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“Did you hear about the rose that grew from a crack in the concrete?

Proving nature’s laws wrong, it learned to walk without having feet.

Funny, it seems, to by keeping its dreams; it learned to breathe fresh air.

Long live the rose that grew from concrete, when no one else even cared.”

-Tupac Amaru Shakur (Lesane Parish Crooks)
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Abstract

Department of Pure and Applied Chemistry

Doctor of Philosophy

Computational Studies on Molecular Recognition in Chymosin

Complexes and Related Systems

by Samiul M. Ansari

This thesis focuses on molecular recognition in chymosin complexes using various

computational approaches used for studying protein-ligand systems. Three com-

putational investigations are presented in this thesis.

The first research project, titled, ‘Allosteric-Activation Mechanism Of Bovine

Chymosin’, is presented in chapter 5. The study investigates the aspartic pro-

tease, bovine chymosin, which catalyses the proteolysis of κ-casein proteins in

milk. The research presented in this chapter employed two computational tech-

niques, molecular dynamics and bias exchange metadynamics simulations, to study

the mechanism of allosteric-activation and to compute the free energy surface for

the process. The simulations reveal that allosteric activation is initiated by inter-

actions between the HPHPH sequence of κ-casein and a small α-helical region of

chymosin (residues 112-116). A small conformational change in the α-helix causes

the side chain of Phe114 to vacate a pocket that may then be occupied by the side

chain of Tyr77. The free energy surface for the self-inhibited to open transition is

significantly altered by the presence of the HPHPH sequence of κ-casein.

https://www.strath.ac.uk
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The second research project, named, ‘Effect of Mutations in Bovine or Camel

Chymosin on the Thermodynamics of Binding κ-Caseins ’, is presented in chap-

ter 6. Both bovine and camel chymosin catalyse the proteolysis of a milk pro-

tein, κ-casein, which helps to initiate milk coagulation. The research in this

chapter reports computational alanine scanning calculations in four chymosin–

κ-casein complexes, helping to elucidate the influence that individual residues

have on the protein-ligand binding thermodynamics. Of the 12 sequence dif-

ferences in the binding sites of bovine and camel chymosin, eight are shown to

be particularly important for understanding differences in the binding thermody-

namics (Asp112Glu, Lys221Val, Gln242Arg, Gln278Lys. Glu290Asp, His292Asn,

Gln294Glu, and Lys295Leu. Residue in bovine chymosin written first).

The final research project of this thesis titled, ‘Comparative Molecular Field Anal-

ysis using Molecular Integral Equation Theory ’, is delivered in chapter 7. The

study reports, and thoroughly benchmarks, a new method for 3D-QSAR that

uses a classical statistical mechanics based solvent model combined with machine

learning. Recently, Güssregen et al. used solute–solvent distribution functions

calculated by the 3D Reference Interaction Site Model (3D-RISM) in a 3D-QSAR

model to predict the binding affinities of serine protease inhibitors. The work car-

ried out for this thesis extends this idea by introducing probe atoms into the 3D-

RISM solvent model in order to capture other molecular interactions in addition

to those related to hydration/dehydration. The CARMa models have been thor-

oughly benchmarked against other 3D-QSAR methods across six different datasets,

demonstrating that CARMa is an extremely robust method, outperforming other

field-based QSAR methods.
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Chapter 1

Overview

1.1 Chymosin (Rennin)

Chymosin is a mammalian digestive enzyme used in the manufacturing of cheese

in industry. Archaeological findings dating back to 6000 BC suggest cheese manu-

facture, via chymosin, is possibly one of the earliest biotechnological applications

conducted by humans. [4,5] Cave paintings from the Libyan Sahara (5500 – 2000

BC) and Sumerian relief (3500 – 2800 BC) depict a clear process of curding milk

into cheese. Forensic tests on ancient Egyptian pottery dating between 3000 –

2800 BC found that the earthenware was used to store cheese. [6] Historic docu-

ments from ancient Rome report that by the time the Roman Empire reached its

height, cheese production via chymosin was a well-established process. [5]

Evidence suggests that the earliest production of cheese may have been discov-

ered by accident when milk was being stored in bags made from ruminant calf

stomachs which contained traces of proteolytic enzymes. [7] The first recorded at-

tempts to isolate the active enzyme were made in 1840, by a French pharmacist

named Jean-Baptist Deschamps. [8] The name given to the enzyme was Chymosine,

derived from the ancient Greek word for juice – khymos [9] (which may be due to

the stomach contents appearing as juice). In 1890, Lea and Dickinson suggested

2
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the name rennin, derived from the word rennet. However, in 1970, Foltmann re-

turned to the prior nomenclature of chymosin to avoid confusion with renin, an

enzyme found in kidneys. [10]

Naturally found in the stomach of young mammals, chymosin is an acid stable

peptidase. As a member of the aspartic protease (also called aspartic peptidase)

family it is closely related to pepsin, which is found in adult mammals. The en-

zymes primary function in nature is to aid digestion by selectively cleaving κ-casein

proteins in milk to initiate coagulation. In industry, this procedure is exploited to

initiate milk-clotting in the first stages of cheese manufacture. [11]

Latest statistics value the global cheese industry at $92 billion and it is expected

to grow at a steady rate of 3% over the next 5 years due to gradual increases in

demand from emerging countries. [12] Globally, over 22.5 million metric tonnes of

cheese is produced annually, making cheese production the largest driver of growth

in the dairy industry, as shown by Figure 1.1. [13]

Figure 1.1: Cumulative world dairy production between the years of 1961 and
2014. Displays the dominance of cheese in dairy product production.

Bovine chymosin has been marketed towards the manufacturing of cheese over the

past half century. However, in recent times it has been discovered that the camel
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variant of the enzyme has a 70% higher clotting activity for bovine κ-casein. [11] It

has also been demonstrated that camel chymosin has just 20% of the unspecific

proteolytic activity that bovine chymosin shows in bovine milk. [11] By compari-

son, bovine chymosin performs very poorly in camel milk. Both bovine and camel

chymosin are now marketed towards the food industry as enzymes that initiate

milk clotting. [11]

Although the physiological effects of the two enzymes in nature are known, there

are several aspects of their biological functions that are not understood at a molec-

ular level. [2] Moreover, the reasons for the disparity in catalytic propensity between

bovine and camel chymosin have not been fully explained. [14]

The crystal structures of bovine chymosin have revealed that residue Tyr77 can oc-

cupy two different positions. It can be extended over the binding pocket, referred

to as the self-inhibited position, or it can be extended back into the β-hairpin

flap, known as the open conformation. [2] The limited information in the literature

makes it difficult to be able to deduce the dynamic procedure to convert between

the two known conformations.

Experimental studies using a pentapeptide -His-Pro- fragment (His98-His102) of

κ-casein incubated with bovine chymosin, have shown up to a 200-fold increase in

the catalytic rate for hydrolysis in comparison to fragments of the native substrate

of varied lengths. [15] The pentapeptide cluster in camel κ-casein is Arg-Pro-Arg-

Pro-Arg, whereas in bovine κ-casein it is His-Pro-His-Pro-His. The His-Pro cluster

is suggested to act as an allosteric-activator on the self-inhibited chymosin, con-

verting it to the open conformation. [16] This theory concurs with experimental

investigations which demonstrated the poor performance of bovine chymosin in

camel milk. Furthermore, it is also supported by mutagenesis studies which sug-

gest the His-Pro residues themselves are important for catalysis. [17,18]

The catalytic mechanism for the cleavage of κ-casein by chymosin is still disputed.
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Although there are a number of theories on how it may occur, it is widely accepted

that a nucleophilic attack on the carbonyl carbon of κ-casein via a catalytic wa-

ter results in hydrolysis. However, the lack of experimental data to support this

theory makes the exact details of the mechanism speculative. There are numerous

other theories on the catalytic mechanism, but due to disagreement within the

scientific community none are definitive. [19,20]

An improved understanding of the structures, complexes and allostery will help

design mutants of the enzyme with enhanced properties, compared to the natural

version. The economic impact of this is substantial as it can lead to an increase

in output from industry. Designing mutant chymosin enzymes that can efficiently

act on milk from mammals that are more abundant in impoverished regions of the

world will help to increase cheese production. The increased yield would in turn

help reduce the cost of cheese and allow for it to be more readily available across

the world without added cost of transportation over long distances. Therefore, this

would enable less fortunate regions of the world to assure food security, providing

a humanitarian incentive to investigate these unknowns.

1.2 Aims and Objectives

This thesis explores and investigates various computational techniques

used to study protein-ligand binding with an emphasis on the aspartic

protease, chymosin, and approaches using the three-dimensional refer-

ence interaction site model (3D-RISM).

The first research chapter of this thesis is titled Allosteric-Activation Mechanism

Of Bovine Chymosin. The main objective of the research conducted in this chap-

ter is to determine the activation mechanism that takes place in chymosin to allow
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for protein-ligand binding. To achieve this, molecular dynamics (MD) and bias-

exchange metadynamics (BEMD) simulations were used to reveal the allosteric-

activation mechanism and its associated free energy surface. The BEMD sim-

ulations have been performed by collaborators in Prof Birgit Schiøtt’s group at

Aarhus University. However, the analysis of the BEMD simulations presented in

this thesis are the author’s own.

The second research chapter titled, Effect of Mutations in Bovine or Camel Chy-

mosin on the Thermodynamics of Binding κ-Caseins, investigates the protein-

ligand binding thermodynamics in chymosin–κ-casein complexes. The study inves-

tigates the importance of individual amino acids in chymosin through single-point

mutations to calculate the influence the residues have on the binding free energy of

chymosin to κ-casein. The research aims to identify individual residues that can be

mutated to effect binding thermodynamics to favour complexation. Furthermore,

the study assesses the use of 3D-RISM methods for calculating binding free energy.

The final research chapter titled Comparative Molecular Field Analysis using Molec-

ular Integral Equation Theory, reports the development and benchmarking of a

novel 3D-QSAR technique. The purpose of this research is to develop a new

3D-QSAR method that uses a classical statistical mechanics based solvent model

combined with machine learning to predict protein-ligand binding related proper-

ties. This is done by further developing a recently presented method (CARMa)

by introducing probe atoms into the 3D-RISM solvent model in order to capture

other molecular interactions in addition to those related to hydration/dehydration.

The influence of algorithmic parameters, such as the 3D-RISM bridge-functional

and grid-size, on the prediction accuracy are systematically investigated. The new

method is benchmarked and results are compared to those in the literature.
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1.3 Thesis Structure

The first part of this thesis is dedicated to reviewing background theory, literature

results and computational protocols. In summary, chapter 2 is dedicated to the

enzyme, chymosin, providing a review of its history, structure, activity, commer-

cial production and literature investigations. Chapter 3 is a review of quantitative

structure activity relationships (QSAR) with a focus on 3D-QSAR and CoMFA.

The fourth chapter surveys the computational theory for molecular mechanics

(MM), molecular dynamics (MD), reference interaction site model (RISM), ma-

chine learning and regression.

The second part of the thesis presents three research chapters and is concerned

with new findings, discussions of the analysis about the research conducted and

describe the conclusions that are made. Here, chapter 5 is concerned with the

allosteric-activation mechanism of bovine chymosin. The sixth chapter presents

the effects on binding thermodynamics for mutations in bovine and camel chy-

mosin. Chapter 7 introduces an extension to CARMa and benchmarks the use of

molecular integral equation theory in QSAR.

The thesis is complemented with appendices that outline additional calculations

relevant to the research alongside additional tables and figures that have not been

presented as part of the research chapters.
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Chapter 2

Chymosin

The mammalian aspartic protease, bovine chymosin, is an enzyme that aids di-

gestion by selectively cleaving the milk protein κ-casein. [21] Chymosin is released

in the fourth stomach of calves as an inactive enzyme or zymogen, referred to as

pro-chymosin. Once pro-chymosin is exposed to an acidic environment inside the

stomach, a 43 residue pro-peptide in the N-terminus is proteolytically cleaved to

form chymosin, the active enzyme. The primary function of this enzyme is to

catalytically convert the milk protein caseinogen into para-casein, which precipi-

tates out in the stomach as a calcium salt. [22] This precipitate forms a firm curd

to ensure milk remains in the stomach long enough to be exposed to other prote-

olytic enzymes and the gastric juice. This process ensures maximum absorption

of nutrients for young mammals. [23]

2.1 History

In 1972, Christian Ditlev Ammentorp Hansen, a Danish pharmacist, was awarded

the University of Copenhagen gold medal for his research on developing a chem-

ical treatise. He developed a procedure to extract pure and functional chymosin

9
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enzymes from calves and revolutionised the dairy industry. [24] This development

directly resulted in the establishment of the first chymosin production factory in

1974.

In 1981, Burkhalter listed around 500 different varieties of cheese produced from

cows milk alone, [25] and in 1993, Kalantzopoulos listed a further 500 more, pro-

duced from sheep and/or goats milk. [5] This displays, to some extent, the pro-

gression of research into the cheeses throughout modern history. However, it is

still evident that much is not yet understood about the molecular mechanism in-

volved. Important information such as the significance of the tertiary structure

which promotes chemical activity and the mechanism of action which takes place

in unknown. The information in the literature regarding the chemical environment

in which chymosin activity is most effective is limited and the knowledge behind

the self-inhibiting structure of chymosin is inconclusive.

2.2 Structural Chemistry

2.2.1 Primary Sequence Structure

Chymosin exists as a single strand polypeptide chain consisting of 323 amino acid

residues with a molecular weight of around 35,000. [21] The enzyme is rich in di-

carboxylic and β-hydroxy amino acids but has a low content of basic residues. [26–28]

Chymosin exists as three isozymes, chymosin A, chymosin B and chymosin C.

Chymosin A has an aspartic acid residue at position 244 whereas in chymosin B a

glycine residue occupies this position. This results in a higher affinity of chymosin

A to κ-casein due to the additional electrostatic stabilisation of the intermediary

κ-casein–chymosin A complex. [21] Chymosin C is understood to be a product of

chymosin A degradation, losing residues 244 to 246. [29] This study will focus on
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chymosin B since it is the enzyme preferred in industry.

2.2.2 Secondary Structure

The chymosin secondary structure mainly consists of β-sheets (48%, 29 strands,

158 residues), combined with a few small α-helices (13%, 9 helices, 44 residues). [30]

Three well defined sheets are formed by the anti-parallel β-strands. [31]

2.2.3 Tertiary Structure

The three-dimensional crystal structures of a number of aspartic proteases have

been solved by X-ray crystallography including chymosin, endothiapepsin [32], hu-

man renin [33], penicillopepsin [34], pepsinogen [35,36], porcine pepsin [37–39], rhizopus-

pepsin and a number of retroviral proteinases. [40–42]

The tertiary structure of bovine chymosin is shown in Figure 2.1. The struc-

ture is highlighted in the key regions which have been found to be of importance

in the allosteric mechanism.
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Figure 2.1: Depiction of bovine chymosin. 1) β-hairpin flap (light blue) and
Tyr77 (dark blue). 2) α-helix (purple). 3) Catalytic residues (green).

The crystal structure of chymosin was first obtained in 1971. [43] A recombinant

bovine chymosin crystal structure was solved and refined at 2.3 Å resolution in

1990 (1CMS), [44] then at 2.2 Å resolution in 1991 (4CMS). [31] There is a clear

binding cleft which separates the bi-lobal folding pattern of the N- and C-terminal

domains. [44] The two lobes are related by a pseudo-2-fold axis which lies between

the two catalytic aspartic acid residues (Asp32 and Asp215), forming the approxi-

mate intramolecular symmetry. [31] The side chains of the aspartic acid residues are

extended towards each other in an approximately planar geometry. The two cat-

alytic aspartic acid residues are stabilised by a network of hydrogen bonds which

incorporates two threonine residues, referred to as “the fireman’s grip”. [45]

There are three disulphide bridges between residues Cys45-Cys50, Cys206-Cys210

and Cys249-Cys282. A number of ion pairs can also be found between Arg59-

Asp57, Arg157-Glu308, Arg157-Ile326, Arg307-Asp11 and Arg315-Asp138. [31,44]
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The structure contains a single cis-proline residue, Pro23, found in the N-terminus. [46]

An identical cis-proline residue can be found in endothiapepsin, mucorpepsin and

porcine pepsin. [32,47,48]

The active site of chymosin and other aspartic proteases consist of Asp, Thr and

Gly residues from terminal domain and is highly conserved. There is a nine per-

cent sequence identity between the C- and N-terminal domains of chymosin. [31]

Structural comparisons of chymosin with other aspartic proteinases reveal a high

degree of structural similarity. Superimpositions reveal the N-terminus has greater

similarity with other aspartic proteinases than the C-terminal domain. [44] A rigid

body in the C-terminus (residues 190 to 302) results in the C-terminus being more

separated from the binding cleft than the N-terminal domain. [49]

2.3 Production

There are three established techniques for producing cheese in industry; rennet-

curd, acid-curd and acid-heat. [50] The most used is the rennet-curd technique,

where chymosin is used to cleave κ-casein, eliminating the hydrophilic region of

micelles. [51]

The acid-curd method does not rely on a coagulating enzyme, instead milk is

simply acidified. [50] At a pH of approximately 5.2, caseins clot and reducing the

pH causes the substance to gel. This process is also referred to as acid-induced

gelation, where physiochemical changes to caseins induce a gelling process. [51] The

acidification of milk is understood to disintegrate calcium-phosphate complexes,

causing some caseins to disassociate from micelles and fall into the micelle core. [52]

A reduced net negative charge and increase in hydrophobic interactions result in

aggregation of the micelles. This process is widely used in cream cheeses such as

cottage cheese. [50]
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The acid-heat technique is similar to the acid-curd, but involves heating the milk

to 78-80◦C. [52] The heating process takes place first and is then followed by acidi-

fication to a pH of 5.9 - 5.2, depending on the type of cheese desired. [50] Heating

causes the flocculation of caseins and whey proteins, this in turn minimises the

level of acidification required. [53] This technique is used to produce ricotta and

queso-blanco, both highly desired cheeses in Europe.

2.4 Biological Aspects

2.4.1 Enzyme Stability

Chymosin is believed to be a stable enzyme between a pH range of 5.3 and 6.3, al-

though some reports have found the structure remains relatively stable at a pH of

2.0. [54] It has also been reported the enzyme loses its activity rapidly under acidic

conditions (pH 3-4), which is suggested to be caused by auto-degradation. [55] A

similar loss of activity has been observed under basic conditions (pH above 9.8),

which is thought to be due to conformational changes. [55] The loss of activity is

reported to be larger for chymosin A when compared to chymosin B. [23] Chymosin

B is favoured in industry due to its longer shelf-life, even though chymosin A has

a 20% greater milk clotting activity. [56] This study solely investigates bovine chy-

mosin B unless stated otherwise.

At temperatures of around 2◦C, chymosin is more stable than at room temper-

ature. [57] At high temperatures between 45 and 55◦C, a rapid loss of activity is

observed. [58] Studies have also indicated modifications on the terminal amino group

of lysine residues and photo-oxidation of histidine residues may adversely affect

chymosin activity. [59–61] A 30 minute incubation with 4.6M of urea at 37◦C, will

approximately half chymosin activity. [62] Experimental studies has shown both
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cysteine residues and amino acids in the pro-region of the enzyme are crucial to

refold the enzyme after denaturing. [63]

Chymosin is less stable at neutral pH compared to pro-chymosin. [23] Pro-chymosin

is readily converted to chymosin at pH values below 5, whereas at pH greater

than 11 a conformational change occurs, resulting in a dramatic loss of stabil-

ity. Pro-chymosin can also be produced by bacteria, this variant is known as

pseudo-chymosin and can be stored under acidic conditions while remaining sta-

ble. However, at pH values above 4.5 it is rapidly converted to chymosin. [64]

2.4.2 Enzyme Solubility

A number of factors affect the solubility of chymosin including the ionic strength

of the solution, temperature and pH. [57] In a 1M sodium chloride (NaCl) solution,

chymosin is soluble at a pH of approximately 5.5, but in the respective 2M solution

it appears to be insoluble. Amorphous chymosin precipitates are more stable at

2◦C than at 25◦C, whereas crystalline chymosin is more soluble at 25◦C. At a pH

value of around 6.5, chymosin has an ionic strength of 0.005 mol/kg and is very

insoluble. Solubility has been shown to increase with increases in ionic strength. [57]

2.5 Activity and Specificity

2.5.1 Catalytic Mechanisms

The earliest proposed catalytic mechanisms suggested that the catalysis was ini-

tiated by protonation of the carbonyl oxygen of the substrate by an Asp216 pro-

ton. [65] A donation of a water proton to Asp216 and a nucleophilic attack by the
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generated hydroxide ion on the carbonyl carbon of substrate Asp34, [66] leading to

the formation of the tetrahedral intermediate complex. [67] The intermediate com-

plex is broken down by a protonation of the nitrogen atom by either the Asp34

catalytic carboxyl group or the bulk solvent. If broken down by Asp34 a simul-

taneous proton transfer may occur to the Asp216 carbonyl during the cleavage of

the complex. [68]

Figure 2.2: Catalytic mechanism proposed by Veerapandian et al.

The catalytic mechanistic model outlined in Figure 2.2 was proposed in 1990 by

Veerapandian et al. [19] The carbonyl carbon of the tetrahedral carbonyl hydrate

is hydrogen-bonded to the intermediate oxygen atom of Asp34-Asp216. The car-

boxyl oxygen of Asp34 is hydrogen-bonded to the hydroxyl oxygen of the hydrate.

The scissile bond of the hydrate is protonated by Asp34 and consequently attacked

by a water molecule which is polarized by Asp216 into a nucleophilic state. It is

suggested that the rigid body of the enzyme-substrate complex may distort the

amide bond which facilitates the nucleophilic water’s attack on the hydrate. This

accounts for the extensive hydrogen bonding of intermediate complex 1 to stabilise

Asp34. [20] The amide nitrogen in this complex would favour protonation which can
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be transferred from Asp216 or the bulk solvent.

Both chymosin and pepsin have been demonstrated to catalyse peptide synthe-

sis. [69] For chymosin, peptide synthesis and hydrolysis is optimal between pH 4-

5. [70] The activity of the enzyme is dependent on the residues neighbouring the

forming or hydrolysing bond. [70]

In recent reports, in light of kinetic and ab initio studies, Piana and Carlini have

proposed a different reaction mechanism involving a low-barrier hydrogen bond

between residues Asp216 and Asp34. [71] This proposed mechanism is believed to

occur through proton rearrangement around a 10-membered cyclic intermediate

which is believed to occur via quantum tunnelling. [72] Neither the mechanism pro-

posed by Veerapandian et al. nor the mechanism proposed by Piana and Carlini

explain all of the experimental findings on chymosin catalysis. Both of these

mechanisms and others proposed in the literature have not been accepted as the

definitive mechanism within the field.

