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Synopsis 

This PhD thesis comprises three essays which explore novel approaches to modelling and 
forecasting macroeconomic time series using Bayesian techniques. In short, the first essay 
examines the impact of long-run expectations in a conditional forecasting setting. The second 
essay proposes the extension of the non-linear class of threshold autoregressive models with a 
parsimonious set of time-varying parameters. Finally, the third essay proposes multivariate 
time series forecasting methods which incorporate time-frequency analysis.  

In the first essay, I investigate whether incorporating survey-based long-run expectations via 
the steady-state prior in Bayesian vector autoregressions (BVARs) can improve conditional 
forecasts. The long-run behaviour of the conditional forecasts is disciplined by employing the 
steady-state prior, whose mean is set equal to the Survey of Professional Forecasters' long-run 
expectations. Using US real-time data since 1980 in an out-of-sample forecast evaluation 
(1997-2013) and assuming the realization of short-term interest rates is known ex-ante, I find 
that the steady-state prior improves accuracy for long-term yields consistently and further 
improves GDP and unemployment forecasts with the inclusion of stochastic volatility relative 
to a benchmark-Minnesota prior BVAR. However, under a model’s reality check assuming 
that the future paths of the variables in the VAR, except for one, are known ex-ante, survey 
expectations of unemployment improve conditional forecasts accuracy in the period following 
the financial crisis, whereas, for the CPI and the FFR, they do not. Finally, for homoscedastic 
steady-state prior BVARs, the hyperparameters are estimated for each forecasting exercise 
separately by marginal likelihood maximization employing particle swarm optimisation, and 
it is found that the financial crisis has a minor impact on their optimal values.  

In the second essay, I propose the extension of the logistic smooth transition autoregressive 
model in the univariate setting by allowing the threshold and the constant to be time-varying. 
Using Monte Carlo simulation, I show that the model's parameters can be estimated 
successfully via a combination of particle filtering and Markov chain Monte Carlo algorithms. 
In the empirical application part, using US data for GDP, CPI, FFR, and 10-year bond yield, 
the proposed model outperforms the linear benchmark model in an out-of-sample forecasting 
exercise over the period 1985-2018 on many occasions. Following the Great Recession, the 
time variation of the results shows stronger evidence in favour of the proposed model, and in 
many instances, the difference versus the linear benchmark model is found to be significant. 
The inclusion of stochastic volatility does not improve the forecasting performance except for 
the FFR at the 1-quarter ahead forecast horizon. 

Finally, in the third essay, by employing wavelet analysis which allows the time localisation 
of time series frequency characteristics, I extend the existing literature on wavelet-based 
univariate time series modelling and forecasting into a multivariate setting and under a 
Bayesian framework both for single and mixed-frequency time series. Regarding the single-
frequency time series, the first approach uses discrete wavelet transform (DWT) based 
denoising and subsequent conventional Bayesian vector autoregression (BVAR) forecasting. 
The second approach employs the Haar Maximal Overlap Discrete Wavelet Transform 
(MODWT), which is a time series multiscale additive decomposition describing fluctuations 
over different frequency bands. Separate scale BVARs are formed across each scale, and 
forecasts are estimated by aggregating the separate scale forecasts. The third approach extends 
the Multiscale Autoregressive model of Renaud et al. (2003) into the Multiscale BVAR 
employing a Minnesota-inspired prior, which allows a varying degree of shrinkage across 
different scales, as well as an SSVS prior. In an out-of-sample forecasting exercise using US 
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macroeconomic variables, the three forecasting approaches are found to outperform a 
conventional BVAR on many occasions. In particular, wavelet-based denoising forecasting 
presents merits for density forecasts, and the Multiscale BVAR outperforms the benchmark 
across all variables for medium to long-term forecasts. Regarding modelling mixed-frequency 
time series using wavelet analysis, the proposed wavelet-based MF-VAR model, which 
comprises separate scale MF-VARs in a single system, exhibits increased in-sample forecast 
accuracy for known monthly time series in a statistical sense compared to the standard MF-
VAR; however, this behaviour reverses during recessionary periods like the latest COVID-19 
recession. 
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‘The only function of economic forecasting is to make astrology look respectable.’ 
 

Credited to 
Ezra Solomon (1985) 

 

 

Essay 1 

 

1. Bayesian vector autoregression conditional forecasting: Incorporating survey-based 
long-run expectations via the steady-state prior 

 

 

 

 

 

1.1 Introduction 
 

Conditional forecasting has a prominent role in central banks and fiscal authorities since it is 
common practice that the projections they publish are conditional on a set of assumptions. 
Central banks produce the macroeconomic variables’ projections conditional mainly on the 
main policy instrument, the short-term interest rates1 under conventional times, as well as other 
assumptions over fiscal variables and the evolution of the external economic environment2.  

Conditional forecasts can be briefly characterised across three main dimensions. The first 
dimension evolves around the corresponding underlying models used to produce the 
conditional forecasts and refers to the two main classes of competing macroeconomic models: 
structural models such as the micro-founded dynamic stochastic equilibrium (DSGE) and 
time-series models involving structural VARs and factor models3. For the DSGE-relevant 
literature, see Adolfson, Laséen, Lindé, and Villani (2005), Maih (2010), Del Negro and 
Schorfheide (2012) and Wieland and Wolters (2013).  

The second dimension categorises conditional forecasts according to the conditioning 
information. Following Antolin-Diaz, Petrella, and Rubio Ramírez (2021), conditional 
forecasts can be: i) conditional on the observables: either directly on the future path of some 
variable as introduced by Doan, Litterman, and Sims (1984) or by using all the identified 
structural shocks to generate the desired values on the particular variable(s) as in Waggoner 
and Zha (1999), ii) conditional on specific structural shocks, or iii) conditional on a 

 
1 Galí (2011) provides a critical review of the three main approaches used by central banks on short-
term rate assumptions (constant path, market expectations, central banks’ own expectations) in relation 
to forward-looking New Keynesian models.  
2 For example, ECB (2016) provides the complete set of the assumptions used by the European Central 
Bank.  
3 Factor models have been found to be outperformed in terms of forecast accuracy by large BVARs 
(Bańbura, Giannone, & Reichlin, 2010; Koop, 2013). 
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combination of future paths of some variables and a subset of the structural shocks which 
allows performing structural scenario analysis. In the later case, conditional forecasting can be 
performed simultaneously with sign restrictions (Rubio-Ramírez, Waggoner, & Zha, 2010; 
Baumeister & Hamilton, 2015), narrative restrictions (Antolin-Diaz & Rubio-Ramírez, 2018), 
or a combination of zero and sign restrictions (Arias, Rubio‐Ramírez, & Waggoner, 2018).  

With regard to the third dimension, conditional forecasts can be characterised according to the 
uncertainty of the conditioning information. If there does not exist any uncertainty over the 
conditioning assumptions, following Waggoner and Zha (1999) terminology, they are ‘hard 
conditioned’, whereas when uncertainty is present, they are ‘soft conditioned’. Waggoner and 
Zha (1999) algorithm for soft conditioning assumes that the uncertainty over the conditioning 
variables(s) falls within a certain range around a central tendency, but Andersson, Palmqvist, 
and Waggoner (2010) generalise the algorithm further, which allows to condition on the first 
and second moment of the restricted path.  

Another alternative approach competitive to conditional forecasting pertains to the ex-post 
tilting of the multivariate unconditional predictive density produced by any model according 
to a set of restrictions that the tilted distribution should satisfy. This approach was first 
introduced by Robertson, Tallman, and Whiteman (2005) and has grown in popularity for 
combining unconditional forecasts with informational content from other sources. These 
sources can involve, amongst others, nowcasts/short-term forecasts produced by other models 
or survey-based expectations over specific horizons and/or the long run (Altavilla, Giacomini, 
& Ragusa, 2017; Krüger, Clark, & Ravazzolo, 2017; Knotek II & Zaman, 2019; Tallman & 
Zaman, 2019).  

The second important element that this essay is based on is the use of the steady-state prior, as 
suggested by Villani (2009), in the context of conditional forecasting. Steady-state prior, 
which allows imposing beliefs on the VAR process unconditional mean, has been found to 
improve unconditional forecasting accuracy significantly, especially over long horizons 
(Beechey & Österholm, 2010; Clark, 2011; Wright, 2013). There are two main approaches 
when employing steady-state priors. The first involves the provision of information on the 
VAR’s steady-state as estimated from economic theory4, DSGE models or appropriate 
calibration (Villani, 2009; Jarociński & Smets, 2008; Beechey & Österholm, 2010; Clark, 
2011; Louzis, 2019), while the second sets the steady-state’s prior mean equal to survey-based 
long-run expectations5 (Wright, 2013; Bańbura & van Vlodrop, 2018). 

I treat the steady-state prior along the lines of the second approach, i.e. I use survey-based 
expectations over the long run as the steady-state prior mean for the BVAR and consider the 
extent to which the information provided over the steady-state of the VAR improves its 
performance, not only for unconditional but for conditional forecasts as well. While the applied 
forecasting literature for unconditional BVAR forecasts is voluminous and spans indicatively 
over different prior specifications (Carriero, Clark, & Marcellino, 2015a), the use of stochastic 
volatility (Chiu, Mumtaz, & Pinter, 2017; Carriero, Clark, & Marcellino, 2019) and time-
varying parameters (D'Agostino, Gambetti, & Giannone, 2013), the case of conditional 
forecasting accuracy has not attracted this attention despite its importance for the policy maker. 
It has to be noted that Andersson, Palmqvist, and Waggoner (2010) also employ a steady-state 

 
4 Giannone, Lenza, and Primiceri (2019) proposed conjugate priors that discipline the long-run VAR 
forecasts and can be elicited with respect to economic theory - DSGE models.  
5 Bańbura and van Vlodrop (2018) and Louzis (2019) have shown that allowing for time variation in 
the steady-state can further improve forecasting accuracy.  
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BVAR alongside their proposed soft-conditioning estimation algorithm for conditional 
forecasts and, consequently, the research question I am trying to address comes naturally as to 
which prior provides superior conditional forecasts.  

In more detail, for the purpose of this research, I estimate the conditional forecasts of a set of 
macroeconomic variables using BVARs where the conditioning information is the future 
realised path of the key policy interest rate, i.e. conditional forecasts ‘hard conditioned’ 
directly on the observable-values of the policy rate and not on the underlying structural shocks. 
The contribution of this essay lies in using BVARs with the steady-state prior of Villani 
(2009), whose mean is set equal to the Survey of Professional Forecasters' long-run 
expectations with the aim of integrating beliefs over the convergence of the time series’ 
conditional forecasts simultaneously with the assumptions used as conditioning information. 
In that sense, when performing conditional forecasting, the policy-maker will take into account 
the future path of the conditioning variable jointly with the expectations over the long run.  

Finally, another contribution of this essay lies in proposing a new approach for optimising 
prior hyperparameters for the homoscedastic steady-state prior BVAR. Very few instances in 
the literature of steady-state prior address this problem; for example, Ankargren, Unosson, and 
Yang (2018) use an adaptive grid search and Gustafsson, Villani, and Stockhammar (2020) 
propose Bayesian optimisation algorithms. I take a different approach and use the derivative-
free stochastic optimisation algorithm of the Particle Swarm Optimisation (PSO) algorithm to 
maximise the steady-state BVAR marginal likelihood estimated with the Chib (1995) 
approximation method with respect to the prior hyperparameters.  

The essay proceeds as follows. Section 1.2 describes the real-time data. Section 1.3 discusses 
the impact of the VAR steady-state for long-run forecasts, the steady-state prior for the 
homoscedastic BVAR and its marginal likelihood estimation, as well as the steady-state prior 
BVAR with stochastic volatility. Section 1.4 deals with the estimation of the conditional 
forecasts, and Section 1.5 discusses the priors’ details and the benchmark models. Section 1.6 
reports the results, and finally, Section 1.7 concludes.  

 

 

1.2 Data description 
 

All BVARs specifications are estimated with the following six variables at quarterly 
frequency6: real GDP growth, CPI inflation, Federal Funds Rates (FFR), 10-year bond yield 
(10-Y), unemployment rate and nonfarm payroll employment. Variables are transformed into 
annualised quarter-on-quarter growth rates except for the FFR, 10-year bond yield and 
unemployment rate, which remain in percentage points. See Table 1.1. Working with a mixed-
frequency BVAR with a steady state prior, as in Ankargren, Unosson, and Yang (2020), which 
takes into account the monthly frequency of some of the variables, would be possible. 
However, such an approach would be more beneficial for the ‘nowscaster’ interested in 
producing monthly updates and short-term forecasts. This issue does not apply in our case 

 
6 The variables whose original frequency is monthly are first transformed into quarterly frequency by 
calculating each quarter’s respective average. 
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since we are interested in producing long terms forecasts and using long-term survey 
expectations. 

For all variables, when producing the forecasts at quarter t, the last observed value is for 
quarter t − 1. This holds during the last month of each quarter t: quarterly indicators of the 
previous quarter t − 1 have been released, and the monthly indicators available for the two first 
months of the corresponding quarter are disregarded since the BVARs are specified in 
quarterly frequency only.  

For the BVARs using the steady-state prior, the US Survey of Professional Forecasters (SPF) 
dataset is used. SPF is conducted at a quarterly frequency over several macroeconomic and 
financial variables at different forecast horizons and is published during the second month of 
each quarter. SPF amongst the surveyed information also asks participants’ expectations for 
the long-run expectations (10-year annual average) of CPI inflation in every quarter, and real 
GDP growth, 3-month Treasury bill and 10-year bond yield during the first quarter of each 
calendar year. Moreover, for the survey carried out in the third quarter of each calendar year, 
SPF asks for respondents’ estimates of the natural rate of unemployment. Following Tallman 
and Zaman (2019), the 3-month Treasury bill and the natural rate of unemployment long-run 
expectations are treated in the same way as the FFR and the unemployment rate respectively. 
See Table 1.2: SPF data 

To respect the real-time information flow, since the BVARs are re-estimated in each quarter, 
the values used for the steady-state prior mean are those from the latest SPF survey conducted 
during the first or the third quarter with respect to the corresponding variables. Similar to 
Tallman and Zaman (2019), I use the median response from the SPF dataset, which is more 
robust to outliers compared to the mean response as the steady-state prior mean. The first 
quarter for which SPF long-run expectations exist for all of the five variables using an 
informative steady-state prior is 1997Q1.  

The out-of-sample evaluation period is 1997Q1-2014Q1, i.e. 69 vintages in total. The 
expanding sample window with recursive re-estimation of the BVARs for the out-of-sample 
evaluation always starts in 1980Q1. For the purpose of forecast evaluation, the outcome used 
is the one that became available four quarters after the first release7,8 as in Kontogeorgos and 
Lambrias (2022). In order to estimate the conditional forecasts, the actual path of the FFR over 
the evaluation period 1997Q1-2016Q4 is used (see also the introduction of Section 1.3).  

For example, for the 1997Q1 forecasting exercise, all models’ estimation sample is 1980Q1-
1996Q4. The 1-quarter ahead forecast refers to 1997Q1, and the 12-quarters ahead recursive 
forecast refers to 1999Q4. The conditional forecasts use the actual path of the FFR over 
1997Q1-1999Q4 accordingly. With regard to the outcome used for the estimation of the 
forecast error, for the 1-quarter ahead forecast of 1997Q1 and the 12-quarters ahead forecast 
of 1999Q4, their corresponding realizations are taken from the 1998Q2 and the 2001Q1 
vintage of data respectively.  

  

 
7 For the case of FFR and 10-year bond yield this is inconsequential as they are not subject to revisions.  
8 Similar practises are followed by studies using real-time macroeconomic data. First release, releases 
two and three quarters ahead of the reference period, up to two years ahead are used in El-Shagi, Giesen, 
and Jung (2016), Champagne, Poulin‐Bellisle, and Sekkel (2020), Tulip (2009) and Faust and Wright 
(2008), respectively.  
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Table 1.1: VAR variables 

Variable  Transformation  Source 
Real GDP  100 ((yt / yt−1)4 − 1)  RTDSM 
CPI  100 ((yt / yt−1)4 − 1)  RTDSM 
FFR  -  ALFRED 
10-year bond yield  -  ALFRED 
Unemployment rate  -  RTDSM 
Nonfarm payroll 
employment 

 100 ((yt / yt−1)4 − 1)  RTDSM 

Note. ‘RTDSM’ is the Real Time Data Set for Macroeconomists database of 
the Federal Reserve Bank of Philadelphia. ‘ALFRED’ is the Archival 
Federal Reserve Economic Data of the Federal Reserve Bank of St. Louis.  

 
Table 1.2: SPF data 

Variable  Available since  Survey freq. 
Real GDP  1992Q1  Annually, Q1 
CPI  1991Q4  Quarterly 
3-M Treasury bill rate  1992Q1  Annually, Q1 
10-year bond yield  1992Q1  Annually, Q1 
Natural rate of unemployment  1996Q3  Annually, Q3 
Note. Survey of Professional Forecasters available from the Federal 
Reserve Bank of Philadelphia. 10-year average forecasts. 

 
The following two figures show the data. In more detail, Figure 1.1 plots the real-time data 
since the beginning of the estimation sample in 1980Q1 in black, and the SPF long-run 
expectations since 1997Q1 in green, while the red lines show the recursively estimated mean 
since 1980Q1. With the exception of GDP, for the remaining variables overall, it can be 
observed that the SPF expectations lie below the recursive mean. This is a sensible finding 
given that as time progresses in the post-mid-1980 great moderation period, the expectations 
are anchored to lower values compared to the early 1980s. This is particularly evident in the 
downward trend of the interest rates, whilst lesser for CPI. The effect of the 2008 financial 
crisis is profound and timely for FFR expectations; however, for the 10-year bond yield and 
the natural rate of unemployment, the decrease and increase in expectations, respectively, 
occur somewhat delayed after 2010-11 whilst the economy entered the recovery phase.  
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Figure 1.1: Real-time data and SPF long-run expectations 

 
Note. Black lines show the realisations from the last vintage. The Cyan area shows the revisions of the 
real-time data over time. Green lines show the median SPF long-run expectations (10-year average), 
and red lines show the recursively estimated mean using the real-time data since 1980Q1.  

 
Figure 1.2 shows over the evaluation period (1997Q1-2014Q1) the SPF long-run expectations 
accompanied by their confidence intervals constructed from the surveys’ individual responses 
in green, as well as the ex-post realised 10-year average of the time series in red. With the 
exception of unemployment, for the remaining variables for the post-2000 period, it is clear 
that the realised 10-year average values stood much below expectations. The impact of the 
COVID-19 recession data is particularly evident in the realised 10-year average for GDP and 
employment. Regarding CPI and unemployment, in particular, expectations seem to follow an 
inverse relationship, i.e. CPI trending downwards whilst unemployment upwards, resembling 
some sort of an underlying Philips curve behaviour; however, this relationship appears to be 
much more evident when observing the ex-post realised values in red.  
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Figure 1.2: SPF long-run expectations and their dispersion 

 
Note. Black dash lines show the time series unconditional means recursively estimated since 1980Q1. 
Black solid lines show the median SPF long-run expectations (10-year average), and the green area 
covers the 95% confidence interval after excluding the lowest and highest 5 percentiles from the raw 
survey data. Red lines show the 10-year ahead average of the realisation, and they stop in 2012 due to 
data availability.  
 
 
1.3 BVAR models 
 

This section presents in detail the homoscedastic and heteroscedastic steady-state BVARs 
models, which are used to assess the impact of incorporating long-term SPF expectations for 
the purpose of conditional and unconditional forecasting.  

 

1.3.1 VAR steady-state 
 

This section illustrates the importance of the VAR’s steady-state (unconditional mean) and 
how it influences the forecasts directly. A VAR(P) process is defined as: 

1

P

t c p t p t
p

Y B B Y 


   ,    0,t                                        (1.1) 
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Where 1, ,, ,t t N tY Y Y      is Ν × 1, Bc is Ν × 1, and Bp is N × N. Σ is a full matrix.  

Stacking all the VAR coefficients in  1, , ,c PB B B B    and defining  11, , ,t t t PX Y Y    the 

VAR in compact notation is given by: εt t tY X B    or in matrix notation:  

Y X B E                                                           (1.2) 

Where Y is T × N, X is T × ( 1 + NP ), B is ( 1 + NP ) × N and E is T × N.  

Taking expectations, equation (1.1) yields: 

   
1

P

t c p t p t
p

E Y B B E Y E 


      

Under the assumption of a covariance-stationary VAR process, where  t t pE Y E Y      

denotes the VAR process steady-state of dimensions N × 1, the previous equations yields: 

1

P

c p
p

B B 


  . Or equivalently:  

 1c N PB I B B                                                  (1.3) 

By simple reordering of equation (1.3), the steady-state of the VAR (Hamilton (1994), p. 258) 
is given by: 

  1
1N P cI B B B                                               (1.4) 

By substituting equation (1.3) in equation (1.1) and rearranging, the VAR process can be 
reparametrized equivalently as: 

 
1

P

t p t p t
p

Y B Y  


    ,    0,t                                  (1.5) 

By using this representation, it is easy to show how the VAR process expressed in a gap from 
its steady-state will converge asymptotically to the steady-state under iterative forecasting. To 
keep the analysis tractable, a VAR(1) process is assumed. The h = 1 step ahead deterministic 
component of the forecast will be  11 TT TY B Y     , and by backward substitution, the 

h-step ahead forecast will be  11
h

TT tY B Y      or equivalently: 

 1
h

TT h TY B Y                                                     (1.6) 

From equation (1.6), it is obvious that asymptotically the forecasts will converge to the steady-
state:  1lim lim h

TT h Th h
Y B Y   

    . What controls the speed of convergence to the 

steady-state is the overall persistence of the VAR process influenced by the (B1)m,n elements. 
For example, for the simplistic case that the off-diagonal elements of B1 are zero, implying no 
explanatory power from each variable to the others, obviously, the persistence is controlled by 
how close the diagonal elements of B1 are to unity.  
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1.3.2 Steady-state BVAR 
 

This section presents more details of the homoscedastic BVAR implemented with the steady-
state prior. Firstly, all the details of the steady-state BVAR’s prior and posterior estimation are 
presented analytically, and afterwards, the step-by-step procedure of the marginal likelihood 
estimation is set out.  

 

 

1.3.2.1 Steady-state BVAR estimation 
 

The usual parametrisation of a stationary VAR, as given in equation (1.1), does not allow to 
impose directly a prior over its steady-state (or unconditional mean) μ, and the standard 
approach when using a Minnesota type prior is to set the prior diffuse for the constant9. For 
this reason, Villani (2009) suggested using the VAR parametrization of equation (1.5), where 
a prior for the steady-state μ can be easily applied10: 

   εt tB L Y   ,    0,t                                     (1.7) 

Where   1
P

N PB L I B L B L     with L being the backshift operator: p
t t pL Y Y  .  

Using the above VAR parametrisation in a fully Bayesian setting requires the use of priors for 
the autoregressive coefficients B, the variance-covariance matrix Σ, and the steady-state μ as 
follows in more detail.  

Firstly, the coefficients B of the steady-state prior BVAR follow a diagonal multivariate 
normal distribution which is akin to Litterman (1986) and follow a Minnesota-style shrinkage.  

   vec ,B BB    11                                                 (1.8) 

The first moment of coefficients B prior is set as: 

 
,

if 1,
0 otherwise

n
p m n

c p m n
E B

      
                                          (1.9) 

The variance of the coefficients’ prior is set as: 

 
3

3

2
1

22,
1

2 2

,
var

, otherwise
p m n

m

n

m n
p

B

p















     


                                 (1.10) 

 
9 Carriero, Clark, and Marcellino (2015a) is a notable exception where the prior of the constant is 
informative but rather set in a way that does not have any direct interpretation with the steady-state.  
10 Villani (2009) allows for the more generic case that the steady-state can be affected by deterministic 
trends as well: B(L)(Yt – Ψ dt ) = εt, whereΨ is an N × q matrix and dt is column vector q × 1 of 
deterministic variables. In this study obviously Ψ dt = μ.  
11 vec(∙) vectorizes a matrix m×n into a column vector mn × 1 by stacking all of its columns.  
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Secondly, the prior for the variance-covariance matrix  is inverse Wishart:  

 ,S d                                                       (1.11) 

Where S  is the prior scale matrix, and d  are the degrees of freedom.  

Finally, in addition to the prior for the case of a standard BVAR with an intercept, now an 
additional prior for the steady-state μ is defined: 

 ,                                                        (1.12) 

Where   is the prior mean, and   is the variance for the steady-state.   is assumed to 
be diagonal. More details on how the steady-state prior mean –  , and variance –   are 
set using the SPF dataset are presented in Section 1.5.  

Bayesian inference in the steady-state BVAR can be performed using a Gibbs sampler which 
comprises the following three blocks – see Villani (2009):  

1.       1 1, ,r r rp B Y   

2.       1, ,r r rp B Y   

3.       , ,r r rp B Y   

Where (r) denotes the r = 1,⋯, R Gibbs sampler iteration.  

The first and the second blocks are estimated similar to the case for the independent normal - 
inverse Wishart prior but for the VAR process, which has been demeaned with μ, i.e. Yt is 
substituted with t tY Y   . To keep the VAR in matrix notation consistent with equation 
(1.2), it follows that Y  and X  refer to the demeaned time series. The first block, in more 
detail, draws the coefficients B from the conditional posterior distribution.  

   ,B Bvec B                                                   (1.13) 

Where    111
B

        Β   ,     1 1
B B B B vec Y           

The second block draws the variance-covariance matrix Σ from its conditional posterior 
distribution: 

 ,S d                                                       (1.14) 

Where    S S Y XB Y XB
        and d d T    

Finally, the third block concerning the posterior draws of the steady-state samples from the 
following posterior – see Villani (2009): 

 ,                                                          (1.15) 
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Where     111U D D U 

       ,    11U vec L Y D   
            

, 

with  11 1T T PD     and  1, ,N PU I B B    .  

In order to estimate both the unconditional and conditional forecasts, as suggested in Blake 
and Mumtaz (2017), the steady-state demeaned VAR is reparametrized back into a VAR with 
a constant Βc by reordering equation (1.7) as a standard VAR process in equation (1.1) with 
the constant given by equation (1.3).  

 

 

1.3.2.2 Steady-state BVAR marginal likelihood estimation 
 

The marginal likelihood for conjugate priors like the original Minnesota prior, sum-of-
coefficients and the ‘dummy-initial-observation’’ implementation of the natural conjugate 
normal-inverse Wishart prior can be estimated analytically in a closed form (Giannone, Lenza, 
& Primiceri, 2015). The usual approach in the literature is to use a grid search over a sensible 
range of hyperparameters in order to select them optimally (Dieppe, Legrand, & Van Roye, 
2016). More recently, Chan, Jacobi, and Zhu (2020) have suggested a more computationally 
efficient way to perform this optimisation problem by using automatic differentiation.  

However, for BVARs which have non-conjugate priors or include latent states where MCMC 
methods are required for the estimation of the posterior, an analytical solution of the marginal 
likelihood does not exist12. There are a few notable exceptions in the literature where the 
optimal hyperparameters are estimated, including Schorfheide and Song (2015), who use a 
grid search with the modified harmonic mean estimator (Gelfand & Dey, 1994; Geweke, 1999) 
for a mixed-frequency VAR, and Ankargren, Unosson, and Yang (2018) who use an adaptive 
grid search with the improved Chib (1995) estimator of Fuentes-Albero and Melosi (2013) for 
the case of a mixed-frequency BVAR with a steady-state prior. For the same case of a 
homoscedastic BVAR with steady-state prior, Gustafsson, Villani, and Stockhammar (2020) 
propose Bayesian optimisation algorithms for hyperparameters optimisation as an alternative 
to an exhaustive grid search. 

In my case, I estimate the optimal hyperparameters’ values λ1, λ2, and λ3 by maximising the 
marginal likelihood of the corresponding VAR models. Since an analytical, closed-form 
solution does not exist, I resort to the approximation method of Chib (1995). I repeat this 
process for each vintage of the forecasting exercise, rather than estimating the optimal values 
given the full sample, and subsequently, examine whether the optimal hyperparameters’ values 
fluctuate significantly over time (see Figure 1.5). The optimisation is done using particle 
swarm optimisation (PSO). More information on the PSO algorithm can be found in Appendix 
A.1.1 Particle swarm optimisation.  

Below follows a demonstration of approximating the log marginal likelihood for a 
homoscedastic BVAR with a steady-state prior. Starting from Bayes’ rule: 

 
12 Koop, McIntyre, Mitchell, and Poon (2020) propose a Metropolis-Hastings step within the Gibbs 
sampler to estimate optimal hyperparameters values for heteroscedastic BVARs using Minnesota prior 
without the need to directly estimate or approximate the marginal likelihood.  
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     
 

, ,
,

p Y p
p Y

p Y
 

 
 




 

By simple re-ordering, the log marginal likelihood is equal to: 

       ln ln , ln , ln ,p Y p Y p p Y         

This formula is valid at any point of the posterior distribution of parameters θ; however, for 
the approximation to be as accurate as possible, a point of support   with high density is 
chosen, where   is the mean of the posterior’s distribution. In the following equations, the 
index  representing the model hyperparameters is dropped for notational simplicity. 

The term representing the VAR’s likelihood is: 

         10.50.52 exp 0.5
TTN

Tp Y vec E I vec E 
       

For the steady-state prior marginal likelihood estimation, the VAR model’s prior and posterior 
probability is comprised of the three terms corresponding to the priors of Β, Σ and μ. 
Consequently, the steady-state prior term is decomposed as: 
 

       ln ln ln lnp p B p p        
 

In the same manner, the posterior distribution is comprised of the following three parts: 
 

         ln ln , , ln , , ln , lnp Y p B Y p B Y p Y p Y                   

 
Chib (1995) showed that the first term  , ,p B Y    can be estimated by evaluating the pdf of 

the posterior of B as defined for   and   at the point B : 
 

 ,B Bp B  
  

Where:    111
B B

           ,     1 1
B B B B vec Y            

 
The third term can be approximated following the ‘Rao-Blackwellization’ technique as 
follows: 
 

      
1

1 , ,
R

r r

r
p Y p B Y

R




    

 
Where r = 1,⋯, R represent Gibbs sampler retained draws.  
Each term of the summation     , ,r rp B Y  is the pdf of the inverse Wishart with degrees 

of freedom: d d T   and scale matrix:      r rS S Y X B Y X B        evaluated at  :

 ,p S d .   
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However, the second term  ,p Y  , as suggested in Chib (1995), requires a further 

additional reduced Gibbs sampler’s run with retained draws 1, ,r R   . These reduced runs 
are performed simply by running the Gibbs sampler with two blocks conditional on  . In more 
detail, the Gibbs sampler is based on the following two blocks: 

1.     1 , ,r rp B Y    

2.     , ,r rp B Y     

Consequently, the term  ,p Y  can be approximated as: 

    
1

1, , ,
R

r

r
p Y p B Y

R
 






 


    

Each term of the summation   , ,rp B Y    evaluates the pdf of the normal distribution at 

as defined below. The variance-covariance matrix is     111U D D U 

       , and 

the mean is defined as     11 rU vec L Y D   
 

            
 , where 

 11 1T T PD     and    
1 , ,r r

N PU I B B       . Thus, each term of the summation is equal 

to  ,B Bp    .  
 

 

1.3.3 Heteroscedastic steady-state BVAR with stochastic volatility 
 

By further relaxing the assumption of homoscedasticity and adding stochastic volatility (SV), 
the previous model is now defined as: 

  t tB L Y    ,     0,t t                                     (1.16) 

The inclusion of stochastic volatility, as in Cogley and Sargent (2005), transforms the previous 
model in equation (1.7) with the constant variance-covariance matrix Σ to innovations whose 
distribution has a time-varying structure Σt defined as:  

1 1
t tA L A                                                             (1.17) 

Matrix A is a lower triangular matrix Ν × Ν with ones in the diagonal13:  

 
13 Primiceri (2005) allows matrix A to be time-varying, i.e. At, with individual elements components 
αm,n below the diagonal following a random walk: αm,n,t = αm,n,t−1 + φt,   φt ~  (0,σ2).  
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2,1

,1 ,2 , 1

1 0 0 0
1 0 0

0
1N N N N

A


   

 
 
 
 
 
  




   


                                       (1.18) 

Elements αm,n below the diagonal, similar to Cogley and Sargent (2005), follow a normal prior 
distribution. Since elements αm,n are estimated for each row of matrix A independently; it is 
more convenient to define the prior for all elements αm,n, 2 ≤ m ≤ N, 1 ≤ n ≤ m − 1 per row m:  

 , ,, ,
m mm    
                                                      (1.19) 

The term Lt in equation (1.17) is a diagonal matrix Ν × Ν, and its diagonal elements Ln,n for 
n = 1,⋯, N are defined as Ln,n,t = hn,t, where the natural logarithm of hn,t follows a random 
walk14: 

, , 1 ,ln lnn t n t n th h   ,  , ,0,n t n n                                       (1.20) 

Stacking all equations’ n = 1,⋯, N stochastic volatilities hn,t and their corresponding 
innovations, it follows that ln ht = ln ht−1 + ηt. Cogley and Sargent (2005) define matrix Φ as a 
diagonal matrix15 whose diagonal elements Φn,n follow an inverse gamma prior with scale 
matrix S  and degrees of freedom d : 

 , ,, ,
n n n nn n S d                                                   (1.21) 

The steady-state BVAR with stochastic volatility is simply a combination of the building 
blocks from the previous model by further adding the blocks relevant to the stochastic 
volatility. Thus, the iteration (r) from the Gibbs sampler is based now on the following five 
blocks: 

1.           1 1 1 1, , , ,r r r r rp B A h Y     

2.           1 1 1, , , ,r r r r rp A B h Y    

3.           1 1, , , ,r r r r rp h B A Y   

4.           1, , , ,r r r r rp B A h Y   

5.           , , , ,r r r r rp B A h Y    

 
14 Clark and Ravazzolo (2015) find the random walk stochastic volatility specification superior in terms 
of forecast accuracy with respect to BVARs with alternative time-varying volatilities.  
15 Primiceri (2005) allows the variance-covariance matrix Φ to be a full matrix following an inverse 
Wishart prior: Φ ~   ( ,S d  ). This specification allows all variables’ stochastic volatilities 
components to be hit by a common shock via their common innovation term ηt, however with the 
drawback that as the n dimension of the VAR increases, the prior on the variance-covariance of ηt 
becomes highly informative.  
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The first block draws the coefficients B from the conditional posterior distribution: 

   ,B Bvec B     

Where  
1

1 1

1

T

B B t t t
t

X X


 



       
 

   , 1 1

1

T

B B B B t t t
t

vec X Y 



         
  
    

The second block draws from the posterior of ,m   for 2 ≤ m ≤ N and is given by the following 
transformed regressions: 

 
1

1/2 1/2 1/2
, , , , , , ,

1

m

m t m t m k k t m t m t m t
k

h h h   


  



   ,    , 0,1m t    

Defining as Zm and zm the left-hand and right-hand side variables for each equation 2 ≤ m ≤ N 
respectively, the conditional posterior distributions of elements ,m   is given: 

 , ,, ,m mm         

Where  , ,

11
m m m m 

      
,  , ,

1
, , m m m mm m z  

      
    

The third block is estimated following the algorithm16 of Kim, Shephard, and Chib (1998). 
More details can be found in Appendix A.1.3 Stochastic volatility estimation.  

The fourth block draws from the posterior of Φ independently for each equation i: 

 , ,, ,
n n n nn n S d     

Where  ,,

2

,
1

ln
n nn n

T

n t
t

S S h


     and 
,, n nn n

d d T    

For the fifth block, the posterior draws μ(r) of the steady-state are defined as follows – see 
Clark (2011): 

 ,      

Where  
1

11

1

T

t t t
t

U D D U 






        
  
 , 

   11

1

T

t t t
t

U vec L Y D   




          
  
 , with  11 , 1T T PD     and 

 1, , ,N PU I     .    

 
16 Cogley and Sargent (2005) estimate stochastic volatility following Jacquier, Polson, and Rossi (1994), 
while Primiceri (2005) and Carriero, Clark, and Marcellino (2019) amongst others follow Kim, 
Shephard, and Chib (1998). For a comparison of these two algorithms refer to Geweke, Koop, and van 
Dijk (2011), p. 476.  
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1.4 Conditional forecasting using Kalman filtering 
 

Conditional forecasts are produced following the Bańbura, Giannone, and Lenza (2015) 
approach. This approach is an extension of the Clarida and Coyle (1984) original method, 
which casts a reduced form VAR into a state-space model and then uses Kalman filtering to 
infer the conditional forecasts as states by treating them as missing observations in the 
observation equation17. The further improvement by Bańbura, Giannone, and Lenza (2015) on 
this part involves the use of a simulation smoother for the state-space model rather than the 
simple Kalman filter and smoother proposed in Clarida and Coyle (1984), allowing the 
estimation of the entire predictive density of the conditional forecasts and not only the point 
estimates of the conditional forecasts.  

The methodology used for the conditional forecasts is presented analytically below, starting 
by defining the state-space model representation of the VAR process: 

t t tY GS e                                                            (1.22) 

1t t tS C FS v                                                       (1.23) 

For the observation equation (1.22):  

G is an N × NP matrix defined as  1,0N N N PG I  
     and  0,t te R   with 0t N NR  . The 

state St is a column vector NP × 1 and is defined as  1 1, , ,t t t t PS Y Y Y  
    .  

For the state equation (1.23):  

Column vector C is a NP × 1 column vector defined as  1 1,0c N PC B  
    , and F is the NP×NP 

VAR companion matrix: 

   

1 1

1 1

, ,
0

P P

N P N P N

B B B
F I



  

 
  
  


                                             (1.24) 

The innovation term vt is distributed as vt ~ (0,Qt). Qt is NP × NP with the upper left elements 
N × N equal to Σ or Σt, depending on whether the underlying VAR model is homoscedastic or 
heteroscedastic with stochastic volatility, respectively: 

 

     

1

1 1 1

0

0 0
t N N P

t
N P N N P N P

Q
 

    

 
 
  

                                           (1.25) 

Bańbura, Giannone, and Lenza (2015) estimate the computational time it takes for different 
algorithms to run18 and conclude that the most efficient is the Durbin and Koopman (2002) 

 
17 For a detailed textbook treatment of missing observations refer to Harvey (1989), p. 143 and Durbin 
and Koopman (2012), p. 110.  
18 The algorithms being compared are: Carter and Kohn (1994), Durbin and Koopman (2002) 
implemented with the Harvey (1989) Kalman smoother, Durbin and Koopman (2002) implemented 
with the de Jong (1988) Kalman smoother and the Waggoner and Zha (1999) implemented as in 
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algorithm implemented using the de Jong (1988) Kalman smoother. I follow the same 
approach, although the estimated VAR models are relatively small (N = 6, P = 4, H = 12 step-
ahead recursive forecasts) in comparison to Bańbura, Giannone, and Lenza (2015), who 
estimate conditional forecasts using a large n = 26 variable VAR for H = 60 conditioning 
periods.  

In particular, I follow algorithm ‘2.a’ of the Durbin and Koopman (2002) simulation smoother, 
as clarified explicitly in Jarociński (2015). The algorithm is comprised of 3 steps: 

1. Follow the recursion of the state-space model equations (1.23) and (1.22) by making 
draws for the state-space model’s innovations et and vt from their respective 
distributions19. For each t = T+1,⋯, T+H, I estimate tS  , tY   and finally save 

1, ,T T HY Y Y  
 

     and 1 , ,T T HS S S  
 

    . The recursion is initiated with: 

0 1 1, , ,T T T pS y y y  
      . Conditional forecasts begin at T+1, and thus there is no 

need to estimate the states St for t = 1,⋯, T. 
2. Apply the Kalman filter and de Jong (1988) Kalman smoother to Y* = Y – Y+ and 

estimate the states *Ŝ . The intercept of the state equation (1.23) C is set to zero, as 
suggested in Jarociński (2015). The Kalman filter is initialised with S0 = 0NP×1, 
var(S0) = 10-9. For more information, refer to Appendix A.1.2 Kalman filtering and 
smoothing.  

3. Finally, estimate a draw of the state as: *ˆS S S   . Conditional forecasts are given 
by taking the first n columns of the matrix S .  

When performing the conditional forecasts, two approaches are employed. The first approach, 
henceforth named as 2-step estimation, uses the available data Y1,⋯,YT  to estimate the models’ 
unknown parameters θ, i.e. p(θ(r) | Y1,⋯, YT) and then generates conditional forecasts 

1
ˆ ˆ, ,T T HY Y  based on the conditioning information on some observable(s). For the case of 

models with stochastic volatility, conditional forecasting is performed using the last estimated 
variance-covariance matrix of the VAR innovations ΣΤ.  

The second approach, henceforth named as joint estimation, appends the conditional forecasts 
for each iteration (r) of the Gibbs sampler 1

ˆ ˆ, ,T T HY Y   to the available data Y1,⋯,YT , i.e. 
[Y1,⋯, YT, YT+1,⋯,YT+H] and then estimates the entire set of the unknown parameters based on 
this extended set of data: p(θ(r) | Y1,⋯, YT, YT+1,⋯, YT+H). For the models specified with 
stochastic volatility, this implies that the stochastic volatility20 of the VAR innovation terms is 
also estimated for the conditional forecasts, i.e. ΣΤ+1,⋯, ΣΤ+Η. This approach was originally 
described in Waggoner and Zha (1999) Gibbs sampler21 and allows the finite-sample 
parameter uncertainty to be accounted for the conditional forecasts.  

In terms of the conditioning variables, I focus only on the interest rates, which for central banks 
is the main policy instrument for conducting monetary policy, at least prior to the deployment 
of unconventional monetary policy tools (quantitative easing, forward guidance). Waggoner 

 
Jarociński (2010). Other simulation smoothers include Frühwirth‐Schnatter (1994), de Jong and 
Shephard (1995) and Chan and Jeliazkov (2009) . 
19 State equation innovations vt are drawn using only the upper left n × n block of Qt in equation (1.25).  
20 The Gibbs sampler in the second iteration uses the value ΣT for ΣT+1,⋯,ΣT+H.  
21 Waggoner and Zha (1999) employ homoscedastic VAR models only, without stochastic volatility.  
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and Zha (1999), in their empirical application part, estimate forecasts conditional on the actual 
path of short-term interest rates for a single forecasting exercise, while Andersson, Palmqvist, 
and Waggoner (2010), in a similar fashion, estimate the forecasts conditional on the market 
expectations uncertainty over the short-term interest rates.  

For the rest of the essay, I use as a conditioning variable the actual path of the short-term 
interest rates and perform the logical experiment of which prior would have superior 
performance assuming the policy-maker would have a perfect foresight over the evolution of 
the main policy instrument. Of course, this is an ex-post evaluation, while a real-time 
evaluation that would respect the information-set available to the policy-maker for the specific 
case at hand would require conditioning the forecasts on an assumed path over the short-term 
interest rates evolution as given by the central bank’s own expectations, for example, market-
implied or survey-based expectations.  

As documented in Faust and Wright (2008), Clark and McCracken (2017), and McCracken 
and McGillicuddy (2019), in a frequentist framework, conditional forecasts in order to be 
assessed under the traditional measures of forecast accuracy and efficiency have to be 
conditioned on the actual ‘true’ future paths of a subset of the VAR variables and not on 
assumed ones. Clark and McCracken (2017) show that the properties of the conditional 
forecast errors can be decomposed into two separable factors: The properties of the 
unconditional forecast errors and the properties that are due to the conditioning information. 
Consequently, by using the ex-post realized values of the conditioning variables, it is feasible 
to eliminate the second factor that is due to the quality of the conditioning information and 
attribute the conditional forecasts properties and performance only to the properties of the 
underlying model that is used. In a Bayesian framework Angelini, Lalik, Lenza, and Paredes 
(2019) in a similar type of exercise intended to provide evidence that the proposed model 
indeed captures the statistical interdependencies and salient features of the data correctly, they 
proceed along the same direction, i.e. evaluating the BVAR’s performance under the actual 
path of the assumptions as observed ex-post.  

 

 

1.5 Priors and other estimation details 
 

In order to compare the steady-state prior VAR specifications, I proceed to estimate the 
hyperparameters by maximizing the marginal likelihood for the homoscedastic case and then 
use these optimal values for the steady-state prior’s VAR equivalent heteroscedastic 
specifications.  

Across all BVARs, the mean B  of the Minnesota type prior in equation (1.9) is set with cn 
equal to 0.25 for variables with fast mean-reverting properties (GDP growth and non-farm 
employment) and 0.8 for all the remaining persistent variables as in Clark (2011). The terms 

2
m  and 2

n  are set equal to the corresponding AR(P)22 estimated residuals variance by means 
of OLS.  

