methods for the 

interrogation of a component interior in Non-Destructive Testing (NDT) today. 

There are many advantages of using ultrasound to perform inspections and some of 

them will be briefly outlined here. Ultrasound and radiography are the only two 

methods apart from thermography that are available for the examination of a 

component's interior. Ultrasound is the preferred method of inspection as it is good 

at detecting planar defects such as cracks even if they are very thin. Radiography on 

the other hand is good at detecting volumetric defects that represent a lower risk to 

the component's integrity than planar flaws such as cracks or lack of sidewall fusion 

defects. An added advantage of ultrasound is that it presents no danger to the 

material under test, or the operator of the test equipment (Le. no source of ionising 

radiation, toxic chemicals). Generally NDT can be utilised to predict the failure of 

structures and therefore, helps to increase productivity and prevent accidental 

damage or injury. 

Ultrasonic data acquisition can be performed in a number of ways. If the area to be 

examined is relatively small then a manual operator can perform the acquisition. 

However, if the area under examination is large or in a hazardous environment then 

the acquisition will be performed using automatic scanning systems. The subsequent 

interpretation of the obtained data can be a very complex task. For even modest sized 

test structures, the amount of ultrasonic data generated can be large. If manual 

interpretation of this data is used, then the time taken can be prohibitively long. With 

long processing times, manual operators will often suffer from boredom and fatigue, 

which can lead to possible errors in defect identification [1][2]. Therefore, there is 

great potential for computers to aid in the interpretation of ultrasonic data [3]. If a 

number of operator tasks can be performed by a computer system. then the defect 

detection and characterisation process is made more reliable and less time 

consuming. 

Computer systems can aid the interpretation in two ways: by processing the data and 

by improving its presentation. This thesis will concentrate on processing the 
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ultrasonic data to improve the inspection task. The objective of data processing is to 

increase the signal-to-noise ratio of the data; that is to enhance defect signals and 

suppress noise signals. 

The relatively small number of defects requiring detailed examination, coupled to 

substantial increases in available data storage and computational power have made it 

possible to use a number of tomographic reconstruction techniques to generate 

images of defects contained within the material under examination. These images 

can then be fused together into a single image from which more accurate 

measurements of the defect size, shape and orientation can be made. However, if the 

quality of the raw A-scan data is not sufficiently high then the data will require 

filtering. This can be achieved by utilising a Maximum Likelihood Deconvolution 

(MLD) / Minimum Variance Deconvolution (MVD) filter, the aim being to improve 

the time resolution and Signal to Noise Ratio of the A-scan data. 

The methodology of reconstructing a number of simple tomographic images and 

fusing them was chosen over the development of a single more complex 

reconstruction algorithm, using all of the acquired data. This maintains theoretical 

simplicity, leading to lower computational requirements and greater flexibility for the 

user. 

1.2. Existing techniques for interpretation of ultrasonic data in NDT. 

Traditionally techniques for the generation of quantitative ultrasonic images have 

involved substantial cost in terms of data storage and computational time, and thus 

have found limited application. Preference has therefore been given to more 

straightforward imaging methods, such as main beam projection, which detect the 

presence of defects but provide a limited flaw sizing capability. 

A brief overview of some of the currently used NDT imaging methods is presented 

in Section 1.2.1. This will be followed by a discussion of applicable image fusion 

methods in Section 1.2.2. In many NDT applications the quality of the data is not 

sufficient to obtain the desired quality of image. In order to improve the quality of 
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the data it is necessary to filter the raw data prior to image reconstruction. This will 

be performed using deconvolution. A brief discussion of deconvolution for NDT 

applications will be given in Section 1.2.3. 

1.2.1. Commonly used Imaging methods in NDT. 

Main Beam Projection. 

Main beam projection is one of the most basic imaging methods currently in use. 

Signals from each A-scan are simply projected along a line starting from the 

transmitter position and following the central probe axis. Since the beam is not 

perfectly focused, but has a finite beam spread, targets in the far-field become 

distorted. Another drawback is that a target detected by the edge of the spreading 

beam will be incorrectly positioned along the central beam at that position, for 

example a point reflector will become an arc and specular reflectors appear oversize 

[4]. However, the reconstruction process is very fast and flaws can be readily 

identified as in the characteristic arcs from crack tips. 

TOFD (time-of-flight diffraction). 

TOFD utilises the edge waves that are generated by defects. This method requires the 

use of at least two probes, one as a transmitter and one or more receivers. The most 

commonly used set-up is a two probe, pitch-catch set-up. Usually angled probes are 

used producing either longitudinal or transverse waves. This set-up is only suitable 

for scanning objects with simple geometry i.e. thick plates [5]. 

The most common application of this imaging method is in the inspection of welds 

[6]. This method is so successful for weld testing because of the relatively short 

distance from the receiver to the defect allowing the use of focused beams from 

probes of a handy size. This is an advantage for weld testing but for general NDT 

applications can cause problems [5]. 

Synthetic Aperture Focusing Technique (SAFT). 

Synthetic Aperture Focusing Technique (SAFT) is the most commonly used 

technique for the generation of high quality NDT images for point and edge defects. 
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SAFT takes the A-scan data acquired from transducers at different locations and 

combines the data to simulate a single transducer with a large aperture, which can be 

accurately focused at all depths. 

For each transmitter location every pixel in the image is provisionally considered a 

possible reflector position. All echoes with transit times corresponding to the 

distance from any particular transmitter position to each separate pixel are added up, 

having equal phase only if they are genuine echoes from a reflector in this pixel [4]. 

This image reconstruction takes place in either the time [7][8][9][10] or frequency 

domain [11]. The drawbacks of using this imaging method are that the reconstruction 

time is often long, especially when the method is extended to any data acquisition 

set-up more complex than pulse-echo. 

Work has been done by Lorenz [9] on extending SAFT imaging to include 

information after the incident ultrasonic beam has been reflected by the backwall of 

the test specimen. This allows the maximum amount of defect information to be 

obtained from the available ultrasonic data. 

Tomographic Image Reconstruction Techniques for NDT. 

Transmission tomography methods for non-destructive testing applications are 

fundamentally different from the methods used in medical [12][13][14] and seismic 

applications [15] mainly due to the physical properties of the materials under test. In 

medical and seismic applications the human body and earth contain regions of 

differing acoustic velocity, so a velocity profile of the test object can be 

reconstructed from time-of-flight measurements. This is not the case for the majority 

of engineering components, as they are by nature made of a single material and 

therefore the velocity changes across the object cross section are negligible. 

Moreover, there is usually a large acoustic mismatch between the defect and 

surrounding media so the majority of ultrasound is either reflected or diffracted by 

the defect. For NDT methods that utilise the energy reflected or diffracted by the 

defect have to be considered [8][16][17][18][19][20][21][22][23]. 
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1.2.2. Image Fusion for NDT. 

Data fusion is a process dealing with data and information from multiple sources to 

achieve refined/improved information for decision-making [24]. Image fusion is a 

method of data fusion and can be defIned as 'Image fusion is the combination of two 

or more different images to form a new image by using a certain algorithm' [25]. 

Image fusion can be performed at one of three levels depending at what level the 

fusion is performed. The three processing levels are; pixel, feature and decision. 

Pixel level fusion is the lowest level of fusion and refers to the merging of physical 

parameters. Feature level fusion requires the extraction of objects recognised in the 

various data sources e.g. segmentation. Decision level fusion represents a method 

that uses value-added data where the input images are processed individually for 

information extraction [25]. 

The image fusion in this thesis is a pixel fusion technique based on fuzzy logic set 

theory. Some work in this area has been undertaken by Nejatalli and Ciric for 

application to medical images [26]. A similar image fusion approach will be 

presented for application to NDT images. 

1.2.3. Deconvolution of Ultrasonic Data. 

In the majority of ultrasonic systems the resolution of the data is dependent on the 

bandwidth of the transducers. A number of design methods have been utilised to 

improve the range resolution of the transducer, though the transducer still remains 

the weak link. Other approaches for increasing the range resolution of the ultrasonic 

data include the use of pulse compression [27] or signal processing [28] techniques. 

The use of deconvolution techniques for resolution enhancement in ultrasonic 

applications is widespread. A wide variety of deconvolution techniques have been 

presented in the literature [28][29][30][31 ][32][33]. Many of these techniques have 

the disadvantage that they require detailed information about the measurement 

system and the test specimen. 
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For the development of a highly flexible imaging system this is not ideal. However, a 

number of blind deconvolution techniques do exist. By blind what is implied is that 

the parameters required for deconvolution of the ultrasonic A-scans are obtained 

solely from the ultrasonic data itself and the deconvolution model. These methods 

have the disadvantage that they often require longer processing times [34] and may 

not produce results that are comparable to conventional deconvolution techniques. 

They generally do produce an increase in the resolution of the raw data and have the 

advantage that they are highly flexible. 

1.3. Ovenriew of the thesis. 

This thesis describes a new technique for the generation of high-resolution ultrasonic 

images of defects embedded within engineering structures. The imaging method has 

been applied to a number of representative defects contained within aluminium 

cylindrical specimens. The imaging technique employed involves the use of 

ultrasonic A-scan data to reconstruct tomographic images of the object cross-section 

and then fusion ofa set of the images to obtain a high-resolution image of the defect 

under examination. The three ultrasonic tomographic imaging methods employed 

along with the low-level fuzzy logic image fusion method are outlined in Chapter 2. 

Additionally an image enhancement method that utilises the ultrasonic energy 

reflected by the specimen's back-wall is presented. 

Chapter 3 describes the technique of Maximum Likelihood Deconvolution (MLD) 

and Minimum Variance Deconvolution (MVD) for processing of the A-scan data 

prior to reconstruction, the purpose being to improve the time resolution and Signal­

to-Noise Ratio (SNR) of the ultrasonic A-scan data. In addition, the performance of 

Maximum Likelihood Deconvolution on experimentally obtained A-scan data is 

evaluated. 

Chapter 4 experimentally evaluates the tomographic image reconstruction 

algorithms, the single bounce image enhancement method and the fuzzy logic image 

fusion technique all described in Chapter 2. This chapter also examines the effect on 
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tomographic image reconstruction of MLD / MVD filtering of the A-scan data prior 

to image reconstruction. 

1.4. Contributions to Ultrasonic imaging for NDT applications. 

The main achievements of this thesis are: 

• The benefits of using a number of different but complementary tomographic 

image reconstruction methods for defect characterisation have been investigated. 

• It has been demonstrated that high-resolution tomographic images of defects can 

be obtained using relatively small amounts of ultrasonic A-scan data. 

• The effectiveness of using the shadow cast by a defect has been demonstrated in 

the reconstruction of transmission tomography defect images. 

• The effectiveness of utilising fuzzy set theory in fusion of ultrasonic tomographic 

images for NDT applications has been demonstrated. 

• The improvement in defect characterisation utilising a new fuzzy logic fusion 

method has been demonstrated for a number of representative defect types. 

• It has been shown that defect characterisation is improved by utilising the single 

bounce image enhancement technique presented, this is especially of note when 

the amount of data for image reconstruction is severely limited. 

• The resultant improvement in the image quality due to pre-processing of the 

ultrasonic A-scan data utilising Maximum Likelihood Deconvolution (MLD) / 

Minimum Variance Deconvolution (MVD) filtering has been presented. 
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Chapter 2: 

TOMOGRAPHIC IMAGE RECONSTRUCTION 

AND FUSION. 
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2.1. Introduction. 

Reconstruction is the process of forming 2-D or 3-D images from raw A-scan data, 

transforming amplitudes at times-of-flight to amplitudes at spatial positions. Images 

have the advantage over the raw A-scan data in that they show the spatial 

relationships between signals. An image can provide an understanding of the entire A­

scan acquisition, whereas in the study of the A-scans it is possible to loose sight ofthe 

global picture [4]. 

Many methods have been used to obtain images of defects embedded within 

engineering type components. Some of the most common currently used methods 

were outlined in Chapter 1. 

The relatively small number of flaws requiring detailed examination, coupled to 

substantial increases in available data storage and computational power, have made it 

possible to use a number of relatively simple tomographic reconstruction methods to 

produce images of defects contained within the material under examination. A fuzzy­

logic fusion-technique can then be used to obtain a single defect image. 

The three methods chosen were Reflection tomography, Time-of-flight Diffraction 

tomography and Transmission tomography. Reflection tomography is discussed in 

Section 2.3, Time-of-flight Diffraction tomography in Section 2.4 and Transmission 

tomography in Section 2.5. The low-level fuzzy logic fusion method used will be 

outlined in Section 2.6. The methodology of reconstructing a number of simple 

tomographic images was chosen over the development of a single more complex 

reconstruction algorithm, using all of the acquired data, in order to maintain 

theoretical simplicity. This leads to lower computational requirements and greater 

flexibility for the user, and will be further discussed in Section 2.7. The final Section 

of this chapter considers the problem of reconstruction from the incomplete data set 

and the expected effect on the image quality. Before the image reconstruction 

methods are described the data acquisition model for the reconstruction methods will 

be examined. 
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2.2. Fan-beam Insonification. 

TIR 
Z = Zo --

F(r,9,z) 

Figure 2.1. Fan beam insonification of a cylindrical test specimen from a point 

source / receiver. 

The geometry for fan-beam isonification is shown in figure 2.1, where the scalar 

reflectivity field fimction is, F(r,e,z), and a two-dimensional cross section at z = Zo is 

to be imaged. The sound beam is fan-shaped to diverge cylindrically and cover the 

two dimensional slice of the object of interest, but is collimated in the z direction 

perpendicular to the slice. Ideally, the thickness of the beam would be infinitesimally 

small in the plane of interest. Obviously in practice this is not possible, so a beam of 

finite thickness has to be used. This means that the received signals arise from a finite­

slice of the reflectivity field [20]. Let the beam profile in the z direction be b(z), then 

the two-dimensional reflectivity fimction, f( r , e), can be defined as a slice along Zo, 

through the three-dimensional reflectivity fieldF(r,e,z) in which the z dependence 

has been averaged over the vertical dimensions of the slice. 

f(r, e) = (F(r,e,z)b(z - zo)dz. (2.2-1) 
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Or 

f(r,e) = F(r,e,z) * b(z), evaluated at z = Zo (2.2-2) 

where * denotes one-dimensional convolution. 

As mentioned the beam cannot have an infinitesimal small thickness because of 

diffiaction. Thus the averaged slice, f(r,e), must be reconstructed, and not F(r,e,z). 

With this fact in mind, if three-dimensional images are required then images of slices 

of the object are reconstructed and stacked to give a three-dimensional overview of 

the test specimen. The alternative to stacking 2-D images is to insonify the whole 

object and reconstruct a three-dimensional image from the data [35]. This method was 

not deemed worthy of consideration here due to the computational requirements of 

the image reconstruction. 

Reflection tomography is the simplest of the tomographic reconstruction algorithms 

and will be the first to be discussed in Section 2.3. 

2.3. Reflection Tomography. 

This is the most comnionly used method for reconstructing a tomographic image in 

NDT and is suitable for obtaining images from a wide variety of defect types 

[16][17][19][20][21][36]. Reflection tomography employs ultrasonic pulses to excite 

echoes from the boundaries of flaws contained within the cross section of the object 

field, illuminated in sequence by a number of ultrasonic beams. The beams may come 

from a variety of sources, a single transducer (Pulse-Echo), or a pair of transducers 

(Pitch-Catch), depending on the user requirements. A-scan data is then collected and 

used to reconstruct a pseudo image of the cross sectional reflectivity function. 

The most widely used reflection imaging method is the B-scan. This uses parallel 

beams to insonify the test specimen. However, this data acquisition set-up results in 

images with poorer transverse resolution than range resolution. This can be overcome 
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by averaging a number of B-scan images and then performing some digital processing 

on the resultant image. The disadvantage of this method is the prohibitive amounts of 

data to be processed and long scanning times are required to obtain the B-scan data 

[20]. The type of imaging considered here uses a fan-beam insonification of the 

object, the received signals being processed and an ultrasonic reflectivity image 

reconstructed. 

The Pulse-Echo Reflection method utilised here will be outlined in Section 2.3.1 and 

the Pitch-Catch Reflection method will be discussed in Section 2.3.2. 

2.3.1. Pulse-Echo Reflection Tomography. 

The Pulse-Echo configuration employs a single transducer as the transmitter and 

receiver. The image reconstruction geometry for this case is shown in Figure 2.2. The 

probe transmits a broadband ultrasonic pulse into the test specimen, with the probe 

then receiving the backscattered echoes as a function of time. This Pulse-Echo is 

repeated for each transmitter location around the specimen, resulting in N A-scans, 

where N is the number of transmitter locations. These N A-scans are then used to 

reconstruct the tomographic image. Since only a single transmitter is active at a time, 

a given point on the A-scan corresponds to the sum of all scatterers lying on an arc 

centred at the transmitter. This can be interpreted as generating intersecting line 

integrals of the reflectivity defined over families of concentric circular arcs centred at 

the transmitter. When this pulse-echo process is performed for all N transmit 

positions, attempts can be made to reconstruct the unknown reflectivity function. 

Because the integration paths are circular, the image reconstruction will be 

straightforward to implement. 
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Figure 2.2. Data acquisition geometry for Pulse-Echo Reflection tomography. 

In order to illustrate this approach to reflection imaging; consider a reflector situated 

a distance p from the transmitter. To obtain a measure of the reflectivity at this point, 

the A-scan is examined at time 2p/c, where c is the speed of sound in the specimen. 

This A-scan value represents the sum of echoes arising from scattering points along 

an arc of radius p centred at the transmitter. If this process is repeated for N 

transmitter locations (where p is always the distance from the transmitter position and 

the point under reconstruction), then the coherent summation of the A-scan values at 

the image point will yield the reflectivity value at the image point. Thus, each A-scan 

will contribute one value to each image point. To reconstruct all of the image points 

in this way, the amplitudes of the A-scan evaluated at time 2p/c are uniformly 

distributed or smeared back over an arc of radius p in the image space [20][37]. This 

process is repeated for each point of the N A-scans, and at each point in the image 

space, the results are coherently summed. The smearing back process is referred to as 

backprojection. The form of backprojection used here differs from the classical 

meaning as defined in x-ray tomography. In x-ray tomography the recorded data is 

back projected along straight lines connecting the source to receiver. However, here 
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the data is backprojected along circular paths at right angles to the propagation 

direction. 

Here the only concern is with the mathematical problem of reconstructing reflectivity. 

To allow this analysis to be performed, a highly idealised image reconstruction is 

considered, being based on the following assumptions [18]: 

• The object is weakly reflecting such that the energy contained in the propagating 

sound wave is much larger that the total energy backscattered over the 

propagation path. Also second order reflections are considered to be insignificant. 

• The absorptivity of the medium is uniform, thus attenuation due to absorption can 

be compensated for by varying the gain of the receiver exponentially. 

• The velocity of sound in the specimen under test is uniform. Specifically there are 

no variations in the sound velocity large enough to produce errors in the round 

trip delay time between the transmitter and any elementary reflecting point that are 

a significant fraction of the reciprocal of the signal bandwidth. This assumption 

ensures that the integration paths are essentially circular or elliptical, depending on 

the mode of operation. 

• The object can be modelled as a collection of isotropic scatterers, each acting like 

a Huygen's-like source. Under this assumption, the reflectivity of the specimen 

can be modelled as a scalar function of space. Its value at a point in space is 

assumed independent of the direction from which the ultrasound impinges on the 

point. 

In practice all of these assumptions will break down to some degree, therefore image 

degradation will occur. The mathematical analysis of reflection tomography over 

circular paths will now be presented. 
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2.3.1.1. Image Reconstruction of Reflectivity Images over Circular 

Backprojection Paths. 

Let the reflectivity of the object in the plane of the circular test specimen be, ttr,S), as 

outlined in Section 2.2. The centre of the specimen represents the origin of the polar 

co-ordinate system and the specimen has a radius, R. If a transmitter at angle ~ emits 

a short pulse of ultrasound into the test specimen, which diverges into the specimen 

with an angle of divergence given by a, as shown in Figure 2.2. The reconstruction 

model based on these assumptions is shown in Figure 2.3. 

Figure 2.3. Data acquisition model for Pulse-Echo Reflection Tomography. 

Let the ornni-directional echo data (A-scan) recorded at the receiver as a function of 

time be denoted by g.(t). For clarity, i = tc, where c is the speed of sound in the 

specimen (time delay is measured in terms of distance rather than time). In this 

analysis it is assumed that A-scan data is collected for N transmitter locations equally 

spaced around the test specimen i.e. ~ ranges from 0 to 21t radians. The 

reconstruction process described will now be examined as a method of reconstructing 

the reflectivity function ttr,~). 
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Let the reconstruction of the reflectivity function bedenoted by f(r,~). Then the 

backprojection of the A-scan signals, g.(t), can be expressed mathematically [18] as 

21t 

l(r,~)= Ig.(2p(~;r,e)}l~ (2.2-3) 
o 

where 

(2.2-4) 

is the distance between the transmitter/receiver at (R,~) and the image point at (r,O). 

To reconstruct the reflectivity at a point (r,S), the wavefront recorded at position ~ 

around the specimen circumference is evaluated at time 2p(~; r, S) / c (the round trip 

delay time). This process being repeated for all transmitter positions and for a given 

(r,S), with the results summed to obtain l(r,e). 

2.3.2.2. Point Spread Function. 

The reconstruction of a point target in the image space is referred to as the point 

spread function (PSF) of the imaging system The PSF can be regarded as the two­

dimensional analogue of the one-dimensional impulse response of a linear system The 

point spread function is usually characterised by a shape lobe of non-zero width at the 

position corresponding to the point target position, and sidelobes that trail off to some 

distance from the main lobe. The PSF of an imaging system is a useful measure of 

image reconstruction performance because it provides information about the inherent 

resolving capabilities of the system It also provides an insight into the problem of 

artefact formation and Signal-to-Noise Ratio (SNR). 
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Figure 2.4. Schematic of the convolutional relationship for the linear system; 

encompassing the transmitter, point target and the receiver. 

The point spread function associated with the backprojection process will now be 

derived [18]. Initially, the shape of the received pulse reflected from a point target will 

be defined in terms of the temporal impulse response of a linear system, which 

consists of the transmitter/receiver, the point target and the intervening medium. Let 

the impulse response of this linear system be denoted by h{i), which is illustrated in 

Figure 2.4. If a voltage impulse o{i} is applied to the transmit transducer, then in 

response to the resultant echo reflected back from the target at a distance p from the 

transmitter, the received A-scan will be h{i-2p). Usually the shape of the impulse 

response, h{t}, is governed by the characteristics of the transducer and the 

propagating medium. 

However, if the highly idealised system based on the stated assumptions is considered, 

it is in theory possible to design a system where the functional form of h{i} remains 

essentially independent of target position. In particular, it is independent of target 

azimuth due to the omni-directionality of the source, and independent of range 

through the employment of time-gain compensation at the receiver to account for 

echo attenuation due to beam-spreading and absorption. Thus, it will be assumed that 
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h{t} can be made invariant with respect to the target position, with the amplitude of 

h{t} being proportional to the target reflectivity, which is the parameter of interest. 

Under these conditions, the system is both linear and time invariant. Therefore, for an 

arbitrary transmitted pulse Pr (1), the received pulse is given by PR (i -2p) 

(2.2-5) 

where ... denotes convolution. The next stage in the derivation of the PSF is to 

reconstruct the image of a point reflector of unit reflectivity at (ro,eo). From this 

equation an expression for the point-spread-function for backprojection along circular 

arcs will be derived. 

As described earlier, the system generates A-scan data for N transmit locations evenly 

distributed around the test specimen. If the element in the image space at (R, ~) is 

excited by a transmit pulse Pr (i), then using equation (2.2-5) the signal received at 

this element is 

(2.2-6) 

where 2p(~;ro,eo) is the round trip distance between the target at (ro,eo) and the 

receiver at (R, ~ ), and t = 0 is the time the pulse is transmitted. Putting equation 

(2.2-6) into equation (2.2-3) gives 

21t 

i(r,e)= JpR[2p(~;r,e)-2p(~;ro,eo)~~ (2.2-7) 
o 
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The next step is to evaluate a point spread function, {(r,e), for a point target at an 

arbitrary location, i.e. (r,e). Using equation (2.2-4), the argument of PR(.) in 

equation (2.2-7) can be written as 

2p(~;r,e)-2p(~;ro,eo) = 2[R 2 + r2 -2Rcos(e _~)j'2 
_ 2[R 2 + r02 - 2R cos(eo _ <1»1'2 

(2.2-8) 

To carry out further analysis a couple of assumptions need to be made, namely that 

(r / R 2) < < 1 and (ro / R 2 ) < < 1. The resultant PSF will yield an approximation to the 

true PSF which will bear a close resemblance to the PSF when the target point is 

situated near the centre of the specimen, but will generally be poorer as the target 

point moves towards the periphery of the specimen. It has been shown [18], that even 

when r and ro are not much less than R, the resultant Point spread function does not 

deviate considerably, especially around the mainlobe region, from the result when the 

target is near to the centre of the test specimen. As such, the analysis presented should 

still give useful information on system lateral resolution (mainlobe width) and other 

important PSF properties (sidelobe width). 

Expanding equation (2.2-8) and dropping higher than second order terms in rlR and 

ro/R, gives 

(2.2-9) 

The approximations made here are similar to those made in the paraxial 

approximation used in optics. This can be written in the equivalent form 

(2.2-10) 
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where 

x = (rg + r2 - 2roreos(e - eO)t2 
(2.2-11) 

Y 
rO sin eO -rsin9 

tan = ---"---"----
ro coseo - reose 

(2.2-12) 

(2.2-13) 

r; sin 290 - r2 sin 29 
tana. = (2.2-15) 

r; cos2eo - r2 cos29 

The trigonometrieal manipulation required to obtain equation (2.2-10) form (2.2-9) is 

presented in Appendix A. Note that X represents the distance between the reflector, 

at (ro,9o), and the point under reconstruction, at (r,e). Substituting equation (2.2-

10) into equation (2.2-7), gives 

271 

r(r,e)= JpR[2Xcos(~-Y}+Yl +Y2cos2(~-a.)}J~ (2.2-16) 
o 

Now letting PR (v) denote the Fourier transform of PR {i}, where v = v / c (i.e. the 

frequency is measured in units of reeiprocallength). Then, 

-00 

Substituting equation (2.2-17) into equation (2.2-16) gives 

271 00 ._[ ()~ 41tjVXcos(~ - y) 
r(r, e) = Jd~ fdv PR (v)e 21tJV 11+12 cos2\~-a 'Je (2.2-18) 

o -00 
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To simplifY this expression the first exponential term is expanded in a power series. 

For convenience the result is divided into two parts. 

f(r.e) = fo (r.e)+ E(r.e) (2.2-19) 

where 

fo(r.e) = 2jd~ jdVPR (v)e 41tjvXcos(~- y) (2.2-20) 
o -«1 

and 

(2.2-22) 

The function denoted by fo (r, e) on the right hand side of equation (2.2-19) results 

from the zero-order term in the expansion of the first exponential in equation (2.2-

18). This equation can be simplified by interchanging the order of integration with 

respect to ~ and v, and using the Bessel identity as follows [18], 

2" 
Jo(P) = (1I21t) Jd~ejpcos(.-q) (2.2-23) 

o 

The result of this operation is 

«1 

f(r,e)= 21t JdvPR (v)Jo(41tVX) (2.2-24) 
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The next step in deriving the point spread function is to access the contribution both 

of the terms in equation (2.2-19), namely fo(r,e) and E(r, e) , make to the PSF. It will 

be shown that the first term, fo(r,e), represents a much larger contribution to the 

point spread function, f(r,e). For convenience the PSF, f(r,e), will be approximated 

by fo (r, e) , with E(r,e) regarded as an error term. For this assumption to be justified, 

the relationship IE(r,e~« Ifo(r,e~ must be examined, and the conditions in which it is 

valid determined, with particular attention being paid to what domain of (r,e) it is 

valid over. To begin this analysis, utilise the fact from equation (2.2-21) that 

(2.2-25) 

Since, ~ = 0 when r = ro and e = eo, i.e. E(r,e) is identically zero at the point spread 

function mainiobes peak. Moreover, equations (2.2-11), (2.2-13) and (2.2-14) show 

that the terms X, 'Yl and 'Y2 are all smaIl compared to R when the point target at (r, e) is 

close to (ro,eo)' the point at which the reflection occurs. Therefore, the expression 

for fo(r,e) should provide a good approximation to the true PSF, f(r,e), at least in 

the vicinity of the reflectors actual position, (ro' eo). 