2.5.2 Zymogen Activation

Hammarsten was the first to identify the pro-enzyme, pro-chymosin [9] He showed

that the rennet was formed and stored as the inactive, pro-chymosin. The pro-

enzyme was shown to be activated by stomach acid, converting it into chymosin. [73]

Structural comparisons between porcine pepsinogen and pepsin have shown the

enzyme and pro-enzyme are structurally very similar. [74] The region of pepsinogen

which is defined as the pro-region and the first 13 residues of pepsin are where

the differences occur between the enzyme and zymogen. [75] The side chain of these

residues form different conformations in the zymogen and active enzyme. The

same structural similarities between the active enzyme and zymogen have been

observed in most aspartic proteases. [35]
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The mechanism of zymogen activation in aspartic proteinases are different from

enzyme to enzyme and dependant on pH. [46] An intramolecular mechanism occurs

below pH 2.5 to convert the pepsinogen zymogen to the active pepsinogen en-

zyme. [64] The zymogen is cleaved at Met16P-Glu17P releasing the pseudo-enzyme

and the pro-segment. [76] In calf chymosin the pro-enzyme is cleaved at Phe27P-

Leu28P. [77] The same position is cleaved in chicken pepsinogen and human pro-

gastriscin. [78,79] It has been suggested the removal of the total pro-peptide segment

occurs via an intermolecular mechanism at pH 3-4. The cleavage site, Phe42-Gly1

has been found to be more active at pH 2 than at pH 4.5. [64]

Site-directed mutagenesis studies on pro-chymosin have indicated that mutations

of residues do not significantly impact on activity. Altering the pro-chain residues

27 to 30 resulted in normal proteolytic and activation processing. [80] It was also

found when the cleavage site was removed a new cleavage site was generated by

the pro-enzyme, Ser37P-Val38P, and this also left the proteolytic and activation

processing unaffected. [80]

Zymogen activation processes in aspartic proteases are found to be dependent

on pH, temperature and salt concentration. At room temperature and a pH of 5

pro-chymosin activation takes from 2 to 3 days. [81] On the other hand zymogen

activation is completed in 5 to 10 minutes at room temperature, pH 2 and ionic

strength of 0.1 mol/kg. [82]

2.6 Chymosin Flap Binding Specificity

Structural similarity between chymosin and other aspartic proteinases are well

known and thoroughly reported in the literature. However, the greatest difference

among these proteinases occur in the surface loop regions. [46] The most significant
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difference is the position of the β-hairpin flap in chymosin, residues 73-85 (shown

in light blue in Figure 2.1), which has been implicated in substrate binding speci-

ficity. [32]

The β-flap in both chymosin and pepsin appears to be able to form two different

conformations, suggesting they may exist in two alternative structural forms. [83]

The active form ensures the binding pocket is available for substrate binding,

whereas in the inactive form the binding pocket is self-inhibited by the orientation

of the Tyr77 residue. [16,84] It is widely accepted that the self-inhibited form of chy-

mosin is converted into its active open form via an allosteric-activation procedure

by the His98-His102 fragment of κ-casein, commonly referred to as the “histidine-

proline” cluster. [16] This conversion is evident through experimental measurements

of catalytic specificity of chymosin to κ-casein.

2.7 κ-Casein

The chymosin substrate, known as κ-casein is a 169 residue protein that helps

solubilize the caseins in milk serum (αs1-, αs2- and β-caseins). κ-casein promotes

the aggregation of micelles, which are macro-structures made by the four types of

caseins. κ-casein is found predominantly on the surface of these. [85]
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Figure 2.3: The aligned primary sequence of the chymosin sensitive region of
κ-casein of different species. The Pn and Pn’ numbering follows the Schechter
and Berger nomenclature, [1] where n increases with the distance from the scissile
bond. Residues that differ between some of the species are highlighted in red.

The residue numbers are shown to the right in parenthesis.

The hydrophilic region of κ-casein protrudes from the micelles giving the structure

stability against spontaneous aggregation. [86] Chymosin selectively cleaves bovine

κ-casein at the PheP1-MetP1’ bond and camel κ-casein at the PheP1-IleP1’ bond,

causing the hydrophilic C-terminal end of κ-casein to dissociate, thereby destabi-

lizing the casein micelles initiating the release of insoluble casein proteins which

results in milk clotting. [86] (The Px or Px’ nomenclature is used to describe κ-casein

residues on the two sides of the cleavage site, e.g. Ser104, Phe105, Met106 and

Ala107 in bovine κ-casein are referred to as SerP2, PheP1, MetP1’ and AlaP2’,

respectively. Regions of chymosin that interact with the P2, P1, P1’ and P2’

residues are denoted S2, S1, S1’ and S2’ pockets, respectively. [1]). The amino acid

sequences of κ-caseins from different species in the region of the cleavage site are

given in Figure 2.3.

The crystal structure of a chymosin-inhibitor complex (RCSB PDB ID: 1CZI) and

previous molecular modelling studies, suggest that κ-casein binds to chymosin in

an extended secondary structure. [15,86] This is supported by circular dichroism, so-

lution NMR and molecular modelling studies of unbound κ-casein, all showing an

extended structure in the region of the scissile bond. [87,88] Molecular modelling and

mutagenesis studies, propose that the P8-P7’ residues are located in the chymosin

binding cleft during catalysis. Recently the arginine residue in the P9 position has
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been implicated in binding because it is conserved in bovine, camel, pig, buffalo

and goat chymosin. [89] Furthermore, an ArgP9His mutant is observed to be a poor

substrate. [90] In κ-casein, residue SerP2 appears to be essential for the catalysis

to take place. [91] The hydrophobic residues LeuP3, AlaP2’ and IleP3’ are cru-

cial in giving the structure its hydrophobic qualities. [92] In camel κ-casein LeuP3

is replaced with a hydrophobic proline residue, retaining the same hydrophobic

qualities as bovine chymosin.

Figure 2.4: Schematic depicting chymosin activity on κ-casein. A) Intact
casein micelles with protruding κ-casein layer preventing aggregation of micelles.
B) Chymosin catalytic activity cleaves protruding κ-casein, displaying partially
denatured micelles with removal of hydrophilic shell. C) Progressive coagulation

of extensively denatured micelles with a hydrophobic outer layer.

At the normal pH of milk, 6.6 - 6.7, the micelles carry a net negative charge. The

hydrophilic region of κ-casein protrudes from the micelles, providing the structure

with added stability against spontaneous aggregation. [86] The stabilising effects

of electrostatic repulsion and steric hindrance are eliminated once the coagulant,

chymosin, cleaves the protruding κ-casein of the micelle. This also results in a

reduction in the negative charge at the surface of the micelles. [15] Losing these

chemical barriers results in the micelles coming together as shown by Figure 2.4.

Clotting tends to occur when calcium ions help adjacent micelles to aggregate

through electrostatic and hydrophobic interactions. The ionic calcium trapped

within micelles is released upon acidification. This is exploited in industry where
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ionic calcium is sometimes added to increase the rate of aggregation. The network

of aggregates that forms is known as the coagulum. [86] This coagulum entraps

structures such as milk-fat, water and water soluble components including unde-

natured whey proteins, a mixture collectively known as serum. [86]

Upon acidification to 4.6 pH or lower, the milk proteins separate. Casein pro-

teins are precipitated out of the coagulum and the whey/serum proteins remain

soluble. [9] The ratio of casein to whey proteins vary from mammal to mammal

but in bovine mammals it is approximately 80:20. [15] In 1938 two more types of

proteins were discovered in milk; proteose-peptone and ionic nitrogen. [93,94]

2.8 Camel/Bovine Chymosin Relationship

Bovine and camel chymosin have high sequence similarity (94%) and identity

(85%) and similar three-dimensional structures, depicted in Figure 2.5. They

both comprise 323 amino acids that fold into a pseudo-symmetric bi-lobal struc-

ture forming a central binding cleft containing the catalytic residues Asp34 and

Asp216. In both enzymes, the side chains of the catalytic aspartic acid residues ex-

tend towards each other in a planar geometry, [95] which is stabilised by a network of

hydrogen bonds with two threonine residues, referred to as “the fireman’s grip”. [45]

Similar features are found in other homologous aspartic proteases. [14,16,47,48]
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Figure 2.5: Depiction of structural similarities between camel (red) and bovine
(gold) chymosin through structural alignment.

Within the substrate-binding cleft, there are 12 differences in the primary struc-

ture of bovine and camel chymosin. Both variants of the enzyme have a positively

charged patch on the N-terminal (residues 50-60) and a negatively charged patch

on the C-terminal (residues 240-260) that interact with κ-casein. [96]. The positive

patch is larger in camel chymosin through the replacement of a Gln56 in bovine

chymosin by His56 in camel. The negatively charged patch in camel chymosin

is found to be less negative through the replacement of Asp249 and Asp251 in

bovine chymosin by Asn249 and Gly251 in the camel variant. In camel chymosin,

there are two additional positively charged patches that are not found in bovine

chymosin. [97] The first resides in the C-terminal where a small positive patch com-

prises residues Arg242, Arg254 and Lys278, and the corresponding residues in

bovine chymosin are hydrophilic but neutral. The second is found at the base of

the binding cleft where the residues are Arg150 and Arg316 in camel chymosin,
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but Gln150 and Leu316 in bovine chymosin.

2.9 Sources of Chymosin

Aspartic proteinases have been found in a number of natural sources including but

not limited to viruses, plants and mammals. Generally they are divided into two

groups; pepsin-like and retro-viral enzymes. [46] They have been isolated from five

major sources:

1. As gastric enzymes in the stomachs of mammals i.e. pepsin A (EC 3.4.23.1),

pepsin B (EC 3.4.23.2), gastricsin (EC 2.4.23.3) and chymosin (EC 2.4.23.4).

These are produced in the mucosa as zymogens (an inactive precursor). [98]

Gastricsins are found in all parts of the stomach, prostate gland, seminal vesi-

cles and α-cells of pancreatic islets. [46] Chymosin is produced in the mucosa of

new-born mammals during gestation, such as calf, [99] kitten, [100] lamb, [99,101]

piglet [26] and seal. [102] It was established that the production of enzymes were

linked directly to the age of the animals and their feeding frequency. [46]

2. Lysosomes which contain cathepsin D and cathepsin E. Cathepsin E has been

found in gastric mucosa, spleen, thymus and also blood cells. [103] Cathepsin

D in humans has been proposed to be involved in the degradation of endo-

cytosed and intracellular proteins. It has also been used in the past as a

prognostic tool to indicate breast tumour invasiveness. [46]

3. Rennin-producing tissues such as the kidney and sub maxillary gland. [104]

4. Plant seeds have been reported to contain aspartic proteases, i.e. barley,

cucumber, lotus, rice, sorghum, squash, tomato and wheat. [105–108]

5. Micro-organisms have been reported to excrete a number of proteinases.

Some fungi excrete proteinases, i.e. Aspergillus awamori, [109] Aspergillus
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niger, [110] Endothia parasitica, [111] Mucor pusillus, [112] Mucor miehei, [113] Peni-

cillium janthinellum, [114] Rhizopus chinensis [115] and Trichoderma reesei. [109]

Thermopsin is secreted from a thermophilic archaebacterium named Sul-

folobus acidocaldarius. [116] Yeast proteinases have been documented in Can-

dida tropicalis, [117] Saccharomyces cerevisiae [118] and Yarrowia lipolytica. [119]

Retro-viral proteinases are usually found in a dimeric form. Each monomer car-

ries just one of the catalytic aspartic acid residues and is approximately half the

size of a eukaryotic aspartic proteinase. Retro-pepsins have been found in a num-

ber of viruses including avian myeloblastosis virus, human immunodeficiency virus

(HIV), Rous sarcoma virus and simian immunodeficiency virus (SIV). [120,121] These

types of proteinases code for the processing of RNA dimerization within a host

and is therefore essential. [46]

2.10 Recombinant Calf Chymosin

A number of rennet substitutes for bovine calf chymosin have been developed in

industry from various sources including adult cows, other proteolytic enzymes and

fungus proteinases. The major problem with these substitutes is that they exhibit

a considerably larger level of non-specific proteolytic activity. [46] They also exhibit

a greater level of thermo-stability, leading to considerably lower yields as higher

temperatures lead to a more complete degradation of milk proteins to form pep-

tides. [46] Reasons for these physiochemical properties in terms of structural chains

and conformations is not yet known, but it does suggest a synthetic chymosin

enzyme with enhanced and desirable properties is a feasible prospect.
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2.11 Molecular Modelling Studies of Chymosin

Very few molecular modelling studies have been conducted on chymosin–κ-casein

complexes. In 1995, a study on the protein-ligand complex involving the HisP8-

LysP6’ fragment from κ-casein coupled with both bovine chymosin and porcine

pepsin was investigated through computational means. [15] Short molecular dynam-

ics simulations were carried out using a distance-dependant dielectric protocol to

model the solvent. The starting position of the κ-casein fragment was deduced

by a computational mutation of the pepstatin inhibitor. This was done by su-

perimposing bovine chymosin on a rhizopuspepsin–pepstatin inhibitor complex.

The authors initially suggested that a cis-peptide bond between HisP8-His99 was

crucial for interactions between Asp247 and His98. However, in 1997, they revised

this theory on the basis of results from molecular dynamics simulations using a

longer peptide chain. [87] The study in 1997 reported favourable interactions be-

tween κ-casein and chymosin (HisP4:Glu245, HisP6:Asp297 and LysP6’:Glu133

respectively). Although an implicit solvent protocol was used, no comment was

made regarding the conserved or catalytic waters in this investigation. In 2002 a

computational study of apo-chymosin using an explicit solvent model suggested

the self-inhibited conformation of chymosin can be found in solution. [122]

In 2010, unrestrained molecular dynamics simulations were carried out on bovine

chymosin complexed with a fragment of κ-casein (ArgP9-LysP7’). [2] The trajec-

tories showed that the substrate binds in an extended pose and charged residues

flank the scissile bond which the authors propose stabilises the binding pose. The

κ-casein fragment can be seen to bind to both terminals: residues LysP6’ and

LysP7’ displace a conserved water molecule to bind to the N-terminal domain and

the HPHPH sequence in residues P8-P4 binds to the C-terminal domain. ArgP9

of κ-casein is also proposed to be crucial for the stabilising of the binding pose. [2]

However, the steric and/or electrostatic effects which cause the binding pose to

stabilise remain unclear. [2]
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A solvent binding and computational alanine scanning study of chymosin–κ-casein

complexes in 2013 highlighted that water binding sites on the surface of bovine chy-

mosin take part in stabilising the complex. [123] The authors demonstrated that rel-

ative binding thermodynamics of single-point mutants in bovine chymosin–bovine

κ-casein complexes can be accurately calculated using molecular integral equation

theory techniques. Although the water binding sites have been identified by sta-

tistical analysis of crystallographic data, as well as through simulation methods to

deduce the importance and roles of the waters and their binding sites, there are

a number of questions that still remain unanswered. Such as the mechanism for

chymosin–κ-casein binding, the catalytic mechanism and the residues that take

part in stabilising the binding pose.
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Quantitative Structure Activity

Relationships (QSAR)

3.1 Introduction

The premise of quantitative structure-activity relationships (QSAR) is that a com-

pound’s molecular structure can be used to determine its macroscopic properties,

such as binding affinity and pIC50. A QSAR is derived by using experimental data

to learn a statistical relationship between the physical property of interest (e.g.,

pIC50) and molecular descriptors calculable from a simple computational represen-

tation of the molecule. The QSAR must accurately model the training data and

generalize to correctly predict activities for molecules outside the representative

training set. [124]

Since the concept of QSAR was first introduced by Free, Wilson, Hansch, and

Fujita in 1964, a wide range of methodologies have been developed using various

classes of descriptors. [125,126] For the prediction of physiochemical properties, 1D

and 2D descriptors that can be calculated quickly without knowledge of molecular

conformation are often considered to be satisfactory (e.g. counts of functional

groups, graph indices, etc). [127,128] However, for modelling protein-ligand systems,

28
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where ligand conformation influences the strength of binding interactions, 3D (or

4D) descriptors are usually preferred. [124,129–132]

QSAR has traditionally been applied to virtual or newly synthesised compounds

to predict/classify biological activities and investigate their biology, chemistry and

toxicology. [133–136] QSAR models are also commonly used in computer aided drug

design (CADD) to design new chemical entities and this approach is being em-

ployed increasingly by the pharmaceutical industry to find high quality leads in

the early stages of drug discovery. [136,137] The systematic application of QSAR in

CADD is used to reduce costs by ensuring only the most promising hit compounds

are pursued, thus reducing the number of time consuming and costly experiments.

3.2 Procedure

In general, QSAR investigations involve a multi-step systematic process (Figure

3.1). This includes selection and preparation of the dataset, selection/generation

of descriptors, statistical/mathematical model derivation, training of the derived

models, validation of the models using the training set and/or an internal test set

and finally, testing the predictive accuracy of the model using a testing dataset.

During the dataset preparation step, it is crucial to assess the quality of the

data, avoiding developing unreliable QSAR models. The data should preferably

be obtained from the same bioassay protocol to avoid any inconsistencies and

inter-laboratory variabilities. Furthermore, a large enough number of compounds

should be included in the dataset to provide statistically valid QSAR models and

the bio-activities covered by the dataset compounds should be a good representa-

tion of the bio-activity range of the compound family. [136]
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Figure 3.1: A scheme depicting the steps involved in QSAR model develop-
ment, including the systematic training and testing processes.

The second step of QSAR involves the selection and/or generation of descriptors

for each compound in the dataset. There is a vast array of possible descriptors

that can be selected in this step but only a few of these are likely to be significantly

correlated with the activity. Therefore, selecting the most appropriate descriptors

is crucial in QSAR to build a robust model, usually done retrospectively after

preliminary tests. The descriptors should appropriately capture the most useful

information about the structural variation between compounds in the dataset.
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Once the molecular descriptors have been defined and generated for all compounds

in the dataset, the most suitable statistical or mathematical model to identify the

relationship between the descriptors and biological activity must be selected. Here,

regression methods can be used which require continuous variables, or classification

methods, which require discrete variables (i.e. active/inactive, soluble/insoluble).

For instance, linear approaches such as partial least squares (PLS) or multiple

linear regression (MLR) can be used as mapping or correlating functions. Non-

linear approaches such as neural networks (NN), support vector machine (SVM)

and random forest (RF) can also be used. Other methods including evolutionary

algorithms like the genetic algorithm (GA) have also been employed to select input

variables.

The next step involves training and validating the QSAR model. QSAR mod-

els are trained on the training set which contains a subset of randomly selected

compounds from the dataset, (usually a majority) leaving a minority set which

can be used for testing. Often during the model training, validation is also per-

formed. Validation methods such as leave-one-out cross-validation (LOO-CV) are

used to measure the statistical stability of a QSAR model. The training process is

usually repeated until a satisfactory model is achieved. Finally, the trained QSAR

model is tested by using the dataset compounds in the test subset to predict their

activity values, assessing the models predictive accuracy.

A critical step for QSAR studies is the splitting of the dataset into training and

testing subsets, typically done during the dataset preparation. The training set

should preferably cover the range of bio-activity that is included in the test set.

It is also preferable that the training subset includes a good distribution of com-

pounds which includes all atom types and molecular fragments included in the

testing subset.



Chapter 3. 3D-QSAR 32

3.3 3D-QSAR

3D-QSAR methods were developed to provide improved prediction accuracies in

comparison to 2D methods and, as such, are computationally more complex and

demanding. Usually, 3D-QSAR methods are split into two families: alignment-

independent and alignment-dependant. [138] The difference between the two families

is straight forward, alignment-independent methods do not require the compounds

of the data set to be structurally aligned, whereas, the alignment-dependant meth-

ods do require the alignment of the compounds. This thesis focuses on alignment-

dependant 3D-QSAR methods. Both methods require the bioactive conformations

of the compounds and measured bioactivity (experimentally or computationally

derived). The conformations of compounds in QSAR methods are considered one

of the major drawbacks. Experimentally, bioactive conformations are difficult to

interpret and computational conformations are difficult to validate.

3.3.1 Comparative Molecular Field Analysis (CoMFA)

One of the most widely used 3D-QSAR methods is the comparative molecular

field analysis (CoMFA), which was proposed by Cramer et al. in 1988. [132] CoMFA

establishes a uniform grid encompassing a series of pre-aligned molecules. Electro-

static and steric potential energies are then calculated between a positively charged

carbon atom probe, located at each vertex of the grid, and each of the molecules

embedded within. [132] The resulting electrostatic and steric fields are used as in-

put for partial-least-squares (PLS) regression models. Since its first publication,

CoMFA has been cited in over 4000 published articles and used in numerous drug

discovery programs. [139,140] Several extensions to the CoMFA methodology have

been proposed, of which the highest profile is comparative molecular similarity

indices analysis (CoMSIA). [141,142]
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CoMFA requires all compounds in the dataset to be aligned and this can ad-

versely affect the model/predictions if it is not done correctly. The quality of the

alignment is subjective and it is both time-consuming and difficult to reproduce as

the method is slightly different from software to software as well as from version to

version, however, a good alignment is fundamentally required for CoMFA. [143,144]

Nevertheless, numerous CoMFA models have been developed for several drug de-

sign and molecular modelling studies since its release. [135,145–149]

3.3.2 Comparative Analysis of 3D-RISM Maps (CARMa)

Although CoMFA is widely used, it relies on a relatively simple representation of

molecular interactions, which does not explicitly account for solvation/de-solvation

effects that can dramatically influence protein-ligand binding. Since CoMFA was

first proposed, advances in theory, algorithms and computer power mean that there

are now many fast and accurate methods to model molecular solvation effects. In-

tegral equation theory approaches are of particular interest for QSAR modelling

because they allow solute-solvent distributions and solvation thermodynamics to

be computed at a fraction of the cost of explicit solvent numerical simulations and

with no sampling error. The most widely used of these methods are the 1D and

3D Reference Interaction Site Models proposed by Chandler et al. and Beglov

and Roux, respectively. [150–153] Accurate predictions of hydration free energy and

Caco-2 permeability have previously been reported using 3D-QSAR models based

on 1D RISM molecular descriptors. [154]. Recently, Güssregen et al. proposed the

CARMa methodology, which uses solute–solvent distribution functions calculated

by 3D-RISM to replace the electrostatic or steric fields in CoMFA. This approach

was shown to give accurate predictions of binding affinities for a series of serine

protease inhibitors, but tests on other systems have not yet been published. [155]
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Theory

4.1 Molecular Mechanics (MM)

The use of a molecular mechanics force field allows for the potential energy of a

chemical system to be calculated as a function of its configurational and/or con-

formational degrees of freedom. [156–159] This thesis focuses on AMBER force fields

as they are used in the research but other force fields are mentioned where appro-

priate. A common form for a molecular mechanics force field is given in Equation

(4.1).

U =
∑
Stretch

UAB +
∑

Torsion

UABCD +
∑
Bend

UABC +
∑

Out−of−Plane

U

(+
∑

Cross−Terms

U) +
∑

V an−der−Waals

UAB +
∑

Electrostatic

UAB

(4.1)

Figure 4.1 provides a physical depiction of the terms in a force field as described by

Equation (4.1). The sum of these terms provide the potential energy of a system.

Each term in the equation describes the energy of the atoms in different positions

34
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for a single conformation.

Figure 4.1: Depiction of a typical force field bonding and non-bonding terms.

4.1.1 Bonding Terms

4.1.1.1 Bond Stretching

The bond stretching function describes the energy needed to stretch a bond be-

tween two atoms as shown in Figure 4.2. [160]

Figure 4.2: Depiction of a bond stretching motion between two atoms.
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In the AMBER force field this is expressed by Hooke’s Law: [161]

UAB = kAB(RAB −ReAB)2 (4.2)

where the force constant is represented by kAB. A stretched bond is described by

RAB and ReAB represents a bond length at equilibrium. [162]

Hooke’s Law provides a relatively accurate estimate for two atoms that are close

to their optimum bond lengths. However, when two atoms move apart, Hooke’s

law assumes a harmonic correlation where the rate of energy change is the same

as when two atoms are moving closer together. In reality this is not entirely true

as it is an an-harmonic motion; the rate of energy change is greater when two

atoms are moving closer together than when two atoms are moving further apart,

described in Figure 4.3.
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Figure 4.3: Graphic describing difference between the harmonic correlation
assumed by Hooke’s law and the an-harmonic potential that occurs in reality.

Other expressions for bond stretching potentials have been well documented, in-

cluding the Morse potential [163] which is used in the CVFF [164] (consistent valence

force field), as well as quartic polynomials used in PCFF [165] (polymer consistent

force field). The Morse potential descriptor for bond stretching is a more qual-

itative measure compared to the harmonic and quartic polynomial counterparts.

It provides a more accurate result for bond lengths that are close to equilibrium.

For modelling high energy systems, a harmonic function is sometimes preferred

because it prevents bonded atoms migrating to irrational positions, such unreal-

istic stretches that are possible with the Morse potential. However, the harmonic

potential in Hooke’s law provides comparably accurate data for a general force

field like AMBER.
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4.1.1.2 Bond Bending

The bond bending term of a force field represents the energy required for a bond

to distort or bend in relation to its equilibrium state, as shown in Figure 4.4. [166]

Figure 4.4: Depiction of a bond angle between three atoms distorting or
bending.