For the homoscedastic VAR models, the inverse Wishart prior of Σ is set in the following 
manner: The degrees of freedom d  are set equal to N + 2, which are the least degrees of 

 
22 The number of lags of the AR(P) regressions is set equal to P, the same as for the VAR(P).  
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freedom such that the prior is properly defined. The scale matrix S  is diagonal, and its 
elements iiS are equal to the variance of the AR(P) residuals for each variable.  

For the VAR models with stochastic volatility, I use a diffuse prior on elements ,i   in equation 
(1.19) with zero mean 0 and variance-covariance diagonal elements set equal to 104. Under 
the assumptions of a zero covariance between the shocks of the stochastic volatility, the prior 
of the diagonal elements of Φn,n in equation (1.21) is an inverse gamma with 6 degrees of 
freedom which make the prior relatively non-informative and with a scale set equal to a 
moderate value 0.1 which does not yield any excessive spikes during the early 80s and the 
financial crisis that would have increased the uncertainty of the corresponding vintages’ 
forecasts in the midst of the financial crisis excessively.  

Regarding the initialisation values for models with stochastic volatility for the first iteration of 
the Gibbs sampler, these are Σt for t = 1,⋯, T is set equal to Σ estimated for the homoscedastic 
VAR(P), ln hn,t for t = 1,⋯, T and all equations n = 1,⋯, N is set equal to ln(0.8 diag(var(Y))) 
and for the Kim, Shephard, and Chib (1998) algorithm I set diffuse initial conditions: 
ln h0 = 0N×1, var(ln h0) = 10 ΙΝ and Φ = 0.001 ΙΝ.  

Regarding the steady-state prior in equation (1.12), its mean   is defined in the following 
manner: for the variables for which survey-based long-run expectations exist23, these are set 
as the appropriate steady-state prior mean, while for the variables (e.g. employment) for which 
long-run expectations do not exist, the steady state prior mean is set equal to their 
unconditional mean. The variance of the steady-state prior   is set according to Wright 
(2013): for the variables for which survey-based long-run expectations exist, their steady-state 
prior variance is set equal to 0.05, while for the variables (employment) for which there are no 
survey-based expectations a diffuse steady state prior is used.  

For all models, in order to avoid any draws from the Gibbs sampler that would yield explosive 
forecasts where the VAR process would be in the non-stationary region, the standard approach 
in the literature is followed; that is, stability of the VAR is imposed, which also ensures its 
stationarity, i.e. all draws for which the VAR’s companion form has eigenvalues with a 
modulus less than one24 are discarded – see Lütkepohl (2005), p. 15.  

As a benchmark prior, both for the unconditional and conditional forecasts, I employ the 
original Minnesota prior proposed in Litterman (1986), assuming the variance-covariance 
matrix Σ is known and set equal to the VAR OLS estimate ̂ . The prior hyperparameter values 
use the conventional values of λ1 = 0.2, λ2 = 0.25, and λ3 = 1, while a diffuse prior is used for 
the intercepts.  

Both for the homoscedastic and heteroscedastic BVAR models, the Gibbs sampler uses a burn-
in sample of 5000 draws for convergence, and the subsequent 5000 draws are retained for 
inference and forecasting purposes.  

  

 
23 As already discussed in Section 1.2, in order to mitigate the impact of outliers, the SPF long-run 
expectations median response is used instead of the mean response.  
24 Formally this is defined as: the solution to |λ ΙNP − F| = 0 has eigenvalues (roots) λ, whose modulus 
|λ| lies inside the unit circle |λ|<1 for the generic case that the eigenvalues are complex numbers. F is 
the VAR companion form matrix defined in equation (1.24). 
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1.6 Results  
 

This section presents all the empirical results relevant to BVARs with the steady-state prior 
both for unconditional and conditional forecasts. Firstly, Section 1.6.1 presents the in-sample 
results. In more detail, Section 1.6.1 deals with the optimal hyperparameter values with respect 
to maximizing the marginal likelihood for the homoscedastic BVARs, and subsequently, 
Section 1.6.1.2 explores the sensitivity of the steady-state posterior and long-run unconditional 
forecasts with regard to the steady-state prior tightness are discussed. In continuation, Section 
1.6.1.3 shows the estimates of the stochastic volatility over the full sample.  

Section 1.6.2 shows the out-of-sample forecast evaluation metrics. In particular, Section 
1.6.2.1 discusses the full sample point forecasts, Section 1.6.2.2 provides the results for density 
forecasts, whereas the time variation of the results is further discussed in Section 1.6.2.3.  

Finally, Section 1.6.3 deals with the models’ reality check by examining how plausible the 
provided results would have been, especially in light of the financial crisis.  

 

 

1.6.1 In-sample results  
 

1.6.1.1 Homoscedastic BVAR steady-state prior hyperparameters estimation 
 

In order to evaluate how precise the approximation of the marginal likelihood following the 
Chib (1995) method is, the log marginal likelihood is estimated 1000 times over the full sample 
1980Q1-2013Q4 with conventional hyperparameter values where all MCMC starting values 
and hyperparameters are identical. Clearly, the approximation is relatively precise, and its 
standard error is 1.94 × 10-3.  

 

 

 

 

 

 

  



21 
 

Figure 1.3: Log marginal likelihood histogram 

 
Note. Histogram of 1000 evaluations of the log marginal likelihood with λ1 = 0.2, λ2 = 0.25, and λ3 = 1 
over 1980Q1-2013Q4.  
 

The following figure shows the sensitivity of the log marginal likelihood to assumptions made 
with respect to each hyperparameter separately, while the others are kept constant at 
conventional values for the first vintage (1980Q1-1996Q4) and the last vintage (1980Q1-
2013Q4). What stands out consistently from all the sub-plots is that the log marginal likelihood 
is concave within a sensible range of hyperparameter values, although for the case of λ1 and 
λ2, the curvature is relatively smooth. This fact, combined with the approximation error of the 
log marginal likelihood, albeit small, understandably should yield some noise in the optimized 
hyperparameter values.  
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Figure 1.4: Log marginal likelihood sensitivity 

 
Note. Hyperparameter values during log marginal likelihood sensitivity analysis are kept constant at 
λ1 = 0.2, λ2 = 0.25, λ3 = 1. Left (red) and right (blue) y-axis refer to the first (1980Q1-1996Q4) and the 
last vintage (1980Q1-2013Q4).  
 

The following figure shows the optimal hyperparameter values as estimated for each vintage 
of the homoscedastic steady-state prior VAR. The results can be summarized as follows: 
Optimal λ1 values fluctuate around the value of 0.2 with a tendency to increase slightly above 
0.2 after 2004-05. Optimal λ2 values fluctuate around the mid-range between 0.5 and 1, while 
after 2003 stabilize at around 0.5. Finally, optimal λ3 values fluctuate between 1.5 and 2 until 
the financial crisis, whereas afterwards increase progressively from 2 to 3 as the estimation 
sample increases accordingly, implying a lower impact of the more distant lags.  

 

  



23 
 

Figure 1.5: Steady-state prior optimal hyperparameters for each vintage 

 
 

Indicatively, the figure below shows for the steady-state prior how the log marginal likelihood 
changes over the space of hyperparameters λ1 and λ2 for a slice at the optimal value of λ3 = 2.64 
and the conventional value of λ3 = 1 controlling the lag decay. 
 

Figure 1.6: Steady-state prior log marginal likelihood heatmap 

 
Note. Heatmap is shown for the optimal λ3 = 2.64 and λ3 = 1 for reference purposes. Estimation sample 
1980Q1-2013Q4. The red dot shows the maximum log marginal likelihood.   
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Finally, the figure below shows the surface of the log marginal likelihood conditional on the 
optimal value λ3 = 2.64 for the steady-state prior using the last vintage (1980Q1-2013Q4).  

 

Figure 1.7: Steady-state prior log marginal likelihood surface 

 
Note. Log marginal likelihood surface conditional on the optimal λ3 = 2.64. The red dot shows the 
maximum log marginal likelihood.  
 

 

1.6.1.2 Minnesota and steady-state prior’s long-run behaviour 
 

In order to evaluate the SPF long-run expectations, firstly, I evaluate the in-sample implied 
unconditional mean of the VAR process with the benchmark Minnesota prior (which uses a 
diffuse prior on the constant) and plot them in the following figure. Two facts stand out. Firstly, 
for all variables in almost the entire evaluation sample, the implied unconditional mean moves 
in line with the SPF long-run expectations meaning that they capture any increasing or 
decreasing trends correctly.  

Secondly, there is a visible distinction between variables with fast mean-reverting properties 
(GDP) versus the more persistent series (CPI, FFR, 10-year bond yield and unemployment). 
For GDP, there are instances where the gap between SPF and the benchmark-Minnesota 
prior’s implied unconditional means differs by 0.5% in annualised growth rates during the 
1997-2000 and to a lesser degree during the 2001-2008 period. However, for the most 
persistent variables the Minnesota prior’s implied unconditional mean moves very closely with 
the SPF long-run expectations, and the series even coincide during some sub-periods. 
Noteworthily, for the case of CPI inflation, the Minnesota prior’s implied unconditional mean 
remains consistently higher than the SPF long-run expectations throughout the entire sample, 
except for the recessionary periods.  
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This finding should not be surprising given the fact that potentially a large part of the SPF 
respondents may have based their estimates on variants of similar econometric models further 
augmented by judgemental input to capture informational content from soft indicators and the 
sometimes fast evolution of economic sentiment which is likely to be reflected in hard data 
relatively slowly. Nonetheless, although reassuring, the fact that the benchmark-Minnesota 
prior behaviour is to an extent aligned with SPF naturally poses the question of to what extent 
the use of the SPF informational content in a tight steady-state prior would yield any significant 
improvement in results compared to the use of a purely uninformative steady-state prior or the 
benchmark Minnesota prior which is diffuse for the constant.  

 

Figure 1.8: Minnesota prior implied unconditional mean 

 
Note. Red solid lines show the median of Minnesota prior implied unconditional mean of the VAR 
process estimated from Gibbs sampler draws with equation (1.4). Red dash lines show the 68% credible 
intervals. Black dash lines show the time series unconditional mean recursively estimated since 1980Q1. 
Black solid lines show the median SPF long-run expectations (10-year average), and the green area 
covers the 95% confidence interval after having excluded the lowest and highest 5 percentiles from the 
raw survey data.  
 

Figure 1.9 below illustrates the sensitivity of the steady-state posterior with respect to its prior 
tightness. For all the variables for which SPF long-run expectations exist, a sensitivity analysis 
for the three following cases is performed: i) a very tight prior with variance equal to 0.0001, 
ii) the conventional value of 0.05 as in Wright (2013), and iii) a diffuse prior with large 
variance for the steady-state set equal to 100. A visual inspection of the figure reveals that the 
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tighter the steady-state prior is, the more it moves closer to the SPF long-run expectations, as 
expected. For a steady-state prior’s variance of 10-4, the posterior (green) coincides perfectly 
with the prior (black), whereas for the diffuse value of 100, the posterior of the steady-state 
(cyan) almost coincides with the Minnesota prior implied unconditional mean (blue) which is 
estimated as discussed previously. In the case of a steady-state prior variance value of 0.05 
(purple), the posterior is a mixture of the prior and the data, although it can be seen to be more 
closely influenced by the prior itself.  

 

Figure 1.9: Steady-state posterior sensitivity 

 
Note. Green, purple and cyan lines show the median of the posterior for SS, where the SS prior 
variance for the variables that survey data exist is set equal to 0.0001, 0.05, and 100 (diffuse), 
respectively. Blue lines show the median of the Minnesota prior implied unconditional mean. 
Black dash lines show the time series unconditional mean recursively estimated since 1980Q1. 
Black solid lines show the median SPF long-run expectations (10-year average). Red lines show 
the 10-year ahead average of the realisations, which stop in 2008 due to data availability.  
 

In a similar manner, I proceed further in an out-of-sample evaluation and check the sensitivity 
of the steady-state prior’s forecasts with respect to the tightness of the prior. The results are 
shown in Figure 1.10. First of all, for the case of the diffuse steady-state prior, again, as 
expected, the corresponding results (cyan lines) almost coincide with the Minnesota prior (blue 
lines), which is diffuse on the constant and consequently on the VAR process unconditional-
mean. Secondly, for the tightest case (green lines), the 10-year ahead forecasts average is more 
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close to the SPF long-run expectations compared to the less tight and diffuse case (purple and 
cyan lines, respectively). However, this fact is more profound for the fast mean-reverting 
variables and far less evident for the persistent variables.  

 

Figure 1.10: BVAR long-run forecasts 

 
Note. Green, purple and cyan lines show the 10-year ahead forecasts average for the steady-state prior, 
whose variance for the variables that survey data exist is set equal to 0.0001, 0.05 and 100 (diffuse), 
respectively. Blue lines show the 10-year ahead forecasts average for Minnesota prior. Black dash lines 
show the time series unconditional mean recursively estimated since 1980Q1. Black solid lines show 
the median SPF long-run expectations (10-year average). Red lines show the 10-year ahead average of 
the realisations, which stop in 2012 due to data availability.  
 

 

1.6.1.3 Stochastic volatility estimates  
 

This section deals briefly with the estimates of stochastic volatility. In order to have a better 
understanding of how the volatility varies over time, the following figure shows the median of 
the standard deviation of the stochastic volatility for each variable, i.e. (Σn,n,t)1/2 as estimated 
for the last out-of-sample forecasting exercise, i.e. vintage of 2014Q1. In more detail, the solid 
red line shows the stochastic volatility in the conventional setting where the model is estimated 
first on the available data, and subsequently, the conditional forecasts are made (2-step 
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estimation), while the solid blue line shows the estimates of the stochastic volatility that 
account for parameters uncertainty by appending the conditional forecasts to the original data 
sample and estimating the parameters as discussed in Section 1.4 in more detail (joint 
estimation).  

In addition, in order to gauge how the stochastic volatility behaves versus the alternative of 
the homoscedastic steady-state prior BVAR, the dash lines show the estimates of the standard 
deviations of the VAR’s innovations for each variable, i.e. (Σn,n)1/2 again following the two 
approaches discussed previously. Overall, it is visible that the estimates both for 
heteroscedastic and homoscedastic BVARs with regard to the two approaches in conditional 
forecasting do not exhibit any material differences and almost coincide. Finally, examining in 
more detail how stochastic volatility changes over time, it is obvious that the period before the 
start of the great moderation (circa 1985) is characterised by excessive volatility, as expected. 
The 2008 financial crisis has resulted in big spikes, especially for CPI and employment, which 
are commensurate with the data.  

 

Figure 1.11: Stochastic volatility estimates 

 
Note. Red solid and dash lines show the standard deviation of the VAR’s innovations for the 
heteroscedastic (2-step estimation) and homoscedastic specifications, respectively. Blue solid and dash 
lines show the standard deviation of the VAR’s innovations for the heteroscedastic (joint estimation) 
and homoscedastic specification, respectively. Forecasting exercise 2014Q1: estimation sample 1980-
2013, conditional forecasts horizon 2014-2017.  
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1.6.2 Out-of-sample results – Forecast evaluation metrics 
 

Point forecasts for variable n and horizon h are evaluated according to the root mean squared 
error (RMSE) : 
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Where t0 refers to 1996Q4, T refers to 2016Q4, and H = 12.  

Density forecasts are evaluated according to the continuous ranked probability score (CRPS). 
CRPS is defined as: 
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Where F is the cumulative density function of the predictive density, y is the outcome, and 
ॴx≥y (x) is the indicator function, i.e. ॴx≥y (x) = 1 if x ≥ y and 0 otherwise. CRPS imposes a 
positive penalty the further away a point of the predictive density is from the outcome, and 
thus a lower CPRS value implies a better forecasting performance. Following, Gneiting and 
Raftery (2007), the CPRS can be evaluated in a closed form: 

  1 ˆ ˆ ˆCRPS ,
2 F FF y E y y E y y     

Where ŷ  are independent draws from the predictive density with cumulative distribution F 
and y is the outcome.  

The exact formula25 for the retained draws R of the MCMC algorithm for variable n and 
horizon h is given as: 
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Furthermore, density forecasts are also evaluated using the log predictive score (LPS), and the 
results are available in Appendix A.2 Additional results – Log predictive score.  

In order to provide a rough measure of whether the differences in the forecast accuracy are 
significant, Diebold and Mariano (1995) test is employed with Harvey, Leybourne, and 
Newbold (1997) small sample adjustment26. The hypothesis testing is always one-sided, i.e. 
rejection of the null of equal performance versus the benchmark provides evidence of the 
proposed model outperforming the benchmark model. The test applies in the same manner 
both for point forecasts (MSE) and density forecasts27 (CRPS, LPS).  

 
25 More information can be found in Dieppe, Legrand, and Van Roye (2016).  
26 For the (few) cases were the estimated variance is negative the standard Diebold and Mariano (1995) 
with Bartlett kernel is applied 
27 The results of Diebold-Mariano tests for density forecasts should be interpreted with care since this 
type of statistical testing applies to rolling estimation schemes and not to recursive re-estimation of the 
models under an expanding window (Amisano & Giacomini, 2007).  
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In what follows, benchmark refers to the benchmark Minnesota prior used either for 
unconditional or conditional forecasting in any given specification. The only exception to this 
benchmark definition is when using the Diebold-Mariano test to compare the relative 
forecasting performance of the conditional versus the unconditional forecasts for the steady-
state BVARs in Tables 3 and 5.  

 

 

1.6.2.1 Point forecasts  
 

Regarding the point forecasts, initially, the relative forecasting performance between the 
unconditional and the conditional forecasting performance for each specification of the steady-
state prior, i.e. homoscedastic and heteroscedastic, is evaluated. In addition, the two 
conditional forecasting methods, i.e. 2-step estimation and joint estimation, are compared 
against the unconditional forecasts. The results are presented in the following table.  

Overall, in the majority of the cases, the conditional forecasts outperform the unconditional 
forecasts as expected, with RMSE ratios below unity. For 10-year bond yield and GDP, with 
few exceptions, the results are found to be consistently significant across all specifications. 
Moreover, focusing on the impact of accounting for parameter uncertainty and employing joint 
estimation of the conditional forecasts further improves the results for the majority of the cases 
(although employment results deteriorate), albeit marginally.  
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Table 1.3: Steady-state prior conditional versus unconditional forecasts evaluated with RMSEs 

 GDP CPI FFR 10-Y Unemployment Employment 
 SS unconditional forecasts 
h = 1 2.480 2.170 0.443 0.454 0.271 1.099 
h = 4 2.857 2.123 1.474 1.353 1.001 1.997 
h = 8 2.883 2.205 2.522 2.061 1.806 2.197 
h = 12 2.676 2.234 3.148 2.244 2.170 1.979 
 SS conditional forecasts 2-step estimation 
h = 1 0.949** 0.978 - 0.903** 1.016 0.942* 
h = 4 0.879*** 0.993 - 0.778* 0.899* 0.809** 
h = 8 0.894* 0.975 - 0.583* 0.842* 0.829** 
h = 12 1.036 0.945** - 0.456* 0.895* 1.014 
 SS conditional forecasts joint estimation 
h = 1 0.940** 0.985 - 0.894** 1.000 0.929** 
h = 4 0.867*** 0.993 - 0.770* 0.883* 0.795** 
h = 8 0.892* 0.966 - 0.599* 0.825* 0.819** 
h = 12 1.025 0.939** - 0.476* 0.874* 0.992 
 SS-SV unconditional forecasts 
h = 1 2.559 2.150 0.375 0.443 0.283 1.113 
h = 4 2.809 2.117 1.363 1.190 1.020 1.985 
h = 8 2.772 2.187 2.489 1.809 1.827 2.182 
h = 12 2.607 2.248 3.223 2.067 2.185 1.948 
 SS-SV conditional forecasts 2-step estimation 
h = 1 1.077 1.060 - 0.926* 1.093 1.134 
h = 4 0.839** 1.004 - 0.779** 0.982 0.820 
h = 8 0.847** 0.975 - 0.604* 0.821* 0.762* 
h = 12 0.925*** 0.947 - 0.518* 0.792* 0.855 
 SS-SV conditional forecasts joint estimation 
h = 1 1.017 1.039 - 0.900** 1.092 1.055 
h = 4 0.842** 0.999 - 0.724** 0.977 0.848 
h = 8 0.843** 0.954 - 0.561* 0.808* 0.809 
h = 12 0.919*** 0.939** - 0.486* 0.778* 0.885 

Note. Panels with unconditional forecasts show the raw RMSEs. Conditional forecasts for each 
specification show the RMSE ratios with respect to the unconditional forecasts of the same 
specification. Stars refer to the p-values of the Diebold and Mariano (1995) one-sided test with finite 
sample adjustment of Harvey, Leybourne, and Newbold (1997) with respect to the unconditional 
forecasts of the same specification. *, **, *** indicate rejection of the null at 10%, 5% and 1% 
significance level respectively. 2-step and joint estimation conditional forecasts refer to parameters’ 
uncertainty accounting for the ‘in-sample’ data only and the ‘in-sample’ data extended with the 
conditional forecasts respectively. The evaluation period is 1997-2016.  
 
In the following table, the impact of the steady-state prior is evaluated. For the cases of 
homoscedastic and heteroscedastic specifications, firstly, the relative performance versus the 
benchmark is evaluated for unconditional forecasts and then for conditional forecasts, as 
discussed previously, by conditioning the forecasts on the actual path of the FFR.  

Overall, for the 10-year bond yield, the results are consistent across all specifications in favour 
of the steady-state prior both for unconditional and conditional forecasts. For the remaining 
variables, the steady-state prior’s unconditional forecasts of the FFR and the CPI outperform 
the benchmark, whereas, for the conditional forecasts, this pattern is reversed. On the contrary, 
for the GDP and unemployment, whereas for unconditional forecasts, the steady-state prior is 
outperformed by the benchmark for the conditional forecasts, the opposite holds, especially 
with the inclusion of stochastic volatility. For the case of unconditional forecasts of 
unemployment, Wright (2013) and Tallman and Zaman (2019) have concluded similar results, 



32 
 

i.e. the inclusion of survey-based long-term expectations does not improve forecast accuracy, 
and it is rather interesting that the steady-state prior combined with stochastic volatility 
outperforms the benchmark BVAR.  

 

Table 1.4: Steady-state versus Minnesota prior for conditional and unconditional forecasts 
evaluated with RMSEs 

 GDP CPI FFR 10-Y Unemployment Employment 
 SS unconditional forecasts 
h = 1 1.012 0.967* 0.984 0.988 1.005 1.004 
h = 4 1.048 0.972* 0.961 0.994 1.032 1.058 
h = 8 1.031 0.973** 1.010 0.992 1.057 1.091 
h = 12 1.023 0.981** 1.037 0.984 1.063 1.056 
 SS conditional forecasts 2-step estimation 
h = 1 0.963** 0.946* - 0.894** 0.997 1.002 
h = 4 0.999 0.998 - 0.890* 0.967 1.062 
h = 8 1.014 1.016 - 0.837 0.994 1.164 
h = 12 1.053 1.015 - 0.823 1.027 1.155 
 SS conditional forecasts joint estimation 
h = 1 0.954** 0.952* - 0.884** 0.982 0.988 
h = 4 0.984 0.999 - 0.880* 0.949* 1.043 
h = 8 1.011 1.007 - 0.860 0.974 1.151 
h = 12 1.041 1.009 - 0.858 1.004 1.130 
 SS-SV unconditional forecasts 
h = 1 1.044 0.958* 0.832*** 0.964 1.051 1.017 
h = 4 1.031 0.969 0.889*** 0.874* 1.052 1.052 
h = 8 0.991 0.965** 0.997 0.871 1.069 1.083 
h = 12 0.997 0.987 1.062 0.907 1.070 1.040 
 SS-SV conditional forecasts 2-step estimation 
h = 1 1.127 1.015 - 0.894** 1.123 1.222 
h = 4 0.937** 1.007 - 0.784* 1.076 1.069 
h = 8 0.923* 1.008 - 0.760 0.980 1.063 
h = 12 0.916* 1.025 - 0.861* 0.915** 0.959 
 SS-SV conditional forecasts joint estimation 
h = 1 1.065 0.996 - 0.869** 1.121 1.136 
h = 4 0.941** 1.002 - 0.729* 1.071 1.105 
h = 8 0.919* 0.986 - 0.706 0.965* 1.128 
h = 12 0.910* 1.015 - 0.807 0.899** 0.992 

Note. Panels show the RMSE ratios of SS over the Minnesota prior (benchmark) for the same 
specification. Stars refer to the p-values of the Diebold and Mariano (1995) one-sided test with finite 
sample adjustment of Harvey, Leybourne, and Newbold (1997). *, **, *** indicate rejection of the null 
at 10%, 5% and 1% significance level respectively. 2-step and joint estimation conditional forecasts 
refer to parameters’ uncertainty accounting for the ‘in-sample’ data only and the ‘in-sample’ data 
extended with the conditional forecasts respectively. The evaluation period is 1997-2016.  
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1.6.2.2 Density forecasts 
 

Focusing on the density forecasts evaluated with the CRPS, it is obvious that the conditional 
forecasts are significantly better compared to their unconditional equivalents for all variables 
except for the CPI. Furthermore, in the majority of the cases, the joint-estimation approach 
yields more accurate results, especially for forecast horizons extending beyond the one-year, 
albeit this is often not reflected in significance.  

 

Table 1.5: Steady-state prior conditional versus unconditional forecasts evaluated with CRPS 

 GDP CPI  FFR 10-Y  Unemployment Employment 
 SS unconditional forecasts 
h = 1 1.364 1.082 0.253 0.253 0.137 0.537 
h = 4 1.587 1.073 0.833 0.734 0.493 1.073 
h = 8 1.591 1.132 1.481 1.079 0.988 1.219 
h = 12 1.436 1.147 1.923 1.237 1.256 1.025 
 SS conditional forecasts 2-step estimation 
h = 1 0.945** 0.986 - 0.910** 0.976 0.920** 
h = 4 0.868*** 1.018 - 0.803* 0.843** 0.779*** 
h = 8 0.883** 1.008 - 0.592** 0.818** 0.808* 
h = 12 1.034 0.976 - 0.444* 0.885* 1.058 
 SS conditional forecasts joint estimation 
h = 1 0.936** 0.987 - 0.901** 0.966 0.902*** 
h = 4 0.856*** 1.016 - 0.793* 0.820** 0.763*** 
h = 8 0.882* 0.999 - 0.604** 0.797* 0.798* 
h = 12 1.019 0.967 - 0.451* 0.858* 1.029 
 SS-SV unconditional forecasts 
h = 1 1.412 1.066 0.192 0.249 0.140 0.581 
h = 4 1.567 1.105 0.775 0.631 0.509 1.062 
h = 8 1.543 1.153 1.421 0.921 0.982 1.226 
h = 12 1.456 1.189 1.847 1.082 1.253 1.133 
 SS-SV conditional forecasts 2-step estimation 
h = 1 1.067 1.051 - 0.942* 1.116 1.107 
h = 4 0.853** 0.969 - 0.807** 0.941 0.861 
h = 8 0.851*** 0.975 - 0.618** 0.795** 0.774* 
h = 12 0.914*** 0.957 - 0.519** 0.770* 0.838** 
 SS-SV conditional forecasts joint estimation 
h = 1 1.021 1.017 - 0.912*** 1.108 1.022 
h = 4 0.851** 0.969 - 0.764** 0.936* 0.876 
h = 8 0.839** 0.962 - 0.591** 0.779** 0.815* 
h = 12 0.900*** 0.948 - 0.501** 0.746** 0.839** 

Note. Panels with unconditional forecasts show the raw CRPS. Conditional forecasts for each 
specification show the CRPS ratios with respect to the unconditional forecasts of the same specification. 
Stars refer to the p-values of the Diebold and Mariano (1995) one-sided test with finite sample 
adjustment of Harvey, Leybourne, and Newbold (1997) with respect to the unconditional forecasts of 
the same specification. *, **, *** indicate rejection of the null at 10%, 5% and 1% significance level 
respectively. 2-step and joint estimation conditional forecasts refer to parameters’ uncertainty 
accounting for the ‘in-sample’ data only and the ‘in-sample’ data extended with the conditional forecasts 
respectively. The evaluation period is 1997-2016.  
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Regarding the comparison of unconditional and conditional density forecasts of the steady-
state prior versus the benchmark, the results are presented in the following table. For the GDP, 
the unconditional forecasts are in favour of the benchmark; however, the inclusion of 
stochastic volatility further improves the steady-state prior’s performance. In the case of the 
CPI, results are mixed, and only for the homoscedastic VAR unconditional forecasts, steady-
state prior consistently outperforms the benchmark across all horizons.  

For the FFR, the inclusion of stochastic volatility helps to improve the steady-state prior’s 
unconditional forecast performance dramatically, while for 10-year bond yield, except for the 
homoscedastic VAR unconditional forecasts, results are in favour of the steady-state. Finally, 
for unemployment, while for unconditional density forecasts, the accuracy is almost on par, 
for conditional forecasts, results are in favour of the steady-state and further improve, allowing 
for heteroscedasticity.  

Table 1.6: Steady-state versus Minnesota prior for conditional and unconditional forecasts 
evaluated with CRPS 

 GDP CPI  FFR 10-Y  Unemployment Employment 
 SS unconditional forecasts 
h = 1 1.010 0.968 1.004 0.989 0.985 1.001 
h = 4 1.049 0.974 0.964 0.998 1.013 1.076 
h = 8 1.031 0.969* 1.022 1.004 1.037 1.102 
h = 12 1.020 0.983 1.062 0.996 1.040 1.050 
 SS conditional forecasts 2-step estimation 
h = 1 0.961** 0.955 - 0.895** 0.946 0.991 
h = 4 0.990 1.016 - 0.914 0.921* 1.046 
h = 8 1.004 1.044 - 0.853* 0.968 1.146 
h = 12 1.046 1.051 - 0.835* 1.003 1.172 
 SS conditional forecasts joint estimation 
h = 1 0.952** 0.956* - 0.886** 0.937* 0.971 
h = 4 0.976 1.013 - 0.903 0.896** 1.024 
h = 8 1.002 1.034 - 0.871* 0.943* 1.132 
h = 12 1.031 1.042 - 0.850* 0.973 1.140 
 SS-SV unconditional forecasts 
h = 1 1.045 0.955* 0.759*** 0.972 1.003 1.083 
h = 4 1.035 1.004 0.897*** 0.858* 1.045 1.066 
h = 8 0.999 0.987 0.981 0.856 1.030 1.109 
h = 12 1.034 1.019 1.019 0.872 1.037 1.161 
 SS-SV conditional forecasts 2-step estimation 
h = 1 1.124 1.003 - 0.911** 1.102 1.291 
h = 4 0.960 0.995 - 0.790* 1.061 1.145 
h = 8 0.938* 1.029 - 0.760* 0.935** 1.104 
h = 12 0.938 1.068 - 0.855 0.871*** 1.027 
 SS-SV conditional forecasts joint estimation 
h = 1 1.075 0.970 - 0.882*** 1.094 1.192 
h = 4 0.958 0.996 - 0.748** 1.056 1.165 
h = 8 0.925* 1.015 - 0.726* 0.916*** 1.163 
h = 12 0.922 1.058 - 0.825 0.844*** 1.028 

Note. Panels show the CRPS ratios of SS over the benchmark (Minnesota prior). Stars refer to the p-
values of the Diebold and Mariano (1995) one-sided test with finite sample adjustment of Harvey, 
Leybourne, and Newbold (1997). *, **, *** indicate rejection of the null at 10%, 5% and 1% 
significance level respectively. 2-step and joint estimation conditional forecasts refer to parameters’ 
uncertainty accounting for the ‘in-sample’ data only and the ‘in-sample’ data extended with the 
conditional forecasts respectively. The evaluation period is 1997-2016.   
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1.6.2.3 Time variation of results 
 

This section explores whether the results presented previously over the full sample remain 
stable over time. Due to structural breaks in the time series, the impact of the financial crisis 
and the changes in the survey-based long-run expectations that feed into the models’ forecasts 
via the steady-state prior, it is reasonable to assume that there is variation in steady-state prior’s 
relative performance in different sub-samples with respect to the benchmark. Following the 
standard approach in the literature, the differences in the cumulative squared errors and the 
CRPS between the steady-state prior specifications and the benchmark are plotted over time.  

Conditional and unconditional forecasts for GDP, which are produced using the steady-state 
prior, outperform the benchmark up to the financial crisis. After the financial crisis, for 
homoscedastic VARs, the benchmark outperforms the steady-state prior, while allowing for 
heteroscedasticity does help to reverse this pattern materially and in favour of the steady-state 
prior.  

For CPI, the steady-state prior’s unconditional forecasts are more accurate over the full sample. 
Conditional forecasts outperform the benchmark only until the financial crisis, whereas after 
the financial crisis, they deteriorate.  

Regarding the FFR, quite surprisingly, the steady-state prior’s unconditional forecasts 
deteriorate after the financial crisis despite the fact that long-run expectations anchor in a 
timely manner to a significantly lower level. However, the inclusion of stochastic volatility 
ameliorates this effect. A possible explanation over this period could be that under the zero 
lower bound, the steady-state prior behaves erratically over this period. A tighter prior would 
be required to capture the shift at the endpoints in the short-term interest rates.  

Turning to the 10-year bond yield, the results are robust in favour of the steady-state prior for 
the majority of the cases as well as over the full sample both for unconditional and conditional 
forecasts evaluated with the point as well as the density forecasts.  

In the cases of unemployment and employment, for the unconditional forecasts, the steady-
state prior and the benchmark behave roughly in a similar manner, while afterwards, results 
indicate the benchmark outperforms the steady-state prior, especially for point forecasts. 
Nonetheless, the conditional density forecasts from both the homoscedastic and the 
heteroscedastic BVARs improve the steady-state prior’s accuracy after the financial crisis in 
the long-term conditional forecasts.  
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Figure 1.12: Difference of the cumulative squared errors of the steady-state prior minus the 
benchmark for unconditional forecasts 

 
Note. Red, green, blue and black lines refer to 1, 4, 8, and 12-quarters ahead forecasts, respectively  
 

Figure 1.13: Difference of the cumulative squared errors of the steady-state prior minus the 
benchmark for conditional forecasts 

 
Note. See Figure 1.12 note details.   
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Figure 1.14: Difference of the cumulative CRPS of the steady-state prior minus the benchmark 
for unconditional forecasts 

 
Note. See Figure 1.12 note details.  
 

Figure 1.15: Difference of the cumulative CRPS of the steady-state prior minus the benchmark 
for conditional forecasts 

 
Note. See Figure 1.12 note details.   
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Figure 1.16: Difference of the cumulative squared errors of the SS-SV prior minus the 
benchmark for unconditional forecasts 

 
Note. See Figure 1.12 note details. 
 

Figure 1.17: Difference of the cumulative squared errors of the SS-SV prior minus the 
benchmark for conditional forecasts with joint estimation 

 
Note. See Figure 1.12 note details.   
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Figure 1.18: Difference of the cumulative CRPS of the SS-SV prior minus the benchmark for 
unconditional forecasts 

 
Note. See Figure 1.12 note details.  
 

Figure 1.19: Difference of the cumulative CRPS of the SS-SV prior minus the benchmark for 
conditional forecasts with joint estimation 

 
Note. See Figure 1.12 note details.  
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1.6.3 Models’ reality check  
 

This section is akin to Stock and Watson (2012), Bańbura, Giannone, and Lenza (2015) and 
Giannone, Lenza, and Reichlin (2019). In particular, in their case, they first estimate the 
model’s parameters with the sample ending before the great financial crisis and subsequently 
estimate the forecasts of an extended set of macroeconomic variables during and after the crisis 
conditional on the actual path of key macroeconomic variables such as economic activity, 
inflation and policy rates. I differentiate from this setting in two dimensions. Firstly, given that 
the steady-state prior should uses SPF long-term expectations at each vintage, I rather re-
estimate the model’s parameters at each vintage and estimate the conditional forecasts for a 
horizon up to 12-quarters ahead.  

Secondly, rather than conditioning only on the actual path of a limited set of key 
macroeconomic variables, for each vintage, I estimate the conditional forecasts of each 
variable conditional on the future actual path of the remaining five variables of the VAR. For 
instance, the conditional forecasts of GDP are estimated assuming the actual paths of CPI, 
FFR, 10-year bond yield, unemployment and employment over the next three years. This 
exercise is performed rotationally for all variables, and subsequently, the prediction intervals 
are plotted against the realisations of the variables. In this manner, it is relatively easy to judge 
whether the models would be able to capture the statistical properties and behaviour of a 
variable under the assumption of a perfect foresight of the remaining variables, especially 
during the 2008 financial crisis excessive volatility.  

The following two figures show the 1-quarter ahead and the 12-quarters ahead 99% prediction 
intervals of the conditional forecasts, respectively, constructed as described previously. In 
order to compare the performance of the steady-state prior (median forecast shown with the 
red line, the green area covers the 99% prediction interval), the respective results of the 
benchmark VAR are further shown (median forecast shown with the blue solid line, blue dash 
lines cover the 99% prediction interval).  

Regarding the 1-quarter ahead conditional forecasts, overall, it is clear that both models’ point 
forecasts track pretty closely the actual realisations of all variables, whereas the prediction 
intervals of the benchmark model are slightly wider for the majority of the variables. The only 
exception is that of CPI during the financial crisis, where there is a failure of the conditional 
forecasts to adapt abruptly to the evolving economic environment in order to fully reflect 
reality, and not even the 99% prediction intervals contain the realisation. This should not be 
interpreted as a complete failure of the specific models but rather as a misspecification where 
the inclusion of variables at a higher frequency, further assisted by nowcasts of the financial 
conditions, would have allowed the mixed-frequency VARs to update their conditional 
forecasts more quickly and in a greater magnitude.  

Turning to the 12-quarters ahead conditional forecasts in which the effect of the steady-state 
prior would be more accentuated and focusing on the point forecasts, there are indeed some 
material differences between the benchmark and the steady-state prior VAR. Employment is 
an exception for which no survey information is available, and both models behave roughly in 
a similar manner. In general, considerable differences are visible during the period following 
the financial crisis (2010-2014) and what stands out is that in the cases of GDP, 10-year bond 
yield, and unemployment, the steady-state prior outperforms the benchmark, while for CPI 
and FFR, the benchmark’s point forecasts are closer to the realisation.   
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Figure 1.20: 1-quarter ahead conditional forecasts 

 
Note. Red lines show the mean, and the green area covers the 99% prediction interval of the SS prior. 
Blue solid lines show the mean, and dash lines cover the 99% prediction interval of the Minnesota prior. 
Black lines show the realisation as available at the last vintage. 
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Figure 1.21: 12-quarters ahead conditional forecasts 

 

Note. See Figure 1.20 note details.   
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1.7 Conclusion 
 

Empirical evidence in the literature has found that the inclusion of information over the steady-
state of a VAR through the use of survey-based long-run expectations improves forecast 
accuracy. So far, this evidence has been tested only for unconditional forecasts, while the key 
contribution of this essay is to assess the extent to which these findings hold in a conditional 
forecast setting as well.  

In line with the previous results, the steady-state prior improves the accuracy of long-term 
yields consistently and further improves GDP and unemployment forecasts with the inclusion 
of stochastic volatility. However, under the models’ reality check assuming that the future 
paths of the variables in the VAR, with the exception of one, are known ex-ante, survey 
expectations of unemployment improve conditional forecasts accuracy in the period following 
the financial crisis, whereas for the CPI and the FFR they do not.  

These results could be further refined by relaxing the fixed tightness of the steady-state prior 
across all variables and instead allowing for a time-varying variable-dependent tightness with 
respect to optimising an out-of-sample forecast evaluation metric. I leave for further research 
and, subject to availability, the possible use of long-term expectations of the Blue Chip 
Economic Indicators, which are available bi-annually for a larger set of variables since 1985. 
Also left for future research is examining the performance of the steady-state prior for 
conditional forecasts conditioned not on the actual paths (realisations) of the variables but 
rather on real-time assumptions.  
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‘Remember that all models are wrong; 
the practical question is how wrong do they have to be to not be useful.’ 

 
George Box & Norman Draper (1987) 

Empirical Model-Building and Response Surfaces, p. 74 
 

 

Essay 2 

 

2. A hybrid time-varying logistic smooth transition autoregressive model 
 

 

 

 

 

2.1 Introduction 
 

Considering the linear versus non-linear division of time series, over the recent years, there 
has been a surge in models belonging to the latter for obvious reasons. Structural breaks, 
regime changes and non-homogeneous behaviour of time series during different phases of the 
business cycle, especially in light of the 2008 financial crisis, have motivated further research 
in this broad class of models.  

With regard to macroeconomic and financial non-linear time series, the most prominent 
models28 fall under the categories of time-varying parameter models appearing very early 
(Andel, 1976; Nicholls & Quinn, 1980), Markov switch regime autoregressive models 
(Hamilton, 1989), threshold autoregressive model (TAR) (Lim & Tong, 1980; Tong, 1990) 
and smooth transition autoregressive (STAR) models (Teräsvirta, 1994). The first category of 
time-varying parameters (TVP) models became extremely popular in macroeconomics after 
the introduction of TVP-VARs by Cogley and Sargent (2005) and Primiceri (2005). Empirical 
evidence with respect to forecasting accuracy (D'Agostino, Gambetti, & Giannone, 2013; 
Koop & Korobilis, 2013; Bekiros, 2014) has shown that they behave more favourably in terms 
of forecasting compared to their linear counterparts, especially during the financial crisis.  

However, the results of the forecasting accuracy of the TAR and STAR subclass of non-linear 
models, amongst others, are somewhat mixed (Marcellino, 2002; Marcellino, 2004). Ferrara, 
Marcellino, and Mogliani (2015), in light of the 2008 financial crisis, re-examine non-linear 
models' accuracy in the frequentist domain under a direct forecasting approach and conclude 
that overall they do not present any systematic gains, although during specific evaluation 
periods and for specific variables where there is evidence of regime change, they do behave 
favourably. Barnett, Mumtaz, and Theodoridis (2014) using Bayesian techniques, conclude 

 
28 For a detailed literature review refer to Teräsvirta (2006) and Tsay and Chen (2018).  
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that overall, TVP-VAR outperforms (S)T-VAR models, ST-VARs are more accurate than T-
VARs, and for the case of GDP, ST-VARs behave favourably.  

This essay revisits the latter class of STAR models by partially relaxing the assumption of the 
constant parameters aiming to improve their performance by adopting some of the merits 
belonging to the literature on the TVP models. There have been some interesting publications 
trying to reconcile time variation in the parameters and different regimes. Building on the 
assumption that it is not mutually exclusive for the time series to present non-linearities and 
structural breaks, Telatar and Hasanov (2009) and Omay, Shahbaz, and Hasanov (2020) in the 
frequentist domain propose unit root tests on STAR time series allowing for time trends.  

Lundbergh, Teräsvirta, and Van Dijk (2003) propose a time-varying STAR model whose 
regime parameters are allowed to change gradually with time in a deterministic fashion, while 
Galvão (2006) allows the regime-dependent parameters to be subject also to a structural break. 
Anderson and Low (2006) propose a STAR model with its autoregressive coefficients 
following a random walk process and find evidence of time variation in regime-specific 
parameters. 

Dueker, Owyang, and Sola (2010) suggest a 3-variable ST-VAR using a time-varying 
threshold to model the natural rate of unemployment. Zhu and Chen (2017) and Zhu, Chen, 
and Lin (2019) estimate a time-varying threshold Taylor rule to model the non-linearity and 
asymmetry of the US policy reaction function where unemployment plays the role of the 
transition variable. Faria and Santos (2018) suggest a STAR model where all of its parameters 
are allowed to be time-varying, and its estimation is done via Taylor series expansion and 
Kalman filtering techniques. Finally, recently Yang, Lee, and Chen (2021) propose a TAR 
model with a time-varying threshold approximated with Fourier series and estimate a non-
linear Taylor rule.  

It has to be noted that the use of non-linear time series has gained great popularity in other 
fields as well. Time series of sunspot data (Koop & Potter, 2003), Canadian lynx (Haggan & 
Ozaki, 1981; Geweke & Terui, 1993), hydrological time series (Tong, Thanoon, & 
Gudmundsson, 1985), paleoclimatic data (Livingston Jr & Nur, 2019), electricity prices (Qu, 
Chen, Niu, & Li, 2016; Chen & Bunn, 2010) and seismic data (Khan & Mittnik, 2018) amongst 
others have been investigated extensively with the class of TAR and STAR models and have 
been found in many cases to exhibit an advantageous behaviour.  