The relative size of E and fo as X becomes large when compared to the mainlobe 

width (i.e. when (r,e) is far from(ro,eo) is more difficult to obtain by simple 

inspection of equation (2.2-21). Therefore, further examination is required to show 

how well, and under what conditions fo(r,e) approximates the asymptotic behaviour 

of the sidelobes of the true PSF, f(r,e), relatively far away from the mainlobe. 

Norton et al has shown that for particular circumstances the magnitudes of E and fo 

do not adhere to the relationship given in equation (2.2-25). Under certain conditions 

the magnitude of E can become comparable to the magnitude of fo, this usually only 
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happens for X very large when compared to the mainlobe width, in which case the 

sidelobes contribute a negligible amount to the total PSF. 

All of the ultrasonic pulses, PR (t), considered here are wideband pulses. If PR {t} is 

considered to be very wideband then, approximately, PR (v) = P = constant. It then 

follows from equation (2.2-24) that 

A GO P 
f{r,e) = 21tP.po{41tVX)dV = IXI (2.2-26) 

This shows clearly that the PSF falls off inversely with distance from the point target 

location. 

2.3.2. Pitch-Catch Reflection Tomography. 

In this case, the transmitter and receiver are separate transducers on the circumference 

of the test specimen, separated by an angular distance of 2~ as shown in Figure 2.S. 

For a given round-trip delay-time, the receiver integrates the echoes arising over an 

elliptical path whose foci correspond to the transmitter and receiver locations. It can 

easily be shown that for a round trip delay time, t, the length of the semi-major axis of 

the ellipse is denoted by 'tc/2. When a short pulse is emitted at point T and data is 

continuously recorded as a function of time at R, line integrals are generated over an 

entire family of ellipses whose foci are at T and R [18]. 

Assume that the separation between the transmitter and receiver remains constant at 

2~ and let the line that bisects this angle have an angle ~ measured from the positive 

X-axIS. 
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Figure 2.5. Data acquisition model for Pitch-Catch Reflection Tomography. 

The angle ~ represents the angle of the minor axis of the family of ellipses for the 

chosen transmitter and receiver locations. If ~ is varied from ° to 21t radians as in the 

pulse echo case, and p remains constant for all chosen transmit locations, then it is 

possible to attempt to reconstruct the unknown reflectivity function f(r, e). 

Let g •. p(i) denote the received echo data (A-scan) recorded as a function of time for 

a transmit and receive pair separated by an angle of2P and orientated at an angle~, as 

shown in Figure 2.5. Obviously ifp = 0, then the problem is reduced to the pulse-echo 

case examined in section 2.2.1. When this function is recorded and backprojected 

over elliptical paths for all ~, the resultant reflectivity function [18] is given by 

21t 

i(p;r,e) = Ig.,~[p(~ + p;r,e)+ p(~ - p;r,e)}i~ (2.2-27) 
o 
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where 

(2.2-28) 

Equation (2.2-27) is analogous to equation (2.2-3), the only difference being that 

p(~ + ~;r,e)+ p(~ -~;r,e) represents the delay time from the transmitter to the 

separate receiver via the point target. Thus, the locus of curves in the integrand of 

equation (2.2-27) represents an elliptical path as opposed to a circular path in the 

pulse-echo case. 

2.3.2.1. Alternative Reconstruction method for Pitch-Catch Reflection 

Tomography. 

An alternative method [36] to the one described in the previous section will now be 

outlined. This problem can be reduced to finding the intersection points between two 

ellipses, the first ellipse being centred at the origin with axis 2ao and 2bo, the second 

ellipse is rotated and displaced and has axis 2a and 2b. The equation for the ellipse 

centred at the origin is given by 

(2.2-29) 

The second (rotated and translated) ellipse is given by 

(2.2-30) 

where AJ, A" etc. are coefficients depend on e, and the axis of the two ellipses. This 

expression can then be rearranged to give a quartic in u, which can be solved to give 

the intersection points of in u and v, which will be complex. The real values only are 

used, and then transformed back to the (x,y) co-ordinate for plotting. This 

reconstruction technique is illustrated in Figure 2.6. 
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Figure 2.6. Reduction of the reconstruction technique to finding the intersection of 

two ellipses. 

2.3.2.2. Point Spread Function. 

Now that an equation for the reflectivity function has been obtained, the next step is 

to determine the PSF of the system [18]. This is achieved in much the same way as for 

the pulse-echo case. The point spread function for a point target situated at location 

(ro. eo) will now be derived. 

As before, the first step is to assume that the received waveform originating from a 

point target is PR (t). Then for a point target at (ro, eo), it can shown that 

substituting equation (2.2-31) into equation (2.2-27) gives 

2lt 

r(r, e) = IPR [~ •. P (r,e;ro ,eo)~~ (2.2-32) 
o 
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where 

~ •• P (r,e;ro,eo) == p(~ + ~;r,e)+ p(~ - ~;r,e)­

p(~ + ~;ro,eo)- p(~ - ~;ro,eo) 
(2.2-33) 

As before, assuming that (rfRY «land (ro fRY «1, then equation (2.2-28) can be 

expanded to the second order in rlR and ro/R, giving 

r2 r2 
p(u;r,e)==R-rcos(e-u)+ 4R - 4R cos2(e-u). (2.2-34) 

Therefore, 

~ •• P (r,e;ro,eo) == 2~ [r2 -r; ]-rcos(e -~ - ~)- rcos(e -~ + ~)+ 
ro cos(eo - ~ - ~)+ ro cos(eo - ~ + ~)+ 

_1 [_r2 cos2(e-~-~)--r2 cos2(e-~+~)+ 
4R 

r;cos2(eo -~-~)+r;cos2(eo -~+~)] 

(2.2-35) 

After a large amount of trigonometric manipulation the above equation can be 

reduced to 

(2.2-36) 

where X, Y, y" Y2 and a are as defined in equations (2.2-11), (2.2-12), (2.2-13), (2.2-

14) and (2.2-15), respectively. The trigonometrical manipulation performed to obtain 

equation (2.2-36) form (2.2-35) is presented in Appendix A 

This last expression is similar to equation (2.2-10) in section 2.2.1, the only difference 

being the presence of the two cosine terms, cos~ and cos2~, multiplying the first and 

third terms of the right hand side of the equation. The next stage in the derivation is to 
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substitute the expression for L\u into equation (2.2-32) and use the Fourier transform 

relation given in equation (2.2-17) to arrive at an expression similar to that given in 

equation (2.2-18) [18]. This result can be conveniently be decomposed into two parts: 

i(p; r,e) = f(/3; r, e)+ E(p;r, e) (2.2-37) 

where 

00 

fo(/3;r,e) = JdvPR (v)J o (41tVXcos/3) (2.2-38) 
-00 

As in the pulse-echo case E(p;r,e) is considered to be an error term analogous to 

equation (2.2-19). This assumption can be justified in the same way as in the 

proceeding section, leading to the same result. That is the error term, E(/3; r, e), is 

small when compared to fo(/3;r,e), so E(/3;r,e) is neglected and i(p;r,e) is replaced 

by fo(/3;r,e). 

Upon comparison of fo(/3;r,e) and fo(r,e) for the pulse-echo situation (equation 

(2.2-24)), it is evident from inspection of the two equations that the only difference is 

the presence of the cos/3 term in the Bessel function argument. 

For a wideband excitation pulse the same assumptions as for the pulse-echo case are 

made, that is PR (t) is very wideband in nature. Then, PR (t) = P = constant, and 

equation (2.2-36) yields 

,,00 p 
f(r, e) = 21tP JJo(41tVXcos/3~v = I I 

-00 Xcos/3 
(2.2-39) 
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Note that fo(~;r,e)is identical in form to fo (r,e) , defined in equation (2.2-24) except 

for the presence of the cos~ term in the argument of the Bessel function. Upon 

examination of equation (2.1-39) it is evident that the minimum main10be width will 

occur at ~ = 0, also the main10be width is proportional to (cos~rl. 

Elliptical arc 
with foci at T ------. 
andR. 

Figure 2.7. The rate of change of the distance r with respect to the time delay over 

path TOR increases as (cosP}-J. 

This can be more easily understood by examination of Figure 2.7. For simplicity, 

consider an elliptical path intersecting a point at the array centre (ro,eo). The point is 

to consider is the resolving power of the transmitter and receiver in the r direction, 

which is as defined in the figure. From the geometry of the figure, it is not difficult to 

derive that the rate of change of the round trip delay (over the path TOR) with 

respect to r decreases as cos~. This implies that for a fixed time delay resolution, if a 

reflecting target moves an increment of ll.r along the r axis, the minimum possible ll.r 

that can be resolved increases as (cos~rl. Thus, the maximum resolving capability of 

the imaging system is obtained when ~ = O. When the recorded signals from the N 

transmit locations are back projected over the paths distributed symmetrically around 

21t radians, the same (cos~rl dependence reveals itself in the equation for the PSF 

(equation (2.2-36». These considerations suggest an upper bound on the value of~. 

32 



If this upper limit is chosen to be nl4 radians (i.e. the receiver would never be greater 

that one quarter of the circumference away from the transmitter), then mainlobe 

broadening would not exceed a factor of.J2 . 

2.4. Time-of-flight Diffraction Tomography. 

Time-of-flight Diffraction tomographic [22] techniques provide information on the 

position, shape and size of defects by the interpretation of ultrasonic signals received 

with either a single or twin probe system. This reconstruction method is more 

specialised than the simpler reflection tomography methods and may therefore give 

additional information about the defect structure. Diffraction tomography uses the 

diffracted signals from defect boundaries to reconstruct flaw images. The data is 

collected using transducers that are sufficiently small as to approximate point sources. 

The objective is to transmit ultrasound into the specimen from a single transmit 

location and to receive the signals diffracted from the defect at a number of points 

along the receiver aperture. 

x 

(~O) l 
y 

R,. I ,¥"'iDJqictUkar 
T 

D 

(~O) 
~ T. 

Receive aoerture rut 

(a) (b) 

Figure 2.S. a) Reconstruction model for time-of-flight diffraction tomography for a 

linear aperture D. b) Representation of the reconstruction model for a cylindrical 

geometry. 

The image is reconstructed in the spatial domain by a coherent summation of elliptic 

functions whose parameters depend on the transmitter and receiver locations and the 

time-of-flight of the diffracted signals. Figure 2.8(a) shows a typical data acquisition 
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model for a linear aperture. This algorithm is easily adaptable to any sampling 

geometry; the data acquisition system used on a cylindrical object for a single 

transducer position is shown in Figure 2.8(b). For each transmitter position on the 

aperture D, the scattered signals are detected with the receiver scanning the aperture. 

For example, let (Xt,O) and (Xc,O) be the positions of the transmitter and receiver 

respectively, both of which are assumed to approximate point sources. Since the 

system is based on time-of-flight diffraction, the broadband signal transmitted by an 

elementary source of width dXt is in the form Re[ s(t)ejrotJ, where s(t) is the pulse 

envelope and ro is the angular frequency. The signal, du, scattered from an isotropic 

point reflector placed at (x,y) and received by an elementary receiver width dXr is 

[22] 

(2.3-1) 

where d(Xr,Xt,x,y) is the path length from transmitter to receiver via the scatterer and 

is given by 

(2.3-2) 

and c is the ultrasonic propagation velocity within the material under examination. 

Note that the time factor d(xr,Xt,x,y)/c defines a time dependent function, that in the 

space domain is an ellipse with foci at (xr,O) and (Xt,O), passing through the point 

reflector (x,y). The assumptions are that the material is non-attenuating and that all 

scatterers are in the far field. Hence the amplitude decreases as l/(Rl R2) [22], where 

RJ and R2 are as shown in Figure 2.7(a) and correspond to the separation between the 

defect and the transmitter and receiver, respectively. Image formation consists of 

processing all received signals for all chosen transmitter positions in the aperture D. 
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2.4.1. Point Spread Function. 

When the data is recorded in this multiple receiver configuration. the generated line 

integrals of reflectivity are along elliptical paths exhibiting a variety of shapes and 

sizes. It is useful for the derivation of an expression for the PSF to interpret the 

reconstructed image as the result of coherently summing many Pitch-Catch Reflection 

tomography images obtained for differing values of p. Therefore, the PSF of the 

imaging method can be computed by effectively averaging r(P;r,e), given by 

equation (2.2-36), over the chosen range of p. The resulting PSF can then be 

expressed as, 

,.; 

r(r,e)= jw(P)f(p;r,e}lp (2.3-3) 

2.5. Single Bounce Image Enhancement. 

To increase the reliability of imaging methods it is desirable to account for a single 

bounce [9] before and/or after the flaw in the reconstruction algorithms. Thus giving 

more information about the flaw for the same number of A-scans used presently. The 

indirectly reflected beams can be used to improve the defect image quality when all 

parts of the defect cannot be directly isonified. 

This involves using reflections from the backwall of the test specimen to obtain more 

detail about any defects embedded in the specimen. The fact that the backwall 

geometry must be known is a drawback of this image enhancement method. 

For simplicity and to obtain low reconstruction times the method chosen does not 

take account of mode conversions when the ultrasound is reflected, i.e. all of the 

reflected waves in the specimen are assumed to be longitudinal. 

The approach that will be used to perform the backprojection after the single bounce 

will now be outlined for the three data acquisitions considered. Initially the method 
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used for Pulse-Echo Reflection tomography will be outlined, then adapted for Pitch­

Catch Reflection tomography and finally for Time-of-flight Diffiaction tomography. 

2.5.1. Pulse-Echo Reflection Tomography. 

As stated, the backwall geometry of the specimen needs to be known; if the backwall 

is a flat surface then backprojection of the echo delay times, corresponding to 

distances greater than the backwall distance, is along circular arcs. However, if the 

backwall has a more complex geometry (i.e. for the cylindrical test specimens 

considered here) then backprojection will be along more complex curves determined 

by the backwall geometry, where each A-scan value represents the sum of all echoes 

from scatterers positioned along the curve. Due to the complex shape of these curves 

a ray tracing approach has been chosen to achieve the backprojection. 

If a pulse is transmitted into the specimen from a transmitter at T and diverges within 

the specimen at an angle a, as shown in Figure 2.2, then rays are cast from the 

transmitter for all angles within the angle of divergence, a. There is no backprojection 

performed along these rays until the ray is incident on the backwall, as this has already 

been performed. Using the backwall geometry and Snell's law (assuming no mode 

conversions) then it is relatively straightforward to calculate the ray path after 

reflection by the backwall. The first step of the backprojection is to determine the 

reflection paths for all rays in the fan beam. Once the reflected ray paths have been 

determined, then each A-scan value corresponding to a echo delay time greater than 

the backwall echo delay time can be backprojected. For each of the relevant A-scan 

values the distance along the reflected rays are determined using the round trip delay 

time, this is shown in figure 2.9 for a single ray at angle, e, where the direction of 

propagation of the ultrasound is immaterial. 
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Figure 2.9. Single bounce backprojection for a single ray at angle e 

In practice a finite number of rays are chosen and it is necessary to interpolate 

between the scatterer positions determined for each A-scan echo delay time along 

each of the rays to obtain a continuous backprojection curve. This will not give the 

exact backprojection curve, but if the number of rays chosen is sufficiently large then 

it will closely resemble the actual curve. This family of curves can be seen in Figure 

2.10. 

T/R 

Figure 2.10. Single Bounce Image Enhancement Backprojeclion curves for Pufse­

Echo Reflection tomography. 
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2.5.2. Pitch-Catch Reflection Tomography. 

Figure 2.11. Single bounce backprojectionfor separate transmitter and receiver; for 

a single ray at angle 0. 

The approach taken for the pitch-catch situation is analogous to the method used for 

the pulse-echo configuration, the only difference being that backprojection will be 

along elliptical paths in the case where the backwall is a flat surface. Therefore for 

more complex backwall geometries a different family of curves than in the pulse-echo 

configuration will result. The backprojection path for a single ray is analogous to the 

pulse-echo case, the only difference being the use of a separate transmitter and 

receiver with an angular separation of 2~, as shown in Figure 2.11. The family of 

backprojection curves is shown in Figure 2.12. 
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T 

Figure 2.12. Single bounce image enhancement backprojection curves for Pitch­

Catch Reflection tomography and also Time-of-flight Diffraction tomography for a 

single transmit and receive pair. 

2.5.3. Time-or-flight Diffraction Tomography. 

The addition of single bounce information to the time-of-flight diffraction images is 

analogous to the pitch catch case, the difference being that the transmitter to receiver 

separation, 2~, can be varied between 0 and 2n radians. This means that for each 

transmit location there is a family of single bounce backprojection curves for each 

receiver location. 

2.6. Transmission Tomography. 

Transmission tomography methods for non-destructive testing applications are 

fundamentally different from the methods used in medical app lications [12][ 13], 

mainly due to the physical properties of the materials under test. In medical 

applications the human body contains regions of differing acoustic velocity, so a 

velocity profile of the body can be reconstructed from time-of-flight measurements. 

This is not the case for the majority of engineering components, as they are by nature 

made of a single material and therefore the velocity changes across the object cross 

section are negligible. Moreover, there is usually a large acoustic mismatch between 
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the defect and surrounding media so the majority of ultrasound is either reflected or 

diffracted by the defect. For NDT applications other methods have to be considered. 

Receiver 
Aperture 

transmitter 

region 

(a) 

transmitters 

/ 
backprojection 

segment region of overlap of 
backprojected segment 

(b) 

Figure 2.13. Transmission Tomography based on the shadow cast by the defect. a) 

shadow cast by the defect assuming it totally reflects all incident ultrasound b) 

backprojection of shadow region to reconstruct defect images. 

Transmission tomography methods for NDT applications are usually based on the 

shadow projected by the flaw [5]. Transmission tomography has been used in the 

present work to improve images reconstructed using other tomographic methods. An 

obscuration method [38] has been implemented based on the principle that the defect 

will totally reflect an incident ultrasonic beam, which does not propagate to the 

receiver position. Therefore a flaw will cast a shadow which depends on its size and 

position with respect to the transmitter, as illustrated in Figure 2.13. The interaction 

of the defect and the incident ultrasound for the transmission scenario will now be 

examined. 

2.6.1. Shadow Cast by Defect. 

The propagation of a wave is not only disturbed by an obstacle in generating a 

reflected wave, but the shadow cast by the obstacle is also present. If the obstacle is 

much larger that the wavelength, then diffraction effects in the shadow region will not 

be significant. However, if the obstacle is not much bigger than the wavelength then 
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diffraction phenomena will be present in the shadow region. This situation will now be 

examined. To compute the distributed sound field behind the reflector, the following 

propositions need to be considered. The shadow field will be built up of the 

undisturbed original field and from interference caused by a disturbing wave travelling 

from the rear of the reflector. 

In the case of a flat, circular, thin disc reflector, perpendicular to the wave fronts, the 

characteristics of the interfering wave are easily identified [5] because the overall 

excitation of the rear wall must be zero. In this area the interference and the 

undisturbed wave must cancel each other out entirely. 
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Figure 2.14. An example of the sound pressure along the axis of a ideal piston 

oscillator, where N is the near field distance, z the distance along the axis of the disc, 

if the disc is much larger than the wavelength then N ~D2 / 4 A, p is the sound pressure 

with po being the initial sound pressure of the transmitter. 
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Figure 2.15. Sound pressure directivity behind a circular reflector placed at a 

distance of six near field lengths from the transmitter, where r is the angle from the 

disc axis. 
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Figure 2.16. The sound pressure amplitude in the shadow field along the axis of a 

circular disc. Where Nr is the near field distance of the reflector (reflector acting as 

a secondary source). 

Thus the interfering wave must have the amplitude of the primary wave over the 

whole reflector area, but of opposite phase, so that it is in fact the well known piston 

oscillator wave, shown in figure 2.14 travelling in the same direction and coaxial with 
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the primary wave. As examples consider Figure 2.15 and Figure 2.16. These show the 

sound pressure directivity and the pressure, along the axis, respectively. They are 

computed on the assumption that the primary field is a plane wave or in the distant far 

field of the transmitter [5]. An example of the sound pressure in the far field with no 

reflector in between the transmitter and receiver can be seen in Figure 2.17. These 

three figures show the pressure as if measured by a small source. If larger receivers 

are used then these pressure values will be averaged out. 
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Figure 2.17. Relative far-field sound pressure plotted against angle r for D/A = 16. 

Where D is the oscillator diameter and A is the wavelength of sound in the material 

under test and r is the angle from the disc 's axis. 

This represents the case where the reflector is perpendicular to the axis of the 

ultrasonic beam. In practice this will not always be the case so oblique angles of 

incidence need to be considered. At moderately oblique defect orientations, the 

shadow wave will take roughly the same form as that of a disc reflector at right 

angles, if edge effects are neglected [5]. In this situation, upon backprojection the disc 

reflector will appear to the receiver as a disc at right angles to the incident beam, but 

will appear to have a smaller diameter. If a number of shadow regions are 

backprojected from differing angles then the true orientation and size of the reflector 
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should become evident due to the nature of the summation of the backprojection 

segments. 

This information about the interaction of ultrasound and ideal defects can be utilised 

to design filter functions for the backprojection enabling the resolving capability of the 

image reconstruction to be increased. The image reconstruction methods will now be 

examined. 

2.6.2. Transmission Tomography Image Reconstruction. 

In the simplest form a binary system is used typically, so that if a signal is received 

then a value of 1 is assigned to the receiver [38]. Ifno signal is detected then a zero is 

assigned to the receiver. In practice, a signal is always detected at the receiver, so it is 

necessary to set a threshold to identify any shadow regions. For the defects examined 

in this thesis, a threshold value of between 10 % and 50 % of the expected receiver 

amplitude is utilised. Thresholds within this region were chosen in order to minimise 

the chance of incorrectly identifying shadow regions due to variations in the 

transducer coupling and any effects on the received signal caused by diffraction effects 

around any of the defects. 

Once any regions of zeros have been identified, they can then be backprojected, and 

an image of the flaw reconstructed. The back projection consists of using segments, 

as shown in Figure 2.13(a), with the receiver permitted to be at any location around 

the specimen under test. If a number of transmitter positions are used, then the 

backprojected sectors will overlap in the region of the flaw and superimpose to give a 

darker region, which will correspond to the flaw. 

A straightforward example is shown in Figure 2.13(b). The minimum size of the flaw 

that can be detected depends largely on the beam width of the transducer used; it is 

not possible to detect small defects when utilising transducers with a relatively wide 

beamwidth. However, it is possible to detect larger defects using transducers with a 

small beamwidth. 
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In order to improve the quality of the reconstructed images, the information about the 

interaction of the sound and ideal disc reflector, as outlined in Section 2.5.1, can be 

combined with the binary backprojection segments to generate a filtered 

backprojection reconstruction algorithm. This technique for improvement of the 

transmission images will now be outlined. 

2.6.3. Filtered Backprojection. 

The use offilter functions is common in transmission tomography [12][13] in order to 

improve the resolution of the reconstructed images. The filter function used here will 

be based on the sound field distribution behind an ideal disc reflector at right angles to 

the axis of the ultrasonic beam as shown in Figure 2.15. This simple model for the 

filter design has been favoured in order to reduce the theoretical complexity and 

therefore maintain low image reconstruction times. The backprojection method used 

is similar to the non-filtered backprojection in a number of respects; the shadow 

regions are identified in the same way. However, the nature of the backprojection 

segments is fundamentally different. The backprojection segments involve 

combination of the linear backprojection segment and a window function based on the 

actual shadow cast by an ideal disc type defect as described in Section 2.6.1. A single 

filtered backprojection segment can be seen in Figure 2.18. 
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Figure 2.18. Filtered backprojection segment based on the sound pressure directivity 

behind a circular reflector as in Figure 2.15. Figure (a) shows the backprojection 

segment in the image plane with (b) showing the amplitude of the backprojection 

segment along the line marked on the image in (a). 

This method of backprojection should yield better quality images due to the nature of 

the segment outside the region that is definitely identified as the shadow region. The 

phase of the filter function will be negative in certain areas and will therefore lead to a 

phase cancellation within the image in close proximity to the defect, thus improving 

the image of the object boundary. The improvement in inlage quality using this 

backprojection method will be experimentally validated in Chapter 4. 

2.7. Tomographic Image Fusion. 

The fusion of NDT data is a fast growing set of signal processing techniques which 

represent the possibility of reducing signal uncertainty and improving the overall 

performance of NOT systems. The majority of work in NOT data fusion has 

concentrated on fusion of signals from different NOT inspection techniques i.e. multi­

sensor data fusion [24][25][39]. The approach chosen here is to look at the fusion of 

images rather than the signals used to reconstruct the image. Another difference is 

that all of the images considered originate from ultrasonic inspections of the object 

under test. 
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A composite image can be generated from the set of reconstructed flaw images. This 

has been achieved using a low level fuzzy logic pixel fusion technique [26][39]. Fuzzy 

logic represents a powerful framework for data processing, as it allows processing 

commands to be expressed as a set of rules which bear a resemblance to the human 

decision making process [40]. Fuzzy sets are generally defined by characteristic 

membership functions. These functions give the level of membership of a particular 

object to the fuzzy set. This set being used to determine the level of membership of 

the pixel to the final flaw image. 

If the pixel is definitely a member of the flaw image, then the weighting associated 

with the pixel will be 1. If the pixel is definitely not contained in the flaw image then 

the weighting will be 0 and for all other pixels, which could be contained in the final 

image, a weighting of between 0 and 1 is applied depending on the membership 

function. If the pixel amplitude is greater or less than the chosen threshold, then it 

mayor may not be part of the final image. If the pixel amplitude is close to the 

threshold, then the probability of the pixel being contained in the flaw image is higher 

than if the amplitude is small when compared to the threshold. This is reflected in the 

pixel weighting, as seen in the membership function. 

A number of membership functions were evaluated with the final choices being shown 

in Figure 2.19, 2.20 and 2.21. All functions examined took a similar form to the ones 

shown in Figure 2.19, but with the number of pixels receiving a pixel weighting of one 

being increased (i.e. a number of pixel amplitudes have a weighting of one rather than 

a single pixel amplitude in figure 2.19). This has the effect of increasing the number of 

pixels that are definitely contained within the final defect image, which can be 

desirable in many of the fusion problems considered here. This method of image 

fusion has the advantages that it is quick and simple to implement. 

The threshold value, Tc, for determining which pixels represent the defect and those 

that do not was determined using the one of three of the thresholding methods, that 

will be outlined in Section 2.7.1. 
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Figure 2.19. Fuzzy logic fusion membership function. 
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Figure 2.20. Second Fuzzy logic fusion membership function. 

255 - T/a 255 
Pixel amplitude 

Figure 2.21. Third fuzzy logic fusion function, where a is a user defined ramp 

variable between 2 and 5. 
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A fuzzy logic function is determined for each image and then the weighted pixel 

amplitudes are summed to give a composite image of the flaw. For each composite 

image generated only a single type of fuzzy logic membership function is utilised. 

Another factor which has a large influence on the final flaw image is the pixel 

amplitude at which the pixel weighting is zero. For the reflection and diffraction 

images, the lower cut-off point is typically chosen between O.2STc and O.5Tc. For the 

transmission image, the lower cut-off is typically chosen between O.5Tc: and O.75Tc. 

Generally this increase in the cut-off value is necessary to remove the large quantity of 

information contained within the image that is not related to the flaw under 

examination. 

The choice of image fusion function is dependent on the nature of the defect under 

examination. The first fuzzy logic membership is generally used to generate composite 

images of point reflectors and uses the Ostu thresholding method. The second of the 

fuzzy logic fusion functions is usually used for defect images of inclusion type defects 

and for best results utilises either the Ostu or Kapur, Sahoo and Wong method. The 

final image-fusion membership-function is used most frequently on planar type defects 

and gives the best results with the Kapur, Sahoo and Wong or the Pun method. These 

three thresholding methods used to determine Tc will now be outlined. 

2.7.1. Thresholding Methods. 

Three thresholding methods have been used to obtain the optimal threshold value, Tc:, 

for the fuzzy logic image fusion functions. These are the Ostu method, Pun method 

and Kapur, Sahoo and Wong method [41]. All of these thresholding operations are 

global point dependent techniques, that is a single optimal threshold value is used on 

the whole image with the threshold value being determined from only the pixel 

amplitudes. The underlying theory of these methods will now be outlined. 