In AMBER, the harmonic expression for bond bending is similar to the expression

used for bond stretching. [167] Other expressions such as quadratic polynomial also

describe bond bending distortions, however, for complex systems a harmonic ex-

pression is preferred due to its relative cost effectiveness and accuracy. The bond

bending term in AMBER is expressed as:

UABC = kABC(θABC − θeABC)2 (4.3)

where kABC is the angular constant. The distorted bond angle is represented by

θABC and the equilibrium bond angle is θeABC . Therefore any deviation from the

equilibrium bond angle will alter the potential energy. [167]
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4.1.1.3 Torsion (Dihedral) Angles

The dihedral angle term is a description of the energy required to rotate a bond,

shown in Figure 4.5. [168]

Figure 4.5: Depiction of the conformational freedom of a torsion angle.

The torsion angle term accounts for the amount of energy necessary for a bond

to rotate. In early versions of AMBER the term was described by a harmonic

expression, Equation (4.4). [169]

UABCD = kABCD(χABCD − χeABCD)2 (4.4)

The kABCD term in Equation (4.4) describes the dihedral constant. Comparable to

the other Hooke’s law expressions the rest of this expression represents the energy

needed for a deviation of the torsion in relation to the equilibrium position; χABCD

is the distorted dihedral angle and χeABCD is the equilibrium dihedral angle. [170]

Dihedral angle potential terms are also expressed through a three-term Fourier

expansion, a more accurate harmonic equation used in later versions of AMBER.

Another form of the term is the cosine function format which depicts the periodic

nature of torsions and is also used by some AMBER force fields. In AMBER03 and

AMBER99-SB (version 14, 15 and 16) the torsion angle term used is a simplified
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version of the cosine function, Equation (4.5). [171,172]

UABCD = kABCD(1− cos(n(χABCD − χeABCD))) (4.5)

The n term in Equation (4.5) represents periodicity, enabling the equation to more

accurately represent torsional angles. The dihedral constant also accounts for am-

plitude which is predetermined from experimental studies. [173] Dihedral parameters

are optimised on the simplest molecules and then extrapolated onto larger, more

complex structures. The benefit of this, in contrast to other methods that attempt

to reproduce conformational energies of large systems is that it can be applied to

a wider range of systems. A lack of dependence on implicit parameters on groups

of compounds is beneficial and has been found to produce accurate results. [174]

A consideration must also be made for the absence of an offset term (Υ) within

the expression, which would further improve accuracy without adversely affecting

running time. [169]

4.1.1.4 Out-of-Plane (Inversion) Angle

The out-of-plane angle term is used to define the planar interaction of a group of

atoms, shown in Figure 4.6. [175]

Figure 4.6: Depiction of conformational freedoms that go out-of-plane.
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The term considers four atoms existing as a group in a single plane connected via

three valence bonds from a central atom. Typically in molecular mechanics force

field, Equation (4.6) is most used. [176]

U =

(
1

2 sin2 ψe

)
k(cosψ − cosψe)

2 (4.6)

In AMBER however, the out-of-plane term is an “umbrella function” which is ex-

pressed in Equation (4.7). [177]

U = k(ψ − ψe)2 (4.7)

This empirical potential function is similar to harmonic expressions described

above. The term k describes the harmonic force constant factor. [178] The term

ψ−ψe describes the energy cost for the out-of-plane angle in relation to the angle

at equilibrium. [177]

4.1.2 Cross Terms

Cross-terms are sometimes included within force fields to achieve better accu-

racy. [179] They are designed to more accurately account for bond and/or angle dis-

tortions caused by neighbouring atoms. [180] They are implemented by reproducing

experimental vibrational frequencies, hence depicting the dynamic properties of

the molecule.

Cross-terms can occasionally result in unrealistic geometries so precautions must

be taken. The unlikely geometries arise when the starting geometry is significantly

distorted causing the optimisation to settle in a local minimum. [181] The versions
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of AMBER used in this study have no built in cross-terms.

4.1.3 Non-Bonding Terms

Non-bonding interactions can be described as either intra- or intermolecular inter-

actions. Within molecular mechanics force fields they are divided into two groups

of interactions, electrostatic and van der Waals. [182] In some force fields a hydrogen

bonding and non-bonding term can be present. [183] In the force fields used in this

thesis, hydrogen bonds are an anticipated consequence of the electrostatic and

van der Waals parameters and are not represented by a separate term in the al-

gorithms. It has also been found that a separate hydrogen bonding term does not

always improve the accuracy of a force field in relation to experimental data. [184,185]

4.1.3.1 Van der Waals

Van der Waals (VdW) interactions are described in molecular mechanics force

fields by Lennard-Jones (L-J) potentials. [186] The L-J potential describes the forces

of attraction and repulsion between non-ionic atoms. In AMBER the expression

is defined as:

UL−J = ε

[(
C

R

)12

− 2

(
C

R

)6
]

(4.8)

where term C defines the distance between a pair of non-bonded atoms when

the bonding potential is zero. This is usually set to half the distance of the

inter-nuclear distance of the two atoms in molecular mechanics force fields. [187] R

represents the distance which separates the two atoms; normally the distance from

nucleus to nucleus. The repulsive force is described by,
(
C
R

)12
, and the attraction

force,
(
C
R

)6
, is subtracted from it. [186] The final term ε represents the energy well
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depth. It is a function that differentiates and parametrises the atom types that

are interacting.

Some force fields include an additional term which is used to describe hydrogen

bonding. This is typically a modified form of the 12-6 L-J potential and is usually

expressed as the 12-10 L-J term, Equation (4.9). [188]

UHB = 4ε

[(
C

RHB

)12

−
(
C

RHB

)10
]

(4.9)

The inverse of the 10th power represents the attractive force rather than the 6th

power term that is used in the L-J potential. The remaining terms represent the

same things as in the 12-6 L-J potential. The versions of AMBER used in this

study, do not include any hydrogen bonding term.

4.1.3.2 Electrostatic (Coulombic)

The electrostatic interactions in many force fields are parametrised by the Coulomb

potential. [189] This non-bonding interaction arises when molecules have an unequal

distribution of charges. The term accounts for differences in electro-negativity

within the system. For AMBER the electrostatic potential is defined as Equation

(4.10):

UAB =
(QAQB)

4πε0RAB

(4.10)

where the termQ represents the atomic charges of the two atoms being assessed. In

AMBER a predetermined (from experimental data and quantum mechanical cal-

culations), specific charge model is used. Atomic partial charges have on occasion

been assigned by empirical rules, however, they are more commonly determined
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by fitting to an electrostatic potential that is calculated by electronic structure

methods. The RAB term accounts for the distance between the two atoms. ε0

accounts for the electrical field in and around the free space of the atoms as well

as the effect of the dielectric medium. [189]

AMBER describes them as individual atomic monopoles which can interact. [190]

4.2 AMBER Force Field

The same potential energy equations have been used in all versions of AMBER

(Assisted Model Building with Energy Refinement) since 1994, including AM-

BER03 and AMBER99-SB (SB = improved backbone torsion potentials) (version

14, 15 and 16), shown in Equation (4.11). [174]

U =
∑
Stretch

kAB(RAB −ReAB)2 +
∑

Torsion

kABCD(1− cos(n(χABCD − χeABCD)))

+
∑
Bend

kABC(θABC − θeABC)2 +
∑

Out−of−Plane

k(ψ − ψe)2

+
∑

V an−der−Waals

ε

[(
C

R

)12

− 2

(
C

R

)6
]

+
∑

Electrostatic

(QAQB)

4πε0RAB

(4.11)

The differences between AMBER03 and AMBER99-SB force fields occur in two

aspects. [191] The primary difference is AMBER99-SB has a new fixed-charge cal-

culation method parametrised from the most up to date experimental data. The
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second difference is an update of atom charges which are determined using an

improved basis set and restrained electrostatic potential (RESP) fitting. This has

shown an improved energy balance between extended and helical regions of a pep-

tide and the protein backbone. [173] The improvements are suspected to be due to

the lack of dependence of side chain parameters on backbone conformations. [172]

4.3 Molecular Dynamics (MD)

Molecular dynamics (MD) simulations are trajectories of a series of successive con-

figurations for a system, generated by integrating Newton’s laws of motion. [192]

This series of configurations describes how the positions and velocities of atoms

(or particles) vary with time. [193] The intra- and inter-molecular motions of bio-

macromolecules that are described by trajectories can be associated with complex

chemical processes such as reaction potentials, zymogen activation and hormone-

receptor binding just to name a few. [193]

The thermodynamics of a system identifies possible chemical states and describes

the energetic relationship between them. [194] A system’s kinetics describes the se-

quence and/or rate of change from state to state providing a more mechanical rela-

tionship between the chemical states. These intricate changes are computationally

studied through MD simulations by sampling the conformational space. [194]

4.3.1 Newton’s Equations

Newton’s equations are solved in MD to describe the motions of atoms on a poten-

tial energy surface. Molecules are able to overcome energy barriers that are smaller
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than the difference between total and potential energy. [195] This means, given there

is enough energy in the system, the simulation will explore the entirety of the po-

tential energy surface as potential energy is influenced by simulation temperature.

However exploring the totality of the potential energy surface would require an

unreasonable amount of time. [196]

Newton’s laws of motion are defined as:

1. A body will move in a straight line at constant velocity unless a force acts

upon it.

2. Force is equal to the rate of change of momentum. (Force (F ) = Mass (m)

x Acceleration (a))

3. For every action there is an equal and opposite reaction.

Molecular dynamics trajectories are obtained by solving differential equations em-

bodied within Newton’s second law, (F = ma), shown in Equation (4.12).

d2ri
dt2

=
Fri
mi

(4.12)

The equation describes the movement of mass (mi) along a single Cartesian axis

(ri) where Fri describes the force in that direction in relation to time (t). In molec-

ular dynamics it is solved for all three Cartesian directions taking into account the

position of an atom’s mass relative to the other particles, affecting the strength of

force exhibited. The rate and direction of an atom’s motion is dictated by the force

which in turn is governed by the forces atoms exert on each other in a system. [195]
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−dE
dri

= Fri (4.13)

MD simulations calculate the force exerted on an atom by calculating the change

in energy from its current position and a position a small distance away. This is

known as the derivative of energy, described in Equation (4.13). [197] The energies

are calculated by the MM force field used for the simulation.

Velocities of atoms are unknown at the start of any molecular dynamics simu-

lation. Initial velocities are assigned that satisfy the total kinetic energy of the

system (by obeying the Boltzmann or Gaussian distribution from the assigned

temperature of the system). [198] The system is normally heated slowly during the

first steps of a molecular dynamics simulation to avoid the physical and numerical

instabilities that would be caused by a rapid temperature jump. [196]

4.3.2 Verlet Algorithm

The Verlet algorithm integrates Newton’s equation of motion to compute new

atomic positions using the positions and accelerations from the previous step. [192]

Although a number of algorithms are available for the integration of equations

of motion, the Verlet algorithm is widely used in MD due to its use of minimal

computer memory and CPU time. The method writes two third-order Taylor ex-

pansions for atomic positions; one forward in time and one backwards. Velocity

and acceleration are defined by v and a respectively in Equations (4.15) and (4.16).

Where : v =
dri(t)

dt
a =

d2ri(t)

dt2
(4.14)
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ri

(−−−→
t+ dt

)
= ri (t) + v (t) dt+

(
1

2

)
a (t) dt2 +

(
1

6

)
d3ri (t)

dt3
dt3 +O

(
dt4
)

(4.15)

ri

(←−−−
t− dt

)
= ri (t)− v (t) dt+

(
1

2

)
a (t) dt2 −

(
1

6

)
d3ri(t)

dt3
dt3 +O

(
dt4
)

(4.16)

Combining the two Taylor expansion equations give the basic form of the verlet

algorithm, Equation (4.17).

ri (t+ dt) = 2ri (t)− ri(t− dt) + a (t) dt2 +O
(
dt4
)

(4.17)

The truncation error is to the order dt4, even though no third derivatives are ex-

plicitly present. Acceleration can be calculated by substituting in a function of

atomic position, Equation (4.18), in place of force in Newton’s equation to provide

Equation (4.19).

F (ri) = −dU
dri

(4.18)

a (t) = − 1

mi

dU

dri
=
d2ri(t)

dt2
(4.19)

This form of the Verlet algorithm does not directly generate velocities which is

problematic as velocities are required to calculate kinetic energy (K), which in

turn is used to assess if total energy (E) is conserved, (E = K+U). Velocities are

also required to calculate (and, using thermostats, moderate) temperature within

a system. They can be calculated separately via Equation (4.20).
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v =
dri(t)

dt
=
ri (t+ dt)− ri (t− dt)

2 (dt)
(4.20)

Calculating kinetic energy at a point in time results in an error to the order of dt2

rather than dt4 as shown by Equation (4.21).

K (t) =
n∑
i=1

mvi(t)
2

2
(4.21)

To overcome this difficulty variants of the Verlet algorithm have been developed

which handle velocity calculation somewhat better. One such variant is known as

the Velocity Verlet algorithm.

4.3.3 Velocity Verlet Algorithm

The Velocity Verlet algorithm uses the positions, accelerations and velocities of the

current time step to compute the positions of the next time step. [199] This method

generates a far more accurate integration. The algorithm incorporates a step which

rescales the velocities to apply a correction for any minor integration errors. This

ensures that the simulation is carried out at the correct temperature in a constant-

temperature system. [200] An algorithm named the Gear predictor-corrector algo-

rithm is sometimes used as an add-on to Velocity Verlet algorithm. [192] It is used to

predict the next set of atomic positions and accelerations at the expense of CPU

memory and time, then compares the predicted to the calculated, generating a

correction so each step is refined iteratively.

The position of atoms (ri) is calculated at every time step (dt), by Equation (4.22).



Chapter 4. Molecular Dynamics (MD) 50

ri (t+ dt) = ri (t) + v (t) dt +

(
1

2

)
a (t) dt2 (4.22)

The velocity (v) is calculated every half time step (dt
2

), by Equation (4.23).

v

(
t+

dt

2

)
= v (t) +

(
1

2

)
a (t) dt (4.23)

The acceleration (a) is calculated every time step (dt), by Equation (4.24).

a (t+ dt) =
−1

mi

(dU) (ri(t+ dt)) (4.24)

Velocity at the next step is calculated by a variation of Equation (4.23), shown by

Equation (4.25).

v (t+ dt) = v

(
t+

dt

2

)
+

(
1

2

)
a

(
t+

dt

2

)
dt

The Velocity Verlet algorithm is faster and more accurate compared to the basic

Verlet algorithm. [161] It also requires less computer memory to run which is ad-

vantageous.

Table 4.1: Description of the series of calculations done by the Velocity Verlet
algorithm in terms of time steps. Where ri is the atomic coordinates, v is the

velocity and a is the acceleration.

Calculations ri v ri, v, a v ri, v, a

Time Step 1 2 3

Table 4.1 shows the series of calculations that take place in the Velocity verlet

algorithm. The atomic coordinates and accelerations are calculated every time
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step. The velocity of atoms is calculated every half-time step. Which ensures a

more accurate trajectory is obtained, satisfying the kinetic energy and in turn the

total energy of the system. This also helps to ensure the system is simulated at

the desired temperature.

4.3.4 Affecting Factors

4.3.4.1 Ensembles

Ensembles are simply a collection of all possible systems which have varying mi-

croscopic states but indistinguishable macroscopic or thermodynamic states. The

concept was first introduced in 1878 by J. Willard Gibbs and has since been de-

veloped further for computational implementation. [201]

Simulations can be characterised by features such as volume (V ), pressure (P ),

temperature (T ), total energy (E), number of particles (N), chemical potential

(µ), etc. However, these are not always independent factors. [192] For a system

which requires a constant number of particles to be set, either the pressure or

volume must be fixed, but both cannot be fixed simultaneously. Likewise if the

temperature is fixed, total energy can’t be. If a constant chemical potential is

set for a system the number of particles must vary. The different ensembles are

described according to the fixed parameters, shown by Table 4.2.

Table 4.2: Description of the constants in different ensembles and the cor-
responding equilibrium states. [N = number of particles; P = pressure; T =

temperature; V = volume; E = total energy; µ = chemical potential].

N P V T E µ Acronym Name

X X X NVT Canonical

X X X NVE Micro-canonical

X X X NPT Isothermal-isobaric

X X X VEµ Grand canonical
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MD simulations that aim to preserve energy use the NVE ensemble. [192] However,

in systems where mechanisms are being investigated, the isothermal-isobaric NPT

ensemble is the ensemble preferred.

4.3.4.2 Simulation Temperature and Thermostats

Computer simulations treat temperature as a statistical quantity. [192] It is typi-

cally expressed as a function of a system’s atomic positions and momenta. [202] For

large systems the temperature can be estimated using kinetic energy data. [161]

Thermostats are simply algorithms that are used to rescale the velocities in a

system to control the temperature. [192] The Berensden thermostat is regarded as

the most straight forward method, but is not the most accurate. [194] The method

rescales velocities over a specified number of time steps to keep a constant temper-

ature, but this results in small but rapid fluctuations in temperature. Langevin

dynamics is a more advanced method which is more commonly used in many MD

packages. [193] This method rescales velocities more often which results in less fluc-

tuations in temperature.

4.3.4.3 Periodic Boundary Conditions

Periodic boundary conditions describe a simulation’s structure using a collection

of uniform subunits. The setting is primarily used to simulate and model bulk-

material, crystalline systems and the movement of solvent. [194] Figure 4.7 depicts

periodic boundaries, where the middle cell is the simulation cell and surrounding

cells are identical copies.
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Figure 4.7: Schematic illustrating periodic boundary conditions.

When an atom or cell is forced to move out of the simulation cell, it theoretically

enters the adjacent identical cell. This is represented in the simulation cell by

the atom re-entering from the opposite face simultaneously. The simulation box

is typically large enough to prevent an atom from interacting with itself. The

subunit is normally set to be at least twice as big as the van der Waals and

electrostatic interaction range. A cut-off can also be introduced to prevent these

unwanted interactions, which is typically set as half the cell length (a). The use of

periodic boundary conditions eliminates the occurrence of unwanted wall effects

which would adversely affect results. It can also make calculations computation-

ally less expensive as calculations are limited to the desired space.



Chapter 4. Molecular Dynamics (MD) 54

4.3.4.4 Particle Mesh Ewald (PME)

Particle mesh Ewald (PME) is a method used to compute (electrostatic) inter-

action energies of periodic systems. [203] The interactions are separated into two

groups; short and long range. The method replaces the direct interaction between

two particles with two separate summations; a sum of short range potential in real

space (simulation box) and a sum of long range potential in Fourier space (adja-

cent periodic boxes). [204] The summations converge quickly and can be shortened

with little adversities if computational time needs reducing. The method uses the

fast Fourier transform to evaluate the density field of a lattice in space but this

can also be applied to periodic systems. The unit cell in periodic systems needs to

be large enough to circumvent any improper interactions through a cell face but

must also be small enough to be computationally inexpensive. PME is preferred

in computational chemistry as it is more accurate and less expensive than using a

larger cut-off. [205]

4.3.5 Cost Reductions

The most demanding steps of MD simulations are the calculation of non-bonding

potentials; electrostatic and van der Waals interactions. These interactions should

be calculated up to infinitum but at large distances they become infinitesimal.

The range is usually limited to approximately 12 Å to reduce computational time.

However, even with a cut-off these calculations are still the most demanding aspect

of computational simulations.

Usually in complex systems bond stretches which include hydrogen atoms and

water molecules are deemed insignificant. In computational systems these can be

constrained by algorithms such as SHAKE, [206,207] which allows for the user to

constrain all bond lengths including hydrogen atoms and all water molecules to

be kept rigid. This greatly reduces simulation time in large systems without any
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great loss in accuracy. By constraining the high-frequency vibrations involving

hydrogen atoms, it also allows for a 2fs (rather than 1fs) time step to be used in

the MD algorithms, further reducing computational expense.

4.4 Solvent Models

There are a number of solvent models reported in the literature that account for

the behaviour of solvated condensed phases. Solvent models are employed in chem-

ical simulations and thermodynamic calculations to study reactions and processes

which take place in solution, including biological, chemical and environmental pro-

cesses. Implicit models are widely reported in the literature, typically providing

a reasonable description of the solvent behaviour. However, they fail to account

for the local fluctuations in solvent density distribution around a solute molecule.

Explicit models aim to provide a physical spatial distribution description of the

solvent. However, the calculations are very demanding computations and can fail

to reproduce experimental results. Hybrid methodologies aim to provide a good

median between implicit and explicit methods. They incorporate aspects of im-

plicit and explicit, minimising computational costs whilst retaining the physical

spatial distribution description of the solvent. The three dimensional reference in-

teraction site model (3D-RISM) is a hybrid solvent model that is well documented

in the literature and described in the sections that follow.
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4.5 Reference Interaction Site Model (RISM)

Microscopic effects of solvents near biomolecular surfaces play a critical role in

mediating ligand binding. Accurate representation of these minute effects are nec-

essary to generate highly accurate models of molecular systems. In recent times

there have been increasing efforts to understand solvation effects on biomolecular

complexes.

Limited capabilities and spatial resolution has hindered experimental methods

from effectively analysing the behaviour of solvent molecules in protein complexes.

Figure 4.8: Depiction of 3D-RISM solvent distribution around chymosin, high-
lighting various solvation shells in red, green and blue.

The solvent sampling issue is circumvented by the three-dimensional reference in-

teraction site model (3D-RISM) theory. [153] The method obtains a complete atom-

istic sampling of the solvent (including the ions) through the integral equation

approach, as shown in Figure 4.8. 3D-RISM has successfully been used to lo-

cate water molecules in a number of systems of experimental proteins, [208–211] and
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simulated proteins. [212,213] It has also been applied to predict protein fragment

poses, [214–216] hydration free energies, [217] ion locations, [218] ion pathways [219,220]

and drug poses. [216,221]

4.5.1 3D-RISM

The method is described as a solvent interaction-site interpretation of the molec-

ular Ornstein-Zernike (MOZ) algorithm in three dimensions. [222] The solvation

properties at equilibrium are obtained without the use of any dynamic simulation.

3D-RISM [153,214,223,224] is a theoretical method for modelling solution phase sys-

tems based on classical statistical mechanics. The equations relate 3D intermolec-

ular solvent site - solute total correlation functions (hα(r)), and direct correlation

functions (cα(r)) (index α corresponds to the solvent sites): [153,224]

hα(r) =

NSolvent∑
ξ=1

∫
R3

cξ(r− r′)χξα(|r′|)dr′ (4.25)

where χξα(r) is the bulk solvent susceptibility function, and NSolvent is the number

of sites in a solvent molecule (see Figure 4.9). The solvent susceptibility function

χξα(r) describes the mutual correlations of sites ξ and α in solvent molecules in the

bulk solvent. It can be obtained from the solvent intramolecular correlation func-

tion (ωSolvξα (r)), site-site radial total correlation functions (hSolvξα (r)) and the solvent

site number density (ρα): χξα(r) = ωSolvξα (r) + ραh
Solv
ξα (r) (from here onwards we

imply that each site is unique in the molecule, so that ρα = ρ for all α). [224]. In

this work, these functions were obtained by solution of the RISM equations of the

solvent. [224,225]
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Figure 4.9: Correlation functions in the 3D-RISM approach. (a) Site-site
intramolecular (ωsolvγξ (r)) and intermolecular (hsolvαξ (r)) correlation functions be-
tween sites of solvent molecules. The graph shows the radial projections of
water solvent site-site density correlation functions: oxygen-oxygen (OO, red
solid), oxygen-hydrogen (OH, green dashed) and hydrogen-hydrogen (HH, blue
dash-dotted); (b) Three-dimensional intermolecular solute-solvent correlation
function hα(r) around a model solute (diclofenac). This figure is based on Ref-

erence [2]. [2]

In order to calculate hα(r) and cα(r), NSolvent closure relations are introduced:

hα(r) = exp(−βuα(r) + hα(r)− cα(r) +Bα(r))− 1

α = 1, . . . , NSolvent

(4.26)

where uα(r) is the 3D interaction potential between the solute molecule and α sol-

vent site, Bα(r) are bridge functionals, β = 1/kBT , kB is the Boltzmann constant,

and T is the temperature.