In general, the relevant literature on (S)TAR models with respect to model parameters 
estimation has been dominated by frequentist techniques, while Bayesian estimation has been 
introduced rather later. Geweke and Terui (1993) and Chen and Lee (1995) are the first to 
propose Bayesian estimation of TAR models, and Lopes and Salazar (2006a) deal with 
Bayesian STAR models where model uncertainty with respect to the number of lags is 
addressed by employing a reversible jump MCMC step. Notable extensions of Bayesian STAR 
models to multivariate time series with a focus on structural analysis rather than on forecasting 
accuracy include Gefang and Strachan (2010), Auerbach and Gorodnichenko (2012), 
investigating the impact of fiscal shocks on output under expansionary and recessionary 
regimes and Galvão and Owyang (2018) who propose a factor augmented ST-VAR to identify 
the variation of financial stress regimes’ impact on the macroeconomy.  

This essay will focus on the univariate setting, while multivariate time series can be 
investigated once the good properties of the suggested univariate models have been 
established.  
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The essay proceeds as follows. Section 2.2 reviews the basic TAR and STAR models and 
proposes a hybrid time-varying logistic STAR model with two variants, a homoscedastic and 
a heteroscedastic with a stochastic volatility specification. Section 2.3 discusses the estimation 
of the marginal likelihood and Deviance Information Criterion (DIC) for the existing TAR and 
STAR models, as well as the proposed models. Section 2.4 provides a Monte Carlo exercise 
of the proposed model with a known data generating process. Section 2.5 describes the 
empirical application with US macroeconomic data and reports the in-sample and out-of-
sample results. Finally, Section 2.6 concludes.  

 

 

2.2 (S)TAR models 
 

This section builds upon the existing TAR and STAR models and, by relaxing some of their 
assumptions, presents the proposed models, as well as a concrete way for their estimation using 
Bayesian techniques. More details for the posterior estimation of the TAR and LSTAR models 
can be found in the section of the proposed hybrid time-varying logistic smooth autoregressive 
(TV-LSTAR) model, which nests the previously mentioned two models by selecting only the 
relevant MCMC blocks corresponding to the TAR and LSTAR models.  

2.2.1 The TAR model 
 

The generic TAR model of order K, entails K in total regimes and their corresponding K sets 
of autoregressive coefficients and innovations variances (Tsay & Chen, 2018). More 
compactly, it can be written as: 

 2
, , 1 , 1

1
, 0, ,

k

t k c k p t p kt k t k k t K
p

P

y y e e iid c z c   


                    (2.1) 

The TAR model falls under the k-th regime when the transition variable zt falls within 
ck─1

 ≤ zt
 < cK, where to account for all the K regimes, their respective thresholds {ci | i = 0,⋯,K} 

should be ordered as follows: 

0 1 Kc c c                                                 (2.2) 

For the specific case where the d lagged value yt ─ d of time series yt is used as the transition 
variable29 zt = yt ─ d, the TAR model30 corresponds to the self-exciting threshold autoregressive 
(SETAR) model. For the purpose of this essay, the focus will be exclusively on two regime 
models, and thus the SETAR(P) model with P lags31 is now written explicitly for each regime 
as follows: 

 
29 See more in Section 2.2.2 regarding the transition variable.  
30 Chen (1998) proposes a two-regime generalised TAR models where exogenous variables are added 
additionally to the lagged values of yt in each regime.  
31 Campbell (2004) allows for uncertainty over the lags number P by using the reversible jump MCMC 
algorithm of Green (1995).  
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
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 
   












                    (2.3) 

The model’s estimation can be done easily along the lines of Chen and Lee (1995) by 
separating the sample into two subsamples, T1 and T2, respectively, given that the threshold c 
is known, and further estimating the autoregressive coefficients and the innovations variance 
by separate Bayesian linear regressions for each regime.  

The model’s likelihood is defined as: 

     2 2 2 2
1 1 2 2 1 1 1 2 2 2, , , , , , , , , , ,d c Y d c Y d c Y                             (2.4) 

Where 1, 2 denote its respective regime’s likelihood which is defined as :  

  22
2

12 exp
2

iT i i
i i

i

e e



  

  
 

 
 ,   1,2i                                          (2.5) 

Where ie  is the vector of the residuals over time for each regime i = 1, 2.  

With regard to the lagged value yt−d that triggers the transition from one regime to the other, 
this is controlled by the delay parameter d. Under the assumption of d being unknown, the 
standard approach uses a uniform prior with discrete values between 1 and the maximum 
number of lags P. More details can be found in the relevant parts of Section 2.2.3.  

Finally, by further relaxing the assumption that the value of threshold c is known ex-ante, 
Bayesian estimation requires the adoption of a prior for threshold c. However, since its 
conditional posterior distribution is not available in a closed-form solution, a Metropolis-
Hastings step is required in order to approximate its posterior distribution. Usually, the 
threshold’s c prior is modelled using a normal distribution, while in practice, it is more 
convenient to use a truncated distribution as in Barnett, Mumtaz, and Theodoridis (2014) to 
evaluate the posterior from the proposal distribution by excluding the lower (pL) and higher 
and (pH) percentiles, of the time series empirical distribution:  

 , , ,c ctr L Hc p p                                                 (2.6) 

For completeness, the MCMC algorithm is based on the following six blocks: 

1.      12 2
1 1 2 2, , , , ,

rrp d c Y   
  

2.         12 2
1 1 2 2, , , , ,

rrrp d c Y   
  

3.         12 2
2 1 1 2, , , , ,

r rrp d c Y   
  

4.         12 2
2 1 1 2, , , ,

r rrp d c Y      

5.         12 2
1 1 2 2, , , , ,

r rrp d c Y      
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6.      2 2
1 1 2 2, , , , ,

rrp c d Y     

The posterior draws for the first four blocks concerning the autoregressive coefficients and 
innovations variance for each of the two regimes follow standard formulas for Bayesian linear 
regressions. 

The fifth block, concerning the posterior draws of the delay parameter d, follows a multinomial 
distribution with probabilities defined by the normalised weights using the model’s likelihood. 
More details can be found in the relevant parts of Section 2.3.  

The sixth block concerning the estimation of the threshold c is estimated using a random walk 
Metropolis step and is performed in the following way: At iteration (r) of the MCMC 
algorithm, a candidate value of c* is drawn as: 

 1rc c    ,  0, ciid                                        (2.7) 

The probability of accepting c* is estimated as:  
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p y c p c p p


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

 

 

       
 





                           (2.8) 

Where     2 2
1 1 2 2, , , ,

rr d     . Term α is compared with a draw u from a uniform 

distribution. Candidate draw c* is accepted as c( r ) if u ≤ α and otherwise c( r ) = c( r−1 ). 
Parameter Δc is the variance of the random walk Metropolis step and works as a tuning 
parameter to achieve an acceptance ratio between 10% and 50%.  

 

 

2.2.2 The LSTAR model 
 

A generic smooth transition autoregressive STAR(P) model with P lags can be written as 
follows: 

 1, 1, 0, 0,
1 1

P P

t c p t p t c p t p t
p p

y y G z y e    
 

 
     

 
  ,    20,te iid               (2.9) 

or in a more compact notation as:  

 1 0t t t t ty x G z x e                                              (2.10) 

Where  11, , ,t t t Px y y   .  

In general, the transition function G(zt), which is triggered by the variable zt, can take many 
forms. One of the most common approaches is to use the logistic function, which in its generic 
form of order Κ has the following form: 
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



  
     

  
 ,  10, , , ,K kc c c c R               (2.11) 

Depending on the order K and the threshold values c , the transition function can have many 
regimes. For example, for K = 2 the logistic function has a minimum at (c1 + c2) / 2 and the 
parameters of the LSTAR model change symmetrically around this midpoint. For the specific 
case that c1 = c2, the transition function is actually the exponential function yielding the 
ESTAR model of Haggan and Ozaki (1981): 

    2, , 1 expt tG z c z c     , 0, c R    

As regards the transition variable zt, in general, it can be any variable for which there is 
evidence that it triggers the transition from one regime to another via the transition function 
G(zt). Transition variable zt can fall under three categories. Firstly, zt can be an exogenous 
variable and potentially contemporaneous to yt or a linear combination of stochastic variables 
which determine the regime that yt falls into. Secondly, zt can be set in a deterministic way 
according to time, for instance, in a linear way as zt = t, which yields a deterministic time-
varying parameter model. However, the third and most common approach consists of using a 
delayed value of the time series yt itself as the transition variable, i.e. zt = yt – d, where for the 
delay parameter d, it holds 1 ≤ d ≤ P.  

The analysis below is restricted to the specific case of the LSTAR model where K = 1, and 
consequently vector c  in equation (2.11) collapses now to a scalar defined as c. The transition 
function is defined as:  

      1
, , 1 expt t dG z c y c 



                                     (2.12) 

For γ = 0, the transition function  , , 1 2t dG y c   such that the LSTAR model in equation 
(2.9) reduces to a linear AR model and an identification issue arises since the two regimes 
cannot be differentiated: 

1, 1, 0, 0,
1 1

0.5
P P

t c p t p c p t p t
p p

y y y e    
 

 
     

 
                           (2.13) 

However, for large enough values of the shape parameter, γ → ∞, the LSTAR model has a 
more abrupt transition from one regime to the other, yielding asymptotically a TAR model. 
See Figure 2.1 and Figure 2.2 below.  
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Figure 2.1: Parameterized logistic transition function 

 
Note. Logistic transition function       1

, , 1 expt t dG z c y c 


     for different values of the 

shape parameter γ = {0, 0.5, 1, 10} and threshold values c = 0 and c = 3 in the left and right plots, 
respectively. 
 

 

 

 

Figure 2.2: Logistic transition function surface 

 
Note. Logistic transition function       1

, , 1 expt t dG z c y c 


     surface for different values 

of shape parameter γ and transition variable zt.   
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In order to make the effect of the logistic transition function on the model more obvious, using 
equation (2.10) and defining β2 = β0 + β1, the LSTAR(P) model with P lags32 can be 
parameterized in its more common form in the literature: 

    1, 1, 2, 2,
1 1

1 , , , ,
P P

t t d c p t p t d c p t p t
p p

y G y c y G y c y e        
 

   
        

   
        (2.14) 

As G (yt − d, γ, c) → 0, only the first regime defined by β1 autoregressive coefficients holds for 
the LSTAR model, while for G (yt − d, γ, c) → 1, the second regime defined by β2 
autoregressive coefficients becomes active. Using this parametrization, as already discussed 
previously for γ = 0, that G (yt − d, γ, c) → 1/2, it becomes obvious from equation (2.14) why 
the two regimes cannot be differentiated since they become identical.  

The LSTAR model’s likelihood is given as follows: 

    22 2
1 2 2

1, , , , , 2 exp
2

T e ed c Y    


    
 

 
                           (2.15) 

In terms of the parameter priors and their respective posterior estimation, for parameters β1, 
β2, σ2, and d, everything is similar to the case of the TAR model.  

Regarding the autoregressive coefficients, β1, β2 prior, it has to be noted that although a 
conditionally conjugate prior has been used in the literature as in Lopes and Salazar (2006a), 
Lopes and Salazar (2006a, 2006b) have also proposed to use the Lubrano (2000) prior which 
takes the following form: β2 |σ2,γ ~  (0, σ2 eγ IP+1) and p(β1, γ, σ2, c) ~ (1+γ2)−1 σ2. This 
conditional prior has the advantage of becoming informative for β2 as γ → 0 and addresses the 
identification problem that arises for the LSTAR model for γ = 0, where it collapses to a linear 
model. Throughout this essay, however, I use the same conditionally conjugate prior (see 
Section 2.2.3 for more details) for all the models to keep them comparable since for example 
Lubrano (2000) prior can not be applied to the TAR model and would need to be re-established 
for the proposed time-varying LSTAR models in Sections 2.2.3 and 2.2.4 that follow.  

The estimation of the shape parameter γ combined with the threshold c is performed in a single 
random walk Metropolis-Hastings step as in Lopes and Salazar (2006a). Given the 
identification restriction of γ described previously, γ is modelled using a Gamma prior with a 
shape parameter  and a scale parameter 


 : 

 , 
                                                         (2.16) 

Consequently, the MCMC algorithm is based on the following five blocks: 

1.      12
1 2 , , , , ,

rrp d c Y   
  

2.         12
2 1 , , , , ,

rrrp d c Y   
  

3.         12
1 2, , , , ,r rrp d c Y      

 
32 Lopes and Salazar (2006a) allow for uncertainty over the lags number P by using the reversible jump 
MCMC algorithm of Green (1995).  
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4.         12
1 2, , , , ,

r rrp d c Y      

5.       2
1 2, , , , ,

rrp c d Y     

The posterior draws of the first four blocks are discussed previously for the case of the TAR 
model. Turning to the fifth block concerning the joint estimation of the threshold c and the 
shape parameter γ, its estimation is done with a random walk Metropolis-Hasting step as for 
the case of the TAR model, but now it is extended to accommodate the estimation of the shape 
parameter γ as well. At iteration (r) of the MCMC algorithm, a candidate set of values {γ, c}* 
is drawn as: 

    1, , rc c     ,    0,iid                               (2.17) 

Where Δξ = diag(Δγ, Δc) is a diagonal matrix with tuning parameters Δγ and Δc for the 
parameters γ and c, respectively.  

The probability of accepting the candidate set of values {γ, c}* is estimated as:  
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  
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 

 
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    (2.18) 

Where     2
1 2, ,

rr    .  

 

 

2.2.3 A homoscedastic hybrid time-varying LSTAR model 
 

Having as a starting point the paper of Lopes and Salazar (2006a) on Bayesian estimation of 
STAR models and the modified ST-VAR model33 with a time-varying threshold by Dueker, 
Owyang, and Sola (2010), this essay proposes the modified LSTAR model with two time-
varying parameters: 

1. The transition function G ( yt − d, γ, c ) is allowed to be a time-varying function Gt
 ( yt − d, γ, ct

 ) 
by allowing the constant in time threshold c to be time-varying as ct. The time-varying 
threshold can be interpreted in an economically meaningful way. Dueker, Owyang, and Sola 
(2010) have used it to model the natural rate of unemployment. In the same rationale, Zhu and 
Chen (2017) and Zhu, Chen, and Lin (2019) estimate a forward and backward looking, 
respectively regime dependent non-linear Taylor rule where the unemployment rate plays the 
role of the transition variable zt, and the natural rate of unemployment is captured by the time-
varying threshold ct. While there are not any other prominent examples in the literature of 
(S)TAR models using time-varying thresholds, the long-run trends of many macroeconomic 
time series could fall under the same explanation. For example, for the case of short term 
interest rates ct. could be attributed to the natural rate of interest which has been found to 
follow a declining trend (Hamilton, Harris, Hatzius, & West, 2016; Holston, Laubach, & 

 
33 Dueker, Owyang, and Sola (2010) use the normal cdf as a transition function instead of the logistic.  
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Williams, 2017). Productivity growth (Jorgenson, Ho, & Stiroh, 2008), output growth 
(Antolin-Diaz, Drechsel, & Petrella, 2017), and inflation (Ascari & Sbordone, 2014) exhibit 
similar trends. Another way of perceiving the threshold and, consequently, its time-varying 
equivalent falls under the VAR reduced form/time series literature rather than the more 
structural macroeconomic models. Along these lines, the threshold can represent the steady 
state of a stationary time series around which it fluctuates. Consequently, in the same way that 
the steady-state of a (multivariate) time-series (Villani, 2009) has been extended recently to 
its time-varying equivalent (Bańbura & van Vlodrop, 2018; Louzis, 2019), it could be 
advocated for the case of the time-varying threshold. The assumption of two regimes in the 
case of the logistic STAR model which follows different dynamics and in that sense impose a 
non-linearity in the time series can be explained by the voluminous literature (Clements & 
Krolzig, 2003; Morley & Piger, 2012) suggesting the asymmetry of the business cycle under 
recessionary and expansionary regimes.  

2. The constant terms of the two regimes (1 − G ( yt − d, γ, c )) β1,c and  G ( yt − d, γ, c ) β2,c are 
combined in a single time-varying parameter βc,t such that it does not depend any more on the 
two regimes, but rather is independent and time-varying. In such a way, βc,t can capture 
potential structural breaks of the time-series in terms of level shifts, whereas in contrast, the 
combined time-varying equivalent coefficient from the two regimes when each regime has its 
own constant coefficient is bounded between the values of the two respective regimes. Using 
time-varying constants (intercepts) in linear models has also been used, for example, in mixed-
frequency VARs (Götz & Hauzenberger, 2021), mixed-frequency factor models (Antolin-
Diaz, Drechsel, & Petrella, 2017) and GDP unobserved component models with mean growth 
being modelled as a driftless random walk (Iseringhausen & Vierke, 2019). All of the above 
papers use time-varying constants as a way to capture slow-moving trends while, at the same 
time, the remaining autoregressive or factor-loading coefficients remain constant in time. I 
follow the same approach, assuming that a non-linear time series which exhibits different 
behaviour above and below a (time-varying) threshold may also exhibit long-run trends. It 
becomes obvious that when a time series presents a slow-moving trend, the threshold which 
defines the two regimes should also be flexible to vary in time such that it allows the time 
series to fall in any of the two regimes as time progresses. Otherwise, for example for a time 
series with an upward trend, if the threshold has a value equal to the time series around the 
mid of the sample, it would result in the first regime being activated for the first half of the 
time series and the second regime being activated for the second half of the series.  

As a result, the corresponding hybrid time-varying LSTAR model (TV-LSTAR) can be 
represented by a non-linear state-space model. Assuming that the law of motion of the time-
varying parameters follows the standard approach in TVP macroeconomic models of a random 
walk or an autoregressive process, it follows that the non-linear state-space model 
representation of the hybrid time-varying LSTAR is given by the following observation and 
state equations: 

  

   

, 1,
1

2,
1

1 , ,

, , , 0,

P

t c t t d t p t p
p

P

t d t p t p t t
p

y G y c y

G y c y e e R

  

 

 


 


 
    

 
 

  
 



  
               (2.19) 
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
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    
 







        
          

          
,    0,tv Q           (2.20) 

Where       1
, , 1 expt d t t d tG y c y c 



      is the logistic transition function, as already 

discussed previously.  

The unknown state vector of the system , ,t c t tS c      plays the role of the latent variables for 
the hybrid time-varying LSTAR that need to be estimated. For the rest of the essay, S denotes 
the stacked states St over the full sample. i.e. 1

T
t tS S


    .  

In order to estimate the model in equations (2.19) and (2.20), the standard Kalman filtering 
and smoothing techniques like Carter and Kohn (1994) algorithm which apply to linear state-
space models with additive Gaussian noise and can be part of a Gibbs sampling routine is not 
valid anymore. The latent state variables of non-linear state-space models with known 
parameters, however, can be estimated using suitable algorithms. While the literature in this 
area is rather voluminous34, the most popular approaches include the extended Kalman filter 
(EKF), the unscented Kalman filter (UKF) and the particle filtering (PF) or sequential Monte 
Carlo (SMC).  

For non-linear state-space models with unknown parameters, there are two main avenues to 
proceed. The first one estimates latent states with a Metropolis-Hastings within Gibbs step 
separately for each time period t, where the candidates are drawn from a suitably tailored 
proposal density such that a suitable acceptance ratio is achieved (Geweke & Tanizaki, 2001). 
The second approach (Andrieu, Doucet, & Holenstein, 2010) uses particle filtering in MCMC 
algorithms and comprises two main approaches: particle Metropolis-Hastings which has been 
used, for example extensively in the literature of DSGE models35 and particle Gibbs algorithm, 
which has been implemented for time series models for example in Nonejad (2016) and 
Mumtaz (2018).  

In the relevant literature on time-varying threshold (S)TAR models (Dueker, Owyang, & Sola, 
2010; Zhu & Chen, 2017; Zhu, Chen, & Lin, 2019), the time-varying threshold is estimated 
via an independent Metropolis-Hasting algorithm as discussed previously. In particular, in the 
ST-VAR of Dueker, Owyang, and Sola (2010), the time-varying threshold is estimated by 
drawing candidates from the proposal density of the smoothed state estimates after running 
the UKF36, whereas Zhu and Chen (2017); Zhu, Chen, and Lin (2019) use suitable tailored 
distributions after expressing the time-varying threshold TAR in a state-space representation.  

Instead, I choose to proceed to the estimation of the latent state variables and the model’s 
parameters using an improved version of the Particle Gibbs algorithm named as Particle Gibbs 

 
34 For a detailed textbook treatment of state-space models refer to and Durbin and Koopman (2012); 
Särkkä (2013), and  Chopin and Papaspiliopoulos (2020).  
35 See for example Fernández‐Villaverde and Rubio‐Ramírez (2005) and Herbst and Schorfheide (2015) 
for a textbook treatment.  
36 UKF (Julier, Uhlmann, & Durrant-Whyte, 1995; Julier & Uhlmann, 2004; Wan & Van Der Merwe, 
2001) is based on the unscented transform which uses a set of sigma points to capture the mean and 
covariance of a random variable which are subsequently propagated via a non-linear function. The 
propagated sigma points and are used afterwards to estimate the mean and covariance of the non-linearly 
transformed random variable.  
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with Ancestor Sampling (Lindsten, Jordan, & Schon, 2014). The exact implementation details 
of this algorithm are presented in Appendix B.1.1 Particle Gibbs with ancestor sampling. 

In a fully Bayesian estimation setting, the model’s parameters have the following priors.  

The parameters of the two conditional means of the model, i.e. β1, β2 are conditionally 
conjugate: 

 ,
i ii      ,   1,2i                                             (2.21) 

Where ,1 ,, ,i i i P       for 1,2i  . With respect to 
i , instead of using an identical prior’s 

variance for all lags’ coefficients (Chen & Lee, 1995; Lopes & Salazar, 2006a; Dueker, 
Owyang, & Sola, 2010; Zhu & Chen, 2017; Zhu, Chen, & Lin, 2019), i.e. 2

i P PI    , I 
rather allow for extra shrinkage for the more distant lags’ coefficients βi,p following a 
Minnesota style prior (Litterman, 1986) adapted to the univariate case: 

2

1
i p


  ,   1,2i  ,   1, ,p P                                   (2.22) 

The autoregressive coefficients of the time-varying constant βc,t ( j = 1 ) , i.e. 1c    

,0 ,1,c c      1 1,1,C F    and the threshold37 ct ( j = 2 ), i.e. 2 ,0 ,1 2 2,2, ,c c c C F             
follow a normal prior: 

 ,
j jj     ,   1,2j                                       (2.23) 

Using a normal prior for the time-varying threshold process is similar to Dueker, Owyang, and 
Sola (2010), while Zhu and Chen (2017); Zhu, Chen, and Lin (2019) use a uniform prior 
defined over (−1,1) such that the autoregressive process does not exhibit any explosive roots.  

The variance Q of noise vt for the state equation (2.20) is assumed to be diagonal, with its 
diagonal elements following an inverse Gamma prior: 

 , ,, ,
j j j jj j Q QQ S d  ,   1,2j                                    (2.24) 

Delay parameter d in the generic case follows a discrete distribution defined as: 

 pd p d d                                                    (2.25) 

For models with a small number of maximum lag P, it is reasonable to assume that the delay 
parameter d follows a discrete uniform distribution d ~  (1, P). However, when the number of 
lags increases, as would be the case, for example, when estimating a model with a time series 
in monthly frequency, it could be more appropriate to assign larger probabilities to the closest 
lags and smaller to the more distant ones.  

The variance R of the model’s innovations et follow an inverse Gamma prior: 

 
37 I use index j to refer to the 2 state variables βc,t and ct to differentiate with index i used to denote the 
set of autoregressive coefficients β1 and β2 above and below the time-varying threshold ct.  
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 ,R RR S d                                                   (2.26) 

Where RS  is the prior scale matrix, and Rd  are the degrees of freedom.  

Finally, the shape parameter γ is modelled with a gamma prior with a shape parameter  and 

a scale parameter 


  as already discussed previously: 

 , 
                                                        (2.27) 

Consequently, the iteration (r) from the particle Gibbs with ancestor sampling algorithm is 
based on the following eight blocks: 

1.      1
1 2 , , , , , , ,rrp Q d R S Y      

2.         1
2 1 , , , , , , ,r rrp Q d R S Y      

3.         1
1 2, , , , , , ,r rrp Q d R S Y      

4.         1
1 2, , , , , , ,r rrp Q d R S Y      

5.         1
1 2, , , , , , ,r rrp d Q R S Y      

6.         1
1 2, , , , , , ,r rrp R Q d S Y      

7.         1
1 2, , , , , ,r rrp Q d S Y      

8.      1 2, , , , , ,rrp S Q d Y     

The first and the second block of the Gibbs sampler have a conditional posterior, which is 
derived easily along the lines of a Bayesian linear regression conditional on the rest of the 
parameters: 

    , 2, 1,
1 1

, , 1 , ,
P P

t c t t d t p t p t d t p t p t
p p

y G y c y G y c y e       
 

   
       

   
         (2.28) 

Redefining the left-hand side of equation (2.28) as  , 2,
1

, ,
P

t t c t t d t p t p
p

y y G y c y   


 
    

 
  

and defining the product of the transition function with the lagged values of yt as 
   11 , , , ,t t d t t t Px G y c y y      then equation (2.28) transforms to the following standard 

Bayesian linear regression: 

1t t ty x e                                                           (2.29) 

Where the posterior of β1 is distributed as: 

 1 11 ,                                                      (2.30) 
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Where   1 1

11 1R X X 
       

 and  1 1 1 1

1 1R X Y   
          with 1

T
t tY y


      and 

1

T
t tX x


     .  

Similarly, the parameters β2 of the second regime can be estimated by formulating the 
equivalent Bayesian linear regression conditional on the draw of β1 and the remaining set of 
parameters.  

The third block concerning the posterior of the autoregressive coefficients  1 2,    for the 
time-varying constant βc,t and threshold ct is estimated as: 

 ,j jj      ,   1,2j                                     (2.31) 

Where   ,

11 1
j j j j

Q X X 

       
 and  ,

1 1
j j j j j j

Q X Y   
          with , 1

T

j t t
Y S


   

  

and , 1 1

T

j t t
X S  

   
 .  

The fourth block concerning the variance of the gaussian errors for the state equations has the 
following conditional posterior: 

 , ,, ,j j j jQ Qj jQ S d                                                   (2.32) 

Where , ,j j j j j jQ QS S e e     and , ,j j j j
Q Qd d T   with , , 1 , 1

T

j j t j j t j j t
e S C S F 

      denoting 

the residuals of the j-th column of the T × 2 matrix S.  

The fifth block of the conditional posterior of the delay parameter d follows a multinomial 
distribution with probability: 

     
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1 2
1 2
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Q R d S Y p d d
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   










,  1, ,p P  (2.33) 

Where  pp d d  denotes the prior of the delay parameter d as defined in equation (2.25) 

with 1, ,pd P  .  1 2, , , , , , ,Q R d S Y     denotes the conditional likelihood38 of the 

model: 

 

    2
1 2

1, , , , , , , 2 exp
2

T e eQ R d S Y R
R

         
 

 
                            (2.34) 

With e  denoting the estimated residuals defined over the full sample: 

 
38 Conditional likelihood refers to the fact that the likelihood is conditional with respect to the latent 
states of the non-linear state-space model, i.e. (θ,S |Y) = p(Y |θ,S), where θ = {β1, β2, ρ, Q, d, R, γ}.  
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    , 1, 2,
1 1 1

1 , , , ,
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   

For the specific case where the delay parameter d follows a discrete uniform prior, i.e. 
 1,d P  , the relevant terms  pp d d  simplify from equation (2.33) and the posterior is 

given as the ratios of the likelihood for each delay parameter dp over the sum of the likelihoods 
for all potential delay parameters dp, for 1, ,p P  .  

The sixth block of the conditional posterior for the variance R is given by: 

 ,R RR S d                                                        (2.35) 

Where R RS S e e     and R Rd d T  .  

The seventh block concerning the estimation of the shape parameter γ is estimated following 
a Metropolis-within-Gibbs step, as already discussed previously. At iteration (r) of the MCMC 
algorithm, a candidate value of γ* is drawn as: 

 1r     ,  0,iid                                   (2.36) 

The probability of accepting γ* is estimated as:  
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                              (2.37) 

Where      1
1 2, , , , ,r rQ d R S    .  

Finally, the eighth block concerning the posterior distribution of the states S is estimated using 
the Lindsten, Jordan, and Schon (2014) algorithm. More details are provided in Appendix 
B.1.1 Particle Gibbs with ancestor sampling.  

 

 

2.2.4 A heteroscedastic hybrid time-varying LSTAR model with stochastic volatility 
 

One popular approach for modelling heteroscedasticity for LSTAR models usually comes 
under the form of regime-dependent heteroscedasticity with variances 2

1  and 2
2  for each 

respective regime, as follows:  

    2 2 2
1 21 , , , ,t t d t t d tG y c G y c                                       (2.38) 

This approach allows for a smooth transition in innovations variances when alternating 
between the two regimes and has been applied in the literature even for smooth transition 
multivariate models in Galvão and Owyang (2018) using a ST-FAVAR and Auerbach and 
Gorodnichenko (2012) and Caggiano, Castelnuovo, and Groshenny (2014) using ST-VARs.  
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Along these lines Gerlach and Chen (2008) substitute the regime-dependent variances 2
1  and 

2
2  in equation (2.38) with two GARCH(q,r) processes, each one for each regime i = 1,2, i.e. 

yielding an ST-GARCH(q,r) process: 

    2 2 2
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                                (2.39) 

In a similar context, Lopes and Salazar (2006b) form an ST stochastic volatility model39 for 
the conditional variance 2

t th  , where the natural logarithm of the stochastic volatility 
follows an AR(1) process:  

    1, 2,

, ,0 ,1 1
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ln ln , 1,2
t t d t t t d t t

i t i i t t

h G y c h G y c h

h h i

 

  
 



  

   
                                (2.40) 

On the other hand, Livingston and Nur (2020) model the conditional variance of the LSTAR 
model as a simple GARCH(q,r) process without applying an ST structure. Following the same 
approach, I use instead for the proposed TV-LSTAR-SV model, the more popular process for 
macroeconomic time series40 of stochastic volatility, i.e. Rt = ht, where the natural logarithm 
of ht follows a random walk: 

1ln lnt t th h   ,  0,t iid                                       (2.41) 

Thus, the suggested TV-LSTAR-SV is specified with heteroscedasticity, which does not 
depend directly on any of the regimes but rather captures the statistical properties of the non-
linear time series in a timely manner. Conditional on the remaining blocks of the Gibbs 
sampler, stochastic volatility can now replace the sixth block in Section 2.2.3 and be estimated 
using Kim, Shephard, and Chib (1998) algorithm. An additional block is required to estimate 
the posterior of the variance of the innovations of the stochastic volatility under the standard 
approach following an inverse Gamma prior. The MCMC algorithm is now comprised of the 
following nine blocks. 

1.      1
1 2 , , , , , , , ,rrp Q d h S Y      

2.         1
2 1 , , , , , , , ,r rrp Q d h S Y      

3.         1
1 2, , , , , , , ,r rrp Q d h S Y      

4.         1
1 2, , , , , , , ,r rrp Q d h S Y      

5.         1
1 2, , , , , , , ,r rrp d Q h S Y      

6.         1
1 2, , , , , , , ,r rrp h Q d S Y      

7.         1
1 2, , , , , , , ,r rrp Q d h S Y      

 
39 The respective ST-SV MCMC block is estimated using the Jacquier, Polson, and Rossi (1994) 
algorithm.  
40 Livingston and Nur (2020) use their LSTAR-GARCH model on climate time series.  
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8.         1
1 2, , , , , , , ,r rrp Q d h S Y      

9.      1 2, , , , , , , ,rrp S Q d h Y     

The MCMC blocks need to be adjusted accordingly so that they take into account the stochastic 
volatility. Regarding the first and the second block, these should be adjusted in the following 
way: The posterior distribution of the autoregressive coefficients of the first regime β1 

conditional on the second regime autoregressive coefficients β2 and the remaining parameters 
as described by equation (2.28) is now given by: 

 1 11 ,                                                     (2.42) 

Where  1 1

1
1 1

1

T

t t t
t

R X X 


 



     
 

    and 1 1 1 1

1 1

1

T

t t t
t

X Y R   
 



       
 

    

More details on the sixth block concerning the estimation of the stochastic volatility using 
Kim, Shephard, and Chib (1998) algorithm can be found in Appendix  

 

B.1.3 Stochastic volatility estimation.  

The remaining blocks, i.e. the fifth, the eighth and ninth, need to be adjusted accordingly so 
that they take into account the stochastic volatility Rt at each period t. As a result, in the fifth 
and eighth blocks requiring the estimation of the likelihood, the conditional likelihood is used: 

   
2

1 2
1 2

1

1, , , , , , , , 2 exp
2

T
t

t
t t

eQ d h S Y R
R

     



 
   

 
                (2.43) 

Finally, the seventh block draws the posterior of the innovations variance to the stochastic 
volatility as:  

 ,S d                                                     (2.44) 

Where  2

1
ln

T

t
t

S S h 


    and d d T   .  

 

 

2.2.5 Forecasting 
 

Multistep-ahead forecasts for the entire class of the non-linear models presented previously 
that entail thresholds are iterated forecasts. For the entire forecast horizon, the models are 
allowed to alternate between the two different regimes as the threshold or transition function 
dictates, given the lagged values of the iterated forecasts. In other words, for example, the 
TAR model does not remain in the regime that fell during the last observation yT, throughout 
the entire forecast horizon h = 1,⋯, H, but at each h-step ahead forecast value ˆT h Ty   regime 
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one or two is activated depending on whether the d lagged forecasted value ˆT h d Ty    is below 

or above the threshold value c. To formalise ideas at each MCMC iteration (r), the h-step ahead 
forecast value  ˆ r

T h Ty   for the TAR model is given as: 

 

            
 

            
 

2
1, 1, 1, 1, 1

1

2
2, 2, 2, 2, 2

1

ˆ ˆ, 0, ,
ˆ

ˆ ˆ, 0, ,

r

r

P
r r r r r r
c p T h T hT h p T

pr
T h T P

r r r r r r
c p T h T hT h p T

p

T h d T

T h d T

y e e y c

y
y e e y c

  

  

  




  


 

 

   
 
   













     (2.45) 

For the proposed time-varying parameter LSTAR models, additionally to allowing the model 
to alternate between the two regimes throughout the forecast horizon, the time-varying 
parameters are propagated out-of-sample throughout the forecast horizon following their 
respective laws of motion. To be more specific, the h-step ahead forecast  ˆ r

T h Ty   at MCMC 

iteration (r) for the TV-LSTAR-SV model is given as: 

               
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 
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      (2.46) 

Where the time-varying parameters βc,t, ct, and Rt have been propagated for period T + h with 
their respective modelling process: 

              
              
               
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  

   
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                (2.47) 

Having obtained the forecasts  ˆ r
T h Ty   for all r = 1,⋯, R MCMC iterations, the h-step ahead 

forecast ˆT h Ty   is estimated simply as the mean: 

 

1

1ˆ ˆ
R

r
T h T T h T

r
y y

R 


   

 

2.3 Model comparison 
 

Model comparison in a Bayesian framework can be performed by using Bayes factors and 
consequently estimating marginal likelihoods or by using information criteria. Marginal 
likelihood estimation for the proposed models, which contain latent states due to the time-
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varying parameters41, poses some challenges which have been well discussed in the literature. 
The following sections present in more detail the marginal likelihood and information criteria 
estimation for the proposed models.  

 

2.3.1 Marginal likelihood estimation 
 

For all the previously discussed models, their marginal likelihood can be approximated using 
the Gelfand and Dey (1994) method. In more detail, it can be shown that the marginal 
likelihood p(Y |) for a given model  can be approximated42 as: 

 
  

     

1

1

1ˆ
,

R
rN

r r
rR

f
p Y

N p Y p



 





 
   
  


 

                             (2.48) 

Where   ,rp Y    refers to the posterior,   rp    is the prior, and f (θ ) is any pdf 

function defined over the parameters vector θ of length Κ, with the property   1f d   . 

The summation in equation (2.48) refers to the retained draws ΝR after the burn-in period.  

In line with Geweke (1999) proposal of a truncated normal distribution,   rf   is defined as: 

          
       

0.50.51 1

1 1

2 exp 0.5Kr r r

r r

f V V

V F

 



      

    

 

 

     
 

     
 


 

Where   is the mean of the vector of parameters over all the retained draws ΝR, and Vθ is the 
variance-covariance of the parameters.  z   is the indicator function taking the value of 

one if z ≤ α and zero otherwise.  1F   is the inverse cdf of a chi-square distribution 2
K  with 

Κ degrees of freedom and probability τ. Thus the role of the tuning parameter τ is to remove 
the extreme values from the parameters θ during the Monte Carlo integration.  

Thus for the estimation of the marginal likelihood of each of the four models mentioned above, 
i.e. TAR, LSTAR, TV-LSTAR, TV-LSTAR-SV, the essential part breaks down to the 
estimation of the posterior at each retained draw which is used in the denominator term in 
equation (2.48). This can be easily estimated by using the relevant likelihood functions as 
presented in equations (1.1) and (2.5) for the TAR model and equation (2.15) for the LSTAR 
model and further estimating the pdf of each parameter prior at the respective draw of the 
MCMC algorithm. However, for the TV-LSTAR, TV-LSTAR-SV models, which include 
latent states following Chan and Grant (2015) and Chan and Grant (2016), rather than using 

 
41 Frühwirth-Schnatter and Wagner (2010) have proposed a stochastic model specification search 
algorithm to address model uncertainty regarding constant versus time-varying coefficients for linear 
state-space models. For an application in inflation’s volatility and NAIRU time variation see Chan 
(2018).  
42 For a formal proof you can refer to Koop (2003), p.105 and Herbst and Schorfheide (2015), p. 93.  
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the conditional likelihoods presented in equations (2.34) and (2.43) for each model, 
respectively, the integrated likelihood43 also referred as the observed-data likelihood p(Y |θ) is 
used, where the latent states have been integrated out.  

An approximation of p(Y |θ) can be estimated as a by-product of the particle filtering 
algorithm44. In more detail, this is provided in Appendix B.1.2 Particle filtering – equation 
(B.3).  

For the autoregressive coefficients following multivariate normal priors, the innovation errors 
following inverse gamma priors, the shape parameter following gamma prior, and the 
threshold following a truncated normal distribution, where applicable, the estimation of the 
posterior is straightforward. For the delay parameter, which follows a uniform prior, its 
contribution to the posterior is always 1/P at any value of the delay parameter.  

Dropping index , and the superscript (r) denoting a retained draw of the parameters’ vector 
θ at an MCMC iteration, the log posterior of each model is explicitly estimated as below: 

1. TAR model: 

       
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Where  1 2 2 2
1 2, , , , ,d c     . 

2. LSTAR model 
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Where  1 2 2, , , , ,d c     . 

3. TV-LSTAR model:  
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Where  1 2, , , , , ,Q d R     . 

 
43 It holds p(Y | θ) = ∫p(Y,S | θ) dS = ∫p(Y | S, θ) p(S | θ)dS, where p(Y,S | θ) is the complete data 
likelihood and p(Y | S, θ) is the conditional likelihood.  
44 In the context of state-space models this likelihood is also referred as a marginal likelihood denoting 
that the latent states have been marginalised out. This marginal likelihood should not be confused with 
the model’s total marginal likelihood used for the purpose of model comparison in a Bayesian setting.  
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4. TV-LSTAR-SV model: 

       
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Where  1 2, , , , , ,Q d      . 

 

2.3.2 Information criteria 
 

Turning now to the estimation of the information criteria, for high dimensional models, the 
deviance information criterion (DIC) (Spiegelhalter, Best, Carlin, & Van Der Linde, 2002) is 
more robust and thus preferable to the classic Bayesian information criterion (BIC), (Schwarz, 
1978) and the Akaike information criterion (AIC), Akaike (1974). Celeux, Forbes, Robert, and 
Titterington (2006) define DIC in more detail as:  

   ˆ4 ln 2lnDIC E p Y Y p Y        

Following Chan and Grant (2016), the first term is evaluated as the mean of the integrated 
likelihood at each of the MCMC retained draws of θ. For the second term, the quantity ̂  is 
approximated as the draw (r) of parameters θ, which provides the highest value of the posterior 

 p Y . With this value, ̂  the term  ˆln p Y   can be further easily computed. For the 

proposed TV-LSTAR and TV-LSTAR-SV models, the term  ˆln p Y   is estimated using the 

standard particle filtering algorithm described in Appendix B.1.2 Particle filtering - equation 
(B.3).  

 

 

2.4 Monte Carlo simulation 
 

In order to evaluate to what extent the estimation procedure discussed analytically in Section 
2.2.2 is efficient, the following Monte Carlo simulation is performed. A sample of Τ = 500 
periods is created from the following data generating process (DGP), and afterwards, the true 
parameters and the latent states are compared to the estimated ones. The true DGP has the 
following values: β1 = [0.4, −0.2], β2 = [−0.5, 0.1], d = 1, γ = 4, R = 0.01, 
Q = diag (0.01, 0.01). In order to satisfy that the logistic transition function G (zt−d, γ, ct) 
alternates sufficient times between the two regimes throughout the sample; as a transition 
variable, the cosine function is used. The DGP is the following:  
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 5sin 0.05tz t  

The priors for the respective parameters are set as follows. The mean of the prior distribution 
for coefficients β1 and β2 is set equal to zero for all elements, i.e. 

1,2
0   and the 

hyperparameters λ1 and λ2 determining the coefficients’ prior covariance 
1,2 are set equal to 

one and zero, respectively, resulting in the identity matrix. The autoregressive coefficients for 
the time-varying parameters do not follow a prior, but rather it is assumed a priori that both of 
the time-varying parameters, i.e. βc,t and ct follow a random walk. The innovations variance R, 
as well as the time-varying parameters innovations variance Qj,j follow an inverse Gamma 
prior with a scale 

,
0.01

j jR QS S   and degree of freedom 
,

1
j jR Qd d  . The delay parameter 

d follows a discrete uniform distribution with probability p(d=dp) = 1/P = 1/2. Finally, 
parameter γ, which follows a Gamma prior, has parameters 2   and 1


  . In short, the 

Monte Carlo exercise prior specifications are summarised in the following table. 

 

Table 2.1: Monte Carlo prior specifications 

Parameter  Prior 

β1, β2  
1,2

0   
1,2 2I   

R  0.01RS   1Rd   

Q  
,

0.01
j jQS   

,
1

j jQd   

d    1 2Pp d d   

   2   1


   

 

Furthermore, the MCMC algorithm for each Monte Carlo replication is initialised with the 
following values: 

Table 2.2: Particle MCMC initial values 

β1, β2 AR(4) coefficients 
R AR(4) σ2  
Q AR(4) σ2 
d 2 
  10 

S1:T 0 
S0 0 

Var(S0) 0.01 
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The particle Gibbs sampler uses 10000 draws as a burn-in sample, and the subsequent 5000 
retained draws are used for inference. The particle Gibbs with ancestor sampling uses N = 200 
particles.  

The following tables present the results for N = 100 Monte Carlo replications of the model’s 
parameters estimation.  

 

Table 2.3: Monte Carlo parameter estimates 

Parameter  True  Mean  S.E  99% C.I. 
  1

1   0.4  0.421  0.010  [0.395, 0.447] 

  1
2   −0.2  −0.199  0.007  [−0.216, −0.182] 

  2
1   −0.5  −0.467  0.010  [−0.493, −0.441] 

  2
2   0.1  0.125  0.009  [0.102, 0.148] 

  R   0.01  0.011  0.000  [0.011, 0.012] 
  1,1Q   0.01  0.010  0.000  [0.009, 0.011] 
  2,2Q   0.01  0.011  0.001  [0.009, 0.013] 
     4  3.798  0.100  [3.541, 4.055] 
  d  1  64%  −  − 
Note. The delay parameter percentage shows the percentage of correctly specifying the true value of d 
over all Monte Carlo replications. Delay parameter d is correctly specified for each Monte Carlo 
replication when the majority of the retained draws have values equal to the true value of the delay 
parameter.  