For the threshold determination the images are assumed to be grey scale images. Let 

G be a set of positive integers representing grey levels, where 0 is assumed to be the 
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darkest and (max-I) the lightest pixel amplitude, t denotes the threshold value of the 

image and Tc to represent the optimal image threshold. 

The underlying theory of the three thresholding methods will now be outlined. Let N 

be the set of natural numbers, (x,y) define the spatial co-ordinates of the image i.e. the 

pixels of the image, and Let G = {O,I.2 •....• max-l} be a set of positive integers 

representing the pixel amplitudes. Following from this an image function can be 

defined as the mapping f: N x N ~ G . The amplitude of a pixel at position (x,y) is 

denoted as i{x.y). Let t E G be a threshold value and the optimal threshold 

determined using some predefined criteria be Tc E G . 

A number of elements are common to all three methods. these will now be outlined. 

Let the number of pixels with greylevel i be llj. Then the total number of pixels in the 

chosen image is given by 

(2.7-1) 

From this the probability of occurrence of grey level i is defined as 

n· Pi =_1 
n 

2.7.1.1. Ostu Thresholding method. 

(2.7-2) 

This global thresholding technique is based on discriminant analysis [41]. The 

thresholding operation is regarded as the partitioning of the pixels into two classes Co 

and Cl (e.g. object and background) at grey level t. That is, Co = {O,l, .... ,t) and C1 = 

{t + l.t + 2, ....• max - I}. Let cr~, cr; and cr~ be the within-class. between class and 

total variance, respectively. An optimal threshold can be determined by minimising 

one of the three possible criterion functions with respect to t. the probabilities used to 

compute these functions is given in Equation (2.7-2). 
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(2.7-3) 

Of the above three criterion functions, TJ is the simplest. Thus, the optimal threshold 

Tc is 

where 

Tc = ArgMin TJ, 
teG 

I-I 

a~ = L(i - flr)2 Pi' 
i=O 

(2.7-4) 

I-I 

flr = L iPi , 
i=O 

t 

a;=ffi offi l (flofl,)2, ffio=LPi' ffi,=I- ffi o 
'=0 

2.7.1.2. Pun Thresholding Method. 

(2.7-5) 

This thresholding method is known as an entropic method, that is it is based on the 

application of information theory to the image histogram to obtain the optimal image 

threshold [41], where the histogram is considered an max-symbol source. 

Let t represent the optimal threshold value and define two posteriori entropies, given 

by 

t 

H~ = - LPi loge Pi (2.7-6) 
i-a 

max-I 

H~ = - LPilogePi (2.7-7) 
i-I+I 
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where H~ and H~ are measures of the a posteriori information associated with the 

black and white pixels after thresholding, respectively. The probabilities used in 

Equation (2.7-6) and (2.7-7) as are defined in Equation (2.7-2). If the a-priori entropy 

of the grey level histogram is known, Pun proposed an algorithm to identifY the 

optimal threshold by maximising the upper bound of the aposteriori entropy, 

(2.7-8) 

Pun has shown that maximising H' is equivalent to maximising the evaluation 

function, given by 

with respect to t, where 

t 

H t = - LPi lnPi , (2.7-10) 
i~O 

max-l 

HT =- LPi lnPi' (2.7-11) 
i-O 

t 
Pt = LPi . (2.7-12) 

i=O 

2.7.1.3. Kapur, Sahoo, and Wong Thresholding Method. 

This method is also entropic in nature, and is based on the derivation of two 

probability distributions (Le. object distribution and background distributions) from 

the original grey level distribution of the image [41] as follows: 

(2.7-13) 
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and 

(2.7-14) 

where t is the threshold value, po, Ph •••• , Pmax-l are probabilities computed using 

Equation (2.7-2) and 

(2.7-15) 

Define 

(2.7-16) 

and 

(2.7-17) 

Then the optimal threshold Tc IS defined as the grey level that maximises 

Hb{t}+Hw{t}, i.e. 

(2.7-18) 

2.S. Computational Requirements of the Tomographic Imaging System. 

The computational requirements of the imaging system components will now be 

considered. In the introduction to this chapter it was stated that the idea of choosing a 

number of tomographic reconstruction methods and then fusing the resultant images 

was favoured over the development of a single reconstruction algorithm to maintain a 
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low theoretical complexity. For this reason, the computation requirements of the 

reconstruction methods and the image fusion tool are important system parameters 

and will now be discussed in more detail. 

These methods differ in their computational complexity and the quality of the images 

that can be reconstructed. This is evident in the differing point-spread function for the 

Reflection and Time-of-flight Diffraction tomography methods. The Pulse-Echo 

Reflection and the Transmission reconstruction algorithms are not very 

computationally intensive, as they involve backprojection of ultrasonic data along arcs 

and sections of the image respectively. The Time-of-flight Diffraction and Pitch-Catch 

Reflection reconstruction methods require the backprojection of data over elliptical 

paths and are therefore more computationally intensive. In addition, the Time-of-flight 

Diffraction reconstruction algorithm utilises a more complex system of transmit and 

receive locations than the other reconstruction algorithms, thus adding to the 

computational complexity. For this reason the Time-of-flight Diffraction method is 

restricted to only a small number of transmitter locations in order to obtain an 

acceptable balance between image quality and reconstruction time. For the other 

methods the reconstruction time and image quality are deemed acceptable for the 

amount of data used. The image reconstruction times will be discussed in more detail 

for all of the image reconstruction algorithms in Chapter 4. 

2.9. Partial Access to the Test Specimen. 

In practice, access to the complete test specimen circumference is not always 

available. Therefore, it will be advantageous to consider the effect on the image point 

spread function of reconstructing an image from an incomplete set of data. This will 

obviously have a detrimental effect on the point spread function and all of the 

expressions derived previously will be invalid to a varying degree depending on the 

proportion of the full data set available. The performance of the image reconstruction 

algorithms and single bounce image enhancement tool will be evaluated 

experimentally when access to the test specimen is restricted in Chapter 4. 
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2.10. Concluding Summary. 

This chapter presents the underlying theory for the majority of the main imaging 

system components. The tomographic reconstruction methods namely Reflection 

tomography, Time-of-flight Diffraction tomography and Transmission tomography 

have been explained in detail and the point spread functions for Pulse-Echo Reflection 

tomography, Pitch-Catch Reflection tomography and Time-of-flight Diffraction 

tomography derived. The data pre-processing component of the imaging system will 

be outlined in Chapter 3. 

Two transmission tomography algorithms based on the shadow cast by a defect have 

been presented. They both involve the backprojection of the shadow regions, with one 

of the algorithms incorporating information about the defect type in the 

backprojection. 

An image enhancement technique based on the ultrasonic energy reflected by the test 

specimen backwall has been presented for the two Reflection tomography and Time­

of-flight Diffraction tomography reconstruction algorithms. The intention being to use 

the technique to improve characterisation of any defects present, this should be 

especially useful when access to the test specimen is restricted or the amount of data 

available for image reconstruction is small. 

In order to facilitate the generation of high resolution images an image fusion 

technique based on fuzzy logic set theory has been given. The Fusion technique takes 

a set of the tomographic image reconstructed and applies the fusion function to the 

images to generate a high resolution image of any defects present. The imaging 

systems components presented here will be evaluated experimentally in Chapter 4. 
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Chapter 3: 

MAXIMUM-LIKELIHOOD DECONVOLUTION. 
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3.1. Introduction. 

In Non-Destructive Testing (NDT) image resolution is the key factor that dominates 

the quality of the image and also the amount of information it contains. Means to 

improve the resolution of ultrasonic images [28][29][30][31][32][33] fall into one of 

two categories these are hardware and software based methods. In hardware based 

methods a wideband transducer with shorter pulse width is utilised to improve axial 

resolution or pulse compression techniques are used [27]. To improve lateral 

resolution using hardware a focused transducer with a smaller focal spot is utilised. 

In practice, the bandwidth and the depth of focus are inherently limited [12]. These 

facts along with the nature of the imaging system proposed in Chapter 2 point to the 

use of software techniques based on digital signal processing for the improvement of 

the image quality. The approach that has been chosen is to use a deconvolution 

method to improve the SNR and time resolution of raw A-scan data utilised for 

image reconstruction, thus improving the quality of the reconstructed image. 

In NDT the ultrasonic data received from scanning the test component is degraded by 

a number of system components, among these are: 

• Spatial blurring due to the fmite beamwidth of the scanning transducer. 

• Spatial distortion due to the anisotropy scattering function of defects within the 

components. 

• Noise introduced by scattering of energy from metal grains. 

Since it has been decided to concentrate on software deconvolution methods, these 

will be examined in more detail with discussion focusing on the chosen method. In 

the majority of deconvolution methods employed accurate, a priori knowledge of the 

transducer impulse response, wet), is required. This information can be obtained 

using either a measurement or model based approach. 

The measurement approach is achieved by using a process in which the transducer 

response is characterised under conditions that closely resemble the intended 

operational environment. This method has the advantages that little knowledge of the 

transducer parameters and associated electrical and mechanical loading is required, 
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the transducer being considered a black box. However, this methodology has a 

number of drawbacks; the measured response is a direct function of the reflector type 

and position within the sound field, a separate measurement being required for 

different reflectors and positions within the sound field Moreover, the experimental 

procedure can be time consuming and prone to error due to incorrect positioning or 

contamination noise. Also for some wide band applications high frequency absorption 

within the propagation channel reduces the effective bandwidth for the 

deconvolution process. It is apparent from this that effective deconvolution of 

ultrasonic data is severely constrained by experimental characterisation of the 

transducer impulse response and an alternative procedure is required. A number 

model based approaches have been examined in the literature, some of these will be 

outlined. 

One method involves the use of transducer modelling techniques to closely 

approximate the transducer impulse response [341. Apart from being significantly 

faster than the measurement approach, this approach is independent of measurement 

error and provides an enhanced degree of flexibility. However, detailed knowledge 

of the transducer construction, material parameters and electrical loading is required. 

Due to these constraints a third model based approach will be utilised. 

The method considered here [34] for the deconvolution of ultrasonic data utilises a 

model of the experimental conditions under which the ultrasonic data is captured, 

this model is presented in Section 3.3. The chosen method uses the ultrasonic data to 

obtain an initial estimate for the parameters of the model. Optimisation techniques 

are then used to refine the model parameters until such time as a minimum is 

obtained. Once an acceptable estimate of the model parameters has been found, then 

these parameters are used in a deconvolution filter to improve the resolution of the 

ultrasonic data. 

Before the techniques used here for the deconvolution of ultrasonic data are 

presented the basics of convolution will be described in Section 3.2. In subsequent 

sections the deconvolution model, the model parameter estimation methods and the 
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Maximum-Likelihood Deconvolution (MLD) algorithm used for optimisation of the 

model parameters are described in detail. The implementation of these algorithms is 

also examined as in many cases they are computationally intensive and require the 

used of equivalent recursive algorithms to obtain acceptable processing times. In 

Section 3.11 the Minimum Variance Deconvolution (MVD) filter which utilises the 

obtained model parameters to filter the A-scan data is presented. In Section 3.13 a 

technique for the estimation of the ultrasonic data's noise variance is described as it 

cannot be estimated using the MLD technique. Finally, in Section 3.15 the 

deconvolution techniques presented here are applied to experimentally obtained data 

to show the resultant improvement in the time resolution and Signal-to-Noise Ratio 

of the A-scan data 

3.2. Convolution. 

Convolution is the most important method for the description of Linear-Time-

Invariant (LTl) systems, since the convolution operator allows the output of the 

system to be calculated from the input and the system Impulse Response (IR), as 

output = input * IR (3.2-1) 

Where * denotes convolution. 

Convolution is associated with the forward problem, that is identification of the 

system output given the input and the impulse response of the L TI system. 

Deconvolution is the inverse process, that is generating the system input from the 

output and the L TI system IR. If IR-1 represents the mathematical inverse of the 

system's impulse response. IR-1*IR is a delta function, and a delta function 

convolved with another function (output in this context) equals that other function, 

i.e. 

input = output * IR- l (3.2-2) 
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Deconvolution is used ill many areas of science and engineering, from 

communication systems, seismic systems and non-destructive testing (NDT) 

[34][42]. The area of interest here is that of ultrasonic NDT signals. 

If convolution is the most important and widely used L TI system operation, then 

deconvolution is the second most important. However, deconvolution is a far more 

difficult operation to perform. This can be justified by explaining a number of L TI 

system attributes; in practice it is not possible to obtain the inverse IR by simply 

inverting the IR. For example, if the system is non-minimum phase, so that some of 

the zeros of the z-transform of the system impulse response lie outside the unit circle 

in the complex z-domain, then the IKI will be unstable because some of its poles 

will be unstable. Therefore, direct inversion would not be advantageous. In addition 

to this the output of a L TI system is often corrupted by noise, so that 

measured output = input*IR + noise, (3.2-3) 

and, 

input = measured output*IR-1 
- noise*IR-1 (3.2-4) 

The noise values are unknown so the input cannot be calculated from equation (3.2-

2). If the noise is neglected, serious errors in reconstructing the input may occur. 

The final reason is that, because the exact inverse cannot be computed, it may be 

very difficult to obtain a high resolution version of the input opposed to a blurred 

version, and so 

input = measured output * IR -I - noise * IR-1 

= (input * IR + noise). IR -1 - noise * IR-1 

= input * (IR * IR -I) = input * resolution function 

(3.2-5) 
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where 

resolution function = IR*IK1 (3.2-6) 

If IKI is a perfect inverse of IR, then the resolution is a delta function. However if 

the inversion is not perfect then the resolution function is a smeared out delta 

function, where the degree of smearing depends on the bandwidth (BW) of the IR 

operation and the Signal-to-Noise Ratio (SNR) [34]. The design of a deconvolution 

operator requires a careful balancing of the SNR and BW effects. A deterministic 

approach is not suitable as it neglects the SNR effects. However, a stochastic design 

process can be used as it can be designed to take account ofBW and SNR effects. 

Stochasti~ design procedures can lead to two types of deconvolution operators, linear 

and non-linear. Non-linear methods generally give rise to higher resolution 

deconvolution operators, so an approach that generally leads to non-linear 

deconvolution operators has been chosen. 

The deconvolution method to be examined here is based on the maximum-likelihood 

method developed by R. A. Fischer. This method, in the context of ultrasonic NDT 

inspection is; given the A-scan data and an assumed model for that experiment, 

determine values for the parameters of the model which most probably led to the 

observed data. 

Probability is the statistical process associated with the forward experiment, and 

likelihood is associated with an inverse experiment (probability is proportional to 

likelihood). The maximum-likelihood method is based on the simple idea that 

different probability models generate different samples and that given any chosen 

sample, it is more likely to have come from some probability models than from 

others. In order to apply the maximum-likelihood method to the design of a 

deconvolution operator (i.e. filter), the following steps must be undertaken; 

1. Specify a probability model for the measured output; 

2. Determine a formula for the likelihood function; and, 

3. Maximise the likelihood function. 
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These steps will now be examined for the NDT system described in chapter 2. 

3.3. Convolution model. 

Input 
Channel Model IR 

(ultrasonic 
wavelet) 

Figure 3.1. Convolutional Model. 

The basic convolutional model is 

Noise 

+ 

Output + Measurements 

measured output = output + noise = input*IR + noise (3.3-1) 

This is shown in Figure 3.1. The three components of the model, i.e. the input, the 

system impulse response and the noise will now be outlined. 

3.3.1. Input. 

The fundamental assumption made about the input is that it is random and white in 

nature. White means that values of the input signal are independent from one time 

value to the next. This implies that the present input value gives no information about 

the past or future values of the input, and vice versa. However, if the input sequence 

is not white but still random then this signal is referred to as coloured noise. 

Coloured noise can be generated by applying white noise to a colouring filter. If the 

impulse response of such a filter is IRcF, then the 

coloured input sequence = white input sequence * IRcF (3.3-2) 
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so that 

measured output = coloured input sequence * IR + noise 

where 

= white input sequence • 1Rcr * IR + noise 

= white input sequence * IR' + noise 

= input sequence * IR' + noise 

IR' = IRCF • IR (3.3-3) 

(3.3-3) 

This shows that the convolutional model can be expressed in terms of a white input 

sequence that is applied to a more complex channel model. Thus illustrating that 

assuming a white input sequence is not a restrictive assumption. 

There are many models that can be used to approximate white sequences. The 

methods considered here will be: Gaussian, Bernoulli, Bernoulli Gaussian and 

Bernoulli Gaussian plus backscatter. 

3.3.1.1. Gaussian White Sequence. 

An example of a Gaussian sequence is shown in figure 3.2, where a Gaussian 

random number generator has been used to generate the sequence elements. 

Gaussian Sequence 

time 

Figure 3.2. Gaussian input sequence. 
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The values of this sequence will be denoted by u(k), the numbers 

u( 1 ),u(2), ...... ,u(k), ....... ,u(N) 

denote a Gaussian white sequence with N elements, with the sequence elements 

occurring at time points 1,2, ..... ,k, ..... ,N. This sequence is completely characterised 

by its mean and variance. For simplicity the mean is assumed to be zero, thus the 

sequence is described by a single parameter, its variance vr• Entropy is defmed as the 

uncertainty about a random signal and also the information gained when a signal is 

observed. Gaussian sequences are known to be maximum entropy signals. 

3.3.1.2. Bernoulli White Sequence. 

A random sequence of ones and zeros is a Bernoulli sequence. If the sequence has an 

equal number of ones and zeros, then the probability of a one or a zero occurring is 

112. If we require a sparse sequence then obviously the probability of a zero 

occurring must be made significantly higher than the probability of a one occurring. 

Using this philosophy it is possible to generate any random sequence containing any 

number of ones and zeros simply by altering the two probabilities. An example of 

such a sequence is shown in figure 3.3. 

B 11' S emou 1 equence 

time 

Figure 3.3. Bernoulli Sequence. 

The Bernoulli sequence elements will be denoted by q(k), the numbers 

q(l ),q(2), ..... ,q(k), ..... ,q(N) 
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denote a Bernoulli sequence with N elements, where the sequence elements occur at 

time points 1,2, ..... ,k, ..... ,N. There are a possible 2N Bernoulli sequences, each of 

these being known as a realisation. Any of the realisations can be chosen simply be 

choosing at which time points a value of one is desired. Each element of the 

Bernoulli sequence is described by a probability mass function that is characterised 

by a single parameter, A, this value equals the mean value of the sequence and also 

the variance of the sequence. In general, A takes on a value between zero and one, 

and Pr[q(k)] = A. if q(k) = 1 or Pr[q(k)] = 1 - A. if q(k) = O. The entropy of the 

Bernoulli sequence q(k) is Aln(A.) - (1 - A)ln(1 - A) i.e. it has a minimum when A = 0 

or 1 and a maximum when A = 112. Consequently, the most entropic values of the 

sequence occur when A is close to 112, whereas the least entropic values occur when 

A. is close to zero or one. 

3.3.1.3. Bernoulli-Gaussian Sequence. 

Non-Gaussian input signals have a very important role to play in Maximum­

Likelihood Deconvolution, as they lead to non-linear deconvolution operators. A 

Bernoulli-Gaussian sequence is such a non-Gaussian sequence. It can be obtained by 

multiplying the elements of a Gaussian sequence with the values of a Bernoulli 

sequence. An example of such a sequence can be seen in Figure 3.4 and has been 

determined by the multiplication of the Gaussian sequence in Figure 3.2 and the 

Bernoulli sequence shown in Figure 3.3. Another way to generate a Bernoulli­

Gaussian sequence is to consider the nature of the Bernoulli sequence. If the fact that 

the sequence only contains two values, zero and one, is used then a Bernoulli­

Gaussian sequence can be generated by only switching on the Gaussian random 

number generator when the Bernoulli sequence has a value of unity. 
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Bernoulli-Gaussian Sequence 

I I 

I I I I time 

Figure 3.4. Bernoulli-Gaussian sequence. 

This product model for the generation of a Bernoulli-Gaussian sequence can be 

described as follows. If q(k) denotes the elements of a Bernoulli sequence and r(k) 

denotes the elements of the Gaussian sequence, then the Bernoulli-Gaussian 

sequence equals r(k)q(k). So letting u(k) represent the input sequence, 

u(k) = r(k)q(k) (3.3-4) 

The numbers 

r(l )q( 1 ),r(2)q(2), ..... ,r(k)q(k), ..... r(N)q(N) 

denote the Bernoulli-Gaussian sequence with N elements, at time points 

1,2, ..... ,k, ..... ,N. This sequence requires two parameters to completely characterise it; 

A, which is the probability parameter value associated with the Bernoulli sequence, 

and Vc, which is the variance of the Gaussian sequence. 

3.3.1.4. Bernoulli-Gaussian plus Backscatter Sequence. 

For the ultrasonic NDT applications of Maximum-Likelihood Deconvolution 

considered here the input signal is the reflectivity function that characterises the 

specimen under test. When we model the input as a Bernoulli-Gaussian sequence we 

are accounting for any defects contained within the test specimen, however some 

66 



components, by the nature of their material properties will cause grain noise to be 

present in the input sequence. This effect is modelled by using another zero mean 

Gaussian sequence, uB(k), the backscatter sequence. The Bernoulli-Gaussian 

sequence plus backscatter input model is 

u(k) = r(k)q(k) + uB(k) (3.3-5) 

where k = 1,2, ..... ,N. An example of such a sequence is shown in Figure 3.5. It was 

obtained by adding a Gaussian white sequence to a Bernoulli-Gaussian sequence. 

Bernoulli-Gaussian plus 
Backscatter Sequence. 

time 

Figure 3.5. Bernoulli-Gaussian plus backscatter sequence. 

As outlined previously in equation (3.1-3), 

measured output = input*IR + noise 

However, the input is now viewed as a sum of two terms 

input = specimen message + grain noise (3.3-6) 

The backscatter sequence modelling the component of the input referred to as grain 

noise, is a convolutional parameter. The Bernoulli-Gaussian plus backscatter input 

sequence requires three terms to completely characterise it; A, and Vr the parameters 

associated with the Bernoulli-Gaussian sequence, and VB, the variance of the 
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Gaussian backscatter sequence. The variance VB has an interesting effect on the input 

sequence. Decreasing or increasing it allows us to generate input sequences ranging 

from less to more entropic. 

3.4. Channel Model Impulse Response (ultrasonic wavelet). 

The next part of the model to be examined is the channel's impUlse response, i.e. the 

wavelet generated by the ultrasonic source. The sampled values of the wavelet are 

denoted by 

w(O),w(I),w(2), ...... 

where w(O) is usually zero. One model for a wavelet is to use its sampled values 

directly. For example, if a fmite length wavelet is considered, i.e. for w(k) = 0 for all 

values ofk greater than M. Then 

W(z) = w(O) + W(l)Z·l + w(2)Z·2 + ..... + w(M)Z·M (3.4-1) 

where W(z) is the z-transform of w(k). This model is commonly referred to as a 

movmg average model (MA), the parameters of the model being 

w(O),w(1), ..... ,w(M). If the wavelet is known, then the number M will also be known. 

However, in many cases the wavelet is unknown, so M is consequently unknown. 

This model has the draw back that it can only be used to model wavelets with power 

spectral densities containing peaks. If the wavelet spectral density contains both 

peaks and troughs then a more complex model is required [43], such a model is an 

Auto-Regressive Moving Average (ARMA) [44] and takes the form ofa ratio of two 

polynomials, i.e. 

b 0-1 b 0-2 b b 
W(z) = IZ + 2Z + ..... + o-I Z + 0 

o 0-1 
Z +a1z + ..... +ao-1z+a o 

(3.4-2) 
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And is described by the 2n parameters 

Where n typically ranges from 2 to 12. 

Sometimes the wavelet samples are known. In this case the ARMA model 

parameters can be obtained in a number of ways. This is an approximation problem 

that involves determining the model parameters, such that some measure between the 

approximate wavelet and the given M samples is minimised. 

When the wavelet samples are unknown then some other method must be used to 

determine the ARMA wavelet parameters, many such methods exist the majority of 

them using higher order statistics [44] of the discrete system output [43][45][46][47]. 

A method based on these higher order statistics and Singular Value Decomposition 

has been used to determine the model order and parameters. This will be outlined in 

Section 3.10. 

3.S. Measurement Noise. 

The third component of the convolution model is measurement noise, which is 

assumed to be additive. The assumptions made about this noise are that it is zero 

mean, white and Gaussian. This noise will be denoted by n(k) where k = 1,2, ..... ,N 

and is characterised by the variance vn• 

3.6. Mathematical Model. 

Now that the underlying theories of the convolution model have been presented, they 

will now be collected to form a single system model [34]. All of components of the 

convolutional model; the input, the channel mode IR, output, noise and 

measurements are now represented by mathematical symbols these will now be 

summarised for clarity [34]: 
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u(k) = random input signal sequence which will be modelled as a Bernoulli-Gaussian 

or a Bernoulli-Gaussian plus backscatter sequence. 

w(k) = channel model IR which will be modelled as an ARMA wavelet. 

y(k) = output of convolutional model. 

n(k) = additive measurement noise, which will be modelled as white and Gaussian. 

z(k) = measurements which are available at the output of the receive transducer at 

time points 1,2, ..... ,N. 

The basic convolutional model can now be expressed mathematically, as 

z(k) = u(k) * w(k) + n(k), k = 1,2, ..... ,N (3.6-1) 

or alternatively as 

z(k) = [r(k)q(k) + uB (k)]* w(k) + n(k), k = 1,2, ..... ,N (3.6-2) 

for a Bernoulli-Gaussian plus Backscatter sequence. For convemence these N 

measurements are represented by a vector z, where 

z = col(z(l),z(2), ...... ,z(N», 

where colO denotes a column vector. Using the fact that 

k 

u(k) * w(k) = I u(j)w(k - j) (3.6-3) 
j=1 

it is observed that 

z(l) = w(O)u(l) + n(l) 

z(2) = w(l)u(l) + w(O)u(2) + n(2) 

z(N) = w(N-l)u(l) + w(N-2)u(l) + ..... + w(O)u(N) + n(N). 
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For convenience, these N equations can be written as the following vector 

measurement equation. 

where 

and 

W= 

z=Wu+n (3.6-4) 

u = col(u(1),u(2), ..... ,u(N) 

n = col(n(1),n(1), ..... n(N) 

w(O) 

w(l) 

o 
w(O) 

o 
o 

w(n -1) w(n - 2) w(O) 

Ifw(k) == 0 for k > M, then many of the terms in W will be zero. However there is no 

loss in generality of showing these terms not equal to zero. Using the fact that u(k) = 

r(k)q(k) + uB(k), we can extend the vector measurement equation to 

z= WQr+ WUB +n (3.6-5) 

where 

Q = diag[q(I),q(2), ..... ,q(N)] 

r = col[r(I),r(2), ..... ,r(N)] 

Us = col[uB(I), uB(2), ..... , UB(N)] 

in the equation for Q, diag[] denote a diagonal matrix. The mathematical 

convolutional model is now complete and is shown in Figure 3.6. 
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Ua(k) n(k) 

+ + 
r(k)q(k) + u(k) 

\\(k) 
y(k)+ z(k) 

Figure 3.6. Mathematical convolution model. 

The convolutional model is a parametric one. It is completely described by 

parameters that are associated with the three model components, these can be either 

random or deterministic in nature. There are 2n + 4 deterministic and 3N random 

parameters [34]. These being: 

Deterministic parameters: 

Wavelet parameters: a = col(aJ,a2, ..... ,an) 

b = col(bh~, ..... ,bn) 

statistical parameters: s = col(vr,vB,Vn,A.) 

Random parameters: 

Event parameters: q = col[q(1),q(2), ..... ,q(N)] 

Amplitude Parameters: r = col[r(l),r(2), ..... ,r(N)] 

Backscatter Parameters: UB = col[uB(l), uB(2), ..... , UB(N)] 

This model requires the determination of 3N + 2n + 4 parameters from only N 

measurements, this can be achieved because in-addition to the N measurements there 

are the convolution model and the probabilistic models for the 3N random 

parameters. 
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3.7. Likelihood. 