In general, the exact bridge functionals Bα(r) in Equation 4.26 are represented as

an infinite series of integrals over high order correlation functions and are therefore

practically incomputable, which makes it necessary to incorporate some approx-

imations, [224,226,227] or to estimate the form of these functionals from molecular
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simulation [228]. In this thesis, a closure relationship proposed by Kovalenko and

Hirata (the KH closure also known as partial series expansion order 1 (PSE-1)), [229]

along side the PSE-3 closure are investigated. Both, the KH and PSE-3 closures

were designed to improve convergence rates and to prevent possible divergence of

the numerical solution of the RISM equations [229–231]

hα(r) =

 exp(Ξα(r))− 1 when Ξα(r) ≤ 0

Ξα(r) when Ξα(r) > 0
(4.27)

where Ξα(r) = −βuα(r) + hα(r)− cα(r).

The PSE-3 closure was designed to minimise any convergence issues that arise from

the KH (Equation 4.27) closure in a systematic manner by using a partial series

expansion of order n (PSE-n) in the hypernetted chain (HNC) closure (Equation

4.28). [230,231]

hα(r) =


exp(Ξα(r))− 1 when Ξα(r) ≤ 0
n∑
i=0

(Ξα(r))i/i!− 1 when Ξα(r) > 0
(4.28)

The PSE-n closures interpolates between the KH and the HNC closures: n = 1

is the KH closure; n >1 is the HNC closure; n → ∞ will result in convergence

issues. [230] PSE closure of order 3 achieves a good balance between numerical con-

vergence and results that well approximate calculations with the HNC closure. [231]

Both the KH and PSE-3 closure have extensively been applied in the study of a

variety of polar and charged systems. [232–236]

The 3D interaction potential between the solute molecule and α site of solvent

(uα(r), 4.26) is estimated as a superposition of the site-site interaction potentials

between solute sites and the particular solvent site, which depend only on the ab-

solute distance between the two sites. In the research presented in this thesis, the
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common form of the site-site interaction potential is used, which is represented by

the long-range electrostatic interaction term and the short-range term (Lennard-

Jones potential). [237]

4.5.2 Solvation Free Energy Functionals

Solvation free energy (SFE) is the reversible work required to take a compound

out of the gas phase and into the solvent phase. Within the framework of the

RISM theory there exist several approximate functionals that allow one to analyt-

ically obtain values of the SFE from the total hα(r) and direct cα(r) correlation

functions. [238–240].

4.5.2.1 Partial Series Expansion-3 (PSE-3)

For the PSE-3 functional, the solute’s excess chemical potential (SFE) at infinite

dilution is derived from the 3D-RISM solute-solvent correlation functions as fol-

lows (Equation 4.29):

∆GPSE−3
Solv = ∆GHNC

Solv − kBT
Nsolvent∑
α=1

ρα

∫
V

[
Θ[hα(r)]

Ξα(r)n+1

(n+ 1)!

]
dr (4.29)

where ρα is the number density of solvent sites α, Θ is a Heaviside step function,

and ∆GHNC
Solv is the SFE calculated using the hypernetted-chain functional, which

is given by: [241]

∆GHNC
Solv = kBT

NSolvent∑
α=1

ρα

∫
V

[
1

2
h2
α(r)− 1

2
hα(r)cα(r)− cα(r)

]
(4.30)
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4.5.2.2 Gaussian Fluctuations (GF)

Developed by Chandler, Singh and Richardson, for 1D-RISM, and adopted by Ko-

valenko and Hirata for the 3D-RISM case [224,242], the Gaussian fluctuations (GF)

free energy functional is given as:

∆GGF
Solv = kBT

NSolvent∑
α=1

ρα

∫
R3

[
−1

2
cα(r)hα(r)− cα(r)

]
dr (4.31)

4.5.2.3 Kovalenko-Hirata (KH)

The KH free energy functional for 3D-RISM is given by:

∆GKH
Solv = kBT

NSolvent∑
α=1

ρα

∫
R3

[
1

2
h2
α(r)Θ(−hα(r))− 1

2
hα(r)cα(r)− cα(r)

]
dr (4.32)

where ρα is the number density of solvent sites α, and Θ is the Heaviside step

function:

Θ(x) =

 1 for x>0

0 for x<0

 (4.33)

The solute partial molar volume is estimated via solute-solvent site correlation

functions using the standard 3D-RISM theory expression [243]:

V = kBTη

(
1− ρα

NSolvent∑
α=1

∫
R3

cα(r)dr

)
(4.34)
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where η is the pure solvent isothermal compressibility, and ρα is the number den-

sity of solute sites α. The distribution functions (g (r) = h (r) + 1) calculated by

3D-RISM characterize the average density distribution of solvent molecules around

solute at thermodynamic equilibrium.

4.5.3 Pressure Corrected Free Energy Functional

4.5.3.1 3D-RISM(PC)

The PC free energy functional is designed as an improvement on the standard

3D-RISM SFE functionals that over estimate the solvent pressure. To counteract

this the PC functional subtracts all mechanical work required to create the cavity

(P∆V ) from the SFE (∆G3D−RISM
Solv ), as shown in Equation 4.35. [244,245]

∆GPC
Solv = ∆G3D−RISM

Solv − P∆V (4.35)

Here P represents the 3D-RISM pressure and ∆V represents the volume change of

the system upon solvation. P∆V is computed using methods described by Misin

et al. [241,245] ∆GPC
Solv simply refers to the pressure corrected solvation free energy,

3D-RISM(PC).

4.5.3.2 3D-RISM(PC+)

3D-RISM(PC+) The PC+ free energy functional is a further improvement on the

PC functional where just the non-ideal mechanical work is subtracted from the

hydration free energy. To accomplish this the ideal gas pressure, Pid is used to

represent the ideal mechanical work, Pid∆V and is added to Equation 4.35.
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∆GPC+
Solv = ∆G3D−RISM

Solv − P∆V + Pid∆V (4.36)

Here, and in the formula for the PC functional, ∆G3D−RISM
Solv is the SFE calcu-

lated using the PSE-3 free energy functional (Equation 4.29). Although there

is no compelling explanation as to why PC+ performs better than PC, there

have been numerous reports of its benefits in the literature. [241,244–247] The PC+

functional has been shown to give accurate predictions of SFE for neutral and

ionised solutes, in both pure water and salt solutions at a wide-range of temper-

atures. [237,241,245,248,249] It has also been successfully applied to the prediction of

solvation free energies in organic solvents. [246]

4.6 Calculation of ∆Gbind

The thermodynamic parameter that characterizes the binding of a ligand (L) by

a receptor (R) is the binding free energy (∆GBind) for the process: [250]

R + L
∆GBind−→ RL (4.37)

The most common computational methods in drug design are docking and scor-

ing. [251] These methods predict the binding mode of the drug and then go on to

estimate the binding affinity. Although they are efficient methods they are not

particularly accurate; they can discriminate well between binding and non-binding

drugs, but fail to discriminate between drugs that differ by ∆GBind <6 kJ/mol. [252]

Methods such as thermodynamic integration (TI) and free energy perturbation

(FEP) are considered thermodynamically rigorous and widely accepted in the field
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for calculating relative binding free energies between two equilibrium states. How-

ever both methods require a great deal of simulation time to provide adequate

sampling, making them unsuitable for large scale studies. To tackle this practical

issue, many different end-point techniques have been developed to predict bind-

ing free energies at lower computational expense i.e. the linear-interaction-energy

(LIE) approach, [253] and the closely related molecular mechanics generalised Born

surface area (MM-GBSA), molecular mechanics Poisson-Boltzmann surface area

(MM-PBSA), [254,255] and MM-3DRISM methods. Where FEP and TI spend the

majority of simulation time investigating intermediate states, end-point techniques

investigate just two (bound and unbound) states, significantly reducing computa-

tional cost.

Arguably, the most popular end point method is the molecular mechanics with

Poisson-Boltzmann and surface area solvation (MM-PBSA) method. [255] Here, the

∆GBind is calculated from free energies of the reactants and products. The method

was developed in the late 90’s by Kollman et al. and has been cited over 2500

times since, [254] having been applied to a number of scientific studies including

protein-protein interactions, [256,257] protein design, [258] conformer stability [259,260]

and re-scoring. [261,262]

Since the free energy of binding of a solvated complex is very hard to calculate

directly, the free energy is calculated in the gas phase first and then the SFE is

calculated next, depicted in Figure 4.10.
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Figure 4.10: Representation of the calculation pathways to obtain the binding
free energy of a solvated complex.

Here ∆GBind(Solv) represents free energy of binding of the complex in a solvent

medium and ∆GBind(V acuum) is the binding free energy in a vacuum. ∆GSolv(Substrate),

∆GSolv(Enzyme) and ∆GSolv(Complex) represent the free energy of solvation.

The solvent environment strongly influences the binding free energy, modulat-

ing competitive solvent binding effects and hydrophobicity. [263] In this thesis, we

employ the MM-3DRISM method, which uses a statistical mechanics based solvent

model to provide a realistic model of molecular solvation effects. MM-3DRISM

affords accurate estimates of binding free energy and has previously been used in

modelling a wide-variety of protein-ligand complexes. [123,239]

In MM-3DRISM, the binding free energy is computed according to:

∆GBind = GSolvated(Complex) −GSolvated(Enzyme) −GSolvated(Substrate) (4.38)

The free energies of each species is evaluated as:
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GSolvated = 〈EGas〉+ 〈∆GHyd〉 − TS (4.39)

〈EGas〉 = 〈EInternal〉+ 〈EElectrostatic〉+ 〈EvdW 〉 (4.40)

〈EInternal〉 = 〈EBond〉+ 〈EAngle〉+ 〈ETorsion〉 (4.41)

EGas describes the average energy of a species in the gas phase as a sum of inter-

nal, electrostatic (EElectrostatic) and van der Waals (EvdW ) energy contributions,

obtained through a molecular mechanics forcefield. EBond, EAngle and ETorsion

contribute to the internal energy EInternal through the strain caused by deviation

of bonds, angles, and torsions from their equilibrium values. ∆Ghyd describes the

hydration free energy and is computed by the 3D-RISM calculation.

4.7 QSAR

4.7.1 Machine Learning

Machine learning is a computational approach to design and develop algorithms

that can use empirical data to recognise statistical relationships and are able to

automatically learn from experience with respect to a task and a performance mea-

sure. One of the major scientific applications of machine learning research is to

recognise structure-activity relationships (SAR) of chemical compounds. The core

part of machine learning is tasked with building predictive models. In SAR studies

the models are used to predict biological activity using independent variables, also

referred to as descriptors. [264–266] The idea is that the predictive models should be

able to describe the data it trained on in some meaningful way (representation)
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and perform accurately on new, unseen data (generalisation).

Within the machine learning umbrella, a number of advanced statistical methods

exist, handling regression and classification tasks using multiple input variables

to provide a single statistical output. These methods include support vector ma-

chines (SVM), naive bayes (NB), k-nearest neighbours (KNN), classification and

regression trees (CART), multivariate adaptive regression splines (MARSplines),

genetic algorithm (GA), random forest (RF), and others. [267] The various machine

learning methods can be identified with one of two subgroups; supervised learning

or unsupervised learning. Both classification and regression methods are typically

supervised learning algorithms. The research presented in this thesis focuses on

supervised-learning regression methods.

In this thesis two different regression methods were considered to create predictive

models: partial least squares (PLS) and random forest (RF). A genetic algorithm

(GA) was also tested to select input variables for the PLS model.

4.7.2 Regression

Regression models estimate the relationship between variables and a response.

This includes a vast array of techniques that focus on a relationship between a de-

pendant variable and a number of independent variables. Regression methods can

be classed into three subgroups. Firstly there is linear regression which includes

methods such as ordinary linear regression (OLR), partial least squares regression

(PLS) and penalized regression (PR). Secondly, non-linear regression methods

which include support vector machines (SVM), artificial neural networks (ANN)

and multivariate adaptive regression splines (MARSplines). The final group is

regression trees which are also non-linear by nature and these include bagging tree
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regression (BTR), boosted tree regression and random forest (RF).

4.7.2.1 Linear Regression

Providing the dataset descriptors take the form of
{
xi1 , xi2 , ..., xn

}T
i=1,2,...,n

, where

i is the descriptor number, the linear regression model takes on the form of Equa-

tion (4.42).

y = βi1xi1 + βi2xi2 + ...+ βinxin + ε (4.42)

Here, y represents the continuous numeric response for descriptor set i. βi is the

regression coefficient associated with descriptor xi, where xi is the descriptor vari-

able. ε accounts for the noise or random error that cannot be explained by the

linear regression model. Equation (4.42) is simplified into a summarised form,

Equation (4.43).

Y = Xβ + ε (4.43)

The main objective of the linear regression model is to estimate the regression

coefficient vector (β) according to the variance-bias trade-off, where the mean

squared error (MSE) is minimised. The regression coefficients possess high inter-

pretability which means relationships between the coefficient and response as well

as relationships between different regression coefficients can easily be interpreted.

The performance of the predictive models can also be interpreted easily as the

statistical nature of the linear method allows for the extraction of standard errors

of the regression parameters.

However, as the relationship between the descriptor variable and last numeric
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response is required to fall on a flat-plane (therefore be linear), a non-linear rela-

tionship between the regression coefficients and the predicted response cannot be

explained by this model.

Partial-Least-Squares (PLS) Partial least squares (PLS) is a method for lin-

ear regression that has been widely used in many different fields of research, in-

cluding chemistry, biology, econometrics and social science. [268] The PLS algorithm

finds a linear regression model by projecting both the dependent and indepen-

dent variables into a new mathematical space in which the covariance in the data

structure can be explained by a small number of latent variables. As such PLS

regression has some similarity to principal component regression (PCR), but the

latent variables are selected for their ability to explain the variance in the depen-

dent variable as well as in the independent variables. [269]

The main function of the PLS regression model is to determine a new set of

potential components. These new potential components should then be able to

explain the covariance between independent variables (X) and response (Y ) by

decomposing both X and Y . [270] The decomposition formula for descriptor vari-

ables is given in Equation 4.44.

X = TP + ε (4.44)

Here, X is the matrix score and T is the projection of X. P represents the orthog-

onal matrix loading, which in PCR is a simple variability loading instead and ε is

the noise or error value. [271] A diagonal matrix of the regression weight loadings

(B) then allows for the decomposition of the response Y via Equation 4.45, where

C is the dependant variable weight matrix.
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Y = TBC (4.45)

In contrast to principle component analysis (PCA), PLS takes two steps to de-

termine the best linear relationship; finding the linear components first then de-

termining which components maximally correlate with the response (depicted in

Figure 4.11). [272]

Figure 4.11: Structured flow of the PLS regression model.

It is worth emphasising the only tuning parameter in the PLS regression model is

the number of components. This is usually determined through resampling tech-

niques. [273]

Genetic Algorithm (GA) A genetic algorithm (GA) was used to select an

optimal subset of descriptors for the PLS model. Genetic algorithms are com-

monly used to solve both constrained and unconstrained optimization problems
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using a selection approach based on biological evolution. [274] The GA continuously

modifies the population of descriptors of individual solutions at each iteration. [275]

At each of these steps, the genetic algorithm selects a predetermined number of

descriptors from the total population to be the initial seeds and uses them to pro-

duce the permutations for the next generation. [276,277] Over successive generations,

the population ”evolves” toward an optimal solution. [278]

4.7.2.2 Regression Trees

Regression tree models are a type of non-linear regression method. Typically

they are used to predict continuous responses by dividing the dataset into smaller

groups (i.e. trees to branches to leaves). The method allows for the descriptor

variables used as input to be categorical, continuous, sparse, skewed, etc. without

preprocessing requirements. The structures of these trees are easy to compute

and interpret as they are intuitive. They can be allied easily to large datasets

without any prior knowledge of the relationship between the predicted response

and independent variables.

Random Forest (RF) Random forest is a method for classification and re-

gression which was introduced by Breiman and Cutler. [279] The method is based

upon an ensemble of decision trees, from which the prediction of a continuous

variable is provided as the average of the predictions of all trees. Recent studies

have suggested that random forest offers features which make it very attractive

for statistical modelling studies. [280] These include relatively high accuracy of pre-

diction, built-in variable selection, and a method for assessing the importance of

each variable to the model.

In RF regression, an ensemble of regression trees is grown from separate boot-

strap samples of the training data using the CART algorithm. [279] The branches
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in each tree continue to be subdivided while the minimum number of observations

in each leaf is greater than a predetermined value. Unlike regression trees, the

branches are not pruned back. Furthermore, the descriptor selected for branch

splitting at any fork in any tree is not selected from the full set of possible de-

scriptors but from a randomly selected subset of predetermined size.

There are three possible training parameters for random forest: ntree - the num-

ber of trees in the forest; mtry - the number of different variables tried at each

split; and nodesize - the minimum node size below which leaves are not further

subdivided. In theory, as the ntree increases, so does the computational expense.

However, due to the randomly selected descriptors being only a small part of the

original descriptor set in the dataset, ntree can be set high and the computations

can still be more efficient than other methods like bagging trees.

The bootstrap sample used during tree growth is a random selection with re-

placement from the molecules in the dataset. The molecules that are not used for

tree growth are termed the out-of-bag sample. Each tree provides a prediction for

its out-of-bag sample, and the average of these results for all trees provides an in

situ cross-validation called the out-of-bag validation.
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Figure 4.12: Example of a single RF decision tree to predict fruit type from
physical data.

Figure 4.12 displays an example RF decision tree for the prediction of fruits using

physical data. Here, the RF decision tree is shown to interpret missing data where

there is no node that splits for red coloured fruit. Instead it interprets the group

as ’not yellow’ and ’not green’ (shown on the right hand side of the tree) which

consists of three end nodes (apple, grape and cherry). Therefore, RF is a good

approach for large data sets with some missing data as it can still maintain good

performance. The example in Figure 4.12 is categorical where the end nodes are

categories, but the same logic would apply to numerical systems. Indeed, it is also

possible to assign a numerical classification to each category (i.e. banana = 1,

red apple = 2, green grape = 3 etc.) to predict a numerical value instead. One

disadvantage of RF is that it is inaccurate when the predicted response is beyond

the range of the observed outcomes in the training data. Although a prediction

will be made it is likely to be inaccurate for those beyond this range.
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Figure 4.13: Schematic of an RF regression forest.

In RF numerous regression trees are built using a subset of the training data where

the number of trees is defined by the user (ntree). A schematic of a RF regres-

sion forest is shown in Figure 4.13. Here, the training set is split into random

subsets which can overlap. The model then creates the predetermined number of

regression trees to generate a predictive result from each tree. In the final step,

the average result from all the trees are taken to provide a single predictive result.

During the training steps the model can change the random predictor subsets and

trees to find the best model for the training set. When using the predictive model

on a test set the trees and predictor subsets do not change.
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Chapter 5

Allosteric-Activation Mechanism

Of Bovine Chymosin

5.1 Overview

Crystal structures of chymosin reveal that the side chain of residue Tyr77 in a

β-hairpin flap region (shown in Figure 5.1) above the binding cleft in bovine chy-

mosin can occupy two different positions. [84] The side chain can be extended over

the binding pocket occupying the position where κ-casein binds (referred to as

the self-inhibited conformation) or it can be extended back into the β-hairpin flap

(referred to as the open conformation). [2,83] The transition from self-inhibited to

open is associated with a rearrangement of the β-hairpin flap, which becomes more

puckered in the open conformation. It has been widely reported that apo-chymosin

exists in the self-inhibited form and that this is converted into its active open form

by allosteric activation by the P8-P4 fragment of κ-casein, (His98-Pro99-His100-

Pro101-His102,) the so called “His-Pro” cluster (shown in Figure 5.1). [16] Evidence

for this allosteric activation mechanism came originally from the experiments of

Visser et al. [18] and Gustchina et al., [16] who measured the catalytic rates for pro-

teolysis of different fragments of κ-casein. They observed a ∼200 fold reduction in

catalytic rate for proteolysis of P2-P2’ or P3-P3’ fragments of κ-casein as compared
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to the native substrate. However, the reduction in catalytic rate was not observed

when chymosin had been pre-incubated with the P8-P4 residues of κ-casein. Taken

together with crystallographic data, [83] which show that apo-chymosin occupies a

self-inhibited conformation, the experiments carried out by Visser et al. suggest

that the P8-P4 residues act as an allosteric-activator. Further mutagenesis studies

have demonstrated that all five of the residues in the His-Pro cluster are important

for catalysis. [17,18]

Figure 5.1: Depiction of bovine chymosin–κ-casein complex. 1) β-hairpin flap
(light blue) and Tyr77 (dark blue). 2) α-helix (purple). 3) Catalytic residues

(green). 4) His-Pro cluster (red).

The HPHPH cluster is conserved in many other mammalian κ-casein peptides

including buffalo and goat, but in camel κ-casein the three histidine residues are

mutated to arginines. [11,281] Although a potential allosteric-activation process has

been widely discussed in the literature, [2,16,18,83,84,281] the mechanism has not been

elucidated at a molecular level due to the challenges associated with studying it

by experimental methods. This has hindered the development of novel enzymes
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and enzymatic processes for the food industry. [281]

Here, two computational techniques are used, molecular dynamics (MD) and bias

exchange metadynamics (BEMD) simulations, to reveal the allosteric activation

mechanism and its associated free energy surface. (Note - the BEMD simulations

were run by a collaborator, Dr Andrea Coletta at the University of Aarhus in Den-

mark, but the interpretation of the results, as well as all other simulations, were

carried out by me.) BEMD is an enhanced sampling technique that allows the

efficient exploration of complex free energy landscapes. It is well suited to study-

ing conformational/configurational transformations in bio-macromolecules and has

previously been used to study protein folding, [282,283] protein-ligand recognition [283]

and allosteric transitions. [284,285]

5.2 Methods

5.2.1 Molecular Dynamics Simulations

Unrestrained MD simulations were performed for the six chemical systems de-

scribed in Table 5.1, which include the open and self-inhibited conformations of

apo-chymosin and four replicas of the self-inhibited chymosin - P8-P4-κ-casein

complex. The four replicas differed only in whether or not capping groups were ap-

plied to the κ-casein fragment and whether the side chain of His102 in κ-casein was

modelled as protonated or neutral (with a proton on the N-δ atom of the imidazole

ring). Each system was simulated four times: two simulations using the AMBER

ff03 [286] force field and two simulations using the AMBER ff99SB-ILDN [287] force

field (6 systems × 2 force fields × 2 duplicates = 24 simulations in total). Dupli-

cate simulations were started from the same coordinates but with atoms being

assigned different initial velocities in different simulations.
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Table 5.1: Six chemical systems used as input for the molecular dynamics
simulations

ID System Apo/Holoa Cappingb Protonc

A1 Open Apo - -

B1 Self-inhibited Apo - -

C1 Self-inhibited Holo Capped No (HID)

C2 Self-inhibited Holo No Cap No (HID)

C3 Self-inhibited Holo Capped Yes

C4 Self-inhibited Holo No Cap Yes
a the holo complex is P8-P4 κ-casein bound to chymosin; b His-Pro fragment

can be capped (by methyl group) at both ends or can be uncapped; c κ-casein

fragment protonated at P4His position.

5.2.1.1 Input coordinates

The initial coordinates for the MD simulations were taken from previous work

in the literature. [2,123,288,289] A brief summary of the steps used to prepare the

input coordinates will be provided, since the details have previously been re-

ported. [2,123,288,289] In summary, the coordinates of chymosin were taken from

the crystal structure of 3CMS (where Tyr77 is resolved in both open and self-

inhibited forms). Chymosin coordinates were modified to: insert missing residues

(Asn291-His292-Ser293); reverse the Val111Phe mutation; introduce disulphide

bonds between Cys47-Cys52, Cys207-211 and Cys250-Cys283; assign amino acid

protonation states appropriately for pH 6.5; include 16 conserved water molecules

identified by Prasad et al. [290]

Since there are no crystal structures of chymosin-κ-casein complexes, the coor-

dinates of the chymosin sensitive regions of κ-casein (residues P9-P7’) in the com-

plex were generated by a two step process. [2] Firstly, the P2-P2’ residues were

docked into the 3CMS structure of apo chymosin and relaxed by MD simulations.