 

Figure 2.3 below shows a randomly selected realisation from the Monte Carlo replications 
using the true DGP mentioned above. The transition variable zt shown in the fourth subpanel 
is periodic, and its impact on the transition function G (zt−1, γ, ct) is shown in the last subpanel. 
In particular, the transition function G (zt−1, γ, ct) fluctuates between zero and one, 
corresponding to the two respective regimes.  
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Figure 2.3: DGP and latent state estimates 

 
Note. Black lines show the true values. Blue lines show the median estimates, and green lines cover the 
99% credible intervals.  
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2.5 Empirical application 
 

2.5.1 Data description 
 

All model specifications are estimated with the following four variables at quarterly 
frequency45: real GDP growth, CPI inflation, Federal Funds Rates (FFR), and 10-year bond 
yield (10-Y). Variables are transformed into annualised quarter-on-quarter growth rates except 
for the FFR and 10-Y, which remain in percentage points. See Table 2.4 below. 
 

Table 2.4: Variables 

Variable  Transformation 
 Real GDP  100 ((yt / yt−1)4 − 1) 
 CPI  100 ((yt / yt−1)4 − 1) 
 FFR  - 
 10-year bond yield  - 
Source: Archival Federal Reserve Economic Data 
of the Federal Reserve Bank of St. Louis. 

 

The out-of-sample exercise is performed recursively using an expanding window since 
1960Q1, with the first out-of-sample exercise performed for 1985Q1 and the last one for 
2018Q4. For each of the out-of-sample exercises at period t, the last available data point is that 
of t − 1. The data used are as they were available during the 2020Q1 vintage.  

 

 

2.5.2 Priors and other estimation details 
 

The two versions of the proposed TV-LSTAR model, with and without heteroscedasticity, are 
benchmarked versus an AR(4) model estimated by means of OLS. Furthermore, in order to 
gauge how the proposed models compare relevant to other standard non-linear time series 
models, the standard TAR and LSTAR models are included in the analysis as well.  

All models, including the benchmark, are estimated with P = 4 lags. All Bayesian non-linear 
models (TAR, STAR, TV-LSTAR, TV-LSTAR-SV) have the following priors with respect to 
the autoregressive coefficients: λ1 = 1, λ2 = 1, whereas for the case of TAR and LSTAR models, 
the constants at each regime follow a diffuse prior. All model innovations follow a prior with 
a scale equal to the variance estimated by an AR(4) model, i.e. 2

RS   and 1 degree of 
freedom 1Rd  . The shape coefficient γ prior has parameters 5   and 1


  . The delay 

parameter d follows a discrete uniform distribution with probability p(d=dp) = 1/P = 1/4.  

 
45 The variables whose original frequency is monthly are first transformed into quarterly frequency by 
calculating each quarter’s respective average.  
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Furthermore, for the TAR and LSTAR models, the threshold follows a truncated normal prior 
at the 25th and 75th percentile of the empirical time series distribution. The threshold’s prior 
variance is set equal to the variance of the time series itself.  

With regard to the TV-LSTAR and the TV-LSTAR-SV models in more detail, the following 
priors are used. The innovations of βc,t and ct follow a prior with scale 

,
0.1

j jQS   and 
,

1.
j jQd  Regarding the time-varying parameter βc,t, it is assumed a priori that 

it follows a random walk, and thus a prior over its autoregressive coefficients vector ρ1 is not 
used. However, the autoregressive coefficients ρ2 for the time-varying threshold ct follow a 

prior with mean  2
0,0

   and variance  
2

1,1diag  . Any draws of ρ2 with explosive 
roots are discarded. For the case of the TV-LSTAR-SV the innovations of the stochastic 
volatility follow a prior with 0.0001S   and 5d  .  

The TV-LSTAR and TV-LSTAR-SV models are initialised in the following manner. The 
autoregressive coefficients β1 and β2 are set equal to the mean of the posterior from the LSTAR 
estimates of the respective coefficients. In addition, the Particle Gibbs with Ancestor Sampling 
algorithm (Lindsten, Jordan, & Schon, 2014) is initialised with βc,1:T set equal to the mean of 

posterior draws (r) of the STAR model:         1 21 r r r r
t c t cG G    and c1:T = HPtrend, where 

HPtrend denotes the trend of the Hodrick-Prescott filter (Hodrick & Prescott, 1997) applied to 
time series yt. The initial values of the state-space model are set as follows. For the time-
varying constant βc,t, the relevant values are S1,0 = βc,0 = mean( βc,1:T ), and P1,1,0 = 1, whereas 
for the time-varying threshold ct, the values are S2,0 = c0 = mean(Y), and P2,2,0 = 1.  

Regarding the initialisation values with respect to the stochastic volatility for the TV-LSTAR-
SV for the first iteration of the MCMC algorithm, these are Rt for t = 1,⋯,T is set equal to σ2 

estimated with AR(P), ln ht for t = 1,⋯,T is set equal to ln(0.8 diag(var(Y))) and for the Kim, 
Shephard, and Chib (1998) algorithm the initial conditions are set as diffuse: ln h0 = 0, 
var(ln h0) = 10 and Φ = 0.01.  

The particle Gibbs sampler uses a burn-in sample of 10000 draws for convergence, and the 
subsequent 5000 draws are retained for inference and forecasting purposes. 

 

 

2.5.3 In-sample results  
 

This section shows the in-sample results with respect to the estimated models. Firstly, the 
posterior estimates of the time-varying parameters and the stochastic volatility estimates of the 
proposed models are shown in order to understand how they capture the underlying dynamics. 
In continuation, the estimates of the log marginal likelihood and the deviance information 
criterion are presented.  
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2.5.3.1 Time-varying parameters – Transition function 
 

Figure 2.4 below shows on the right axis the estimates of the time-varying constants for the 
TV-LSTAR and TV-LSTAR-SV models with green and blue lines, respectively, in 
comparison with the bounded combined constant of the LSTAR model in red for comparison 
purposes. The left axis refers to the time series itself, which is also shown for reference in the 
same sub-figure for reference purposes.  

Overall, it is observed that the unbounded time-varying constants of the TV-LSTAR and TV-
LSTAR-SV follow closely and proportionally the change in levels of the time series, especially 
for the case of CPI, FFR and the 10-year bond yield. However, for the case of the GDP, the 
time-varying constant overall present a declining trend from the sample’s start in the 60’s up 
until the 2008 Great Recession, where this trend reverses. What stands out is the difference 
between the TV-LSTAR and TV-LSTAR-SV time-varying constants for FFR in the periods 
in the 1970-75 period and the late 70s-early 80s period, where the time series excessive 
volatility in the TV-LSTAR model is attributed to the time-varying constant, whereas is in the 
TV-LSTAR-SV model is attributed to the stochastic volatility as it is shown later in Figure 
2.10.  
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Figure 2.4: Autoregressive constant estimates 

 
Note. Left axis: Black lines show the time series for each variable. Right axis: Red, green and blue lines 
show the (implied) constant posterior median (1-G)β1,c+Gβ2,c for LSTAR, and βc,t for TV-LSTAR  and 
TV-LSTAR-SV respectively for 2018Q4 vintage. 
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 Figure 2.5 to Figure 2.8 below show the estimates of the time-varying thresholds. For GDP, 
there is no evidence of almost any time variation of the threshold, but this should be examined 
jointly with the aforementioned consistent time variation of the time-varying constant.  

The time-varying threshold of the CPI behaves rather counter-intuitively during the 70s high 
inflation period, where both for the homoscedastic and heteroscedastic models, the time-
varying threshold is below the constant threshold LSTAR. However, during the Great 
Recession (2007-2009), the local maximum of the threshold is estimated with a time delay 
during the lowest v-shaped recession, which can be explained by the fact that the delay 
parameter d in yt – d estimates for the given variable have a mean value of 3 (with a maximum 
of 4 lags). After this local maximum, in the period following the Great Recession, the threshold 
both for the homoscedastic and heteroscedastic models presents a weak declining trend in line 
with the underlying CPI time series itself.  
 
For the case of the FFR the time variation of the threshold is, as expected, more greatly 
pronounced, although with big differences between the homoscedastic and the heteroscedastic 
variants of the models. For example, during the early 80s period, when the FFR peaked with 
respect to the entire time series, the threshold of the homoscedastic model in blue is far above 
the heteroscedastic one in magenta. In that case, the excessive volatility of the time series 
captured in the stochastic volatility estimates in Figure 2.10 allows the threshold to move lower 
and rather let the increased innovations variance explain the behaviour of the time series. 
During the 90s, the homoscedastic model’s threshold follows a declining trend which is 
consistent with the decreasing FFR rates. Finally, 10-year bond yield time-varying thresholds 
resemble the behaviour of the FFR during the late 70s-early 80s period. However, for the post-
2000s period, contrary to FFR, the threshold both for the homoscedastic and heteroscedastic 
models, rather than following a declining trend, exhibit a strong mean reversion.   
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Figure 2.5: GDP threshold estimates 

 
Note. Red, green, blue and magenta lines show the threshold posterior median for TAR, LSTAR, TV-
LSTAR and TV-LSTAR-SV, respectively for 2018Q4 vintage. Black lines show the time series. 
 

 

Figure 2.6: CPI threshold estimates 

 
Note. See Figure 2.5 note details. 
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Figure 2.7: FFR threshold estimates 

 
Note. See Figure 2.5 note details. 
 

 

Figure 2.8: 10-year bond yield threshold estimates 

 
Note. See Figure 2.5 note details. 
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Figure 2.9 below shows the posterior median of the transition function for the homoscedastic 
and the heteroscedastic model with red and green lines, respectively. Overall, for GDP, the 
values are very close and in line with the estimates of the time-varying threshold, which almost 
coincide, as shown in Figure 2.5 above. For CPI, overall, both versions of the model fall in 
regime one during the 70s high inflation period and in regime two in the subsequent low 
inflation environment, albeit with short periods of very frequent alternations during 1985-1990 
and 2005-2010.  

For the FFR, as already explained previously, the accentuated role of stochastic volatility in 
defining the threshold is also reflected in the estimates of the transition function, especially 
during the 80s and the periods preceding the 2001 dot-com bubble crash and the 2008 Great 
Recession. The homoscedastic model’s threshold, which follows the time series behaviour 
closely, results in more frequent alternations between the two regimes during the local maxima 
of the time times series in contrast to the heteroscedastic models, which follow fewer 
alternations. Finally, for the 10-year bond yield, both models broadly are capturing correctly 
two regimes for the elevated rates above the long run mean and below, respectively.  
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Figure 2.9: Transition function G ( yt−d, γ, ct
 ) estimates 

 
Note. Left axis: Black lines show the time series for each variable. Right axis: Red and green lines show 
the transition function posterior median for TV-LSTAR and TV-LSTAR-SV, respectively for 2018Q4 
vintage. 
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2.5.3.2 Stochastic volatility estimates 
 

The estimates of the stochastic volatility capture the changing dynamics of the proposed time 
series model innovations variances over different sub-periods. For example, the GDP 
stochastic volatility is increased during the period preceding the Great Moderation and then 
far decreased except for the Great Recession, where it peaked again, although at a level lower 
than the highs during the volatile 70s-80s. Similarly, CPI’s stochastic volatility peaks around 
the late 70s - early 80s and captures the big shock of the 2008 Great Recession correctly. For 
the case of the FFR, stochastic volatility reaches excessive levels during the late 70s oil crisis, 
and afterwards, it increases again during the Great Recession. Finally, 10-year bond yield 
volatility estimates increase around the late 70s - early 80s and decrease subsequently in a 
progressive way during the Great Moderation.  
 

Figure 2.10: Stochastic volatility estimates 

 
Note. Red and green lines show the posterior median of the innovations’ standard deviation for TV-
LSTAR and TV-LSTAR-SV, respectively for 2018Q4 vintage. 
 
 
2.5.3.3 Model comparison 
 

In order to indicate how the proposed models (TV-LSTAR, TV-LSTAR-SV) compare against 
the other non-linear time series models (TAR, LSTAR) in-sample, as already discussed in 
Section 2.2.5, the marginal likelihood and the deviance information criterion are used. 
According to Table 2.5 below, the TV-LSTAR-SV has the largest marginal likelihood across 
all non-linear models and variables. Furthermore, comparing the LSTAR and TV-LSTAR 
models, which differ only in the time variation allowed for the constant and the threshold, it is 
evident that the proposed TV-LSTAR model presents the largest marginal likelihood.  

Table 2.5: Log marginal likelihood 

 GDP CPI FFR 10-Y 
TAR -604.93 -440.88 -200.50 -120.47 
LSTAR -601.29 -464.64 -287.53 -147.66 
TV-LSTAR -587.48 -441.57 -227.89 -112.22 
TV-LSTAR-SV -125.33 -283.77 -47.39 -15.82 

Note. Log marginal likelihood for the 1960-2018 period (2018Q4 vintage).  
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Turning now to the deviance information criterion values in the following table, the same 
pattern holds as discussed previously, i.e. the TV-LSTAR-SV presents the lowest values 
among all models, while between the LSTAR and TV-LSTAR models, the latter outperforms 
the former.  
 

Table 2.6: Deviance information criterion (DIC) 

 GDP CPI FFR 10-Y 
TAR 1173.46 902.59 416.34 252.07 
LSTAR 1189.78 941.27 590.08 302.82 
TV-LSTAR 1186.90 924.63 455.43 263.46 
TV-LSTAR-SV 1119.16 877.55 222.05 228.45 

Note. Deviance information criterion for the 1960-2018 period (2018Q4 vintage).  
 

 

2.5.4 Out-of-sample results – Forecast evaluation metrics 
 

Point forecasts for horizon h are evaluated according to the root mean squared error (RMSE): 

 
0

1 2
2

0
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
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Where t0 refers to 1985Q4 and T refers to 2018Q4.  

Density forecasts are evaluated according to the continuous ranked probability score (CRPS). 
Following, Gneiting and Raftery (2007), the CPRS can be evaluated in a closed form as: 

  1 ˆ ˆ ˆCRPS ,
2 F FF y E y y E y y     

Where ŷ  are independent draws from the predictive density with cumulative distribution F, 
and y  is the outcome.  

The exact formula46 for the retained draws R of the MCMC algorithm at horizon h is given as: 

     

0

2
1 1 10

1 1 1ˆ ˆ ˆCRPS
1 2

T h R R R
r r r

h t h t h t t h t t h t
t t r r r

y y y y
T h t R R




   
   

 
        

    

In order to provide a rough measure of whether the differences in the forecast accuracy are 
significant, the Diebold and Mariano (1995) test is employed. The hypothesis testing is always 
one-sided, i.e. rejection of the null of equal performance versus the benchmark model provides 
evidence of the proposed model outperforming the benchmark. The test applies in the same 
manner both for point forecasts (MSE) and density forecasts47.   

 
46 More information can be found in Dieppe, Legrand, and Van Roye (2016).  
47 The results of Diebold-Mariano tests for density forecasts should be interpreted with care since this 
type of statistical testing applies to rolling estimation schemes and not to recursive re-estimation of the 
models under an expanding window (Amisano & Giacomini, 2007).  
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2.5.4.1 Point forecasts  
 

The following Table 2.7 presents the out-of-sample results in terms of point forecast accuracy 
evaluated with RMSE ratios. What stands out clearly is that the proposed model, both for the 
homoscedastic and the heteroscedastic specification performs more favourably against the 
linear benchmark model and consistently across all variables (27 out of 32 cases in total), with 
few exceptions for the 10-year bond yield for forecasts up to 4-quarters ahead.  

In more detail, for GDP, the TV-LSTAR and TV-LSTAR-SV models outperform both the 
linear and the other non-linear models of the existing literature. The inclusion of stochastic 
volatility does not help to improve the forecast accuracy any further. Given that as shown 
previously, the TV-LSTAR models’ thresholds are very close to TAR and STAR models and 
do not exhibit any time variation, one could presumably argue that the gains in forecast 
accuracy can be attributed exclusively to the time-varying constant rather than the assumption 
of the non-linearity of the time series.  

Turning to CPI, the TV-LSTAR and TV-LSTAR-SV models outperform the benchmark 
significantly in seven out of the eight cases in total but present only marginal improvements 
over the existing TSTAR and LSTAR models. In this case, stochastic volatility improves the 
results versus the homoscedastic TV-LSTAR model for forecasts up to 8-quarters ahead.  

Regarding the FFR, TV-LSTAR and TV-LSTAR-SV models present the biggest gains at all 
horizons both with respect to the benchmark AR model, as well as against the TAR and 
LSTAR models. The superior forecasting performance is found to be significant for four out 
of eight combined comparisons of the TV-LSTAR and TV-LSTAR-SV models at all horizons. 
Stochastic volatility further improves the results though only for the 1-quarter ahead forecasts.  

Finally, turning to the 10-year bond yield, the proposed models underperform the benchmark 
for forecasts up to 4-quarters ahead, albeit they present improvements over the existing TAR 
and LSTAR models. For horizons of 8 and 12-quarters ahead, both specifications of the 
proposed models outperform the linear benchmark, with the differences being significant for 
the 12-quarters ahead forecasts.  

  



80 
 

 

Table 2.7: Non-linear models versus benchmark – point forecast evaluation 

 GDP CPI FFR 10-Y 
 AR 

h = 1 2.161 2.081 0.424 0.391 
h = 4 2.421 2.352 1.486 1.034 
h = 8 2.515 2.381 2.485 1.401 
h = 12 2.541 2.522 3.103 1.661 
 TAR 
h = 1 1.022 0.953 0.911** 1.184 
h = 4 1.004 0.971** 0.937** 1.207 
h = 8 0.989 1.016 0.962* 1.135 
h = 12 0.995 1.020 0.965* 1.073 
 LSTAR 
h = 1 1.000 0.948* 0.982 1.185 
h = 4 1.016 0.972* 0.994 1.253 
h = 8 0.995 1.018 1.017 1.177 
h = 12 1.009 1.050 1.013 1.113 
 TV-LSTAR 
h = 1 0.988 0.949* 0.874*** 1.037 
h = 4 0.982 0.947** 0.857** 1.042 
h = 8 0.966 0.925* 0.883 0.941 
h = 12 0.985 0.905* 0.901 0.792* 
 TV-LSTAR-SV 
h = 1 0.982 0.940* 0.813*** 1.050 
h = 4 0.984 0.941*** 0.864* 1.035 
h = 8 0.984 0.920* 0.909 0.945 
h = 12 1.002 0.928 0.899 0.805** 

Note. First sub-panel shows benchmark’s raw RMSEs. Remaining sub-panels show RMSE ratios of the 
non-linear models with respect to the benchmark. Stars refer to the p-values of the Diebold and Mariano 
(1995) one-sided test with respect to the benchmark. *, **, *** indicate rejection of the null at 10%, 5% 
and 1% significance level respectively. The evaluation period is 1985-2018.  
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2.5.4.2 Density forecasts 
 

Turning to the evaluation of the density forecasts using CRPS, it is evident that with few 
exceptions, all of the remaining results show the improved accuracy of the TV-LSTAR and 
TV-LSTAR-SV models against the linear benchmark in 25 out of 32 cases in total, whereas 
for 14 cases the differences are found to be significant.  

Moreover, whereas for GDP, only the TV-LSTAR-SV presents gains consistently across all 
horizons, for the case of CPI, both specifications of the model outperform the linear benchmark 
and the existing TAR and LSTAR models, especially at the 12-quarters ahead forecasts. For 
the same variables, the inclusion of stochastic volatility does not improve density forecasts.  

Similar to the point forecast results, the improvement in terms of density forecast accuracy 
becomes more noticeable for the case of the FFR and 10-year bond yield and especially with 
the inclusion of stochastic volatility, the CRPS ratio drops down to 0.60 at the 1-quarter ahead 
forecasts for FFR.  

 

Table 2.8: Non-linear models versus benchmark – density forecast evaluation 

 GDP CPI FFR 10-Y 
 AR 

h = 1 1.290 1.008 0.299 0.222 
h = 4 1.407 1.229 0.871 0.584 
h = 8 1.446 1.336 1.426 0.806 
h = 12 1.457 1.397 1.793 0.969 
 TAR 
h = 1 1.008 0.935** 0.709*** 1.093 
h = 4 1.015 0.905*** 0.887*** 1.119 
h = 8 1.008 0.910*** 0.944*** 1.079 
h = 12 1.014 0.907*** 0.954*** 1.033 
 LSTAR 
h = 1 1.004 0.944** 1.002 1.152 
h = 4 1.020 0.950** 1.038 1.175 
h = 8 1.005 0.972 1.062 1.149 
h = 12 1.018 1.009 1.055 1.112 
 TV-LSTAR 
h = 1 1.002 0.946* 0.846*** 0.993 
h = 4 1.005 0.923** 0.848*** 1.018 
h = 8 0.996 0.889** 0.907 0.943 
h = 12 1.009 0.826** 0.934 0.797* 
 TV-LSTAR-SV 
h = 1 0.969* 0.953 0.602*** 1.031 
h = 4 0.981 0.934** 0.854* 1.009 
h = 8 0.988 0.908* 0.994 0.944 
h = 12 0.995 0.871** 1.003 0.813** 

Note. First sub-panel shows benchmark’s raw CRPS. Remaining sub-panels show CRPS ratios of the 
non-linear models with respect to the benchmark. Stars refer to the p-values of the Diebold and Mariano 
(1995) one-sided test with respect to the benchmark. *, **, *** indicate rejection of the null at 10%, 5% 
and 1% significance level respectively. The evaluation period is 1985-2018.   
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2.5.4.3 Time variation of results 
 

In order to evaluate the time variation of the results and to what extent the proposed models 
outperform linear models over different sub-periods, the Giacomini and Rossi (2010) 
fluctuation test is employed for the point forecasts in Figure 2.11 and Figure 2.12. The one-
side fluctuation test is performed with a rolling window of 40 observations out of the total 136. 
Critical values can be found in Giacomini and Rossi (2010), Table 2. With respect to the 
density forecasts, the models are compared vis-a-vis the linear benchmark model by plotting 
the difference of the cumulative CRPS of the non-linear model minus the benchmark model 
in Figure 2.13 and Figure 2.14.  

Regarding the point forecasts, the TV-LSTAR model outperforms the benchmark model in the 
post-Great Recession period and, in particular, for CPI, FFR, and 10-year bond yield, this 
difference becomes significant towards the end. For the period before the Great Recession, the 
forecast accuracy of the TV-LSTAR for CPI is very close to the benchmark AR model. 
However, the inclusion of stochastic volatility has the reverse effect on GDP and 10-year bond 
yields (TV-LSTAR-SV deteriorates further compared to the TV-LSTAR), whereas, for the 
FFR, the TV-LSTAR-SV continues to outperform the linear benchmark at the 8 and 12-
quarters ahead forecasts especially after the end of the Great Recession.  

Turning to the time variation of the density forecasts, the results follow a similar pattern. 
Overall the results improve after the Great Recession in favour of the TV-LSTAR and 
TV - LSTAR-SV models, except for the GDP in the TV-LSTAR model, where the gains result 
in equal performance with the AR model towards the end of the sample. The accuracy of the 
8 and 12-quarters ahead forecasts remains equal to or better than the AR model consistently 
across all variables and the two variants of the proposed model, except for the TV-LSTAR 
GDP results.  

Due to the fact that in general, both for point and density forecasts, the results improve towards 
the end of the sample, which also happens to be after the Great Recession, someone could be 
sceptical on whether this behaviour can be rather attributed to the largest sample size that 
results in lower uncertainty for the estimated parameters or indeed it is an intrinsic ability of 
the models which can capture structural breaks. A similar analysis conducted employing a 
rolling window rather than the recursive one used for the current out-of-sample forecasting 
exercise could potentially shed light on this conundrum since the effect of the estimation 
sample could be controlled by using the same number of observations for the model estimation 
at each out-of-sample forecasting exercise.  
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Figure 2.11: Fluctuation test of TV-LSTAR minus the benchmark  

 
Note. Giacomini and Rossi (2010) one-sided fluctuation test. Red, green, blue and black lines refer to 
1, 4, 8, and 12-quarters ahead forecasts, respectively. Dash lines show critical values at 5% significance 
level. Window size is 40 quarters.  
 

Figure 2.12: Fluctuation test of TV-LSTAR-SV minus the benchmark  

 
Note. See Figure 2.11 note details.   
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Figure 2.13: Difference of the cumulative CRPS of the TV-LSTAR minus the benchmark  

 
Note. Red, green, blue and black lines refer to 1, 4, 8, and 12-quarters ahead forecasts, respectively. 
 
 
Figure 2.14: Difference of the cumulative CRPS of the TV-LSTAR-SV minus the benchmark  

 
Note. See Figure 2.13 note details.  
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2.6 Conclusion 
 

The literature on non-linear time series models, non-linear in the sense of exhibiting different 
dynamics above and below a threshold, is not unanimous in terms of whether this specification 
improves or not forecasting accuracy. However, plenty of papers have shown that allowing for 
time variation in otherwise linear models can improve forecast accuracy substantially.  

In this essay, by proposing an extension of the standard logistic smooth autoregressive model, 
which allows for time variation in both the constant and the threshold, I have tried to reconcile 
the aforementioned findings of the literature. Indeed, in the empirical application part, the 
proposed model applied to US data for GDP, CPI, FFR and 10-year bond yield shows clear 
advantages and can outperform not only the linear benchmark model but the existing non-
linear models in many instances over the 1985-2018 out-of-sample evaluation period. 
Following the Great Recession, the time variation of the results shows stronger evidence in 
favour of the proposed model, and in many instances, the difference versus the linear 
benchmark model is found to be significant. The inclusion of stochastic volatility does not 
improve the forecasting performance except for the FFR at the 1-quarter ahead forecast 
horizon. 

I leave for further research to investigate the effect of the sample size on the parameters’ 
uncertainty and in relation to forecast accuracy, as well as to try to disentangle to what extent 
the improved forecasting accuracy is a result of the time variation of the constant or the 
threshold and how this contribution changes across different variables.  

Finally, the extension of the model into the multivariate setting is another promising avenue 
for future research. Applying time-varying thresholds and constants in (S)TVARs can be 
investigated, for instance, by implementing a single transition function across all variables or 
instead using separate time-varying thresholds separately in each variable’s transition 
function. In the former case, the selection of the transition variable from all the possible 
variables of a VAR via a suitable sampling algorithm could provide additional advantages for 
big VARs, where also a global-local shrinkage prior could be used on the VAR autoregressive 
coefficients at each regime.  
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‘It is difficult to predict, especially the future.’ 
 

Credited to 
Niels Bohr (1973) 

 

 

Essay 3 

 

3. Wavelet-based single and mixed-frequency multivariate time series 
modelling and forecasting 

 

 

 

 

 

3.1 Introduction 
 

Time series econometrics typically examine the evolution of economic phenomena in the time 
domain. However, frequency characteristics of macroeconomic and financial time series are 
well acknowledged and have been studied extensively in the literature on business and 
financial cycle analysis by Strohsal, Proaño, and Wolters (2019), Beaudry, Galizia, and Portier 
(2020), and monetary policy by Assenmacher-Wesche and Gerlach (2007, 2008). In addition, 
the time series unobserved components modelling approach, i.e. trend-cycle extraction, for 
example, for GDP output gap estimation, relies on frequency-domain analysis via the use of 
band-pass filters – see Baxter and King (1999) and Christiano and Fitzgerald (2003).  

Standard frequency-domain analysis is formally performed with Fourier analysis which via 
the power spectrum, decomposes a time series into sinusoidal components of different 
intensities and frequencies throughout the spectrum. Nonetheless, in the presence of time 
series irregularities such as structural breaks, regime swifts, or abrupt changes like big shocks 
or spikes, Fourier analysis, due to its global representation, cannot locate these phenomena 
anymore in the time dimension but only describes their frequency characteristics and intensity 
over the full sample.  

Additionally, although the direct outcome of the Fourier transform, i.e. a complex-valued 
number, entails phase spectrum which incorporates time information, it is rather difficult to 
translate it in a meaningful way for economic quantities. Consequently, relying on the Fourier 
analysis power spectrum can only provide us with information about which frequencies are 
included in a time series and at which magnitude or intensity. This major drawback of 
frequency-domain analysis, i.e. the inability to localise spectral density in time, for example, 
does not allow to differentiate whether a frequency component appeared only during a sub-
sample of the time series or continuously throughout the entire time series.  
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These shortcomings can be partially relieved via the short-time Fourier transform (Gabor, 
1946), which applies Fourier transform on a window which slides over the entire time series 
and allows it to provide the changing frequency characteristics in the time dimension. 
However, the length of the sliding window establishes a priori a trade-off between the 
maximum time resolution and frequency resolution, which can be obtained and thus does not 
allow the representation of the entire spectrum contained in the time series at the finest possible 
time resolution. For instance, a small window (big time resolution-small frequency resolution) 
can localise in time the high-frequency components but will fail to capture lower frequency 
components. Reversely a large window (small time resolution-big frequency resolution) will 
capture a wider range of the spectrum but will fail to identify the various frequency 
components precisely in time.  

Wavelet analysis, also known as time-frequency analysis, poses a perfect alternative to short-
time Fourier analysis and allows the systematic feature extraction from time series without any 
compromise neither to the frequency nor the time resolution. The key idea is that sines and 
cosines used in the Fourier transform, which span the entire time axis from minus to plus 
infinity, are substituted from a short wavelet basis function, i.e. a short integrable function 
which can be shifted (translated) in time to allow time localisation and scaled (dilated) in 
frequency such that it captures time series various frequency characteristics. In contrast to the 
short-time Fourier transform, wavelet transform at a given point in time, i.e. after shifting the 
wavelet basis suitably, by scaling the wavelet basis appropriately, will capture the entire 
frequency spectrum from the highest to the lowest frequencies locally without losing any 
information in time or frequency.  

The most common wavelet transforms48 include: a) the Continuous Wavelet Transform 
(CWT), where the time series can be analysed over all possible time and frequency resolutions, 
b) the Discrete Wavelet Transform (DWT), which is a non-redundant (orthogonal) 
transformation that analyses time series into subcomponents of decreasing dyadic length 
where each one describes lower dyadic band-limited frequency characteristics, and c) the 
Maximal Overlap Discrete Wavelet Transform (MODWT) which contrary to the DWT is 
highly redundant (non-orthogonal) but preserves the time series length at all subcomponents, 
and thus it is particularly useful for forecasting applications.  

Despite wavelet analysis widespread use in the field of signal processing, its use in economics 
has been rather limited, although steadily gaining interest. Following the seminal papers of 
Ramsey and Lampart (1998a, 1998b) investigating the money and income relationship under 
different time scales, Ramsey (2002) and Crowley (2007) were the first to provide a 
comprehensive presentation of wavelets analysis and the two main potential areas for 
applications in economics. The first allows for an exploratory and descriptive analysis of 
economic data, while the second utilises multiscale wavelet components for the purpose of 
forecasting. It has to be noted, though, that ever since wavelet analysis has been employed in 
modelling the new Keynesian Philips curve (NKPC) – see Martins and Verona (2020) and 
dynamic stochastic equilibrium models (DSGE) as well – see Sala (2015), Caraiani (2015), 
and Gallegati, Giri, and Palestrini (2019).  

The use of wavelet analysis for exploratory and descriptive analysis poses an alternative way, 
for example, for GDP trend-cycle decomposition (Yogo, 2008) or understanding better the 
financial cycle across time and frequency (Verona, 2016). Extending the analysis beyond 
univariate times series is particularly useful to localise the co-movement and correlation of 

 
48 See Percival and Walden (2000) for a textbook treatment  
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two time series both in the time and frequency domain. Continuous wavelet transform and its 
extension to bivariate time series with wavelet coherence are powerful tools in that respect. 
Indicatively, Aguiar‐Conraria and Soares (2014) review the potential uses of wavelet 
coherence, Rua (2010) investigate the synchronisation of the euro area countries’ individual 
business cycles, and Tiwari (2013) examines the French inflation and output gap relationship 
over frequency and across time.  

The second use of wavelet analysis which this study is about, is to use it for time series 
modelling and forecasting. While wavelet analysis has been employed for univariate time 
series and mainly in a frequentist setting, its use for multivariate time series in economics and 
in a Bayesian estimation framework is rather scarce. This gap is what this study attempts to 
fill with a systematic investigation. The four main wavelet-based univariate time series 
forecasting approaches are presented in Gallegati and Semmler (2014), Part 3.  

The first approach consists of a two-step approach, i.e. initial wavelet-based denoising of the 
time series and subsequent ΑRIMA modelling – see indicatively Herwartz and Schlüter (2017) 
and Bruzda (2020). The second approach uses separate modelling for each wavelet component 
of the time series with ARIMA and/or GARCH modelling – see indicatively Zhang, Gençay, 
and Yazgan (2017) Uddin, Gençay, Bekiros, and Sahamkhadam (2019). The third approach 
originally proposed by Renaud, Starck, and Murtagh (2003) uses a single multiscale 
autoregressive model which uses lagged wavelet components to forecast a univariate time 
series.  

The fourth wavelet-based forecasting approach employs wavelet analysis to model locally 
stationary time series via time-varying autoregressive models – see Fryzlewicz, Van Bellegem, 
and Von Sachs (2003) for univariate, and Sato, Morettin, Arantes, and Amaro Jr (2007) for 
multivariate time series. Additional approaches for the use of wavelet analysis extendable to 
multivariate time series, which are not investigated in this study, use factor models. For 
example, Rua (2011) uses a separate univariate factor augmented regression for each scale, 
and Rua (2017) employs a static factor model with principal components extracted from the 
multiscale wavelet components set.  

The main contribution of this study is the extension of the first three methods in a multivariate 
setting using Bayesian estimation. Additionally, this study investigates the advantages of using 
wavelet analysis for mixed-frequency time series modelling, which is a particularly popular 
area in macroeconometrics, especially during the coronavirus pandemic recession (Huber, 
Koop, Onorante, Pfarrhofer, & Schreiner, 2020; Cimadomo, Giannone, Lenza, Monti, & 
Sokol, 2022), and the ever-growing number of high-frequency indicators. To the best of my 
knowledge, I have not found any similar approaches in the literature, and thus this study 
attempts to make a major contribution in that respect and establish some key findings.  

The essay proceeds as follows. Section 3.2 provides a sound mathematical background and 
the properties of the wavelet analysis and transforms that will be used. Section 3.3 describes 
the three suggested wavelet-based approaches for single-frequency multivariate time series 
forecasting, and in continuation, Section 3.4 presents the findings of the empirical application 
with the proposed single-frequency time series models. Section 3.5 suggests a wavelet-based 
approach for mixed-frequency time series modelling, and Section 3.6 presents the relevant 
results. Finally, Section 3.7 concludes.  
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3.2 Wavelet analysis 
 

This section presents the theoretical background of wavelet analysis. In particular, Section 
3.2.1 provides the motivation for going beyond time-domain analysis and explains the key 
aspects of frequency analysis in terms of the Fourier transform and the short-time Fourier 
transform. In continuation, Section 3.2.2 provides the main advantages of simultaneous time-
frequency analysis via the continuous wavelet transform. Finally, the subsequent Sections 
3.2.3 and 3.2.4 focus on the discrete wavelet transform and the maximal overlap discrete 
wavelet transform, which are the two wavelet transforms used later for multivariate time series 
modelling and forecasting.  

 

3.2.1 Introduction 
 

In general, data points of economic indicators are originally observed usually on a regular 
basis and at a specific sampling frequency, e.g. monthly or quarterly frequency time series. 
This representation of a time series, i.e. how a series changes or fluctuates over time, occurs 
in the time domain, and its properties are examined in time series analysis which is the 
predominant form used in time series econometrics. For example, Figure 3.1 below shows the 
US seasonally adjusted CPI month-on-month growth rate.  

 

Figure 3.1: US seasonally adjusted CPI month-on-month growth rate  

 
 

However, this is not the only available representation. In the frequency-domain (or spectral 
analysis), a covariance stationary process  t tY 


 can be viewed as the summation of 

weighted periodic (cyclical) underlying components in the form of sines and cosines at given 
cyclical frequencies ω in [0,π] – see Hamilton (1994), p.157: 

       cos sintY t t d




                                            (3.1) 

Where α(ω), δ(ω) are zero mean random variables.  

From the above representation, it becomes obvious that there exists a relationship between the 
time series Yt and the cyclical frequencies ω. The inverse relationship between ω and Yt is 
formally given by the Fourier transform FT(ω), which is defined as – see Mertins (1999), p.80: 
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   FT i t

t
Y t e 






  ,    ,    ,    FT :                           (3.2) 

Where i2 = − 1 is the imaginary number and ω corresponds to the cyclical frequency.   

Fourier transform FT(ω) is a complex-valued representation of the time series that is difficult 
to understand its physical interpretation for economic quantities. Instead, we rather use the 
power spectral density function, which shows how much spectral power can be attributed to 
the underlying periodic components. Power spectral density S(ω) is related to the Fourier 
transform FT(ω) via the following formula – see Mertins (1999), p. 15:: 

    21lim FT
T

S E
T

 


                                                    (3.3) 

In more detail, power spectral density S(ω) can be viewed as the Fourier transform in equation 
(3.2) applied to the autocovariance function γ ( j )  of a stationary process and is expressed 
as – see Hamilton (1994), p. 153: 

   1
2

i j

j
S j e  








  ,    ,    ,     :S                   (3.4) 

In practice, however, the population spectral density S(ω) given above is estimated using the 
equivalent sample spectral density (also known as periodogram), which uses consistent 
autocovariance estimators  ˆ j . Figure 3.2, which follows below, shows the periodogram for 
the case of the US seasonally adjusted month-on-month growth rate over 1970M1-2012M8, 
where the period shown on the x-axis is in months.  

 

Figure 3.2: US CPI month-on-month growth rate spectral density periodogram 

 
Note. Y-axis is logarithmic. CPI is seasonally adjusted.  
 

In order to link the Fourier transform with the short-time Fourier transform and the continuous 
wavelet transform, which are introduced below, it is more convenient to define the equivalent 
continuous Fourier transform FT (ω) for a continuous-time signal Y(t) – see Mertins (1999), 
p.26:  

   FT i tY t e dt






  ,    ,   ,    FT :                             (3.5) 
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The frequency-domain analysis applies to the entire time series, and thus the frequency 
components cannot be localised during different subsamples of the time series, which might 
exhibit different dynamics. In order to overcome this drawback, short-time Fourier transform 
(STFT) can be applied to the time series, i.e. Fourier transform is applied to a sliding 
(potentially overlapping) window of the time series. Nonetheless, the time resolution (width) 
of the window affects the frequency bands that can be observed. A narrower window provides 
good time resolution but poor frequency resolution and vice-versa. To formalise ideas, for a 
continuous-time signal Y(t), its continuous time STFT is defined as – see Mertins (1999), p. 
197:  

     STFT , i tY t w t e dt  






  ,    ,   ,     2STFT , :             (3.6) 

Where w (∙) is a window function.  

The relation between the FT and the STFT can be seen by comparing equations (3.5) and (3.6), 
where the STFT is based on the FT and uses the window function49 w (∙) additionally. The term 
aτ,ω

 (t) = w ( t – τ ) e−iωt is also called the time-frequency atom – see Mallat (1999), p.67 

Analogous to the periodogram, which is used for the visual representation of Fourier 
transform’s spectral density, the spectrogram is used to display the properties of the complex-
valued STFT and is defined as the squared magnitude of the STFT – see Mertins (1999), p. 
201: 

    2
, STFT ,S                                                    (3.7) 

For example, Figure 3.3 below shows the normalised spectrogram for US CPI using a window 
length of 3 and 18 months, respectively. The trade-off between time and frequency resolution 
becomes obvious. When a 3-month window length is used, a high time resolution can be 
achieved on the time axis, whereas on the y-axis representing the frequency, the resolution 
remains low. For example, the 1979-80 oil price shocks' effect on CPI and the 2008 global 
financial crisis shocks can be localised precisely on time; however, on the frequency axis, their 
magnitude changes rather smoothly. On the contrary, when the window length is set to 18 
months, the time resolution decreases, and the aforementioned shocks cannot get localised 
precisely, but the frequency resolution increases. For instance, during the Great Moderation 
period 1985-2005, it is easier to distinguish different frequencies on the y-axis.  

 

  

 
49 For the special case that the window function takes a normalised Gaussian form, STFT translates to 
Gabor transform (Gabor, 1946).  
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Figure 3.3: US CPI month-on-month growth rate normalised spectrogram 

 
Note. The window function is Gaussian, and the overlap window length is equal to wL/4. CPI is 
seasonally adjusted.  
 
These shortcomings of the short-time Fourier transform have been the motivation for the 
creation of the wavelet transform. In particular, the time resolution is not fixed anymore but 
varies, and consequently, the frequency resolution is adjusted to the time resolution 
accordingly without any loss of information in either of the two domains.  

 
 
3.2.2 Continuous wavelet transform 
 

In order to apply the Continuous Wavelet Transform (CWT), it is necessary to define the 
wavelet function. Wavelet is essentially a small wave in contrast to the infinite sines and 
cosines used in the Fourier transform defined over the entire time series length.  
 
The wavelet function (mother wavelet) ψ ( t ) captures the high-frequency components of the 
time series and satisfies the following two properties: 

  0t dt




      and      2 1t dt




                                    (3.8) 

Similarly, the scaling function (father wavelet) φ(t) captures the low-frequency dynamics of 
the time series and satisfies: 

  2t dt




      and      2 1t dt




                                   (3.9) 

The wavelet function ψ ( t ) has to be scaled (dilated) by factor α and shifted (translated) by 
factor b in order to apply to different frequency resolutions and points in time, respectively: 

 ,
1

a b
t bt

aa
     

 
                                                  (3.10) 
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There exists a big class of wavelets that satisfy the above properties. The first proposed 
wavelet, known as the Haar wavelet (Haar, 1910), is defined by the following wavelet 
function: 

 
1 2, 1 0

1 2, 0 1
0, otherwise

t

t t

   
  



                                                   (3.11) 

Equivalently, the Haar scaling function φ(t) is defined as: 

  1 2 , 1 1
0, otherwise

tt
    


                                                      (3.12) 

The wavelet ψ ( t ) and scaling φ ( t ) functions defined in equations (3.11) and (3.12), 
respectively, are displayed in Figure 3.4 below.  

 

Figure 3.4: Haar wavelet and scaling function 

 

 
Figure 3.5 below shows the wavelet function ψα,b

 ( t ) as further explained in equation (3.10) 
when scaled and shifted by factors α and b respectively for the following 3 cases: i. α = 1 and 
b = 0 ii. α = 1 and b = 1, and iii. α = 2 and b = 1.  

 

Figure 3.5. Scaled and translated Haar wavelet function 

 
 

Assuming a continuous-time signal Y (t), its continuous wavelet transform, CWT (α,b) at scale 
α and time b, is defined as: 
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     ,, bCWT b Y t t dt 




                                             (3.13) 

Where  ,
1

b
t bt 

   

 
 as defined previously in equation (3.10), is the wavelet 

function scaled by factor α and translated at a given point b of the time series Y (t).  

In order to understand better how the CWT poses as an extension of the STFT defined 
previously, we should observe that the time-frequency atom, i.e. the term w ( t – τ ) e−iωt in 
equation (3.6), is now substituted by the wavelet function ψα,b

 (t) in equation (3.13).  

It is easier to understand the output of the CWT via visualisation; see for example, Verona 
(2016) for a time-frequency analysis of the US financial cycle. Figure 3.6, which follows, 
shows the CWT applied to the US CPI seasonally adjusted month-on-month growth rate. Y-
axis in the logarithmic scale shows the period of the time-localised fluctuations, and the x-axis 
shows the time, i.e. the impact of changing the scaling factor α and b, respectively, in equation 
(3.11). Finally, CWT (α,b), i.e. the magnitude of the CWT, is shown via the colour. For 
example, the temporary shocks, which are visible in Figure 3.1, for August 1973.M8, around 
2005 and during the 2008 financial crisis, can be localised in the yellow areas of Figure 3.6. 
The 1973.M8 shock had a period in the range of 1-2 months, while on the other hand, the 2005 
and 2008 shocks, which lasted longer, are shown to have periods in the y-axis between 1 to 5 
and 1 to 12 months, respectively. 

The CWT can be extended beyond univariate time series resulting in the cross-wavelet 
transform and the wavelet coherence for bivariate time series. Wavelet coherence allows via a 
visualisation similar to Figure 3.6 to localise in the time-frequency plane areas with great 
power (correlation) between 2 time series, as well as the difference in phase between each 
other, i.e. whether one time series has a lead or lag relative to the other. Aguiar‐Conraria and 
Soares (2014) provide an overview of the cross-wavelet transform and wavelet coherence and 
their relevance for economic analysis. Indicatively, articles investigating economic and/or 
financial time series interdependencies via the wavelet coherency include Rua (2010), Aguiar‐
Conraria and Soares (2011), Tiwari (2013), Trezzi (2013), Andrieș, Ihnatov, and Tiwari 
(2014), Gülerce and Ünal (2016), Hkiri, Hammoudeh, Aloui, and Shahbaz (2018), and Uddin, 
Bekiros, and Ahmed (2018).  
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Figure 3.6: US CPI month-on-month growth rate Haar CWT 

 
Note. Y-axis is logarithmic. CPI is seasonally adjusted.  
 