The 3N random parameters and the 2n + 4 deterministic parameters to be estimated 

have been established, the next step is to derive an expression for the likelihood 

function. R.A. Fischer [34] developed the method of maximum-likelihood for 

problems characterised by deterministic parameters. The method, associated with 

Thomas Bayes, called a maximum aposteriori method (MAP) was developed for 

problems characterised just by random parameters. The deconvolution problem 

considered here has to account for both types of parameters in the correct way; i.e. 

our likelihood function will treat a, b, S as deterministic parameters and r, q, UB, as 

random. The resultant likelihood function is called an unconditional likelihood 

function, because the random parameters have been accounted for properly. For 

simplicity this will be referred to as the likelihood function [34]. 

The likelihood function contains exponential functions, so taking the natural 

logarithm of the likelihood function removes inherent complexity. Due to this the log 

likelihood function is used here, this can be done because the logarithm of a function 

is a monotonic transformation of the function, i.e. the loglikelihood function mirrors 

the likelihood function [34]. Consequently the maximum of the log likelihood 

function corresponds to the maximum of the likelihood function. 

3.7.1. Likelihood Function. 

Whether the likelihood or loglikelihood functions are considered the underlying 

deconvolution problem remains the same, that is given the measurements, z, the 

unknowns a, b, s, r, q and UB must be estimated. The derivation of the likelihood 

function will now be presented. Obviously it must be a function of a, b, s, r, q and 

UB. The function takes the form 

L{a, b, s, q, r, UB I z} 
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Using the fact that likelihood is proportional to probability, and assuming a value of 

one for the constant of probability, it can be stated that 

L{a,b,s,q,r, u B} = p(z,q,r, u B I a,b,s) (3.7-1) 

Function p(z, q ,r ,UB I a, b, s) is the joint probability density function of random 

vectors z, r, q and UB given the deterministic vectors a, b and s. This likelihood 

function is conditional with respect to a, band s and is unconditional with respect to 

r, q and UB. Applying the elementary rules of conditional probabilities to the 

likelihood function, the following is obtained 

L{a,b,s,q,r,uB I z}= p(z,q,r,uB I a,b,s) 

= p(z I q,r,uB ,a,b,s)p(q,r,uB I a,b,s) (3.7-2) 

= p(z I q,r,uB ,a,b,s)p(q I a,b,s)p(r I a,b,s)p(uB I a,b,s) 

For the last expression, the fact that r, q and UB are statistically independent is 

utilised. Now, using the fact that q is a vector of discrete random variables, we 

express p( q I a, b, s) as Pr( q I a, b, s); hence, 

L{a,b,s,q,r,uB I z} = p(z I q,r,uB,a,b,s)Pr(q I a,b,s)p(r I a,b,s) 

p(uB I a,b,s) 
(3.7-3) 

Next, because r, q and UB do not depend on a and b, L{ } can be expressed as 

L{a,b,s,q,r,uB I z}= p(z I q,r,uB ,a,b,s)Pr(q I s)p(r I s)P(uB Is) (3.7-4) 

The probability functions on the right hand side will now evaluated, the key to this is 

the vector measurement equation, 

z=WQr+WuB+n (3.7-5) 
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Due to the Bernoulli nature of the elements of q, and the Gaussian nature ofr, Us and 

n it can be established that [34]: 

p{z I q,r,us,a,b,s}= {21tV J-N/2 exp{-{z- WQr- WUaY 

{z-WQr- Wus}/2vn} 

N 

Pr{q I s}= fIPr[q{k}I A]= Am(q){l_AYN-m(q»), 
k=i 

In which 

N 

m{q} = L q(k) ; (3.7-8) 
q=l 

(3.7-7) 

p{r I s}= {21tVJ-N/2 exp{- r'r/2vJ; (3.7-9) 

and, 

(3.7-10) 

Combining these equations the expression obtained for L{ } is 

L{a, b,s,q,r, Us I z}= {2nt3N/2{vr v n vstN/2 exp{-r'r 12vr 

-(z- WQr- WUsJ{z- WQr- Wus}/2vn 

-us 'ua 12vs }Am(q){I-AYN-m(q)] 

(3.7-6) 

(3.7-11) 

As mentioned earlier is often easier to work with the loglikelihood function, LO. this 

is shown in equation (3.7-12). 

L{a,b,s,q,r,us I z}= - 3N ln2n- N In{vrvn vs}-r'r/2vr 2 2 
-(z- WQr- WuBJ{z- WQr- WUB}/2vn (3.7-12) 

-us'us 12vs +rn{q)ln{A) 

+[N -m{q)]ln{I-A) 
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Usually, the ftrst term is dropped, as it does not depend on any of the model 

parameters. In the case where no backscatter is included, then this equation becomes: 

L(a,b,s,q,r I z)= - 3N In27t-r'r/2vr 2 
-(z- WQr)(z- WQr)/2vn (3.7-13) 

+ m(q) ln (A) 
+[N -m(q)]ln(l-A) 

3.8. Maximising Likelihood. 

The deconvolution problem has been shown to be an optimisation problem. There are 

many methods that can be used to maximise LO. A Block Component (BCM) search 

algorithm will be used to maximise Lf} [34]. 

3.8.1. Block Component Search Algorithms. 

Two factors complicate the maximisation of the likelihood function. The fIrst is the 

large number of parameters (3N + 2n + 4), and the second is the discrete nature of 

the N elements of q [34]. Application of popular gradient search algorithms to the 

likelihood needs some modification, due to the nature of q. The derivative of Lf } 

with respect to these zer%ne parameters does not exist. 

One method that can be used is a recursive block optimisation method [34]. For 

example, if a function of two variables is considered say, f(x,y). The fIrst step is to 

fix x and maximise f(x,y) with respect to y. The second step is to keep y constant and 

maximise f(x,y) with respect to x. These two steps are repeated recursively. Let Xi 

and Yi denote the values ofx and y at iteration i, and Xi+I. Yi+l denote the values at the 

i+ 1 st iteration. For this method to be successful; 

(3.8-1) 
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This approach to optimisation is equally valid for functions of more than two 

variables. For the optimisation of L{} one possible approach is to fIx the generic 

variables, x and y, as follows: 

x = elements of q, and y = elements of a, b, S, r, UB. 

Using this approach means a total of 2N possible q vectors have to be generated, and 

2N value of L{} have to be computed. Even for small values of N this leads to 

prohibitive computation requirements, so another approach must be used. Keeping q 

constant and maximising L{} with respect to y can be accomplished in many ways. a, 

b, s, r and UB are continuous in nature, so it is possible to use a gradient search 

algorithm to update the entire collection of these y-parameters at the same time. This 

would still be extremely costly in term of computational resources, as there are 2N + 

2n + 4 elements in y. However, the block component search algorithm does not have 

to be reduced to 2 steps; y can be decomposed further, for example into 

YI = elements ofr, UB 

Y2 = elements of a, b 

Y3 = elements of S 

This approach is summarised in Figure 3.7. It guarantees that 

L{aj>bi,si,qi'ri'UBJ I z}~ L{ai' bi' si'qi+l'rj>u BJ I z} 

~ L{ai' bi' Si ,qi+l' r i+I' UB.i+1 I z} 

;S; L{ai+1, b i+l' Si' qi+l' Ii+l' U B.i+l I z} 

;S; L{ai+pbi+l,Si+pqi+pri+puSJ+ll z} 

(3.8-2) 

The above illustrates that the likelihood is increased from one iteration to the next. 

The generic variable can be partitioned in many ways; this particular partition has 

lead to a block component search algorithm in which the parameters are updated in 

the following order; random parameters, wavelet parameters and fInally statistical 
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parameters. There is no reason to assume that this particular search algorithm is any 

better than any other. 

A block component search algorithm provides an optimisation strategy. Within each 

block of the algorithm a free choice of optimisation algorithms exists, and sub 

iteration may be performed within each block. For example algorithms such as 

steepest descent, conjugate gradient or Marquardt-Levenberg algorithms may be 

used to update the Y2 and Y3 parameters from their iteration i values to their iteration 

i+ 1 values. An MVD algorithm may be used to update the Yl parameters from their 

ith iteration values to their ith+ 1 iteration values, a variety of recursive detectors can 

be used to update the x parameters. The i+ 1 iteration values are only chosen to 

replace the i iteration values of the generic variable if there is an increase in the 

likelihood value when the i+ 1 iteration values are used to calculate it. 

The block component Search algorithm can be stopped in a number of ways: the 

most common being to run for a set number of iterations. Alternatively the algorithm 

is run until the likelihood does not increase by more than a small pre-set value from 

iteration i to iteration i+ 1. 

Initialise 

parameters 

Update 

random 

parameters 

Update 

wavelet 

parameters 

Figure 3.7. Block Component Search algorithm. 

No 

Update 

statistical 

parameters 
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3.8.2. Update Random parameters. 

When a block component search algorithm is used to maximise L{a, b, s, q, r, Us I 
z}, then r and Us are computed using, 

(3.8-3) 

and 

(3.8-4) 

in which the Maximum-Likelihood quantities are replaced by those obtained at the i 

th iteration, i.e. 

(3.8-5) 

and 

(3.8-6) 

These algorithms for updating r and UB are known as Minimum Variance 

Deconvolution (MVD) algorithms [34], specific algorithms for updating the random 

parameters will be described later. 

3.8.3. Binary Detection. 

Each element of the event sequence q is a binary variable. When q(k) =1 an event 

has taken place at time point k, whereas no event has taken place if q(k) = O. At each 

time point a decision must be made as to whether an event has taken place or not. 

This decision must be made in such a way as to lead to an increase in the likelihood 

function L{a, b, s, q, r, UB I z}. 

Many strategies exist for solving this binary decision process. Some process all of 

the data just once and lead to a decision about whether q(k) = 1 or 0 for all values of 

k = 1,2, ..... ,k, ..... ,N. These detectors are known as one shot detectors. Other 
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detectors process all of the data in an iterative fashion. At each iteration there is a 

decision rule, about whether q(k) = 1 or O. These are recursive detectors and are 

usually not self starting (they require an initial set of values for q(k), k = 1,2, ..... ,N). 

The subscript 0 is used to denote the initial q values, e.g. qQ' For the application to 

non-real-time data considered here these two classes of detectors are adequate [34]. 

Regardless of the detector chosen, the structure of the detection procedure is the 

same and contains three fundamental steps. The first step is to process the 

measurements z, the next step is to create the decision function and the final step is to 

specify the decision strategy that allows the value of q(k) to be determined. Let D(z; 

k) denote the decision function and let Sk[D(z; k)] denote the decision strategy. The 

subscript k on S indicates that a decision must be made for all the values of k in the 

range. The two detectors used in the maximum-likelihood framework will now be 

described. 

3.8.3.1. Threshold Detector. 

The threshold detector is a one shot detector, and is used to generate the initial values 

of the event vector qo. In order to run this detector the initial values of 80, bo and So 

must be provided. The fIrst step is to create a non-linear function of the data. This is 

achieved by fIrst processing all N measurements linearly using a Minimum Variance 

Deconvolution filter, to obtain uMv(klN), k = 1,2, ..... ,N, and then squaring uMv(kIN). 

The next step is to compute a time varying threshold function t(k) that depends on 

the error variance between uMv(klN) and u(k) as follows: 

(3.8-7) 

where, for q = 0 and 1, 

Aq (k)= {l-Var[uERR (k I N)]/vu y[qvr + VB] 

+ Var[uERR (k I N)]{l- Var[uERR (k I N)]/v u} 
(3.8-8) 
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V ar[ UERR(kIN)] is the covariance matrix that describes the error between u and 

uMV(N). The decision function is the difference between [uMv(klN)f and t(k). i.e. 

If [u{k I N)Y -t{k» 0 decide q{k) = I; or 

If [u{k I N))2 -t(k)< 0 decide q(k} = o. 
(3.8-9) 

The threshold detector algorithm is as shown in Figure 3.8, below. 

Data 

uMV(kIN) [UMV(kIN)]2 
MVD Square 

Var[uMV(kIN)] Threshold q(k) "" 0 orl 

function 

Figure 3.8. Threshold Detection algorithm. 

3.8.3.2. Single Most-Likely Replacement Detector. 

A Single Most-Likely Replacement detector (SMLR detector) is a recursive detector 

[34], therefore it cannot be used to generate the initial value of q. This detector is 

used for detection once these initial values are available. The SMLR detector utilises 

the vectors ao, bo and So and a reference q, that is denoted by qr. The fIrst choice of qr 

is the value of q obtained from the threshold detector, qm. N test vectors which 

differ from qr in a single location are generated, these are denoted 

Note that the kth test vector, qt,k, only differs from qr at the kth time point. By 

evaluating a likelihood ratio between qt,k and qr, a decision function D(z; k) can be 

computed, this is given in equation (3.8-10). 
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In D(z;k)= (UMV (k I N)j I{V~1 [qt.k (k)-qr (k)]-l + [v u -var[uERR (k I N)]/v~ n (3.8-10) 

+ 2[qt,k (k)-qr(k)]ln[A/(I-A)] 

The decision strategy is to examine the decision function, D(z; k) and fmd its 

maximum value. Call this point k', this represents the single time point at which the 

reference sequence has been changed. This winning sequence qt,k replaces the 

reference sequence for the next iteration of the detector. The detector is run until D(z; 

k) is less than zero for all values of k = 1,2, ..... ,N or for a set number of iterations. 

The algorithm is shown in Figure 3.9. 

Information 

Compute 
Linear Data 

In D(z; k) Comparator 
processor 

k = 1.2 ...... ,N 
qt,k' 

Replace 
No 

qr by qt,k' 

Figure 3.9. SMLR (Single Most Likely Replacement) Detector algorithm. 

3.8.4. Update Wavelet Parameters. 

The function L{a, b, s, q, r, UB I z} is a complicated function that depends on the 

wavelet parameters a and b in a highly non-linear fashion. The only methods 

available to maximise this function with respect to a and b are mathematical 

programming ones, the most commonly used in Maximum-likelihood Deconvolution 

are methods that use both fIrst and second derivative information about L, such as the 

Newton-Raphson and Marqdaurt-Levenberg algorithms. The algorithm that will be 

used to maximise L will be the Marqdaurt-Levenberg algorithm [34]. 
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Let ai and bi be the values ofa and b for the ith iteration of the Marqdaurt-Levenberg 

algorithm, and ai+l and bi+l be values of a and b obtained for the i+ 1 th iteration of 

the algorithm. 

The Marqdaurt-Levenberg algorithms for a and bare: 

b· 1 = b· -(Hb· +Db· \-l gb · 1+ 1 ,1 ,1) ,1 

(3.8-11) 

(3.8-12) 

In these equations ~,i is the gradient of L{a, b, s, q, r, UB I z} with respect to a 

evaluated at a = ai and b = bi, and gb,i is the gradient of L{a, b, s, q, r, UB I z} with 

respect to b evaluated at a = ai and b = bi, i.e. 

gaJ = colloL{a, b, s, q, r, Us I z} loa j I a = ai and b = bi;j = 1, ..... ,n J 

gb,i = colloL{a, b, s, q, r, U B I z} lOb j I a = a i and b = bi;j = 1, ..... ,n J 

(3.8-13) 

(3.8-14) 

Ha,i is the Hessian matrix of L{a, b, s, q, r, UB I z} with respect to a and Ih,i is the 

Hessian matrix of L {a, b, s, q, UB I z} with respect to b, i.e. 

Ha; = ~2 L{a, b, s,q,r, UB I z} lOajOam I a = ai andb = bj;j,m = 1, ..... ,n} (3.8-15) 

Hb,i = ~2 L{a, b, s, q, r, UB I z} lob jObm I a = ai and b = bj ;j,m = l, ..... ,n} (3.8-16) 

Finally, Da,i and Db,i are diagonal stabilisation matrices to ensure the invertibility of 

the matrices (lIa,i + Da,i) and (lIb,i + Db,i), respectively. These matrices must be 

positive defme for their inverses to exist. The flow chart for this algorithm is shown 

in Figure 3.10. 
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If the matrices (Ha,i + Da,i) and (Hb,i + Db,i) matrices are invertible, then ai and bi are 

updated using the just described Marqdaurt-Levenberg algorithm. However, if this is 

not the case then a modified Marqdaurt-Levenberg algorithm is used: 

D -I 
aj+l = aj + a,j ga,i (3.8-17) 

(3.8-18) 

Due to the diagonal structure of the matrices Da,i and Db,i computing their inverses is 

straightforward. Once ai+l and bj+l have been computed, the next step is to evaluate 

L{ai+h bj+h S, q, r, Us I z} and compare it with L{aj, bj, s, q, r, Us I z}. The objective 

is to maximise L so that if L{aj+h bj+l, S, q, r, UB I z} > L{aj, bj, s, q, r, UB I z} then 

the i+l iteration values of a and b replace the ith iteration values of a and b. 

However, if there is no increase in L from iteration i to i+ 1 then we reject aj+l and 

bi+l and generate new values for these quantities. This is achieved by increasing the 

elements of the diagonal stabilisation matrices, Da,i and Db,i' This causes the direction 

of (Ha,i + Da,i) and (Hb,i + Db,i) to change, in addition the length of the resulting 

vectors change so the newly computed values of ai+l and bi+J will be closer to the 

previous ai and bi. This testing and modification process continues until either L has 

increased or a set number of iterations has elapsed. If the latter occurs then ai and bj 

are accepted as the maximum-likelihood values, aML and bML
, of a and b. 

When ai+l and bi+l are accepted there are two possible options; stop or continue. To 

choose between the two the difference between L{ai+h bi+h S, q, r, Us I z} and L{aj, 

bi, s, q, r, UB I z} is examined. Ifl L{ai+J. bi+t. s, q, r, UB I z} - L{ai, bi, s, q, r, UB I z}l 

is less than some small pre-set value then the algorithm is stopped and ai and bi are 

accepted as the maximum-likelihood values, aML and bML
, of a and b. If I L{ai+I. 

bj+], S, q, r, UB I z} - L{aj, bj, s, q, r, UB I z}1 is larger that the chosen pre-set value, 

new values of ai+l and bi+1 are computed using the Marqdaurt-Levenberg algorithm. 

For this the gradient vectors, Hessian matrices and Diagonal matrices require 

updating before ai+l and bi+l are calculated. 
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Increaseq 

Update 

Parameters 

Figure 3.10. Marquardt-Levenberg algorithm. 

3.8.5. Update Statistical Parameters. 

L....-----i 

Update 

Parameters 

Update~ 

Hi and OJ 

There are four statistical parameters that require updating: Vr the variance of the 

amplitude sequence, VB the amplitude of the backscatter sequence, Vn the variance of 

the measurement noise sequence and A. the average number of spikes in the event 

sequence. The three variances are always treated differently than the parameter A.. 

The variances must always be positive, so optimising them is a constrained 

optimisation problem, this makes realisation of the optimisation task more difficult 

than a non-constrained optimisation problem. Therefore, the direct approach is not 

chosen, instead the standard deviations are optimised [34]. Standard deviations can 

be positive or negative, and represent the square root of the variances. This is 

permissible due to the fact that maximum-likelihood quantities have the following 

invariance property: Functions of maximum-likelihood quantities are themselves 

maximum-likelihood quantities. 
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Let the variances vh VB and Vn be denoted by PI. P2 and P3, respectively. The 

aforementioned invariance property allow the following conclusion about the 

variance parameters to be made, 

(3.8-18) 

When L is to be maximised; Ph P2 and P3 are all updated using a Marquardt­

Levenberg algorithm. Let p = COI(Pl, P2 and P3). Then 

(3.8-19) 

where, gp,i is the gradient of L{a, b, s, q, r, UB I z} with respect to the three elements 

ofs contained in p evaluated at p = Pi. Ha,i is the Hessian matrix of L{a, b, s, q, r, UB 

I z} with respect to p evaluated at p = Pi and Dp,I is a diagonal stabilisation matrix, to 

insure the invertibility of (Hp,i + Dp,i)' The flow chart in Figure 3.8 is also applicable 

here. 

When both the wavelet and amplitude variance Vr are unknown, then Vr cannot be 

determined within a maximum-likelihood framework [34]. 

The statistical parameter, A., is updated using a relaxation algorithm, that is 

A = (Number of elements in last detected event 

sequence that equal one, when Aj)lN. 

It is not necessary to update all four statistical parameters in unison, A is usually 

updated after each detection stage, with the other statistical parameters, Vn and VB, 

being updated together using the Marquardt-Levenberg optimisation algorithm. 
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3.9. Recursive Programming. 

The ARMA model for the wavelet given in equation (3.4-2) is clearly recursive in 

nature. The recursive signal processing algorithms presented in this section exploits 

the recursive nature of this wavelet [34]. The first stage in the development of 

recursive processing algorithms is to develop a recursive wavelet model. The ARMA 

wavelet transfer function implies the following ARMA fmite difference equation: 

y(k +n)+ a1y{k +n-l)+ ..... +an_1y{k+ 1)+anY{k)= b1u{k +n -I) 

+ b2u{k+n-2)+ ..... + bn_1u{k+I)+ bnu{k) 
(3.9-1) 

This equation is an nth order finite difference equation. It can also be represented as 

a collection of n first-order, difference equations. These n fIrst-order equations can 

then be collated into a more compact form known as a state equation. A state 

variable representation of the ARMA model will now be presented. 

x1{k+l) 0 1 0 0 x1(k) 0 

x2 {k+l) 0 0 1 0 xl(k) 0 
u{k) = + (3.9-2) . . 

xn{k+l) -an -an-1 -an-2 -an x1(k) 1 

and 

(3.9-3) 

Equation (3.9-2) is the state equation and equation (3.9-3) is the output equation, 

because y(k) is the output of the wavelet model. These equations can be expressed in 

a more compact form as, 

(3.9-4) 
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and 

y{k) = h'x{k) (3.9-5) 

In these equations; x(k) is the nx 1 state vector; ~ is an nxn state transition matrix; 'Y is 

a nx 1 input distribution vector (it distributes the input into those equations in which 

the input should appear); and h is an nx1 observation vector. This state variable 

model provides exactly the same relationship between u(k) and y(k) as the 

convolutional model. These two equations are now used to form the basis of the 

recursive algorithms. 

3.9.1. Recursive MVD algorithm. 

MVD is at the heart of the entire Maximum-Likelihood Deconvolution procedure. 

There are a number of methods used to realise the MVD filter. The recursive 

algorithm is derived directly from mean squared estimation theory applied to the 

state variable model [34]. The state variable model used can be seen in Figure 3.6, in 

Figure 3.11. The wavelet model block of the state variable model is interpreted as 

the interconnection of a state equation and an output equation. 

Wavelet model 

u(k) State x(k) Output y(k) 
-equation equation 

Figure 3.11. Interpretation of the wavelet model as an interconnection of a stale 

equation and output equation. 

The recursive MVD algorithm presented here has four parts and is detailed in Figure 

3.12. 
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Forward-running algorithms 

Data J Kalman predictor : Innovations process 
"I 

Backward running 

Backward-running filter 

algorithms 

Input estimator 

Input, u(k) 

Figure 3.12. Recursive MVD algorithm. 

3.9.1.1. Input Estimator. 

Let rUIN) denote an nxl backward running (i.e. j = N,N-l, ..... ,O) state vector, and 

SGIN) denote the state vectors associated nxn covariance matrix. Then 

U
MV (k IN) = v u 'Y'r(k + liN) (3.9-6) 

Var[uERR(kIN)]=vu -vuy'S(k+lIN)yvu (3.9-7) 

where k = N,N-l, ..... ,0. 

3.9.1.2. Backward-Running Filter. 

The backward running equations for r(jIN) and SGIN) are: 

r(j IN) = [I - K(j)h'l'~'r(j + 11 N)+ hz(j I j -l)/Var[z(j I j -1)] (3.9-8) 

89 



and 

s(j I N)= [I -K{j)t'l'~'S(j + 11 N)j>[1 -K(j)t']+ hh'/Var[Z:{j I j-l)] (3.9-9) 

where j = N,N-I, ..... ,I; r(N+IIN) = 0 and S(N+IIN) = o. In these equations 

z(j I j -1) is a scalar process known as the innovations and K(k) is an nx 1 Kalman 

gain matrix and I is the nxn identity matrix. 

3.9.1.3. Innovations Process. 

The innovations and its variance are the outputs of a forward-running Kalman 

predictor. They are given by the following equations: 

z{k +11 k)= z{k + 1)-h'i{k + 11 k) (3.9-10) 

and 

Var[z{k+ 11 k)] = h'P{k +11 k)t + Vo (3.9-11) 

where k = O,I, ..... N-l; i{k+llk)denotes a nxI mean squared prediction of state 

vector x(k+l), based on the measurements z(I),z(2), ... ,z(k); and P(k+Ilk) is the nxn 

covariance matrix that describes the estimation error between i{k + 11k) and x(k+ 1). 

Quantities x(k + 11 k) and P(k+ 11k) are generated by the Kalman Predictor. 

3.9.1.4. Kalman Predictor. 

Let x{k I k) and P{k I k) denote a nxl mean squared filtered estimate of state vector 

x(k), that is based on the measurements z(I),z(2), ... ,z(k), and its associated nxn 

covariance matrix. P{k I k) describes the estimation error between x{k I k) and x(k). 
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Then 

i(k + 11 k) = ~i(k I k) (3.9-12) 

and 

P(k+ll k)= ~P(k I k~'+vu rt' (3.9-13) 

where 

i(k+ 11 k + 1) = [I -K(k + 1}h']i(k +llk)+K(k + l)z(k+ 1) (3.9-14) 

K(k + 1)= P(k + 11 k)h[h'P(k + 11 k)h + vn II (3.9-15) 

P(k + 11 k + 1)= [I - K(k + 1)t']P(k +11 k) (3.9-16) 

and k = 0,1, ..... ,N - 1. The Kalman predictor can be initialised by i( 0 I 0) = 0 and 

p(o I 0)=0. 

3.10. ARMA Parameter Estimation. 

The problem here is to estimate the parameters of the ARMA wavelet model from 

noisy observations of its output in response to excitation by an unknown independent 

identically distributed (i.i.d.) sequence [43][45][46][47]. 

3.10.1. Model and Assumptions. 

The observed time series is modelled as the output of an ARMA system that is 

excited by an unobservable input [47]. The output is assumed to be corrupted by 

additive white Gaussian noise. 
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The time series is described by 

n n 

La(k)y(k- j)= Lb(k)u(k- j) (3.10-1) 
j=l j=l 

z(k) = y(k) + n{k) (3.10-2) 

where u(k) is the system input, y(k) is the noiseless system output, n(k) is the 

additive white Gaussian noise and z(k) is the observed output noisy time series. The 

assumptions made are that the model order n is known; u(k) is an observable i.i.d. 

non-Gaussian process with at least one finite, non-zero cumulant Y m,u , m > 2; the 

additive noise n(k) is independent of the input u(k), and hence, the output y(k); the 

additive noise n(k) is a coloured Gaussian process, of unknown power spectral 

density; the system is casual and exponentially stable; and a(O) and b(O) = 1, this 

flXes the inherent scale ambiguity. 

Since y(k) and n(k) are independent, the cumulant ofz(k) is the sum of the y(k) and 

the n(k) cumulant, due to the fact that n(k) is Gaussian its cumulants equal zero for 

orders greater than 2. This indicates that the cumulants of the noisy output z(k) are 

equal to cumulants of the output y(k). 

Impulse response h(k) of the model satisfies the recursion 

(3.10-3) 

The mth order cumulants, that are (m - 1) dimensional sequences, are related to the 

input response by 

co 

Cm,y{tl' t 2, t3, .. · .. 'tm-I)= Y m,uLh{i)h{i + tl} .. ·.h(i +tm-I) (3.10-4) 
j .. o 
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With t = t l , t = tl -t2 , t3 = ...... = t m- l = tl in (3.10-5), the following is obtained 

n 

fm (t; t):= :La(j}cm,y(t- j, t,O, ..... ,O} 
j=O 

(3.10-6a and b) 

Equations (3.10-6a) and (3.10-6b) are the basis of the MA parameter estimation 

algorithm presented in Section 3.10.3. These algorithms assume that values of the 

AR parameters are available. An algorithm for obtaining estimations of the AR 

parameters will now be presented. 

3.10.2. AR Parameter Estimation. 

3.10.2.1. Model Order Determination. 

The problem of estimating the order of the ARMA model will now be discussed. 