The binding pose has been shown to be in the correct geometry to allow prote-

olysis of the P1-P1’ (Phe105-Met106) amide bond in κ-casein via the established
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reaction mechanisms. [2,291–295] Secondly, the remaining residues were grown one by

one in the binding cleft using a series conformational search algorithms and MD

simulations per residue. The resulting binding pose has previously been shown

to be in good agreement with a crystal structure of a chymosin-inhibitor bound

complex [2,86] and with previous computational studies of the same system. [15] Free

energy calculations using this bound pose also agree with the results of experi-

mental mutagenesis studies. [2,123,288].

In these previous models of the chymosin – P9-P7’ κ-casein complex, the side

chains of HisP8 and HisP4 in κ-casein were modelled as positively charged, while

HisP4 was modelled as the neutral N-δ tautomer (since close contacts with the

side chain of Lys221 disfavour the protonated form). [2] These protonation states

were assigned based on predictions from PROPKA2.0 and comparisons of binding

energies computed using Poisson-Boltzmann solvent models. [2,296]

In the simulations reported here, tests were conducted on the positively charged

form of HisP4 as well as the N-δ tautomer because HisP4 is more solvent exposed

in the complex of chymosin – P8-P4 κ-casein. However, as demonstrated later, the

HisP4 protonation state was not deemed to affect the conclusions. The chymosin

– P8-P4-κ-casein complex that was simulated here was obtained by deleting the

P9 and P3-P7’ residues and adding hydrogen atoms or capping groups to complete

the valency, as necessary. The self-inhibited complexes were obtained by copying

the P8-P4-κ-casein residues from the open complex into self-inhibited, apo chy-

mosin (after alignment on the chymosin coordinates), followed by relaxation of the

coordinates of the complex by constrained minimisation and MD simulations, as

described below.

5.2.1.2 System Preparation

Molecular dynamics simulations were performed in NAMD. [297] Each protein or

protein-ligand complex was solvated by TIP3P [298] water molecules using the
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XLEAP module in AmberTools14.0. [299] Over 15000 water molecules were placed

around the protein in a (rectangular cuboid) periodic box. All systems were neu-

tralised then given an ionic strength of 0.07 mol dm-1 using chloride and sodium

ions as required.

5.2.1.3 Simulations

The solvated complexes were relaxed by conjugate gradient energy minimisation

in four steps of 5000 iterations. In steps 1 to 3, the whole protein, the protein

backbone, and the α-carbon atoms, respectively, were held fixed. All constraints

were removed in the fourth step. The systems were gradually heated to 300 K in

the NVT ensemble over 10 ps with the α-carbons held fixed, followed by a 4 ns

equilibration at 300 K with all constraints removed.

Equilibration and production simulations were performed in the isothermal-isobaric

(NPT) ensemble [300] at 300 K and 1 atm. The pressure was regulated by the Nosé-

Hoover Langevin piston pressure control [301] with the piston set up to a target of

1.01325 bar, a period of 200 fs, a decay of 100 fs and a temperature of 300 K. [302]

The temperature of the system was maintained by means of Langevin dynamics

with the dampening coefficient set to 2 ps-1, but not affecting hydrogen atoms.

Periodic boundary conditions were applied to the systems and electrostatic in-

teractions were calculated by the particle mesh Ewald (PME) method. [203–205] A

cut-off distance of 10 Å was set for van der Waals’ interactions using a switching

distance of 9 Å. The pair list was updated every 20 ns for atom pairs within 11 Å.

The distances of all bonds between hydrogen atoms and hetero-atoms were con-

strained by the SHAKE algorithm. [206,207] The velocity Verlet algorithm was used

to update the equations of motions every 2 fs, and snapshots were taken every 2

ps. For each system, a 2 ns equilibration was performed, followed by 80-100 ns of

production dynamics.
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5.2.1.4 Analysis

The open and self-inhibited forms of chymosin are distinguished by the N–Cα–Cβ–

Cγ (χ77) dihedral angle in Tyr77 (Figure 5.2), which is approximately 300◦ in the

open form and approximately 175◦ in the self-inhibited form (the dihedral angle

is expressed on a scale from 0◦ to 360◦, rather than the more common -180◦ to

180◦ scale, because it simplifies the resulting figures and free energy surface dia-

grams). In the open form, the side chain of Tyr77 tucks into a pocket under the

β-hairpin flap formed by residues 74 to 82 of chymosin, while in the self-inhibited

form it occludes the binding site. Measuring the Tyr77 dihedral as a function of

simulation time is therefore a convenient method to identify transitions between

open and self-inhibited forms.

Figure 5.2: Tyr77 dihedral angle definition. Dihedral angle bonds in bold
green.

To provide further insight into the observed allosteric activation mechanisms, the

dihedral angle in residue Phe114 (C–Cα–Cβ–Cγ), important residue-residue close-

contacts, and hydrogen bonding networks stabilising Tyr77 were also measured as

a function of simulation time. All measurements were automated using bespoke

Tcl scripts in VMD.
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5.2.2 Bias-Exchange Metadynamics (BEMD) Simulations

Well-tempered bias-exchange metadynamics (BEMD) simulations [303] of apo-chymosin

(A1, B1 in Table 5.1) and chymosin in complex with P8-P4 κ-casein residues (C1

in Table 5.1) were performed in GROMACS-5.0.4 using the PLUMED-2.1 plug-

in [304]. The free-energy surfaces (FES) were reconstructed using two collective

variables (CV):

1. The dihedral angle χ of Tyr77 (χ77, defined by the N–Cα–Cβ–Cγ atoms).

2. The number of contacts between the side chains of Tyr77 and Phe114, mea-

sured using the PLUMED implemented CV coordination number (CN) :

CN =


1 if rij ≤ 0∑

ij

1−
(

rij
r0

)6

1−
(

rij
r0

)12 if rij > 0

where rij = |ri − rj| − d0, (ri and rj being the coordinates of Tyr77 and

Phe114 atoms respectively). The values of the pair-wise switching function

parameters d0 and r0 have been set to 4.0 and 3.0 Å, respectively.

In the case of apo-chymosin the BEMD simulations were performed using 4 repli-

cas (one for each combination of the two structures A1 and B1 and the two CVs)

while in the case of the chymosin - P8-P4 κ-casein complexes two replicas were

used (one for each of the two CVs). In order to ensure the sampling of the free

energy surface in the presence of the P8-P4 residues of κ-casein the inclusion of

two piecewise linear/harmonic distance restraints were used: one between the ter-

minal cap of P8 and Nδ of Asn241 and one between the terminal cap of P4 and

Oγ of Ser220. The BEMD simulations were subsequently analysed using the VMD

plug-in “METAGUI” [305].

In order to characterise the correlation between the Tyr77 dihedral angle and
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the conformation of the protein, the mutual information entropy [306] value of χ77

dihedral was used along with the protein secondary structure, calculated as:

µresi = −
∑
ssi

∫
ρ(χ, ssi) log2

(
ρ(χ, ssi)

ρ(χ)ρ(ssi)

)
dχ (5.1)

where ssi is the DSSP secondary structure [307] and the probability densities were

estimated from the metadynamics simulation using 144 and 8 bins for χ77 and ssi

respectively.

This statistical measure is a generalization of the linear correlation coefficient

and gives an estimate of the extra-information gained using the joint distribution

function ρ(χ, ssi) instead of the two single distributions ρ(χ) and ρ(ssi).

It can be shown that mutual information µ(a, b) between two random variables a

and b can be expressed as µ(a, b) = (H(a) +H(b))−H(a, b).

H is the information entropy:

H(x) = −
∑
i

p(xi)log2(p(xi)) (5.2)

where p(xi) is the probability of event xi. Information entropy is a measure of

the information content in the variable x, and of the number of ”bits” needed

to efficiently encode a time series of that random variable. Mutual Information

µ(a, b) can be interpreted as a measure of the reduced number of bits needed to

encode the information content in the joint distribution (a, b) with respect to the
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total amount needed to encode two single distributions for a and b separately.

Since it can be shown that H(a, b) ≤ H(a) + H(b) with the equality standing

only in the case of a and b being independent, MI can be used as a generalised

measure of correlation between a and b being not restricted to pure linear relation-

ship between the two variables. The usual unit of measure for mutual information

is the ”bit”.

5.3 Results and Discussion

5.3.1 Molecular Dynamics

5.3.1.1 Apo-Chymosin

None of the eight unrestrained MD simulations of apo-chymosin (>800 ns simu-

lation time) exhibited a transition between the open and self-inhibited forms of

the enzyme. Analysis of the Tyr77 dihedral angle reveals a clear distinction be-

tween simulations started from either the open or self-inhibited forms (Figure 5.3).

Since the transition between open and self-inhibited forms was not observed in

these simulations, it suggests that there is a high-barrier for rotation around the

Tyr77 dihedral angle (and the associated rearrangement of the β-hairpin flap) in

the absence of the P8-P4 κ-casein penta-peptide, which agrees with the proposed

allosteric activation method (further sampling of the dihedral angle is carried out

using BEMD in the next section).
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Figure 5.3: Tyr77 dihedral angle at open (orange, A1) and self-inhibited (blue,
B1) conformations.

Tyr77 in its open conformation is found to be stabilised by a single water molecule.

This stabilising water forms hydrogen bonds with Tyr77 and residues Ser37 and

Asp39 of chymosin, as depicted in Figure 5.4. The water molecule has previously

been shown to be conserved in crystal structures of aspartic proteases. [290]

Figure 5.4: Open Tyr77 stabilisation

A different stabilising network is observed in the simulations in which the enzyme

is in the self-inhibiting conformation. A single water molecule forms hydrogen
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bonds with Tyr77, Ser14 and Gly218, both of which reside in the binding pocket

Figure (5.5). The same hydrogen bonding pattern is also observed for short re-

curring periods in the three simulations in which a change in Tyr77 conformation

takes place. In these simulations, the water molecule was regularly displaced in

short succession prior to the conformational change occurring, which suggests that

the κ-casein fragment affects this hydrogen bonding pattern.

Figure 5.5: Self-inhibited Tyr77 stabilisation

5.3.1.2 Chymosin – P8-P4 κ-Casein

The allosteric transition from self-inhibited to open conformation in the presence of

the κ-casein fragment is expected to occur on a sufficiently long timescale (seconds)

making it difficult to completely sample using regular MD simulations (nanosec-

onds) on current computational hardware (this sampling problem is addressed

later by the use of bias-exchange metadynamics simulations). Nevertheless, the

allosteric transition was observed in three of the regular MD simulations that in-

cluded the κ-casein fragment (The C1 simulation using the AMBER ff99SB-ILDN

force field and simulations C2 and C3 using the AMBER ff03 force field).



Chapter 5. Results and Discussion 88

Figure 5.6: Tyr77 dihedral angle (blue) – AMBER-ff99SB-ILDN Self-
inhibited-HPHPH complex (C1).

In the C1 simulation the dihedral angle of Tyr77 changes from self-inhibited to

open at 70 ns in the 90 ns trajectory, shown in Figure 5.6. At 50 ns there is a

deviation which lasts for 6 ns but this is not sustained and the dihedral angle of

Tyr77 returns to self-inhibited until the change in form at 70 ns. The first confor-

mational change at 50 ns is not sustained because residue Phe114 on the adjacent

α-helix remains in the space that Tyr77 would occupy in its open conformation.

The open conformation observed from 70 ns onwards is stabilised by the same

hydrogen bonding pattern between Tyr77, water, Asp39 and Ser37 as observed in

the simulation of apo-chymosin complex (and depicted in Figure 5.4).
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Figure 5.7: Tyr77 dihedral angle (blue) – AMBER-ff03 Self-inhibited-HPHPH
complex with no capping group (C2).

The change in form in the C2 simulation occurs at 40 ns where Tyr77 moves from

a self-inhibiting position to its open conformation Figure (5.7). This change is

sustained for the remainder of the 100 ns trajectory. After the conformational

change, Tyr77 is observed to make the same interactions that it does in the sim-

ulation of apo-chymosin in its open form (A1), including the hydrogen-bonding

network between Tyr77, water, Asp39 and Ser37 that is depicted in Figure 5.4.

Figure 5.8: Tyr77 dihedral angle (blue) - AMBER-ff03 Self-inhibited-HPHPH
protonated complex (C3).
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The conformational change occurs early on in the 80 ns simulation of system C3

(see Figure 5.8). At 6 ns Tyr77 moves from a self-inhibiting position to open and

remains in this state for 18 ns. In this pose the water molecule in the hydrogen

bonding network that stabilises the open conformation is continuously displaced

and replaced in short succession, which suggests that the stable open conformation

has not been fully reached. There is an increase in contact between Phe114 and

Trp41 (located at the base of the β-flap) when Tyr77 is in its open conformation

(self-inhibited:35% → open:51%), which is the opposite of what is found in simu-

lations C1 and C2, 37%→ 17% and 66%→ 32% respectively. This suggests steric

interference inhibits the stabilisation of open Tyr77. The reverse transformation

occurs at 24 ns where Tyr77 returns to its self-inhibited position suggesting that

the open form was not stabilised.

Analysis of the MD simulations provides an initial indication of the mechanism by

which the κ-casein fragment induces allosteric activation. The κ-casein fragment

interacts with the α-helical region of chymosin causing a sequence of changes, all

of which must occur to give allosteric activation. The key changes include: (i) dis-

ruption of the hydrogen-bonding network between Tyr77, water, Ser14 and Gly218

that would otherwise help to stabilise Tyr77 in the self-inhibited form; (ii) interac-

tion of the P8-P4 residues of κ-casein with the short α-helix in residues 112-116 of

chymosin, which causes movement of the side chain of Phe114 such that it vacates

the pocket that is occupied by the side chain of Tyr77 in the open conformation,

(iii) rearrangement of the β-hairpin flap to allow rotation of the Tyr77 dihedral

from its self-inhibited to open conformation. The steps in this pathway were not

observed in their entirety in any of the simulations that did not show allosteric

activation.
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5.3.2 BEMD – Bias-Exchange Metadynamics Simulations

5.3.2.1 Free Energy Surface

To further investigate the influence of the P8-P4 κ-casein residues on the Tyr77

conformation, two bias-exchange metadynamics simulations were performed, one

for the apo-enzyme and one for the chymosin – P8-P4 κ-casein fragment complex.

The free-energy surface (FES) as a function of χ77 and CN is reported in Figure

5.9-A1.
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Figure 5.9: Top Panel: free-energy surface (FES) as a function of χ77 and
CN obtained from the BEMD simulation of apo-chymosin (A1) and chymosin
– P8-P4 κ-casein complex (A2). The open (green), self-inhibited (red) and
intermediate (yellow) state of the enzyme are indicated with coloured spots.
A simplified picture of the transition path from open to self-inhibited state
is reported as a black line. Bottom Panel: Representative structure of the
FES minima obtained from the BEMD simulation of apo-chymosin (B1) and
chymosin – P8-P4 κ-casein complex (B2). The enzyme is represented as ribbon

and the colouring scheme is the same used in the top panel.

The minima corresponding to the open and closed (self-inhibited) conformation

of the apo-enzyme are highlighted with a green and a red spot respectively. The

dihedral angles and the CN values of the stable states are reported in Table 5.2.

The open state minimum is found to have a low number of contacts between Tyr77

and Phe114 and a dihedral angle of 305◦±5 while the self-inhibited state minimum

has a high number of contacts and a Tyr77 dihedral angle of 185◦ ± 5. The path

connecting the open and the self-inhibited states is divided in two sub-steps joined

by an intermediate state with a Tyr77 dihedral value of 305◦±5 (equal to the open
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state), and a high coordination number between Tyr77 and Phe114 (similarly to

the self-inhibited state). These findings provide further evidence that the small

helix spanning from residue 112 to residue 116 of chymosin plays an important

role in the interconversion from the self-inhibited to the open state of the enzyme.

Table 5.2: χ77 dihedral angle and CN values of the stable states observed
in the apo-chymosin BEMD simulation. The errors are the bin-widths used to

calculate free energy in the VMD plugin METAGUI

State χ77 CN

Open 305◦ ± 5 7± 5

Intermediate 305◦ ± 5 150± 5

Self-inhibited 185◦ ± 5 172± 5

A close-up of the structural change at the interface between the flap region and the

small 112-116 helix in the three minimal states found in the apo-chymosin BEMD

simulation is visible in Figure 5.9-B1 where a coordinate shift of the flap and the

2-turn helix is observed. In the first phase, the side chain of Tyr77 passes from the

self-inhibited conformation (red) to the intermediate state (yellow) maintaining

contact with Phe114, while the α-helix changes its conformation in concurrence

with the β-flap region. The intermediate state observed here is considered unstable

and is quickly transformed into the open conformation (green) in the trajectory. In

the second phase the number of contacts between Phe114 and Tyr77 is reduced and

the small helix returns to a conformation close to the original. This is confirmed

through residue contacts analysis carried out in simulations A1 and B1 systems

used in regular MD, see Appendices A. The findings are also in agreement with

the regular MD simulations of holo-chymosin, where a simultaneous movement of

Tyr77 and Phe114 is observed as Tyr77 moves from its self-inhibited to its open

pose.
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Table 5.3: χ77 dihedral angle and CN values of the stable states observed in
the BEMD simulation of the chymosin – P8-P4 κ-casein complex. The errors
are the bin-widths used to calculate free energy in the VMD plugin METAGUI

State χ77 CN

Open 235◦ ± 5 7± 5

Intermediate 125◦ ± 5 5± 5

Self-inhibited 105◦ ± 5 105± 5

When the protein is in complex with the κ-casein fragment a dramatic change

in the FES is observed (see Figure 5.9-A2 and Table 5.3). The minimum corre-

sponding to the open state is shifted to a Tyr77 dihedral angle of 235◦ ± 5 and

a low coordination number with Phe114 while the minimum corresponding to the

closed state is characterised by a shifted Tyr77 dihedral angle of 105◦ ± 5 and a

high coordination number. The systematic shift in the dihedral angles is possible

because of a pronounced twisting of the β-hairpin flap in the BEMD simulations,

which allows the side chain of Tyr77 to occupy the normal pockets in the open and

self-inhibited conformations despite the change in angles. It is believed that the

twisting of the β-hairpin flap is more pronounced in the BEMD simulations than

the regular MD simulations because the former allows a more thorough sampling

of the conformational change. Nonetheless, the difference in the Tyr77 dihedral

angles remains ∼ 130 +/-5 degrees in the BEMD simulations (similar to that ob-

served in the MD simulations and the 3CMS crystal structure). The importance of

the β-hairpin flap in aspartic proteases has previously been highlighted in studies

of mammalian (chymosin, BACE) and viral (HIV-protease) enzymes. [308,309] Inter-

estingly, in the BEMD simulation of the complex, an intermediate state is found,

but with a dihedral angle similar to the closed state (105◦ ± 5) and a low coordi-

nation number giving a different picture to what is observed in the apo-enzyme

FES. Since free energy estimates are less accurate for higher-energy regions of

phase-space (which are less well sampled during simulations), some caution must

be exercised in estimating barrier heights from the data in Figures 5.9-A1 and 5.9-

A2. Nonetheless, in the apo-enzyme, the open and intermediate states are clearly

separated by a very low energy barrier while the intermediate and closed state are
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separated by a high energy barrier. By contrast, in the chymosin – P8-P4 κ-casein

complex the closed and intermediate states are in the same kinetic basin while the

intermediate and open states are divided by a high energy barrier.

From observations of the minimal structure states found for chymosin – P8-P4

κ-casein complex Figure (5.9-B2), it appears that in the intermediate state (cyan)

the side chain of Tyr77 is pointing away from Phe114 and the active site of chy-

mosin. This intermediate state is nominally an active conformation because the

side chain of Tyr77 does not occlude the binding site. The conformation is ob-

served only fleetingly in the regular MD simulations, however. The coordinated

motions of the small helix and the β-flap regions found in the apo-enzyme transi-

tion are less obvious in the holo-enzyme transition; the small helix where Phe114

resides, conserves its structure in all three states, which is in good agreement with

what is observed in the regular MD simulations.

5.3.2.2 Mutual Information

Mutual information is the measure of mutual dependence between two random

variables. The regions in the enzyme having a high mutual information (MI)

value (Figures 5.10-A and 5.10-C) are those in proximity to Tyr77, roughly from

residue 70 to 80 (β-flap region), residues 110 to 120 (where the small helix and

Phe114 are found) plus some individual residues (148,162 and 163), a small loop

(residues 240-246) and a β-hairpin (residues 276-283) constituting the binding site

of P8-P4 κ-casein fragment on the chymosin C-terminal domain.
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Figure 5.10: Mutual information (MI) entropy between χ77 and secondary
structure of chymosin residues. Panel A: Residues on the apo-enzyme system
with a MI greater than 0.25 or 0.5 of the maximum value are coloured in orange
and red respectively. Panel B: MI of the holo-enzyme complex (same colouring
scheme as Panel A). Panel C: Comparison of MI for apo- (black line) and holo-
enzyme (red line), as a function of residue number; Secondary structure on the
residues (as observed in the PDB 3CMS) is reported (red: helix, blue: beta).
Panel D: Change of MI upon P8-P4 fragment binding. Residues for which a
decrease of MI is observed are coloured in blue, while residues for which an

increase of MI is observed are coloured in red.

A general reduction of the mutual information between Tyr77 rotation and the

enzyme domain change is observed in the chymosin – P8-P4 κ-casein complex.

The binding of the His-Pro cluster between the N-terminal β-hairpin and the C-

terminal domain disrupts the communication network observed in the apo enzyme

by modifying the conformation of the small α-helix, which, by a cascade effect,

allows the β-flap to deform and explore different paths for the conversion from
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the self-inhibited to the open state. The new path involves an intermediate state

in the same kinetic basin as the self-inhibited state and, therefore, a higher rate

of conversion between those two conformations. This intermediate state permits

access to the κ-casein cleavage site within the chymosin binding.

5.4 Conclusions

The conformational change occurring in the allosteric activation of bovine chy-

mosin has been observed by both regular MD and BEMD simulations. In agree-

ment with previous proposals based on kinetic, mutagenesis and crystallographic

experiments, [16–18,83,84] the simulations show that the HPHPH sequence from the

P8-P4 residues of bovine κ-casein initiates a conformational change in the side

chain of Tyr77 and the β-hairpin region of bovine chymosin. The allosteric acti-

vation mechanism occurs via the following steps: (i) the P8-P4 κ-casein fragment

binds with chymosin and disrupts the hydrogen bonding network that stabilises

the self-inhibiting pose of Tyr77 Figure 5.5; (ii) the P8-P4 κ-casein peptide inter-

acts with the short α-helix in residues 112-116 of chymosin, which both allows the

β-hairpin flap in residues 72 to 84 of chymosin to twist, and also causes the side

chain of Phe114 to vacate the pocket that is occupied by Tyr77 in the open confor-

mation; (iii) as Phe114 moves, Tyr77 simultaneously changes conformation from

self-inhibiting to open and is stabilised by a hydrogen bonding network below the

β-hairpin flap (Figure 5.4). Subtle variations in the simulation trajectories suggest

that allosteric activation is possible by multiple related pathways, but these all go

through the general steps described above, which were observed in their entirety

in all of the relevant MD and BEMD simulations.



Chapter 6

Effect of Mutations in Bovine or

Camel Chymosin on the

Thermodynamics of Binding

κ-Caseins

6.1 Overview

Bovine and camel chymosin have high sequence similarity (94%) and identity

(85%) and similar three-dimensional structures. They both comprise 323 amino

acids that fold into a pseudo-symmetric bi-lobal structure forming a central bind-

ing cleft containing the catalytic residues Asp34 and Asp216. The side chains of

the catalytic aspartic acid residues extend towards each other in a planar geom-

etry, [95] which is stabilised by a network of hydrogen bonds with two threonine

residues, referred to as “the fireman’s grip”. [45] Within the substrate-binding cleft,

there are 12 residue differences in the primary structure of bovine and camel chy-

mosin.