 

3.2.3 Discrete wavelet transform 
 

The Discrete wavelet transform (DWT) (see Percival and Walden (2000), Ch. 4) is an 
orthogonal transformation of Yt into discrete frequency bands, each one of which is called level 
j of decomposition or scale j. Assuming Yt is of length T, which is Τ = 2J, the maximum level 
of decomposition is J = log2T. This is called the full DWT. However, if someone is not 
interested in the very low-frequency components (large scales), the partial DWT can be 
applied for J0 < J, where in that case, T can be an integer multiple of 02J .  

The DWT50 is given as follows: 

W Y                                                               (3.14) 

Where W  is T × 1 vector and can be portioned J + 1 subvectors jW  of length 2 j
jT T : 

1 , , , , ,j J JW W W W V       
                                                 (3.15) 

Obviously, for j = J, it follows that JW  and JV  are scalars.  

Where   is the T × T square orthonormal51 matrix basis of the transformation.   is 
partitioned into submatrices: 

1, , , , ,j J J
      

                                                       (3.16) 

 
50 To keep the notation consistent and easily read in the subsequent Sections 3.2.2 and 3.2.4, the current 
section denotes DWT quantities with tilde and MODWT without, whereas in see Percival and Walden 
(2000) the opposite holds.  
51 Orthonormality property of the square matrix  , implies TI     �   and 1 � .  
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Where the orthonormality property52 is maintained for each of the submatrices j
�, J

  of 

dimensions Tj × T.  

Using Parseval’s theorem of energy preservation, the DWT follows the property53:  

2 2 22

1

J

j J
j

Y W W V


                                                 (3.17) 

Using the orthonormality property of   is useful in order to define the inverse DWT, which 
reconstructs the original time series Y via the transpose or inverse of the basis of the 
transformation matrix applied to the W : 

1Y W W                                                     (3.18) 

So far, the DWT and the basis of the transformation   have been presented; however, the 
elements that constitute the matrix   have not been discussed. In practice, with the exception 
of the Haar transformation matrix   presented later in this section, it is more convenient to 
estimate the wavelet and scaling coefficients via the use of wavelet and scaling filters. Similar 
to the wavelet and scaling functions presented for the CWT in Section 3.2.2 and the properties 
they need to satisfy in equations (3.8) and (3.9), the DWT uses the equivalent discrete wavelet 
and scaling filters which satisfy the properties in discrete time. The wavelet filter lh  of length 
L describes the high-frequency components of the time series and should satisfy the following 
two properties: 

1

0
0

L

l
l

h




       and     
1

2

0
1

L

l
l

h




                                         (3.19) 

Similarly, the scaling filter lg  of length L as well captures the low-frequency dynamics of the 
time series and should satisfy: 

1

0
0

L

l
l

g




       and     
1

2

0
1

L

l
l

g




                                       (3.20) 

Now, following the so-called pyramid algorithm, which in practice, applies a wavelet and a 
scaling filter recursively to the output of a scaling filter from the previous step, the wavelet 
and scaling coefficients can be estimated recursively as follows (a visual representation of the 
pyramid algorithm is shown in Figure 3.9 in Section 3.2.4): 

  1

1

, 1, 2 1 mod
0

j

L

j t l j t l T
l

W hV




  


       and       1

1

, 1, 2 1 mod
0

j

L

j t l j t l T
l

V g V




  


                      (3.21) 

Where 1, , jt T   with 2 j
jT T .  

When the recursion initiates for j = 1, the original time series Yt, t = 1,⋯, T is used: 

 

1

1, 2 1 mod
0

L

t l t l T
l

W hY


 


   and  

1

, 2 1 mod
0

L

j t l t l T
l

V g Y


 


   for 1, , 2t T               (3.22) 

 
52 Orthonormality property of j

� satisfies 
jj j TI  �  while j j j j    �  �.  

53 Squared norm ||∙||2 for Yt is defined as ||Y ||2 2

1

T

t
t

Y


 .  
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By introducing j-level specific wavelet ( ,j lh ) and scaling filters ( ,j lg ) of length 

Lj = (2 j − 1)(L − 1) + 1, j = 2,⋯, J where L denotes the length of the filter for j = 1, it is 
possible to estimate the wavelet and scaling coefficients at any level directly from the time 
series Yt, without the need of the recursion as follows: 

 

1

, , 2 1 1 mod
0

j

jL

j t j l t l T
l

W h Y


  


        and     
 

1

, , 2 1 1 mod
0

j

jL

j t j l t l T
l

V g Y


  


                   (3.23) 

Figure 3.7 below shows the J0 = 3 partial Haar DWT of the US seasonally adjusted CPI month-
on-month of growth rate for T = 512 observations. The full DWT would have J = 9 scales, i.e. 
9 = log2(512).  

Figure 3.7: US CPI month-on-month growth rate J0 = 3 levels partial Haar DWT 

 
Note. First subplot Yt shows CPI month-on-month growth rate. Subsequent subplots show partial J0 = 3 
Haar DWT. Wavelet and scaling coefficients capture fluctuations with periods in months as follows: 

1 : 2 4W  , 2 : 4 8W  , 3 : 8 16W   and 3 : 16V  . 1W , 2W , 3W , and 3V  have 256, 128, 64, and 64 
observations, respectively. CPI is seasonally adjusted.   
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Using the orthonormality property of  , the DWT multiresolution analysis (DWT-MRA) of 
time series Yt can be formed as: 

1 1

J J

j j J J j J
j j

Y W W V D S
 

                 

Where jD  is called the detail coefficients at scale j and JS  is the smooth (also called coarse 

or approximate) coefficients of Yt at scale J. jD  and JS have the same length T as Yt. Using 
Parseval’s theorem of energy preservation, the DWT-MRA follows the property: 

22 2 2 22

1 1

J J

j J j J
j j

Y W W V D S
 

                                           (3.24) 

For the specific case of the Haar wavelet, the transform matrix   is given recursively (see 
Sundararajan (2016), Ch. 8) as: 

2

2

1 2 1 2

1 2 1 2

T

T

T

I     
     










 �


                                          (3.25) 

The recursion starts at 4T   with 2 2T  : 2

1 2 1 2

1 2 1 2

 
  
  

  and ends at T T  

resulting in total J – 1 = log2( T ) − 1 repetitions and yields TT  
     . Subscript T should 

not be confused with subscripts j = 1,⋯, J for the submatrices in equation (3.16).  

For example, for T = 4 and J = 2, the recursion would involve log2( 4 ) − 1 = 1 repetitions. 
Using equation (3.25), the repetition would yield 4

 , i.e. the entire DWT transformation 
matrix of dimensions 4 × 4 as follows: 

2

4

2

1 2 1 2 0 0
1 2 1 2 0 0 1 2 1 2

1 2 1 2 1 2 1 21 2 1 2
1 2 1 2 1 2 1 2

I
 
                    
  




 �


 

Alternatively, one could use equations (3.21) and (3.23) with the Haar wavelet and scaling 
filters provided below: 

0 1 2h   and 1 1 2h   ,    and   0 1 2g   and 1 1 2g   for j = 1 

For j ≥ 2, the Haar scaling filter ,j lg  is given as Percival and Walden (2000), p. 103: 

2
,

1 , 0, ,2 1
2
0, otherwise

j
j

j l
l

g
   


                                                   (3.26) 
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Regarding the Haar wavelet filter ,j lh , by application of the following generic formula for any 

wavelet Percival and Walden (2000), p. 103: 

1

1

, 1, 2
0

j

L

j l k j l k
k

h h g 



 


    

,j lh  is given as follows: 

2

,

2

1 , 0, , 2 1
2

1 , 2, ,
2

jj

j l

j jj

l L
h

l L L

   
 






                                             (3.27) 

By substituting equations (3.26) and (3.27) in equation (3.23), one can show that for the full 
Haar DWT transform, wavelet ,j kW  and scaling JV  coefficients are estimated as differences 
of moving averages of Yt and a weighted average, respectively54, given as: 

1

, 2
2 1

1
2

tc tc d

j t k kj
k tc d k tc d

W Y Y
 

    

 
  

 
  ,   1, ,j J  ,   1, , 2 jt T   

Where 2 jc   and 12 1jd   .  

The single scaling coefficient JV  is given as 
2

1

1
2

T

J kj
k

V Y


 
  

 
 .  

Figure 3.8 below shows the Haar DWT-MRA of the US seasonally adjusted CPI month-on-
month growth rate for T = 512 observations. Full DWT has J = 9 levels of decomposition 
(9 = log2(512)), i.e. detail coefficients at nine scales and the smooth coefficients 9S . For the 
purpose of the figure’s visibility, only four out of the nine details coefficients ( 1D , 2D , 3D , 

and 9D ) are shown, as well as the smooth coefficients 9S .  

  

 
54 See Percival and Walden (2000), p. 58-59, for an example with T = 16.  
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Figure 3.8: US CPI month-on-month growth rate J = 9 levels Haar DWT-MRA 

 
Note. First subplot Yt shows CPI month-on-month growth rate. Subsequent subplots show the Haar 
DWT-MRA selected detail and smooth coefficients. CPI is seasonally adjusted.  
 

It has to be noted that for practical applications, such as the DWT-based denoising, discussed 
later in Section 3.3.1, where the partial DWT should be used when the length T is not an integer 
multiple of 02J  the so-called ‘padding’ procedure is used. The original time series Yt is 
‘padded’ in a symmetric manner at the start and end of the time series with the mirrored values 
at both edges, such that a new time series tY  of appropriate length is constructed where the 
partial DWT can be applied.  
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3.2.4 Maximal overlap discrete wavelet transform  
 

The Maximal overlap discrete wavelet transform (MODWT) is an extension of the DWT, and 
its main characteristic is that it is a highly redundant and nonorthogonal transformation – see 
Percival and Walden (2000), Ch. 5. Moreover, the MODWT wavelet Wj and scaling VJ 
coefficients are of length T (non decimated) in contrast to the DWT where they are of length 
T / 2 j (decimated). In general, the MODWT exhibits the following advantages versus the 
DWT:  

1. The length T of the time series Yt is not anymore restricted to be equal to a power of 2 like 
in the full DWT, and thus it can be applied to a time series of arbitrary length.  

2. The MODWT, in contrast to the DWT, is translation invariant55, i.e. a circular shift in the 
time series for the MODWT will result in a similar shift in the Wj and Vj components, whereas 
for the DWT, this property does not hold. The same property of translation invariance holds 
for the MODWT-MRA56, where the detail Dj and smooth SJ coefficients can be shifted in a 
similar way, whereas for the DWT-MRA, this property does not hold.  

3. For the MODWT, the energy decomposition holds for the wavelet Wj and scaling VJ 
coefficients similar to the DWT in equation (3.17). However, for the MODWT-MRA, the 
energy decomposition for the details Dj and smooth SJ coefficients in contrast to the DWT-
MRA in equation (3.24) does not hold.  

4. The MODWT uses zero-phase filters in contrast to the DWT, where they are not used, which 
in practice means that the MODWT-MRA detail and smooth coefficients align with the 
original time series more meaningfully for practical applications – see an example in Figure 
3.11.  

The MODWT maximum number of decomposition levels J, contrary to the DWT, is not 
restricted anymore by the length Yt and, in principle, can be any positive integer number. 
However, in such a case, i.e. J > log2( T ), the decomposition components at a level larger than 
J would offer information for periodic components whose period is larger than the entire length 
of the time series, and thus, this piece of information would not be an accurate reflection of 
the reality. In practice, the numbers of scales are set as J ≤ log2( T ) at an optimal value for the 
specific application working on.  

The MODWT of a time series Yt of arbitrary length T yields the wavelets and scaling 
coefficients of the same length T: 

j jW Y      and     J JV Y                                                (3.28) 

Where j  and J  are of dimensions T T  and are defined as:  

 
55 Another property of translation invariance is that the energy of the corresponding MODWT 
components remain the same, whereas for DWT is not.  
56 The MODWT-MRA was originally proposed by Shensa (1992).  
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The elements of matrices j  and J  consist of the MODWT periodized filters ,
p
j lh  and ,

p
j lg  

of length T, which are defined as: 

,
,

, 0 1
0, 1

j l jp
j l

j

h l L
h

L l T
  
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      and     ,

,

, 0 1
0, 1

j l jp
j l

j

g l L
g

L l T
  

    
 

The MODWT periodized wavelet ,
p
j lh  and scaling ,

p
j lg  filters are estimated using the MODWT 

wavelet and scaling filters, hj,l and gj,l , respectively, at level j and of length 
Lj = (2 j − 1) (L − 1) + 1, j = 2,⋯, J where L denotes the length of the filter for j = 1. The 
MODWT wavelet and scaling filters, hj,l and gj,l , in turn, can be defined using the 
corresponding DWT equivalent filters denoted with a tilde below: 

,
, /22

j l
j l j

h
h 


     and     ,

, /22
j l

j l j

g
g 


                                            (3.29) 

Where ,j lh  and ,j lg  correspond to the DWT wavelet and scaling filters at level j with length 

Lj and l = 0,⋯, Lj − 1 for j = 2,⋯, J.  

Thus, in more detail, the wavelet Wj and scaling Vj coefficients at time t can be defined 
equivalently as: 

   

1 1

, , ,mod mod
0 0

jL T
p

j t j l j lt l T t l T
l l

W h Y h Y
 

 
 

                                   (3.30) 

   

1 1

, , ,mod mod
0 0

jL T
p

j t j l j lt l T t l T
l l

V g Y g Y
 

 
 

                                  (3.31) 

For each of the equations (3.30) and (3.31), the two expressions of the wavelet Wj,t and scaling 
Vj,t coefficients are equivalent and show the relationship between using the MODWT filters 
(hj,l, gj,l) or the MODWT periodised filters ( , ,,p p

j l j lh g ) in order to estimate directly from Yt the 
wavelet Wj,t and scaling Vj,t coefficients at a given scale j.  

Using Parseval’s theorem of energy preservation, the MODWT follows the property: 
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22 2 2

1

J

j J
j

Y W W V


                                                  (3.32) 

Closely related to the energy decomposition across the wavelet and scaling coefficients of 
equation (3.32), it follows that the sample variance of Yt can be decomposed into the variance 
of each one of the wavelet and scaling coefficients. Denoting the sample variance of Y as ˆY  
it follows: 

 2 22 2 2

1 1

1 1 1ˆ
T T

Y t t
t t

Y Y Y Y Y Y
T T T


 

                                       (3.33) 

Where Y  is the sample mean of the elements of tY , i.e. 
1

1
T

t
t

Y T Y


  .  

Substituting equation (3.32) in equation (3.33) results in the variance decomposition across 
the wavelet and scaling coefficients:  

  22 2 2

1 1

1 1 1ˆ
T J

Y t j J
t j

Y Y W V Y
T T T


 

                                   (3.34) 

Or equivalently 
1

ˆ ˆ ˆ
j J

J

Y W V
j

  


  , given the fact that Wj are zero mean and that the mean of 

VJ is equal to the mean of Yt, i.e. JV Y . This variance decomposition can be used to conduct 
inference and hypothesis testing, or alternatively, as shown in Section 4.1, for a descriptive 
analysis of the time series, used to explain which of the wavelet and scaling coefficients are 
the ones that explain more the variability and fluctuations of the underlying time series.  

Turning now to the MODWT-MRA of a time series Yt of arbitrary length T, the following 
additive decomposition holds: 

1 1

J J

j j J J j J
j j

Y W V D S
 

                                                (3.35) 

However, the MODWT-MRA detail and smooth coefficients, as already mentioned in the 
introduction of this section, cannot be used for the energy decomposition of Yt. In other words: 

2 22 2 2 2

1 1

J J

j J j J
j j

Y W W V D S
 

                                   (3.36) 

An intuitive way to understand the use of the wavelet and scaling filters for the MODWT 
estimation is via Figure 3.9 below, showing a 2-level, J = 2 filter bank. Each level j, where 
j = 1, 2 of the filter bank comprises two branches which are the outcome of applying a high-
pass and a low-pass filter, i.e. the wavelet hl and scaling filter gl, respectively. In other words, 
the low-pass and the high-pass filter separate the entire spectrum into two equal sub-bands. 
Consequently, the input time series of length T after passing via the high-pass and the low-
pass filter is separated into frequency band limited time series Wj and Vj of the same length.  

  



104 
 

Figure 3.9: J = 2 level MODWT decomposition using a filter bank. 
 

 

 

 

 

 
 
 

This property of the filters resulting in output signals of the same length is also called non-
decimation. In contrast, in the DWT, after each filter, a downsampling step of two is applied, 
resulting in output signals of length T / 2 j at each level j. In order to transform the DWT jW  

and jV  into the MODWT equivalent Wj and Vj components, someone could apply an 
upsampling step of two, which in the time domain resembles of introducing zeros or ‘holes’ 
between subsequent values. This is the reason that the MODWT is also known in the literature 
as the ‘à trous’ wavelet transform (Dutilleux, 1989; Holschneider, Kronland-Martinet, Morlet, 
& Tchamitchian, 1989), meaning in French literally ‘holes’. To illustrate this and the fact that 
the MODWT is highly redundant, the DWT wavelet jW  and scaling JV coefficients for a time 
series of length 2J can be expressed as – see Percival and Walden (2000), p. 203: 

2
, ,2 12 j

j
j t j tW W


      and     2

, ,2 12 J
J

J t J tV V


    for 1, , jt T                    (3.37) 

Where Tj =T / 2 j is the length of the DWT scaling and wavelet coefficients at scale j. The 
redundancy property of the MODWT becomes easily obvious since DWT does not use all of 
the MODWT wavelet and scaling coefficients at each period t but rather selected observations 
given as 2 j t − 1 (subscript in equation (3.37)).  

Using a filter bank, the MODWT components Wj and Vj can be estimated recursively using as 
input the output of the previous level j − 1 low-pass filter (for j = 1 the recursion begins using 
the original time series Yt itself). Thus, equations (3.30) and (3.31) can be re-written as: 
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                                                  (3.39) 

In other words, assuming the entire frequency spectrum when normalised ranges from 0 to 1, 
i.e. f ∈ [0,1), then Wj is band limited 1/2 j+1 ≤ | f j | < 1/2 j and VJ contains the frequencies 
0 ≤ | fJ+1 | < 1/2J+1. 

In order to get a better understanding of how different scales-levels of decomposition 
correspond to wavelet components describing fluctuation with the different periods, Table 3.1 
below presents for the case of monthly, quarterly and annual time series the cycles-fluctuation 
periods described across different scales  

  

h 

V1,t
Yt 

j = 1 j = 2 

h W2,t 
g

g V2,t 

W1,t
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Table 3.1: Scales and cycles-fluctuation periods for monthly, 
quarterly and annual time series 

Scale  Monthly  Quarterly  Annual 
  j = 1  2-4M  2-4Q  2-4Y 
  j = 2  4-8M  4-8Q/1-2Y  4-8Y 
  j = 3  8-16M  8-16Q/2-4Y  8-16Y 
  j = 4  16-32M  16-32Q/4-8Y  16-32Y 
  ⋯  >32M  >32Q/8Y  >32Y 

 

It has to be noted that the Haar MODWT wavelet Wj and scaling VJ coefficients satisfy the 
additive decomposition as in the Haar MODWT-MRA; however, this does not imply Wj = Dj 
and VJ = SJ. In more detail, it holds:  
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  

                                      (3.40) 

For the specific case of the Haar MODWT, a more intuitive approach can be used to explain 
this transform. The wavelet coefficients represent the difference of moving averages of the 
original time series, while the scaling coefficients are simply a moving average of the time 
series itself and thus capture the slow-moving trend component. To be more specific, at each 
level j, the wavelet and scaling coefficients (Renaud, Starck, & Murtagh, 2003) can be 
estimated recursively as: 
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Using backward substitution, it follows that for j ≥ 1, the wavelet and scaling coefficients can 
be expressed directly with respect to Yt: 

1

1

2 1 2 1

,
0 2

1
2

j j

j
j t t i t ij

i i

W Y Y




 

 
 

 
  

 
       and     

2 1

,
0

1
2

J

J t t iJ
i

V Y





                            (3.41) 

Where obviously, it holds that Vj−1,t = Wj,t + Vj,t  as is also documented graphically in the filter-
bank approach in Figure 3.9. Using this estimation approach given by (3.41), it follows 
(Renaud, Starck, & Murtagh, 2003) that when a new observation is added to the time series, it 
is not necessary anymore to use the entire time series from the beginning to estimate the new 
observations of the wavelet and scaling coefficients corresponding to the new observation of 
the time series. Figure 3.10 below shows the observations from the original time series Yt, 
denoted with ×, that have to be used to estimate the wavelet and scaling coefficients at time T. 
Using equation (3.41), it follows that for levels j = 1, 2, 3 the observations that have to be used 
span for each wavelet and scaling coefficient from T to T − 1, T − 3 and T − 7 respectively. 
When the new observation T + 1 arrives, the respective values of Wj,T+1 and VJ,T+1 can be 
estimated using only the observations depicted in grey shade, which allows for computational 
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efficiency compared to the filter-bank pyramid algorithm that would require estimating the 
wavelet and scaling coefficient for the entire time series again.  

Figure 3.10: Estimation of Wj,t and VJ,t coefficients 

Yt           
W1,t        × ×  
W2,t      × × × ×  
W3,t  × × × × × × × ×  
V3,t  × × × × × × × ×  

 t − 8 t − 7 t − 6 t − 5 t − 4 t − 3 t − 2 t − 1 t t + 1 
Note. Estimation of Wj,t and VJ,t require the use of Yt observations marked with 
× for each scale. The arrival of new observation Yt+1 and estimation of Wj,t+1 
and VJ,t+1 requires only the use of Yt observations marked in grey.  

 

In order to understand better the impact of the different wavelet transforms, Figure 3.11 below 
shows the Haar DWT-MRA, MODWT and MODWT-MRA for J = 4. The red lines show the 
DWT-MRA jD  and JS , the green lines show the MODWT Wj and VJ, and the blue lines show 
the MODWT-MRA Dj and SJ. The vertical dot line during the peak of the 2008 financial crisis 
shows how much better the MODWT-MRA details coefficients D4 are aligned to the original 
time series Yt compared to the other two additive decompositions, i.e. the DWT-MRA ( 4D ) 
and the MODWT (W4).   
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Figure 3.11: US CPI month-on-month growth rate Haar DWT-MRA, MODWT and MODWT-
MRA for J = 4 levels  

 
Note. First subplot Yt shows CPI month-on-month growth rate. Subsequent subplots show the Haar 
DWT-MRA, MODWT and MODWT-MRA decompositions in red, green and blue lines, respectively. 
The vertical dot line shows the lowest value during the peak of the 2008 financial crisis. CPI is 
seasonally adjusted  
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To summarise the various discrete wavelet transforms presented in Sections 3.2.3 and 3.2.4, 
which are relevant to this study, Table 3.2 below compiles each one’s main characteristics and 
the notation used to differentiate them.  
 

Table 3.2: Discrete wavelet transforms’ properties summary 

Properties  DWT  DWT-MRA  MODWT  MODWT-MRA 

Input Yt  
length   

Restricted to Τ = 2J 
Partial transform for 
J0 < J 
For arbitrary length, 
requires time series 
‘padding’. 

 Restricted to Τ = 2J  Arbitrary  Arbitrary 

Output  
jW  for j = 1,⋯, J   

 of lengthTj = T / 2 j,  
and jV of length 1 

 
jD  for j = 1,⋯, J 

JS , all of length T 
 

jW  for j = 1,⋯, J 

JV , all of length T 
 

jD  for  j = 1,⋯, J 

JS , all of length T 

Additive 
decomposition  No  

Any wavelet 

1

J

t j J
j

Y D S


     
Only Haar wavelet 

1

J

t j J
j

Y W V


    
Any wavelet 

1

J

t j J
j

Y D S


   

Energy  
decomposition  

2 2

1

J

j J
j

Y W V


      
1

J

j J
j

Y D S


     
1

J

j J
j

Y W V


    No 

Used in  
Section(s)  3.3.1  No  3.3.2, 3.3.3  3.5 
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3.3 Single-frequency time series models 
 

This section presents the three wavelet-based approaches used for multivariate time series 
forecasting, which are investigated in this study. In particular, Section 3.3.1 explains the role 
of wavelet-based time series denoising and its role in forecasting, and Section 3.3.2 explains 
the separate modelling of time series across the scales of the wavelet transform. Finally, 
Section 3.3.3 introduces the multiscale vector autoregressive model, which combines 
multivariate time series’ wavelet transform components in a single model.  

 

3.3.1 DWT denoising 
 

Wavelet-based signal estimation or denoising utilizes wavelet decomposition in order to 
extract the signal from an observed signal corrupted by noise. The key idea lies in modifying 
the wavelet coefficients such that their inverse transform will result in the denoised signal. 
Depending on the assumed type of the underlying signal (deterministic or stochastic) and its 
noise (iid or non-iid), different methods have been proposed that involve thresholding, scaling 
or shrinking of the wavelet coefficients – see Percival and Walden (2000), Ch. 10 for a 
textbook treatment and Cascio (2007) for an overview of wavelet denoising in economics.  

While the literature in wavelet-based signal estimation is voluminous, especially in 2-
dimensional problems of imaging and information fusion, for the purpose of time series 
forecasting, studies using these methods are less frequent and scattered across various fields. 
For example, applications of linear57 models forecasting coupled with denoising can be found 
in Alrumaih and Al-Fawzan (2002), Ferbar, Čreslovnik, Mojškerc, and Rajgelj (2009), 
Schlueter and Deuschle (2014), Herwartz and Schlüter (2017) and Bruzda (2020). Although 
not examined in this study, Bayesian approaches have also been proposed for wavelet-based 
denoising, allowing to impose shrinkage on the wavelet coefficients and their associated noise 
via the introduction of appropriate priors – see Chipman, Kolaczyk, and McCulloch (1997), 
Crouse, Nowak, and Baraniuk (1998), Abramovich, Sapatinas, and Silverman (1998), and 
Vidakovic (1998).  

For the purpose of this study, denoising will take the form of thresholding for the cases of iid 
noise. Before proceeding further, it is useful to define the thresholding functions for hard, 
Fh ( x ) and soft, Fs ( x ) thresholding for input x and threshold value τ: 

 
,

0,h

x x
F x

x





  


     and      
  sgn ,

0,
s

x x x
F x

x

 



   


               (3.42) 

Where sgn( x ) is the signum function taking the value of +1 if x > 0, −1 if x < 0, and 0 if x = 0.  

 

Figure 3.12 below demonstrates, for a simple case, the output of the hard and soft thresholding 
functions for the threshold value τ = 0.75.   

 
57 For studies with non-linear models see Lotrič (2004), Lotrič and Dobnikar (2005), Li, He, Lai, and 
Zou (2014), and Xu, Han, and Lin (2018).  
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Figure 3.12: Hard, Fh( x ) and soft, Fs( x ) thresholding functions 

 
Note. The threshold value is τ = 0.75.  
 

To formalise ideas, we assume that the 1-dimensional measured time series Yt contains some 
noise εt: 

t t tY G   ,    20,t                                             (3.43) 

It has to be noted that noise in the context of the macroeconomic time series should be 
interpreted with caution. For time series that are subject to revisions like, such as the GDP, 
noise could be interpreted indeed as a reflection of measurement errors, especially in the 
context of real-time data. However, a more intuitive interpretation, even for time series that 
are subject to revisions, is that noise εt actually captures transitory (temporary) economic 
shocks, while Gt represents an equilibrium level or long-term trend of a variable.  

The denoising procedure consists of the following three steps: 

1. Apply J0 levels partial DWT using the partial transform matrix p  and obtain:  

p p pW Y G G            ,                                           (3.44) 

Where for each submatrix jW  of W  at each point t, it follows: 

, , , ,j t j t j tW G       01, ,j J  ,   1, , 2 jt T                            (3.45) 

2. Specify a universal threshold value τ or level j dependent threshold τj and apply it to each 
scale wavelet coefficients jW (the scaling coefficients 

0JV  remain intact) using a hard, Fh
 ( x ) 

or soft, Fs ( x ) thresholding function as defined above in equation (3.42). The resulting wavelet 
coefficients which have passed via the thresholding function are denoted with a superscript t, 
i.e. t

jW  to differentiate them from the original wavelet coefficients jW .  

3. Form the 
0 01 , , ,t t t

J JW W W V   
    , and via the inverse DWT transform defined in equation 

(3.18), estimate the denoised time series Ĝ  as: 

 ˆ p tG W                                                             (3.46) 
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The key element in the above procedure is to estimate the threshold value τj or τ such that the 

estimate Ĝ  of the true and unobserved time series minimises the risk,  ˆ,R G G  defined as: 

  2ˆ ˆ,R G G E G G                                                     (3.47) 

Donoho and Johnstone (1994) showed that the threshold should be: 

  1 22ˆ ˆ2 log T                                                      (3.48) 

Where 2ˆ  is the median absolute deviation of the j = 1 level wavelet coefficients 1W  of length 
2T scaled by an appropriate factor: 

 1,1 1,2 1, 22
median , , ,

ˆ
0.6745

TW W W
 

  
                                      (3.49) 

Another popular approach follows Donoho and Johnstone (1995), who showed that the 
threshold can be estimated by minimizing Stein’s unbiased risk estimator (SURE) due to Stein 
(1981). Assuming  2, TW G I 

    as a reformulation of equation (3.44) and the special case 

 Ĝ G f G  , where f is differentiable, then under the Law of Large numbers and using soft 

thresholding,  ˆ ,R G G  will be equal to: 

      2
2 2 2

1
, 2 # : min ,

T

t t
t

SURE W T t W W       


                        (3.50) 

Where #{} denotes the cardinality of the set. 

It follows that the threshold ̂  should minimise  ,SURE W  :  

 
 

ˆ0 2 log
ˆ arg min ,

T
SURE W

 
 

 

                                         (3.51) 

Turning now to using wavelet-based denoising for the purpose of forecasting, the procedure 

is straightforward. Assuming a multivariate time series 1, 2, ,, , ,t t t N tY Y Y Y     , wavelet-based 
denoising is applied as described previously, i.e. for each of the univariate time series Yn,t, for 
n = 1,⋯, N separately, resulting in the denoised time series ,

d
n tY . The corresponding 

multivariate denoised time series 1, 2, ,, , ,d d d d
t t t N tY Y Y Y      instead of the original Yt can now be 

used with standard BVAR models for forecasting.  

 

 

3.3.2 MODWT separate scale BVAR 
 

Wavelet-based multiscale/multiresolution analysis has been used on numerous occasions in 
the literature for the purpose of forecasting. The underlying idea consists of modelling and  
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forecasting separately the detail and smooth coefficients and finally estimating the forecast of 
the original time series by their summation. The literature following this approach is mainly 
focused on univariate times and follows frequentist estimation. Soltani, Boichu, Simard, and 
Canu (2000), Conejo, Plazas, Espinola, and Molina (2005), Tan, Zhang, Wang, and Xu (2010), 
Schlueter and Deuschle (2014), Kriechbaumer, Angus, Parsons, and Casado (2014), Zhu, 
Wang, and Fan (2014) and Long and Yan (2016) model (long memory) time series with MRA 
detail and smooth coefficients using separate AR(I)MA processes and potentially coupled with 
GARCH models. More recently, Zhang, Gençay, and Yazgan (2017) and Uddin, Gençay, 
Bekiros, and Sahamkhadam (2019) used multiresolution analysis with automatic-ARMA 
modelling58 to find the correct specified ARMA models at each scale j and find evidence of 
superior forecasting versus forecasting directly the original time series. In a slightly different 
approach, Wong, Ip, Xie, and Lui (2003) and Schlueter and Deuschle (2014) use wavelets to 
decompose time series into a trend, periodic/seasonal and irregular components and then 
model them separately.  

Extending to multivariate time series, Xu and Niimura (2004), in a forecasting application, 
suggest for a bivariate time series of electricity price and load to use VAR modelling for the 
smooth coefficients whilst maintaining univariate modelling for the detail coefficients due to 
their low correlation. Outside a forecasting context, using wavelets transform for multivariate 
series trying to explain the underlying dynamics, Boubaker and Raza (2017), Khalfaoui (2018) 
and Gupta, Das, Hasim, and Tiwari (2018) assume a priori that the bivariate financial time 
series they examine maintain their interdependence at all the levels of the MODWT-MRA 
decomposition. The former two papers of Boubaker and Raza (2017) and Khalfaoui (2018) 
model the detail coefficients at each level using VARMA models with further specifications 
of conditional variance and examine the interdependence of oil price and BRICs stock market 
or gold at different scales, respectively. Similarly, Gupta, Das, Hasim, and Tiwari (2018) use 
a MODWT-MRA bivariate VAR to examine at different scales the causality relationship 
between stock returns and trading volumes.  

All of the studies following independent modelling of detail and smooth coefficients so far, 
either for the univariate or multivariate models, have used frequentist estimation techniques. 
In that sense, using Bayesian techniques for the estimation of VAR models across each scale 
poses as a plausible alternative due to its inherent advantage of imposing shrinkage to the 
estimated parameters and controlling cross-variable effects.  

To be more formal, supposing a multivariate time series 1, 2, ,, , ,t t t N tY Y Y Y     , and then 
applying the Haar MODWT, each time series can be decomposed as:  

, , , , ,
1

J

n t n j t n J t
j

Y W V


   

Now, the corresponding multivariate time series of the wavelet and scaling coefficients at each 
level j = 1,⋯, J can be formed as:  

, 1, , 2, , , ,, , ,j t j t j t N j tW W W W          and     , 1, , 2, , , ,, , ,J t J t J t N J tV V V V                 (3.52) 

 
58 Non-linear models like neural networks have also been employed both for univariate and multivariate 
time series forecasting in Bekiros and Marcellino (2013) and Saâdaoui and Rabbouch (2014).  



113 
 

Using the newly formed multivariate time series Wj,t and Vj,t, a VAR model can be formed at 
each decomposition level j to forecast the multivariate wavelet and scaling coefficients time 
series jointly. To be more concrete for the wavelet coefficients Wj,t at each scale j = 1,⋯, J a 
VAR is formed: 

, , , ,
1

jP

j t j j p j t p j t
p

W c B W e


   ,    , 0,j t je                                (3.53) 

Similarly, for the scaling coefficients Vj,t, a VAR is formed as follows:  

1

, 1 1, , 1,
1

J

J t J J p J t p J t
p

P

V c B V e


   


   ,    1, 10,J t Je                      (3.54) 

Using the standard VAR setting, cj are of N × 1 dimensions, Bj,p are N × N and the innovations 
ej,t are N × 1 vectors normally distributed.  

Alternatively, for the wavelet coefficients Wj,t up to a scale j ≤ j*, which capture the high-
frequency fluctuations of the time series, the VAR model can be further extended by the 
inclusion of standard stochastic volatility specification as in Cogley and Sargent (2005):  

, , , ,
1

j

j t j j p j t p j t
p

P

W c B W e


   ,    , ,0,j t j te                             (3.55) 

Where 1 1
,j t t tA L A      , with matrix A being lower diagonal59, and the natural logarithm 

of the diagonal elements of Lt,n,n = hn,t is defined as: 

, , 1 ,ln lnn t n t n th h   ,    , ,0,n t n n                                    (3.56) 

The prior used for the coefficients B for each separate scale homoscedastic or heteroscedastic 
BVAR is a conventional Minnesota-type prior. Dropping the subscript j for notational 
simplicity, it follows that B for scale-level of decomposition j in a vectorised form follows a 
normal distribution: 

   vec ,B BB                                                  (3.57) 

The first moment of coefficients B prior is set as: 

 
,

0, ,p m n
E B m n    

                                                (3.58) 

The variance of the coefficients’ prior is set as: 

 
3

3

2
1

22 2,
1 2

2

,
var

, otherwise
p m n

m

n

m n
p

B

p







 





     


                                          (3.59) 

The hyperparameter values are discussed in Section 3.4.2.  

 
59 More details regarding matrix A are provided in Section 3.3.3.2.  
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Moreover, for the homoscedastic BVAR, the covariance matrix Σ follows an inverse Wishart 
distribution with scale matrix S  and degrees of freedom d : 

 ,S d                                                       (3.60)  

Finally, for the heteroscedastic BVARs employing stochastic volatility, the innovations of the 
stochastic volatility in equation (3.56) follow an inverse Gamma prior: 

 , ,, ,
n n n nn n S d                                                 (3.61) 

More details for the stochastic volatility estimation are provided in Section 3.3.3.2 and 
Appendix C.1.1 Stochastic volatility estimation. 

In order to obtain forecasts for the original multivariate time series Yt, the MODWT separate 
scale BVAR forecasts have to be summed across each forecasted period h and Gibbs sampler 
draw (r): 

 

 
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




                                       (3.62) 

The Haar MODWT-MRA additive decomposition was also used by simply substituting the 
wavelet, Wj,t and scaling, VJ,t coefficients with the detail, Dj,t and smoothing, SJ,t coefficients. 
However, the results were not favourable and are not presented in the relevant Section 3.4.4. 
More details about the prior and the specifications used for the BVAR models at each level j 
can be found in Section 3.4.2.  

 

 

3.3.3 Multiscale BVAR 
 

The third approach using wavelet decomposition for forecasting is based on the idea of a 
multiscale autoregressive model (MAR) introduced for univariate time series in Renaud, 
Starck, and Murtagh (2003) – see also Murtagh, Starck, and Renaud (2004), Benaouda, 
Murtagh, Starck, and Renaud (2006), and Aminghafari and Poggi (2007). MAR model, 
equation (3.63), is an autoregressive model where the time series Yt instead of being explained 
by the lagged values of itself, is rather explained by its Haar MODWT lagged wavelet and 
scaling coefficients. The particular advantage of the MAR model consists of capturing the 
autocorrelation properties of the time series efficiently and is particularly robust to 
misspecification, as well as long-range dependence and fractionally integrated time series.  

To be more formal, the originally proposed MAR model for a zero mean univariate time series 
is defined as follows: 
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   

1

, 1,, 1 2 1 , 1 2 1
1 1 1

j J

j J

P PJ

t j p J p tj t p J t p
j p p

Y W V e 


     
  

    ,    20,te              (3.63) 

Where Yt, Wj,t, VJ,t, βj,p and et are all scalars.  

What is crucial for the MAR model is to understand its sparsity and the exact lag pattern for 
the wavelet and scaling coefficients, i.e. rather than including the lags in a continuous fashion 
t − p, they are in a discontinuous fashion t – 1 −2 j ( p – 1), omitting 2 j lags at each scale j. This 
becomes more clear in Figure 3.13 below. For example, for Pj = 2 for j = 1,⋯, J + 1, time 
series observation YT depends, for j = 1 only on W1,T–1 and W1,T–3 omitting W1,T–2.  

 

Figure 3.13: MAR model lagged wavelet and scaling coefficients 

Yt          × 
W1,t       ×  ×  
W2,t     ×    ×  
W3,t ×        ×  
V3,t ×        ×  

 T − 9 T − 8 T − 7 T − 6 T − 5 T − 4 T − 3 T − 2 T − 1 T 
Note. Lagged wavelet and scaling coefficients marked with × represent those 
that need to be used to estimate observation YT in the MAR model.  

 

The rationale behind using the lags in a discontinuous fashion, i.e. t – 1 −2j ( p – 1), is to 
achieve a parsimonious representation with the least possible lagged terms that provide 
sufficient information to reconstruct the time series. The selected subsets of the lagged wavelet 

 , 1 2 1jj t pW   
 and scaling  , 1 2 1JJ t pV   

 coefficients are part of the DWT orthogonal transform 

basis. This becomes evident via equation (3.37) repeated below: 

2
, ,2 1

2 j
j

j t j t
W W


      and     2

, ,2 1
2 j

J
j t j t

V V


    for 1, , jt T            where 2 j
jT T  

For example, for j = 1, the last two observations of the DWT wavelet coefficients would be 
for t = T / 21 = T / 2 and t = T / 2 − 1. Using the equation above would yield: 

                                2
1, 2 1, 12 j

T TW W       and      1 1
2 2

1, 2 1 1, 31,2 2 1 1
2 2j j

T TT
W W W  

   

In Figure 3.13, it is clear that the MODWT wavelet coefficients for j = 1 are W1,T–1 and W1,T–3, 
as shown above.  

Renaud, Starck, and Murtagh (2003) assume an AR(k) process and prove that the parameters 
of the MAR model asymptotically converge to values that result in the same predictions as 
would be the forecasts under the true AR process. However, the proof holds under the 
condition that the minimum number of lags Pj at each level j satisfies the condition Pj ≥ k / 2 j, 
where k is the maximum lag in the AR(k) process. In terms of estimation, the proposed model 
was estimated in a frequentist approach via OLS or MLE; nonetheless, extending the model 
below in a multivariate setting due to coefficients proliferation, Bayesian estimation 
techniques are used.  
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3.3.3.1 Homoscedastic MBVAR 
 

The extension of the MAR model for multivariate time series60 using a vector autoregressive 
model (MVAR) using the N-dimensional vectors of Yt, Wj,t and VJ,t as defined in equation 
(3.52) would yield the following model: 

   

1

, 1,, 1 2 1 , 1 2 1
1 1 1

j J

j J

P PJ

t c j p J p tj t p J t p
j p p

Y B B W B V e


     
  

     ,    0,te            (3.64) 

Where Bc is N × 1, Bj,p is N × N, and the innovations et is an N × 1 vector normally distributed.  

Thus, stacking all the MVAR coefficients in a single matrix B of dimensions 
1

1

1
J

j
j

N P N




 
  

 
  would result in the following: 

1 11,1 1, ,1 , 1,1 1,, , , , , , , , , ,
J Jc P J J P J J PB B B B B B B B

 
                          (3.65) 

Obviously, for the simplified case where Pj = P, for all j = 1,⋯, J + 1, then matrix B would be 
of dimensions ( 1 + NP(J + 1)) × N.  

Stacking all the right-hand side regressors in equation (3.64) in the row vector Xt of dimensions
1

1

1 1
J

j
j

N P




 
  
 

  would result in the following: 

     1
1 1

1, 1 , 1 , 11, 1 2 1 , 1 2 1 1, 1 2 11, , , , , , , , , ,J J
J J

t t J t J tt P J t P t PX W W W W V V


          
                 (3.66) 

The MVAR model can be rewritten in a compact form as: 

t t tY B X e                                                      (3.67) 

Regarding coefficients B of the MBVAR, they follow two different prior specifications. The 
first approach follows a Minnesota family-inspired type prior further being adjusted to 
accommodate separate shrinkage on the wavelet and scaling coefficients and is discussed in 
Section 3.3.3.1.1. The second specification uses the Stochastic Search Variables Selection 
(SSVS) proposed by George and McCulloch (1993); George, Sun, and Ni (2008) and is 
discussed in Section 3.3.3.1.2.  

The innovations variance Σ for both B prior specifications follows an inverse Wishart which 
is the standard case for a similar type of model:  

 ,S d                                                  (3.68) 

Where S  is the prior scale matrix, and d  are the degrees of freedom.  

  

 
60 Cekic, Grandjean, and Renaud (2019) have proposed recently a bivariate TVP-MVAR model to 
investigate Granger causality for brain signals.  
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3.3.3.1.1 Minnesota family-type prior elicitation  
 

Before proceeding further with the MBVAR posterior estimation, it is important to present 
more details about the prior elicitation for the B coefficients, which follow a normal 
distribution. 

 ,B BB                                                    (3.69) 

As a starting point, the prior is based on conventional Minnesota-type prior further adjusted 
for the MBVAR model. In that sense, it is a type of prior which assumes which regressors in 
each variable’s equation are more important for the purpose of forecasting. To be more 
specific, the prior has a global shrinkage hyperparameter λ1 which controls the overall tightness 
for all parameters. In addition, similar to the Minnesota type prior, there is a hyperparameter 
λ2 controlling the cross variables' shrinkage, as well as a lag decay parameter λ3 controlling the 
impact of the more distant lags. The constant follows a diffuse prior, set by the hyperparameter 
λ0.  

The main difference from the Minnesota prior is the absence of the so-called scaling factor 
σm / σn for the coefficients of variables n, other than its variables’ m own lags in equation m. 
The reasoning for this is based on the fact that as the scale j increases, wavelet and scaling 
coefficients become more and more smooth and thus, σn would decrease steadily, and 
consequently, this effect can be captured a priori by relevant hyperparameters’ values. It is 
true, however, that for a given scale j, the respective wavelet/scaling coefficients are of 
comparable behaviour, and the scaling factor σm / σn could be maintained and have an 
interpretation similar to standard BVAR literature. This prior’s specification was tested, but 
its impact was found to be negligible.  