Whether exact values of the autocorrelation lag or cumulants are available or 

sampled estimates of these quantities are available, determination of the model order, 

n, remains an open question [43]. Here the method that will be considered makes 

uses of Singular Value Decomposition (SVD) on an extended autocorrelation matrix. 

A useful by-product of this process will be an AR parameter estimation procedure, 

which has been shown to give good spectral estimation performance [43]. 

When the ARMA model order is not known a priori then the usual practice is to 

select an order, De, which is much larger than the anticipated order of the model. 

Although n is usually not known a priori, it is generally possible to make an educated 

guess about the value of n such that l1e > n. 

It has been shown that for a ARMA (Ile, l1e) model the tX(l1e+l) extended order 

autocorrelation matrix, where t is an integer value that is greater than l1e + 1, although 

larger values oft tend to lead to better model representations. 
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The extended order autocorrelation matrix may be expressed as 

rx (1) 

rx (2) (3.10-6) 

rx (t) 

If the autocorrelation lag entries, rx(k), correspond to the ARMA (n,n) model for 

which Ile ~ n, then it follows that the rank of the extended order matrix, Re, will be n. 

In practice these autocorrelation lag entries are replaced by autocorrelation lag 

estimates, rx (k), characterised by the time series. These are given by 

(3.10-7) 

where - denotes the operation of complex conjugate. These sampled estimates will 

inevitably be in error compared to the actual autocorrelation lag values, it follows 

that the matrix Rc formed using the sampled estimates will be of full rank (i.e. 

min(t,Ile+l» even when the time series corresponds to an ARMA (n,n) process. 

Nonetheless, even though Rc will be offull rank it will still tend to have an effective 

rank of n. Effective rank will be quantified by introducing the concept of singular 

value decomposition. . 

3.10.2.2. Singular Value Decomposition (SVD). 

In many applications the primary use of SVD is to solve sets of linear equations 

[43][48]. The matrix associated with the system of equation also conveys dynamical 

property information. With this in mind for determining the ARMA model order, it is 

advantageous to examine the salient properties of this characterising matrix. The 

following theorem for Singular Value Deconvolution fits this purpose particularly 

well. 
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Let A be a mxp matrix of generally complex valued elements. Then there exists mxp 

and pxp matrices U and V, respectively such that 

A=ULV' (3.10-8) 

where L is a pxp matrix whose elements are zeros except along the leading diagonal. 

These non-negative elements are ordered such that 

(3.10-9) 

where h = min(m,p) 

The diagonal elements of O'kk are commonly referred to as the singular values of the 

matrix A. These singular values convey valuable information about the rank 

characterisation of A. This becomes apparent upon examining the problem of 

determining the mxp matrix of rank k, which is the best approximation of A in the 

Frobenious norm sense. The Frobenious norm of the mxp matrix difference A - B is 

defmed to be 

[ ]

112 

IIA-B!! = ~flaj' -brl2 

. l' 1 1I 1I 1= .F 
(3.10-10) 

Now the mxp matrix, B, of rank k that renders the Frobenious norm a minimum is 

sought. The solution to this approximation problem is outlined in the following 

theorem The unique mxp matrix of rank k, where rank k S rank A which best 

approximates A in the Frobenious norm sense is given by 

(3.10-11) 
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where U and V are as specified previously and Lk is obtained from L by setting all 

the singular values to zero that are less than the kth singular value. The quality of this 

optimum approximation is given by 

(3.10-12) 

The degree to which A(k) approximates A is dependent on the sum of the (h - k) 

smallest singular values squared. In order to provide a convenient measure for this 

behaviour that is independent of the size of ~ consider the normalised ratio 

v{k} = IIA (k)11 

"All 

[ 
2 2 2 ]112 = 0' 11 + 0' 22 + ..... + 0' Ide 

2 2 2' 0'11 +0'22 + ..... +Obh 

(3.10-13) 

l~k~h. 

Clearly this ratio approaches 1 as k approaches h. For matrices of low effective rank 

v{k) is close to one for values of k significantly lower than h. On the other hand 

matrices of high effective rank v{k) approaches one as k approaches h. To determine 

the order ofan ARMA model, the tXI1e+l autocorrelation matrix is used. That is, 

(3.1O-14) 

where U and V are txt and (11e+l)x{l1e+l) unitary matrices respectively, and L is a tx 

(11e+1) matrix as outlined in equation (3.10-9). The required AR order n is obtained 

be examining the normalised ration v(k). The value of n is chosen to be the smallest 

value of k for which v{k) is deemed adequately close to one. This criteria is 

subjective and will depend on the particular application. The result of this will be a 

rank n optimum approximation of the tX(I1e+l) matrix, Re that is, 

R(n) = U'" V' 
e "'"'n (3.10-15) 
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where Ln is L with all but its largest n singular value set to zero. Using matrix 

manipulation it can be shown that this rank n approximation may be represented as: 

" n 
R(n) -L ' - (}'··u·v· e lJ J J (3.10-16) 

j=i 

where Uk and Vk are the kth column vectors of the txt and (11e+l)x(11e+l) unitary 

matrices U and V respectively. A procedure for estimating the AR parameters from 

this rank n autocorrelation matrix will now be presented [43]. For this approach, the 

rank n approximation is interpreted as providing an improved estimate of the 

underlying autocorrelation matrix. It is convenient to decompose the rank n 

approximation matrix, as follows; 

(3.10-17) 

where fln) is the leftmost tx 1 column vector of R~n) and R~n) is a tX(11e+ 1 ) matrix 

composed of the 11e rightmost tx 1 column vectors of R~n) . The task now is to fmd a 

(11e+l)xl AR parameter vector a, with first component one, that satisfies the 

relationship 

R(n)a = e 
e (3.1 0-18) 

where a = [1,a1,a2 , ..... ,an ] and e denotes a txl zero vector. 

Since the rank of R~n) is less than full, there will be an infmite number of possible 

solutions. The minimum norm solution will be chosen, as specified by 

(3.10-19) 
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In which the superscript # denotes the operation of pseudo matrix inversion. It is 

readily shown that the minimum norm solution can be simplified to 

(3.10-20) 

where Vk is the kth column vector of the unitary matrix V. 

An alternative method is to use the best rank n approximation matrix (3.10-15) to 

estimate the AR parameters [43]. This matrix contains within its column structure the 

characteristics required to generate an estimate the AR parameters of the ARMA 

model. In particular the submatrices of the matrix R~n) consisting of the matrix 

columns from column k through k+n inclusive will yield n rank approximations to 

the tx(n+ 1) autocorelation matrices ~ for 1 ~ k ~ ne - n + 1 as specified in (3.10-21) 

~ = [submatrix ofR: composed of its kth through n + kth column vectors 

inclusively] for 1 ~ k ~ ne - n + 1 . (3.10-21) 

The rank n approximations will be denoted by, R~D). Due to the SVD operation and 

errors inherent in the generation of Re, there will generally not be a unique AR 

parameter vector (with the first term being unity) that will satisfy all of the Ilc:+n+ 1 

estimates of (3.10-18). Nonetheless, it is still desirable to obtain an estimate for the 

AR parameters for which these relations·hips are almost satisfied. A function that 

measures the degree to which this is satisfied is given by, 

f(a) = a. S(D)a (3.10-22) 
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where 

0-0+\ 

s(O) = ~ R~orR~o) (3. 1 0-22a) 
k=\ 

The (n+l)x(n+l) matrix S(p) is non-negative defme Hermitian and may be 

conveniently computed using 

D D -0+\ 

S(o) = '" ~(J~.v~v~· 
£....JLJJJJ 
j=l k=l 

(3.10-23) 

in which v~ denotes the (n+l)xl vector as specified by 

vf = [vj{k1 vj{k + 11·····,vj{k +n)J 1 ~ k ~ ne -n+ 1 

l~j~p 
(3.10-24) 

This vector represents a windowed segment of the nth column vector (Vj) of the 

unitary matrix V. Due to the nature of v~ and v~+\ it is possible to devise an iterative 

procedure for updating the (n+l)x(n+l) matrices v~vr as k evolves. This involves 

(n+ 1) computation for each chosen value ofk. 

Once the generation of S(n) is complete the next step is to select the AR parameter 

vector, a, with its first term equal to one so as to minimise (3.10-22). This 

constrained minimisation will result in the best least squares approximation of the 

theoretical relationship (3.10-18). Using standard procedures, the required optimum 

AR parameter vector is determined by solving the following system of linear 

algebraic equations: 

(3.10-25) 
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where a is a normalising factor to assure the fITst term ofthe AR parameter vector, 8, 

. 
IS one. 

3.10.3. MA Parameter Estimation. 

The MA parameter estimation algorithm that has been used to obtain the MA 

parameters once the AR parameters have been determined, is a recursive parameter 

estimation algorithm. The algorithm is outlined in Section 3.10.3.1. 

3.10.3.1. Recursive MA parameter estimation. 

In order to complete the model identification the MA parameters need to be 

estimated. This is done using a technique to generate MA model parameters and 

using Residual time series on the system output to take account of the fact that an 

ARMA model is being estimated [45]. These Residual time series are computed as 

follows: 

n 
y(k) = y(k) + LaU)y(k - j) (3.10-32) 

j=l 

A two step algorithm can be then be used to generate the MA parameters of the 

ARMAmodel. 

Step 1: From the output or residual time series y(k), k = 1,2, .... ,N, form the 

estimates 

1 N-m 
r(m)=- Ly(k)y(n+m} m=O,l, ..... ,n (3.10-33) 

N k=O 

and 

1 min(N,N-m) 
c(m)=- L Y(k)y2(n+m} m=-n, ... ,O, ... ,n. (3.10-34) 

N k=max(O,-m) 
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Step 2: Using the estimates r(m} and c(m), iteratively solve the system of equations 

given below for m = -n, ..... ,O, ..... ,n to obtain {b(k)}~=l' cr'- and y. This will now be 

outlined. 

The approach used to solve this system of equations is shown in the flowchart shown 

in figure 3.13 [45]. All of the equations needed for the algorithm are stated below in 

equations (3.10-35) to (3.10-40). 

Y(i), i= 1,2, ..... N. 
fixq 

1 N-m 
r(m) .. - n(k)y(n+m) m -O.l •... ~ n +- Fqn (3.9-33) 

N k-O 

1 .. m(N.N-a) 2 
c(m)=- ~ Y(k)y (n+m~ m .-n •. ~O .... n +- Fqn(3.9-34) 

N k-lDax(O.-.. ) 

b(O )=1 b(q) .. c(q)/ c(- q) 

·2 r(q~()q) • ('( ):12 '() a.. Y-tC-qJ /cq 
cq 

b(q -O+- Eqn.(J.9-J8) 

b(l}+- Eqn.(J.9-J9) 

Yes 

No 

~ ~) .... J:qn.(3.9-38) 
1+---.....1 

Figure 3.13. Flow chart for recursive MA parameter estimation algorithm. 
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Let 

I-l 

sO -1)= l:b(k)b(n -I + k) (3.10-35) 
Ie=l 

H 

sI2(1-1)= l:b(k)b2 (n-l+k) (3.10-36) 
k=l 

and 

H 

s2I(1-1)= l:b2 (k)b(n-l+k) (3.10-37) 
k=l 

Then 

b(n-I)=N(n-I)/D(n-l) (3.10-38a) 

where 

N(n -I) = r(n Xr(n ~(- n + 1)-cr2c(n -I)] 
- yr(n -IXr(n -1)- r{n )]b(n) (3.10-38b) 

_yr(nIr{n)s21(I-l)-cr2S12(1-1)+ J 
t cr2s2 (I_l)_ r{n)s(1 -1)- 2r{n -1)s{I -1) 

and 

D(n -I) = 2yr(nXcr2s(I-1)-r{n -I)] (3.10-38c) 

The coefficient b(l) is computed using 

b(l) = r{n-I)-cr
2
[b(n-I)+s{l-l)] (3.10-39) 
r{n) 
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When n is even the middle coefficient is computed using 

b(n 12) = [r(n 12)- cr' ~ b(k),(n 12 + k)] 1 cr' (3.10-40) 

3.11. Minimum Variance Deconvolution Filter. 

The purpose of the proceeding system parameter estimation algorithms is to provide 

the information to implement the MVD filter on the noisy system output. 

The MVD filter is, in general a time varying digital filter [34][42]. In order to 

develop some insight into the operation of the filter it will be assumed to be a 

constant coefficient filter. This assumption leads to a different derivation of the filter 

from the case where the coefficients are not constant. Consider the situation shown in 

figure 3.14 below, where the data, z(k), is processed by a two sided digital filter. 

During the design of this filter its output, y(k), is compared to the desired output, 

d(k), and the filter's coefficients chosen to minimise the mean squared error between 

d(k) and y(k). In the design of a deconvolution filter, d(k) is chosen to be the input 

u(k). 

z(k) Two-Sided 
Filter 
t{k) 

y(k) _ 

Figure 3.14. Two Sided MVD digital filter. 

Desired Signal, 
d(k) 

Error 
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The filter output can be expressed as 

00 

y(k) = f(k)*z(k)= Lf(i)z(k -i)= ... +f(-2)z(k +2)+ f(-l)z(k + 1) 
i=-«> (3.11-1) 

+ f(O)z(k)+ f(l)z(k -1)+f(2)z(k - 2)+ ... 

The filter considered here is a doubly infmite two sided filter, this means the filter is 

described by the coefficients £to), £t±1), £t±2), ..... 

An equation for these filter coefficients will now be derived. The filters coefficients 

are chosen to minimise the mean squared error, I(f), between the filters output, y(k), 

and the desired signal u(k), i.e. f = col[f(O), £t±l), £t±2), ..... ] is chosen to minimise 

I(t) given in equation (3.11-2). 

(3.11-2) 

Taking the partial derivative of 1(1) with respect to the jth filter coefficient, FG), 

interchanging the order of expectation and summation, and setting the result equal to 

zero, it can be shown that 

00 

Lf(m)p2Z(j-m)~ZU (m1 j = O,±I,12, ..... (3.11-3) 
m=-«> 

This equation is now solved to obtain an expression for the filters coefficients. In 

order to achieve this the discrete-time Fourier transform must be taken, i.e. 

(3.11-4) 
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The next step is to determine ~2Z(ro) and ~zu(ro). Initially, given by ~zu(m) and 

~2Z (j). In order to evaluate ~zu (m) the convolutional model given in equation (3.6-

I) needs to be utilised, i.e. 

k 

~zu (m)= E{z(k -m)u(k)} = tE{u(i)u(k)}w(k -m-i)+E{n(k -m)u(k)} (3.11-5) 

=vuw(-m) 

because 

E{u(i)u(k)} = vu~(i - k) (3.11-6) 

and 

E{n(k -m)u(k)}= E{n(k -m)u(k)}= E{n(k -m)}E{u(k)} (3.11-7) 

To evaluate ~2Z (j) the starting point is again the convolutional model, but in order to 

simplify the limits of summation the convolutional model is embedded. 

k 
z(k) = LU(i)w(k -i)+ n(k), k = 1,2, ..... ,N (3.11-8) 

i=l 

is transformed into the two sided model 

co 

z(k)= LU(i)w(k-i)+n(kl k=1,2, ..... ,N (3.11-9) 
i=-co 

For casual systems and inputs, the second reduces to the fIrst form. Using the fact 

that u(k) and n(k) are stationary, white, uncorrelated, and of zero mean. Hence, 
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~~ = E{z(k )z(k-j)} = E{t.~ u(i )u(I}w(k - i }w(k -I + j)} 
+E{n{k}n{k- j)} 

i,I=-co 

i=-oo 
co 

= Vu Lw{n)w(n+ j)+vn8(j) 
n=-oo 

which is the desired result. 

From (3.11-5), it can be shown that 

(3.11-10) 

(3.11-11) 

and from (3.11-10) it can be shown that 

~~ (ro) = F{+~ (m)} = F {[ v. ,~w(n}w(n + j)+ v,oW]} 
(3.11-12) 

= Vu w{ro)w(-ro)+vn 

but, W(-ro) is the complex conjugate ofW(ro), so 

(3.11-13) 

substitute (3.11-12) and (3.11-13) into (3.11-4) , to obtain the result below, 

(3.11-14) 
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3.11.1. Resolution Function. 

The resolution function, p(k), for this deconvolution filter is obtained by convolving 

the filter's input, z(k), with ttk), i.e. 

where 

y(k} = f(k} * z(k} = [f(k} * w(k}]* u(k}+ f(k} * n(k} 

= p(k} * u(k} + f(k} * n(k} 

p(k}= f(k}*w(k) (3.11-16) 

(3.11-15) 

and using the fact that R(ro} = F(ro}W(ro} and equation (3.11-14). 

(3.11-17) 

This resolution function is a zero phase function. This means that the noise free 

portion of the deconvolution filter's output, p(k) * u(k} , is a zero wave shaped version 

ofu(k). Therefore, if the input is a stationary white sequence and the deconvolution 

filter is two sided doubly infmite, then MVD zero waveshapes as well as 

deconvolves. 

SNR is directly proportional to the ration vulvn. From equation (3.11-17) it is evident 

that as vulvn approaches 00, R(ro) approaches one, so that the resolution function, 

p(k), approaches the unit spike function. Thus, for signals with a high SNR the noise 

free portion of the deconvolution filter's output approaches u(k). This represents 

perfect resolution. Also when IW(k tv u I v n » 1, R( ro) again approaches unity, so 

that once again perfect resolution is obtained. Broadband wavelets often satisfy this 

condition. The inequality IW(k tv u Iv n »1 clearly demonstrates the 

interrelationship between SNR and bandwidth. 
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3.12. Determination of Hessian matrices and gradients for the Mardquart­

Levenberg algorithm. 

3.12.1. Gradients ofL with respect to a and h. 

A nine step algorithm is used to compute the gradients of L with respect to a and b 

[34]. Each of the steps in the algorithms will occur for each iteration, i. The 

algorithm is as follows: 

I. Initialise ajand hj. When i = 0 the initial values ofa and b must be provided. For 

all other values of i, aj and bj will be available from the most recent iteration of 

the Mardquardt-Levenberg algorithm. 

2. Compute the matrix W=W(aj,bj). This is achieved by solving the finite difference 

equation 

w{k +n)+a1w{k +n-I)+ ..... +an_1 w{k + 1)+ an w{k) 

= b1o(k +n -1)+ b2o(k +n- 2)+ ..... + bn_1o(k + 1) (3.12-1) 

+ bno{k} 

for w(O),w(I), ..... ,w(N-I), where w(-n) = w(-n+l) = ..... = w(-I) = O. This 

equation can also be written as 

A{z)w{k}= B{z)o{k} (3.12-2) 

where 

(3.12-3) 

and 

(3.12-4) 
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it follows from Section 3.4 that 

{3.12-5) 

and from the fact that a transfer function, such as W(z), is the z-transform of a 

systems impulse response. 

3. Compute aw(k)/ Gal for k = 1,2, ...... ,N. This is done by solving the linear fmite 

difference equation 

(3.12-6) 

Equation (3.12-6) was obtained by taking the partial derivative of (3.12-1) with 

respect to 81. Observing that the right hand side of equation (3.12-6) is generated 

from the results obtained in step 2. Letting 

(3.12-7) 

Equation (3.12-2) can be expressed as 

(3.12-8) 

This equation clearly shows the linear nature of aw(k)/ Gal' With the term S.1 (k) 

denoting the partial derivative, aw(k)/ Gal' this partial derivative is often referred 

to as a sensitivity function. Since w(-n) = w(-n+1) = ..... = w(-I) = 0, Sa1(-n) = 

sal(-n+l) = ..... = sal(-I) = O. 

4. Compute aw(k)/Gaj for j = 2,3, ..... ,n and k = 1,2, ..... ,N. This is achieved using 

equation (3.12-9) 
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for all j and k (3.12-9) 

This equation is obtained by taking the partial derivatives of equation (3.12-1) 

with respect to aj, giving 

A{z1aw{k)Joa j J= -w{k +n - j) (3.12-10) 

then set k = k -j + 1 in equation (3.12-6 ), i.e. 

(3.12-11) 

Comparing equations (3.12-10) and (3.12-11) the result shown in equation (3.12-

9) is self evident. 

5. Compute aw{k)/ ObI for k = 1,2, ..... ,N. This is done by solving the linear 

difference equation 

A(zXaw(k)/ ObI ]= -o(k+n-l) (3.12-12) 

which was obtained by taking the partial derivative of equation (3.12-1) with 

respect to hI. 

6. Compute aw{k)/ Obj for j = 2,3, ..... ,n and k = 1,2, ..... ,N. This is done using 

(3.12-13) 

7. Construct the 2n NxN matrices oW/Oajand oW/objfor j =1,2,. .... ,N. Recall 

that the matrix W, is as follows 
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W= 

w{O) 
w{l) 

o 
w{O) 

o 
o 

w{N -1) w{N -2) w{O) 

then taking the partial derivative with respect to aj, i.e. 

aW/Oaj = 

aw{O)/Oaj 

aw{l)/Oaj 

aw{N -1)/aaj aw{N -2)/aaj 

A similar equation exists for aw / ab j . 

o 
o 

(3.12-14) 

8. Compute aw'w / aajand aw'w / Obj for j = 1,2, ..... ,N. This is accomplished 

using the formulas 

aw'w /Oaj = law'/OajJw + w'law'/OajJ (3.12-15) 

and 

aw'w / abj = law'/ ObjJw + w'law'/ ObjJ (3.12-16) 

9. Compute aL{a,b,s,q,r,u B IZ)/Oajand aL{a,b,s,q,r,u B Iz)/abj . This is done 

using the equations 

aL{a,b,s,q,r,uB I z)/ Oaj = -z'law / Oajp -u'law / Oaj¥ 

+ u'[aw'w / Oaj] 
(3.12-17) 
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and 

aL(a,b,s,q,r,uB I z)1 abj = -z'law I abjJ. -u'law IOb j ¥ 
[ ] 

(3.12-18) 
+u' aW'Wlabj 

for j = 1,2, ..... ,n. These equations were obtained by taking the partial derivatives 

of equation (3.7-11) with respect to aj and bj, respectively and letting 

(3.12-19) 

In equations (3.12-17) and (3.12-18) u is required, the only u available is the 

most recently computed MVD estimates. uMV (N I q) is updated when the random 

parameters are updated in the block component search algorithm, and also when 

L is calculated. 

3.12.2. Derivatives of L with respect to the variances. 

When both the wavelet and the statistical parameters are unknown, there is an 

inherent scale ambiguity that cannot be resolved [34]. Hence it is not possible to 

estimate the variance of the amplitude sequence, vr• For this reason no derivation of 

equations for Vr is undertaken. The derivatives with respect to the variance VB and Vn 

are computed using a four-step algorithm. 

1. Initialise VB,i and Vn,i. When i = 0 the initial values VB,O and vn,o must be provided, 

usually small values are chosen. For all other values of i VB,I and Vn,i will be 

available from the most recent iteration ofthe Mardquardt-Levenberg algorithm. 

2. Compute the matrix W=W(aj,bi). 

3. Compute uMV(N I q). This is done using the recursive MVD algorithm outlined in 

Section 3.9.1. 
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4. Compute oL(a,b,s,q,r,uB I z)/ OvB and oL(a,b,s,q,r,uB I z)/ Ov n. This IS 

accomplished using the following formulas 

(3.12-20) 

and 

oL(a,b,s,q,r,uB I z)/ Ov n = -(N /2v J+ (z - Wu)(z - Wu)/2v~ (3.12-21) 

These equations being obtained by taking the partial derivative of equation (3.7-

11) with respect to VB and vn, respectively, and letting u = Qr+uB as before. In 

order to calculate oL(a,b,s,q,r,uB I z)/ Ov n it is necessary to replace u by uMV(N 

I q). To compute oL(a,b,s,q,r,uB I z)/ OvB UB must be replaced by UBMV(N I q). 

This is given by 

u~ (N I q)= VB (VrQ +vBlt1UMV (N I q) (3.12-22) 

Therefore, it is straight forward to compute uaMV(N I q) from uMV(N I q). 

3.12.3. Pseudo-Hessian Matrices. 

In this section the procedures for computing the second derivatives of L with respect 

to the wavelet parameters a and b and the two variance Vr and VB are described [34]. 

The pseudo-Hessian matrix represents the approximate second derivative of the 

variable. The pseudo-Hessian matrix is used in the Mardquardt-Levenberg algorithm 

in place of the Hessian matrices to save on computation time. 
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3.12.3.1. Pseudo-Hessian of L with respect to a and h. 

Starting with equations (3.12-17) and (3.12-18) it is straightforward to show that 

and 

a2 LI OajOaj = -z'[a2w I OajOaj~ -u'[a2w I OajOaj~ 
+u'[a2w'w lOajOaj~ 

where from equations (3.11-15) and (3.11-16), 

(3.12-23) 

aw'w laaja j = [a 2W'laa j Oa j ]w + [awtlOaJawl aa j ] 

+ w'[a 2w' I OajOaj]+ [aw' I Oaj}aw I OaJ (3.12-25) 

As before if the exact Hessian matrices are to be computed then 02W I Gaia j and 

02 W I obj b j need to be computed. This represents a large computational burden, so 

these second derivatives are removed in the proceeding equations. The results are (ij 

= 1,2, ..... ,n): 

oW'w lOajaj = [oW' I OaJaw I OajJ+ law' I oajIoW I aaJ 

aw'w I abib j = [oW'lobJaw IObjJ+low'lobjIaw labi] 

(3.12-29) 

(3.12-27) 

(3.12-28) 
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(3.12-30) 

where U must be replaced by uMV (N I q). 

3.12.3.2. Second Derivatives of L with respect to variances. 

The second derivatives of L with respect to the variances VB and Vo are obtained by 

differentiating equations (3.12-20) and (3.12-21) with respect to VB and vn• It follows 

that 

(3.12-31) 

and 

02 LIOYn = N 1(2v~)-{z- WuJ{z- Wu)/v! (3.12-32) 

where MVD estimates of u and UB must be used. 

3.13. Estimation of the Noise Variance. 

For the majority of time series to be examined here the noise variance of the series is 

not known. In order to try and improve the performance of the Maximum-Likelihood 

Deconvolution algorithm it would be advantageous to have an initial estimate of the 

noise variance that bears a close proximity to the actual noise variance. A method 
\ 

based on higher order statistics has been used to obtain an estimate for the noise 
c/ 

variance [50]. This approach will hopefully lead to value of the noise variance that is 

a close approximation to the unknown noise variance, thus leading to improved 

performance of the maximum-likelihood algorithm and MVD filter for a set number 

of iterations. For the estimation of the noise variance the noise is assumed to be 

white. 
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The noise variance can be obtained by modelling the linear time invariant discrete 

time process with an Auto-Regressive (AR) model. The steps taken to identify the 

model parameters from the discrete time series will now be outlined. 

In order to uniquely identify the AR model of order n, two sets of parameters are 

required: the AR coefficients at, a2, .... ,an and the variance Vr of the white noise v(k) 

used as excitation. 

The first step in the determination of the noise variance, vn, is to determine the AR 

model parameters. These AR parameters can be determined from the Yule-Walker 

equations of the autocorrelation function as specified in equation (3.13-1) below 

r(O} 
r*{l} 

r(l} 

r(O} 

r* (n -I) r* (n -2) 

r{n-I} WI 

r{n-l} w 2 = 

r* (I) 
r*{2} 

r*{n} 

(3.13-1) 

where Wk = -ak. In the practice the exact autocorrelation lags are unavailable, so 

statistical estimates determined from the Higher Order Statistics of the time-series 

have to be utilised. These estimates will introduce a certain degree of error into the 

determination of the AR parameters. 

Once the AR parameters have been determined, the noise variance can be computed. 

Starting with the AR model difference equation below: 

u(k}+a;u(k-l}+ ... +a:u(k -n}= n(k} (3.13-2) 

where u(k) is the time series time series to be modelled, n(k) is a white noise process 

and • denotes the complex conjugate. 
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Assuming that the condition for asymptotic stationarity is satisfied, a recursive 

relationship for the autocorrelation of the AR process can be derived: 

1 = 0,1, .... ,n. (3.13-3) 

By making a number of assumptions this can relationship can be simplified to 

n 

La;r(I-j)=O 1>0 (3.13-4) 
j=O 

For I = 0 the expectation on the right hand side of equation (3.13-3) assumes the 

special form 

E[v{k}u * (k)] = E[v{k}v* (k)] 
(3.13-5) 

Accordingly, setting 1 = 0 in equation (3.13-3) and taking the complex conjugate of 

both sides, the following relationship for the variance of the white noise can be 

derived. 