98
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Figure 6.1: Depiction of bovine chymosin–bovine κ-casein complex. κ-casein
fragment in red aligned across the binding cleft of chymosin. Catalytic aspartic

acid residues in green located within the binding cleft.

Here, the importance of individual amino acid residues in chymosin is investigated

by calculating the influence each residue has on the binding free energy of chymosin

to its substrate, κ-casein. This study focuses on the 12 residues that are naturally

different in the active sites of bovine and camel chymosin in order to elucidate the

influence of each residue on chymosin-κ-casein binding. For each of these residues,

computational alanine scanning calculations are performed in all four chymosin-

κ-casein complexes (Bov/Bov, Bov/Cam, Cam/Bov, Cam/Cam, chymosin type

first and κ-casein type second, Bov/Bov shown in Figure 6.1), using the molecu-

lar mechanics three-dimensional reference interaction site model (MM-3DRISM)

methodology. Using MM-3DRISM permits accurate estimates of solvation and

binding free energies and allows for the investigation of solvent density effects that

could not be studied by implicit continuum solvent models (as in e.g. MM-PBSA).
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6.2 Methods

6.2.1 MD Simulations

A total of 100 ns of unrestrained molecular dynamics simulations were run for each

of the four chymosin–P9-P7’- κ-casein complexes (Bov/Bov, Bov/Cam, Cam/Bov,

Cam/Cam). Input coordinates for each complex were taken from previous work

in the literature. [95,289]

The molecular dynamic simulations were run with the AMBER-ff03 force field

parameters developed by Duan et al. using NAMD [297] and the TIP3P water

model. [298] Production simulations were run in the isothermal-isobaric (NPT) en-

semble [300] at 1 atm. Langevin dynamics maintained the system temperature at

300K and the pressure was regulated by the Nosé-Hoover Langevin piston pressure

control [301], the piston was set to a target of 1.01325 bar, period set to 200fs, and

decay set to 100 fs. [302] Periodic boundary conditions were applied to each system

and the electrostatic interactions were calculated using the particle mesh Ewald

(PME) method. [203–205] Van der Waals interactions had a cut-off distance of 10 Å

and a switching distance of 9 Å. All hydrogen to hetero-atom bond distances were

constrained by the SHAKE algorithm. [206,207] The velocity Verlet algorithm was set

to update the equations of motion every 2 fs, and snapshots were stored every 2 ps.

Each simulation system was equilibrated for 4 ns. A 96 ns simulation was gener-

ated with a snapshot every 400 ps providing a 240 frame trajectory for analysis.

To reduce unnecessary computational expense, MM-3DRISM and normal-mode

entropy calculations were carried out on every third frame of this trajectory, as

per previous MM-3DRISM studies in the literature. [123,239]
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6.2.2 MM-3DRISM Calulations

Binding free energy of the κ-casein fragment to chymosin was calculated using the

MM-3DRISM [239,310] method at 298.15 K as implemented in AmberTools15, [172,225]

using a locally modified version of the MMPBSA.py program which implemented

the PC and PC+ free energy functionals. [246] The calculations were carried out on

single trajectories of each complex, this has proven to be both computationally

more efficient and provides results closer to experimental values through cancel-

lation of errors. [256] All interactions were computed with the AMBER-ff03 force

field. 3D-RISM calculations were performed with the assumption of an infinitely

dilute solute. Solvent was modelled using a modified SPC water model (as imple-

mented in the AmberTools package) with a water density of 55.343 mol/l. The

modified SPC water model was used to avoid numerical convergence issues. [217]

The buffer parameter was set to give a minimum distance of 18 Å between the

solute and the edge of the solvent box. The calculations employed the MDIIS

iterative scheme, [311] where 5 MDIIS vectors were used, and a MDIIS step size of

0.7. Solvent susceptibility functions required as input to the 3D-RISM calculations

were calculated with the dielectrically consistent 1D-RISM. The grid spacing for

1D functions was 0.025 Å, which gave a total of 16,384 grid points. The MDIIS

iterative scheme was employed, using 20 MDIIS vectors, an MDIIS step size of 0.3,

and a residual tolerance of 10−12. The solvent was considered to be pure water

with a number density 0.0333 Å3 and a dielectric constant of 78.497. Salt water

was also considered at various concentrations in preliminary test but due to the

lengthy calculation time and results being similar to the pure water results, the

salt water calculations were not conducted for this study.

Entropic contributions were calculated from rotational, translational and vibra-

tional contributions, with the latter computed by normal mode analysis. [312] The

binding free energy of a single complex is calculated through the average binding

free energy from a set of different conformations of the protein-ligand complex.

∆GHyd has been calculated using the advanced pressure correction (PC+) free

energy functional. The PC+ functional contains no empirical parameters and has
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been shown to give accurate predictions of hydration free energies for neutral and

ionised solutes, in both pure water and salt solutions at a wide-range of tem-

peratures. [237,241,245,248,249] As a comparison, results from three other free energy

functionals are presented: partial series expansion-3 (PSE-3), pressure correction

(PC) and Gaussian fluctuations (GF). For the calculation of relative solvation free

energies, as is required in computational alanine scanning, the investigation shows

that similar results are obtained using the PSE-3, PC and PC+ functionals be-

cause the differences between these functionals partially cancel out.

6.2.3 Computational Alanine Scanning

Computational alanine scanning calculations were carried out for 12 residues in

the binding site that are natural mutants (different amino acids) in bovine and

camel chymosin. All of these residues were within 4 Å of a residue in κ-casein

for at least 70% of each of the molecular dynamics trajectories (measured using

bespoke VMD Tcl scripts)(Figure 6.2).
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The Massova and Kollman [313] protocol was used to carry out the alanine scan-

ning calculations, employing the same trajectories used in the binding free energy

calculations. The Massova and Kollman method assumes that the mutations do

not significantly change the dynamics of the enzyme-substrate system, thereby in-

troducing the mutation after the simulations have been performed should provide

accurate results. This assumption has been shown to be valid for a wide-range

of protein-ligand systems. [314] It is also supported by molecular dynamics simu-

lations of bovine chymosin complexes (unbound, inhibitor bound and substrate

bound) which show binding incurs no significant change in the conformation of

the protein backbone. [83,86,95] The protocol has a number of advantages including

being computationally much less demanding, and most importantly the use of

the same trajectories allows for the cancellation of errors, resulting in more accu-

rate results. [313,315] In accordance with previous studies [313,315,316] and limited by

computational expense, the entropy term was neglected for all alanine scanning

calculations, since using the Massova and Kollman protocol the difference in en-

tropy between mutant and wildtype proteins is expected to be negligible.

The difference that an alanine mutation makes on binding free energy was cal-

culated by subtracting the wild-type binding free energy from the mutant to give

∆∆Gbind, (∆∆Gbind = ∆Gmutant − ∆Gwildtype). A negative ∆∆Gbind indicates a

favourable mutation (the native system has higher binding free energy than the

mutant), and positive results are unfavourable mutations (the native system has

a lower binding free energy compared to the mutant). As reported in previous

work [3,123] residues can be classified on a basis of magnitude of ∆∆Gbind; warm (≥

1 kcal/mol) or hot-spots (≥ 2 kcal/mol), representing a disproportionate contri-

bution to the binding free energy.
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6.3 Results and Discussion

6.3.1 Binding Free Energies

The binding free energies of the wildtype chymosin–κ-casein complexes were cal-

culated using four different solvation free energy functionals in MM-3DRISM. Ex-

tensive previous benchmarking on solvation free energy data of organic molecules

indicates that the PC+ functional gives more accurate results than the GF, PSE-3

or PC functionals. [237,241,245,248,249]

In this section, which discusses binding free energies, the focus is on the results

obtained using the PC+ functional, while the results of the other functionals are

provided in Appendix B. The calculated binding free energies must be interpreted

with caution because they do not include some terms relating to the loss of con-

formational freedom on binding (due to the use of a single-trajectory approach

to the MM-3DRISM calculations) and because they only include harmonic con-

tributions to the vibrational entropy; neither of these problems unduly affect the

computational alanine scanning results because of favourable cancellation of errors.

Table 6.1 presents enthalpic and entropic components of the free energy calcu-

lated by MM-3DRISM(PC+). The results indicate that binding is thermodynam-

ically favourable for all four complexes, but that the native complexes exhibit

more favourable binding than the cross-complexes. For all four complexes, a large

favourable change in the gas phase contribution to the binding free energy (∆Ggas)

is opposed by an unfavourable change in the hydration free energy (∆Ghyd) of

similar magnitude. The entropic contributions to the binding free energy are of

similar magnitude for all complexes. The binding free energies calculated by MM-

3DRISM(PC+) for the Bov/Bov and Cam/Bov systems are observed to be in

good general agreement with those obtained from MM-PBSA by Sorensen et al.

(Table 6.1). The binding free energies obtained by these two methods differ by

≈ 2 kcal/mol in both cases, which is not negligible, but is surprisingly consistent
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Table 6.1: Different Components of Binding Free Energy Calculated for the
Various Chymosin–κ-Casein Complexed using MM-3DRISM(PC+) Methodol-
ogy. MM-PBSA results taken from reports by Sørensen et al. [3] All Values Given

are in units of kcal/mol.

CAM/CAM CAM/BOV BOV/CAM BOV/BOV
Energy Mean SEa Mean SE Mean SE Mean SE
∆Ggas

b -1330.1 9.8 -1029.6 6.6 -1595.4 7.2 -1388.0 9.9
∆Ghyd

c 1211.7 9.1 932.4 6.1 1494.7 6.8 1277.3 9.1
∆Gtotal

d -118.4 1.4 -97.2 1.2 -100.7 1.1 -110.8 1.4
T∆Se -76.5 1.5 -61.9 1.3 -68.1 1.4 -70.2 1.1
∆Gbind

f -41.9 2.1 -35.3 1.8 -32.6 1.8 -40.6 1.8

∆GMM−PBSA
bind (Ref. [3])g - - -33.4 0.8 - - -42.8 0.7

a Standard Error; b Total Gas Phase Free Energy; c Total Hydration Free Energy; d Total
Energy; e Total Entropy; f Total Binding Free Energy. g Results taken from reports by

Sørensen et al. [3]

given the size of the peptide substrates and the difficulties associated with pre-

dicting absolute binding free energies from molecular simulation. Unfortunately,

it is impossible to compare either of these sets of results to experiment, since nei-

ther the binding free energies nor the hydration free energies of the protein-ligand

complexes considered here have been reported.

6.3.2 Alanine Scanning

To determine the importance of individual residues for free energy of binding, ala-

nine scanning calculations have been performed in all four complexes (Bov/Bov,

Bov/Cam, Cam/Bov and Cam/Cam), from 96 ns MD simulations of each com-

plex. The alanine scanning results that reveal a significant difference for a given

amino acid position in the four complexes will be grouped into two classes, corre-

sponding to whether it is the native residue in bovine or in camel chymosin that

contributes more favourably to the binding free energy. A negative ∆∆G shows

that mutating the natural residue to alanine will result in a stronger binding, and

a positive ∆∆G means the alanine mutation will result in a weaker binding.
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6.3.2.1 Favoured Native Camel Residues

LYS221VAL Residue 221 lies in the S4 pocket in close contact with either HisP4

(bovine) or ArgP4 (camel) of κ-casein. [3] On the basis of binding free energy cal-

culations of the wildtype bovine complex only, it has previously been suggested

that Val221 should be more favoured than Lys221 for the binding of bovine κ-

casein. [3] The results presented in Figure 6.3 are in good agreement with that

prediction. Figure 6.3 shows that the Lys221Ala mutation in bovine chymosin is

favoured (because it reduces unfavourable polar interactions with HisP4 in bovine

κ-casein), whereas by contrast the Val221Ala mutation in camel chymosin is un-

favoured (because it reduces favourable non-polar interactions). For the camel

κ-casein substrate (6.4), the same trend is observed, but the effects are greater

because ArgP4 (camel) is larger and more basic than HisP4 (bovine). The un-

favourable interaction between ArgP4 and Lys221 correlates with the observation

that camel κ-casein is a poor substrate for bovine chymosin. This is supported

by the experimental observation that a LysP4 mutant of bovine κ-casein is also a

poor substrate for bovine chymosin. [18]

Figure 6.3: Comparison of alanine scanning results of residue 221 (Lys221 in
bovine chymosin, Val221 in camel chymosin), on the four different chymosin–
κ-casein complexes with three different MM-3DRISM calculation methods. A
negative ∆∆G represents a favourable mutation, and positive results are un-

favourable.
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Figure 6.4: Snapshot of Val221 and ArgP4 (in bold for clarity) at 75.2 ns of
Cam/Cam complex MD simulation. Residue ArgP4 interacts with both Val221

and Glu245.

ASP112GLU Residue 112 (Asp112 in bovine chymosin, Glu112 in camel chy-

mosin) lies at one end of a short α-helical region of chymosin (residues 112 to 116)

near the surface of the binding cleft. The importance of the Asp112Glu mutation

to chymosin κ-casein binding thermodynamics is not immediately obvious from

crystallographic data since the mutation lies in the N-terminal domain of chy-

mosin, whereas the neighbouring P9-P1 residues of κ-casein bind predominantly

to the C-terminal domain. In all four complexes, mutating residue 112 to ala-

nine is shown to be thermodynamically unfavourable (Figure 6.5). Furthermore,

a clear difference is observed in the values of ∆∆Gbind for alanine scanning in the

four complexes. Both the importance of residue 112 and the trend in the alanine

scanning results can be partly explained by a salt bridge between residue 112 of

chymosin and P8 of κ-casein, which is observed to form for some part of each

of the simulations. For example, in the Cam/Cam complex, a relatively stable

Glu112-ArgP9 salt bridge is observed throughout the majority of the simulation

(Figure 6.6). Consequently, mutating Glu112 to alanine results in an unfavourable

change in binding free energy because of the loss of the salt bridge. By contrast,

in the Bov/Cam system, in which Asp112 in chymosin interacts with ArgP8 in

κ-casein, the salt bridge is observed less frequently during the molecular dynamics
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simulation and the loss of binding free energy due to an Asp112Ala mutation is

lower. This trend agrees with recent experimental and computational research that

suggests that in solution Arg forms weaker salt bridges with Asp than Glu. [317]

However, in the context of chymosin–κ-casein complexes, it may also be partly due

to the fact that the side chain of Glu is longer than Asp and, hence, it can orientate

itself better with respect to ArgP8. The alanine scanning data for bovine or camel

chymosin binding to bovine κ-casein reveals a similar trend with the stronger salt

bridge in the Cam/Bov complex (Glu112-HisP8) giving rise to a slightly larger

value of ∆∆Gbind than that in the Bov/Bov complex (Asp112-HisP8, HisP8 was

modelled as the charged histidinium ion in agreement with previous work). [2]

Figure 6.5: Comparison of alanine scanning results of residue 112 (Asp112 in
bovine chymosin, Glu112 in camel chymosin).
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Figure 6.6: Snapshot of Glu112 and ArgP8 (in bold for clarity) at 18.8 ns of
Cam/Cam complex MD simulation.

The α-helical region containing Asp112Glu has been implicated in allosteric ac-

tivation of bovine chymosin by the P8-P4 residues of bovine κ-casein. [318] In this

mechanism, the His-Pro cluster (HPHPH in P8-P4 of bovine κ-casein) interacts

with the α-helix, which both allows the β-hairpin flap in residues 72-84 of chy-

mosin to twist and causes the side chain of Phe114 to vacate a pocket that is

occupied by Tyr77 in the open conformation. The interaction between Asp112

and the P8 residue of κ-casein is therefore a potential target for protein engineer-

ing aimed at modifying the self-inhibited to open transition of Tyr77 in the bovine

complex. However, further experimental research would be required to verify how

these processes occur in the complexes involving camel chymosin or camel κ-casein.

GLU290ASP, HIS292ASN, GLN294GLU and LYS295LEU Residues 290

to 295 form an unstructured loop region above the centre of the binding cleft in

the C-terminal domain, opposite the β-hairpin flap in the N-terminal domain.

The loop region is known to be more flexible than the surrounding residues as

indicated by the crystallographic B-factors of the backbone atoms, which are ∼40

A2 in the loop compared to an average of ∼21-22 A2 in the protein. [97] Indeed,
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in earlier crystallographic studies, residues 291 to 293 were considered to be too

flexible to be resolved accurately. [83] The primary sequence of residues 290 to 295 is

ENHSQK in bovine chymosin and DNNSEL in camel chymosin, which reveals four

mutations: Glu290Asp, His292Asn, Gln294Glu and Lys295Leu. Analysis of the

molecular dynamics trajectories shows that the side chains of residues Glu290Asp,

Gln294Glu and Lys295Leu point towards κ-casein in all four complexes, while

Ser293 and, to a lesser extent, Asn291 are solvent exposed. His292Asn lies in the

most flexible region at the tip of the loop (B-factor > 40 A2 in both bovine and

camel crystal structures). An ensemble of different conformations are observed

throughout the molecular dynamics simulations, but on average Asn292 in camel

chymosin is more solvent exposed than His292 in bovine chymosin regardless of

the identity of the substrate.

Figure 6.7: Comparison of alanine scanning results of residue 295 (Lys295 in
bovine chymosin, Leu295 in camel chymosin).

In all four complexes, residue 290 (Glu290 in bovine chymosin, Asp290 in camel

chymosin) forms intermittent hydrogen bonds with the side chain of SerP2 and

non-specific interactions with IleP3’; both of these residues are conserved in bovine

and camel κ-casein (as well as goat, horse, pig and sheep κ-casein. Figure 2.3). The

alanine scanning calculations show a weak preference for Asp in the 290 position,

but mutating either Glu290 or Asp290 to alanine is unfavourable, since it incurs
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the loss of a hydrogen bond to SerP2 (Figure B.6, Appendix B). A more selective

influence on the binding free energy is observed in positions 292, 294 and 295. Mu-

tating His292 to alanine strengthens the binding by ∼ 2 kcal/mol in the bovine

chymosin complexes, whilst mutating Asn292 to alanine in the camel chymosin

complexes has essentially no effect because the residue is largely solvent exposed

(Figure B.7, Appendix B). Similarly, mutating Lys295 to alanine strengthens the

binding by ∼ 2 kcal/mol in both bovine chymosin complexes (Figure 6.7), whilst

mutating Leu295 to alanine in the camel chymosin complexes has little effect be-

cause both Leu295 and Ala295 make similar weak van der Waals interactions with

κ-casein (IleP3’ and ProP5’). (Figure 6.8). In the 294 position, there is a weak

preference for the Glu294 residue in camel chymosin, but the Gln294 residue in

bovine chymosin contributes approximately the same amount to the binding free

energy as an Ala residue (Figure B.8, Appendix B). The 294 residue points towards

the side chains of the P1 and P3 residues in κ-casein and is partially solvated in

all four complexes.

Figure 6.8: Snapshot of Leu295 and IleP3’ at 17.2 ns of Cam/Cam complex
MD simulation.
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An additional consideration is that Asn291 is a known glycosylation site in both

bovine and camel chymosin. [97] Here, considerations were made for the unglycosy-

lated variants since these predominate in commercial products. However, A. Niger

fermentation can glycosylate proteins at Nδ2 atoms of Asn in Asn-X-Thr/Ser se-

quences, of which there are two in both bovine (Asn252 and Asn291) and camel

chymosin (Asn100 and Asn291). Glycosylation is favoured at Asn-X-Thr sequences

(Asn100 Camel) as compared to Asn-X-Ser sequences (Asn252 and Asn291 bovine,

Asn291 camel). Approximately 10% of bovine chymosin produced by A. Niger fer-

mentation is glycosylated. A reduction in clotting activity is observed when camel

chymosin is glycosylated at Asn291. [97]

6.3.2.2 Favoured Native Bovine Residues

GLN242ARG Residue 242 (Gln242 in bovine chymosin, Arg242 in camel chy-

mosin) resides in a predominantly uncharged polar region on the surface of the

C-terminal domain, where it interacts with the ArgP9 residue of κ-casein. Al-

though early structural studies focused on the P8-P7’ residues of κ-casein only, [15]

the importance of the P9 position for binding has since been recognised because

ArgP9 is conserved in bovine, camel, pig, buffalo, horse, and goat chymosin. [319]

Furthermore, a variant of bovine κ-casein, in which the P9 position is occupied by

a histidine, has been shown to be a poor substrate for bovine chymosin. [90]. The

Gln242Arg mutation is the only sequence difference in the S9 pocket of bovine

and camel chymosin.
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Figure 6.9: Comparison of alanine scanning results of residue 242 (Gln242 in
bovine chymosin, Arg242 in camel chymosin)

Figure 6.10: Snapshot of Gln242 and ArgP9 (in bold for clarity) at 15.2 ns
of Bov/Bov complex MD simulation. The side chains of both residues extended

towards each other.

The alanine scanning results for residue 242 (Figure 6.9) reveal a significant dif-

ference between the bovine and camel variants. For the Bov/Bov and Bov/Cam

systems, Gln242 can be seen extending towards ArgP9 throughout the molecular
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dynamics simulations (Figure 6.10). Consequently, mutating Gln242 to alanine

results in weaker binding in these systems, as indicated by the positive ∆∆G ob-

tained by alanine scanning (Figure 6.9). By contrast, in camel chymosin, where the

interaction of Arg242 with ArgP9 is electrostatically and sterically unfavourable,

the side chain of Arg242 is observed to extend partly out of the binding pocket

(Figure 6.11). Here mutating Arg242 in camel chymosin to alanine shows a clear

improvement in binding free energy with a reduction in ∆∆G by ∼3.5 kcal/mol

(Figure 6.9).

Figure 6.11: Snapshot of Arg242 and ArgP9 (in bold for clarity) at 53.2 ns of
Cam/Cam complex MD simulation. The side chains of both residues extended

away from the binding pocket.

The results suggest that the Gln residue observed in wildtype bovine enzyme is

more favoured for binding than the Arg residue from its camel counterpart. The

role of the residues in the S9 pocket has not previously been defined, but it may

be to help orientate the neighbouring P8-P4 residues of κ-casein, which have been
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implicated by both experimental and modelling studies in the allosteric activation

of chymosin. [17,18,318]

GLN278LYS Residue 278 (Gln278 in bovine chymosin, Lys278 in camel chy-

mosin) resides in a predominantly uncharged region on the surface of the N-

terminal domain of chymosin, where it interacts with the P6 residue in κ-casein,

which is HisP6 in bovine and the larger and more basic ArgP6 in camel. The

S6 pocket is an open cleft formed by the side chains of the Ser277, Asp279 and

Thr284 residues in the C-terminal domain and Asp13 and Ser14 residues in the

N-terminal domain, all of which are conserved in bovine and camel chymosin. The

only mutation site near the S6 pocket, Gln278Lys, is not a common target for

protein engineering because crystallographic data shows that it lies at the bottom

of the open cleft with the Gln or Lys side chain pointing away from the binding

site in apo bovine or camel chymosin, respectively. In solution, as revealed by

the molecular dynamics simulation, however, the flexibility of the side chain of

residue 278 allows it to extend over the open cleft of the S6 pocket bringing it

closer to the P6 residue of κ-casein. Alanine scanning results for residue 278 show

that mutating the natural camel residue to alanine favours binding of bovine or

camel κ-casein, as shown by the negative ∆∆G in Figure 6.12. Here the mutation

to alanine removes an unfavourable Lys-Arg (Cam/Cam) or Lys-His(Cam/Bov)

interaction. By contrast, mutating the bovine chymosin residue, Gln278 to ala-

nine shows no significant change in binding free energy for either the Bov/Bov or

Bov/Cam complex. The results suggest that Gln or Ala are favoured over Lys in

the 278 position of chymosin.



Chapter 6. Changes in Solvent Density Distribution Due to Single-Point
Mutations 117

Figure 6.12: Comparison of alanine scanning results of residue 278 (Gln278 in
bovine chymosin, Lys278 in camel chymosin), on the four different chymosin–
κ-casein complexes with three different MM-3DRISM calculation methods. A
negative ∆∆G represent a favourable mutation, and positive results are un-

favourable.