Since the regressors of the model are not any more the time series themselves but the wavelet 
and scaling coefficients that the time series can be decomposed into, the proposed prior 
introduces a new hyperparameter j . Hyperparameter j  essentially controls a-priori the 
importance of the wavelets and scaling coefficients at each scale j. To formalise ideas, the 
relevant prior’s equation is defined as follows.  

The first moment of coefficients B prior is set as: 

   ,,1 ,
0, , , ,c j pn m n

E B E B j p m n        
                       (3.70) 

The standard deviation of the coefficients’ prior is set as: 

 
1 2

0,1var c nB      

  
3

3

11 2

, ,

1 2

, , 1, , , 1
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, , 1, , , 1

j

j p m n
j

m n j J J
p

B

m n j J J
p









 


  

         








                              (3.71) 

Where j  is a hyperparameter controlling the tightness for the j-scale wavelet and scaling 
coefficients. This hyperparameter essentially allows imposing the belief on which of the 
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wavelet or scaling coefficients dominate the time series and provide more informational 
content for the purpose of forecasting the original time series.  

Having as a motivation that the high-frequency components represented with small scale j fade 
out over time and that the lowest frequency components summarise the long-term behaviour 
of the time series by setting appropriate values to j  it becomes feasible to shrink more 
towards zero the high-frequency components (small j) while imposing a loose prior on the 
low-frequency components (large j and J + 1 scaling coefficients). This intuition is also 
supported by the estimation of the marginal likelihood of the models. In more detail, using 
Chib (1995) marginal likelihood approximation method (see Appendix C.1.2 Marginal 
likelihood estimation for more details), it becomes evident that a less tight prior for larger 
scales j is also supported by the data. It has to be noted that these values are not the optimal 
values with respect to a global optimisation problem of the marginal likelihood for all the 
hyperparameters. Showing that the marginal likelihood p(Y | ) increases by letting j  to 

have an increasing pattern rather than a decreasing or a constant one provides evidence that 
the prior belief is in the proper direction.  

Table 3.3 below presents the log marginal likelihood of an MBVAR for constant, increasing 
and decreasing patterns of the hyperparameter j . The sensitivity of the marginal likelihood 

is tested against different specifications of the hyperparameters j , while the remaining 
hyperparameters λ0 - λ3 are kept constant with the conventional values of 103, 0.1, 0.5 and 1 
used in the literature on BVARs.  
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Table 3.3: Wavelet and scaling coefficients hyperparameters 
Model i  

j   Log marg. likelihood 

1  4
j j  , 4 0    

25340.8 
2  4

j j  , 4 0.5    
83188.4 

3    41 1j J j


       
 , 4 0.5    

28220.4 
4  4

j j  , 4 1    
201552.2 

5    41 1j J j


       
 , 4 1    

31769.7 
6  4

j j  , 4 1.5    
384163.7 

7    41 1j J j


       
 , 4 1.5    

34296.8 
Note. Log marginal likelihood for different specifications of j  with the remaining 
hyperparameters λ0 - λ3 kept constant.  

 
In the first row of the table, 1 keeps the same shrinkage across all scales j. For the remaining 
models, every two rows, there is a pattern of increasing loosening of the prior in line with j 
and the exact opposite pattern with an increasing tightening of the prior with respect to scale 
j. To get a better understanding of the different patterns in hyperparameter 4

j j  . Figure 
3.14 below shows visually how the hyperparameter values change across all scales j for 
different values of λ4 for each model i. Dash lines show decreasing patterns over scale j, 

defined as   41 1j J j


       
  in the left y-axis, while continuous lines show increasing 

patterns over scale j, defined as 4
j j   in the right y-axis. The symmetric (increasing versus 

decreasing) patterns with respect to the y-axis have λ4 hyperparameter values of 0 (constant), 
0.5 (concave), 1 (linear) and 1.5 (convex) shown on the right y-axis. As a reminder, scale J + 1 
refers to the scaling coefficients VJ.  
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Figure 3.14: MBVAR model wavelet and scaling hyperparameters shrinking functions 

 
Note. Left axis   41 1j J j


       
  refers to decreasing patterns with dash lines. Right axis 

4
j j   refers to increasing patterns with continuous lines. Values of λ4 for the symmetric patterns 

across the y-axis are shown on the right axis.  
 

It becomes easily evident that across the various shrinkage specifications tested, log marginal 
likelihood is larger when shrinkage is stronger for the high-frequency components and 
gradually becomes looser. The exact way of decreasing tightness with level j, i.e. if it is linear, 
concave or convex, is determined with respect to providing the best forecasting performance 
and is not examined as a global optimisation problem with respect to the marginal likelihood.  

To formalise this finding, using proper model comparison in a Bayesian context, the Bayes 
factors can be used. To begin with, by a simple application of the Bayes rule, the posterior 
model’s i probability given data Y is given as:  

     
 
i i

i
p Y p

p Y
p Y


 

                                          (3.72) 

Where p(i|Υ) is the model’s posterior, p(Υ|i) is the model's marginal likelihood, p(i) is 
the model’s prior and p(Y) is the data likelihood.  

In order to compare two models 1 and 0 the ratio of their posterior probabilities can be 
estimated. Using equation (3.73), the so-called posterior odds ratio is now defined as: 

   
   1,0

1 1

0 0

p Y p
PO

p Y p


 

 
                                        (3.73) 

By further assuming equal prior models probabilities, i.e. p(1) = p(0), the posterior odds 
ratio simplifies essentially to the so-called Bayes factor BF1,0: 
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 
 1,0

1

0

p Y
BF

p Y





                                                   (3.74) 

Equation (3.74) can be useful in comparing models pairwise since the log marginal likelihood, 
ln p(Υ|), has already been estimated and is available in Table 3.3. Since the estimation of 
the marginal likelihood from the log marginal likelihood is not possible for such large values, 
I resort to Kass and Raftery (1995), Section 3.2, where they provide some ranges of the 
quantity 2ln BF1,0 and the corresponding qualitative characterisation for a hypothesis testing 
against the null of the model 0. As a result, equation (3.76) can be written as: 

 
      1,0

1
1 0

0
2ln 2ln 2 ln ln

p Y
BF p Y p Y

p Y
  


 


                    (3.75) 

To make use of the log marginal likelihood presented in Table 3.3, the various models are 
compared in 2 ways. Firstly, they are compared for each pair of decreasing versus increasing 
tightness patterns, i.e. 2 ln BF2,3, 2 ln BF4,5, and 2 ln BF6,7. Secondly, the decreasing linear 
pattern tightness with 4

j j   for λ4 = 1 of the model 4 is compared with the constant 

tightness across all scales (2 ln BF4,1) and the increasing tightness models, i.e. 2 ln BF4,3, 
2 ln BF4,5 and 2 ln BF4,7. It is obvious that for all cases, these values are in the range of 
thousands, much greater than 10, for which Kass and Raftery (1995) provide the 
characterisation of ‘very strong’ evidence against the null hypothesis of the model in the 
denominator in equation (3.75). It is also obvious that across all models, the decreasing 
tightness pattern of the model 6 with λ4 =1.5 presents the largest marginal likelihood and 
equivalently larger Bayes factor vis-à-vis all of the other models. Nonetheless, for the 
empirical application part in Section 3.4.2, the linear decreasing tightness (increasing 
‘looseness’) pattern was selected because of resulting in better forecast accuracy.  

Turning now to the posterior draws of coefficients B, the standard approach is to sample 
directly from its posterior for the entire model: 

 ,B BB                                                     (3.76) 

Where    11 1
B B X X

        ,     1 1
B B B B X vec Y         . 

Consequently, the iteration (r) from the Gibbs sampler is based on the following two blocks: 

1.     1 ,r rp B Y  

2.     ,r rp B Y  

Where the second block of the Gibbs sampler draws the variance-covariance matrix Σ from its 
conditional posterior distribution: 

 ,S d                                                           (3.77) 

Where    S S Y X B Y X B
        and d d T   .  
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More details on an equation-by-equation estimation of the posterior for the B coefficients are 
presented in Section 3.3.3.3.  

 

3.3.3.1.2 Stochastic search variable selection prior  
 

Following the Stochastic Search Variables Selection (SSVS) prior proposed by George and 
McCulloch (1993); George, Sun, and Ni (2008), each element Bi of the coefficients matrix B 

for i = 1,⋯, 
1

1

1
J

j
j

N P N




 
  

 
 is distributed as a mixture of two normal distributions: 

     2 2
0, 0,11 0, 0,i i i iB                                           (3.78) 

Where γi is a dummy variable taking the values of zero or one. When γi is equal to zero, the 
coefficient Bi is sampled from the first Normal distribution, whereas when it is one, it is 
sampled from the second Normal distribution. Hyperparameters 2

0 ,i  and 2
0 ,1  essentially 

perform the variable selection by selecting small values for 2
0 ,i  and relatively large 

uninformative values for 2
0 ,1 .  

Dummy variable γi follows an independent Bernoulli prior, i.e.  iBernoulli p  , with success 

prior probability 
ip  such that: 

 
, 1

Pr ;
1 , 0

i i
i i

i i

p if
p

p if






   
                                           (3.79) 

Rewriting more compactly equation (3.84) in a matrix notation, then coefficients B prior is: 

 0,B D D                                                          (3.80) 

Where D is a diagonal matrix with the i-th diagonal element given as 

0,
,

1,

, 0
, 1

i i
i i

i i

if
D

if
 

 

  
                                                     (3.81) 

Turning to the posterior estimation, the Gibbs sampler is based on the following three blocks: 

1.       1 1, ,r r rp B Y    

2.       1, ,r r rp B Y   

3.       , ,r r rp B Y  

The first block draws from B posterior conditional on γ, which controls matrix D: 

   ,B Bvec B                                                         (3.82) 

Where      11 1
B D D X X

       ,     1
B B X vec Y      . 
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The second block draws γ from its posterior assuming independent Bernoulli distribution 
across all regressor coefficients Bi,  i iBernoulli p  : 

 
, 1

Pr ;
1 , 0

i i
i i

i i

p if
p

p if






   
                                              (3.83) 

 

Where  

 

2

2
1, 1,

2 2

2 2
1, 1, 0, 0,

1 exp
2

1 1exp exp 1
2 2

i
i

i i
i

i i
i i

i i i i

B p
p

B Bp p

 

   

 
   

   
         
   

.  

Finally, the third block draws from the posterior of the innovations61 variance-covariance Σ, 
as discussed previously in Section 3.3.3.1.1. More details on an equation-by-equation 
estimation of the posterior for the B coefficients are presented in Section 3.3.3.3.  

 

 

3.3.3.2 Heteroscedastic MBVAR with stochastic volatility 
 

By further relaxing the assumption of homoscedasticity and adding stochastic volatility (SV), 
the previous homoscedastic MBVAR model is now defined as: 

   

1

, 1,, 1 2 1 , 1 2 1
1 1 1

j J

j J

P PJ

t c j p J p tj t p J t p
j p p

Y B B W B V e


     
  

     ,    0 ,t te          (3.84) 

The inclusion of stochastic volatility, as in Cogley and Sargent (2005), transforms the 
homoscedastic MBVAR model described equation (3.64) with the constant variance-
covariance matrix Σ to innovations whose distribution has a time-varying structure Σt defined 
as:  

1 1
t tA L A                                                           (3.85) 

Matrix A is a lower triangular matrix Ν × Ν with ones in the diagonal62:  

 
61 George, Sun, and Ni (2008) further allow for the off-diagonal elements (covariances) of Σ to follow 
an SSVS prior.  
62 Primiceri (2005) allows matrix A to be time-varying, i.e. At, with individual elements components αi,j 
below the diagonal following a random walk: αm,n,t = αm,n,t−1 + φt,   φt ~  (0,σ2).  
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2,1

,1 ,2 , 1

1 0 0 0
1 0 0

0
1N N N N

A


   

 
 
 
 
 
  




   


                                     (3.86) 

Elements αm,n below the diagonal, similar to Cogley and Sargent (2005), follow a normal prior 
distribution. Since elements αm,n are estimated for each row of matrix A independently; it is 
more convenient to define the prior for all elements αm,n, 2 ≤ m ≤ N, 1 ≤ n ≤ m − 1 per row m:  

 , ,, ,
m mm    
                                                   (3.87) 

In equation (1.17), Lt is a diagonal matrix Ν × Ν, and its diagonal elements Ln,n for n = 1,⋯, N 
are defined as Ln,n,t = hn,t, where the natural logarithm of hn,t follows a random walk: 

, , 1 ,ln lnn t n t n th h   ,    , ,0,n t n n                              (3.88) 

Stacking all equations’ stochastic volatilities hn,t, n = 1,⋯, N and their corresponding 
innovations, it follows that ln ht = ln ht−1 + ηt. Cogley and Sargent (2005) define matrix Φ as a 
diagonal matrix whose diagonal elements Φn,n follow an inverse gamma prior with scale matrix 
S and degrees of freedom :d  

 , ,, ,
n n n nn n S d                                                   (3.89) 

The multiscale BVAR with stochastic volatility is simply a combination of the building blocks 
from the previously discussed homoscedastic multiscale BVAR specifications with the 
Minnesota type family or the SSVS prior by further adding the blocks relevant to the stochastic 
volatility. Thus, for the Minnesota type family, the iteration (r) from the Gibbs sampler is 
based now on the following four blocks: 

1.         1 1 1, , ,r r r rp B A h Y    

2.         1 1, , ,r r r rp A B h Y   

3.         1, , ,r r r rp h B A Y  

4.         , , ,r r r rp B A h Y  

Similarly, the SSVS prior for iteration (r) from the Gibbs sampler is based  on the following 
five blocks: 

1.           1 1 1 1, , , ,r r r r rp B A h Y      

2.           1 1 1, , , ,r r r r rp B A h Y     

3.           1 1, , , ,r r r r rp A B h Y    

4.           1, , , ,r r r r rp h B A Y   

5.           , , , ,r r r r rp B A h Y  
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For the Minnesota family-type prior, the first block in a vectorised form would draw the 
coefficients B from their conditional posterior distribution: 

   ,B Bvec B                                                      (3.90) 

Where  
1

1 1

1

T

t t t
t

B X X


 



       
 

 , 1 1

1

T

t t t
t

B B B B vec X Y 



         
  
 .  

For the SSVS specification prior, the first block would be drawn from the following 
conditional posterior: 

 

   ,B Bvec B                                                           (3.91) 

Where    
1

1 1

1

T

B t t t
t

DD X X


 



      
 

 , 1

1

T

B B t t t
t

vec X Y 



      
  
 . 

The remaining blocks concerning the estimation of the stochastic volatility related blocks are 
estimated as follows. The posterior of matrix A elements ,m   for 2 ≤ m ≤ N is given by the 
following transformed regressions: 

 
1

1/ 2 1/ 2 1/ 2
, , , , , , ,

1

m

m t m t m k k t m t m t m t
k

h h h   


  



   ,    , 0 ,1m t    

Defining as Zm and zm the left-hand and right-hand side variables for each equation 2 ≤ m ≤ N 
respectively, the conditional posterior distributions of elements ,m   is given: 

 , ,, ,m mm         

Where  , ,

11
m m m m 

      
,  , ,

1
, , m m m mm m z  

       
    

The stochastic volatility block h is estimated following the algorithm of Kim, Shephard, and 
Chib (1998). More details can be found in Appendix C.1.1 Stochastic volatility estimation.  

Finally, the last block related to the stochastic volatility’s innovations variance posterior 
distribution draws from the posterior of Φ independently for each equation n: 

 , ,, ,
n n n nn n S d      

Where  ,,

2

,
1

ln
n nn n

T

n t
t

S S h


     and 
,, n nn n

d d T   .   
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3.3.3.3 Equation-by-equation estimation  
 

In order to achieve a fast estimation of the B coefficients posterior, the equation-by-equation 
estimation procedure originally suggested in Carriero, Clark, and Marcellino (2019) and 
further clarified by Carriero, Chan, Clark, and Marcellino (2022) is followed. In particular, for 
the MBVAR heteroscedastic specification63, assuming that the innovations covariance Σt can 

be decomposed as 1 1
t tA L A     where A is lower triangular and Lt is a diagonal matrix as 

discussed previously in Section 3.3.3.2, then equation (3.67) can be written as: 

 1 2 1 2
t t t t t t t tY AY AB X L A X B L       ,    0,t NI    

Thus, the model can be expressed in an equation-by-equation representation as follows: 

1 2
1, ,1 1,1, 1,
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                                        (3.92) 

Where t tY AY  is an N-dimensional vector with the n-th element 
1

, , , ,
1

n

n t n t n i i t
i

Y Y A Y




  .  

It becomes obvious that the n-th equation coefficients ,nB  influence not only the n-th equation 
but the remaining n + 1,⋯, N equations. This is formally stated by the following factorization: 

    

 

, 1: , ,1 , 1 1:,

, , 1 ,1 1:

, , , , , ,

, , , ,
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p B B B Y
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  

 

   

  







 

Where   ,1 , 1 , 1 ,, , , , , ,n n NnB B B B B            

Using the most recent Gibb sampler draws, it follows that in order to estimate the coefficients 
for all N equations, N subsystems with N – n + 1 equations for each one need to be estimated. 
To be more concrete, for the estimations of coefficients of the n-th equation, the i ≥ n equations 
are used: 

1 2
, , , , ,

1 1 2
1, 1, 1, , 1, 1, 1,
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, , , , , ,
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 
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


 

 
63 For the homoscedastic MBVAR specification the innovations variance-covariance Σ can be 
decomposed as Σ = LDL΄ where L is lower triangular and D is a diagonal matrix.  
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Where 
1

, , , , , ,
1 1

n N

i t i t i k t k i k t k
k k n

Z Y A X B A X B


  

    
 .  

Having assumed a prior on B, then following the equation-by-equation estimation procedure, 
each column ,nB  can be estimated from the univariate regressions in equation (3.92) equation-
by-equation representation of the system with the following posterior64: 

 , ,, ,n nn B BB                                                                (3.93) 

Where , ,
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Following this procedure, instead of estimating B of dimensions 
1

1
1

J

j
j

N P N




 
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 
  at once, at 

each equation n, one column vector of dimensions 
1

1
1 1

J

j
j

N P




 
  

 
  from matrix B is estimated. 

In order to perform the sampling from the multivariate distribution in equation (3.93), the 
standard algorithm using the Cholesky decomposition would be: 

   ,,, 0,1nn Bn KBB chol      

Where Κ denotes 
1

1
1

J

j
j

K N P




    draws from a standard normal distribution Κ (0,1).  

However, in practice, for high dimensional problems, the posterior can be sampled using the 
more computationally efficient algorithm of Bhattacharya, Chakraborty, and Mallick (2016), 
which is suitable for regressions with high dimensionality in the regressors. More details are 
available in Appendix C.1.3 Fast sampling algorithm.  

 

  

 
64 In practice, for the estimation using Matlab, the Carriero, Chan, Clark, and Marcellino (2022), Section 
3 alternative matrix notation is used.  
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3.3.3.4 MBVAR forecasting 
 

In order to perform iterative forecasting using the MBVAR model, the following procedure is 
used. At each Gibbs sampler draw of the coefficients B(r), Σ(r), the iterative forecasting 
procedure uses the MODWT after the estimation of each h-step ahead forecast such that the 
lagged values of the MODWT wavelet and scaling coefficients can be used. For example, the 

 ˆ r
T hY 

 forecast at a given Gibbs sampler draw (r) would be estimated as described below.  

Having obtained the forecasts previously up to Τ + h − 1, i.e.    
1 1

ˆ ˆ, ,r r
T T hY Y   , append them to 

the initial data    
1 , 1 1

ˆ ˆ, , , ,r r
T T T hY Y Y Y  

 
    and use the MODWT to estimate 
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,1 , , 1 , 1
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 
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T he     

The direct forecasting method discussed in Marcellino, Stock, and Watson (2006), adjusted to 
the current model, which does not require the MODWT at each Gibbs iteration, was also 
tested, but the results were not favourable and are not presented in the relevant Section 3.4.4.  

 

 

3.4 Empirical application single-frequency time series 
 

This section presents an empirical application of the proposed wavelet-based multivariate time 
series in an out-of-sample forecasting exercise with US macroeconomic data. Section 3.4.1 
presents in detail the data that were used, Section 3.4.2 discusses various implementation 
details in terms of priors and models’ specifications, and finally, Section 3.4.4 presents the 
point and density forecast accuracy of the proposed models.  

 

3.4.1 Data description 
 

All model specifications are estimated with the following six variables at quarterly frequency: 
real GDP growth, CPI inflation, Federal Funds Rates (FFR), total non-farm employment, 
industrial production (IP) and real consumption expenditure (PCE). All variables are 
transformed into growth rates (100 Δlog), except for the FFR, which is used in differences. 
Particularly for the case of FFR, the choice of differencing the data is based on the empirical 
application findings in Renaud, Starck, and Murtagh (2003), who show the superiority of the 
multiscale autoregressive model (MAR) for time series, which exhibit a lack of strong trend65.  

 
65 Chan, Jacobi, and Zhu (2020) for example also difference the federal fund rates in a classical VAR 
framework.  
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The variables whose original frequency is monthly are first transformed into quarterly 
frequency by calculating each quarter’s respective average. See Table 2.4 below. 

 

Table 3.4: Single-frequency time series – variables 

Variable  Transformation  Original freq. 
GDP  100 Δlog  Quarterly 
CPI  100 Δlog  Monthly 
FFR  Δ  Monthly 
Employment  100 Δlog  Monthly 
Industrial production  100 Δlog  Monthly 
PCE  100 Δlog  Quarterly 
Source: Archival Federal Reserve Economic Data of the Federal 
Reserve Bank of St. Louis. 

 

The out-of-sample forecasting exercise is performed recursively using an expanding window 
since 1960Q1, with the first out-of-sample exercise performed for 1985Q1 and the last one for 
2018Q4. For each of the out-of-sample exercises at period t, the last available data point is that 
of t − 1. The data used are as they were available during the 2020Q1 vintage.  

Table 3.5 below shows how the total variance of each variable can be decomposed across the 
J = 7 MODWT scales in line with equation (3.34). In particular, for each variable, the values 
show which percentage of the original time series variance can be explained by this scale. For 
example, for GDP, 33.72% of the time series total variance of 0.67 = 0.822 can be explained 
by the fluctuations with a period between 2 to 4 quarters.  

It should be noted, though, that for the FFR, the table shows the variance decomposition both 
for the differenced time series used in this study, as well as in percentage points. For the 
differenced time series, the wavelet-based variance decomposition shows that more than 2/3 
of the total variance can be explained by components with fluctuation periods up to 4 quarters. 
Differencing the time series as a way to detrend the data is actually reflected in the variance 
decomposition by reducing the variance for large scaling coefficients. For the case of FFR in 
percentage points, more than 50% of the total variance can be explained by the scaling 
coefficients V6, which represent the slow-moving trend with a fluctuation period greater than 
32 years – see also Matthes, Lubik, and Verona (2019).  
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Table 3.5: Variance decomposition 

Variable 
 
Mean 

 
St. dev 

 Short term  Business cycle  Medium term Long term 

   W1:  
 2-4Q 

W2: 
4-8Q  W3:  

2-4Y 
W4:  

4-8Y  W5:  
8-16Y 

W6:  
16-32Y  V6: >32Y 

GDP  0.74  0.82  33.72 20.59  18.25 13.27  7.20 3.97  2.99 
CPI  0.92  0.76  11.92 9.87  8.71 11.84  10.23 14.41  33.02 
FFR (Δ)  -0.01  0.89  38.07 30.00  14.40 11.42  4.36 0.99  0.76 
FFR (pc)  5.05  3.67  1.50 2.86  5.68 10.53  11.39 14.99  53.05 
Empl.  0.43  0.53  8.34 13.94  21.91 24.95  15.46 5.71  9.69 
IP  0.64  1.54  20.43 23.54  24.86 17.38  7.27 3.65  2.87 
PCE  0.80  0.66  34.46 16.95  15.17 14.15  8.55 6.31  4.41 
Note. Normalised variance decomposition across all MODWT components (may not add up to 100% 
due to rounding). 
 

Figure 3.15 below shows the DWT denoised time series discussed in Section 3.3.1, which 
were used as input to a standard BVAR for forecasting. The time series are shown only for the 
post-1980 period for visibility reasons. Overall, it is clear that the SURE soft thresholding 
denoising method in green is much more smooth and follows more closely the original time 
series in black compared to the hard universal hard thresholding method in red. For example, 
for GDP in the 2000-2008 period, the universal hard thresholding method results in a constant 
line. This should be kept in mind because, as it will become evident in the empirical application 
in Section 3.4.4, despite the huge difference between the original time series end-point and the 
denoised time series end-point for each forecasting exercise, for some variables, even the 1-
quarter ahead forecasts are significantly better than using the original time series. 

In continuation, Figure 3.16 shows, for the case of the GDP in black, the wavelet and scaling 
coefficients in red for J = 6 in the first seven panels, which were used for the separate MODWT 
modelling with BVARs. The eighth panel shows in red the scaling coefficients for J = 4, which 
were used for the multiscale BVAR. As a reminder, for J = 4, the wavelet coefficients V1 – V4 
are the same as for J = 6. The wavelet and scaling coefficients for the remaining variables can 
be found in Appendix C.2.1 Wavelet and scaling coefficients.  
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Figure 3.15: DWT denoised time series 

 
Note. Original time series are shown in black. Universal hard thresholding and SURE soft thresholding 
are shown in red and green, respectively.  
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Figure 3.16: GDP J = 6 levels Haar MODWT 

 
Note. Black lines show actual time series. Red lines show MODWT J = 6 wavelet and scaling 
coefficients and J = 4 scaling coefficients.   
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3.4.2 Priors and other estimation details 
 

All of the proposed wavelet-based multivariate time series forecasting discussed in Section 
3.3 are evaluated against a benchmark BVAR of 4 lags with an independent normal inverse 
Wishart prior following the standard values for the hyperparameters set in the literature. In 
particular, the hyperparameters regarding the prior of the coefficients B in equation (3.59) are 
set as: overall shrinkage λ1 = 0.2, cross-variable shrinkage λ2 = 0.5, lag decay λ3 = 1 and the 
constants use a diffuse prior. The innovations covariance Σ, which follows an inverse Wishart 
prior in equation (3.60), uses N + 2 degrees of freedom, and the scale is set equal to the 
residuals of independent AR(1) regressions for each variable.  

Regarding the denoising methods discussed in Section 3.3.1, they use J = 4 levels (scales) of 
wavelet decomposition for GDP, FFR, industrial production and PCE and J = 3 for CPI and 
employment (see more details in Section 3.4.3.1). The BVAR models used for the denoised 
time series follow the exact same specification and priors which are used for the benchmark 
model.  

The MODWT separate scale modelling of each level j wavelet and scaling coefficients 
discussed in Section 3.3.2 is based on J = 6 scales (see more details in Section 3.4.3.2). The 
BVAR models used at each scale j have the same prior specification of the benchmark with 
the only difference that the number of lags increases in a linear fashion in line with the scale, 
i.e. for j = 1, the BVAR model uses one lag, for j = 2 the model uses two lags and so forth. 
The MODWT separate scale modelling, which employs BVAR-SV for wavelet coefficients 
up to the fourth scale, i.e. W1-W4, uses an inverse Gamma prior in equation (1.21) with 2 
degrees of freedom and a scale equal to 0.1, while for the elements of the lower triangular 
matrix A a diffuse prior is used.  

The homoscedastic and the heteroscedastic MBVAR models discussed in Section 3.3.3 are 
both based on J = 4 levels of wavelet decomposition and one lag across all levels j, i.e. Pj = 1, 
for j = 1,⋯, J, J + 1 (see more details in Section 3.4.3.3). The Minnesota family type prior of 
coefficients B use the following hyperparameters discussed in equation (3.71): λ1 = 0.1, 
λ2 = 0.1, λ3 = 1, λ0 = 103 and 4

j j   with λ4 = 1 for j = 1,⋯, J, J + 1. The homoscedastic and 
heteroscedastic MBVAR specifications using SSVS have the following prior parameters: 

0.5ip  , 0 , 0 .0 1i  , and 1, 1i  . The prior of the stochastic volatility innovations in equation 
(3.89) uses 2 degrees of freedom and a scale equal to 0.1, while for the elements of the lower 
triangular matrix A, a diffuse prior is used.  

For all the estimated models, the first 5000 draws are discarded as a burn-in sample, and the 
subsequent 5000 draws are used for posterior inference.  

 

 

3.4.3 Optimal decomposition level selection 
 

The current section presents how the optimal level of decomposition has been selected across 
each of the three wavelet-based forecasting approaches.  
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3.4.3.1 DWT denoising optimal decomposition level selection 
 

The optimal number of the DWT partial decomposition level J0 for each variable is set 
according to Srivastava, Anderson, and Freed (2016), using the ‘peak-to-sum’ ratio of the 
wavelet coefficients at level j defined as: 

 
,

1

max
j

j
j T

j t
t

W
PS

W





                                                     (3.94) 

The peak-to-sum ratio reflects the sparsity of the wavelet coefficients and is bounded as 
0 ≤ PSj < 1. Its interpretation suggests that a small PSj reveals noise with a large number of 
small wavelet coefficient values, whereas a large value implies only a few large wavelet 
coefficient values at level j. Srivastava, Anderson, and Freed (2016) suggest using the 
threshold value Tr ≈ 0.2 such that PSj ≤ Tr and PSj+1 > Tr provide the DWT optimal 
decomposition level j = J0, opt.  

The following table shows, for each variable n, the relevant values of PSj at each level j, where 
the decomposition level j corresponding to the shaded values is the optimal decomposition 
level J0, opt, n. The maximum potential decomposition level J0, max is set equal to 6 and is dictated 
by the time series length of T = 100 observations used for the first out-of-sample exercise for 
1985Q1 using the estimation sample beginning in 1960Q1, i.e. 6.64 = log2(100) rounded to 
the smallest integer.  

 
Table 3.6: Peak-to-sum ratio 

 GDP CPI FFR Employment IP PCE 
j = 1 0.05 0.04 0.10 0.05 0.04 0.05 
j = 2 0.11 0.16 0.16 0.09 0.09 0.07 
j = 3 0.11 0.12 0.14 0.14 0.14 0.16 
j = 4 0.20 0.28 0.19 0.23 0.19 0.20 
j = 5 0.23 0.29 0.49 0.26 0.24 0.26 
j = 6 0.38 0.46 0.43 0.47 0.34 0.36 
J0, opt 4 3 4 3 4 4 

 
As an additional criterion, given that ultimately what is of interest are the forecasts produced 
from the BVARs estimated with the denoised series, the marginal likelihoods of the BVARs 
estimated with denoised time series using as decomposition levels J0 =1,⋯,6 across all 
variables are compared with the BVAR marginal likelihood estimated with the denoised time 
series using the optimal decomposition level J0, opt, n given in the above table.  
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Figure 3.17: BVAR log marginal likelihood for raw and DWT denoised time series 

 
Note. BVAR log marginal likelihood for raw time series and J0 =1,⋯,6 universal threshold and SURE 
DWT denoising shown in red and green continuous lines, respectively. Dashed lines show log marginal 
likelihood estimated with variable specific optimally selected J0, opt, n  according to Srivastava, Anderson, 
and Freed (2016).  
 

3.4.3.2 Separate scale BVAR optimal decomposition level selection 
 

The optimal decomposition level J for the MODWT wavelet transform follows the minimum 
entropy criterion originally suggested in Coifman and Wickerhauser (1992), which has been 
used in the context of macroeconomic/financial times series in Bekiros and Marcellino (2013), 
Uddin, Bekiros, and Ahmed (2018) and Uddin, Gençay, Bekiros, and Sahamkhadam (2019) 
for the MODWT-MRA. The optimal decomposition level J0 seeks to minimise the cost 
function C, which is an additive function over the orthonormal basis of the DWT transform:  

   
0

1
j

j

J

C W C W


                                                        (3.95) 

Formally, the optimal decomposition level J0 is the solution to the following minimisation 
problem: 

 
0

min
J

C W                                                           (3.96) 

Replacing the cost function C, with the entropy function E, for a given level j, the wavelet 
coefficients’ entropy is defined as: 

   2 2

1
log

jT

j t t
t

E W p p


                                                (3.97) 
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Where , ,t j t j tp W W   with  denoting the l2 (Euclidian) norm66. Entropy follows the 

convention    0 0 log 0 0E   .  

Recursively beginning from the bottom, if the sum of the j + 1 wavelet and scaling coefficients 
(children) entropy is larger than the j scaling coefficients (parent node), then j + 1 
decomposition level reveals non-redundant information and is used; otherwise, level j scaling 
coefficients node is set as the new terminal decomposition level Coifman and Wickerhauser 
(1992). This is equivalent to finding the optimal decomposition level J0, opt, which has the 
minimum entropy for J0 = 1,⋯, J0, max estimated for each J0 using all the wavelet coefficients 
j =1,⋯, J0 and the J0 scaling coefficients. The following table presents the optimal 
decomposition level J0, opt, n with respect to the minimum entropy in shaded numbers across 
each variable n for a maximum decomposition level of J0, max = 6.  

Table 3.7: Optimal minimum entropy criterion 

 GDP CPI FFR Employment IP PCE 
J0 = 1 4.605 4.173 3.690 4.452 4.283 4.661 
J0 = 2 4.307 3.626 3.514 4.064 4.171 4.265 
J0 = 3 4.198 3.238 3.527 3.757 4.094 4.010 
J0 = 4 4.010 2.890 3.526 3.521 4.005 3.734 
J0 = 5 3.749 2.515 3.519 3.483 3.956 3.415 
J0 = 6 3.524 2.426 3.512 3.324 3.987 3.056 

 

The optimally selected decomposition levels for each variable n can be used for separate 
univariate time series modelling. However, due to using a VAR process across each scale j, 
and in order to keep symmetry across all variables, the MODWT global scale J selected is set 
equal to the maximum of all the variable-specific optimally selected decomposition levels, i.e. 
J = max( J0, opt, n ) = max(6, 6, 6, 6, 5, 6) = 6.  

 

3.4.3.3 MBVAR optimal decomposition level selection 
 

The MBVAR optimum decomposition level J = 4 is selected based on maximising the 
marginal likelihood using a simple grid search over J = 1,⋯, 6 for a fixed set of 
hyperparameters. The following figure shows how the homoscedastic MBVAR – Minnesota 
type prior log marginal likelihood changes for the different values of the decomposition level 
J while hyperparameters are kept constant.  

  

 
66 The −l2 log l2 cost functional is also known as Shannon entropy.  
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Figure 3.18: Homoscedastic MBVAR log marginal likelihood for different decomposition 
levels J  

 

 
Note. All the remaining hyperparameters are kept constant. 

 

3.4.4 Out-of-sample results – Forecast evaluation metrics 
 

Point forecasts for variable n and horizon h are evaluated according to the root mean squared 
error (RMSE) : 

 
0

1 2
2

, , ,
0

1 ˆRMSE
1

T h

n h n t h n t h t
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Where t0 refers to 1985Q4 and T refers to 2018Q4.  

Density forecasts are evaluated according to the continuous ranked probability score (CRPS). 
Following, Gneiting and Raftery (2007), the CPRS can be evaluated in a closed form as: 

  1 ˆ ˆ ˆCRPS ,
2 F FF y E y y E y y     

Where ŷ are independent draws from the predictive density with cumulative distribution F 
and y is the outcome.  

The exact formula67 for the retained draws R of the MCMC algorithm for variable n and 
horizon h is given as: 
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 
        

    

Furthermore, density forecasts are also evaluated using the log predictive score (LPS), and the 
results are available in Appendix C.2.2 . The time variation of the point and density forecast 
accuracy is presented in Appendix C.2.3 Time variation of results.   

 
67 More information can be found in Dieppe, Legrand, and Van Roye (2016).  
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In order to provide a rough measure of whether the differences in the forecast accuracy are 
significant, the Diebold and Mariano (1995) test is employed. The hypothesis testing is always 
one-sided, i.e. rejection of the null of equal performance versus the benchmark model provides 
evidence of the proposed model outperforming the benchmark. The test applies in the same 
manner both for point forecasts (MSE) and density forecasts68.  

Turning now to the point forecasts accuracy results in Table 3.8 and examining the suggested 
models, the following are observed. Regarding the denoising methods, overall, the hard 
denoising method exhibits more gains than the SURE soft denoising method. For given GDP 
forecast horizons and PCE across all horizons for the hard denoising method, results are found 
to be significant. What is of interest is the medium to long-term forecast improvement for CPI 
bearing in mind the big differences between the original and the denoised time series in Figure 
3.15.  

Regarding the MODWT separate scale BVAR modelling approaches, both homoscedastic and 
heteroscedastic, except for FFR and the 1-quarter ahead forecasts for CPI, industrial 
production and employment, the results overall are in favour of the proposed models in terms 
of RMSE ratios and further found to be significant for some horizons. The inclusion of 
stochastic volatility for j ≤ 4 provides some noticeable improvements for the 1-quarter ahead 
forecast across all variables except for the FFR; however, for medium to long-term forecasts, 
there are not any improvements.  

Finally, regarding the third approach of the multiscale BVAR, for the homoscedastic 
specification, both for the proposed Minnesota type prior and the SSVS, the results are in 
favour of the proposed model across all variables and horizons except for the 1-quarter ahead 
forecasts where the model does not exhibit any forecast gains. The improved forecast accuracy 
is also found to be significant and is the only approach so far that provides robust results across 
all variables. Adding stochastic volatility to the multiscale BVAR does not yield any 
noticeable improvements. In particular, the 1-quarter ahead forecasts are improved but not 
satisfactory since the RMSE ratios remain above unity except for FFR, while the medium to 
long-term forecasts deteriorate on some occasions. CPI forecast accuracy beyond the 1-quarter 
ahead forecast improves significantly across all four specifications of the multiscale BVAR 
model.  

Focusing on the density forecasts as evaluated by the CRPS in Table 3.9, the overall picture 
with few exceptions is that wavelet-based forecasting improves density forecasts significantly 
on many occasions, and similar results can be found in Appendix C.2.2 Log predictive score, 
where the log predictive score results are presented.  

Examining the forecasting approaches proposed one by one, for both denoising methods used, 
density forecasts are improved with respect to the benchmark, except for the 1-quarter ahead 
forecasts of CPI and medium to long-term forecasts for employment. The reason for this 
improvement is that the variance estimate of the BVAR’s innovations Σ is much smaller for 
the denoised time series, and thus the uncertainty over the density forecasts is reduced over 
non-recessionary periods.  

The MODWT separate scale BVAR modelling approach also improves forecast accuracy 
across variables and forecast horizons in a robust way, except for a few cases. For the 

 
68 The results for density forecasts should be interpreted with care since this type of statistical testing 
applies to rolling estimation schemes and not to recursive re-estimation of the models under an 
expanding window (Amisano & Giacomini, 2007).  
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homoscedastic BVAR specifications, in particular, there are only 4 cases out of the 24 that the 
benchmark performs better, while the inclusion of stochastic volatility for small scales seems 
to improve the overall picture, with only 2 out of the 24 cases now being in favour of the 
benchmark. Stochastic volatility brings the largest improvements for FFR, where for all 
horizons, the differences now in favour of the proposed model are found to be significant.  

Finally, examining the multiscale BVAR density forecast results, they present the same 
behaviour as for the point forecasts, i.e. the proposed model improves density forecasts 
robustly across the majority of the variables and the forecast horizons except for the 1-quarter 
ahead forecasts for the case of the Minnesota type prior. For 9 out of the 24 cases, the 
improvement is found to be significant for the homoscedastic case. Adding stochastic volatility 
helps the 1-quarter ahead forecasts marginally but is not satisfactory enough with respect to 
the benchmark, except for the case of the FFR, where the results for all horizons are significant.  
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Table 3.8: Point forecast evaluation 

 GDP CPI FFR Employment   IP PCE 
 BVAR 
h = 1 0.545 0.503 0.424 0.211 1.027 0.522 
h = 4 0.644 0.565 0.441 0.451 1.321 0.578 
h = 8 0.659 0.584 0.434 0.519 1.332 0.567 
h = 12 0.641 0.623 0.443 0.524 1.298 0.557 
 Universal hard threshold denoising BVAR 
h = 1 0.996 1.023 1.055 1.193 0.993 0.900** 
h = 4 0.985 0.989 1.017 1.022 0.993 0.938*** 
h = 8 0.981*** 0.987 1.014 1.001 0.996 0.969** 
h = 12 0.995 0.957** 0.992 1.002 1.005 0.986** 
 SURE soft threshold denoising BVAR 
h = 1 0.973 1.020 1.006 1.032 0.945* 0.918** 
h = 4 0.990 1.019 1.015 1.004 1.005 0.972** 
h = 8 1.007 1.005 1.017 1.022 1.026 1.003 
h = 12 1.010 0.973 0.993 1.025 1.014 1.018 
 MODWT separate scale BVAR  
h = 1 0.960 1.036 1.050 1.056 1.006 0.913* 
h = 4 0.889*** 0.906** 1.119 0.959 0.993 0.842*** 
h = 8 0.915* 0.867** 1.071 0.894 0.959 0.902* 
h = 12 0.982 0.784*** 1.050 0.866 0.975 0.972 
 MODWT separate scale BVAR-SV ( j ≤ 4) / BVAR( j > 4) 
h = 1 0.973 1.028 0.922* 0.986 0.951 0.908* 
h = 4 0.895** 0.912** 1.110 0.955 1.002 0.842*** 
h = 8 0.905** 0.868*** 1.060 0.891 0.953 0.906* 
h = 12 0.986 0.779*** 1.038 0.864 0.977 0.975 
 Multiscale BVAR-Minnesota 
h = 1 1.102 1.034 1.016 1.416 1.129 0.970 
h = 4 0.946*** 0.927** 0.962** 0.888*** 0.945** 0.885*** 
h = 8 0.948*** 0.879*** 0.967* 0.876** 0.951** 0.924*** 
h = 12 0.973*** 0.836*** 0.955** 0.886*** 0.967*** 0.953*** 
 Multiscale BVAR-Minnesota-SV 
h = 1 1.037 1.027 0.914 1.366 1.085 0.899** 
h = 4 0.946*** 0.902** 0.948** 0.913** 0.968 0.875*** 
h = 8 0.972* 0.859*** 0.964* 0.935** 0.967* 0.945** 
h = 12 0.993 0.805*** 0.949** 0.974* 1.003 0.986 

 Multiscale BVAR-SSVS 
h = 1 0.992 1.012 0.998 1.251 1.032 0.954 
h = 4 0.892*** 0.931** 1.052 0.854** 0.943 0.861*** 
h = 8 0.934** 0.888** 0.952* 0.847** 0.966** 0.897** 
h = 12 0.975 0.827*** 0.957 0.856** 0.984* 0.957* 
 Multiscale BVAR-SSVS-SV 
h = 1 0.954 1.037 0.905* 1.169 1.025 0.946 
h = 4 0.898*** 0.885** 0.972 0.846* 0.973 0.867*** 
h = 8 0.962* 0.887** 1.003 0.907 0.996 0.935** 
h = 12 1.010 0.851** 0.997 0.935 1.021 0.989 

Note. First panel shows benchmark’s raw RMSEs. Remaining panels show RMSE ratios of the proposed 
models with respect to the benchmark. Stars refer to the p-values of the Diebold and Mariano (1995) 
one-sided test with respect to the benchmark. *, **, *** indicate rejection of the null at 10%, 5% and 
1% significance level respectively. The evaluation period is 1985-2018.   
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Table 3.9: Density forecast evaluation with the CRPS metric 

 GDP CPI  FFR Employment    IP PCE 
 BVAR 
h = 1 0.312 0.244 0.293 0.119 0.559 0.291 
h = 4 0.357 0.289 0.309 0.232 0.687 0.322 
h = 8 0.362 0.315 0.307 0.268 0.690 0.318 
h = 12 0.355 0.337 0.312 0.273 0.679 0.314 
 Universal hard threshold denoising BVAR 
h = 1 0.936** 1.034 0.998 1.136 0.967* 0.887*** 
h = 4 0.942*** 0.969* 0.971*** 1.014 0.972** 0.919*** 
h = 8 0.939*** 0.960 0.968*** 1.000 0.980** 0.948** 
h = 12 0.952** 0.943*** 0.949*** 0.999 0.980** 0.960* 
 SURE soft threshold denoising BVAR 
h = 1 0.923*** 1.049 0.939*** 0.986 0.929*** 0.910*** 
h = 4 0.951** 0.990 0.933*** 0.997 0.982* 0.963** 
h = 8 0.966* 0.969 0.938*** 1.029 1.004 0.987 
h = 12 0.973 0.950** 0.922*** 1.030 0.988 0.998 
 MODWT separate scale BVAR  
h = 1 0.933* 1.057 0.925*** 0.962 0.980 0.916** 
h = 4 0.892*** 0.895** 1.008 1.006 1.027 0.848*** 
h = 8 0.922** 0.849*** 0.990 0.933 0.984 0.904* 
h = 12 0.978* 0.768*** 0.982 0.901 0.979 0.963 
 MODWT separate scale BVAR-SV ( j ≤ 4) / BVAR( j > 4) 
h = 1 0.947 1.029 0.705*** 0.881*** 0.928 0.919* 
h = 4 0.878*** 0.898*** 0.884*** 0.999 1.033 0.838*** 
h = 8 0.893*** 0.846*** 0.850*** 0.933 0.975 0.903** 
h = 12 0.960** 0.775*** 0.836*** 0.898 0.967** 0.953 
 Multiscale BVAR-Minnesota 
h = 1 1.101 1.053 1.046 1.326 1.132 0.998 
h = 4 0.975 0.911** 0.994 0.875*** 0.966 0.914** 
h = 8 0.978 0.856*** 1.003 0.863*** 0.970 0.941*** 
h = 12 1.000 0.796*** 0.991 0.861*** 0.976** 0.964** 
 Multiscale BVAR-Minnesota-SV 
h = 1 0.966 1.025 0.662*** 1.126 1.007 0.879*** 
h = 4 0.914*** 0.899*** 0.734*** 0.866*** 0.954 0.868*** 
h = 8 0.946** 0.847*** 0.741*** 0.949 0.976 0.939** 
h = 12 0.971 0.784*** 0.715*** 1.018 0.995 0.967 
 Multiscale BVAR-SSVS 
h = 1 0.992 1.051 1.003 1.190 1.033 0.966 
h = 4 0.915*** 0.933** 1.037 0.867** 0.965 0.888*** 
h = 8 0.965 0.885** 1.020 0.866** 0.982 0.925* 
h = 12 1.009 0.830*** 1.020 0.891 1.006 0.984 
 Multiscale BVAR-SSVS-SV 
h = 1 0.918** 1.059 0.654*** 1.052 0.990 0.918* 
h = 4 0.879*** 0.903*** 0.747*** 0.854** 0.999 0.862*** 
h = 8 0.935** 0.884** 0.793*** 0.923 1.008 0.929** 
h = 12 0.993 0.877 0.782*** 0.961 1.009 0.985 

Note. First panel shows benchmark’s raw CRPS. Remaining panels show the CRPS ratios of the 
proposed models with respect to the benchmark. Stars refer to the p-values of the Diebold and Mariano 
(1995) one-sided test with respect to the benchmark. *, **, *** indicate rejection of the null at 10%, 5% 
and 1% significance level respectively. The evaluation period is 1985-2018.   
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3.5 Mixed-frequency time series models 
 

Modelling mixed-frequency (MF) time series usually adheres to two main approaches in the 
VAR literature. The first approach, which is observation driven, involves the representation 
and estimation of the VAR model in the lowest frequency, where the high-frequency time 
series are treated as multiple lower frequency time series. For example, for a VAR using annual 
and quarterly frequency time series, the quarterly time series would be treated as four separate 
annual time series, one for each quarter of the calendar year. This approach is usually called 
the stacked VAR approach and has been studied thoroughly by Carriero, Clark, and Marcellino 
(2015b), Ghysels (2016), Koop, McIntyre, and Mitchell (2020), and McCracken, Owyang, and 
Sekhposyan (2021).  