(3.13-6) 

where ao = 1. 

Hence the white noise variance can be determined. 

3.14. Implementation and Computational Requirements of the MVD filter. 

Now that the entire theory for Maximum-Likelihood Deconvolution and MVD 

filtering has been presented the computational requirements for all of the steps in the 

Block Component Search algorithm will be examined in more detail [34]. It will be 
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demonstrated that the recursive algorithms presented are necessary to obtain 

acceptably low processing times for the algorithm. 

The computational requirements of the individual components of the Block 

Component Search algorithm shown in Figure 3.7 are presented in Table 1. 

COMPONENT. Flops 

Initialise Parameters 

MVD (needed for threshold detection). 3N3 

Thresho ld detector. --
Adaptive Detection. 

SMLR Detection. 3N3 

A.-Update. --
Update Wavelet Parameters. 

Gradients. N3 

Pseudo-Hessians. --
Marquardt-Levenberg. --
Update Standard Deviations. 

Gradients. N3 

Pseudo-Hessians. --
Marquardt-Levenberg. --
Update Random Parameters. NJ 

Stop? NJ 

Table 1. Computational requirements of the BCM algorithm shown in Figure 3. 7 

using batch programming techniques. Only O(lf) calculations are listed A blank 

indicates O(N2) or O(N) calculations. 

Assuming a entries to the Adaptive detection block, P iterations in the update 

statistical parameters block, y iterations in the update Wavelet parameters block, and 
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one calculation of L per iteration in each block, the total number of Flops for batch 

processing is as follows: 

Flopsb(L) = {3N3 +N3)+a{3N3 +N3)+~N3 +N3 )+y{N3 +N 3 )+{N3 +N 3 )(3.14_1) 
= 4N 3a + 2N3p + 4N3 y + 6N3 

As an illustrative example consider N=1000, n = 6 (i.e. a sixth order ARMA wavelet) 

and a = P = r = 1, then Flopsb(L) = 14x 109
• If one Flop requires a micro second 

then to evaluate Flopsb(L) requires almost 4 hours of computation time. In practice a 

number of iterations of each block in the algorithm is required, therefore the already 

unacceptably long computational time will be become massive. Recursive processing 

algorithms were presented in Section 3.9 as an alternative to batch processing, the 

computational requirements of these methods are shown in Table 2. 
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COMPONENT. Flops 

Initialise Parameters 

MVD (needed for threshold detection). 4n3N 

Thresho ld detector. --
Adaptive Detection. 

SMLR Detection. 4n3N 

A.-Update. --
Update Wavelet Parameters. 

Gradients. 2n3N 

Pseudo-Hessians. --
Marquardt-Levenberg. --
Update Standard Deviations. 

Gradients. 2n3N 

Pseudo-Hessians. --
Marquardt-Levenberg. --
Update Random Parameters. 2nJN 

Stop? --

Table 2. Computational requirements of the ReM algorithm shown in Figure 3. 7 

using recursive programming techniques. Only O(n3 N) calculations are listed A 

blank indicates O(n2 N) or O(nNJ calculations. 

Assuming the same number of iterations per block as in equation (3.14-1), the 

number of Flops required for recursive processing is, 

Utilising the same example as before (N= 1000, n=6 and a = P = y = 1) then the 

processing time taken for FlopSr(L) is approximately 3 seconds. Therefore, the use of 

recursive programming makes it practical to implement Maximum-Likelihood 

Deconvo lution. 
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For this application the algorithms outlined have been implemented in C within a 

UNIX environment with all processing will be done on a SUN Ultra 10 workstation. 

All ofthe numerical algorithms that are required e.g. SVD, FFT, etc. have been taken 

from Numerical Recipes in C: The art of scientific computing [48]. 

Now that the theory of MLD / MVD filtering has been presented and the 

computation requirements of the methods investigated the performance of the 

techniques will be investigated by application to experimentally obtained A-scan 

data. 

3.15. Performance of MLD / MVD filter for experimentally obtained NDT A-

scans. 

The application ofthe MVD filter to improve the quality of the A-scan data will now 

be examined. The performance of the filter will be illustrated examining the effect 

that application of the MVD filter has on an individual A-scan. The effect of the 

deconvolution techniques described here on tomographic image reconstruction will 

be examined in Chapter 4. 

Before the performance of this filter can be considered the initial conditions for the 

estimation of the ARMA wavelet and statistical parameters have to be examined. The 

statistical parameter Vr cannot be estimated by maximising the likelihood function, L, 

where both the wavelet and amplitude variance, vr, are unknown. The reasons for this 

are related to the nature of L, and depends not only on the structure of the 

convolutional model but also the apriori statistics. Maximising L turns out to be an ill 

posed problem with respect to the parameter vr• For different values of Vr different 

solutions for the other parameters will be obtained [34]. Recalling the convolution 

model from Equation (3.6-2), i.e. 

z(k} = [r(k~(k}+ u B (k)] + n(k~ k = 1,2, ...... ,N (3.15-1) 
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This equation can be rewritten as 

where 

and 

z(k) = [r(k)/v!/2 J+ uB(k)/v!I2}* V!/2 W(k)+ n(k) 

= [r'(k):J(k)+ uB '(k)] * w'(k)+ n(k1 k = 1,2, ..... ,N 

r'(k) = r(k)/v!/2 

uB '(k)= uB(k)/v!/2 

(3.15-3) 

(3.15-4) 

(3.15-5) 

(3.15-2) 

From these equations it can be seen that, when w(k), r(k) and uB(k) are all unknown, 

then the model we are working with is a scaled version ofthe model in equation (3.5-

2). The scaled wavelet w'(k), the scaled amplitude sequence r'(k), and the scaled 

backscatter sequence uB ' (k) are the model parameters that can be determined. 

Observing the fact that the variance of the scaled amplitude sequence equals one, i.e. 

vr '=!. Hence when all of these quantities are unknown then the variance of the 

amplitude sequence may as well be fIxed, as it cannot be estimated. This is the case 

here, so the amplitude sequence variance, vr, will be fIxed by the user. 

Also the initial values of the variances Vo and VB will not be known. Usually these 

variances are assumed initially to have small values, or in the case of Vn Higher 

Order Statistics (HOS) can be used to obtain an estimate as described in Section 

3.13. 

3.15.1 MVD Filter Performance. 

Initially the fIlter's performance will be evaluated by applying the MVD fIlter to a 

single A-scan extracted from three complete image reconstruction sets. In order to 
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demonstrate the effectiveness of MVD filtering for tomographic images 

reconstructed using the algorithms described in Chapter 2, A-scans obtained under 

different experimental configurations need to be examined. To demonstrate the 

effectiveness of the MVD filter the following transmitter and receiver configurations 

were chosen, 

1. Pulse-Echo. 

2. Pitch-Catch configuration with a forty degree separation between transmitter and 

receiver. 

3. Pitch-Catch configuration with a sixty degree separation between transmitter and 

receiver. 

The A-scans used were obtained from a 1.2mm inclusion through a 75mm 

aluminium specimen as shown in Figure 4.3 in Chapter 4. The same experimental 

set-up as described in Chapter 4 has been used to obtain the experimental A-scan 

data. The filtering operation will be described in detail for the first A-scan and for the 

remaining A-scans the filter parameters will be presented, followed by the result of 

the filtering operation and a brief discussion of the improvements in the A-scan. 

The fIrst A-scan that will be considered was obtained using a Pulse-Echo 

experimental configuration. The A-scan prior to processing is shown in Figure 3.15. 
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As described previously the ideal resolution function for the MVD filter is a delta 

function. The resolution function for the deconvolution performed on the A-scan in 

Figure 3.15 can be seen in Figure 3.17. 
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Figure 3.17. The resolution function for the deconvolution performed OIL the A-scan 

shown in Figure 3.15. 

It is clear upon examination of the resolution function that the resolution of the MVD 

filter operation approaches the ideal. 

The second A-scan to be examined was obtained with a forty degree separation 

between the transmitter and receiver, the unfiltered A-scan is shown in Figure 3. 18. 

126 



0.4 ,---------,---------,---

0 .2 

- 0 .2 

- 0.4 L...-______ ~__=_-------::-'-=__----' 

5 .6 13. 6 2 1 .6 
time (~. s ) 

Figure 3.18. A-scan prior to filtering, the reflection from the defect and 111 7 ba ""wall 

can clearly be seen. 

The same ARMA estimation technique and parameters as the first A-scan w r us d 

and yielded an ARMA model order of 4. The noise variance, vn, wa. I t rmin d 

using higher order statistics as before. The amplitude variance, vr, wa nIb 

0.0 I. The initial value of A was chosen to be 0.05, and there was assum d t b n 

backscatter in this case (i.e.vB = 0). The BCM algorithm were run f [' th : am 

number of iterations as the first A-scan (i.e. 5). The filtered A-scan an b s n in 

Figure 3. 19. 
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Figure 3.19 A-scan after application of the MVD filter, The parametersfor III ?,{iller 

being obtained using MLD as described. 

Upon examination of the filtered A-scan it is evident that the level of noi , pr s nt 

has been reduced in a number of regions of the A-scan, notably at the b ginning f 

the A-scan and immediately after the pulse reflected from the 1.2 mm h 1 

However, of more significance for this A-scan is that the pul se refl e t d fr m th 

defect has been decreased by approximately 15% in length resulting in n hi gh r tim 

resolution, in addition the signal amplitude of the reflected pul e has b n in r as d 

with no increase in the noise amplitude. This figure was obtained by m asuring th 

pu lse width of the pulse reflected by the simulated defect at the 3dB pint b f rand 

after the filtering operation. The resolution function for the filt ring p rati n is 

presented in Figure 3.20. 
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Figure 3.20 The resolution function for the deconvolution performed on the A-s an. 

shown in Figure 3.18. 

It is clear upon examination of the resolution function in Figure 3.20 that th 

resolution of the MVD filter operation approaches the ideal. 

The third and final A-scan to be examined was obtained with a sixty d gr 

separation between the transmitter and receiver, this A-scan is shown in Figur .2 1. 
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Figure 3.21 A-scan prior to filtering, the reflection from the def e t an.d til , ba 'k\\ al! 

can clearly be seen. 
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The same ARMA estimation technique and parameters as the first and se nd 

scans was used here and produced an ARMA model order of 2. The nois vari an 

vn, was determined using higher order statistics as before. The amplitude varian e vr , 

was chosen to be 0.05. The initial value of A was chosen to be 0.05, and th r wa 

assumed to be no backscatter in this case (i.e. VB = 0). The BCM algorithms w J' rlln 

for the same number of iterations as the first A-scan. 

0 .4 

0 .2 

- 0.2 

- 0.4 L-------..,-!-::---------=-7-=""-----' 
8.8 16.8 2 4 .8 

time (I-' s ) 

Figure 3.22 A-scan afier application oj the MVD jilter, The paramelersjor Iii ? JIII ~" 

being obtained using MLD as outlined above. 

Upon examination of the filtered A-scan it is evident that the lev I f nois PI' S nl 

has been significantly reduced. There has been no noticeable impr v m nt in th 

time resolution of any of the reflected pulses, however, the filt ring p rali n has 

improved the A-scan significantly enough for the filtering to b w rthwhil . T h 

resolution function can be seen in Figure 3.23. 
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Figure 3.23 The resolution function for the deconvolution performed 011 the A-scan 

shown in Figure 3.21. 

It is clear upon examination of the resolution function that the resolution of th MV 

fi Iter operation is not as ideal as the other resolution function shown in igur s .2 

and 3.18. This can possibly be explained by the larger amount of noise pI' sent in til 

unfiltered A-scan, thus resulting in poorer estimation of the ARMA mod I and th I' 

MLD parameters. The increased noise levels will particularly affect th param t r. 

estimated using HOS. 

The performance of Maximum-Likelihood Deconvolution and Minimum Varian 

Deconvolution with respect to the reconstruction of tomographic imag . will b 

investigated in Chapter 4. 

3.16. Concluding Summary. 

In NDT imaging the resolution and SNR of the data to be recon tru t d is r rili al 

importance to the quality and resolution of the image reconstruct d. 

deconvolution filter has been implemented to try and improve the tim 

SNR of the raw A-scan data used for the reconstruction algorithm. 

Ihi s nd it 

luti nand 

In order to maintain maximum flexibility within the imaging y tern , it is d sirabl I 

obtain the wavelet and statistical parameters for the implementation r Ih Minimum 
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Variance Deconvolution (MVD) filter without knowledge of the measurement 

system or test specimen. This can be achieved for the MVD filter using Maximum­

Likelihood Deconvolution (MLD). The underlying theory for MLD has bcen 

presented along with a discussion of requirements for actual implementation of the 

algorithms presented. It has been necessary to develop recursive algorithms to obtain 

acceptable processing times, these algorithms are also presented here. MLD requires 

initial estimate of the wavelet and statistical parameters to be given. The mcthods 

utilised here based on Higher Order Statistics (HOS) have been outlined in detail. 

The underlying theory of the MVD filter is also discussed. The operation of utilising 

MLD to obtain estimates for the wavelet and statistical parameters required for MVD 

filtering has been discussed and then evaluated for experimentally obtained A-scan 

data. The performance of the MVD filter has been evaluated using the parameters 

obtained. It has been demonstrated that the filter results in an improvement in the 

time resolution and signal to noise ratio of the raw A-scan data. 

It has been shown that the algorithms presented here can be highly computationally 

intensive. To this end the processing times required to obtain the final wavelet nnd 

statistical parameter estimates have been investigated and an improvement in both 

the time resolution and signal to noise ratio of the raw A-scan data has been obtained 

for relatively low computational times. 
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Chapter 4: 

EXPERIMENTAL EVALUATION OF THE 
IMAGING SYSTEM. 
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4.1. Introduction. 

The objective of this chapter is to evaluate the performance of the four main 

components of the imaging system outlined in Chapters 2 and 3. The components of 

the system being the four tomographic image reconstruction algorithms, the low 

level fuzzy logic image fusion technique, the single bounce image enhancement 

method, and maximum likelihood deconvolution. 

These five system components will be evaluated experimentally. The approach that 

has been chosen will be to evaluate their performance for a number of simulated, 

representative defects embedded within cylindrical engineering type components. 

The representative defects that have been chosen are inclusions of varying 

dimensions, planar defects and to assess the resolving capacity of the imaging system 

on a line of small inclusions of differing separation. 

The reconstruction algorithms have been implemented to be independent of the test 

specimen geometry. However, to evaluate the performance of the system it is 

necessary to have access to the defect from all angles, therefore all of the defects will 

be contained within objects with a cylindrical geometry. All of the specimens used 

here were made of aluminium and had a diameter of 75 mm. In Section 4.1 the data 

acquisition set-up used to capture the raw ultrasonic data for image reconstruction 

will be outlined. Section 4.2 describes the Linear Cross-Correlation method that has 

been used to assess the quality of the images generated using the tomographic 

reconstruction algorithms and the image fusion utility. The first components of the 

imaging system that will be examined are the tomographic reconstruction algorithms 

and the image fusion utility, this is dealt with in Section 4.4 for a number of 

simulated defects. The next system component to be evaluated will be the single 

bounce image enhancement method, this is presented in Section 4.5. In Section 4.6 

the performance of the image reconstruction and the single bounce image 

enhancement method are evaluated where complete access to the test specimen is not 

avaiJable. The final component of the imaging system to be examined is the pre­

processing of the A-scan data using MVD filtering, the effect of this filtering 

operation on image reconstruction is examined in Section 4.7. 
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4.2. Data Acquisition. 

A data acquisition system was constructed to acquire tomographic time domain data 

(A-scan data) from cylindrical objects up to a diameter of 100 mm. The system 

consists of a pair of transducers mounted on two rings of 160 mm surrounding the 

object, to facilitate the collection of the A-scan data. This positioning system allows 

the transducers to be placed anywhere on the circumference of the object under test. 

The transducers are held in spring loaded holders to keep them lightly in contact with 

the object. Good coupling between the transducers and the object was obtained u ing 

a thin layer of coupling gel. This component of the imaging system is shown in 

Figure 4.1. 

Cylindrical 
test specimen. 

Spring loaded 
transducer holders. 

Figure 4.1. The A-scan data acquisition component of the imaging sy tem. The I sl 

specimen can be clearly seen in the centre of the scanning rig, the two Iransduc rs 

held within spring loaded holders and positioned on two rings surrounding Ihe 1 sl 

object can also be seen in the figure. 
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The transducers used for data acquisition were a pair of Panametrics broadband 

Videoscan transducers, with a centre frequency of 5 MHz. These were driven using a 

Panametrics 5052PR pulser/receiver. The received signals were digitised using a HP 

54502A 400 MHz digitising oscilloscope, which was controlled and waveform data 

obtained using a GPIB interface linked to a personal computer. The transducers were 

positioned manually in the desired location around the object with the resulting data 

being stored before being used by the components of the image reconstruction 

process. 
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Figure 4.2. Sample A-scan resulting from Pulse-Echo isonification of a 1. 2mm hoi 

through 75 mm diameter aluminium cylinder. 

A sample A-scan can be seen in Figure 4.2, this waveform was captured u ing the 

data acquisition set-up described. The system is in Pulse-echo configurati n where 

the simulated defect being insonified is a 1.2rnm side driHed hole thr ugh 75 mm 

diameter aluminium cylinder. 

136 



4.2.1. Point SourcelReceiver. 

For the image reconstruction methods described in Chapter 2, namely Reflection 

tomography, Time-of flight Diffraction tomography and Transmission tomography, 

the transmitter and receiver are assumed to be point sources for 2D imaging. This 

assumption will now be justified for the data acquisition set-up described in Section 

4.2. 

The transducers employed were cylindrical in shape but can be considered to be 

point sources due to the transducer/object contact conditions and the nature of the 

image reconstruction. That is, as the object is cylindrical and the transducer face flat, 

then the region of contact between the two can be considered a line. In addition, the 

reconstructed image is a 2-D slice of the object cross section, so the line 

approximates to a point source in the reconstruction plane. This assumption is 

consistent with the model for fan-beam isonification presented in Chapter 2. 

Moreover, the frequency of the ultrasound used was 5 MHz, which has a wavelength 

of approximately 1.28 mm in aluminium. This is small when compared to the object 

size of75 mm. 

4.2.2. Beam Divergence. 

It can be shown that the angle of divergence of the beam within the object under test 

is an important parameter of the imaging system. Obviously if the beam has a narrow 

beamwidth, then for each of the N chosen transmitter locations only a small area of 

the test specimen cross section will be illuminated. Therefore, the chance of defects 

in the specimen being illuminated is considerably smaller than when a transducer 

with a wide beamwidth is used. This means the choice of a narrow beamwidth 

transducer will lead to sub optimal image reconstruction of defects that are not close 

to the object centre. This degradation of the reconstructed image is additional to the 

image degradation described in Section 2.2, where the point spread function was 

examined with respect to the position of the point target. Moreover, the further the 

defect is from the centre of the test specimen the more both of these effects will 

effect the image. Therefore, it is highly advantageous to use transducers with a wide 
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beamwidth in order to minimise at least one of the causes of image degradation. For 

the data acquisition set-up described here, the divergence of the beam within the 

object was measured to be ± 35 degrees for an aluminium cylinder of 75mm 

diameter, providing adequate coverage of the samples. 

4.3. Image Quality. 

In order to assess the quality of the images reconstructed and to identify any 

improvement in the image quality resulting from the image fusion and single bounce 

image enhancement, Pearson's linear cross-correlation technique has been applied 

[48]. The intention is to use cross-correlation to gain a measure of the similarity of 

the reconstructed images to that of an ideal image of the defect. Here the term ideal 

defect image refers to an image where all pixels contained within the defect 

boundary have maximum amplitude and all other pixels have zero amplitude. The 

chosen cross-correlation method will now be briefly outlined. 

4.3.1. Pearson's Linear Cross-Correlation. 

For this method the images are considered to consist of two I-D arrays, represented 

by Xi and Yi respectively, where i = 1,2, .... ,M (M is the number of pixels in the 

image). The Pearson's or linear cross-correlation coefficient, r, is determined using 

the following formula [48]. 

I(x i -XXYi -y) 
r= i 

~~(Xi -xy ~(Yi _y)2 
(4.3-1) 

where x is the mean of the Xi'S, and y is the mean of the Yi 'so For this application 

the value of r varies from zero to one. If r equals one then there is complete 

correlation between the two images. 
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4.4. Image Reconstruction and Fusion. 

In this section the experimental performance of the tomographic reconstruction 

algorithms and the image fusion process will be investigated. The methods will be 

evaluated for the set of simulated representative defects. The set of defects chosen 

are a 1.2 nun inclusion simulated by a 1.2mm side drilled hole; a 7mm inclusion 

simulated by a 7mm side drilled hole; a planar flaw simulated by a slot in the test 

specimen; and a line of holes at various separations to assess the resolving capacity 

of the imaging system. All ofthese defects are embedded within aluminium cylinders 

of75 nun diameter. 

In order to validate the improvement in image quality obtained through fusing a set 

of tomographic images, a two step approach has been used. The flrst step is to 

reconstruct the individual defect images and assess there correlation with the ideal 

defect image. The second step is to fuse a set of the tomographic images to generate 

a single composite image of the defect and assess the correlation of this image with 

the ideal image. However, before any image reconstruction is performed the 

computational requirements of the algorithms will be discussed. 

4.4.1. Computational Requirements of Tomographic Image Reconstruction. 

For the tomographic image reconstruction and fusion methods used here to be useful 

for the non-destructive testing of components, the reconstruction times must be 

acceptably low. All of the images reconstructed here have been reconstructed on a 

SUN ultra 10 workstation. For Pulse-Echo Reflectio~ which is the simplest of the 

reconstruction algorithms computationally, the reconstruction times for the images 

presented here is below 30 seconds. 

For the Pitch-Catch Reflection algorithm, which involves backprojection of the 

ultrasonic data over elliptical paths rather than circular paths, the reconstruction 

times are in the order of a minute, this being due to the increased theoretical 

complexity of the algorithm. Reconstruction times of this order for Time-of-Flight 

Diffraction tomography have been achieved by limiting the number of transmitter 
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locations, however, it will be shown that acceptable defect images can be 

reconstructed for most of the defects considered. 

Obviously, with the addition of single bounce image enhancement these 

reconstruction times will increase. The addition of this reconstruction feature adds up 

to an extra two minutes to the reconstruction times when equal amounts of data are 

backprojected both before and after the backwall. This is due to the complex shape of 

the backwall considered. For test specimens which are less geometrically complex 

the time taken to backproject the single bounce data would be considerable less. 

The Transmission tomography reconstruction times depend on the method of 

backprojection used and the amount of transmission data utilised for the 

reconstruction For linear backprojection and the amount of data used for all of the 

transmission images generated in this chapter, reconstruction times are 

approximately 60 seconds. For the filtered backprojection case the reconstruction 

times are slightly longer, being in the order of90 seconds. 

The fmal component of the imaging system to be considered in this section is the 

fuzzy logic fusion utility. For all applications of the fusion process considered here 

the processing time taken was negligible. 
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4.4.2. 1.2 mm Inclusion. 
The first defect that will be examined will be a small inclusion 1.2mrn in diameter 

and positioned through the test specimen as shown in Figure 4.3. 

Figure 4.3. Position of the simulated Inclusion type defects within an aluminium 

cylinder of 75 mm diameter. 

For this particular defect three tomographic images were reconstructed, these being; 

Pulse-Echo Reflection, Pitch-Catch Reflection and Time-of-flight Diffracti n 

tomography. No Transmission tomography image was reconstructed for thi den ct 

due to its small size compared to the beamwidth of the transducers used. 

4.4.2.1. Pulse-Echo Reflection Tomography. 

The Pulse-Echo Reflection tomography image was reconstructed from 72 A- cans 

obtained from transmitters equally distributed around the circumference f th 

aluminium cylinder, giving a 5° angular separation between transmit locati n . h 

reconstructed image is shown in Figure 4.4. The colour table for all image pre ented 

in this thesis is given below the reconstructed image. The linear cro s-correlati n 

with the ideal image was determined to be 0.466. 
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Figure 4.4. Image of the 1.2mm inclusion where the centre of the image corresponds 

to the centre of the test specimen. The colour table for all of the tomographic images 

presented here is shown below the image (image scale 1: I). The backwall of the 

cylindrical test specimen is marked on the image in white. 

4.4.2.2. Pseudo Point Spread Function. 

Figure 4.5. Pseudo point spreadfunction of Pulse-Echo Reflection tomography. 
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In order to evaluate the performance of the reconstruction algorithms the 

experimental point spread function will be examined. The theoretical expressions for 

the Point Spread Functions (PSF) were derived in Chapter 2. A direct comparison 

cannot be made between the theoretical PSF and the experimentally obtained pseudo 

PSF. The main reasons are that the target being imaged is not a point reflector but an 

inclusion of finite size. Also in the theoretical expression, the aperture is assumed to 

be sampled over its entirety (here the aperture is sampled at a relatively small 

number of points), and fmally the defect is not situated in the centre of the test 

specimen as was assumed in the derivation of the PSF. However, the pseudo PSF can 

still give a useful indication to the performance of the image reconstruction 

algorithms relative to each other. The Pulse-Echo Reflection pseudo point spread 

function is shown in Figure 4.5. 
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4.4.2.3. Pitch-Catch Reflection Tomography. 

The Pitch-Catch Reflection tomography image reconstructed is shown in Figure 4.6. 

A-scans were captured at 72 equally spaced positions around the circumference of 

the cylindrical sample, giving a 5° angular separation between transmitter locations. 

The separation between the transmitter and receiver for this image was chosen to be 

50° (13 = 25). The linear cross-correlation of this image with the ideal image is 0.365 . 

Figure 4.6. Pitch-Catch Reflection tomography image. the transmiller angular 

separation is 5° and the transmitJer to receiver separation is 5(f (image scale I: I). 

4.4.2.4. Pseudo Point Spread Function. 

Figure 4.7. Pseudo point spreadfunctionfor Pilch-Catch Reflection tomography. 
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The pseudo point spread function for Pitch-Catch Reflection tomography is shown in 

Figure 4.7. The discussion regarding the PSF for Pulse-Echo Reflection tomography 

in Section 4.4.1.2 is valid here. Upon comparing the point spread functions for the 

Pulse-Echo and Pitch-Catch data acquisition set-ups, it is evident that for small 

transmitter to receiver separations ((3 less than 45 degrees) the pseudo point spread 

functions have a similar rate of main lobe decay. This can be seen clearly upon 

examination of the point spread functions shown in Figure 4.5 and 4.7. 

4.4.2.5. Time-of-flight Diffraction Tomography. 

The Time-of-flight Diffraction tomography image was reconstructed from time 

domain data taken from 4 transmitter locations equally spaced around the test 

specimen. The receiver was scanned over the complete circular aperture for each of 

the four transmitter positions, with the angular separation between the receiver 

locations being chosen to be 10°. This amount of data was used in order to obtain 

reconstruction times comparable with the other two reconstruction methods, the 

reconstructed image being shown in Figure 4.8. The image has a cross-correlation 

with the ideal image of 0.396. 
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Figure 4.8. Time-offlight Diffraction tomography image of the 1.2mm inclusion. The 

transmitter separation was chosen to be 90° with the receiver scanning the aperture 

with an angular separation of 1 if (image scale 1: I) . 

4.4.2.6. Pseudo Point Spread Function. 

Figure 4.9. Pseudo Point Spread Function for Time-oj~/light Diffraction 

Tomography. 

The pseudo point spread function for the Time-of-tlight Diffraction tomography is 

shown in Figure 4.9. This clearly does not possess the same rate of mainlobe decay 

as the other two reconstruction methods. This can be partially explained by the need 

to use significantly fewer transmitter positions in the reconstruction in order to obtain 
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an acceptable reconstruction time when compared to the other tomographic 

reconstruction methods. The varying transmitter to receiver separation (~ will often 

be greater than 45°) will also have a detrimental effect on the point spread function, 

as stated in Chapter 2. That is, as the separation between the receiver and transmitter 

becomes larger, the more degraded the PSF will become. Finally the choice of 

transmitter locations with reference to the defect position will have considerable 

effect on the point spread function due to the small number of locations used for 

reconstruction. 