6.3.2.3 Other Residues

The remaining four residues that were analysed through computational alanine

scanning show no significant difference in ∆∆Gbind between bovine or camel chy-

mosin complexes (Leu32Val, Ala117Ser, Met125Leu, and Val223Phe). The results

for these residues are presented in Appendix B. It was found that changes in bind-

ing free energy were either too little to be considered a significant change, or the

change was the same throughout all systems.

6.4 Changes in Solvent Density Distribution Due

to Single-Point Mutations
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As well as permitting estimates of solvation thermodynamics, the 3D-RISM cal-

culations provide information about the local solvation of protein-ligand bind-

ing sites that can be readily visualised. The 3D-RISM solvent density functions,

gα(r) = hα(r) + 1, give the spatial distribution of solvent density on a grid around

the protein-ligand complex. The change in solvent density distribution that occurs

due to a single-point mutation in the chymosin–κ-casein complex can be illustrated

by taking the difference between the spatial density distribution functions of the

mutant and wildtype complexes:

∆g(r)m/w = g(r)mutant − g(r)wildtype
[123] (6.1)

Figure 6.13 shows the corresponding isosurfaces at ∆g(r)m/w = 3, for each of the

single point mutations introduced in the alanine scanning experiments in the four

complexes. Changes in the local solvation are observed around each single-point

mutation. As would be expected, the largest changes in solvation are localised

within the binding site, with the most significant changes occurring due to changes

in excluded volume.

6.5 Conclusions

Using molecular dynamics simulations and free energy calculations, binding in four

different chymosin–κ-casein complexes (Bov/Bov, Bov/Cam, Cam/Bov, Cam/-

Cam) have been investigated. By way of computational alanine scanning calcula-

tions, the influence that differences in the primary sequence of bovine and camel

chymosin (”natural mutations”) have on the binding thermodynamics in these

complexes have been identified. Four of the natural mutations investigated here

do not appear to differ in their contribution to ∆∆Gbind as both the bovine and
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camel variants produce similar alanine scanning results. It is worth remember-

ing that these residues can have specific interactions that assist in forming the

optimal orientation of the complex, or facilitate the correct binding of κ-casein

to chymosin. The alanine scanning results shows that there are eight important

residues (112, 221, 242, 278, 290, 292, 294, and 295) that selectively influence

binding thermodynamics. For Gln242Arg and Gln278Lys, the residue in bovine

chymosin is more energetically favourable for binding. In the camel chymosin

systems the alanine mutations are energetically favoured suggesting the polar pos-

itive residues in camel chymosin adversely influence the binding thermodynamics

with κ-casein. By contrast, for mutations Asp112Glu, Lys221Val and Lys295Leu,

the native camel variant is most favoured. All of these residues occupy separate

and predominantly non-polar pockets along the binding cleft where the natural

polar positive residues in bovine chymosin adversely influence the binding ther-

modynamics. Analysis of the solvent density distributions obtained by 3D-RISM

illustrate that, as might be expected, mutation of binding site residues to alanine

leads to localised changes in solvent density, with the largest contributions coming

from excluded volume effects and polar functional groups.

It should be noted that there are a number of factors that are a part of the enzy-

matic process, and binding free energy is just one of them. Factors not considered

in this study such as covalent bond breaking/forming and association/dissociation

kinetics also affect the enzymatic process. Nonetheless, on the basis of the anal-

ysis carried out here, several residues have been identified for mutation with the

aim of selectively modifying the binding free energy. Other aspects of chymosin

catalysis, including the enzymatic reaction mechanism, are the subject of ongoing

investigation.



Chapter 7

Comparative Molecular Field

Analysis using Molecular Integral

Equation Theory

7.1 Overview

The two previous chapters reported studies of protein-ligand binding in chymosin

complexes that were carried out using existing computational methodologies (MD,

MM-3DRISM, etc). In this chapter, a new method that has been developed for

predicting protein-ligand binding affinities based on 3D-RISM and 3D-QSAR is

discussed, extended and benchmarked.

One of the most widely used 3D-QSAR methods is the comparative molecular

field analysis (CoMFA), which was proposed by Cramer et al. in 1988. [132] CoMFA

establishes a uniform grid encompassing a series of pre-aligned molecules. Elec-

trostatic and Lennard-Jones potential energies are then calculated between a pos-

itively charged carbon atom probe, located at each vertex of the grid, and each of

the molecules embedded within. [132] The resulting electrostatic and ”steric” fields

121
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are used as input for partial-least-squares regression models. Since its first publica-

tion, CoMFA has been cited in over 4000 published articles and used in numerous

drug discovery programs. [139,140] Several extensions to the CoMFA methodology

have been proposed, of which the highest profile is comparative molecular simi-

larity indices analysis (CoMSIA). [141,142] CoMFA considers both electrostatic and

steric fields to correlate activity. While CoMSIA considers electrostatic, steric,

hydrophobic and hydrogen bonding potentials.

Although CoMFA is widely used, it relies on a relatively simple representation

of molecular interactions, which does not explicitly account for solvation/desolva-

tion effects that can dramatically influence protein-ligand binding. Since CoMFA

was first proposed, advances in theory, algorithms and computer power mean that

there are now many fast and accurate methods to model molecular solvation effects.

Some success has been achieved using numerical simulation (e.g. Monte Carlo or

molecular dynamics simulations) to compute solute-solvent descriptors for QSAR

models, [320] but such methods are computationally expensive and subject to sam-

pling errors that reduce the signal-to-noise ratio in the modelling dataset. Integral

equation theory approaches are of particular interest for QSAR modelling because

they allow solute-solvent distributions and solvation thermodynamics to be com-

puted at a fraction of the cost of explicit solvent numerical simulations and with

no sampling error. [2,238,248] The most widely used of these methods are the 1D and

3D reference interaction site models (RISM) proposed by Chandler et al. [321] and

Beglov and Roux, [151–153] respectively. Accurate predictions of hydration free en-

ergy and Caco-2 permeability have previously been reported using QSAR models

based on 1D RISM molecular descriptors. [154]. Recently, Güssregen et al. pro-

posed the CARMa methodology, which uses solute–solvent distribution functions

calculated by 3DRISM to replace the electrostatic or steric fields in CoMFA. [155]

This approach was shown to give accurate predictions of binding affinities for a

series of serine protease inhibitors, but tests on other systems have not yet been

published. [155]
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The purpose of the research conducted in this chapter is two-fold. Firstly, the

study proposes an extension to the CARMa methodology. CARMa uses a statis-

tical mechanics solvent model to capture solvation effects, but does not directly

model the electrostatic and steric effects probed by CoMFA. Solving the 3D-RISM

equations for a solvent comprising CoMFA probes in aqueous solution addresses

this issue and results in predictions that are more accurate than either CoMFA or

the original CARMa model. Secondly, an extensive benchmark of both CARMa

models is conducted over six different protein-ligand systems and the results are

compared to previously published CoMFA and 3D-QSAR results. The influence

of algorithmic parameters, such as the 3D-RISM bridge-functional and grid-size,

on the prediction accuracy are systematically investigated.

7.2 Methods

7.2.1 QSAR Data Sets

Six datasets were selected to benchmark the CARMa predictions. Firstly, the 21

steroids selected by Cramer et al. were used to provide a direct comparison be-

tween CARMa and CoMFA (Figure 7.1). [132,140] Optimised and aligned structures

for all 21 molecules were taken from Coates et al. [140]; these files resolve some

errors in the original structures reported by Cramer et al. [140]
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Aldosterone Androstanediol Androstenediol Androstenedione

Androsterone Corticosterone Cortisol Cortisone

Dehydroepiandros-
terone

Deoxycorticosterone Deoxycortisol Dihydrotestosterone

Estradiol Estriol Estrone Etiocholanolone

Pregnenolone
17-

Hydroxypregnenolone
Progesterone

17-
Hydroxyprogesterone

Testosterone

Figure 7.1: A depiction of steroids training set.

Secondly, five pIC50 data sets published by Sutherland et al. were used to com-

pare CARMa to a wide-range of 3D-QSAR methods (including CoMFA). The

compounds with literature references, aligned molecular structures, and grid pa-

rameters for field based QSAR are all described by Sutherland et al. [124] Briefly, the

datasets are: ACE dataset – 114 angiotensin converting enzyme (ACE) inhibitors

with pIC50 values ranging between 2.1 and 9.9; [322] AchE dataset – 111 acetyl-

cholinesterase (AchE) inhibitors with pIC50 values ranging between 4.3 and 9.5; [323]

BZR dataset – 163 ligands for the benzodiazepine receptor (BZR) with pIC50

values ranging between 5.5 and 8.9; [324] COX2 dataset – 322 cyclooxygenase-2
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(COX2) inhibitors with pIC50 values ranging between 4.0 and 9.0; [325] DHFR

dataset – 397 dihydrofolate reductase (DHFR) inhibitors with pIC50 values rang-

ing between 3.3 and 9.8. [326] Sutherland et al used a ”cherry picking” with maxi-

mum dissimilarity algorithm to assign 33% of the dataset to the test set and the

remaining compounds to the training set. [327,328] To allow a direct comparison with

Sutherland’s results, the same aligned molecular conformations and training/test

sets reported by Sutherland et al. are used here.

7.2.2 3D-RISM

The 3DRISM calculations were performed using AmberTools16. [299] The KH clo-

sure was used for solution of the 3D-RISM equations. The linear grid spacing

in each of the three directions was 0.5 Å. The MDIIS iterative scheme was em-

ployed, [311] using 5 MDIIS vectors, MDIIS step size of 0.7, residual tolerance of

10−10.

Solvent susceptibility functions required as input to 3D-RISM were calculated

using dielectrically consistent 1D-RISM [329] with the KH closure. The grid size for

1D-functions was 0.025 Å, which gave a total of 16384 grid points. The MDIIS

iterative scheme was used, having a total of 20 MDIIS vectors, MDIIS step size

of 0.3, and residual tolerance of 10−12. The solvent was considered to be pure

water with a number density 0.0333 Å−3, and a dielectric constant of 78.497. The

solvent isothermal compressibility evaluated from the 1D-RISM calculation was

kBTη = 1.949459 Å3.

The Lue and Blankschtein version of the SPC/E model of water (MSPC/E) was

used. [330] This differs from the original SPC/E water model [331] by the addition of

modified Lennard-Jones (LJ) potential parameters for the water hydrogen, which
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were altered to prevent possible divergence of the algorithm. [332–335] The Lorentz-

Berthelot mixing rules were used to generate the solute-water LJ potential param-

eters [336]. The following LJ parameters (for water hydrogen) were used to calculate

the interactions between solute sites and water hydrogens: σLJHw
= 1.1657 Å and

εLJHw
= 0.0155 kcal/mol.

7.2.3 3D-RISM–QSAR

Two different classes of functions were tested as input to CARMa analyses: sol-

vent density distribution functions, g(r), which represent the local solvent density

at grid points around the solute; solvation free energy density functions, which

indicate the local contribution to the excess chemical potential of the solute.

7.2.3.1 Solvent Density Distribution Functions

Solving the 3D-RISM equations gives a solvent density distribution function, g(r),

for each interaction site (atom) in the solvent. Four different g(r) functions were

tested as input to CARMa: (i) water density distribution functions, gO(r) or gH(r),

computed for pure aqueous solvent; (ii) solvent-probe density distribution func-

tions, gC+(r) or gC−(r), obtained by solving the 3D-RISM equations with 0.1 M

gC+(r) and 0.1 M gC−(r) probe atoms as co-solvents in aqueous solution. The

gC+(r) and gC−(r) probes are positively or negatively charged sp3 carbon atoms

with Lennard-Jones parameters taken from the AmberGAFF2 forcefield.

7.2.3.2 Solvent Free Energy Density

Within the framework of the RISM theory there exist several approximate func-

tionals that allow one to analytically obtain values of the solvation free energy
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from the total hα(r) and direct cα(r) correlation functions. [238–240]. These can be

derived analytically from the appropriate 3D-RISM closure relationship. In this

chapter the KH (PSE-1) closure is used primarily unless explicitly stated that the

PSE-3 closure has been used. More information about the different closure rela-

tionships can be found in Chapter 4.

7.2.4 Grids

Both the local solvent density (as given by gO(r)) and the solvation free energy

density (w(r)) are represented on discrete grids. In principle, the values of these

functions at specific grid points could be used directly as input to the CARMa

models. Normally 3D-RISM calculations are carried out on a large grid with a

small grid spacing (0.3-0.5 Å), this would lead to many redundant variables, thus

making the numerical data sets too large to be processed easily. A simple solution

would be to solve the 3D RISM calculations on a small and coarse grid, but this

would reduce the accuracy of the obtained density distribution functions. Instead,

in this study, all 3D-RISM calculations were performed on a large and fine grid

(>50 Å3 grid with a 0.5 Å spacing). The output from 3D-RISM was then modified

by reducing the size of the grid to 22 Å3 by removing layers of each grid face as

appropriate (using custom Python scripts). To provide a further filter to remove

some of the unnecessary variables, two different approaches have been tested: (i)

mapping the 3D-RISM results onto a coarser grid; (ii) selecting only those grid

points that were within a distance, d, from the solute. The latter method increased

computational expense without improving prediction accuracy and, therefore, is

not discussed further. Prior to statistical modelling, all variables that had a vari-

ance of zero were removed.
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7.2.5 CARMa

7.2.5.1 Statistical and Machine Learning Algorithms

To derive the predictive CARMa models, two different methods of regression were

considered: partial-least-squares (PLS) and random forest (RF). A genetic algo-

rithm (GA) was also tested to select input variables for the PLS model. The

regression methods are described in detail in Chapter 4.

CARMa models were setup and trained using a combination of bespoke Python

and R scripts.

7.2.5.2 Partial-Least Squares

Partial-Least Squares regression models were trained using the pls library [337] in

the R statistical computing environment. [338] All PLS models were trained with

3 latent variables, which was selected as optimal balance between model size and

prediction accuracy based on consideration of the residual error sum of squares

and the percentage of variance explained.

7.2.5.3 Random Forest

Random forest models were trained with the randomForest library [339] in the R

statistical computing environment, [338] using standard parameters: mtry = N/3,

nodesize = 5, and ntree = 500, where N is the number of input variables and mtry

is rounded down to the nearest integer. There is extensive evidence in the litera-

ture that the random forest algorithm is insensitive to training parameters, [280,340]

so that variation of mtry between 40 and N , of ntree from 250 upward, and of

nodesize in the region 5 to 10 has little effect on prediction accuracy. As has

been done previously, these standard random forest parameters are used without
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further optimization. [280,340]

7.2.6 Statistical Analysis

To compare computational predictions with experimental data, a correlation co-

efficient and the root mean squared deviation (RMSD) were evaluated:

R2 = 1−
∑n

i=1(xi − yi)2∑n
i=1(xi −M(yi))2

, (7.1)

RMSD(x, y) =

√
1

N

∑
i

(xi − yi)2 (7.2)

where index i runs through the set of N selected molecules, and xi and yi are

values calculated by different computational methods, for molecule i for a given

property. The total deviation can be split into two parts: bias (or mean displace-

ment, M ) and standard deviation (σ), which are calculated by the formulae:

bias = M(x− y) =
1

N

∑
i∈S

(
xi − yi

)
(7.3)

σ(x− y) =

√
1

N

∑
i∈S

(
x(i) − y(i) −M(x− y)

)2
(7.4)

The bias gives a systematic error, which can be corrected by a simple constant

term. The standard deviation gives the random error that is not explained by the

model. The connection between these three formulae can be seen in Equation 7.5.
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RMSD(x, y)2 = M(x− y)2 + σ(x− y)2 (7.5)

Statistical analyses were carried out in the R Statistical Computing Environ-

ment. [341] Python scripts were used to manipulate raw data files.

7.2.7 Computational Expense

The CARMa calculations reported here were performed using a quad-core, 3.4GHz

Intel Core i5 iMac desktop with 16GB RAM (late 2013, operating system version

10.12.2). The most time-consuming step in making a prediction with a pre-trained

3D-RISM–CARMa model is solving the 3D-RISM equations; the remaining steps

require negligible computational expense. The mean time required to solve the

3D-RISM equations for an individual molecule in the steroid dataset was ∼1 min.

By their nature, 3D-RISM calculations are trivially parallel (e.g. one calculation

per node), but the time required for a single calculation could be significantly

reduced by using advanced numerical algorithms [342,343] or by performing the sim-

ulations using parallel computation. [225]
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7.3 Results

7.3.1 Steroid dataset

The steroids dataset consists of 21 compounds with corticosteroid-binding globu-

lins (CBG) binding affinity data. Cramer et al. report a q2 = 0.734 for leave-one-

out cross-validation of a CoMFA model, [140] which represents a relatively accurate

prediction of the CBG binding affinity data.

Table 7.1: Steroids leave-one-out cross-validation statistics (q2) using CARMa
with various descriptors and grid spacings.

Grid Spacing (Å) gO(r) gPSE3
O (r)a gH(r) SFEDb gC−(r)c gC+(r)d CoMFA

PLS

1.0 0.84 0.85 0.84 0.68 0.84 0.84 -

1.5 0.86 0.86 0.85 0.67 0.85 0.84 -

2.0 0.84 0.84 0.83 0.69 0.85 0.84 0.73

2.5 0.81 0.81 0.85 0.74 0.83 0.83 -

3.0 0.85 0.86 0.85 0.67 0.83 0.84 -
a Partial Series Expansion-3 closure; b Solvation Free Energy Density; c sp3 Carbon probe

atom with -1 charge; d sp3 Carbon probe atom with +1 charge.

Table 7.1 presents q2 values for LOO-CV of CARMa models built using the PLS

method and trained on six different distribution functions represented on six dif-

ferent grids. Several different trends are evident in Table 7.1. Firstly, the choice

of bridge functional used to solve the 3D RISM equations (KH or PSE-3) does

not significantly influence the results. The q2 values for CARMa models built on

gKHO (r) or gPSE3
O (r) are nearly identical for all grid sizes. A similar conclusion

was reached in literature reports that used PLS models trained on 1D-RISM de-

scriptors to predict hydration free energy and Caco-2 permeability. Secondly, for

this dataset, the PLS models trained on solvation density distributions (gO(r),

gPSE3
O (r), gH(r), gC−(r) and gC+(r)) perform better than those trained on solva-

tion free energy density (SFED). Thirdly, there is no obvious trend between the

various grid spacings. Although finer grids might be expected to lead to more
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accurate models, this is not evident in the data, which suggests that some redun-

dancy is present in the finer grids.

Figure 7.2: Correlation graph of leave-one-out cross-validation (LOO-CV) for
PLS models using the gO(r) distribution data at 2.0 Å grid spacing.

Figure 7.2 shows the cross-validated predictions obtained for PLS models trained

on gO(r) distribution functions represented on a 2 Å grid; the same grid spacing

used in the CoMFA models. The CARMa model explains more of the variance in

the experimental data than the CoMFA model, as exemplified by q2 = 0.84 for

CARMa compared to q2 = 0.73 for CoMFA. The residual cross-validated error

in the CARMa model (RMSE = 0.46) is predominantly due to random error

(σ = 0.45) with a relatively small systematic error (bias = 0.09).
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(a) gO(r) distribution importance.

(b) gH(r) distribution importance.

Figure 7.3: Aldosterone is shown with PLS importance of gO(r) and gH(r)
distributions at grid spacings 1.0 (blue), 1.5 (red), 2.0 (grey), 2.5 (orange) and
3.0 (green). The graphics show 10% of the most important regions for the PLS

models, derived from the importance metric.
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The total contribution that each input variable made to the PLS latent variables

was used as a metric to assess its importance to the model. Figure 7.3 depicts the

most important 10% of the gO(r) and gH(r) functions as assessed from the PLS

models. There is little difference between the gO(r) and gH(r) descriptor mod-

els, which is perhaps not surprising given that oxygen and hydrogen atoms are

covalently bonded in water. In Figures 7.3a and 7.3b, the regions highlighted are

located by the terminal cyclo-hexane (ring A) of the steroids for all grid spacings.

A similar trend is observed in the importance graphics for the gC−(r) and gC+(r)

probe atom distributions (see Figure 7.4), but here the distributions seem to be

more localised in space in comparison to those for gO(r) and gH(r) (Figure 7.3).
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(a) gC−(r) distribution importance.

(b) gC+(r) distribution importance.

Figure 7.4: Aldosterone is shown with PLS importance of gC−(r) and gC+(r)
distributions at grid spacings 1.0 (blue), 1.5 (red), 2.0 (grey), 2.5 (orange) and
3.0 (green). The graphics show 10% of the most important regions for the PLS

models, derived from the importance metric.
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7.3.2 pIC50 Data Sets

To further validate the methodology, CARMa models were developed to predict

pIC50 values for five datasets collated by Sutherland et al. [124]. In each case, the

training/testing datasets and aligned molecular structures selected by Sutherland

et al. were used to provide a direct comparison to their CoMFA and 3D-QSAR

results.

In total, 450 different CARMa models were considered (5 3D-RISM fields × 6 grid

spacings × 3 regression methods × 5 datasets). All of the results are compiled

in Table 7.2 (training dataset) and Table 7.3 (testing dataset). Since correlation

coefficients (q2 or R2) and predictive errors (RMSE) were found to be highly cor-

related for these datasets, only the correlation coefficients are presented in Tables

7.2 and 7.3, but all other statistics (RMSE, σ, bias) are provided in Appendix C.

The ”-” entries in Tables 7.2 and 7.3 indicate that training PLS or RF models on

3D-RISM fields with a 0.5 Å grid spacing was found to be prohibitively computa-

tionally expensive. The best predictions for the external test set are summarised

in Table 7.4.
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Table 7.4: Best test set predictive accuracy statistics (r2) for the pIC50 data
sets compared to CoMFA and best literature model.

r2 Grid Spacing (Å) RMSEa Descriptor

ACE

CoMFA 0.490 2.0 1.520 -

CoMSIA Basic 0.520 2.0 1.460 -

PLS 0.638 2.5 1.325 gC−(r)

GA-PLS 0.615 0.5 1.366 gC+(r)

RF 0.636 1.0 1.304 gC−(r)

AchE

CoMFA 0.470 2.0 0.937 -

PLS 0.665 1.0 0.791 gC+(r)

GA-PLS 0.697 0.5 0.761 gC+(r)

RF 0.537 2.0 0.918 SFED

BZR

CoMFA 0.000 2.0 0.960 -

2.5D 0.200 2.0 0.861 -

PLS 0.209 1.5 0.878 gC−(r)

GA-PLS 0.208 2.0 0.848 gH(r)

RF 0.217 3.0 0.863 gC−(r)

COX2

CoMFA 0.290 2.0 1.233 -

CoMSIA Extra 0.370 2.0 1.164 -

PLS 0.382 3.0 1.159 gC+(r)

GA-PLS 0.351 0.5 1.211 gC−(r)

RF 0.375 3.0 1.252 gC+(r)

DHFR

CoMFA 0.590 2.0 0.886 -

HQSAR 0.630 2.0 0.837 -

PLS 0.562 3.0 0.913 gC+(r)

GA-PLS 0.567 0.5 0.913 gC−(r)

RF 0.652 3.0 0.837 gO(r)
a For literature results this has been recalculated from the standard error of prediction

(s) reported by Sutherland et al. [124] as: RMSE =
√

((s2)(N − 1/N).
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ACE Dataset. The ACE dataset comprises pIC50 data for 114 inhibitors of

angiotensin converting enzyme separated into a training dataset of 76 and a test

dataset of 38 molecules. The pIC50 values range between 2.1 and 9.9. Inspection

of the data in Tables 7.2 and 7.3 show that the CARMa models are relatively

insensitive to the choice of 3D-RISM field or grid-spacing for this dataset. The

most accurate predictions were obtained using either PLS or RF regression on

gC−(r) variables. For the external test set, the RF model has a slightly smaller

error (RMSE = 1.304) than the PLS model (RMSE = 1.325), but both methods

report R2 = 0.64 (2 decimal places). The correlation between experimental and

predicted pIC50 data for the PLS model is illustrated Figure 7.5. By comparison,

the most accurate predictions reported by Sutherland et al. were obtained using

CoMSIA (R2 = 0.520, RMSE = 1.46), which was found to be slightly more accu-

rate than CoMFA (R2 = 0.490, RMSE = 1.52).
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Figure 7.5: ACE correlation graphs of leave-one-out cross-validation (LOO-
CV) and test set predictive accuracy for the CARMa PLS model using the

gC−(r) probe atom distribution descriptor at 2.5 Å grid spacing.