The second approach is based on a state-space model representation. The lowest frequency 
time series is treated as if its corresponding high-frequency time series latent process that is 
not observed was known, and the VAR model is essentially written in the highest frequency. 
Kalman filtering allows the estimation of the latent process based on the observations in the 
lowest frequency. In other words, the lower frequency time series are interpolated such that 
they satisfy an intertemporal aggregation restriction depending on whether the time series enter 
the VAR in levels or growth rates. Indicative literature following this approach includes 
Mariano and Murasawa (2010), Schorfheide and Song (2015) and Koop, McIntyre, Mitchell, 
and Poon (2020). The state-space model representation approach presents the main advantage 
that through the appropriate adjustment of the Kalman filter update equations, it can handle 
various irregularities which are frequent in macroeconomic data, such as missing69 
observations and ragged edge data. However, this comes at the expense of the large 
computational cost of the Kalman filtering and smoothing algorithms which need to be run at 
its iteration of the MCMC algorithm.  

For the purpose of this study, I will focus on the second approach, i.e. representation of the 
model in the higher frequency via a state-space model, and I will show how wavelet transform 
can be utilised in that respect. MF-VARs can be used like single-frequency VARs for the 
purpose of forecasting, structural inference and policy/scenario analysis (Sims, 1980; Stock & 
Watson, 2001); however, the majority of their applications are focused on nowcasting. 
Especially for the case of MF-VARs casted in a state-space representation, which can address 
the ragged edge data problem effectively, a natural by-product is the estimation of the high-
frequency latent process corresponding to the low-frequency time series, which can be used 
separately at a later stage.  

Due to the high computational cost of re-estimating the mixed-frequency VAR by Kalman 
techniques for an out-of-sample forecasting exercise, this study will rather focus as an 
illustrative example on the in-sample accuracy of the monthly estimates for the proposed 
wavelet-based MF-VAR method versus the standard MF-VAR approach (henceforth simply 
named as MF-VAR). In order to prove the proposed model’s improved accuracy, time series, 
which are known both in quarterly and monthly frequency, will be treated as if the observed 
monthly frequency time series were the latent processes which need to be estimated with the 
proposed model. The estimated monthly time series will be compared with their actual 

 
69 For a detailed textbook treatment of missing observations refer to Harvey (1989), p. 143 and Durbin 
and Koopman (2012), p. 110.  
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(observed) monthly time series values for the cases of the MF-VAR approach and the proposed 
wavelet-based MF-VAR approach.  

Of course, for a real-world application like GDP, investment and government spending time 
series’ monthly estimates that their actual monthly values are unknown, it would not be 
possible to know with certainty the superiority of the proposed model. However, by showing 
that for a number of quarterly time series whose monthly time series are known, the proposed 
model’s accuracy cannot get worse than the MF-VAR approach, it provides some empirical 
evidence of its advantages that could hold for the series that are of interest for higher frequency 
estimates.  

The following Sections 3.5.1 and 3.5.2, explain in detail the MF-VAR and the wavelet-based 
MF-VAR, respectively.  

 

3.5.1 Mixed-frequency VAR 
 

Assuming a Ν-multivariate time series 1, 2, ,, , ,t t t N tY Y Y Y      at a monthly frequency, then it 
follows that it can be modelled using a VAR process:  

1
t p t p t

p

P
Y c B Y 



                                                     (3.98) 

Using the standard VAR setting, c is of N × 1 dimensions, Bp are N × N matrices, and the 
innovations εt is N × 1 column vector normally distributed as εt ~ ( 0, Σ ).  

Now assume that out of the n = 1,⋯, N in total univariate time series comprising the 
Ν  - multivariate time series, the first n1 time series are observed only in quarterly frequency, 
while the remaining n2 = N − n1 are observed directly in monthly frequency: 

1 21, , 1, ,, , , , ,q q m m
t t n t t n tY Y Y Y Y       

Where in terms of notation, superscript q in 1,
q
tY  denotes that the underlying univariate time 

series is observed in quarterly frequency, whereas superscript m in 1,
m
tY  that the univariate time 

series is observed directly in monthly frequency. The subvectors of dimensions n1 and n2, 
respectively, for the quarterly and monthly time series, are denoted as:  

11, ,, ,q q q
t t n tY Y Y          and     

21, ,, ,m m m
t t n tY Y Y                            (3.99) 

The observed values of the n1 quarterly frequency time series, where t denotes the month that 
the quarterly values are observed and not the respective quarter, are further denoted as: 

11, ,, ,o o o
t t n tY Y Y                                                     (3.100) 

Following Mariano and Murasawa (2003, 2010), a univariate quarterly time series transformed 
into growth rates can be mapped on its corresponding monthly latent process via the following 
approximation: 
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1, 1, 1, 1 1, 2 1, 3 1, 4
1 2 2 1
3 3 3 3

o q q q q q
t t t t t tY Y Y Y Y Y                                   (3.101) 

Where  1, 3 1, 1, 1, 3ln ln lno o o o
t t t tY Y Y Y        and  1, 1, 1, 1, 1ln ln lnq q q q

t t t tY Y Y Y        with a tilde 

denoting the time series in levels.  

For US data, following the national income and product accounts (NIPA) convention, higher 
frequency flow variables are annualised, and as a consequence, equation (3.101) which treats 
the variable as a stock, remains valid. For example, the GDP or personal consumption 
expenditure which are flow variables originally following the NIPA convention, are reported 
as annualised, and thus the quarterly frequency value is the average and not the sum of the 
corresponding monthly observations.  

Now, following the literature on mixed-frequency VARs, a state-space model can be formed 
as follows70: 

ssm
t t tZ GS e  ,    0,te R                                    (3.102) 

1
ssm ssm
t t tS C FS v   ,    0 ,tv Q                          (3.103) 

The state equation in equation (3.103) can easily accommodate the VAR process in equation 
(3.98) once it is re-written in the usual VAR companion form where the matrices ssm

tS , C, F, 
vt and Q are defined as follows: 
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Regarding the observation equation (3.102), it can be further separated into two blocks, q and 
m, corresponding to the n1 quarterly variables that we want to interpolate in monthly frequency 
and the n2 monthly variables, which are observed directly in monthly frequency. In more detail, 
equation (3.102) can be written as follows: 
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          

                    (3.104) 

Block q in detail corresponds to the 1,⋯, n1 quarterly variables, thus q o
t tZ Y : 

1 1 1

1, 1 1,

, ,

o q q
t t

q o
t t t

o q q
n t n n t

Y G e
Z Y S

Y G e

     
             
     
     

   , 

1 1

1, 1

,

0 0 0
, 0 0

0 0 0

q q
t

q q
n t n

e R

e R

     
     
     
          

     

 
70 To avoid confusion with the MODWT-MRA smooth coefficients denoted also with S, all quantities 
related to the state-space model’s state vector are denoted using superscript ssm as ssm

tS .  



145 
 

Where 
1 2 2 2 2 31 1 1 1 1 10 ,1 3,0 ,2 3,0 ,1,0 ,2 3,0 ,1 3,0q

i d d d d d dG           with d1 = ( i – 1 ) for 

i = 1,⋯, n1, d2 = N – 1 and d3 = n1 – n + n2 + N ( P – 5 ) applies the intertemporal restriction 
discussed in equation (3.101). Moreover, matrix Rq is a square zero matrix of dimensions 
n1 × n1.  

In continuation, block m corresponds to 1,⋯, n2 monthly variables, which are observed directly 
in monthly frequency, i.e. 

21, ,, ,m m m
t t n tZ Y Y     . Furthermore,  2 1 2 2 10 , ,0m

n n n n N PG I  
     and 

mR  is a square zero matrix of dimensions n2 × n2.  

As a convention, since the application of this study focuses on achieving ex-post the highest 
accuracy of the estimated monthly time series originally observed in quarterly frequency, the 
following are assumed. For the low frequency (quarterly) time series described with block q 
in equation (3.104), their observations q

tZ  are available at the last (third) month of each 
respective quarter, while the remaining months it is assumed to have missing observations. 
The high frequency (monthly) time series’ observations m

tZ  described with block m in equation 
(3.104) are available for the corresponding month without any publication delay. To be more 

concrete, Table 3.10 below shows the observations vector ,q m
t t tZ Z Z

  
 

 available for the 

first and second quarters of a given calendar year.  

 

Table 3.10: MF-VAR quarterly and monthly time series observations 

4Q   1Q   2Q   3Q  

12M   1M  2M  3M   4M  5M  6M   7M   
o

tY       3
o

tY        6
o

tY      
m

tY   1
m

tY   2
m

tY   3
m

tY    4
m

tY   5
m

tY   6
m

tY    7
m

tY   

 

Where q o
t tZ Y  and m m

t tZ Y  as defined in equations (3.99) and (3.100), refer to the n1 
quarterly and n2 monthly variables, respectively.  

The MF-VAR is estimated using standard Bayesian techniques mentioned in the relevant 
literature. More details on the estimation algorithm are presented in the following section 
discussing the wavelet-based MF-VAR, which is a more generic case and encapsulates the 
MF-VAR approach.  

 

 

3.5.2 Wavelet-based mixed-frequency VAR 
 

Now, turning to the proposed wavelet-based MF-VAR, the main idea is to interpolate 
separately all or a subgroup of the higher frequency wavelet coefficients using a VAR model 
while maintaining the same intertemporal restriction as for the case of the MF-VAR. The main 
argument behind this approach lies in the fact that the detail and scaling coefficients describe 
time series fluctuations in defined ranges of frequencies.  
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To be more precise, for the case of an MF-VAR with monthly and quarterly frequency time 
series, Table 3.11 below describes the range of frequencies captured at each level of the 
MODWT-MRA decomposition.  

 

Table 3.11: Monthly and quarterly series J = 1, 2 Haar MODWT-MRA 
components frequency range 

Decomp. level Monthly freq. time series Quarterly freq. time series 
J = 1 

D1 2-4 months 2-4 quarters (6-12 months) 
S1 >4 months >4 quarters (>12 months) 

J = 2 
D1 2-4 months 2-4 quarters (6-12 months) 
D2 4-8 months 4-8 quarters (12-24 months) 
S2 >8 months >8 quarters (>24 months) 

 

As the table shows, there is not a perfect overlap between the range of frequencies described 
by monthly and quarterly frequency time series’ detail and smooth coefficients. The monthly 
time series S1 smooth coefficients provide informational content for fluctuations greater than 
four months which can be captured sufficiently by quarterly time series D1 detail coefficients. 
On the other hand, quarterly time series D1 detail coefficients cannot describe fluctuations with 
a period smaller than six months71. Nonetheless, in order to produce the most accurate 
estimates of the underlying monthly latent processes, it is important to make the best use of 
the available monthly time series informational content.  

Consequently, by separating the time series informational content into components with 
fluctuations in a range of frequencies, the wavelet-based MF-VAR aims to better inform the 
quarterly time series’ monthly latent process from the high-frequency fluctuations from the 
remaining time series observed originally in monthly frequency. The slower moving trends 
captured in the smooth coefficients both for monthly and quarterly frequency time series, as 
shown in the table above, in theory, should not affect and interfere with the higher frequency 
fluctuations that are of interest to make the best usage of monthly time series informational 
content.  

To become more concrete, suppose an N-multivariate time series 1, 2, ,, , ,t t t N tY Y Y Y      in 
monthly frequency, then applying the Haar MODWT-MRA72, each univariate time series Yn,t 

can be decomposed as:  

 
71 This is a direct outcome of the Nyquist-Shannon sampling theorem stating that in order to capture 
information from a time series with maximum frequency fmax, the time series should be sampled at twice 
this frequency: fs > 2 fmax (Unser, 2000). In other words, a quarterly time series (three month sampling 
interval) cannot have informational content with periodicity smaller than six months (two quarters), 
which is the lower limit of the quarterly series D1 detail coefficients.  
72 The Haar MODWT additive decomposition of wavelet and scaling coefficients was also used but 
resulted in inferior results. In principle, when using the MODWT-MRA any wavelet beyond the Haar 
can be used instead.  
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, , , , ,
1

J

n t n j t n J t
j

Y D S


                                             (3.105) 

Now, the corresponding N-multivariate time series of the detail and smooth coefficients at 
each level j = 1,⋯, J can be formed as:  

, 1, , 2 , , , ,, , ,j t j t j t N j tD D D D          and     , 1, , 2 , , , ,, , ,J t J t J t N J tS S S S              (3.106) 

Using the newly formed N-multivariate time series Dj,t and SJ,t, a separate VAR model can be 
formed at each scale j to model/forecast jointly the N-multivariate detail and smooth 
coefficients time series. To be more concrete for the detail coefficients Dj,t at each scale 
j = 1,⋯, J a VAR is formed: 

, , , ,
1

jP

j t j j p j t p j t
p

D c B D 


                                        (3.107) 

Similarly, for the smooth coefficients SJ ,t, a VAR is formed:  

1

, 1 1, , 1,
1

JP

J t J J p J t p J t
p

S c B S 


   


                                   (3.108) 

Using the standard VAR setting, cj are of N × 1 dimensions, Bj,p are N × N matrices and the 
innovations εj,t are N × 1 vectors normally distributed as ej,t ~( 0, Σj ).  

Now assume that out of the n = 1,⋯, N univariate time series comprising the N-multivariate 
time series, the first n1 time series are observed in quarterly frequency, while the remaining 
n2 = N − n1 are observed directly in monthly frequency: 

1 21, , 1, ,, , , , ,q q m m
t t n t t n tY Y Y Y Y       

Where in terms of notation 1,
q
tY  denotes the underlying time series which are observed in 

quarterly frequency, whereas 1,
m
tY  denotes the time series observed directly in monthly 

frequency. Following this notation, it also implied that detail and smooth coefficients can be 
divided into quarterly and monthly subvectors, respectively:  

, , ,,q m
j t j t j tD D D

  
 

 where 
1, , ,1, , , ,q q q

j t n j tj tD D D      and 
2, , ,1, , , ,m m m

j t n j tj tD D D     .  

, , ,,q m
J t J t J tS S S

  
 

 where 
1, , ,1, , , ,q q q

J t n J tJ tS S S      and 
2, 1, , , ,, ,m m m

J t J t n J tS S S     .  

The observed values of the time series observed in the quarterly frequency are denoted as 
follows: 

11, ,, ,o o o
t t n tY Y Y                                                        (3.109) 

As already discussed previously, for the case of the MF-VAR, following Mariano and 
Murasawa (2003, 2010), a univariate quarterly time series transformed into growth rates can 
be mapped on its corresponding monthly latent process via the following approximation: 



148 
 

1, 1, 1, 1 1, 2 1, 3 1, 4
1 2 2 1
3 3 3 3

o q q q q q
t t t t t tY Y Y Y Y Y                                     (3.110) 

By substituting in equation (3.110) the Haar MODWT-MRA additive decomposition of 
equation (3.105), it implies: 

1, 1, , 1, , 1, , 1 1, , 1 1, , 2 1, , 2
1 1 1

1, , 3 1, , 3 1, , 4 1, , 4
1 1

1 2
3 3

2 1
3 3

J J J
o q q q q q q
t j t j t j t j t j t j t

j j j

J J
q q q q

j t j t j t j t
j j

Y D S D S D S

D S D S

   
  

   
 

   
        

   
   

      
   

  

 
                       (3.111) 

Now, following the literature on mixed-frequency VARs, a state-space model can be formed 
as follows: 

ssm
t t tZ GS e  ,    0,te R                                     (3.112) 

1
ssm ssm
t t tS C FS v   ,    0 ,tv Q                           (3.113) 

Beginning with the state equation (3.113), it is straightforward that the separate scale j VAR 
models can be casted easily by writing each VAR as a separate block in the state equation and, 
in continuation, stacking them all together: 

  

1

1 1,11, 1, 1

, ,, , 1

1, 1,11, 1, 1

ssm ssm
t t

ssm ssm
tt t

ssm ssm
J t J tJJ t J t

ssm ssm
J t J tJJ t J t

FCS S 





   

      
      
              
      

          

0 0
0 0

0
0 0 0


   

 

 

C vFS S

C vFS S
C vFS S

tv


 
 
 
 
 

,     (3.114) 



1, 1

,

1, 1

0

,

t

t

J t J

J t J

Qv

 

 
                                  
 

0 00
0 0

00
0 0 00


  


 





v Q

v Q
v Q

 

Each block ,
ssm
j tS  for j = 1,⋯, J corresponds to the separate scale detail coefficients Dj,t VAR 

defined in equation (3.107). Additionally, the block 1 ,
s s m
J tS  for j = J + 1 corresponds to the 

smooth coefficients SJ,t VAR defined in equation (3.108).   

For the case of exposition, below, it is shown in more detail how each block ,
ssm
j tS  is formed. 

For the case of j = J + 1 referring to block 1 ,
s s m
J tS , obviously, in what follows, the detail 

coefficients Dj,t should be substituted with the smooth coefficients SJ,t .  

, , 1 ,
ss m ss m
j t j j j t j t  S C F S v ,  , ,j t j0 v Q  
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Where: , , , 1 , 1, , ,
j

ssm
j t j t j t j t PD D D  

     S , 
 1 1

, 0
j

j j N P
c

 

    
C , 

   

,1 , 1 ,

1 1

, ,

0
j j

j j

j j P j P

j
N P N P N

B B B

I


  

 
 
 
 


F , 

 , , 1 1
, 0

j
j t j t N P


 

    
v  and 

 

     

1

1 1 1

0

0 0
j

j j j

j N N P

j
N P N N P N P

 

    

 
 
 
 

Q

.  

Turning now to the measurement equation (3.113), for j = 1 ~ j* for the detail coefficients, 
,

q
j tD  

the vector enters with missing observations, while for j = j* + 1,⋯, J + 1, the relevant 
components are assumed to be observed. In more detail, the measurement column vector Zt of 
dimension n1 + ( J + 1 ) N is given below: 

* *1, , ,, 1,
, , , , , , ,o

t t t J t J tj t j t
Z Y D D D D S



      
 

                             (3.115) 

Then the measurement equation can be partitioned into two blocks, q (referring to the quarterly 
time series) and w (referring to the wavelet transform detail and smooth coefficients), as 
follows: 

  
tt

q q q
t tssm
w w wt
t t

eZ G

S
     

      
          

Z G e
Z G e

, 
 

0

,

t

q q
t
w w
t

e R

 
     
     
          
 

0 0
0 0





e R
e R                     (3.116) 

Block q in equation (3.116) applies the intertemporal restriction discussed in equations (3.110) 
and (3.111). The observations vector is set equal to the observed quarterly time series, i.e. 

q o
t tZ Y . Expanding block q for each univariate time series n = 1,⋯, n1 yields: 

  1 1 1

1, 1 1,

, ,

q q q
t

o q q
t t

q o ssm
t t t

o q q
n t n n t

G eZ

Y G e
S

Y G e

     
             
     
     

  Z Y , 

 1 1

1, 1

,

0

0 0 0
, 0 0

0 0 0
q q

q q
t

q q
n t n

e R

e R

e R

 
                         
  

   



  

Where row vector ,1 , , 1, , ,q q q q
n n n J n JG G G G      for n = 1,⋯, n1 contains J + 1 row subvectors in 

line with equation (3.111): 

1 2 2 2 2 3, 1 1 1 1 1 10 ,1 3,0 ,2 3,0 ,1,0 ,2 3,0 ,1 3,0q
n j d d d d d dG           

Where  1 1d n   for 11, ,i n  , 2 1 21d n n   ,  3 1 2 5jd n n n N P     .  

Since there is not any noise corrupting the observations, matrix Rq is a square zero matrix of 
dimensions n1 × n1.  

Turning now to block w in equation (3.116), it contains the detail and smooth coefficients, 
which for the quarterly time series up to level j* are assumed to be completely missing. Thus, 
the observation column vector w

tZ  is given as:  
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* *1, 1, 1, , ,, 1,
, , , , , , , ,w w w

t t J t t J t J tj t j t
Z Z D D D D S 

             
  Z  

Consequently, the entire block w in equation (3.116) can be further partitioned into the J + 1 
blocks described below: 

1, 1,1

, ,

1, 1,1

ww
t

w ww
t t

tw ww
J t J tJ

w ww
J t J tJ

wGZ e
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

1, 1

,

1, 1

0

0 0 0
0 0

,
0 0
0 0 0 0

w

w w
t

w w
J t J

w w
J t J

w Re

e R

e R
e R 

 
                                   
 


  


 
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  

For a given scale j, the relevant partition of the observation equation of dimension N is given 
as: 

,
w w ss m w
j t j t jZ G S e  ,    0,w w

j je R   

Where 
1 2

0 , ,0w
j N d N N dG I    with 

1

1
1

j

j
i

d NP




   and  
1

2
1

1
J

j i
i j

d N P N P


 

     and  

0w
j N NR  .  

To be more concrete, the entire observations vector Zt defined in equation (3.115) for 
subsequent observations over the first and second quarter of a calendar year is given as follows: 
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Where for *1j j  , 
1, , , 1 ,, ,q m m

j t j t j t n j tD D D D

        
   

 with 
11 n  denoting missing 

observations for the n1 quarterly time series. Regarding the n2 monthly time series, it is 
straightforward that the MODWT-MRA decomposition can be applied, and the resulting detail 
and smooth coefficients can be used as observations at all scales J, i.e. 

,
m
j tD  for j = 1,⋯, J and 

,
m
J tS .  

Turning now to the quarterly time series, in principle, it can be assumed that j* = J + 1, such 
that for all of the detail and smooth coefficients, latent monthly processes corresponding to the 
quarterly time series enter as missing observations. Alternatively, it can be assumed that for 
j = j* + 1,⋯, J + 1, the detail and the smooth coefficients are known in monthly frequency. 
Such an approach requires the application of the MODWT-MRA decomposition as if the 
monthly latent process of the quarterly time series were known. In that case, the MODWT-
MRA needs to be applied to monthly estimates of quarterly time series estimated from a 
previous external step. For instance, in the simplest case, it can be assumed that all months of 
a quarter have values equal to 1/3 of the corresponding quarterly observation or use the Chow 
and Lin (1971) interpolation method. Alternatively, the MF-VAR monthly latent process 
estimates could be used instead.  

What is critical to understand is that, as it will be shown in the empirical application Section 
3.6, even for a J = 2 level wavelet decomposition where the unknown monthly values are 
assumed to be equal to the 1/3 of quarterly observation, the smooth coefficients S2,t are highly 
correlated with what would have been the actual S2,t estimated from the actual monthly time 
series.  

Concerning the model estimation, this can be performed easily via a standard Gibbs sampler 
consisting of three blocks. Each iteration (r) is based on the following three blocks:  

1.       1 1,ssm r r rp S B    

2.       1,r ssm r r
j jp B S  ,   j = 1,⋯, J + 1 

3.       ,r ssm r r
j jp S B ,   j = 1,⋯, J + 1 

Where Bj and Σj refer to the set of parameters for each one of the J + 1 in total separate VARs 
estimated for the detail and smooth coefficients respectively: B = { Bj,⋯, BJ+1}  and            Σ = {
Σj,⋯, ΣJ+1} . It has to be noted that since each one of the VARs which needs to be estimated is 
orthogonal to the remaining, the second and the third blocks described above can be easily 
parallelised for computational efficiency. Parallelisation can occur intuitively by estimating 
the J + 1 VARs in parallel rather than in a serial manner. Furthermore, to increase the 
computational efficiency, the equation-by-equation estimation technique for large VARs 
(Carriero, Clark, & Marcellino, 2019; Carriero, Chan, Clark, & Marcellino, 2022) can be 
employed. The prior used for the J + 1 VARs is a conventional Minnesota prior (independent 
normal - inverse Wishart) whose hyperparameters follow conventional values from the 
literature. More information can be found in Section 3.6.2, discussing priors and other 
estimation details.  

Finally, regarding the posterior estimation of the states, while there exist numerous Kalman 
filter simulation smoother algorithms, following the findings of Bańbura, Giannone, and Lenza 
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(2015), I use the Durbin and Koopman (2002) simulation smoother with the Kalman filter 
fixed interval smoother of de Jong (1988). More details can be found in Appendix C.1.4 
Kalman filtering and smoothing. 

 

3.6 Empirical application mixed-frequency time series 
 

This section presents an empirical application of using the proposed wavelet-based MF-VAR 
for modelling mixed-frequency time series. Section 3.6.1 describes the US mixed-frequency 
macroeconomic time series which were used, and Section 3.6.2 provides more details about 
the proposed model specifications and priors used. In continuation, Section 3.6.3 discusses the 
external monthly estimates which were used as input to some specifications of the wavelet-
based MF-VAR. Finally, Section 3.6.4 presents the findings on the proposed model’s forecast 
accuracy for the monthly estimates of the originally assumed quarterly frequency time series.  

 

3.6.1 Data description 
 

All models, i.e. the MF-VAR approach and the various specifications of the proposed wavelet-
based MF-VAR model, are estimated using a set of 7 variables. The first 4 are quarterly 
frequency variables which are estimated in monthly frequency and consist of the real personal 
consumption expenditure (PCE), industrial production (IP), CPI inflation and West Texas 
Intermediate (WTI) crude oil price. The remaining three monthly frequency variables, which 
are used to inform the monthly estimates of the quarterly variables, are the Federal Funds Rates 
(FFR), 10-year bond yield, and total nonfarm employment. All the time series, both quarterly 
and monthly that enter the MF-VAR models are transformed into growth rates (100 Δlog), 
except for the FFR and 10-year bond yield, which are expressed in percentage points – see 
Table 3.13, first panel.  

In addition, both the MF-VAR and the wavelet-based MF-VAR monthly estimates of the four 
quarterly variables are compared with their corresponding actual monthly time series 
expressed in growth rates (100 Δlog), as well – see Table 3.13, the second panel below.  
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Table 3.13: Mixed frequency time series – variables 

Variable  Transformation  Frequency 
MF-VAR models 

PCE  100 Δlog  Quarterly 
Industrial production  100 Δlog  Quarterly 
CPI  100 Δlog  Quarterly 
WTI crude oil price  100 Δlog  Quarterly 
FFR  -  Monthly 
10-year bond yield  -  Monthly 
Employment  100 Δlog  Monthly 

Time series to evaluate MF-VAR monthly estimates 
PCE  100 Δlog  Monthly 
Industrial production  100 Δlog  Monthly 
CPI  100 Δlog  Monthly 
WTI crude oil price  100 Δlog  Monthly 

Source: Archival Federal Reserve Economic Data of the Federal Reserve Bank 
of St. Louis. 

 

In order to have a better understanding of the monthly time series properties which will be 
estimated based on their corresponding quarterly time series, variance decomposition (see 
equation (3.34) for details) is performed by applying the MODWT to the actual monthly time 
series in Table 3.14 below.  

Table 3.14: Variance decomposition 

Variables  Mean  St. dev.  W1: 2-4M  V1: >4M 

  PCE  0.27  
(0.26) 

 0.51  
(0.84) 

 58.97 
(49.06) 

 41.03  
(50.94) 

  IP  0.21  
(0.21) 

 0.73  
(0.95) 

 34.02 
(33.66) 

 65.98  
(66.34) 

  CPI  0.31  
(0.3) 

 0.31  
(0.31) 

 18.65 
(18.51) 

 81.35  
(81.49) 

  Oil  0.43  
(0.39) 

 7.7  
(8.49) 

 38.12 
(38.02) 

 61.88  
(61.98) 

Note. Normalised variance decomposition across J = 1 MODWT components 
(may not add up to 100% due to rounding). Data sample is 1960M1-2019M12 
(excluding COVID-19 data) and 1960M1-2020M12 (including COVID-19 
data) in parentheses.  

 

Overall, it is clear that there is a huge variation among the variables under examination. For 
example, CPI variance is mostly explained by the scaling coefficients V1 variance, by 81.35%, 
while on the contrary, PCE short-term fluctuations captured in wavelet coefficients W1 explain 
more than half (58.97%) of the total time series variance, excluding the impact of COVID-19 
data. Ordering the four variables by increasing variance in W1 (and decreasing variance in V1, 
respectively) as CPI, industrial production, oil price and PCE is important to explain the 
relative differences between variables in Sections 3.6.3 and 3.6.4 discussing the results. 
Finally, regarding the impact of the COVID-19 data on the time series, the effect is noticeable 
for PCE by an increase of almost 10% for frequencies greater than four months which explains 
the long-lasting behaviour of the COVID-19 shock.  
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3.6.2 Priors and other estimation details 
 

In order to evaluate the behaviour of the wavelet-based MF-VAR versus the MF-VAR 
approach, which is used as the benchmark, numerous specifications are employed. In 
particular, the specifications span across three main dimensions, with the total specifications 
tested amounting to a total of 20 (5×2×2).  

The first dimension, which includes five specifications, compares whether assuming all detail 
and smooth coefficient across all decomposition levels are missing provides better forecasting 
accuracy than assuming the detail levels up to level j* are missing only, and the remaining 
j = j*+1,⋯, J + 1 detail and smooth coefficients are based on external monthly estimates, i.e. 
the MF-VAR, Chow-Lin, or constant 1/3 approaches. In the same dimension, the fifth 
specification explores the theoretical case where only the j = j* = 1 level detail coefficients are 
unknown, where all the remaining detail and smooth coefficients for j = 2,⋯, J + 1 are 
assumed to be estimated using the actual monthly time series. This allows to establish a lower 
bound in interpolating the quarterly time series only for the informational content included in 
the range of two to four months, whereas all the information for fluctuations above four months 
is assumed to be known with certainty since the actual monthly time series are used.  

The second dimension investigates at which level J of the MODWT-MRA decomposition the 
forecast accuracy of the monthly estimates is higher. Two specifications for the J = 1 and J = 2 
MODWT-MRA were tested in that respect. It is important to have in mind here that from a 
theoretical perspective, there exists a trade-off between the J levels of decomposition and the 
forecast accuracy. The larger the level of decomposition that is used, the more efficient 
information usage can be potentially achieved since independent VARs formed model 
narrower frequency bands; however, at the expense of parameters proliferation and the 
respective estimation uncertainty, which could undermine the theoretically more efficient use 
of the time series informational content across the different scales.  

Finally, the third dimension investigates the impact of the latest COVID-19 data on the 
proposed model’s accuracy. In particular, the same exercise is performed for the period 1960-
2019, i.e. excluding COVID-19 data and the full sample 1960-2020, which includes COVID-
19 data. For the latter case, the models are not re-estimated, but instead, the parameters 
estimated for the 1960-2020 period are used, and the 2020 time series observations are 
appended to the dataset, similar to the case Kalman filtering is used for the case of ragged-
edged data or conditional forecasting.  

Regarding the VARs prior, the MF-VAR and the various wavelet-based MF-VAR 
specifications use a conventional independent normal inverse Wishart – Minnesota type prior, 
which follows the standard hyperparameter values set in the literature. In particular, the 
hyperparameters regarding the prior of the coefficients B in equation (3.59) are set as follows: 
overall shrinkage λ1 = 0.1, cross-variable shrinkage λ2 = 0.5, lag decay λ3 = 1 and the constants 
when used in the VAR specification use a diffuse prior (see below for more details about the 
wavelet-based MF-VAR). The innovations covariance Σ, which follows an inverse Wishart 
prior in equation (3.60), uses N + 2 degrees of freedom, and the scale is set equal to the 
residuals of independent AR(1) regressions for each variable.  

For the case of the MF-VAR, the prior of the variables available only at a quarterly frequency 
for which we want to estimate their monthly estimates are based on preliminary monthly time 
series with monthly values set equal to 1/3 of the corresponding quarterly value in growth 
rates. Regarding the wavelet-based MF-VARs, for the missing detail/smooth coefficients up 
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to level j*, the VARs priors distribution uses the MODWT-MRA coefficients assuming 
preliminary monthly time series with monthly values set equal to 1/3 of the corresponding 
quarterly value in growth rate as previously.  

The MF-VAR specification of equation (3.98) includes a constant. However, for the wavelet-
based MF-VAR specifications, the VAR equations (3.107) modelling the detail coefficients 
do not need to include a constant since the detail coefficients are zero mean time series – see 
more in Section 3.2.4. Regarding the MF-VAR lag length, the MF-VAR uses P = 12 lags. The 
wavelet-based MF-VARs for all specifications (MODWT-MRA and J = 1,2) use 12 lags for 
j ≥ 2. For j = 1, for which the detail coefficients refer to fluctuations in the range of 2-4 months, 
the lag length is set to P1 = 5, which is the minimum lag length that can satisfy the time 
aggregation restriction discussed in the equations (3.110) and (3.111).  

The simulation smoother algorithm follows an exact initialisation with the initial values of the 
time series. In order to compare the MF-VAR monthly estimates with the wavelet-based MF-
VAR specifications for the same sample, the first 12 monthly estimate observations, which are 
used for the initialisation of the wavelet-based MF-VAR, are discarded.  

For all the estimated models, the first 10000 draws are discarded as a burn-in sample, and the 
subsequent 5000 draws are used for posterior inference.  

 

 

3.6.3 Results on external monthly estimates used as input to the wavelet-based MF-
VAR 

 

This section presents the results of the external monthly estimates, which are used later as 
input for the wavelet-based MF-VAR. External monthly estimates, in principle, can include 
any method that provides monthly estimates, which are later used as input to the wavelet-based 
MF-VAR to apply the MODWT-MRA on these external monthly estimates and treat the 
resulting details and/or smooth coefficients as observables.  

In this study, external monthly estimates, as already discussed previously, refer to three 
approaches. The first one, called ‘MF-VAR’ below, denotes the MF-VAR monthly estimates, 
the second one to the Chow and Lin (1971) interpolation method and finally, the third one, 
called ‘constant’ assumes constant monthly observations set equal to 1/3 of the corresponding 
quarterly value in growth rates as a rough approximation.  

In order to evaluate how good these external monthly estimates are such that their 
corresponding smooth coefficients can be treated as observables in the wavelet-based MF-
VAR, the correlation between the MODWT-MRA coefficients based on the actual monthly 
time series and the external monthly estimates is estimated as a rough measure of their 
accuracy.  

Table 3.15 below presents in more detail these correlation values for the MODWT-MRA detail 
and smooth coefficients between the actual monthly time series and the three approaches used 
as external monthly estimates for the quarterly frequency variables. As a reminder, for J = 2, 
the values of D1 are the same as for the case of J = 1, and this is the reason that the relevant 
panel is missing from the table below to avoid repetition.  
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It is clearly evident that for J = 1, 2, the correlation of the smooth coefficients is strong enough 
and above 0.7 for any option of the monthly external estimates used. This finding is expected 
and in line with Table 3.11, discussed in Section 3.5.2. Even for the simplest case where the 
external monthly estimates are set equal to 1/3 of the corresponding quarterly variable, it is 
sufficient to capture the salient futures of the wavelet components which describe fluctuations 
with a period larger than four months, i.e. greater than the observation frequency of 3 months 
for a quarterly time series.  

Turning to the J = 1 MODWT-MRA D1, overall, it is observed that the correlation is less 
strong as expected across all external monthly estimate approaches used since these 
components capture fluctuations in the range of 2-4 months. Additionally, what stands out is 
how well MF-VAR monthly estimates inform the S1 and D2 coefficients across all variables 
except for CPI, in contrast to the other less computationally demanding methods. However, 
for the D1 coefficients, quite surprisingly, MF-VAR monthly estimates do not present the 
highest correlation with the D1 coefficients obtained from the true monthly time series.  

In order to reconcile these results with the findings of the variance decomposition in Table 
3.14, we can focus on the J = 1 and the constant 1/3 external monthly estimate approach for 
S1. It becomes easily evident that the order of the variables in terms of decreasing correlation 
(CPI, industrial production, oil price, PCE) is exactly the same as the variables’ order in Table 
3.14 in terms of decreasing scaling coefficients variance percentage. In other words, the larger 
the part of the time series total variance that can be explained by fluctuations with a period 
greater than four months, the better the accuracy of the constant external monthly estimate 
with respect to the actual monthly time series. Since the total variance explained by the high-
frequency fluctuations in D1 is small as a percentage, the sampling frequency every three 
months for quarterly time series is sufficient to capture fluctuations of the time series with 
periods greater than four months adequately.  
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Table 3.15: Correlation between the actual and the estimated monthly time series Haar 
MODWT-MRA coefficients 

 PCE IP CPI OIL 
 J = 1 
 D1 
MF-VAR 0.09 (0.66) 0.37 (0.58) 0.03 (0.05) 0.1 (0.09) 
Chow-Lin 0.09 (0.64) 0.34 (0.6) 0.11 (0.11) 0.16 (0.33) 
Constant 1/3 0.11 (0.1) 0.13 (0.14) 0.11 (0.11) 0.16 (0.14) 
      S1 
MF-VAR 0.82 (0.92) 0.94 (0.95) 0.87 (0.88) 0.83 (0.8) 
Chow-Lin 0.71 (0.81) 0.89 (0.91) 0.92 (0.92) 0.77 (0.77) 
Constant 1/3 0.72 (0.41) 0.87 (0.74) 0.91 (0.91) 0.77 (0.69) 
 J = 2 
 D2 
MF-VAR 0.51 (0.85) 0.64 (0.83) 0.16 (0.21) 0.47 (0.44) 
Chow-Lin 0.27 (0.73) 0.57 (0.84) 0.44 (0.46) 0.43 (0.5) 
Constant 1/3 0.27 (-0.15) 0.32 (0.14) 0.39 (0.38) 0.4 (0.23) 
      S2 
MF-VAR 0.98 (0.98) 0.99 (1) 0.99 (0.99) 0.98 (0.97) 
Chow-Lin 0.93 (0.91) 0.96 (0.95) 0.98 (0.98) 0.9 (0.91) 
Constant 1/3 0.93 (0.8) 0.96 (0.93) 0.98 (0.98) 0.91 (0.89) 
Note. Data sample is 1960M1-2019M12 and 1960M1-2020M12 in parentheses.  

 

Figure 3.19 below shows indicatively for the case of industrial production, the J = 2 Haar 
MODWT-MRA detail and smooth coefficients for the actual monthly time series in black and 
the monthly MF-VAR external estimates in red, the Chow-Lin monthly estimates in green, as 
well as the case of the ‘constant’ external monthly estimates approach in blue. The time series 
are shown only for the post-2000 period for visibility reasons.  

It is clearly visible that all external monthly estimate methods fail to track the D1 and D2 

coefficients closely, while the actual time series S2 coefficients almost coincide with the S2 
coefficients estimated using the external monthly estimates. Focusing on periods where 
nowcasting could be highly informative in a real-time setting, comparing the 2008 financial 
crisis with the COVID-19 recession, it can be seen that for the former, the shock using the MF-
VAR approach is underestimated, while for the latter is overestimated.  
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Figure 3.19: Industrial production actual and estimated monthly time series 

 

Note. First subplot shows the actual industrial production actual (black), MF-VAR monthly estimates 
(red), Chow-Lin monthly estimates (green) and monthly values set equal to constant 1/3 of the 
corresponding quarterly values in growth rate (blue). Second, third and fourth subplots show the J = 2 
Haar MODWT-MRA detail D1, D2 and smooth S2 coefficients for the actual series in black and its 
monthly estimates in red and green and blue respectively.   
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3.6.4 Wavelet-based MF-VAR results 
 

This section presents the key findings of the various wavelet-based MF-VAR specifications 
versus the MF-VAR approach in terms of in-sample point forecast accuracy measured with 
the root mean squared error (RMSE). The point estimates for the MF-VAR are estimated as 
the mean of the retained posterior draws. For the case of the wavelet-based MF-VAR, the point 
estimates are estimated by summing all the detail and smooth coefficients to form the monthly 
estimate for each posterior draw (r) of the Gibbs sampler and, in continuation, by averaging 
all of those monthly estimates. To be more specific, using (r) to denote a posterior draw, then 
the n1-vector of the monthly estimates q

tY  of the time series corresponding to the quarterly 
observed time series is defined as:  

     ( ) ( ) ( )
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1

Jr r rq q q
t j t J t

j
Y D S
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tY  estimates: 
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Table 3.16 below shows the RMSE ratios of the various wavelet-based MF-VARs versus the 
MF-VAR used as the benchmark. To have a clearer image of the RMSE ratios in terms of the 
benchmark, raw RMSEs are also presented in the row73. As already discussed in Section 3.6.2, 
the wavelet-based MF-VAR specifications investigate the impact of external monthly 
estimates used as input for the wavelet-based MF-VAR, i.e. the MF-VAR monthly estimates, 
the Chow-Lin monthly estimates and the ‘constant’ 1/3 method, as well as the level of 
decomposition J = 1, 2. Additionally, to set a lower bound on the maximum accuracy that 
could potentially be achieved using as input to the wavelet-based MF-VAR, the actual monthly 
time series for the estimation of the MODWT-MRA smooth coefficients are used, and this 
case is referred in the table as ‘actual’. Finally, the last specification in each subpanel referred 
to as ‘missing’, is the case where no external monthly estimates are assumed. This 
specification, in principle, provides as input to the wavelet-based MF-VAR exactly the same 
information as the MF-VAR.  