4.4.2.7. Fused Images. 

In order to assess the improvement in the image quality due to image fusion, a linear 

cross-correlation with the ideal image is employed. To put the improvement in the 

image quality in context, the average of the constituent images has been generated 

and assessed using linear cross-correlation. The three images used in the fusion are 

the Pulse-Echo Reflection, Pitch-Catch Reflection and Time-of-flight Diffraction 

tomography, the average of these three images can be seen in Figure 4.10. 

The fused image is shown in Figure 4.11. For this fusion the Ostu image thresholding 

method was applied with the third ramp function. A zero cut-offof0.45Tc was used, 

where Tc is the computed threshold value and the ramp parameter, a, was chosen to 

be 3. 
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Figure 4.10. Average of the three images used for fusion, these images can be seen 

in Figures 4.4,4.6 and 4.8 (image scale 1:1). 

Figure 4.11. Optimalfusion of the Three tomographic images. The IS/fusionfunction 

was utilised and the Ostu thresholding technique employed, with a zero cUl-o/l(?l0-l5 

Tc and a = 3 (image scale 1:1). 
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The correlation values for these images are given in Table 1. The characterisation of 

the defect is improved considerably with an increase in correlation over the average 

image of 0.313. 

Tomographic Image Linear Cross-correlation with ideal 

image, r. 

Pulse-Echo Reflection Tomography. 0.466 

Pitch-Catch Reflection Tomography. 0.365 

Time-of-flight Diffraction Tomography. 0.396 

Summation Image. 0.436 

Fused image 0.749 

Table 1. Correlation values for all of the tomographic images reconstructed. These 

correlation values were obtained using Pearson's linear correlation equation (4.4-

1). 

The pseudo point spread function can be seen in Figure 4.11 a. The PSF has a 

mainlobe rate of decay that is higher than the images reconstructed using the 

individual tomographic reconstruction techniques. This goes some way to explaining 

why the cross-correlation value for the fused image is significantly higher than the 

average image. In addition, the majority of noise present in the constituent has been 

removed from the fused image. 
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Figure 4.11a. Pseudo Point Spread Function of the fused image presented in Figure 

4.11. 

4.4.3. 7mm Inclusion. 

The position of the 7mm inclusion within the aluminium test specimen is given in 

Figure 4.3. The images reconstructed using the four image reconstruction methods 

described in Chapter 2 will now be presented. 

4.4.3.1. Pulse-Echo Reflection Tomography. 

The Pulse-Echo Reflection tomography image was reconstructed using A-scan data 

obtained at seventy-two transmitter locations equally spaced around the 

circumference of the test specimen. The resultant image can be seen in f-igure 4.12, 

below. The phys ical boundary of the defect is shown in white, it can be seen that the 

boundary has not been uniformly reconstructed in its entirety. This is due to the 

location of the defect within the test specimen and the data acquisition set-up. 

Because the transducer used to acquire the A-scans is held in contact with the 

specimen, the near field is within the test specimen (in immersion testing the set-up 

is designed so the specimen is in the far field to avoid these problems). This means 

that the defect is not always situated in the far field of the transducer. Therefore, the 
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energy incident on the defect vanes considerably depending on the transmitter 

position leading, to poor reconstruction of certain parts of the defect boundary. 

The image quality was assessed using linear cross-correlation with the ideal image. 

For this particular defect three of the reconstruction methods use the ultrasound 

reflected or diffTacted from the defect boundary, notably Pulse-Echo Reflection, 

Pitch-Catch Reflection and Time-of-flight Diffraction tomography. For this reason. 

the ideal image was chosen to have zero pixel amplitude everywhere except along 

the defect boundary. This ideal image was chosen because it represents the best 

image of the defect that can be reconstructed using those algorithms. For the other 

defects examined, their dimensions are such that there is no difference between the 

two ideal images. 

This image has a linear cross-correlation value of 0.229, this low value of correlation 

was caused by the presence of noise within the image and does not truly reflect the 

quality of the defect image reconstructed. However, the correlation value is still 

meaningful for analysis of the image fusion tool. 

Figure 4.12. Pulse-Echo Reflection tomography image with the actual de/ect 

boundary marked. The image was reconstructed with A-scan data ohtained with a 5° 

angular transmitter separation (image scale I: I) . 
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4.4.3.2. Pitch-Catch Reflection Tomography. 

The pitch-Catch Reflection tomography image reconstructed of the 7mm inclusion is 

shown in Figure 4.13. This image was reconstructed with an angular transmitter 

separation of 5° and a constant transmitter to receiver separation of 40° CP=20). 

The boundary of the defect is shown in black and it can be seen that the boundary has 

not been uniformly reconstructed in its entirety. This is due to the reasons discussed 

in the previous section for the Pulse-Echo reflection image. This image has a linear 

cross-correlation with the ideal image of 0.313. 

Figure 4.13. Pitch-Catch Reflection tomography Image of the t mm circular 

inclusion with a 50 transmitter separation and a .J(f Iransmiller to receiver 

separation (image scale 1:1). 

4.4.3.3. Time-of-flight Diffraction Tomography. 

The Time-of-flight Diffraction tomography image is shown in Figure 4.14. ror this 

image, four transmit locations equally spaced around the object circumference were 

chosen. The ultrasonic energy scattered by the defect was then collectcd, over thc 

circumference of the sample, at 10° intervals. The reconstructed imagc docs not give 

a good indication of the flaw shape or orientation, the actual defcct boundary bcing 
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shown in white on the image. This can be explained by the fact that strong a 

diffracted signal can only be obtained from the defect when the ang le of incidence to 

the defect is favourable. In this case, a number of the diffracted pulses received were 

not of sufficient quality, resulting in a deterioration of the image. If more transmitter 

and receiver locations are utilised then the image obtained would more closely 

resemble the ideal scenario. However, a balance has to be struck between the amount 

of data used and the computational time required to reconstruct the image. In the 

majority of cases this will depend on the user requirements. The linear cross­

correlation with the ideal image is 0.335. 

Figure 4.14. Time-of-flight Diffraction Tomography image with a transmiller 

separation of9(/ and a receiver separation of J(f (image scale J: J). 

4.4.3.4. Transmission Tomography. 

Transmission images of the 7mm inclusion were reconstructed using both the linear 

and filtered backprojection algorithms presented in Chapter 2. The same set or A­

scan data was used for both the image reconstruction algori thms. The A-scun data 

being collected with a transmitter separation of 10° and a 5° receiver separat ion. For 

the reconstruction of this image it was decided that a shadow region is present if the 
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received signal amplitude was less than 20% of the amplitude expected at the 

backwall when no defect is present between the transmitter and receiver. 

4.4.3.4.1. Linear Backprojection. 
The fIrst method to be evaluated is the straightforward linear backprojection 

technique, the resultant image is shown in Figure 4.15 on the next page with the 

defect boundary marked. This image gives a reasonably good indication ofthe defect 

size, shape and position. The linear cross-correlation with the ideal image having a 

value of 0.580. 

4.4.3.4.2. Filtered Backprojection. 

The image reconstructed utilising the fIltered backprojection algorithm can be seen in 

Figure 4.16 on the next page. This image gives a slightly better indication of the 

defect position, shape and size compared to linear backprojection image, this is 

reflected in the correlation scores for the two images. The linear backprojection 

image has a correlation value of 0.580 whereas the fIltered backprojection image has 

a value of 0.610. 
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Figure 4.15. Transmission tomography image reconstructed using the linear 

backprojection algorithm. The transmitter separation has been chosen to be i 0° and 

a receiver separation of 5° (image scale i: i). 

Figure 4.16. Transmission tomography image reconstructed using the jiltered 

backprojection algorithm. The transmitter separation has been chosen to be i 0° and 

a receiver separation of 5° (image scale i: i). 
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4.4.3.5. Fused Images. 
In order to assess the improvement in the image quality due to image fusion linear 

cross-correlation with the ideal image was employed. In order to put the 

improvement in the image quality in context, the average of the constituent images 

has been generated and assessed using linear cross-correlation. The four images used 

in the fusion are the Pulse-Echo Reflection, Pitch-Catch Reflection, Time-of-flight 

Diffi'action and Filtered Backprojection Transmission images, the average of these 

four images is shown in Figure 4.17. 

For the generation of the fused image the second fusion function was utilised with 

the Kapur, Wong and Sahoo thresholding method. The zero cut-offwas chosen to be 

O.75Tc, where Te is the computed threshold value. The fused image can be seen in 

Figure 4.18. The cross-correlation values for all of the images used in the fusion are 

given in Table 2. The improvement in the linear cross-correlation values between the 

average and the fused image is 0.112. The improvement is relatively small compared 

to the 1.2 mm inclusion but still represents a worthwhile improvement in the image 

quality. 
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Figure 4.17. Average image generated from the four tomographic images to be used 

in the image fusion: Pulse-Echo Reflection Tomography, Pitch-Catch Reflection 

Tomography, Time-of-flight Diffraction Tomography and Filtered Backprojection 

Transmission Tomography (image scale J: I). 

Figure 4.18. Optimal fused tomographic image generatedfrom the four tomographic 

images shown in the Figures 4. J 3,4. J 4,4. J 5 and 4. J 6, respectively. The 2nd fusion 

function used with the Kapur, Sahoo and Wong thresholding technique. The zero cut­

ojJwas chosen to be O. 75Tc for allfour images (image scale 1:1). 
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Tomographic Image. Linear Cross-correlation with Ideal 

Image, r. 

Pulse-Echo Reflection. 0.229 

Pitch-Catch Reflection. 0.313 

Time-of-flight Diffraction. 0.335 

Linear Backprojection Transmission. 0.580 

Filtered Backprojection Transmission. 0.610 

Summation. 0.604 

Fused Image. 0.716 

Table 2. Correlation values for all of the tomographic images reconstructed. These 

correlation values were computed using Pearson's linear correlation equation (4.4-

1). 

4.4.4. Simulated Planar Defect. 
The third type of representative defect that was investigated is a simulated planar 

type defect. The defect is a 25x2mm slot machined through the 75mm diameter 

aluminium cylinder, its orientation and position being shown in Figure 4.19. 

17.S~mm 

2j~ 
~ 2Smm 

Figure 4.19. The position of the simulated 25x2 mm planar type defect within the 

cylindrical test specimen. 
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4.4.4.1. Pulse-Echo Reflection Tomography. 

The Pulse-Echo Reflection tomography image reconstruction is shown in Figure 4.20 

with the planar defect's actual boundary being displayed in white. As before, the 

image was reconstructed with A-scans collected with a transmitter angular separation 

of 5°. 

The image gives a good indication of the position of the defect end points but has not 

reconstructed the body of the defect with the same level of confidence, however it is 

still evident that the defect is planar in nature. Tn addition there are a couple of 

artifacts in the image, the biggest artifact is on the backwall of the test specimen so 

will not interfere with defect detection. However, the other artifact which is probably 

caused by diffraction from the ends of the slot and is within the test specimen so 

could interfere with defect reconstruction. The linear cross-correlation value with the 

ideal image is 0.427. 

Figure 4.20. Pulse-Echo Reflection tomography image of the simulated planar defect 

with a transmitter separation of~. The actual defect boundary is marked on the 

image in white (image scale 1:1). 
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4.4.4.2. Pitch-Catch Reflection Tomography. 

The Pitch-Catch Reflection image reconstructed of the simulated planar defect IS 

given in Figure 4.21. The image was reconstructed with A-scan data acquired with an 

arIgular trarISmitter separation of SO and a constarIt trarISmitter to receiver separation 

of 40°. 

As before, the defect boundary has been marked on the image in white for 

comparison purposes. The defect endpoints can clearly be seen, the body of the 

defect is more pronounced tharI in the corresponding Pulse-Echo Reflection 

tomography image although it is still not reconstructed in its entirety, an artifact is 

also present in the image in roughly the same location as the Pulse-Echo image. The 

improved reconstruction of the defect body is reflected in the higher linear cross­

correlation score of 0.461. 

Figure 4.21. Pitch-Catch Reflection image of the planar type defect. The transmitter 

angular separation was chosen to be 5° and the separation between the transmitler 

and receiver was 4(/ (image scale 1: 1). 
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4.4.4.3. Time-of-flight Diffraction Tomography. 

The Time-of-flight Diffraction image is shown in Figure 4.22. For this image, four 

transmit locations equally spaced around the object circumference were chosen. The 

ultrasonic energy scattered by the defect was then collected, over the circumference 

of the sample, at 10° intervals. 

The Time-of-flight Diffraction image identifies the end points of the defect but does 

not give a definite indication as to whether there are two inclusion type defects 

present or just a single planar defect. This poor reconstruction of the defect body can 

be attributed to the small number of transmitter location chosen in order to gIve 

comparable reconstruction times with the other reconstruction algorithms. 

Figure 4.22. Time-of-flight Diffraction tomography image. The transmiller 

separation is 900 and the receiver separation is J (f. The defect boundary is marked 

in while (image scale 1: 1). 

4.4.4.4. Transmission Tomography. 

Transmission images of the planar defect were reconstructed using both the linear 

and filtered backprojection algorithms presented in Chapter 2. The same set of A­

scan data was used for both the image reconstruction algorithms, the A-scan data 

being collected with a transmitter separation of 10° and a SO receiver separation. For 
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the reconstruction of this image it was decided that a shadow region is present if the 

received signal amplitude was less than 30% of the amplitude expected at the 

backwall when no defect is present between the transmitter and receiver. 

4.4.4.4.1. Linear Backprojection. 
The fIrst method to be evaluated is the straightforward linear backprojection 

technique and the reconstructed image is shown in Figure 4.23. This method does not 

give a good indication of the defect size or shape. The fact that the defect appears to 

be shorter than it actually is can be explained by the ultrasound diffracting around the 

ends of the defect. If the transmitter and receiver separation were decreased then it is 

expected that the defect image would give a more accurate indication of the defect 

shape, but at the expense of reconstruction time. It does however give a reasonably 

good indication of the defect orientation. The linear cross-correlation with the ideal 

image having a value of 0.320. 

4.4.4.4.2. Filtered Backprojection. 
The image reconstructed utilising the filtered backprojection algorithm can be seen in 

Figure 4.24. This image clearly gives a poorer indication of the defect position, shape 

and size than the linear backprojection image. This can be explained by the choice of 

the filter function. The design of the filter function is based on the shadow cast by an 

ideal disc reflector. This planar defect is too far removed from this assumption 

resulting in the poor defect reconstruction. This is reflected in the correlation scores 

for the two images; the linear backprojection image has a correlation value of 0.320, 

whereas the filtered backprojection image has a value of 0.280. 
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Figure 4.23. Linear backprojection Transmission Tomography image with the defect 

boundary indicated by the rectangle. The transmiller separation was chosen to be 

1 (f with a 5° receiver separation (image scale 1: 1). 

Figure 4.24. Filtered Backprojection Transmission image of the planar type defecl 

utilising the same A-scan data as the Linear Backprojeclion reconstruction (image 

scale 1:1). 
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4.4.4.5. Fused Images. 

In order to assess the improvement in the image quality due to image fusion, linear 

cross-correlation with the ideal image was employed. In order to put the 

improvement in the image quality in context the average of the constituent images 

has been generated and assessed using linear cross-correlation. The four images used 

in the fusion are the Pulse-Echo Reflection, Pitch-Catch Reflection, Time-of-flight 

Diffraction and Linear Backprojection Transmission tomography images, the average 

of these four images is shown in Figure 4.25. 

The fused image generated can be seen in Figure 4.26. For the generation of the 

fused image the third fusion function was utilised with the Pun thresho lding method. 

The zero cut-offwas chosen to be 0.75Te, where Te is the computed threshold value. 

The ramp fusion variable, a, was chosen to have a value of 4. 

The cross-correlation values for all of the images used in the fusion are given in 

Table 3. The improvement in the linear cross-correlation values between the average 

and the fused image is 0.093, this appear to be very small but upon visual inspection 

of the image it is evident that the defect image is close to the actual defect (marked in 

black). 
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Figure 4.25. Average of four of the reconstructed images: Pulse-Echo Reflection 

Tomography, Pitch-Catch Reflection tomography, Time-of-flight Diffraction 

Tomography and Linear Backprojection Transmission tomography (image scale 

1: 1). 

Figure 4.26. Optimal fused tomographic image generated from the tomographic 

images shown in the Figures 4.20,4.21 and 4.22. The 3rd fusion function used was 

and the Pun thresholding method was used with a 0.75Tc zero cut-oJ! with a = 4 

(image scale 1:1). 

165 



Tomographic Image. Linear Cross-correlation with Ideal 

Image, r. 

Pulse-Echo Reflection. 0.427 

Pitch-Catch Reflection. 0.461 

Time-of-flight Diffraction. 0.341 

Linear Backprojection Transmission. 0.320 

Filtered Backprojection Transmission. 0.280 

Average. 0.443 

Fused Image. 0.536 

Table 3. Correlation values for all of the tomographic images reconstructed These 

correlation values were computed using Pearson's linear correlation equation (4.4-

1). 

4.4.5. Investigation of the Imaging System Resolution. 

The fIrst aim of this section is to experimentally investigate the resolution of the frrst 

three tomographic reconstruction techniques detailed in Chapter 2, notably Pulse­

Echo Reflection tomography, Pitch-Catch Reflection tomography and Time-of-flight 

Diffraction tomography. No transmission tomography image will be reconstructed 

due to the small size of the defects when compared to the transducer beamwidth. The 

second aim of this section is to assess the improvement, if any, in image resolution 

from the application of the fuzzy logic fusion technique. 

In order to investigate the image resolution a 75 mm diameter aluminium test 

specimen containing a line of inclusions with differing separations, as shown in 

Figure 4.27, has been used. 
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The distances between the circular inclusions are as follows; 

• distance between the centres of defect number I and 2 is 2.4 mm 

• distance between the centres of defect number 2 and 3 is 3.6 mm 

• distance between the centres of defect 3 and 4 is 4.8 mm 

• distance between the centres of defect 4 and 5 is 6 mm. 

The speed of sound in aluminium is 6420 ms-1
, which corresponds to a wavelength of 

approximately 1.28mm. Therefore, the two defects that are of primary interest are the 

two that have a wavelength spacing between their boundaries, i. e. simulated defects 

numbered 1 and 2 on the figure. It was determined in Chapter 2 that the tomographic 

reconstruction algorithms should give near wave length resolution. However, in 

practice this is often not corroborated due to a break down in the assumptions made 

in the derivation, and more importantly the relatively small number of transmjtter 

locations chosen (the Point Spread Function calculations were based on a complete ly 

sampled aperture). 

Figure 4.27. Position of simulated defects within the test specimen. The longitudinal 

velocity in aluminium is 6420 ms-', which corresponds to a wavelength of 1. 28 mm. 

All five of the holes through the test specimen have a diameter of 1.2 mm, The 

distances between the hole centres are as follows: 1 to 2: 2.4 mm, 2 to 3: 3. 6 mm, 3 

10 4: 4.8 mm andfinally 4 to 5: 6 mm. 
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4.4.5.1. Pulse-Echo Reflection Tomography. 

The Pulse-Echo Reflection tomography image reconstruction is shown in Figure 4.28 

with defect boundaries marked in black and white. The image was reconstructed with 

transmitter positions separated by a 5° angular separation. 

All of the defects present have been reconstructed, some more strongly than others. 

This is due to a number of factors. The two defects on the far left of the image (4 and 

5) have not been imaged clearly. This can be explained by considering the 

orientation of the other defects in relation to defects 4 and 5, (i.e. the other defects 

(1,2 and 3) prevent isonification of the defects (4 and 5) from a significant number of 

transmitter locations). Of more concern is the fact that the two most closely spaced 

defects (1 and 2) have been reconstructed as a single defect, thus implying that the 

reconstruction does not give wavelength resolution for this reconstruction algorithm. 

The linear cross-correlation value with the ideal image is 0.273. 

Figure 4.28. Pulse-Echo Reflection Tomography image. Reconstructed with A-scan 

data obtained with a transmiffer separation of 5°. The defect boundaries are marked 

in black and white (image scale 1: 1). 
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4.4.5.2. Pitch-Catch Reflection Tomography. 

The Pitch-Catch Reflection image reconstruction of the line of holes is shown In 

Figure 4.29. This image was reconstructed with an angular transmitter separation of 

5° and a constant transmitter to receiver separation of 40°. 

This image exhibits the same characteristics as the Pulse-Echo Reflection image, 

only the failure to reconstruct defects 4 and 5 being more pronounced. However, 

there is a slight improvement in the reconstruction of the two closely spaced defects, 

although it is still not clearly evident that if there is a single or multiple defects 

present. The linear cross-correlation value was calculated to be 0.292. 

Figure 4.29. The Pitch-Catch Reflection tomography image. The A-scan data was 

obtained with a 5° transmitter separation and a 4(f transmitter to receiver 

separation. The defect boundaries are marked in black and white (image scale 1: 1). 

4.4.5.3. Time-of-flight Diffraction Tomography. 

The Time-of-fl ight Diffraction image is shown in Figure 4.30. For this image, four 

transmit locations equally spaced around the 0 bject circumference were chosen. The 

ultrasonic energy scattered by the defect was then collected, over the circumference 

of the sample, at 10° intervals. 
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The Time-of-flight Diffraction tomography image gives a poor reconstruction of all 

the defects apart from one (defect 2). The primary reason for this is the choice of 

transmitter locations. As only four transmitter locations were chosen the position of 

the defects with respect to the transmitter becomes important. However the image 

does indicate that further examination of the region where the defects are present is 

worthwhile. 

Figure 4.30. Time-oJ-jlighl Diffraction tomography image. The transmitter 

separation was 900 and the receiver was I (f. The deject boundaries are marked in 

white (image scale I: J). 

4.4.5.4. Fused Images. 

In order to assess the improvement in the image quality due to image fusion linear 

cross-correlation with the ideal image will be employed. In order to put the 

improvement in the image quality in context the average of the constituent images 

has been generated and assessed using linear cross-correlation. The two images used 

in the fusion are the Pulse-Echo Reflection and the Pitch-Catch Reflection 

tomography images, the average of these two images is shown in Figure 4.31. 
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The fused image generated can be seen in Figure 4.32. For the generation of the 

fused image the second fusion function was utilised with the Ostu thresholding 

method. The zero cut-off was chosen to be O. 

The cross~correlation values for all of the images used in the fusion are given in 

Table 4. The improvement in the linear cross-correlation values between the average 

and the fused image is 0.188, which represents a worthwhile improvement in the 

image quality. 

For this set of simulated defects the resolution of the fused image is also extremely 

important since the three reconstructed tomographic images gives less than 

wavelength resolution. Upon closer examination of the defect region it is clear that 

two defect are present in the image, thus the resolution of the image has been 

improved. 
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Figure 4.31. Average of the Tomographic images shown infigure 4.28 and 4.29 (image scale i : I). 

Figure 4.32. Optimal fused image of the two Reflection tomography images in Figure 4.28 and Figure 

4.29, respectively. The fusion funct ion utilised was the secondfunction with a zero cut-oJJvalue ofOTe 

and the Ostu threshold method (image scale I: I). The second image being a magnified section of the 

first image showing that there are indeedfive distinct defects present in the image. 

172 



Tomographic Image. Linear Cross-correlation with Ideal 

Image, r. 

Pulse-Echo Reflection. 0.273 

Pitch-Catch Reflection. 0.292 

Time-of-flight Diffraction. 0.160 

Average. 0.323 

Fused Image. 0.511 

Table 4. Correlation values for all of the tomographic images reconstructed These 

correlation values were computed using Pearson's linear co"eiation equation (4.4-

1). 

4.5. Single Bounce Image Enhancement. 

The proceeding section detailed the optimum scenario for image reconstruction, that 

is the generation of defect images where A-scan data can be acquired from any 

position on the object circumference. However, frequently in practice this will not be 

the case. Either the component being examined will not have a regular geometry 

making access to all aspects of the component difficult or its situation may restrict 

access. In order to improve the practical applicability ofthe image reconstruction, the 

application of single bounce image enhancement will now be examined for the two 

Reflection tomography and Time-of-flight Diffraction tomography reconstruction 

algorithms. 

Initially the single bounce image enhancement method will be validated by 

examining the scenario where full access to the object circumference is available. 

Once the effectiveness of the technique has been demonstrated the partial access 

scenario will be considered. This will be undertaken in Section 4.6. 
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Figure 4.33. Position of Ihe 25mm x 2mm slol used 10 assess Ihe single bounce 

image enhancement method. This simulaled defect will also be used 10 assess Ihe 

performance of Ihe single bounce image enhancement method where only partial 

access to the test specimen is available. 

4.5.1. Pulse-Echo Reflection Tomography. 

The ftrst of the tomographic image reconstruction methods to be considered is Pulse­

Echo Reflection tomography. Both the Pulse-Echo Reflection image and the single 

bounce image reconstructed from A-scan data acquired at 72 transmitter locations 

equally spaced around the circumference of the test specimen are shown in figure 

4.34 (a) and (b), respectively. 

(a) (b) 

Figure 4.34. Pulse-Echo Reflection tomography Images for the evaluation of the single bounce image 

enhancement feature. (a) Pulse-Echo Reflection Image reconstructed with data taken at 5u angular 

separation (b) Single Bounce image reconstructed using the same A-scan data as image (a). (image 

scale 1:2) 
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Both of the images in Figure 4.34 give a good indication of the defect orientation, 

size and position. However, the single bounce image does contain a significant 

amount of noise. In addition, both images contain a number of artifacts. In Figure 

4.34(a) the artifacts being caused by mUltiple reflections form the defect to the 

receiver. In Figure 4.34(b) the artifacts are caused by the focusing effect of the test 

specimen backwall. The combination of these two images is shown in Figure 4.35. 

This image gives an improved indication of defect shape, size and position, this is 

reflected in an increase in the linear cross-correlation value for the combined image 

over the Pulse-Echo Reflection tomography image, as given in Table 5. However, 

there are still a couple of small artifacts in the final image, although the they have 

been reduced in magnitude from the two images presented in Figure 4.34. 

Figure 4.35. The combination of the Pulse-Echo Reflection tomography and the 

Single Bounce Image. With the actual defect boundary marked (image scale 1: I) . 
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Tomographic Image. Linear Cross-correlation with ideal 

image, r. 

Pulse-Echo Reflection. 0.394 

Single Bounce. 0.272 

Combination. 0.534 

Table 5. Correlation values for all of the tomographic images reconstructed. These 

correlation values were computed using Pearson's linear correlation equation (4.4-

1). 

4.5.2. Pitch-Catch Reflection Tomography. 

The next tomographic reconstruction technique to be examined is the Pitch-Catch 

Reflection technique. The Pitch-Catch Reflection image and the single bounce image 

reconstructed from A-scan data acquired with a transmitter separation of 5° and a 

transmitter to receiver angular separation of 60° can be seen in Figure 4.36 (a) and 

(b), respectively. 

(a) (b) 

Figure 4.36. Pitch-Catch Reflection tomography Images for the evaluation of the 

single bounce image enhancement feature. (a) Pilch-Catch Reflection Image 

reconstructed with data acquired with a 5° transmitter angular separation and a 6(/ 

transmitter to receiver separation (b) Single Bounce image reconstructed using the 

same A-scan data as image (a). (image scale 3:4). 
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The images in Figure 4.36(a) gives a good indication of the defect orientation, size 

and position, however, the single bounce image in Figure 4.36(b) contains a number 

of artifacts. The artifacts are a consequence of the focusing effect of the backwall and 

the transmitter / receiver separation by choosing a different separation these artifacts 

could be removed. The combination of these two images is shown in Figure 4.37. 

This image gives an improved indication of defect shape, size and position, however, 

some of the artifacts contained in the single bounce image are present in the fmal 

image. As before the single bounce image (Figure 4.36(b)) does contain significantly 

more noise than the signal. The improvement in defect characterisation is reflected in 

the increase in the linear cross-correlation values for the combined image over the 

Pitch-Catch Reflection image, as given in Table 6. 

Figure 4.37. The combination of the Pitch-Catch Reflection Tomography and the 

Single Bounce Images. The actual defect boundary is marked in black (image scale 

1:1). 
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Tomographic Image. Linear Cross-correlation with ideal 

image, r. 