Using a genetic algorithm (GA) to select input variables for the PLS method leads

to a high q2 for cross-validation, which is not surprising given that the GA fitness

function was RMSE for 3-fold cross-validation, but these models do not generalise
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as well as the PLS or RF models; the best GA-PLS prediction of the test set is

R2 = 0.615 and RMSE = 1.366.

AchE Dataset. The pIC50 values for the 111 acetylcholinesterase inhibitors in

the AchE dataset range from 4.3 to 9.5. Sutherland et al. found CoMFA to be

more accurate than other QSAR methods for modelling this dataset (R2 = 0.47

and RMSE = 0.937). Tables 7.3 and 7.4 show that an improvement in accuracy

can be made by replacing CoMFA’s electric/steric fields with gC+(r) variables giv-

ing R2 = 0.665 and RMSE = 0.791 for PLS regression. Using a GA to select

input variables for PLS further improves the accuracy for most 3D-RISM fields

and grid-spacings. The best CARMa model was obtained with GA-PLS regres-

sion on gC+(r) variables giving R2 = 0.697 and RMSE = 0.761 (Table 7.4). The

correlation diagrams for this model are presented in Figure 7.6.
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Figure 7.6: AchE correlation graphs of leave-one-out cross-validation (LOO-
CV) and test set predictive accuracy for the CARMa GA-PLS model using the

gC+(r) probe atom distribution descriptor at 0.5 Å grid spacing.

BZR and COX2 datasets. The BZR and COX2 data have proven to be almost

impossible to model accurately using QSAR methods. Sutherland et al. reported
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R2 = 0 and R2 = 0.29 for CoMFA predictions of the BZR and COX2 test sets,

respectively. The best results were R2 = 0.200 and RMSE = 0.861 for a ”2.5D”

QSAR model of the BZR data and R2 = 0.370 and RMSE = 1.164 for a CoM-

SIA Extra model of the COX2 data; both of these models were considered to be

too poor to be particularly useful. As would be expected, the CARMa method

is also not able to produce very accurate models for these datasets, but in both

cases it improves on the CoMFA results and matches or improves upon the other

predictions. For the BZR dataset, a CARMa model using gC−(r) variables and

RF regression gives R2 = 0.217 and RMSE = 0.863, while for the COX2 dataset

a PLS model trained on gC+(r) variables gives R2 = 0.217 and RMSE = 1.159.
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Figure 7.7: COX2 correlation graphs of leave-one-out cross-validation (LOO-
CV) and test set predictive accuracy for the CARMa PLS model using the

gC+(r) probe atom distribution descriptor at 3.0 Å grid spacing.

For the COX2 dataset, part of the reason for the poor test set prediction is that

the training and test sets cover different ranges of property space. The correlation

diagram for the PLS model on gC+(r) variables is given in Figure 7.7a. There are

only three compounds with pIC50 values below 5 in the training set, whereas in

the test set there are 19 compounds fitting this criteria. The structures of these

compounds, although from the same family, do not show a stand out chemical sub
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structure that can explain the poor predictions below a pIC50 value of 5. Figure

7.7b shows that compounds with pIC50 values above 5 are relatively well predicted,

with the exception of one or two outliers, but the 19 compounds with pIC50 values

below 5 have all been overestimated.

DHFR Dataset. A CoMFA model of the DHFR data has previously been re-

ported to give a R2 = 0.590 and RMSE = 0.886, while the HQSAR produces

an improved result R2 = 0.630 and RMSE = 0.837. The best CARMa model is

found using the RF method and gO(r) variables at 3.0 Å grid-spacing, which has

R2 = 0.652 and RMSE = 0.837.
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Figure 7.8: DHFR correlation graphs of leave-one-out cross-validation (LOO-
CV) and test set predictive accuracy for the CARMa RF model using the gO(r)

distribution descriptor at 3.0 Å grid spacing.

In Table 7.4, CARMa is shown to improve R2 in comparison to CoMFA by 6.2%

when the RF method is used with the gO(r) descriptor. In fact, the RF method

produces the best result for all five descriptors tested here. The poorest results

are obtained from the SFED descriptors as shown in Table 7.3. The PLS and

GA-PLS methods produce results comparable to the literature when used with
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gO(r) and gH(r) descriptors, but improved results when used with the probe atom

descriptors. Figure 7.8a shows the correlation diagram for cross-validation of the

DHFR training data using the best RF model. It is apparent that the models do

not make very accurate predictions for molecules with pIC50 values above 8, which

may partly be because they are under-represented in the dataset.

7.4 Discussion

The predictive accuracy of CARMa using various parameters and descriptors has

been examined using the steroid dataset defined by Coates in 1988 and the five

largest data sets reported by Sutherland et al in 2004. [124,140] The physiochemical

properties of compounds were encoded using 3D-RISM calculations for applica-

tion in field-based QSAR. The 3D-RISM calculations provided oxygen (gO(r)),

hydrogen (gH(r)), SFED, gC−(r) probe atom and gC+(r) probe atom distribution

functions to be used as fields. The models were implemented using PLS, GA-PLS

and RF regression.

Two different approaches were taken to asses the predictive model accuracy. First,

the cross-validation (CV) was examined: a measure of a models ability to gener-

alise for a given group of compounds (training set). Second, the ability to extrap-

olate the generalisation was assessed by measuring the accuracy of predictions for

test set compounds.

7.4.1 Steroids

For the steroid dataset, only the CV is assessed as the dataset is considered too

small for any model to extrapolate any generalisation well. The GA-PLS is also
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omitted as the CV here is representative of a fitness function rather than a measure

of generalisation, therefore is not comparable to other methods or the literature.

From the CV of the PLS models, it emerges that all methods perform well and

are better than CoMFA. With the exception of the SFED, all other descriptors

clearly perform better than CoMFA, Table 7.1. The results suggest that there is

no preferred grid spacing that is obvious which is not unexpected as the coarser

grids tend to contain much of the information from the finer grids. Overall, we

find the CARMa models have performed better than the best CoMFA model for

the steroids dataset.

7.4.2 pIC50 Data Sets

For the pIC50 data sets both aspects of predictive model accuracy are examined.

Here, the GA-PLS CV is included as the test sets are used to calculate predictive

accuracy statistics, providing a validation for the GA-PLS models fitness function.

Comparing the predictive accuracy for the CARMa models as shown in Tables

7.3 and 7.4, suggests that CARMa has outperformed the best literature results in

all 5 data sets. The RF models seem to generate the good results consistently and

some other trends have been noted.

(1) The probe atom distribution descriptors consistently produce very good re-

sults. The best predictive model derived from the probe atom descriptors performs

substantially better that the best literature model for the ACE, AchE, BZR and

COX2 data sets. In the case of DHFR the best model derived from the probe

atom descriptors generates the same result as the literature best (HQSAR).

(2) In comparison to CoMFA, the CARMa results are a significant improvement

in all 5 data sets. With the exception of the DHFR dataset, the best CARMa
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PLS and GA-PLS models are better than CoMFA. The best RF model for each

dataset, outperforms CoMFA significantly.

(3) The SFED descriptor tends to perform poorly in comparison to other CARMa

models with the exception of the AchE dataset, for which the RF method works

best with the SFED descriptors. In most cases the SFED descriptor models are

outperformed by gO(r) and gH(r) descriptor models.

(4) The gO(r) and gH(r) models tend to generate similar results. This is not unex-

pected as oxygen and hydrogen atoms are covalently bonded in water molecules,

resulting in similar information being captured in the distribution functions.

(5) The results show that the training/test set split can create a biased gener-

alisation when training models. This can be happen if an adequate sampling of

the full range of activities is not done in the training set and results in poorer

predictive models. For example, in the BZR, COX2 and DHFR data sets a small

portion of the activity range is not adequately accounted for in the training sets.

This has resulted in poor predictions for compounds in the test set with activities

within this range for all three data sets. However, it is noted that for the activity

ranges that have been adequately sampled, the prediction of compounds within

this range are done well.

(6) The RF models show the most consistency across the range of grid spacings.

The PLS method is consistent within the grid spacing range tested here but in

some cases can be thrown off, shown by the AchE dataset using the gH(r) descrip-

tors. The GA-PLS method is highly inconsistent across the range of spacings and

can go from being a very good model to being a very poor one by changing the

grid spacing. This is seen in the AchE dataset using gC+(r) probe descriptors,

where the 0.5 Å GA-PLS model has a predictive accuracy of 0.697, and the 3.0 Å

GA-PLS model gives a poor score of 0.269.
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(7) For the PLS and RF models there are no real trends that determine the best

grid spacing. However, for the GA-PLS model with the exception of SFED de-

scriptors, the trend seems to be that the finer grid spacings are favoured. For

example, when using the gO(r) descriptors with GA-PLS the best result is ob-

tained using 0.5 Å spacing for all 5 data sets.

This study has compared q2 and r2 statistics and determined that most mod-

els have been overfitted to some extent (q2 > r2). For the PLS and RF there

seems to be a reasonable correspondence between cross-validation and predictive

accuracy with negligible overfitting but for the GA-PLS models overfitting seems

to be problematic. The q2 statistics of the GA-PLS models are quite high and

suggests that they are the best predictive models, Table 7.2. However, a look at

the r2 statistics reveal that the GA-PLS method tends to be outperformed by the

RF and PLS regularly, Tables 7.3 and 7.4. This reinforces literature reports that

measuring q2 alone is not enough to determine the predictive accuracy of a QSAR

model. [344]

7.5 Conclusions

In summary, this investigation has examined the predictive accuracy of numerous

CARMa models applied to 5 pIC50 data sets and compared the results against

the best models reported in the literature. The results conclusively show that

CARMa is the best method available for predictive accuracy for all the data sets

used. The CARMa regression models are able to extract structure-activity rela-

tionship (SAR) trends from a training set and extrapolate them over a test set

relatively accurately. The RF method produce the best predictive models in com-

parison to PLS and GA-PLS, and although no grid spacing could be determined as

the optimal, it can be concluded that for RF models the differences are negligible.
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The best descriptors are the probe atom distributions, resulting in better predic-

tive models for PLS, GA-PLS and RF in comparison to models using gO(r), gH(r)

and SFED descriptors. These finding suggest CARMa (3D-RISM) captures more

information about the field that is required for predictive models in comparison

to other field-based QSAR methods.

While there are discrepancies in usefulness of the predictive models from dataset to

dataset, this study has demonstrated that CARMa is an extremely robust QSAR

method and will be given serious consideration for applications by QSAR practi-

tioners. As reported in the literature, a model that works sufficiently for one data

set may not work very well for others and it is fair to say many models are unlikely

to be good for all data sets available. [124] However, the benchmarking done as a

part of this research has demonstrated that CARMa works extremely well for the

5 pIC50 data sets employed here.

A number of changes are likely to improve the predictive accuracy of the CARMa

models. This investigation has shown the discrepancies in the training/test set

split which is believed to have adversely affected the predictive models for the

BZR, COX2 and DHFR data sets. Further work would include, but not be limited

to; investigating different 3D-RISM parameter such as forcefields, partial charges,

solvent model and bridge functionals; calculate other solvent probe descriptors

and improving the structural alignment.
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Conclusions

This thesis has investigated and developed various computational tech-

niques used to study protein-ligand binding with an emphasis on the as-

partic protease, chymosin, and approaches using the three-dimensional

reference interaction site model (3D-RISM). Three computational investiga-

tions have been presented in this thesis and the key findings from each investigation

are summarised in the sections that follow.

8.1 Allosteric-Activation Mechanism Of Bovine

Chymosin

The conformational change that occurs in the allosteric-activation mechanism of

bovine chymosin has been observed in both regular MD and BEMD simulations.

This is in agreement with literature kinetic, mutagenesis and crystallographic ex-

periments, showing the HPHPH (P8-P4) residue sequence of bovine κ-casein ini-

tiates the conformational change in the side chain of Tyr77 and the β-hairpin

region of bovine chymosin. The investigation has led to the the proposal of a

new allosteric-activation mechanism that occurs via the following steps: (i) the

P8-P4 κ-casein fragment binds with chymosin and disrupts the hydrogen bonding

network that stabilises the self-inhibiting pose of Tyr77 Figure 5.5; (ii) the P8-P4

149
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κ-casein peptide interacts with the short α-helix in residues 112-116 of chymosin,

which both allows the β-hairpin flap in residues 72 to 84 of chymosin to twist,

and also causes the side chain of Phe114 to vacate the pocket that is occupied

by Tyr77 in the open conformation; (iii) as Phe114 moves, Tyr77 simultaneously

changes conformation from self-inhibiting to open and is stabilised by a hydrogen

bonding network below the β-hairpin flap.

Further work is warranted as the investigation has highlighted multiple related

pathways for the proposed activation mechanism. The same experiment can be

conducted on other chymosin–κ-casein complexes such as the bovine-camel, camel-

bovine and camel-camel (chymosin variant is named first and κ-casein second).

Longer chains of κ-casein can be investigated to asses the impact it would have on

the allostery and if the additional residues create a bias for a particular pathway.

8.2 Effect of Mutations in Bovine or Camel Chy-

mosin on the Thermodynamics of Binding

κ-Caseins

Through the use of molecular dynamics simulations and free energy calculations,

binding in four different chymosin–κ-casein complexes (Bov/Bov, Bov/Cam, Cam/Bov,

Cam/Cam) has been investigated. By way of computational alanine scanning cal-

culations, the influence that differences in the primary sequence of bovine and

camel chymosin (”natural mutations”) have on the binding thermodynamics in

these complexes has been identified. Of the 12 sequence differences in the binding

sites of bovine and camel chymosin, eight are shown to be particularly impor-

tant for understanding differences in the binding thermodynamics (Asp112Glu,

Lys221Val, Gln242Arg, Gln278Lys. Glu290Asp, His292Asn, Gln294Glu, and Lys295Leu).
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For Gln242Arg and Gln278Lys, the natural residue in bovine chymosin is ener-

getically more favourable for binding. In the camel chymosin systems the ala-

nine mutations are energetically favoured suggesting the polar positive residues

in camel chymosin adversely influence the binding thermodynamics with κ-casein.

For residues Asp112Glu, Lys221Val and Lys295Leu, the native camel variant is

most favoured. All of these residues occupy separate and predominantly non-polar

pockets along the binding cleft where the natural polar positive residues in bovine

chymosin adversely influence the binding thermodynamics.

The research conducted in this chapter has identified a number of residues in

variants of chymosin that are particularly important for influencing protein-ligand

binding thermodynamics for chymosin–κ-casein complexes. Further investigations

for this study would include the effect of single-point mutations on natural variants

in the substrate as well as the effect of multiple point mutations for the complexes.

8.3 Comparative Molecular Field Analysis using

Molecular Integral Equation Theory

The results show that CARMa is the best method available for predictive accu-

racy for all the data sets used. The CARMa regression models are able to extract

structure-activity relationships (SAR) trends from a training set and extrapolate

them over a test set relatively accurately. The results show that the RF method

produces the best predictive models in comparison to PLS and GA-PLS. Although

no grid spacing could be determined as the optimal, it can be concluded that for

RF models the differences between the various grid spacings are negligible. The

best descriptors are the probe atom distributions, resulting in better predictive

models for PLS, GA-PLS and RF in comparison to models using gO(r), gH(r)

and SFED descriptors. These findings show that CARMa (3D-RISM) captures
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more information about the field that is required for predictive models in com-

parison than other field-based QSAR methods.As QSAR methods are increasingly

being applied in the early stages of drug discovery to identify high quality leads/li-

gands, PCARMa has demonstrated that it can outperform commonly used QSAR

methods consistently and should be given serious consideration for applications

by QSAR practitioners.

Further work could include investigating different 3D-RISM parameters (e.g. force-

fields, partial charges, solvent models and bridge functionals), applying other sol-

vent probe descriptors, or improving the structural alignment.
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Appendix A

Allosteric-Activation Mechanism

Of Bovine Chymosin

A.1 Tyr77 and Phe114 interactions

A.1.1 Apo-Chymosin

In the simulations of apo-chymosin, Tyr77 makes close contacts with two residues

in the α-helix, Val113 and Phe114. Phe114 extends towards the β-hairpin flap of

chymosin when Tyr77 is in its self-inhibited state and extends away from the flap

when Tyr77 is in its open conformation. In the A1 simulation, in which Tyr77 is

in the open conformation, contact with Phe114 occurs for 55% of the trajectory

(using a distance of 4 Å between any non-hydrogen atoms to define a contact in

the AMBER ff99SB-ILDN simulation). This increases to 94% in simulation B1

where Tyr77 is in the self-inhibited conformation.
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A.1.2 Chymosin – P8-P4 κ-Casein

In simulation C1 using AMBER ff99SB-ILDN, Tyr77 remains in contact with the

Phe114 in both its selfinhibited (73%) and open conformations (78%). There is an

increase in atom-atom contacts between Tyr77.N:Phe114.CZ (15% → 36%) and

Tyr77.H:Phe114.CE2 (6% → 11%) after the self-inhibited to open conformation.

Phe114 makes fewer contacts with Trp41 (which is located under the β-hairpin

flap in the binding pocket) when Tyr77 is in its open conformation (37%→ 17%).

In simulation C2 using the AMBER03 force field, Tyr77 remains in contact with

residue Phe114 in both the self-inhibited (67%) and open (74%) conformations.

Close contacts are shown to increase for the same atoms as in the previous sim-

ulations when Tyr77 moves to its open state, Tyr77.N:Phe114.CZ (11% → 39%)

and Tyr77.H:Phe114.CE2 (5% → 24%). Contact between Trp41 and Phe114 is

also seen to decrease when Tyr77 is in its open state (66% → 32%).

Simulation C3 using the AMBER03 force field contains a short 17ns period where

Tyr77 changes to its open form before returning to the self-inhibiting state. Residue

contacts analysis reveals Tyr77 and Phe114 remains in contact in both the selfin-

hibited (84%) and open (80%) conformations. Atom contacts follow the same trend

as seen in the simulations described above with an increase when Tyr77 is in its

open conformation for Tyr77.N:Phe114.CZ (11%→ 39%) and Tyr77.H:Phe114.CE2

(5% → 24%). However analysis of the residue contact between Trp41 and Phe114

reveal that there is an increase when Tyr77 is in its open conformation (selfinhibited-

35% → open-51%).
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A.2 Hydrogen-Bonding

Table A.1: Percentage of total simulation time in which specific hydrogen
bonds were observed in the Bias-Exchange Metadynamics simulations

Apo Enzyme Olo Enzyme

Donor Acceptor Closed Intermediate Open Closed Intermediate Open

ASN10 GLY161 63 57 94 1 2 2

ASN10 ASP158 9 17 96 66 26 53

SER164 ASN10 74 59 3 93 61 93

SER220 ASP13 48 54 93 0 0 0

ARG304 ASP13 37 33 95 68 18 50

GLU118 GLN15 97 97 73 0 4 13

GLN15 GLY218 0 0 0 74 63 70

TYR16 TYR156 64 82 92 0 0 0
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Effect of Mutations in Bovine or

Camel Chymosin on the

Thermodynamics of Binding

κ-Caseins

B.1 Binding free energies

Binding free energies calculated using the GF, PSE-3 and PC functionals in the

scope of MM3DRISM are presented in Tables B.1, B.2 and B.3, respectively, and

plotted in Figure B.1. The GF free energy functional is well known to give wildly

inaccurate estimates of hydrogen free energies for anything but simple model so-

lutes. As was expected, therefore, the binding free energies computed using the

GF free energy functional were very different from those computed by the other

functionals. Extensive previous benchmarking on solvation free energy data of

organic molecules indicates that the PC+ functional gives more accurate results

than the GF, PSE-3 or PC functionals, which is why only the PC+ binding free

energy data were considered in the manuscript.

157



Appendix B 158

Table B.1: Binding free energy results using the GF functional.

Energy

GF

CAM-CAM CAM-BOV BOV-CAM BOV-BOV

Mean SE Mean SE Mean SE Mean SE

∆Ggas -1330.1 9.8 -1029.6 6.6 -1595.4 7.2 -1388.0 9.9

∆Ghyd 1381.6 11.0 1088.1 8.1 1663.1 8.0 1454.3 10.7

∆Gtotal 51.5 3.7 58.4 3.8 67.7 3.1 66.3 2.7

T∆S -76.5 1.5 -61.9 1.3 -68.1 1.4 -70.2 1.1

∆Gbind 128.0 4.0 120.3 4.0 135.8 3.4 136.5 2.9

Table B.2: Binding free energy results using the PSE-3 functional.

Energy

PSE-3

CAM-CAM CAM-BOV BOV-CAM BOV-BOV

Mean SE Mean SE Mean SE Mean SE

∆Ggas -1330.1 9.8 -1029.6 6.6 -1595.4 7.2 -1388.0 9.9

∆Ghyd 1246.1 9.3 966.1 6.1 1529.4 6.9 1312.6 9.2

∆Gtotal -84.0 1.6 -63.6 1.5 -66.0 1.3 -75.5 1.5

T∆S -76.5 1.5 -61.9 1.3 -68.1 1.4 -70.2 1.1

∆Gbind -7.5 2.2 -1.7 2.0 2.1 1.9 -5.3 1.9
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Table B.3: Binding free energy results using the PC functional.

Energy

PC

CAM-CAM CAM-BOV BOV-CAM BOV-BOV

Mean SE Mean SE Mean SE Mean SE

∆Ggas -1330.1 9.8 -1029.6 6.6 -1595.4 7.2 -1388.0 9.9

∆Ghyd 1206.2 9.1 927.1 6.1 1489.2 6.8 1271.6 9.0

∆Gtotal -123.9 1.4 -102.6 1.2 -106.2 1.0 -116.4 1.4

T∆S -76.5 1.5 -61.9 1.3 -68.1 1.4 -70.2 1.1

∆Gbind -47.4 2.0 -40.7 1.8 -38.1 1.8 -46.2 1.8

Figure B.1: Binding free energy results with or without entropy term, indi-
cating the error associated with the Gaussian Fluctuation free energy functional



Appendix B 160

B.2 Additional computational alanine scanning

results

Figure B.2: Comparison of alanine scanning results of residue 32 (Leu32 in
bovine chymosin, Val32 in camel chymosin)

Figure B.3: Comparison of alanine scanning results of residue 117 (Ala117 in
bovine chymosin, Ser117 in camel chymosin)
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Figure B.4: Comparison of alanine scanning results of residue 125 (Met125 in
bovine chymosin, Leu125 in camel chymosin)

Figure B.5: Comparison of alanine scanning results of residue 223 (Val223 in
bovine chymosin, Phe223 in camel chymosin)
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Figure B.6: Comparison of alanine scanning results of residue 290 (Glu290 in
bovine chymosin, Asp290 in camel chymosin)

Figure B.7: Comparison of alanine scanning results of residue 292 (His292 in
bovine chymosin, Asn292 in camel chymosin)
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Figure B.8: Comparison of alanine scanning results of residue 294 (Gln294 in
bovine chymosin, Glu294 in camel chymosin)



Appendix C

Comparative Molecular Field

Analysis using Molecular Integral

Equation Theory

C.1 Benchmarking Tables

Below are a series of tables containing the raw data for all models tested. The

following key is true for all tables that follow.

a – All grid spacings are in Å.

b – Counts all descriptors that have a standard deviation of 0.

c – Total number of descriptors once those with a standard deviation of 0 have

been removed.

d – Machine learning model used.

e – Time measurements are reported in minutes.

f – Root mean square error statistic (RMSE).

g – Standard deviation statistic (σ).

h – Pearson’s correlation coefficient squared.

i – Model bias.
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j – Cross-validation correlation statistic.

k – Predicted residual error sum of squares statistic (PRESS).
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