Overall, it is evident, as expected, that for J = 1, 2, the forecast accuracy deteriorates (RMSE 
ratio values closer to unity) in a predictable way for the various specifications wavelet-based 
MF-VAR specifications. The ‘actual’ specification provides the maximum informational 
content to the wavelet-based MF-VAR, which estimates only the detail coefficients at j = 1, 
while the remaining wavelet coefficients (S1 for J = 1 and D1, S2 for J = 2) are estimated based 
on the actual time series. This specification presents the lowest RMSE ratios, and the results 
are significant, with one exception across all variables and levels of decomposition J for the 
evaluation period excluding COVID-19 data.  

In continuation, excluding the COVID-19 data, the specification using the MF-VAR external 
monthly estimates provides significant results across all variables for J = 1, while for J = 2, 
the results hold only for CPI and oil price. The remaining two external monthly estimate 

 
73 The MF-VAR raw RMSE large value for oil price is due to a large increase in the monthly time series 
between 1973M12 and 1974M12 from 4.31 to 10.11 USD per barrel.  
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methods, i.e. the Chow-Lin and ‘constant 1/3’, provide worse results vis-a-vis the MF-VAR 
method at a comparable level.  

Finally, looking at the ‘all missing’ specification, where all of the wavelet coefficients for the 
quarterly variable need to be estimated by the Kalman filter, forecast accuracy overall 
deteriorates compared to the ‘MF-VAR’ specification for all of the variables as expected. For 
the case of PCE and industrial production, the proposed model does not provide any advantage 
at all compared to the benchmark with RMSE ratios close to unity. For the remaining variables, 
i.e. CPI and oil price, the forecast accuracy improvement remains still significant both for 
J = 1, 2 and the two evaluation periods excluding and including the COVID-19 data.  

Examining the impact of the COVID-19 data on the proposed methods, it becomes clear that 
it has a profound worsening effect on the proposed model’s in-sample forecast accuracy for 
the cases of PCE and industrial production, while CPI and oil price remain unaffected. Finally, 
trying to reconcile the following results with the variance decomposition, presented in Section 
3.6.1, Table 3.14, for the two extreme cases of PCE and CPI, the results remain indeed 
consistent. CPI, for which the variance largest part is explained by scaling coefficients, i.e. 
less energy in high-frequency fluctuations, presents the biggest improvement across all 
specifications. On the contrary, PCE, for which more than half of the time series energy is 
contained in the high frequency 2-4 months detail coefficients, presents the least improvement 
versus the benchmark across all specifications.  

Abstracting for a while from the detailed results for each specification and focusing on the 
greater picture, the proposed model provides advantages versus the benchmark and established 
MF-VAR approach. All of the proposed model specifications in the first subpanel (J = 1, i.e. 
as system of 2 VARs with D1, S1) do not exhibit forecast accuracy significantly worse than the 
benchmark model for the evaluation period, excluding COVID-19 data. The RMSE ratios 
across all specifications have as an upper bound the unity, which provides some empirical 
evidence that the proposed model, in the worst case, will be as good as the MF-VAR. There 
are few marginal cases with RMSE ratios slightly higher than unity; however, these small 
differences can be explained by the computational aspect of the problem and the parameter 
proliferation for the proposed models.  

Nonetheless, the improvement of the proposed model across all variables requires, as a 
previous step, the external estimation of monthly estimates based on the MF-VAR approach, 
which is also used as the benchmark. It should be recognised that this 2-step approach, i.e. 
using external monthly estimates as input to the wavelet-based MF-VAR model, has some 
extra computational cost. It remains open for future research, which other more efficient 
external monthly estimate techniques could be used instead.  
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Table 3.16: Wavelet-based MF-VAR versus MF-VAR in-sample RMSE ratios 

 PCE IP CPI Oil 
 Evaluation period 1960M1-2019M12 (Excluding COVID-19 data) 
Raw MF-VAR RMSE 0.445 0.486 0.256 6.231 
 J = 1 (System of 2 VARs: D1, S1) 
Actual S1, j*=1 0.767*** 0.736*** 0.416*** 0.618*** 
MF-VAR S1, j*=1 0.989* 0.958* 0.797*** 0.932*** 
Chow-Lin S1, j*=1 1.003 0.965 0.649*** 0.889*** 
Constant 1/3 S1, j*=1 1.001 1.022 0.653*** 0.892*** 
Missing D1, S1, j*=2 1.022 1.034 0.662*** 0.877*** 
 J = 2 (System of 3 VARs: D1, D2, S2) 
Actual S2, j*=1 0.966** 0.975 0.594*** 0.822*** 
MF-VAR S2, j*=1 1.000 1.010 0.673*** 0.881*** 
Chow-Lin S2, j*=1 1.006 1.019 0.645*** 0.877*** 
Constant 1/3 S2, j*=1 1.006 1.032 0.644*** 0.875*** 
Missing D1, D2, S2, j*=3 1.038 1.083 0.675*** 0.881*** 
 Evaluation period 1960M1-2020M12 (Including COVID-19 data) 
Raw MF-VAR RMSE 0.505 0.596 0.237 7.029 
 J = 1 (System of 2 VARs: D1, S1) 
Actual S1, j*=1 0.966 0.716*** 0.449*** 0.597*** 
MF-VAR S1, j*=1 1.178 0.860 0.859*** 0.945*** 
Chow-Lin S1, j*=1 1.263 0.835* 0.699*** 0.889*** 
Constant 1/3 S1, j*=1 1.594 1.161 0.711*** 0.946* 
Missing D1, S1, j*=2 1.494 1.036 0.786*** 0.889*** 
 J = 2 (System of 3 VARs: D1, D2, S2) 
Actual S2, j*=1 1.444 1.002 0.649*** 0.827*** 
MF-VAR S2, j*=1 1.426 1.002 0.760*** 0.901*** 
Chow-Lin S2, j*=1 1.472 1.035 0.700*** 0.896*** 
Constant 1/3 S2, j*=1 1.569 1.104 0.699*** 0.901*** 
Missing D1, D2, S2, j*=3 1.544 1.106 0.848** 0.890*** 
Note. Panels show RMSE ratios of wavelet-based MF-VARs with respect to the benchmark MF-VAR. 
Detail (D.) and smooth (S.) coefficients refer to the Haar MODWT-MRA. Wavelet-based MF-VAR 
input specifications include the Haar MODWT-MRA coefficients for i) Actual monthly time series, ii) 
MF-VAR monthly estimates, iii) Chow and Lin (1971) monthly estimates, iv) constant monthly values 
set equal to 1/3 of the respective quarterly value, and v) missing time series (all wavelet coefficients are 
missing). j* refers up to which level j the wavelet coefficients are set as missing. Stars refer to the p-
values of the Diebold and Mariano (1995) test with respect to the benchmark. *, **, *** indicate 
rejection of the null at 10%, 5% and 1% significance level respectively.  
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The figures below show across all quarterly variables, the actual monthly time series (black), 
the MF-VAR monthly estimates (red), and the monthly estimates of wavelet-based MF-VAR 
specifications using: i) the ‘actual’ time series for the estimation of S1 coefficients (green), and 
ii) the MF-VAR external monthly estimates (blue). For visibility reasons, the figures show the 
post-2008 period, which includes the 2008 financial crisis and the COVID-19 recession.  

As expected and already discussed in the findings of Table 3.16 above, the ‘actual’ wavelet-
based MF-VAR specification monthly estimates in green are the ones closer to the actual 
monthly time series. However, even for this case, it is clear that the model is not able to capture 
the actual monthly time series behaviour closely, for example, during the recession periods. In 
other words, even allowing for the estimation only of the monthly detail coefficients D1 
capturing 2-4 months of the time series fluctuations, there still remains much pure statistical 
noise representing temporary economic shocks with periods smaller than two months that 
cannot be captured by wavelet analysis. The inclusion of stochastic volatility could be found 
to be beneficial during these periods.  

Turning to the two competing models, i.e. the MF-VAR VAR model and the wavelet-based 
MF-VAR based on the external monthly estimates of the MF-VAR move closer to each other, 
however as already indicated previously in the full sample analysis, their differences are found 
to be statistically significant. A closer examination reveals the MF-VAR monthly estimates 
tend to be sharper (‘spiky’) in changes although quite often not capturing the actual time series 
turning points, contrary to the wavelet-based MF-VAR estimates, which present a more 
smooth behaviour. For example, for PCE and industrial production, this behaviour is 
particularly accentuated for the post-2016 period, where the wavelet-based MF-VAR 
estimates in blue capture the underlying slow-moving trend for the time series rather than the 
exact turning points.  
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Figure 3.20: Personal consumption expenditure actual monthly time series, MF-VAR and 
wavelet-based MF-VAR monthly estimates 

 
Note. Actual personal consumption expenditure is in black. MF-VAR monthly estimates are in red. 
Wavelet-based MF-VAR J = 1 using external monthly estimates with i) Actual monthly time series in 
green ii) MF-VAR monthly estimates in blue. 
 

Figure 3.21: Industrial production actual monthly time series, MF-VAR and wavelet-based 
MF-VAR monthly estimates 

 
Note. See Figure 3.20 note details.  
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Figure 3.22: CPI actual monthly time series, MF-VAR and wavelet-based MF-VAR monthly 
estimates 

 
Note. See Figure 3.20 note details.  
 
 
Figure 3.23: Oil price actual monthly time series, MF-VAR and wavelet-based MF-VAR 
monthly estimates 

 
Note. See Figure 3.20 note details.  
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3.7 Conclusion 
 

So far in the literature, wavelet-based forecasting is focused mainly on univariate time series. 
This paper attempts to go beyond the case of univariate time series and extends the existing 
forecasting approaches to multivariate single and mixed-frequency time series relying on 
vector autoregressive techniques under a Bayesian estimation framework.  

The three forecasting approaches which are investigated for single-frequency time series 
include i) discrete wavelet transform (DWT) based denoising and subsequent conventional 
BVAR forecasting, ii) Haar Maximal Overlap Discrete Wavelet Transform (MODWT) 
separate scale BVAR forecasting and subsequent aggregation of the separate scale forecasts, 
and iii) extension of the Multiscale Autoregressive model of Renaud et al. (2003) into the 
Multiscale BVAR both in a homoscedastic and a heteroscedastic specification employing a 
Minnesota inspired prior which allows a varying degree of shrinkage across scales, as well as 
the stochastic search variable selection prior.  

In an out-of-sample forecasting exercise using US macroeconomic variables, the three 
forecasting approaches are found to outperform a conventional BVAR used as a benchmark 
in terms of point and density accuracy on many occasions. Wavelet-based denoising 
forecasting presents a robust superior performance for density forecasts, and the multiscale 
BVAR forecasting approach outperforms the benchmark across all variables for medium to 
long-term forecasts.  

I leave for further research the investigation of more advanced wavelet-based denoising 
techniques incorporating prior beliefs in a Bayesian framework and a more thorough 
examination of the role of the hyperparameters optimisation on the MODWT separate scale 
BVAR modelling. Finally, for the case of the multiscale BVAR going beyond optimising the 
proposed prior’s hyperparameter values, alternative priors like the global-local family prior 
could be employed to verify the extent to which the a priori additional shrinkage imposed on 
the wavelet high-frequency components is supported from the underlying data. Finally, the 
multiscale BVAR behaviour of impulse response functions and forecast error value 
decomposition can be tested against a conventional BVAR.  

Regarding modelling mixed-frequency time series using a wavelet-based approach, the 
proposed wavelet-based MF-VAR model, which comprises separate scale MF-VARs in a 
single system, exhibits increased in-sample forecast accuracy for known monthly time series 
in a statistical sense compared to the standard MF-VAR; however, this behaviour reverses 
during recessionary periods like the latest COVID-19 recession. Further research, like 
examining the out-of-sample forecasting performance in a nowcasting recursive estimation 
exercise, could shed more light on the potential merits of the proposed wavelet-based MF-
VAR.  
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Appendix 
 

Appendix A (Essay 1) 
 

A.1 Technical appendix  
A.1.1 Particle swarm optimisation  
 

Particle swarm optimisation is a derivative-free, stochastic optimisation technique which 
iteratively tries to improve a candidate solution for the optimisation of an objective function. 
PSO (Kennedy & Eberhart, 1995; Kennedy, 1997; Shi & Eberhart, 1998) mimics social 
behaviour in order to reach an optimal solution for a problem. The rationale of the algorithm 
can be briefly described as follows. A swarm of particles explores the K-dimensional space 
defined for the objective function that needs to be optimised in a stochastic way which is a 
mixture of the swarm’s best solution and each particle’s best own solution. The particles are 
initialised uniformly in the K-dimensional space, and after each iteration, they converge slowly 
to the global optimum by updating the swarm’s best position and their own best position every 
time a better candidate solution is found. The algorithm stops when the particles cannot reach 
a better candidate solution within a tolerance limit set ex-ante. Obviously, PSO can be easily 
parallelised since, at each iteration, each particle’s new position requires an evaluation of the 
objective function, which in this case is the time-expensive approximation of the marginal 
likelihood following Chib (1995) can be estimated independently.  

More formally, the swam is comprised of n = 1,⋯, N particles. Each particle at iteration t has 
a position defined as n

tx  where the dimension of the vector n
tx  is equal to K for the 

K  - dimensional space defining the objective function f. At iteration i particle’s n own best 
candidate solution as estimated over all previous iterations is n

ip  and the swarm’s best 
candidate solution is s

tp . Each particle’s position at the following iteration i + 1 is updated as 

1 1
n n n
i i ix x v   , where 1

n
iv   is called velocity and is defined as 

   1 1 1 2 2
n n n n s n
i i i i i iv wv c r p x c r p x       where c1, c2 are constant parameters, r1, r2 are draws 

from a uniform distribution defined in [0, 1], and w is inertia weight. Inertia weight can be 
either fixed ex-ante or be a function of time, and its impact is that it controls PSO trade-off 
between exploration of new areas versus exploitation of already best candidate solutions.  

The basic PSO algorithm is described as follows. 

 

Initialise the N particles uniformly in the K-dimensional space and set some random initial 
velocities 

repeat 
 for each particle n = 1,⋯, N do 
  Update the velocity: 1

n
iv   

  Update the position: 1
n
ix   

  Evaluate the objective function:  1
n
if x   

 end 
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 for each particle n = 1,⋯, N do 
  if    1

n n
i if x f p   then  

   1 1
n n
i ip x   

  else 
   1

n n
i ip p   

  end 
  if    1

n s
i if x f p   then  

   1 1
s n
i ip x   

  else 
   1

s s
i ip p   

  end 
 end 
until a stopping criterion is met 
 

Regarding the implementation details, the swarm size was set equal to 18 and as a stopping 
criterion the objective function’s tolerance was set to 0.1. Since, as shown previously in the 
sensitivity analysis of the log marginal likelihood, the values which maximise it lie close to 
conventional values in the literature, 2/3 of the particles were initialized in all possible 
combinations (12 in total) of hyperparameters λ1 ∈ {0.1, 0.2}, λ2 ∈ {0.25, 1}, λ3 ∈ {1, 2, 4}, 
while the remaining six were initialized randomly. The lower and upper bound for λ1, λ2, λ3 
were [0.05, 0.5], [0.1, 5], and [0.1, 5], respectively.  

 

 

A.1.2 Kalman filtering and smoothing  
 

For the state-space model defined according to equations (1.22) and (1.23), the Kalman filter 
with missing observations is described by the following recursion for t = T + 1,⋯, T + H. The 
prediction step consists of the following equations.  

| 1 1| 1t t t tS FS   ,    | 1 1| 1 't t t t tP FP F Q     
The update step, in order to account for the missing observations, i.e. the conditional forecasts 
that will be estimated, should adjust the standard equations by removing the corresponding 
rows and columns for the case of R referring to missing observations. In short, the update step 
consists of the following two equations: 

| | 1 | 1t t t t t t tS S K    ,   | | 1 | 1't t t t t t tP P F K GP    

Where | 1 | 1t t t t ty GS     is the prediction error, | 1 | 1t t t t tf GP G R    is the prediction error’s 
variance and 1

| 1 | 1t t t t tK P G f 
   is the Kalman gain.  

The de Jong (1988) fixed interval Kalman smoother, as further clarified in Koopman (1997), 
is described by the following recursion for t = T + H,⋯, T + 1.  

1
1 | 1t t t t tr G F L r

    ,   | | 1 | 1 1t t H t t t t tS S P r      
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The recursion is initialised with rT+H = 0, and the quantity Lt is estimated during the Kalman 
filter recursion for t = T + 1,⋯, T + H with Lt = F – F Kt G.  

 

 

A.1.3 Stochastic volatility estimation 
 

Following Kim, Shephard, and Chib (1998), stochastic volatility as a vector is estimated using 
the following state-space model: 

t t ty h e   ,    2
, , ,n t n t j je s j                                  (A.1) 

1t t th h    ,    0,t                                      (A.2) 

Where   2logt ty A c   with A and εt referring to equations (1.17) and (1.16), 

respectively. Further lnt th h  corresponds to equation (1.20) in a vector notation. In order to 
avoid numerical issues for εn,t → 0, c is set to 10-6. As shown by Kim, Shephard, and Chib 
(1998) ,n te  does not follow a normal distribution anymore, but its log-chi-square distribution 
can be approximated by a seven-component mixture of normal distributions: 

   
7

2
, ,

1
1.2704,i t j i t j j

j
f e p e  



    

Where φ (x | μ,σ2)is the probability density function of a normal distribution. The exact values 
of μj and 2

j  are available in Kim, Shephard, and Chib (1998), Table 4. The state-space model 

defined by equations (A.1) and (A.2) conditional on the state indicator sn,t ∈ {1,⋯,7 }, is a 
standard linear Gaussian state-space model where the state vector t tS h   is estimated by a 
forward pass of the Kalman filter as described in Appendix A.1.2 Kalman filtering and 
smoothing and the Carter and Kohn (1994) smoothing algorithm with draws from the 
following distributions:  

 , ss
T T T T TS S P   ,   t T  

 * *,t t T t TS S P  ,   1, ,1t T    

Where    1
*

1
ss ss

tt T t t t t t t t tS S P P Q S S


     and   1
* ss ss ss ss

t T t t t t t t t tP P P P Q P


   . 

  



181 
 

A.2 Additional results – Log predictive score 
 

Log predictive score (LPS) for variable n and horizon h is defined as: 

 
0

, ,
0

1log log
1

T H

n h n t h
t t

S f x Y
T H t






 
     

Where f denotes the probability density function of a t location-scale distribution fitted to the 
data: f (x | μ,σ,v), where the location, scale and shape parameters are estimated using the 
predictive density of the MCMC draws. For the rest of this section, when referring to LPS, I 
actually refer to minus LPS, i.e. the lower the value, the better the performance.  

Table A.1: Steady-state prior conditional versus unconditional forecasts evaluated with LPS  

 GDP CPI  FFR 10-Y  Unemployment Employment 
 SS unconditional forecasts 

h = 1 2.327 2.254 0.716 0.632 0.184 1.585 
h = 4 2.526 2.178 1.824 1.684 2.212 2.429 
h = 8 2.505 2.295 2.415 2.134 3.218 2.432 
h = 12 2.419 2.379 2.768 2.249 3.264 2.200 
 SS conditional forecasts 2-step estimation 
h = 1 -0.050* -0.058 - -0.108*** 0.067 0.020 
h = 4 -0.147*** 0.093 - -0.220* -0.252* -0.210* 
h = 8 -0.116* -0.035 - -0.578** -0.527* -0.149 
h = 12 0.035 -0.135** - -0.912** -0.142 0.158 
 SS conditional forecasts joint estimation 
h = 1 -0.055** 0.011 - -0.119*** -0.017 -0.124* 
h = 4 -0.162*** 0.060 - -0.232* 0.182 -0.322*** 
h = 8 -0.117* 0.016 - -0.556** -0.570* -0.118 
h = 12 0.042 -0.160** - -0.907** -0.162*** 0.131 
 SS-SV unconditional forecasts 
h = 1 2.371 2.045 0.303 0.623 -0.021 1.501 
h = 4 2.497 2.158 1.905 1.448 1.818 2.128 
h = 8 2.506 2.153 2.432 1.809 2.505 2.299 
h = 12 2.488 2.242 2.678 1.994 2.816 2.283 
 SS-SV conditional forecasts 2-step estimation 
h = 1 0.047 0.043 - -0.049* 0.127 0.053 
h = 4 -0.153** -0.126** - -0.162* -0.072 -0.058 
h = 8 -0.176*** -0.030 - -0.422*** -0.387** -0.254** 
h = 12 -0.119*** -0.056 - -0.595*** -0.426** -0.243*** 
 SS-SV conditional forecasts joint estimation 
h = 1 0.021 -0.002 - -0.084*** 0.101 -0.012 
h = 4 -0.161*** -0.109*** - -0.207** -0.276** -0.079 
h = 8 -0.210*** -0.042 - -0.450*** -0.460** -0.257** 
h = 12 -0.159*** -0.101** - -0.604*** -0.537** -0.304*** 

Note. Panels with unconditional forecasts show the raw LPS. Conditional forecasts for each 
specification show the difference in LPS with respect to the unconditional forecasts of the same 
specification. Values in parentheses show p-values of the Diebold and Mariano (1995) one-sided test 
with finite sample adjustment of Harvey, Leybourne, and Newbold (1997) with respect to the 
unconditional forecasts of the same specification. *, **, *** indicate rejection of the null at 10%, 5% 
and 1% significance level respectively. 2-step and joint estimation conditional forecasts refer to 
parameters’ uncertainty accounting for the ‘in-sample’ data only and the ‘in-sample’ data extended with 
the conditional forecasts respectively. The evaluation period is 1997Q1-2014Q1.  
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Table A.2: Steady-state versus Minnesota prior for conditional and unconditional forecasts 
evaluated with LPS 

 GDP CPI  FFR 10-Y  Unemployment Employment 
 SS unconditional forecasts 
h = 1 0.003 -0.129 0.031 -0.006 -0.054 -0.101* 
h = 4 0.051 -0.093* -0.057 -0.021 -0.020 0.225 
h = 8 0.022 -0.069** 0.031 0.002 0.129 0.225 
h = 12 0.022 -0.010 0.131 0.018 -0.074 0.077 
 SS conditional forecasts 2-step estimation 
h = 1 -0.046* -0.216 - -0.115*** -0.047 -0.028 
h = 4 0.008 -0.072 - -0.053 -0.340* 0.145 
h = 8 0.007 -0.048 - -0.133** -0.215** 0.289 
h = 12 0.042 -0.054 - -0.192** -0.311* 0.329 
 SS conditional forecasts joint estimation 
h = 1 -0.051** -0.146 - -0.127*** -0.132* -0.172** 
h = 4 -0.008 -0.105 - -0.064 0.094 0.034 
h = 8 0.007 0.003 - -0.111* -0.258** 0.320 
h = 12 0.049 -0.079 - -0.187*** -0.331* 0.302 
 SS-SV unconditional forecasts 
h = 1 0.047 -0.339 -0.382*** -0.015 -0.258* -0.185 
h = 4 0.023 -0.114 0.024 -0.257* -0.414 -0.075 
h = 8 0.022 -0.211 0.047 -0.323 -0.585 0.091 
h = 12 0.090 -0.147 0.041 -0.237 -0.522 0.159 
 SS-SV conditional forecasts 2-step estimation 
h = 1 0.095 -0.324 - -0.064 -0.191 -0.080 
h = 4 -0.027 -0.311 - -0.230* -0.554 -0.002 
h = 8 -0.051 -0.185 - -0.302 -0.788 0.050 
h = 12 -0.043** -0.112 - -0.131 -1.044 0.011 
 SS-SV conditional forecasts joint estimation 
h = 1 0.069 -0.369 - -0.099** -0.218 -0.145 
h = 4 -0.035 -0.294 - -0.275* -0.758 -0.024 
h = 8 -0.085* -0.196 - -0.330* -0.861 0.048 
h = 12 -0.084** -0.157 - -0.139 -1.155 -0.050 

Note. Panels show the LPS difference of SS minus the Minnesota prior (benchmark). Values in 
parentheses show p-values of the Diebold and Mariano (1995) one-sided test with finite sample 
adjustment of Harvey, Leybourne, and Newbold (1997). *, **, *** indicate rejection of the null at 10%, 
5% and 1% significance level respectively. 2-step and joint estimation conditional forecasts refer to 
parameters’ uncertainty accounting for the ‘in-sample’ data only and the ‘in-sample’ data extended with 
the conditional forecasts respectively. The evaluation period is 1997Q1-2014Q1.  
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Appendix B (Essay 2) 
 

B.1 Technical Appendix  
B.1.1 Particle Gibbs with ancestor sampling 
 

Following Lindsten, Jordan, and Schon (2014), particle Gibbs with ancestor sampling consists 
of the following steps. For a state-space model with parameters θ and latent states S1:T, the (r) 
iteration of the algorithm has the following two blocks:  

1.   1
1: ,r

Tp S Y   

2.     1: ,r r
Tp S Y  

In particular, the second block concerning the estimation of the latent states uses n = 1,⋯, N 
particles, and for the case of TV-LSTAR model is implemented as follows: 

1. For t = 1;  

a. Draw    
1 0 ,n nS S   for n = 1,⋯, N – 1  using the state equation. Fix    1

1 1
N rS S  .  

b. Estimate the normalised weights  
 

 

1
1

1
1

n
n

t N
n

n

wW
w








, where  

1
nw  is the model’s 

conditional likelihood:       0.5 2 1
1 12 exp 0.5n nw R e R     where: 

         1 1 1,1 2,1 1, 2,1 2,
1 1

1 , , , ,
P P

n n n
t d p t p t d p t p

p p

e y S G y S y G y S y      
 

   
       

   
   

2. For t = 2,⋯, T 

a. Resample  
1

n
tS   for n = 1,⋯, N – 1   using indices  n

t  with     
1Pr n n

t tn W    

b. Draw    

1 ,
n

tn
t tS S   using the state equation where 

 

1

n
t

tS
 denoted the previously 

resampled particles.  

c. Fix    1N r
t tS S   

d. Sample  N
t  with          1

1 1Pr Pr ,N n r n
t t t tn W S S 

    where the density 

    1Pr ,r n
t tS S   is equal to     0.5 2 1

12 exp 0.5 nQ e R    

e. Update the normalised weights  
 

 

1

n
n t

t N
n

t
n

wW
w






, where  n

tw  is the model’s 

conditional likelihood:   
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             0.52 2 1 112 exp 0.5n n r n r
t t t t tw Q S S Q S S        

 
 

f. Update the states' trajectories with the ancestor indices:       1: 1: 1 ,
n

tn n
t t tS S S

   

3. Draw k with    Pr n
Tk n W   and return    

1: 1:
r k
T TS S  .  

 

 

B.1.2 Particle filtering 
 

Assuming that the parameters θ of a non-linear state-space model described below are known, 
then the unknown posterior distribution of the states S1:T  can be estimated using the standard 
bootstrap particle filtering method of Gordon, Salmond, and Smith (1993). 

 t t ty p y S                                                          (B.1) 

 1t t tS p S S                                                         (B.2) 

Assuming n = 1,⋯, N particles, the algorithm is initialised by drawing N samples from the 
prior: 

 ( )
0 0

nS p S ,   1, ,n N   

For periods t =1,⋯, T perform a prediction and an update step: 

1. Prediction step: Using the state equation, draw N samples:  

    1
n n

t t tS p S S  ,   1, ,n N   

In particular, since the states in the generic case are assumed to follow an autoregressive 
process, this step is defined as:  

   
1

n n
t t tS C FS v   ,    0,tv Q  ,   1, ,n N   

2. Update step: Calculate the weights for each particle n based on the likelihood of the 
model given by equation (2.34) conditional on the predicted state at period t: 

    n n
t t tw p y S ,   1, ,n N   

The weights are normalised to sum to unity:      

1

pN
n n n

t t t
n

w w w


   

3. Resample step  n
tS  with probability    Pr n

ti n w    Resampling step addresses the 
fundamental degeneracy problem, which is present in sequential importance resampling 
algorithms. In particular, the standard multinomial resampling is employed. A discrete 
distribution over particles n = 1,⋯, N is defined using the probability mass of the 



185 
 

normalised weights  n
tw . Then N draws are performed from this multinomial 

distribution and substitute the old N particles with the resampled ones resulting in the 
filtered distribution: 

The integrated likelihood, which has been estimated once the latent states S1:T have been 
integrated out       1:, TY p Y p Y S dS     , following Andrieu, Doucet, and 

Holenstein (2010), can be approximated as:  

     

11

1ˆ ˆ
T N

n
t

nt

Y p Y w
N

 


                                          (B.3) 

 

 

B.1.3 Stochastic volatility estimation  
 

Following Kim, Shephard, and Chib (1998), stochastic volatility as a scalar is estimated using 
the following state-space model: 

t t ty h   ,    2,t t i is i                                           (B.4) 

1t t th h    ,    20,t iid                                           (B.5) 

Where  2logt ty e c   with et referring to equation (2.19). Further lnt th h  corresponds to 

equation (2.41). In order to avoid numerical issues for et → 0, c is set to 10-6. As shown by 
Kim, Shephard, and Chib (1998), ξt does not follow a normal distribution anymore, but its log-
chi-square distribution can be approximated by a seven-component mixture of normal 
distributions: 

   
7

2

1
1.2704,t i t i i

i
f p    



   

Where φ (x | μ,σ2)  is the probability density function of a normal distribution. The exact values 
of μi and 2

i  are available in the Kim, Shephard, and Chib (1998) Table 4. The state-space 
model defined by equations (B.4) and (B.5) conditional on the state indicator st ∈ {1,⋯,7 } is 
a standard linear Gaussian state-space model and is estimated by the Carter and Kohn (1994) 
algorithm.    
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Appendix C (Essay 3) 
 

C.1 Technical appendix 
C.1.1 Stochastic volatility estimation 
 

Following Kim, Shephard, and Chib (1998), stochastic volatility as a vector is estimated using 
the following state-space model: 

t t ty h e   ,    2
, , ,n t n t j je s j                                       (C.1) 

1t t th h    ,    0,t                                                   (C.2) 

Where   2logt ty Ae c   with Α and et referring to equations (3.85) and (3.84), respectively. 

Further lnt th h  corresponds to equation (3.88) in a vector notation. In order to avoid 
numerical issues for en,t → 0, c is set to 10-6. As shown by Kim, Shephard, and Chib (1998) 

,n te  does not follow a normal distribution anymore, but its log-chi-square distribution can be 
approximated by a seven-component mixture of normal distributions: 

   
7

2
, ,

1
1.2704,n t j n t j j

j
f e p e  



    

Where φ (x | μ,σ2) is the probability density function of a normal distribution. The exact values 
of μj and 2

j  are available in Kim, Shephard, and Chib (1998), Table 4. The state-space model 

defined by equations (C.1) and (C.2) conditional on the state indicator sn,t ∈ {1,⋯,7 } is a 
standard linear Gaussian state-space model and is estimated by Carter and Kohn (1994) 
algorithm.  

 

C.1.2 Marginal likelihood estimation 
 

Below, it follows the estimation of the log marginal likelihood for a homoscedastic MBVAR 
using the approximation method of Chib (1995). Beginning with Bayes’ rule: 

     
 

, ,
,

p Y p
p Y

p Y
 

 
 




 

by simple re-ordering, the log marginal likelihood is equal to: 

       ln ln , ln , ln ,p Y p Y p p Y         

This formula is valid at any point of the posterior distribution of parameters θ; however, for 
the approximation to be as accurate as possible, a point of support   with high density is 
chosen, where   is the mean of the posterior’s distribution. In the following equations, the 
index  representing the model hyperparameters is dropped for notational simplicity. 
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The term representing the MBVAR’s likelihood is: 

         10.50.52 exp 0.5
TTN

Tp Y vec E I vec E 
       

The parameters’ vector θ prior is comprised of the two terms corresponding to the priors of Β 
and Σ, respectively: 

       ln ln , ln lnp p B p B p          
In the same manner, the posterior distribution is comprised of the following two parts: 

       ln ln , ln , lnp Y p B Y p B Y p Y            

Chib (1995) showed that the first term  ,p B Y   can be estimated by evaluating the pdf of 

the posterior of Β as defined for   at the point B : 

 ,B Bp B  
  

Where:    111 
      Β    ,     1 1

B B B B vec Y            

The second term can be approximated following the ‘Rao-Blackwellization’ technique as 
follows: 

    
1

1 ,
R

r

r
p Y p B Y

R 

    

Where r = 1,⋯, R represent Gibbs sampler retained draws.  
Each term of the summation   ,rp B Y  is the pdf of the inverse Wishart with degrees of 

freedom d d T   and scale matrix:      r rS S Y X B Y X B        evaluated at  :

 ,p S d  

 

C.1.3 Fast sampling algorithm 
 

Bhattacharya, Chakraborty, and Mallick (2016) suggested the following computationally 
efficient algorithm for high-dimension univariate regressions when the number of regressors 
k is much larger than the dimension of the regressor k ≫ T. The original algorithm was 
originally suggested for the case of global-local prior on the coefficients β, but here is 
presented for the more generic case: 

Y X E  ,    20, TE I   

Where Y is T × 1, X is T × k, β is k × 1, and E is T × 1. Then assuming a normal prior on β, 
β ~   ,    its posterior should be β | σ2,Υ ~   ,    where 

   11 2 X X  
      , and  1 2 X Y           . Bhattacharya, Chakraborty, 

and Mallick (2016) suggested that when the posterior is patterned in the given manner instead 
of using the Cholesky decomposition to make draws, it is more efficient to follow the 
algorithm below: 
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Set X  , D   , Y    

1. Sample  ,u D    

2. Sample  0, T    

3. Set v u    

4. Solve  TD I w v     , and obtain w 

5. Set u D w     

The value of θ obtained in step 5 is equivalent to a draw from the posterior: 
β | σ2,Υ ~   ,   .  

 

C.1.4 Kalman filtering and smoothing 
 

For the state-space model defined by equations (3.112) and (3.113), I follow algorithm ‘2.a’ 
of the Durbin and Koopman (2002) simulation smoother, as clarified explicitly in Jarociński 
(2015). The algorithm is comprised of the following three steps: 

1. Perform the recursion of the state-space model equations (3.112) and (3.113) by making 
draws for the state-space model’s innovations et and vt from their respective 

distributions. For t = 1,⋯, T estimate tS  , tZ   and finally save 1 , , TZ Z Z        and 

1 , , TS S S       .  

2. Apply the Kalman filter and de Jong (1988) Kalman smoother to Z* = Z − Z+ and estimate 
the states *Ŝ . The intercept of the state equation (3.113) C is set to zero, as suggested 
in Jarociński (2015). More information on this step is provided below.  

3. Finally, estimate a draw of the state as *ˆS S S   .  

The Kalman filter applied in the second step of the Durbin and Koopman (2002) simulation 
smoother mentioned above is described by the following recursion for t = 1,⋯, T. Firstly, the 
prediction step is performed, which consists of the following two equations.  

| 1 1| 1t t t tS FS   ,    | 1 1| 1 't t t tP FP F Q     
In continuation, the update step is performed. In order to account for the missing observations 
in the observations vector Zt in the observation equation (3.112), the rows with missing 
observations are removed and additionally, for the case of the covariance matrix R, the relevant 
columns are as well. In short, the update step consists of the following two equations. 

| | 1 | 1t t t t t t tS S K    ,    1 1' tt t t t t tP P F K GP    

Where | 1 | 1t t t t tZ GS     is the prediction error, | 1 | 1t t t t tf GP G R    is the prediction error’s 
variance and 1

| 1 | 1t t t t tK P G f 
   is the Kalman gain.  
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The de Jong (1988) Kalman smoother, as further clarified in Koopman (1997), is described by 
the following recursion for t = T,⋯,1.  

1
1 | 1t t t t tr G F L r

    ,   | | 1 | 1 1t T t t t t tS S P r      

The recursion is initialised with rT = 0, and the quantity Lt is estimated during the Kalman filter 
recursion for t = 1,⋯, T with Lt = F – F Kt G.  
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C.2 Additional single-frequency time series results  
C.2.1 Wavelet and scaling coefficients 
 

Figure C.1: CPI J = 6 levels Haar MODWT 

 
Note. Black lines show actual time series. Red lines show MODWT J = 6 wavelet and scaling 
coefficients and J = 4 scaling coefficients.   
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Figure C.2: FFR J = 6 levels Haar MODWT 

 
Note. See Figure C.1 note details.  
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Figure C.3: Employment J = 6 levels Haar MODWT 

 
Note. See Figure C.1 note details.  
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Figure C.4: Industrial production J = 6 levels Haar MODWT 

 
Note. See Figure C.1 note details.  
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Figure C.5: Personal consumption expenditure J = 6 levels Haar MODWT 

 
Note. See Figure C.1 note details.  
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C.2.2 Log predictive score  
 

Log predictive score (LPS) for variable n and horizon h is defined as: 

 
0

, ,
0

1log log
1

T h

n h n t h
t t

S f x Y
T h t






 
     

Where f denotes the probability density function of a t location-scale distribution fitted to the 
data: f (x | μ,σ,v), where the location, scale and shape parameters are estimated using the 
predictive density of the MCMC draws. For the rest of this section, when referring to LPS, I 
actually refer to minus LPS, i.e. the lower the value, the better the performance.  
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Table C.1: Wavelet-based forecasting methods density forecast evaluation with LPS 

 GDP CPI  FFR Employment    IP PCE 
 BVAR 
h = 1 0.897 0.817 0.957 -0.037 1.481 0.787 
h = 1 1.036 0.827 1.022 0.638 1.735 0.896 
h = 4 1.052 0.897 1.029 0.843 1.731 0.888 
h = 8 1.037 0.978 1.036 0.827 1.725 0.879 
 Universal hard threshold denoising BVAR 
h = 1 -0.076** 0.183 -0.032 0.088 -0.039* -0.121*** 
h = 1 -0.069*** -0.025* -0.052*** 0.042 0.029** -0.086*** 
h = 4 -0.074*** -0.050 -0.055*** -0.032 -0.005** -0.031** 
h = 8 -0.023** -0.093*** -0.066*** -0.026 0.008** -0.033* 
 SURE soft threshold denoising BVAR 
h = 1 -0.032*** 0.166 -0.096*** -0.050 -0.098*** -0.058*** 
h = 1 -0.034** 0.042 -0.106*** 0.024 -0.032* 0.016** 
h = 4 0.055* -0.041 -0.103*** 0.079 0.068 0.044 
h = 8 -0.028 -0.060** -0.110*** 0.088 -0.031 0.018 
 MODWT separate scale BVAR  
h = 1 -0.105* 0.455 -0.142*** -0.039 -0.022 -0.127** 
h = 1 -0.130*** -0.001** -0.058 0.039 -0.011 -0.161*** 
h = 4 -0.094** -0.120*** -0.056 -0.119 -0.042 -0.101* 
h = 8 -0.038* -0.279*** -0.056 -0.176 -0.036 -0.045 
 MODWT separate scale BVAR-SV ( j ≤ 4) / BVAR( j > 4) 
h = 1 -0.072 -0.152 -0.570*** -0.201*** -0.086 -0.094* 
h = 1 -0.150*** -0.137*** -0.282*** 0.163 0.179 -0.174*** 
h = 4 -0.115*** -0.198*** -0.313*** -0.021 0.059 -0.102** 
h = 8 -0.071** -0.259*** -0.329*** -0.122 -0.020** -0.042 
 Multiscale BVAR-Minnesota 
h = 1 0.136 0.015 0.064 0.284 0.159 0.040 
h = 1 0.008 -0.025** 0.007 -0.132*** -0.044 -0.051** 
h = 4 0.006 -0.156*** 0.008 -0.175*** -0.032 -0.027*** 
h = 8 0.019 -0.191*** 0.007 -0.149*** -0.028** -0.012** 
 Multiscale BVAR-Minnesota-SV 
h = 1 -0.079 -0.256 -0.830*** -0.105 -0.075 -0.173*** 
h = 1 -0.118*** -0.171*** -0.564*** -0.126*** 0.036 -0.140*** 
h = 4 -0.074** -0.209*** -0.423*** 0.292 0.132 -0.031** 
h = 8 -0.025 -0.297*** -0.393*** 0.562 0.028 -0.014 
 Multiscale BVAR-SSVS 
h = 1 0.000 0.005 0.011 0.129 0.037 -0.019 
h = 4 -0.056*** -0.022** 0.028 -0.142** -0.047 -0.083*** 
h = 8 -0.003 -0.091** 0.036 -0.213** -0.018 -0.033* 
h = 12 0.034 -0.159*** 0.044 -0.169 -0.003 0.014 
 Multiscale BVAR-SSVS-SV 
h = 1 -0.138** -0.209 -0.792*** -0.074 -0.072 -0.121* 
h = 4 -0.141*** -0.177*** -0.535*** -0.146** 0.102 -0.148*** 
h = 8 -0.086** -0.140** -0.407*** 0.024 0.055 -0.047** 
h = 12 -0.042 -0.145 -0.381*** 0.043 0.001 0.002 

Note. First panel shows benchmark’s raw LPS. Remaining panels show LPS differences of the proposed 
models with respect to the benchmark. Stars refer to the p-values of the Diebold and Mariano (1995) 
one-sided test with respect to the benchmark. *, **, *** indicate rejection of the null at 10%, 5% and 
1% significance level respectively. The evaluation period is 1985-2018.   
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C.2.3 Time variation of results 
 

This section presents the time variation of the forecast accuracy results. Point forecasts from 
Figure C.6 to Figure C.13 are evaluated according to the Giacomini and Rossi (2010) 
fluctuation test, based on a rolling window of 25 quarterly observations74, where a value 
smaller than the critical value shown with the dash lines implies the significance of the 
proposed models with respect to the benchmark model. 

Evaluation of the density forecast from Figure C.14 to Figure C.21 is performed by plotting 
the cumulative difference between the proposed models and the benchmark model, where 
values below zero imply the superiority of the proposed models.  

 

 

Figure C.6: Fluctuation test of the universal hard threshold denoising BVAR minus the 
benchmark 

 
Note. Giacomini and Rossi (2010) one-sided fluctuation test. Red, green, blue and black lines refer to 
1, 4, 8, and 12-quarters ahead forecasts, respectively. Dash lines show critical values at 5% 
significance level. Window size is 40 quarters.   

 
74 The critical value used is 2.6760 and can be found in Giacomini and Rossi (2010), Table 1.  
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Figure C.7: Fluctuation test of the SURE soft threshold denoising BVAR minus the 
benchmark 

 
Note. See Figure C.6 note details.  
 
 
Figure C.8: Fluctuation test of MODWT separate scale BVAR minus the benchmark 

 
Note. See Figure C.6 note details.   
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Figure C.9: Fluctuation test of MODWT separate scale BVAR/BVAR-SV minus the 
benchmark 

 
Note. See Figure C.6 note details.  

 
 

Figure C.10: Fluctuation test of the multiscale BVAR-Minnesota minus the benchmark 

 
Note. See Figure C.6 note details.   
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Figure C.11: Fluctuation test of the multiscale BVAR-Minnesota-SV minus the benchmark 

 
Note. See Figure C.6 note details.  
 
 

Figure C.12: Fluctuation test of the multiscale BVAR-SSVS minus the benchmark 

 
Note. See Figure C.6 note details.   
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Figure C.13: Fluctuation test of the multiscale BVAR-SSVS-SV minus the benchmark 

 
Note. See Figure C.6 note details.  
 
 
Figure C.14: Difference of the cumulative CRPS of the universal hard threshold denoising 
BVAR minus the benchmark 

 
Note. Red, green, blue and black lines refer to 1, 4, 8, and 12-quarters ahead forecasts, respectively. 
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Figure C.15: Difference of the cumulative CRPS of the SURE soft threshold denoising BVAR 
minus the benchmark 

 
Note. See Figure C.14 note details.  
 
 
Figure C.16: Difference of the cumulative CRPS of the MODWT separate scale BVAR minus 
the benchmark 

 
Note. See Figure C.14 note details.   
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Figure C.17: Difference of the cumulative CRPS of the MODWT separate scale 
BVAR/BVAR-SV minus the benchmark 

 
Note. See Figure C.14 note details.  
 
 
Figure C.18: Difference of the cumulative CRPS of the multiscale BVAR-Minnesota minus 
the benchmark 

 
Note. See Figure C.14 note details.   
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Figure C.19: Difference of the cumulative CRPS of the multiscale BVAR-Minnesota-SV 
minus the benchmark 

 
Note. See Figure C.14 note details.  
 
 
Figure C.20: Difference of the cumulative CRPS of the multiscale BVAR-SSVS minus the 
benchmark. 

 
Note. See Figure C.14 note details.   
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Figure C.21: Difference of the cumulative CRPS of the multiscale BVAR-SSVS-SV minus 
the benchmark 

 
Note. See Figure C.14 note details.  
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