Pitch-Catch Reflection. 0.402 

Single Bounce. 0.303 

Combination. 0.501 

Table 6. Correlation values for all of the tomographic images reconstructed. These 

correlation values were computed using Pearson 's linear correlation equation (4.4-

1). 

4.5.3. Time-of-flight Diffraction Tomography. 

The Time-of-flight Diffraction tomography image is shown in Figure 4.38(a) and the 

single bounce image is shown in Figure 4.38(b). For these images, four transmit 

locations equally spaced around the object circumference were chosen. The 

ultrasonic energy scattered by the defect was then collected, over the circumference 

of the sample, at 10° intervals. 

(a) 

:" /,' -. - ";.' '" 

... 1. J 
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: .. ' 

(b) 

Figure 4.38. Time-ol-flight Diffraction tomography Images for the evaluation of the 

single bounce image enhancement feature. (a) Time-ol-flight Diffraction Image 

reconstructed with data acquired with a 9(f transmitter angular separation and a 5° 

receiver separation (b) Single Bounce image reconstructed using the same A-scan 

data as image (a). (image scale 1:2). 
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Both of the images in Figure 4.38 give a poor indication of the defect orientation, 

size and position and contain a number of artifacts. The combination of these two 

images is shown in Figure 4.39. This image gives a slightly improved indication of 

defect shape, size and position, with the artifacts contained within the test specimen 

being decreased in severity. As before, the single bounce image (Figure 4.38(b» does 

contain significantly more noise than the Time-of-flight Diffraction image. The 

improvement in defect characterisation is reflected in the increase in the linear cross­

correlation values for the combined image over the Time-of-flight Diffraction image, 

as given in Table 7. However, the single bounce images contain a number of 

artifacts, these are due to the fact that the sound reflected by the defect could have 

originated from a number of locations within the test specimen. Generally these tend 

to disappear when the tomographic and single bounce images are combined as is the 

case here, the situation may not be so clear in specimens containing multiple defects 

so care will need to be taken when using this image enhancement technique. 

Figure 4.39. The combination of the Time-of-flight Diffraction Tomography and the 

Single Bounce Images (image scale 1: 1). 
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Tomographic Image. Linear Cross-correlation with ideal 

image, r. 

Time-of-flight Diffraction. 0.402 

Single Bounce. 0.309 

Combination. 0.470 

Table 7. Correlation values for all of the tomographic images reconstructed These 

correlation values were computed using Pearson's linear correlation equation (4.4-

1). 

4.6. The Effect of Partial Access to the Test Specimen on Image Reconstruction. 

Now that the operation of the single bounce image enhancement technique has been 

validated for complete access to the test specimen's circumference the next stage is 

to investigate its performance when only partial access to the object circumference is 

available. The region of access to the test specimen is as shown in figure 4.40. 

Region 

ofAcccsL Test Specimon. 

Figure 4.40. Region of access to test specimen for the evaluation of the single 

bounce image enhancement technique. 

4.6.1. Pulse-Echo Reflection Tomography. 

The fIrst of the tomographic image reconstruction methods to be considered is Pulse­

Echo Reflection tomography. The Pulse-Echo Reflection image and the single 
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bounce image reconstructed from A-scan data acquired at 36 transmitter locations 

equally along the access region of the test specimen are shown in figure 4.41 (a) and 

(b), respectively. 

The Pulse-Echo Reflection tomography image, shows multiple reflections from the 

defect. This characteristic is not present in the single bounce image. However the 

single bounce image does indicate two possible locations for a large planar defect. 

The next step is to combine the two images to determine if there is any improvement 

in defect characterisation. 

(a) (b) 

Figure 4.41. Pulse-Echo Reflection tomography Images for the evaluation of the 

single bounce image enhancement feature. (a) Pulse-Echo Reflection Image 

reconstructed with data taken at SO angular separation (b) Single Bounce image 

reconstructed using the same A-scan data as image (a). (image scale 1:2) 

The combination of these two images is shown in Figure 4.42. This image gives an 

improved indication of defect shape, size and orientation. This is born out by the 

linear cross-correlation values given in Table 8. However, the image does contain 

two artifacts. One is on the specimen backwall so can be ignored, the other artifact 

can be show to be an artifact by examining the Pulse-Echo Reflection image. There 

is no defect at the artifacts position within the pulse-echo image so the artifact can be 

identified as such. 
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Figure 4.42. The combination of the Pulse-Echo Reflection Tomography and the 

Single Bounce Images (image scale 1:1). 

Tomographic Image. Linear Cross-correlation with ideal 

image, r. 

Pulse-Echo Reflection. 0.104 

Single Bounce. 0.292 

Combination. 0.534 

Table 8. Correlation values for all of the tomographic images reconstructed. These 

correlation values were computed using Pearson 's linear correlation equation (4. 4-

1) . 

4.6.2. Pitch-Catch Reflection Tomography. 

The next tomographic reconstruction technique to be examined is the Pitch-Catch 

Reflection technique. The Pitch-Catch Reflection image and the single bounce image 

reconstructed from A-scan data acquired with a transmitter separation of 5° and a 

transmitter to receiver angular separation of 60° over the access region, these can be 

seen in Figure 4.43 (a) and (b), respectively. 
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(a) (b) 

Figure 4.43. Pitch-Catch Reflection tomography Images for the evaluation of the 

single bounce image enhancement feature. (a) Pitch-Catch Reflection image 

reconstructed with data acquired with a 5° transmitter angular separation and a 6(/ 

transmitter to receiver separation (b) Single Bounce image reconstructed using the 

same A-scan data as image (a). (image scale 1:2). 

Both of the images in Figure 4.43 give an indication of the defect orientation, size 

and position. However, the image in Figure 4.43(a) is blurred and shows two closely 

spaced defects rather than a single planar defect. The image in Figure 4.43(b) 

contains a number of artifacts caused by the focusing effect of the test specimen 

backwall. The combination of these two images is shown in Figure 4.44. This image 

gives an improved indication of defect shape, size and position. The single bounce 

image (Figure 4.43(b» does contain a number of artifacts, which can be identified as 

such, by examining the Pitch-Catch Reflection image and observing that the image 

does not contain any defects at the artifact positions. The improvement in defect 

characterisation is reflected in the increase in the linear cross-correlation value for 

the combined image over the Pitch-Catch Reflection image, as given in Table 9. 
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Figure 4.44. The combination of the Pitch-Catch Reflection tomography and the 

Single Bounce Images (image scale 1:1). 

Tomographic Image. Linear Cross-correlation with ideal 

image, r. 

Pitch-Catch Reflection. 0.373 

Single Bounce. 0.266 

Combination. 0.458 

Table 9. Correlation values for all of the tomographic images reconstructed. These 

correlation values were computed using Pearson's linear correlalion equation (4.4-

/) . 
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4.6.3. Time-of-flight Diffraction Tomography. 

The Time-of-flight Diffraction image is shown m Figure 4.45(a) and the single 

bounce image is shown in Figure 4.4S(b). For these images, three transmit locations 

equally spaced along the region of access were chosen. The ultrasonic energy 

scattered by the defect was then collected, along the region of access, at 10° intervals. 

(a) (b) 

Figure 4.45. Time-of-flight Diffraction tomography Images for the evaluation of the 

single bounce image enhancement feature . (a) Time-ol-flight Diffraction image 

reconstructed with data acquired with a 9if transmitler angular separation and a 

I if receiver separation over the region of access (b) Single Bounce image 

reconstructed using the same A-scan data as image (a). (image scale i :2) 

Both of the images in Figure 4.46 give a poor indication of the defect orientation and 

position this is a consequence of the extremely small amount of data used to 

reconstruct the images. However, they do not give an indication that the defect is 

planar. The combination of these two images is shown in Figure 4.46. This image 

gives an improved indication of defect shape, size and position over the images in 

Figure 4.46. As with the previous reconstruction methods the single bounce image 

(Figure 4.46(b)) does contain two artifacts, one of which lies outwith the test 

specimen boundary, the other can be identified as an artifact as it is not present in the 

Time-of-flight Diffraction image. The improvement in defect characterisation is 
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reflected in the increase in the linear cross-correlat ion values fo r the combined image 

over the Time-of-flight Diffraction image, as given in Table 10. 

Figure 4.46. The combination of the Time-of-flight Diffraction Tomography and the 

Single Bounce Images (image scale 1: 1). 

Tomographic Image. Linear Cross-correlation with ideal 

Image, r. 

Time-o f- flight Diffraction. 0.279 

Single Bounce. 0.242 

Combination. 0.357 

Table 10. Correlation values for all of the tomographic images reconstructed. These 

correlation values were compUled using Pearson 's linear correlation equation (1.-1-

I) . 
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4.7. Effect of MLDI MVD filtering on Tomographic Image Reconstruction. 

The purpose of this Section is to evaluate the effect of the Maximum Likelihood 

Deconvolution (MLD)/ Minimum Variance Deconvolution (MVD) filtering 

presented in Chapter 3 on tomographic image reconstruction. 

The effect on the image quality will be examined for pulse-echo A-scan data 

captured for a 1.2mm hole through an aluminium test specimen. The A-scan data was 

captured at 72 equally spaced transmit/receive locations around the test specimen 

with the same data acquisition set-up that was used in Section 4.2. The data set 

chosen was one that was particularly noisy, in order to demonstrate the effectiveness 

of the filter on A-scan data that it would be used on in practice. The image 

reconstructed using the Pulse-Echo Reflection tomography algorithm is shown in 

Figure 4.47. 
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Figure 4.47. The reconstructed Pulse-Echo Reflection Tomography image prior to MVD jiltering of 

the raw data. The pseudo point spread function can be seen adjacent the reconstructed image (image 

scale I: I). 

The initial estimates for the system parameters were obtained usmg the same 

procedure outlined in section 3.15. Prior to image reconstruction the A-scans filtered 

rectified and smoothed. 

Figure 4.48. The reconstructed Pulse-Echo Reflection Tomography image after MVD jiltering of the 

raw data. The pseudo point spread function can be seen alongside the reconstructed image (image 

scale 1: I). 
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The image reconstructed using the filtered data is shown in Figure 4.48 along with 

the pseudo point spread function. It is evident that the level of noise present in the 

image in Figure 4.48 is considerably lower than in Figure 4.47, the rate of decay of 

the main lobe is also higher, this is corroborated by the linear cross-correlation 

values for the images. The linear cross-correlation values for the images 

reconstructed with the filtered and raw data can be seen in Table 11. 

Tomographic Image. Linear Cross-correlation with ideal 

image, r. 

Raw A-scan data. 0.194 

MVD filtered data. 0.444 

Table 11. Linear Cross-correlation values for the images reconstructed with raw 

andfiltered A-scan data. 

4.8. Concluding Summary. 
The four components of the imaging system presented in Chapters 2 and 3 have been 

investigated experimentally. The four tomographic image reconstruction methods 

have been shown to give acceptable reconstruction of a number of representative 

defect types contained within aluminium cylindrical components. With the addition 

of the fuzzy logic fusion process it has been shown that characterisation of the 

defects considered is improved. The image resolution has been investigated for each 

of the reconstruction algorithms and it has been shown that they give poorer than 

wavelength resolution for the amount of raw data utilised. However, with fusion of 

the images it has been shown that wavelength resolution can be obtained. 

The second imaging system component that has been evaluated is the Single Bounce 

Image Enhancement tool. This has been done for Pulse-Echo Reflection tomography. 

Pitch-Catch Reflection tomography and Time-of-flight Diffraction Tomography for 

complete and incomplete access to the test specimen circumference. It has been 

demonstrated that in the vast majority of cases the defect characterisation is 

improved. 
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The fmal section of this chapter investigates the effect that MLD / MVD filtering of 

the A-scans prior to image reconstruction has on the quality of the reconstructed 

images. It has been demonstrated that the image reconstructed with the filtered data 

gives improved characterisation of the defect. 
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Chapter 5. 

CONCLUSIONS AND FUTURE WORK. 
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5.1. Conclusions. 

The aim of this work has been to develop an ultrasonic imaging system to generate 

high quality images of defects embedded within engineering type components. This 

section summarises the imaging system components and draws conclusions on their 

overall performance. 

Image Reconstruction. 

The reconstruction of high resolution ultrasonic images using a number of different 

tomographic images of the defect and then fusing then together, was found to be 

justified from the results obtained. Four straightforward tomographic reconstruction 

algorithms were chosen. These being; Pulse-Echo Reflection tomography, Pitch­

Catch Reflection tomography, Time-of-flight Diffraction tomography and 

Transmission tomography. 

This approach was chosen over the development of a single reconstruction aJgorithm 

in order to maintain low theoretical complexity, therefore allowing low 

reconstruction times. Another advantage is that it presents the user with a highly 

flexible system for generation of high resolution images. 

The reconstruction of tomographic images featuring a range of representative 

simulated defects has been presented for the tomographic reconstruction methods 

implemented. It has been shown that good characterisation of defects can he obtained 

using a number of different tomographic techniques even for relatively small 

amounts of ultrasonic data. 

Image Enhancement. 

In order to try to obtain the maximum amount of defect information from the A-scan 

data available, a novel image enhancement method that utilises the ultrasound 

reflected by the backwall of the test specimen has been successfully dcvclopt.-d nnd 

was found to improve image quality in all situations examined. The image 

enhancement method is expected to be of greatest merit for scenarios where nccess to 
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the test specimen is restricted or the number of A-scans available is insufficient to 

obtain a satisfactory image of any defects present. 

The single bounce image enhancement method has been implemented for the two 

Reflection tomography and the Time-of-flight Diffraction tomography algorithms. It 

has been demonstrated experimentally that the single bounce image enhancement 

generally results in an increase in the defect characterisation for both the cases where 

the access to the component is restricted and also the case when there is full access to 

the test specimen. In the case where full access to the specimen is available, the 

application of the single-bounce, image-enhancement method resulted in an average 

increase in the linear cross-correlation for the ideal image of approximately 0.10. 

However, for the case where access was restricted the average increase in the cross 

correlation was 0.20. This indicates that application of the single-bounce, image­

enhancement method may not always be advised when the full data set is available in 

tenns of the improvement to the image versus the increased image reconstruction 

times. However, for the case where access is restricted the results indicate that the 

image improvement resulting from the additional reconstruction usually produces an 

improvement in the defect characterisation. 

Image Fusion. 

In order to obtain high resolution, high quality tomographic dcff.'Ct imngcs a novtl 

fusion technique, based on fuzzy logic set theory, has been impl~mcnlcd. The fusion 

method utilises a set of the tomographic images generated using the reconstruction 

algorithms. The fusion method consists of utilising one of three fUl.1.Y logic 

membership functions depending on the nature of the dcff.'Ct being examined to 

generate a single, high-resolution image of the defect. The eXllct nature of the 

membership functions is determined by using imuge thresholding theory on the 

images involved in the fusion process. 

The operation of the fusion tool has been experimentally evaluuted fllr 8 runge of 

simulated defects embedded within cylindrical tcst specimens. It hn~ hcen 

demonstrated that the resolution and quality of the images generatoo hy utilising the 
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fuzzy logic fusion technique on a set of the tomographic images is significantly 

greater than the average of the constituent images. The fusion method results in an 

average increase of 0.20 in image cross correlation for the ideal image when 

compared to the cross correlation of the summation and ideal image. 

MVD filtering of A-scan data. 

The final component of the imaging system to be examined is processing of the raw 

ultrasonic data prior to reconstruction in order to try to improve the signal-to-noise 

ratio and time resolution of the data. The teclmique chosen was Minimum Variance 

Deconvolution (MVD) fIltering. This method was selected because it is possible to 

determine the mter parameters without prior knowledge of the measurement system 

or the specimen under test. The fllter requires knowledge about the ultrasonic 

wavelet used as well as statistical information about the material under test. These 

can be estimated from the raw data by the use of higher order statistics and 

Maximum Likelihood Deconvolution (MLD). This method of filtering has been used 

for a number of seismic and NDT applications. However, in these applications the 

user obtains the initial system-parameters from the test equipment and spc..'Cimcn 

rather than by estimation from the raw data as is the case here. This has only recently 

been made possible by improvements in computer performance, as the algorithms are 

computationally intense. 

The effectiveness of this form of MVD filtering has been experimentally validated in 

two stages. The ftrst stage was to examine the perfonnance of MVD filtering on 

individual A-scans obtained using a number of different data acquisition set-ups. The 

second stage was to evaluate the performance of the filter on complete sets of A-

scans. 

The acquisition of the wavelet and statistical parameters has been performed on three 

experimentally obtained A-scans obtained using Pulse-Echo nnd Pitch-Catch 

acquisition set-ups. It has been shown that MVD filtering I~ads to an increnscd 

signal-to-noise ratio for all the A-scan and also an incrense in the time resolution of 

any pulses reflected from defects. 
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The filtering technique was applied to complete sets of A-scans that were then used 

to reconstruct tomographic images. It has been experimentally demonstrated that 

there is a significant increase in the quality of the image reconstructed using the 

ftltered data. This is reflected in the cross correlation values for the images 

reconstructed using both the filtered and unfiltered data. The filtering operation 

results in an increase of approximately 0.25 in the cross correlation with the ideal 

image, which is a significant improvement in overall image quality. 

5.2. Future Work. 

The program of work outlined above has led to the identification of several specific 

areas where further research would be beneficial. 

Specimen Geometry. 

All of the reconstructed images presented here are of defects embedded within 

cylindrical objects. However, the reconstruction algorithms have been implemented 

to be applicable to any test specimen geometry with the intention of incorporating the 

imaging methods with the NDT workbench developed within the Ultrasonics 

Research Group[4]. It would be advantageous to investigate the performance of the 

reconstruction algorithms and the fuzzy logic fusion technique presented here for n 

larger range of test specimens with differing geometries. 

CAD modeL 

In order to aid interpretation and visualisation of the reconstructed tomographic 

images it would be advantageous to incorporate a CAD model of the test sp<.'Cimcn 

with the image. This is of particular interest whcn the sample geometry is of greater 

complexity than has been used here. The presence ofa CAD model ofthc component 

would allow better assessment of any defects present. 

A system to allow visualisation of images together with a CAD model of the 

component has been developed by members of the Ultrasonics Research GN:lUP [~l 

so incorporation of the imaging system presented here with the visualisation nnd 

interpretation tools should be straightforward. 
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Investigation of System Performance for Real Defects. 

The reconstructed images in this thesis are all of simulated defects contained within 

the test specimens. It would be extremely valuable to evaluate the system 

performance on actual defects. 

Parallel Processing. 

At present the image reconstruction times are longer than ideal for practical 

application. This is more of a problem with the more complex algorithms i.e. Pitch­

Catch Reflection and Time-of-flight Diffraction tomography due to the nature of the 

backprojection although the other reconstruction methods would also benefit from 

parallel processing implementation. All of the tomographic algorithms presented 

here can easily be adapted for parallel processing [37]. 

3-D Image Reconstruction. 

At present the reconstruction algorithms only reconstruct images of the object's cross 

section. This has the disadvantage that defects that are not at a favourable position 

and orientation within the object with respect to the object slice being imaged, will 

not get reconstructed satisfactorily. This can be overcome by extending the image 

reconstruction to 3-D. 

There are two obvious ways this can be achieved. The first method would be to use 

the existing reconstruction algorithms to reconstruct images of a number of slice 

images and then stack them to obtain a 3-D image. The second method would be to 

develop tomographic algorithms that take the data at alJ positions about the test 

specimen and reconstruct a true 3-D image i.e. the backprojection of the ultrasonic 

data would be over spherical surfaces rather than along circular paths. Th~sc 

approaches present a trade off between the processing power required to reconstruct 

the image and the quality of the generated image. The first method is likely to he the 

least computationally intensive but would give images whose quality depends on the 

number of slices utilised. The second method would be extremely computntionnlly 

intensive, but would give better quality images. 
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5.3. Closing Remarks. 

This program of work has presented a number of new techniques to aid the 

characterisation of defects. The main contributions of this work are: 

• The development and verification of an image fusion technique based on fuzzy 

logic set theory. It has been demonstrated that significant improvement can be 

made in defect characterisation by the fusion of a number of ultrasonic images. 

This methodology applied to the generation of high resolution images also 

. provides a high degree of flexibility for the user .. 

• In order to maximise the amount of defect information that can be obtaim.-d from 

the set of A-scans available for reconstruction of tomographic images. a single­

bounce, image-enhancement method has been developed. It has bc.'Cn 

demonstrated that the method gives improved defect characterisation. 

• Since a system that is required to be flexible is extremely desirable, a blind 

deconvolution method has been implemented in order to obtain the information 

required to implement a deconvolution filter to improve A-scan resolution. mind 

deconvolution was chosen to overcome the problem associated with the majority 

of deconvolution methods currently used in NOT; that is in many cases specific 

information is needed about the scanning geometry, probe utilised for data 

acquisition and also the component under test. This type of blind deconvolution 

has not been possible in NOT until now due to the computational complexity of 

the algorithms involved. It has heen demonstrated that the blind d(..'Convolution 

of A-scan data prior to reconstruction gives improved defect characteri~t ion. 

When these three innovative powerful ultrasonic signal-processing tools are 

integrated into a single imaging system along with tomographic image reconstruction 

tools the result is a highly flexible and powerful tool for the ciwactcris.'ltil)n of 

defects contained within engineering components. 
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AppendixA. 

TRIGONOMETRICAL MANIPULATIONS. 
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In Chapter 2 some trigonometrical manipulation of equations (2.2-9) and (2.2-35) 

was required. This manipulation will be presented in this appendix. Initially the more 

straightforward Pulse-echo Reflection case will be examined. Once this 

trigonometric manipulation has been outlined the more complex Pitch-Catch 

Reflection situation will be examined. 

Pulse-Echo Reflection Tomography. 

The aim of this section is to showing the trigonometrieal manipulation performed on 

equation (1) to obtain equation (2). For clarity the manipulation will be performed in 

two parts. The fIrst part will be the manipulation of the first two Cosine terms, Then 

the remaining Cosine terms will be examined, with the remaining term not requiring 

and manipulation to be in the form in equation (2). 

(1) 

(2) 

where 

x = {r; + r2 - 2rorcos(0 - 00)1'2 (3a) 

tanY= rosinOo-rsinO (3b) 
ro eosOo -rcosO 

Y1 = 2~ (r2 -r;) (3c) 

Y2 =_I_{r: +r4 -2r2r;eos2(O-Oo))"2 (43) 
2R 

t 
r; sin 200 - r2 sin 20 

ana= ~~ 
r; eos200 _r2 eos20 

Z03 



The fIrst two Cosine terms of equation (1) can be expanded as follows: 

2[-rcos(9-~)+rocos(9o -~)] 
=> 2[-r(cos9cos~+sin 9sin~)+ro(cos90 cos~+sin 90 sin~)] (5) 

=> 2[(ro coseo -rcose)cos~+(ro sin 00 -rsine)sin~] 

Substituting 

and 

B = Co sin 90 -csin 9 (7) 

into equation (5), then the following relationship is obtained, 

2[Acos~+Bsin~] (8) 

Using standard trigonometrical relationships, this can be written in the fonn 

2X cos(~ - y), i.e. 

2[Acos~ + Bsin~]= 2Xcos(~ - y)= 2[Xcos~cosY +Xsin~sin Y] (10) 

Then equating Cosine and Sine terms in equation (10) an expression k)r Y can he 

obtained 

Y 
B Co sin 90 -rsinO 

tan = - = -::---=----
A ro eos90 -reosO 

(11) 

All that remains is to obtain an expression for X. Squaring and adding the 

expression obtained from equating the cosine and sine tenns, then 

204 



where 

A2+B2=X2cos2Y+X2sin2Y=X2 (12) 

X=~(A2 +B2) 

A 2 = r; cos2 90 - 2rro cos9 cos90 + r2 cos2 9 (13a) 

B2 =r;sin 2 90-2rrosin9sin90 +r2 sin1 9 (l3b) 

It follows from this that 

Now all that remains is to perform the manipulation on the third and fourth 

trigonometric terms of equation (1). The two trigonometrical terms can be expanded 

as follows. 

(IS) 

=> 2~ [- r2 cos 29 cos 2~ - r2 sin 29 sin 2~ + r; cos 200 cos 2~ + r; sin 200 sin 2~ ] 

=> 2~ [(r; cos290 - r2 cos29 )cos2~ + (r; sin 290 - rl sin 20 ~in 2~] 

This is now in a similar form to equation (5), with 

and 
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Using the same trogonometrical relationship as before the following equation is 

obtained 

_1_[A cos 2cp + Bsin 24>] = _1 12 cos2(cp - a) 
2R 2R 

= _1_ [y 2 cos2cp cos 2a + 12 sin 24> sin 2a 1 
2R 

(16) 

The same method of equating the Cosine and Sine terms is now adopted to determine 

12 and a. It follows that 

and 

r; sin 290 _r2 sin 29 
tana = (18) 

r; cos290 _r2 cos29 

Pitch-Catch Reflection Tomography. 

The simpler Pulse-echo case has been examined, now all that remains is to examine 

the Pitch-catch Reflection tomography case. The task is to perform the 

trigonometrical manipulation on equation (19) to obtain equation (20). 

and 

AU (r,O;ro,90) == _1_[r2 - r02 J- rcos(9 - cp - p)- rcos(O - 4> + p)+ 
2R 

ro cos(9o -4> -p)+ ro cos(9o -4>+ p)+ 

_1 [_r2 cos 2(9 -4> - p)- _r2 cos 2(0 -4> + p)+ 
4R 

r; cos2(9o -4> - p)+ r; cos 2(90 - 4> + p)] 

(19) 



where X, Y, 'Yh 'Y2 and a. are as defmed in equations (3) and (4). 

The same approach taken for the Pulse-echo manipulation will be undertaken here. 

The fIrst step is to split equation (19) into two parts. The first four trigonometrical 

terms can be expanded as follows: 

-rcos(e-~ -~)-rcos(e-~+~)+ro cos(eo -~-~)+ro cos(eo -~+ p) 
= -rcos(D-f3)-rcos(E-~)+ro cos(D -~)+ro cos(E+p) (21) 

= -2rcosDcos~ + 2ro cosEcosp 

where 

D=e-~ (22a) 

and 

Now substituting D and E back into equation (21) it becomes 

- 2r[cos 9 cos cp + sin 9 sin cp leos ~ + 2ro [cos eo cos ~ + sin eosin ~ leos ~ 
= 2[(ro cos eo - rcos9)coscp + (ro sin eo - rsin eo)sin ~]cos~ 

By multiplying equation (10) bycosp 

where 

2[Acoscp+Bsin cp]cosp = 2Xcospcos{cp- V) 

=2[Xcos~cosY +Xsin~sin Y]cosp 

A = ro coseo - rcose (2Sa) 

(23) 

(24) 
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and 

Equating the cosine and sine as before the same expressions for X and Y are obtained 

as expected, gives the same expressions for X and Y as obtained previously, Notably 

(26) 

and 

The second step of the manipulation is to examine the other four trigonomctrical 

terms of equation (19). Notably 

A similar approach is taken to the manipulation of the fltst four cosine terms of 

equation (19). These terms can be expanded as follows: 

_1 [_r2 cos2(e-~-p)-r2 cos2(e-~+p) 
4R 

+r; cos2(eo -~-p)+r; cos2(eo -~+p)] 

= 4~ [_r2 cos2(A-p)-r2 cos2(A+p)+rol cos2(B-p)+r; cos2(B + p)] 

= 4~ [-2r2 cos2Acos2p+2r;cos2Bcos2P] 

(29) 
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where 

A=e-~ (30a) 

and 

Now substituting A and B back into equation (29) 

_1_[_ 2r2 cos2Acos2~ + 2r; cos2Bcos2~] 
4R 

1 [- r2 [cos29cos2~ + sin 29 sin 2~ ]cos2~ ] 

= 2R + r; [cos290 cos2~ + sin 290 sin 2~ ]cos2J3 
(31) 

As before use the standard trigonometrical relationship stated in equation (32) to 

reduce equation (31) to a single term. 

_1_[ACOS2~ + Bsin2~]cos2~ =_1 Y2 cos2~cos2(~-a) 
2R 2R (32) 

= 2~ [y 2 cos 2~ cos 2a + Y 2 sin 2~ sin 2a )cos 2P 

where 

A = r; cos290 - r2 cos20 

and 

B = r; sin 290 - rl sin 20 



Equating the Cosine and Sine terms the expressions for the 12 and a can be obtained, 

and are as specified in equations (3) and (4). 
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